
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

PostgreSQL	Server	Programming	Second
Edition

www.allitebooks.com

http://www.allitebooks.org

Table	of	Contents

PostgreSQL	Server	Programming	Second	Edition

Credits

About	the	Authors

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	What	Is	a	PostgreSQL	Server?

Why	program	in	the	server?

Using	PL/pgSQL	for	integrity	checks

About	this	book’s	code	examples

Switching	to	the	expanded	display

Moving	beyond	simple	functions

Data	comparisons	using	operators

Managing	related	data	with	triggers

Auditing	changes

Data	cleaning

www.allitebooks.com

http://www.allitebooks.org

Custom	sort	orders

Programming	best	practices

KISS	–	keep	it	simple	stupid

DRY	–	don’t	repeat	yourself

YAGNI	–	you	ain’t	gonna	need	it

SOA	–	service-oriented	architecture

Type	extensibility

Caching

Wrapping	up	–	why	program	in	the	server?

Performance

Ease	of	maintenance

Improved	productivity

Simple	ways	to	tighten	security

Summary

2.	Server	Programming	Environments

Cost	of	acquisition

Availability	of	developers

Licensing

Predictability

Community

Procedural	languages

Third-party	tools

Platform	compatibility

Application	design

Databases	are	considered	harmful

Encapsulation

What	does	PostgreSQL	offer?

Data	locality

More	basics

Transactions

General	error	reporting	and	error	handling

www.allitebooks.com

http://www.allitebooks.org

User-defined	functions

Other	parameters

More	control

Summary

3.	Your	First	PL/pgSQL	Function

Why	PL/pgSQL?

The	structure	of	a	PL/pgSQL	function

Accessing	function	arguments

Conditional	expressions

Loops	with	counters

Statement	termination

Looping	through	query	results

PERFORM	versus	SELECT

Looping	Through	Arrays

Returning	a	record

Acting	on	the	function’s	results

Summary

4.	Returning	Structured	Data

Sets	and	arrays

Returning	sets

Returning	a	set	of	integers

Using	a	set	returning	function

Functions	based	on	views

OUT	parameters	and	records

OUT	parameters

Returning	records

Using	RETURNS	TABLE

Returning	with	no	predefined	structure

Returning	SETOF	ANY

Variadic	argument	lists

A	summary	of	the	RETURN	SETOF	variants

www.allitebooks.com

http://www.allitebooks.org

Returning	cursors

Iterating	over	cursors	returned	from	another	function

Wrapping	up	of	functions	returning	cursors

Other	ways	to	work	with	structured	data

Complex	data	types	for	the	modern	world	–	XML	and	JSON

XML	data	type	and	returning	data	as	XML	from	functions

Returning	data	in	the	JSON	format

Summary

5.	PL/pgSQL	Trigger	Functions

Creating	the	trigger	function

Creating	the	trigger

Working	on	a	simple	“Hey,	I’m	called”	trigger

The	audit	trigger

Disallowing	DELETE

Disallowing	TRUNCATE

Modifying	the	NEW	record

The	timestamping	trigger

The	immutable	fields	trigger

Controlling	when	a	trigger	is	called

Conditional	triggers

Triggers	on	specific	field	changes

Visibility

Most	importantly	–	use	triggers	cautiously!

Variables	passed	to	the	PL/pgSQL	TRIGGER	function

Summary

6.	PostgreSQL	Event	Triggers

Use	cases	for	creating	event	triggers

Creating	event	triggers

Creating	an	audit	trail

Preventing	schema	changes

A	roadmap	of	event	triggers

www.allitebooks.com

http://www.allitebooks.org

Summary

7.	Debugging	PL/pgSQL

Manual	debugging	with	RAISE	NOTICE

Throwing	exceptions

Logging	to	a	file

The	advantages	of	RAISE	NOTICE

The	disadvantages	of	RAISE	NOTICE

Visual	debugging

Installing	the	debugger

Installing	the	debugger	from	the	source

Installing	pgAdmin3

Using	the	debugger

The	advantages	of	the	debugger

The	disadvantages	of	the	debugger

Summary

8.	Using	Unrestricted	Languages

Are	untrusted	languages	inferior	to	trusted	ones?

Can	you	use	untrusted	languages	for	important	functions?

Will	untrusted	languages	corrupt	the	database?

Why	untrusted?

Why	PL/Python?

Quick	introduction	to	PL/Python

A	minimal	PL/Python	function

Data	type	conversions

Writing	simple	functions	in	PL/Python

A	simple	function

Functions	returning	a	record

Table	functions

Running	queries	in	the	database

Running	simple	queries

Using	prepared	queries

www.allitebooks.com

http://www.allitebooks.org

Caching	prepared	queries

Writing	trigger	functions	in	PL/Python

Exploring	the	inputs	of	a	trigger

A	log	trigger

Constructing	queries

Handling	exceptions

Atomicity	in	Python

Debugging	PL/Python

Using	plpy.notice()	to	track	the	function’s	progress

Using	assert

Redirecting	sys.stdout	and	sys.stderr

Thinking	out	of	the	“SQL	database	server”	box

Generating	thumbnails	when	saving	images

Sending	an	e-mail

Listing	directory	contents

Summary

9.	Writing	Advanced	Functions	in	C

The	simplest	C	function	–	return	(a	+	b)

add_func.c

Version	0	call	conventions

Makefile

CREATE	FUNCTION	add(int,	int)

add_func.sql.in

Summary	for	writing	a	C	function

Adding	functionality	to	add(int,	int)

Smart	handling	of	NULL	arguments

Working	with	any	number	of	arguments

Basic	guidelines	for	writing	C	code

Memory	allocation

Use	palloc()	and	pfree()

Zero-fill	the	structures

www.allitebooks.com

http://www.allitebooks.org

Include	files

Public	symbol	names

Error	reporting	from	C	functions

“Error”	states	that	are	not	errors

When	are	messages	sent	to	the	client?

Running	queries	and	calling	PostgreSQL	functions

A	sample	C	function	using	SPI

Visibility	of	data	changes

More	info	on	SPI_*	functions

Handling	records	as	arguments	or	returned	values

Returning	a	single	tuple	of	a	complex	type

Extracting	fields	from	an	argument	tuple

Constructing	a	return	tuple

Interlude	–	what	is	Datum?

Returning	a	set	of	records

Fast	capturing	of	database	changes

Doing	something	at	commit/rollback

Synchronizing	between	backends

Writing	functions	in	C++

Additional	resources	for	C

Summary

10.	Scaling	Your	Database	with	PL/Proxy

Creating	a	simple	single-server	chat

Dealing	with	success	–	splitting	tables	over	multiple	databases

What	expansion	plans	work	and	when?

Moving	to	a	bigger	server

Master-slave	replication	–	moving	reads	to	slave

Multimaster	replication

Data	partitioning	across	multiple	servers

Splitting	the	data

PL/Proxy	–	the	partitioning	language

www.allitebooks.com

http://www.allitebooks.org

Installing	PL/Proxy

The	PL/Proxy	language	syntax

CONNECT,	CLUSTER,	and	RUN	ON

SELECT	and	TARGET

SPLIT	–	distributing	array	elements	over	several	partitions

The	distribution	of	data

Configuring	the	PL/Proxy	cluster	using	functions

Configuring	the	PL/Proxy	cluster	using	SQL/MED

Moving	data	from	the	single	to	the	partitioned	database

Connection	Pooling

Summary

11.	PL/Perl	–	Perl	Procedural	Language

When	to	use	PL/Perl

Installing	PL/Perl

A	simple	PL/Perl	function

Passing	and	returning	non-scalar	types

Writing	PL/Perl	triggers

Untrusted	Perl

Summary

12.	PL/Tcl	–	Tcl	Procedural	Language

Installing	PL/Tcl

A	simple	PL/Tcl	function

Null	checking	with	Strict	functions

The	parameter	format

Passing	and	returning	arrays

Passing	composite-type	arguments

Accessing	databases

Writing	PL/Tcl	triggers

Untrusted	Tcl

Summary

13.	Publishing	Your	Code	as	PostgreSQL	Extensions

When	to	create	an	extension

Unpackaged	extensions

Extension	versions

The	.control	file

Building	an	extension

Installing	an	extension

Viewing	extensions

Publishing	your	extension

Introduction	to	PostgreSQL	Extension	Network

Signing	up	to	publish	your	extension

Creating	an	extension	project	the	easy	way

Providing	the	metadata	about	the	extension

Writing	your	extension	code

Creating	the	package

Submitting	the	package	to	PGXN

Installing	an	extension	from	PGXN

Summary

14.	PostgreSQL	as	an	Extensible	RDBMS

What	can’t	be	extended?

Creating	a	new	operator

Overloading	an	operator

Optimizing	operators

COMMUTATOR

NEGATOR

Creating	index	access	methods

Creating	user-defined	aggregates

Using	foreign	data	wrappers

Summary

Index

PostgreSQL	Server	Programming	Second
Edition

PostgreSQL	Server	Programming	Second
Edition
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	authors,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	June	2013

Second	edition:	February	2015

Production	reference:	1210215

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78398-058-1

www.packtpub.com

http://www.packtpub.com

Credits
Authors

Usama	Dar

Hannu	Krosing

Jim	Mlodgenski

Kirk	Roybal

Reviewers

Stephen	Frost

Rick	van	Hattem

Vibhor	Kumar

Jeff	Lawson

Mariano	Reingart

Julien	Tachoires

Commissioning	Editor

Usha	Iyer

Acquisition	Editors

Antony	Lowe

Meeta	Rajani

Sam	Wood

Content	Development	Editor

Adrian	Raposo

Technical	Editors

Mrunmayee	Patil

Chinmay	Puranik

Copy	Editors

Dipti	Kapadia

Aarti	Saldanha

Project	Coordinator

Kinjal	Bari

Proofreaders

Maria	Gould

Linda	Morris

Indexer

Monica	Ajmera	Mehta

Production	Coordinator

Nitesh	Thakur

Cover	Work

Nitesh	Thakur

www.allitebooks.com

http://www.allitebooks.org

About	the	Authors
Usama	Dar	is	a	seasoned	software	developer	and	architect.	During	his	14	years’	career,	he
has	worked	extensively	with	PostgreSQL	and	other	database	technologies.	He	worked	on
PostgreSQL	internals	extensively	while	he	was	working	for	EnterpriseDB.	Currently,	he
lives	in	Munich	where	he	works	for	Huawei’s	European	Research	Center.	He	designs	the
next	generation	of	high-performance	database	systems	based	on	open	source	technologies,
such	as	PostgreSQL,	which	are	used	under	high	workloads	and	strict	performance
requirements.

Hannu	Krosing	was	a	PostgreSQL	user	before	it	was	rewritten	to	use	SQL	as	its	main
query	language	in	1995.	Therefore,	he	has	both	the	historic	perspective	of	its
development,	as	well	as	almost	20	years	of	experience	in	using	it	to	solve	various	real-life
problems.

He	was	the	first	database	administrator	and	database	architect	at	Skype,	where	he	invented
the	sharding	language	PL/Proxy	that	allows	you	to	scale	the	user	database	in	order	to	work
with	billions	of	users.

After	he	left	Skype	at	the	end	of	2006—about	a	year	after	it	was	bought	by	eBay—he	has
been	working	as	a	PostgreSQL	consultant	with	2ndQuadrant,	the	premier	PostgreSQL
consultancy	with	a	global	reach	and	local	presence	in	most	parts	of	the	world.

He	has	coauthored	PostgreSQL	9	Administration	Cookbook,	Packt	Publishing,	together
with	one	of	the	main	PostgreSQL	developers,	Simon	Riggs.

I	want	to	sincerely	thank	my	wife,	Evelyn,	for	her	support	while	writing	this	book.

Jim	Mlodgenski	is	the	CTO	of	OpenSCG,	a	professional	services	company	focused	on
leveraging	open	source	technologies	for	strategic	advantage.	He	was	formerly	the	CEO	of
StormDB,	a	database	cloud	company	focused	on	horizontal	scalability.	Prior	to	StormDB,
he	has	held	highly	technical	roles	at	Cirrus	Technology,	Inc.,	EnterpriseDB,	and	Fusion
Technologies.

Jim	is	also	a	fervent	advocate	of	PostgreSQL.	He	is	on	the	board	of	the	United	States
PostgreSQL	Association	as	well	as	a	part	of	the	organizing	teams	of	the	New	York
PostgreSQL	User	Group	and	Philadelphia	PostgreSQL	User	Group.

Kirk	Roybal	has	been	an	active	member	of	the	PostgreSQL	community	since	1998.	He
has	helped	organize	user	groups	in	Houston,	Dallas,	and	Bloomington,	IL.	He	has
mentored	many	junior	database	administrators	and	provided	cross-training	to	senior
database	engineers.	He	has	provided	solutions	using	PostgreSQL	for	reporting,	business
intelligence,	data	warehousing,	applications,	and	development	support.

He	saw	the	scope	of	PostgreSQL	when	his	first	small-scale	business	customer	asked	for	a
web	application.	At	that	time,	competitive	database	products	were	either	extremely
immature	or	cost	prohibitive.

Kirk	has	stood	by	his	choice	of	PostgreSQL	for	many	years	now.	His	expertise	is	founded
on	keeping	up	with	features	and	capabilities	as	they	become	available.

Writing	a	book	has	been	a	unique	experience	for	me.	Many	people	fantasize	about	it,	few
start	one,	and	even	fewer	get	to	publication.	I	am	proud	to	be	part	of	a	team	that	actually
made	it	to	the	book	shelf	(which	itself	is	a	diminishing	breed).	Thanks	to	Sarah	Cullington
from	Packt	Publishing	for	giving	me	a	chance	to	participate	in	the	project.	I	believe	that
the	PostgreSQL	community	will	be	better	served	by	this	information,	and	I	hope	that	they
receive	this	as	a	reward	for	the	time	that	they	have	invested	in	me	over	the	years.

A	book	only	has	the	value	that	the	readers	give	it.	Thank	you	to	the	PostgreSQL
community	for	all	the	technical,	personal,	and	professional	development	help	you	have
provided.	The	PostgreSQL	community	is	a	great	bunch	of	people,	and	I	have	enjoyed	the
company	of	many	of	them.	I	hope	to	contribute	more	to	this	project	in	the	future,	and	I
hope	you	find	my	contributions	as	valuable	as	I	find	yours.

Thank	you	to	my	family	for	giving	me	a	reason	to	succeed	and	for	listening	to	the
gobbledygook	and	nodding	appreciatively.

Have	you	ever	had	your	family	ask	you	what	you	were	doing	and	answered	them	with	a
function?	Try	it.	No,	then	again,	don’t	try	it.	They	may	just	have	you	involuntarily
checked	in	somewhere.

About	the	Reviewers
Stephen	Frost	is	a	major	contributor	and	committer	to	PostgreSQL,	who	has	been
involved	with	PostgreSQL	since	2002,	and	has	developed	features	such	as	the	role	system
and	column-level	privileges.

He	is	the	chief	technology	officer	at	Crunchy	Data	Solutions,	Inc.,	the	PostgreSQL
company	for	Secure	Enterprises.	He	is	involved	in	the	advancement	of	PostgreSQL’s
capabilities,	particularly	in	the	area	of	security	in	order	to	support	the	needs	of	government
and	financial	institutions	who	have	strict	security	and	regulatory	requirements.

Rick	van	Hattem	is	an	entrepreneur	with	a	computer	science	background	and	a	long-time
open	source	developer	with	vast	experience	in	the	C,	C++,	Python,	and	Java	languages.
Additionally,	he	has	worked	with	most	large	database	servers	such	as	Oracle,	MS	SQL,
and	MySQL,	but	he	has	been	focusing	on	PostgreSQL	since	Version	7.4.

He	is	one	of	the	founders	of	the	Fashiolista.com	social	network,	and	until	recently,	he	was
the	CTO.	Here,	he	used	PostgreSQL	to	scale	the	feeds	for	millions	of	users	to	show	that
PostgreSQL	can	hold	up	to	NoSQL	solutions,	given	some	tuning	and	additional	tools.
After	Fashiolista,	he	worked	as	a	freelance	consultant	for	several	companies,	including
2ndQuadrant.

He	is	currently	the	founder	of	PGMon.com,	a	monitoring	service	that	analyzes	your
databases,	indexes,	and	queries	to	keep	them	running	at	peak	performance.	In	addition	to
analyzing	your	database	settings,	the	system	actively	monitors	your	queries	and	gives	you
recommendations	to	enhance	performance.

He	is	also	the	creator	and	maintainer	of	a	large	number	of	open	source	projects,	such	as
pg_query_analyser,	pg_cascade_timestamp,	QtQuery,	Python-Statsd,	and	Django-Statsd.

Vibhor	Kumar	is	a	principal	system	architect	at	EnterpriseDB	who	specializes	in
assisting	Fortune	100	companies	to	deploy,	manage,	and	optimize	Postgres	databases.	He
joined	EnterpriseDB	in	2008	to	work	with	Postgres	after	several	years	of	working	with
Oracle	systems.	He	has	worked	in	team	leadership	roles	at	IBM	Global	Services	and	BMC
Software	as	well	as	an	Oracle	database	administrator	at	CMC	Ltd.	for	several	years.	He
has	developed	expertise	in	Oracle,	DB2,	and	MongoDB	and	holds	certifications	in	them.
He	has	experience	working	with	MS	SQL	Server,	MySQL,	and	data	warehousing.	He
holds	a	bachelor’s	degree	in	computer	science	from	the	University	of	Lucknow	and	a
master’s	degree	in	computer	science	from	the	Army	Institute	of	Management,	Kolkata.	He
is	a	certified	PostgreSQL	trainer	and	holds	a	professional	certification	in	Postgres	Plus
Advanced	Server	from	EnterpriseDB.

Jeff	Lawson	has	been	a	fan	and	user	of	PostgreSQL	since	the	time	he	discovered	it	in
2001.	Over	the	years,	he	has	also	developed	and	deployed	applications	for	IBM	DB2,
Oracle,	MySQL,	Microsoft	SQL	Server,	Sybase,	and	others,	but	he	always	prefers
PostgreSQL	for	its	balance	of	features	and	openness.	Much	of	his	experience	involves
developing	for	Internet-facing	websites/projects	that	require	highly	scalable	databases
with	high	availability	or	with	provisions	for	disaster	recovery.

He	currently	works	as	the	director	of	software	development	for	FlightAware,	which	is	an
airplane-tracking	website	that	uses	PostgreSQL	and	other	open	source	software	to	store
and	analyze	the	positions	of	the	thousands	of	flights	that	are	operated	worldwide	every
day.	He	has	extensive	experience	in	software	architecture,	data	security,	and	network
protocol	design	from	the	software	engineering	positions	he	has	held	at	Univa	/	United
Devices,	Microsoft,	NASA’s	Jet	Propulsion	Laboratory,	and	WolfeTech.	He	is	a	founder	of
distributed.net,	which	pioneered	distributed	computing	in	the	1990s,	and	he	continues	to
serve	as	the	chief	of	operations	and	as	a	member	of	the	board	there.	He	earned	a	BSc
degree	in	computer	science	from	Harvey	Mudd	College.

He	is	fond	of	cattle,	holds	an	FAA	private	pilot	certificate,	and	owns	an	airplane	based	in
Houston,	Texas.

Mariano	Reingart	lives	in	Buenos	Aires,	Argentina,	and	is	a	specialist	in	the	software
development	of	applications	and	libraries	(web	services,	PDF,	GUI,	replication,	and	so	on)
with	more	than	10	years	of	experience.	Currently,	he	is	the	PostgreSQL	regional	contact
for	Argentina	and	a	Python	Software	Foundation	member.

He	is	a	major	contributor	to	the	web2py	Python	web	framework,	and	now	he’s	working	on
the	wxWidgets	multiplatform	GUI	toolkit	(specifically	in	the	Qt	port	and	Android	mobile
areas).	Also,	he	has	contributed	to	more	than	a	dozen	open	source	projects,	including	an
interface	for	Free	Electronic	Invoice	web	services	(PyAfipWs)	and	Pythonic	replication
for	PostgreSQL	(PyReplica).

He	has	a	bachelor’s	degree	in	computer	systems	analysis,	and	currently,	he’s	a	master’s
candidate	for	the	MSc	in	free	software	degree	at	the	Open	University	of	Catalonia.

He	works	on	his	own	funded	entrepreneurial	venture	formed	by	an	open	group	of
independent	professionals,	dedicated	to	software	development,	training,	and	technical
support,	focusing	on	open	source	tools	(GNU/Linux,	Python,	PostgreSQL,	and
web2py/wxPython).

He	has	worked	for	local	Python-based	companies	in	large	business	applications	(ERP,
SCM,	and	CRM)	and	mission	critical	systems	(election	counting,	electronic	voting,	and
911	emergency	events	support).	He	has	contributed	to	books	such	as	web2py	Enterprise
Web	Framework,	Third	Edition,	and	web2py	Application	Development	Cookbook,	Packt
Publishing,	and	several	Spanish	translations	of	the	PostgreSQL	official	documentation.

His	full	resume	is	available	at	http://reingart.blogspot.com/p/resume.html.

Julien	Tachoires	is	a	PostgreSQL	specialist,	who	works	as	consultant	for	the	French
PostgreSQL	company	Dalibo.	He	is	the	main	developer	of	pg_activity,	a	top-end	software
dedicated	to	follow	the	PostgreSQL	incoming	traffic	in	real	time,	which	is	written	in
Python.

I	want	to	thank	my	employer	Dalibo;	my	wife,	Camille;	and	my	son,	Arthur.

http://reingart.blogspot.com/p/resume.html

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

www.allitebooks.com

http://www.PacktPub.com
http://www.allitebooks.org

Preface
This	fascinating	guide	to	server	programming	will	take	your	skills	of	PostgreSQL	to	a
whole	new	level.	A	step-by-step	approach	with	illuminating	examples	will	educate	you
about	the	full	range	of	possibilities.	You	will	understand	the	extension	framework	of
PostgreSQL	and	leverage	it	in	ways	you	haven’t	even	invented	yet.	You	will	learn	how	to
write	functions	and	create	your	own	data	types,	all	in	your	favorite	programming
language.	It	is	a	step-by-step	tutorial,	with	plenty	of	tips	and	tricks	to	kick-start	server
programming.

What	this	book	covers
Chapter	1,	What	Is	a	PostgreSQL	Server?,	introduces	you	to	the	PostgreSQL	server	and
will	set	the	tone	for	the	rest	of	the	book.	It	introduces	you	to	the	ways	in	which	a
PostgreSQL	server	is	extendible,	and	shows	you	that	it	can	be	treated	as	a	complete
software	development	framework	instead	of	just	a	database	server.

Chapter	2,	Server	Programming	Environments,	elaborates	that	PostgreSQL	is	built	to
handle	user	needs,	but	more	importantly,	it	is	built	not	to	change	underneath	users	in	the
future.	It	will	touch	upon	the	environments	and	will	highlight	some	of	the	important	things
to	be	kept	in	mind	when	programming	on	the	server	in	PostgreSQL.

Chapter	3,	Your	First	PL/pgSQL	Function,	builds	the	foundations	by	demonstrating	how
to	write	simple	PL/pgSQL	functions.

Chapter	4,	Returning	Structured	Data,	builds	on	the	knowledge	of	writing	PL/pgSQL
functions	and	demonstrates	how	to	write	functions	that	return	a	set	of	values	such	as	rows,
arrays,	and	cursors.

Chapter	5,	PL/pgSQL	Trigger	Functions,	discusses	how	to	write	PL/pgSQL	functions	that
are	used	to	write	trigger	logic.	It	also	discusses	the	various	types	of	triggers	available	in
PostgreSQL	and	the	options	that	a	database	developer	has	when	writing	such	functions.

Chapter	6,	PostgreSQL	Event	Triggers,	discusses	PostgreSQL’s	event	trigger	functionality.
Event	triggers	are	fired	when	running	a	DDL	operation	on	a	table.	This	chapter	discusses
the	various	possibilities	and	options	of	creating	event	triggers	and	their	limitations	in
PostgreSQL.

Chapter	7,	Debugging	PL/pgSQL,	elaborates	on	how	to	debug	PL/pgSQL’s	stored
procedures	and	functions	in	PostgreSQL.	This	chapter	explains	how	to	install	the
debugger	plugin	and	use	the	pgAdmin	debugger	console.

Chapter	8,	Using	Unrestricted	Languages,	explains	the	differences	between	restricted	and
unrestricted	PostgreSQL	languages.	This	chapter	uses	PL/Python	as	an	example	and
demonstrates	the	examples	of	both	restricted	and	unrestricted	functions	in	PL/Python.

Chapter	9,	Writing	Advanced	Functions	in	C,	explains	how	to	extend	PostgreSQL	by
writing	user-defined	functions	(UDFs)	in	C.

Chapter	10,	Scaling	Your	Database	with	PL/Proxy,	explains	the	use	of	a	special
programming	language	in	PostgreSQL	called	PL/Proxy	and	how	to	use	it	in	order	to
partition	and	shard	your	database.

Chapter	11,	PL/Perl	–	Perl	Procedural	Language,	discusses	a	popular	PL	language	in
PostgreSQL	called	PL/Perl.	This	chapter	uses	some	simple	examples	to	demonstrate	how
you	can	use	Perl	to	write	database	functions.

Chapter	12,	PL/Tcl	–	Tcl	Procedural	Language,	discusses	Tcl	as	a	language	of	choice
when	writing	database	functions.	It	discusses	the	pros	and	cons	of	using	Tcl	in	the
database.

Chapter	13,	Publishing	Your	Code	as	PostgreSQL	Extensions,	discusses	how	to	package
and	distribute	the	PostgreSQL	extensions.	Well-packaged	extensions	can	be	easily
distributed	and	installed	by	other	users.	This	chapter	also	introduces	you	to	the
PostgreSQL	Extension	Network	(PGXN)	and	shows	you	how	to	use	it	to	get	the
extensions	published	by	other	developers.

Chapter	14,	PostgreSQL	as	an	Extensible	RDBMS,	discusses	more	extensibility	options	in
PostgreSQL,	such	as	creating	new	data	types,	operators,	and	index	methods.

What	you	need	for	this	book
In	order	to	follow	this	book,	you	need	the	following	software:

PostgreSQL	Database	Server	9.4
Linux/Unix	Operating	System
Python	2,	Perl,	and	Tcl

Who	this	book	is	for
This	book	is	for	moderate	to	advanced	level	PostgreSQL	database	professionals.	To	get	a
better	understanding	of	this	book,	you	should	have	a	general	experience	in	writing	SQL,	a
basic	idea	of	query	tuning,	and	some	coding	experience	in	a	language	of	your	choice.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“If	any
of	the	checks	fail,	you	should	do	ROLLBACK	instead	of	COMMIT.”

A	block	of	code	is	set	as	follows:

CREATE	TABLE	accounts(owner	text,	balance	numeric,	amount	numeric);

INSERT	INTO	accounts	VALUES	('Bob',100);

INSERT	INTO	accounts	VALUES	('Mary',200);

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

CREATE	OR	REPLACE	FUNCTION	fibonacci_seq(num	integer)

		RETURNS	SETOF	integer	AS	$$

DECLARE

		a	int	:=	0;

		b	int	:=	1;

BEGIN

		IF	(num	<=	0)

				THEN	RETURN;

		END	IF;

		RETURN	NEXT	a;

		LOOP

				EXIT	WHEN	num	<=	1;

				RETURN	NEXT	b;

						num	=	num	-	1;

						SELECT	b,	a	+	b	INTO	a,	b;

		END	LOOP;

END;

$$	LANGUAGE	plpgsql;

Any	command-line	input	or	output	is	written	as	follows:

$	psql	-c	"SELECT	1	AS	test"

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“Enter	some	values	into
the	columns,	as	seen	in	the	preceding	screenshot,	and	click	on	the	Debug	button.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

www.allitebooks.com

http://www.allitebooks.org

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

www.allitebooks.com

http://www.allitebooks.org

Chapter	1.	What	Is	a	PostgreSQL	Server?
If	you	think	that	a	PostgreSQL	Server	is	just	a	storage	system	and	the	only	way	to
communicate	with	it	is	by	executing	SQL	statements,	you	are	limiting	yourself
tremendously.	That	is,	you	are	using	just	a	tiny	part	of	the	database’s	features.

A	PostgreSQL	Server	is	a	powerful	framework	that	can	be	used	for	all	kinds	of	data
processing,	and	even	some	non-data	server	tasks.	It	is	a	server	platform	that	allows	you	to
easily	mix	and	match	functions	and	libraries	from	several	popular	languages.

Consider	this	complicated,	multilanguage	sequence	of	work:

Call	a	string	parsing	function	in	Perl
Convert	the	string	to	XSLT	and	process	the	result	using	JavaScript
Ask	for	a	secure	stamp	from	an	external	timestamping	service,	such	as
http://guardtime.com/,	using	their	SDK	for	C
Write	a	Python	function	to	digitally	sign	the	result

This	multilanguage	sequence	of	work	can	be	implemented	as	a	series	of	simple	function
calls	using	several	of	the	available	server	programming	languages.	The	developer	who
needs	to	accomplish	all	this	work	can	just	call	a	single	PostgreSQL	function	without	the
need	to	be	aware	of	how	the	data	is	being	passed	between	languages	and	libraries:

SELECT	convert_to_xslt_and_sign(raw_data_string);

In	this	book,	we	will	discuss	several	facets	of	PostgreSQL	Server	programming.
PostgreSQL	has	all	of	the	native	server-side	programming	features	available	in	most	larger
database	systems	such	as	triggers,	which	are	automated	actions	invoked	automatically
each	time	data	is	changed.	However,	it	has	uniquely	deep	abilities	to	override	the	built-in
behavior	down	to	very	basic	operators.	This	unique	PostgreSQL	ability	comes	from	its
catalog-driven	design,	which	stores	information	about	data	types,	functions,	and	access
methods.	The	ability	of	PostgreSQL	to	load	user-defined	functions	via	dynamic	loading
makes	it	rapidly	changeable	without	having	to	recompile	the	database	itself.	There	are
several	things	you	can	do	with	this	flexibility	of	customization.	Some	examples	of	this
customization	include	the	following:

Writing	user-defined	functions	(UDF)	to	carry	out	complex	computations
Adding	complicated	constraints	to	make	sure	that	the	data	in	the	server	meets
guidelines
Creating	triggers	in	many	languages	to	make	related	changes	to	other	tables,	audit
changes,	forbid	the	action	from	taking	place	if	it	does	not	meet	certain	criteria,
prevent	changes	to	the	database,	enforce	and	execute	business	rules,	or	replicate	data
Defining	new	data	types	and	operators	in	the	database
Using	the	geography	types	defined	in	the	PostGIS	package
Adding	your	own	index	access	methods	for	either	the	existing	or	new	data	types,
making	some	queries	much	more	efficient

What	sort	of	things	can	you	do	with	these	features?	There	are	limitless	possibilities,	such

http://guardtime.com/

as	the	ones	listed	here:

Write	data	extractor	functions	to	get	just	the	interesting	parts	from	structured	data,
such	as	XML	or	JSON,	without	needing	to	ship	the	whole,	possibly	huge,	document
to	the	client	application.
Process	events	asynchronously,	such	as	sending	mails	without	slowing	down	the
main	application.	You	can	create	a	mail	queue	for	changes	to	user	information,
populated	by	a	trigger.	A	separate	mail-sending	process	can	consume	this	data
whenever	it	is	notified	by	an	application	process.
Implement	a	new	data	type	to	custom	hash	the	passwords.
Write	functions,	which	provide	inside	information	about	the	server,	for	example,
cache	contents,	table-wise	lock	information,	or	the	SSL	certificate	information	of	a
client	connection	for	a	monitoring	dashboard.

The	rest	of	this	chapter	is	presented	as	a	series	of	descriptions	of	common	data
management	tasks,	showing	how	they	can	be	solved	in	a	robust	and	elegant	way	via	server
programming.

Note
The	samples	in	this	chapter	are	all	tested	to	work,	but	they	come	with	minimal
commentary.	They	are	used	here	just	to	show	you	various	things	that	server	programming
can	accomplish.	The	techniques	that	are	described	will	be	explained	thoroughly	in	later
chapters.

Why	program	in	the	server?
Developers	program	their	code	in	a	number	of	different	languages,	and	it	can	be	designed
to	run	just	about	anywhere.	When	writing	an	application,	some	people	follow	the
philosophy	that	as	much	of	the	logic	as	possible	for	the	application	should	be	pushed	to
the	client.	We	see	this	in	the	explosion	of	applications	leveraging	JavaScript	inside
browsers.	Others	like	to	push	the	logic	into	the	middle	tier,	with	an	application	server
handling	the	business	rules.	These	are	all	valid	ways	to	design	an	application,	so	why	will
you	want	to	program	in	the	database	server?

Let’s	start	with	a	simple	example.	Many	applications	include	a	list	of	customers	who	have
a	balance	in	their	account.	We’ll	use	this	sample	schema	and	data:

CREATE	TABLE	accounts(owner	text,	balance	numeric,	amount	numeric);

INSERT	INTO	accounts	VALUES	('Bob',100);

INSERT	INTO	accounts	VALUES	('Mary',200);

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	for	all	the	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

When	using	a	database,	the	most	common	way	to	interact	with	it,	is	to	use	SQL	queries.	If
you	want	to	move	14	dollars	from	Bob’s	account	to	Mary’s	account	with	simple	SQL,	you
can	do	so	using	the	following:

UPDATE	accounts	SET	balance	=	balance	-	14.00	WHERE	owner	=	'Bob';

UPDATE	accounts	SET	balance	=	balance	+	14.00	WHERE	owner	=	'Mary';

However,	you	also	have	to	make	sure	that	Bob	actually	has	enough	money	(or	credit)	in
his	account.	Note	that	if	anything	fails,	then	none	of	the	transactions	will	happen.	In	an
application	program,	this	is	how	the	preceding	code	snippet	will	be	modified:

BEGIN;

SELECT	amount	FROM	accounts	WHERE	owner	=	'Bob'	FOR	UPDATE;—now	in	the	

application	check	that	the	amount	is	actually	bigger—than	14

UPDATE	accounts	SET	amount	=	amount	-	14.00	WHERE	owner	=	'Bob';

UPDATE	accounts	SET	amount	=	amount	+	14.00	WHERE	owner	=	'Mary';

COMMIT;

Did	Mary	actually	have	an	account?	If	she	did	not,	the	last	UPDATE	command	will	succeed
by	updating	zero	rows.	If	any	of	the	checks	fail,	you	should	do	ROLLBACK	instead	of
COMMIT.	Once	you	have	done	all	this	for	all	the	clients	that	transfer	money,	a	new
requirement	will	invariably	arrive.	Perhaps,	the	minimum	amount	that	can	be	transferred
is	now	5.00.	You	will	need	to	revisit	the	code	in	all	your	clients	again.

So,	what	can	you	do	to	make	all	of	this	more	manageable,	secure,	and	robust?	This	is
where	server	programming,	executing	code	on	the	database	server	itself,	can	help.	You	can

http://www.packtpub.com
http://www.packtpub.com/support

move	the	computations,	checks,	and	data	manipulations	entirely	into	a	UDF	on	the	server.
This	not	only	ensures	that	you	have	only	one	copy	of	operation	logic	to	manage,	but	also
makes	things	faster	by	not	requiring	several	round	trips	between	the	client	and	the	server.
If	required,	you	can	also	make	sure	that	only	the	essential	information	is	given	out	from
the	database.	For	example,	there	is	no	business	for	most	client	applications	to	know	how
much	money	Bob	has	in	his	account.	Mostly,	they	only	need	to	know	whether	there	is
enough	money	to	make	the	transfer,	or	to	be	more	specific,	whether	the	transaction
succeeded.

Using	PL/pgSQL	for	integrity	checks
PostgreSQL	includes	its	own	programming	language	named	PL/pgSQL	that	is	aimed	to
integrate	easily	with	SQL	commands.	PL	stands	for	procedural	language,	and	this	is	just
one	of	the	many	languages	available	for	writing	server	code.	pgSQL	is	the	shorthand	for
PostgreSQL.

Unlike	basic	SQL,	PL/pgSQL	includes	procedural	elements,	such	as	the	ability	to	use	the
if/then/else	statements	and	loops.	You	can	easily	execute	SQL	statements,	or	even	loop
over	the	result	of	a	SQL	statement	in	the	language.

The	integrity	checks	needed	for	the	application	can	be	done	in	a	PL/pgSQL	function	that
takes	three	arguments:	names	of	the	payer	and	the	recipient	and	the	amount	to	be	paid.
This	sample	also	returns	the	status	of	the	payment:

CREATE	OR	REPLACE	FUNCTION	transfer(

														i_payer	text,	

														i_recipient	text,	

														i_amount	numeric(15,2))

RETURNS	text	

AS

$$

DECLARE

		payer_bal	numeric;

BEGIN

		SELECT	balance	INTO	payer_bal	

					FROM	accounts	

		WHERE	owner	=	i_payer	FOR	UPDATE;

		IF	NOT	FOUND	THEN

				RETURN	'Payer	account	not	found';

		END	IF;

		IF	payer_bal	<	i_amount	THEN

				RETURN	'Not	enough	funds';

		END	IF;

		UPDATE	accounts	

								SET	balance	=	balance	+	i_amount	

				WHERE	owner	=	i_recipient;

		IF	NOT	FOUND	THEN

				RETURN	'Recipient	does	not	exist';

		END	IF;

		UPDATE	accounts	

									SET	balance	=	balance	-	i_amount	

			WHERE	owner	=	i_payer;

		RETURN	'OK';

END;

$$	LANGUAGE	plpgsql;

Here	are	a	few	examples	of	the	usage	of	this	function,	assuming	that	you	haven’t	executed
the	previously	proposed	UPDATE	statements	yet:

postgres=#	SELECT	*	FROM	accounts;

	owner	|	balance	

-------+---------

	Bob			|					100

	Mary		|					200

(2	rows)

postgres=#	SELECT	transfer('Bob','Mary',14.00);

	transfer	

	OK

(1	row)

postgres=#	SELECT	*	FROM	accounts;

	owner	|	balance	

-------+---------

	Mary		|		214.00

	Bob			|			86.00

(2	rows)

Your	application	will	need	to	check	the	return	code	and	decide	how	to	handle	these	errors.
As	long	as	it	is	written	to	reject	any	unexpected	value,	you	can	extend	this	function	to	do
more	checking,	such	as	the	minimum	transferrable	amount,	and	you	can	be	sure	it	will	be
prevented.	The	following	three	errors	can	be	returned:

postgres=#	SELECT	*	FROM	transfer('Fred','Mary',14.00);

								transfer									

	Payer	account	not	found

(1	row)

postgres=#	SELECT	*	FROM	transfer('Bob','Fred',14.00);

									transfer									

	Recipient	does	not	exist

(1	row)

postgres=#	SELECT	*	FROM	transfer('Bob','Mary',500.00);

					transfer					

	Not	enough	funds

(1	row)

For	these	checks	to	always	work,	you	will	need	to	make	all	the	transfer	operations	go
through	the	function,	rather	than	manually	changing	the	values	with	SQL	statements.	One
way	to	achieve	this,	is	by	revoking	update	privileges	from	users	and	from	a	user	with
higher	privileges	that	define	the	transfer	function	with	SECURITY	DEFINER.	This	will	allow
the	restricted	users	to	run	the	function	as	if	they	have	higher	privileges	similar	to	the
function’s	creator.

