
www.allitebooks.com

http://www.allitebooks.org

PostgreSQL Cookbook

Over 90 hands-on recipes to effectively manage,

administer, and design solutions using PostgreSQL

Chitij Chauhan

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

PostgreSQL Cookbook

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or

transmitted in any form or by any means, without the prior written permission of the publisher,

except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the

information presented. However, the information contained in this book is sold without

warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers

and distributors will be held liable for any damages caused or alleged to be caused directly or

indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies

and products mentioned in this book by the appropriate use of capitals. However, Packt

Publishing cannot guarantee the accuracy of this information.

First published: January 2015

Production reference: 1240115

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78355-533-8

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author

Chitij Chauhan

Reviewers

Naoya Hashimoto

Sergio Martínez-Losa Del Rincón

Danny Sauer

Commissioning Editor

Akram Hussain

Acquisition Editor

Nikhil Karkal

Content Development Editor

Sumeet Sawant

Technical Editor

Ruchi Desai

Copy Editors

Dipti Kapadia

Vikrant Phadke

Project Coordinator

Purav Motiwalla

Proofreaders

Maria Gould

Paul Hindle

Linda Morris

Stephen Silk

Indexer

Monica Ajmera Mehta

Production Coordinator

Arvindkumar Gupta

Cover Work

Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org

About the Author

Chitij Chauhan currently works as a senior database administrator at an IT-based MNC

in Chandigarh. He has over 10 years of work experience in the ield of database and system
administration, with specialization in MySQL clustering, PostgreSQL, Greenplum, Informix

DB2, SQL Server 2008, Sybase, and Oracle. He is a leading expert in the area of database

security, with expertise in database security products such as IBM InfoSphere Guardium,

Oracle Database Vault, and Imperva.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Naoya Hashimoto has been working on system design and integration with open source

software for years. Recently, his career and interest have shifted toward cloud engineering on

both public and hybrid clouds, such as AWS, as well as toward orchestration tools, such as

Chef or CloudFormation. He has reviewed the books Icinga Network Monitoring and Building a

Home Security System with BeagleBone, both by Packt Publishing. Moreover, currently he is a

technical reviewer of the book Building Networks and Servers Using Beaglebone, which is also

by Packt Publishing.

Thanks to the author and the project coordinator, Purav, who gave me this

opportunity to review the book. I am very impressed with their work and this

project because it gives us a chance to learn about the latest technology of

PostgreSQL 9.x.

Sergio Martínez-Losa Del Rincón is a computer engineer who loves programming

languages since the time he was in high school, where he learned about programming and

computer interactions. He is always learning and discovers something new to learn everyday.

He likes all kind of programming languages, but he focuses his efforts on mobile development

with native languages, such as Objective-C (iPhone), Java (Android), and Xamarin (C#). He builds

Google Glass applications as well as mobile applications for iPhone and Android devices at work.

He also develops games for mobile devices with cocos2d-x and cocos2d. He likes cross-platform

applications as well. He has reviewed Learning Xamarin Studio, Packt Publishing.

He loves challenging problems, and he is always keen to work with new technologies. More

information about his experience and details can be found at www.linkedin.com/in/
sergiomtzlosa.

www.allitebooks.com

www.linkedin.com/in/sergiomtzlosa
www.linkedin.com/in/sergiomtzlosa
http://www.allitebooks.org

Danny Sauer has been a professional Unix geek of various stripes for roughly 20 years,

most recently in the lavor of security engineer. His experience with open source databases
extends through most of that time period, both as DBA and as a user. He currently lives

with his wife in an old house in a small town outside of a small city, which provides plenty

of opportunity to restore antique houses, cars, and computers.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support iles, eBooks, discount offers, and more
For support iles and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub

iles available? You can upgrade to the eBook version at www.PacktPub.com and as a print

book customer, you are entitled to a discount on the eBook copy. Get in touch with us at

service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a

range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print, and bookmark content

 f On demand and accessible via a web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib

today and view 9 entirely free books. Simply use your login credentials for immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1

Chapter 1: Managing Databases and the PostgreSQL Server 7
Introduction 8

Creating databases 8

Creating schemas 10

Creating users 11

Creating groups 13

Destroying databases 14

Creating and dropping tablespaces 15

Moving objects between tablespaces 17

Initializing a database cluster 18

Starting the server 19

Stopping the server 20

Displaying the server status 22

Reloading the server coniguration iles 23
Terminating connections 24

Chapter 2: Controlling Security 27
Introduction 27

Securing database objects 28

Controlling access via irewalls 29
Controlling access via coniguration iles 31
Testing remote connectivity 34

Auditing database changes 34

Enabling SSL in PostgreSQL 38

Testing SSL encryption 42

Encrypting conidential data 42
Cracking PostgreSQL passwords 48

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Chapter 3: Backup and Recovery 51
Introduction 51

A logical backup of a single PostgreSQL database 52

A logical backup of all PostgreSQL databases 56

A logical backup of speciic objects 60
File system level backup 62

Taking a base backup 63

Hot physical backup and continuous archiving 64

Point-in-time recovery 66

Restoring databases and speciic database objects 69

Chapter 4: Routine Maintenance Tasks 71
Introduction 71

Controlling automatic database maintenance 72

Preventing auto freeze and page corruption 74

Preventing transaction ID wraparound failures 75

Updating planner statistics 77

Dealing with bloating tables and indexes 78

Monitoring data and index pages 82

Routine reindexing 85

Maintaining log iles 87

Chapter 5: Monitoring the System Using Unix Utilities 89
Introduction 89

Monitoring CPU usage 90

Monitoring paging and swapping 91

Finding the worst user on the system 94

Monitoring system load 95

Identifying CPU bottlenecks 96

Identifying disk I/O bottlenecks 99

Monitoring system performance 101

Examining historical CPU load 103

Examining historical memory load 104

Monitoring disk space usage 106

Monitoring network status 107

Chapter 6: Monitoring Database Activity and

Investigating Performance Issues 109
Introduction 110

Checking active sessions 110

Finding out what queries users are currently running 111

Getting the execution plan for a statement 112

Logging slow statements 115

iii

Table of Contents

Collecting statistics 116

Monitoring database load 117

Finding blocking sessions 118

Table access statistics 120

Finding unused indexes 122

Forcing a query to use an index 124

Determining disk usage 126

Chapter 7: High Availability and Replication 129
Introduction 129

Setting up hot streaming replication 130

Replication using Slony-I 134

Replication using Londiste 139

Replication using Bucardo 148

Replication using DRBD 152

Setting up the Postgres-XC cluster 162

Chapter 8: Connection Pooling 171
Introduction 171

Installing pgpool 172

Coniguring pgpool and testing the setup 173
Starting and stopping pgpool 181

Setting up pgbouncer 183

Connection pooling using pgbouncer 184

Managing pgbouncer 187

Chapter 9: Table Partitioning 191
Introduction 191

Implementing partitioning 192

Managing partitions 196

Partitioning and constraint exclusion 199

Alternate partitioning methods 202

Installing PL/Proxy 204

Partitioning with PL/Proxy 205

Chapter 10: Accessing PostgreSQL from Perl 211
Introduction 211

Making a connection to a PostgreSQL database using Perl 212

Creating tables using Perl 215

Inserting records using Perl 217

Accessing table data using Perl 219

Updating records using Perl 221

Deleting records using Perl 224

iv

Table of Contents

Chapter 11: Accessing PostgreSQL from Python 229
Introduction 229

Making connections to a PostgreSQL database using Python 230

Creating tables using Python 231

Inserting records using Python 233

Accessing table data using Python 235

Updating records using Python 237

Deleting records using Python 240

Chapter 12: Data Migration from Other Databases and

Upgrading the PostgreSQL Cluster 243
Introduction 243

Using pg_dump to upgrade data 244

Using the pg_upgrade utility for a version upgrade 246

Replicating data from other databases to PostgreSQL using GoldenGate 249

Index 265

Preface
PostgreSQL is a database server that is available on a wide range of platforms and is one of

the most popular open source databases deployed in production environments worldwide.

It is also one of the most advanced databases, with a wide range of features that challenge

even many proprietary databases. This book offers you an insight into the various features

and implementations of these features in PostgreSQL. It is intended to be a practical guide

for database administrators and developers alike, with solutions related to data migration,

table partitioning, high availability and replication, database performance, and using Perl

and Python languages for integration with PostgreSQL.

What this book covers

Chapter 1, Managing Databases and the PostgreSQL Server, helps you to create databases

and understand the concept of schemas, roles, users, groups, and tablespaces in the

PostgreSQL server.

Chapter 2, Controlling Security, lets you see and understand the security controls and levels of

security that are present in PostgreSQL. After this chapter, you should be able to understand

and conigure the security controls that exist in the PostgreSQL server. You should also be
able to use SSL connections in PostgreSQL in order to encrypt data.

Chapter 3, Backup and Recovery, shows the different backup and recovery scenarios

that can be implemented in PostgreSQL. After this chapter, you should be familiar with

logical and physical backup methods and restoring databases or database objects in a

recovery-based scenario.

Chapter 4, Routine Maintenance Tasks, gives information about the regular maintenance

tasks that are carried out to achieve optimal performance.

Preface

2

Chapter 5, Monitoring the System Using Unix Utilities, covers different Unix/Linux commands

useful to troubleshoot CPU, memory, and I/O-related issues. After reading this chapter, you

should be able to successfully troubleshoot CPU, memory, and disk contention issues using

various Unix commands.

Chapter 6, Monitoring Database Activity and Investigating Performance Issues, teaches you

different aspects related to improving PostgreSQL performance. After reading this chapter, you

should be able to resolve lock conlicts, ind slow-running SQL statements, collect statistics,
examine index usage, and investigate and troubleshoot various PostgreSQL database issues

in a real-time environment.

Chapter 7, High Availability and Replication, demonstrates the high availability and replication

concepts in PostgreSQL. After reading this chapter, you will be able to implement high

availability and replication options using different techniques including streaming replication,

Slony replication, replication using Bucardo, and replication using Longdiste. Eventually, you

will be able to implement a full-ledged, active/passive, highly available PostgreSQL cluster
using open source tools such as DRBD, Pacemaker, and Corosync.

Chapter 8, Connection Pooling, covers connection pooling methods such as pgpool and

pgbouncer. They help reduce database overhead when there are a large number of concurrent

connections. After reading this chapter, you should be able to conigure the pgpool and
pgbouncer methods.

Chapter 9, Table Partitioning, explains the different partitioning methods and implementing

logical segregation of table data into partitions. You will also get familiar with horizontal
partitioning implementation using PL/Proxy.

Chapter 10, Accessing PostgreSQL from Perl, makes you familiar with creating database

connections, accessing data, and performing DML operations on the PostgreSQL database

using Perl programming.

Chapter 11, Accessing PostgreSQL from Python, shows you how to create database

connections, access data, and carry out DML operations on the PostgreSQL database

using Python programming.

Chapter 12, Data Migration from Other Databases and Upgrading the PostgreSQL Cluster,

covers the different mechanisms available to initiate minor and major version upgrades of

PostgreSQL. You will also become familiar with the Oracle GoldenGate tool used to replicate
data from other databases to PostgreSQL.

What you need for this book
You'll need the following software:

 f VMware Workstation Version 7 or higher / VirtualBox

 f PostgreSQL 9.3 installer

Preface

3

 f Win32 OpenSSL v1.0.1

 f pgAdmin v1.18.1

 f PostgreSQL v.9.3

 f Oracle Solaris Version 10

 f CentOS Linux Version 6 or higher

Who this book is for
This book is for system administrators, database administrators, architects, developers,

and anyone with an interest in planning, managing, and designing database solutions using

PostgreSQL. This book is ideal for you if you have some prior experience with any relational

database or with the SQL language.

Sections
This book contains the following sections:

Getting ready
This section tells us what to expect in the recipe, and describes how to set up any software or

any preliminary settings needed for the recipe.

How to do it…

This section contains the steps required to follow the recipe.

How it works…

This section usually consists of a detailed explanation of what happened in the previous section.

There's more…

This section consists of additional information about the recipe in order to make the reader

more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Preface

4

Conventions
In this book, you will ind a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and explanations of their meanings.

Code words in text, database table names, folder names, ilenames, ile extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "The irst
method relies on using the CREATE DATABASE SQL statement."

A block of code is set as follows:

SELECT name, setting, unit ,(source = 'default') as is_default

FROM pg_settings WHERE context = 'sighup'

AND (name like '%delay' or name like '%timeout')

AND setting != '0';

Any command-line input or output is written as follows:

pg_ctl -D /var/lib/pgsql/data reload

New terms and important words are shown in bold. Words that you see on the screen, in

menus or dialog boxes for example, appear in the text like this: "In the New Inbound Rule

Wizard dialog box, click on the Protocol and Ports option, then click on the radio buttons,

as shown in the following screenshot, and inally click on the Next button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this

book—what you liked or may have disliked. Reader feedback is important for us to develop

titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and

mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or

contributing to a book, see our author guide on www.packtpub.com/authors.

www.packtpub.com/authors

Preface

5

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to

get the most from your purchase.

Downloading the example code
You can download the example code iles for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can

visit http://www.packtpub.com/support and register to have the iles e-mailed directly
to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen.

If you ind a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you could report this to us. By doing so, you can save other readers from frustration

and help us improve subsequent versions of this book. If you ind any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on

the Errata Submission Form link, and entering the details of your errata. Once your errata are

veriied, your submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search ield. The required
information will appear under the Errata section.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,

we take the protection of our copyright and licenses very seriously. If you come across any

illegal copies of our works, in any form, on the Internet, please provide us with the location

address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any

aspect of the book, and we will do our best to address it.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1
Managing Databases
and the PostgreSQL

Server

In this chapter, we will cover the following recipes:

 f Creating databases

 f Creating schemas

 f Creating users

 f Creating groups

 f Destroying databases

 f Creating and dropping tablespaces

 f Moving objects between tablespaces

 f Initializing a database cluster

 f Starting the server

 f Stopping the server

 f Displaying the server status

 f Reloading the server coniguration iles

 f Terminating connections

www.allitebooks.com

http://www.allitebooks.org

Managing Databases and the PostgreSQL Server

8

Introduction
PostgreSQL is an open source, object-oriented relational database management system

that was originally developed at the Berkeley Computer Science Department of the University

of California.

PostgreSQL is an advanced database server available on a wide range of platforms, ranging

from Unix-based operating systems such as Oracle Solaris, IBM AIX, and HP-UX; Windows;

and Mac OS X to Red Hat Linux and other Linux-based platforms.

We start with showing how to create databases in PostgreSQL. During the course of this

chapter, we will cover schemas, users, groups, and tablespaces, and show how to create

these entities. We will also show how to start and stop the PostgreSQL server services.

Creating databases
A database is a systematic and organized collection of data which can be easily accessed,

managed, and updated. It provides an eficient way of retrieving stored information.
PostgreSQL is a powerful open source database. It is portable because it written in ANSI

C. As a result, it is available for different platforms and is reliable. It is also ACID (short for

Atomicity, Consistency, Isolation, Durability) compliant, supports transactions, is scalable

as it supports multi version concurrency control (MVCC) and table partitioning, is secure

as it employs host based access control and supports SSL, and provides high availability and

replication by implementing features such as streaming replication and its support for point in

time recovery.

Getting ready
Before you start creating databases, you would need to install PostgreSQL on your computer.

For Red Hat or CentOS Linux environments, you can download the correct rpm for the

PostgreSQL 9.3 version from yum.postgresql.org.

Here is the link you can use to install PostgreSQL on CentOS:

http://www.postgresonline.com/journal/archives/329-An-almost-idiots-
guide-to-install-PostgreSQL-9.3,-PostGIS-2.1-and-pgRouting-with-Yum.
html

The following are the links you can use to install PostgreSQL on an Ubuntu platform:

 f http://technobytz.com/install-postgresql-9-3-ubuntu.html

 f http://www.cloudservers.com/installing-and-configuring-
postgresql-9-3-on-hosted-linux-cloud-vps-server/

yum.postgresql.org
http://www.postgresonline.com/journal/archives/329-An-almost-idiots-guide-to-install-PostgreSQL-9.3,-PostGIS-2.1-and-pgRouting-with-Yum.html
http://www.postgresonline.com/journal/archives/329-An-almost-idiots-guide-to-install-PostgreSQL-9.3,-PostGIS-2.1-and-pgRouting-with-Yum.html
http://www.postgresonline.com/journal/archives/329-An-almost-idiots-guide-to-install-PostgreSQL-9.3,-PostGIS-2.1-and-pgRouting-with-Yum.html
http://technobytz.com/install-postgresql-9-3-ubuntu.html
http://www.cloudservers.com/installing-and-configuring-postgresql-9-3-on-hosted-linux-cloud-vps-server/
http://www.cloudservers.com/installing-and-configuring-postgresql-9-3-on-hosted-linux-cloud-vps-server/

Chapter 1

9

Alternatively, you may download the graphical PostgreSQL installer available from the

EnterpriseDB website, at http://www.enterprisedb.com/products-services-
training/pgdownload.

For details on how to install PostgreSQL using the graphical PostgreSQL installer from the

EnterpriseDB website, you can refer to the following link for further instructions:

http://www.enterprisedb.com/docs/en/9.3/pginstguide/Table%20of%20
Contents.htm

Once you have downloaded and installed PostgreSQL, you will need to deine the data
directory, which is the storage location for all of the data iles for the database. You will then
need to initialize the data directory. Initialization of the data directory is covered under the

recipe titled Initializing a database cluster. After this, you are ready to create the database.

To connect to a database using the psql utility, you can use the following command:

psql -h localhost -d postgres –p 5432

Here, we are basically connecting to the postgres database, which is resident on the

localhost, that is the same server on which PostgreSQL was installed, and the connection

is taking place on port 5432.

In the following code, we are creating a user, hr. Basically, this user is being created because

in the next section, it is being used as the owner of the hrdb database:

CREATE USER hr with PASSWORD 'hr';

More details regarding creating users will be covered in the Creating users recipe.

How to do it...

PostgreSQL provides two methods to create a new database:

 f The irst method relies on using the CREATE DATABASE SQL statement:

CREATE DATABASE hrdb WITH ENCODING='UTF8' OWNER=hr
CONNECTION LIMIT=25;

 f The second method requires using the createdb command-line executable:

createdb –h localhost –p 5432 –U postgres testdb1

How it works...

A database is a named collection of objects such as tables, functions, and so on.

In order to create a database, the user must be either a superuser or must have

the special CREATEDB privilege.

http://www.enterprisedb.com/products-services-training/pgdownload
http://www.enterprisedb.com/products-services-training/pgdownload
http://www.enterprisedb.com/docs/en/9.3/pginstguide/Table%20of%20Contents.htm
http://www.enterprisedb.com/docs/en/9.3/pginstguide/Table%20of%20Contents.htm

Managing Databases and the PostgreSQL Server

10

The createdb command-line executable connects to the postgres database when

triggered, and then issues the CREATE DATABASE command.

You can view the list of existing databases by querying the pg_database catalog table,

as shown in the following screenshot:

Alternatively, you may use \l switch of psql to view the list of existing databases.

Creating schemas
Schemas are among the most important objects within a database. A schema is a named

collection of tables. A schema may also contain views, indexes, sequences, data types,

operators, and functions. Schemas help organize database objects into logical groups,

which helps make these objects more manageable.

How to do it...

You can use the CREATE SCHEMA statement to create a new schema in PostgreSQL:

CREATE SCHEMA employee;

Alternatively, it is also possible to create a schema for a particular user:

CREATE SCHEMA university AUTHORIZATION bob;

Here, a schema called university is created and is owned by bob.

How it works...

A schema is a logical entity that helps organize objects and data in the database.

By default, if you don't create any schemas, any new objects will be created in the public schema.

In order to create a schema, the user must either be a superuser or must have the CREATE

privilege for the current database.

Once a schema is created, it can be used to create new objects such as tables and views

within that schema.

Chapter 1

11

There's more...

You may use the \dn switch of psql to list all of the schemas in a database as shown in the

following screenshot:

To identify the schema in which you are currently working, you can use the following command:

SELECT current_schema();

While searching for objects in the database, you can deine the search schemas preferences
for where those searches should start. You can use the search_path parameter for this,

as follows:

ALTER DATABASE hrd SET search_path TO hr,hrms, public, pg_catalog;

Creating users
A user is a login role that is allowed to log in to the PostgreSQL server. The login roles section

is where you deine accounts for individual users for the PostgreSQL system. Each database
user should have an individual account to log in to the PostgreSQL system. Each user has an

internal system identiier in PostgreSQL, which is known as a sysid. The user's system ID is
used to associate objects in a database with their owner. Users may also have global rights

assigned to them when they are created. These rights determine whether a user is allowed to

create or drop databases and whether the existing user is a superuser or not.

How to do it...

PostgreSQL provides two methods by which database users are created:

 f The irst method requires using the CREATE USER SQL statement to create a

new user in the database. You can create a new user with the CREATE USER SQL

statement, like this:

CREATE user agovil WITH PASSWORD 'Kh@rt0um';

Managing Databases and the PostgreSQL Server

12

Here, we created the agovil user and provided a password for the user to log in with.

 f The second method requires executing the createuser script from the

command line.

We may also use the createdb script to create a user called nchabbra on the same

host (port 5432), and the –S option speciies that the created user will not have the
superuser privileges:

$ createuser -h localhost -p 5432 -S nchabbra

How it works...

The CREATE USER SQL statement requires one mandatory parameter which is the name of

the new user. Other parameters, which are optional, however, are passwords for the user or

group, the system ID, and a set of privileges that may be explicitly allocated.

The createuser script can be invoked without arguments. In that case, it will prompt us

to provide the username and the set of rights and will attempt to make a local connection

to PostgreSQL. It can also be invoked with options and the username to be created on the

command line, and you will need to give the user access to a database explicitly if he/she is

not the owner of the database.

There's more...

We can use the \du switch of psql to display the list of existing users, inclusive of roles in the

PostgreSQL server, as shown in this screenshot:

Chapter 1

13

Alternatively you may obtain the list of users by querying the pg_user catalog table using the

SQL statement, as shown in the following screenshot:

Creating groups
A group in the PostgreSQL server is similar to the groups that exist in Unix and Linux. A group

in PostgreSQL serves to simplify the assignment of rights. It simply requires a name and may

be created empty. Once it is created, users who are intended to share common access rights

are added into the group together, and are thus associated by their membership within that

group. Grants on the database objects are then given to the group instead of each individual

group member.

How to do it...

Groups in the PostgreSQL server can be created by using the CREATE GROUP SQL statement.

The following command will create a group. However, no users are currently a part of this group:

hrdb=# CREATE GROUP dept;

In order to assign members/users to the group, we can use the ALTER GROUP statement

as follows:

hrdb=# ALTER GROUP dept ADD USER agovil,nchabbra;

It is also possible to create a group and assign users upon its creation, as shown in the

following CREATE GROUP statement:

hrdb=# CREATE GROUP admins WITH user agovil,nchabbra;

Managing Databases and the PostgreSQL Server

14

How it works...

A group is a system-wide database object that can be assigned privileges and have users

added to it as members. A group is a role that cannot be used to log in to any database.

It is also possible to grant membership in a group to another group, thereby allowing the

member role use of privileges assigned to the group it is a member of.

Database groups are global across a database cluster installation.

There's more...

To list all of the available groups in the PostgreSQL server instance, you need to query the

pg_group catalog table, as shown in the following screenshot:

Destroying databases
Every major RDBMS vendor offers the ability to drop databases just as it allows you to create

databases. However, one should exercise caution when dealing with situations like dropping

databases. Once a database is dropped, all of the information residing in it is lost forever. It

is only for a valid business purpose that we should drop databases. In normal circumstances,

a database is only dropped when it gets decommissioned and is no longer required for

business operations.

How to do it...

There are two methods to drop a database in the PostgreSQL server instance:

 f You can use the DROP DATABASE statement to drop a database from PostgreSQL,

as follows:

hrdb=# DROP DATABASE hrdb;

Chapter 1

15

 f You can use the dropdb command line-utility, which is a wrapper around the DROP
DATABASE command:

$ dropdb hrdb;

How it works...

The DROP DATABASE statement permanently deletes catalog entries and the data directory.

Only the owner of the database can issue the DROP DATABASE statement.

Also, it is not possible to drop a database to which you are connected. In order to delete the

database, the database owner will have to make a connection to another database of which

he is an owner.

There's more...

One situation that demands attention is when a user tries to drop a database that has active

connections. The user will get an error when trying to drop such a database.

In order to drop a database that has active connections to it, you will have to follow these steps:

1. Identify all of the active sessions on the database. To identify all of the active

sessions on the database, you need to query the pg_stat_activity catalog

table as follows:

SELECT * from pg_stat_activity where datname='testdb1';

2. Terminate all of the active connections to the database. To terminate all of the active

connections, you will need to use the pg_terminate_backend function as follows:

SELECT pg_terminate_backend(pid) FROM pg_stat_activity WHERE
datname = 'testdb1';

3. Once all of the connections are terminated, you may proceed with dropping the

database using the DROP DATABASE statement.

Creating and dropping tablespaces
PostgreSQL stores data iles consisting of database objects such as tables and indices on the

disk. The tablespace is deined as the location of these objects on the disk. A tablespace is
used to map a logical name to a physical location on the disk.

Getting ready
A tablespace is a location on the disk where PostgreSQL stores data iles containing database
objects, for example indexes, tables, and so on.

Managing Databases and the PostgreSQL Server

16

Before you create the tablespace, the directory location must be physically created and the

directory must be empty:

mkdir –p /var/lib/pgsql/data/dbs

How to do it...

To create a tablespace in PostgreSQL, you need to use the CREATE TABLESPACE statement.

The following command creates a data_tbs tablespace, which is owned by the agovil user:

CREATE TABLESPACE data_tbs OWNER agovil LOCATION
'/var/lib/pgsql/data/dbs';

Similarly, a tablespace in PostgreSQL can be dropped using the DROP TABLESPACE

statement, as follows:

DROP TABLESPACE data_tbs;

How it works...

A tablespace allows you to control the disk layout of PostgreSQL. The owner of the tablespace,

by default, would be the user who executed the CREATE TABLESPACE statement. This

statement also gives you the option of assigning the ownership of the tablespace to a new

user. This option is the part of the OWNER clause in the CREATE TABLESPACE statement.

The name of the tablespace should not begin with a pg_ preix because this is reserved for
the system tablespaces.

Before deleting a tablespace, ensure that it is empty, which means there should be no

database objects inside it. If the user tries to delete the tablespace when it is not empty,

the command will fail.

There are two options that will aid in deleting the tablespace when it is not empty:

 f You may drop the database

 f You may alter the database to move it to a different tablespace

After any of the preceding actions have been completed, then the corresponding tablespace

may be dropped.

There's more...

By default, two tablespaces exist in PostgreSQL:

 f pg_default: This is used to store user data

 f pg_global: This is used to store global data

Chapter 1

17

You may query the pg_tablespace catalog table to get the list of existing tablespaces in

PostgreSQL, as shown in the following screenshot:

Moving objects between tablespaces
A tablespace can contain both permanent and temporary objects. You will need to deine and
create a secondary tablespace to serve as the target destination of objects that might get

moved from the primary tablespace. Moving objects between tablespaces is a mechanism of

copying bulk data in which copying happens sequentially, block by block. Moving a table to

another tablespace locks it for the duration of the move.

Getting ready
Here, we will irst create a new tablespace, hrms, using the following command:

mkdir –p /var/lib/pgsql/data/hrms

Then we set the default tablespace for the testdb1 database to hrms using the

following statement:

CREATE TABLESPACE HRMS OWNER agovil LOCATION
'/var/lib/pgsql/data/hrms';

We will also create a table, insert some records into it, and create a corresponding index for it.

This is being done because the table and its index will be used in the How to do it… section of

this recipe:

CREATE TABLE EMPLOYEES(id integer PRIMARY KEY , name varchar(40));

INSERT INTO EMPLOYEES VALUES (1, 'Mike Johansson');

INSERT INTO EMPLOYEES VALUES(2, 'Rajat Arora');

CREATE INDEX emp_idx on employees(name);

www.allitebooks.com

http://www.allitebooks.org

Managing Databases and the PostgreSQL Server

18

How to do it...

Moving a complete database to a different tablespace involves three steps:

1. You will change the tablespace for the given database so that new objects for the
associated database are created in the new tablespace:

ALTER DATABASE testdb1 SET default_tablespace='hrms';

2. You will have to then move all of the existing tables in the corresponding database to

the new tablespace:

ALTER TABLE employee SET TABLESPACE hrms;

3. You will also have to move any existing indexes to the new tablespace:
ALTER INDEX emp_idx SET TABLESPACE hrms;

How it works...

You will have to query the pg_tables catalog table to ind out which tables from the current
database need to be moved to a different tablespace.

Similarly for the indexes, you will have to query the pg_indexes catalog table to ind out
which indexes need to be moved to a different tablespace.

Initializing a database cluster
In terms of a ilesystem, a database cluster is a collection of databases that are managed by a

single server instance, and it is the framework upon which PostgreSQL databases are created.

How to do it...

The initdb command is used to initialize or create the database cluster. The –D switch of

the initdb command is used to specify the ilesystem location for the database cluster.

To create the database cluster, use the initdb command:

$ initdb -D /var/lib/pgsql/data

Another way of initializing the database cluster is by calling the initdb command via the

pg_ctl utility:

$ pg_ctl -D /var/lib/pgsql/data initdb

Chapter 1

19

How it works...

A database cluster is a collection of databases that are managed by a single server instance.

When the initdb command is triggered, the directories in which the database data will

reside are created, shared catalog tables are generated, and the template1 and postgres

databases are created, out of which the default database is postgres. The initdb

command initializes the database cluster default locale and the character set encoding.

You can refer to http://www.postgresql.org/docs/9.3/static/creating-
cluster.html for more information on initializing a database cluster.

Starting the server
Before anyone can access the database, the database server must be started. Then you

will be able to start all of the instances of the postgres database in the cluster using the

different commands with options as mentioned in this recipe.

Getting ready
The term "server" refers to the database and the associated backend processes. The term

"service" refers to the operating system wrapper through which the server gets invoked. In

normal circumstances, the PostgreSQL server will usually start automatically when the system

boots up. However, there will be situations where you may have to start the server manually

for different reasons.

How to do it...

There are a couple of methods through which the PostgreSQL server can be started on Unix or

Linux platforms:

 f The irst method relies on passing the start argument to the pg_ctl utility to get

the postmaster backend process started, which effectively means starting the

PostgreSQL server.

 f The next method relies on using the service commands, which, if supported by the

operating system, can be used as a wrapper to the installed PostgreSQL script.

 f The last method involves invoking the installed PostgreSQL script directly using its

complete path.

On most Unix distributions and Red Hat-based Linux distributions, the pg_ctl utility can be

used as follows:

pg_ctl -D /var/lib/pgsql/data start

http://www.postgresql.org/docs/9.3/static/creating-cluster.html
http://www.postgresql.org/docs/9.3/static/creating-cluster.html

Managing Databases and the PostgreSQL Server

20

If you are using the service command, the service can be started like this:

service postgresql<version> start

For PostgreSQL version 9.3, the service command to start the PostgreSQL server is as follows:

service postgresql-9.3 start

You may also start the server by manually invoking the installed PostgreSQL script using its

complete path:

/etc/rc.d/init.d/postgresql-9.3 start

On Windows-based systems, the PostgreSQL service can be started using the

following command:

NET START postgresql-9.3

How it works...

The start argument of the pg_ctl utility will irst start PostgreSQL's postmaster backend
process using the path of the data directory.

The database system will then start up successfully, report the last time the database system

was shut down, and provide various debugging statements before returning the postgres

user to the shell prompt.

There's more...

In Ubuntu and Debian Linux distributions, the pg_ctlcluster wrapper can be used with the

start argument to start the postmaster server for a particular cluster. A cluster is a group of

one or more PostgreSQL database servers that may coexist on a single host.

Stopping the server
Sometimes in emergency situations, you might have to bring down the PostgreSQL server's
services. There are certain situations in which you may need to stop the database services.

For instance, during an operating system migration, you might need to stop the running

services, take a ilesystem backup, and then proceed with OS migration.

How to do it...

There are a couple of ways by which the PostgreSQL server can be stopped.

Chapter 1

21

On Unix distributions and Red Hat-based Linux distributions, we can use the stop argument

of the pg_ctl utility to stop the postmaster:

pg_ctl -D /var/lib/pgsql/data stop -m fast

Using the service command, the PostgreSQL server can be stopped like this:

service postgresql stop

You may also stop the server by manually invoking the installed PostgreSQL script using its
complete path:

/etc/rc.d/init.d/postgresql stop

On Windows-based systems, you may stop the postmaster service in this manner:

NET STOP postgresql-9.3

How it works...

The pg_ctl utility checks for the running postmaster process, and if the stop argument of

the pg_ctl utility is invoked, then the server is shut down.

By default, the PostgreSQL server will wait for clients to irst cancel their connections before
shutting down.

However, with the use of a fast shutdown, there is no wait time involved as all of the user

transactions will be aborted and all connections will be disconnected.

There's more...

There may be situations where one needs to stop the PostgreSQL server in an emergency

situation, and for this, PostgreSQL provides the immediate shutdown mode.

In case of immediate shutdown, a process will receive a harsher signal and will not be able to

respond to the server anymore.

The consequence of this type of shutdown is that PostgreSQL is not able to inish its disk I/O,
and therefore has to do a crash recovery the next time it is started.

The immediate shutdown mode can be invoked like this:

pg_ctl -D /var/lib/pgsql/data stop -m immediate

Managing Databases and the PostgreSQL Server

22

Another way to shut down the server would be to send the signal directly using the kill

command. The PID of the postgres process can be found using the ps command or from

the postmaster.pid ile in the data directory. In order to initiate a fast shutdown, you can

issue the following command:

$ kill -INT head -1 /usr/local/pgsql/data/postmaster.pid

Displaying the server status
Many a times, there will be situations where end users complain that the database performance

is sluggish and they are not able to log in to the database. In such situations, it is often helpful

to take a quick glance through the status of the PostgreSQL backend postmaster process and

conirm whether the PostgreSQL server services are up and running.

How to do it...

There are a couple of ways by which the status of the PostgreSQL server can be checked.

On Unix and on Red Hat-based Linux distributions, the status argument of the pg_ctl utility

can be used to check the status of a running postmaster backend:

pg_ctl -D /var/lib/pgsql/data status

On Unix-based and Linux-based platforms supporting the service command, the status of a

postgresql process can be checked as follows:

service postgresql status

You may also check the server status by manually invoking the installed PostgreSQL script
using its complete path:

/etc/rc.d/init.d/postgresql status

How it works...

The status mode of the pg_ctl utility checks whether the postmaster process is running in

the speciied data directory.

If the server is running, then the process ID and the command-line options that were used to

invoke it are displayed.

Chapter 1

23

Reloading the server coniguration iles
Changes made to certain PostgreSQL coniguration parameters come into effect when the
server coniguration iles, such as postgresql.conf, are reloaded. Reloading the server

coniguration iles becomes necessary in such cases.

How to do it...

Some of the coniguration parameters in PostgreSQL can be changed on the ly. However,
changes to other conigurations can only be relected once the server coniguration iles
are reloaded.

On most Unix-based and Linux-based platforms, the command to reload the server

coniguration ile is as follows:

pg_ctl -D /var/lib/pgsql/data reload

It is also possible to reload the coniguration ile while being connected to a PostgreSQL
session. However, this can be done by the superuser only:

postgres=# select pg_reload_conf();

On Red Hat and other Linux-based systems that support the service command, the

postgresql command to reload the coniguration ile is as follows:

service postgresql reload

How it works...

To ensure that changes made to the parameters in the coniguration ile take effect, a reload
of the coniguration ile is needed. Reloading the coniguration iles requires sending the
sighup signal to the postmaster process, which in turn will forward it to the other connected

backend sessions.

There are some coniguration parameters whose changed values can only be relected by
a server reload. These coniguration parameters have a value known as sighup for the

attribute context in the pg_settings catalog table:

SELECT name, setting, unit ,(source = 'default') as is_default FROM
pg_settings WHERE context = 'sighup'

AND (name like '%delay' or name like '%timeout')

AND setting != '0';

Managing Databases and the PostgreSQL Server

24

Output for the preceding query is as shown below:

Terminating connections
Every major RDBMS, including PostgreSQL, allows simultaneous and concurrent database

connections in order for users to run transactions. Due to such concurrent processing of

databases, it may be during peak transaction hours that database performance becomes

slow or that there are some blocking sessions. In order to deal with such situations, we might

have to terminate some speciic sessions or sessions coming from a particular user so that we
can get database performance back to normal.

How to do it...

PostgreSQL provides the pg_terminate_backend function to kill a speciic session. Even
though the pg_terminate_backend function acts on a single connection at a time, we can

embed pg_terminate_backend by wrapping it around the SELECT query to kill multiple

connections, based on the ilter criteria speciied in the WHERE clause.

To terminate all of the connections from a particular database, we can use the

pg_terminate_backend function as follows:

SELECT pg_terminate_backend(pid) FROM pg_stat_activity
WHERE datname = 'testdb1';

To terminate all of the connections for a particular user, we can use pg_terminate_
backend like this:

SELECT pg_terminate_backend(pid) FROM pg_stat_activity
WHERE usename = 'agovil';

Chapter 1

25

How it works...

The pg_terminate_backend function requires the pid column or process ID as input.

The value of pid can be obtained from the pg_stat_activity catalog table. Once

pid is passed as input to the pg_terminate_backend function, all running queries will

automatically be canceled and it will terminate a speciic connection corresponding to the
process ID as found in the pg_stat_activity table.

Terminating backends is also useful to free memory from idle postgres processes that was

not released for whatever reason and was hogging system resources.

There's more...

If the requirement is to cancel running queries and not to terminate existing sessions, then

we can use the pg_cancel_backend function to cancel all active queries on a connection.

However, with the pg_cancel_backend function, we can only kill runaway queries issued in

a database or by a speciic user. It does not have the ability to terminate connections.

To cancel all of the running queries issued against a database, we can use the pg_cancel_
backend function as follows:

SELECT pg_cancel_backend(pid) FROM pg_stat_activity
WHERE datname = 'testdb1';

To cancel all of the running queries issued by a speciic user, we can use the pg_cancel_
backend function like this:

SELECT pg_cancel_backend(pid) FROM pg_stat_activity
WHERE usename = 'agovil';

In versions before PostgreSQL 9.2, the procpid column has to be passed as input to the

pg_terminate_backend and pg_cancel_backend functions to terminate running

sessions and cancel queries. The pid column replaced the procpid column from

PostgreSQL version 9.2 onwards.

You may refer to https://blog.sleeplessbeastie.eu/2014/07/23/how-to-
terminate-postgresql-sessions/ and http://www.devopsderek.com/
blog/2012/11/13/list-and-disconnect-postgresql-db-sessions/ for

more information regarding terminating backend connections.

https://blog.sleeplessbeastie.eu/2014/07/23/how-to-terminate-postgresql-sessions/
https://blog.sleeplessbeastie.eu/2014/07/23/how-to-terminate-postgresql-sessions/
http://www.devopsderek.com/blog/2012/11/13/list-and-disconnect-postgresql-db-sessions/
http://www.devopsderek.com/blog/2012/11/13/list-and-disconnect-postgresql-db-sessions/

2
Controlling Security

In this chapter, we will cover the following recipes:

 f Securing database objects

 f Controlling access via irewalls

 f Controlling access via coniguration iles

 f Testing remote connectivity

 f Auditing database changes

 f Enabling SSL in PostgreSQL

 f Testing SSL encryption

 f Encrypting conidential data

 f Cracking PostgreSQL passwords

Introduction
Databases are used to store data in an organized manner. All relevant organization-related

data is maintained in databases. Since all company-related information is stored in databases,

it becomes imperative that controls be placed on data access and only authorized persons

be allowed to access relevant data. It is in this context that database security is of utmost

importance because it is important to ensure that the information stored in databases is

protected against malicious attempts to view and modify data by hackers or people with

malicious intent.

www.allitebooks.com

http://www.allitebooks.org

Controlling Security

28

Database security deals with the information security measures that are undertaken

to protect databases in order to ensure conidentiality, integrity, and availability of data.
Databases need to be protected against various risks and threats, such as misuse by

authorized database users, malicious attempts made by hackers to steal information or

damage data, design laws and software bugs in databases that lead to various security
vulnerabilities that are exploited by hackers, data corruption that might be caused by wrong

input and mistakes by humans, the possibility of data being sabotaged, and the administrator

tendency of keeping a default schema password which might lead to unauthorized access to

data by people with malicious intent.

Securing database objects
It is important to ensure that the authenticated users get access only to the data they are

authorized to access. However, the pertinent question of how to keep authenticated users

away from accessing unauthorized data remains. In PostgreSQL, this is implemented by

maintaining a strong access control policy. The access control list governs which users are

allowed to select, update, and modify objects within the database. A set of restrictions and

controls are placed on every database object which determine who is allowed to access that

object. Access control rights on database objects are maintained through the usage of the

GRANT and REVOKE commands.

How to do it...

A database user usually has no access rights on any database objects apart from the ones

that they own. As per business requirements, access to appropriate database objects is

granted to other users by the owner of these objects. However, if the requirement comes to

revoke a right after a user has been granted access to the object, then the REVOKE command

can be issued.

We will discuss two cases here:

 f Revoking all the permissions on a table from a speciic user. Here, we show the usage
of the REVOKE command:

REVOKE ALL on testusers from nchhabra;

 f Revoking speciic permissions on a table from a user, as shown here:
REVOKE insert,update,delete,truncate on testusers from agovil;

How it works...

Normally, all users have a set of rights, which include SELECT, UPDATE, DELETE, INSERT,

TRUNCATE, and TRIGGER, on all the newly created tables through the PUBLIC role.

Chapter 2

29

In order to ensure that a particular user is no longer able to access the table, the rights

to that table must be revoked from both the PUBLIC role and the user. In the irst step of
the preceding section, we revoke all the permissions on the testusers table from the

nchhabra user. In this case, the ncchabra user is in a way restricted from performing any

operation on the testusers table.

In the second scenario of the preceding section, we explicitly revoke the insert, update, delete,

and truncate operations on the testusers table from the PostgreSQL user, agovil, thereby

permitting the user to perform read-only operations on the table via the SELECT table clause.

Controlling access via irewalls
The most basic way to protect network services on a server is through a irewall. A irewall can
be in the form of both hardware and software. A irewall allows you to conigure which clients
are allowed to pass packets through the irewall to speciic applications.

The server irewall is the front door of the system on the network. It can block attempts

to access individual services on the server before the packets even pass to the server

applications. This acts as the irst line of defense in protecting PostgreSQL databases
from attack and intrusion.

How to do it...

The following are a series of steps that are required to conigure database port access
through the irewall on Red Hat Linux and other Red Hat based distributions:

1. For the network machines to be able to access the PostgreSQL server, you must

manually conigure the irewall rules to allow access to the PostgreSQL server port.
By default, PostgreSQL listens to the TCP port 5432. So, you need to enable port

5432 on the irewall. In Linux environments, you can enable port 5432 by modifying
iptables' rules. For this, you need to open the ile containing irewall rules. This ile
can be found at vim/etc/sysconfig/iptables.

2. Once you have opened the ile, you need to add the following rule to enable access to
port 5432:

-A INPUT -m state --state NEW -m tcp -p tcp --dport 5432
-j ACCEPT

3. After this, you need to save the changes and reload the coniguration ile that
contains the irewall rules in order to ensure that the new changes made come
into effect, using the following command:

service iptables restart

Controlling Security

30

The next series of steps are required to conigure database port access through the irewall
on Windows 7. To enable port 5432 on Windows, you need to follow the sequence of steps

given here:

1. Open Windows Firewall by navigating to Start | Control Panel | Systems And

Security | Windows Firewall.

2. In the left-hand side pane, click on Advanced settings. If you're prompted for an
administrator password or conirmation, type the password or provide conirmation.

3. In the Windows Firewall with Advanced Security dialog box, click on Inbound Rules

in the left pane and then click on New Rule in the right pane.

4. In the New Inbound Rule Wizard dialog box, click on the Protocol and Ports option,

then click on the radio buttons, as shown in the following screenshot, and inally click
on the Next button.

5. In the next screen, select the default settings for all the options, enter the port

number 5432 in the Speciic local ports: text ield, and then keep clicking on the
Next button until you get to the Finish button. Enter a name for the rule and then

click on Finish.

Chapter 2

31

How it works...

Servers that host production databases have irewall policies which either allow or block a
port or an IP address.

By default, irewall blocks everything. In order to enable access to applications, you need
to conigure rules in the irewall access control policy in order to allow the application to
be accessed.

You will need to enable access on port 5432, which is the default port for PostgreSQL,

in order to access the PostgreSQL server.

Controlling access via coniguration iles
Once the irewall is conigured to allow access to the PostgreSQL server, you need to conigure
the PostgreSQL server to allow remote connections. This is implemented by making the

necessary changes in the postgresql.conf and pg_hba.conf coniguration iles.

The postgresql.conf ile contains a single entry that controls on which network interfaces
PostgreSQL listens for connections.

The pg_hba.conf ile is used to deine which clients can connect to which database and
using which login role.

How to do it...

1. You need to conigure the listen_addresses coniguration parameter in order to
enable the remote network clients to make a connection to the PostgreSQL server:

listen_addresses = '*'

2. Here, you use an asterisk as the value of the listen_addresses coniguration
parameter. This coniguration parameter enables all network ports.

3. The next step will be to make changes in the pg_hba.conf coniguration ile.
These changes deine access rules in order to allow remote connections access
to the PostgreSQL server.

4. Open the pg_hba.conf ile under the data directory or under the directory deined
by the $PGDATA environment variable and deine the necessary access control rules:
TYPE DATABASE USER CIDR-ADDRESS METHOD OPTION

 host hrdb all 192.168.12.10/32 md5

 host all all 192.168.54.1/32 reject

 host all all 192.168.1.0/24 trust

 host hrd all 192.168.1.10/24 crypt

Controlling Security

32

5. The irst entry in the pg_hba.conf ile signiies that any user from the host
192.168.12.10 is allowed to connect to the hrdb database if the user's
password is supplied correctly.

6. The second entry in the pg_hba.conf ile shows a host record that will reject all the
users from the host 192.168.54.1 for any requested database.

7. The third entry in the pg_hba.conf ile shows a host record that allows any machine
on the 192.168.1.0 subnet to connect and access any database without specifying

any password. Basically, with the trust method, we are relying on host-based

authentication with the use of this method.

8. The inal entry in the pg_hba.conf ile states that any user with an IP address
192.168.1.10 and with a valid password is allowed to connect to the hrdb database.

However, here the password will be encrypted during authentication because of the

term crypt, which is speciied as the authentication method.

How it works...

Client authentication is controlled by the pg_hba.conf coniguration ile. Entries in the
pg_hba.conf ile govern the authentication and authorization permissions for a host.

Entries in the pg_hba.conf ile will be read for authentication whenever a connection
request is received. Initially, the pg_hba.conf ile is used to determine whether a client
making a database connection request has the CONNECT privilege on a database object or

not. Once it has been determined that a user is allowed to access the database, the next step

is to ensure that all the conditions are met for the client to authenticate successfully.

Even if the user is authenticated and has permissions to connect to a database, any of the

table-level permissions will still apply to the database. You can check the permissions on the
database using the \z switch, as shown in the screenshot below:

During the initialization of a database connection, entries in the pg_hba.conf ile are read
from top to bottom. The moment a matching entry is found, PostgreSQL will stop the search

and it will allow or reject a connection based on the mentioned rules for the found entry. The

connection will fail completely if a matching entry is not located in the pg_hba.conf ile.

Chapter 2

33

There's more…

An authentication method type known as ident is deined in the pg_hba.conf coniguration
ile. The ident authentication method works by obtaining the client's operating system
username and using it as the allowed database username.

If the ident authentication method is used for a host entry in the pg_hba.conf ile,
then an ident map or a named mapping need to be speciied. This option is deined in the
pg_ident.conf coniguration ile, and it is used to map the identifying username, that is
the client operating system username with an existing PostgreSQL database user.

The key aspect here is to obtain the client's operating system username so that it can be
mapped to an existing database PostgreSQL database user.

Similar to the pg_hba.conf ile, the pg_ident.conf ile is also located in the data directory
or in the path speciied by the PGDATA environment variable.

First, the ident term must be set as the authentication method in the pg_hba.conf ile, as
follows:

TYPE DATABASE USER CIDR-ADDRESS METHOD OPTION

 host hrdb all 192.168.12.10/32 ident hruser

Here, in the pga_hba.conf ile, any user using the IP address 192.168.12.10 can connect
to the hrdb database using an hruser mapname, which is basically a mapping of the UNIX

usernames and the corresponding PostgreSQL database username. These entries are deined
in the pg_ident.conf ile, as follows:

 # MAPNAME Ident-USERNAME PG-USERNAME

 hruser govil_amit agovil

 hruser kumar_neeraj agovil

The hruser identmap is now conigured in the pg_ident.conf ile. The entries in the pg_
ident.conf ile allow either of the UNIX system users, govil_amit and kumar_neeraj,

to connect to the hrdb database using the PostgreSQL system user account agovil.

For more information on the entries in the pg_hba.conf ile, you can refer to http://www.
postgresql.org/docs/9.3/static/auth-pg-hba-conf.html.

http://www.postgresql.org/docs/9.3/static/auth-pg-hba-conf.html
http://www.postgresql.org/docs/9.3/static/auth-pg-hba-conf.html

Controlling Security

34

Testing remote connectivity
After coniguring the network environment in PostgreSQL, it is usually a good idea to test it out.

How to do it...

You can use the psql program to test connections to the PostgreSQL server from a

remote client:

D:\Postgresql_Project\bin>psql -h 192.168.12.10 hrdb agovil

Password for user agovil:

psql (9.3.4)

WARNING: Console code page (437) differs from Windows code page (1252)

 8-bit characters might not work correctly. See psql reference

 page "Notes for Windows users" for details.

Type "help" for help.

Hrdb=>

How it works...

After enabling client authentication between the PostgreSQL server and the client application,

as well as after coniguring access control rules in the host's pg_hba.conf coniguration ile,
it is a good idea to test for remote connectivity.