About	this	book’s	code	examples
The	sample	output	shown	here	has	been	created	with	the	psql	utility	of	PostgreSQL,
usually	running	on	a	Linux	system.	Most	of	the	code	will	work	the	same	way	if	you	are
using	a	GUI	utility	such	as	pgAdmin3	to	access	the	server	instead.	Take	an	example	of	the
following	line	of	code:

postgres=#	SELECT	1;

The	postgres=#	part	is	the	prompt	shown	by	the	psql	command.

The	examples	in	this	book	have	been	tested	using	PostgreSQL	9.3.	They	will	probably
work	on	PostgreSQL	Version	8.3	and	later.	There	haven’t	been	many	major	changes	to
how	server	programming	happens	in	the	last	few	versions	of	PostgreSQL.	The	syntax	has
become	stricter	over	time	to	reduce	the	possibility	of	mistakes	in	the	server	programming
code.	Due	to	the	nature	of	these	changes,	most	code	from	newer	versions	will	still	run	on
the	older	ones,	unless	it	uses	very	new	features.	However,	the	older	code	can	easily	fail	to
run	due	to	one	of	the	newly	enforced	restrictions.

Switching	to	the	expanded	display
When	using	the	psql	utility	to	execute	a	query,	PostgreSQL	normally	outputs	the	result
using	vertically	aligned	columns:

$	psql	-c	"SELECT	1	AS	test"

	test	

				1

(1	row)

$	psql

psql	(9.3.2)

Type	"help"	for	help.

postgres=#	SELECT	1	AS	test;

	test	

				1

(1	row)

You	can	tell	when	you’re	seeing	a	regular	output	because	it	will	end	up	showing	the
number	of	rows.

This	type	of	output	is	hard	to	fit	into	the	text	of	a	book	such	as	this.	It’s	easier	to	print	the
output	from	what	the	program	calls	the	expanded	display,	which	breaks	each	column	into
a	separate	line.	You	can	switch	to	the	expanded	display	using	either	the	-x	command-line
switch	or	by	sending	\x	to	the	psql	program.	Here’s	an	example	of	using	each	of	these:

$	psql	-x	-c	"SELECT	1	AS	test"

-[RECORD	1]

test	|	1

$	psql

psql	(9.3.2)

Type	"help"	for	help.

postgres=#	\x

Expanded	display	is	on.

postgres=#	SELECT	1	AS	test;

-[RECORD	1]

test	|	1

Notice	how	the	expanded	output	doesn’t	show	the	row	count	and	numbers	each	output
row.	To	save	space,	not	all	of	the	examples	in	the	book	will	show	the	expanded	output
being	turned	on.	You	can	normally	tell	which	type	you	can	see,	by	differences	such	as
whether	you’re	seeing	rows	or	RECORD.	The	expanded	mode	will	normally	be	preferred
when	the	output	of	the	query	is	too	wide	to	fit	into	the	available	width	of	the	book.	It	is	a
good	idea	to	set	the	expanded	mode	to	auto.	This	will	automatically	switch	to	expanded
mode	for	tables	with	a	lot	of	columns.	You	can	turn	on	the	expanded	mode	using	\x	auto:

postgres=#	\x	auto

Expanded	display	is	used	automatically.

www.allitebooks.com

http://www.allitebooks.org

Moving	beyond	simple	functions
Server	programming	can	mean	a	lot	of	different	things.	Server	programming	is	not	just
about	writing	server	functions.	There	are	many	other	things	you	can	do	in	the	server,
which	can	be	considered	as	programming.

Data	comparisons	using	operators
For	more	complex	tasks,	you	can	define	your	own	types,	operators,	and	casts	from	one
type	to	another,	letting	you	actually	compare	apples	and	oranges.

As	shown	in	the	next	example,	you	can	define	the	type	fruit_qty	for	fruit-with-quantity
and	then	teach	PostgreSQL	to	compare	apples	and	oranges,	say	to	make	one	orange	to	be
worth	1.5	apples,	in	order	to	convert	apples	to	oranges:

postgres=#	CREATE	TYPE	FRUIT_QTY	as	(name	text,	qty	int);

postgres=#	SELECT	'("APPLE",	3)'::FRUIT_QTY;

	fruit_qty

	(APPLE,3)

(1	row)

CREATE	FUNCTION	fruit_qty_larger_than(left_fruit	FRUIT_QTY,right_fruit	

FRUIT_QTY)

RETURNS	BOOL

AS	$$

BEGIN

				IF	(left_fruit.name	=	'APPLE'	AND	right_fruit.name	=	'ORANGE')

				THEN

								RETURN	left_fruit.qty	>	(1.5	*	right_fruit.qty);

				END	IF;

				IF	(left_fruit.name	=	'ORANGE'	AND	right_fruit.name	=	'APPLE')

				THEN

								RETURN	(1.5	*	left_fruit.qty)	>	right_fruit.qty;

				END	IF;

				RETURN		left_fruit.qty	>	right_fruit.qty;

END;

$$

LANGUAGE	plpgsql;

postgres=#	SELECT	fruit_qty_larger_than('("APPLE",	

3)'::FRUIT_QTY,'("ORANGE",	2)'::FRUIT_QTY);

	fruit_qty_larger_than	

	f

(1	row)

postgres=#	SELECT	fruit_qty_larger_than('("APPLE",	

4)'::FRUIT_QTY,'("ORANGE",	2)'::FRUIT_QTY);

	fruit_qty_larger_than	

	t

(1	row)

CREATE	OPERATOR	>	(

				leftarg	=	FRUIT_QTY,

				rightarg	=	FRUIT_QTY,

				procedure	=	fruit_qty_larger_than,

				commutator	=	>

);

	postgres=#	SELECT	'("ORANGE",	2)'::FRUIT_QTY	>	'("APPLE",	2)'::FRUIT_QTY;

	?column?	

	t

(1	row)

postgres=#	SELECT	'("ORANGE",	2)'::FRUIT_QTY	>	'("APPLE",	3)'::FRUIT_QTY;

	?column?	

	f

(1	row)

Managing	related	data	with	triggers
Server	programming	can	also	mean	setting	up	automated	actions	(triggers),	so	that	some
operations	in	the	database	cause	some	other	things	to	happen	as	well.	For	example,	you
can	set	up	a	process	where	making	an	offer	on	some	items	is	automatically	reserved	to
them	being	in	the	stock	table.

So,	let’s	create	a	fruit	stock	table,	as	shown	here:

CREATE	TABLE	fruits_in_stock	(

				name	text	PRIMARY	KEY,

				in_stock	integer	NOT	NULL,

				reserved	integer	NOT	NULL	DEFAULT	0,

				CHECK	(in_stock	between	0	and	1000),

				CHECK	(reserved	<=	in_stock)

);

The	CHECK	constraints	make	sure	that	some	basic	rules	are	followed:	you	can’t	have	more
than	1000	fruits	in	stock	(they’ll	probably	go	bad),	you	can’t	have	a	negative	stock,	and
you	can’t	reserve	more	than	what	you	have.	The	fruit_offer	table	will	contain	the	fruits
from	stock	which	are	on	offer.	When	we	insert	a	row	in	the	fruit_offer	table.	The
offered	amount	will	be	reserved	in	the	stock	table	as	shown:

CREATE	TABLE	fruit_offer	(

				offer_id	serial	PRIMARY	KEY,

				recipient_name	text,

				offer_date	timestamp	default	current_timestamp,

				fruit_name	text	REFERENCES	fruits_in_stock,

				offered_amount	integer

);

The	offer	table	has	an	ID	for	the	offer	(so	you	can	distinguish	between	offers	later),
recipient,	date,	offered	fruit	name,	and	offered	amount.

In	order	to	automate	the	reservation	management,	you	first	need	a	TRIGGER	function,
which	implements	the	management	logic:

CREATE	OR	REPLACE	FUNCTION	reserve_stock_on_offer	()	RETURNS	trigger	AS	$$

				BEGIN

								IF	TG_OP	=	'INSERT'	THEN

												UPDATE	fruits_in_stock

									SET	reserved	=	reserved	+	NEW.offered_amount

							WHERE	name	=	NEW.fruit_name;

		ELSIF	TG_OP	=	'UPDATE'	THEN

						UPDATE	fruits_in_stock

									SET	reserved	=	reserved	-	OLD.offered_amount

																																					+	NEW.offered_amount

							WHERE	name	=	NEW.fruit_name;

		ELSIF	TG_OP	=	'DELETE'	THEN

					UPDATE	fruits_in_stock

								SET	reserved	=	reserved	-	OLD.offered_amount

						WHERE	name	=	OLD.fruit_name;

								END	IF;

								RETURN	NEW;

				END;

$$	LANGUAGE	plpgsql;

You	have	to	tell	PostgreSQL	to	call	this	function	each	and	every	time	the	offer	row	is
changed:

CREATE	TRIGGER	manage_reserve_stock_on_offer_change

AFTER	INSERT	OR	UPDATE	OR	DELETE	ON	fruit_offer	FOR	EACH	ROW	EXECUTE	

PROCEDURE	reserve_stock_on_offer();

After	this,	we	are	ready	to	test	the	functionality.	First,	we	will	add	some	fruits	to	our	stock:

INSERT	INTO	fruits_in_stock	VALUES('APPLE',500);

INSERT	INTO	fruits_in_stock	VALUES('ORANGE',500);

Then,	we	will	check	the	stock	(using	the	expanded	display):

postgres=#	\x

Expanded	display	is	on.

postgres=#	SELECT	*	FROM	fruits_in_stock;

-[RECORD	1]----

name					|	APPLE

in_stock	|	500

reserved	|	0

-[RECORD	2]----

name					|	ORANGE

in_stock	|	500

reserved	|	0

Next,	let’s	make	an	offer	of	100	apples	to	Bob:

postgres=#	INSERT	INTO	

fruit_offer(recipient_name,fruit_name,offered_amount)	

VALUES('Bob','APPLE',100);

INSERT	0	1

postgres=#	SELECT	*	FROM	fruit_offer;

-[RECORD	1]--+---------------------------

offer_id							|	1

recipient_name	|	Bob

offer_date					|	2013-01-25	15:21:15.281579

fruit_name					|	APPLE

offered_amount	|	100

On	checking	the	stock,	we	see	that	indeed	100	apples	are	reserved,	as	shown	in	the
following	code	snippet:

postgres=#	SELECT	*	FROM	fruits_in_stock;

-[RECORD	1]----

name					|	ORANGE

in_stock	|	500

reserved	|	0

-[RECORD	2]----

name					|	APPLE

in_stock	|	500

reserved	|	100

If	we	change	the	offered	amount,	the	reserved	amount	also	changes:

postgres=#	UPDATE	fruit_offer	SET	offered_amount	=	115	WHERE	offer_id	=	1;

UPDATE	1

postgres=#	SELECT	*	FROM	fruits_in_stock;

-[RECORD	1]----

name					|	ORANGE

in_stock	|	500

reserved	|	0

-[RECORD	2]----

name					|	APPLE

in_stock	|	500

reserved	|	115

We	also	get	some	extra	benefits.	First,	because	of	the	constraint	on	the	stock	table,	you
can’t	sell	the	reserved	apples:

postgres=#	UPDATE	fruits_in_stock	SET	in_stock	=	100	WHERE	name	=	'APPLE';

ERROR:		new	row	for	relation	"fruits_in_stock"	violates	check	constraint	

"fruits_in_stock_check"

DETAIL:		Failing	row	contains	(APPLE,	100,	115).

More	interestingly,	you	also	can’t	reserve	more	than	you	have,	even	though	the	constraints
are	on	another	table:

postgres=#	UPDATE	fruit_offer	SET	offered_amount	=	1100	WHERE	offer_id	=	1;

ERROR:		new	row	for	relation	"fruits_in_stock"	violates	check	constraint	

"fruits_in_stock_check"

DETAIL:		Failing	row	contains	(APPLE,	500,	1100).

CONTEXT:		SQL	statement	"UPDATE	fruits_in_stock

							SET	reserved	=	reserved	-	OLD.offered_amount

																																					+	NEW.offered_amount

					WHERE	name	=	NEW.fruit_name"

PL/pgSQL	function	reserve_stock_on_offer()	line	8	at	SQL	statement

When	you	finally	delete	the	offer,	the	reservation	is	released:

postgres=#	DELETE	FROM	fruit_offer	WHERE	offer_id	=	1;

DELETE	1

postgres=#	SELECT	*	FROM	fruits_in_stock;

-[RECORD	1]----

name					|	ORANGE

in_stock	|	500

reserved	|	0

-[RECORD	2]----

name					|	APPLE

in_stock	|	500

reserved	|	0

In	a	real	system,	you	probably	will	archive	the	old	offer	before	deleting	it.

Auditing	changes
If	you	need	to	know	who	did	what	to	the	data	and	when	it	was	done,	one	way	to	find	out	is
to	log	every	action	that	is	performed	in	an	important	table.	In	PostgreSQL	9.3,	you	can
also	audit	the	data	definition	language	(DDL)	changes	to	the	database	using	event
triggers.	We	will	learn	more	about	this	in	the	later	chapters.

There	are	at	least	two	equally	valid	ways	to	perform	data	auditing:

Using	auditing	triggers
Allowing	tables	to	be	accessed	only	through	functions	and	auditing	inside	these
functions

Here,	we	will	take	a	look	at	a	minimal	number	of	examples	for	both	the	approaches.

First,	let’s	create	the	tables:

CREATE	TABLE	salaries(

				emp_name	text	PRIMARY	KEY,

				salary	integer	NOT	NULL

);

CREATE	TABLE	salary_change_log(

				changed_by	text	DEFAULT	CURRENT_USER,

				changed_at	timestamp	DEFAULT	CURRENT_TIMESTAMP,

				salary_op	text,

				emp_name	text,

				old_salary	integer,

				new_salary	integer

);

REVOKE	ALL	ON	salary_change_log	FROM	PUBLIC;

GRANT	ALL	ON	salary_change_log	TO	managers;

You	don’t	generally	want	your	users	to	be	able	to	change	audit	logs,	so	only	grant	the
managers	the	right	to	access	these.	If	you	plan	to	let	users	access	the	salary	table	directly,
you	should	put	a	trigger	on	it	for	auditing:

CREATE	OR	REPLACE	FUNCTION	log_salary_change	()	RETURNS	trigger	AS	$$

				BEGIN

								IF	TG_OP	=	'INSERT'	THEN

						INSERT	INTO	salary_change_log(salary_op,emp_name,new_salary)

					VALUES	(TG_OP,NEW.emp_name,NEW.salary);

		ELSIF	TG_OP	=	'UPDATE'	THEN								

INSERT	INTO	salary_change_log(salary_op,emp_name,old_salary,new_salary)

						VALUES	(TG_OP,NEW.emp_name,OLD.salary,NEW.salary);

		ELSIF	TG_OP	=	'DELETE'	THEN

						INSERT	INTO	salary_change_log(salary_op,emp_name,old_salary)

						VALUES	(TG_OP,NEW.emp_name,OLD.salary);

								END	IF;

								RETURN	NEW;

				END;

$$	LANGUAGE	plpgsql	SECURITY	DEFINER;

CREATE	TRIGGER	audit_salary_change

AFTER	INSERT	OR	UPDATE	OR	DELETE	ON	salaries

				FOR	EACH	ROW	EXECUTE	PROCEDURE	log_salary_change	();

Now,	let’s	test	out	some	salary	management:

postgres=#	INSERT	INTO	salaries	values('Bob',1000);

INSERT	0	1

postgres=#	UPDATE	salaries	SET	salary	=	1100	WHERE	emp_name	=	'Bob';

UPDATE	1

postgres=#	INSERT	INTO	salaries	VALUES('Mary',1000);

INSERT	0	1

postgres=#	UPDATE	salaries	SET	salary	=	salary	+	200;

UPDATE	2

postgres=#	SELECT	*	FROM	salaries;

-[RECORD	1]--

emp_name	|	Bob

salary			|	1300

-[RECORD	2]--

emp_name	|	Mary

salary			|	1200

Each	one	of	these	changes	is	saved	into	the	salary	change	log	table	for	auditing	purposes:

postgres=#	SELECT	*	FROM	salary_change_log;

-[RECORD	1]--------------------------

changed_by	|	frank

changed_at	|	2012-01-25	15:44:43.311299

salary_op		|	INSERT

emp_name			|	Bob

old_salary	|	

new_salary	|	1000

-[RECORD	2]--------------------------

changed_by	|	frank

changed_at	|	2012-01-25	15:44:43.313405

salary_op		|	UPDATE

emp_name			|	Bob

old_salary	|	1000

new_salary	|	1100

-[RECORD	3]--------------------------

changed_by	|	frank

changed_at	|	2012-01-25	15:44:43.314208

salary_op		|	INSERT

emp_name			|	Mary

old_salary	|	

new_salary	|	1000

-[RECORD	4]--------------------------

changed_by	|	frank

changed_at	|	2012-01-25	15:44:43.314903

salary_op		|	UPDATE

emp_name			|	Bob

old_salary	|	1100

new_salary	|	1300

-[RECORD	5]--------------------------

changed_by	|	frank

changed_at	|	2012-01-25	15:44:43.314903

salary_op		|	UPDATE

emp_name			|	Mary

www.allitebooks.com

http://www.allitebooks.org

old_salary	|	1000

new_salary	|	1200

On	the	other	hand,	you	may	not	want	anybody	to	have	direct	access	to	the	salary	table,	in
which	case	you	can	perform	the	REVOKE	command.	The	following	command	will	revoke
all	privileges	from	PUBLIC:

REVOKE	ALL	ON	salaries	FROM	PUBLIC;

Also,	give	users	access	to	only	two	functions:	the	first	function	is	for	any	user	taking	a
look	at	salaries	and	the	other	function	can	be	used	to	change	salaries,	which	is	available
only	to	managers.

The	functions	will	have	all	the	access	to	the	underlying	tables	because	they	are	declared	as
SECURITY	DEFINER,	which	means	that	they	run	with	the	privileges	of	the	user	who	created
them.

This	is	how	the	salary	lookup	function	will	look:

CREATE	OR	REPLACE	FUNCTION	get_salary(text)

RETURNS	integer

AS	$$

			—if	you	look	at	other	people's	salaries,	it	gets	logged

				INSERT	INTO	salary_change_log(salary_op,emp_name,new_salary)

				SELECT	'SELECT',emp_name,salary

						FROM	salaries

					WHERE	upper(emp_name)	=	upper($1)

							AND	upper(emp_name)	!=	upper(CURRENT_USER);

			—don't	log	select	of	own	salary

			—return	the	requested	salary

				SELECT	salary	FROM	salaries	WHERE	upper(emp_name)	=	upper($1);

$$	LANGUAGE	SQL	SECURITY	DEFINER;

Notice	that	we	implemented	a	soft-security	approach,	where	you	can	look	up	other
people’s	salaries,	but	you	have	to	do	it	responsibly,	that	is,	only	when	you	need	to,	as	your
manager	will	know	that	you	have	checked.

The	set_salary()	function	abstracts	away	the	need	to	check	whether	the	user	exists;	if
the	user	does	not	exist,	it	is	created.	Setting	someone’s	salary	to	0	will	remove	him	or	her
from	the	salary	table.	Thus,	the	interface	is	simplified	to	a	large	extent,	and	the	client
application	of	these	functions	needs	to	know,	and	do,	less:

CREATE	OR	REPLACE	FUNCTION	set_salary(i_emp_name	text,	i_salary	int)

RETURNS	TEXT	AS	$$

DECLARE

				old_salary	integer;

BEGIN

				SELECT	salary	INTO	old_salary

						FROM	salaries

					WHERE	upper(emp_name)	=	upper(i_emp_name);

				IF	NOT	FOUND	THEN

								INSERT	INTO	salaries	VALUES(i_emp_name,	i_salary);

		INSERT	INTO	salary_change_log(salary_op,emp_name,new_salary)

						VALUES	('INSERT',i_emp_name,i_salary);

								RETURN	'INSERTED	USER	'	||	i_emp_name;

				ELSIF	i_salary	>	0	THEN

								UPDATE	salaries

					SET	salary	=	i_salary

			WHERE	upper(emp_name)	=	upper(i_emp_name);

		INSERT	INTO	salary_change_log

																	(salary_op,emp_name,old_salary,new_salary)

						VALUES	('UPDATE',i_emp_name,old_salary,i_salary);

								RETURN	'UPDATED	USER	'	||	i_emp_name;

				ELSE—salary	set	to	0

								DELETE	FROM	salaries	WHERE	upper(emp_name)	=	upper(i_emp_name);

		INSERT	INTO	salary_change_log(salary_op,emp_name,old_salary)

						VALUES	('DELETE',i_emp_name,old_salary);

								RETURN	'DELETED	USER	'	||	i_emp_name;

				END	IF;

END;

$$	LANGUAGE	plpgsql	SECURITY	DEFINER;

Now,	drop	the	audit	trigger	(otherwise	the	changes	will	be	logged	twice)	and	test	the	new
functionality:

postgres=#	DROP	TRIGGER	audit_salary_change	ON	salaries;

DROP	TRIGGER

postgres=#	

postgres=#	SELECT	set_salary('Fred',750);

-[RECORD	1]------------------

set_salary	|	INSERTED	USER	Fred

postgres=#	SELECT	set_salary('frank',100);

-[RECORD	1]-------------------

set_salary	|	INSERTED	USER	frank

postgres=#	SELECT	*	FROM	salaries	;

-[RECORD	1]---

emp_name	|	Bob

salary			|	1300

-[RECORD	2]---

emp_name	|	Mary

salary			|	1200

-[RECORD	3]---

emp_name	|	Fred

salary			|	750

-[RECORD	4]---

emp_name	|	frank

salary			|	100

postgres=#	SELECT	set_salary('mary',0);

-[RECORD	1]-----------------

set_salary	|	DELETED	USER	mary

postgres=#	SELECT	*	FROM	salaries	;

-[RECORD	1]---

emp_name	|	Bob

salary			|	1300

-[RECORD	2]---

emp_name	|	Fred

salary			|	750

-[RECORD	3]---

emp_name	|	frank

salary			|	100

postgres=#	SELECT	*	FROM	salary_change_log	;

...

-[RECORD	6]--------------------------

changed_by	|	gsmith

changed_at	|	2013-01-25	15:57:49.057592

salary_op		|	INSERT

emp_name			|	Fred

old_salary	|	

new_salary	|	750

-[RECORD	7]--------------------------

changed_by	|	gsmith

changed_at	|	2013-01-25	15:57:49.062456

salary_op		|	INSERT

emp_name			|	frank

old_salary	|	

new_salary	|	100

-[RECORD	8]--------------------------

changed_by	|	gsmith

changed_at	|	2013-01-25	15:57:49.064337

salary_op		|	DELETE

emp_name			|	mary

old_salary	|	1200

new_salary	|

Data	cleaning
In	the	preceding	code,	we	notice	that	employee	names	don’t	have	consistent	cases.	It	will
be	easy	to	enforce	consistency	by	adding	a	constraint,	as	shown	here:

CHECK	(emp_name	=	upper(emp_name))

However,	it	is	even	better	to	just	make	sure	that	the	name	is	stored	as	uppercase,	and	the
simplest	way	to	do	this	is	by	using	trigger:

CREATE	OR	REPLACE	FUNCTION	uppercase_name	()	

		RETURNS	trigger	AS	$$

				BEGIN

								NEW.emp_name	=	upper(NEW.emp_name);

								RETURN	NEW;

				END;

$$	LANGUAGE	plpgsql;

CREATE	TRIGGER	uppercase_emp_name

BEFORE	INSERT	OR	UPDATE	OR	DELETE	ON	salaries

				FOR	EACH	ROW	EXECUTE	PROCEDURE	uppercase_name	();

The	next	set_salary()	call	for	a	new	employee	will	now	insert	emp_name	in	uppercase:

postgres=#	SELECT	set_salary('arnold',80);

-[RECORD	1]-------------------

set_salary	|	INSERTED	USER	arnold

As	the	uppercasing	happens	inside	a	trigger,	the	function’s	response	still	shows	a
lowercase	name,	but	in	the	database,	it	is	uppercased:

postgres=#	SELECT	*	FROM	salaries;

-[RECORD	1]---

emp_name	|	Bob

salary			|	1300

-[RECORD	2]---

emp_name	|	Fred

salary			|	750

-[RECORD	3]---

emp_name	|	Frank

salary			|	100

-[RECORD	4]---

emp_name	|		ARNOLD

salary			|	80

After	fixing	the	existing	mixed-case	employee	names,	we	can	make	sure	that	all	employee
names	will	be	uppercased	in	the	future	by	adding	a	constraint:

postgres=#	update	salaries	set	emp_name	=	upper(emp_name)	where	not	

emp_name	=	upper(emp_name);

UPDATE	3																																																								

postgres=#	alter	table	salaries	add	constraint	

emp_name_must_be_uppercasepostgres	CHECK	(emp_name	=	upper(emp_name));

ALTER	TABLE

If	this	behavior	is	needed	in	more	places,	it	will	make	sense	to	define	a	new	type	–	say
u_text,	which	is	always	stored	as	uppercase.	You	will	learn	more	about	this	approach	in
Chapter	14,	PostgreSQL	as	Extensible	RDBMS.

Custom	sort	orders
The	last	example	in	this	chapter,	is	about	using	functions	for	different	ways	of	sorting.

Say	we	are	given	a	task	to	sort	words	by	their	vowels	only,	and	in	addition	to	this,	to	make
the	last	vowel	the	most	significant	one	when	sorting.	While	this	task	may	seem	really
complicated	at	first,	it	can	be	easily	solved	with	functions:

CREATE	OR	REPLACE	FUNCTION	reversed_vowels(word	text)	

				RETURNS	text	AS	$$

		vowels	=	[c	for	c	in	word.lower()	if	c	in	'aeiou']

		vowels.reverse()

		return	''.join(vowels)

$$	LANGUAGE	plpythonu	IMMUTABLE;

postgres=#	select	word,reversed_vowels(word)	from	words	order	by	

reversed_vowels(word);

				word					|	reversed_vowels

-------------+-----------------

	Abracadabra	|	aaaaa

	Great							|	ae

	Barter						|	ea

	Revolver				|	eoe

(4	rows)

Note
Before	performing	this	code,	please	make	sure	you	have	Python	2.x	installed.	We	will
discuss	PL/Python	in	much	detail	in	the	later	chapters	of	this	book.

The	best	part	is	that	you	can	use	your	new	function	in	an	index	definition:

postgres=#	CREATE	INDEX	reversed_vowels_index	ON	words	

(reversed_vowels(word));

CREATE	INDEX

The	system	will	automatically	use	this	index	whenever	the	reversed_vowels(word)
function	is	used	in	the	WHERE	or	ORDER	BY	clause.

Programming	best	practices
Developing	application	software	is	complicated.	Some	of	the	approaches	that	help	manage
this	complexity	are	so	popular	that	they	have	been	given	simple	acronyms	that	can	be
remembered.	Next,	we’ll	introduce	some	of	these	principles	and	show	you	how	server
programming	helps	make	them	easier	to	follow.

KISS	–	keep	it	simple	stupid
One	of	the	main	techniques	to	successful	programming	is	writing	simple	code.	That	is,
writing	code	that	you	can	easily	understand	3	years	from	now	and	that	others	can
understand	as	well.	It	is	not	always	achievable,	but	it	almost	always	makes	sense	to	write
your	code	in	the	simplest	way	possible.	You	can	rewrite	parts	of	it	later	for	various	reasons
such	as	speed,	code	compactness,	to	show	off	how	clever	you	are,	and	so	on.	However,
always	write	the	code	in	a	simple	way	first,	so	that	you	can	be	absolutely	sure	that	it	does
what	you	want.	Not	only	do	you	get	working	on	the	code	quickly,	but	you	also	have
something	to	compare	to	when	you	try	more	advanced	ways	to	do	the	same	thing.

Remember,	debugging	is	harder	than	writing	code;	so,	if	you	write	the	code	in	the	most
complex	way	you	can,	you	will	have	a	really	hard	time	debugging	it.

It	is	often	easier	to	write	a	set	returning	function	instead	of	a	complex	query.	Yes,	it	will
probably	run	slower	than	the	same	thing	implemented	as	a	single	complex	query,	due	to
the	fact	that	the	optimizer	can	do	very	little	to	the	code	written	as	functions,	but	the	speed
may	be	sufficient	for	your	needs.	If	more	speed	is	required,	it’s	very	likely	to	refactor	the
code	piece	by	piece,	joining	parts	of	the	function	into	larger	queries	where	the	optimizer
has	a	better	chance	of	discovering	better	query	plans	until	the	performance	is	acceptable
again.

Remember	that	most	of	the	time,	you	don’t	need	the	absolutely	fastest	code.	For	your
clients	or	bosses,	the	best	code	is	the	one	that	does	the	job	well	and	arrives	on	time.

DRY	–	don’t	repeat	yourself
This	principle	means	you	should	implement	any	piece	of	business	logic	just	once	and	put
the	code	for	doing	it	in	the	right	place.

This	may	be	hard	sometimes;	for	example,	you	want	to	do	some	checks	on	your	web
forms	in	the	browser,	but	still	do	the	final	checks	in	the	database.	However,	as	a	general
guideline,	it	is	very	much	valid.

Server	programming	helps	a	lot	here.	If	your	data	manipulation	code	is	in	the	database
near	the	data,	all	the	data	users	have	easy	access	to	it,	and	you	will	not	need	to	manage	a
similar	code	in	a	C++	Windows	program,	two	PHP	websites,	and	a	bunch	of	Python
scripts	doing	nightly	management	tasks.	If	any	of	them	need	to	do	this	thing	to	a
customer’s	table,	they	just	call:

SELECT	*	FROM	do_this_thing_to_customers(arg1,	arg2,	arg3);

That’s	it!

If	the	logic	behind	the	function	needs	to	be	changed,	you	just	change	the	function	with	no
downtime	and	no	complicated	orchestration	of	pushing	database	query	updates	to	several
clients.	Once	the	function	is	changed	in	the	database,	it	is	changed	for	all	the	users.

YAGNI	–	you	ain’t	gonna	need	it
In	other	words,	don’t	do	more	than	you	absolutely	need	to.

If	you	have	a	creepy	feeling	that	your	client	is	not	yet	well	aware	of	how	the	final	database
will	look	or	what	it	will	do,	it’s	helpful	to	resist	the	urge	to	design	everything	into	the
database.	A	much	better	way	is	to	do	a	minimal	implementation	that	satisfies	the	current
specifications,	but	do	it	with	extensibility	in	mind.	It	is	very	easy	to	“paint	yourself	into	a
corner”	when	implementing	a	big	specification	with	large	imaginary	parts.

If	you	organize	your	access	to	the	database	through	functions,	it	is	often	possible	to	do
even	large	rewrites	of	business	logic	without	touching	the	frontend	application	code.	Your
application	still	performs	SELECT	*	FROM	do_this_thing_to_customers(arg1,	arg2,
arg3),	even	after	you	have	rewritten	the	function	five	times	and	changed	the	whole	table
structure	twice.

SOA	–	service-oriented	architecture
Usually,	when	you	hear	the	acronym	SOA,	it	will	be	from	enterprise	software	people
trying	to	sell	you	a	complex	set	of	SOAP	services.	But	the	essence	of	SOA	is	to	organize
your	software	platform	as	a	set	of	services	that	clients,	and	other	services,	call	in	order	to
perform	certain	well-defined	atomic	tasks,	as	follows:

Checking	a	user’s	password	and	credentials
Presenting	him/her	with	a	list	of	his/her	favorite	websites
Selling	him/her	a	new	red	dog	collar	with	a	complementary	membership	in	the	red-
collared	dog	club

These	services	can	be	implemented	as	SOAP	calls	with	corresponding	WSDL	definitions
and	Java	servers	with	servlet	containers,	as	well	as	a	complex	management	infrastructure.
They	can	also	be	a	set	of	PostgreSQL	functions,	taking	a	set	of	arguments	and	returning	a
set	of	values.	If	the	arguments	or	return	values	are	complex,	they	can	be	passed	as	XML	or
JSON,	but	a	simple	set	of	standard	PostgreSQL	data	types	is	often	enough.	In	Chapter	10,
Scaling	Your	Database	with	PL/Proxy,	you	will	learn	how	to	make	such	a	PostgreSQL-
based	SOA	service	infinitely	scalable.

Type	extensibility
Some	of	the	preceding	techniques	are	available	in	other	databases,	but	PostgreSQL’s
extensibility	does	not	stop	here.	In	PostgreSQL,	you	can	just	write	UDFs	in	any	of	the
most	popular	scripting	languages.	You	can	also	define	your	own	types,	not	just	domains,
which	are	standard	types	with	some	extra	constraints	attached,	and	new	full-fledged	types
too.

For	example,	a	Dutch	company,	MGRID,	has	developed	a	value	with	unit	set	of	data
types,	so	that	you	can	divide	10	km	by	0.2	hours	and	get	the	result	in	50	km/h.	Of	course,
you	can	also	cast	the	same	result	to	meters	per	second	or	any	other	unit	of	speed.	And	yes,
you	can	get	this	as	a	fraction	of	c—the	speed	of	light.

This	kind	of	functionality	needs	both	the	types	and	overloaded	operands,	which	know	that
if	you	divide	distance	by	time,	then	the	result	is	speed.	You	will	also	need	user-defined
casts,	which	are	automatically	or	manually-invoked	conversion	functions	between	types.

MGRID	developed	this	for	use	in	medical	applications,	where	the	cost	of	an	error	can	be
high—the	difference	between	10	ml	and	10	cc	can	be	vital.	However,	using	a	similar
system	might	also	have	averted	many	other	disasters,	where	wrong	units	ended	up
producing	bad	computation	results.	If	the	amount	is	always	accompanied	by	the	unit,	the
possibility	for	these	kinds	of	errors	is	diminished.	You	can	also	add	your	own	index
method	if	you	have	some	programming	skills	and	your	problem	domain	is	not	well	served
by	the	existing	indexes.	There	is	already	a	respectable	set	of	index	types	included	in	the
core	PostgreSQL,	as	well	as	several	others	that	are	developed	outside	the	core.

The	latest	index	method	that	became	officially	included	in	PostgreSQL	is	k	nearest
neighbor	(KNN)—a	clever	index,	which	can	return	K	rows	ordered	by	their	distance	from
the	desired	search	target.	One	use	of	KNN	is	in	fuzzy	text	search,	where	this	can	be	used
to	rank	full-text	search	results	by	how	well	they	match	the	search	terms.	Before	KNN,	this
kind	of	thing	was	done	by	querying	all	the	rows	which	matched	even	slightly,	then	sorting
all	these	by	the	distance	function,	and	returning	K	top	rows	as	the	final	step.

If	done	using	the	KNN	index,	the	index	access	can	start	returning	the	rows	in	the	desired
order;	so,	a	simple	LIMIT	K	function	will	return	the	K	top	matches.

The	KNN	index	can	also	be	used	for	real	distances,	for	example,	answering	the	request
“Give	me	the	10	nearest	pizza	places	to	Central	Station.”

As	you	saw,	index	types	are	different	from	the	data	types	they	index.	Another	example,	is
the	same	General	Inverted	Index	(GIN)	can	be	used	for	full-text	searches	(together	with
stemmers,	thesauri,	and	other	text-processing	stuff),	as	well	as	for	indexing	elements	of
integer	arrays.

Caching
Yet	another	place	where	server-side	programming	can	be	used	is	to	cache	values,	which
are	expensive	to	compute.	The	following	is	the	basic	pattern	here:

1.	 Check	whether	the	value	is	cached.
2.	 If	it	isn’t,	or	the	value	is	too	old,	compute	and	cache	it.
3.	 Return	the	cached	value.

For	example,	calculating	the	sales	for	a	company	is	the	perfect	item	to	cache.	Perhaps,	a
large	retail	company	has	1,000	stores	with	potentially	millions	of	individual	sales’
transactions	per	day.	If	the	corporate	headquarters	is	looking	for	sales’	trends,	it	is	much
more	efficient	if	the	daily	sales	numbers	are	precalculated	at	the	store	level	instead	of
summing	up	millions	of	daily	transactions.

If	the	value	is	simple,	such	as	looking	up	a	user’s	information	from	a	single	table	based	on
the	user	ID,	you	don’t	need	to	do	anything.	The	value	gets	cached	in	PostgreSQL’s	internal
page	cache,	and	all	lookups	to	it	are	so	fast	that	even	on	a	very	fast	network,	most	of	the
time	is	spent	doing	the	lookups	in	the	network	and	not	in	the	actual	lookup.	In	such	a	case,
getting	data	from	a	PostgreSQL	database	is	as	fast	as	getting	it	from	any	other	in-memory
cache	(such	as	memcached)	but	without	any	extra	overhead	in	managing	the	cache.

Another	use	case	of	caching	is	to	implement	materialized	views.	These	are	views	that	are
precomputed	only	when	required,	not	every	time	one	selects	data	from	the	view.	Some
SQL	databases	have	materialized	views	as	separate	database	objects,	but	in	the
PostgreSQL	versions	prior	to	9.3,	you	have	to	do	it	yourself	using	other	database	features
to	automate	the	whole	process.

Wrapping	up	–	why	program	in	the
server?
The	main	advantages	of	doing	most	data	manipulation	code	on	the	server-side	are	stated	in
the	following	sections.

Performance
Doing	the	computation	near	the	data	is	almost	always	a	performance	win,	as	the	latencies
to	get	the	data	are	minimal.	In	a	typical	data-intensive	computation,	most	of	the	time	is
spent	in	getting	the	data.	Therefore,	making	data	access	inside	the	computation	faster	is
the	best	way	to	make	the	whole	thing	fast.	On	my	laptop,	it	takes	2.2	ms	to	query	one
random	row	from	a	1,000,000-row	database	into	the	client,	but	it	takes	only	0.12	ms	to	get
the	data	inside	the	database.	This	is	20	times	faster	and	inside	the	same	machine	over	Unix
sockets.	The	difference	can	be	bigger	if	there	is	a	network	connection	between	the	client
and	the	server.

A	small	real-word	story:

A	friend	of	mine	was	called	to	help	a	large	company	(I’m	sure	all	of	you	know	it,	but	I
can’t	tell	you	which	one)	in	order	to	make	its	e-mail	sending	application	faster.	They	had
implemented	their	e-mail	generation	system	with	all	the	latest	Java	EE	technologies:	first,
getting	the	data	from	the	database,	passing	the	data	around	between	services,	and
serializing	and	deserializing	it	several	times	before	finally	doing	XSLT	transformation	on
the	data	to	produce	the	e-mail	text.	The	end	result	being	that	it	produced	only	a	few
hundred	e-mails	per	second,	and	they	were	falling	behind	with	their	responses.

When	he	rewrote	the	process	to	use	a	PL/Perl	function	inside	the	database	to	format	the
data	and	the	query	returned	already	fully-formatted	e-mails,	it	suddenly	started	spewing
out	tens	of	thousands	of	e-mails	per	second	and	they	had	to	add	a	second	copy	of	the	sent
mail	to	actually	be	able	to	send	them	out.

Ease	of	maintenance
If	all	the	data	manipulation	code	is	in	a	database,	either	as	database	functions	or	views,	the
actual	upgrade	process	becomes	very	easy.	All	that	is	needed	is	to	run	a	DDL	script	that
redefines	the	functions;	all	the	clients	automatically	use	the	new	code	with	no	downtime
and	no	complicated	coordination	between	several	frontend	systems	and	teams.

Improved	productivity
Server-side	functions	are	perhaps	the	best	way	to	achieve	code	reuse.	Any	client
application	written	in	any	language	or	framework	can	make	use	of	the	server-side
functions,	ensuring	maximum	reuse	in	all	environments.

Simple	ways	to	tighten	security
If	all	the	access	for	some	possibly	insecure	servers	goes	through	functions,	the	database
user	of	these	servers	can	only	be	granted	access	to	the	needed	functions	and	nothing	else.
They	can’t	see	the	table	data	or	even	the	fact	that	these	tables	exist.	So,	even	if	the	server
is	compromised,	all	it	can	do	is	continue	to	call	the	same	functions.	Also,	there	is	no
possibility	of	stealing	passwords,	e-mails,	or	other	sensitive	information	by	issuing	its	own
queries	such	as	SELECT	*	FROM	users;	and	getting	all	the	data	there	is	in	the	database.

Also,	the	most	important	thing	is	that	programming	in	a	server	is	fun!

Summary
Programming	inside	the	database	server	is	not	always	the	first	thing	that	comes	to	mind	to
many	developers,	but	its	unique	placement	inside	the	application	stack	gives	it	some
powerful	advantages.	Your	application	can	be	faster,	more	secure,	and	more	maintainable
by	pushing	logic	into	the	database.	With	server-side	programming	in	PostgreSQL,	you	can
secure	your	data	using	functions,	audit	access	to	your	data	and	structural	changes	using
triggers,	and	improve	productivity	by	achieving	code	reuse.	Also,	you	can	enrich	your
data	using	custom	data	types,	analyze	your	data	using	custom	operators,	and	extend	the
capabilities	of	the	database	by	dynamically	loading	new	functions.

This	is	just	the	start	of	what	you	can	do	inside	PostgreSQL.	Throughout	the	rest	of	this
book,	you	will	learn	many	other	ways	to	write	powerful	applications	by	programming
inside	PostgreSQL.

Chapter	2.	Server	Programming
Environments
You’ve	had	a	chance	to	get	acquainted	with	the	general	idea	of	using	PostgreSQL,	but
now	we	are	going	to	answer	the	question	of	why	anyone	will	choose	PostgreSQL	as	a
development	platform.	As	much	as	I’d	like	to	believe	that	it’s	an	easy	decision	for
everyone,	it’s	not.

For	starters,	let’s	get	rid	of	the	optimistic	idea	that	you	choose	a	database	platform	for
technical	reasons.	Sure,	we	all	like	to	think	that	we	are	objective,	and	we	base	our
decisions	on	a	preponderance	of	the	technical	evidence.	This	preponderance	of	evidence
then	indicates	which	features	are	available	and	relevant	to	our	application.	We	will	then
proceed	to	make	a	weighted	choice	in	favor	of	the	most	advantageous	platform,	and	use	a
balance	of	the	evidences	to	create	workarounds	and	alternatives	where	our	choice	falls
short.	The	fact	is	that	we	don’t	really	understand	all	the	requirements	of	the	application
until	we	are	halfway	through	the	development	cycle.	Here	are	some	reasons	why:

We	don’t	know	how	the	application	will	evolve	over	time.	Many	start-ups	pivot	from
their	initial	idea	as	the	market	tells	them	to	change.
We	don’t	know	how	many	users	there	will	really	be	until	we	have	some	registrations
and	can	begin	to	measure	the	curve.
We	don’t	realize	how	important	a	particular	feature	can	be	until	we	get	user	feedback.
The	truth	is,	that	we	don’t	really	know	much	about	the	long-term	needs	of	the
application	until	we’re	writing	version	2	or	maybe	even	version	3.

That	is,	unless	you’re	one	of	the	fortunate	few	who	has	a	Research	and	Development
department	that	writes	the	alpha	version,	throws	it	out	the	window,	and	then	asks	you	to
write	the	next	version	based	on	the	lessons	learned.	Even	then,	you	really	don’t	know	what
the	usage	patterns	are	going	to	be	once	the	application	is	deployed.

What	we	generally	see	in	the	PostgreSQL	community—when	new	users	start	asking
questions—is	people	not	looking	to	make	a	decision,	but	rather	people	who	have	already
made	a	decision.	In	most	cases,	they	are	looking	for	technical	justification	for	an	existing
plan	of	action.	The	decision	has	already	been	passed.	What	I	am	going	to	write	about	in
this	chapter	is	not	a	TPC	benchmark,	nor	is	it	about	the	relative	merits	of	PostgreSQL
functions	versus	stored	procedures.	Frankly,	nobody	really	cares	about	these	things	until
they	have	already	made	a	choice	and	want	to	justify	it.

This	chapter	contains	the	guide	that	I	wish	someone	had	written	for	me	when	I	chose	to
use	PostgreSQL	back	in	1998.

Cost	of	acquisition
One	of	biggest	the	factors	that	decides	which	technology	is	used	in	the	application	stack	is
the	cost	of	acquisition.	I’ve	seen	many	application	architectures	drawn	on	a	whiteboard
where	the	technical	team	was	embarrassed	to	show	them,	but	they	justified	the	design	by
trying	to	keep	software	licensing	costs	down.	When	it	comes	to	the	database	environment,
the	usual	suspects	are	Oracle,	SQL	Server,	MySQL,	and	PostgreSQL.	Oracle,	the
dominant	player	in	the	database	space,	is	also	the	most	costly.	At	the	low	end,	Oracle	does
have	reasonably	priced	offerings	and	even	a	free	Express	Edition,	but	they	are	limited.
Most	people	have	needs	beyond	the	low-priced	offerings	and	fall	into	the	enterprise	sales
machine	of	Oracle.	This	usually	results	in	a	high-price	quote	that	makes	your	CFO	fall	out
of	his/her	chair,	and	you’re	back	to	designing	your	solution	in	order	to	keep	your	licensing
costs	down.

Then	comes	Microsoft	SQL	Server.	This	is	your	first	reasonably	viable	option.	The	pricing
is	listed	on	the	Microsoft	website.	I	will	not	reproduce	it	here	because	the	pricing	schedule
is	too	volatile	for	a	book	that	will	remain	in	print	for	a	longer	time.	Nonetheless,	an
experienced	thumb	value	of	the	purchase	cost	for	SQL	Server	will	get	you	running	with	a
web-capable	model	for	about	$5,000.	This	does	not	include	a	service	contract.	In	the	grand
scheme	of	development	costs,	this	is	reasonable	and	not	too	high	of	a	barrier	to	enter.

Then,	we	have	the	open	source	offerings	such	as	MySQL	and	PostgreSQL.	They	cost
nothing	and	the	service	contracts	cost—wait	for	it—nothing.	This	is	a	very	hard	cost	of
acquisition	to	beat.

Remember,	in	the	beginning	of	the	chapter,	when	I	was	talking	about	all	the	things	that
you	don’t	know	when	the	project	starts?	Here’s	where	the	real	win	comes	in.	You	can
afford	to	fail.

There,	I	said	it!

Low	cost	of	acquisition	is	a	synonym	for	low	cost	of	failure.	When	we	add	up	all	of	the
unknowns	for	the	project,	we	find	out	that	we	have	a	fairly	good	chance	that	the	first
iteration	will	not	meet	the	market	needs,	and	we	need	to	find	a	way	to	jettison	it	quickly
without	long-term	contracts	and	the	additional	costs	of	spinning	up	a	new	project.

This	allows	the	project	manager	to	move	on	to	the	next	version	using	lessons	learned	from
the	consumer	after	the	first	version.	Hopefully,	this	lesson	in	user	acceptance	will	come	at
a	very	low	cost	and	the	project	will	then	begin	to	thrive	in	the	following	versions.	Don’t
let	the	success	of	the	project	hang	on	getting	the	first	version	perfect.	You	won’t!

Availability	of	developers
This	has	been	one	of	the	most	hilarious	parts	of	my	development	life.	I	recently
recommended	a	local	company	to	use	PostgreSQL	for	a	reporting	system.	The	company	in
question	wanted	to	know	that	if	they	chose	PostgreSQL,	would	anyone	on	staff	be	able	to
maintain	it.	So,	I	began	to	interview	the	developers	to	find	out	about	their	experiences
with	PostgreSQL.

Me:	Do	you	have	any	experience	with	PostgreSQL?

Developer	1:	Yes,	I	used	it	at	the	last	job	for	a	product	fulfillment	project,	but	I	don’t	think
many	people	have	that	experience.	We	should	probably	stick	to	using	MySQL.

Me:	Do	you	have	any	experience	with	PostgreSQL?

Developer	2:	Yes,	I	used	it	at	the	last	job	for	a	reporting	project,	but	I	don’t	think	many
people	have	that	experience.	We	should	probably	stick	to	using	MySQL.

After	interviewing	all	seven	developers	that	were	influential	on	the	project,	I	found	that
the	only	person	without	hands-on	experience	with	PostgreSQL	was	the	project	manager.
Since	the	project	manager	didn’t	expect	to	have	any	technical	involvement	in	the	project,
he	approved	the	selection	of	PostgreSQL.

PostgreSQL	is	one	of	the	dirty	little	secrets	of	web	developers.	They	have	about	the	same
level	of	familiarity	with	it	as	they	do	with	encryption	and	security.	Because	only	advanced
users	will	use	it,	they	have	a	general	geek	requirement	to	look	into	it	and	presume	that
everyone	else	is	too	inexperienced	to	do	the	same.	Everyone	is	trying	to	“dumb	it	down”
for	the	other	guy.	They	consider	their	own	use	of	the	tools	at	hand	(MySQL)	a	sacrifice
that	they	are	willing	to	make	in	order	to	help	the	less	experienced	person	down	the	hall.
Comically,	the	person	down	the	hall	thinks	that	he’s/she’s	making	the	same	sacrifice	for
everyone	else.

Tip
Lesson	learned

Quit	making	choices	for	the	other	guy.	He/she	is	just	as	experienced	(and	intelligent)	as
you	are,	or	he/she	might	just	want	the	opportunity	to	advance	his/her	skills.

Licensing
About	2	months	after	Oracle	bought	MySQL,	they	announced	a	plan	that	divided	the
development	into	two	camps:	a	MySQL	community	edition	and	a	professional	version.
The	community	edition	would	no	longer	gain	any	new	features,	and	the	professional
version	would	become	a	commercial	product.

There	was	a	vast	and	thunderous	sucking	sound	in	the	open	source	community,	as	they
thrashed	wildly	about	to	find	a	new	platform	for	Free	and	Open	Source	Software	(FOSS)
development.

Oracle	immediately	(in	about	2	weeks)	countermanded	the	order	and	declared	that	things
will	stay	as	they	were	for	the	indefinite	future.	Those	with	short	memories,	forgiving
hearts,	or	who	just	weren’t	paying	attention	went	on	about	their	business.	Many	other
open	source	projects	either	switched	to	PostgreSQL	or	suddenly	grew	PostgreSQL
database	support.

Today,	we	have	MySQL	and	MySQL	Enterprise	Edition.	If	you	want	backup,	high
availability,	enterprise	scalability,	and	the	MySQL	Enterprise	Monitor,	you	now	have	to
pony	up	some	dough.	Capitalism	is	fine,	and	corporations	have	a	right	to	charge	money
for	their	services	and	products	in	order	to	exist.	But	why	should	you,	as	a	project	manager
or	developer,	have	to	pay	for	something	that	you	can	get	for	free?

Licensing	is	all	about	continued	product	availability	and	distribution.	The	PostgreSQL
licensing	model	specifically	states	that	you	can	have	the	source	code,	do	anything	with	it,
redistribute	it	however	you	jolly	well	please,	and	these	rights	extend	indefinitely.	Try	to
get	this	deal	with	a	commercial	vendor.

As	a	corporate	developer,	PostgreSQL	wins	the	legal	battle	for	risk	management	hands
down.	I	have	heard	the	argument	“I	want	to	go	with	a	commercial	vendor	if	I	need
someone	to	sue.”	I	will	encourage	anyone	who	considers	it	a	good	argument	to	do	a	little
research	about	how	often	these	vendors	have	been	sued,	how	often	those	suits	were
successful,	and	what	the	cost	of	court	was	for	that	success.	I	think	you’ll	find	that	the	only
viable	option	is	not	to	have	the	battle.

Predictability
This	section	could	just	as	well	have	been	titled	standards	compliance,	but	I	decided
against	it	because	the	benefits	of	standards	compliance	in	corporate	projects	are	not
obvious.	The	limitations	of	the	common	databases	are	well-documented,	and	I	will	show
you	a	few	websites	in	a	moment	where	you	can	make	a	comparison	of	who	has	the	most
unintended	behavior.	I	will	encourage	you	to	read	the	following	material	while	thinking
about	the	question,	“Which	method	of	feature	development	is	most	likely	to	make	my
application	break	in	the	future?”:

http://www.sql-info.de/postgresql/postgres-gotchas.html
http://www.sql-info.de/mysql/gotchas.html

Note
Spoiler	alert:

A	stricter	adherence	to	standards	comes	at	the	cost	of	not	allowing	ambiguous	behavior.
Not	allowing	ambiguous	behavior	makes	the	developer’s	life	more	difficult.	Making	the
developer’s	life	more	difficult	ensures	that	the	interpretation	of	the	commands	that	the
developer	gives	will	not	change	later,	breaking	the	application.

Just	how	lazy	can	you	afford	to	be?	I’m	not	sure	how	to	measure	this.	PostgreSQL	is
available	for	no-cost	future	predictability,	so	I	don’t	have	to	answer	the	question.

Sure,	PostgreSQL	also	has	some	bugs	listed.	However,	changes	to	the	database	core	have
a	tendency	to	make	the	engine	work	like	the	documentation	says	it	does,	not	like	the
documentation	should	have	said.	PostgreSQL	developers	don’t	have	to	say,	“Oops,	I	didn’t
think	of	that,”	very	often.	When	they	do,	PostgreSQL	just	becomes	more	standards
compliant.

http://www.sql-info.de/postgresql/postgres-gotchas.html
http://www.sql-info.de/mysql/gotchas.html

Community
Oracle	and	SQL	Server	don’t	have	a	community.	Please	understand	when	I	say	that,	I
mean	that	the	chance	that	you	will	get	to	talk	to	a	developer	of	the	core	database	is	about
the	same	as	your	chance	of	winning	the	lottery.	By	the	time	you	do,	it’s	probably	because
you	found	a	bug	so	heinous	that	it	couldn’t	be	ignored	and	the	only	person	who	can
understand	your	report	is	the	guy	who	wrote	the	code	in	question.	They	have	paid
technical	support	and	this	support	has	proven	in	my	experience	to	be	generally	competent,
but	not	stellar.	I	have	had	to	work	around	the	problem	that	I	originally	requested	help	with
about	40	percent	of	the	time.

Compare	this	to	MySQL	and	PostgreSQL,	where	just	about	anybody	can	speak	to	just
about	anybody	else	all	day	long.	Many	of	the	core	developers	of	both	the	platforms	can	be
found	on	IRC,	met	at	conventions,	contacted	for	contract	development	work,	and	for	the
most	part,	bribed	remarkably	easily	with	beer	(hint,	hint,	wink,	wink,	nudge,	nudge).

They	are	actively	concerned	about	the	health	of	the	overall	community	and	will	answer
just	about	any	kind	of	question	you	ask,	even	if	the	question	has	a	very	tenuous
relationship	to	database	development.	My	personal	experience,	is	that	the	PostgreSQL
team	has	more	core	developers	readily	available	than	MySQL.	They	are	also	more
personally	available	at	conventions	and	meetings.

Did	I	mention	they	like	beer?

Procedural	languages
SQL	Server	allows	you	to	create	a	dynamic	link	library	(DLL)	in	any	language	that
produces	the	Common	Language	Runtime	(CLR).	These	DLLs	must	be	loaded	into	the
server	at	boot	time.	To	create	a	procedure	at	runtime	and	have	it	immediately	available,
the	only	choice	is	the	built-in	SQL	dialect,	Transact	SQL	(TSQL).

MySQL	has	a	feature	called	plugins.	One	of	the	legal	plugin	types	is	a	procedural
language.	Several	languages	have	been	tooled	to	work	with	MySQL	via	the	plugin	system,
including	most	of	the	popular	ones	such	as	PHP	and	Python.	These	functions	cannot	be
used	for	stored	procedures	or	triggers,	but	they	can	be	invoked	from	the	common	SQL
statements.	For	the	rest,	you	are	stuck	with	the	built-in	SQL.

PostgreSQL	has	full	support	for	additional	procedural	languages,	which	can	be	used	to
create	any	legal	entity	in	the	database	that	can	be	created	with	PL/pgSQL.	The	language
can	be	added	(or	removed)	from	a	running	version	of	PostgreSQL	and	any	function
defined	using	this	language	can	also	be	created	or	dropped	while	support	for	additional
procedural	languages,	which	can	be	used	to	create	any	legal	entity	in	the	database	that	can
be	created	with	PL/pgSQL.	The	language	can	be	added	(or	removed)	from	a	running
version	of	PostgreSQL	and	any	function	defined	using	this	language	can	also	be	created	or
dropped	while	PostgreSQL	is	running.

These	languages	have	full	access	to	PostgreSQL’s	internal	functions	and	to	all	the	data
entities	that	the	calling	user	has	permission	for.	In	addition	to	having	access	to	internal
PostgreSQL	functions,	entities,	and	data	structures,	some	functions	(in	untrusted
languages)	can	also	access	external	services,	create	or	delete	files	and	directories,	or	send
e-mails	and	invoke	external	processes.	We	will	discuss	trusted	and	untrusted	languages	in
later	chapters.

Many	of	these	plugin	language	extensions	are	available	for	PostgreSQL.	I	have	used	the
extensions	for	PHP,	Python,	Bash,	and	PL/pgSQL.	Yes,	this	means	that	the	standard
language	for	PostgreSQL	is	also	installed	and	managed	using	the	same	extension	system
as	any	other	language.

This	brings	us	to	the	point	that	we	have	more	developers	available	for	PostgreSQL	than
you	might	have	originally	thought.	Software	developers	are	not	required	to	learn	a	new
development	language	in	order	to	write	stored	procedures.	They	can	extend	PostgreSQL
with	a	language	of	their	choice	and	continue	to	code	in	the	manner	and	workflow	that	they
choose.

Tip
Lesson	learned

There	are	no	second-class	citizens	in	the	PostgreSQL	development	community.	Anyone
can	code	in	(almost)	any	language	they	choose.

Third-party	tools
A	frequent	point	of	comparison	among	the	database	platforms	is	the	number	of	third-party
applications	available.	I’m	not	so	sure	that	the	total	number	matters,	as	much	as	the
existence	of	the	applications	you	actually	need.

To	this	end,	the	following	is	a	list	of	the	products	that	I	have	used	extensively	with
PostgreSQL:

Pentaho	data	integration	(kettle):	This	is	an	outstanding	Extract,	Transform	and
Load	(ETL)	tool
Pentaho	Report	Server:	This	is	a	great	reporting	engine
pgAdmin3:	This	is	an	awesome	database	administration	tool
php5-pgsql:	This	is	a	package	that	allows	native	access	to	PostgreSQL	from	PHP
QCubed:	This	is	the	PHP	development	framework	with	PostgreSQL	support
Yii:	This	is	another	great	PHP	development	framework
Talend:	This	is	another	ETL	tool	that	works,	but	this	is	not	my	favorite
BIRT:	This	is	a	great	JAVA	reporting	tool	with	an	easy	report	creation	environment
psycopg2:	This	is	the	Python	bindings	for	PostgreSQL

These	tools	have	made	the	PostgreSQL	development	experience	a	breeze,	and	this	is	no
where	near	a	complete	list.	We	can	fill	this	book	with	just	a	list	of	applications	that	support
PostgreSQL,	and	thanks	to	its	liberal	license,	PostgreSQL	is	embedded	in	many
commercial	applications	that	you	never	really	know.

Tip
Lesson	learned

Don’t	worry	too	much	about	how	many	tools	are	out	there	for	the	product.	The	ones	that
matter	are	available.

Platform	compatibility
SQL	Server	is	a	Microsoft	product.	As	such,	it	was,	and	will	always	be,	a	Microsoft
platform	tool.	It	is	accessible	to	some	limited	degree	via	ODBC,	but	it	is	not	a	serious
choice	for	cross-platform	development.

MySQL	and	PostgreSQL	support	every	operating	system	currently	available	today.	This
ability	(or	the	lack	of	limitation)	is	a	strong	argument	for	long-term	stability.	If	any
particular	operating	system	is	no	longer	available,	or	no	longer	supports	open	source
software,	it	is	fairly	simple	to	move	the	database	server	to	another	platform.

Tip
Lesson	learned

In	the	commercial	operating	system	wars,	just	say	no.

Application	design
	 “The	thing	that	hath	been,	it	is	that	which	shall	be;	and	that	which	is	done	is	that	which	shall	be	done:	and	there	is
no	new	thing	under	the	sun.”

	

	 —Ecclesiastes	1:9	(KJV)

	 “…	old	things	are	passed	away;	behold,	all	things	are	become	new.” 	

	 —2	Corinthians	5:16-18	(KJV)

In	software	development,	we	are	always	running	into	the	situation	where	what	is	old	is
new	again,	and	developers	who	embrace	a	philosophy	swear	by	it	like	a	religion.	We
swing	back	and	forth	between	thin	servers	and	thin	clients,	flat	and	hierarchical	storage,
desktop	applications	and	web	applications	and,	most	appropriately	for	this	chapter,
between	client	and	server	programming.

The	reason	for	this	swing	between	programming	implementations	has	got	nothing	to	do
with	the	features	that	the	client	or	the	server	offers.	Developer	experience	is	a	much	more
likely	influence,	and	this	influence	can	go	in	either	direction,	depending	on	what	the
developer	encountered	first.

I	encourage	both	the	server-centric	developer	and	the	client-centric	developer	to	lay	down
their	pitchforks	while	reading	the	rest	of	this	chapter.

We	will	discuss,	in	due	time,	most	of	the	new	features	of	server	programming.	If	you’re
still	not	convinced,	we	will	take	a	look	at	how	you	can	harness	the	benefits	of	most	of
those	features	without	leaving	your	application-centered	point	of	view.

Databases	are	considered	harmful
The	simplest	and	least	powerful	way	of	looking	at	server	programming,	is	to	view	the
database	as	a	data	bucket.	Using	only	the	most	basic	SQL	statements	such	as	INSERT,
SELECT,	UPDATE,	and	DELETE,	you	can	manipulate	data,	a	single	row	at	a	time,	and	create
application	libraries	for	multiple	databases	easily.

This	approach	has	some	major	drawbacks.	Moving	data	back	and	forth	to	the	database
server	one	row	at	a	time	is	extremely	inefficient,	and	you	will	find	that	this	method	is
simply	not	viable	in	a	web-scale	application.

This	idea	is	usually	associated	with	the	concept	of	a	database	abstraction	layer,	a	client
library	that	allows	the	developer	to	switch	the	database	out	from	under	the	application
with	little	effort.	This	abstraction	layer	is	very	useful	in	the	open	source	development
community,	which	allows	the	use	of	many	databases,	but	they	have	no	financial	incentive
to	get	the	best	possible	performance.

SQL,	being	based	on	relational	algebra	and	tuple	relational	calculus,	has	the	ability	to
quickly	and	efficiently	perform	set-based	processing	on	large	amounts	of	data;	the
application-side	processing	usually	involves	iterative	looping,	which	is	generally	much
slower.

In	my	27-year	career,	I	have	never	actually	changed	the	database	of	an	installed

application	without	throwing	away	the	application.	One	of	the	principles	of	agile	software
development	is	YAGNI	(you	ain’t	gonna	need	it).	This	is	one	of	those	cases.

Tip
Lesson	learned

Data	abstraction	is	valuable	for	projects	that	need	to	select	a	database	platform	at
installation	time.	For	anything	else,	just	say	no.

Encapsulation
Another	technique	used	in	more	client-centric	development	philosophies,	is	to	isolate	the
database-specific	calls	into	a	library	of	procedures.	This	design	is	usually	aimed	at	leaving
the	application	in	control	of	all	the	business	logic.	The	application	is	still	the	king,	and	the
database	is	still	just	a	necessary	evil.

This	view	of	database	architecture	sells	the	application	developer	short	by	ignoring	a
toolbox	full	of	tools	and	choosing	only	the	hammer.	Everything	in	the	application	is	then
painted	to	look	like	a	nail	and	is	smacked	with	the	hammer.

Tip
Lesson	learned

Don’t	give	up	on	the	power	of	the	database	just	because	it	is	not	familiar.	Use	procedural
languages	and	check	out	extension	toolkits.	There	are	some	awesome	pieces	of	work	in
there.

What	does	PostgreSQL	offer?
So	far,	we’ve	mentioned	procedural	languages,	functions,	triggers,	custom	data	types,	and
operators.	These	things	can	be	created	directly	in	the	database	via	the	CREATE	commands
or	added	as	libraries	using	extensions.

Now,	we	will	show	you	some	things	that	you	need	to	keep	in	mind	when	programming	on
the	server	in	PostgreSQL.

Data	locality
If	possible,	keep	the	data	on	the	server.	Believe	me,	it’s	happier	there,	and	performance	is
much	better	when	modifying	data.	If	everything	was	done	in	the	application	layer,	the	data
will	need	to	be	returned	from	the	database	with	the	modifications	and	then	finally	sent
back	to	the	database	for	a	commit.	If	you	are	building	a	web-scalable	application,	this
should	be	your	last	resort.

Let’s	walk	through	a	small	snippet	that	uses	two	methods	in	order	to	make	an	update	to	a
single	record:

<?php

		$db	=	pg_connect("host	port	user	password	dbname	schema");

		$sql	=	"SELECT	*	FROM	customer	WHERE	id	=	23";

		$row	=	pg_fetch_array($db,$sql);

		if	($row['account_balance']	>	6000)	{

		$sql	=	"UPDATE	customer	SET	valued_customer	=	true	WHERE	id	=	23;";;";

		pg_query($db,$sql);

		}

		pg_close($db);

?>

This	code	snippet	pulls	a	row	of	data	from	the	database	server	to	the	client,	makes	an
evaluation,	and	changes	a	customer	account	based	on	the	evaluation.	The	result	of	the
change	is	then	sent	back	to	the	server	for	processing.

There	are	several	things	that	are	wrong	with	this	scenario.	First,	the	scalability	is	terrible.
Imagine	if	this	operation	needed	to	be	performed	for	thousands,	or	even	millions	of
customers.	This	will	be	really	slow	because	the	code	will	process	the	records	one	by	one,
and	each	record	will	be	sent	over	the	network	and	then	updated,	which	involves	going
over	the	network	again	for	each	record.

The	second	problem	is	transactional	integrity.	What	happens	if	the	user’s	account	balance
changes	from	some	other	transaction	between	the	query	and	the	update?	Is	the	customer
still	valued?	This	will	depend	on	the	business	reason	for	the	evaluation.

Try	out	the	following	example:

<?php

		$db	=	pg_connect('...');

		pg_query('UPDATE	customer	SET	valued_customer	=	true	WHERE	balance	>	

6000;',	$db);

		pg_close($db);

?>

This	example	is	simple,	has	transactional	integrity,	and	works	for	an	incredibly	large
number	of	customers.	Why	point	out	such	a	simple	and	obvious	example?	The	answer	is
because	many	development	frameworks	work	incorrectly	by	default.	The	code	generator
will	produce	some	equivalent	form	of	this	example	in	the	interest	of	being	cross-platform,
predictable,	and	easy	to	integrate	into	a	simple	design	model.

This	method	promotes	terrible	practices.	For	systems	that	have	a	very	low	number	of
concurrent	transactions,	you	will	probably	see	what	you	expect,	but	as	concurrency
increases,	the	number	of	unintended	behaviors	also	increase.

The	second	example	exposes	a	better	philosophy:	operate	on	columns	(not	on	rows),	leave
the	data	on	the	server,	and	let	the	database	do	the	transactional	work	for	you.	That’s	what
the	database	is	made	for.

More	basics
It	helps	to	have	some	basic	background	information	before	you	start	programming	for	the
server.	In	the	next	few	sections,	we	will	explore	the	general	technical	environment	in
which	you	will	be	working.	We	will	cover	a	lot	of	information,	but	don’t	worry	too	much
about	remembering	it	all	right	now.	Just	try	to	pick	up	the	general	idea.

Transactions
The	default	transaction	isolation	level	in	PostgreSQL	is	called	Read	Committed.	This
means	that	if	multiple	transactions	attempt	to	modify	the	same	data,	they	must	wait	for
each	other	to	finish	before	acting	on	the	resulting	data.	They	wait	in	a	first-come-first-
serve	order.	The	final	result	of	the	data	is	what	most	people	will	naturally	expect:	the	last
chronological	change	being	reflected.

PostgreSQL	does	not	provide	any	way	to	do	a	dirty	read.	A	dirty	read	is	the	ability	to	view
the	data	the	way	it	appears	in	someone	else’s	transaction	and	to	use	it	as	if	it	were
committed.	This	ability	is	not	available	in	PostgreSQL	because	of	the	way	in	which	the
multiversion	concurrency	control	works.

There	are	other	transaction	isolation	methods	available;	you	can	read	about	them	in	detail
at	http://www.postgresql.org/docs/current/static/transaction-iso.html.

It	is	important	to	note,	that	when	no	transaction	blocks	are	specified	(BEGIN	..	END),
PostgreSQL	will	treat	each	individual	statement	like	a	private	transaction	and	commit
immediately	when	the	statement	is	finished.	This	gives	other	transactions	a	chance	to
settle	between	your	statements.	Some	programming	languages	provide	a	transaction	block
around	your	statements,	while	some	do	not.	Please	check	your	language	documentation	to
find	out	whether	you	are	running	in	a	transacted	session.

Note
When	using	the	two	main	clients	to	interact	with	PostgreSQL,	the	transaction	behavior	is
different.	The	psql	command-line	client	does	not	provide	transaction	blocks.	You	are
expected	to	know	when	to	start/stop	a	transaction	on	your	own.	The	pgAdmin3	query
window,	on	the	other	hand,	wraps	any	statement	that	you	submit	into	a	transaction	block
for	you.	This	way	it	provides	a	cancel	option.	If	the	transaction	is	interrupted,	ROLLBACK
will	be	performed	and	the	database	will	go	back	to	its	former	state.

Some	operations	are	exempt	from	transactions.	For	example,	a	sequence	object	will
continue	to	increment	even	if	the	transaction	fails	and	is	rolled	back.	CREATE	INDEX
CONCURRENTLY	requires	the	management	of	its	own	transactions	and	should	not	be	called
from	within	a	transaction	block.	The	same	is	true	for	VACUUM,	as	well	as	CLUSTER.

General	error	reporting	and	error	handling
If	you	want	to	provide	a	status	to	the	user	during	execution,	you	should	be	familiar	with
the	commands	RAISE,	NOTICE,	and	NOTIFY.	From	a	transactional	perspective,	the
difference	is	that	RAISE	and	NOTICE	will	send	the	message	immediately,	even	when
wrapped	in	a	transaction,	while	NOTIFY	will	wait	for	the	transaction	to	settle	before

http://www.postgresql.org/docs/current/static/transaction-iso.html

sending	a	message.	NOTIFY	will,	therefore,	actually	not	notify	you	of	anything	if	the
transaction	fails	and	is	rolled	back.

User-defined	functions
The	ability	to	write	user-defined	functions	is	the	powerhouse	feature	of	PostgreSQL.
Functions	can	be	written	in	many	different	programming	languages,	can	use	any	kind	of
control	structures	that	the	language	provides,	and	in	the	case	of	“untrusted”	languages,	can
perform	any	operation	that	is	available	in	PostgreSQL.

Functions	can	provide	features	that	are	not	even	directly	related	to	SQL.	Some	of	the
upcoming	examples	will	show	you	how	to	get	network	address	information,	query	the
system,	move	files	around,	and	do	just	about	anything	that	your	heart	desires.

So,	how	do	we	access	the	sugary	goodness	of	PostgreSQL?	We	start	by	declaring	that	we
want	a	function:

CREATE	OR	REPLACE	FUNCTION	addition	(integer,	integer)	RETURNS	integer

AS	$$

DECLARE	retval	integer;

BEGIN

		SELECT	$1	+	$2	INTO	retval;

		RETURN	retval;

END;

$$	LANGUAGE	plpgsql;

What	if	we	want	to	add	three	integers	together?	Using	the	following	code	we	can	add
three	integers	together:

CREATE	OR	REPLACE	FUNCTION	addition	(integer,	integer,	integer)	RETURNS	

integer

AS	$$

DECLARE	retval	integer;

BEGIN

		SELECT	$1	+	$2	+$3	INTO	retval;

		RETURN	retval;

END;

$$	LANGUAGE	plpgsql;

We	just	invoked	a	concept	called	function	overloading.	This	feature	allows	you	to	declare
a	function	of	the	same	name,	but	with	different	parameters	that	potentially	behave
differently.	This	difference	can	be	just	as	subtle	as	changing	the	data	type	of	one	of	the
arguments	to	the	function.	The	function	that	PostgreSQL	invokes	depends	on	the	closest
match	to	the	function	arguments	and	expected	return	type.

Suppose	we	want	to	add	together	any	number	of	integers?	Well,	PostgreSQL	has	a	way	to
do	this	also,	as	follows:

CREATE	OR	REPLACE	FUNCTION	addition	(VARIADIC	arr	integer[])	RETURNS	

integer

AS	$$

DECLARE	retval	integer;

BEGIN

		SELECT	sum($1[i])	INTO	retval	FROM	generate_subscripts($1,	1)	g(i)	;

		RETURN	retval;

END;

$$

LANGUAGE	plpgsql;

This	will	allow	you	to	pass	in	any	number	of	integers	and	get	an	appropriate	response.
These	functions,	of	course,	do	not	handle	real	or	numeric	data	types.	To	handle	other	data
types,	simply	declare	the	function	again	with	those	types	and	call	them	with	the
appropriate	parameters.

For	more	information	about	variable	parameters,	check	out
http://www.postgresql.org/docs/9.3/static/xfunc-sql.html#XFUNC-SQL-VARIADIC-
FUNCTIONS.

Other	parameters
There	is	more	than	one	way	to	get	data	into	a	function	and	out	of	it.	We	can	also	declare
IN/OUT	parameters,	return	a	table,	return	a	set	of	records,	and	use	cursors	for	both	the	input
and	output.

This	brings	us	to	a	pseudotype	called	ANY.	It	allows	the	parameter	type	to	be	undefined,
and	it	allows	any	basic	data	type	to	be	passed	to	the	function.	Then,	it	is	up	to	the	function
to	decide	what	to	do	with	the	data.	There	are	several	other	pseudotypes	available	in
PostgreSQL,	also	called	the	polymorphic	types.	These	are	anyelement,	anyarray,
anynonarray,	anyenum,	and	anyrange.	You	can	read	more	about	these	pseudotypes	at
http://www.postgresql.org/docs/9.3/static/datatype-pseudo.html.