This will help you to ind out whether the access control rules are conigured correctly in the
pg_hba.conf ile and whether the clients face any connection errors despite being allowed
access based on the host coniguration ile's rules.

Auditing database changes
Database security remains a concern for any database application. For the purpose of audit, it

is important to identify which data has been changed, who has made this change, and when

and how this change was implemented in the production environment.

A change log trigger can be used as a mechanism to identify what changes have been made

to data in the PostgreSQL database and to answer all the pertinent questions from the

auditing perspective.

Chapter 2

35

How to do it...

1. First, create a schema, and then the other objects that are required to track changes

will be stored in this schema. You can create the schema as follows:
CREATE SCHEMA logging;

2. The next step will be to create a table to store some history in order to track changes,

as follows:

CREATE TABLE logging.t_history (

 id serial,

 tstamp timestamp DEFAULT now(),

 schemaname text,

 tabname text,

 operation text,

 who text DEFAULT current_user,

 new_val json,

 old_val json

);

The point of using this table is to keep track of all the changes made to the table. We

want to know which operation is taking place. The next important issue is when a new

row is added, it will be visible by the trigger procedure. The same is true for deletion

and changes.

3. Next, create a function that logs the changes, including the old changes, and values

into the t_history table. The function is deined in such a manner that it tracks all
DML operations—including inserts, updates, and deletes—and depending on the type

of DML operations, it logs data—including changes—into the t_history table:

CREATE FUNCTION change_trigger()

RETURNS trigger AS $$

BEGIN

 IF TG_OP = 'INSERT' THEN

 INSERT INTO logging.t_history (

 tabname,

 schemaname,

 operation,

 new_val

)

 VALUES (

 TG_RELNAME,

 TG_TABLE_SCHEMA,

 TG_OP,

 row_to_json(NEW)

);

Controlling Security

36

 RETURN NEW;

 ELSIF TG_OP = 'UPDATE' THEN

 INSERT INTO logging.t_history (

 tabname,

 schemaname,

 operation,

 new_val,

 old_val

)

 VALUES (

 TG_RELNAME,

 TG_TABLE_SCHEMA,

 TG_OP,

 row_to_json(NEW),

 row_to_json(OLD)

);

 RETURN NEW;

 ELSIF TG_OP = 'DELETE' THEN

 INSERT INTO logging.t_history (

 tabname,

 schemaname,

 operation,

 old_val

)

 VALUES (

 TG_RELNAME,

 TG_TABLE_SCHEMA,

 TG_OP,

 row_to_json(OLD)

);

 RETURN OLD;

 END IF;

END;

$$ LANGUAGE 'plpgsql' SECURITY DEFINER;

4. Now, create a table with some data in it and use this table to make changes:

CREATE TABLE t_trig (id int,name text);

5. The next step is to create a change log trigger that will be executed before any DML

event occurs on the t_trig table, created in the earlier step:

CREATE TRIGGER t BEFORE INSERT OR UPDATE OR DELETE ON
t_trig FOR EACH ROW EXECUTE PROCEDURE change_trigger();

Chapter 2

37

6. Now, make changes in the t_trig table and test the trigger execution, as follows:

INSERT INTO t_trig VALUES (1, 'hans');

UPDATE t_trig SET id = 10 * id, name ='paul';

7. Next, check whether your history tables contain changes made to the underlying

tables using the query, as shown in the screenshot below:

How it works...

A generic trigger function can be used to record changes into a history table. It will record the

old and new records, tables affected, users who made the change, type of DML operation,

and a timestamp for each change.

It is important to ensure that the log, which is preserved to keep a track of the changes,

cannot be changed by an authorized person. This can be ensured by marking the trigger

function as SECURITY DEFINER. This will ensure that the function itself is not executed

by the user who makes the change but by the user who has written the function.

This sort of a trigger-based mechanism cannot be used to track the following activities from

an auditing perspective:

 f It cannot audit the SELECT statements

 f It cannot audit system tables

 f It cannot audit DDL operations such as the ALTER TABLE statement

There's more...

There is another way to collect data changes made to PostgreSQL. These changes also

includes changes made to DDL statements. We can collect the changes that are made

to a PostgreSQL system from the server's logile.

In order to collect data changes from the server log, you need to modify the log_statement

coniguration parameter and set its value to either mod or all in the postgresql.conf

coniguration ile.

Once this is done, you need to reload the coniguration as follows:

pg_ctl -D /var/lib/pgsql/data reload

www.allitebooks.com

http://www.allitebooks.org

Controlling Security

38

Enabling SSL in PostgreSQL
By default, the PostgreSQL server is conigured to accept remote client connections using
a standard TCP connection. The issue with these type of network connections is that the

data is sent in clear text over the network and is clearly susceptible to snifing. Anyone using
a network sniffer can easily intercept the data sent in clear text, and in this way, the data

conidentiality can be compromised.

Now, the pertinent question is what data in PostgreSQL will be susceptible to snifing. The SQL
statement sent by the psql utility to the server and the result set generated by the PostgreSQL

server are some of the things that are susceptible to snifing. Getting an interceptor to see the
result set of the query means enabling the network sniffer to see your table data.

To deal with this situation, PostgreSQL supports Secure Sockets Layer (SSL) encrypted TCP

sessions. SSL-based TCP encrypted sessions use an encryption key to encrypt data before it

is sent out on the network. The PostgreSQL server and the client machine pass an encryption

key that is used to encrypt data.

How to do it...

In order to deal with this, you need to enable SSL support in PostgreSQL. This can be done by

modifying the value of the ssl coniguration parameter in the postgresql.conf ile:

ssl = on

When the PostgreSQL server is restarted, it will recognize the change in the coniguration
and enable SSL connections. The PostgreSQL server will now listen for both normal TCP

connections, as well as secure SSL-based TCP connections on the same port.

However, once SSL is enabled, the PostgreSQL server will make sure that the encryption keys

or certiicate iles are available in the PostgreSQL data directory, otherwise it will not start until
it inds them.

How it works...

Now that SSL support is enabled in PostgreSQL, to support an SSL session, the PostgreSQL

server must have access to both an encryption key and a certiicate. The SSL protocol uses
the encryption key to encrypt network data, while the remote client uses the certiicate
supplied by the server to validate that the encryption key came from a trusted source.

Chapter 2

39

The encryption key is generated from a certiicate signed by an organization that the client
trusts. These two methods can be used to obtain a certiicate:

 f You can purchase a certiicate from a certiication authority such as Verisign or Thawte

 f In other situations, you can create a self-signed certiicate, indicating that the
encryption came from your end

There's more...

Here we are going to create a self-signed certiicate and encryption keys using an open
source tool know as OpenSSL. For Windows, you need to download the latest version

of the Win32OpenSSL package.

The following steps are required to create the encryption key and self-signed certiicate iles:

1. Create a passphrase protected encryption key.

2. Remove the key passphrase.

3. Create the self-signed certiicate.

The irst step is to create the encryption key used by PostgreSQL for encrypting SSL sessions.
This is done using the req OpenSSL option:

Controlling Security

40

The preceding step creates a ile called privkey.pem, which contains the encryption key and

the server.req ile, which contains a basic certiicate:

As mentioned earlier, the ile that contains the privkey.pem encryption key is protected by

a passphrase. You can remove this passphrase from the encryption key using another SSL
option, as follows:

When the previously mentioned openssl command is executed, OpenSSL asks for

the passphrase for the encryption key. It then creates a new encryption key, called

server.key, which does not require the pass phrase to be entered.

Now that you have an encryption key without a pass phrase and a basic certiicate, the next
step is to convert the certiicate to a standard X.509 format and self sign it using
the encryption key:

C:\cygwin\OpenSSL-Win32\bin>openssl req -x509 -in server.req
-text -key server.key -out server.crt

Loading 'screen' into random state – done

Chapter 2

41

The certiicate is created in the text mode using the standard X.509 format and is saved in the
server.crt ile. As the certiicate was created in the text mode, let's take a look at it:

The next step will be to copy the server.key and server.crt iles to the PostgreSQL data
directory and then restart the PostgreSQL server service.

For more information on SSL in PostgreSQL, you can refer to www.postgresql.org/
docs/9.3/static/ssl-tcp.html.

www.postgresql.org/docs/9.3/static/ssl-tcp.html
www.postgresql.org/docs/9.3/static/ssl-tcp.html

Controlling Security

42

Testing SSL encryption
Usually, communication between the client application, such as psql, and the database

server, that is PostgreSQL, is sent over the network as clear text and is susceptible to

snifing. To prevent any sort of eavesdropping or snifing, ensure that the communication
between the psql client and the database server is encrypted. We set up SSL and enabled

encryption in the previous recipe. Once the certiicate and encryption key iles are moved to
the data directory, the next step is to check the SSL encryption. It is now time to test the SSL

encryption that we set up in the previous recipe.

How to do it...

After the PostgreSQL server is restarted, the next step is to use the psql application in order to

test the SSL connection, as shown here:

How it works...

The psql application attempts to connect to the PostgreSQL server in the SSL mode irst and
then tries to connect in the plain text mode if the SSL mode fails. While making the connection

to the psql client, you can see the banner information containing keywords such as SSL

connection and some cipher text. This can be seen from the screenshot in the earlier section.

Encrypting conidential data
It is important to protect conidential information stored in databases, such as credit
card information, information about inancial transactions, and personal information of
an employee. Usual database mechanisms, such as maintaining access control lists to

implement tight security controls on conidential information, to ensure that such sensitive
information does not fall into the hands of malicious users is not enough. What is important

is to ensure that the conidential data be kept in a format that is not understandable to
unauthorized users. For authorized users, however, the information must be converted back

to its original format so that it is understandable. This is where encryption comes into the

picture. Encryption is the process of converting data into a format that renders the data

unreadable or intangible to unauthorized users.

Chapter 2

43

Encryption translates the data into cipher text or secret mode, which can only be decoded

and converted into its original form with the help of a key that is kept by authorized personnel

only. For this reason, encryption is considered to be one of the most effective ways to achieve

data security.

There are two categories of encryption: one is the symmetric system, and the other is the

asymmetric system. Symmetric encryption uses an identical key to both encrypt and decrypt

the data. Symmetric key algorithms are much faster computationally than asymmetric

algorithms, as the encryption process is less complicated and takes less time. Asymmetric

encryption uses two related keys (public and private) for data encryption and decryption and

eliminates the security risk of sharing keys. The private key is never exposed. A message that

is encrypted using the public key can only be decrypted by applying the same algorithm and

using a matching private key. Likewise, a message that is encrypted using the private key can

only be decrypted using the matching public key.

How to do it...

PostgreSQL has various levels of encryption to choose from. PostgreSQL provides the

pgcrypto module, which provides cryptographic functions for PostgreSQL.

In the following section, we are going to create a table and use the Advanced Encryption

Standard (AES) to encrypt the table data and then decrypt the data via the encrypt and

decrypt functions:

testdb1=# create extension pgcrypto;

testdb1=# create table demo(pw bytea);

testdb1=# insert into demo(pw) values (encrypt('champion', 'key',
'aes'));

testdb1=# select * from demo;

 pw

\xdf5fa25e36fd16c9e4688bcf46bf11c3

(1 row)

testdb1=# select decrypt(pw, 'key', 'aes') FROM demo;

 decrypt

\x6368616d70696f6e

(1 row)

testdb1=# select convert_from(decrypt(pw, 'key', 'aes'), 'utf-8') FROM
demo;

Controlling Security

44

 convert_from

 champion

(1 row)

How it works...

The pgcrypto module is a module in PostgreSQL which provides encryption in the form of

database functions. It is client independent. The pgcrypto module provides support for raw

encryption, Pretty Good Privacy (PGP) compatible encryption, and hashing.

PostgreSQL provides supports for both symmetric and asymmetric encryption. For stronger

encryption, you can use a PGP-based encryption approach where you have a public and a

private key pair, in which case, the public key is used to encrypt the data and the private

key is used to decrypt the data.

We are now going to demonstrate the use of a public and private key pair to encrypt and

decrypt the data. We are going to use the following four functions for the demonstration,

along with an explanation of the usage of these functions:

 f pgp_pub_encrypt: This is the function you will use to encrypt your data using your

public key.

 f pgp_pub_decrypt: This is the function you will use to decrypt your data using your

private key.

 f dearmor: The dearmor function is used to unwrap binary data into its native format,

that is, the PGP ASCII armor format, which makes it suitable to be passed to the encrypt.

 f pgp_key_id: The pgp_key_id function is used to extract the key ID of a public or

secret key. This function tells you the key that was used to encrypt a given message,

so that from the collection of available keys, you can use the right key to decrypt the

given message.

The following are a series of steps that are used to demonstrate the usage of public and

private key pairs to encrypt and decrypt data using the previously described functions:

1. First, create the table in which you are going to store data:

CREATE TABLE testuserscards(

 card_id SERIAL PRIMARY KEY,

 username varchar(100),

 cc bytea

);

2. Next, insert records in the table and encrypt the data:

INSERT INTO testuserscards(username, cc)

SELECT robotccs.username, pgp_pub_encrypt(robotccs.cc, keys.
pubkey) As cc

Chapter 2

45

FROM (VALUES ('robby', '41111111111111111'),

 ('artoo', '41111111111111112')) As robotccs(username, cc)

 CROSS JOIN (SELECT dearmor('

-----BEGIN PGP PUBLIC KEY BLOCK-----

Version: GnuPG v1.4.1 (GNU/Linux)

mQGiBELIIgoRBAC1onBpxKYgDvrgCaUWPY34947X3ogxGOfCN0p6Eqrx+2PUhm4n

vFvmczpMT4iDc0mUO+iwnwsEkXQI1eC99g8c0jnZAvzJZ5miAHL8hukMAMfDkYke

5aVvcPPc8uPDlItpszGmH0rM0V9TIt/i9QEXetpyNWhk4jj5qnohYhLeZwCgkOdO

RFAdNi4vfFPivvtAp2ffjU8D/R3x/UJCvkzi7i9rQHGo313xxmQu5BuqIjANBUij

8IE7LRPI/Qhg2hYy3sTJwImDi7VkS+fuvNVk0d6MTWplAXYU96bn12JaD21R9sKl

Fzcc+0iZI1wYA1PczisUkoTISE+dQFUsoGHfpDLhoBuesXQrhBavI8t8VPd+nkdt

J+oKA/9iRQ87FzxdYTkh2drrv69FZHc3Frsjw9nPcBq/voAvXH0MRilqyCg7HpW/

T9naeOERksa+Rj4R57IF1l4e5oiiGJo9QmaKZcsCsXrREJCycrlEtMqXfSPy+bi5

0yDZE/Qm1dwu13+OXOsRvkoNYjO8Mzo9K8wU12hMqN0a2bu6a7QjRWxnYW1hbCAy

MDQ4IDx0ZXN0MjA0OEBleGFtcGxlLm9yZz6IXgQTEQIAHgUCQsgiCgIbAwYLCQgH

AwIDFQIDAxYCAQIeAQIXgAAKCRBI6c1W/qZo29PDAKCG724enIxRog1j+aeCp/uq

or6mbwCePuKy2/1kD1FvnhkZ/R5fpm+pdm25Ag0EQsgiIhAIAJI3Gb2Ehtz1taQ9

AhPY4Avad2BsqD3S5X/R11Cm0KBE/04D29dxn3f8QfxDsexYvNIZjoJPBqqZ7iMX

MhoWyw8ZF5Zs1mLIjFGVorePrm94N3MNPWM7x9M36bHUjx0vCZKFIhcGY1g+htE/

QweaJzNVeA5z4qZmik41FbQyQSyHa3bOkTZu++/U6ghP+iDp5UDBjMTkVyqITUVN

gC+MR+da/I60irBVhue7younh4ovF+CrVDQJC06HZl6CAJJyA81SmRfi+dmKbbjZ

LF6rhz0norPjISJvkIqvdtM4VPBKI5wpgwCzpEqjuiKrAVujRT68zvBvJ4aVqb11

k5QdJscAAwUH/jVJh0HbWAoiFTe+NvohfrA8vPcD0rtU3Y+siiqrabotnxJd2NuC

bxghJYGfNtnx0KDjFbCRKJVeTFok4UnuVYhXdH/c6i0/rCTNdeW2D6pmR4GfBozR

Pw/ARf+jONawGLyUj7uq13iquwMSE7VyNuF3ycL2OxXjgOWMjkH8c+zfHHpjaZ0R

QsetMq/iNBWraayKZnWUd+eQqNzE+NUo7w1jAu7oDpy+8a1eipxzK+O0HfU5LTiF

Z1Oe4Um0P2l3Xtx8nEgj4vSeoEkl2qunfGW00ZMMTCWabg0ZgxPzMfMeIcm6525A

Yn2qL+X/qBJTInAl7/hgPz2D1Yd7d5/RdWaISQQYEQIACQUCQsgiIgIbDAAKCRBI

6c1W/qZo25ZSAJ98WTrtl2HiX8ZqZq95v1+9cHtZPQCfZDoWQPybkNescLmXC7q5

1kNTmEU=

=8QM5

-----END PGP PUBLIC KEY BLOCK-----

') As pubkey) As keys;

3. You might then see the records in the table:
SELECT username, cc FROM testuserscards;

4. Now, you can use pgp_keyid to verify which public key you used to encrypt

your data:

SELECT pgp_key_id(dearmor('

-----BEGIN PGP PUBLIC KEY BLOCK-----

Controlling Security

46

Version: GnuPG v1.4.1 (GNU/Linux)

mQGiBELIIgoRBAC1onBpxKYgDvrgCaUWPY34947X3ogxGOfCN0p6Eqrx+2PUhm4n

vFvmczpMT4iDc0mUO+iwnwsEkXQI1eC99g8c0jnZAvzJZ5miAHL8hukMAMfDkYke

5aVvcPPc8uPDlItpszGmH0rM0V9TIt/i9QEXetpyNWhk4jj5qnohYhLeZwCgkOdO

RFAdNi4vfFPivvtAp2ffjU8D/R3x/UJCvkzi7i9rQHGo313xxmQu5BuqIjANBUij

8IE7LRPI/Qhg2hYy3sTJwImDi7VkS+fuvNVk0d6MTWplAXYU96bn12JaD21R9sKl

Fzcc+0iZI1wYA1PczisUkoTISE+dQFUsoGHfpDLhoBuesXQrhBavI8t8VPd+nkdt

J+oKA/9iRQ87FzxdYTkh2drrv69FZHc3Frsjw9nPcBq/voAvXH0MRilqyCg7HpW/

T9naeOERksa+Rj4R57IF1l4e5oiiGJo9QmaKZcsCsXrREJCycrlEtMqXfSPy+bi5

0yDZE/Qm1dwu13+OXOsRvkoNYjO8Mzo9K8wU12hMqN0a2bu6a7QjRWxnYW1hbCAy

MDQ4IDx0ZXN0MjA0OEBleGFtcGxlLm9yZz6IXgQTEQIAHgUCQsgiCgIbAwYLCQgH

AwIDFQIDAxYCAQIeAQIXgAAKCRBI6c1W/qZo29PDAKCG724enIxRog1j+aeCp/uq

or6mbwCePuKy2/1kD1FvnhkZ/R5fpm+pdm25Ag0EQsgiIhAIAJI3Gb2Ehtz1taQ9

AhPY4Avad2BsqD3S5X/R11Cm0KBE/04D29dxn3f8QfxDsexYvNIZjoJPBqqZ7iMX

MhoWyw8ZF5Zs1mLIjFGVorePrm94N3MNPWM7x9M36bHUjx0vCZKFIhcGY1g+htE/

QweaJzNVeA5z4qZmik41FbQyQSyHa3bOkTZu++/U6ghP+iDp5UDBjMTkVyqITUVN

gC+MR+da/I60irBVhue7younh4ovF+CrVDQJC06HZl6CAJJyA81SmRfi+dmKbbjZ

LF6rhz0norPjISJvkIqvdtM4VPBKI5wpgwCzpEqjuiKrAVujRT68zvBvJ4aVqb11

k5QdJscAAwUH/jVJh0HbWAoiFTe+NvohfrA8vPcD0rtU3Y+siiqrabotnxJd2NuC

bxghJYGfNtnx0KDjFbCRKJVeTFok4UnuVYhXdH/c6i0/rCTNdeW2D6pmR4GfBozR

Pw/ARf+jONawGLyUj7uq13iquwMSE7VyNuF3ycL2OxXjgOWMjkH8c+zfHHpjaZ0R

QsetMq/iNBWraayKZnWUd+eQqNzE+NUo7w1jAu7oDpy+8a1eipxzK+O0HfU5LTiF

Z1Oe4Um0P2l3Xtx8nEgj4vSeoEkl2qunfGW00ZMMTCWabg0ZgxPzMfMeIcm6525A

Yn2qL+X/qBJTInAl7/hgPz2D1Yd7d5/RdWaISQQYEQIACQUCQsgiIgIbDAAKCRBI

6c1W/qZo25ZSAJ98WTrtl2HiX8ZqZq95v1+9cHtZPQCfZDoWQPybkNescLmXC7q5

1kNTmEU=

=8QM5

-----END PGP PUBLIC KEY BLOCK-----'));

The output of this query shows that the following public key was encrypting data:

 pgp_key_id

 2C226E1FFE5CC7D4

(1 row)

5. The next step is to verify whether the public key that you got was used to encrypt the

data in the table:

hrdb=# SELECT username, pgp_key_id(cc) As keyweused FROM
testuserscards;

 username | keyweused

----------+------------------

 robby | 2C226E1FFE5CC7D4

 artoo | 2C226E1FFE5CC7D4

Chapter 2

47

6. Finally, decrypt the data using the private key that matches the public key you used to

encrypt the data with:

SELECT username, pgp_pub_decrypt(cc, keys.privkey) As ccdecrypt

FROM testuserscards

 CROSS JOIN

 (SELECT dearmor('-----BEGIN PGP PRIVATE KEY BLOCK-----

Version: GnuPG v1.4.1 (GNU/Linux)

lQG7BELIIgoRBAC1onBpxKYgDvrgCaUWPY34947X3ogxGOfCN0p6Eqrx+2PUhm4n

vFvmczpMT4iDc0mUO+iwnwsEkXQI1eC99g8c0jnZAvzJZ5miAHL8hukMAMfDkYke

5aVvcPPc8uPDlItpszGmH0rM0V9TIt/i9QEXetpyNWhk4jj5qnohYhLeZwCgkOdO

RFAdNi4vfFPivvtAp2ffjU8D/R3x/UJCvkzi7i9rQHGo313xxmQu5BuqIjANBUij

8IE7LRPI/Qhg2hYy3sTJwImDi7VkS+fuvNVk0d6MTWplAXYU96bn12JaD21R9sKl

Fzcc+0iZI1wYA1PczisUkoTISE+dQFUsoGHfpDLhoBuesXQrhBavI8t8VPd+nkdt

J+oKA/9iRQ87FzxdYTkh2drrv69FZHc3Frsjw9nPcBq/voAvXH0MRilqyCg7HpW/

T9naeOERksa+Rj4R57IF1l4e5oiiGJo9QmaKZcsCsXrREJCycrlEtMqXfSPy+bi5

0yDZE/Qm1dwu13+OXOsRvkoNYjO8Mzo9K8wU12hMqN0a2bu6awAAn2F+iNBElfJS

8azqO/kEiIfpqu6/DQG0I0VsZ2FtYWwgMjA0OCA8dGVzdDIwNDhAZXhhbXBsZS5v

cmc+iF0EExECAB4FAkLIIgoCGwMGCwkIBwMCAxUCAwMWAgECHgECF4AACgkQSOnN

Vv6maNvTwwCYkpcJmpl3aHCQdGomz7dFohDgjgCgiThZt2xTEi6GhBB1vuhk+f55

n3+dAj0EQsgiIhAIAJI3Gb2Ehtz1taQ9AhPY4Avad2BsqD3S5X/R11Cm0KBE/04D

29dxn3f8QfxDsexYvNIZjoJPBqqZ7iMXMhoWyw8ZF5Zs1mLIjFGVorePrm94N3MN

PWM7x9M36bHUjx0vCZKFIhcGY1g+htE/QweaJzNVeA5z4qZmik41FbQyQSyHa3bO

kTZu++/U6ghP+iDp5UDBjMTkVyqITUVNgC+MR+da/I60irBVhue7younh4ovF+Cr

VDQJC06HZl6CAJJyA81SmRfi+dmKbbjZLF6rhz0norPjISJvkIqvdtM4VPBKI5wp

gwCzpEqjuiKrAVujRT68zvBvJ4aVqb11k5QdJscAAwUH/jVJh0HbWAoiFTe+Nvoh

frA8vPcD0rtU3Y+siiqrabotnxJd2NuCbxghJYGfNtnx0KDjFbCRKJVeTFok4Unu

VYhXdH/c6i0/rCTNdeW2D6pmR4GfBozRPw/ARf+jONawGLyUj7uq13iquwMSE7Vy

NuF3ycL2OxXjgOWMjkH8c+zfHHpjaZ0RQsetMq/iNBWraayKZnWUd+eQqNzE+NUo

7w1jAu7oDpy+8a1eipxzK+O0HfU5LTiFZ1Oe4Um0P2l3Xtx8nEgj4vSeoEkl2qun

fGW00ZMMTCWabg0ZgxPzMfMeIcm6525AYn2qL+X/qBJTInAl7/hgPz2D1Yd7d5/R

dWYAAVQKFPXbRaxbdArwRVXMzSD3qj/+VwwhwEDt8zmBGnlBfwVdkjQQrDUMmV1S

EwyISQQYEQIACQUCQsgiIgIbDAAKCRBI6c1W/qZo25ZSAJ4sgUfHTVsG/x3p3fcM

3b5R86qKEACggYKSwPWCs0YVRHOWqZY0pnHtLH8=

=3Dgk

-----END PGP PRIVATE KEY BLOCK-----') As privkey) As keys;

 username | ccdecrypt

----------+-------------------

 robby | 41111111111111111

 artoo | 41111111111111112

(2 rows)

www.allitebooks.com

http://www.allitebooks.org

Controlling Security

48

There's more...

Instead of explicitly specifying the private/public key pair, you can also use a tool called GPG

to generate the public and secret keys and export it and use it in PostgreSQL.

GPG is available both for Linux and Windows platforms.

You can use the following sequence of steps to generate the gpg keys and export them:

1. First, generate the keys:

gpg --gen-key

2. Next, see the list of keys that you generated:

gpg --list-secret-keys

sec 1024D/D9ABCD1E 2014-06-17

uid aaaac

ssb 1024g/E0B81D3A 2014-06-17

3. Finally, export both the secret and public keys:

gpg -a --export E0B81D3A > public.key

gpg -a --export-secret-keys D9ABCD1E > secret.key

Cracking PostgreSQL passwords
Many databases including open source databases as well as proprietary ones, come with

default user accounts, and such schemas also have default passwords. These passwords

are well known in today's context, and it is important that a database administrator keep
nondefault passwords for these user accounts. However, administrators usually prefer to keep

simple passwords or sometimes allow default passwords to be kept. This is something that

needs to be avoided in a production environment because compromising here would lead

to a big security loophole and something that can be exploited by hackers. For this reason,

organizations have started implementing a strong password policy.

A common norm in password policies is to keep a combination of alphanumeric characters

coupled with a few special characters to enforce a strong password. It is important to keep

a password length of at least up to eight characters. In the following recipe, we are going

to see how weak passwords can be cracked and how important it is to enforce a strong

password policy.

Chapter 2

49

How to do it...

Here, we are presenting a scenario where we will demonstrate how weak passwords can be

easily cracked. For the purpose of demonstration, we will create two users: one user whose

password contains only digits, and one user whose password contains only alphabets.

Perform the following steps to create the users:

1. First, create a user and specify a password for the user:

create user xyz with password '123';

create user john with password 'good';

2. Next, get the encrypted passwords of users from the pg_shadow catalog table:

select usename as useraccount,passwd as "password"

from pg_shadow

where length(passwd)>1 order by usename;

 useraccount | password

-------------+-------------------------------------

 john | md5bec8abeddc3e1513db64c184a6bf85c9

 xyz | md5adf47922f0bdb6b9a520ed2d43622d14

(2 rows)

3. The next step will be to use an MD5 password decrypter tool. You can use tools
such as Cain and Abel, MD Crack, and so on. However, in our case, we will be using

a website called www.md5online.org, and we will use its online MD5 decrypter

facility, as shown here:

www.md5online.org

Controlling Security

50

In the above screenshot, we entered the MD5 hash for the user john and found his actual

password. The convention that we see here is that the password is displayed irst, followed
by the name of the user. For instance, we get goodjohn, where the password is good for

the user john.

Similarly, in the preceding screenshot, we entered the md5 hash for the user xyz and found

his actual password. The convention that we see here as well, is just as in the earlier case,

where the password is displayed irst, followed by the name of the user. For instance, we get
123xyz, where the password is 123 for the user xyz.

How it works...

In the preceding scenario, you can see that any password less than six characters in length

is vulnerable to being quickly cracked. Therefore, it is important to enforce a strong password

policy and to educate users with the effectiveness of a strong password.

The length of the password plays a key role in enforcing a strong password. The longer the

length of the password, the more is the time it requires to break it. The cracking of passwords

is based on two approaches:

 f Brute force: This method requires you to try every possible approach needed to be

undertaken in order to crack a password. There are well-known password crackers,

such as Cain and Abel, LophtCrack, Hydra, and so on, that can use the brute force

approach to crack a password. This method is suitable only for testing short passwords.

 f Dictionary attack: This method involves the usage of a dictionary list in order to

crack a password. Here, every dictionary word is taken in sequence, converted into

a hash, and then matched with the system hash. If both the hashes match, then the

password is cracked, else move to the next word in the dictionary and so on.

3
Backup and Recovery

In this chapter, we will cover the following recipes:

 f A logical backup of a single PostgreSQL database

 f A logical backup of all PostgreSQL databases

 f A logical backup of speciic objects

 f File system level backup

 f Taking a base backup

 f Hot physical backup and continuous archiving

 f Point-in-time recovery

 f Restoring databases and speciic database objects

Introduction
Backup and recovery usually refers to protecting the database against the loss of data and

enables the restoration of data in the event of a data loss. A backup, in simple terms, is a

copy of your database data.

Backups are divided into two components:

 f Logical backups: A logical backup refers to the dump ile that is created by the
pg_dump utility and which might be used to restore the database in the case of

a data loss or an accidental deletion of a database object, such as a table. The

pg_dump utility is a PostgreSQL speciic utility that can be run on the command
line, which makes a connection to the database and initiates the logical backup.

 f Physical backups: A physical backup refers to the OS level backup of a database

directory and its associated iles.

Backup and Recovery

52

It is essential to have a planning strategy in order to implement backups. This is desirable

from the point of view of a recovery scenario, and in the event of such a situation arising,

the type of backups that we initiate will inluence the type of recovery that is possible.

A logical backup of a single PostgreSQL
database

The pg_dump utility is used to back up a PostgreSQL database. It does make consistent

backups even if the database is being used by other transactions. Dumps can be created

in script or in archive ile formats. Script dumps are usually plain text iles that contain the
SQL commands required to reconstruct the database to the state it was in at the time it

was saved. Script dumps can also be used to reconstruct the database on other machines

and architectures.

Getting ready
Please note that the dump keyword is evenly used here as a synonym for backup.

The pg_dump utility is considered to be a logical backup because it makes a copy of the data

in the database by dumping out the contents of each table.

The basic syntax to take a logical backup of a single database is mentioned here:

pg_dump -U username -W -F t database_name > [Backup Location Path]

The usage of the options used with the pg_dump command is explained here:

 f U switch: The -U switch speciies the database user initiating the connection. As
pg_dump is a command-line utility, we need to specify the username via which the

pg_dump utility can make a database connection.

 f W switch: This option is not mandatory. This option forces pg_dump to prompt for

the password before connecting to the PostgreSQL database server. After you press

Enter, pg_dump will prompt for the password of the database user from which the

connection is initiated.

 f F switch: The -F switch speciies the output ile format that will be used.
We speciied the t option with the -F switch because the output ile will be

implemented as a tar format archive ile.

There are plenty of other options available with the pg_dump command; however, for our

purpose, we are going to the use the preceding options.

Chapter 3

53

How to do it...

Here, in our situation, we have a database named dvdrental for which we need to generate

a logical dump.

There are two ways in which a logical dump can be initiated in PostgreSQL:

 f The irst approach is to use the command-line utility pg_dump to make a logical

dump of a database. Here, we use the pg_dump utility to back up the dvdrental

database in an output ile named dvdrental.tar, which is saved in the abcd

subdirectory of the home directory:

pg_dump -U postgres -W -F t dvdrental >
/home/abcd/dvdrental.tar

 f The second option is to use the pgAdmin GUI tool to back up an individual

database. Here, we will show you how to backup the dvdrental database

using the pgAdmin tool:

1. First, launch the pgAdmin GUI tool.

2. Click on the Databases menu under Object browser in the left pane of the

window, select the dvdrental database, and right-click on it.

3. Then, select the Backup… option, as shown in the following screenshot:

Backup and Recovery

54

4. Once the Backup… option is selected, a dialog box will open, as shown

in the next screenshot, and you will have to enter the name of the logical

dump that will contain the command necessary to restore the database or

a specific table in the event of a failure. Here, we name the logical dump as

dvdrental.tar and store it in the pgbackup directory under the C drive.

5. Click on the Backup button to generate a logical dump of the

dvdrental database.

Chapter 3

55

6. On the click of the Backup button, the creation of the logical dump will start,

and the backup-related messages that are generated can be seen in the

next screenshot:

How it works...

The pg_dump command runs by executing SQL statements against the database to unload

data. While the pg_dump command is running, it acquires locks on the tables that are being

dumped. This is done in order to ensure that DDL operations are restricted against the tables

while the dump is running in order to ensure data consistency.

Dumps created by pg_dump are internally consistent; that is, the dump represents a snapshot

of the database at the time pg_dump begins running. The pg_dump utility does not block any

other database operations while it is executing. In this case, the only exceptions are those

operations that require an exclusive lock to operate.

Any system user might run pg_dump by default, but the user with which you connect to

PostgreSQL must have SELECT rights for every database object being dumped.

Backup and Recovery

56

Since pg_dump also provides standard connection options to specify a host connection,

it can also be used to perform remote backups from any host that is allowed to make a

remote connection, as deined in the pg_hba.conf ile:

pg_dump -u postgres -h 192.168.16.54 -F c -f
dvdrental.sql.tar.gz dvdrental

Here, in the preceding scenario, we connect to the dvdrental database located at the

host with the IP address 192.168.16.54 and initiate a remote backup for the dvdrental

database. The dvdrental.sql.tar.gz dump ile is generated at the current location
from where the pg_dump command is executed.

You can refer to the following links for more detailed information on the pg_dump utility:

 f http://www.postgresql.org/docs/9.3/static/app-pgdump.html

 f http://www.commandprompt.com/blogs/joshua_drake/2010/07/a_
better_backup_with_postgresql_using_pg_dump/

 f http://www.postgresonline.com/special_feature.php?sf_
name=postgresql83_pg_dumprestore_cheatsheet

A logical backup of all PostgreSQL
databases

To backup all databases, you can run the individual pg_dump command for each database

sequentially or in parallel if you want to speed up the backup process:

 f First, from the psql client, use the \l command to list all the available databases in

your cluster.

 f Second, back up each individual database using the pg_dump command, as

described in the previous recipe.

The other approach is to use the pg_dumpall tool to back up all the databases in

one single go.

How to do it...

You can use the pg_dump command to back up each database in the server; however,

pg_dump does not dump information about the role deinition and tablespaces. To dump
the global information, use the following command:

pg_dumpall -g

http://www.postgresql.org/docs/9.3/static/app-pgdump.html
http://www.commandprompt.com/blogs/joshua_drake/2010/07/a_better_backup_with_postgresql_using_pg_dump/
http://www.commandprompt.com/blogs/joshua_drake/2010/07/a_better_backup_with_postgresql_using_pg_dump/
http://www.postgresonline.com/special_feature.php?sf_name=postgresql83_pg_dumprestore_cheatsheet
http://www.postgresonline.com/special_feature.php?sf_name=postgresql83_pg_dumprestore_cheatsheet

Chapter 3

57

To back up all the databases in one go, you can use the pg_dumpall utility, as follows,

in Windows:

pg_dumpall -U postgres > c:\pgbackup\all.sql

Similarly, to back up all the databases in one go in Linux, use the pg_dumpall command,

as follows:

pg_dumpall -U postgres > /home/pgbackup/all.sql

How it works...

The pg_dumpall command exports all the databases, one after another, into a single script

ile that prevents you from performing a parallel restore. If you are going to back up all the
databases this way, the restore process will take a lot more time.

The processing time of dumping all databases takes longer than the time required to dump

each database individually, so we don't know which dump of each database relates to a
speciic point-in-time.

For this reason, you should use the pg_dump command to dump each individual database

and then use the -g switch of the pg_dumpall command to keep a backup of all the user

and group data.

The pg_dumpall command generally requires the user executing the script to be a

PostgreSQL superuser. This is because the pg_dumpall command requires access to the

PostgreSQL system catalogs, as it dumps global objects as well as the database objects.

There's more...

Sometimes, you want to back up only the database object deinitions, so that you can restore
the schema only. This is useful for comparing what is stored in the database against the

deinitions in a data or object modeling tool.

It is also useful to make sure that you can recreate objects in exactly the correct schema,

tablespace, and database with the correct ownership and permissions.

To back up all object deinitions in all the databases, including roles, tablespaces, databases,
schemas, tables, indexes, triggers, functions, constraints, views, ownership, and privileges,

you can use the following command in Windows:

pg_dumpall --schema-only > c:\pgdump\definitiononly.sql

If you want to back up the role deinition only, use the following command:

pg_dumpall --roles-only > c:\pgdump\myroles.sql

www.allitebooks.com

http://www.allitebooks.org

Backup and Recovery

58

If you want to back up tablespace deinitions, use the following command:

pg_dumpall --tablespaces-only > c:\pgdump\mytablespaces.sql

You can also use the pgAdmin tool to backup all the databases on the server, including the
roles, users, groups, and tablespaces. This option can be selected by launching the pgAdmin

tool, expanding the Servers menu option in the left pane, right clicking on the PostgreSQL 9.3

option, and then selecting the Backup server… option, as shown in the following screenshot:

After the Backup server… option is clicked on, a dialog box will open, as shown in the next

screenshot, and it will ask you to name the logical dump ile that will contain the deinition
of all the objects and databases that are being backed up. Here, all.sql is the name of

the logical dump ile that can be used later on to restore data and object deinitions in all
the databases in the event of data loss due to hardware or disk issues.

Chapter 3

59

Once you click on the Backup button, as shown in the previous screenshot, a logical backup

of all the databases will start. This is equivalent to issuing the pg_dumpall command, and

the effect of this can be seen in the next screenshot, which opens when you click on the

Backup Button:

Backup and Recovery

60

A logical backup of speciic objects
Sometimes, there are situations where you wish to back up only speciic database objects,
such as tables. The pg_dump utility provides options to back up speciic database objects,
such as tables.

How to do it...

If you wish to back up some speciic tables in a certain schema, you can use the pg_dump

command, as follows:

pg_dump -h localhost -p 5432 -U agovil -F c -b -v -f
"C:\pgbak\testdb_test.backup" -t case.test postgres

In the previous command, we are backing up a table called test, which resides in the case

schema in the PostgreSQL database.

How it works...

There are many situations that require you to back up certain tables only. Some of these

situations are mentioned here:

 f You wish to back up all the tables that are part of a particular tablespace. In this
situation, it is possible for a tablespace to contain objects from more than one

database; hence, you have to identify the databases from which those tables

need to be dumped.

The following procedure allows you to dump all the tables that reside on one

tablespace and one database only:

1. Create a file named table_tablespace_dump.sql, which contains

the following SQL command that extracts the list of tables in a tablespace.

SELECT 'pg_dump' UNION ALL

SELECT '-t ' || spcname || '.' || relname FROM pg_class t
JOIN pg_tablespace ts

ON reltablespace = ts.oid AND spcname = :TSNAME

JOIN pg_namespace n ON n.oid = t.relnamespace

WHERE relkind = 'r'

UNION ALL

SELECT '-F c > dumpfile'; -- dumpfile is the name of the

output file

Chapter 3

61

2. Execute the following to build the pg_dump script:

psql -t -v TSNAME="'my_tablespace'" -f
table_tablespace_dump.sql > myts

3. From the database server, dump the tables in the tablespace, including the

data and definitions:

chmod 700 myts

./myts

 f Another situation is where there are multiple schemas that have similarly named

important tables. In this situation, you wish to back up the tables having the same

names from different schemas.

The following scenario is where you can back up named tables from different

schemas. You can use the following query, which generates a pg_dump command

to back up any table that is not present in public, or pg_catalog that has the rent

keyword as a sufix as a part of the table name:
SELECT 'pg_dump ' || ' -h localhost -p 5432 -U postgres -F c -b

 -v -f "/pgbak/dvdrental_keytbls.backup" ' ||

 array_to_string(ARRAY(SELECT '-t ' || table_schema || '.' ||

 table_name FROM information_schema.tables

WHERE table_name LIKE '%_rent' AND table_schema NOT IN

('pg_catalog','public')), ' ') || 'dvdrental';

 f Another situation is where you want to back up recently changed tables in

the database.

We are going to utilize vacuum statistics for this. The vacuum statistics uses the

assumption that the vacuum process will try to go around the database and vacuum

tables where enough data has changed since the last vacuum run. This mechanism

will only work if autovacuum has been enabled. The following query will generate a

pg_dump command to back up all the tables in the dvdrental database that has

been autoanalyzed in the past one day:

SELECT 'pg_dump ' || ' -h localhost -p 5432 -U postgres -F c -b

 -v -f "C:/pgbak/dvdrental_changed_keytbls.backup" ' ||

 array_to_string(ARRAY(SELECT '-t ' || schemaname || '.' ||
relname

FROM pg_ stat_user_tables

WHERE last_autoanalyze > (CURRENT_TIMESTAMP - (INTERVAL '1

 day'))) , ' ') || 'dvdrental';

Backup and Recovery

62

File system level backup
Another possible option to backup is to utilize the operating system commands and make a

ile system backup of the iles that PostgreSQL uses to store the data in the database.

How to do it...

The easiest way to do this is to make an archive of the PostgreSQL data directory or the

directory deined by the $PGDATA environment variable, as follows:

tar -cvf backup.tar /home/abcd/psql/data

Here, we have created an archive ile named backup.tar that contains a backup of the

data directory.

How it works...

The primary beneit of making a ile system backup is that this procedure is simple and
straightforward. You need to simply back up the data directory with any of the available
Unix backup utilities, such as tar, which creates an archive ile that can be further used
for restoration if the database crashes.

There are, however, a couple of restrictions that use the preceding method to make an archive

of the data directory:

 f The database must be shut down completely in order to get a useful backup.

A ile system backup is meaningful only when the database is in a consistent state.
For this reason, you need to shut down the database, and as a result, all the data

iles will be in sync and in a consistent state and that is when the ile system backup
should be taken.

 f With a ile system backup, it is not feasible to back up speciic databases or individual
tables. The entire data directory must be backed up for a complete restoration of the

ile system. This is due to the reason that many iles are associated with a speciic
database and it becomes dificult to correlate which iles belong to which database.

There's more...

Here, we will talk about how to take backups for PostgreSQL using an LVM (short for logical

volume manager) snapshot. This involves taking a frozen snapshot of the volume containing

the database, then making a copy of the database directory from the snapshot to a backup

device, and inally releasing the frozen snapshot. This will work even when the database
server is running. Before you proceed to take the snapshot, you must perform a CHECKPOINT

command in PostgreSQL via which you can ensure that the backup will be consistent until the

time of the CHECKPOINT.

Chapter 3

63

Before we begin, we assume that we have a formatted and active XFS ile system. We also
assume that VG_POSTGRES/RV_DATA is our primary data volume.

A root user has to perform the following steps in order to create and use an LVM snapshot:

1. First, issue the CHECKPOINT command as the superuser on the PostgreSQL

database, as follows:

postgres=# CHECKPOINT ;

2. The rest of the commands mentioned here need to be executed by the root user. In

this step, we will create a snapshot, as follows:

lvcreate -l 100%FREE -s -n snap VG_POSTGRES/RV_DATA

3. Create the directory on which you wish to mount the snapshot, as follows:

mkdir /mnt/pg_snap

4. The next step will be to mount the snapshot as an XFS ile system, as follows:
mount -t xfs -o nouuid /dev/VG_POSTGRES/snap /mnt/pg_snap

5. Enter the snapshot directory, as shown here:

cd /mnt/pg_snap/

6. Next, back up the snapshot using the following command:

tar –czvf /backup/ pgsql.$(date +"%m-%d%-%Y).tar.gz /mnt/pg_snap/

7. Once the snapshot backup has been moved to a different server, the next step will be

to unmount it and delete it from the source server as the root user:

umount /mnt/pg_snap

lvremove VG_POSTGRES/snap

An alternative approach is to initiate a consistent use of a snapshot of the data directory. This

involves taking a frozen snapshot of the volume that contains the database, making a copy of

the database directory from the snapshot to a backup device, and then releasing the frozen

snapshot. This will work even when the database server is running. Before you proceed to

take the snapshot, you must perform a CHECKPOINT command in PostgreSQL via which you

can ensure that the backup would be consistent until the time of the CHECKPOINT.

Taking a base backup
The pg_basebackup tool takes base backups of a running PostgreSQL database server.

These backups are initiated without affecting other PostgreSQL database clients and can be

used for both point-in-time recovery, as well as the start point for log shipping or to stream

replication standby servers.

Backup and Recovery

64

How to do it...

You can use the pg_basebackup command in the following manner:

$ pg_basebackup -h 192.168.10.14 -D /home/abcd/pgsql/data

Here, we take a base backup of the server located at 192.168.10.14 and store it in the

/home/abcd/pgsql/data local directory.

How it works...

The pg_basebackup tool makes a binary copy of the database cluster iles while ensuring
that the system is put in and out of the backup mode automatically. Note that backups

are always made up of the entire database cluster. It is not possible to back up individual

databases or databases with the pg_basebackup tool.

The pg_basebackup utility initiates a backup that is made over a regular PostgreSQL

database connection and utilizes the replication protocol for this purpose. The connection

must be made either as a superuser or a user having a REPLICATION privilege. The server

must also be conigured with enough max_wal_senders to leave at least one session

available for backup.

Hot physical backup and continuous
archiving

In this recipe, we are going to talk about taking a hot physical backup with continuous

archiving in place. A hot physical backup is an online backup that is taken while the

transactions are running against the database. Even though we have the relevant online

physical backup through which we can restore the database, it can restore data only until the

time of backup. Any subsequent transactions that may have been recorded in the database

after the backup got completed will be missed out. In order to be able to restore the database

up to its current state, we will need to apply the archives generated after the backup got

completed. For this reason, we need to have continuous archiving enabled.

Chapter 3

65

How to do it...

There are a series of steps that need to be carried out in order to have a hot physical backup

and continuous archiving in place:

1. The irst step is to enable a continuous write-ahead log (WAL) archiving. This can

be done by making the following parameter changes in the postgresql.conf

coniguration ile, which resides in the data directory, that is the directory deined
by the $PGDATA environment variable:

wal_level = hot_standby

archive_mode = on

archive_command = 'test ! -f
/home/abcd/pgsql/backup_in_progress || (test ! -f
/home/abcd/pgsql/archive/%f && cp %p
/home/abcd/pgsql/archive/%f)'

2. Once these changes have been implemented, you need to bounce the PostgreSQL

server for the changes made to the above mentioned parameters to come into effect:

pg_ctl -d $PGDATA stop

pg_ctl -d $PGDATA start

3. The next step will be to create the archive directory, as follows:

mkdir –p /home/abcd/pgsql/archive/

touch /home/abcd/pgsql/backup_in_progress

4. Once this is done, the next step will be to start the backup process using the

following command:

psql -c "select pg_start_backup('hot_backup');"

5. Next, perform a ile system backup of the PostgreSQL data directory, as follows:
tar -cvf /home/abcd/pgsql/backup.tar /home/abcd/pgsql/data

6. When the ile system backup is completed, the next step will be to connect to the
database and stop the backup process using the following command:

psql -c "select pg_stop_backup();"

7. Now that the backup has been completed, the next step will be to go the archive

location and conirm the archives that were generated. These archives, along with

the base backup, will help you recover data to the last checkpoint or any point-in-time

after the base backup happened and to the point where you have the archive logs:

cd /home/abcd/pgsql/archive

[postgres@localhost archive]$ ls -ltrh

total 49M

Backup and Recovery

66

-rw------- 1 postgres postgres 16M Jun 30 23:53
000000010000000000000009

-rw------- 1 postgres postgres 16M Jun 30 23:53
000000010000000000000008

-rw------- 1 postgres postgres 294 Jun 30 23:54
00000001000000000000000A.00000024.backup

-rw------- 1 postgres postgres 16M Jun 30 23:54
00000001000000000000000A

How it works...

A physical backup or base backup takes a copy of all the iles in the database or the data
directory; however, this alone is not suficient as a backup and there are other steps that
need to be performed as well. A simple ile system backup of the database, while the server
is running, produces a time-inconsistent copy of the database iles. However, in the current
context, production databases need to be available 24/7, and to take backups, it is not

possible to bring down the database every time and then take a ile system backup. Such a
strategy is not feasible. Moreover, the backup process should ensure that all the changes

made from the time the backup starts until the time it ends are tracked and recorded. These

changes are tracked and recorded in WAL logs, and once the changes recorded in WAL logs

are archived, the WAL logs can be used later.

Now that it has become a business need to take online backups for production databases,

you need to ensure that the backups that are taken online are consistent. To make the

backup consistent, you need to add to it all the changes that took place from the start to the

inish of the backup process. That's why we have steps 4 and 6 to bracket our backup step.

The changes that are made are put into the archive directory as a set of archived transaction

log/WAL iles. In step 3, we have created the archive directory. Enabling the archive mode,

as mentioned in step 1, requires a database restart and this was done in step 2. In step 3,

you can also see that we have created a ile named backup_in_progress. The presence of

this ile enables or disables the archiving process.

Point-in-time recovery
Many a times, DBAs will encounter situations where they might need to restore the database

from an existing backup. This might be due to a business requirement or a critical table might

have been dropped, or else the hard disk on which the database was mounted crashed and

became corrupt. For whatever reason, you might have to go for a database recovery scenario.

In this recipe, we are going to discuss the steps required to recover the database in the event

of a failure and how to use the archive logs to do a point-in-time recovery.

Chapter 3

67

How to do it...

There are a series of steps that need to be carried out if you need to recover a database from

the backup:

1. First, check the status of the database server. If the server is running, then stop the

server, using the following command:

pg_ctl -d $PGDATA stop

2. Next, copy the existing data directory and any existing tablespaces to a temporary

location, if anything is required from the existing structure later on. In case there is

a space crunch, you should at least consider keeping a copy of the content of the

pg_xlog subdirectory. This is essential because pg_xlog might contain logs that

were not archived before the system went down:

mv $PGDATA /tmp

3. Next, restore the database iles from your ile system backup, which was taken
earlier. Please ensure that the restoration is done with the right ownership and right

permissions. If you are using tablespaces, you must conirm whether the symbolic
links in the pg_tblspc directory are correctly restored:

tar -xvf /home/abcd/pgsql/backup.tar

4. Remove any existing iles from the pg_xlog directory, as these appear to have

come from the ile system backup and are most probably obsolete, rather than being
current. If pg_xlog/ was not archived earlier, then you need to recreate it with proper

permissions, being careful to ensure that you re-establish it as a symbolic link, if it was

set up in that manner before:

rm -rf /home/abcd/pgsql/data/pg_xlog/*

If there were any unarchived WAL segment files that

were saved in step 2, then you need to copy them to

the pg_xlog/ location.

5. The next step will be to conigure the recovery.conf ile in the data directory.
You can copy the recovery.conf.sample ile from the share directory, which is

located under the installation directory of postgres, and once you have copied the

recovery.conf.sample ile to the data directory, you will need to rename it as the
recovery.conf ile:
cp /home/abcd/pgsql/share/recovery.conf.sample $PGDATA

cd $PGDATA

mv recovery.conf.sample recovery.conf

Backup and Recovery

68

6. The only parameter that needs to be conigured in the recovery.conf ile is the
restore_command parameter. This parameter tells PostgreSQL how to retrieve

archived WAL ile segments:
restore_command = 'cp /home/abcd/pgsql/archive/%f %p'

7. Once this is done, you are ready to start the server. The server launches into the

recovery mode and will proceed through the archived WAL iles it needs. Once the
recovery is complete, the server will rename recovery.conf to recovery.done,

and with this, the database stands recovered and you are ready to launch normal

operations against the database:

pg_ctl -D $PGDATA start

The following is an excerpt from the log:

LOG: starting archive recovery

LOG: archive recovery complete

LOG: database system is ready to accept connections

LOG: autovacuum launcher started

You can also see that the recovery.conf ile is now renamed to recovery.done once the

recovery is completed:

[postgres@localhost data]$ ls -ltrh |tail -7

-rw-r--r-- 1 postgres postgres 4.7K Jul 4 04:13 recovery.done

-rw------- 1 postgres postgres 78 Jul 4 04:14 postmaster.pid

-rw------- 1 postgres postgres 59 Jul 4 04:15 postmaster.opts

drwx------ 2 postgres postgres 4.0K Jul 4 04:15 pg_notify

drwx------ 2 postgres postgres 4.0K Jul 4 04:15 global

drwx------ 3 postgres postgres 4.0K Jul 4 04:15 pg_xlog

drwx------ 2 postgres postgres 4.0K Jul 4 04:24 pg_stat_tmp

How it works...

A point-in-time recovery works in this way.

First, you need to restore the data directory from the backup ile. The database at this stage
is in an inconsistent state because it is restored at the time of backup. It still needs to account

for any changes made by transactions that were persistent during the backup. For this, you

need to apply archives. Setting the restore_command value in step 6, in the How to do it…

section, ensures that the changes recorded in the archived WAL segments are applied to the

database. Once the server is started, it launches into recovery mode in order to restore all

the data properly. After a few minutes, the database will be successfully restored to the last

checkpoint that the archived logs recorded.

Chapter 3

69

There's more...

If the business requirement is to restore the database to a previous point-in-time, then we will

need to specify the required stop point in the recovery.conf coniguration ile. The stop
point, also referred to as the recovery target, can be speciied in terms of data and time, a
name restoration point, or by the completion of a speciic transaction ID.

The parameters that can control a point-in-time recovery in the recovery.conf ile are
recovery_target_time and recovery_target_xid. Either of these options might

be conigured to lead a previous point-in-time recovery.

Restoring databases and speciic database
objects

In this recipe, we are going to talk about how to restore a single database, all databases, and

speciic objects, such as tables.

How to do it...

Here, we are going to talk about three scenarios: what needs to be followed when you need

to restore all the databases on the server, a speciic database, or a speciic table only. We will
cover these scenarios in a series of steps, shown as follows:

1. Restoring all databases: In the A logical backup of all PostgreSQL databases recipe,

we created a logical dump for all the databases on a server. The dump ile, all.
sql, will be used here to restore all the databases on the server, assuming that the

database iles are corrupted and the server has crashed. The command to restore all
the databases is given here:

psql -U postgres -f c:\pgbackup\all.sql

2. Restoring a single database: In the A logical backup of a single PostgreSQL database

recipe, we created a backup using the pg_dump tool and the dump was named

dvdrental.tar.

Now, we are going to restore the dvdrental database by assuming that it has

already been dropped, as follows:

pg_restore --dbname=dvdrental --create --verbose
/home/abcd/dvdrental.tar

The --create option of the pg_restore command irst creates an empty database
before restoring all the objects from the dvdrental.tar dump ile.

Backup and Recovery

70

3. Restoring a single table: We can also restore individual objects such as tables.

Here, we are going to drop a table named store and then recover the table using the

logical dump that was used to restore the dvdrental database in the previous step:

1. First, drop the store table:

dvdrental#drop table store cascade;

2. In the next step, we are going to extract the table definition from the

available dump and then dump the table, its definition, as well as the data of

the dropped table in a new file:

pg_restore -t store dvdrental.tar > droppedtable.sql

Here, the droppedtable.sql ile contains the table deinitions, along with
data that is necessary to restore the store table that was dropped in the

earlier step.

3. The final step will be to use the newly created file that contains the table

definition and data to restore the table into the dvdrental database:

psql -f droppedtable.sql dvdrental

How it works...

The pg_restore utility enables you to restore databases that have been backed up by either

pg_dump or pg_dumpall. It is a utility for restoring PostgreSQL databases from an archive

created by pg_dump in one of the non-plain-text formats.

The pg_restore utility will issue the commands necessary to restore the database to the

state it was in at the time of being saved. The archive iles allow pg_restore to be selective

about what is restored.

There's more...

To speed up the restore process, it is possible to perform parallel restore operations in

PostgreSQL. The -j switch is used to specify the number of threads required for restoration.

Each thread restores a separate table simultaneously, which speeds up the restore process.

4
Routine Maintenance

Tasks

In this chapter, we will cover the following recipes:

 f Controlling automatic database maintenance

 f Preventing auto freeze and page corruption

 f Preventing transaction ID wraparound failures

 f Updating planner statistics

 f Dealing with bloating tables and indexes

 f Monitoring data and index pages

 f Routine reindexing

 f Maintaining log iles

Introduction
It is important to carry out regular maintenance operations at scheduled intervals for a

PostgreSQL database to achieve optimal performance. Heavy database transactions can

leave behind a signiicant amount of data, which can lead to a drop in database performance.
Thus, a database administrator needs to carry out maintenance operations in order to

clean up the database and improve database performance. In this chapter, we are going to

discuss how to deal with bloating tables and indexes, transaction ID wraparound failures, and

maintenance tasks, such as vacuuming.

Routine Maintenance Tasks

72

Controlling automatic database
maintenance

PostgreSQL has a feature known as autovacuum, which although optional, is enabled by

default in the major PostgreSQL release versions, starting with PostgreSQL 9.0 onwards. The

job of the autovacuum daemon is to automate the execution of the VACUUM and ANALYZE

commands and to perform these maintenance tasks.

How to do it...

Even though autovacuum is enabled by default in PostgreSQL, you need to ensure that

autovacuum is switched on. Enabling the autovacuum daemon requires you to conigure
and enable the following parameters in the postgresql.conf coniguration ile:

autovacuum = on

track_counts = on

As the name suggests, the autovacuum parameter controls whether the server should

launch the autovacuum daemon.

The track_counts parameter enables statistics collection on database activity. Usually,

this parameter is enabled by default because most of the checks that autovacuum performs

require the usage of a statistics collection, and unless the statistics collection facility is

enabled, autovacuum cannot be used.

The prior mentioned setting of autovacuum enablement happens on a global level, as it is

deined in the postgresql.conf coniguration ile. It is also possible to enable autovacuum
at the table level, as follows:

ALTER TABLE hrms SET (

 autovacuum_enabled = TRUE, toast.autovacuum_enabled = TRUE

);

Here we enabled autovacuum for TOAST tables as well. Usually, long data values are placed

in a secondary table known as the TOAST table. Hence, for each actual table, there will be a

corresponding toast table that contains long data values, and thereby a corresponding toast

index will be deined as well.

How it works...

Initially, autovacuum checks for tables that are eligible candidates for vacuuming. It does

this by checking for tables that have a large number of inserted, updated, or deleted rows;

that is, fragmented rows. Once autovacuum has igured out the fragmented tables, all the
autovacuum workers are assigned the task of vacuuming the fragmented tables.

Chapter 4

73

Having earlier discussed the job that autovacuum performs, let's now discuss the autovacuum
process itself. The autovacuum daemon basically consists of multiple processes. There is a

persistent daemon process known as the autovacuum launcher, whose job is to start the

autovacuum worker for all the databases residing on the PostgreSQL server. The autovacuum

launcher will attempt to start one worker within each database after the value speciied, in
seconds, in the autovacuum_naptime parameter has elapsed; the launcher will distribute

the work accordingly to each worker. The job of the worker process is to ind fragmented
tables in its database and execute the VACUUM or ANALYZE commands as and when

needed automatically.

For more information on automatic vacuuming, visit http://www.postgresql.org/
docs/9.3/static/runtime-config-autovacuum.html.

There's more...

There are a good number of tunable autovacuum related parameters that control the behavior

of the autovacuum feature. Some of these parameters are discussed as follows:

 f log_autovacuum_min_duration: This parameter helps to monitor autovacuuming

activity. This parameter speciies that each action that is executed by autovacuum

is logged if it executed for at least the time speciied in milliseconds in this parameter.

 f autovacuum_max_workers: This parameter states the maximum number of worker

processes that might be executing at any particular time. The autovacuum launcher

process is an exception to this; hence, it is not included or counted in the list of

vacuum max workers.

 f autovacuum_vacuum_threshold: This parameter speciies the number of
updated and deleted rows to initiate VACUUM in the associated table.

 f autovacuum_analyze_threshold: This parameter speciies the number of
updated and deleted rows to initiate ANALYZE in the associated table.

 f autovacuum_vacuum_scale_factor: The value of this parameter speciies
the fraction of the table size that needs to be added to autovacuum_vacuum_
threshold when deciding whether to trigger a VACUUM.

 f autovacuum_analyze_scale_factor: The value of this parameter speciies
the fraction of the table size that needs to be added to autovacuum_vacuum_
threshold when deciding whether to trigger an ANALYZE.

http://www.postgresql.org/docs/9.3/static/runtime-config-autovacuum.html
http://www.postgresql.org/docs/9.3/static/runtime-config-autovacuum.html

Routine Maintenance Tasks

74

 f autovacuum_freeze_max_age: The value of this parameter speciies the
maximum value that the table's pg_class.relfrozenxid ield can attain before
the VACUUM operation is forced to prevent a transaction ID (XID) wraparound within

the table. This parameter puts a limit on how far autovacuum will let you go before it

starts to kick in and goes around exhaustively vacuum freezing the old XIDs in your

tables with old rows. It is a not a good idea to hit the threshold set by the value of this

parameter because it can generate a lot of I/O umpteen times, causing performance

issues, and freeze autovacuums are not cancellable.

 f autovacuum_vacuum_cost_delay: This parameter deines the cost delay value
that is to be used in the VACUUM operations.

Preventing auto freeze and page corruption
In an OLTP environment, we usually expect and normally see that there are lots of DML

operations on tables. Because of frequent DML operations on tables, we can see rows that

have been deleted or have become obsolete due to an update operation; however, they

haven't been physically removed from their tables. Such rows are referred to as dead rows.

It is also quite possible that a row version might become old enough for it to become a

candidate for being frozen. Such rows are referred to as frozen rows.

Vacuuming deals with both dead rows, by reclaiming space from dead rows, and old row

versions, by freezing them so that they are preserved until they are deleted.

How to do it...

Freezing occurs when the XID, that is the transaction identiier, on a row becomes more than
the vacuum_freeze__min_age transactions older than the next current value. To ensure

that all old transaction identiiers have been replaced by FrozenXID, a table scan is performed.
The vacuum_freeze_table_age parameter controls when a scan on the whole table is

performed. Setting the value of the vacuum_freeze_table_age parameter to zero forces

VACUUM to always scan all the pages. Scanning all the pages block by block for the entire

database while VACUUM is being run is also an effective way to conirm the absence of page
corruptions. This can be initiated on the database level as follows:

SET vacuum_freeze_table_age = 0;

VACUUM;

This can be initiated at a table level as follows:

VACUUM demo;

Here, demo is the name of the table being vacuumed.

Chapter 4

75

How it works...

Vacuuming deals with performing the following functions:

 f Reclaiming or reusing disk space occupied by dead rows

 f To keep the statistics collection up to date, which is used by the PostgreSQL

query planner

 f To protect against the loss of old transaction data due to transaction ID wraparound

issues, which is discussed in the next recipe

If any page corruptions are detected, then you can use the pageinspect utility to examine the

contents of the database pages at a low level, which is useful from a debugging perspective. It

can also be used to examine index pages.

There are two situations where there might be huge I/O generation during freezing while

VACUUM is being run:

 f When there are many rows with the same transaction identiier during freeze time

 f When a table scan is being performed and you encounter a large number of rows that

need freezing

Preventing transaction ID wraparound
failures

For MVCC, PostgreSQL uses a transaction ID which is 32 bits long.

It is not feasible to have a larger transaction ID because that will increase the size of each row

by a signiicant amount. A 32-bit value can take over four billion transactions; however, it can
handle a range of about two billion transactions before rolling over to zero. When this range

is exceeded, past transactions will now appear to be from the future. That is, their outputs

become invisible; this will result in a catastrophic data loss, and the database will fail to

operate in a sane manner.

To prevent data loss, old rows must be assigned a transaction ID (XID), FrozenXID (frozen

transaction ID), sometime before they reach the two billion transactions mark. Once these

rows are assigned a FrozenXID, they will appear to be in the past to all normal transactions

regardless of the wraparound issues; so, such rows will be good until they are deleted, no

matter how long that is. This reassignment of XID is handled by VACUUM.

Routine Maintenance Tasks

76

How to do it...

In the previous recipe, you saw the usage of the VACUUM command at the database level as

well as at the table level. As an alternative to using the VACUUM command, you can also use

the vacuumdb utility to clean the PostgreSQL database. Like VACUUM, the vacuumdb utility

will also generate statistics to be used by the query optimizer. The vacuumdb utility is just a

wrapper around the VACUUM command. We can use the vacuumdb utility to clean the hrdb

database, as follows:

$ vacuumdb hrdb

You can also use the pgAdmin tool to vacuum a database. To vacuum a database in pgAdmin,
under Object browser in the left-hand side pane, right-click on the speciic database under
the Databases menu, and click on Maintenance…, as shown in the following screenshot:

Chapter 4

77

This will open a dialog box where you need to select the VACUUM radio button and then click

on OK in order to vacuum a database, as shown here:

.

Updating planner statistics
In order to generate a good plan for the queries, the PostgreSQL query planner relies on

available statistical information about the contents of the tables. It is, therefore, essential to

ensure that the statistics are accurate and up to date. If the statistics are stale, then it will

result in a poor plan being generated for the queries, which will end up further degrading

database performance.

How to do it...

There are two ways in which statistics can be gathered:

 f You can run the ANALYZE command to generate statistics on tables.

 f The ANALYZE command can be invoked as an optional step while using VACUUM. If

autovacuum is enabled, it will automatically invoke the ANALYZE command when the

contents of a table have changed substantially.

Details about the autovacuum daemon and the VACUUM command have already been covered

in the irst two recipes, so we are now going to focus on the ANALYZE command here:

ANALYZE demo;

In the preceding case, we used the ANALYZE command to generate statistics on the table

named demo and stored the results in the pg_statistic system catalog table.

Statistics collection is ine-grained and can even be done at the column level.

Routine Maintenance Tasks

78

How it works...

The statistics that are collected by the ANALYZE command include some of the most common

values in each column along with a histogram that depicts the approximate data distribution

in each column.

For larger tables, instead of examining each row, ANALYZE takes a random sample of table

contents. The beneit of using this approach is that by using the random sampling method,
even larger tables can be analyzed in a short span of time.

The amount of statistics collected by ANALYZE can be controlled by adjusting the value of the

default_statistics_target coniguration parameter.

The ANALYZE command acquires a read-only lock on the target table. This way, it can be run

in parallel with any other activity on the target table.

Dealing with bloating tables and indexes
It is common to ind a database where vacuuming has been turned off for either a table or for
the entire database. The reason for turning off vacuuming is that vacuuming creates too much

disk I/O. This might help temporarily, but in the longer run, it is not recommended that you turn

off vacuuming or abandon it. On the other hand, if vacuuming is performed too frequently, the

system's performance can become slow because vacuuming creates a lot I/O trafic.

If the database has been maintained without vacuuming or if the data is badly structured, we

might experience bloating tables and indexes. The problem with bloating tables and indexes is

that they occupy more storage space than required, which often causes performance issues

when these are used by queries. In this recipe, we are going to see how to detect bloating

tables and indexes and what the best time is to run a VACUUM command. If there are lots of

dead rows in a table, the bloat percentage is higher.

How to do it...

Here, we are going to see when a table become bloated and how to deal with it:

1. First, we are going to activate the pgstattuple module, which is used to detect a

table bloat, as follows:

hrdb=# create schema stats;

hrdb=# create extension pgstattuple with schema stats;

2. Next, we are going to create a table and add some rows into it:

hrdb=# CREATE TABLE num_test AS SELECT *

FROM generate_series(1, 10000);

Chapter 4

79

3. Now, we are going to use the pgstattuple function, provided by the pgstattuple

extension, to examine row-level statistics for the num_test table:

hrdb=# SELECT * FROM stats.pgstattuple('num_test');

-[RECORD 1]------+-------

table_len | 368640

tuple_count | 10000

tuple_len | 280000

tuple_percent | 75.95

dead_tuple_count | 0

dead_tuple_len | 0

dead_tuple_percent | 0

free_space | 7380

free_percent | 2

4. At this point, we don't see any dead rows, so we will delete some data from the
num_test table:

hrdb=# DELETE FROM num_test WHERE generate_series % 2 = 0;

5. Now we will reuse the pgstattuple module to examine the table bloat in the

num_test table:

hrdb=# SELECT * FROM stats.pgstattuple('num_test');

-[RECORD 1]------+-------

table_len | 368640

tuple_count | 5000

tuple_len | 140000

tuple_percent | 37.98

dead_tuple_count | 5000

dead_tuple_len | 140000

dead_tuple_percent | 37.98

free_space | 7380

free_percent | 2

In this output, you can see that the percentage of dead rows is approximately 38

percent. So, we are now going to vacuum the table in order to remove the table bloat.

Also, observe that the percentage of free storage space is around 2 percent, as seen

in the free_percent column:

hrdb=# VACUUM num_test;

6. Now that the table has been vacuumed, we will reexamine the row-level statistics for

the num_test table:

hrdb=# SELECT * FROM stats.pgstattuple('num_test');

-[RECORD 1]------+-------

table_len | 368640

tuple_count | 5000

Routine Maintenance Tasks

80

tuple_len | 140000

tuple_percent | 37.98

dead_tuple_count | 0

dead_tuple_len | 0

dead_tuple_percent | 0

free_space | 167380

free_percent | 45.4

In the preceding output, you can see that the dead_tuple_percent column value

is zero, which means there are no dead rows. Also, the storage space has increased;

we can now see that the free storage space is around 45 percent, which shows that

more storage space has become available after vacuuming. Before vacuuming,

the free space percent was around 2 percent. Thus, with vacuuming, we have

successfully managed to remove the bloat that existed in the tables.

Now that we have spoken about bloating tables, let's move toward bloating indexes. The
following query can help identify whether there are any bloating indexes for a particular table:

hrdb=# SELECT relname, pg_table_size(oid) as index_size,

 100-(stats.pgstatindex(relname)).avg_leaf_density AS bloat_ratio

FROM pg_class WHERE relname ~ 'casedemo' AND relkind = 'i';

 relname | index_size |
bloat_ratio

---+------------+----

 casedemo_inventory_id_idx | 507904 |
34.11

 casedemo_rental_date_inventory_id_customer_id_idx | 630784 |
26.14

 casedemo_pkey | 376832 |
10.25

(3 rows)

In the preceding output, you can see the index bloat ratio for all of the indexes belonging to

the casedemo table.

How it works...

PostgreSQL has a feature known as MVCC, that is Multi Version Concurrency Control that allows

you to read data at the same time as writers make changes. Due to the MVCC feature being

implemented, we often encounter situations where the UPDATE command can cause tables and

indexes to grow in size because they leave behind dead row versions. Similarly, the DELETE and

INSERT operations take up space that must be reclaimed by vacuuming. Also, some deletion

patterns can cause large chunks of the index to be illed with empty entries, which creates
a bloating-index scenario. To overcome the problem of a bloating index, you need to rebuild

indexes. Rebuilding indexes is covered in the Routine reindexing recipe further on in the chapter.

Chapter 4

81

Thus, it is important to examine the dead_tuple_len and dead_tuple_percent columns

from the pgstattuple package for a given table, and if both of these columns have high

values, then it it best to VACUUM these tables at a time when the transaction activity on the

database is low so as not to impact database performance.

There's more...

If you want to identify the estimated amount of bloat in your tables and indexes, you can

use the following query. This query is based on the check_postgres script available at

http://bucardo.org/wiki/Check_postgres:

SELECT

 current_database(), schemaname, tablename, /*reltuples::bigint,
relpages::bigint, otta,*/

 ROUND(CASE WHEN otta=0 THEN 0.0 ELSE sml.relpages/otta::numeric
END,1) AS tbloat,

 CASE WHEN relpages < otta THEN 0 ELSE bs*(sml.relpages-otta)::bigint
END AS wastedbytes,

 iname, /*ituples::bigint, ipages::bigint, iotta,*/

 ROUND(CASE WHEN iotta=0 OR ipages=0 THEN 0.0 ELSE ipages/
iotta::numeric END,1) AS ibloat,

 CASE WHEN ipages < iotta THEN 0 ELSE bs*(ipages-iotta) END AS
wastedibytes

FROM (

 SELECT

 schemaname, tablename, cc.reltuples, cc.relpages, bs,

 CEIL((cc.reltuples*((datahdr+ma-

 (CASE WHEN datahdr%ma=0 THEN ma ELSE datahdr%ma
END))+nullhdr2+4))/(bs-20::float)) AS otta,

 COALESCE(c2.relname,'?') AS iname, COALESCE(c2.reltuples,0) AS
ituples, COALESCE(c2.relpages,0) AS ipages,

 COALESCE(CEIL((c2.reltuples*(datahdr-12))/(bs-20::float)),0) AS
iotta -- very rough approximation, assumes all cols

 FROM (

 SELECT

 ma,bs,schemaname,tablename,

 (datawidth+(hdr+ma-(case when hdr%ma=0 THEN ma ELSE hdr%ma
END)))::numeric AS datahdr,

 (maxfracsum*(nullhdr+ma-(case when nullhdr%ma=0 THEN ma ELSE
nullhdr%ma END))) AS nullhdr2

 FROM (

 SELECT

 schemaname, tablename, hdr, ma, bs,

 SUM((1-null_frac)*avg_width) AS datawidth,

 MAX(null_frac) AS maxfracsum,

http://bucardo.org/wiki/Check_postgres

Routine Maintenance Tasks

82

 hdr+(

 SELECT 1+count(*)/8

 FROM pg_stats s2

 WHERE null_frac<>0 AND s2.schemaname = s.schemaname AND
s2.tablename = s.tablename

) AS nullhdr

 FROM pg_stats s, (

 SELECT

 (SELECT current_setting('block_size')::numeric) AS bs,

 CASE WHEN substring(v,12,3) IN ('8.0','8.1','8.2') THEN 27
ELSE 23 END AS hdr,

 CASE WHEN v ~ 'mingw32' THEN 8 ELSE 4 END AS ma

 FROM (SELECT version() AS v) AS foo

) AS constants

 GROUP BY 1,2,3,4,5

) AS foo

) AS rs

 JOIN pg_class cc ON cc.relname = rs.tablename

 JOIN pg_namespace nn ON cc.relnamespace = nn.oid AND nn.nspname =
rs.schemaname AND nn.nspname <> 'information_schema'

 LEFT JOIN pg_index i ON indrelid = cc.oid

 LEFT JOIN pg_class c2 ON c2.oid = i.indexrelid

) AS sml

ORDER BY wastedbytes DESC;

Monitoring data and index pages
In the earlier recipes, you saw that frequent updates to data result in dead rows across

both tables and indexes. These dead rows consume storage space; hence, it is important to

monitor tables and indexes in order to identify the amount of bloat present in these objects.

Apart from bloating, there are other aspects of a table and index that need to be monitored.

For instance, if there are any unused indexes, then they should be identiied and removed.
Hence, you need to monitor for unused indexes too.

How to do it...

A DBA usually requires some statistical information about the tables that is stored in the

PostgreSQL database, as follows:

 f Information on the total count of the number of rows in the table and table length

 f Information on the number of dead rows and the dead row percentage on a

given table

Chapter 4

83

 f Information on the amount and percentage of free space available in the table

 f Information regarding the number of update, insert, and delete operations on

the table

 f Information regarding the last time the table was vacuumed, manually or by the

autovacuum daemon, and the last time the table was analyzed for statistics collection

The preceding statistical information can be obtained from the pgstattuple module, which

provides row-level statistics for a given table and the pg_stat_all_tables view, which

shows statistics about accesses to that speciic table.

In the following output, from the pgstattuple module, you can see the number of rows,

row length, number of dead rows, and the percentage and amount of free space available:

hrdb=# SELECT * FROM stats.pgstattuple('casedemo');

-[RECORD 1]------+--------

table_len | 1228800

tuple_count | 16044

tuple_len | 1152240

tuple_percent | 93.77

dead_tuple_count | 0

dead_tuple_len | 0

dead_tuple_percent | 0

free_space | 8184

free_percent | 0.67

You can also use the pg_stat_all_tables table to pull up some interesting details,

such as the number of rows updated, deleted, and inserted as well as the timestamp of

the last time this table was autovacuumed, the timestamp of the last time the table was

autoanalyzed, and so on:

hrdb=# SELECT schemaname,relname,n_tup_ins,n_tup_upd,n_tup_del,

 n_live_tup,n_dead_tup,last_autovacuum,last_analyze

from pg_stat_all_tables where relname='casedemo';

-[RECORD 1]---+------------------------------

schemaname | public

relname | casedemo

n_tup_ins | 16044

n_tup_upd | 0

n_tup_del | 0

n_live_tup | 16044

n_dead_tup | 0

last_autovacuum |

last_analyze | 2014-07-13 20:21:11.636+05:30

Routine Maintenance Tasks

84

Statistical information regarding indexes includes the following:

 f Information regarding the space occupied by the indexes and whether there are any

bloated indexes.

 f Information regarding the number of times the index was used by the query planner.

 f Information regarding the number of rows read by the index.

 f Information regarding the number of rows fetched by the index.

 f Information regarding the leaf fragmentation in the index. Leaf fragmentation occurs

when rows are deleted, thus creating partially or completely empty blocks in the index

binary tree. Because of row deletion, these leaf-level index pages have free space;

as a result, the index uses more data pages to store data on disk and in memory,

thereby affecting the performance of scan operations even when data pages are

cached due to extra pages that need to be processed.

Statistics about indexes can be retrieved from the pg_stat_user_indexes and pg_index

tables. You can use these two tables to ind the unused indexes:

SELECT

 relid::regclass AS table,

 indexrelid::regclass AS index,

 pg_size_pretty(pg_relation_size(indexrelid::regclass))
AS index_size,

 idx_tup_read,

 idx_tup_fetch,

 idx_scan

FROM pg_stat_user_indexes

 JOIN pg_index USING (indexrelid)

 WHERE idx_scan = 0

AND indisunique IS FALSE;

In the preceding query output, the idx_tup_read, idx_tup_fetch, and idx_scan

columns indicate the usage of the index:

 f idx_tup_read: This column indicates the number of rows that have been read

using the index

 f idx_tup_fetch: This column indicates the number of rows that have been fetched

using the index

 f idx_scan: This column indicates the number of times the index was used by the

query planner

Chapter 4

85

Routine reindexing
In some scenarios, it is worth rebuilding indexes periodically with the REINDEX command.

Indexes can become an issue in database applications that involve a high proportion of

repeated inserts and deletes, and this might cause indexes to become bloated. The potential

for bloat is not indeinite; that is, at worst there will be one key per page, but it might still be
worthwhile to schedule periodic reindexing for indexes that have such usage patterns. With

the help of the REINDEX command, index pages that have become completely empty are

reclaimed for reuse.

How to do it...

Indexes can be rebuilt at various levels, as follows:

 f You can recreate the index at the individual index level, whereby a single index can
be rebuilt. You can recreate a single index, as given here:
REINDEX INDEX customer_pkey;

 f You can recreate the indexes at the table level, whereby all of the indexes for a given

table are rebuilt:

Here, in the following code, we are rebuiliding all of the indexes for a table customer:

REINDEX TABLE CUSTOMER;

 f You can recreate the indexes at the system level, whereby you can recreate all of the
indexes on system catalogs within the current database. Here, we are rebuilding all of

the indexes on the system catalog for the hrdb database:

REINDEX SYSTEM hrdb;

 f You can recreate the indexes at the database level, whereby you recreate all of the
indexes within the current database, which is hrdb in the code:

REINDEX DATABASE hrdb;

How it works...

The REINDEX command is used to rebuild an index using the data stored in the index's table,
thereby replacing the old copy of the index.

Routine Maintenance Tasks

86

REINDEX is used in the following situations:

 f REINDEX is to be used when an index becomes corrupted and does not contain any

valid data. Indexes can become corrupted due to software bugs or hardware failures.

REINDEX provides a recovery method.

 f REINDEX is to be used when an index becomes bloated, that is, when it contains

many empty pages. REINDEX reduces the space consumption of the index by writing

a new version of the index without dead pages.

 f REINDEX needs to be used when a storage parameter for an index has been altered

and you wish to ensure that the changes come into effect.

 f REINDEX locks out write operations on the index's parent table but does not block
read operations on the table. REINDEX also acquires an exclusive lock on the speciic
index being processed, which will block reads that attempt to use the index.

There's more...

There is an option through which the REINDEX command can rebuild an index without locking

out write operations on the index's parent table. For this, you can use the CREATE INDEX
CONCURRENTLY command, which will build the index without taking any locks that prevent

concurrent inserts, updates, and deletes on the table. So, instead of rebuilding the index, you

have to perform the following three steps:

1. First, create an index identical to the one you wish to rebuild using the CREATE
INDEX CONCURRENTLY option.

2. Next, drop the old index.

3. The inal step is to rename the new index to the same name as the one that the old

index had.

The following code demonstrates the preceding steps:

CREATE INDEX CONCURRENTLY card_index ON creditcard (cardno);

BEGIN;

DROP INDEX credit_card_idx;

ALTER INDEX card_index RENAME TO credit_card_idx;

COMMIT;

Chapter 4

87

Maintaining log iles
The information stored in log iles can prove invaluable when diagnosing or troubleshooting
problems. With the help of the information stored in the log iles, you can identify the sources
of the problems in the underlying database. For this very reason, it is important to preserve

log iles rather than discarding them. However, the information in the log iles tends to be
voluminous, so it important that a rotation policy be implemented in order to preserve certain

log iles and to discard log iles that are no longer required. Log iles need to be rotated so that
new log iles are started and old ones are removed after a reasonable period of time.

How to do it...

There are various mechanisms through which logging information is maintained and

preserved in log iles. These are discussed as follows:

 f One way to deal with this is to send the server's stderr output to some kind of log
rotation program. PostgreSQL has a built-in log rotation facility, which can be used

by setting the logging_collector coniguration parameter in the postgresql.
conf ile:
logging_collector=true

 f Another approach is to use an external log rotation program that you might be using

with some other server software. For instance, the Apache distribution includes a

tool known as rotatelogs that can be used with PostgreSQL. This can be done by

piping the stderr output of the server to the desired external program. If you are using

the pg_ctl command to start the PostgreSQL server, then the stderr is already

redirected to the output, so you just need a pipe command, as shown here:

pg_ctl start | rotatelogs /var/log/pgsql_log 86400

 f The third approach to managing the log ile output is to send the log output to
the syslog and letting syslog deal with ile rotation. To do this, you need to set
the log_destination parameter to syslog in the postgresql.conf ile.

5
Monitoring the System

Using Unix Utilities

In this chapter, we will cover the following recipes:

 f Monitoring CPU usage

 f Monitoring paging and swapping

 f Finding the worst user on the system

 f Monitoring system load

 f Identifying CPU bottlenecks

 f Identifying disk I/O bottlenecks

 f Monitoring system performance

 f Examining historical CPU load

 f Examining historical memory load

 f Monitoring disk space usage

 f Monitoring network status

Introduction
In order to be able to solve performance problems, we should be able to effectively use

operating system utilities. We should also be able to use the right operating system tools and

commands to identify performance problems that may be due to CPU, memory or disk I/O

issues. Many times, a DBA's duties often overlap with certain system administration related
functions, and it is important for a DBA to be effective in using the related operating system

utilities in order to correctly identify where the underlying issue on the server could be. In this

chapter, we are going to discuss various Unix/Linux-related operating system utilities that can

help the DBA in performance analysis and troubleshooting issues.

Monitoring the System Using Unix Utilities

90

Monitoring CPU usage
In this recipe, we are going to use the sar command to monitor CPU usage on the system.

Getting ready
The commands used in this recipe have been performed on an Oracle Solaris machine.

Hence, the command output may vary on different Unix- and Linux-related systems.

How to do it...

We can use the sar command with the -u switch to monitor CPU utilization:

bash-3.2$ sar -u 10 8

SunOS usstlz-pinfsi09 5.10 Generic_150400-04 sun4u 08/06/2014

23:32:17 %usr %sys %wio %idle

23:32:27 80 14 3 3

23:32:37 70 14 12 4

23:32:47 72 13 21 4

23:32:57 76 14 6 3

23:33:07 73 10 13 4

23:33:17 71 8 17 4

23:33:27 67 9 20 4

23:33:37 69 10 17 4

Average 73 11 13 4

In the preceding command, with the -u switch, two values are passed as the input. The irst
value, which is 10, displays the number of seconds between sar readings, and the second

value, which is 8, indicates the number of times you want sar to run.

How it works...

The sar command provides a quick snapshot of how much of the CPU is bogged down or

utilized. The sar output reports values in the following columns:

 f %usr: This indicates the percentage of CPU running in user mode

 f %sys: This indicates the percentage of CPU running in system mode

Chapter 5

91

 f %wio: This indicates the percentage of CPU running idle, with a process waiting for

block I/O

 f %idle: This indicates the percentage of CPU that is idle

Often, a low percentage of idle time points to a CPU-intensive job or an underpowered CPU.

You could use the ps or prstat command in Solaris to ind a CPU-intensive job.

The following are general indicators of performance problems:

 f If you see an abnormally high value in the %usr column, this would mean that

applications are not tuned properly or are overutilizing the CPU

 f If you see a high value in the %sys column, it probably indicates a bottleneck that

could be due to swapping or paging and needs to be investigated further

Monitoring paging and swapping
In this recipe, we are going to use the sar and vmstat commands with options to monitor

paging and swapping operations.

Getting ready
It is necessary to monitor the amount of paging and swapping happening on the operating

system. Paging occurs when a part of the operating system process gets transferred from the

physical memory to the disk or is read back from the physical memory to the disk. Swapping

occurs when an entire process gets transferred to the disk from the physical memory or is

read back to the physical memory from the disk. Depending on the system, either paging or

swapping could be an issue. If paging occurs normally and you see a trend of heavy swapping,

then the issue could be related to insuficient memory, or sometimes the issue could be
related to disk as well. If the system is heavily paging and not swapping, the issue could be

related to either the CPU or the memory. The commands in this section are performed in an

Oracle Solaris environment.

How to do it...

We could use the vmstat and sar commands with options in the following manner to

monitor the paging and swapping operations:

1. The vmstat command can be used with the -S switch to monitor swapping and

paging operations, as follows:

bash$ vmstat –S

 kthr memory page disk
faults cpu

Monitoring the System Using Unix Utilities

92

 r b w swap free si so pi po fr de sr s0 s2 s3 s4
in sy cs us sy id

 6 14 0 453537392 170151696 0 0 2444 186 183 0 0 1 1 1 1
77696 687853 72596 13 4 83

In the aforementioned commands, the si and so columns represent swap-in and

swap-out operations, respectively.

Similarly, pi and po represent page-in and page-out operations, respectively.

However, the sar command provides more in-depth analysis of paging and

swapping operations when used with options.

2. We can also use the sar command with the -p switch to report paging operations,

as follows:

bash-3.2$ sar -p 5 4

SunOS usmtnz-sinfsi17 5.10 Generic_150400-04 sun4u 08/08/2014

05:45:18 atch/s pgin/s ppgin/s pflt/s vflt/s slock/s

05:45:23 4391.18 0.80 2.20 12019.44 30956.92 0.60

05:45:28 2172.26 1.80 2.40 5417.76 15499.80 0.20

05:45:33 2765.60 0.20 0.20 9893.20 20556.60 0.00

05:45:38 2194.80 2.00 2.00 7494.80 19018.60 0.00

Average 2879.85 1.20 1.70 8703.00 21500.25 0.20

The preceding output reports the following columns:

 � atch/s: These are the page faults per second that are satisfied by

reclaiming a page currently in memory.

 � pgin/s: The number of times per second that the filesystem receives page

in requests.

 � ppgin/s: These are the pages paged in per second.

 � pflt/s: This is the number of page faults from protection errors.

 � vflt/s: This is the number that addresses translation page faults per

second. This happens when a valid process table entry does not exist for a

given virtual address.

 � slock/s: These are the faults per second caused by software lock requests

requiring physical I/O.

Chapter 5

93

3. Similarly, we can use the sar command with the -w switch to report swapping

activities and identify if there are any swap related issues:

bash-3.2$ sar -w 5 4

SunOS usmtnz-sinfsi17 5.10 Generic_150400-04 sun4u 08/08/2014

06:20:55 swpin/s bswin/s swpot/s bswot/s pswch/s

06:21:00 0.00 0.0 0.00 0.0 53143

06:21:05 0.00 0.0 0.00 0.0 60949

06:21:10 0.00 0.0 0.00 0.0 55149

06:21:15 0.00 0.0 0.00 0.0 64075

Average 0.00 0.0 0.00 0.0 58349

The aforementioned output reports the following columns:

 � swpin/s: This indicates the number of LWP transfers in the memory

per second

 � bswin/s: This indicates the number of blocks transferred for swap-ins

per second

 � swpot/s: This reports the average number of processes that are swapped

out of the memory per second

 � bswot/s: This reports the number of blocks that are transferred for

swap-outs per second

 � pswch/s: This indicates the number of kernel thread switches per second

How it works...

If the si and so columns of the vmstat -S output have nonzero values, then this serves as

a good indicator of a possible performance issue related to swapping. This must be further

investigated using the more detailed analysis provided by the sar command with the -p and

-w switches respectively.

For paging, the key is to look for an inordinate amount of page faults of any kind. This would

indicate a high degree of paging. The concern is not with paging but with swapping because

as paging increases, it would be followed by swapping. We can look at the values in the

atch/s, pflt/s, vflt/s, and slock/s columns of the sar -p command output to review

the number of page faults of any type and see the paging statistics to observe whether the

paging activity remains steady or increases during a speciic timeframe.

Monitoring the System Using Unix Utilities

94

For the output of the sar -w command, the key column to observe is the swpot/s column.

This column indicates the average number of processes that are swapped out of the memory

per second. If the value in this column is greater than 1, it is an indicator of memory deiciency,
and to correct this you would have to increase the memory.

Finding the worst user on the system
In this recipe, we are going to use the top command to ind the worst performing user on the
system at a given point in time.

Getting ready
The top command is a Linux-based utility that also works on Unix-based systems.

The commands in this section have been performed on a CentOS Linux machine.

How to do it...

The usage of the top command is shown as follows:

bash-3.2$top

Cpu states: 0.0% idle, 82.0% user, 18.7% kernel, 0.8% wait, 0.5% swap

Memory: 795M real, 12M free, 318M swap, 1586M free swap

PID USERNAME PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND

23624 postgres -25 2 208M 4980K cpu 1:20 22.47% 94.43% postgres

15811 root -15 4 2372K 716K sleep 22:19 0.61% 3.81% java

20435 admin 33 0 207M 2340K sleep 2:47 0.23% 1.14% postgres

20440 admin 33 0 93M 2300K sleep 2:28 0.23% 1.14% postgres

23698 root 33 0 2052K 1584K cpu 0:00 0.23% 0.95% top

23621 admin 27 2 5080K 3420K sleep 0:17 1.59% 0.38% postgres

23544 root 27 2 2288K 1500K sleep 0:01 0.06% 0.38% br2.1.adm

15855 root 21 4 6160K 2416K sleep 2:05 0.04% 0.19% proctool

897 root 34 0 8140K 1620K sleep 55:46 0.00% 0.00% Xsun

20855 admin -9 2 7856K 2748K sleep 7:14 0.67% 0.00% PSRUN

208534 admin -8 2 208M 4664K sleep 4:21 0.52% 0.00% postgres

755 admin 23 0 3844K 1756K sleep 2:56 0.00% 0.00% postgres

2788 root 28 0 1512K 736K sleep 1:03 0.00% 0.00% lpNet

18598 root 14 10 2232K 1136K sleep 0:56 0.00% 0.00% xlock

1 root 33 0 412K 100K sleep 0:55 0.00% 0.00% ini

Chapter 5

95

The irst two lines in the preceding output give general system information, whereas the rest
of the display is arranged in order of decreasing current CPU usage.

How it works...

The top command provides statistics on CPU activity. It displays a list of CPU-intensive tasks

on the system and also provides an interface for manipulating processes.

In the preceding output, we can see the top user to be postgres with a process ID of 23624.

We can see the CPU consumption of this user to be 94.43%, which is too high and needs

to be investigated, or the corresponding operating system process needs to be killed if it is

causing performance issues on the system.

Monitoring system load
In this recipe, we are going to use the uptime command to monitor overall system load.

How to do it...

The uptime command gives us the following information:

 f Current system time

 f How long the system has been running

 f Number of currently logged-on users in the system

 f System load average for the past 1, 5, and 15 minutes

The uptime command can be used as follows:

bash-3.2$ uptime

11:44pm up 20 day(s), 20 hr(s), 10 users, load average: 27.80,
30.46, 33.77

In the preceding output, we can see that the current system time is 11:44pm (GMT) and the

system has been up and running for the last 20 days and 20 hours without requiring a reboot.

The output also tells us that there are ten concurrently logged-on users in the system. Finally,

we get the load average during the past 1, 5, and 15 minutes as 27.80, 30.46, and 33.77,

respectively.

Monitoring the System Using Unix Utilities

96

How it works...

The basic purpose of running the uptime command is to take a quick look at the current

CPU load on the system. This provides a peek at the current system performance. System

load refers to the average number or processes that are either in a runnable or uninterruptable

state. A process enters the runnable state when it starts to utilize the CPU resources or is

waiting to acquire them. It enters the uninterruptable state when it spends time waiting for an

I/O operation. Load average is categorized over the three time intervals, that is, the 1-, 5-, and

15-minute periods. Load averages are not categorized for the number of CPUs on the system.

So for a system with a single CPU, a load average of 1 indicates 100 percent busy time period

with zero idle time, whereas for a system with 5 CPUs a load average of 1 would indicate an

idle time of 80 percent and a busy time period of only 20 percent.

Identifying CPU bottlenecks
In this recipe, we are going to use the mpstat command to identify CPU bottlenecks.

Getting ready
The commands in this section have been performed on a Solaris server.

How to do it...

The mpstat command is used to report per processor statistics in a tabular format.

The usage of the mpstat command is shown as follows:

bash-3.2$ mpstat 1 1

CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt
idl

 0 672 0 2457 681 12 539 17 57 119 0 4303 18 10 0
73

 1 90 0 1551 368 22 344 6 37 104 0 3775 17 4 0
79

 2 68 0 1026 274 14 217 4 24 83 0 2393 11 3 0
86

 3 50 0 568 218 9 128 3 17 56 0 1319 7 2 0
92

 4 27 0 907 340 12 233 3 22 72 0 2034 9 2 0
88

Chapter 5

97

 5 75 0 1777 426 25 370 5 33 111 0 4820 22 4 0
74

 6 69 0 1395 421 15 337 4 27 96 0 2948 14 3 0
83

 7 29 0 888 394 9 273 3 23 74 0 1873 9 3 0
89

 8 10 0 344 177 9 80 2 13 44 0 1007 5 1 0
94

 9 63 0 1275 288 17 268 4 22 90 0 4337 20 3 0
77

 10 72 0 1875 324 28 330 5 30 110 0 5514 25 4 0
71

 11 17 0 438 183 10 94 2 17 50 0 1048 5 2 0
93

 12 10 0 351 175 9 79 2 13 44 0 1047 5 1 0
94

 13 60 0 1207 267 17 245 4 21 87 0 4243 19 3 0
78

 14 72 0 1859 323 29 331 4 30 109 0 5347 24 4 0
72

 15 16 0 434 184 10 94 2 17 50 0 1031 5 2 0
94

 16 20 0 638 197 12 127 2 16 57 0 1810 9 2 0
90

 17 16 0 621 215 12 141 2 16 59 0 2062 9 2 0
89

 18 19 0 785 214 14 151 2 18 63 0 2384 11 2 0
87

 19 66 0 1584 293 24 288 4 26 96 0 5681 25 3 0
71

 20 23 0 826 207 14 142 2 17 64 0 2172 10 2 0
88

 21 14 0 543 190 12 115 2 15 54 0 1896 9 2 0
90

 22 19 0 772 210 14 147 2 18 62 0 2347 11 2 0
88

 23 66 0 1591 294 24 293 4 26 96 0 5398 25 4 0
72

 24 66 0 1820 305 27 311 4 27 100 0 4941 22 4 0
74

 25 20 0 672 210 11 135 2 18 62 0 1783 8 2 0
90

Monitoring the System Using Unix Utilities

98

 26 16 0 645 192 12 116 2 15 59 0 2184 10 2 0
89

 27 20 0 821 213 15 152 2 17 62 0 3016 13 2 0
85

 28 66 0 1698 305 28 308 4 27 98 0 5106 23 4 0
74

 29 20 0 641 194 13 121 2 17 59 0 1731 8 2 0
90

 30 17 0 633 190 11 118 2 15 57 0 2164 9 2 0
89

 31 22 0 798 215 15 161 2 17 61 0 3044 13 2 0
85

 32 637 0 2183 507 21 672 17 61 114 0 4939 20 9 0
70

 33 98 0 1998 383 24 431 7 39 94 0 4076 19 4 0
77

 34 74 0 1217 273 14 265 4 25 73 0 2589 13 3 0
85

 35 54 0 661 216 9 168 3 18 51 0 1624 8 2 0
90

 36 17 0 925 311 117 144 2 18 49 0 1610 8 2 0
90

 37 69 0 2146 302 23 312 4 28 86 0 4624 22 3 0
75

 38 61 0 1856 910 665 254 3 22 71 0 2734 13 5 0
82

 39 12 0 1006 848 661 138 2 15 40 0 1099 5 4 0
91

 40 9 0 402 168 9 82 2 12 32 0 986 5 1 0
94

 41 59 0 1490 288 16 285 4 21 73 0 4233 20 3 0
77

 42 70 0 2486 329 26 356 5 29 91 0 5326 25 4 0
71

 43 16 0 541 180 10 99 2 16 39 0 1052 5 1 0
93

 44 10 0 438 169 8 83 2 13 34 0 1051 5 1 0
94

 45 57 0 1436 264 16 257 3 20 69 0 4137 19 3 0
78

Chapter 5

99

How it works...

In the preceding output of the mpstat command, each row of the table represents the

activity of one processor. The irst table shows a summary of activity since the last boot time.
The important value from a DBA's perspective is the value in the smtx column. The smtx

measurement indicates the number of times the CPU failed to obtain the mutual exclusion

lock (mutex). Mutex stalls waste CPU time and degrade multiprocessor scaling.

A general rule of thumb is that if the value in the smtx column is greater than 200, then it is a

symptom and indication of CPU bottleneck issues, which need to be investigated.

Identifying disk I/O bottlenecks
In this recipe, we are going to use the iostat command to identify disk-related bottlenecks.

Getting ready
The commands in this section have been performed on a Solaris server.

How to do it...