Here	is	an	example	of	the	pseudotype	anyarray.	The	following	simple	function	takes	an
array	of	any	type	as	an	argument	and	returns	an	array	by	removing	all	the	duplicates:

CREATE	OR	REPLACE	FUNCTION	remove_duplicates(anyarray)

RETURNS	anyarray	AS

$$

		SELECT	ARRAY(SELECT	DISTINCT	unnest($1));

$$

LANGUAGE	'sql'	;

postgres=#	SELECT	remove_duplicates(ARRAY[1,1,2,2,3,3]);

remove_duplicates	

	{1,2,3}

(1	row)

postgres=#	SELECT	remove_duplicates(ARRAY['a','a','b','c']);

	remove_duplicates	

	{b,a,c}

(1	row)

More	control
Once	you	have	your	function	written	the	way	you	need,	PostgreSQL	gives	you	additional
control	over	how	the	function	executes.	You	can	control	what	data	the	function	can	access

http://www.postgresql.org/docs/9.3/static/xfunc-sql.html#XFUNC-SQL-VARIADIC-FUNCTIONS
http://www.postgresql.org/docs/9.3/static/datatype-pseudo.html

and	how	PostgreSQL	will	interpret	the	expense	of	running	the	function.

There	are	two	statements	that	provide	a	security	context	for	your	functions.	The	first	one
is	SECURITY	INVOKER,	which	is	the	default	security	context.	In	the	default	context,	the
privileges	of	the	calling	user	are	respected	by	the	function.

The	other	context	is	SECURITY	DEFINER.	In	this	context,	the	user	privileges	of	the	creator
of	the	function	are	respected	during	the	execution	of	the	function.	Generally,	this	is	used	to
temporarily	escalate	user	rights	for	a	specific	purpose.

This	is	very	useful	if	you	want	to	have	a	stricter	control	over	your	data.	In	an	environment
where	security	of	the	underlying	data	is	important,	and	you	don’t	want	users	to	directly
SELECT	the	data	or	change	it	using	INSERT,	UPDATE,	or	DELETE,	you	can	create	a	set	of
functions	with	the	security-definer	attribute	as	APIs	for	the	tables.	This	approach	gives
you	complete	control	over	your	API	behavior	and	how	users	can	access	the	underlying
objects.

Cost	can	also	be	defined	for	the	function.	This	cost	will	help	the	query	planner	estimate
how	expensive	it	is	to	call	the	function.	Higher	orders	of	cost	will	cause	the	query	planner
to	change	the	access	path,	so	your	function	will	be	called	as	few	times	as	possible.	The
PostgreSQL	documentation	shows	these	numbers	to	be	a	factor	of	cpu_operator_cost.
That’s	more	than	a	little	misleading.	These	numbers	have	no	direct	correlation	to	CPU
cycles.	They	are	only	relevant	in	comparison	with	one	another.	It’s	more	like	how	some
national	money	compares	with	the	rest	of	the	European	Union.	Some	Euros	are	more
equal	than	others.

To	estimate	your	own	function’s	complexity,	start	with	the	language	you	are	implementing
it	in.	For	C,	the	default	will	be	1	*	number	of	records	returned,	and	it	will	be	100	for
all	other	languages,	according	to	the	PostgreSQL	documentation	at
http://www.postgresql.org/docs/current/static/sql-createfunction.html.	For	plsh,	you	may
want	to	use	150	or	more,	depending	on	how	many	external	tool	calls	are	involved	in
getting	an	answer.	The	default	is	100	and	this	seems	to	work	reasonably	well	for
PL/pgSQL.

http://www.postgresql.org/docs/current/static/sql-createfunction.html

Summary
Now	you	know	a	few	things	about	the	PostgreSQL	environment,	as	well	as	some	things
that	will	help	you	in	the	unforeseeable	future.	PostgreSQL	is	built	to	handle	your	needs,
but	more	importantly,	it	is	built	not	to	change	underneath	you	in	the	future.

We	touched	upon	the	environment	and	called	out	some	of	the	more	important	things	to	be
kept	in	mind	when	programming	on	the	server	in	PostgreSQL.	Don’t	worry	too	much	if
you	don’t	remember	all	of	it.	It	is	fine	to	go	on	to	the	next	chapter,	where	we	will	actually
start	making	some	useful	functions	and	learn	about	writing	our	first	PL/pgSQL	functions.
You	will	also	learn	how	to	write	conditional	statements,	loops,	and	different	ways	to	return
data.	Then,	come	back	and	review	this	chapter	when	you	have	a	clearer	understanding	of
the	features	available	to	the	function	writer.

Chapter	3.	Your	First	PL/pgSQL	Function
A	function	is	the	basic	building	block	for	extending	PostgreSQL.	A	function	accepts	input
in	the	form	of	parameters,	and	it	can	create	output	in	the	form	of	output	parameters	or
return	values.	Many	functions	are	provided	by	PostgreSQL	itself,	that	is,	common
mathematical	functions	such	as	square	roots	and	absolute	values.	For	a	comprehensive	list
of	the	functions	that	are	already	available,	go	to
http://www.postgresql.org/docs/current/static/functions.html.

The	functions	that	you	create	have	the	same	privileges	and	ability	that	the	built-in
functions	possess.	The	developers	of	PostgreSQL	use	the	same	libraries	to	extend	the
database	that	you	use,	as	a	developer,	to	write	your	business	logic.

This	means,	that	you	have	the	tools	available	to	be	a	first-class	citizen	of	the	PostgreSQL
development	community.	In	fact,	there	are	no	second-class	seats	on	this	bus.

A	function	accepts	parameters	that	can	be	of	any	data	type	available	in	PostgreSQL,	and	it
returns	results	to	the	caller	using	the	same	type.	What	you	do	within	the	function	is
entirely	up	to	you.	You	have	been	empowered	to	do	anything	that	PostgreSQL	is	capable
of	doing.	You	are	herewith	also	warned	that	you	are	capable	of	doing	anything	that
PostgreSQL	is	capable	of	doing.	The	training	wheels	are	off.

In	this	chapter,	you	will	learn	the	following	topics:

The	basic	building	blocks	of	a	PostgreSQL	function
Passing	parameters	into	a	function
The	basic	control	structures	inside	a	function
Returning	results	out	of	a	function

http://www.postgresql.org/docs/current/static/functions.html

Why	PL/pgSQL?
PL/pgSQL	is	a	powerful	SQL	scripting	language,	that	is	heavily	influenced	by	PL/SQL,
the	stored	procedure	language	distributed	with	Oracle.	It	is	included	in	the	vast	majority	of
PostgreSQL	installations	as	a	standard	part	of	the	product,	so	it	usually	requires	no	setup
at	all	to	begin.

PL/pgSQL	also	has	a	dirty	little	secret.	The	PostgreSQL	developers	don’t	want	you	to
know	that	it	is	a	full-fledged	SQL	development	language,	capable	of	doing	pretty	much
anything	within	the	PostgreSQL	database.

Why	is	this	a	secret?	For	years,	PostgreSQL	did	not	claim	to	have	stored	procedures.
PL/pgSQL	functions	were	originally	designed	to	return	scalar	values	and	were	intended
for	simple	mathematical	tasks	and	trivial	string	manipulations.

Over	the	years,	PL/pgSQL	developed	a	rich	set	of	control	structures	and	gained	the	ability
to	be	used	by	triggers,	operators,	and	indexes.	In	the	end,	developers	were	grudgingly
forced	to	admit	that	they	had	a	complete,	stored	procedure	development	system	on	their
hands.

Along	the	way,	the	goal	of	PL/pgSQL	changed	from	simple	scalar	functions,	to	providing
access	to	all	of	the	PostgreSQL	system	internals,	with	full	control	structure.	The	full	list	of
what	is	available	in	the	current	version	is	provided	at
http://www.postgresql.org/docs/current/static/plpgsql-overview.html.

Today,	the	following	are	some	of	the	benefits	of	using	PL/pgSQL:

It	is	easy	to	use
It	is	available	by	default	on	most	deployments	of	PostgreSQL
It	is	optimized	for	the	performance	of	data-intensive	tasks

In	addition	to	PL/pgSQL,	PostgreSQL	also	allows	many	other	languages	such	as	PL/Perl,
PL/Python,	PL/Proxy,	and	PL/Tcl	to	be	plugged	in	to	the	database,	some	of	which	will	be
covered	in	this	book.	You	may	also	choose	to	write	your	functions	in	Perl,	Python,	PHP,
bash,	and	a	host	of	other	languages,	but	they	will	likely	need	to	be	added	to	your	instance
of	PostgreSQL.

http://www.postgresql.org/docs/current/static/plpgsql-overview.html

The	structure	of	a	PL/pgSQL	function
It	doesn’t	take	much	to	get	a	PL/pgSQL	function	working.	Here’s	a	basic	example:

CREATE	FUNCTION	mid(varchar,	integer,	integer)	RETURNS	varchar

AS	$$

BEGIN

		RETURN	substring($1,$2,$3);

END;

$$

LANGUAGE	plpgsql;

The	preceding	function	shows	the	basic	elements	of	a	PL/pgSQL	function.	It	creates	an
alias	for	the	substring	built-in	function	called	mid.	This	is	a	handy	alias	to	have	around
for	developers	that	come	from	Microsoft	SQL	Server	or	MySQL	and	are	wondering	what
happened	to	the	mid	function.	It	also	illustrates	the	most	basic	parameter-passing	strategy:
parameters	are	not	named	and	are	accessed	in	the	function	by	their	relative	location	from
left	to	right.	The	$$	character	in	this	example	represents	the	start	and	end	of	the	code
block.	This	character	sequence	can	be	arbitrary	and	you	can	use	something	else	of	your
choice,	but	this	book	uses	$$	in	all	the	examples.

The	basic	elements	of	a	PL/pgSQL	function	are	name,	parameters,	return	type,	body,	and
language.	It	can	be	argued	that	parameters	are	not	mandatory	for	a	function	and	neither	is
the	return	value.	This	might	be	useful	for	a	procedure	that	operates	on	data	without
providing	a	response,	but	it	will	be	prudent	to	return	the	value	TRUE	to	indicate	that	the
procedure	succeeded.

Accessing	function	arguments
Function	arguments	can	also	be	passed	and	accessed	by	name,	instead	of	just	by	the
ordinal	order.	By	accessing	the	parameters	by	name,	it	makes	the	resulting	function	code	a
little	more	readable.	The	following	is	an	example	of	a	function	that	uses	named
parameters:

CREATE	FUNCTION	mid(keyfield	varchar,	starting_point	integer)	RETURNS	

varchar

AS

$$

BEGIN

		RETURN	substring(keyfield,starting_point);

END

$$

LANGUAGE	plpgsql;

The	preceding	function	also	demonstrates	the	overloading	of	the	mid	function.
Overloading	is	another	feature	of	PostgreSQL	functions,	which	allows	multiple
procedures	to	use	the	same	name,	but	a	different	number	or	types	of	parameters.	In	this
case,	we	first	declared	the	mid	function	with	three	parameters.	However,	in	this	example,
overloading	is	used	to	implement	an	alternative	form	of	the	mid	function,	where	there	are
only	two	parameters.	When	the	third	parameter	is	omitted,	the	result	will	be	a	string
starting	from	starting_point	and	continuing	to	the	end	of	the	input	string,	as	shown
here:

SELECT	mid('Kirk	L.	Roybal',9);

The	preceding	line	of	code	yields	the	following	result:

		mid

	Roybal

(1	row)

In	order	to	access	the	function	parameters	by	name,	PostgreSQL	makes	a	few	educated
guesses	depending	on	the	statement.	Consider,	for	a	moment,	the	following	function:

CREATE	OR	REPLACE	FUNCTION	ambiguous(parameter	varchar)	RETURNS	integer		AS	

$$

DECLARE	retval	integer;

BEGIN

INSERT	INTO	parameter	(parameter)	VALUES	(parameter)	RETURNING	id	INTO	

retval;

RETURN	retval;

END;

$$

LANGUAGE	plpgsql;

SELECT	ambiguous	('parameter');

This	is	an	example	of	positively	atrocious	programming	since	the	argument,	table,	and	its

column	are	all	called	parameter.	This	should	never	occur	outside	an	example	of	how	not
to	write	functions.	However,	PostgreSQL	is	intelligent	enough	to	correctly	deduce	that	the
contents	of	the	function	parameter	are	only	legal	in	the	VALUES	list.	All	other	occurrences
of	parameter	are	actually	physical	PostgreSQL	entities.

We	also	introduced	an	optional	section	to	the	function.	We	declare	a	variable	before	the
BEGIN	statement.	Variables	that	appear	in	this	section	are	valid	during	the	execution	of	the
function.

Also	note,	the	RETURNING	id	INTO	retval	statement	in	this	function.	This	feature	allows
the	developer	to	specify	the	identity	field	of	the	record	and	returns	the	value	of	this	field
after	the	record	has	been	inserted.	Our	function	then	returns	this	value	to	the	caller	as	an
indicator	that	the	function	succeeded,	and	as	a	way	to	find	the	record	that	has	been
inserted.	This	is	a	good	way	to	return	values	inserted	by	default,	such	as	the	serial
sequence	numbers.	You	can	use	any	expression	with	table	column	names,	and	the	syntax
will	be	similar	to	the	column	list	in	a	SELECT	statement.

Conditional	expressions
Conditional	expressions	allow	developers	to	control	the	action	of	the	function,	based	on	a
defined	criteria.	PostgreSQL	provides	the	CASE	and	IF	statements	to	execute	different
commands	based	on	conditions.	The	following	is	an	example	of	the	usage	of	a	CASE
statement	to	control	how	a	string	is	treated	based	on	its	value.	If	the	value	is	null	or
contains	a	zero-length	string,	it	is	treated	the	same	as	null:

CREATE	OR	REPLACE	FUNCTION	format_us_full_name(

																	prefix	text,	firstname	text,	

																	mi	text,	lastname	text,	

																	suffix	text)

		RETURNS	text	AS

$$

DECLARE

		fname_mi	text;

		fmi_lname	text;

		prefix_fmil	text;

		pfmil_suffix	text;

BEGIN

		fname_mi	:=	CONCAT_WS('	',

																	CASE	trim(firstname)	

																	WHEN	''	

																	THEN	NULL	

																	ELSE	firstname	

																	END,	

																	CASE	trim(mi)	

																	WHEN	''	

																	THEN	NULL	

																	ELSE	mi	

																	END	||	'.');

		fmi_lname	:=	CONCAT_WS('	',

																	CASE	fname_mi	

																	WHEN	''	

																	THEN	NULL	

																	ELSE	fname_mi	

																	END,

																	CASE	trim(lastname)	

																	WHEN	''	

																	THEN	NULL	

																	ELSE	lastname	

																	END);

		prefix_fmil	:=	CONCAT_WS('.	',

																	CASE	trim(prefix)	

																	WHEN	''	

																	THEN	NULL	

																	ELSE	prefix	

																	END,	

																	CASE	fmi_lname	

																	WHEN	''	

																	THEN	NULL	

																	ELSE	fmi_lname	

																	END);

		pfmil_suffix	:=	CONCAT_WS(',	',

																	CASE	prefix_fmil	

																	WHEN	''	

																	THEN	NULL	

																	ELSE	prefix_fmil	

																	END,	

																	CASE	trim(suffix)	

																	WHEN	''	

																	THEN	NULL	

																	ELSE	suffix	||	'.'	

																	END);

		RETURN	pfmil_suffix;

END;

$$

LANGUAGE	plpgsql;

The	idea	here,	is	that	when	any	element	of	a	full	name	is	missing,	the	surrounding
punctuation	and	white	spaces	should	also	be	missing.	This	function	returns	a	well-
formatted	full	name	of	a	person	in	the	USA,	with	as	much	of	the	name	filled	in	as
possible.	When	running	this	function,	you	will	see	the	following:

postgres=#	SELECT	format_us_full_name('Mr',	'Martin',	'L',	'King',	'Jr');

			format_us_full_name			

	Mr.	Martin	L.	King,	Jr.

(1	row)

Now,	let’s	try	with	a	name	missing:

postgres=#	SELECT	format_us_full_name('',	'Martin',	'L',	'King',	'Jr');

	format_us_full_name	

	Martin	L.	King,	Jr.

(1	row)

Another	way	to	use	conditional	expressions,	is	using	the	IF/THEN/ELSE	blocks.	The
following	is	the	same	function	again,	written	using	IF	statements,	rather	than	CASE
statements:

CREATE	OR	REPLACE	FUNCTION	format_us_full_name(

																	prefix	text,	firstname	text,	

																	mi	text,	lastname	text,	

																	suffix	text)

RETURNS	text	AS

$$

DECLARE

		fname_mi	text;

		fmi_lname	text;

		prefix_fmil	text;

		pfmil_suffix	text;

BEGIN

		fname_mi	:=	CONCAT_WS('	',

																	IF(trim(firstname)	='',NULL,firstname),	

																	IF(trim(mi)	=	'',	NULL,	mi	||	'.')

);

		fmi_lname	:=	CONCAT_WS('	',

																	IF(fname_mi	=	'',NULL,	fname_mi),

																	IF(trim(lastname)	=		'',	NULL,	lastname)

);

		prefix_fmil	:=	CONCAT_WS('.	',

																	IF(trim(prefix)	=	'',	NULL,	prefix),	

																	IF(fmi_lname	=	'',	NULL,	fmi_lname)

);

		pfmil_suffix	:=	CONCAT_WS(',	',

																	IF	(prefix_fmil	=	'',	NULL,	prefix_fmil),	

																	IF	(trim(suffix)	=	'',	NULL,	suffix	||	'.')

);

		RETURN	pfmil_suffix;

END;

$$

LANGUAGE	plpgsql;

PostgreSQL’s	PL/pgSQL	provides	several	other	syntactical	variants	of	these	conditional
expressions.	This	introduction	focuses	on	the	most	commonly	used	ones.	For	a	more
complete	discussion	of	the	topic,	visit
http://www.postgresql.org/docs/current/static/functions-conditional.html.

http://www.postgresql.org/docs/current/static/functions-conditional.html

Loops	with	counters
The	PL/pgSQL	language	provides	a	simple	way	to	loop	through	some	elements.	The
following	is	a	function	that	returns	the	nth	Fibonacci	sequence	number:

CREATE	OR	REPLACE	FUNCTION	fib(n	integer)	

RETURNS	INTEGER	AS	$$

DECLARE	

		counter	integer	:=	0;

		a	integer	:=	0;

		b	integer	:=	1;

BEGIN

		IF	(n	<	1)	THEN

				RETURN	0;

		END	IF;

		LOOP				

				EXIT	WHEN	counter	=	n;

				counter	:=	counter	+	1;

				SELECT		b,a+b	INTO	a,b;

					END	LOOP;

		RETURN	a;

END;

$$

LANGUAGE	plpgsql;

SELECT	fib(4);

The	preceding	code	gives	3	as	the	output.

Just	for	the	record,	each	element	in	the	Fibonacci	sequence	is	the	sum	of	the	previous	two
elements.	Thus,	the	first	few	elements	of	the	sequence	should	be	0,	1,	1,	2,	3,	5,	8,	13,	21,
34,	and	so	on.	There	are	a	few	PostgreSQL	Fibonacci	sequence	functions	out	there	on	the
interwebs,	but	they	use	the	dreaded	recursive	method.	In	this	case,	recursion	is	a	bad
thing.	Our	example	uses	the	iterative	method	that	avoids	the	use	of	stacks	for	recursion,	as
this	might	result	in	the	lack	of	stack	space	for	large	numbers.

In	this	function,	we	also	introduced	default	values	to	the	variables	in	the	declarations
section.	When	the	function	is	invoked,	the	variables	will	be	initially	set	to	these	values.

Also,	take	a	quick	gander	at	the	statement	SELECT	b,a+b	INTO	a,b.	This	statement	makes
two	variable	assignments	at	the	same	time.	It	avoids	the	use	of	a	third	variable	while
acting	on	both	a	and	b.

Another	slight	variation	of	the	function	using	a	FOR	loop,	is	as	follows:

CREATE	OR	REPLACE	FUNCTION	fib(n	integer)	

RETURNS	INTEGER	

AS	$$

DECLARE	

counter	integer	:=	0;

		a	integer	:=	0;

			b	integer	:=	1;

BEGIN

		IF	(n	<	1)	THEN

				RETURN	0;

		END	IF;

		FOR	counter	IN	1..n

		LOOP

				SELECT		b,a+b	INTO	a,b;

		END	LOOP;

		RETURN	a;

END;

$$

		LANGUAGE	plpgsql;

For	some	additional	looping	syntax,	take	a	look	at	the	PostgreSQL	documentation	page	at
http://www.postgresql.org/docs/current/static/plpgsql-control-structures.html.

Statement	termination
In	PL/pgSQL,	all	blocks	and	the	statements	within	the	blocks,	must	end	with	a	semicolon.
The	exceptions	are	the	statements	that	start	a	block	with	IF	or	BEGIN.	Block-starting
statements	are	not	complete	statements;	therefore,	the	semicolon	is	always	after	the	block-
ending	statement,	such	as	END;	or	END	IF;.

http://www.postgresql.org/docs/current/static/plpgsql-control-structures.html

Looping	through	query	results
Before	we	embark	on	this	journey	of	query	result	loops,	I	think	I	should	warn	you,	that	if
you	are	using	this	method,	you	are	probably	doing	it	wrong.	This	is	one	of	the	most
processor-	and	memory-intensive	operations	that	PostgreSQL	offers.	There	are
exceedingly	few	reasons	to	iterate	through	a	result	set	on	the	database	server	that	offset
this	cost.	I	would	encourage	you	to	think	hard	about	how	to	implement	the	same	idea
using	a	VALUES	list	in	a	query,	temporary	table,	and	permanent	table,	or	to	precompute
the	values	in	any	way	possible,	in	order	to	avoid	this	operation.	So,	do	you	still	think	you
have	an	overwhelming	reason	to	use	this	technique?	Okay,	then	read	on.	The	following	is
the	simple	version:

			FOR	row	IN	

EXECUTE	'SELECT	*	FROM	job_queue	q	WHERE	NOT	processed	LIMIT	100'	

LOOP	

				CASE	row.process_type

						WHEN	'archive_point_of_sale'

								THEN		INSERT	INTO	hist_orders	(...)	

														SELECT…	FROM	orders	

																INNER	JOIN	order_detail…	

																INNER	JOIN	item…;

						WHEN	'prune_archived_orders'

								THEN	DELETE	FROM	order_detail	

														WHERE	order_id	in	(SELECT	order_id	FROM	hist_orders);

													DELETE	FROM	orders	

														WHERE	order_id	IN	(SELECT	order_id	FROM	hist_orders);

						ELSE

								RAISE	NOTICE	'Unknown	process_type:	%',	row.process_type;

				END;

				UPDATE	job_queue	SET	processed	=	TRUE	WHERE	id	=	q.id;

END	LOOP;

The	preceding	example	shows	a	basic	strategy	pattern	of	processing	messages	in	a	job
queue.	Using	this	technique,	the	rows	in	a	table	contain	a	list	of	jobs	that	need	to	be
processed.

We	introduce	the	EXECUTE	statement	here	as	well.	The	SELECT	statement	is	a	string	value.
Using	EXECUTE,	we	can	dynamically	build	PL/pgSQL	commands	as	strings	and	then
invoke	them	as	statements	against	the	database.	This	technique	comes	in	handy,	when	we
want	to	change	the	table	name	or	other	SQL	keywords	that	make	up	our	statement.	These
parts	of	the	SQL	statement	cannot	be	stored	in	variables	and	are	not	generally	changeable.
With	EXECUTE,	we	can	change	any	part	of	the	statement	we	jolly	well	please.	We	must
mention	that	EXECUTE	has	a	cost	associated	with	it:	the	queries	are	prepared	each	time
before	running.

The	following	is	an	example	from	the	PostgreSQL	documentation	that	shows	dynamic
commands	running	inside	a	loop:

CREATE	FUNCTION	cs_refresh_mviews()	RETURNS	integer	AS	$$

DECLARE

				mviews	RECORD;

BEGIN

				PERFORM	cs_log('Refreshing	materialized	views…');

				FOR	mviews	IN	SELECT	*	FROM	cs_materialized_views	ORDER	BY	sort_key	

LOOP

							—Now	"mviews"	has	one	record	from	cs_materialized_views

								PERFORM	cs_log('Refreshing	materialized	view	'	||	

quote_ident(mviews.mv_name)	||	'	...');

								EXECUTE	'TRUNCATE	TABLE	'	||	quote_ident(mviews.mv_name);

								EXECUTE	'INSERT	INTO	'	||	quote_ident(mviews.mv_name)	||	'	'	||	

mviews.mv_query;

				END	LOOP;

				PERFORM	cs_log('Done	refreshing	materialized	views.');

				RETURN	1;

END;

$$	LANGUAGE	plpgsql;

The	preceding	looping	example,	shows	a	more	complex	function	that	refreshes	the	data	in
some	staging	tables.	These	staging	tables	are	designated	materialized	views	because	the
data	is	actually	physically	transferred	to	the	staging	tables.	This	method	was	a	common
way	to	reduce	query	execution	overhead	for	many	presentations	of	the	same	data,	before
materialized	views	were	officially	supported	in	PostgreSQL	9.3.	In	this	case,	the
inefficiency	of	looping	is	trivial	compared	to	the	continued	cost	of	repeated	queries	to	the
same	data.

PERFORM	versus	SELECT
You	may	have	noticed	a	statement	in	the	previous	example	that	we	haven’t	covered	yet.
Use	the	PERFORM	command	when	you	want	to	just	discard	the	results	of	a	statement.
Change	the	previous	example	to	the	following	line:

SELECT	cs_log("Done	refreshing	materialized	views");

The	query	engine	will	return	No	destination	for	result	data.

We	can	retrieve	the	results	into	variables,	and	then	proceed	to	ignore	the	variables,	but
that’s	just	a	little	too	sloppy	for	my	taste.	By	using	the	PERFORM	statement,	we	have
indicated	that	ignoring	the	results	was	not	accidental.	We	were	happy	with	the	fact	that	the
log	was	appended	to	blindly,	and	if	it	wasn’t,	oh	well,	we	didn’t	fail	to	continue	the
execution	because	of	a	log	entry	issue.

Looping	Through	Arrays
There	is	a	very	convenient	loop	construct	called	FOREACH,	which	allows	you	to	loop
through	the	elements	of	an	array.	Let’s	dive	into	an	example:

CREATE	FUNCTION	findmax(int[])	RETURNS	int8	AS	$$

DECLARE

		max	int8	:=	0;

		x	int;

BEGIN

		FOREACH	x	IN	ARRAY	$1

		LOOP

				IF	x	>	max	THEN

						max	:=	x;

				END	IF;

		END	LOOP;

		RETURN	max;

END;

$$	LANGUAGE	plpgsql;

This	function	is	quite	self-explanatory.	It	finds	the	maximum	values	from	a	given	integer
array.	The	point	to	be	noted	here	is	that	unlike	a	normal	FOR	loop,	a	FOREACH	loop	can	only
use	a	counter	variable	that	is	already	declared.	You	can	see	that	we	have	declared	x	before
we	used	it	as	a	counter	in	the	loop.	You	can	run	this	function	to	see	if	it	works:

postgres=#	select	findmax(ARRAY[1,2,3,4,5,	-1]);

	findmax	

				5

(1	row)

Returning	a	record
So	far,	all	of	our	function	examples	have	featured	a	simple	scalar	value	in	the	RETURN
clause.	In	PL/pgSQL,	you	can	also	define	set-returning	functions	(SRF).	These	functions
can	return	either	a	type	defined	by	an	existing	table	or	a	generic	record	type.	Let’s	take	a
look	at	a	simple	example:

CREATE	TABLE		names(id	serial,	name	varchar);

INSERT		INTO	names(name)	VALUES('John');

INSERT		INTO	names(name)	VALUES('Martin');

INSERT		INTO	names(name)	VALUES('Peter');

CREATE	OR	REPLACE	FUNCTION	GetNames()	RETURNS	SETOF	names	AS	'SELECT	*	FROM	

names;'	LANGUAGE	'sql';

We	just	defined	a	very	simple	function,	GetNames(),	which	will	simply	return	all	the	rows
from	our	newly	defined	names	table.

If	you	run	the	GetNames()	function	now,	you	will	get	the	following	output:

postgres=#	select	GetNames();

		getnames		

	(1,John)

	(2,Martin)

	(3,Peter)

(3	rows)

You	can	use	an	SRF	in	place	of	a	table	or	as	a	subquery	in	the	FROM	clause	of	a	query.
Here’s	an	example:

postgres=#	select	*	from	GetNames()	where	id	>	2;

	id	|	name		

----+-------

		3	|	Peter

(1	row)

In	addition	to	the	table	types,	we	can	also	return	generic	types	from	an	SRF.	We	can
change	our	example	a	little	to	demonstrate	this.	Let’s	define	a	new	return	type	and	a	new
function:

CREATE	TYPE	nametype	AS	(id	int,	name	varchar);

CREATE	FUNCTION	PlpgGetNames()	RETURNS	SETOF	nametype	AS

$$

DECLARE

r	nametype%rowtype;

BEGIN

		FOR	r	IN	SELECT	id,	name	FROM	names	LOOP

				RETURN	NEXT	r;

		END	LOOP;

		RETURN;

END	;

$$

LANGUAGE	'plpgsql';

The	PlpgGetNames()	function	declares	a	variable	r	to	be	of	rowtype	nametype.	This
variable	is	used	to	store	the	rows	queried	in	the	loop.	The	function	does	a	loop	over	the
names	table	and	sets	r	to	each	row	in	the	result	set.	The	RETURN	NEXT	command	means	that
an	output	row	is	queued	into	the	return	set	of	the	function.	This	does	not	cause	the
function	to	return.	Finally,	the	RETURN	statement	after	the	loop	returns	all	the	rows,	which
were	queued	earlier	using	RETURN	NEXT.

Let’s	run	our	new	function,	as	shown	here:

postgres=#	SELECT	PlpgGetNames();

	plpggetnames	

	(1,John)

	(2,Martin)

	(3,Peter)

(3	rows)

For	the	sake	of	a	second	example,	we	will	assume	that	you	are	in	the	middle	of	a	big
software	development	upgrade	procedure	that	uses	a	name/value	pair	table	structure	to
store	settings.	You	have	been	asked	to	change	the	table	structure	from	the	key	and	value
columns	to	a	series	of	columns,	where	the	column	name	is	now	the	name	of	the	key.	This
is	similar	to	the	pivot	tables	in	Excel.	By	the	way,	you	also	need	to	preserve	the	settings
for	every	version	of	the	software	you	have	ever	deployed.

If	you	take	a	look	at	the	existing	CREATE	TABLE	statement	for	the	table	you	have	to	work
with,	you	will	find	the	following:

CREATE	TABLE	application_settings_old	(

version	varchar(200),

key	varchar(200),

value	varchar(2000));

When	you	run	a	SELECT	statement	against	the	table,	you	will	find	out	that	there	aren’t
many	settings,	but	there	have	been	quite	a	few	versions	of	the	settings.	So,	let’s	make	a
new	table	that	is	a	little	more	explicit:

CREATE	TABLE		application_settings_new	(

version	varchar(200),

full_name	varchar(2000),

description	varchar(2000),

print_certificate	varchar(2000),

show_advertisements	varchar(2000),

show_splash_screen	varchar(2000));

Transforming	the	settings	data	into	this	new	format	can	be	accomplished	with	an	INSERT
statement	and	a	function	that	conveniently	returns	our	data	in	the	new	table	format.

Let’s	add	some	test	data,	as	follows:

INSERT	INTO	application_settings_old	

VALUES('3456','full_name','test_name');

INSERT	INTO	application_settings_old	

VALUES('3456','description','test_description');

INSERT	INTO	application_settings_old	

VALUES('3456','print_certificate','yes');

INSERT	INTO	application_settings_old	

VALUES('3456','show_advertisements','yes');

INSERT	INTO	application_settings_old	

VALUES('3456','show_splash_screen','no');

Let’s	go	ahead	and	define	the	function:

CREATE	OR	REPLACE	FUNCTION	

flatten_application_settings(app_version	varchar(200))

RETURNS	setof	application_settings_new

AS	$$

			BEGIN

			—Create	a	temporary	table	to	hold	a	single	row	of	data

				IF	EXISTS	(SELECT	relname	FROM	pg_class	WHERE	relname='tmp_settings')	

				THEN

						TRUNCATE	TABLE	tmp_settings;

				ELSE

						CREATE	TEMP	TABLE	tmp_settings	(LIKE	application_settings_new);

				END	IF;

						--the	row	will	contain	all	of	the	data	for	this	version

						INSERT	INTO	tmp_settings	(version)	VALUES	(app_version);

			—add	the	details	to	the	record	for	this	application	version

				UPDATE	tmp_settings

				SET	full_name	=	(SELECT	value	

																							FROM	application_settings_old	

																						WHERE	version	=	app_version	

																								AND	key='full_name'),	

								description	=	(SELECT	value	

																									FROM	application_settings_old	

																								WHERE	version	=	app_version	

																										AND	key='description'),

								print_certificate	=	(SELECT	value	

																															FROM	application_settings_old	

																														WHERE	version	=	app_version	

																																AND	key='print_certificate'),

								show_advertisements	=	(SELECT	value	

																																	FROM	application_settings_old	

																																WHERE	version	=	app_version	

																																		AND	key='show_advertisements'),

								show_splash_screen	=	(SELECT	value	

																																FROM	application_settings_old	

																															WHERE	version	=	app_version	

																																	AND	key='show_splash_screen');

			--hand	back	the	results	to	the	caller

						RETURN	QUERY	SELECT	*	FROM	tmp_settings;

END;

$$	LANGUAGE	plpgsql;

The	preceding	function	returns	a	single	row	of	data	to	the	calling	query.	The	row	contains
all	the	settings	that	were	previously	defined	as	key/value	pairs,	but	are	explicitly	defined
fields	now.	The	function	and	the	final	table	can	also	be	enhanced	to	transform	the	data
types	of	the	settings	to	something	more	explicit.	However,	I’ll	leave	that	one	up	to	you.

We	then	proceed	to	use	the	function	in	order	to	do	the	transformation:

INSERT	INTO	application_settings_new

SELECT	(flatten_application_settings(version)).*

FROM	(

SELECT	version

FROM	application_settings_old

GROUP	BY	version)		AS	ver;

Voilá!	The	data	is	now	available	in	a	tabular	form	in	the	new	table	structure.

Acting	on	the	function’s	results
The	previous	example	showed	one	way	to	retrieve,	and	further	process,	function	results.
The	following	are	a	few	more	useful	ways	to	call	a	function:

SELECT	fib(25);

SELECT	(flatten_application_settings('9.08.97')).*;

SELECT	*	FROM	flatten_application_settings('9.08.97');

Any	of	the	preceding	methods	will	create	a	legal	field	list	in	PostgreSQL,	which,	in	turn,
can	be	used	in	any	way	the	fields	in	a	simple	SELECT	statement	on	a	table	are	used.

The	example	in	the	previous	section	used	the	results	of	the
flatten_application_settings()	function,	a	source	of	data	for	an	INSERT	statement.
The	following	is	an	example	of	how	to	use	the	same	function	as	a	data	source	for	UPDATE:

UPDATE	application_settings_new	

			SET	full_name	=	flat.full_name,

							description		=	flat.description,

							print_certificate	=	flat.print_certificate,

							show_advertisements	=	flat.show_advertisements,

							show_splash_screen	=	flat.show_splash_screen		

		FROM	flatten_application_settings('9.08.97')	flat;

Using	the	application	version	as	a	key,	we	can	update	the	records	in	the	new	table.	Isn’t
this	a	really	handy	way	to	keep	up	with	the	changes	to	the	application	settings,	while	both
the	old	and	new	applications	are	still	active?	I’ll	take	any	compliments	in	the	form	of	cash
(or	beer),	please.

Summary
Writing	functions	in	PostgreSQL	is	an	extremely	powerful	tool.	PostgreSQL	functions
provide	the	ability	to	add	functionality	to	the	database	core,	in	order	to	increase
performance,	security,	and	maintainability.

These	functions	can	be	written	in	just	about	any	language	that	is	available	to	the	open
source	community	and	several	that	are	proprietary.	If	the	language	that	you	want	to	write
them	in	is	not	available,	it	can	be	made	available	quickly	and	easily	through	a	very	robust
and	complete	compatibility	layer.	In	this	chapter,	we	only	looked	at	PL/pgSQL	functions.

In	the	next	chapter,	we	will	focus	more	on	PL/pgSQL	functions,	and	take	a	look	at	the
different	ways	in	which	data	can	be	returned	using	OUT	parameters	and	return	values.

Chapter	4.	Returning	Structured	Data
In	the	previous	chapter,	we	saw	functions	that	return	single	values.	These	functions	return
either	a	“scalar,”	simple	type	such	as	an	integer,	text,	or	data;	or	a	more	complex	type,
similar	to	a	row	in	the	database	table.	In	this	chapter,	we	will	expand	these	concepts	and
show	you	how	to	return	your	data	to	the	client	in	more	powerful	ways.

We	will	also	examine	the	following	topics:

Differences	between	SETOF	scalars,	rows,	and	arrays
Returning	CURSORs,	which	are	kind	of	“lazy”	tables,	that	is,	something	that	can	be
used	to	get	a	set	of	rows,	but	which	may	not	have	actually	evaluated	or	fetched	the
rows	yet,	as	the	modern	world	is	not	about	rigid	table-structured	data
Ways	to	deal	with	more	complex	data	structures,	both	predefined	and	dynamically
created

Let’s	start	with	a	simple	example	and	then	add	more	features	and	variants	as	we	go.

Sets	and	arrays
Rowsets	are	similar	to	arrays	in	many	ways,	but	they	mainly	differ	in	their	usage.	For	most
data	manipulations,	you	will	want	to	use	rowsets,	as	the	SQL	language	is	designed	to	deal
with	them.	Arrays,	however,	are	most	useful	for	static	storage.	They	are	more	complicated
for	client	applications	to	use	than	rowsets,	with	usability	features	missing,	such	as	no
simple	and	straightforward	built-in	ways	to	iterate	over	them.

Returning	sets
When	you	write	a	set	returning	function,	there	are	some	differences	from	a	normal	scalar
function.	First,	let’s	take	a	look	at	how	to	return	a	set	of	integers.