There are various switches available with the iostat command. The following are the most

important switches used along with iostat:

 f -d: This switch reports the number of kilobytes transferred per second for speciic
disks, the number of transfers per second, and the average service time in

milliseconds. The following is the usage of the iostat -d command:

bash-3.2$iostat -d 5 5

sd0 sd2 sd3 sd4

Kps tps serv Kps tps serv Kps tps serv Kps tps serv

1 0 53 57 5 145 19 1 89 0 0 14

140 14 16 0 0 0 785 31 21 0 0 0

8 1 15 0 0 0 814 36 18 0 0 0

11 1 82 0 0 26 818 36 19 0 0 0

0 0 0 1 0 22 856 37 20 0 0 0

Monitoring the System Using Unix Utilities

100

 f -D: This switch lists the reads per second, writes per second, and percentage of

disk utilization:

bash-3.2$ iostat -D 5 5

sd0 sd2 sd3 sd4

rps wps util rps wps util rps wps util rps wps util

0 0 0.3 4 0 6.2 1 1 1.8 0 0 0.0

0 0 0.0 0 35 90.6 237 0 97.8 0 0 0.0

0 0 0.0 0 34 84.7 218 0 98.2 0 0 0.0

0 0 0.0 0 34 88.3 230 0 98.2 0 0 0.0

0 2 4.4 0 37 91.3 225 0 97.7 0 0 0.0

 f -x: This switch will report extended disk statistics for all disks:

bash-3.2$ iostat -x

 extended device statistics

device r/s w/s kr/s kw/s wait actv svc_t %w %b

fd0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0

sd0 0.0 0.0 0.4 0.4 0.0 0.0 49.5 0 0

sd2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0

sd3 0.0 4.6 0.0 257.6 0.0 0.1 26.4 0 12

sd4 69.3 3.6 996.9 180.5 0.0 7.6 102.4 0 100

nfs10 0.0 0.0 0.4 0.0 0.0 0.0 24.5 0 0

nfs14 0.0 0.0 0.0 0.0 0.0 0.0 6.3 0 0

nfs16 0.0 0.0 0.0 0.0 0.0 0.0 4.9 0 0

How it works...

The iostat command reports statistics about disk input and output operations to produce

measurements of throughput, utilization, queue lengths, transaction rate, and service time.

The irst line of the iostat output shows everything since booting the system, whereas each

subsequent line shows only the prior interval speciied.

If we observe the preceding output of the iostat -d command in the How to do it…

section, we can clearly see that the sd3 disk drive is heavily overloaded. The values in the

kps (short for kilobytes transferred per second), tps (short for the number of transfers per

second), and serv (short for average service time in milliseconds) columns for the sd3

disk drive are consistently high over the speciied interval. This leads us to a conclusion that
moving information from sd3 to any other drive might be a good idea if this information is

representative of disk I/O on a consistent basis. This would reduce the load on sd3.

Chapter 5

101

Also, if you observe the output of the iostat -D command in the How to do it… section, you

can conclude that sd3 has high read activity, which is indicated by the high values in the rps

(short for reads per second) column. Similarly, we can see that the sd2 disk drive has a high

write activity, which is indicated by the high values in the wps (short for writes per second)

column. Both of the disk drives, sd2 and sd3, are at the peak level of utilization, which can

be seen from the high percentage in the util (short for utilization) column. The high values

in the util column are an indication of I/O problems, which should be investigated by the

system administrator.

Similarly, if we take a look at the preceding output of the iostat -x command in the How to

do it… section, we can easily come to the conclusion that the sd4 disk drive is experiencing

I/O problems as seen from the %b column, which indicates the percentage of time the

disk is busy. For sd4, the disk utilization is at 100 percent, which would need a system

administrator's immediate attention.

Monitoring system performance
Many times, there are situations when the application users start complaining about the

database performance being slow, and as a DBA, you need to determine whether there are

system resource bottlenecks on the PostgreSQL server. Running the vmstat command can

help us to quickly locate and identify any bottlenecks on the server.

Getting ready
The commands in this section have been performed on a CentOS Linux machine.

How to do it...

The vmstat command is used to report real-time performance statistics about processes,

memory, paging, disk I/O, and CPU consumption. The following is the usage of the vmstat

command:

$ vmstat

procs --------memory-------- --swap-- --io-- -system- ---cpu---

r b swpd free buff cache si so bi bo in cs us sy id wa

14 0 52340 25272 3068 1662704 0 0 63 76 9 31 15 1 84 0

Monitoring the System Using Unix Utilities

102

In the preceding output, the irst line divides the columns on the second line into six different
categories, which are discussed as follows:

 f The irst category is the process (procs) and it contains the following columns:

 � r: This column indicates the total number of processes waiting for runtime

 � b: This column reports the total number of processes in uninterruptible sleep

 f The second category is memory and it contains the following columns:

 � swpd: This column indicates the total amount of virtual memory in use

 � free: This column reports the amount of idle memory available for use

 � buff: This column indicates the amount of memory used for buffers

 � cache: This column indicates the amount of memory used as page cache

 f The third category is swap, which contains the following columns:

 � si: This column reports the amount of memory swapped in from the disk

 � so: This column indicates the amount of memory swapped out from the disk

 f The fourth category is I/O (io) and it contains the following columns:

 � bi: This column indicates the blocks that are read in from a block device

 � bo: This column reports the blocks that are written out to a block device

 f The ifth category is system, which contains the following columns:

 � in: This column reports the number of interrupts per second

 � cs: This column reports the number of context switches per second

 f The inal category is the CPU (cpu) and it contains the following columns:

 � us: This column reports the percentage of the time the CPU ran

user-level code

 � sy: This column reports the percentage of the time the CPU ran

system-level code

 � id: This column reports the percentage of time the CPU was idle

 � wa: This column reports the amount of time spent waiting for I/O to complete

How it works...

The following are the general rules of thumb used while interpreting the vmstat

command output.

 f If the value in the wa column is high, it is an indication that the storage system is

probably overloaded and that action needs to be taken to address that issue

Chapter 5

103

 f If the value in the b column is greater than zero consistently, then it is an indication

that the system does not have enough processing power to service the currently

running and scheduled jobs

 f If the values in the so and si columns are greater than zero when monitored for a

period of time, then it is an indication and symptom of a memory bottleneck

Examining historical CPU load
In this recipe, we are going to show how to use the sar command in combination with various

switches to analyze historical CPU load at some time in the past.

Getting ready
The commands used in this recipe have been performed on an Ubuntu Linux machine.

How to do it...

The sar command when used with the -u switch is used to display CPU statistics. When used

this way, the sar command will report the current day's activities.

If we are looking to analyze the CPU statistics from some time in the past, we would need to

use the -f switch in conjunction with the -u switch of the sar command. The -f option is

followed by the iles that sar uses to report statistics for different days of the month. These

iles are usually located in the /var/log/sa directory and they usually have a naming

convention of sadd, where dd represents the numeric day of the month, whose values

are in the range 01 to 31.

The following is the usage of the sar command to view CPU statistics for the eighth day of

the month:

$ sar -u -f /var/log/sa/sa08

03:50:10 PM CPU %user %nice %system %iowait %idle

04:00:10 PM all 0.42 0.00 0.24 0.00 96.41

04:10:10 PM all 0.22 0.00 1.96 0.00 95.53

04:20:10 PM all 0.22 0.00 1.22 0.01 99.55

04:30:10 PM all 0.22 0.00 0.24 2.11 99.54

04:40:10 PM all 0.24 0.00 0.23 0.00 92.54

Average: all 0.19 0.00 0.19 0.07 99.55

Monitoring the System Using Unix Utilities

104

How it works...

Generally the rules of thumb are that if the %idle value is low, it serves as an indication that

either the CPUs are underpowered or the application load is high. Similarly, if we see nonzero

values in the iowait time column, it serves as a reminder that the I/O subsystem could be a

potential bottleneck.

If we observe the preceding output of the sar command, we can see that the %idle time is

high, which clearly indicates that the CPU is probably not overburdened, and we do not see

many nonzero values in the %iowait column, which tells us that there is not much contention

for disk I/O either.

There's more...

When the sysstat package is installed, a few cron jobs are scheduled to create iles used
by the sar utility to report historical server statistics. We can observe these cron jobs by

taking a look at the /etc/cron.d/sysstat ile.

Examining historical memory load
In this recipe, we are going to see how to analyze the memory load for a previous day of

the month.

Getting ready
The commands used in this recipe have been performed on an Ubuntu Linux machine. The

command output may vary in other Linux- and Unix-based operating systems.

How to do it...

When it comes to analyzing memory statistics, we need to check out both paging statistics

and swapping statistics.

We can use the sar command in conjunction with the -B switch to report paging statistics

along with the -f switch to report statistics for different days of the month. As mentioned in the

previous recipe, the iles that the sar command uses to report statistics for different days of the

month are located in the /var/log/sa directory, and they have a naming convention of sadd,

where dd represent the numeric date of the month, with values ranging from 01 to 31.

Chapter 5

105

For instance, to report the paging statistics for the ifth day of the month, we can use the sar

command as follows:

$ sar -B -f /var/log/sa/sa05

06:10:05 AM pgpgin/s pgpgout/s fault/s majflt/s

06:20:05 AM 0.02 18.17 19.37 0.00

06:30:05 AM 4.49 26.68 76.15 0.05

06:40:05 AM 4512.43 419.24 380.14 0.65

06:50:06 AM 4850.03 1055.79 4364.73 0.51

07:00:06 PM 4172.68 1096.96 6650.51 0.16

Similarly, to report the swapping statistics for different days of the month, we can use the sar

command in conjunction with the -W switch and the -f switch.

For instance, to report on the swapping statistics for the ifth day of the month, we can use
the sar command as follows:

$ sar -W -f /var/log/sa/sa05

06:10:05 AM pswpin/s pswpout/s

06:20:05 AM 0.00 0.00

06:30:05 AM 0.02 0.00

06:40:05 AM 1.15 1.45

06:50:06 AM 0.94 2.99

07:00:06 PM 0.67 6.95

How it works...

In the preceding output of the sar -B -f /var/log/sa/sa05 command, we can

clearly see that at about 6.40 AM, there was a substantial increase in paging from the disk

(pgpgin/s), pages paged out to disk (pgpgout/s), and page faults per second (fault/s).

Similarly, when swapping statistics are being reported with the sar -W -f /var/log/sa/
sa05 command, we can clearly see that the swapping started at about 06.40 AM, which

can be seen from the values in the pswpin/s column and the pswpout/s column. If we

see high values in the pswpin/s (pages swapped into the memory per second) column and

the pgpgout/s (pages swapped out per second) column, it means that the current memory

is inadequate and needs to be either increased or, for certain application components,

optimally resized.

Monitoring the System Using Unix Utilities

106

Monitoring disk space usage
In this recipe, we are going to show the commands that are used to monitor disk space.

Getting ready
The commands in this section have been performed on a Solaris server.

How to do it...

We can use the df command with various switches to monitor disk space. To make the output

more understandable, we often use the -h switch with the df command:

bash-3.2$ df -h

Filesystem size used avail
capacity Mounted on

 132G 80G 50G
62% /

/devices 0K 0K 0K
0% /devices

ctfs 0K 0K 0K
0% /system/contract

proc 0K 0K 0K
0% /proc

mnttab 0K 0K 0K
0% /etc/mnttab

swap 418G 488K 418G
1% /etc/svc/volatile

swap 418G 38M 418G
1% /tmp

swap 418G 152K 418G
1% /var/run

/dev/dsk/c20t60000970000192602156533030374242d0s0 236G 240M 234G
1% /peterdata/cm_new

/dev/dsk/c20t60000970000192602156533032353441d0s0 30G 30M 29G
1% /peterdata/native

/dev/dsk/c20t60000970000192602156533033313441d0s0 236G 60G 174G
26% /peterdata/db_new

/dev/dsk/c20t60000970000195701036533032454646d0s0 30G 6.9G 22G
24% /peterdata/native

Chapter 5

107

/dev/dsk/c20t60000970000195701036533032444137d0s0 236G 224G 12G
95% /peterdata/db

/dev/dsk/c20t60000970000192602156533032333232d0s2 709G 316G 386G
45% /peterdata/cm

usmtnnas4106-epmnfs.emrsn.org:/peterb1ap_2156 276G 239G 36G 87%
/peterb1ap

usmtnnas4106-epmnfs.emrsn.org:/peterdata_data_2156 98G 53G 45G
54% /peterdata/data

usmtnnas4106-epmnfs.emrsn.org:/peterdata_uc4appmgr 9.8G 3.6G 6.3G
37% /peterdata/uc4/

How it works...

If we observe the preceding output, we can see that the /peterdata/db mount point is

nearing its full capacity (it has reached a capacity of 95%) and only another 12 GB of free disk

space is available on the device. This is an indication that the administrator needs to either

clean up some old iles on the existing mount point to release more free space, or allocate
additional space to the given mount point before it reaches its full capacity.

Monitoring network status
In this recipe, we are going to show how to monitor the status of network interfaces.

Getting ready
The commands used in this recipe have been performed on a CentOS Linux machine.

The command output may vary in other Linux- and Unix-based operating systems.

How to do it...

We are going to use the netstat command with the -i switch to display the status of the

network interfaces that are conigured on the system. Here is a screenshot that shows the
usage of the netstat command:

Monitoring the System Using Unix Utilities

108

How it works...

In the preceding output of the netstat -i command, we can determine the number of

packets a system transmits and receives on each network interface. The Ipkts column

determines the input packet count and the Okpts column determines the output packet

count. If the input packet count remains steady over a period of time, it means that the

machine is not receiving network packets at all, and the outcome suggests that it is possibly

a hardware failure on the network interface. If the output packet count remains steady over a

period of time, then it could possibly mean problems that may be caused due to an incorrect

address entry in the host's or the ethers database.

6
Monitoring

Database Activity

and Investigating
Performance Issues

In this chapter, we will cover the following recipes:

 f Checking active sessions

 f Finding out what queries users are currently running

 f Getting the execution plan for a statement

 f Logging slow statements

 f Collecting statistics

 f Monitoring database load

 f Finding blocking sessions

 f Table access statistics

 f Finding unused indexes

 f Forcing a query to use an index

 f Determining disk usage

Monitoring Database Activity and Investigating Performance Issues

110

Introduction
Monitoring databases and troubleshooting performance issues is one of the major duties of

a database administrator. Ensuring a healthy database with optimal performance is what a

DBA is employed for. Database monitoring should be done regularly in a proactive manner to

resolve any known issues before they reach a critical state and lead to performance issues.

Troubleshooting performance issues is a reactive approach because it is only after an issue is

reported that the DBA starts troubleshooting it. If proactive alerts are set in a timely manner,

a DBA can ensure that the database is in a healthy state, and this can lead to a reduction in

performance issues.

We have used the dvdrental sample database for all of the code in this chapter. The

dvdrental sample is available in the code bundle. Details about the installation and

working of the dvdrental database are also in the code bundle.

Checking active sessions
In this recipe, we are going to learn how to check for active sessions in a database.

Getting ready
We are going to query the pg_stat_activity table to check for active sessions in a

database. The query used in this recipe works in PostgreSQL version 9.2 onwards.

How to do it...

We can use the following SQL query to ind the active sessions in the hrdb database:

SELECT pid , usename, application_name, client_addr,

 client_hostname, query, state from pg_stat_activity

where datname='dvdrental';

How it works...

We use the preceding query to ind all of the client connections made to the hrdb database.

Here is an explanation of the columns in the pg_stat_activity table to ind information
regarding active sessions in the hrdb database:

 f The pid column: The value in this column indicates the process ID of the currently

connected user to the database, the hrdb database in our case.

 f The datname column: The value in this column indicates the name of the database

to which the user is currently connected.

Chapter 6

111

 f The application_name column: The value in this column provides the application

name that is being used by the user currently connected to the database.

 f The client_addr column: The value in this column gives the IP address of the user

that is currently connected to the database.

 f The client_hostname column: The value in this column gives the hostname of the

connected client.

 f The query column: The value in this column provides the full text of the SQL query

that is being executed by the client.

 f The preceding output also includes the state column, which indicates the status

of the pid column of the currently connected user. The state column can have the

following possible values:

 � active: This value indicates that the user session is currently executing a

query at the backend.

 � idle: This value indicates that the backend is waiting for a new

client command.

 � idle in transaction: This value indicates that the backend process is

currently involved in a transaction but it is not executing a query.

 � fastpath function call: This value indicates that the backend process

is executing a fast-path function.

 � disabled: This value is reported if the value of the track_activities

configuration parameter is disabled for the currently connected backend. If

the value of the state column is disabled, it means that information is

not being collected on the currently executing command for each session.

There's more...

If you are using a PostgreSQL version earlier than 9.2, then you can use the following query to

ind the active sessions in a PostgreSQL database:

SELECT datname , procpid, usename,application_name,client_addr,

 client_hostname,current_query FROM pg_stat_activity;

Finding out what queries users are currently
running

In this recipe, we are going to show the most recent, or currently executing, queries executed

by users in a PostgreSQL database.

Monitoring Database Activity and Investigating Performance Issues

112

Getting ready
Before inding out what queries the users are issuing against the database, the irst thing
we need to do is to enable the track_activities coniguration parameter in the
postgresql.conf coniguration ile, as follows:

track_activities = on

Once this parameter is enabled, we would need to reload the coniguration ile to ensure that
the changes made come into effect:

pg_ctl -D $PGDATA reload

How to do it...

We can use the following query to view the text of the query that is being executed by the user

currently connected to the database:

SELECT datname, pid, usename, query_start, state, query
FROM pg_stat_activity

This query can also be used in the SQL editor of the pgAdmin tool.

How it works...

PostgreSQL will collect data about all of the running queries whenever the track_activities

coniguration parameter is enabled. We can see the most recent query executed by a user in a

speciic PostgreSQL database by referring to the SQL statement retrieved from the query column
in the pg_stat_activity table. The query_start column indicates the time on the server

that the client executed the query.

Getting the execution plan for a statement
In this recipe, we are going to see how to get the execution plan for a SQL statement.

Getting ready
The EXPLAIN command is used to get the execution plan for a SQL statement.

Chapter 6

113

How to do it...

Every query that is triggered in PostgreSQL has an execution plan. The EXPLAIN command

can be run in any of the three given modes:

 f Generic Mode: In this mode, we just need to specify the EXPLAIN command followed

by the SQL statement. The PostgreSQL planner will display the execution plan that

it generated for the speciied SQL statement. The execution plan will show the scan
method used to access the table referenced in the query. Other details included

could be the estimated execution cost of the SQL statement, which is the planner's
estimation of how long it will take to execute the SQL statement. The EXPLAIN

command can be invoked as follows:

dvdrental=# EXPLAIN select * from payment where amount > 4.99;

 QUERY PLAN

 Seq Scan on payment (cost=0.00..290.45 rows=3616 width=26)

 Filter: (amount > 4.99)

(2 rows)

 f Analyze Mode: The SQL statement can also be executed in analyze mode. This

provides the actual runtime statistics such as the total time it took to execute the

query and the actual number of rows returned. With the help of this option we can

determine whether the PostgreSQL planner's estimates are close to the actual
numbers or not. We can run the EXPLAIN ANALYZE mode as follows:

dvdrental=# EXPLAIN ANALYZE select * from payment where amount >
4.99;

 QUERY PLAN

--

 Seq Scan on payment (cost=0.00..290.45 rows=3616 width=26)
(actual time=0.024.

.7.117 rows=3618 loops=1)

 Filter: (amount > 4.99)

 Rows Removed by Filter: 10978

 Total runtime: 7.457 ms

(4 rows)

Downloading the example code

You can download the example code iles for all Packt
books you have purchased from your account at

http://www.packtpub.com. If you purchased

this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the

iles e-mailed directly to you.

Monitoring Database Activity and Investigating Performance Issues

114

 f Verbose Mode: The beneit of running the EXPLAIN command in verbose mode is

that the EXPLAIN plan output will also display the columns that are passed by the

query. This information can be valuable when the underlying query is complicated.

We can run the EXPLAIN command in verbose mode as follows:

dvdrental=# EXPLAIN VERBOSE select * from payment where amount >
4.99;

 QUERY PLAN

--

 Seq Scan on public.payment (cost=0.00..290.45 rows=3616
width=26)

 Output: payment_id, customer_id, staff_id, rental_id, amount,
payment_date

 Filter: (payment.amount > 4.99)

(3 rows)

How it works...

The output of the EXPLAIN command is organized in a series of plan nodes. It is analyzed

with a bottom-to-top approach. At the bottom, there are nodes that look at tables, scan them,

or look at things through an index. Each line in the EXPLAIN command output is a plan node.

There are several numeric measurements that are associated with a node. For instance, if we

look at the output of the EXPLAIN ANALYZE command, we can see the following details:

 f Seq Scan: The irst thing that we observe is that the plan has one node, which is
Sequential Scan node.

 f cost=0.00..290.45: The irst cost is the start-up cost of this node. The value
here determines how much work is estimated to be done before the node produces

its irst row of output. Here, the value is zero because a Seq Scan node instantly

produces rows. The second estimated cost is the cost of running the entire node

until it completes.

 f rows=3616: The number of rows to output if the node runs to completion.

 f width=26: This value provides an estimate of the average number of bytes each row

output for the node will contain.

The points that were just discussed are related to the estimated values. The actual igures tell
the response time details for the query. The actual time consists of the actual start-up cost

and the cost of running the entire node. The rows column displays the actual number of rows

returned by the query.

If the difference between estimated rows and actual rows is huge, it is an indication that the

query optimizer has made a bad decision based on the current execution plan.

Chapter 6

115

For more detailed information, refer to http://www.postgresql.org/docs/9.2/
static/sql-explain.html, which describes execution plans in PostgreSQL.

Logging slow statements
In this recipe, we are going to cover how to log slow queries in the PostgreSQL server.

Getting ready
We would need to make changes to some of the coniguration parameters in the
postgresql.conf ile that enable logging, and then restart the PostgreSQL server in
order to ensure that the changes made to those coniguration parameters come into effect.

How to do it...

Here is the sequence of steps that needs to be followed in order to log slow-running

SQL statements:

1. The following parameters would need to be set in the postgresql.conf ile:
logging_collector = on

log_directory = 'pg_log'

log_min_duration_statement = 100

2. Once these parameters are set in the postgresql.conf ile, we would need to
restart the PostgreSQL server as follows:

pg_ctl -D $PGDATA restart

How it works...

Here is the explanation of the sequence of steps done in the preceding section:

 f Setting log_min_duration_statement to 100, as seen in the preceding section,

means that any SQL statements that run for 100 milliseconds or longer will be logged

in the PostgreSQL server. This is a useful parameter to enable because it can help in

tracking down unoptimized queries in client applications.

 f Setting the logging_collector parameter enables the logging collector, a

background process whose function is to capture log messages sent to stderr and

redirect them to logiles. Setting this parameter is useful because log messages
captured this way may contain more information than syslog.

 f Setting the log_directory parameter would determine the directory in which the

log iles will be created.

http://www.postgresql.org/docs/9.2/static/sql-explain.html
http://www.postgresql.org/docs/9.2/static/sql-explain.html

Monitoring Database Activity and Investigating Performance Issues

116

Collecting statistics
In this recipe, we are going to cover the parameters that need to be enabled in order to

collect statistics.

Getting ready
The PostgreSQL server comes with set of predeined statistics access functions and a set
of predeined statistics views. These views use the predeined statistics functions to collect
statistics in PostgreSQL. By default, only a small number of statistics are collected. In the next

section, we will cover the coniguration parameters that control the collection of statistics.

How to do it...

This is the sequence of steps that needs to be followed in order to enable statistics collection

in PostgreSQL:

1. The following coniguration parameters would need to be set in the
postgresql.conf ile:
track_activities = on

track_counts = on

track_functions = all

track_io_timing = on

2. Once these coniguration parameters have been set, we would need to reload the
coniguration ile in order to ensure that parameter changes come into effect:
pg_ctl -D $PGDATA reload

How it works...

Here is the explanation for the steps done in the preceding section.

 f Setting track_activities enables monitoring of the command currently being

executed by the server process, along with the time the command began execution.

 f Setting the track_counts coniguration parameter enables collection of statistics
on database activity, which includes statistics collection for table and index accesses.

 f Setting the value of the track_functions coniguration parameter to all enables

tracking of user-deined functions, which includes tracking procedural language
functions along with SQL and C language functions.

Chapter 6

117

 f Setting the track_io_timing coniguration parameter enables the timing
of database I/O calls. Enabling this parameter may cause some performance

overhead because when this parameter is enabled, PostgreSQL repeatedly probes

the operating system for the current time. I/O timing is captured in the pg_stat_
database view. Major pieces of information that are captured are the number of

disk blocks and the time spent on reading and writing the database blocks for the

given PostgreSQL database.

For more details on this topic, please refer to http://www.postgresql.org/docs/9.3/
static/monitoring-stats.html

and http://www.postgresql.org/docs/9.3/static/runtime-config-
statistics.html#GUC-TRACK-ACTIVITIES.

Monitoring database load
In this recipe, we are going to use queries that can be used to monitor the database load.

Getting ready
We can use the pg_stat_database view to monitor the current database load.

How to do it...

In order to identify the existing database load, we would need to know the following:

 f information such as the number of active database connections

 f number of commits and rollbacks issued

 f total blocks read and the percentage of buffer hits for a given database

We can use the following query to identify the existing database load for the dvdrental

database:

dvdrental=# SELECT numbackends as CONN, xact_commit as TX_COMM,

xact_rollback as

TX_RLBCK, blks_read + blks_hit as READ_TOTAL,

blks_hit * 100 / (blks_read + blks_hit)

as BUFFER FROM pg_stat_database WHERE datname = 'dvdrental';

 conn | tx_comm | tx_rlbck | read_total | buffer

------+---------+----------+------------+--------

 9 | 45 | 1 | 1456 | 99

(1 row)

 http://www.postgresql.org/docs/9.3/static/monitoring-stats.html
 http://www.postgresql.org/docs/9.3/static/monitoring-stats.html
http://www.postgresql.org/docs/9.3/static/runtime-config-statistics.html#GUC-TRACK-ACTIVITIES
http://www.postgresql.org/docs/9.3/static/runtime-config-statistics.html#GUC-TRACK-ACTIVITIES

Monitoring Database Activity and Investigating Performance Issues

118

How it works...

The following columns are retrieved by the preceding query:

 f numbackends: This column represents the total number of active connections

 f xact_commit: This column represents the total number of commits

 f xact_rollback: This column represents the total number of rollbacks

 f blks_read: This column represents the total blocks read

 f blks_hit: This column represents the total number of buffer hits

Here is the sequence of steps that are required in order to determine the current database load:

1. First, we would need to reset the statistics by using the pg_stat_reset()function,

like this:

dvdrental=# SELECT pg_stat_reset();

pg_stat_reset

(1 row)

2. The next step would be to wait for a period of time to ensure that suficient statistics
have been collected.

3. The inal step would be to invoke the statistics query on the pg_stat_database

view, as shown in the previous section.

Finding blocking sessions
In this recipe, we are going to see the queries that can help us to ind out which user sessions
are getting blocked and who is blocking them.

Getting ready
To run these queries, you will need to use the superuser account.

How to do it...

We can use the following query to ind information regarding the blocking and blocked sessions:

SELECT bl.pid AS blocked_pid,

 a.usename AS blocked_user,

 ka.query AS blocking_statement,

 now() - ka.query_start AS blocking_duration,

Chapter 6

119

 kl.pid AS blocking_pid,

 ka.usename AS blocking_user,

 a.query AS blocked_statement,

 now() - a.query_start AS blocked_duration

FROM pg_catalog.pg_locks bl

JOIN pg_catalog.pg_stat_activity a ON a.pid = bl.pid

JOIN pg_catalog.pg_locks kl ON kl.transactionid =
 bl.transactionid AND kl.pid != bl.pid

JOIN pg_catalog.pg_stat_activity ka ON ka.pid = kl.pid

WHERE NOT bl.granted;

The aforementioned query works in PostgreSQL version 9.2 and subsequent versions.

How it works...

The query in the preceding section inds the process ID, the username, and the queries
that are being run by the blocked and the blocking sessions. Here, we are using the JOIN

condition on the pid column of the pg_locks and pg_stat_activity tables twice: once

for the blocking sessions and then for the blocked sessions. We are also doing a join of the

pg_lock table to itself, on the transactionid column, and the ilter condition here is that
the pid (process ID) column should be unique to each other when the same table pg_locks

is joined to itself.

If you are using a version of PostgreSQL older than PostgreSQL version 9.2, then you may use

this query to identify blocking sessions:

SELECT bl.pid AS blocked_pid,

 a.usename AS blocked_user,

 ka.current_query AS blocking_statement,

 now() - ka.query_start AS blocking_duration,

 kl.pid AS blocking_pid,

 ka.usename AS blocking_user,

 a.current_query AS blocked_statement,

 now() - a.query_start AS blocked_duration

FROM pg_catalog.pg_locks bl

JOIN pg_catalog.pg_stat_activity a ON a.procpid = bl.pid

JOIN pg_catalog.pg_locks kl ON kl.transactionid = bl.transactionid
AND kl.pid != bl.pid

JOIN pg_catalog.pg_stat_activity ka ON ka.procpid = kl.pid

WHERE NOT bl.granted;

Monitoring Database Activity and Investigating Performance Issues

120

Table access statistics
In this recipe, we are going to see the details of how the tables are being accessed.

Getting ready
Statistical values about user tables are available in the pg_stat_user_tables view. This

table can be used to get details such as the estimated number of live and dead rows and the

timestamps for the time when the table was last vacuumed or autovacuumed. Similarly, we

can use the pg_stat_user_tables to ind details about table's access.

How to do it...

We can use the following query to determine whether the tables are being accessed by

sequential or index scans:

dvdrental=# SELECT schemaname,relname,seq_scan,idx_scan,cast(idx_scan

AS numeric) / (idx_scan + seq_scan) AS idx_scan_pct

FROM pg_stat_user_tables WHERE (idx_scan + seq_scan)>0

ORDER BY idx_scan_pct;

 schemaname | relname | seq_scan | idx_scan |
idx_scan_pct

------------+---------------+----------+----------+-------------------

 public | category | 2 | 0 |
0.00000000000000000000

 public | actor | 3 | 0 |
0.00000000000000000000

 public | customer | 7 | 0 |
0.00000000000000000000

 public | country | 2 | 0 |
0.00000000000000000000

 public | film_category | 3 | 0 |
0.00000000000000000000

 public | payment | 7 | 0 |
0.00000000000000000000

 public | inventory | 4 | 0 |
0.00000000000000000000

 public | language | 2 | 0 |
0.00000000000000000000

 public | store | 4 | 0 |
0.00000000000000000000

 public | film_actor | 4 | 0 |
0.00000000000000000000

 public | city | 4 | 0 |
0.00000000000000000000

Chapter 6

121

 public | rental | 7 | 0 |
0.00000000000000000000

 public | staff | 5 | 0 |
0.00000000000000000000

 public | film | 8 | 0 |
0.00000000000000000000

 public | address | 4 | 4 |
0.50000000000000000000

(15 rows)

How it works...

In the preceding output, we can see that for a majority of tables starting from the category

table until the film table, access is done by sequential scans because all of the data its into a
single data page. For the table address, we can see that for some of the queries, access is done

by sequential scans, and for some statements, PostgreSQL is using indexes to look up values.

Another interesting aspect is to ind out how many rows were processed by these scans.
We can use the following query to get this information:

dvdrental=# SELECT relname,seq_tup_read,idx_tup_fetch,cast(

idx_tup_fetch AS numeric) / (idx_tup_fetch + seq_tup_read)

AS idx_tup_pct FROM pg_stat_user_tables WHERE (idx_tup_fetch +

seq_tup_read)>0 ORDER BY idx_tup_pct;

 relname | seq_tup_read | idx_tup_fetch | idx_tup_pct

---------------+--------------+---------------+----------------------

 category | 32 | 0 |
0.00000000000000000000

 actor | 600 | 0 |
0.00000000000000000000

 customer | 4193 | 0 |
0.00000000000000000000

 country | 218 | 0 |
0.00000000000000000000

 film_category | 3000 | 0 |
0.00000000000000000000

 payment | 102172 | 0 |
0.000000000000000000000000

 inventory | 18324 | 0 |
0.000000000000000000000000

 language | 12 | 0 |
0.00000000000000000000

 store | 8 | 0 |
0.00000000000000000000

 film_actor | 21848 | 0 |
0.000000000000000000000000

Monitoring Database Activity and Investigating Performance Issues

122

 city | 2400 | 0 |
0.00000000000000000000

 rental | 112308 | 0 |
0.000000000000000000000000

 staff | 10 | 0 |
0.00000000000000000000

 film | 8000 | 0 |
0.00000000000000000000

 address | 2412 | 4 |
0.00165562913907284768

(15 rows)

In the preceding output, we can see that for all of the tables, most of the rows were

processed by sequential scan. Only for the addresses table, four rows were accessed

using an index lookup.

Finding unused indexes
It becomes necessary to check for unused indexes because indexes end up consuming a

signiicant chunk of disk space, and if not monitored closely, they can consume unnecessary
CPU cycles, more so in the case of them becoming fragmented.

Getting ready
In order to be able to ind unused indexes in PostgreSQL, we need to ensure that the
track_activities and track_counts coniguration parameters are enabled in the
postgresql.conf ile. It is only when statistics are collected that we will be able to identify
the unused indexes.

How to do it...

We can use the following query to identify unused indexes in PostgreSQL:

SELECT

 relid::regclass AS table,

 indexrelid::regclass AS index,

 pg_size_pretty(pg_relation_size(indexrelid::regclass))
AS index_size,

 idx_tup_read,

 idx_tup_fetch,

 idx_scan

FROM pg_stat_user_indexes

JOIN pg_index USING (indexrelid)

WHERE idx_scan = 0

Chapter 6

123

AND indisunique IS FALSE;

 table | index | index_size | idx_tup_read | idx_
tup_fetch | idx_scan

------------+----------------------+------------+--------------+------
---------+----------

 film | film_fulltext_idx | 88 kB | 0 |
0 | 0

 actor | idx_actor_last_name | 16 kB | 0 |
0 | 0

 customer | idx_fk_address_id | 32 kB | 0 |
0 | 0

 address | idx_fk_city_id | 32 kB | 0 |
0 | 0

 city | idx_fk_country_id | 32 kB | 0 |
0 | 0

 payment | idx_fk_customer_id | 336 kB | 0 |
0 | 0

 film_actor | idx_fk_film_id | 136 kB | 0 |
0 | 0

 rental | idx_fk_inventory_id | 368 kB | 0 |
0 | 0

 film | idx_fk_language_id | 40 kB | 0 |
0 | 0

 payment | idx_fk_rental_id | 336 kB | 0 |
0 | 0

 payment | idx_fk_staff_id | 336 kB | 0 |
0 | 0

 customer | idx_fk_store_id | 32 kB | 0 |
0 | 0

 customer | idx_last_name | 32 kB | 0 |
0 | 0

 inventory | idx_store_id_film_id | 120 kB | 0 |
0 | 0

 film | idx_title | 56 kB | 0 |
0 | 0

(15 rows)

How it works...

If we take a look at the preceding output, we can conclude that wherever the entry for

idx_scan is zero, it clearly means that either the given index has never been used or

most likely not used since the time pg_stat_reset() function was run, which basically

resets all of the statistics counters for the current database to zero. In the preceding

section, we are doing a join on the pg_stat_user_indexes and pg_index tables,

on the indexrelid column.

Monitoring Database Activity and Investigating Performance Issues

124

In the preceding query output, the idx_tup_read, idx_tup_fetch, and idx_scan

columns indicate the usage of the index:

 f The idx_tup_read column indicates how many rows have been read using

the index

 f The idx_tup_fetch column indicates the number of rows that have been fetched

using the index

 f The idx_scan column indicates the number of times the index was used by the

query planner

There's more…

Just as with unused indexes, we also need to ind out whether there are any duplicate indexes
because duplicate indexes also consume unnecessary space. Quite often, there are instances

of indexes deined on a column of a table with a unique key and the same column is also
deined as the primary key. This situation would result in a duplicate index since the primary
key itself is unique, and in that situation, there is no need to deine an additional index on the

same column as a unique index. We can use the following query to identify duplicate indexes

in PostgreSQL:

SELECT pg_size_pretty(sum(pg_relation_size(idx))::bigint) AS size,

 (array_agg(idx))[1] AS idx1, (array_agg(idx))[2] AS idx2,

 (array_agg(idx))[3] AS idx3, (array_agg(idx))[4] AS idx4

FROM (SELECT indexrelid::regclass AS idx, (indrelid::text ||E'\n'||

 indclass::text ||E'\n'|| indkey::text ||E'\n'||

 coalesce(indexprs::text,'')||E'\n' || coalesce(indpred::text,''))

AS KEY

FROM pg_index) sub

GROUP BY KEY HAVING count(*)>1

ORDER BY sum(pg_relation_size(idx)) DESC;

Once the duplicate indexes have been identiied, they can then be dropped to reclaim lost space.

You can refer to https://gist.github.com/jberkus/6b1bcaf7724dfc2a54f3 and
http://www.databasesoup.com/2014/05/new-finding-unused-indexes-query.
html, which contain more information related to unused indexes.

Forcing a query to use an index
In this recipe, we show different methods that can be used to force the database to use

an index.

https://gist.github.com/jberkus/6b1bcaf7724dfc2a54f3
http://www.databasesoup.com/2014/05/new-finding-unused-indexes-query.html
http://www.databasesoup.com/2014/05/new-finding-unused-indexes-query.html

Chapter 6

125

Getting ready
Usually, it is the job of the PostgreSQL optimizer to determine whether a sequential scan or an

index lookup is going to be more eficient when the table is being accessed by a query to fetch
results. However, if we decide that it is worth gambling on an index, then we must conirm
our results by testing the query execution in the development environment before moving the

results over to production.

How to do it...

There are two ways by which we can force the database to use an index:

 f The irst is by setting enable_seqscan to false. This can be demonstrated by a

scenario given as follows:

dvdrental=# create table test_no_index(id int);

CREATE TABLE

dvdrental=# set enable_seqscan to false;

SET

dvdrental=# explain select * from test_no_index where id > 12;

 QUERY PLAN

--

 Seq Scan on test_no_index (cost=10000000000.00..10000000040.00
rows=800 width=

4)

 Filter: (id > 12)

(2 rows)

 � Next, we create an index on the given table so as to give the optimizer one or

more access paths:

dvdrental=# create index new_idx_test_no_index on test_no_
index(id);

CREATE INDEX

 � If we now check the execution plan for the query, we will see that instead of

a sequential scan, the query plan uses an index lookup to access the table

to fetch the query result:

dvdrental=# explain select * from test_no_index where id >
12;

 QUERY PLAN

--

Monitoring Database Activity and Investigating Performance Issues

126

 Bitmap Heap Scan on test_no_index (cost=10.35..30.35
rows=800 width=4)

 Recheck Cond: (id > 12)

 -> Bitmap Index Scan on new_idx_test_no_index
(cost=0.00..10.15 rows=800 wi

dth=0)

 Index Cond: (id > 12)

(4 rows)

 f Another way is to set the value of the random_page_cost coniguration parameter
to a lower or equivalent value to seq_page_cost. By doing this, PostgreSQL will

prefer index scans for some of the SQL queries. This can be done as follows:

dvdrental=# set random_page_cost = 2;

SET

How it works...

In the preceding section, setting enable_seqscan to false will disable sequential scans

and force the optimizer to try and use a different plan. In our scenario, we disabled sequential

scans and created an index, new_idx_test_no_index, on the test_no_index table. By

doing this, we are providing the optimizer with another access path for the test_no_index

table.

Similarly, lowering the value of the random_page_cost coniguration parameter will cause
the system to prefer index scans. By default, the value of randon_page_cost is 4, which

is higher than the default value of the seq_page_cost coniguration parameter, which is 1,
therefore causing a preference for sequential scans over index scans. Lowering the value of

random_page_cost might help some queries whereby the optimizer might prefer to use

an index lookup.

Determining disk usage
In this recipe, we are going to display the amount of disk usage for a speciic database and its
associated tables and indexes.

How to do it...

We can use the following SQL query to ind the total size of an existing database, the
dvdrental database in this case:

dvdrental=# SELECT pg_size_pretty(pg_database_size('dvdrental')) As
fulldbsize;

 fulldbsize

Chapter 6

127

 14 MB

(1 row)

In this query output, we can see that the total size of the dvdrental database is

approximately 14 MB.

Similarly, to display the size of the existing tables and their associated indexes in the

dvdrental database, we can use the following SQL query:

SELECT relname as "Table",

 pg_size_pretty(pg_relation_size(relid)) As " Table Size",

 pg_size_pretty(pg_total_relation_size(relid) -

 pg_relation_size(relid)) as "Index Size"

FROM pg_catalog.pg_statio_user_tables ORDER BY

pg_total_relation_size(relid) DESC;

 Table | Table Size | Index Size

---------------------+-------------+------------

 rental | 1200 kB | 1272 kB

 payment | 864 kB | 1368 kB

 film | 432 kB | 256 kB

 film_actor | 240 kB | 296 kB

 inventory | 200 kB | 264 kB

 customer | 72 kB | 152 kB

 keytbl | 40 kB | 144 kB

 address | 64 kB | 88 kB

 city | 40 kB | 88 kB

 film_category | 48 kB | 64 kB

 actor | 16 kB | 56 kB

 encdata | 24 kB | 32 kB

 store | 8192 bytes | 32 kB

 staff | 8192 bytes | 24 kB

 category | 8192 bytes | 16 kB

 country | 8192 bytes | 16 kB

 language | 8192 bytes | 16 kB

 test | 0 bytes | 8192 bytes

 test_no_index | 0 bytes | 8192 bytes

 table_with_no_index | 0 bytes | 8192 bytes

(20 rows)

Monitoring Database Activity and Investigating Performance Issues

128

How it works...

If we examine the preceding output, we can see the names of the tables along with the

respective table and index sizes. In the preceding query, we used two functions, pg_relation_
size() and pg_total_relation_size(). The pg_relation_size() function reports the

table size in kilobytes and the pg_total_relation_size() function reports the total size of

the table used on the disk inclusive of the space used by TOAST data and indexes. So in order

to get the correct index sizes for all of the indexes for a speciic table, we subtracted the value
of pg_relation_size() from pg_total_relation_size() using the relid column as a

parameter in both of the functions.

If you need more information on determining disk usage, you can refer to http://wiki.
postgresql.org/wiki/Disk_Usage and https://wiki.postgresql.org/wiki/
Index_Maintenance.

There's more...

In this section, we will provide some links you can refer to to get advice on dealing with

performance issues related to PostgreSQL.

You can check out the performance mailing list at http://archives.postgresql.org/
pgsql-performance/.

You can also refer to some of the PostgreSQL Wiki links that explain what to include in your

performance problem report and some useful troubleshooting information, at http://
wiki.postgresql.org/wiki/Guide_to_reporting_problems and http://wiki.
postgresql.org/wiki/Performance_Optimization.

If you have purchased Premium support from vendors such as 2ndQuadrant and

EnterpriseDB, you can log tickets with their support team concerning PostgreSQL issues.

http://wiki.postgresql.org/wiki/Disk_Usage
http://wiki.postgresql.org/wiki/Disk_Usage
https://wiki.postgresql.org/wiki/Index_Maintenance
https://wiki.postgresql.org/wiki/Index_Maintenance
 http://archives.postgresql.org/pgsql-performance/
 http://archives.postgresql.org/pgsql-performance/
 http://wiki.postgresql.org/wiki/Guide_to_reporting_problems
 http://wiki.postgresql.org/wiki/Guide_to_reporting_problems
 http://wiki.postgresql.org/wiki/Performance_Optimization
 http://wiki.postgresql.org/wiki/Performance_Optimization

7
High Availability and

Replication

In this chapter, we will cover the following recipes:

 f Setting up hot streaming replication

 f Replication using Slony-I

 f Replication using Londiste

 f Replication using Bucardo

 f Replication using DRBD

 f Setting up the Postgres-XC cluster

Introduction
The important components for any production database is to achieve fault tolerance, 24/7

availability, and redundancy. It is for this purpose that we have different high availability and

replication solutions available for PostgreSQL.

From a business perspective, it is important to ensure 24/7 data availability in the event of

a disaster situation or a database crash due to disk or hardware failure. In such situations, it

becomes critical to ensure that a duplicate copy of the data is available on a different server

or a different database, so that seamless failover can be achieved even when the primary

server/database is unavailable.

In this chapter, we will talk about various high availability and replication solutions, including

some popular third-party replication tools such as Slony-I, Londiste, and Bucardo. We will also

discuss block-level replication using DRBD, and inally, set up a PostgreSQL extensible cluster,
that is, Postgres-XC.

High Availability and Replication

130

Setting up hot streaming replication
In this recipe, we are going to set up a master-slave streaming replication.

Getting ready
For this exercise, you will need two Linux machines, each with the latest version of PostgreSQL

installed. We will be using the following IP addresses for the master and slave servers:

 f Master IP address: 192.168.0.4

 f Slave IP address: 192.168.0.5

Before you start with the master-slave streaming setup, it is important that the SSH

connectivity between the master and slave is setup.

How to do it...

Perform the following sequence of steps to set up a master-slave streaming replication:

1. First, we are going to create a user on the master, which will be used by the slave

server to connect to the PostgreSQL database on the master server:

psql -c "CREATE USER repuser REPLICATION LOGIN ENCRYPTED
PASSWORD 'charlie';"

2. Next, we will allow the replication user that was created in the previous step to allow

access to the master PostgreSQL server.

This is done by making the necessary changes as mentioned in the pg_hba.conf ile:
Vi pg_hba.conf

host replication repuser 192.168.0.5/32 md5

3. In the next step, we are going to conigure parameters in the postgresql.conf ile.
These parameters need to be set in order to get the streaming replication working:

Vi /var/lib/pgsql/9.3/data/postgresql.conf

listen_addresses = '*'

wal_level = hot_standby

max_wal_senders = 3

wal_keep_segments = 8

archive_mode = on

Chapter 7

131

archive_command = 'cp %p /var/lib/pgsql/archive/%f && scp %p
postgres@192.168.0.5:/var/lib/pgsql/archive/%f'

checkpoint_segments = 8

4. Once the parameter changes have been made in the postgresql.conf ile in the
previous step, the next step will be to restart the PostgreSQL server on the master

server, in order to let the changes take effect:

pg_ctl -D /var/lib/pgsql/9.3/data restart

5. Before the slave can replicate the master, we will need to give it the initial database

to build off. For this purpose, we will make a base backup by copying the primary

server's data directory to the standby. The rsync command needs to be run as a root

user:

psql -U postgres -h 192.168.0.4 -c "SELECT pg_start_
backup('label', true)"

rsync -a /var/lib/pgsql/9.3/data/ 192.168.0.5:/var/lib/pgsql/9.3/
data/ --exclude postmaster.pid

psql -U postgres -h 192.168.0.4 -c "SELECT pg_stop_backup()"

6. Once the data directory, mentioned in the previous step, is populated, the next step is

to enable the following parameter in the postgresql.conf ile on the slave server:
hot_standby = on

7. The next step will be to copy the recovery.conf.sample ile in the $PGDATA

location on the slave server and then conigure the following parameters:
cp /usr/pgsql-9.3/share/recovery.conf.sample
/var/lib/pgsql/9.3/data/recovery.conf

standby_mode = on

primary_conninfo = 'host=192.168.0.4 port=5432 user=repuser
password=charlie'

trigger_file = '/tmp/trigger.replication�

restore_command = 'cp /var/lib/pgsql/archive/%f "%p"'

8. The next step will be to start the slave server:

service postgresql-9.3 start

High Availability and Replication

132

9. Now that the above mentioned replication steps are set up, we will test for

replication. On the master server, log in and issue the following SQL commands:

psql -h 192.168.0.4 -d postgres -U postgres -W

postgres=# create database test;

postgres=# \c test;

test=# create table testtable (testint int, testchar varchar(40)
);

CREATE TABLE

test=# insert into testtable values (1, 'What A Sight.');

INSERT 0 1

10. On the slave server, we will now check whether the newly created database and the

corresponding table, created in the previous step, are replicated:

psql -h 192.168.0.5 -d test -U postgres -W

test=# select * from testtable;

testint | testchar

---------+---------------------------

1 | What A Sight.

(1 row)

How it works...

The following is the explanation for the steps performed in the preceding section.

In the initial step of the preceding section, we create a user called repuser, which will be

used by the slave server to make a connection to the primary server. In the second step of the

preceding section, we make the necessary changes in the pg_hba.conf ile to allow the master
server to be accessed by the slave server using the repuser user ID that was created in step

1. We then make the necessary parameter changes on the master in step 3 of the preceding

section to conigure a streaming replication. The following is a description of these parameters:

 f listen_addresses: This parameter is used to provide the IP address associated

with the interface that you want to have PostgreSQL listen to. A value of * indicates

all available IP addresses.

 f wal_level: This parameter determines the level of WAL logging done. Specify

hot_standby for streaming replication.

Chapter 7

133

 f wal_keep_segments: This parameter speciies the number of 16 MB WAL iles to
be retained in the pg_xlog directory. The rule of thumb is that more such iles might
be required to handle a large checkpoint.

 f archive_mode: Setting this parameter enables completed WAL segments to be sent

to the archive storage.

 f archive_command: This parameter is basically a shell command that is executed

whenever a WAL segment is completed. In our case, we are basically copying the ile
to the local machine and then using the secure copy command to send it across to

the slave.

 f max_wal_senders: This parameter speciies the total number of concurrent
connections allowed from the slave servers.

 f checkpoint_segments: This parameter speciies the maximum number of logile
segments between automatic WAL checkpoints. Once the necessary coniguration
changes have been made on the master server, we then restart the PostgreSQL

server on the master in order to let the new coniguration changes take effect. This
is done in step 4 of the preceding section. In step 5 of the preceding section, we are

basically building the slave by copying the primary server's data directory to the slave.

Now, with the data directory available on the slave, the next step is to conigure it. We will
now make the necessary parameter replication related parameter changes on the slave in

the postgresql.conf directory on the slave server. We set the following parameters on

the slave:

 f hot_standby: This parameter determines whether you can connect and run queries

when the server is in the archive recovery or standby mode. In the next step, we

are coniguring the recovery.conf ile. This is required to be set up so that the
slave can start receiving logs from the master. The parameters explained next are

conigured in the recovery.conf ile on the slave.

 f standby_mode: This parameter, when enabled, causes PostgreSQL to work as a

standby in a replication coniguration.

 f primary_conninfo: This parameter speciies the connection information used
by the slave to connect to the master. For our scenario, our master server is set as

192.168.0.4 on port 5432 and we are using the repuser userid with the password

charlie to make a connection to the master. Remember that repuser was the

userid which was created in the initial step of the preceding section for this purpose,

that is, connecting to the master from the slave.