Returning	a	set	of	integers
We	will	revisit	our	Fibonacci	number	generating	function;	however,	this	time	we	will	not
just	return	the	nth	number,	but	the	whole	sequence	of	numbers	up	to	the	nth	number,	as
shown	here:

CREATE	OR	REPLACE	FUNCTION	fibonacci_seq(num	integer)

		RETURNS	SETOF	integer	AS	$$

DECLARE

		a	int	:=	0;

		b	int	:=	1;

BEGIN

		IF	(num	<=	0)

				THEN	RETURN;

		END	IF;

		RETURN	NEXT	a;

		LOOP

				EXIT	WHEN	num	<=	1;

				RETURN	NEXT	b;

						num	=	num	-	1;

						SELECT	b,	a	+	b	INTO	a,	b;

		END	LOOP;

END;

$$	LANGUAGE	plpgsql;

The	first	difference	we	see,	is	that	instead	of	returning	a	single	integer	value,	this	function
is	defined	to	return	a	SETOF	integer.

Then,	if	you	examine	the	code	carefully,	you	will	see	that	there	are	two	different	types	of
RETURN	statements.	The	first	is	the	ordinary	RETURN	function	in	the	following	code	snippet:

IF	(num	<=	0)

				THEN	RETURN;

In	this	case,	the	IF	function	is	used	to	terminate	the	fibonacci_seq	function	early,	if	the
length	of	the	desired	sequence	of	Fibonacci	numbers	is	zero	or	less.

The	second	kind	of	RETURN	statement	is	used	to	return	values	and	continue	execution:

RETURN	NEXT	a;

RETURN	NEXT	appends	rows	to	the	result	set	of	the	function,	and	the	execution	continues
until	a	normal	RETURN	statement	is	encountered	or	until	the	control	reaches	the	end	of	the
function.	You	may	have	noticed	that	there	are	a	few	other	things	we	did	differently	in	this
Fibonacci	example,	than	we	did	earlier.	First,	we	declared	and	initialized	the	variables	a
and	b	inside	the	DECLARE	section,	instead	of	first	declaring	and	then	initializing	them.	We
also	used	the	argument	as	a	down	counter	instead	of	using	a	separate	variable	to	count
from	zero	and	then	comparing	it	with	the	argument.

Let’s	test	our	function	now.	In	the	next	section,	we	will	discuss	how	to	use	the	set
returning	functions	in	more	detail:

postgres=#	SELECT	fibonacci_seq(5);

	fibonacci_seq	

						0

						1

						1

						2

						3

	(5	rows)

Both	of	these	techniques	save	a	few	lines	of	code	and	can	make	the	code	more	readable,
depending	on	your	preferences.	However,	the	longer	versions	might	be	easier	to	follow
and	understand,	so	we	don’t	particularly	endorse	either	way.

Using	a	set	returning	function
A	set	returning	function	(also	known	as	a	table	function)	can	be	used	in	most	places	where
a	table,	view,	or	subquery	can	be	used.	They	are	a	powerful	and	flexible	way	to	return
data.

You	can	call	the	function	in	the	SELECT	clause,	as	you	do	with	a	scalar	function:

postgres=#	SELECT	fibonacci_seq(3);

	fibonacci_seq	

						0

						1

						1

(3	rows)

You	can	also	call	the	function	as	part	of	the	FROM	clause:

postgres=#	SELECT	*	FROM	fibonacci_seq(3);

	fibonacci_seq	

						0

						1

						1

(3	rows)

You	can	even	call	the	function	in	the	WHERE	clause:

postgres=#	SELECT	*	FROM	fibonacci_seq(3)	WHERE	1	=	ANY(SELECT	

fibonacci_seq(3));

	fibonacci_seq	

						0

						1

						1

(3	rows)

You	can	limit	the	result	set,	just	as	in	the	case	of	querying	a	table:

postgres=#	SELECT	*	FROM	fibonacci_seq(10)	as	fib	WHERE	fib	>	3;

	fibonacci_seq	

						5

						8

						13

						21

						34

(5	rows)

Using	database-side	functions	for	all	the	data	access	is	a	great	way	to	secure	your
application;	it	also	helps	with	performance	and	allows	easy	maintenance.	Table	functions
allow	you	to	use	functions	in	all	cases	where	you	would	have	been	forced	to	use	more
complex	queries	from	the	client	if	only	scalar	functions	were	available.

Returning	rows	from	a	function	will	often	be	helpful	to	return	back	to	the	client	more

information	than	just	a	set	of	integers.	You	may	need	all	the	columns	from	an	existing
table,	and	the	simplest	way	to	declare	a	return	type	for	a	function	is	to	just	use	the	table	as
part	of	the	return	definition,	as	shown	here:

CREATE	OR	REPLACE	FUNCTION	installed_languages()

		RETURNS	SETOF	pg_language	AS	$$

BEGIN

				RETURN	QUERY	SELECT	*	FROM		pg_language;

END;

$$	LANGUAGE	plpgsql;

Notice	that	you	still	need	the	SETOF	part,	but	instead	of	defining	it	as	a	set	of	integers,	we
use	pg_language,	which	is	a	table.

You	can	use	TYPE,	defined	using	the	CREATE	TYPE	command	or	even	VIEW:

hannu=#	SELECT	*	FROM	installed_languages();

-[RECORD	1]-+----------

lanname							|	internal

lanowner						|	10

lanispl							|	f

lanpltrusted		|	f

lanplcallfoid	|	0

laninline					|	0

lanvalidator		|	2246

lanacl								|	

-[RECORD	2]-+----------

lanname							|	c

lanowner						|	10

lanispl							|	f

lanpltrusted		|	f

lanplcallfoid	|	0

laninline					|	0

lanvalidator		|	2247

lanacl								|	

-[RECORD	3]-+----------

lanname							|	sql

lanowner						|	10

lanispl							|	f

lanpltrusted		|	t

lanplcallfoid	|	0

laninline					|	0

lanvalidator		|	2248

lanacl								|	

-[RECORD	4]-+----------

lanname							|	plpgsql

lanowner						|	10

lanispl							|	t

lanpltrusted		|	t

lanplcallfoid	|	12596

laninline					|	12597

lanvalidator		|	12598

lanacl								|	

-[RECORD	5]-+----------

lanname							|	plpythonu

lanowner						|	10

lanispl							|	t

lanpltrusted		|	f

lanplcallfoid	|	17563

laninline					|	17564

lanvalidator		|	17565

lanacl								|	

Functions	based	on	views
Creating	a	function	based	on	a	view	definition	is	a	very	powerful	and	flexible	way	of
providing	information	to	users.	As	an	example	of	this,	I	will	tell	you	a	story	of	how	I
started	a	simple	utility	view	to	answer	the	question,	“What	queries	are	running	now,	and
which	queries	have	been	running	for	the	longest	time?”	This	evolved	into	a	function	based
on	this	view,	plus	a	few	more	views	based	on	the	function.

The	way	to	get	all	the	data	to	answer	this	question	in	PostgreSQL	is	by	using	the
following	query.	Please	note	that	the	output	is	using	an	expanded	mode	of	psql.	You	can
turn	it	on	using	the	\x	meta-command:

hannu=#	SELECT	*	FROM	pg_stat_activity	WHERE	state='active';

-[RECORD	1]----+--------------------------------

datid												|	17557

datname										|	hannu

pid														|	8933

usesysid									|	10

usename										|	postgres

application_name	|	psql

client_addr						|	

client_hostname		|	

client_port						|	-1

backend_start				|	2013-03-19	13:47:45.920902-04

xact_start							|	2013-03-19	14:05:47.91225-04

query_start						|	2013-03-19	14:05:47.91225-04

state_change					|	2013-03-19	14:05:47.912253-04

waiting										|	f

state												|	active

query												|	select	*	from	pg_stat_activity	|			where	state='active';

The	usual	process	is	to	use	a	variant	of	the	following	query,	which	is	already	wrapped	into
a	view	here:

CREATE	VIEW	running_queries	AS

SELECT

			(CURRENT_TIMESTAMP	-	query_start)	as	runtime,

			pid,

			usename,

			waiting,

			query

FROM	pg_stat_activity

WHERE	state='active'

ORDER	BY	1	DESC

LIMIT	10;

Soon,	you	will	notice	that	putting	this	query	into	a	view	is	not	enough.	Sometimes,	you
may	want	to	vary	the	number	of	lowest	queries,	while	sometimes	you	may	not	want	to
have	the	full	query	text,	but	just	the	beginning,	and	so	on.

If	you	want	to	vary	some	parameters,	the	logical	thing	to	do	is	to	use	a	function	instead	of
a	view,	as	otherwise	you	will	need	to	create	different	views	of	each	new	requirement:

CREATE	OR	REPLACE	FUNCTION	running_queries(rows	int,	qlen	int)

		RETURNS	SETOF	running_queries	AS

$$

BEGIN

			RETURN	QUERY	SELECT

						runtime,

						pid,

						usename,

						waiting,

						substring(query,1,qlen)	as	query

			FROM	running_queries

			ORDER	BY	1	DESC

			LIMIT	rows;

END;

$$	LANGUAGE	plpgsql;

As	a	security	precaution,	the	default	behavior	of	the	pg_stat_activity	view	is	that	only
superusers	can	see	what	other	users	are	running.	Sometimes,	it	may	be	necessary	to	allow
the	non-superusers	to	at	least	see	the	type	of	query	(SELECT,	INSERT,	DELETE,	or	UPDATE)
that	other	users	are	running,	but	hide	the	exact	contents.	To	do	this,	you	have	to	make	two
changes	to	the	previous	function.

First,	replace	the	row	to	get	current_query	with	the	following	code	snippet:

(CASE	WHEN	(usename	=	session_user)

								OR	(SELECT	usesuper

														FROM	pg_user

														WHERE	usename	=	session_user)

						THEN

								substring(query,1,qlen)

						ELSE

								substring(ltrim(query),	1,	6)	||	'	***'

						END)	as	query

This	code	snippet	checks	each	row	to	see	whether	the	user	running	the	function	has
permission	to	see	the	full	query.	If	the	user	is	a	superuser,	then	he	she	has	permission	to
see	the	full	query.	If	the	user	is	a	regular	user,	he/she	will	only	see	the	full	query	for
his/her	queries.	All	other	rows	will	only	show	the	first	six	characters	followed	by	***	to
mark	it	as	a	shortened	query	string.

The	other	key	point	to	allowing	ordinary	users	to	run	the	function,	is	to	grant	them	the
appropriate	rights	to	do	so.	When	a	function	is	created,	the	default	behavior	is	to	run	with
the	SECURITY	INVOKER	rights,	which	means	that	the	function	will	be	called	with	the	rights
of	the	user	who	called	it.	To	easily	grant	the	correct	rights	to	call	the	function,	the	function
needs	to	be	created	with	the	SECURITY	DEFINER	attribute.	This	causes	the	function	to
execute	with	the	privileges	of	the	user	who	created	the	function;	therefore,	creating	the
function	as	a	superuser	will	allow	it	to	execute	as	a	superuser,	regardless	of	the	rights	of
the	user	who	called	it.	This,	however,	should	be	done	with	caution	because	a	superuser	can
be	dangerous,	and	if	you	end	up	executing	a	string	that	is	passed	in,	you	will	have	all	the
issues	of	SQL	injection	attacks.

Now,	you	have	a	function,	which	you	can	use	to	get	the	start	of	the	five	longest-running

queries	using	the	following	query:

SELECT	*	FROM	running_queries(5,25);

In	order	to	get	a	complete	query,	you	can	use	the	following:

SELECT	*	FROM	running_queries(1000,1024);

You	may	want	to	define	a	few	convenience	views	for	the	variants	you	use	most,	as
follows:

CREATE	OR	REPLACE	VIEW	running_queries_tiny	AS

SELECT	*	FROM	running_queries(5,25);

CREATE	VIEW	running_queries_full	AS

SELECT	*	FROM	running_queries(1000,1024);

You	can	even	redefine	the	original	view	to	use	the	first	version	of	the	function:

CREATE	OR	REPLACE	VIEW	running_queries	AS

SELECT	*	FROM	running_queries(5,25);

This	is	usually	not	recommended,	but	it	demonstrates	the	following	three	important	things:

Views	and	functions	can	have	exactly	the	same	name
You	can	get	a	circular	reference	by	basing	a	function	on	a	view	and	then	basing	a
view	on	that	function
If	you	get	a	circular	reference	in	this	way,	you	can’t	easily	change	either	definition

To	resolve	this,	simply	avoid	circular	references.

Even	without	circular	references,	there	is	still	a	dependency	on	the	view	called	from	the
function.	If,	for	instance,	you	need	to	add	a	column	to	show	the	application	name	to	the
running_queries	view,	the	function	needs	to	change	as	well:

CREATE	OR	REPLACE	VIEW	running_queries	AS

SELECT

			CURRENT_TIMESTAMP	-	query_start	as	runtime,

			pid,

			usename,

			waiting,

			query,

			application_name	as	appname

FROM	pg_stat_activity

ORDER	BY	1	DESC

LIMIT	10;

The	view	definition	can	be	changed	without	an	error,	but	the	next	time	you	try	to	run	the
running_queries(int,	int)	function,	you	will	get	an	error:

hannu=#	SELECT	*	FROM	running_queries(5,25);

ERROR:		structure	of	query	does	not	match	function	result	type

DETAIL:		Number	of	returned	columns	(5)	does	not	match	expected	column	

count	(6).

CONTEXT:		PL/pgSQL	function	"running_queries"	line	3	at	RETURN	QUERY

To	fix	this,	you	need	to	add	an	additional	column	to	the	function.	This	is	one	of	the

dangers	of	reusing	types	in	this	way:	you	might	end	up	breaking	functions	unintentionally.
PostgreSQL	won’t	tell	you,	when	you	change	a	type	in	this	way,	whether	any	functions
were	using	this	type	and	will	only	fail	when	you	try	to	run	the	query:

CREATE	OR	REPLACE	FUNCTION	running_queries(rows	int,	qlen	int)

		RETURNS	SETOF	running_queries	AS

$$

BEGIN

			RETURN	QUERY	SELECT

						runtime,

						pid,

						usename,

						waiting,

					(CASE	WHEN	(usename=	session_user)

								OR	(select	usesuper

														from	pg_user

													where	usename	=	session_user)

						THEN

								substring(query,1,qlen)

						ELSE

								substring(ltrim(query),	1,	6)	||	'	***'

						END)	as	query,

						appname			

				FROM	running_queries

			ORDER	BY	1	DESC

			LIMIT	rows;

END;

$$

LANGUAGE	plpgsql

SECURITY	DEFINER;

OUT	parameters	and	records
Using	a	pre-existing	type,	table,	or	view	for	compound	return	types	is	a	simple	mechanism
for	returning	more	complex	structures.	However,	there	is	often	a	need	to	define	the	return
type	of	the	function	with	the	function	itself	and	not	depend	on	other	objects.	This	is
especially	true	when	managing	changes	to	a	running	application;	so,	over	a	period	of	time,
two	better	ways	to	handle	this	have	been	added	to	PostgreSQL.

OUT	parameters
Until	now,	all	the	functions	we	created	used	parameters	that	are	defined	as	IN	parameters.
The	IN	parameters	are	meant	to	just	pass	information	into	the	function	that	can	be	used,
but	not	returned.	Parameters	can	also	be	defined	as	OUT	or	INOUT	parameters	if	you	want
the	function	to	return	some	information	as	well:

CREATE	OR	REPLACE	FUNCTION	positives(

																					INOUT	a	int,	

																					INOUT	b	int,	

																					INOUT	c	int)

AS	$$

BEGIN

				IF	a	<	0	THEN	a	=	null;	END	IF;

				IF	b	<	0	THEN	b	=	null;	END	IF;

				IF	c	<	0	THEN	c	=	null;	END	IF;

END;

$$	LANGUAGE	plpgsql;

When	we	run	the	previous	function,	it	only	returns	a	single	row	of	data	with	three
columns,	as	shown	here:

hannu=#	SELECT	*	FROM	positives(-1,	1,	2);

-[RECORD	1]

a	|	

b	|	1

c	|	2

Returning	records
If	multiple	rows	of	data	need	to	be	returned,	a	similar	function	that	returns	a	set	is
achieved	by	adding	RETURNS	SETOF	RECORD.	This	technique	can	only	be	used	with
functions	using	the	INOUT	or	OUT	arguments:

CREATE	FUNCTION	permutations(INOUT	a	int,	

																													INOUT	b	int,	

																													INOUT	c	int)

RETURNS	SETOF	RECORD

AS	$$

BEGIN

				RETURN	NEXT;

				SELECT	b,c	INTO	c,b;	RETURN	NEXT;

				SELECT	a,b	INTO	b,a;	RETURN	NEXT;

				SELECT	b,c	INTO	c,b;	RETURN	NEXT;

				SELECT	a,b	INTO	b,a;	RETURN	NEXT;

				SELECT	b,c	INTO	c,b;	RETURN	NEXT;

END;

$$	LANGUAGE	plpgsql;

Running	the	permutations	function	returns	six	rows,	as	expected:

hannu=#	SELECT	*	FROM	permutations(1,	2,	3);

-[RECORD	1]

a	|	1

b	|	2

c	|	3

-[RECORD	2]

a	|	1

b	|	3

c	|	2

-[RECORD	3]

a	|	3

b	|	1

c	|	2

-[RECORD	4]

a	|	3

b	|	2

c	|	1

-[RECORD	5]

a	|	2

b	|	3

c	|	1

-[RECORD	6]

a	|	2

b	|	1

c	|	3

This	works	well,	but	it	seems	a	bit	verbose	for	what	is	a	pretty	simple	operation.	This	is
because	we	cannot	directly	call	RETURN	NEXT	a,b,c,	but	we	need	to	first	assign	values	to
variables	declared	by	the	INOUT	incantations.	We	also	want	to	avoid	the	even	clumsier
syntax	of	tmp	=	a;	a	=	b;	b	=	tmp;.

Due	to	design	decisions	in	the	PL/pgSQL	language,	there	is	currently	no	good	way	to

construct	the	return	structure	at	runtime,	that	is,	no	RETURN	a,b,c.

However,	let’s	try	to	do	it	anyway	and	see	what	happens.

Using	RETURNS	TABLE
You	may	think	that	if	there	are	no	visible	OUT	parameters	in	a	function	declared	as	RETURNS
TABLE(...),	the	following	code	might	work:

CREATE	FUNCTION	permutations2(a	int,	b	int,	c	int)RETURNS	TABLE(a	int,	b	

int,	c	int)

AS	$$

BEGIN

				RETURN	NEXT	a,b,c;

END;

$$	LANGUAGE	plpgsql;

However,	when	we	try	to	do	it	this	way,	we	get	an	error:

ERROR:		parameter	name	"a"	used	more	than	once

CONTEXT:		compilation	of	PL/pgSQL	function	"permutations2"	near	line	1

This	error	hints	that	the	fields	in	the	return	table	definition	are	also	actually	just	OUT
parameters	and	the	whole	RETURNS	TABLE	syntax	is	just	another	way	to	spell	CREATE
FUNCTION	f(OUT…,	OUT…)	RETURNS	RECORD	….

This	can	be	verified	further	by	changing	the	input	parameters,	so	that	the	definition	can	be
fed	into	PostgreSQL:

CREATE	FUNCTION	permutations2(ia	int,	ib	int,	ic	int)

		RETURNS	TABLE(a	int,	b	int,	c	int)

AS	$$

BEGIN

				RETURN	NEXT	a,b,c;

END;

$$	LANGUAGE	plpgsql;

When	we	try	to	create	the	function,	we	get	the	following	output:

ERROR:		RETURN	NEXT	cannot	have	a	parameter	in	function	with	OUT	parameters

LINE	5:					RETURN	NEXT	a,b,c;

																								^

So	yes,	the	fields	of	the	table	in	the	RETURNS	definition	are	actually	just	OUT	parameters.

Returning	with	no	predefined	structure
Sometimes,	you	really	need	to	write	a	function	where	the	return	structure	is	unknown.	One
good	thing	about	PostgreSQL	function	declarations,	is	that	you	can	use	the	return	type
RECORD,	which	can	be	left	undefined	until	the	function	is	called:

CREATE	OR	REPLACE	FUNCTION	run_a_query(query	TEXT)

		RETURNS	SETOF	RECORD	

AS	$$

DECLARE

				retval	RECORD;

BEGIN

				FOR	retval	IN	EXECUTE	query	LOOP

								RETURN	NEXT	retval;

				END	LOOP	;

END;

$$	LANGUAGE	plpgsql;

This	is	a	function	that	lets	a	user	execute	a	query;	it	is	quite	useless	as	such,	but	it	can	be
used	as	the	basis	for	more	useful	functions	that,	for	example,	let	users	run	queries	only	at	a
certain	time,	or	can	be	used	to	perform	some	checks	on	queries	before	running	them.

Simply	run	the	following	query:

SELECT	*	FROM	run_a_query('SELECT	usename,	usesysid	FROM	pg_user');

You	will	get	the	following	error:

ERROR:		a	column	definition	list	is	required	for	functions	returning	

"record"

LINE	1:	select	*	from	run_a_query('select	usename,	usesysid	from	pg_…

To	use	this	kind	of	a	function,	you	need	to	tell	PostgreSQL	what	the	return	values	will	be,
by	adding	a	column	definition	list	at	the	time	of	calling	a	function	in	the	following	way:

SELECT	*	FROM	run_a_query('SELECT	usename,usesysid	FROM	pg_user')	AS	

("user"	text,	uid	int);

So,	will	this	work?	No,	you	will	get	the	following	error:

ERROR:		wrong	record	type	supplied	in	RETURN	NEXT

DETAIL:		Returned	type	name	does	not	match	expected	type	text	in	column	1.

CONTEXT:		PL/pgSQL	function	run_a_query(text)	line	6	at	RETURN	NEXT

By	changing	things	slightly,	we	finally	arrive	at	something	that	works,	as	follows:

hannu=#	SELECT	*	FROM	run_a_query('SELECT	usename::text,usesysid::int	FROM	

pg_user')	AS	("user"	text,	uid	int);

-[RECORD	1]--

user	|	postgres

uid		|	10

-[RECORD	2]--

user	|	hannu

uid		|	17573

What	do	we	learn	from	this?	PostgreSQL	will	let	you	return	an	arbitrary	record	from	a

function,	but	it	is	very	particular	in	how	it	does	this.	When	you	call	the	function,	you	will
need	to	be	very	deliberate	about	things,	especially	data	types.	PostgreSQL	will	use	default
casts	to	convert	data	to	different	data	types	if	it	has	enough	information.	However,	in	a
function	such	as	this,	much	of	that	information	is	not	known.

Returning	SETOF	ANY
There	is	another	way	to	define	functions	that	can	operate	on,	and	return,	incomplete	type
definitions:	using	the	ANY*	pseudotypes.

Let’s	define	a	function,	which	turns	a	simple	one-dimensional	PostgreSQL	array	of	any
type	into	a	set	of	rows	with	one	element	of	the	same	type:

CREATE	OR	REPLACE	FUNCTION	array_to_rows(array_in	ANYARRAY)

		RETURNS	TABLE(row_out	ANYELEMENT)

AS	$$

BEGIN

				FOR	i	IN	1..	array_upper(array_in,1)	LOOP

									row_out	=		array_in[i];			

									RETURN	NEXT	;

				END	LOOP;

END;

$$	LANGUAGE	plpgsql;

This	works	well	on	an	array	of	integers:

hannu=#	SELECT	array_to_rows('{1,2,3}'::int[]);

-[RECORD	1]-+--

array_to_rows	|	1

-[RECORD	2]-+--

array_to_rows	|	2

-[RECORD	3]-+--

array_to_rows	|	3

It	also	works	well	on	an	array	of	dates,	as	shown	here:

hannu=#	SELECT	array_to_rows('{"1970-1-1","2012-12-12"}'::date[]);

-[RECORD	1]-+-----------

array_to_rows	|	1970-01-01

-[RECORD	2]-+-----------

array_to_rows	|	2012-12-12

The	function	even	works	on	arrays	of	records	from	user-defined	tables:

hannu=#	CREATE	TABLE	mydata(id	serial	primary	key,	data	text);

CREATE	TABLE

hannu=#	INSERT	INTO	mydata	VALUES(1,	'one'),	(2,'two');

INSERT	0	2

hannu=#	SELECT	array_to_rows(array(SELECT	m	FROM	mydata	m));

-[RECORD	1]-+--------

array_to_rows	|	(1,one)

-[RECORD	2]-+--------

array_to_rows	|	(2,two)

hannu=#	SELECT	*	FROM	array_to_rows(array(SELECT	m	FROM	mydata	m));

-[RECORD	1]

id			|	1

data	|	one

-[RECORD	2]

id			|	2

data	|	two

The	last	two	SELECT	statements	return	a	one-column	table	of	the	type	mydata	and	a	two-
column	table	of	the	same	type	expanded	into	its	component	columns.	This	single	function
is	flexible	enough	to	handle	several	different	types	of	data	without	any	changes.

Note
There	is	a	more	potent	version	of	array_to_rows	built	into	PostgreSQL	called	unnest().
The	built-in	function	is	faster	than	our	sample	function	and	can	also	deal	with	arrays	with
more	than	one	dimension:

hannu=#	SELECT	unnest('{{1,2,3},	{4,5,6}}'::int[]);

-[RECORD	1]

unnest	|	1

-[RECORD	2]

unnest	|	2

-[RECORD	3]

unnest	|	3

-[RECORD	4]

unnest	|	4

-[RECORD	5]

unnest	|	5

-[RECORD	6]

unnest	|	6

PostgreSQL	has	a	weird	array	type,	which	can	hold	the	arrays	of	any	number	of
dimensions.	It	is	even	weirder	than	this,	as	the	array	slices	in	any	dimension	can	also	start
with	any	positive	index	(and	they	are,	by	default,	1-based).	For	example,	an	array	with
indices	ranging	from	-2	to	2	is	produced	by	the	following	incantation:

hannu=#	SELECT	'[-2:2]={1,2,3,4,5}'::int[];

-[RECORD	1]------------

int4	|	[-2:2]={1,2,3,4,5}

To	check	whether	this	really	is	the	case,	use	the	following	code	snippet:

hannu=#	SELECT	array_dims('[-2:2]={1,2,3,4,5}'::int[]);

-[RECORD	1]------

array_dims	|	[-2:2]

The	third	element	of	the	array	is	3,	and	this	is	the	middle	element.

Variadic	argument	lists
PostgreSQL	allows	you	to	write	a	function	with	a	variable	number	of	arguments.	This	is
accomplished	using	VARIADIC.	Let’s	take	a	look	at	a	practical	example.	Suppose	you	want
to	limit	the	results	of	a	query	in	your	function,	based	on	the	VARIADIC	list	of	arguments;
here’s	one	way	to	do	this:

CREATE	OR	REPLACE	FUNCTION	get_nspc_tbls(VARIADIC	arr	name[])

RETURNS	TABLE(table_name	name,id	oid,nspname	name)

AS	$$

BEGIN	

RETURN	QUERY	SELECT	c.relname	,	c.oid	,	n.nspname	from	pg_class	c,	

pg_namespace	n	where	c.relnamespace	=	n.oid	and	n.nspname	=	any(arr);

END;

$$	LANGUAGE	plpgsql;

The	preceding	function	lets	you	list	the	tables,	which	are	in	specified	namespaces.	The
variable	list	allows	you	to	provide	one	or	more	namespace	names.	This	trick	can	be	quite
handy	in	various	situations.	Notice	the	use	of	the	any	function;	you	can’t	substitute	it	with
an	IN	clause,	as	this	will	try	to	compare	a	name	type	with	name[]:

postgres=#	SELECT	*	FROM	get_nspc_tbls('public','pg_temp');

-[RECORD	1]------------------------

table_name	|	a

id									|	16434

nspname				|	public

-[RECORD	2]------------------------

table_name	|	parameter

id									|	24682

nspname				|	public

-[RECORD	3]------------------------

table_name	|	application_settings_old

id									|	24690

nspname				|	public

-[RECORD	4]------------------------

table_name	|	foo

id									|	16455

nspname				|	pg_temp

A	summary	of	the	RETURN	SETOF
variants
You	learned	that	you	can	return	table-like	datasets	from	a	function	using	one	of	the
following:

RETURNS RECORD	structure INSIDE	function

SETOF	<type> This	is	obtained	from	the	type	definition

DECLARE	row
variable	of	the	ROW
or	RECORD	type

ASSIGN	to	row
variable

RETURN	NEXT	var;

SETOF

<table/view>
This	is	the	same	as	the	table	or	view	structure 	

SETOF	RECORD Dynamic	using	AS	(name	type,	…)	at	call	site 	

SETOF	RECORD This	uses	the	OUT	and	INOUT	function	arguments.	Assigned	to	the	OUT	variables RETURN	NEXT	;

TABLE	(...)

This	is	declared	inline,	in	parentheses,	after	the	TABLE	keyword	and	is	converted
to	the	OUT	variable	for	use	in	functions.	It	is	assigned	to	the	OUT	variables	from
the	TABLE(...)	part	of	the	declaration.

RETURN	NEXT	;

Returning	cursors
Another	method	that	can	be	used	to	get	tabular	data	out	of	a	function,	is	using	CURSOR.

CURSOR,	or	a	portal,	as	it	is	sometimes	referred	to	in	PostgreSQL	documentation,	is	an
internal	structure	that	contains	a	prepared	query	plan,	ready	to	return	rows	from	the	query.
Sometimes,	the	cursor	needs	to	retrieve	all	the	data	for	the	query	at	once,	but	for	many
queries	it	does	lazy	fetching.	For	example,	queries	that	need	to	scan	all	of	the	data	in	a
table,	such	as	SELECT	*	FROM	xtable,	only	read	the	amount	of	data	that	is	needed	for
each	FETCH	from	the	cursor.

In	plain	SQL,	CURSOR	is	defined	as	follows:

DECLARE	mycursor	CURSOR		FOR	<query	>;

Later,	the	rows	are	fetched	using	the	following	statement:

FETCH	NEXT	FROM		mycursor;

While	you	can	use	a	cursor	to	handle	the	data	from	a	set	returning	function	the	usual	way,
by	simply	declaring	the	cursor	as	DECLARE	mycursor	CURSOR	FOR	SELECT	*	FROM
mysetfunc();,	many	times	it	is	more	beneficial	to	have	the	function	itself	just	return	a
cursor.

You	will	want	to	do	this	if	you	need	different	cursors	based	on	argument	values,	or	if	you
need	to	return	dynamically	structured	data	out	of	a	function,	without	defining	the	structure
when	calling	the	function.

The	cursor	in	PL/pgSQL	is	represented	by	a	variable	of	the	type	refcursor	and	must	be
declared	in	one	of	the	following	three	ways:

DECLARE

				curs1	refcursor;

				curs2	CURSOR	FOR	SELECT	*	FROM	tenk1;

				curs3	CURSOR	(key	integer)	IS	SELECT	*	FROM	tenk1	WHERE	unique1	=	key;

The	first	variant	declares	an	unbound	cursor	that	needs	to	be	bound	to	a	query	at	OPEN
time.	The	two	remaining	variants	declare	a	cursor	bound	to	a	query.

Note
You	can	read	a	good	technical	overview	on	how	to	use	cursors	in	PL/pgSQL	functions
from	the	official	PostgreSQL	documentation	at
http://www.postgresql.org/docs/current/static/plpgsql-cursors.html.

One	thing	to	note	about	the	documentation	is	that	you	don’t	really	need	to	“return”	the
cursor,	at	least	not	now	because	cursors	can	also	be	passed	back	to	the	caller	in	OUT
parameters.

The	PostgreSQL	documentation	states:

“The	following	example	shows	one	way	to	return	multiple	cursors	from	a	single

http://www.postgresql.org/docs/current/static/plpgsql-cursors.html

function:

CREATE	FUNCTION	myfunc(refcursor,	refcursor)	RETURNS	SETOF	refcursor	AS	$$

BEGIN

				OPEN	$1	FOR	SELECT	*	FROM	table_1;

				RETURN	NEXT	$1;

				OPEN	$2	FOR	SELECT	*	FROM	table_2;

				RETURN	NEXT	$2;

END;

$$	LANGUAGE	plpgsql;

—	need	to	be	in	a	transaction	to	use	cursors.

BEGIN;

SELECT	*	FROM	myfunc('a',	'b');

FETCH	ALL	FROM	a;

FETCH	ALL	FROM	b;

COMMIT;"

You	can	also	write	the	myfunc	function	using	the	OUT	parameters:

CREATE	FUNCTION	myfunc2(cur1	refcursor,	cur2	refcursor)

RETURNS	VOID	AS	$$

BEGIN

				OPEN	cur1	FOR	SELECT	*	FROM	table_1;

				OPEN	cur2	FOR	SELECT	*	FROM	table_2;

END;

$$	LANGUAGE	plpgsql;

You	will	still	run	the	function	in	exactly	the	same	way	as	the	function	returning	the	cursor
variable.

Iterating	over	cursors	returned	from	another
function
To	wrap	up	our	cursors’	discussion,	let’s	go	through	an	example	of	returning	a	cursor	and
then	iterating	over	the	returned	cursor	in	another	PL/pgSQL	function:

1.	 First,	let’s	create	a	five-row	table	and	fill	it	with	data:

CREATE	TABLE	fiverows(id	serial	PRIMARY	KEY,	data	text);

INSERT	INTO	fiverows(data)	VALUES	('one'),	('two'),

																					('three'),	('four'),	('five');

2.	 Next,	let’s	define	our	cursor	returning	function.	This	function	will	open	a	cursor	for	a
query,	based	on	its	argument	and	then	return	that	cursor:

CREATE	FUNCTION	curtest1(cur	refcursor,	tag	text)	

		RETURNS	refcursor	

AS	$$

BEGIN

				OPEN	cur	FOR	SELECT	id,	data	||	'+'	||	tag	FROM	fiverows;

				RETURN	cur;

END;

$$	LANGUAGE	plpgsql;

3.	 Next,	we	define	a	function,	which	uses	the	function	we	just	created	to	open	two
additional	cursors,	and	then	process	the	query	results.	To	show	that	we	are	not
cheating	and	that	the	function	really	creates	the	cursors,	we	use	the	function	twice
and	iterate	over	the	results	in	parallel:

CREATE	FUNCTION	curtest2(tag1	text,	tag2	text)	

		RETURNS	SETOF	fiverows	

AS	$$

DECLARE

				cur1	refcursor;

				cur2	refcursor;

				row	record;

BEGIN

				cur1	=	curtest1(NULL,	tag1);

				cur2	=	curtest1(NULL,	tag2);

				LOOP

								FETCH	cur1	INTO	row;

								EXIT	WHEN	NOT	FOUND	;

								RETURN	NEXT	row;

								FETCH	cur2	INTO	row;

								EXIT	WHEN	NOT	FOUND	;

								RETURN	NEXT	row;

				END	LOOP;

END;

$$	LANGUAGE	plpgsql;

Please	note,	that	once	a	record	variable	inside	a	plpgsql	function	is	defined	by	being
used,	it	can’t	be	changed	from	record	type	for	the	duration	of	that	session	because

PL/pgSQL	stores	and	reuses	the	plan	built	with	the	record	type.

By	passing	in	NULL	to	the	first	parameters	of	curtest1,	PostgreSQL	automatically
generates	the	cursor	names	so	that	multiple	invocations	of	this	function	will	not	get	name
conflicts	with	any	other	functions,	which	also	create	cursors.

Wrapping	up	of	functions	returning	cursors
The	pros	of	using	cursors	are	as	follows:

Cursors	are	a	useful	tool	if	you	don’t	want	to	always	execute	the	query	and	wait	for
the	full	result	set	before	returning	from	a	function
Currently,	they	are	also	the	only	way	to	return	multiple	result	sets	out	of	a	user-
defined	function

The	cons	of	using	cursors	are	as	follows:

They	mainly	work	to	pass	data	between	functions	on	the	server,	and	you	are	still
limited	to	one	record	set	per	call	returned	to	the	database	client
They	are	sometimes	confusing	to	use,	and	bound	and	unbound	cursors	are	not	always
interchangeable

Note
You	can	read	more	about	cursors	at	http://www.postgresql.org/docs/current/static/plpgsql-
cursors.html.

http://www.postgresql.org/docs/current/static/plpgsql-cursors.html

Other	ways	to	work	with	structured	data
We	now	have	covered	the	traditional	ways	of	returning	sets	of	structured	data	from
functions.	We	will	now	start	with	the	more	interesting	part.	Other	methods	to	pass	around
complex	data	structures	have	evolved	in	the	world.

Complex	data	types	for	the	modern	world	–	XML
and	JSON
In	the	real	world,	most	of	the	data	is	not	in	a	single	table	and	the	database	is	not	the	main
thing	that	most	programmers	focus	on.	Often,	they	don’t	even	think	about	it	at	all,	or	at
least	they	would	rather	not	think	about	it.

If	you	are	a	database	developer	who	works	on	the	database	side	of	things,	it	is	often
desirable	to	talk	to	the	clients	(be	it	web	or	application	developers	as	your	client,	or
programs	as	database	clients)	in	the	language	they	speak.	Currently,	the	two	most	widely
spoken	data	languages	by	the	web	applications	and	their	developers	are	XML	and	JSON.

Both	XML	and	JSON	are	text-based	data	formats,	and	as	such,	they	can	be	easily	saved
into	fields	of	the	type	text.	PostgreSQL,	being	a	DBMS,	built	for	being	user-extendable,
also	has	extensive	support	for	both	these	formats.

XML	data	type	and	returning	data	as	XML	from
functions
One	of	the	extensions	added	to	PostgreSQL,	in	order	to	support	XML	data,	is	a	native
XML	data	type.	While	the	XML	data	type	is	largely	just	a	text	field,	it	differs	from	text	in
the	following	ways:

The	XML	stored	in	an	XML	field	is	checked	on	inserts	and	updates	to	be	well-
formed
There	are	support	functions	to	produce	and	work	with	known	well-formed	XML

An	XML	value	can	be	produced	in	a	couple	of	ways,	including	the	standard	SQL	method:

XMLPARSE	({	DOCUMENT	|	CONTENT	}	value)

PostgreSQL	also	has	a	specific	syntax	that	will	produce	an	XML	value:

xml	'<foo>bar</foo>'

'<foo>bar</foo>'::xml

An	XML	value	can	be	easily	converted	to	a	text	representation	using	the	XMLSERIALIZE
function,	as	follows:

XMLSERIALIZE	({	DOCUMENT	|	CONTENT	}	value	AS	type)

Additionally,	PostgreSQL	allows	you	to	simply	cast	the	XML	value	as	text.