High Availability and Replication

134

 f trigger_file: When a slave is conigured as a standby, it will continue to restore
the XLOG records from the master. The trigger_file parameter speciies what is
used to trigger a slave, in order to switch over its duties from standby and take over

as master or primary server. At this stage, the slave is fully conigured now and we
can start the slave server; then, the replication process begins. This is shown in step

8 of the preceding section. In steps 9 and 10 of the preceding section, we are simply

testing our replication. We irst begin by creating a test database, then we log in

to the test database and create a table by the name testtable, and then we

begin inserting some records into the testtable table. Now, our purpose is to see

whether these changes are replicated across the slave. To test this, we log in to the

slave on the test database and then query the records from the testtable table,

as seen in step 10 of the preceding section. The inal result that we see is that all the
records that are changed/inserted on the primary server are visible on the slave. This

completes our streaming replication's setup and coniguration.

You can refer to the following links for more detailed information on streaming replication:

 f https://www.digitalocean.com/community/tutorials/how-to-set-up-
master-slave-replication-on-postgresql-on-an-ubuntu-12-04-vps

 f http://www.rassoc.com/gregr/weblog/2013/02/16/zero-to-
postgresql-streaming-replication-in-10-mins/

Replication using Slony-I
Here, we are going to set up replication using Slony-I. We will be setting up the replication of

table data between two databases on the same server.

Getting ready
The steps performed in this recipe are carried out on a CentOS Version 6 machine. It is also

important to remove the directives related to hot streaming replication prior to setting up

replication using Slony-I.

We will irst need to install Slony-I. The following steps need to be performed in order to

install Slony-I:

1. First, go to http://slony.info/downloads/2.2/source/and download the

given software.

https://www.digitalocean.com/community/tutorials/how-to-set-up-master-slave-replication-on-postgresql-on-an-ubuntu-12-04-vps
https://www.digitalocean.com/community/tutorials/how-to-set-up-master-slave-replication-on-postgresql-on-an-ubuntu-12-04-vps
http://www.rassoc.com/gregr/weblog/2013/02/16/zero-to-postgresql-streaming-replication-in-10-mins/
http://www.rassoc.com/gregr/weblog/2013/02/16/zero-to-postgresql-streaming-replication-in-10-mins/
http://slony.info/downloads/2.2/source/

Chapter 7

135

2. Once you have downloaded the Slony-I software, the next step is to unzip the .tar

ile and then go the newly created directory. Before doing this, please ensure that you
have the postgresql-devel package for the corresponding PostgreSQL version

installed before you install Slony-I:

tar xvfj slony1-2.2.3.tar.bz2

cd slony1-2.2.3

3. In the next step, we are going to conigure, compile, and build the software:
./configure --with-pgconfigdir=/usr/pgsql-9.3/bin/

make

make install

How to do it...

You need to perform the following sequence of steps, in order to replicate data between two

tables using Slony-I replication:

1. First, start the PostgreSQL server if you have not already started it:

pg_ctl -D $PGDATA start

2. In the next step, we will be creating two databases, test1 and test2, which will be

used as the source and target databases respectively:

createdb test1

createdb test2

3. In the next step, we will create the t_test table on the source database, test1, and

insert some records into it:

psql -d test1

test1=# create table t_test (id numeric primary key, name
varchar);

test1=# insert into t_test values(1,'A'),(2,'B'), (3,'C');

High Availability and Replication

136

4. We will now set up the target database by copying the table deinitions from the
test1 source database:

pg_dump -s -p 5432 -h localhost test1 | psql -h localhost -p 5432
test2

5. We will now connect to the target database, test2, and verify that there is no data in

the tables of the test2 database:

psql -d test2

test2=# select * from t_test;

6. We will now set up a slonik script for the master-slave, that is source/target, setup.

In this scenario, since we are replicating between two different databases on the

same server, the only different connection string option will be the database name:

cd /usr/pgsql-9.3/bin

vi init_master.slonik

 #!/bin/sh

 cluster name = mycluster;

 node 1 admin conninfo = 'dbname=test1 host=localhost

port=5432 user=postgres password=postgres';

 node 2 admin conninfo = 'dbname=test2 host=localhost

port=5432 user=postgres password=postgres';

 init cluster (id=1);

 create set (id=1, origin=1);

 set add table(set id=1, origin=1, id=1, fully qualified

name = 'public.t_test');

 store node (id=2, event node = 1);

 store path (server=1, client=2, conninfo='dbname=test1

host=localhost port=5432 user=postgres password=postgres');

 store path (server=2, client=1, conninfo='dbname=test2

host=localhost port=5432 user=postgres password=postgres');

 store listen (origin=1, provider = 1, receiver = 2);

 store listen (origin=2, provider = 2, receiver = 1);

Chapter 7

137

7. We will now create a slonik script for subscription to the slave, that is, target:

cd /usr/pgsql-9.3/bin

vi init_slave.slonik

 #!/bin/sh

 cluster name = mycluster;

 node 1 admin conninfo = 'dbname=test1 host=localhost

port=5432 user=postgres password=postgres';

 node 2 admin conninfo = 'dbname=test2 host=localhost

port=5432 user=postgres password=postgres';

 subscribe set (id = 1, provider = 1, receiver = 2, forward

= no);

8. We will now run the init_master.slonik script created in step 6 and run this on

the master, as follows:

cd /usr/pgsql-9.3/bin

slonik init_master.slonik

9. We will now run the init_slave.slonik script created in step 7 and run this on

the slave, that is, target:

cd /usr/pgsql-9.3/bin

slonik init_slave.slonik

10. In the next step, we will start the master slon daemon:

nohup slon mycluster "dbname=test1 host=localhost port=5432
user=postgres password=postgres" &

11. In the next step, we will start the slave slon daemon:

nohup slon mycluster "dbname=test2 host=localhost port=5432
user=postgres password=postgres" &

12. Next, we will connect to the master, that is, the test1 source database, and insert

some records in the t_test table:

psql -d test1

test1=# insert into t_test values (5,'E');

High Availability and Replication

138

13. We will now test for the replication by logging on to the slave, that is, the test2 target

database, and see whether the inserted records in the t_test table are visible:

psql -d test2

test2=# select * from t_test;

 id | name

----+------

 1 | A

 2 | B

 3 | C

 5 | E

(4 rows)

How it works...

We will now discuss the steps performed in the preceding section:

 f In step 1, we irst start the PostgreSQL server if it is not already started. In step 2,
we create two databases, namely test1 and test2, that will serve as our source

(master) and target (slave) databases.

 f In step 3, we log in to the test1 source database, create a t_test table, and insert

some records into the table.

 f In step 4, we set up the target database, test2, by copying the table deinitions
present in the source database and loading them into test2 using the pg_dump utility.

 f In step 5, we log in to the target database, test2, and verify that there are no

records present in the t_test table because in step 4, we only extracted the table

deinitions into the test2 database from the test1 database.

 f In step 6, we set up a slonik script for the master-slave replication setup. In the

init_master.slonik ile, we irst deine the cluster name as mycluster. We

then deine the nodes in the cluster. Each node will have a number associated with a
connection string, which contains database connection information. The node entry is

deined both for the source and target databases. The store_path commands are

necessary, so that each node knows how to communicate with the other.

 f In step 7, we set up a slonik script for the subscription of the slave, that is, the

test2 target database. Once again, the script contains information such as the

cluster name and the node entries that are designated a unique number related

to connection string information. It also contains a subscriber set.

 f In step 8, we run the init_master.slonik ile on the master. Similarly, in step 9,
we run the init_slave.slonik ile on the slave.

Chapter 7

139

 f In step 10, we start the master slon daemon. In step 11, we start the slave

slon daemon.

 f The subsequent steps, 12 and 13, are used to test for replication. For this purpose,

in step 12 of the preceding section, we irst log in to the test1 source database

and insert some records into the t_test table. To check whether the newly inserted

records have been replicated in the target database, test2, we log in to the test2

database in step 13. The result set obtained from the output of the query conirms
that the changed/inserted records on the t_test table in the test1 database are

successfully replicated across the target database, test2.

For more information on Slony-I replication, go to http://slony.info/documentation/
tutorial.html.

There's more...

If you are using Slony-I for replication between two different servers, in addition to the

steps mentioned in the How to do it… section, you will also have to enable authentication

information in the pg_hba.conf ile existing on both the source and target servers. For
example, let's assume that the source server's IP is 192.168.16.44 and the target server's
IP is 192.168.16.56 and we are using a user named super to replicate the data.

If this is the situation, then in the source server's pg_hba.conf ile, we will have to enter the
information, as follows:

host postgres super 192.168.16.44/32 md5

Similarly, in the target server's pg_hba.conf ile, we will have to enter the authentication
information, as follows:

host postgres super 192.168.16.56/32 md5

Also, in the shell scripts that were used for Slony-I, wherever the connection information

for the host is localhost that entry will need to be replaced by the source and target

server's IP addresses.

Replication using Londiste
In this recipe, we are going to show you how to replicate data using Londiste.

http://slony.info/documentation/tutorial.html
http://slony.info/documentation/tutorial.html

High Availability and Replication

140

Getting ready
For this setup, we are using the same host CentOS Linux machine to replicate data between

two databases. This can also be set up using two separate Linux machines running on

VMware, VirtualBox, or any other virtualization software. It is assumed that the latest version

of PostgreSQL, version 9.3, is installed. We used CentOS Version 6 as the Linux operating

system for this exercise.

To set up Londiste replication on the Linux machine, perform the following steps:

1. Go to http://pgfoundry.org/projects/skytools/ and download the latest

version of Skytools 3.2, that is, tarball skytools-3.2.tar.gz.

2. Extract the tarball ile, as follows:
tar -xvzf skytools-3.2.tar.gz

3. Go to the new location and build and compile the software:

cd skytools-3.2

./configure --prefix=/var/lib/pgsql/9.3/Sky –with-pgconfig=/usr/
pgsql-9.3/bin/pg_config

make

make install

4. Also, set the PYTHONPATH environment variable, as shown here. Alternatively, you

can also set it in the .bash_profile script:

export PYTHONPATH=/opt/PostgreSQL/9.2/Sky/lib64/python2.6/site-
packages/

How to do it...

1. We are going to perform the following sequence of steps to set up replication

between two different databases using Londiste. First, create the two databases

between which replication has to occur:

 createdb node1

 createdb node2

2. Populate the node1 database with data using the pgbench utility:

pgbench -i -s 2 -F 80 node1

http://pgfoundry.org/projects/skytools/

Chapter 7

141

3. Add any primary key and foreign keys to the tables in the node1 database that are

needed for replication. Create the following .sql ile and add the following lines to it:
Vi /tmp/prepare_pgbenchdb_for_londiste.sql -- add primary key to
history table

ALTER TABLE pgbench_history ADD COLUMN hid SERIAL PRIMARY KEY;

-- add foreign keys

ALTER TABLE pgbench_tellers ADD CONSTRAINT pgbench_tellers_
branches_fk FOREIGN KEY(bid) REFERENCES pgbench_branches;

ALTER TABLE pgbench_accounts ADD CONSTRAINT pgbench_accounts_
branches_fk FOREIGN KEY(bid) REFERENCES pgbench_branches;

ALTER TABLE pgbench_history ADD CONSTRAINT pgbench_history_
branches_fk FOREIGN KEY(bid) REFERENCES pgbench_branches;

ALTER TABLE pgbench_history ADD CONSTRAINT pgbench_history_
tellers_fk FOREIGN KEY(tid) REFERENCES pgbench_tellers;

ALTER TABLE pgbench_history ADD CONSTRAINT pgbench_history_
accounts_fk FOREIGN KEY(aid) REFERENCES pgbench_accounts;

4. We will now load the .sql ile created in the previous step and load it into
the database:

psql node1 -f /tmp/prepare_pgbenchdb_for_londiste.sql

5. We will now populate the node2 database with table deinitions from the tables in
the node1 database:

pg_dump -s -t 'pgbench*' node1 > /tmp/tables.sql

psql -f /tmp/tables.sql node2

6. Now starts the process of replication. We will irst create the londiste.ini

coniguration ile with the following parameters in order to set up the root node
for the source database, node1:

Vi londiste.ini

[londiste3]

job_name = first_table

db = dbname=node1

queue_name = replication_queue

logfile = /home/postgres/log/londiste.log

pidfile = /home/postgres/pid/londiste.pid

High Availability and Replication

142

7. In the next step, we are going to use the londiste.ini coniguration ile created in
the previous step to set up the root node for the node1 database, as shown here:

[postgres@localhost bin]$./londiste3 londiste3.ini create-root
node1 dbname=node1

2014-12-09 18:54:34,723 2335 WARNING No host= in public connect
string, bad idea

2014-12-09 18:54:35,210 2335 INFO plpgsql is installed

2014-12-09 18:54:35,217 2335 INFO pgq is installed

2014-12-09 18:54:35,225 2335 INFO pgq.get_batch_cursor is
installed

2014-12-09 18:54:35,227 2335 INFO pgq_ext is installed

2014-12-09 18:54:35,228 2335 INFO pgq_node is installed

2014-12-09 18:54:35,230 2335 INFO londiste is installed

2014-12-09 18:54:35,232 2335 INFO londiste.global_add_table is
installed

2014-12-09 18:54:35,281 2335 INFO Initializing node

2014-12-09 18:54:35,285 2335 INFO Location registered

2014-12-09 18:54:35,447 2335 INFO Node "node1" initialized for
queue "replication_queue" with type "root"

2014-12-09 18:54:35,465 2335 INFO Don

8. We will now run the worker daemon for the root node:

[postgres@localhost bin]$./londiste3 londiste3.ini worker

2014-12-09 18:55:17,008 2342 INFO Consumer uptodate = 1

9. In the next step, we will create a slave.ini coniguration ile in order to make a leaf
node for the node2 target database:

Vi slave.ini

[londiste3]

job_name = first_table_slave

db = dbname=node2

queue_name = replication_queue

logfile = /home/postgres/log/londiste_slave.log

pidfile = /home/postgres/pid/londiste_slave.pid

Chapter 7

143

10. We will now initialize the node in the target database:

 ./londiste3 slave.ini create-leaf node2 dbname=node2 –
provider=dbname=node1

2014-12-09 18:57:22,769 2408 WARNING No host= in public connect
string, bad idea

2014-12-09 18:57:22,778 2408 INFO plpgsql is installed

2014-12-09 18:57:22,778 2408 INFO Installing pgq

2014-12-09 18:57:22,778 2408 INFO Reading from /var/lib/
pgsql/9.3/Sky/share/skytools3/pgq.sql

2014-12-09 18:57:23,211 2408 INFO pgq.get_batch_cursor is
installed

2014-12-09 18:57:23,212 2408 INFO Installing pgq_ext

2014-12-09 18:57:23,213 2408 INFO Reading from /var/lib/
pgsql/9.3/Sky/share/skytools3/pgq_ext.sql

2014-12-09 18:57:23,454 2408 INFO Installing pgq_node

2014-12-09 18:57:23,455 2408 INFO Reading from /var/lib/
pgsql/9.3/Sky/share/skytools3/pgq_node.sql

2014-12-09 18:57:23,729 2408 INFO Installing londiste

2014-12-09 18:57:23,730 2408 INFO Reading from /var/lib/
pgsql/9.3/Sky/share/skytools3/londiste.sql

2014-12-09 18:57:24,391 2408 INFO londiste.global_add_table is
installed

2014-12-09 18:57:24,575 2408 INFO Initializing node

2014-12-09 18:57:24,705 2408 INFO Location registered

2014-12-09 18:57:24,715 2408 INFO Location registered

2014-12-09 18:57:24,744 2408 INFO Subscriber registered: node2

2014-12-09 18:57:24,748 2408 INFO Location registered

2014-12-09 18:57:24,750 2408 INFO Location registered

2014-12-09 18:57:24,757 2408 INFO Node "node2" initialized for
queue "replication_queue" with type "leaf"

2014-12-09 18:57:24,761 2408 INFO Done

11. We will now launch the worker daemon for the target database, that is, node2:

[postgres@localhost bin]$./londiste3 slave.ini worker

2014-12-09 18:58:53,411 2423 INFO Consumer uptodate = 1

High Availability and Replication

144

12. We will now create the coniguration ile, that is pgqd.ini, for the ticker daemon:

vi pgqd.ini

[pgqd]

logfile = /home/postgres/log/pgqd.log

pidfile = /home/postgres/pid/pgqd.pid

13. Using the coniguration ile created in the previous step, we will launch the
ticker daemon:

[postgres@localhost bin]$./pgqd pgqd.ini

2014-12-09 19:05:56.843 2542 LOG Starting pgqd 3.2

2014-12-09 19:05:56.844 2542 LOG auto-detecting dbs ...

2014-12-09 19:05:57.257 2542 LOG node1: pgq version ok: 3.2

2014-12-09 19:05:58.130 2542 LOG node2: pgq version ok: 3.2

14. We will now add all the tables to the replication on the root node:

[postgres@localhost bin]$./londiste3 londiste3.ini add-table
--all

2014-12-09 19:07:26,064 2614 INFO Table added: public.pgbench_
accounts

2014-12-09 19:07:26,161 2614 INFO Table added: public.pgbench_
branches

2014-12-09 19:07:26,238 2614 INFO Table added: public.pgbench_
history

2014-12-09 19:07:26,287 2614 INFO Table added: public.pgbench_
tellers

15. Similarly, add all the tables to the replication on the leaf node:

[postgres@localhost bin]$./londiste3 slave.ini add-table –all

16. We will now generate some trafic on the node1 source database:

pgbench -T 10 -c 5 node1

17. We will now use the compare utility available with the londiste3 command

to check the tables in both the nodes; that is, both the source database (node1)

and destination database (node2) have the same amount of data:

[postgres@localhost bin]$./londiste3 slave.ini compare

2014-12-09 19:26:16,421 2982 INFO Checking if node1 can be used
for copy

Chapter 7

145

2014-12-09 19:26:16,424 2982 INFO Node node1 seems good source,
using it

2014-12-09 19:26:16,425 2982 INFO public.pgbench_accounts: Using
node node1 as provider

2014-12-09 19:26:16,441 2982 INFO Provider: node1 (root)

2014-12-09 19:26:16,446 2982 INFO Locking public.pgbench_accounts

2014-12-09 19:26:16,447 2982 INFO Syncing public.pgbench_accounts

2014-12-09 19:26:18,975 2982 INFO Counting public.pgbench_accounts

2014-12-09 19:26:19,401 2982 INFO srcdb: 200000 rows,
checksum=167607238449

2014-12-09 19:26:19,706 2982 INFO dstdb: 200000 rows,
checksum=167607238449

2014-12-09 19:26:19,715 2982 INFO Checking if node1 can be used
for copy

2014-12-09 19:26:19,716 2982 INFO Node node1 seems good source,
using it

2014-12-09 19:26:19,716 2982 INFO public.pgbench_branches: Using
node node1 as provider

2014-12-09 19:26:19,730 2982 INFO Provider: node1 (root)

2014-12-09 19:26:19,734 2982 INFO Locking public.pgbench_branches

2014-12-09 19:26:19,734 2982 INFO Syncing public.pgbench_branches

2014-12-09 19:26:22,772 2982 INFO Counting public.pgbench_branches

2014-12-09 19:26:22,804 2982 INFO srcdb: 2 rows,
checksum=-3078609798

2014-12-09 19:26:22,812 2982 INFO dstdb: 2 rows,
checksum=-3078609798

2014-12-09 19:26:22,866 2982 INFO Checking if node1 can be used
for copy

2014-12-09 19:26:22,877 2982 INFO Node node1 seems good source,
using it

2014-12-09 19:26:22,878 2982 INFO public.pgbench_history: Using
node node1 as provider

2014-12-09 19:26:22,919 2982 INFO Provider: node1 (root)

2014-12-09 19:26:22,931 2982 INFO Locking public.pgbench_history

2014-12-09 19:26:22,932 2982 INFO Syncing public.pgbench_history

2014-12-09 19:26:25,963 2982 INFO Counting public.pgbench_history

2014-12-09 19:26:26,008 2982 INFO srcdb: 715 rows,
checksum=9467587272

High Availability and Replication

146

2014-12-09 19:26:26,020 2982 INFO dstdb: 715 rows,
checksum=9467587272

2014-12-09 19:26:26,056 2982 INFO Checking if node1 can be used
for copy

2014-12-09 19:26:26,063 2982 INFO Node node1 seems good source,
using it

2014-12-09 19:26:26,064 2982 INFO public.pgbench_tellers: Using
node node1 as provider

2014-12-09 19:26:26,100 2982 INFO Provider: node1 (root)

2014-12-09 19:26:26,108 2982 INFO Locking public.pgbench_tellers

2014-12-09 19:26:26,109 2982 INFO Syncing public.pgbench_tellers

2014-12-09 19:26:29,144 2982 INFO Counting public.pgbench_tellers

2014-12-09 19:26:29,176 2982 INFO srcdb: 20 rows,
checksum=4814381032

2014-12-09 19:26:29,182 2982 INFO dstdb: 20 rows,
checksum=4814381032

How it works...

The following is an explanation of the steps performed in the preceding section:

 f Initially, in step 1, we create two databases, that is node1 and node2, that are used

as the source and target databases, respectively, from a replication perspective.

 f In step 2, we populate the node1 database using the pgbench utility.

 f In step 3 of the preceding section, we add and deine the respective primary key
and foreign key relationships on different tables and put these DDL commands

in a .sql ile.

 f In step 4, we execute these DDL commands stated in step 3 on the node1 database;

thus, in this way, we force the primary key and foreign key deinitions on the tables in
the pgbench schema in the node1 database.

 f In step 5, we extract the table deinitions from the tables in the pgbench schema in

the node1 database and load these deinitions in the node2 database. We will now

discuss steps 6 to 8 of the preceding section.

 f In step 6, we create the coniguration ile, which is then used in step 7 to create the
root node for the node1 source database.

 f In step 8, we will launch the worker daemon for the root node. Regarding the entries

mentioned in the coniguration ile in step 6, we irst deine a job that must have a
name, so that distinguished processes can be easily identiied. Then, we deine a
connect string with information to connect to the source database, that is node1,

and then we deine the name of the replication queue involved. Finally, we deine the
location of the log and pid iles.

Chapter 7

147

 f We will now discuss steps 9 to 11 of the preceding section. In step 9, we deine the
coniguration ile, which is then used in step 10 to create the leaf node for the target
database, that is node2.

 f In step 11, we launch the worker daemon for the leaf node. The entries in the

coniguration ile in step 9 contain the job_name connect string in order to connect

to the target database, that is node2, the name of the replication queue involved,

and the location of log and pid involved. The key part in step 11 is played by the

slave, that is the target database—to ind the master or provider, that is source
database node1.

 f We will now talk about steps 12 and 13 of the preceding section. In step 12, we

deine the ticker coniguration, with the help of which we launch the ticker

process mentioned in step 13. Once the ticker daemon has started successfully,

we have all the components and processes setup and needed for replication;

however, we have not yet deined what the system needs to replicate.

 f In step 14 and 15, we deine the tables to the replication that is set on both the
source and target databases, that is node1 and node2, respectively.

 f Finally, we will talk about steps 16 and 17 of the preceding section. Here, at this

stage, we are testing the replication that was set up between the node1 source

database and the node2 target database.

 f In step 16, we generate some trafic on the node1 source database by running

pgbench with ive parallel database connections and generating trafic for 10 seconds.

 f In step 17, we check whether the tables on both the source and target databases

have the same data. For this purpose, we use the compare command on the

provider and subscriber nodes and then count and checksum the rows on both

sides. A partial output from the preceding section tells you that the data has been

successfully replicated between all the tables that are part of the replication set up

between the node1 source database and the node2 destination database, as the

count and checksum of rows for all the tables on the source and target destination

databases are matching:

2014-12-09 19:26:18,975 2982 INFO Counting public.pgbench_accounts

2014-12-09 19:26:19,401 2982 INFO srcdb: 200000 rows,
checksum=167607238449

2014-12-09 19:26:19,706 2982 INFO dstdb: 200000 rows,
checksum=167607238449

2014-12-09 19:26:22,772 2982 INFO Counting public.pgbench_branches

2014-12-09 19:26:22,804 2982 INFO srcdb: 2 rows,
checksum=-3078609798

High Availability and Replication

148

2014-12-09 19:26:22,812 2982 INFO dstdb: 2 rows,
checksum=-3078609798

2014-12-09 19:26:25,963 2982 INFO Counting public.pgbench_history

2014-12-09 19:26:26,008 2982 INFO srcdb: 715 rows,
checksum=9467587272

2014-12-09 19:26:26,020 2982 INFO dstdb: 715 rows,
checksum=9467587272

2014-12-09 19:26:29,144 2982 INFO Counting public.pgbench_tellers

2014-12-09 19:26:29,176 2982 INFO srcdb: 20 rows,
checksum=4814381032

2014-12-09 19:26:29,182 2982 INFO dstdb: 20 rows,
checksum=4814381032

Check out the following links for more information on Londiste replication:

https://wiki.postgresql.org/wiki/Londiste_Tutorial_(Skytools_2)

http://manojadinesh.blogspot.in/2012/11/skytools-londiste-
replication.html

Replication using Bucardo
In this recipe, we are going to show you the replication between two databases using Bucardo.

Getting ready
This exercise is carried out on a Red Hat Linux machine.

Install the EPEL package for your Red Hat platform from https://fedoraproject.org/
wiki/EPEL.

Then, install these RPMs with the following yum command:

yum install perl-DBI perl-DBD-Pg perl-DBIx-Safe

If it is not already installed, download the PostgreSQL repository from http://yum.pgrpms.
org/repopackages.php.

https://wiki.postgresql.org/wiki/Londiste_Tutorial_(Skytools_2)
http://manojadinesh.blogspot.in/2012/11/skytools-londiste-replication.html
http://manojadinesh.blogspot.in/2012/11/skytools-londiste-replication.html
https://fedoraproject.org/wiki/EPEL
https://fedoraproject.org/wiki/EPEL
http://yum.pgrpms.org/repopackages.php
http://yum.pgrpms.org/repopackages.php

Chapter 7

149

After this, install the following package; this is required because Bucardo is written in Perl:

yum install postgresql93-plperl

 f To install Bucardo, download the latest version of Bucardo, which is Bucardo Version

5.2.0, from http://bucardo.org/wiki/Bucardo.

 f Extract from the tarball ile, go to the newly downloaded location, and compile and
build the software:

 tar xvfz Bucardo-5.2.0.tar.gz

 cd Bucardo-5.2.0

 perl Makefile.PL

 make

 make install

How to do it...

The following is the complete sequence of steps that are used to conigure replication
between two databases using Bucardo:

1. The irst step is to install bucardo; that is, create the main bucardo database

containing the information that the Bucardo daemon will need:

[postgres@localhost ~]$ bucardo install --batch --quiet

2. Create the bucardo superuser. In the next step, we create the source and target

databases, that is, gamma1 and gamma2 respectively, between which the replication

needs to be set up:

[postgres@localhost ~]$ psql -qc 'create database gamma1'

psql -d gamma1-qc 'create table t1 (id serial primary key, email
text)'

[postgres@localhost ~]$ psql -qc 'create database gamma2 template
gamma1'

http://bucardo.org/wiki/Bucardo

High Availability and Replication

150

3. In the next step, we inform Bucardo about the databases that will be involved in

the replication:

postgres@localhost ~]$ bucardo add db db1 dbname=gamma1

Added database "db1"

[postgres@localhost ~]$ bucardo add db db2 dbname=gamma2

Added database "db2"

4. Next, we create a herd myherd and include those tables from the source databases

that will be part of the replication setup:

[postgres@localhost ~]$ bucardo add herd myherd t1

Created relgroup "myherd"

Added the following tables or sequences:

 public.t1 (DB: db1)

The following tables or sequences are now part of the relgroup
"myherd":

 public.t1

5. In the next step, we create a source sync:

[postgres@localhost ~]$ bucardo add sync beta herd=myherd
dbs=db1:source

Added sync "beta"

Created a new dbgroup named "beta"

6. Then, we create a target sync:

[postgres@localhost ~]$ bucardo add sync charlie herd=myherd
dbs=db1:source,db2:target

Added sync "charlie"

Created a new dbgroup named "charlie"

7. At this stage, we have the replication procedure set up, so the next step is to start the

Bucardo service:

[postgres@localhost ~]$ bucardo start

Checking for existing processes

Removing file "pid/fullstopbucardo"

Starting Bucardo

Chapter 7

151

8. The next step is to test the replication setup. For this purpose, we are going to insert

some records in the t1 table on the gamma1 source database:

psql -d gamma1

gamma1=# insert into t1 values (1,'wallsingh@gmail.com');

INSERT 0 1

gamma1=# insert into t1 values (2,'neha.verma@gmail.com');

INSERT 0 1

9. Now that we have inserted some records in the source database in the previous step,

we need to check whether these changes have been replicated in the gamma2 target

database:

psql -d gamma2

gamma2=# select * from t1;

 id | email

----+----------------------

 1 | wallsingh@gmail.com

 2 | neha.verma@gmail.com

(2 rows)

How it works...

The following is a description of the steps mentioned in the preceding section:

 f In step 1 of the preceding section, we irst create the bucardo database that will

contain information about the bucardo daemon and will also create a superuser by

the name bucardo.

 f In step 2, we create our source and target databases for replication, that is, gamma1

and gamma2, respectively. We also create the t1 table on the gamma1 database that

will be used for replication.

 f In step 3, we tell Bucardo about the source and target databases, that is, gamma1

and gamma2, respectively that will be involved in the replication.

 f In step 4, we create a herd by the name myherd and include the t1 table from the

gamma1 source database that will be part of the the replication setup. Any changes

made to this table should be replicated from the source to the target databases.

High Availability and Replication

152

 f In steps 5 and 6 of the preceding section, we basically create a source and a target

sync, which will replicate the t1 table in the myherd herd and replicate it from the

source database db1, that is gamma1, to the target database db2, that is gamma2.

With the replication set up conigured, we then start the Bucardo service in step 7 of
the preceding section.

 f We test the replication setup in steps 8 and 9 of the preceding section. In step 8,

we insert some records in the t1 table on the gamma1 database and in step 9, we

login to the gamma2 database and check whether the newly inserted records in the

t1 table on the gamma1 database are replicated across the gamma2 database. The

result set of the SELECT query from the t1 table in the gamma2 database conirms
that the inserted records in the gamma1 database have been successfully replicated

in the gamma2 database.

You can refer to the following links for information on Bucardo replication:

 f http://blog.pscs.co.uk/postgresql-replication-and-bucardo/

 f http://blog.endpoint.com/2014/06/bucardo-5-multimaster-
postgres-released.html

Replication using DRBD
In this recipe, we are going to cover block-level replication using DRBD for PostgreSQL.

Getting ready
A working Linux machine is required for this setup. This setup requires network interfaces and

a cluster IP. These steps are carried out in a CentOS Version 6 machine. Having covered the

PostgreSQL setup in the previous chapters, it is assumed that the necessary packages and

prerequisites are already installed.

We will be using the following setup in our hierarchy:

 f Node1.example.org uses the LAN's IP address 10.0.0.181 and uses 172.16.0.1
for crossovers

 f Node2.example.org uses the LAN's IP address 10.0.0.182 and the IP address
172.16.0.2 for crossovers

 f dbip.example.org uses the cluster IP address 10.0.0.180

http://blog.pscs.co.uk/postgresql-replication-and-bucardo/
http://blog.endpoint.com/2014/06/bucardo-5-multimaster-postgres-released.html
http://blog.endpoint.com/2014/06/bucardo-5-multimaster-postgres-released.html

Chapter 7

153

How to do it...

Perform the following sequence of steps for block-level replication using DRBD:

1. First, temporarily disable SELINUX, set SELINUX to disabled, and then save

the ile:
vi /etc/selinux/config

SELINUX=disabled

2. In this step, change the hostname and gateway for both the nodes, that is,

network interfaces:

vi /etc/sysconfig/network

For node 1

NETWORKING=yes

NETWORKING_IPV6=no

HOSTNAME=node1.example.org

GATEWAY=10.0.0.2

#For node 2

NETWORKING=yes

NETWORKING_IPV6=no

HOSTNAME=node2.example.org

GATEWAY=10.0.0.2

3. In this step, we need to conigure the network interfaces for the irst node,
that is, node1:

 � We first configure the first node1 database:

vi /etc/sysconfig/network-scripts/ifcfg-eth0

DEVICE=eth0

BOOTPROTO=static

IPADDR=10.0.0.181

NETMASK=255.255.255.0

ONBOOT=yes

HWADDR=a2:4e:7f:64:61:24

High Availability and Replication

154

 � We then configure the crossover/DRBD interface for node1:

vi /etc/sysconfig/network-scripts/ifcfg-eth1

DEVICE=eth1

BOOTPROTO=static

IPADDR=172.16.0.1

NETMASK=255.255.255.0

ONBOOT=yes

HWADDR=ee:df:ff:4a:5f:68

4. In this step, we conigure the network interfaces for the second node, that is, node2:

vi /etc/sysconfig/network-scripts/ifcfg-eth0

DEVICE=eth0

BOOTPROTO=static

IPADDR=10.0.0.182

NETMASK=255.255.255.0

ONBOOT=yes

HWADDR=22:42:b1:5a:42:6f

 � We then configure the crossover/DRBD interface for node2:

vi /etc/sysconfig/network-scripts/ifcfg-eth1

DEVICE=eth1

BOOTPROTO=static

IPADDR=172.16.0.2

NETMASK=255.255.255.0

ONBOOT=yes

HWADDR=6a:48:d2:70:26:5e

5. In this step, we will conigure DNS:
vi /etc/resolv.conf

search example.org

nameserver 10.0.0.2

 � Also, configure a basic hostname resolution:

vi /etc/hosts

127.0.0.1 localhost.localdomain localhost

10.0.0.181 node1.example.org node1

10.0.0.182 node2.example.org node2

10.0.0.180 dbip.example.org node2

Chapter 7

155

6. In this step, we will check the network connectivity between the nodes:

 � First, we will ping node2 from node1, first through the LAN interface and

then through the crossover IP:

root@node1 ~]# ping -c 2 node2

PING node2 (10.0.0.182) 56(84) bytes of data.

64 bytes from node2 (10.0.0.182): icmp_seq=1 ttl=64
time=0.089 ms

64 bytes from node2 (10.0.0.182): icmp_seq=2 ttl=64
time=0.082 ms

--- node2 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time
999ms

rtt min/avg/max/mdev = 0.082/0.085/0.089/0.009 ms

[root@node1 ~]# ping -c 2 172.16.0.2

PING 172.16.0.2 (172.16.0.2) 56(84) bytes of data.

64 bytes from 172.16.0.2: icmp_seq=1 ttl=64 time=0.083 ms

64 bytes from 172.16.0.2: icmp_seq=2 ttl=64 time=0.083 ms

--- 172.16.0.2 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time
999ms

rtt min/avg/max/mdev = 0.083/0.083/0.083/0.000 ms

 � Now, we will ping node1 from node2, first via the LAN interfaces and then

through the crossover IP:

[root@node2 ~]# ping -c 2 node1

PING node1 (10.0.0.181) 56(84) bytes of data.

64 bytes from node1 (10.0.0.181): icmp_seq=1 ttl=64
time=0.068 ms

64 bytes from node1 (10.0.0.181): icmp_seq=2 ttl=64
time=0.063 ms

--- node1 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time
999ms

rtt min/avg/max/mdev = 0.063/0.065/0.068/0.008 ms

High Availability and Replication

156

 � Next, we will ping node1 through the crossover interface:

[root@node2 ~]# ping -c 2 172.16.0.1

PING 172.16.0.1 (172.16.0.1) 56(84) bytes of data.

64 bytes from 172.16.0.1: icmp_seq=1 ttl=64 time=1.36 ms

64 bytes from 172.16.0.1: icmp_seq=2 ttl=64 time=0.075 ms

--- 172.16.0.1 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time
1001ms

rtt min/avg/max/mdev = 0.075/0.722/1.369/0.647 ms

7. Install the necessary packages:

yum install -y drbd83 kmod-drbd83

8. In this step, conigure DRBD on both the nodes:
vi /etc/drbd.conf

global {

 usage-count no;

}

common {

 syncer { rate 100M; }

 protocol C;

}

resource postgres {

 startup {

 wfc-timeout 0;

 degr-wfc-timeout

 120;

 }

 disk { on-io-error detach; }

 on node1.example.org {

 device /dev/drbd0;

 disk /dev/sda5;

 address 172.16.0.1:7791;

 meta-disk internal;

 }

 on node2.example.org {

 device /dev/drbd0;

 disk /dev/sda5;

 address 172.16.0.2:7791;

 meta-disk internal;

 }

}

Chapter 7

157

9. Once the drbd.conf ile is set up for both the nodes, we then write metadata on the
postgres resource. Execute the following step on both the nodes:

[root@node1 ~]# drbdadm create-md postgres

Writing meta data...

initializing activity log

NOT initialized bitmap

New drbd meta data block successfully created.

root@node2 ~]# drbdadm create-md postgres

Writing meta data...

initializing activity log

NOT initialized bitmap

New drbd meta data block successfully created.

10. In this step, we will bring up the resource. Execute the following command on both

the nodes:

drbdadm up postgres

11. In this step, we can make the initial sync between the nodes. This step can be

performed on the primary node, and we set node1 as the primary node:

drbdadm -- --overwrite-data-of-peer primary postgres

12. To monitor the progress of the sync and the status of the DRBD resource, take a look

at the /proc/drbd ile:
[root@node1 ~]# cat /proc/drbd

version: 8.3.8 (api:88/proto:86-94)

GIT-hash: d78846e52224fd00562f7c225bcc25b2d422321d build by
mockbuild@builder10.centos.org, 2014-10-04 14:04:09

0: cs:SyncSource ro:Primary/Secondary ds:UpToDate/Inconsistent C
r----

ns:48128 nr:0 dw:0 dr:48128 al:0 bm:2 lo:0 pe:0 ua:0 ap:0 ep:1
wo:b oos:8340188

[>....................] sync'ed: 0.6% (8144/8188)M delay_probe: 7

finish: 0:11:29 speed: 12,032 (12,032) K/sec

13. Once the sync process is complete, we can take a look at both the statuses of the

postgres resource on both the nodes:

[root@node1 ~]# cat /proc/drbd

version: 8.3.8 (api:88/proto:86-94)

High Availability and Replication

158

GIT-hash: d78846e52224fd00562f7c225bcc25b2d422321d build by
mockbuild@builder10.centos.org, 2014-10-04 14:04:09

0: cs:Connected ro:Primary/Secondary ds:UpToDate/UpToDate C r----

ns:8388316 nr:0 dw:0 dr:8388316 al:0 bm:512 lo:0 pe:0 ua:0 ap:0
ep:1 wo:b oos:0

[root@node2 ~]# cat /proc/drbd

version: 8.3.8 (api:88/proto:86-94)

GIT-hash: d78846e52224fd00562f7c225bcc25b2d422321d build by
mockbuild@builder10.centos.org, 2014-10-04 14:04:09

0: cs:Connected ro:Secondary/Primary ds:UpToDate/UpToDate C r----

ns:0 nr:8388316 dw:8388316 dr:0 al:0 bm:512 lo:0 pe:0 ua:0 ap:0
ep:1 wo:b oos:0

14. In this step, we are going to initiate DRBD services. On both the nodes, issue the

following command:

/etc/init.d/drbd start

15. In order to initialize the data directory and set up using DRBD, we will have to format

and mount the DRBD device. Then, we initialize the data directory:

 � Issue the following commands on node1:

mkfs.ext4 /dev/drbd0

mount -t ext4 /dev/drbd0 /var/lib/pgsql/9.3

chown postgres.postgres /var/lib/pgsql/9.3

 � Next, log in as the postgres user on node1 and initialize the database:

su - postgres

initdb /var/lib/pgsql/9.3/data

exit

16. In this step, we enable trusted authentication, and we will conigure the parameters
required to set up PostgreSQL in the postgresql.conf ile.

 � On node1, execute the following steps:

echo "host all all 10.0.0.181/32 trust" >> /var/lib/
pgsql/9.3/data/pg_hba.conf

echo "host all all 10.0.0.182/32 trust" >> /var/lib/
pgsql/9.3/data/pg_hba.conf

echo "host all all 10.0.0.180/32 trust" >> /var/lib/
pgsql/9.3/data/pg_hba.conf

Chapter 7

159

 � Then, we configure the necessary parameters in the postgresql.conf file.

vi /var/lib/pgsql/9.3/data/postgresql.conf

listen_addresses = '*'

17. Once the previously mentioned parameters have been changed in the postgresql.
conf ile, the next step will be to start PostgreSQL. Execute the following command
on node1:

service postgresql-9.3 start

18. We will then create an admin user to manage PostgreSQL. On node1, execute

the following command and when prompted for a password, you can choose any.

However, for the sake of clarity of this exercise, we will use the admin keyword itself

as the password:

su - postgres

createuser --superuser admin --pwprompt

19. In this step, we will create a database and populate it with data. On node1, execute

the following steps and then access the database:

su – postgres

createdb test

pgbench -test

pgbench -i test

psql -U admin -d test

test=# select * from pgbench_tellers;

tid | bid | tbalance | filler

-----+-----+----------+--------

 1 | 1 | 0 |

 2 | 1 | 0 |

 3 | 1 | 0 |

 4 | 1 | 0 |

 5 | 1 | 0 |

 6 | 1 | 0 |

 7 | 1 | 0 |

High Availability and Replication

160

 8 | 1 | 0 |

 9 | 1 | 0 |

 10 | 1 | 0 |

(10 registros)

20. In this step, we will test the block-level replication and see whether PostgreSQL works

on node2. On node1, execute the following commands:

 � We will first stop PostgreSQL on node1:

service postgresql-9.3 stop

 � Then, we will unmount the DRBD device on node1:

umount /dev/drbd0

 � Now, we will set up node1 as the secondary node:

drbdadm secondary postgres

 � Next, we will configure node2 as the primary node:

drbdadm primary postgres

 � In this step, mount the DRBD device:

mount -t ext3 /dev/drbd0 /var/lib/pgsql/9.3

 � Then, we start the postgresql service on node2:

service postgresql-9.3 start

 � Now, we will see whether we are able to access the test database

on node2:

psql -u admin -d test

test=# select * from pgbench_tellers;

tid | bid | tbalance | filler

-----+-----+----------+--------

 1 | 1 | 0 |

 2 | 1 | 0 |

 3 | 1 | 0 |

 4 | 1 | 0 |

 5 | 1 | 0 |

 6 | 1 | 0 |

 7 | 1 | 0 |

 8 | 1 | 0 |

 9 | 1 | 0 |

 10 | 1 | 0 |

(10 registros)

Chapter 7

161

How it works...

In the initial steps, from steps 1 to 6, we conigure the nodes, that is node1 and node2, set

up the network connectivity, and conigure DNS. In step 6, we do the network connectivity
test between node1 and node2 on the LAN interface as well on the crossover interface. We

receive successful echo response messages after doing the ping request tests. This shows

that the network connectivity is successfully conigured.

In step 8, we set up the drbd.conf ile on both the nodes. Here is an extract from the
drbd.conf ile:

global {

 usage-count no;

}

common {

 syncer { rate 100M; }

 protocol C;

}

resource postgres {

 startup {

 wfc-timeout 0;

 degr-wfc-timeout

 120;

 }

 disk { on-io-error detach; }

 on node1.example.org {

 device /dev/drbd0;

 disk /dev/sdb;

 address 172.16.0.1:7791;

 meta-disk internal;

 }

 on node2.example.org {

 device /dev/drbd0;

 disk /dev/sdb;

 address 172.16.0.2:7791;

 meta-disk internal;

 }

}

High Availability and Replication

162

Basically, using the previously mentioned coniguration, we are setting up a postgres

resource and coniguring a DRBD interface, /dev/drbd0, which is set up on two nodes,

node1 and node2. This is basically what causes the block-level replication to be successful.

In step 11 of the preceding section, you can see that we have initially set up node1 as

the primary node and node2 serves as the secondary node at this stage. Then, we set up

PostgreSQL on node1 from step 15 onwards. From step 20 onwards, we perform failover

testing. We irst reset node1 as the secondary node, unmount the ilesystem, and then set up
node2 as the primary node; then, mount the ile system and bring up the PostgreSQL server.
After this, we are testing for record visibility in node2. The database test that was created in

step 19 of the preceding section is accessible in node2 and so are the tables in the pgbench

schema in step 20. Thus, DRBD provides block-level replication, and if one of the nodes is

not available, we can then conigure and continue to run PostgreSQL on the secondary node,
where it is going to take the role of the primary server.

Setting up the Postgres-XC cluster
In this recipe, we are going to set up a Postgres-XC cluster.

Getting ready
Here, we need to install and set up Postgres-XC. These steps are carried out on a CentOS

Version 6 Linux machine.

Perform the following set of steps:

1. First, go to http://sourceforge.net/projects/postgres-xc/ in order to

download the Postgres-XC software.

2. In this step, extract from the tarball ile and go to the newly created directory:
tar -zxvf pgxc-v1.0.4.tar.gz

cd pgxc-v1.0.4

3. Before you build and compile the software, the next step will be to install the following

prerequisite packages:

yum -y install readline*

yum -y install bison*

yum -y install flex*

http://sourceforge.net/projects/postgres-xc/

Chapter 7

163

4. Now, we are going to build and compile the software. We will also deine a location to
be used as the preix:
mkdir -p /opt/Postgres-xc

chown -R postgres:postgres /opt/Postgres-xc/

./configure --prefix=/opt/Postgres-xc/

make

make install

How to do it...

Now, with the installation completed, we need to conigure the Postgres-XC setup.

Perform the following steps:

1. We will now set up GTM (short for global transaction manager). For this purpose, we

will irst create a directory for GTM, set permissions, and then initialize the GTM:
mkdir -p /usr/local/pgsql/data_gtm

chmod -R 700 /usr/local/pgsql/data_gtm

/opt/Postgres-xc/bin/initgtm -Z gtm -D /usr/local/pgsql/data_gtm

2. We will now conigure the parameters in the gtm.conf ile, which was created as a
part of the previous step where GTM was initialized, and start the GTM:

nodename = 'GTM_Node'

listen_addresses = '*'

port = 7777

Once these parameters have been changed, we can then set up the GTM:

/opt/Postgres-xc/bin/gtm_ctl -Z gtm start -D /opt/Postgres-xc/
data_gtm

Server Started

3. With the GTM set up and started, we will now set up the coordinator node. For this

purpose, we will irst create a directory for the coordinator, assign permissions, and
then initialize the coordinator:

mkdir -p /opt/Postgres-xc/data_coord1

chmod -R 700 /opt/Postgres-xc/data_coord1

/opt/Postgres-xc/bin/pg_ctl -D /opt/Postgres-xc/data_coord1/ -o
'--nodename coord1' initdb

High Availability and Replication

164

4. In the next step, we will conigure the necessary parameters in the postgresql.
conf ile. This will be set up in such a way that the coordinator is used as a node to
connect to the GTM. Also, once the necessary parameters have been conigured, we
will start the coordinator:

listen_addresses = '*'

port = 2345

gtm_host = 'localhost'

gtm_port = 7777

pgxc_node_name = 'coord1'

pooler_port = 2344

min_pool_size = 1

max_pool_size = 100

persistent_datanode_

connections = on

max_coordinators = 16

max_datanodes = 16

Once these parameters have been changed, we can start the coordinator, as follows:

/opt/Postgres-xc/bin/pg_ctl start -D /opt/Postgres-xc/data_coord1/
-Z coordinator -l /tmp/coord

5. We will now set up the irst data node. For this purpose, we are going to create a
directory, assign the respective permissions to it, and then initialize it:

mkdir -p /opt/Postgres-xc/data_node1

chmod -R 700 /opt/Postgres-xc/data_node1

/opt/Postgres-xc/bin/pg_ctl -D /opt/Postgres-xc/data_node1/ -o
'--nodename datanode1' initdb

6. In the next step, we will conigure the necessary parameters for the irst data
node and then start the data node. These parameter changes are made in the

postgresql.conf ile:
vi postgresql.conf

listen_addresses = '*'

port = 1234

gtm_host = 'localhost'

gtm_port = 7777

pgxc_node_name = 'datanode1'

Chapter 7

165

Once these changes have been made, we can launch the irst data node:
/opt/Postgres-xc/bin/pg_ctl start -D /opt/Postgres-xc/data_node1
-Z datanode -l /tmp/datanode1_log

7. In this step, we will set up the second data node. For this purpose, we will conigure
the directory for the second data node, assign permissions, and then initialize it:

mkdir -p /opt/Postgres-xc/data_node2/

chmod -R 700 /opt/Postgres-xc/data_node2/

/opt/Postgres-xc/bin/pg_ctl -D /opt/Postgres-xc/data_node2/ -o
'--nodename datanode2' initdb

8. In this step, we will conigure the respective parameters for the second data node,
and once we are done, we will start the second data node:

vi postgresql.conf

listen_addresses = '*'

port = 1233

gtm_host = 'localhost'

gtm_port = 7777

pgxc_node_name = 'datanode2'

Once these necessary parameter changes have been made, we will start the second

data node:

/opt/Postgres-xc/bin/pg_ctl start -D /opt/Postgres-xc/data_node2
-Z datanode -l /tmp/datanode2_log

9. In this step, we are going to register the irst and second data nodes on the
coordinator node:

cd /opt/Postgres-xc/bin/

psql -p 2345

postgres=# CREATE NODE datanode1 WITH (TYPE = DATANODE , HOST =
LOCALHOST , PORT = 1234);

High Availability and Replication

166

CREATE NODE

postgres=# CREATE NODE datanode2 WITH (TYPE = DATANODE , HOST =
LOCALHOST , PORT = 1233);

CREATE NODE

10. Now, with the Postgres-XC architecture setup complete, we will start distributing the

data by replication:

psql -p 2345

postgres=# CREATE TABLE DIST (T INT) DISTRIBUTE BY REPLICATION TO
NODE datanode1,datanode2;

CREATE TABLE

postgres=#INSERT INTO DIST SELECT * FROM generate_series(1, 100);

INSERT 0 100

postgres=# EXPLAIN ANALYZE SELECT * FROM DIST;

 QUERY PLAN

--

 Data Node Scan on "__REMOTE_FQS_QUERY__" (cost=0.00..0.00 rows=0
width=0) (act

ual time=0.880..1.010 rows=100 loops=1)

 Node/s: datanode1

 Total runtime: 1.076 ms

(3 rows)

We will now log in to datanode1 and datanode2, to see whether these records

have been replicated on the DIST table:

psql -p 1234

postgres=# select count(*) from DIST;

 count

 100

(1 row)

Chapter 7

167

psql -p 1233

postgres=# select count(*) from DIST;

 count

 100

(1 row)

11. Now, we will test for distribution by hash:

Log in to the coordinator node:

psql -p 2345

CREATE TABLE t_test (id int4) DISTRIBUTE BY HASH (id);

INSERT INTO t_test SELECT * FROM generate_series(1, 1000);

We will now log in to datanode1 and datanode2 and see how many records are

replicated there:

psql -p 1233

postgres=# select count(*) from t_test;

 count

 508

(1 row)

psql -p 1234

postgres=# select count(*) from t_test;

 count

 492

(1 row)

High Availability and Replication

168

How it works...

In the entire Postgres-XC architecture, we have used the following setup. We are using a GTM,

a coordinator, and two data nodes. We will discuss the functionality for each one of them:

 f GTM: GTM is used to provide a consistent view of the data. A consistent view is

basically provided through a cluster-wide snapshot. GTM is also responsible for

creating global transaction IDs, which are necessary because transactions need

to be coordinated cluster wide.

 f Coordinator: This serves as an entry point for applications and is used by the

application to connect to the coordinator. A coordinator is responsible for SQL

analysis, the creation of a global SQL execution plan, and global SQL execution.

 f Data node: A data node is used to hold data for a PostgreSQL cluster. One or more

data nodes hold all or a part of the data inside the cluster.

We will now discuss the various steps performed in the preceding section:

 f Here, we will discuss steps 1 and 2 of the preceding section. This setup is all about

GTM coniguration. We initially conigure a directory for GTM, set permissions,
initialize the directory, and then start GTM later.

 f Steps 3 and 4 of the preceding section are all about the coordinator node's
coniguration. We initially conigure a directory for the coordinator, set permissions,
initialize the directory, and then start the coordinator.

 f Next, we will discuss steps 5 and 6 of the preceding section. This setup is all about

the irst data node's coniguration. We initially conigure a directory for datanode1,

set permissions, initialize the directory, and then start the irst data node.

 f Steps 7 and 8 of the preceding section discuss the second data node's coniguration.
We initially conigure a directory for datanode2, set permissions, initialize the

directory, and then start the second data node.

 f In step 9, we irst log in to the coordinator node, and then we register the datanode1

and datanode2 nodes with the coordinator node.

Chapter 7

169

 f In steps 10 and 11, we basically test the Postgres-XC cluster. In step 10, we log

in to the coordinator node, create a DIST table, and then distribute this table by

replication to datanode1 and datanode2. We then generate a series and insert

about 100 records in the DIST table. Distribution by replication to the data nodes

means that the data should be replicated in both the nodes for the DIST table. We

then log in to the datanode1 node and then count the number of records from the

DIST table; the count is 100. The same observation is obtained for the DIST table

when we log in to the datanode2 node. This is effectively demonstrated in step

10 of the preceding section; thus, all the records of the DIST table are replicated

across both the data nodes. In step 11, we log in to the coordinator node and create

a t_test table; then, we distribute the table by hash and insert 1000 records into

the table. We then log in to the irst data node, and we can see 508 records here.
We then log in to the second data node, and we can see 492 records in the t_test

table in the datanode2 node. What we see is an even distribution and splitting of

the storage of records of the t_test table between data nodes 1 and 2.

8
Connection Pooling

In this chapter, we will cover the following recipes:

 f Installing pgpool

 f Coniguring pgpool and testing the setup

 f Starting and stopping pgpool

 f Setting up pgbouncer

 f Connection pooling using pgbouncer

 f Managing pgbouncer

Introduction
The pgpool-II utility is basically a middleware solution that works as an interface between a

PostgreSQL server and a PostgreSQL client application. The pgpool-II utility serves as a proxy

between PostgreSQL's backend and frontend protocols and relays a connection between the
two. The pgpool-II utility caches connections to PostgreSQL servers and reuses them whenever

a new connection with the same properties comes in, thereby reducing connection negotiation

overhead such as authentication and encryption, and improving overall throughput.

In fact, the pgpool-II utility offers a lot more features than just connection pooling. It offers

load balancing and replication modes along with the parallel query feature.

The pgbouncer utility is a lightweight connection pooler for PostgreSQL. Applications connect

to the pgbouncer port just as they would connect to a PostgreSQL database on the database

port. Using the pgbouncer utility, we can lower the connection overload impact on PostgreSQL

server. The pgbouncer utility provides connection pooling by reusing existing connections.

Connection Pooling

172

The difference between pgbouncer and pgpool-II is that pgbouncer is lightweight and is

dedicated to the purpose of connection pooling, whereas pgpool-II offers more features such

as replication, load balancing, and the parallel query feature in addition to connection pooling.

In this chapter, we will be referring to pgpool-II as pgpool for the purpose of simplicity.

Installing pgpool
Here is the recipe to install pgpool and conigure it.

Getting ready
Installing pgpool from source requires gcc 2.9 or higher and GNU make. Since the pgpool

links with the libpq library, the libpq library and its development headers must also be

installed prior to installing pgpool. Also, the OpenSSL library must be present in order

to enable OpenSSL support in pgpool.

If you are building from source, then follow these steps:

1. Download the latest tarball of pgpool from the following website:

http://www.pgpool.net/mediawiki/index.php/Downloads

2. The next step would be to extract the pgpool tarball and enter the source directory:

tar -xzf pgpool-II-3.4.0.tar.gz

cd pgpool-II-3.4.0

3. Build, compile, and install the pgpool software:

./configure –prefix=/usr/local --sysconfdir=/etc/pgpool/

make

make install

How to do it...

To install pgpool in a Debian or Ubuntu-based distribution, we can execute this command:

apt-get install pgpool2

On Red Hat, Fedora, CentOS, or any other RHEL-based Linux distributions use the following

command. It should be noted that the package name used is what is existing now for pgpool,

that is, the 93 keyword used at the end relates to a minor release of PostgreSQL. It may

change later as updates are released:

yum install pgpool-II-93

http://www.pgpool.net/mediawiki/index.php/Downloads

Chapter 8

173

The following steps are applicable to when you use the operating system package manager

such as yum to install pgpool, and when you are downloading and compiling from source.

Basically, in the following steps, we are creating a directory for pgpool where it can maintain

the activity logs and its service lock iles:

1. In this step, we will create the location where pgpool can maintain activity logs:

mkdir /var/log/pgpool

chown –R postgres:postgres /var/log/pgpool

2. The next step will be to create a directory where pgpool can store its service

lock iles:
 mkdir /var/run/pgpool

 chown –R postgres:postgres /var/run/pgpool

How it works...

If you are using an operating-system-speciic package manager to install pgpool, then the
respective coniguration iles and logiles required are automatically created. However, if you are
proceeding with a full source-based pgpool installation, then there are some additional steps

required. The irst step is to run the conigure script and then build and compile pgpool. After
pgpool is installed, you will be required to create the directories where pgpool can maintain

activity logs and service lock iles. All of these steps need to be performed manually as can be
seen in steps 1, 2, and 3, respectively, in the Getting ready section.

Coniguring pgpool and testing the setup
In this recipe, we are going to conigure pgpool and show how to make connections.

Getting ready
Before running pgpool, if you are downloading the source tarball, then the pgpool software

needs to be built and compiled. These steps are shown in the irst recipe of this chapter.

Also, we will be testing for replication using pgpool. For this purpose, we are setting up two

data directories on the same server. They will act as two nodes.

Assuming that the default data directory, /var/lib/pgsql/9.3/data, which will serve as

node 0, has already been set up, we will now set up another data directory that will serve as

node 1:

initdb -D /var/lib/pgsql/9.3/data1

Connection Pooling

174

Once the data directory has been set up, the next step is to change the port number for the

new data directory. This is being done because two data directories cannot have the same

port number. Since port number 5432 has already been used for the initial data directory, we

will set the port number as 5433 in the postgresql.conf ile for the new data directory and
then start the server using this setup:

cd /var/lib/pgsql/9.3/data1

vi postgresql.conf

port=5433

Once the ile is saved, then start the new server:

pg_ctl -D /var/lib/pgsql/9.3/data1 start

How to do it...

We are going to follow this sequence of steps to conigure pgpool and run the setup:

1. After pgpool is installed as shown in the irst recipe of the chapter, the next step
would be to copy the coniguration iles from the sample directory with the default
settings. They will be later edited according to our requirements:

cd /etc/pgpool-II-93

cp pgpool.conf.sample /etc/pgpool.conf

cp pcp.conf.sample /etc/pcp.conf

2. The next step is to deine a username and password in the pcp.conf ile, which is an
authentication ile for pgpool. Basically, to use PCP commands, user authentication
is required. This mechanism is different from PostgreSQL's user authentication.
Passwords are encrypted in the MD5 hash format. To obtain the MD5 hash for a user,

we have to use the pg_md5 utility as shown in the following command. Once the MD5

hash is generated, it can be used to store the MD5 password in the pcp.conf ile:
pg_md5 postgres

e8a48653851e28c69d0506508fb27fc5

vi /etc/pcp.conf

 postgres:e8a48653851e28c69d0506508fb27fc5

3. Now we edit the pgpool.conf coniguration ile to conigure our pgpool settings:
listen_addresses = 'localhost'

port = 9999

socket_dir = '/tmp'

pcp_port = 9898

pcp_socket_dir = '/tmp'

backend_hostname0 = 'localhost'

Chapter 8

175

backend_port0 = 5432

backend_weight0 = 1

backend_data_directory0 = '/var/lig/pgsql/9.3/data'

backend_flag0 = 'ALLOW_TO_FAILOVER'

backend_hostname1 = 'localhost'

backend_port1 = 5433

backend_weight1 = 1

backend_data_directory1 = '/var/lib/pgsql/9.3/data1'

backend_flag1 = 'ALLOW_TO_FAILOVER'

enable_pool_hba = off

pool_passwd = 'pool_passwd'

authentication_timeout = 60

ssl = off

num_init_children = 32

max_pool = 4

child_life_time = 300

child_max_connections = 0

connection_life_time = 0

client_idle_limit = 0

connection_cache = on

reset_query_list = 'ABORT; DISCARD ALL'

replication_mode = on

master_slave_mode = off

replicate_select = off

insert_lock = on

load_balance_mode = on

ignore_leading_white_space = on

white_function_list = ''

black_function_list = 'nextval,setval'

4. Once the preceding parameters have been conigured and saved in the pgpool.
conf ile, the next step is to launch pgpool and start accepting connections to the
PostgreSQL cluster using pgpool:

pgpool -f /etc/pgpool.conf -F /etc/pcp.conf

psql -p 9999 postgres postgres

5. Now that pgpool has been started, we should see a handful of processes:

-bash-4.1$ ps ax |grep pool

28778 ? Ss 0:00 pgpool -f /etc/pgpool.conf -F /etc/pcp.
conf

28779 ? S 0:00 pgpool: wait for connection request

28780 ? S 0:00 pgpool: wait for connection request

Connection Pooling

176

28781 ? S 0:00 pgpool: wait for connection request

28782 ? S 0:00 pgpool: wait for connection request

28783 ? S 0:00 pgpool: wait for connection request

28784 ? S 0:00 pgpool: wait for connection request

28785 ? S 0:00 pgpool: wait for connection request

28786 ? S 0:00 pgpool: wait for connection request

28787 ? S 0:00 pgpool: wait for connection request

28788 ? S 0:00 pgpool: wait for connection request

28789 ? S 0:00 pgpool: wait for connection request

28790 ? S 0:00 pgpool: wait for connection request

28811 ? S 0:00 pgpool: PCP: wait for connection
request

28812 ? S 0:00 pgpool: worker process

28849 pts/2 S+ 0:00 grep pool

6. Before we connect to pgpool and start executing queries, we should check the status

of the nodes participating in the cluster. For this purpose we will use a tool called

pcp_node_info. Since we are using the same server for setup, node 0 and

node 1 are more speciically data directories located at /var/lib/pgsql/9.3/
data and /var/lib/pgsql/9.3/data1:

-bash-4.1$ pcp_node_info 5 localhost 9898 postgres postgres 0

localhost 5432 1 0.500000

-bash-4.1$ pcp_node_info 5 localhost 9898 postgres postgres 1

localhost 5433 1 0.500000

7. Now that both nodes are participating in the cluster, the next step is to connect to

pgpool, create a table, and insert some records into that table:

psql -p 9999

postgres=# create table emp(age int);

CREATE TABLE

postgres=# insert into emp values (1);

INSERT 0 1

postgres=# insert into emp values (2);

INSERT 0 1

postgres=# insert into emp values (3);

INSERT 0 1

postgres=# insert into emp values (4);

INSERT 0 1

Chapter 8

177

postgres=# insert into emp values (5);

INSERT 0 1

postgres=# insert into emp values (6);

INSERT 0 1

postgres=# \dt

 List of relations

 Schema | Name | Type | Owner

--------+------+-------+----------

 public | emp | table | postgres

(1 row)

postgres=# select * from emp;

 age

 1

 2

 3

 4

 5

 6

(6 rows)

8. Now we will test for replication by connecting to ports 5432 and 5433, and see the

table and the corresponding records that were inserted into it while being connected

to pgpool:

psql -p 5433

postgres=# \dt

 List of relations

 Schema | Name | Type | Owner

--------+------+-------+----------

 public | emp | table | postgres

(1 row)

postgres=# select * from emp;

 age

Connection Pooling

178

 1

 2

 3

 4

 5

 6

(6 rows)

-bash-4.1$ psql -p 5432

postgres=# \dt

 List of relations

 Schema | Name | Type | Owner

--------+------+-------+----------

 public | emp | table | postgres

(1 row)

postgres=# select * from emp;

 age

 1

 2

 3

 4

 5

 6

(6 rows)

How it works...

Let's now discuss some of the parameters that were conigured in the earlier section:

 f listen_addresses: We conigure listen_addresses to * because we want to

listen to all IP addresses and not a particular IP address.

 f port: This deines the pgpool port that the system will listen to when accepting

database connections.

 f backend_hostname0: This refers to the hostname of the irst database in our setup.
Similarly, we set up backend_hostname1 for the second node.

Chapter 8

179

 f backend_port0: This is the TCP port of the system, that is, the system identiied by

the backend_hostname0 value on which the database is hosted. Similarly, we set

backend_port1 for the the second node.

 f backend_weight0: This is the weight assigned to the node identiied by the
hostname obtained from backend_hostname0. Basically in pgpool, weights are

assigned to individual nodes. More requests will be dispatched to the node with a

higher weight value. Similarly, we set up backend_weight1 for the second node.

 f backend_data_directory0: This represents the data directory, that is, PGDATA

for the host identiied by the backend_hostname0 value. Similarly, we set up the

backend_data_directory1 value for the second node.

 f connection_cache: To enable the connection pool mode, we need to turn on

connection_cache.

 f max_pool: This value determines the maximum size of the pool per child.

The number of connections from pgpool to the backends may reach a limit

at num_init_children*max_pool.

In our case, we conigured max_pool to 4 and num_init_children to 32, both being

the default value. So when multiplied, the total number of connections from pgpool to the

backend may reach a limit of 128. Remember that the max_pool * num_init_children value

should always be less than the max_connections parameter value.

The other parameters that were discussed in the preceding steps are as follows:

 f replication_mode: This parameter turns replication explicitly on. By default, it is

set to off.

 f load_balance_on: Enabling this parameter ensures that pgpool splits the load to

all of the hosts or nodes attached to the system.

 f master_slave_mode: This parameter enables the master/slave mode. This

parameter must be set to off when the replication_mode is set to on.

The other parameters take default values, and you may refer to the following pgpool links

follows for more information regarding them:

http://www.pgpool.net/docs/latest/pgpool-en.html#config

http://www.pgpool.net/pgpool-web/contrib_docs/simple_sr_setting_3.1/
pgpool.conf

Finally, once the parameters are conigured, it is time to launch pgpool and make connections
on the pgpool port 9999.

Once pgpool is launched, we can see that some processes in the background have already

started, as seen in step 5 of the preceding section.

http://www.pgpool.net/docs/latest/pgpool-en.html#config
http://www.pgpool.net/pgpool-web/contrib_docs/simple_sr_setting_3.1/pgpool.conf
http://www.pgpool.net/pgpool-web/contrib_docs/simple_sr_setting_3.1/pgpool.conf

Connection Pooling

180

Before we make connections using pgpool, we are basically utilizing a tool called pcp_node_
info to check the status of the nodes, as seen in step 6 of the preceding section.

The pcp_node_info command has the following syntax:

pcp_node_info <timeout> <hostname> <port> <username> <password>
<nodeid>.

Here is the excerpt from step 6 of the preceding section:

-bash-4.1$ pcp_node_info 5 localhost 9898 postgres postgres 0

localhost 5432 1 0.500000

-bash-4.1$ pcp_node_info 5 localhost 9898 postgres postgres 1

localhost 5433 1 0.500000

As per step 6 of the preceding section, we are specifying the connection timeout value to be

5 .The hostname refers to the localhost, followed by port number 5432 and the username/

password combination, which is set to the postgres user along with password as postgres.

The inal parameter is nodeid, which is set to 0 for the irst node. Node 0 in our case refers
to the /var/lib/pgsql/9.3/data data directory. Similarly, we use pcp_node_info to

specify the port 5433 and the nodeid value as 1 for the /var/lib/pgsql/9.3/data1

data directory.

Whenever the pcp_node_info command is triggered, the system will respond with the

following output: the hostname, port number, status, and weight of the node.

Among all of these values, the third column, which refers to the status of the node, is the most

important. If the value of the status column is 1, it means that the node is up but connections

are yet to be made. If the value of the status column is 2, it means that the node is up and

connections are pooled. If the value of the status column is 3, it means that the node is down

and some action needs to be taken.

In our scenario, the value of the status column is 1 for both the nodes, which means we are

good to go and we can start making connections to pgpool. If the value of the status column

is 3, then you need to enable the node using the pcp_attach_node tool. The pcp_attach_
node command has the same syntax as the pcp_node_info command and can be used as

shown in the following line, assuming that the value of the status column of a node is 3. Let

us assume this value for the status column of node 1:

pcp_attach_node 5 localhost 5433 postgres postgres 1

In step 7 of the preceding section, we are connecting to pgpool on port 9999, creating a table

named emp and inserting some records into it.

Chapter 8

181

In step 8, we are testing for replication. We can clearly see that the emp table and the

corresponding records are available there when making connections to port 5433 and port

5432. This conirms successful replication using pgpool.

Refer to the following web links for more details on pgpool:

 f http://www.pgpool.net/mediawiki/index.php/
Relationship_between_max_pool,_num_init_
children,_and_max_connections

 f http://www.pgpool.net/docs/latest/pgpool-en.
html#connection_pool_mode

Starting and stopping pgpool
In this recipe, we are going to show the commands that can be used to start and stop pgpool.

Getting ready
Before pgpool can be started, we need to conigure the pgpool settings in the pgpool.conf

coniguration. This is covered in the previous recipe.

How to do it...

The pgpool utility can be started in two ways:

 f By starting the pgpool service at the command line as the root user:

service pgpool start

 f By executing the pgpool command on the terminal:

pgpool

Similarly, pgpool can be stopped in two ways:

 f By stopping the pgpool service at the command line as the root user:

service pgpool stop

 f By executing the pgpool command with the stop option:

pgpool stop

http://www.pgpool.net/mediawiki/index.php/Relationship_between_max_pool,_num_init_children,_and_max_connections
http://www.pgpool.net/mediawiki/index.php/Relationship_between_max_pool,_num_init_children,_and_max_connections
http://www.pgpool.net/mediawiki/index.php/Relationship_between_max_pool,_num_init_children,_and_max_connections
http://www.pgpool.net/docs/latest/pgpool-en.html#connection_pool_mode
http://www.pgpool.net/docs/latest/pgpool-en.html#connection_pool_mode

Connection Pooling

182

How it works...

Starting and stopping pgpool is relatively simple, as was seen in the preceding section.

However, pgpool comes with a lot of options, and the following is the most commonly

used syntax to start pgpool:

pgpool [-c][-f config_file][-a hba_file][-F pcp_config_file]

These options are discussed as follows:

 f -c: The -c switch is used to clear the query cache

 f -f conig_ile: This option speciies the pgpool.conf coniguration ile, and pgpool
obtains its coniguration from this ile when starting itself

 f -a hba_ile: This option speciies the authentication ile that is used when
starting pgpool

 f -F pcp_conig_ile: This option speciies the password ile, pcp.conf, to be used

when starting pgpool

For the full syntax of pgpool, refer to the following web link:

http://www.pgpool.net/docs/latest/pgpool-en.html#start

To stop pgpool, the same options that were used earlier to start pgpool can be used.

However, along with these switches, we can also specify the mode that needs to be

used while stopping pgpool.

There are two modes in which pgpool can be stopped:

 f Smart mode: This option is speciied using the -m s (smart) option. In this mode, we

irst wait for the clients to disconnect and then shut down pgpool.

 f Fast mode: This mode can be set by specifying the –m f (fast) option. In this mode,

pgpool does not wait for clients to disconnect and shuts down pgpool immediately.

The complete syntax of the pgpool stop command is as follows:

pgpool [-f config_file][-F pcp_config_file] [-m {s[mart]|f[ast]|]}]
stop

Usually, if there are any clients connected, pgpool waits for them to disconnect and will then

terminate itself. However, if you want to shutdown pgpool forcibly without waiting for clients to

disconnect, you can use the following command:

pgpool -m fast stop

http://www.pgpool.net/docs/latest/pgpool-en.html#start

Chapter 8

183

Setting up pgbouncer
In this recipe, we are going to show the steps that are required to install pgbouncer.

Getting ready
We can either do a full source-based installation or use the operating-system-speciic package
manager to install pgbouncer.

How to do it...

On an Ubuntu or Debian-based system, we need to execute the following command to

install pgbouncer:

apt-get install pgbouncer.

On CentOS, Fedora, or Red Hat-based Linux distributions we can execute the following command:

yum install pgbouncer

If you are doing a full source-based installation, then the sequence of commands is as follows:

1. Download the archive installation ile from the following link:

http://pgfoundry.org/projects/pgbouncer

2. Extract the downloaded archive and enter the source directory:

tar -xzf pgbouncer-1.5.4.tar.gz

cd pgbouncer-1.5.4

3. The next step is to build and proceed with the software installation:

./configure –prefix=/usr/local

make & make install

4. Now create a coniguration directory to hold a pgbouncer coniguration ile. This ile
can be used later on to make parameter changes:

mkdir /etc/pgbouncer

chown -R postgres:postgres /etc/pgbouncer

http://pgfoundry.org/projects/pgbouncer

Connection Pooling

184

How it works...

If you are using an operating-system-speciic package manager to install pgbouncer, then the
respective coniguration iles and logiles required by pgbouncer are automatically created.
However, if you are proceeding with a full source-based pgbouncer installation, then there are

some additional steps required. You will be required to create the directories where pgbouncer
can maintain activity logs and service lock iles. You will also be required to create the
coniguration directory where the coniguration ile for pgbouncer will be stored. All of these

steps need to be performed manually as shown in steps 2, 3, and 4 in the prior section.

Connection pooling using pgbouncer
In this recipe, we are going to implement pgbouncer and benchmark the results for database

connections made to the database via pgbouncer against normal database connections.

Getting ready
Before we conigure and implement connection pooling, the pgbouncer utility must be
installed. Installing pgbouncer is covered in the previous recipe.

How to do it...

1. First, we are going to tweak some of the coniguration settings in the pgbouncer.
ini coniguration ile, as follows. The irst two entries are for the databases that will
be passed through pgbouncer. Next, we conigure the listen_addr parameter to

*, which means that it is going to listen to all IP addresses. Finally, we set the last

two parameters, which are auth_file, the location of the authentication ile and
auth_type, which indicates the type of authentication used. We use plain as

the authentication type, which indicates that the we are using the password-based

mechanism here for authentication:

vi /etc/pgbouncer/pgbouncer.ini

postgres = host=localhost dbname=postgres

pgtest = host=localhost dbname=pgtest

listen_addr = *

auth_file = /etc/pgbouncer/userlist.txt

auth_type = md5

Chapter 8

185

2. The next step is to create a user list that contains the users who will be allowed

to access the databases through pgbouncer. The format of the entries in the user

list would be supplied as username followed by the user's password as shown in
the following command, where the irst entry is for the username, whose value is

author, and the second entry is for the password, whose value is password. Since

we have set the authentication type as MD5, we have to use the MD5 password entry

in the user list. Had we set the authentication type as plain, then the actual password

would have been supplied in the user list:

postgres=# CREATE role author LOGIN PASSWORD 'author' SUPERUSER;

CREATE ROLE

postgres=# select rolname ,rolpassword from pg_authid where
rolname='author';

 rolname | rolpassword

---------+-------------------------------------

 author | md5d50afb6ec7b2501164b80a0480596ded

(1 row)

The MD5 password obtained can then be deined in the userlist ile for the
corresponding user:

vi /etc/pgbouncer/userlist.txt

"author" "md5d50afb6ec7b2501164b80a0480596ded"

3. Once we have conigured the pgbouncer.ini coniguration ile and created the
userlist ile, the next step would be to start the pgbouncer service:
service pgbouncer start

4. Once the pgbouncer service is up and running, the next step will be to make

connections to it. By default, the pgbouncer service runs on port 6432, so any

connections made to the pgbouncer service need to be made on port 6432:

psql -h localhost -p 6432 -d postgres -U author -W

5. Now that we have made connections using pgbouncer, the next logical step is

to ind out whether there are any performance improvements using pgbouncer.
For this purpose, we are going to create a temporary database—the one that was

initially deined in the pgbouncer.ini ile—and insert records into it, and then
benchmark connections made against this database:

createdb pgtest

pgbench -i -s 10 pgtest

Connection Pooling

186

6. Then we benchmark the results against the pgtest database:

-bash-3.2$ pgbench -t 1000 -c 20 -C -S pgtest

starting vacuum...end.

transaction type: SELECT only

scaling factor: 10

query mode: simple

number of clients: 20

number of threads: 1

number of transactions per client: 1000

number of transactions actually processed: 20000/20000

tps = 217.374571 (including connections establishing)

tps = 1235.875488 (excluding connections establishing)

7. The inal step would be to benchmark the results against the pgtest database on

pgbouncer port 6432:

-bash-3.2$ pgbench -t 1000 -c 20 -C -S pgtest -p 6432 -U author

Password:

starting vacuum...end.

transaction type: SELECT only

scaling factor: 10

query mode: simple

number of clients: 20

number of threads: 1

number of transactions per client: 1000

number of transactions actually processed: 20000/20000

tps = 2033.768075 (including connections establishing)

tps = 53124.095230 (excluding connections establishing)

How it works...

Here we can see a couple of things. Initially, we have to conigure the pgbouncer.ini

coniguration ile along with the userlist ile, which will be used for accessing databases
via pgbouncer. The effectiveness of pgbouncer can be seen in steps 6 and 7 in the preceding

section. We can see that the throughput increases to 2033.768 transactions per second

when pgbouncer is used, whereas when pgbouncer is not used, the throughput decreases to

a mere 217.37 transactions per second. In effect, using pgbouncer increases throughput by

approximately 10 times.

Chapter 8

187

There's more...

In the How it works... section, we conigured a couple of parameters in the pgbouncer.ini

coniguration ile. However, there are many more parameters that can be conigured, and
if not conigured, they will take the default settings. Refer to the following link to get more

details on pgbouncer parameters:

http://pgbouncer.projects.pgfoundry.org/doc/config.html

Managing pgbouncer
The pgbouncer utility provides an administrative console to view pool status and client

connections. In this recipe, we are going to view information regarding pgbouncer connections

(client connections), view pool status, and obtain connection pooling statistics.

Getting ready
Before we issue any commands, we irst need to connect to the pgbouncer's administrative
console. For this purpose, we need to set the admin_users parameter in the pgbouncer.
ini coniguration ile:

vi /etc/pgbouncer/pgbouncer.ini

admin_users = author

Once the preceding changes are saved in the pgbouncer.ini coniguration ile, the
pgbouncer service needs to be restarted in order to ensure that the parameter changes

come into effect:

service pgbouncer restart

Once this is done, we can make connections to the pgbouncer administration console with the

following command:

psql -p 6432 -U author pgbouncer

http://pgbouncer.projects.pgfoundry.org/doc/config.html

Connection Pooling

188

How to do it...

With the help of the pgbouncer administration console, we can get information regarding the

clients, servers, and pool health:

1. To get information regarding the clients, issue the SHOW CLIENTS command, as

shown in the following screenshot, on the pgbouncer admin interface:

2. To get information regarding server connections, issue the SHOW SERVERS command,

as shown in the following screenshot, on the pgbouncer administrative console:

3. Similarly, you can issue the SHOW POOLS and SHOW STATS commands to get

information regarding pool status and pool statistics respectively, as shown in

the following screenshot:

Chapter 8

189

How it works...

As we saw in the preceding section, we can get information regarding the clients, servers, and

pool health and statistics. When you issue the SHOW CLIENTS command on the pgbouncer

administrative console, pgbouncer provides you with a list of clients that have been either

using a PostgreSQL connection or waiting for it. Some of the important columns displayed in

the output of the SHOW CLIENTS command are discussed here:

 f user: The value in this column displays the user that is connected to the database.

 f database: The value in this column displays the database name to which the client

is connected.

 f state: The value here displays the session state of the currently connected user. The

client connection can be in active, used, waiting, or idle state.

 f connect_time: The value in this column indicates the time at which pgbouncer

initiated the client connection to PostgreSQL.

 f request_time: This column's value shows the timestamp of the latest client request.

 f port: The value in this column indicates the port to which the client is connected.

We have the SHOW SERVERS command, which is used to display information about every

connection that is being used to fulill client requests. The SHOW SERVERS output contains

similar columns, which were discussed for SHOW CLIENTS. The only difference is for the

type column. If the value for the type column is S, it means that it is a server entry. If the

value for the type column is C, it means that it is a client entry. Some of the other important

columns for the SHOW SERVERS output are discussed as follows:

 f user: The value in this column displays the user that is connected to the database.

 f database: The value in this column displays the name of the database to which the

connection is attached.

 f state: The value here displays the state of the pgbouncer server connection. The

server state could be active, used, or idle.

 f connect_time: The value in this column indicates the time at which the connection

was made.

 f request_time: This column's value shows the timestamp for when the most recent
request was issued.

 f port: The value in this column indicates the port number of the PostgreSQL server.

Connection Pooling

190

The SHOW POOLS command displays a row for every database for which pgbouncer acts as a

proxy. Some of the important columns in the SHOW POOLS output are as follows:

 f cl_active: The value in this column displays the number of clients that are

currently active and assigned a server connection.

 f cl_waiting: The value in this column displays the number of clients waiting for a

server connection.

 f sl_active: The value in this column displays the number of server connections that

are assigned to pgbouncer clients.

 f sl_idle: The value here displays the number of idle server connections, including

the ones that are not in use.

 f sl_used: The value in this column displays the number of used server connections.

In effect, these connections are actually idle but they have not been marked by

pgbouncer for reuse yet.

The SHOW STATS command displays the relevant connection pool statistics related

to pgbouncer for the databases for which pgbouncer is acting as a proxy. Some of the

important columns in the SHOW STATS output are as follows:

 f total_requests: The value in this column displays the total number of SQL

requests pooled by pgbouncer

 f total_received: The value in this column displays the total volume of network

trafic (measured in bytes) that has been received by pgbouncer

 f total_sent: This column's value displays the total volume of network trafic
(measured in bytes) that has been sent by pgbouncer

 f total_query_time: The value in this column displays the amount of time in

microseconds that pgbouncer spent communicating with a client in this pool

9
Table Partitioning

In this chapter, we will cover the following recipes:

 f Implementing partitioning

 f Managing partitions

 f Partition and constraint exclusion

 f Alternate partitioning methods

 f Installing PL/Proxy

 f Partitioning with PL/Proxy

Introduction
Partitioning is deined as splitting up a large table into smaller chunks. PostgreSQL supports
basic table partitioning. Partitioning is entirely transparent to the applications if it is

implemented correctly. Partitioning has a lot of beneits, which are discussed, as follows:

 f The query performance can be improved signiicantly for certain types of queries.

 f Partitioning can lead to an improved update performance. Whenever queries update

a big chunk of a single partition, performance can be improved by performing a

sequential scan for that partition, instead of using random reads and writes that are

dispersed across the entire table.

 f Bulk loads and deletes can be accomplished by adding or removing partitions if

the requirement is incorporated in the partition design. The ALTER TABLE NO
INHERIT and DROP TABLE operations perform faster than a bulk operation. Also,

these commands avoid the VACUUM overhead caused by a bulk delete.

 f Infrequently used data can be shipped to cheaper and slower media.

Table Partitioning

192

Implementing partitioning
Here, we are going to cover table partitioning and show the steps that need to be performed

in order to partition a table.

Getting ready
Exposure to database design and normalization is the only requirement.

How to do it...

The following series of steps need to be carried out in order to set up table partitioning:

1. First, create a master table with all the ields. A master table is the table that will
be used as a base to partition data into other tables, that is, partitions. An index is

optional for a master table; however, since there are performance beneits of using
an index, we will create an index from a performance perspective here:

CREATE TABLE country_log (

 created_at TIMESTAMP WITH TIME ZONE DEFAULT NOW(),

 country_code char(2),

 content text

);

CREATE INDEX country_code_idx ON country_log USING btree
(country_code);

2. The next step is to create child tables that will inherit from the master table:

CREATE TABLE country_log_ru (CHECK (country_code = 'ru'))
INHERITS (country_log);

CREATE TABLE country_log_sa (CHECK (country_code = 'sa'))
INHERITS (country_log);

3. Next, create an index for each child table:

CREATE INDEX country_code_ru_idx ON country_log_ru USING btree
(country_code);

CREATE INDEX country_code_sa_idx ON country_log_sa USING btree
(country_code);

4. Then, create a trigger function with the help of which data will be redirected to the

appropriate partition table, as follows:

CREATE OR REPLACE FUNCTION country_insert_trig() RETURNS TRIGGER
AS $$

BEGIN

 IF (NEW.country_code = 'ru') THEN

Chapter 9

193

 INSERT INTO country_log_ru VALUES (NEW.*);

 ELSIF (NEW.country_code = 'sa') THEN

 INSERT INTO country_log_sa VALUES (NEW.*);

 ELSE

 RAISE EXCEPTION 'Country unknown';

 END IF;

 RETURN NULL;

END;

$$ LANGUAGE plpgsql;

5. Now, create a trigger and attach the trigger function to the master table:

CREATE TRIGGER country_insert

BEFORE INSERT ON country_log

FOR EACH ROW EXECUTE PROCEDURE country_insert_trig();

6. Next, insert data into the master table, as shown here:

postgres=# INSERT INTO country_log (country_code, content) VALUES
('ru', 'content-ru');

postgres=# INSERT INTO country_log (country_code, content) VALUES
('sa', 'content-sa');

7. The inal step is to select the data from both the master and child tables to conirm
the partitioning of data in the child tables, as follows:

postgres=# SELECT * from country_log;

 created_at | country_code | content

-------------------------------+--------------+------------

 2014-11-30 12:10:06.123189-08 | ru | content-ru

 2014-11-30 12:10:14.22666-08 | sa | content-sa

(2 rows)

postgres=# select * from country_log_ru;

 created_at | country_code | content

-------------------------------+--------------+------------

 2014-11-30 12:10:06.123189-08 | ru | content-ru

(1 row)

postgres=# select * from country_log_sa;

 created_at | country_code | content

------------------------------+--------------+------------

 2014-11-30 12:10:14.22666-08 | sa | content-sa

(1 row)

Table Partitioning

194

How it works...

The following is a detailed explanation of the steps carried out in the preceding section:

 f PostgreSQL basically supports partitioning via table inheritance. Hence, partitioning

is set up in such a way that every child table inherits from the parent table. For this

purpose, we create two child tables, that is, country_log_ru and country_log_
sa, in step 2 of the previous section. These child tables inherit from the parent or

the master table, country_log, using the INHERITS keyword against the master

table for the CREATE TABLE DDL statement for both the child tables. This was the

initial setup.

 f The next step, from our scenario, is to build partitioning in such a way that the logs by

country are stored in a country-speciic table. The case that we used in the previous
section was to ensure that all the logs for Russia go in the country_log_ru table

and all the logs for South Africa go in the country_log_sa table. To achieve

this objective, we deine a country_insert_trig trigger function, which helps

partition the data into a country-speciic table whenever an INSERT statement is

triggered on the country_log master table. The moment the INSERT statement

gets triggered on country_log master table, the country_log trigger gets ired
upon which it calls country_insert_trig(). The country_insert_trig()

trigger function checks the inserted records, and if it inds records for Russia
(checked by the NEW.country_code = 'ru' condition) in the country_log

table, then it inserts the said record in the country_log_ru child table. If the

inserted record in the country_log master table is for South Africa (NEW.
country_code = 'sa'), then it logs the same record in the country_log_sa

child table. The trigger function partitions the data in this way. The following section

of code, in the country_insert_trig() trigger function, uses the logic deined in
the IF condition to partition the data into the child tables:

IF (NEW.country_code = 'ru') THEN

 INSERT INTO country_log_ru VALUES (NEW.*);

ELSIF (NEW.country_code = 'sa') THEN

 INSERT INTO country_log_sa VALUES (NEW.*);

ELSE

 RAISE EXCEPTION 'Country unknown';

END IF;

 f Finally, once the data has been partitioned into the child tables, the inal step is to
verify the same by comparing the records from the child tables and the master table,

as shown in step 7.

Chapter 9

195

Initially, two records were inserted in the country_log master table. This can be conirmed
by running the SELECT query against the country_log table. Here, we can see two log

records in the country_log table, one for Russia, identiied by the country code ru, and one

for South Africa, identiied by the country code sa:

postgres=# SELECT * from country_log;

 created_at | country_code | content

-------------------------------+--------------+------------

 2014-11-30 12:10:06.123189-08 | ru | content-ru

 2014-11-30 12:10:14.22666-08 | sa | content-sa

(2 rows)

The next step is to run the SELECT queries against the respective child tables,

country_log_ru and country_log_sa:

postgres=# select * from country_log_ru;

 created_at | country_code | content

-------------------------------+--------------+------------

 2014-11-30 12:10:06.123189-08 | ru | content-ru

(1 row)

postgres=# select * from country_log_sa;

 created_at | country_code | content

------------------------------+--------------+------------

 2014-11-30 12:10:14.22666-08 | sa | content-sa

(1 row)

From the preceding output, you can see that there is only one record in each child table

country_log_ru and country_log_sa. In effect, the country_insert_trig() trigger

function has partitioned the log data in country-speciic tables. Entries for the country_code

column with the ru value, that is, for Russia, go into the country_log_ru table, and entries

for the country_code column with the value sa, that is, South Africa, go into the country_
log_sa child table.

There's more

You can refer to the following links for more detailed explanation on how to

implement partitioning:

 f https://blog.engineyard.com/2013/scaling-postgresql-
performance-table-partitioning

 f http://www.postgresql.org/docs/9.3/static/ddl-partitioning.html

https://blog.engineyard.com/2013/scaling-postgresql-performance-table-partitioning
https://blog.engineyard.com/2013/scaling-postgresql-performance-table-partitioning
https://blog.engineyard.com/2013/scaling-postgresql-performance-table-partitioning
http://www.postgresql.org/docs/9.3/static/ddl-partitioning.html
http://www.postgresql.org/docs/9.3/static/ddl-partitioning.html

Table Partitioning

196

Managing partitions
Here, we are going to show you how the partitioning scheme remains intact when an existing

partition is dropped or a new partition is added.

Getting ready
Please refer to the irst recipe, Implementing partitioning, before you read the steps outlined

in this recipe.

How to do it...

There are two scenarios here. One scenario shows what happens when you delete an existing

partition, and another shows what happens when a new partition is added. Let's discuss both
the cases.

 f In the irst scenario, we will drop an existing partition table. Here, the country_
code_sa table will be dropped, as follows:

1. Before dropping the country_log_sa child table, see the records in the

country_log master table:

postgres=# SELECT * from country_log;

 created_at | country_code | content

-------------------------------+--------------+------------

 2014-11-30 12:10:06.123189-08 | ru | content-ru

 2014-11-30 12:10:14.22666-08 | sa | content-sa

(2 rows)

2. Next, drop the country_log_sa child table, as shown here:

postgres=# drop table country_log_sa;

DROP TABLE

3. Again, as a final step, recheck the data in the master table, country_log,

once country_log_sa is dropped:

postgres=# select * from country_log;

 created_at | country_code | content

-----------------------------+--------------+------------

 2014-11-30 14:41:40.742878-08 | ru | content-ru

Chapter 9

197

 f In the second scenario, we will add a partition. Let's add a new partition, country_
log_default. The idea of creating this partition is that if there are tables for which

the trigger function does not deine any country codes, those records should go into a
default table partition, as follows:

1. Before we create the child table, let's see the existing records in the
country_log master table:

postgres=# select * from country_log;

 created_at | country_code | content

-------------------------------+--------------+------------

 2014-11-30 14:41:40.742878-08 | ru | content-ru

2. Next, create a country_log_sa child table and create an index on the

child table, as shown here:

postgres=# CREATE TABLE country_log_default () INHERITS
(country_log);

CREATE TABLE

postgres=# CREATE INDEX country_code_default_idx ON
country_log_default USING btree (country_code);

CREATE INDEX;

3. Modify your existing trigger function in order to define a condition to insert

log records for those countries whose country codes are not explicitly defined

in order to go into a country code specific log table:

CREATE OR REPLACE FUNCTION country_insert_trig() RETURNS
TRIGGER AS $$

BEGIN

 IF (NEW.country_code = 'ru') THEN

 INSERT INTO country_log_ru VALUES (NEW.*);

 ELSIF (NEW.country_code = 'sa') THEN

 INSERT INTO country_log_sa VALUES (NEW.*);

 ELSE

 INSERT INTO country_log_default VALUES (NEW.*);

 END IF;

 RETURN NULL;

END;

$$ LANGUAGE plpgsql;

Table Partitioning

198

4. Now, insert records into the master table:

postgres=# INSERT INTO country_log (country_code, content)
VALUES ('dk', 'content-dk');

INSERT 0 0

postgres=# INSERT INTO country_log (country_code, content)
VALUES ('us', 'content-us');

INSERT 0 0

5. Let's check the newly created records in the country_log master table and

see if these records have been partitioned into the country_log_default

child table:

postgres=# select * from country_log;

 created_at | country_code | content

-------------------------------+--------------+------------

 2014-11-30 14:41:40.742878-08 | ru | content-ru

 2014-11-30 15:10:28.921124-08 | dk | content-dk

 2014-11-30 15:10:42.97714-08 | us | content-us

postgres=# select * from country_log_default;

 created_at | country_code | content

-------------------------------+--------------+------------

 2014-11-30 15:10:28.921124-08 | dk | content-dk

 2014-11-30 15:10:42.97714-08 | us | content-us

(2 rows)

How it works...

First, let's discuss the irst scenario where we drop the child partition table,
country_log_sa. Here's the code snippet that was shown in the previous section:

postgres=# SELECT * from country_log;

 created_at | country_code | content

-------------------------------+--------------+------------

 2014-11-30 12:10:06.123189-08 | ru | content-ru

 2014-11-30 12:10:14.22666-08 | sa | content-sa

(2 rows)

postgres=# drop table country_log_sa;

DROP TABLE

postgres=# select * from country_log;

 created_at | country_code | content

-------------------------------+--------------+------------

 2014-11-30 14:41:40.742878-08 | ru | content-ru

Chapter 9

199

If you refer to the sequence of events in the preceding output, you can clearly see that once

the child table, country_log_sa, got dropped, its corresponding entry from the country_
log master table also got removed. This technique really helps if there are a large number

of records to be pruned from the master table once the corresponding child table is dropped.

This procedure is automatic and does not require DBA intervention. This way, the partition

structure and data can be easily managed and handled if any existing partition is dropped.

Similarly, data can be easily managed when a new partition is added. If you refer to step 2

of the second scenario in the How to do it... section, you can see that we create a new child

table, country_log_default, which inherits from the country_log master table. Once

the existing trigger function, country_insert_trig(), is modiied to include the condition-
based insert for partitioning the data into the newly created partition, country_log_
default, an INSERT statement is triggered on the country_log master table, and if the

prevalent condition to insert records into the country_log_default child table is fulilled,
then the records are inserted into the country_log_default child table. This can be seen

from steps 2 to 5 of the second scenario in the How to do it... section when we add a partition.

There's more

For a more detailed explanation on partitioning, go to http://www.postgresql.org/
docs/9.3/static/ddl-partitioning.html.

Partitioning and constraint exclusion
In this recipe, we are going to talk about constraint exclusion and how it helps to

improve performance.

Getting ready
Familiarity with table partitioning is required for this recipe.

How to do it...

Constraint exclusion can be enabled with the following command:

SET constraint_exclusion = ON ;

How it works...

Now, let's discuss constraint exclusion.

Constraint exclusion is basically a query optimization technique that helps to improve the

performance of partitioned tables.

http://www.postgresql.org/docs/9.3/static/ddl-partitioning.html
http://www.postgresql.org/docs/9.3/static/ddl-partitioning.html

Table Partitioning

200

Let's just analyze the query plan for the following query:

postgres=# EXPLAIN ANALYZE SELECT * FROM country_log WHERE
country_code = 'ru';

 QUERY PLAN

 Result (cost=0.00..38.29 rows=16 width=52) (actual
time=26.442..27.298 rows=1 loops=1)

 -> Append (cost=0.00..38.29 rows=16 width=52) (actual
time=26.437..27.289 rows=1 loops=1)

 -> Seq Scan on country_log (cost=0.00..0.00 rows=1
width=52) (actual time=0.002..0.002 rows=0 loops=1)

 Filter: (country_code = 'ru'::bpchar)

 -> Bitmap Heap Scan on country_log_ru country_log
(cost=4.29..12.76 rows=5 width=52) (actual time=26.431..26.433 rows=1
loops=1)

 Recheck Cond: (country_code = 'ru'::bpchar)

 -> Bitmap Index Scan on country_code_ru_idx
(cost=0.00..4.29 rows=5 width=0) (actual time=26.413..26.413 rows=1
loops=1)

 Index Cond: (country_code = 'ru'::bpchar)

 -> Bitmap Heap Scan on country_log_au country_log
(cost=4.29..12.76 rows=5 width=52) (actual time=0.822..0.822 rows=0
loops=1)

 Recheck Cond: (country_code = 'ru'::bpchar)

 -> Bitmap Index Scan on country_code_au_idx
(cost=0.00..4.29 rows=5 width=0) (actual time=0.817..0.817 rows=0
loops=1)

 Index Cond: (country_code = 'ru'::bpchar)

 -> Bitmap Heap Scan on country_log_default country_log
(cost=4.29..12.76 rows=5 width=52) (actual time=0.023..0.023 rows=0
loops=1)

 Recheck Cond: (country_code = 'ru'::bpchar)

 -> Bitmap Index Scan on country_code_default_idx
(cost=0.00..4.29 rows=5 width=0) (actual time=0.013..0.013 rows=0
loops=1)

 Index Cond: (country_code = 'ru'::bpchar)

 Total runtime: 27.442 ms

(17 rows)

If you analyze the preceding query plan for the preceding SELECT query, you will ind that the
query scans each of the partitions of the country_log table. This behavior is suboptimal

from a query-performance perspective.

Chapter 9

201

To deal with this scenario, we can enable constraint exclusion. By doing so, the query

planner will examine the contents of each partition; however, the planner will try to prove that

scanning is not required for the partitions that do not meet the query's criteria deined in the
WHERE clause. When the planner can prove this, it excludes such partitions from the query

plan. This can be seen in the query plan generated for the query after the constraint exclusion

is enabled, as shown here:

postgres=# SET constraint_exclusion = ON;

SET

postgres=# EXPLAIN ANALYZE SELECT * FROM country_log WHERE
country_code = 'ru';

 QUERY PLAN

 Result (cost=0.00..25.52 rows=11 width=52) (actual time=0.036..0.147
rows=1 loops=1)

 -> Append (cost=0.00..25.52 rows=11 width=52) (actual
time=0.031..0.138 rows=1 loops=1)

 -> Seq Scan on country_log (cost=0.00..0.00 rows=1
width=52) (actual time=0.003..0.003 rows=0 loops=1)

 Filter: (country_code = 'ru'::bpchar)

 -> Bitmap Heap Scan on country_log_ru country_log
(cost=4.29..12.76 rows=5 width=52) (actual time=0.025..0.027 rows=1
loops=1)

 Recheck Cond: (country_code = 'ru'::bpchar)

 -> Bitmap Index Scan on country_code_ru_idx
(cost=0.00..4.29 rows=5 width=0) (actual time=0.017..0.017 rows=1
loops=1)

 Index Cond: (country_code = 'ru'::bpchar)

 -> Bitmap Heap Scan on country_log_default country_log
(cost=4.29..12.76 rows=5 width=52) (actual time=0.102..0.102 rows=0
loops=1)

 Recheck Cond: (country_code = 'ru'::bpchar)

 -> Bitmap Index Scan on country_code_default_idx
(cost=0.00..4.29 rows=5 width=0) (actual time=0.096..0.096 rows=0
loops=1)

 Index Cond: (country_code = 'ru'::bpchar)

 Total runtime: 0.230 ms

(13 rows)

We can see an improved performance in the query plan, as this one shows a total runtime

of 0.230 milliseconds, whereas the preceding query plan shows a total runtime of 27.442

milliseconds. Thus, you can see the performance beneits by enabling constraint exclusion.

Table Partitioning

202

Alternate partitioning methods
In this recipe, we are going to talk about another mechanism that can be used to

redirect INSERTS into the appropriate partitions. Here, we are going to talk about

using the rule-based approach instead of the trigger-based approach, in order to

redirect INSERTS into the appropriate partitions.

Getting ready
Familiarity with table partitioning is required for this recipe.

How to do it...