Note
The	full	description	of	the	XML	data	type	and	its	associated	functions	is	available	at
http://www.postgresql.org/docs/current/static/datatype-xml.html.	As	each	version	of
PostgreSQL	has	improved,	the	support	for	XML	has	also	improved.

There	are	several	*_to_xml	functions	in	PostgreSQL,	which	take	either	a	SQL	query,	or	a
table,	or	view	as	input	and	return	its	corresponding	XML	representation.

Let’s	take	a	look	at	this	using	the	fiverows	table	we	defined	previously	in	the	Returning
cursors	section.

First,	let’s	get	the	table	data	as	an	XML:

hannu=#	SELECT	table_to_xml('fiverows',true,	false,	'')	AS	s;

-[RECORD	1]---

s	|	<fiverows	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

		|	

		|	<row>

		|			<id>1</id>

		|			<data>one</data>

		|	</row>

		|	

		|	<row>

		|			<id>2</id>

		|			<data>two</data>

		|	</row>

http://www.postgresql.org/docs/current/static/datatype-xml.html

		|	

		|	<row>

		|			<id>3</id>

		|			<data>three</data>

		|	</row>

		|	

		|	<row>

		|			<id>4</id>

		|			<data>four</data>

		|	</row>

		|	

		|	<row>

		|			<id>5</id>

		|			<data>five</data>

		|	</row>

		|	

		|	</fiverows>

		|	

If	you	have	a	client	that	can	handle	XML,	then	the	*_to_xml	functions	can	be	the	best	way
to	return	complex	data.

Another	good	thing	about	the	*_to_xml	functions	is	that	you	can	create	a	function	which
returns	several	different	XML	documents	in	one	go	and,	thus,	returns	data	rows	with
different	structures.	A	good	example,	will	be	a	payment	order	and	rows,	where	the	first
record	returned	by	the	function	is	the	XML	for	the	order	header	followed	by	one	or	more
records	of	XML	for	the	order	rows,	all	returned	by	the	same	function	in	one	call.

There	are,	at	the	time	of	writing	this	book,	five	variants	of	the	*_to_xml	functions:

cursor_to_xml(cursor	refcursor,	count	integer,nulls	bool,	tableforest	bool,	

targetns	text)

query_to_xml(query	text,	nulls	bool,	tableforest	bool,	targetns	text)

table_to_xml(tbl	regclass,	nulls	boolean,	tableforest	boolean,	targetns	

text)

schema_to_xml(schema	name,	nulls	boolean,	tableforest	boolean,	targetns	

text)

database_to_xml(nulls	boolean,	tableforest	bool,	targetns	text)	

The	cursor_to_xml(...)	function,	which	iterates	over	an	open	cursor,	is	recommended
for	large	data	sets,	as	it	can	convert	the	data	into	chunks	of	rows	without	first
accumulating	all	the	data	in	memory.

The	next	three	functions	return	a	string	that	represents	a	SQL	query,	a	table	name,	or	a
schema	name,	and	return	all	the	data	from	the	named	object.	The	table_to_xml()
function	also	works	on	views.	Then,	there	is	the	database_to_xml(...)	function,	which
converts	the	current	database	to	an	XML	document.	However,	a	common	result	of	running
it	on	a	production	database	is	an	out-of-memory	error	if	the	output	is	too	big:

hannu=#	SELECT	database_to_xml(true,	true,	'n');

ERROR:		out	of	memory

DETAIL:		Failed	on	request	of	size	1024.

Returning	data	in	the	JSON	format
In	PostgreSQL	9.2,	there	is	a	new	native	data	type	for	JSON	values.	This	new	support	for
JSON	followed	the	same	growth	pattern	as	XML.	It	initially	started	with	two	functions	to
convert	arrays	and	records	to	the	JSON	format,	but	in	PostgreSQL	9.3,	there	are	many
new	functions	introduced.	The	following	is	a	summary	of	improvements	in	the
PostgreSQL	9.3	JSON	support:

There	are	dedicated	JSON	operators	such	as	->,	->>,	and	#>
There	are	ten	new	JSON	functions

The	JSON	parser	is	exposed	as	an	API.	The	API	provides	hooks	for	the	significant	parser
event,	such	as	the	beginning	and	end	of	objects	and	arrays,	and	providing	functions	to
handle	these	hooks	allows	a	wide	variety	of	JSON	processing	functions	to	be	created.

The	hstore	extension	has	two	new	JSON-related	functions,	hstore_to_json(hstore)
and	hstore_to_json_loose(hstore).

Note
You	can	read	about	the	new	JSON	operators	and	the	functions	in	the	official
documentation	at	http://www.postgresql.org/docs/current/static/functions-json.html.

The	row_to_json(record,	bool)	function	is	used	to	convert	any	record	to	JSON,	and
array_to_json(anyarray,	bool)	is	used	to	convert	any	array	to	JSON.

The	following	are	some	simple	examples	of	the	usage	of	these	functions:

hannu=#	SELECT	array_to_json(array[1,2,3]);

-[RECORD	1]-+--------

array_to_json	|	[1,2,3]

hannu=#	SELECT	*	FROM	test;

-[RECORD	1]--------------------

id						|	1

data				|	0.26281

tstampt	|	2012-04-05	13:21:03.235

-[RECORD	2]--------------------

id						|	2

data				|	0.1574

tstampt	|	2012-04-05	13:21:05.201

hannu=#	SELECT	row_to_json(t)	FROM	test	t;

-[RECORD	1]---

row_to_json	|	{"id":1,"data":0.26281,"tstampt":"2012-04-05	13:21:03.235"}

-[RECORD	2]---

row_to_json	|	{"id":2,"data":0.1574,"tstampt":"2012-04-05	13:21:05.201"}

These	functions	are	very	useful	as	they	enable	us	to	write	functions	returning	much	more
complex	data	than	was	possible	using	the	standard	RETURNS	TABLE	syntax,	but	the	real
power	of	these	functions	comes	from	being	able	to	convert	arbitrarily	complex	rows.

Let’s	first	create	a	simple	table	with	some	data:

http://www.postgresql.org/docs/current/static/functions-json.html

CREATE	TABLE	test(

			id	serial	PRIMARY	KEY,

			data	text,

			tstamp	timestamp	DEFAULT	current_timestamp

);

INSERT	INTO	test(data)	VALUES(random()),	(random());

Now,	let’s	create	another	table,	which	has	one	column	with	the	data	type	of	the	previous
table,	and	insert	rows	from	this	table	in	the	new	table:

hannu=#	CREATE	TABLE	test2(

hannu(#				id	serial	PRIMARY	KEY,

hannu(#				data2	test,

hannu(#				tstamp	timestamp	DEFAULT	current_timestamp

hannu(#);

hannu=#	INSERT	INTO	test2(data2)	SELECT	test	FROM	test;

INSERT	0	2

hannu=#	SELECT	*	FROM	test2;

-[RECORD	1]------------------------------------

id					|	5

data2		|	(1,0.26281,"2012-04-05	13:21:03.235204")

tstamp	|	2012-04-30	15:42:11.757535

-[RECORD	2]------------------------------------

id					|	6

data2		|	(2,0.15740,"2012-04-05	13:21:05.2033")

tstamp	|	2012-04-30	15:42:11.757535

Now,	let’s	see	how	row_to_json()	handles	this	table:

hannu=#	SELECT	row_to_json(t2,	true)	FROM	test2	t2;

																																row_to_json

	{"id":5,

		"data2":{"id":1,"data":"0.26281",

											"tstamp":"2012-04-05	13:21:03.235204"},

		"tstamp":"2012-04-30	15:42:11.757535"}

	{"id":6,

		"data2":{"id":2,"data":"0.15740",

											"tstamp":"2012-04-05	13:21:05.2033"},

		"tstamp":"2012-04-30	15:42:11.757535"}

(2	rows)

The	result	was	converted	to	JSON	without	any	problems.

Just	to	be	sure,	let’s	push	the	complexity	up	a	bit	more	and	create	a	test3	table,	which	has
an	array	of	the	table2	rows	as	its	data	value:

CREATE	TABLE	test3(

			id	serial	PRIMARY	KEY,

			data3	test2[],

			tstamp	timestamp	DEFAULT	current_timestamp

);

INSERT	INTO	test3(data3)

SELECT	array(SELECT	test2	FROM	test2);

Let’s	see	whether	row_to_json	still	works,	as	shown	here:

SELECT	row_to_json(t3,	true)	FROM	test3	t3;

--

{"id":1,

	"data3":[{"id":1,

												"data2":{"id":1,

																					"data":"0.262814193032682",

																					"tstamp":"2012-04-05	13:21:03.235204"},

												"tstamp":"2012-04-05	13:25:03.644497"

											},

											{"id":2,

												"data2":{"id":2,

																					"data":"0.157406373415142",

																					"tstamp":"2012-04-05	13:21:05.2033"},

												"tstamp":"2012-04-05	13:25:03.644497"

											}

],

	"tstamp":"2012-04-16	14:40:15.795947"}

(1	row)

Yes,	it	does!

Well,	actually	I	had	to	manually	format	it	a	little,	as	the	prettyprint	flag	to
row_to_json()	only	forks	for	the	top	level,	and	the	second	row	of	the	result	(the	one	that
follows	"data3")	was	all	in	one	line.	However,	JSON	itself	was	completely	functional!

Summary
The	main	points	you	learned	in	this	chapter	are	that	you	can	return	multiple	rows	and
return	data	using	OUT	parameters,	as	well	as	return	multiple	rows	of	complex	data,	similar
to	a	SELECT	query.	You	also	learned	that	several	sets	of	tables	can	be	returned,	and	you	can
possibly	have	them	evaluated	in	a	lazy	manner	using	refcursors.	Moreover,	you	can	return
data	as	complex	as	you	want	using	either	XML	or	JSON.

So,	there	really	are	very	few	reasons	for	not	using	database	functions	as	your	main
interaction	mechanism	with	the	database.	In	the	next	chapter,	we	will	learn	how	to	call
functions	when	different	types	of	events	occur	in	the	database.

Chapter	5.	PL/pgSQL	Trigger	Functions
While	it	is	generally	a	good	practice	to	keep	related	code	together	and	avoid	hidden
actions	as	part	of	the	main	application	code	workflows,	there	are	valid	cases	where	it	is	a
good	practice	to	add	some	kind	of	general	or	cross-application	functionality	to	the
database	using	automated	actions,	which	happen	each	and	every	time	a	table	is	modified.
That	is,	actions	are	part	of	your	data	model	and	not	your	application	code	and	you	want	to
be	sure	that	it	is	not	possible	to	forget	or	bypass	them,	which	is	similar	to	how	constraints
make	it	impossible	to	insert	invalid	data.

The	method	used	to	add	automated	function	calls	to	a	table	modifying	event	is	called	a
trigger.	Triggers	are	especially	useful	for	the	cases	where	there	are	multiple	different
client	applications—possibly	from	different	sources	and	using	different	programming
styles—accessing	the	same	data	using	multiple	different	functions	or	simple	SQL.

From	a	standard’s	perspective,	triggers	are	standardized	in	SQL3	(SQL1999).	Triggers	are
generally	defined	using	an	event-condition-action	(ECA)	model.	Events	occur	in	the
database,	which	trigger	the	invocation	of	a	certain	function	if	the	conditions	are	satisfied.
All	data	actions	performed	by	the	trigger	execute	within	the	same	transaction	in	which	the
trigger	is	executing.	Triggers	cannot	contain	transaction	control	statements	such	as	COMMIT
and	ROLLBACK.	Triggers	can	be	statement	level	or	row	level	(more	on	this	later	in	the
chapter).

In	PostgreSQL,	a	trigger	is	defined	in	two	steps:

1.	 Define	a	trigger	function	using	CREATE	FUNCTION.
2.	 Bind	this	trigger	function	to	a	table	using	CREATE	TRIGGER.

In	this	chapter,	we	will	cover	the	following	topics:

Creating	a	trigger	and	a	trigger	function
Taking	a	look	at	some	of	the	use	cases	of	triggers,	such	as	an	audit	trigger,	and
disallowing	certain	operations	using	triggers
Discussing	conditional	triggers	and	triggers	on	specific	field	changes
Describing	the	list	of	variables	passed	on	to	a	trigger	in	brief,	which	can	be	used	in
the	trigger	function	for	conditional	lookups

Creating	the	trigger	function
The	trigger	function’s	definition	looks	mostly	like	an	ordinary	function	definition,	except
that	it	has	a	return	value	type,	trigger,	and	it	does	not	take	any	arguments:

CREATE	FUNCTION	mytriggerfunc()	RETURNS	trigger	AS	$$	…

Trigger	functions	are	passed	information	about	their	calling	environment	through	a	special
TriggerData	structure,	which	in	the	case	of	PL/pgSQL	is	accessible	through	a	set	of	local
variables.	The	local	variables,	OLD	and	NEW,	represent	the	row	in	which	the	trigger	is	in
before	and	after	triggering	the	event.	Additionally,	there	are	several	other	local	variables
that	start	with	the	prefix	TG_,	such	as	TG_WHEN	or	TG_TABLE_NAME	for	general	context.	Once
your	trigger	function	is	defined,	you	can	bind	it	to	a	specific	set	of	actions	on	a	table.

Creating	the	trigger
The	simplified	syntax	to	create	a	user-defined	TRIGGER	statement	is	given	as	follows:

CREATE	TRIGGER	name

				{	BEFORE	|	AFTER	|	INSTEAD	OF	}	{	event	[OR…]	}

				ON	table_name

				[FOR	[EACH]	{	ROW	|	STATEMENT	}]

				EXECUTE	PROCEDURE	function_name	(arguments)

In	the	preceding	code,	the	event	is	either	INSERT,	UPDATE,	DELETE,	or	TRUNCATE.	There	are
a	few	more	options	which	we	will	come	back	to	in	a	later	section.

The	arguments	variable	seemingly	passed	to	the	trigger	function	in	the	trigger	definition
are	not	used	as	arguments	when	calling	the	trigger.	Instead,	they	are	available	to	the
trigger	function	as	a	text	array	(text[])	in	the	TG_ARGV	variable	(the	length	of	this	array	is
in	TG_NARGS).	Let’s	slowly	start	investigating	how	triggers	and	trigger	functions	work.

Starting	from	PostgreSQL	9.3,	there	is	support	for	DDL	triggers.	We	will	learn	more	about
DDL	triggers,	also	called	event	triggers,	in	the	next	chapter.

First,	we	will	use	a	simple	trigger	example	and	move	on	to	more	complex	examples	step
by	step.

Working	on	a	simple	“Hey,	I’m	called”
trigger
The	first	trigger	we	will	work	on	simply	sends	a	notice	back	to	the	database	client	each
time	the	trigger	is	fired	and	provides	some	feedback	on	its	firing	conditions:

CREATE	OR	REPLACE	FUNCTION	notify_trigger()

		RETURNS	TRIGGER	AS	$$	

BEGIN	

				RAISE	NOTICE	'Hi,	I	got	%	invoked	FOR	%	%	%	on	%',	

																															TG_NAME,	

																															TG_LEVEL,	

																															TG_WHEN,	

																															TG_OP,	

																															TG_TABLE_NAME;	

END;	

$$	LANGUAGE	plpgsql;

Next,	we	need	a	table	to	bind	this	function	to	the	following	line	of	code:

CREATE	TABLE	notify_test(i	int);

Now	we	are	ready	to	define	the	trigger.	As	this	is	a	simple	example,	we	define	a	trigger
which	is	invoked	on	INSERT	and	calls	the	function	once	on	each	row:

CREATE	TRIGGER	notify_insert_trigger

		AFTER	INSERT	ON	notify_test

		FOR	EACH	ROW

EXECUTE	PROCEDURE	notify_trigger();

Let’s	test	this	out:

postgres=#	INSERT	INTO	notify_test	VALUES(1),(2);	

NOTICE:		Hi,	I	got	notify_insert_trigger	invoked	FOR	ROW	AFTER	INSERT	on	

notify_test	

ERROR:		control	reached	end	of	trigger	procedure	without	RETURN	

CONTEXT:		PL/pgSQL	function	notify_trigger()

Hmm,	it	seems	we	need	to	return	something	from	the	function	even	though	it	is	not
needed	for	our	purposes.	The	function	definition	says	CREATE	FUNCTION	…	RETURNS	but
we	definitely	cannot	return	a	trigger	from	a	function.

Let’s	get	back	to	the	documentation.	OK,	here	it	is.	The	trigger	needs	to	return	a	value	of
the	ROW	or	RECORD	type	and	it	is	ignored	in	the	AFTER	triggers.

For	now,	let’s	just	return	NEW	as	this	is	the	right	type	and	is	always	present	even	though	it
will	be	NULL	in	the	DELETE	trigger:

CREATE	OR	REPLACE	FUNCTION	notify_trigger()

RETURNS	TRIGGER	AS	$$

BEGIN

				RAISE	NOTICE	'Hi,	I	got	%	invoked	FOR	%	%	%	on	%',

																		TG_NAME,

																		TG_LEVEL,	TG_WHEN,	TG_OP,	TG_TABLE_NAME;

				RETURN	NEW;

END;

$$	LANGUAGE	plpgsql;

We	can	use	RETURN	NULL	as	well	here,	as	the	return	value	of	the	AFTER	trigger	is	ignored
anyway:

postgres=#	INSERT	INTO	notify_test	VALUES(1),(2);	

NOTICE:		Hi,	I	got	notify_insert_trigger	invoked	FOR	ROW	AFTER	INSERT	on	

notify_test	

NOTICE:		Hi,	I	got	notify_insert_trigger	invoked	FOR	ROW	AFTER	INSERT	on	

notify_test	

INSERT	0	2	

As	you	saw,	the	trigger	function	is	indeed	called	once	for	each	row	that	is	inserted,	so	let’s
use	the	same	function	to	also	report	the	UPDATE	and	DELETE	functions:

CREATE	TRIGGER	notify_update_trigger	

		AFTER	UPDATE	ON	notify_test	

		FOR	EACH	ROW	

EXECUTE	PROCEDURE	notify_trigger();	

CREATE	TRIGGER	notify_delete_trigger	

		AFTER	DELETE	ON	notify_test	

		FOR	EACH	ROW	

EXECUTE	PROCEDURE	notify_trigger();	

Check	whether	the	preceding	code	works.

First,	let’s	test	the	UPDATE	trigger:

postgres=#	update	notify_test	set	i	=	i	*	10;	

NOTICE:		Hi,	I	got	notify_update_trigger	invoked	FOR	ROW	AFTER	UPDATE	on	

notify_test	

NOTICE:		Hi,	I	got	notify_update_trigger	invoked	FOR	ROW	AFTER	UPDATE	on	

notify_test	

UPDATE	2

This	works	fine—we	get	a	notice	for	two	invocations	of	our	trigger	function.

Now,	let’s	test	the	DELETE	trigger:

postgres=#	delete	from	notify_test;	

NOTICE:		Hi,	I	got	notify_delete_trigger	invoked	FOR	ROW	AFTER	DELETE	on	

notify_test	

NOTICE:		Hi,	I	got	notify_delete_trigger	invoked	FOR	ROW	AFTER	DELETE	on	

notify_test	

DELETE	2

If	you	only	want	to	be	notified	each	time	an	operation	is	performed	on	the	table,	the
preceding	code	is	enough.	One	small	improvement	can	be	made	in	how	we	define	triggers.
Instead	of	creating	one	trigger	for	each	of	the	INSERT,	UPDATE,	or	DELETE	functions,	we	can
create	a	single	trigger	to	be	called	for	any	of	them.	So,	let’s	replace	the	previous	three
triggers	with	just	the	following:

	CREATE	TRIGGER	notify_trigger	

		AFTER	INSERT	OR	UPDATE	OR	DELETE	

		ON	notify_test	

		FOR	EACH	ROW	

EXECUTE	PROCEDURE	notify_trigger();

The	ability	to	put	more	than	one	of	the	INSERT,	UPDATE,	or	DELETE	functions	in	the	same
trigger	definition	is	a	PostgreSQL	extension	to	the	SQL	standard.	Since	the	action	part	of
the	trigger	definition	is	nonstandard	anyway,	especially	when	using	a	PL/pgSQL	trigger
function,	this	should	not	be	a	problem.

Let’s	now	drop	the	individual	triggers,	truncate	the	table,	and	test	again:

postgres=#	DROP	TRIGGER	notify_insert_trigger	ON	notify_test;	

DROP	TRIGGER	

postgres=#	DROP	TRIGGER	notify_update_trigger	ON	notify_test;	

DROP	TRIGGER	

postgres=#	DROP	TRIGGER	notify_delete_trigger	ON	notify_test;	

DROP	TRIGGER	

postgres=#	TRUNCATE	notify_test;	

TRUNCATE	TABLE	

postgres=#	INSERT	INTO	notify_test	VALUES(1);	

NOTICE:		Hi,	I	got	notify_trigger	invoked	FOR	ROW	AFTER	INSERT	on	

notify_test	

INSERT	0	1	

This	works	fine	but	it	reveals	one	weakness:	we	did	not	get	any	notification	on	TRUNCATE.

Unfortunately,	we	cannot	simply	add	OR	TRUNCATE	in	the	preceding	trigger	definition.	The
TRUNCATE	command	does	not	act	on	single	rows,	so	the	FOR	EACH	ROW	triggers	make	no
sense	for	truncating	and	are	not	supported.

You	need	to	have	a	separate	trigger	definition	for	TRUNCATE.	Fortunately,	we	can	still	use
the	same	function,	at	least	for	this	simple	“Hey,	I’m	called”	trigger:

CREATE	TRIGGER	notify_truncate_trigger	

		AFTER	TRUNCATE	ON	notify_test	

		FOR	EACH	STATEMENT	

EXECUTE	PROCEDURE	notify_trigger();

Now	we	get	a	notification	on	TRUNCATE	as	well,	as	shown	here:

postgres=#	TRUNCATE	notify_test;	

NOTICE:		Hi,	I	got	notify_truncate_trigger	invoked	FOR	STATEMENT	AFTER	

TRUNCATE	on	notify_test	

TRUNCATE	TABLE

While	it	may	seem	cool	to	get	these	messages	in	each	Data	Manipulation	Language
(DML)	operation,	it	has	little	production	value.

So,	let’s	develop	this	a	bit	further	and	log	the	event	in	an	audit	log	table	instead	of	sending
something	back	to	the	user.

The	audit	trigger
One	of	the	most	common	uses	of	triggers	is	to	log	data	changes	to	tables	in	a	consistent
and	transparent	manner.	When	creating	an	audit	trigger,	we	first	must	decide	what	we
want	to	log.

A	logical	set	of	things	that	can	be	logged	are	who	changed	the	data,	when	the	data	was
changed,	and	which	operation	changed	the	data.	This	information	can	be	saved	in	the
following	table:

CREATE	TABLE	audit_log	(

				username	text,—who	did	the	change

				event_time_utc	timestamp,—when	the	event	was	recorded

				table_name	text,—contains	schema-qualified	table	name

				operation	text,—INSERT,	UPDATE,	DELETE	or	TRUNCATE

				before_value	json,—the	OLD	tuple	value

				after_value	json—the	NEW	tuple	value

);

Here’s	some	additional	information	on	what	we	will	log:

The	username	will	get	the	SESSION_USER	variable,	so	we	know	who	was	logged	in
and	not	which	role	he	had	potentially	assumed	using	SET	ROLE
event_time_utc	will	contain	the	event	time	converted	to	Coordinated	Universal
Time	(UTC)	so	that	all	complex	date	arithmetic	calculations	around	daylight	saving
change	times	can	be	avoided
table_name	will	be	in	the	schema.table	format
The	operation	will	be	directly	from	TG_OP,	although	it	could	be	just	the	first	character
(I/U/D/T),	without	the	loss	of	any	information
Finally,	the	before	and	after	images	of	rows	are	stored	as	rows	converted	to	json,
which	is	available	as	its	own	data	type	starting	in	PostgreSQL	Version	9.2	for	easy
human-readable	representation	of	the	row	values

Next,	the	trigger	function:

CREATE	OR	REPLACE	FUNCTION	audit_trigger()	

		RETURNS	trigger	AS	$$	

DECLARE	

				old_row	json	:=	NULL;	

				new_row	json	:=	NULL;	

BEGIN	

				IF	TG_OP	IN	('UPDATE','DELETE')	THEN	

								old_row	=	row_to_json(OLD);	

				END	IF;	

				IF	TG_OP	IN	('INSERT','UPDATE')	THEN	

								new_row	=	row_to_json(NEW);	

				END	IF;	

				INSERT	INTO		audit_log(

								username,	

								event_time_utc,	

								table_name,	

								operation,	

								before_value,	

								after_value	

)	VALUES	(

								session_user,	

								current_timestamp	AT	TIME	ZONE	'UTC',	

								TG_TABLE_SCHEMA	||		'.'	||	TG_TABLE_NAME,	

								TG_OP,	

								old_row,	

								new_row	

);	

				RETURN	NEW;	

END;	

$$	LANGUAGE	plpgsql;	

Note
The	conditional	expressions	that	check	the	operations	at	the	beginning	of	the	function	are
needed	to	overcome	the	fact	that	NEW	and	OLD	are	not	NULL	for	the	DELETE	and	INSERT
triggers	correspondingly.	Rather,	they	are	unassigned.	Using	an	unassigned	variable	in	any
other	way	except	assigning	to	it	in	PL/pgSQL	results	in	an	error.	Any	error	in	the	trigger
will	usually	abort	the	trigger	and	the	current	transaction.

We	are	now	ready	to	define	our	new	logging	trigger,	as	shown	here:

CREATE	TRIGGER	audit_log	

		AFTER	INSERT	OR	UPDATE	OR	DELETE	

		ON	notify_test	

		FOR	EACH	ROW	

EXECUTE	PROCEDURE	audit_trigger();	

Let’s	run	a	small	test:	we	remove	our	original	notify	triggers	from	the	notify_test	table
and	perform	a	few	simple	operations:

postgres=#	DROP	TRIGGER	notify_trigger	ON	notify_test;	

DROP	TRIGGER	

postgres=#	DROP	TRIGGER	notify_truncate_trigger	ON	notify_test;	

DROP	TRIGGER	

postgres=#	TRUNCATE	notify_test;	

TRUNCATE	TABLE	

postgres=#	INSERT	INTO	notify_test	VALUES	(1);	

INSERT	0	1	

postgres=#	UPDATE	notify_test	SET	i	=	2;	

UPDATE	1	

postgres=#	DELETE	FROM	notify_test;	

DELETE	1	

postgres=#	SELECT	*	FROM	audit_log;	

-[RECORD	1]--+---------------------------	

username							|	postgres	

event_time_utc	|	2013-04-14	13:14:18.501529	

table_name					|	public.notify_test	

operation						|	INSERT	

before_value			|	

after_value				|	{"i":1}	

-[RECORD	2]--+---------------------------	

username							|	postgres	

event_time_utc	|	2013-04-14	13:14:18.51216	

table_name					|	public.notify_test	

operation						|	UPDATE	

before_value			|	{"i":1}	

after_value				|	{"i":2}	

-[RECORD	3]--+---------------------------	

username							|	postgres	

event_time_utc	|	2013-04-14	13:14:18.52331	

table_name					|	public.notify_test	

operation						|	DELETE	

before_value			|	{"i":2}	

after_value				|	

This	works	well.	Depending	on	your	needs,	this	function	will	likely	need	some	tweaking.
Enough	of	just	watching	and	recording	DML,	it	is	time	to	start	influencing	what	goes	in
there.

Note
Triggers	are	called	in	alphabetical	order,	and	the	latter	triggers	can	change	what	gets
inserted,	so	caution	needs	to	be	applied	when	naming	triggers,	particularly	when	auditing.

Disallowing	DELETE
What	if	our	business	requirements	are	such	that	the	data	can	only	be	added	and	modified
in	some	tables,	but	not	deleted?

One	way	to	handle	this	will	be	to	just	revoke	the	DELETE	rights	on	these	tables	from	all	the
users	(remember	to	also	revoke	DELETE	from	PUBLIC),	but	this	can	also	be	achieved	using
triggers	because	of	reasons	such	as	auditing	or	returning	custom	exception	messages.

A	generic	cancel	trigger	can	be	written	as	follows:

CREATE	OR	REPLACE	FUNCTION	cancel_op()	

		RETURNS	TRIGGER	AS	$$	

BEGIN	

				IF	TG_WHEN	=	'AFTER'	THEN	

								RAISE	EXCEPTION	'YOU	ARE	NOT	ALLOWED	TO	%	ROWS	IN	%.%',	

										TG_OP,	TG_TABLE_SCHEMA,	TG_TABLE_NAMENAME;	

				END	IF;	

				RAISE	NOTICE	'%	ON	ROWS	IN	%.%	WON'T	HAPPEN',	

										TG_OP,	TG_TABLE_SCHEMA,	TG_TABLE_NAMENAME;	

				RETURN	NULL;	

END;	

$$	LANGUAGE	plpgsql;	

The	same	trigger	function	can	be	used	for	both	the	BEFORE	and	AFTER	triggers.	If	you	use	it
as	a	BEFORE	trigger,	the	operation	is	skipped	with	a	message.	However,	if	you	use	it	as	an
AFTER	trigger,	an	ERROR	trigger	is	raised	and	the	current	(sub)transaction	is	rolled	back.

It	will	also	be	easy	to	add	a	log	of	the	deleted	attempts	into	a	table	in	this	same	trigger
function	in	order	to	help	enforce	the	company	policy—just	add	INSERT	to	a	log	table	that
is	similar	to	the	table	in	the	previous	example.

Of	course,	you	can	make	one	or	both	the	messages	more	menacing	if	you	want,	by	adding
something	such	as	”Authorities	will	be	notified!”	or	”You	will	be	terminated!”.

Let’s	take	a	look	at	how	this	works	in	the	following	code:

postgres=#	CREATE	TABLE	delete_test1(i	int);	

CREATE	TABLE	

postgres=#	INSERT	INTO	delete_test1	VALUES(1);	

INSERT	0	1	

postgres=#	CREATE	TRIGGER	disallow_delete	AFTER	DELETE	ON	delete_test1	FOR	

EACH	ROW		EXECUTE	PROCEDURE	cancel_op();	

CREATE	TRIGGER	

postgres=#	DELETE	FROM	delete_test1	WHERE	i	=	1;	

ERROR:		YOU	ARE	NOT	ALLOWED	TO	DELETE	ROWS	IN	public.delete_test1

Notice	that	the	AFTER	trigger	raised	an	error:

postgres=#	CREATE	TRIGGER	skip_delete	BEFORE	DELETE	ON	delete_test1	FOR	

EACH	ROW		EXECUTE	PROCEDURE	cancel_op();	

CREATE	TRIGGER	

postgres=#	DELETE	FROM	delete_test1	WHERE	i	=	1;	

NOTICE:		DELETE	ON	ROWS	IN	public.delete_test1	WON'T	HAPPEN	

DELETE	0

This	time,	the	BEFORE	trigger	canceled	the	delete	and	the	AFTER	trigger,	although	still
there,	was	not	reached.

Note
The	same	trigger	can	also	be	used	to	enforce	a	no-update	policy	or	even	disallow	inserts	to
a	table	that	needs	to	have	immutable	contents.

Disallowing	TRUNCATE
You	may	have	noticed	that	the	preceding	trigger	can	easily	be	bypassed	for	DELETE	if	you
delete	everything	using	TRUNCATE.

While	you	cannot	simply	skip	TRUNCATE	by	returning	NULL	as	opposed	to	the	row-level
BEFORE	triggers,	you	can	still	make	it	impossible	by	raising	an	error	if	TRUNCATE	is
attempted.	Create	an	AFTER	trigger	using	the	same	function	as	the	one	used	previously	for
DELETE:

CREATE	TRIGGER	disallow_truncate	

		AFTER	TRUNCATE	ON	delete_test1	

		FOR	EACH	STATEMENT	

EXECUTE	PROCEDURE	cancel_op();	

Here	you	are,	without	TRUNCATE:

postgres=#	TRUNCATE	delete_test1;	

ERROR:		YOU	ARE	NOT	ALLOWED	TO	TRUNCATE	ROWS	IN	public.delete_test1	

Of	course,	you	can	also	raise	the	error	in	a	BEFORE	trigger,	but	in	that	case	you	will	need	to
write	your	own	unconditional	raise-error	trigger	function	instead	of	cancel_op().

Modifying	the	NEW	record
Another	form	of	auditing	that	is	frequently	used	is	to	log	information	in	fields	in	the	same
row	as	the	data.	As	an	example,	let’s	define	a	trigger	that	logs	the	time	and	the	active	user
in	the	last_changed_at	and	last_changed_by	fields	at	each	INSERT	and	UPDATE	trigger.
In	the	row-level	BEFORE	triggers,	you	can	modify	what	actually	gets	written	by	changing
the	NEW	record.	You	can	either	assign	values	to	some	fields	or	even	return	a	different
record	with	the	same	structure.	For	example,	if	you	return	OLD	from	the	UPDATE	trigger,
you	effectively	make	sure	that	the	row	can’t	be	updated.

The	timestamping	trigger
To	form	the	basis	of	our	audit	logging	in	the	table,	we	start	by	creating	a	trigger	that	sets
the	user	who	made	the	last	change	and	when	the	change	occurred:

CREATE	OR	REPLACE	FUNCTION	changestamp()	

		RETURNS	TRIGGER	AS	$$	

BEGIN	

				NEW.last_changed_by	=	SESSION_USER;	

				NEW.last_changed_at	=	CURRENT_TIMESTAMP;	

				RETURN	NEW;	

END;	

$$	LANGUAGE	plpgsql;	

Of	course,	this	works	only	in	a	table	that	has	the	correct	fields:

CREATE	TABLE	modify_test(

					id	serial	PRIMARY	KEY,	

					data	text,	

					created_by	text	default	SESSION_USER,	

					created_at	timestamptz	default	CURRENT_TIMESTAMP,	

					last_changed_by	text	default	SESSION_USER,	

					last_changed_at	timestamptz	default	CURRENT_TIMESTAMP	

);	

CREATE	TRIGGER	changestamp	

		BEFORE	UPDATE	ON	modify_test	

		FOR	EACH	ROW		

EXECUTE	PROCEDURE	changestamp();	

Now,	let’s	take	a	look	at	our	newly	created	trigger:

postgres=#	INSERT	INTO	modify_test(data)	VALUES('something');	

INSERT	0	1	

postgres=#	UPDATE	modify_test	SET	data	=	'something	else'	WHERE	id	=	1;	

UPDATE	1	

postgres=#	SELECT	*	FROM	modify_test;	

-[RECORD	1]---+---------------------------

id														|	1

data												|	something	else

created_by						|	postgres

created_at						|	2013-04-15	09:28:23.966179

last_changed_by	|	postgres

last_changed_at	|	2013-04-15	09:28:31.937196

The	immutable	fields	trigger
When	you	are	depending	on	the	fields	in	the	rows	as	part	of	your	audit	record,	you	need	to
ensure	that	the	values	reflect	reality.	We	were	able	to	make	sure	that	the	last_changed_*
fields	always	contain	the	correct	value,	but	what	about	the	created_by	and	created_at
values?	These	can	be	easily	changed	in	later	updates,	but	they	should	never	change.	Even
initially,	they	can	be	set	to	false	values,	since	the	default	values	can	be	easily	overridden
by	giving	any	other	value	in	the	INSERT	statement.

So,	let’s	modify	our	changestamp()	trigger	function	into	a	usagestamp()	function,	which
makes	sure	that	the	initial	values	are	what	they	should	be	and	that	they	stay	like	that:

CREATE	OR	REPLACE	FUNCTION	usagestamp()

		RETURNS	TRIGGER	AS	$$

BEGIN

				IF	TG_OP	=	'INSERT'	THEN

								NEW.created_by	=	SESSION_USER;

								NEW.created_at	=	CURRENT_TIMESTAMP;

				ELSE

								NEW.created_by	=	OLD.created_by;

								NEW.created_at	=	OLD.created_at;				

				END	IF;

				NEW.last_changed_by	=	SESSION_USER;

				NEW.last_changed_at	=	CURRENT_TIMESTAMP;

				RETURN	NEW;

END;

$$	LANGUAGE	plpgsql;

In	case	of	INSERT,	we	set	the	created_*	fields	to	the	required	values,	regardless	of	what
the	INSERT	query	tries	to	set	them	to.	In	case	of	UPDATE,	we	just	carry	over	the	old	values,
again	overriding	any	attempted	changes.

This	function	then	needs	to	be	used	in	order	to	create	a	BEFORE	INSERT	OR	UPDATE
trigger:

CREATE	TRIGGER	usagestamp

		BEFORE	INSERT	OR	UPDATE	ON	modify_test

		FOR	EACH	ROW		

EXECUTE	PROCEDURE	usagestamp();

Now,	let’s	try	to	update	the	created	audit	log	information.	First,	we	will	need	to	drop	the
original	trigger	so	that	we	don’t	have	two	triggers	firing	on	the	same	table.	Then,	we	will
try	to	change	the	values	of	created_by	and	created_at:

postgres=#	DROP	TRIGGER	changestamp	ON	modify_test;

DROP	TRIGGER

postgres=#	UPDATE	modify_test	SET	created_by	=	'notpostgres',	created_at	=	

'2000-01-01';

UPDATE	1

postgres=#	select	*	from	modify_test;

-[RECORD	1]---+---------------------------

id														|	1

data												|	something	else

created_by						|	postgres

created_at						|	2013-04-15	09:28:23.966179

last_changed_by	|	postgres

last_changed_at	|	2013-04-15	09:33:25.386006

From	the	results,	you	can	see	that	the	created	information	is	still	the	same,	but	the	last
changed	information	has	been	updated.

Controlling	when	a	trigger	is	called
While	it	is	relatively	easy	to	perform	trigger	actions	conditionally	inside	the	PL/pgSQL
trigger	function,	it	is	often	more	efficient	to	skip	invoking	the	trigger	altogether.	The
performance	effects	of	firing	a	trigger	are	not	generally	noticed	when	only	a	few	events
are	fired.	However,	if	you	are	bulk	loading	data	or	updating	large	portions	of	your	table,
the	cumulative	effects	can	certainly	be	felt.	To	avoid	the	overhead,	it’s	best	to	call	the
trigger	function	only	when	it	is	actually	needed.

There	are	two	ways	to	narrow	down	when	a	trigger	will	be	called	in	the	CREATE	TRIGGER
command	itself.

So,	use	the	same	syntax	once	more	but	with	all	the	options	this	time:

CREATE	TRIGGER	name

				{	BEFORE	|	AFTER	|	INSTEAD	OF	}	{	event	[OR	event…]	}

				[OF	column_name		[OR	column_name…]]	ON	table_name

				[FOR	[EACH]	{	ROW	|	STATEMENT	}]

				[WHEN	(condition)]

				EXECUTE	PROCEDURE	function_name	(arguments)

You	can	use	the	WHEN	clause	to	only	fire	a	trigger	based	on	a	condition	(such	as	a	certain
time	of	the	day)	or	only	when	certain	fields	are	updated.	We	will	now	take	a	look	at	a
couple	of	examples.

Conditional	triggers
A	flexible	way	to	control	triggers	is	to	use	a	generic	WHEN	clause	that	is	similar	to	WHERE	in
SQL	queries.	With	a	WHEN	clause,	you	can	write	any	expression,	except	a	subquery,	that	is
tested	before	the	trigger	function	is	called.	The	expression	must	result	in	a	Boolean	value,
and	if	the	value	is	FALSE	(or	NULL,	which	is	automatically	converted	to	FALSE),	the	trigger
function	is	not	called.

For	example,	you	can	use	this	to	enforce	a	“No	updates	on	Friday	afternoon”	policy:

CREATE	OR	REPLACE	FUNCTION	cancel_with_message()

		RETURNS	TRIGGER	AS	$$

BEGIN

				RAISE	EXCEPTION	'%',	TG_ARGV[0];

				RETURN	NULL;

END;

$$	LANGUAGE	plpgsql;

This	code	just	raises	an	exception	with	the	string	passed	as	an	argument	in	the	CREATE
TRIGGER	statement.	Notice	that	we	cannot	use	TG_ARGV[0]	directly	as	the	message	because
the	PL/pgSQL	syntax	requires	a	string	constant	as	the	third	element	of	RAISE.

Using	the	previous	trigger	function,	you	can	set	up	triggers	in	order	to	enforce	various
constraints	by	specifying	both	the	condition	(in	the	WHEN(...)	clause)	and	the	message	to
be	raised	if	this	condition	is	met	as	the	argument	to	the	trigger	function:

CREATE	TABLE	new_tasks(id	SERIAL	PRIMARY	KEY,	sample	TEXT);

CREATE	TRIGGER	no_updates_on_friday_afternoon

		BEFORE	INSERT	OR	UPDATE	OR	DELETE	OR	TRUNCATE	ON	new_tasks

		FOR	EACH	STATEMENT

		WHEN	(CURRENT_TIME	>	'12:00'	AND	extract(DOW	from	CURRENT_TIMESTAMP)	=	5)

EXECUTE	PROCEDURE	cancel_with_message('Sorry,	we	have	a	"No	task	change	on	

Friday	afternoon"	policy!');

Now,	if	anybody	tries	to	modify	the	new_tasks	table	on	a	Friday	afternoon,	they	get	a
message	about	this	policy,	as	shown	here:

postgres=#	insert	into	new_tasks(sample)	values("test");

ERROR:		Sorry,	we	have	a	"No	task	change	on	Friday	afternoon"	policy!

Note
One	thing	to	note	about	trigger	arguments	is	that	the	argument	list	is	always	an	array	of
text	(text[]).

All	of	the	arguments	given	in	the	CREATE	TRIGGER	statement	are	converted	to	strings,	and
this	includes	any	NULL	values.

This	means	that	putting	NULL	in	the	argument	list	results	in	the	text	NULL	in	the
corresponding	slot	in	TG_ARGV.

Triggers	on	specific	field	changes
Another	way	to	control	when	a	trigger	is	fired	is	using	a	list	of	columns.	In	the	UPDATE
triggers,	you	can	specify	one	or	more	comma-separated	columns	to	tell	PostgreSQL	that
the	trigger	function	should	only	be	executed	if	any	of	the	listed	columns	change.

It	is	possible	to	construct	the	same	conditional	expression	with	a	WHEN	clause,	but	the	list
of	columns	has	cleaner	syntax:

WHEN(

				NEW.column1	IS	DISTINCT	FROM	OLD.column1

				OR

				NEW.column2	IS	DISTINCT	FROM	OLD.column2)

A	common	example	of	how	this	conditional	expression	is	used	is	raising	an	error	each
time	someone	tries	to	change	a	primary	key	column.	The	IS	DISTINCT	FROM	function
makes	sure	that	the	trigger	is	only	executed	when	the	new	value	of	column1	is	different
from	the	old	value.	This	can	be	easily	done	by	declaring	an	AFTER	trigger	using	the
cancel_op()	trigger	function	(defined	previously	in	this	chapter),	as	follows:

CREATE	TRIGGER	disallow_pk_change

		AFTER	UPDATE	OF	id	ON	table_with_pk_id

		FOR	EACH	ROW

EXECUTE	PROCEDURE	cancel_op();

postgres=#	INSERT	INTO	new_tasks	DEFAULT	VALUES;

INSERT	0	1

packt=#	SELECT	*	FROM	new_tasks	;

	id	|	sample	

----+--------

		1	|	

(1	row)

packt=#	UPDATE	new_tasks	SET	id=0	where	id=1;

ERROR:		YOU	ARE	NOT	ALLOWED	TO	UPDATE	ROWS	IN	public.new_tasks

Visibility
Sometimes,	your	trigger	functions	might	run	into	the	Multiversion	Concurrency	Control
(MVCC)	visibility	rules	of	how	PostgreSQL’s	system	interacts	with	changes	to	data.

A	function	declared	as	STABLE	or	IMMUTABLE	will	never	see	changes	applied	to	the
underlying	table	by	the	previous	triggers.

A	VOLATILE	function	follows	more	complex	rules	which	are,	in	a	nutshell,	as	follows:

The	statement-level	BEFORE	triggers	detects	whether	no	changes	are	made	by	the
current	statement,	and	the	statement-level	AFTER	triggers	detects	all	of	the	changes
made	by	the	statement.
Data	changes	by	the	operation	to	the	row	causing	the	trigger	to	fire	are,	of	course,	not
visible	to	the	BEFORE	triggers,	as	the	operation	has	not	occurred	yet.	Changes	made
by	other	triggers	to	other	rows	in	the	same	statement	are	visible,	and	as	the	order	of
the	rows	processed	is	undefined,	you	need	to	be	cautious.	Starting	from	PostgreSQL
9.3,	an	error	is	thrown	if	a	tuple	to	be	updated	or	deleted	has	already	been	updated	or
deleted	by	a	BEFORE	trigger.
The	same	is	true	for	the	INSTEAD	OF	triggers.	The	changes	made	by	the	triggers	fired
in	the	same	command	in	the	previous	rows	are	visible	to	the	current	invocation	of	the
trigger	function.	Row-level	AFTER	triggers	are	fired	when	all	of	the	changes	to	all	the
rows	of	the	outer	command	are	complete	and	visible	to	the	trigger	function.

All	these	rules	apply	to	functions	that	query	data	in	the	database;	the	OLD	and	NEW	rows
are,	of	course,	visible	as	described	previously.

Note
The	same	information	in,	perhaps,	different	words	is	available	at
http://www.postgresql.org/docs/current/static/spi-visibility.html.

http://www.postgresql.org/docs/current/static/spi-visibility.html

Most	importantly	–	use	triggers	cautiously!
Triggers	are	an	appropriate	tool	for	use	in	database-side	actions,	such	as	auditing,	logging,
enforcing	complex	constraints,	and	even	replication	(several	logical	replication	systems
such	as	Slony	are	based	on	triggers	used	in	production).	However,	for	most	application
logic,	it	is	much	better	to	avoid	triggers	as	they	can	lead	to	really	weird	and	hard-to-debug
problems.	As	a	good	practice,	follow	the	rules	provided	in	the	following	table:

Rule Description

Rule	1 Do	not	change	data	in	the	primary	key,	foreign	key,	or	unique	key	columns	of	any	table

Rule	2 Do	not	update	records	in	the	table	that	you	read	during	the	same	transaction

Rule	3 Do	not	aggregate	over	the	table	you	are	updating

Rule	4 Do	not	read	data	from	a	table	that	is	updated	during	the	same	transaction

Variables	passed	to	the	PL/pgSQL
TRIGGER	function
The	following	is	a	complete	list	of	the	variables	available	to	a	trigger	function	written	in
PL/pgSQL:

OLD,	NEW RECORD

This	records	the	before	and	after	images	of	the	row	on	which	the	trigger	is	called.	OLD	is
unassigned	for	INSERT	and	NEW	is	unassigned	for	DELETE.

Both	are	UNASSIGNED	in	statement-level	triggers.

TG_NAME name This	denotes	the	name	of	the	trigger	(this	and	following	from	the	trigger	definition).

TG_WHEN text BEFORE,	AFTER,	or	INSTEAD	OF	are	the	possible	values	of	the	variable.

TG_LEVEL text ROW	or	STATEMENT	are	the	possible	values	of	the	variable.

TG_OP text INSERT,	UPDATE,	DELETE,	or	TRUNCATE	are	the	possible	values	of	the	variable..

TG_RELID oid This	denotes	the	OID	of	the	table	on	which	the	trigger	is	created.

TG_TABLE_NAME name
This	denotes	the	name	of	the	table	(the	old	spelling	TG_RELNAME	is	deprecated	but	still
available).

TG_TABLE_SCHEMA name This	denotes	the	schema	name	of	the	table.

TG_NARGS,
TG_ARGV[]

Int,
text[]

This	denotes	the	number	of	arguments	and	the	array	of	the	arguments	from	the	trigger
definition.

TG_TAG text
This	is	used	in	DDL	or	event	triggers.	This	variable	contains	the	name	of	the	command	that
resulted	in	the	trigger	invocation.	More	information	on	this	in	the	next	chapter.

You	can	read	more	about	the	variables	at
http://www.postgresql.org/docs/current/static/plpgsql-trigger.html.

http://www.postgresql.org/docs/current/static/plpgsql-trigger.html

Summary
A	trigger	is	a	binding	of	a	set	of	actions	to	certain	operations	performed	on	a	table	or	view.
This	set	of	actions	is	defined	in	a	special	trigger	function	which	is	distinguished	by
specifying	the	type	of	the	returned	value	to	be	of	a	special	pseudotype	trigger.	So,	each
time	an	operation	(INSERT,	UPDATE,	DELETE,	or	TRUNCATE)	is	performed	on	the	table,	this
trigger	function	is	called	by	the	system.

It	can	be	executed	either	for	each	row	or	for	each	statement.	If	executed	for	each	row
(row-level	trigger),	the	function	is	passed	special	variables	such	as	OLD	and	NEW.

This	will	contain	the	row’s	contents,	as	it	is	currently	in	the	database	(OLD)	and	as	it	is	the
moment	the	trigger	function	is	called	(NEW).	Where	the	OLD	or	NEW	value	is	missing,	it	is
passed	as	undefined.	If	executed	once	per	statement	(the	statement-level	trigger),	both	OLD
and	NEW	are	unassigned	for	all	the	operations.

The	trigger	function	for	row-level	triggers	on	INSERT,	UPDATE,	and	DELETE	can	be	set	to
execute	either	BEFORE	or	AFTER	the	operation	on	a	table	and	can	be	set	to	execute	the
INSTEAD	OF	operation	on	view.

The	trigger	function	for	statement-level	triggers	on	INSERT,	UPDATE,	and	DELETE	can	be	set
to	execute	either	BEFORE	or	AFTER	the	operation	on	both	tables	and	views.

While	TRUNCATE	is	logically	a	special,	non-MVCC	form	of	a	“delete	all”	statement,	no	ON
DELETE	triggers	will	fire	in	the	case	of	TRUNCATE.	Instead,	you	can	use	a	special	ON
TRUNCATE	trigger	on	the	same	table.	Only	statement-level	on	TRUNCATE	triggers	are
possible.	While	you	cannot	skip	statement	triggers	by	returning	NULL,	you	can	raise	an
exception	and	abort	the	transaction.

It	is	also	not	possible	to	define	any	ON	TRUNCATE	triggers	on	views.

In	the	next	chapter,	we	will	take	a	look	at	the	new	PostgreSQL	event	trigger	feature.	Event
triggers	allow	you	to	execute	triggers	when	a	Data	Definition	Language	(DDL)
statement	is	executed	on	a	table.

Chapter	6.	PostgreSQL	Event	Triggers
PostgreSQL	9.3	introduced	a	special	type	of	triggers	to	complement	the	trigger
mechanism	we	discussed	in	the	preceding	chapter.	These	triggers,	are	database-specific
and	are	not	attached	to	a	specific	table.	Unlike	regular	triggers,	event	triggers	capture	DDL
events.	Event	triggers	can	be	the	BEFORE	and	AFTER	triggers,	and	the	trigger	function	can
be	written	in	any	language	except	SQL.	Other	popular	database	vendors	such	as	Oracle
and	SQL	Server	also	provide	a	similar	functionality.

One	can	think	of	several	use	cases	for	DDL	triggers.	The	most	popular	one	among	the
DBAs	normally	is	to	do	an	audit	trail.	You,	as	a	DBA,	might	want	to	audit	the	users	and
the	DDL	commands.	Schema	changes,	in	a	production	environment,	should	be	done	very
carefully;	hence,	the	need	for	an	audit	trail	is	apparent.	Event	triggers	are	disabled	in	the
single	user	mode	and	can	only	be	created	by	a	superuser.

In	this	chapter,	we	will	cover	the	following	topics:

Use	cases	for	event	triggers
A	full	audit	trail	example	using	PL/pgsql
Preventing	schema	changes	using	event	triggers

Use	cases	for	creating	event	triggers
In	addition	to	an	audit	trail,	the	following	can	be	valid	use	cases	for	an	event	trigger:

Replicating	DDL	changes	to	a	remote	location
Cascading	a	DDL
Preventing	changes	to	tables,	except	during	a	predefined	window
Providing	limited	DDL	capability	to	developers	/	support	staff	using	security	definer
functions
Disabling	certain	DDL	commands	based	on	a	criteria
Performance	analysis	to	see	how	long	a	command	takes	between	ddl_command_start
and	ddl_command_end

Note	that	the	event	trigger	support	for	PL/pgsql	is	not	yet	complete	in	9.3.	There	are
several	features	that	are	being	worked	upon	and	will	be	available	in	future	PostgreSQL
versions,	hopefully.	These	are	a	few	of	the	most	notable	features	that	are	missing	so	far:

There’s	no	information	about	the	object	that	a	DDL	targets
There’s	no	access	to	the	command	string
There’s	no	support	for	the	generated	commands

A	command	such	as	CREATE	TABLE	foo	(id	serial	PRIMARY	KEY)	will	also	result	in	the
CREATE	SEQUENCE	and	CREATE	INDEX	commands	to	be	executed	internally.	However,	the
current	DDL	triggers	will	not	be	able	to	log	these	generated	commands.

Creating	event	triggers
Event	triggers	are	created	using	the	CREATE	EVENT	TRIGGER	command.	Before	you	can
create	an	event	trigger,	you	need	a	function	that	the	trigger	will	execute.	This	function
must	return	a	special	type	called	EVENT_TRIGGER.	If	you	happen	to	define	multiple	event
triggers,	they	are	executed	in	the	alphabetical	order	of	their	names.

Currently,	event	triggers	are	supported	on	three	events,	as	follows:

ddl_command_start:	This	event	occurs	just	before	a	CREATE,	ALTER,	or	DROP	DDL
command	is	executed
ddl_command_end:	This	event	occurs	just	after	a	CREATE,	ALTER,	or	DROP	command
has	finished	executing
sql_drop:	This	event	occurs	just	before	the	ddl_command_end	event	for	the
commands	that	drop	database	objects

You	can	specify	a	WHEN	clause	with	the	CREATE	EVENT	TRIGGER	command,	so	that	the
event	is	fired	only	for	the	specified	commands.

The	event	trigger	PL/pgSQL	functions	have	access	to	the	following	new	variables
introduced	in	9.3:

TG_TAG:	This	variable	contains	the	“tag”	or	the	command	for	which	the	trigger	is
executed.	This	variable	does	not	contain	the	full	command	string,	but	just	a	tag	such
as	CREATE	TABLE,	DROP	TABLE,	ALTER	TABLE,	and	so	on.
TG_EVENT:	This	variable	contains	the	event	name,	which	can	be	ddl_command_start,
ddl_comman_end,	and	sql_drop.

Note
A	complete	matrix	of	the	event	trigger	firing	mechanism	can	be	found	in	the	PostgreSQL
documentation	at	http://www.postgresql.org/docs/current/static/event-trigger-matrix.html.

http://www.postgresql.org/docs/current/static/event-trigger-matrix.html

Creating	an	audit	trail
Let’s	now	take	a	look	at	the	complete	example	of	an	event	trigger	that	creates	an	audit	trail
of	some	DDL	commands	in	the	database:

CREATE	TABLE	track_ddl

(

		event	text,	

		command	text,	

		ddl_time	timestamptz,	

		usr	text

);

CREATE	OR	REPLACE	FUNCTION	track_ddl_function()

RETURNS	event_trigger

AS

$$

BEGIN

		INSERT	INTO	track_ddl	values(tg_tag,	tg_event,	now(),	session_user);

		RAISE	NOTICE	'DDL	logged';

END

$$	LANGUAGE	plpgsql	SECURITY	DEFINER;

CREATE	EVENT	TRIGGER	track_ddl_event	ON	ddl_command_start

WHEN	TAG	IN	('CREATE	TABLE',	'DROP	TABLE',	'ALTER	TABLE')

EXECUTE	PROCEDURE	track_ddl_function();

CREATE	TABLE	event_check(i	int);

SELECT	*	FROM	track_ddl;

-[RECORD	1]------------------------

event				|	CREATE	TABLE

command		|	ddl_command_start

ddl_time	|	2014-04-13	16:58:40.331385

usr						|	testusr

The	example	is	actually	quite	simple.	Here’s	what	we	have	done	in	the	example:

1.	 First,	we	created	a	table	where	we	store	the	audit	log.	The	table	is	quite	simple	at	the
moment,	due	to	a	limited	amount	of	information	that	is	currently	available	to	a
PL/pgSQL	function.	We	store	the	tag,	the	event,	the	timestamp	when	this	trigger	is
executed,	and	the	user	who	executed	the	command.

2.	 We	then	create	a	function	that	is	executed	by	the	trigger	whenever	it	is	fired.	The
function	is	simple	enough	for	now.	It	must	return	the	type	EVENT_TRIGGER.	It	logs	the
DDL	information	in	the	audit	trail	table.	The	function	created	is	SECURITY	DEFINER.
The	reason	why	this	is	done	is	because	other	users	in	the	database	don’t	have	any
privileges	on	the	audit	trail	table	and	we	don’t	actually	want	them	to	know	it	is	there.
This	function	is	executed	as	the	definer	(which	is	a	superuser),	and	the	use	of
session_user	ensures	that	we	log	the	user	who	logged	in	to	the	database,	and	not	the
one	whose	privileges	are	used	to	execute	the	function.

3.	 We	then	create	an	event	trigger	that	only	executes	when	certain	commands	such	as

CREATE,	DROP,	or	ALTER	TABLE	are	executed	by	a	user.

We	then	create	an	example	table	and	note	that	the	command	is	indeed	logged	in	the	audit
trail	table.

Preventing	schema	changes
Another	common	use	case	for	event	triggers	is	to	prevent	the	execution	of	certain
commands	based	on	a	specific	condition.	If	you	only	want	to	stop	users	from	executing
some	commands,	you	can	always	revoke	the	privileges	using	more	conventional	means.
The	triggers	may	come	in	handy	if	you	want	to	do	this	based	on	a	certain	condition,	let’s
say,	time	of	the	day:

CREATE	OR	REPLACE	FUNCTION	abort_create_table_func()

RETURNS	event_trigger

AS	

$$

DECLARE

				current_hour	int	:=	extract(hour	from	now());

BEGIN

				if	current_hour	BETWEEN	9	AND	16

				then

						RAISE	EXCEPTION	'Not	a	suitable	time	to	create	tables';

				end	if;

END;

$$	LANGUAGE	plpgsql	SECURITY	DEFINER;

CREATE	EVENT	TRIGGER	abort_create_table	ON	ddl_command_start

WHEN	TAG	IN	('CREATE	TABLE')

EXECUTE	PROCEDURE	abort_create_table_func();

The	preceding	code	is,	again,	quite	simple:

1.	 First,	we	create	a	trigger	function	that	prevents	a	change	if	the	current	hour	of	the	day
is	between	9	to	16.

2.	 We	create	a	trigger	that	executes	this	function	only	when	a	CREATE	TABLE	command
is	executed.

You	can	extend	this	example	to	include	more	complex	conditions	and	also	base	the
decision	on	the	current	state	of	the	database.	This	kind	of	flexibility	is	not	available	when
you	use	simple	privilege	management	based	on	GRANT	and	REVOKE.

A	roadmap	of	event	triggers
As	you	can	see,	the	current	implementation	of	event	triggers	in	PL/pgsql	and	PostgreSQL
9.4	is	rather	limited.	However,	there	are	more	changes	and	features	planned	for	the
upcoming	releases	that	will	expand	the	scope,	in	which	event	triggers	will	become	more
useful.	Here	are	the	highlights	of	what	we	can	look	forward	to	in	the	future:

Access	to	more	information:	More	TG_*	variables	are	going	to	be	available,	in	order
to	provide	more	information	about	the	command	that	is	running	and	on	which	object
it	is	running.	We	can	look	forward	to	the	following	variables	in	future	PostgreSQL
versions:

TG_OBJECTID

TG_OBJECTNAME

TG_SCHEMANAME

TG_OPERATION

TG_OBTYPENAME

TG_CONTEXT

Accessors:	These	are	just	functions	which	give	you	some	information.	In	this	case
the	pg_get_event_command_string	function	will	give	the	full	command	string	of	the
DDL	command	that	caused	the	event	trigger	to	fire.

pg_get_event_command_string()

Support	of	DROP	CASCADE:	Here,	event	triggers	will	be	fired	for	each	object
effected	in	a	DROP	CASCADE	call.
INSTEAD	OF:	The	idea	here,	is	for	an	event	trigger	to	take	control	of	a	command,
analogous	to	the	INSTEAD	OF	DML	triggers.
CREATE	TABLE	on	INSERT:	The	idea	here,	is	to	just	create	a	new	table	whenever
we	receive	an	insert	for	the	first	time	and	the	table	doesn’t	exist.

Note
If	you	want	to	learn	more	about	the	features	in	progress	and	the	patches,	which	are	being
discussed	related	to	event	trigger	support	in	PostgreSQL,	please	follow	the	wiki	page	at
https://wiki.postgresql.org/wiki/Event_Triggers.

https://wiki.postgresql.org/wiki/Event_Triggers

Summary
Event	triggers	are	new	in	PostgreSQL	9.3,	and	the	community	is	still	working	on	various
features	in	order	to	make	them	more	useful.	You	can	use	these	triggers	for	various
purposes,	including	auditing	DDL	commands	and	making	local	customized	policies
regarding	the	execution	of	DDL	commands	in	the	database.	Event	triggers	are	disabled	in
single	user	mode.

Event	triggers	are	created	using	the	CREATE	EVENT	TRIGGER	command,	and	they	execute	a
function	that	returns	a	special	type	called	EVENT_TRIGGER.	There	are	three	types	of	events
that	are	currently	supported:	ddl_command_start,	ddl_command_end,	and	sql_drop.	You
can	limit	a	trigger	execution	by	a	tag	using	a	WHEN	clause,	if	you	want	to	fire	it	for	specific
commands	only.

Currently,	there	are	two	new	variables	available	in	the	event	trigger	function	called	TG_TAG
and	TG_EVENT	that	provide	information	about	the	tag	and	the	event	of	the	trigger.	Future
releases	of	PostgreSQL	will	expose	more	variables	that	make	it	possible	to	audit	complete
information	about	firing	DDL,	including	objects	and	the	command	string.

In	the	next	chapter,	we	will	discuss	the	differences	between	restricted	and	unrestricted
languages	and	we	will	take	a	look	at	the	practical	examples	of	both.

Chapter	7.	Debugging	PL/pgSQL
This	chapter	is	entirely	optional.	Since	you	have	only	produced	the	highest	quality	bug-
free	code	using	the	best	possible	algorithms,	this	text	is	probably	a	waste	of	your	time.	Of
course,	your	functions	parse	perfectly	on	the	first	try.	Your	views	show	exactly	what	they
should—according	to	the	enviously	complete	business	and	technical	documentation	that
you	wrote	last	month.	There	is	no	need	for	version	control	on	your	procedures,	as	there
has	only	ever	been	a	Version	1.

Since	you	are	still	reading	this,	I’m	sure	that	you’re	a	whole	lot	more	like	me.	I	spend
about	10	percent	of	my	time	writing	new	code	and	about	90	percent	of	it	editing	the
mistakes	and	oversights	that	I	(and	others)	made	in	the	first	10	percent.	In	fact,	it	can	be
argued	that	no	new	code	is	ever	written	at	all.	Actually,	a	more	accurate	description	of	the
process	is	that	a	dumb	assertion	is	made	and	then	it	is	edited	until	the	customer	can	no
longer	stand	the	Quality	Assurance	(QA)	process.	We	then	ship	the	result	in	the	hopes	of
being	useful	to	the	end	user.	Was	that	too	much	of	reality	for	you?	Sorry.

The	objective	of	this	chapter	is	to	make	you	faster	at	making	mistakes.	As	a	by-product,
you	will	also	learn	how	to	diagnose	and	fix	them	at	an	alarming	rate.	The	net	effect	of	this,
we	are	hoping,	is	that	your	boss	will	assume	you	wrote	it	correctly	the	first	time.	This	is,
of	course,	a	lie	but	a	very	useful	one.

This	concept	is	critical	to	agile	software	development.	In	this	philosophy,	it	is	called
“prototyping.”	The	idea	is	to	create	a	feature	quickly	and	demonstrate	it	as	a	conversation
point,	rather	than	trying	to	produce	an	entire	system	(presumably	perfectly)	from
conceptual	documentation.	Other	authors	refer	to	it	as	“failing	quickly.”	It	recognizes	the
fact	that	the	first	three	or	four	development	iterations	will	probably	not	be	acceptable	to
the	customer	and	shouldn’t	be	advertised	as	final	until	some	discussion	has	taken	place.

This	process	effectively	requires	the	developer	to	“live”	in	the	debugger.	The	developer
continually	changes	the	outputs	and	routines	until	the	desired	effect	is	achieved.
PostgreSQL	has	a	wonderful	set	of	debugging	tools	available	to	help	you	fix	your	mess.
Let	me	show	you	how	they	work.

Manual	debugging	with	RAISE	NOTICE
Here’s	the	first	promised	example:

CREATE	OR	REPLACE	FUNCTION	format_us_full_name_debug(

		prefix	text,	

				firstname	text,	

				mi	text,	

				lastname	text,	

				suffix	text)

		RETURNS	text	AS

$BODY$

DECLARE

		fname_mi	text;

		fmi_lname	text;

		prefix_fmil	text;

		pfmil_suffix	text;

BEGIN				

		fname_mi	:=	CONCAT_WS('	',	CASE	trim(firstname)	WHEN	''	THEN	NULL	ELSE	

firstname	END,	CASE	trim(mi)	WHEN	''	THEN	NULL	ELSE	mi	END	||	'.');

		RAISE	NOTICE	'firstname	mi.:	%',	fname_mi;

		fmi_lname	:=	CONCAT_WS('	',	CASE	fname_mi	WHEN	''	THEN	NULL	ELSE	fname_mi	

END,CASE	trim(lastname)	WHEN	''	THEN	NULL	ELSE	lastname	END);

		RAISE	NOTICE	'firstname	mi.	lastname:	%',	fmi_lname;

		prefix_fmil	:=	CONCAT_WS('.	',	CASE	trim(prefix)	WHEN	''	THEN	NULL	ELSE	

prefix	END,	CASE	fmi_lname	WHEN	''	THEN	NULL	ELSE	fmi_lname	END);

		RAISE	NOTICE	'prefix.	firstname	mi	lastname:	%',	prefix_fmil;

		pfmil_suffix	:=	CONCAT_WS(',	',	CASE	prefix_fmil	WHEN	''	THEN	NULL	ELSE	

prefix_fmil	END,	CASE	trim(suffix)	WHEN	''	THEN	NULL	ELSE	suffix	||	'.'	

END);

		RAISE	NOTICE	'prefix.	firstname	mi	lastname,	suffix.:	%',	pfmil_suffix;

		RETURN	pfmil_suffix;

END;

$BODY$

		LANGUAGE	plpgsql	VOLATILE;

In	this	example,	we	format	a	person’s	full	name	using	the	magic	of	the	NULL	propagation.

The	NULL	propagation	is	what	occurs	when	any	or	all	of	the	members	of	an	expression	are
null.	In	the	myvar	:=	null	||	'something'	expression,	myvar	will	evaluate	to	null.
PostgreSQL	9.1	introduced	a	handy	new	function	named	CONCAT_WS	(concatenate	with	a
separator)	to	take	advantage	of	this	effect.

Take	an	example	of	the	following	line	of	code:

lastfirst	:=	CONCAT_WS(',	',	lastname,	firstname);

The	preceding	code	will	not	print	the	comma	and	whitespace	between	lastname	and
firstname	if	either	firstname	or	lastname	is	not	present.	This	effect	is	used	in	the
format_us_address()	function	with	many	levels	of	nesting	in	order	to	provide	an	address
that	is	visually	appealing	as	well	as	postal-processing	friendly.

There	are	several	statements	in	the	code	example	that	show	you	how	to	use	RAISE	NOTICE

along	with	some	text	and	a	variable	to	provide	debugging	information	as	the	function	is
being	called.	For	example,	running	our	function	in	pgAdmin3	will	produce	some
notification	messages,	as	shown	here:

NOTICE:		firstname	mi.:	Kirk	L.

NOTICE:		firstname	mi.	lastname:	Kirk	L.	Roybal

NOTICE:		prefix.	firstname	mi	lastname:	Mr.	Kirk	L.	Roybal

NOTICE:		prefix.	firstname	mi	lastname,	suffix.:	Mr.	Kirk	L.	Roybal,	

Author.

You	can	see	these	messages	in	pgAdmin3	under	the	Messages	tab,	as	shown	in	the
following	screenshot:

The	output	of	the	same	query	in	the	command-line	psql	client	is	shown	in	the	following
code:

kroybal=#	SELECT	

format_us_full_name_debug('Mr','Kirk','L','Roybal','Author');

NOTICE:		firstname	mi.:	Kirk	L.

NOTICE:		firstname	mi.	lastname:	Kirk	L.	Roybal

NOTICE:		prefix.	firstname	mi	lastname:	Mr.	Kirk	L.	Roybal

NOTICE:		prefix.	firstname	mi	lastname,	suffix.:	Mr.	Kirk	L.	Roybal,	

Author.

		format_us_full_name_debug		

	Mr.	Kirk	L.	Roybal,	Author.

(1	row)

If	you	don’t	see	the	RAISE	NOTICE	messages	on	your	screen,	you	should	check
client_min_messages	in	your	session,	as	shown	in	the	following	code.	It	should	be
NOTICE	or	higher	to	see	the	messages:

kroybal=#	SHOW	client_min_messages;

	client_min_messages	

	notice

(1	row)

Throwing	exceptions
The	RAISE	command	takes	several	operators	except	NOTICE.	The	command	will	also	throw
exceptions	that	are	intended	for	the	calling	code	to	catch.	The	following	is	an	example	of
how	to	create	an	exception:

CREATE	OR	REPLACE	FUNCTION	validate_us_zip(zipcode	TEXT)	

		RETURNS	boolean	

AS	$$

DECLARE

		digits	text;

BEGIN

	—remove	anything	that	is	not	a	digit	(POSIX	compliantly,	please)

		digits	:=	(SELECT	regexp_replace	(zipcode,'[^[:digit:]]','','g'));

		IF	digits	=	''	THEN

				RAISE	EXCEPTION	'Zipcode	does	not	contain	any	digits	-->	%',	digits	

USING	HINT	=	'Is	this	a	US	zip	code?',	ERRCODE	=	'P9999';

		ELSIF	length(digits)	<	5	THEN

				RAISE	EXCEPTION	'Zipcode	does	not	contain	enough	digits	-->	%',	digits	

USING	HINT	=	'Zip	code	has	less	than	5	digits.',	ERRCODE	=	'P9998';

		ELSIF	length(digits)	>	9	THEN

				RAISE	EXCEPTION	'Unnecessary	digits	in	zip	code	-->	%'	,	digits	USING	

HINT	=	'Zip	code	is	more	than	9	digits	.',	ERRCODE	=	'P9997';

		ELSIF	length(digits)	>	5	AND	length(digits)	<	9	THEN

				RAISE	EXCEPTION	'Zip	code	cannot	be	processed	-->	%',	digits	USING	HINT	

=	'Zip	code	abnormal	length	.',	ERRCODE	=	'P9996';

		ELSE

				RETURN	true;

		END	IF;

END;

$$	LANGUAGE	plpgsql;

The	developer	defines	the	ERRCODE	values.	In	this	example,	I	used	the	general	PL/pgSQL
error	code	value	(P0001	or	plpgsql_error),	started	at	the	top	of	the	range	(P9999)	of
errors,	and	decremented	for	each	type	of	error	that	I	wished	to	expose.	This	is	a	very
simplistic	technique	designed	to	prevent	overlap	in	the	future	from	error	codes	used	by
PL/pgSQL.	You	are	free	to	invent	any	error	codes	you	want,	but	you	would	be	well
advised	to	avoid	those	already	listed	in	the	documentation	at
http://www.postgresql.org/docs/current/static/errcodes-appendix.html.

The	following	code	is	used	to	capture	any	errors	thrown	in	the	previous	example:

CREATE	OR	REPLACE	FUNCTION	get_us_zip_validation_status(zipcode	text)	

returns	text

AS

$$

BEGIN

		SELECT	validate_us_zip(zipcode);

		RETURN	'Passed	Validation';

EXCEPTION

		WHEN	SQLSTATE	'P9999'	THEN	RETURN	'Non-US	Zip	Code';

		WHEN	SQLSTATE	'P9998'	THEN	RETURN	'Not	enough	digits.';

		WHEN	SQLSTATE	'P9997'	THEN	RETURN	'Too	many	digits.';

http://www.postgresql.org/docs/current/static/errcodes-appendix.html

		WHEN	SQLSTATE	'P9996'	THEN	RETURN	'Between	6	and	8	digits.';

		RAISE;	—Some	other	SQL	error.				

END;

$$

LANGUAGE	'plpgsql';

This	code	can	be	called	as	follows:

SELECT	get_us_zip_validation_status('34955');

	get_us_zip_validation_status	

	Passed	Validation

(1	row)

root=#	SELECT	get_us_zip_validation_status('349587');

	get_us_zip_validation_status	

	Between	6	and	8	digits.

(1	row)

root=#	SELECT	get_us_zip_validation_status('3495878977');

	get_us_zip_validation_status	

	Too	many	digits.

(1	row)

root=#	SELECT	get_us_zip_validation_status('BNHCGR');

	get_us_zip_validation_status	

	Non-US	Zip	Code

(1	row)

root=#	SELECT	get_us_zip_validation_status('3467');

	get_us_zip_validation_status	

	Not	enough	digits.

(1	row)

Logging	to	a	file
The	RAISE	statement	expression	can	be	sent	to	a	log	file	using	log_min_messages.	This
parameter	is	set	in	postgresql.conf.	The	valid	values	are	debug5,	debug4,	debug3,
debug2,	debug1,	info,	notice,	warning,	error,	log,	fatal,	and	panic.

The	default	logging	level	is	dependent	on	the	packaging	system.	On	Ubuntu,	the	default
logging	level	is	info.	The	logging	levels	correspond	to	the	same	expressions	for	the	RAISE
statement.	As	a	developer,	you	can	raise	any	of	the	messages	that	are	available	and	have
them	recorded	in	the	log	file	for	analysis	later.

The	simplest	way	to	post	a	message	to	the	PostgreSQL	daemon	log	file	is	using	RAISE
LOG:

RAISE	LOG	'Why	am	I	doing	this?';

This	log	file	is	usually	located	in	the	<data_directory>/pg_log	folder.

The	advantages	of	RAISE	NOTICE
Using	the	RAISE	NOTICE	form	of	debugging	has	several	advantages.	It	can	be	used	easily
and	repeatedly	with	scripts	for	regression	testing.	This	is	very	easily	accomplished	with
the	command-line	client.	Consider	the	following	statement:

psql	-qtc	"SELECT	format_us_full_name_debug	

('Mr','Kirk','L.','Roybal','Author');"

The	preceding	statement	produces	the	following	output	to	stdout:

NOTICE:		firstname	mi.:	Kirk	L..

NOTICE:		firstname	mi.	lastname:	Kirk	L..	Roybal

NOTICE:		prefix.	firstname	mi	lastname:	Mr.	Kirk	L..	Roybal

NOTICE:		prefix.	firstname	mi	lastname,	suffix.:	Mr.	Kirk	L..	Roybal,	

Author.

	Mr.	Kirk	L..	Roybal,	Author.

Because	a	constant	set	of	input	parameters	should	always	produce	a	known	output,	it	is
very	easy	to	use	command-line	tools	in	order	to	test	for	expected	outputs.	When	you	are
ready	to	deploy	your	newly	modified	code	to	the	production	system,	run	your	command-
line	tests	to	verify	that	all	of	your	functions	still	work	as	expected.