What we are going to do now is to use a rule-based approach. To do this, perform the

following steps:

1. To avoid any conlicts with the previously used trigger-based approach, proceed by
dropping the existing trigger function, using the following command:

postgres=# drop function country_insert_trig() cascade;

2. The next step will be to subsequently create rules for each of the child tables, so that

whenever a new record is inserted in the master table (country_log), the rules

get invoked to redirect the INSERT commands to the appropriate partition table,

as shown here:

CREATE RULE country_code_check_ru AS

ON INSERT TO country_log WHERE

 (NEW.country_code = 'ru')

DO INSTEAD

 INSERT INTO country_log_ru VALUES (NEW.*);

CREATE RULE country_code_check_sa AS

ON INSERT TO country_log WHERE

 (NEW.country_code = 'sa')

DO INSTEAD

 INSERT INTO country_log_sa VALUES (NEW.*);

CREATE RULE country_code_check_default AS

Chapter 9

203

ON INSERT TO country_log WHERE

 (NEW.country_code != 'ru' OR NEW.country_code != 'sa')

DO INSTEAD

 INSERT INTO country_log_default VALUES (NEW.*);

3. Next, insert the record into the master table, that is, country_log:

INSERT INTO country_log (country_code, content) VALUES ('ca',
'content-ca');

4. Finally, use the SELECT query against the respective partition table to check whether

the INSERT commands used in the previous step are redirected to the appropriate

partition table using the rule-based approach, as follows:

postgres=# select * from country_log_default;

 created_at | country_code | content

-------------------------------+--------------+------------

 2014-11-30 15:10:28.921124-08 | dk | content-dk

 2014-11-30 15:10:42.97714-08 | us | content-us

 2014-12-01 14:36:27.746601-08 | ca | content-ca

(3 rows)

How it works...

What we are basically doing here is to create rules for all the partitions. The condition

deined in the rules is the same as the one deined in the trigger function, country_
insert_trig(). Let's show the trigger function's code from which the conditions
deined for the rules were derived:

CREATE OR REPLACE FUNCTION country_insert_trig() RETURNS TRIGGER AS $$

BEGIN

 IF (NEW.country_code = 'ru') THEN

 INSERT INTO country_log_ru VALUES (NEW.*);

 ELSIF (NEW.country_code = 'sa') THEN

 INSERT INTO country_log_sa VALUES (NEW.*);

 ELSE

 INSERT INTO country_log_default VALUES (NEW.*);

 END IF;

 RETURN NULL;

END;

$$ LANGUAGE plpgsql;

Table Partitioning

204

If you take a look at the preceding trigger function, it is clear that when the inserted data into

the country_log master table has the values for the country_code column as ru or sa,

then the corresponding inserted row will either go to the country_log_ru or country_
log_sa table, depending on what the inserted country_code entry is. If the value for

the country_code column inserted is anything else other than these two values, then the

corresponding row entry is directed to the country_log_default table. Based on these

conditions, we deine the rules for all the child tables, as follows:

CREATE RULE country_code_check_ru AS

ON INSERT TO country_log WHERE

 (NEW.country_code = 'ru')

DO INSTEAD

 INSERT INTO country_log_ru VALUES (NEW.*);

CREATE RULE country_code_check_sa AS

ON INSERT TO country_log WHERE

 (NEW.country_code = 'sa')

DO INSTEAD

 INSERT INTO country_log_sa VALUES (NEW.*);

CREATE RULE country_code_check_default AS

ON INSERT TO country_log WHERE

 (NEW.country_code != 'ru' OR NEW.country_code != 'sa')

DO INSTEAD

 INSERT INTO country_log_default VALUES (NEW.*);

Once the rules are deined for the child tables, the next step is to remove the previously used
trigger function in order to avoid any conlict with the trigger- and rule-based approaches.
Finally, we add the data to the master table, and we can see in step 4 of the How to do

it... section, that based on the rule-based approach, the corresponding entry goes to the

country_log_default partition.

Installing PL/Proxy
PL/Proxy is a database partitioning system that is implemented as a PL language. PL/Proxy

makes it straightforward to split large independent tables among multiple nodes in a way

that almost allows unbounded scalability. PL/Proxy scaling works on both read and write

workloads. The main idea is that the proxy function will be set up with the same signature as

the remote function to be called, so only the destination information needs to be speciied
inside the proxy function's body.

Chapter 9

205

Getting Ready
Here, we are going to show the steps required to install PL/Proxy.

How to do it...

Perform the following steps to install PL/Proxy:

1. Go to http://pgfoundry.org/projects/plproxy/ and download the latest

tarball of PL/Proxy.

2. Once the latest version of PL/Proxy is downloaded, the next step is to unpack the

tar archive:

tar xvfz plproxy-2.5.tar.gz

3. Once the tar archive has been unpacked, the next step is to enter the newly created

directory and start the compilation process:

cd plproxy-2.5

make && make install

How it works...

Installing PL/Proxy is an easy task. Here, we download the source code from the website

provided in step 1 of the preceding section. The latest version of PL/Proxy at this stage is

2.5. We need to download the tarball ile containing version 2.5 of PL/Proxy, and once it is
downloaded, we need to compile and build it. This completes the installation of PL/Proxy.

You can also install PL/Proxy from binary packages, if prebuilt packages are available for your

operating system.

Partitioning with PL/Proxy
In this recipe, we are going to cover horizontal partitioning with PL/Proxy.

Getting ready
PL/Proxy needs to be installed on the host machine. Refer to the previous recipe for more

details on how to install PL/Proxy.

http://pgfoundry.org/projects/plproxy/
http://pgfoundry.org/projects/plproxy/

Table Partitioning

206

How to do it...

Perform the following sequence of steps to perform horizontal partitioning using PL/Proxy:

1. Create three new databases, that is one proxy database named nodes and two

partitioned databases named nodes_0000 and nodes_0001, respectively:

postgres=# create database nodes;

postgres=# create database nodes_0000;

postgres=# create database nodes_0001;

2. Once you've created these databases, the next step is to create a plproxy extension:

psql -d nodes

nodes=# create extension plproxy;

3. The next step is to create the plproxy schema in the proxy database's nodes:
nodes=# create schema plproxy;

4. Next, execute the following ile, plproxy--2.5.0.sql, on the proxy database nodes:

cd /usr/pgsql-9.3/share/extension

 psql -f plproxy--2.5.0.sql nodes

CREATE FUNCTION

CREATE LANGUAGE

CREATE FUNCTION

CREATE FOREIGN DATA WRAPPER

5. Then, conigure PL/Proxy using the coniguration functions on the proxy

database nodes:

psql -d nodes

CREATE OR REPLACE FUNCTION plproxy.get_cluster_version
(cluster_name text) RETURNS int AS $$

BEGIN

 IF cluster_name = 'nodes' THEN

 RETURN 1;

 END IF;

END;

$$ LANGUAGE plpgsql;

CREATE OR REPLACE FUNCTION plproxy.get_cluster_partitions
(cluster_name text) RETURNS SETOF text AS $$

Chapter 9

207

BEGIN

 IF cluster_name = 'nodes' THEN

 RETURN NEXT 'host=127.0.0.1 dbname=nodes_0000';

 RETURN NEXT 'host=127.0.0.1 dbname=nodes_0001';

 RETURN;

 END IF;

 RAISE EXCEPTION 'no such cluster: %', cluster_name;

END;

$$ LANGUAGE plpgsql SECURITY DEFINER;

CREATE OR REPLACE FUNCTION plproxy.get_cluster_config
(cluster_name text, out key text, out val text)

RETURNS SETOF record AS $$

BEGIN

 RETURN;

END;

$$ LANGUAGE plpgsql;

6. Next, log in to the partitioned databases and create the users table in both of these:

psql -d nodes_0000

nodes_0000=# CREATE TABLE users (username text PRIMARY KEY);

psql -d nodes_0001

nodes_0001=# CREATE TABLE users (username text PRIMARY KEY);

7. Now, create the following function, insert_user(), which will be used to insert

usernames in the users table:

psql -d nodes_0000

CREATE OR REPLACE FUNCTION insert_user(i_username text) RETURNS
text AS $$

BEGIN

 PERFORM 1 FROM users WHERE username = i_username;

 IF NOT FOUND THEN

 INSERT INTO users (username) VALUES (i_username);

 RETURN 'user created';

 ELSE

 RETURN 'user already exists';

 END IF;

END;

Table Partitioning

208

$$ LANGUAGE plpgsql SECURITY DEFINER;

psql -d nodes_0001

CREATE OR REPLACE FUNCTION insert_user(i_username text) RETURNS
text AS $$

BEGIN

 PERFORM 1 FROM users WHERE username = i_username;

 IF NOT FOUND THEN

 INSERT INTO users (username) VALUES (i_username);

 RETURN 'user created';

 ELSE

 RETURN 'user already exists';

 END IF;

END;

$$ LANGUAGE plpgsql SECURITY DEFINER;

8. Next, create a proxy function called insert_user() on the proxy database nodes:

psql -d nodes

CREATE OR REPLACE FUNCTION insert_user(i_username text) RETURNS
TEXT AS $$

 CLUSTER 'nodes'; RUN ON hashtext(i_username);

$$ LANGUAGE plproxy;

9. Check the pg_hba.conf ile; you will need to set the authentication to trust,

as shown here, and then restart the postgresql service:

host all all 127.0.0.1/32
trust

10. The next step will be to ill the partitions by executing the following query on the proxy
database nodes:

nodes=#SELECT insert_user('user_number_'||generate_series::text)
FROM generate_series(1,10000);

11. Once the data is inserted, verify the corresponding records in the partitioned

databases, nodes_0000 and nodes_0001, as follows:

nodes_0000=# select count(*) from users;

 count

 5106

(1 row)

nodes_0001=# select count(*) from users;

Chapter 9

209

 count

 4894

(1 row)

How it works...

The following is an explanation of the preceding code output:

 f Initially, we create three databases—one as a proxy database named nodes and two

other databases named nodes_0000 and nodes_0001—across which the data will

be partitioned.

 f Once the preceding step is performed, the next step will be to create the

plproxy extension.

 f As can be seen in step 5 of the preceding section, we are coniguring PL/Proxy
using the coniguration functions on the proxy database nodes. The plproxy.get_
cluster_partitions() function is invoked when a query needs to be forwarded

to a remote database, and it is used by PL/Proxy to obtain the connection string to

be used for each partition. We also use the plproxy.get_cluster_version()

function, which is called upon each request, and it is used to determine whether the

output from a cached result from plproxy.get_cluster_partitions can be

reused. We also use the the plproxy.get_cluster_config() function, which

enables us to conigure the behavior of PL/Proxy.

 f Once we are done with deining the coniguration functions on the proxy database
nodes, the next step is to create the table users in both the partitioned databases,

across which the data will be partitioned.

 f Then, we created an insert_user() function that will be used to insert

usernames into the users table. The insert_user()function will be deined
on both the partitioned databases, nodes_0000 and nodes_0001. This is

shown in step 7 of the preceding section.

 f In the next step, we create a proxy function, insert_user(), inside the proxy

database nodes. The proxy function will be used to send the INSERT result to the

appropriate partition. This is shown in step 8 of the preceding section.

 f Finally, we will be illing the partitions with random data by executing the insert_
user() proxy function in the proxy database named nodes. This is seen in step 10

of the preceding section.

There's more

For more details on how to use PL/Proxy in order to proxy queries across a set of remote

databases, check out http://plproxy.projects.pgfoundry.org/doc/tutorial.
html.

http://plproxy.projects.pgfoundry.org/doc/tutorial.html

10
Accessing PostgreSQL

from Perl

In this chapter, we will cover the following recipes:

 f Making a connection to a PostgreSQL database using Perl

 f Creating tables using Perl

 f Inserting records using Perl

 f Accessing data using Perl

 f Updating records using Perl

 f Deleting records using Perl

Introduction
Perl is a general-purpose, high-level, interpreted, and dynamic programming language.

Generally, communicating with PostgreSQL involves a lot of string manipulation, and this is

where Perl excels as a language. In Perl, database interfaces are implemented by Perl DBI

modules. A DBI module presents a database-independent interface to Perl applications. On the

other hand, the database driver module handles the details of accessing different databases.

There are three ways to access PostgreSQL from Perl, stated as follows:

 f Low-level access, which is done by the Perl mapping of the libpq C interface

 f High-level access, with the help of a database-independent layer

 f Access by embedding a Perl interpreter

Accessing PostgreSQL from Perl

212

Making a connection to a PostgreSQL
database using Perl

Here, we are going to make connections to a PostgreSQL database using Perl.

Getting ready
The following instructions are performed on a CentOS Linux machine, and it is assumed that

the Perl language is already installed.

A PostgreSQL database can be accessed by using the Perl DBI module, which is a database

access module for the Perl programming language. The Perl DBI module deines a set of
methods, variables, and conventions that provide a standard database interface.

The DBI module, by itself, does not have the ability to communicate with PostgreSQL. For

the DBI module to communicate with PostgreSQL, it is necessary to install the appropriate

backend module, which in this case is DBD::Pg.

On Red Hat, CentOS, Scientiic Linux, as well as other Red Hat based Linux distributions, the
package that provides this module is perl-DBD-Pg and it can be installed as follows:

yum install perl-DBD-Pg

On Debian-based systems, the package that provides this module is libdbd-pg-perl, and

it can be installed as follows on Ubuntu- or Debian-based distributions:

apt-get install libdbd-pg-perl

Before we start using the Perl PostgreSQL interface, we will need to enter the following

authentication and access control mechanism entry in the pg_hba.conf ile:

IPv4 local connections:

host all all 127.0.0.1/32 md5

Once these changes are done, we will need to restart the PostgreSQL server:

$ pg_ctl -D $PGDATA restart

Chapter 10

213

How to do it...

We can use the following Perl code to make a connection to an existing PostgreSQL database,

that is, the dvdrental database, which resides on the same machine and uses port 5432.

1. First, the following Perl code can be saved in a ile called connect.pl:

#!/usr/bin/perl

use DBI;

use strict;

 my $driver = "Pg";

my $database = "dvdrental";

my $dsn = "DBI:$driver:dbname=$database;host=127.0.0.1;port=5432";

my $userid = "postgres";

my $password = "postgres";

my $dbh = DBI->connect($dsn, $userid, $password, { RaiseError => 1
})

 or die $DBI::errstr;

print "CONNECTION TO THE DVDRENTAL DATABASE MADE SUCCESSFULLY\n";

2. The next step will be to change permissions, as follows:

chmod 755 connect.pl

3. The Perl program can then be executed at the command line, as follows:

bash-3.2$ perl connect.pl

CONNECTION MADE TO THE DVDRENTAL DATABASE MADE SUCCESSFULLY

As can be seen from the preceding output, while the program is being executed, the

output message indicates that the connection to the dvdrental database has been

made successfully.

How it works...

The connection to the database is made using the connect function. It returns a connection

handle that is needed when calls are made to the DBI module. The connect function

requires the following argument:

connect($data_source, "userid", "password", \%attr);

Accessing PostgreSQL from Perl

214

The irst argument to the connect function is the data source name, which is a single entity

that comprises of the database name and the host name or IP address and optionally, a port

number. The data source also comprises of the preix Pg, which is the PostgreSQL database

driver for the DBI module.

The second argument is userid or the username by which a connection to the PostgreSQL

database is made.

The third argument is the password, which is the password of the user who initiates the

database connection. If an empty string is provided for the password, Perl will then look

for a password value in the environment variables, DBI_USER and DBI_PASS, which could

possibly cause the code to fail while it is being executed. So, we need to exercise caution in

such scenarios.

The inal argument is optional, and it refers to any attributes that might be used.

In the preceding code, in the How to do it... section, we used the connect function,

as follows:

my $dbh = DBI->connect($dsn, $userid, $password, { RaiseError => 1 })

The irst argument used here is the dsn variable, which was initially deined, as follows:

my $dsn = "DBI:$driver:dbname=$database;host=127.0.0.1;port=5432";

Here, we can see that the dsn value is a single entity, which comprises of a driver, the Pg

driver; dbname, which is deined in the variable database and its value is dvdrental; and

further consists of the hostname and port number being explicitly deined here.

The second argument is the userid variable, which uses the value postgres deined
previously in the code.

The third argument is the password variable, whose value is postgres.

The inal argument used is the RaiseError attribute, which causes the DBI module to call

the HandleError condition or to die if the HandleError condition is not deined when a
database error is detected.

If you need more information on the connect function, you can use the

following links for a more detailed explanation:

 f http://oreilly.com/catalog/perldbi/chapter/
ch04.html

 f http://search.cpan.org/~rudy/DBD-Pg-1.32/Pg.pm

http://oreilly.com/catalog/perldbi/chapter/ch04.html
http://oreilly.com/catalog/perldbi/chapter/ch04.html
http://search.cpan.org/~rudy/DBD-Pg-1.32/Pg.pm

Chapter 10

215

Creating tables using Perl
In this recipe, we are going to show you how to create tables in the PostgreSQL database

using Perl.

Getting ready
We will be the using the qq operator, and the parameter passed to the operator will contain

the CREATE TABLE SQL statement. The qq operator is used to return a double-quoted

string. Before creating the table, we must irst use the connect function to connect to the

PostgreSQL database.

How to do it...

We can use the following code to create a table by the name EMPLOYEES. This table will be

stored in the dvdrental database because the connection made by the PostgreSQL adapter

is to the dvdrental database. The following code is saved in a ile called createtable.pl,

which will be executed later:

#!/usr/bin/perl

use DBI;

use strict;

my $driver = "Pg";

my $database = "dvdrental";

my $dsn = "DBI:$driver:dbname=$database;host=127.0.0.1;port=5432";

my $userid = "postgres";

my $password = "postgres";

my $dbh = DBI->connect($dsn, $userid, $password, { RaiseError => 1 })

 or die $DBI::errstr;

print "Dvdrental database opened \n";

my $stmt = qq(CREATE TABLE EMPLOYEES

 (ID INT PRIMARY KEY NOT NULL,

 NAME TEXT NOT NULL,

 AGE INT NOT NULL,

 ADDRESS CHAR(60),

 SALARY REAL););

my $rv = $dbh->do($stmt);

Accessing PostgreSQL from Perl

216

 print "EMPLOYEES table created successfully\n\n";

$dbh->disconnect();

bash-3.2$ perl createtable.pl

Dvdrental database opened

EMPLOYEES table created successfully

In the preceding output, you can see that when the ile containing the preceding code is
executed, a connection to the dvdrental database is made and an EMPLOYEES table is

created. This can be seen from the command-line console message, EMPLOYEES table
created successfully.

How it works...

From the point of view of table creation, it is the following part of the preceding code that

needs an explanation:

my $rv = $dbh->do($stmt);

Here, we are using the handler returned by the connect function in conjunction with the do

function to execute the CREATE TABLE statement passed in the $stmt variable, as follows:

my $stmt = qq(CREATE TABLE EMPLOYEES

 (ID INT PRIMARY KEY NOT NULL,

 NAME TEXT NOT NULL,

 AGE INT NOT NULL,

 ADDRESS CHAR(60),

 SALARY REAL););

The do() method is a fusion of prepare() and execute(). It can only be used for

non-SELECT statements, where you don't need the statement handle to access the
results of the query. do() returns the number of affected rows.

The disconnect() method, in the preceding section, is used to terminate the existing

database session and disconnect from the database.

For more details on tables in Perl, check out http://www.postgresql.
org/docs/9.3/interactive/plperl-builtins.html.

http://www.postgresql.org/docs/9.3/interactive/plperl-builtins.html
http://www.postgresql.org/docs/9.3/interactive/plperl-builtins.html

Chapter 10

217

Inserting records using Perl
In this recipe, we are going to insert new records in the EMPLOYEES table in the

dvdrental database.

Getting ready
Before inserting records in the table, we irst need to use the connect function, in order to

connect to the database. The connect function was discussed in the irst recipe of the chapter.

How to do it...

We are going to use the following code to insert new records in the EMPLOYEES table:

#!/usr/bin/perl

use DBI;

use strict;

my $driver = "Pg";

my $database = "dvdrental";

my $dsn = "DBI:$driver:dbname=$database;host=127.0.0.1;port=5432";

my $userid = "postgres";

my $password = "postgres";

my $irows = 0;

my $dbh = DBI->connect($dsn, $userid, $password, { RaiseError => 1 })

 or die $DBI::errstr;

print "Opened database successfully\n";

my $stmt = qq(INSERT INTO EMPLOYEES (ID,NAME,AGE,ADDRESS,SALARY)

 VALUES (5, 'SandeepSingh', 37, 'Saharanpur', 90000.00));

my $rv = $dbh->do($stmt);

$irows = $rv + $irows;

$stmt = qq(INSERT INTO EMPLOYEES (ID,NAME,AGE,ADDRESS,SALARY)

 VALUES (6, 'AmitGovil', 37, 'Aligarh', 85000.00));

Accessing PostgreSQL from Perl

218

$rv = $dbh->do($stmt);

$irows = $rv + $irows;

$stmt = qq(INSERT INTO EMPLOYEES (ID,NAME,AGE,ADDRESS,SALARY)

 VALUES (7, 'NeerajKumar', 38, 'Rohtak', 90000.00));

$rv = $dbh->do($stmt);

$irows = $rv + $irows;

$stmt = qq(INSERT INTO EMPLOYEES (ID,NAME,AGE,ADDRESS,SALARY)

 VALUES (8, 'SandeepSharma', 36, 'Gurgaon ', 75000.00););

$rv = $dbh->do($stmt);

$irows = $rv + $irows;

print "Number of rows inserted : $irows\n";

print "New Records created successfully\n";

$dbh->disconnect();

The preceding code is saved in a ile called insert.pl, and we get the following command-

line output once the new records are inserted successfully:

bash-3.2$ perl insert.pl

Opened database successfully

New Records created successfully

How it works...

For an explanation of the preceding code, we are taking an excerpt of the code that will

demonstrate how the records are getting inserted into the EMPLOYEES table:

my $stmt = qq(INSERT INTO EMPLOYEES (ID,NAME,AGE,ADDRESS,SALARY)

 VALUES (5, 'SandeepSingh', 37, 'Saharanpur', 90000.00));

my $rv = $dbh->do($stmt);

If you take a look at the preceding code, you can see that irst, we used the INSERT statement,

deined records, and passed the INSERT SQL statement to a variable. After this is done, we

used the do() function to return the result of the INSERT statement into the table. The same

steps are performed sequentially for the other INSERT statements used in the code.

Chapter 10

219

In the preceding section, we are also using the irows variable to track the number of rows

that were inserted into the table. Every time we insert a record into the table, we set the

condition as shown in the following line of code. Initially, the value of the irows variable is

set to zero, and whenever we insert a record into the EMPLOYEES table, the value of the rv

variable is set to 1. So, as per the following condition, every time there is a change or a record

is inserted, the irows variable's value will increment by 1 and so on, until all the records are
inserted and eventually it stops at 4 to indicate that four records were inserted in total:

$irows = $rv + $irows;

Accessing table data using Perl
In this recipe, we are going to see how to access the table data from a PostgreSQL database

using Perl.

Getting ready
A database connection is mandatory before we can select data. Hence, for this reason, the

connect() function is the irst one that should be invoked to make a database connection
before accessing data.

How to do it...

We can use the following code to access data from the EMPLOYEES table present in the

dvdrental database. The following code is saved in a ile called select.pl, which will

be later executed from the command line:

#!/usr/bin/perl

use DBI;

use strict;

my $driver = "Pg";

my $database = "dvdrental;";

my $dsn = "DBI:$driver:dbname=$database;host=127.0.0.1;port=5432";

my $userid = "postgres";

my $password = "postgres";

my $dbh = DBI->connect($dsn, $userid, $password, { RaiseError => 1 })

 or die $DBI::errstr;

print "Opened database successfully\n";

my $stmt = qq(SELECT id, name, address, salary from EMPLOYEES;);

Accessing PostgreSQL from Perl

220

my $sth = $dbh->prepare($stmt) or die "Cannot prepare: " . $dbh-
>errstr();

my $rv = $sth->execute() or die "Cannot execute: " . $sth->errstr();

while(my @row = $sth->fetchrow_array()) {

 print "ID = ". $row[0] . "\n";

 print "NAME = ". $row[1] ."\n";

 print "ADDRESS = ". $row[2] ."\n";

 print "SALARY = ". $row[3] ."\n\n";

}

$sth->finish();

print "select Operation done successfully\n";

$dbh->disconnect();

The following is the output of the preceding code:

bash-3.2$ perl select.pl

Opened database successfully

ID = 5

NAME = SandeepSingh

ADDRESS = Saharanpur

SALARY = 90000

ID = 6

NAME = AmitGovil

ADDRESS = Aligarh

SALARY = 85000

ID = 7

NAME = NeerajKumar

ADDRESS = Rohtak

SALARY = 90000

ID = 8

NAME = SandeepSharma

ADDRESS = Gurgaon

SALARY = 75000

select Operation done successfully

Chapter 10

221

How it works...

The following is the subpart of the code that mainly deals with selecting records from a table:

my $stmt = qq(SELECT id, name, address, salary from EMPLOYEES;);

my $sth = $dbh->prepare($stmt) or die "Cannot prepare: " . $dbh-
>errstr();

my $rv = $sth->execute() or die "Cannot prepare: " . $dbh->errstr();

while(my @row = $sth->fetchrow_array()) {

 print "ID = ". $row[0] . "\n";

 print "NAME = ". $row[1] ."\n";

 print "ADDRESS = ". $row[2] ."\n";

 print "SALARY = ". $row[3] ."\n\n";

}

 $sth->finish();

In the preceding code, the irst thing that we do is write down our SELECT query and pass it to

the $stmt variable.

The next step is to use the prepare() function in order to prepare the SQL statement,

which can be executed at a later time by the database engine and returns a reference to the

statement handle object.

The next step is to use the execute() function in order to execute the prepared statement.

Finally, in order to fetch the results of the SELECT command, we use the fetchrow_array()

function. The fetchrow_array() function gets the next row and returns it as a list of ield
values. We use the while loop to iterate through each of the ield values in a given row across
the array named row and then move on to the next row. The same sequence of events are

repeated until we have iterated through the last ield value in the inal row returned.

Updating records using Perl
Here, we are going to see how to update existing records in a table in the PostgreSQL

database using Perl.

Accessing PostgreSQL from Perl

222

Getting ready
In this recipe, irst we are going to show the number of existing records in the table. Then,
we are going to update some records, see the number of records updated, and then see the

changed records being made visible in the table when the table records are accessed again.

How to do it...

In this section we will update the existing records of the EMPLOYEES table.

1. First, we check the existing records in the EMPLOYEES table, as follows:

dvdrental=# select * from EMPLOYEES;

 id | name | age | address | salary

----+---------------+-----+---------------+--------

 5 | SandeepSingh | 37 | Saharanpur | 90000

 6 | AmitGovil | 37 | Aligarh | 85000

 7 | NeerajKumar | 38 | Rohtak | 90000

 8 | SandeepSharma | 36 | Gurgaon | 75000

2. Next, we use the following Perl code to update some of the existing records in the

EMPLOYEES table and save the following code in a ile called update.pl:

#!/usr/bin/perl

use DBI;

use strict;

my $driver = "Pg";

my $database = "dvdrental";

my $dsn = "DBI:$driver:dbname=$database;host=127.0.0.1;port=5432";

my $userid = "postgres";

my $password = "postgres";

my $dbh = DBI->connect($dsn, $userid, $password, { RaiseError => 1
})

 or die $DBI::errstr;

print "Opened database successfully\n";

my $stmt = qq(UPDATE EMPLOYEES set SALARY = 55000.00 where ID=5;);

Chapter 10

223

my $rv = $dbh->do($stmt);

 print "Number of rows updated : $rv\n";

$stmt = qq(SELECT id, name, address, salary from EMPLOYEES;);

my $sth = $dbh->prepare($stmt) or die "Check again: " . $dbh-
>errstr();

$rv = $sth->execute() or die "Cannot execute: " . $sth->errstr();

while(my @row = $sth->fetchrow_array()) {

 print "ID = ". $row[0] . "\n";

 print "NAME = ". $row[1] ."\n";

 print "ADDRESS = ". $row[2] ."\n";

 print "SALARY = ". $row[3] ."\n\n";

}

$sth->finish();

print "Operation Completed successfully\n";

$dbh->disconnect();

In the preceding code, we use the UPDATE statement to set the SALARY value to

55000, where the value of the ID column is 5.

3. Next, we are going to see the updated records and see the changed records being

made visible in the EMPLOYEES table, as shown in the following code output:

bash-3.2$ perl update.pl

Opened database successfully

Number of rows updated : 1

ID = 6

NAME = AmitGovil

ADDRESS = Aligarh

SALARY = 85000

ID = 7

NAME = NeerajKumar

ADDRESS = Rohtak

Accessing PostgreSQL from Perl

224

SALARY = 90000

ID = 8

NAME = SandeepSharma

ADDRESS = Gurgaon

SALARY = 75000

ID = 5

NAME = SandeepSingh

ADDRESS = Saharanpur

SALARY = 55000

Operation Completed successfully

How it works...

The following is an excerpt of the code that was used to update existing records using Perl into

the EMPLOYEES table:

my $stmt = qq(UPDATE EMPLOYEES set SALARY = 55000.00 where ID=5;);

my $rv = $dbh->do($stmt);

print "Number of rows updated : $rv\n";

The irst initial requirement is to connect to the database using the connect() function,

which was explained in the irst recipe of the chapter.

Once the connection to the dvdrental database is made, we use the UPDATE statement

and pass the UPDATE SQL statement in a $stmt variable. After this is done, the next step

is to use the do() function to return the result of the UPDATE statement contained in the

$stmt variable. We also use a variable called $rv, which is used to track the number of

records updated, if any. Once this is done, the next step is to fetch the records from the

table in order to validate the changes done as part of using the UPDATE statement.

Deleting records using Perl
In this recipe, we are going to show you how to delete records in a table using Perl.

Chapter 10

225

Getting ready
In this recipe, we will irst display the number of existing records in the table. Then, we
will delete some records, see the number of records deleted, and then see the number

of available records present in the table after deletion.

How to do it...

In this section we will delete the existing records of the EMPLOYEES table.

1. First, we are going to check the existing records in the EMPLOYEES table,

as shown here:

dvdrental=# select * from EMPLOYEES;

 id | name | age | address | salary

----+---------------+-----+------------------+--------

 6 | AmitGovil | 37 | Aligarh | 85000

 7 | NeerajKumar | 38 | Rohtak | 90000

 8 | SandeepSharma | 36 | Gurgaon | 75000

 5 | SandeepSingh | 37 | Saharanpur | 55000

(4 rows)

2. Next, we are going to use the following Perl code to delete some records from the

EMPLOYEES table and save the code in a ile called delete.pl, which we are

going to execute from the command line:

#!/usr/bin/perl

use DBI;

use strict;

my $driver = "Pg";

my $database = "dvdrental";

my $dsn = "DBI:$driver:dbname=$database;host=127.0.0.1;port=5432";

my $userid = "postgres";

my $password = "postgres";

my $dbh = DBI->connect($dsn, $userid, $password, { RaiseError => 1
})

 or die $DBI::errstr;

Accessing PostgreSQL from Perl

226

print "Opened database successfully\n";

my $stmt = qq(DELETE from EMPLOYEES where ID=6;);

my $rv = $dbh->do($stmt);

 print "Number of rows deleted : $rv\n";

$stmt = qq(SELECT id, name, address, salary from EMPLOYEES;);

my $sth = $dbh->prepare($stmt) or die "Cannot prepare: " . $dbh-
>errstr();

$rv = $sth->execute() or die "Cannot execute: " . $sth->errstr();

while(my @row = $sth->fetchrow_array()) {

 print "ID = ". $row[0] . "\n";

 print "NAME = ". $row[1] ."\n";

 print "ADDRESS = ". $row[2] ."\n";

 print "SALARY = ". $row[3] ."\n\n";

}

$sth->finish();

print "Operation done successfully\n";

$dbh->disconnect();

Here, in the preceding code, the DELETE statement that we issue is used to delete a

record from the table where the value of the ID column is 6.

3. Next we check the command-line output of the preceding code:

bash-3.2$ perl delete.pl

Opened database successfully

Total number of rows deleted : 1

ID = 7

NAME = NeerajKumar

ADDRESS = Rohtak

SALARY = 90000

ID = 8

NAME = SandeepSharma

ADDRESS = Gurgaon

Chapter 10

227

SALARY = 75000

ID = 5

NAME = SandeepSingh

ADDRESS = Saharanpur

SALARY = 55000

Operation done successfully

How it works...

The following is an excerpt from the code that was used to delete records from the

EMPLOYEES table:

my $stmt = qq(DELETE from EMPLOYEES where ID=6;);

my $rv = $dbh->do($stmt);

print "Number of rows deleted : $rv\n";

The irst initial requirement is to connect to the database using the connect() function,

which was explained in the irst recipe of the chapter.

Once the connection to the dvdrental database is made, we use the DELETE statement

and pass the DELETE SQL statement in a $stmt variable. After this is done, the next step is

to use the do() function in order to return the result of the DELETE statement contained in

the $stmt variable. We also use a variable called $rv, which is used to track the number of

rows deleted from the table. Once this is done, the next step is to fetch the records from the

table to see the list of available records in the EMPLOYEES table.

11
Accessing PostgreSQL

from Python

In this chapter, we will cover the following recipes:

 f Making connections to a PostgreSQL database using Python

 f Creating tables using Python

 f Inserting records using Python

 f Accessing data using Python

 f Updating records using Python

 f Deleting records using Python

Introduction
Python is a general purpose, dynamic object oriented and a high level programming language.

Python is an open source, well designed, robust and portable programming language. Python

has an easy to learn syntax and with its advanced programming features it is widely used by

developers and administrators worldwide. Python provides an easy way for database access

via the DB API which provides a minimal standard for working with databases using Python

syntax and semantics.

The steps involved in using the Python API are given as follows:

 f Importing the API module

 f Establishing a database session

 f Executing SQL statements

 f Closing the database session

Accessing PostgreSQL from Python

230

Making connections to a PostgreSQL
database using Python

Here, in this recipe, we are going to make connections to a PostgreSQL database using

Python language.

Getting ready
The following instructions are performed on a CentOS Linux machine and it is assumed that

python language is already installed.

PostgreSQL database can be accessed using psycopg2 module which is a database adapter

for Python language. This can be installed, as follows, on a CentOS machine:

sudo yum install python-psycopg2

How to do it...

We can use the following Python code to make connections to an existing PostgreSQL

database, that is the dvdrental database which resides on the same machine and

uses port 5432.

The following Python code can be saved in a ile called connect.py:

#!/usr/bin/python

import psycopg2

conn = psycopg2.connect(database="dvdrental", user="postgres",
password="postgres", host="127.0.0.1", port="5432")

print "Opened DVD Rental Database Successfully Using Python"

The preceding Python code can then be executed at the command line, as follows:

-bash-3.2$ python connect.py

The following is the output of the preceding code:

Opened DVD Rental Database Successfully Using Python

As can be seen from the preceding output, while the program is being executed the

output message indicates that the connection to the database dvdrental has been

made successfully.

Chapter 11

231

How it works...

The connection to the database is made using the connect function which returns a

connection object. The connect function, used here in the preceding code, consists

of the following parameters:

connect("db", "userid", "password", host,port);

The irst argument to the connect function, is the database to which the connection is to be

made to.

The second argument is the userid or the username by which a connection to the

PostgreSQL database is made.

The third argument is the password which is the password of the user who initiates the

database connection.

The fourth argument refers to the hostname or the IP address of the server hosting

the database.

The next argument refers to the port number of the database on which the client can initiate

the database connection.

In the preceding code, in the How to do it... section, we used the connect function, as follows:

conn = psycopg2.connect(database="dvdrental", user="postgres",
password="postgres", host="127.0.0.1", port="5432")

Here, we are connecting to the dvdrental database using the postgres user and password

postgres. The machine to which we are connecting is the localhost and the database server

listens on port 5432 for connections.

If you need more information on the connect function you can use the following links for a

more detailed explanation:

 f http://blogs.wrox.com/article/using-the-python-database-apis/

 f http://initd.org/psycopg/docs/module.html#psycopg2.connect

Creating tables using Python
Here, in this recipe, we are going to show how to create tables in the PostgreSQL database

using Python language.

http://blogs.wrox.com/article/using-the-python-database-apis/
http://initd.org/psycopg/docs/module.html#psycopg2.connect

Accessing PostgreSQL from Python

232

Getting ready
Before creating a table, we irst need to make a connection to the PostgreSQL database using
the connect function, and once the database is opened then we can use DDL statements to

create the table.

How to do it...

We can use the following code to create a table by the name EMPLOYEES. This table will be

stored in the dvdrental database because the connection made by the PostgreSQL adapter

is to the dvdrental database. The following code is saved in a ile called createtable.py

which will be executed later:

#!/usr/bin/python

import psycopg2

conn = psycopg2.connect(database="dvdrental", user="postgres",
password="postgres", host="127.0.0.1", port="5432")

print "Opened DVD Rental Database Successfully"

cur = conn.cursor()

cur.execute('''CREATE TABLE EMPLOYEES

 (ID INT PRIMARY KEY NOT NULL,

 NAME TEXT NOT NULL,

 AGE INT NOT NULL,

 ADDRESS CHAR(50),

 SALARY REAL);''')

print "Table created successfully"

conn.commit()

conn.close()

In the following output, we can see that when the createtable.py ile, which contains
the preceding code is executed, a connection to the dvdrental database is made and the

EMPLOYEES table is created. This can be seen from the command line console message

Table created successfully:

bash-3.2$ python createtable.py

Opened DVD Rental Database Successfully

Table created successfully

Chapter 11

233

How it works...

From the point of view of table creation, it is the following part of the preceding code that

needs explanation:

cur = conn.cursor()

cur.execute('''CREATE TABLE EMPLOYEES

 (ID INT PRIMARY KEY NOT NULL,

 NAME TEXT NOT NULL,

 AGE INT NOT NULL,

 ADDRESS CHAR(50),

 SALARY REAL);''')

print "Table created successfully"

conn.commit()

conn.close()

First we create a cursor object by invoking the connection object's cursor() function. Once

this is done, we use the cursor object's execute() function to execute the CREATE TABLE

DDL statement to create a table. Then, we call the connection object's commit function to

save the changes and inally we call the connection object's close() function to close the

database connection.

Inserting records using Python
In this recipe we are going to insert new records in the EMPLOYEES table in the

dvdrental database.

Getting ready
Before inserting records in the table, we irst need to use the connect function to connect to

the database irst. The connect function was discussed in the irst recipe of the chapter.

How to do it...

We are going to use the following code to insert new records in the EMPLOYEES table:

#!/usr/bin/python

import psycopg2

conn = psycopg2.connect(database="dvdrental", user="postgres",
password="postgres", host="127.0.0.1", port="5432")

Accessing PostgreSQL from Python

234

print "Opened database successfully"

cur = conn.cursor()

cur.execute("INSERT INTO EMPLOYEES (ID,NAME,AGE,ADDRESS,SALARY) \

 VALUES (1, 'SandeepSingh', 39, 'Saharanpur', 90000.00)");

cur.execute("INSERT INTO EMPLOYEES (ID,NAME,AGE,ADDRESS,SALARY) \

 VALUES (2, 'NeerajKumar', 42, 'Rohtak', 90000.00)");

cur.execute("INSERT INTO EMPLOYEES (ID,NAME,AGE,ADDRESS,SALARY) \

 VALUES (3, 'AmitGovil', 37, 'Aligarh', 88000.00)");

cur.execute("INSERT INTO EMPLOYEES (ID,NAME,AGE,ADDRESS,SALARY) \

 VALUES (4, 'SandeepSharma', 36, 'Haridwar ', 75000.00)");

conn.commit()

print "Records created successfully in EMPLOYEES Table";

conn.close()

The preceding code is saved in a ile called insert.py and the following is the command line

output that we get once the new records are inserted successfully:

bash-3.2$ python insert.py

Opened database successfully

Records created successfully in Employees Table

How it works...

For the explanation of the preceding code, we are taking an excerpt of the code that will

demonstrate how the records are getting inserted into the EMPLOYEES table.

cur = conn.cursor()

cur.execute("INSERT INTO EMPLOYEES (ID,NAME,AGE,ADDRESS,SALARY) \

 VALUES (1, 'SandeepSingh', 39, 'Saharanpur', 90000.00)");

If we see the preceding code irst, then we can see that once the connection is made to the
database, we use the underlying connection object's cursor() function which creates the

cursor object which we are going to utilize in executing the respective SQL statements. Here,

in the preceding code, we can see that the cursor object is stored in the cur variable and

then we call the cursor object's execute() function to execute the INSERT statements and

so for other SQL statements. Eventually we call the commit() to ensure that the changes

made / records inserted are saved in the database.

Chapter 11

235

Accessing table data using Python
In this recipe, we are going to see how to access table data from a PostgreSQL database

using Python.

Getting ready
Database connection is mandatory before we can select data. Henceforth for this reason

the connect() function is the irst one that should be invoked to irst make a database
connection before accessing data.

How to do it...

We can use the following code to access data from the EMPLOYEES table present in the

dvdrental database. The following code is saved in a ile called select.py, which will

be later executed from the command line:

#!/usr/bin/python

import psycopg2

conn = psycopg2.connect(database="dvdrental", user="postgres",
password="postgres", host="127.0.0.1", port="5432")

print "Opened database successfully"

cur = conn.cursor()

cur.execute("SELECT id, name, address, salary from EMPLOYEES")

rows = cur.fetchall()

for row in rows:

 print "ID = ", row[0]

 print "NAME = ", row[1]

 print "ADDRESS = ", row[2]

 print "SALARY = ", row[3], "\n"

print "Select Operation done successfully";

conn.close()

The following is the output of the preceding code:

bash-3.2$ python select.py

Opened database successfully

ID = 1

Accessing PostgreSQL from Python

236

NAME = SandeepSingh

ADDRESS = Saharanpur

SALARY = 90000.0

ID = 2

NAME = NeerajKumar

ADDRESS = Rohtak

SALARY = 90000.0

ID = 3

NAME = AmitGovil

ADDRESS = Aligarh

SALARY = 88000.0

ID = 4

NAME = SandeepSharma

ADDRESS = Haridwar

SALARY = 75000.0

Select Operation done successfully

How it works...

The following is the sub part of the code that mainly deals with selecting records from a table:

cur.execute("SELECT id, name, address, salary from EMPLOYEES")

rows = cur.fetchall()

for row in rows:

 print "ID = ", row[0]

 print "NAME = ", row[1]

 print "ADDRESS = ", row[2]

 print "SALARY = ", row[3], "\n"

print "Select Operation done successfully";

conn.close()

Chapter 11

237

In the preceding code, we irst call the cursor object's execute() function to execute the

SELECT statement. However, here the situation is that a given table may consist of multiple

records and our objective is to fetch those multiple rows by integrating through each row, that

is one record at a time. To achieve the target of fetching multiple rows from a table we use

the cursor object's fetchall() function which returns all the rows of a resultset, thereby

returning a list of rows from a table. To iterate through each row we use the for loop to iterate

through the rows of a table printing each row of the table on the console during each iteration.

You may refer to the following web link for more information:

https://wiki.postgresql.org/wiki/Psycopg2_Tutorial

Updating records using Python
Here, in this recipe we are to update existing records in a table in the PostgreSQL database

using Python language.

Getting ready
In this recipe, irst we are going to show the number of existing records in the table, then
we are going to update some records, see the number of records updated and then see the

changed records being made visible in the table when the table records are accessed again.

How to do it...

First we check the existing records in the EMPLOYEES table.

dvdrental=# select * from employees;

 id | name | age | address | salary

----+---------------+-----+-------------------------------+--------

 1 | SandeepSingh | 39 | Saharanpur | 90000

 2 | NeerajKumar | 42 | Rohtak | 90000

 3 | AmitGovil | 37 | Aligarh | 88000

 4 | SandeepSharma | 36 | Haridwar | 75000

https://wiki.postgresql.org/wiki/Psycopg2_Tutorial

Accessing PostgreSQL from Python

238

Next we use the following Python code to update some of the existing records in the

EMPLOYEES table and save the following code in a ile called update.py:

#!/usr/bin/python

import psycopg2

conn = psycopg2.connect(database="dvdrental", user="postgres",
password="postgres", host="127.0.0.1", port="5432")

print "Opened database successfully"

cur = conn.cursor()

cur.execute("UPDATE EMPLOYEES SET SALARY = 105000.00 WHERE ID=1")

conn.commit()

print "Total number of rows updated :", cur.rowcount

cur.execute("SELECT id, name, address, salary FROM EMPLOYEES")

rows = cur.fetchall()

for row in rows:

 print "ID = ", row[0]

 print "NAME = ", row[1]

 print "ADDRESS = ", row[2]

 print "SALARY = ", row[3], "\n"

print "Update Operation done successfully";

conn.close()

In the preceding code, we are using the UPDATE statement to set the salary to 55000

where the value of id column is 1. Next we are going to see the updated records and see the

changed records being visible in the EMPLOYEES table, as shown in the following code output:

--bash-3.2$ python update.py

Opened database successfully

Total number of rows updated : 1

ID = 2

NAME = NeerajKumar

ADDRESS = Rohtak

SALARY = 90000.0

ID = 3

NAME = AmitGovil

ADDRESS = Aligarh

Chapter 11

239

SALARY = 88000.0

ID = 4

NAME = SandeepSharma

ADDRESS = Haridwar

SALARY = 75000.0

ID = 1

NAME = SandeepSingh

ADDRESS = Saharanpur

SALARY = 105000.0

Update Operation done successfully

How it works...

The following is an excerpt of the code that was used to update existing records using Python

language into EMPLOYEES table:

cur = conn.cursor()

cur.execute("UPDATE EMPLOYEES set SALARY = 105000.00 where ID=1")

conn.commit()

print "Total number of rows updated :", cur.rowcount

If we take a look at the preceding code, we are familiar with the connection object's
cursor() function and subsequently with the cursor object 's execute() function and

these have been discussed in the previous recipes. However, for updating records in a table

the irst change that happens here is that the UPDATE statement is used as a part of the

execute() function to update an underlying record in the table. However, we need to make

sure that the changes that we made in the table are visible across the database. Henceforth,

we use the connection object's commit() function to save the changes that were made

by the UPDATE statement. Once this is done, the changes that were made by the UPDATE

statement are visible to anyone who selects the data from the table. We also use the cursor

object's rowcount read only attribute to ind out the number of records that were modiied by
the last executed statement. The rowcount attribute could be used either with the UPDATE,

DELETE or INSERT statements.

Accessing PostgreSQL from Python

240

Deleting records using Python
Here in this recipe we are going to show how to delete records in a table using Python language.

Getting ready
In this recipe, irst we are going to show the number of existing records in the table, then
we are going to delete some records, see the number of records deleted and then see the

available number of records present in the table after deletion.

How to do it...

The following are the steps to delete records in a table:

1. First we are going to check the existing records in the EMPLOYEES table.

dvdrental=# select * from employees;

 id | name | age | address | salary

----+---------------+-----+---------------------+--------

 1 | SandeepSingh | 39 | Saharanpur | 90000

 2 | NeerajKumar | 42 | Rohtak | 90000

 3 | AmitGovil | 37 | Aligarh | 88000

 4 | SandeepSharma | 36 | Haridwar | 75000

2. Next we are going to use the following Python code to delete some records from the

EMPLOYEES table and save the code in a ile called delete.py, which we are going

to execute from the command line:

#!/usr/bin/python

import psycopg2

conn = psycopg2.connect(database="dvdrental", user="postgres",
password="postgres", host="127.0.0.1", port="5432")

Chapter 11

241

print "Opened database successfully"

cur = conn.cursor()

cur.execute("DELETE from EMPLOYEES where ID=2;")

conn.commit()

print "Total number of rows deleted :", cur.rowcount

cur.execute("SELECT id, name, address, salary from EMPLOYEES")

rows = cur.fetchall()

for row in rows:

 print "ID = ", row[0]

 print "NAME = ", row[1]

 print "ADDRESS = ", row[2]

 print "SALARY = ", row[3], "\n"

print "DELETE Operation done successfully";

conn.close()

Here, the preceding DELETE statement that we are issuing, is used to delete a record

from the table where the value of ID column is 2.

3. Next we see the command line output of the preceding code:

bash-3.2$ python delete.py

Opened database successfully

Total number of rows deleted : 1

ID = 1

NAME = SandeepSingh

ADDRESS = Saharanpur

SALARY = 90000.0

ID = 3

NAME = AmitGovil

ADDRESS = Aligarh

SALARY = 88000.0

ID = 4

NAME = SandeepSharma

ADDRESS = Haridwar

SALARY = 75000.0

DELETE Operation done successfully

Accessing PostgreSQL from Python

242

How it works...

The following is an excerpt from the code that was used to delete records from the

EMPLOYEES table:

cur = conn.cursor()

cur.execute("DELETE from EMPLOYEES where ID=2;")

conn.commit()

print "Total number of rows deleted :", cur.rowcount

In the preceding code snippet, we use the cursor object's execute function to execute

the DELETE statement. We then use the connection object's commit method to commit

or save the changes made by the DELETE statement. Finally, we use the cursor object's
rowcount attribute to ind the number of records that were deleted by the last executed

DELETE statement.

12
Data Migration from

Other Databases
and Upgrading the

PostgreSQL Cluster

In this chapter, we will cover the following recipes:

 f Using pg_dump to upgrade data

 f Using the pg_upgrade utility for a version upgrade

 f Replicating data from other databases to PostgreSQL using GoldenGate

Introduction
Often in the career of a database administrator, he/she is required to do major version

upgrades of the PostgreSQL server. Over a period of time new terminologies and features

get added to PostgreSQL and this results in a major version release. To implement the new

features of the new version, the existing PostgreSQL setup needs to be upgraded to the

new version. Database upgrades require proper planning, careful execution and planned

downtime. PostgreSQL offers two major ways to do a version upgrade.

 f With the help of pg_dump utility

 f With the help of pg_upgrade script

Data Migration from Other Databases and Upgrading the PostgreSQL Cluster

244

Also in this chapter we cover the Oracle GoldenGate tool. GoldenGate is a heterogeneous

replication software that can be used to replicate data between different databases.

In this chapter we are going to cover heterogeneous replication between Oracle and PostgreSQL.

Using pg_dump to upgrade data
Here, in this recipe, we are going to upgrade PostgreSQL cluster from version 9.2 to 9.3 and

we will utilize pg_dump utility for this purpose.

Getting ready
The only prerequisites here are that an existing PostgreSQL cluster must be set up and running.

The required version here is PostgreSQL version 9.2. These steps are carried out on a 64 bit

CentOS machine.

How to do it...

Below are the series of steps that need to be carried out for upgrading PostgreSQL from

version 9.2 to 9.3 using pg_dump:

1. Backup your database using the pg_dumpall command.

pg_dumpall > db.backup

2. The next step would be to shutdown to the current PostgreSQL server.

pg_ctl -D /var/lib/pgsql/9.2/data stop

3. The next step would be to rename the old PostgreSQL installation directory.

mv /var/lib/pgsql /var/lib/pgsql.old

4. The next step would be to install the new version of PostgreSQL which is PostgreSQL

version 9.3. Prior to doing that, we will check for existing packages before installing the

new ones with the following command and then we will install the new version package:

 rpm –qa |grep postgresql

wget http://yum.postgresql.org/9.3/redhat/rhel-6.4-x86_64/pgdg-
centos93-9.3-1.noarch.rpm

rpm -Uvh ./pgdg- centos93-9.3-1.noarch.rpm

yum install postgresql93-server.x86_64 postgresql93-contrib.x86_64
postgresql93-libs.x86_64 postgresql93.x86_64 postgresql93-devel.
x86_64

Chapter 12

245

5. The next step would be to initialize the PostgreSQL version 9.3 server.

/usr/pgsql-9.3/bin/initdb -D /var/lib/pgsql/9.3/data

6. Once the database cluster is initialized, then the next step is to restore the

coniguration iles from the previous version 9.2 data directory to the current
version 9.3 data directory location.

cd /var/lib/pgsql.old/9.2/data

cp pg_hba.conf postgresql.conf /var/lib/pgsql/9.3/data

7. The next step would be to start the PostgreSQL 9.3 database server.

pg_ctl -D /var/lib/pgsql/9.3/data start

8. Finally, as a last step, restore your data from the backup that was created in step 1.

/usr/pgsql-9.3/bin/psql -d postgres -f db.backup

9. As a next step, we can either remove the old version data directory or else we can

continue working alongside both the server versions.

10. If we choose to remove the old version, as mentioned in step 9, we can then remove

the respective old version packages, as follows:

yum remove postgresql92-server-9.2.3-2PGDG.rhel6.x86_64
postgresql92-contrib-9.2.3-2PGDG.rhel6.x86_64 postgresql92-libs-
9.2.3-2PGDG.rhel6.x86_64 postgresql92-9.2.3-2PGDG.rhel6.x86_64
postgresql92-devel-9.2.3-2PGDG.rhel6.x86_64

How it works...

Here, initially we take a dump of all the databases in the existing PostgreSQL 9.2 version

cluster. We then initiate a clean shutdown of current PostgreSQL server and rename the

existing PostgreSQL installation directory to avoid any conlicts with the new version of
PostgreSQL, that is version 9.3 that is being installed. Once the respective packages of

the new version are installed we then proceed with initializing a database directory for

PostgreSQL 9.3 server. To ensure that the desired coniguration settings come into effect,
we will need to copy the coniguration iles from the old version's data directory to the new
version's data directory and then start the new version PostgreSQL server service using the
coniguration settings that were deined for the existing environment in the old server. Once
the PostgreSQL server version 9.3 has been started we can connect to the databases on this

server. Eventually we restore all the tables and databases from the old PostgreSQL server 9.2

to the new PostgreSQL server version 9.3 by using the backup that was made in step 1 in the

preceding section.

You may refer to the following links for a more detailed explanation on upgrading a PostgreSQL

cluster using pg_dump:

http://www.postgresql.org/docs/9.3/static/upgrading.html

http://www.postgresql.org/docs/9.3/static/upgrading.html

Data Migration from Other Databases and Upgrading the PostgreSQL Cluster

246

Using the pg_upgrade utility for a version
upgrade

Here, in this recipe, we are going to talk about upgrading a PostgreSQL cluster using pg_upgrade

utility. We will be covering a PostgreSQL version upgrade from version 9.2 to version 9.3.

Getting ready
The only prerequisites here, are that an existing PostgreSQL cluster must be set up and

running. The required version here is PostgreSQL version 9.2. These steps are carried

out on a 64 bit CentOS machine.

How to do it...

The following are the steps to upgrade a PostgreSQL cluster from version 9.2 to version 9.3

using the pg_upgrade utility:

1. Take a full backup of the data directory using a ilesystem dump or use pg_dumpall

to backup data. Before taking a backup stop the running PostgreSQL server.

pg_ctl -D $PGDATA stop

cd /var/lib/pgsql/9.2/

tar -cvf data.tar data

2. The next step would to be install the new version of PostgreSQL.

 wget http://yum.postgresql.org/9.3/redhat/rhel-6.4-x86_64/pgdg-
centos93-9.3-1.noarch.rpm

 rpm -ivh ./pgdg- centos93-9.3-1.noarch.rpm

3. As the repository is now installed, the next step is to determine which packages need

to be installed. For this purpose, check the packages that are installed for the current

version and then get the list of packages that are needed to be installed for the new

PostgreSQL version 9.3.

 rpm -qa | grep postgre | grep 92

postgresql92-server-9.2.3-2PGDG.rhel6.x86_64

postgresql92-contrib-9.2.3-2PGDG.rhel6.x86_64

postgresql92-libs-9.2.3-2PGDG.rhel6.x86_64

postgresql92-9.2.3-2PGDG.rhel6.x86_64

Chapter 12

247

postgresql92-devel-9.2.3-2PGDG.rhel6.x86_64

 yum list postgres* | grep 93

postgresql93.x86_64 9.3.4-1PGDG.rhel6 pgdg93

postgresql93-contrib.x86_64 9.3.4-1PGDG.rhel6 pgdg93

postgresql93-debuginfo.x86_64 9.3.4-1PGDG.rhel6 pgdg93

postgresql93-devel.x86_64 9.3.4-1PGDG.rhel6 pgdg93

postgresql93-docs.x86_64 9.3.4-1PGDG.rhel6 pgdg93

postgresql93-jdbc.x86_64 9.3.1100-1PGDG.rhel6 pgdg93

postgresql93-jdbc-debuginfo.x86_64 9.3.1100-1PGDG.rhel6 pgdg93

postgresql93-libs.x86_64 9.3.4-1PGDG.rhel6 pgdg93

postgresql93-odbc.x86_64 09.02.0100-1PGDG.rhel6 pgdg93

postgresql93-odbc-debuginfo.x86_64 09.02.0100-1PGDG.rhel6 pgdg93

postgresql93-plperl.x86_64 9.3.4-1PGDG.rhel6 pgdg93

postgresql93-plpython.x86_64 9.3.4-1PGDG.rhel6 pgdg93

postgresql93-pltcl.x86_64 9.3.4-1PGDG.rhel6 pgdg93

postgresql93-server.x86_64 9.3.4-1PGDG.rhel6 pgdg93

postgresql93-test.x86_64 9.3.4-1PGDG.rhel6 pgdg93

The packages that will be installed for the new version will match the packages that

are currently installed for the old version.

 yum install postgresql93-server.x86_64 postgresql93-contrib.
x86_64 postgresql93-libs.x86_64 postgresql93.x86_64 postgresql93-
devel.x86_64

4. Now that the new version of PostgreSQL is installed, the next step is to initialize the

data directory for the new PostgreSQL version 9.3 database.

/etc/init.d/postgresql-9.3 initdb

5. Once the data directory has been initialized for the new PostgreSQL version 9.3,

the next step is to run the pg_upgrade utility.

cd /usr/pgsql-9.3/bin

./pg_upgrade -v -b /usr/pgsql-9.2/bin/ -B /usr/pgsql-9.3/bin/ -d /
var/lib/pgsql/9.2/data/ -D /var/lib/pgsql/9.3/data/

Data Migration from Other Databases and Upgrading the PostgreSQL Cluster

248

Once the upgrade completes , it will then generate two iles analyze_new_
cluster.sh and delete_old_cluster.sh iles respectively. These iles are
basically used to generate optimizer statistics and delete the old PostgreSQL cluster

version's data iles.

6. Post the upgrade step we would need to copy the coniguration iles and the
authentication iles present in the old version to the new setup, as follows:
cd /var/lib/pgsql/9.2/data

cp -p pg_hba.conf postgresql.conf /var/lib/pgsql/9.3/data/

7. The next step would be to start the PostgreSQL server version 9.3 service.

service postgresql-9.3 start

8. The next step would be to run the analyze_new_cluster.sh shell script that

was generated at the end of step 5. This script is used to collect minimal optimizer

statistics in order to get a working and a usable PostgreSQL system.

./analyze_new_cluster.sh

9. The next step would be to remove the old PostgreSQL directory by running the

following script:

./delete_old_cluster.sh

10. Finally, as a last step, we will remove the old PostgreSQL version 9.2 installed packages.

yum remove postgresql92

How it works...

After installing the packages for the PostgreSQL server version 9.3, what we are doing here

is changing the location of data directory in the startup script, as shown in step 4. After this

is done, we initialize the data directory for the new PostgreSQL server. The difference in

steps here, and the previous recipe, is that here we are changing the location of the data

directory, the log path, and port number of the new PostgreSQL server version, whereas in

the earlier recipe we renamed the existing PostgreSQL server version data directory. Once the

data directory is initialized, we then we stop the current PostgreSQL server and then launch

the pg_upgrade script to upgrade the existing setup to the new version. The pg_upgrade

script requires specifying the path of old and new data directories and binaries. Once the

upgrade completes it generates two shell scripts analyze_new_cluster.sh and delete_
old_cluster.sh to generate statistics and delete the old version PostgreSQL directory. To

preserve the existing coniguration, we would need the pg_hba.conf and postgresql.
conf iles from the old version's data directory to the new version's data directory, as shown
in step 6 in the preceding section and then we can start the upgraded PostgreSQL server.

Once the server has started, we can then proceed to generate statistics via the analyze_
new_cluster.sh script and then remove the old version directory via the delete_old_
cluster.sh script, as shown in steps 8 and 9 respectively.

Chapter 12

249

You can refer to the following web link for more information regarding the upgrade process:

http://www.postgresql.org/docs/9.3/static/pgupgrade.html

http://no0p.github.io/postgresql/2014/03/29/upgrading-pg-ubuntu.html

Replicating data from other databases to
PostgreSQL using GoldenGate

In this recipe, we are going to cover heterogeneous replication using the Oracle GoldenGate

software. We are going to migrate table data from Oracle to PostgreSQL.

Getting ready
Since this recipe talks about replicating data from Oracle to PostgreSQL, it is important to

cover Oracle installation. Also, since GoldenGate is the primary tool used, we will also cover

the GoldenGate installation for both Oracle and PostgreSQL.

To install the Oracle 11g software on the Linux platform, you may refer to any of the following

web links:

 f http://oracle-base.com/articles/11g/oracle-db-11gr2-
installation-on-oracle-linux-5.php

 f http://dbaora.com/install-oracle-11g-release-2-11-2-on-centos-
linux-7/

To install GoldenGate for the Oracle database, refer to the following web link:

http://docs.oracle.com/cd/E35209_01/doc.1121/e35957.pdf

Here are the high level installation steps given for the ease of the reader. Please refer to the

preceding web link for more detailed information:

 f Login to edelivery.oracle.com.

 f Select Oracle Fusion Middleware from the Select a Product Pack dropdown menu

and select the Linux x86-64 option from the Platform dropdown menu and click on

the Go button.

http://www.postgresql.org/docs/9.3/static/pgupgrade.html
http://no0p.github.io/postgresql/2014/03/29/upgrading-pg-ubuntu.html
http://oracle-base.com/articles/11g/oracle-db-11gr2-installation-on-oracle-linux-5.php
http://oracle-base.com/articles/11g/oracle-db-11gr2-installation-on-oracle-linux-5.php
http://dbaora.com/install-oracle-11g-release-2-11-2-on-centos-linux-7/
http://dbaora.com/install-oracle-11g-release-2-11-2-on-centos-linux-7/
http://docs.oracle.com/cd/E35209_01/doc.1121/e35957.pdf
edelivery.oracle.com

Data Migration from Other Databases and Upgrading the PostgreSQL Cluster

250

 f Choose the option whose description says Oracle GoldenGate on Oracle v11.2.1

Media Pack for Linux x86-64, click on the Continue button and it will open a web

link. Then download the ile with the name Oracle GoldenGate V11.2.1.0.3 for

Oracle 11g on Linux x86-64.

 f As a next step, extract the downloaded ile and change the directory to the new
location and then launch the GoldenGate command-line interface using ggsci

command. Before launching the GoldenGate command-line interface set the

GoldenGate installation directory and library path in PATH and LD_LIBRARY_PATH

environment variables respectively.

To install GoldenGate for PostgreSQL, refer to the following web link:

https://docs.oracle.com/cd/E35209_01/doc.1121/e29642.pdf

Here are the high level installation steps given for the ease of the reader. Please refer to the

preceding web link for more detailed information and instructions:

 f Login to edelivery.oracle.com

 f Select Oracle Fusion Middleware from the Select a Product Pack dropdown menu

and select the Linux x86-64 option from the Platform dropdown menu and click on

the Go button.

 f Choose the option whose description says Oracle GoldenGate for Non Oracle

Database v11.2.1 Media Pack for Linux x86-64, click on the Continue button

and you will directed to a web link where you need to click on the Download button

against the ile whose name says Oracle GoldenGate V11.2.1.0.2 for PostgreSQL

on Linux x86-64.

 f Once the ile is downloaded, then extract the zip ile and change the directory to the
newly created location and then launch the GoldenGate command-line interface

using the ggsci command. Before launching the GoldenGate command-line

interface set the GoldenGate installation directory and library path in PATH and

LD_LIBRARY_PATH environment variables respectively.

Here, in this section, we will irst cover a brief overview of the procedure used for table data
replication from the source database, that is Oracle to target database, that is PostgreSQL.

1. From the source database, that is Oracle here irst, we will have to create various
subdirectories for GoldenGate and for various database deinition iles.

2. The next step is to create a parameter ile which contains a port number for the
manager process for GoldenGate on the source database and then start the manager.

3. Similar to this on the target database, that is PostgreSQL, we will have to create

various subdirectories for GoldenGate and for various database deinition iles.

4. The next step is to create a parameter ile which contains a port number for the
manager process for GoldenGate on the target database and then start the manager.

https://docs.oracle.com/cd/E35209_01/doc.1121/e29642.pdf

Chapter 12

251

5. The next step would be to create two tables with the same structure on both the

source, that is Oracle and target database, that is PostgreSQL.

6. Now that we have the tables created on both the source and target database, we will

log in to source database from the GoldenGate tool and capture the table deinitions
for the tables that needs to be replicated.

7. Similar to the preceding step we will log in into the target database using the

GoldenGate command-line interface and capture the table deinitions for the
table which was created in step 5.

8. In the next step, we start the extract process on the source. We irst create a
parameter ile for the extract process, which contains the information about the
remote host and consists of a trail ile which is used to capture any changes made on
the table in the source database and transport these changes to the target database.

We then start the extract process and it will capture any changes on the table in the

source database, that is Oracle.

9. The next step, is to start the replicat process on the target database. For this we

set up a replicat parameter ile. Once the replicat process is started, it will read

the changes from the trail ile which was used in the previous step at the source to

capture changes made to the table in the source database. The replicat process

will read these changes and dump them into the target database, that is PostgreSQL.

10. Now that we have the extract process conigured on the source database to capture
changes and the replicat process set up on the target database to read those

changes. We will now begin to add/change some records on the source. With the

extract process capturing these changes and recording them in the trail ile and the
trail ile being shipped to the server hosting the target database, the replicat

process residing on the target reads those changes from the trail ile and applies
them to the target database.

We are assuming that a username nkumar with password nkumar has already been

setup on both Oracle and PostgreSQL. We will be using the tables created in nkumar

schema for replication between Oracle and PostgreSQL.

For instance, on Oracle, we can create the schema user nkumar, as follows, after

logging in as the sys user:

SQL > CREATE USER nkumar identified by nkumar ;

SQL> GRANT CREATE ANY TABLE to nkumar;

For creating nkumar user in PostgreSQL, you may refer to Chapter 1, Managing

Databases and the PostgreSQL Server for more details on how to create a user in

PostgreSQL and accordingly create this user in PostgreSQL.

Data Migration from Other Databases and Upgrading the PostgreSQL Cluster

252

How to do it...

The following are the complete sequence of steps required to migrate table data/changes

from Oracle to PostgreSQL using GoldenGate:

1. First connect as the superuser SYS using the operating system authentication on the

machine hosting the Oracle database using the sqlplus utility. The utility uses OS

authentication by default, so the password is not required to be speciied. At the time
of Oracle installation, it will usually ask the user to change the password, however if

no password is speciied you can use the default password change_on_install.

 sqlplus / as sysdba

2. Once logged in to the Oracle database make the following parameter changes:

SQL> alter system set log_archive_dest_1='LOCATION=/home/abcd/
oracle/oradata/arch';

3. To make the above mentioned parameter changes come into effect, shutdown and

restart the Oracle database.

SQL> shutdown immediate

SQL> startup mount

4. Conigure archiving on the Oracle database to ensure that changes made by
transactions are captured and logged in the archivelog iles.
SQL> alter database archivelog;

SQL> alter database open;

5. The next step would be to enable minimum supplemental logging.

SQL> alter database add supplemental log data;

SQL> alter database force logging;

SQL> SELECT force_logging, supplemental_log_data_min FROM
v$database;

FOR SUPPLEME

--- --------

YES YES

6. The next step would be to add the GoldenGate directory path to PATH and library path

to the LD_LIBRARY_PATH environment variables respectively.

export PATH=$ORACLE_HOME/bin:$ORACLE_HOME/OPatch:$HOME/ggs:$PATH

export LD_LIBRARY_PATH=$ORACLE_HOME/lib:$HOME/ggs/lib

Chapter 12

253

7. The next step would be to launch the GoldenGate command-line interface for Oracle.

./ggsci

8. The next step would to be create various subdirectories for GoldenGate such as

directories for report iles, database deinition etc.
GGSCI> create subdirs

Creating subdirectories under current directory /home/abcd/oracle/
ggs

Parameter files /home/abcd/oracle/ggs/dirprm:
already exists

Report files /home/abcd/oracle/ggs/dirrpt:
created

Checkpoint files /home/abcd/oracle/ggs/dirchk:
created

Process status files /home/abcd/oracle/ggs/dirpcs:
created

SQL script files /home/abcd/oracle/ggs/dirsql:
created

Database definitions files /home/abcd/oracle/ggs/dirdef:
created

Extract data files /home/abcd/oracle/ggs/dirdat:
created

Temporary files /home/abcd/oracle/ggs/dirtmp:
created

Stdout files /home/abcd/oracle/ggs/dirout:
created

9. The next step is to create a parameter ile for the manager which contains a port
number for the manager. Here, we enter port 7809 as the port number.

GGSCI > edit param mgr

GGSCI > view param mgr

PORT 7809

10. The next step would be to exit from the manager, start the manager and then verify if

it is running.

GGSCI > startw mgr

GGSCI > info all

Program Status Group Lag at Chkpt Time Since Chkpt

Data Migration from Other Databases and Upgrading the PostgreSQL Cluster

254

MANAGER RUNNING

GGSCI > info mgr

Manager is running (IP port 7809).

11. The next step would be to log in to the server hosting the PostgreSQL server and

make the GoldenGate coniguration steps there. First add the GoldenGate directory
to LD_LIBRARY_PATH and PATH environment variables.

export LD_LIBRARY_PATH=/usr/pgsql/lib:/usr/pgsql/ggs/lib

export PATH=/usr/pgsql/bin:/usr/pgsql/ggs:$PATH

12. GoldenGate uses an ODBC connection to connect to the postgres database.

The next step is to create the ODBC ile. The ODBC driver is shipped along with
the installation on Linux/Unix, you just have to create just the coniguration ile.
If the ODBC driver is not available, you may refer to the following web link to

download the respective PostgreSQL driver:

http://www.uptimemadeeasy.com/linux/install-postgresql-odbc-
driver-on-linux/

 view odbc.ini

[ODBC Data Sources]

GG_Postgres=DataDirect 6.1 PostgreSQL Wire Protocol

[ODBC]

IANAAppCodePage=106

InstallDir=/usr/pgsql/ggs

[GG_Postgres]

Driver=/usr/pgsql/ggs/lib/GGpsql25.so

Description=DataDirect 6.1 PostgreSQL Wire Protocol

Database=test

HostName=dbtest

PortNumber=5432

LogonID=nkumar

Password=nkumar

13. The next step would be to export the ODBC environment variable, that is ODBCINI

which should point to the odbc.ini ile that we have created in the previous step.
This variable can be set in the .profile ile, as well.
export ODBCINI=/usr/pgsql/ggs/odbc.ini

http://www.uptimemadeeasy.com/linux/install-postgresql-odbc-driver-on-linux/
http://www.uptimemadeeasy.com/linux/install-postgresql-odbc-driver-on-linux/

Chapter 12

255

14. Now that we have the ODBC setup completed, the next step would be to start with the

GoldenGate setup for PostgreSQL.

We will irst launch the GoldenGate command-line interpreter for PostgreSQL.
./ggsci

15. We will now create various subdirectories for the GoldenGate report, deinition iles,
and so on.

GGSCI > create subdirs

Creating subdirectories under current directory /usr/pgsql/ggs

Parameter files /usr/pgsql/ggs/dirprm: already
exists

Report files /usr/pgsql/ggs/dirrpt: created

Checkpoint files /usr/pgsql/ggs/dirchk: created

Process status files /usr/pgsql/ggs/dirpcs: created

SQL script files /usr/pgsql/ggs/dirsql: created

Database definitions files /usr/pgsql/ggs/dirdef: created

Extract data files /usr/pgsql/ggs/dirdat: created

Temporary files /usr/pgsql/ggs/dirtmp: created

Stdout files /usr/pgsql/ggs/dirout: created

16. The next step would be to create the manager parameter ile with port number.
Here we enter port number 7809 in the manager parameter ile and then start
the manager.

GGSCI > edit param mgr

GGSCI > view param mgr

PORT 7809

Data Migration from Other Databases and Upgrading the PostgreSQL Cluster

256

17. Once we created the parameter ile we can start the manager and check its status.
GGSCI > start mgr

Manager started.

GGSCI > info all

Program Status Group Lag at Chkpt Time Since Chkpt

MANAGER RUNNING

GGSCI > info mgr

Manager is running (IP port 7809).

18. We will now create a table both in Oracle and PostgreSQL databases and replicate

the data between the two. Log in to the Oracle database and create the table.

sqlplus nkumar

SQL> create table abcd(col1 number,col2 varchar2(50));

Table created.

SQL> alter table abcd add primary key(col1);

Table altered.

19. The next step would be to log in to the PostgreSQL database and create a

similar table.

 psql -U nkumar -d test -h dbtest

test=> create table "public"."abcd" ("col1" integer NOT NULL,
"col2" varchar(20),CONSTRAINT "PK_Col111" PRIMARY KEY ("col1"));

20. The next step would be log in to Oracle database using the GoldenGate command-line

interface, list the tables and capture and check their data types.

GGSCI > dblogin userid nkumar, password nkumar

Successfully logged into database.

GGSCI > list tables *

Chapter 12

257

NKUMAR.ABCD

Found 1 tables matching list criteria.

GGSCI > capture tabledef nkumar.abcd

Table definitions for NKUMAR.ABCD:

COL1 NUMBER NOT NULL PK

COL2 VARCHAR (50)

21. In the next step we will check our ODBC connection to the PostgreSQL database and

use the GoldenGate CLI (command-line interface) for listing the tables and capturing

the table deinitions.
GGSCI > dblogin sourcedb gg_postgres userid nkumar

Password:

2014-11-04 17:56:35 INFO OGG-03036 Database character set
identified as UTF-8. Locale: en_US.

2014-11-04 17:56:35 INFO OGG-03037 Session character set
identified as UTF-8.

Successfully logged into database.

GGSCI > list tables *

public.abcd

Found 1 table matching list criteria

GGSCI > capture tabledef "public"."abcd"

Table definitions for public.abcd:

col1 NUMBER (10) NOT NULL PK

col2 VARCHAR (20)

Data Migration from Other Databases and Upgrading the PostgreSQL Cluster

258

22. In the next step we will start the GoldenGate extract process on the Oracle database.

First we will create the extract process that captures the changes for the ABCD table in

the Oracle database and copy these changes directly to the PostgreSQL machine. Every

process needs the coniguration ile, so we will create one for the extract process.

GGSCI > edit param epos

The parameters created are shown below when viewing the parameter ile, as follows:
GGSCI > view param epos

EXTRACT epos

SETENV (NLS_LANG="AMERICAN_AMERICA.ZHS16GBK")

SETENV (ORACLE_HOME="/home/abcd/oracle/product/11.2.0/dbhome_1")

SETENV (ORACLE_SID="orapd")

USERID nkumar, PASSWORD nkumar

RMTHOST dbtest, MGRPORT 7809

RMTTRAIL /usr/pgsql/ggs/dirdat/ep

TABLE nkumar.abcd;

23. The extract process is called epos and it connects as user nkumar using the

password nkumar to the Oracle database. Changes made on the Oracle table

abcd will be extracted and this information will be put in a trail ile in the PostgreSQL
machine. Now that the parameter ile has been created, we can then add the extract
process and start it.

GGSCI > add extract epos, tranlog, begin now

EXTRACT added.

GGSCI > add exttrail /usr/pgsql/ggs/dirdat/ep, extract epos,
megabytes 5

EXTTRAIL added.

GGSCI > start epos

Sending START request to MANAGER ...

Chapter 12

259

EXTRACT EPOS starting

GGSCI > info all

Program Status Group Lag at Chkpt Time Since Chkpt

MANAGER RUNNING

EXTRACT RUNNING EPOS 00:00:00 00:00:00

GGSCI > info extract epos

24. Since we are replicating the data in the heterogeneous environment, that is data

replication is happening from Oracle to PostgreSQL, the process doing the loading in

the PostgreSQL would need to provide more details about the data in the extract ile.
This is done by creating a deinition ile using defgen utility.

GGSCI > view param defgen

DEFSFILE /home/abcd/oracle/ggs/dirdef/ABCD.def

USERID nkumar, password nkumar

TABLE NKUMAR.ABCD;

25. We can now exit from the GoldenGate CLI and call the defgen utility on the

command line to create the deinition ile and add the reference to the defgen

parameter ile.
 ./defgen paramfile ./dirprm/defgen.prm

Definitions generated for 1 table in /home/abcd/oracle/ggs/dirdef/
ABCD.def

26. The next step would be to copy the defgen ile to the machine where PostgreSQL
database is hosted.

 cd /home/abcd /oracle/ggs/dirdef

 scp dirdef/ABCD.def postgres@dbtest:/usr/pgsql/ggs/dirdef

Data Migration from Other Databases and Upgrading the PostgreSQL Cluster

260

27. The next step would be to start the PostgreSQL replicat process and we are going

to set up the parameter ile for this and include the deinition ile that was copied
from the server hosting the Oracle database to the server hosting PostgreSQL.

GGSCI > edit param rpos

The parameters created when viewing the parameter ile are as shown below:
GGSCI > view param rpos

REPLICAT rpos

SOURCEDEFS /usr/pgsql/ggs/dirdef/ABCD.def

SETENV (PGCLIENTENCODING = "UTF8")

SETENV (ODBCINI="/usr/pgsql/ggs/odbc.ini")

SETENV (NLS_LANG="AMERICAN_AMERICA.AL32UTF8")

TARGETDB GG_Postgres, USERID nkumar, PASSWORD nkumar

DISCARDFILE /usr/pgsql/ggs/dirrpt/diskg.dsc, purge

MAP NKUMAR.ABCD, TARGET public.abcd, COLMAP (COL1=col1,COL2=col2);

28. In the next step we create the replicat process, start it and verify if it is running.

GGSCI > add replicat rpos, NODBCHECKPOINT, exttrail /usr/pgsql/
ggs/dirdat/ep

REPLICAT added.

GGSCI > start rpos

Sending START request to MANAGER ...

REPLICAT RPOS starting

GGSCI > info all

Program Status Group Lag at Chkpt Time Since Chkpt

MANAGER RUNNING

Chapter 12

261

REPLICAT RUNNING RPOS 00:00:00 00:00:00

GGSCI > info all

Program Status Group Lag at Chkpt Time Since Chkpt

MANAGER RUNNING

REPLICAT RUNNING RPOS 00:00:00 00:00:02

GGSCI > view report rpos

29. Now that the extract and replicat processes have been set up on Oracle and

PostgreSQL GoldenGate interfaces the next step is to test the coniguration. We irst
begin by logging into the Oracle database and inserting records into the ABCD table.

 sqlplus nkumar

SQL> insert into abcd values(101,'Neeraj Kumar');

1 row created.

SQL> commit;

Commit complete.

SQL> select * from abcd;

col1 | col2

-----+-------------------

101 | Neeraj Kumar

Data Migration from Other Databases and Upgrading the PostgreSQL Cluster

262

30. Now we will check if the corresponding changes / new records inserted into the

ABCD table in the Oracle database are visible in the corresponding ABCD table

in the PostgreSQL database.

 psql -U nkumar -d test

test=> select * from abcd;

 col1 | col2

------+-------------------

 101 | Neeraj Kumar

(1 row)

This setup completes the heterogeneous testing scenario for replicating data /changes from

Oracle to PostgreSQL.

How it works...

For the steps mentioned in the preceding section, we are going to discuss the steps 1 to 27 of

the preceding section in chunks.

 f We will irst talk about steps 1 to 6 of the preceding section: Initially we make
a superuser connection in Oracle with the sysdba privilege and make certain

coniguration changes. We irst enable a destination for holding the archived logs,
that is logs that contain information about transactional changes are kept here in the

location speciied by the log_archive_dest_1 initialization parameter, as seen in

step 2 of the previous section. We then shutdown the database in order to ensure the

changes made in step 2 come into effect. Once the database is restarted, we then

conigure archiving in the database and enable supplemental logging, as seen in step
4 and 5 of the preceding section. In step 6 we conigure and include the GoldenGate
directory path and library path in PATH and LD_LIBRARY_PATH environment variables.

 f We will now talk about steps 7 and 8 of the preceding section: After GoldenGate is

installed on the server hosting the Oracle database, we then launch the GoldenGate

CLI and then create various GoldenGate subdirectories for holding parameter iles,
checkpoint iles, database deinition iles, extract data iles, and so on.

 f We will now talk about steps 9 and 10 of the preceding section: The GoldenGate

manager performs a number of functions like starting the GoldenGate process, trail

log ile management, and reporting. The manager process needs to be conigured
both on source and target systems and coniguration is carried out with the help of
the parameter ile, as shown in step 9. We conigure the parameter PORT to deine
the port on which the manager is running. Once the parameter ile for the manager
is setup on the source machine, we then start the manager and verify if it is running.

This is shown in step 10 of the preceding section.

Chapter 12

263

 f We will now talk about steps 11 to 15 of the preceding section: Once GoldenGate

is installed on the machine where the PostgreSQL server is hosted, we then

add the GoldenGate directory and library path to PATH and LD_LIBRARY_PATH

environment variables. GoldenGate basically uses an ODBC connection to connect

to the PostgreSQL database. For this purpose the we set up an ODBC coniguration
ile called odbc.ini which contains connection information to connect to the

PostgreSQL server. This is shown in step 12. In the next step, we export the ODBCINI

environment variable and include the path of the coniguration ile. Then from step 14
onwards we launch the GoldenGate command-line interface for PostgreSQL and then

we create various subdirectories for holding parameter iles, database deinition iles,
and so on.

 f We will now talk about steps 16 and 17 of the preceding section: Similar to what

was performed in steps 9 and 10 on the source system for the manager process

in GoldenGate for Oracle, in a similar style we conigure the parameter ile for the
manager process in GoldenGate for the target system, that is PostgreSQL and then

start the manager and then verify it, as shown in step 17. The only parameter that

has been conigured in step 16 is the PORT parameter which identiied the port on
which the manager will listen to.

 f We will now talk about steps 18 and 19 in the preceding section: Here we are

creating two tables of the same names, having the same structure. One table will

be created in the Oracle database and one will be created in PostgreSQL. The

tables are created in this manner because the idea of this exercise is that any data

changes that happen on the table created in Oracle will be replicated/propagated in

PostgreSQL. This is the heterogeneous replication concept.

 f Here we will talk about steps 20 and 21 from the preceding section: Basically, in

step 20 what we are doing is logging in to the Oracle database using the GoldenGate

interface and we capture the table deinition for the table that was created in step 18
of the preceding section. Similarly, in step 21, we are checking the ODBC connectivity

to the PostgreSQL database from the GoldenGate CLI and once the connection is

made we capture the table deinitions for the table created in step 19.

 f Here we are going to talk about steps 22 and 23 from the preceding section: In step

22 we are creating a parameter ile for the extract process on the machine hosting

the Oracle database since it is used as the source. The extract process happens

on the source database. The extract process parameter ile contains information
regarding the Oracle environment, the target remote host, the manager port, the

trail ile, and the table for which the changes needs to be captured. In step 23, we
start the extraction process on the source Oracle database and we add the trail ile.
The extract process will extract any changes made to the Oracle table ABCD and

will put this information on the trail ile which resides on the machine hosting the
PostgreSQL server.

Data Migration from Other Databases and Upgrading the PostgreSQL Cluster

264

 f Here we are going to talk about steps 24 and 25 from the preceding section: As

the replication is happening in a heterogeneous environment, that is from Oracle to

PostgreSQL in this scenario, it is important to get as much detail as possible about

the data in the extract ile to make things clear for the process loading the data into
the PostgreSQL database. For this to happen, we need to create a deinition ile which
will be created on the GoldenGate interface of the Oracle database and will then be

shipped to the machine hosting the PostgreSQL server. In step 24, we are basically

creating a parameter ile for the defgen utility. In step 25, we call the defgen utility

to create the deinition ile and we also add a reference to the parameter ile created
in step 24 of the preceding section.

 f In step 26 of the preceding section, we copy the deinition ile created in step 25 from
the Oracle machine to the machine hosting the PostgreSQL server.

 f Here we are going to talk about steps 27 and 28 of the preceding section. Here we

start the replicat process. The replicat process basically reads the changes from

the trail ile and distributes them to the PostgreSQL database. In step 27, basically
we conigure the parameter ile for the replicat process and in step 28, we start

the replicat process, add the trail ile to the replicat process so that it can read

changes from the trail ile and dump those changes to the PostgreSQL database.

 f Here we are going to talk about steps 29 and 30. Basically we are going to test

our coniguration here. In step 29, we log in to the Oracle database, insert a
record in the ABCD table and save the changes. Now with GoldenGate extract and

replicat process running the newly inserted record in the Oracle table should be

replicated to the corresponding table in the PostgreSQL database. We conirm this
by logging in to the PostgreSQL database and then by selecting the records from the

ABCD table in step 30. We can see in step 30 that the records inserted in step 29

in the Oracle table are visible in the PostgreSQL database table ABCD. This conirms
the successful implementation of heterogeneous replication from the Oracle

database to the PostgreSQL database.

Index
Symbols

-F switch 52

-U switch 52

A

access

controlling, via coniguration iles 31-33

controlling, via irewalls 29-31

ACID (Atomicity, Consistency, Isolation,

Durability) 8

active sessions

application_name column 111

client_addr column 111

client_hostname column 111

creating 110, 111

datname column 110

pid column 110

query column 111

state column 111

archive_command parameter 133

archive_mode parameter 133

asymmetric encryption 43

auto freeze

preventing 74, 75

autovacuum 72

autovacuum launcher 73

autovacuum, parameters

autovacuum_analyze_scale_factor 73

autovacuum_analyze_threshold 73

autovacuum_freeze_max_age 74

autovacuum_max_workers 73

autovacuum_vacuum_cost_delay 74

autovacuum_vacuum_scale_factor 73

autovacuum_vacuum_threshold 73

log_autovacuum_min_duration 73

B

backend connections

terminating, URL 25

backend_data_directory0 parameter 179

backend_hostname0 parameter 178

backend_port0 parameter 179

backend_weight0 parameter 179

base backup

taking 63, 64

bloating tables 78-81

blocking sessions

inding 118, 119

Bucardo

URL 152

used, for setting up replication 148-152

version 5.2.0, URL 149

C

checkpoint_segments parameter 133

check_postgres script

URL 81

conidential data
encrypting 42-48

coniguration iles
used, for controlling access 31-33

connect function

URL 214, 231

connection

making to PostgreSQL database,

Perl used 212-214

266

making to PostgreSQL database,

Python used 230, 231

pooling, pgbouncer used 184-187

terminating 24, 25

connection_cache parameter 179

constraint exclusion 199, 201

CPU

bottlenecks, identifying 96-99

usage, monitoring 90, 91

D

data

monitoring 82-84

upgrading, pg_dump used 244, 245

database

about 27, 28

changes, auditing 34-37

creating 8-10

destroying 14, 15

load, monitoring 117, 118

monitoring 110

objects, securing 28, 29

restoring 69, 70

database cluster

initializing 18, 19

initializing, URL 19

data node 168

data, replicating

from other databases to PostgreSQL,

GoldenGate used 249-264

dead rows 74

dearmor function 44

disk

usage, determining 126-128

disk I/O bottlenecks

identifying 99-101

disk space usage

monitoring 106, 107

disk usage

URL 128

DRBD

used, for setting up replication 152-162

E

EnterpriseDB

URL 9

EXPLAIN command

analyze mode 113

generic mode 113

verbose mode 114

explain plan

obtaining, for SQL statement 112-114

F

ile system level backup 62, 63

irewalls
used, for controlling access 29-31

frozen rows 74

F switch 52

G

global transaction manager (GTM) 168

GoldenGate

about 244

used for Oracle database, URL 249

used, for replicating data from other

databases to PostgreSQL 249-264

groups

creating 13, 14

H

historical CPU load

examining 103, 104

historical memory load

examining 104, 105

hot physical backup 64-66

hot_standby parameter 133

hot streaming replication

archive_command parameter 133

archive_mode parameter 133

checkpoint_segments parameter 133

hot_standby parameter 133

listen_addresses parameter 132

267

max_wal_senders parameter 133

primary_conninfo parameter 133

setting up 130-132

standby_mode parameter 133

trigger_ile parameter 134

wal_keep_segments parameter 133

wal_level parameter 132

I

indexes 78-81

index pages 82-84

initdb command 18

L

leaf fragmentation 84

listen_addresses parameter 132, 178

load average 96

load_balance_on parameter 179

log_autovacuum_min_duration parameter 73

log iles
maintaining 87

logical backup

about 51

of all PostgreSQL databases 56-59

of single PostgreSQL database 52-56

of speciic objects 60, 61

Londiste

URL 148

used, for setting up replication 139-147

LVM (logical volume manager) 62

M

mailing list

performance, URL 128

master_slave_mode parameter 179

master-slave streaming replication

setting up 130-132

max_pool parameter 179

max_wal_senders parameter 133

mpstat command 96

multi version concurrency control (MVCC) 8

mutual exclusion lock (mutex) 99

N

network status

monitoring 107, 108

O

objects

moving, between tablespaces 17, 18

Oracle 11g software

used for reinstalling on Linux platform,

URL 249

P

paging

monitoring 91-94

partitioning

about 191

alternate methods 202-204

and constraint exclusion 199-201

implementing 192-195

managing 196-199

URL 195, 199

with PL/Proxy 205-209

passwords, PostgreSQL

brute force method 50

cracking 48-50

dictionary attack method 50

Perl

about 211

PostgreSQL, accessing from 211

used, for accessing table data 219-221

used, for creating tables 215, 216

used, for deleting records 225-227

used, for inserting tables 217, 218

used, for updating records 221-224

pgbouncer

managing 187-190

setting 183, 184

SHOW CLIENTS command 189

SHOW POOLS command 190

SHOW SERVERS command 189

SHOW STATS command 190

URL 187

268

used, for connection pooling 184-186

pgbouncer utility 171

pg_dump

used, for upgrading data 244, 245

pgp_key_id function 44

pgpool

backend_data_directory0 parameter 179

backend_hostname0 parameter 178

backend_port0 parameter 179

backend_weight0 parameter 179

coniguring 173-180

connection_cache parameter 179

installing 172, 173

listen_addresses parameter 178

load_balance_on parameter 179

master_slave_mode parameter 179

max_pool parameter 179

port parameter 178

replication_mode parameter 179

setup, testing 173-178

starting 181, 182

stopping 182

URL 172, 179, 181, 182

pgpool-II utility 171

pgpool, stopping modes

fast mode 182

smart mode 182

pgp_pub_decrypt function 44

pgp_pub_encrypt function 44

pg_restore utility 70

pg_upgrade utility

used, for upgrading version 246-249

physical backups 51

planner statistics

updating 77, 78

PL/Proxy

installing 204, 205

installing, steps 205

partitioning with 205-209

URL 209

point-in-time recovery 66-68

port parameter 178

PostgreSQL

about 8

cluster upgrading, URL 245

driver, URL 254

installing on CentOS, URL 8

installing on Ubuntu platform, URL 8

passwords, cracking 48-50

repository, URL 148

SSL, enabling 38-41

URL 115

wiki links 128

PostgreSQL database

all PostgreSQL database,

logical backup 56-59

single PostgreSQL database,

logical backup 52-56

Postgres-XC cluster

coordinator 168

data node 168

GTM 168

setting up 162-169

URL 162

Pretty Good Privacy (PGP) compatible

encryption 44

primary_conninfo parameter 133

Python

about 229

used, for accessing table data 235, 236

used, for creating tables 231-233

used, for deleting records 240-242

used, for inserting records 233, 234

used, for making connections to PostgreSQL

database 230, 231

used, for updating records 237-239

Q

queries

about 111, 112

forcing, to use index 124-126

R

records

deleting, Perl used 224-227

deleting, Python used 240-242

inserting, Perl used 217-219

updating, Perl used 221-224

updating, Python used 233-239

269

REINDEX command 85

remote connectivity

testing 34

replication

setting up, Bucardo used 148-152

setting up, DRBD used 152-162

setting up, Londiste used 139-148

setting up, Slony-I used 134-139

replication_mode parameter 179

routine

reindexing 85, 86

S

sar command 90

sar output 90

schemas

creating 10

Secure Sockets Layer (SSL) 38

server

coniguration iles, reloading 23

starting 19, 20

status, displaying 22

stopping 20-22

server irewall 29

SHOW CLIENTS command

about 189

connect_time 189

database 189

port 189

request_time 189

state 189

user 189

SHOW POOLS command

cl_active 190

cl_waiting 190

sl_active 190

sl_idle 190

sl_used 190

SHOW SERVERS output

connect_time 189

database 189

port 189

request_time 189

state 189

user 189

SHOW STATS command

total_query_time 190

total_received 190

total_requests 190

total_sent 190

Skytools 3.2

URL 140

Slony-I

URL 134, 139

used, for setting up replication 134-139

slow statements

log_directory parameter 115

logging 115

logging_collector parameter 115

SSL

enabling, in PostgreSQL 38-41

encryption, testing 42

standby_mode parameter 133

statement

explain plan, getting 112-114

statistics

collecting 116, 117

streaming replication

URL 134

swapping

monitoring 91-94

symmetric encryption 43

sysid 11

system

load, monitoring 95, 96

performance. monitoring 101-103

worst user, inding 94, 95

T

table

accessing 120-122

creating, Perl used 215, 216

creating, Python used 231, 232

URL 216

table data

accessing, Perl used 219-221

accessing, Python used 235-237

270

tablespaces

creating 15-17

dropping 15, 16

objects, moving between 17, 18

transaction ID wraparound failures

preventing 75-77

trigger_ile parameter 134

U

unused indexes

inding 122-124

URL 124

users

creating 11-13

U switch 52

V

version

upgrading, pg_upgrade utility used 246-249

vmstat command 101

W

wal_keep_segments parameter 133

wal_level parameter 132

web link

URL 237

write-ahead log (WAL) 65

W switch 52

Thank you for buying

PostgreSQL Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its irst book, Mastering phpMyAdmin for Effective MySQL

Management, in April 2004, and subsequently continued to specialize in publishing highly focused

books on speciic technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and

customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more speciic and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what

you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality, cutting-edge

books for communities of developers, administrators, and newbies alike. For more information,

please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to

continue its focus on specialization. This book is part of the Packt open source brand, home

to books published on software built around open source licenses, and offering information to

anybody from advanced developers to budding web designers. The Open Source brand also runs

Packt's open source Royalty Scheme, by which Packt gives a royalty to each open source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should

be sent to author@packtpub.com. If your book idea is still at an early stage and you would

like to discuss it irst before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some

additional reward for your expertise.

PostgreSQL Administration
Essentials
ISBN: 978-1-78398-898-3 Paperback: 142 pages

Discover eficient ways to administer, monitor, replicate,
and handle your PostgreSQL databases

1. Learn how to detect bottlenecks and make

sure your database systems offer superior

performance to your end users.

2. Replicate your databases to achieve full

redundancy and create backups quickly

and easily.

3. Optimize PostgreSQL coniguration parameters and
turn your database server into a high-performance

machine capable of fulilling your needs.

PostgreSQL 9 High

Availability Cookbook
ISBN: 978-1-84951-696-9 Paperback: 398 pages

Over 100 recipes to design and implement a highly

available server with the advanced features of

PostgreSQL

1. Create a PostgreSQL cluster that stays online even

when disaster strikes.

2. Avoid costly downtime and data loss that can ruin

your business.

3. Perform data replication and monitor your data

with hands-on industry-driven recipes and detailed

step-by-step explanations.

Please check www.PacktPub.com for information on our titles

PostGIS Cookbook
ISBN: 978-1-84951-866-6 Paperback: 484 pages

Over 80 task-based recipes to store, organize,

manipulate, and analyze spatial data in a PostGIS

database

1. Integrate PostGIS with web frameworks and

implement OGC standards such as WMS and

WFS using MapServer and GeoServer.

2. Convert 2D and 3D vector data, raster data, and

routing data into usable forms.

3. Visualize data from the PostGIS database

using a desktop GIS program such as QGIS

and OpenJUMP.

PostgreSQL Replication
ISBN: 978-1-84951-672-3 Paperback: 250 pages

Understand basic replication concepts and eficiently
replicate PostgreSQL using high-end techniques

to protect your data and run your server without

interruptions

1. Explains the new replication features introduced

in PostgreSQL 9.

2. Contains easy to understand explanations and

lots of screenshots that simplify an advanced

topic like replication.

3. Teaches PostgreSQL administrators how to

maintain consistency between redundant

resources and to improve reliability,

fault-tolerance, and accessibility.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Managing Databases and the PostgreSQL Server
	Introduction
	Creating databases
	Creating schemas
	Creating users
	Creating groups
	Destroying databases
	Creating and dropping tablespaces
	Moving objects between tablespaces
	Initializing a database cluster
	Starting the server
	Stopping the server
	Displaying the server status
	Reloading the server configuration files
	Terminating connections

	Chapter 2: Controlling Security
	Introduction
	Securing database objects
	Controlling access via firewalls
	Controlling access via configuration files
	Testing remote connectivity
	Auditing database changes
	Enabling SSL in PostgreSQL
	Testing SSL encryption
	Encrypting confidential data
	Cracking PostgreSQL passwords

	Chapter 3: Backup and Recovery
	Introduction
	A logical backup of a single PostgreSQL database
	A logical backup of all PostgreSQL databases
	A Logical backup of specific objects
	File system level backup
	Taking a base backup
	Hot physical backup and continuous archiving
	Point-in-time recovery
	Restoring databases and specific database objects

	Chapter 4: Routine Maintenance Tasks
	Introduction
	Controlling automatic database maintenance
	Preventing auto freeze and page corruption
	Preventing transaction ID wraparound failures
	Updating planner statistics
	Dealing with bloating tables and indexes
	Monitoring data and index pages
	Routine reindexing
	Maintaining log files

	Chapter 5: Monitoring the System Using Unix Utilities
	Introduction
	Monitoring CPU usage
	Monitoring paging and swapping
	Finding the worst user on the system
	Monitoring system load
	Identifying CPU bottlenecks
	Identifying disk I/O bottlenecks
	Monitoring system performance
	Examining historical CPU load
	Examining historical memory load
	Monitoring disk space usage
	Monitoring network status

	Chapter 6: Monitoring Database Activity and Investigating Performance Issues
	Introduction
	Checking active sessions
	Finding out what queries users are currently running
	Getting the execution plan for a statement
	Logging slow statements
	Collecting statistics
	Monitoring database load
	Finding blocking sessions
	Table access statistics
	Finding unused indexes
	Forcing a query to use an index
	Determining disk usage

	Chapter 7: High Availability and Replication
	Introduction
	Setting up hot streaming replication
	Replication using Slony-I
	Replication using Londiste
	Replication using Bucardo
	Replication using DRBD
	Setting up the Postgres-XC cluster

	Chapter 8: Connection Pooling
	Introduction
	Installing pgpool
	Configuring pgpool and testing the setup
	Starting and stopping pgpool
	Setting up pgbouncer
	Connection pooling using pgbouncer
	Managing pgbouncer

	Chapter 9: Table Partitioning
	Introduction
	Implementing partitioning
	Managing partitions
	Partitioning and constraint exclusion
	Alternate partitioning methods
	Installing PL/Proxy
	Partitioning with PL/Proxy

	Chapter 10: Accessing PostgreSQL from Perl
	Introduction
	Making a connection to a PostgreSQL database using Perl
	Creating tables using Perl
	Inserting records using Perl
	Accessing table data using Perl
	Updating records using Perl
	Deleting records using Perl

	Chapter 11: Accessing PostgreSQL from Python
	Introduction
	Making connections to a PostgreSQL database using Python
	Creating tables using Python
	Inserting Records Using Python
	Accessing table data using Python
	Updating records using Python
	Deleting records using Python

	Chapter 12: Data Migration from Other Databases
and Upgrading PostgreSQL Cluster
	Introduction
	Using pg_dump to upgrade data
	Using the pg_upgrade utility for version upgrade
	Replicating data from other databases to PostgreSQL using GoldenGate

	Index