RAISE	NOTICE	is	included	with	the	product	and	requires	no	installation.	Its	advantage	will
become	clearer	later	in	the	chapter	where	the	rather	painful	installation	procedure	for	the
PL/pgSQL	debugger	is	explained.

The	RAISE	statement	is	easy	to	understand.	The	syntax	is	straightforward,	and	it	is	well
documented	at	http://www.postgresql.org/docs/current/static/plpgsql-errors-and-
messages.html.

RAISE	works	in	any	development	environment	and	has	been	around	for	a	very	long	time,
in	almost	every	version	of	PostgreSQL	on	every	operating	system.	I	have	used	it	with
pgAdmin3,	phpPgAdmin,	as	well	as	the	command-line	tool	psql.

http://www.postgresql.org/docs/current/static/plpgsql-errors-and-messages.html

These	attributes,	taken	together,	make	RAISE	a	very	attractive	tool	for	small-scale
debugging.

The	disadvantages	of	RAISE	NOTICE
Unfortunately,	there	are	some	disadvantages	to	using	this	method	of	debugging.	The
primary	disadvantage	is	that	you	need	to	remove	the	RAISE	statements	when	they	are	no
longer	necessary.	The	messages	tend	to	clutter	up	the	psql	command-line	client	and	are
generally	annoying	to	other	developers.	The	log	may	fill	up	quickly	with	useless	messages
from	previous	debugging	sessions.	The	RAISE	statements	need	to	be	written,	commented
out,	and	restored	when	needed.	They	may	not	cover	the	actual	bug	being	sought.	They
also	slow	down	the	execution	of	the	routine.

You	will	also	find	Chapter	13,	Publishing	Your	Code	as	PostgreSQL,	quite	informative.
This	chapter	includes	some	examples	(and	an	extremely	handy	way	to	install	them)	that
will	be	useful	here	in	this	part	of	the	book.	The	examples	will	be	shown	in	the	text	of	this
chapter	as	well,	but	they	will	be	quite	a	bit	easier	for	you	to	install	as	an	extension.

Visual	debugging
The	PL/pgSQL	debugger	is	a	project	hosted	on	PostgreSQL	Git	that	provides	a	debugging
interface	into	PostgreSQL	Version	8.2	or	higher.	The	project	is	hosted	at
http://git.postgresql.org/gitweb/?p=pldebugger.git;a=summary.

The	PL/pgSQL	debugger	lets	you	step	through	the	PL/pgSQL	code,	set	and	clear
breakpoints,	view	and	modify	variables,	and	walk	through	the	call	stack.

As	you	can	see	from	the	description,	the	PL/pgSQL	debugger	can	be	quite	a	handy	little
tool	to	have	in	your	arsenal.

http://git.postgresql.org/gitweb/?p=pldebugger.git;a=summary

Installing	the	debugger
OK,	now	we	will	move	past	the	glamour	and	actually	get	the	debugger	running	on	our
system.	If	you	install	PostgreSQL	with	one	of	the	packages	that	contains	the	debugger,	the
installation	is	pretty	simple.	Otherwise,	you	will	need	to	build	it	from	the	source.

A	detailed	discussion	of	how	to	install	the	PL/pgSQL	debugger	from	the	source	is	beyond
the	scope	of	this	book,	but	I	will	just	list	the	set	of	steps	to	install	the	debugger	quickly.
The	best	way	to	build	the	source	will	be	to	pull	the	latest	version	from	the	Git	repository
and	follow	the	README	file	in	the	directory.	If	you	want	to	get	started	with	it	quickly	and
you	have	a	Windows	machine	available,	the	simplest	way	to	use	the	debugger	is	using	the
PostgreSQL	Windows	installer	from	http://www.postgresql.org/download/windows/.

http://www.postgresql.org/download/windows/

Installing	the	debugger	from	the	source
Here	is	a	set	of	simple	steps	that	should	get	you	up	and	running	if	you	want	to	install	from
the	source:

1.	 Clone	the	Git	repository	as	shown.	You	can	view	the	repository	at
http://git.postgresql.org/gitweb/?p=pldebugger.git;a=summary:

git	clone	http://git.postgresql.org/git/pldebugger.git

2.	 Copy	this	pldebugger/	directory	to	contrib/	in	your	PostgreSQL	source	tree.
3.	 Run	make	&&	make	install	in	the	pldebugger	folder.
4.	 Modify	the	shared_preload_libraries	configuration	option	in	postgresql.conf	as

follows:

shared_preload_libraries	=	'$libdir/plugin_debugger'

5.	 Restart	PostgreSQL.
6.	 Create	the	debugger	extension:

CREATE	EXTENSION	pldbgapi;

This	should	install	the	PL	debugger	and	you	should	be	able	to	use	it	with	pgAdmin3.

Tip
You	can	also	install	PostgreSQL	using	EnterpriseDB’s	one-click	installers	for	most
platforms,	which	also	includes	the	PL	debugger	at	http://www.enterprisedb.com/products-
services-training/pgdownload.

http://git.postgresql.org/gitweb/?p=pldebugger.git;a=summary
http://www.enterprisedb.com/products-services-training/pgdownload

Installing	pgAdmin3
The	PL/pgSQL	debugger	module	works	with	pgAdmin3.	You	don’t	need	to	perform
special	steps	with	the	installation	of	pgAdmin3	for	the	debugger	to	function.	Install	it	as
usual	from	your	package	manager	on	the	platform	that	you	are	using.	For	Ubuntu	10.04
LTS,	the	command	is	as	follows:

sudo	apt-get	install	pgadmin3

Using	the	debugger
When	the	debugger	is	available	for	a	particular	database,	it	can	be	seen	in	the	context
menu	when	you	right-click	on	a	PL/pgSQL	function.	We	have	already	created	some	of	the
debuggers	in	the	earlier	part	of	this	chapter.	Using	format_us_full_name	as	an	example,
right-click	on	it	and	navigate	to	Debugging	|	Debug:

As	a	result,	you	will	see	the	following	dialog:

Enter	some	values	into	the	columns,	as	seen	in	the	preceding	screenshot,	and	click	on	the
Debug	button.	You	will	be	deposited	into	the	debugger:

This	will	allow	you	to	step	through	the	code	and	see	the	values	of	any	variables	as	they	are
being	changed.	Click	on	the	step-into	button	a	few	times	to	see	how	the	values	are
modified	as	the	function	is	performed.

The	advantages	of	the	debugger
The	PL/pgSQL	debugger	does	not	require	any	resources	on	the	server	when	not	actually	in
use.	Because	it	is	invoked	manually	from	within	pgAdmin3,	it	is	not	resident	in	memory
until	it	is	actually	called	upon.	This	architecture	does	not	require	any	background
processes	or	additional	daemons	for	the	sake	of	debugging.

Also,	the	PL/pgSQL	debugger	does	not	require	any	special	“calling”	functions	to	be
written	in	order	to	invoke	the	debugging	process.	There	are	no	errors	to	trap	and	no	tables
of	error	codes	to	interpret.	Everything	necessary	to	the	debugging	process	is	available	in	a
simple	window.

If	you	connect	to	your	database	as	a	superuser,	you	also	have	the	ability	to	set	a	global
break	point.	This	break	point	can	be	set	on	any	function	or	trigger	and	it	will	stop	the	next
time	any	code	path	calls	the	function.	This	is	particularly	useful	if	you	want	to	debug	your
functions	or	triggers	in	the	context	of	your	entire	running	application.

The	greatest	advantage	of	the	PL/pgSQL	debugger	is	that	it	does	not	require	any	special
rigging	in	the	functions	that	are	being	debugged.

There	is	no	code	to	be	inserted	or	removed,	and	good	coding	practices	don’t	need	to	be
modified	with	respect	to	debugging.	There	is	no	possibility	to	“forget”	the	debugging	code
when	moving	to	production.	All	of	your	PL/pgSQL	functions	are	now	instantly	ready	to
debug	without	any	special	action.

The	disadvantages	of	the	debugger

As	you	have	become	painfully	aware,	the	installation	of	the	debugger	leaves	a	lot	to	be
desired.	This	debugger	has	not	become	very	popular	in	the	PostgreSQL	community	at
large	because	of	the	rather	large	learning	curve	involved,	and	that’s	just	to	get	it	installed.

This	form	of	debugging	is	meant	for	personal	productivity	while	actively	developing
functions.	It	does	not	work	well	as	an	automation	tool.

Summary
The	debugging	methods	that	we	have	seen	in	this	chapter	are	designed	to	be	used	in
conjunction	with	one	another.	They	complement	each	other	at	different	points	in	the
development	process.	Where	debugging	using	the	PL/pgSQL	debugger	is	highly	effective
while	editing	an	existing	(hopefully	well-written)	function,	other	forms	of	debugging	may
be	better	suited	to	the	quality	assurance	or	automated	data	processing	applications.

Because	the	PL/pgSQL	debugger	is	meant	to	be	a	visual	tool	to	work	within	pgAdmin3,	it
is	possible	that	the	developer	may	want	to	forego	the	visual	debugger	in	the	interest	of
some	other	feature.

In	the	next	chapter,	we	will	take	a	look	at	how	to	write	some	advanced	functions	in	C.

Chapter	8.	Using	Unrestricted	Languages
You	may	have	noticed,	that	some	of	the	PLs	in	PostgreSQL	can	be	declared	as	untrusted.
They	all	end	in	the	letter	u	to	remind	you	that	they	are	untrusted	each	time	you	use	them	to
create	a	function.	Unrestricted	languages	allow	you	to	do	things	that	restricted	or	trusted
languages	are	not	allowed	to	do;	for	example,	interacting	with	the	environment	and
creating	files	and	opening	sockets.	In	this	chapter,	we	will	look	at	some	examples	in	detail.

This	untrustedness	brings	up	many	questions:

Does	being	untrusted	mean	that	such	languages	are	somehow	inferior	to	trusted	ones?
Can	I	still	write	an	important	function	in	an	untrusted	language?
Will	they	silently	eat	my	data	and	corrupt	the	database?

The	answers	are	no,	yes,	and	maybe	respectively.	Let’s	now	discuss	these	questions	in
order.

Are	untrusted	languages	inferior	to
trusted	ones?
No,	on	the	contrary,	these	languages	are	untrusted	in	the	same	way	that	a	sharp	knife	is
untrusted	and	should	be	kept	out	of	the	reach	of	very	small	children,	unless	there	is	adult
supervision.	They	have	extra	powers	that	ordinary	SQL,	or	even	the	trusted	languages
(such	as	PL/pgSQL)	and	trusted	variants	of	the	same	language	(PL/Perl	versus	PL/PerlU)
don’t	have.

You	can	use	the	untrusted	languages	to	directly	read	and	write	on	the	server’s	disks,	and
you	can	use	it	to	open	sockets	and	make	Internet	queries	to	the	outside	world.	You	can
even	send	arbitrary	signals	to	any	process	running	on	the	database	host.	Generally,	you
can	do	anything	the	native	language	of	the	PL	can	do.

However,	you	probably	should	not	trust	arbitrary	database	users	to	have	the	right	to	define
functions	in	these	languages.	Always	think	twice	before	giving	all	privileges	on	an
untrusted	language	to	a	user	or	group,	by	using	the	*u	languages	for	important	functions.

Can	you	use	untrusted	languages	for
important	functions?
Absolutely!	Sometimes,	it	may	be	the	only	way	to	accomplish	some	tasks	from	inside	the
server.	Performing	simple	queries	and	computations	should	do	nothing	harmful	to	your
database,	and	neither	should	connecting	to	the	external	world	for	sending	e-mails,	fetching
web	pages,	or	performing	SOAP	requests.	However,	be	careful	about	performing
operations	that	may	cause	delays	and	even	queries	that	get	stuck,	but	these	can	usually	be
dealt	with	by	setting	an	upper	limit	as	to	how	long	a	query	can	run,	by	using	an
appropriate	statement	time-out	value.	Setting	a	reasonable	statement	time-out	value	by
default	is	a	good	practice	anyway.

So,	if	you	don’t	deliberately	do	risky	things,	the	probability	of	harming	the	database	is	no
bigger	than	using	a	“trusted”	(also	known	as	restricted)	variant	of	the	language.	However,
if	you	give	the	language	to	someone	who	starts	changing	bytes	on	the	production	database
“to	see	what	happens”,	you	will	get	what	you	asked	for.

Will	untrusted	languages	corrupt	the
database?
The	power	to	corrupt	the	database	is	definitely	there,	since	the	functions	run	as	the	system
user	of	the	database	server	with	full	access	to	the	filesystem.	So,	if	you	blindly	start
writing	into	the	data	files	and	deleting	important	logs,	it	is	possible	that	your	database	will
be	corrupted.

Additional	types	of	denial-of-service	attacks	are	also	possible,	such	as	using	up	all
memory	or	opening	all	IP	ports.	But,	there	are	ways	to	overload	the	database	using	plain
SQL	as	well,	so	that	part	is	not	much	different	from	the	trusted	database	access	with	the
ability	to	just	run	arbitrary	queries.

So	yes,	you	can	corrupt	the	database,	but	please	don’t	do	it	on	a	production	server.	If	you
do,	you	will	be	sorry.

Why	untrusted?
PostgreSQL’s	ability	to	use	an	untrusted	language	is	a	powerful	way	to	perform	some	non-
traditional	things	from	database	functions.	Creating	these	functions	in	a	PL	is	a	task	of
smaller	magnitude	than	writing	an	extension	function	in	C.	For	example,	a	function	to
look	up	a	hostname	for	an	IP	address	is	only	a	few	lines	in	PL/PythonU:

CREATE	LANGUAGE	plpythonu;

CREATE	FUNCTION	gethostbyname(hostname	text)	

		RETURNS	inet

AS	$$

		import	socket

		return	socket.gethostbyname(hostname)

$$	LANGUAGE	plpythonu	SECURITY	DEFINER;

You	can	test	it	immediately	after	creating	the	function	by	using	psql:

hannu=#	SELECT	gethostbyname('www.postgresql.org');

	gethostbyname		

	98.129.198.126

(1	row)

Creating	the	same	function	in	the	most	untrusted	language,	C,	involves	writing	tens	of
lines	of	boilerplate	code,	worrying	about	memory	leaks,	and	all	the	other	problems	coming
from	writing	code	in	a	low-level	language.	While	we	will	look	at	extending	PostgreSQL	in
C	in	the	next	chapter,	I	recommend	prototyping	in	a	PL	language	if	possible,	and	in	an
untrusted	language	if	the	function	needs	something	that	the	restricted	languages	do	not
offer.

Why	PL/Python?
All	of	these	tasks	could	be	done	equally	well	using	PL/PerlU	or	PL/TclU.	I	chose
PL/PythonU	mainly	because	Python	is	the	language	I	am	most	comfortable	with.	This	also
translates	to	having	written	some	PL/Python	code,	which	I	plan	to	discuss	and	share	with
you	in	this	chapter.

Quick	introduction	to	PL/Python
In	the	previous	chapters,	we	discussed	PL/pgSQL	which	is	one	of	the	standard	procedural
languages	distributed	with	PostgreSQL.	PL/pgSQL	is	a	language	unique	to	PostgreSQL
and	was	designed	to	add	blocks	of	computation	and	SQL	inside	the	database.	While	it	has
grown	in	its	breadth	of	functionality,	it	still	lacks	the	completeness	of	syntax	of	a	full
programming	language.	PL/Python	allows	your	database	functions	to	be	written	in	Python
with	all	the	depth	and	maturity	of	writing	a	Python	code	outside	the	database.

A	minimal	PL/Python	function
Let’s	start	from	the	very	beginning,	yet	again:

CREATE	FUNCTION	hello(name	text)

		RETURNS	text

AS	$$

				return	'hello	%s	!'	%		name

$$	LANGUAGE	plpythonu;

Here,	we	see	that	creating	a	function	starts	by	defining	it	as	any	other	PostgreSQL
function	with	a	RETURNS	definition	of	a	text	field:

CREATE	FUNCTION	hello(name	text)

		RETURNS	text

The	difference	from	what	we	have	seen	before,	is	that	the	language	part	is	specifying
plpythonu	(the	language	ID	for	the	PL/PythonU	language):

$$	LANGUAGE	plpythonu;

Inside	the	function	body,	it	is	very	much	a	normal	Python	function	returning	a	value
obtained	by	the	name	passed	as	an	argument	formatted	into	a	string	'hello	%s	!',	using
the	standard	Python	formatting	operator	%:

				return	'hello	%s	!'	%		name

Finally,	let’s	test	how	this	works:

hannu=#	SELECT	hello('world');

					hello					

	hello	world	!

(1	row)

And	yes,	it	returns	exactly	what	is	expected!

Data	type	conversions
The	first	and	last	things	happening	when	a	PL	function	is	called	by	PostgreSQL,	are
converting	argument	values	between	the	PostgreSQL	and	PL	types.	The	PostgreSQL	types
need	to	be	converted	to	the	PL	types	on	entering	the	function,	and	then	the	return	value
needs	to	be	converted	back	into	the	PostgreSQL	types.

Except	for	PL/pgSQL,	which	uses	PostgreSQL’s	own	native	types	in	computations,	the
PLs	are	based	on	existing	languages	with	their	own	understanding	of	what	types	(integer,
string,	date,	and	so	on)	are,	how	they	should	behave,	and	how	they	are	represented
internally.	They	are	mostly	similar	to	PostgreSQL’s	understanding	but	quite	often	are	not
exactly	the	same.	PL/Python	converts	data	from	PostgreSQL	types	to	Python	types,	as
shown	in	the	following	table:

PostgreSQL Python
2

Python
3 Comments

int2,	int4 int int 	

int8 long int 	

real,	double,	numeric float float This	may	lose	precision	for	numeric	values.

bytea str bytes
No	encoding	conversion	is	done,	nor	should	any	encoding
be	assumed.

text,	char(),	varchar(),	and	other
text	types

str str
On	Python	2,	the	string	will	be	in	server	encoding.

On	Python	3,	it	is	a	unicode	string.

All	other	types str str
PostgreSQL’s	type	output	function	is	used	to	convert	to	this
string.

Inside	the	function,	all	computation	is	done	using	Python	types	and	the	return	value	is
converted	back	to	PostgreSQL	using	the	following	rules	(these	rules	are	the	direct	quotes
from	official	PL/Python	documentation	at
http://www.postgresql.org/docs/current/static/plpython-data.html):

When	the	PostgreSQL	return	type	is	Boolean,	the	return	value	will	be	evaluated	for
truth,	according	to	the	Python	rules.	That	is,	0	and	empty	strings	are	false,	but
notably	f	is	true.
When	the	PostgreSQL	return	type	is	bytea,	the	return	value	will	be	converted	to	a
string	(Python	2)	or	bytes	(Python	3)	using	the	respective	Python	built-ins,	with	the
result	being	converted	bytea.
For	all	other	PostgreSQL	return	types,	the	returned	Python	value	is	converted	to	a
string	using	Python’s	built-in	str,	and	the	result	is	passed	to	the	input	function	of	the
PostgreSQL	data	type.

Strings	in	Python	2	are	required	to	be	in	the	PostgreSQL	server	encoding	when	they	are
passed	to	PostgreSQL.	Strings	that	are	not	valid	in	the	current	server	encoding	will	raise

http://www.postgresql.org/docs/current/static/plpython-data.html

an	error.	But	not	all	encoding	mismatches	can	be	detected,	so	garbage	data	can	still	result
when	this	is	not	done	correctly.	Unicode	strings	are	converted	to	the	correct	encoding
automatically,	so	it	can	be	safer	and	more	convenient	to	use	those.	In	Python	3,	all	strings
are	Unicode	strings.

In	other	words,	anything	but	0,	False,	and	an	empty	sequence,	including	empty	strings	'
',	or	a	dictionary	becomes	PostgreSQL	false.

One	notable	exception	to	this,	is	that	the	check	for	None	is	done	before	any	other
conversions.	Even	for	Booleans,	None	is	always	converted	to	NULL	and	not	to	the	Boolean
value	false.

For	the	bytea	type,	the	PostgreSQL	byte	array,	the	conversion	from	Python’s	string
representation,	is	an	exact	copy	with	no	encoding	or	other	conversions	applied.

Writing	simple	functions	in	PL/Python
Writing	functions	in	PL/Python	is	not	much	different	in	principle	from	writing	functions	in
PL/pgSQL.	You	still	have	the	exact	same	syntax	around	the	function	body	in	$$,	and	the
argument	name,	types,	and	returns	all	mean	the	same	thing,	regardless	of	the	exact
PL/language	used.

A	simple	function
So,	a	simple	add_one()	function	in	PL/Python	looks	like	this:

CREATE	FUNCTION	add_one(i	int)	

		RETURNS	int	AS	$$

return	i	+	1;

$$	LANGUAGE	plpythonu;

usm=#	SELECT	add_one(2);

	add_one	

				3

(1	row)

It	can’t	get	any	simpler	than	that,	can	it?

What	you	see	here	is	that	the	PL/Python	arguments	are	passed	to	the	Python	code	after
converting	them	to	appropriate	types,	and	the	result	is	passed	back	and	converted	to	the
appropriate	PostgreSQL	type	for	the	return	value.

Functions	returning	a	record
To	return	a	record	from	a	Python	function,	you	can	use:

A	sequence	or	list	of	values	in	the	same	order	as	the	fields	in	the	return	record
A	dictionary	with	keys	matching	the	fields	in	the	return	record
A	class	or	type	instance	with	attributes	matching	the	fields	in	the	return	record

Here	are	samples	of	the	three	ways	to	return	a	record:

First,	using	an	instance:

CREATE	OR	REPLACE	FUNCTION	userinfo(

																				INOUT	username	name,	

																				OUT	user_id	oid,	

																				OUT	is_superuser	boolean)

AS	$$

				class	PGUser:

								def	__init__(self,username,user_id,is_superuser):

												self.username	=	username

												self.user_id	=	user_id

												self.is_superuser	=	is_superuser

				u	=	plpy.execute("""\

												select	usename,usesysid,usesuper

														from	pg_user

													where	usename	=	'%s'"""	%	username)[0]

				user	=	PGUser(u['usename'],	u['usesysid'],	u['usesuper'])

				return	user

$$	LANGUAGE	plpythonu;

Then,	a	little	simpler	one	using	a	dictionary:

CREATE	OR	REPLACE	FUNCTION	userinfo(

																				INOUT	username	name,	

																				OUT	user_id	oid,	

																				OUT	is_superuser	boolean)

AS	$$

				u	=	plpy.execute("""\

												select	usename,usesysid,usesuper

														from	pg_user

													where	usename	=	'%s'"""	%	username)[0]

				return	{'username':u['usename'],	'user_id':u['usesysid'],	

'is_superuser':u['usesuper']}

$$	LANGUAGE	plpythonu;

Finally,	using	a	tuple:

CREATE	OR	REPLACE	FUNCTION	userinfo(

																		INOUT	username	name,	

																		OUT	user_id	oid,	

																		OUT	is_superuser	boolean)

AS	$$

				u	=	plpy.execute("""\

												select	usename,usesysid,usesuper

														from	pg_user

													where	usename	=	'%s'"""	%	username)[0]

				return	(u['usename'],	u['usesysid'],	u['usesuper'])

$$	LANGUAGE	plpythonu;

Notice	[0]	at	the	end	of	u	=	plpy.execute(...)[0]	in	all	the	examples.	It	is	there	to
extract	the	first	row	of	the	result,	as	even	for	one-row	results	plpy.execute	still	returns	a
list	of	results.

Tip
Danger	of	SQL	injection!

As	we	have	neither	executed	a	prepare()	method	and	executed	a	execute()	method	with
arguments	after	it,	nor	have	we	used	the	plpy.quote_literal()	method	(both	techniques
are	discussed	later)	to	safely	quote	the	username	before	merging	it	into	the	query,	we	are
open	to	a	security	flaw	known	as	SQL	injection.	So,	make	sure	that	you	only	let	trusted
users	call	this	function	or	supply	the	username	argument.

Calling	the	function	defined	via	any	of	these	three	CREATE	commands	will	look	exactly	the
same:

hannu=#	SELECT	*	FROM	userinfo('postgres');

	username	|	user_id	|	is_superuser

----------+---------+--------------

	postgres	|						10	|	t

(1	row)

It	usually	does	not	make	sense	to	declare	a	class	inside	a	function	just	to	return	a	record
value.	This	possibility	is	included	mostly	for	cases	where	you	already	have	a	suitable	class

with	a	set	of	attributes	matching	the	ones	the	function	returns.

Table	functions
When	returning	a	set	from	PL/Python	functions,	you	have	three	options:

Return	a	list	or	any	other	sequence	of	return	type
Return	an	iterator	or	generator
The	yield	keyword	in	python	just	returns	a	generator

Here,	we	have	three	ways	to	generate	all	even	numbers	up	to	the	argument	value	using
these	different	styles:

First,	returning	a	list	of	integers:

CREATE	FUNCTION	even_numbers_from_list(up_to	int)

		RETURNS	SETOF	int	

AS	$$

				return	range(0,up_to,2)

$$	LANGUAGE	plpythonu;

libro=#	SELECT	*	FROM	even_numbers_from_list(10);

	even_numbers_from_list	

										0

										2

										4

										6

										8

(5	rows)

The	list	here,	is	returned	by	a	built-in	Python	function	called	range,	which	returns	a	result
of	all	even	numbers	below	the	argument.	This	gets	returned	as	a	table	of	integers,	one
integer	per	row	from	the	PostgreSQL	function.	If	the	RETURNS	clause	of	the	function
definition	would	say	int[]	instead	of	SETOF	int,	the	same	function	would	return	a	single
number	of	even	integers	as	a	PostgreSQL	array.

The	next	function	returns	a	similar	result	using	a	generator	and	returning	both	the	even
number	and	the	odd	one	following	it.	Also,	notice	the	different	PostgreSQL	syntax
RETURNS	TABLE(...)	used	this	time	for	defining	the	return	set:

CREATE	FUNCTION	even_numbers_from_generator(up_to	int)

		RETURNS	TABLE	(even	int,	odd	int)	

AS	$$

				return	((i,i+1)	for	i	in	xrange(0,up_to,2))

$$	LANGUAGE	plpythonu;

libro=#	SELECT	*	FROM	even_numbers_from_generator(10);

	even	|	odd	

------+-----

				0	|			1

				2	|			3

				4	|			5

				6	|			7

				8	|			9

(5	rows)

The	generator	is	constructed	using	a	generator	expression	(x	for	x	in	<seq>).	Finally,
the	function	is	defined	using	a	generator	using	an	explicit	yield	syntax,	and	yet	another
PostgreSQL	syntax	is	used	for	returning	SETOF	RECORD	with	the	record	structure	defined
this	time	by	OUT	parameters:

CREATE	FUNCTION	even_numbers_with_yield(up_to	int,

																																					OUT	even	int,	

																																					OUT	odd	int)

		RETURNS	SETOF	RECORD	

AS	$$

				for	i	in	xrange(0,up_to,2):

								yield	i,	i+1

$$	LANGUAGE	plpythonu;

The	important	part	here,	is	that	you	can	use	any	of	the	preceding	ways	to	define	a
PL/Python	set	returning	function	and	they	all	work	the	same.	Also,	you	are	free	to	return	a
mixture	of	different	types	for	each	row	of	the	set:

CREATE	FUNCTION	birthdates(OUT	name	text,	OUT	birthdate	date)

		RETURNS	SETOF	RECORD	

AS	$$

				return	(

								{'name':	'bob',	'birthdate':	'1980-10-10'},

								{'name':	'mary',	'birthdate':	'1983-02-17'},

								['jill',	'2010-01-15'],

)

$$	LANGUAGE	plpythonu;

This	yields	the	result,	as	follows:

hannu=#	SELECT	*	FROM	birthdates();

	name	|	birthdate		

------+------------

	bob		|	1980-10-10

	mary	|	1983-02-17

	jill	|	2010-01-15

(3	rows)

As	you	can	see,	the	data	returning	a	part	of	PL/PythonU	is	much	more	flexible	than
returning	data	from	a	function	written	in	PL/pgSQL.

Running	queries	in	the	database
If	you	have	ever	accessed	a	database	in	Python,	you	know	that	most	database	adapters
conform	to	a	somewhat	loose	standard	called	Python	Database	API	Specification	v2.0	or
DB	API	2	for	short.	You	can	find	the	reference	online	at
http://legacy.python.org/dev/peps/pep-0249/

The	first	thing	you	need	to	know	about	database	access	in	PL/Python	is	that	in-database
queries	do	not	follow	this	API.

Running	simple	queries
Instead	of	using	the	standard	API,	there	are	just	three	functions	for	doing	all	database
access.	There	are	two	variants:	plpy.execute	for	running	a	query,	and	plpy.prepare()
for	turning	a	query	text	into	a	query	plan	or	a	prepared	query.

The	simplest	way	to	do	a	query	is	with:

res	=	plpy.execute(<query	text>,	[<row	count>])

This	takes	a	textual	query	and	an	optional	row	count,	and	returns	a	result	object,	which
emulates	a	list	of	dictionaries,	one	dictionary	per	row.

As	an	example,	if	you	want	to	access	a	field	'name'	of	the	third	row	of	the	result,	you	use:

res[2]['name']

The	index	is	2	and	not	3	because	Python	lists	are	indexed	starting	from	0,	so	the	first	row
is	res[0],	the	second	row	res[1],	and	so	on.

Using	prepared	queries
In	an	ideal	world,	this	would	be	all	that	is	needed,	but	plpy.execute(query,	cnt)	has
two	shortcomings:

It	does	not	support	parameters
The	plan	for	the	query	is	not	saved,	requiring	the	query	text	to	be	parsed	and	run
through	the	optimizer	at	each	invocation

We	will	show	a	way	to	properly	construct	a	query	string	later,	but	for	most	uses	simple
parameter	passing	is	enough.	So,	the	execute(query,	[maxrows])	call	becomes	a	set	of
two	statements:

plan	=	plpy.prepare(<query	text>,	<list	of	argument	types>)

res	=	plpy.execute(plan,	<list	of	values>,	[<row	count>])

For	example,	to	query	if	a	user	‘postgres’	is	a	superuser,	use	the	following:

plan	=	plpy.prepare("select	usesuper	from	pg_user	where		usename	=	$1",	

["text"])

res	=	plpy.execute(plan,	["postgres"])

print	res[0]["usesuper"]

The	first	statement	prepares	the	query,	which	parses	the	query	string	into	a	query	tree,

http://legacy.python.org/dev/peps/pep-0249/

optimizes	this	tree	to	produce	the	best	query	plan	available,	and	returns	the
prepared_query	object.	The	second	row	uses	the	prepared	plan	to	query	for	a	specific
user’s	superuser	status.

The	prepared	plan	can	be	used	multiple	times,	so	that	you	could	continue	to	see	if	user	bob
is	superuser.

res	=	plpy.execute(plan,	["bob"])

print	res[0]["usesuper"]

Caching	prepared	queries
Preparing	the	query	can	be	quite	an	expensive	step,	especially	for	more	complex	queries
where	the	optimizer	has	to	choose	from	a	rather	large	set	of	possible	plans.	So,	it	makes
sense	to	re-use	results	of	this	step,	if	possible.

The	current	implementation	of	PL/Python	does	not	automatically	cache	query	plans
(prepared	queries),	but	you	can	do	it	yourself	easily.

try:

				plan	=	SD['is_super_qplan']

except:

				SD['is_super_qplan']	=	plpy.prepare("....

				plan	=	SD['is_super_qplan']

<the	rest	of	the	function>

The	global	dictionary	SD	is	available	to	store	data	between	function	calls.	This	variable	is
private	static	data.	The	global	dictionary	GD	is	public	data,	available	to	all	Python
functions	within	a	session.	Use	with	care.	The	values	in	SD[]	and	GD[]	only	live	inside	a
single	database	session,	so	it	only	makes	sense	to	do	the	caching	in	case	you	have	long-
lived	connections.

Writing	trigger	functions	in	PL/Python
As	with	other	PLs,	PL/PythonU	can	be	used	to	write	trigger	functions.	The	declaration	of
a	trigger	function	is	different	from	an	ordinary	function	by	the	return	type	RETURNS
TRIGGER.	So,	a	simple	trigger	function	that	just	notifies	the	caller	that	it	is	indeed	called,
looks	like	this:

CREATE	OR	REPLACE	FUNCTION	notify_on_call()

		RETURNS	TRIGGER

AS	$$

plpy.notice('I	was	called!')

$$	LANGUAGE	plpythonu;

After	creating	this	function,	the	trigger	can	be	tested	on	a	table	using	a	trigger	function:

hannu=#	CREATE	TABLE	ttable(id	int);

CREATE	TABLE

hannu=#	CREATE	TRIGGER	ttable_notify	BEFORE	INSERT	ON	ttable	EXECUTE	

PROCEDURE	notify_on_call();

CREATE	TRIGGER

hannu=#	INSERT	INTO	ttable	VALUES(1);

NOTICE:		I	was	called!

CONTEXT:		PL/Python	function	"notify_on_call"

INSERT	0	1

Of	course,	the	preceding	trigger	function	is	quite	useless,	as	will	be	any	trigger	without
knowing	when	and	on	what	data	change,	the	trigger	was	called.	All	the	data	needed	by	a
trigger,	when	it	is	called,	is	passed	in	via	the	trigger	dictionary	called	TD.	In	TD,	you
have	the	following	values:

Key Value

TD["event"]

The	event	the	trigger	function	is	called	for;	one	of	the	following	strings	is	contained	as	the
event:

INSERT,	UPDATE,	DELETE,	or	TRUNCATE

TD["when"] One	of	BEFORE,	AFTER,	or	INSTEAD	OF

TD["level"] ROW	or	STATEMENT

TD["old"]

This	is	the	before-command	image	of	the	row.	For	low-level	UPDATE	and	DELETE	triggers,	this
contains	a	dictionary	for	the	values	of	the	triggering	row,	before	the	changes	have	been	made	by
the	command.	It	is	None	for	other	cases.

TD["new"]

This	is	the	after-command	image	of	the	row.	For	low-level	INSERT	and	UPDATE	triggers,	this
contains	a	dictionary	for	the	values	of	the	triggering	row,	after	the	changes	have	been	made	by
the	command.	It	is	None	for	other	cases.

If	you	are	in	a	BEFORE	or	INSTEAD	OF	trigger,	you	can	make	changes	to	this	dictionary	and	then
signal	PostgreSQL	to	use	the	changed	tuple	by	returning	the	string	MODIFY	from	the	trigger
function.

TD["name"] The	trigger	name	from	the	CREATE	TRIGGER	command.

TD["table_name"] The	name	of	the	table	on	which	the	trigger	occurred.

TD["table_schema"] The	schema	of	the	table	on	which	the	trigger	occurred.

TD["relid"] The	object	identifier	(OID)	of	the	table	on	which	the	trigger	occurred.

TD["args"]
If	the	CREATE	TRIGGER	command	included	arguments,	they	are	available	from	TD["args"][0]	to
TD["args"][n-1].

In	addition	to	doing	anything	you	can	do	in	ordinary	PL/Python	functions,	such	as
modifying	data	in	tables,	writing	to	files	and	sockets,	and	sending	e-mails,	you	can	also
affect	the	behavior	of	the	triggering	command.

If	TD["when"]	is	("BEFORE",	"INSTEAD	OF")	and	TD["level"]	==	"ROW",	you	can	return
SKIP	to	abort	the	event.	Returning	None	or	OK	indicates	that	the	row	is	unmodified	and	it	is
OK	to	continue.	Returning	None	is	also	the	default	behavior	for	Python	if	the	function	does
a	simple	return	or	runs	to	the	end	without	a	return	statement,	in	which	case,	you	don’t
need	to	do	anything.

In	case	you	have	modified	values	in	the	TD["new"]	and	you	want	PostgreSQL	to	continue
with	the	new	values,	you	can	return	MODIFY	to	indicate	to	PL/Python	that	you’ve	modified
the	new	row.	This	can	only	be	done	if	TD["event"]	is	INSERT	or	UPDATE,	otherwise	the
return	value	is	ignored.

Exploring	the	inputs	of	a	trigger
The	following	trigger	function	is	useful	when	developing	triggers,	so	that	you	can	easily
see	what	the	trigger	function	is	really	getting	when	called:

CREATE	OR	REPLACE	FUNCTION	explore_trigger()

		RETURNS	TRIGGER	

AS	$$

import	pprint

nice_data	=	pprint.pformat(

		(

				('TD["table_schema"]'	,	TD["table_schema"]),

				('TD["event"]'								,	TD["event"]),

				('TD["when"]'									,	TD["when"]),

				('TD["level"]'								,	TD["level"]),

				('TD["old"]'										,	TD["old"]),

				('TD["new"]'										,	TD["new"]),

				('TD["name"]'									,	TD["name"]),

				('TD["table_name"]'			,	TD["table_name"]),

				('TD["relid"]'								,	TD["relid"]),

				('TD["args"]'									,	TD["args"]),

)

)

plpy.notice('explore_trigger:\n'	+	nice_data)

$$	LANGUAGE	plpythonu;

This	function	formats	all	the	data	passed	to	the	trigger	in	TD	using	pprint.pformat,	and
then	sends	it	to	the	client	as	a	standard	Python	info	message	using	plpy.notice.	For
testing	this	out,	we	create	a	simple	table	and	then	put	an	AFTER	…	FOR	EACH	ROW	…	trigger

using	this	function	on	that	table:

CREATE	TABLE	test(

				id	serial	PRIMARY	KEY,

				data	text,

				ts	timestamp	DEFAULT	clock_timestamp()

);

CREATE	TRIGGER	test_explore_trigger

	AFTER	INSERT	OR	UPDATE	OR	DELETE	ON	test

			FOR	EACH	ROW

EXECUTE	PROCEDURE	explore_trigger('one',	2,	null);

Now,	we	can	explore	what	the	trigger	function	actually	gets:

hannu=#	INSERT	INTO	test(id,data)	VALUES(1,	'firstrowdata');

NOTICE:		explore_trigger:

(('TD["table_schema"]',	'public'),

	('TD["event"]',	'INSERT'),

	('TD["when"]',	'AFTER'),

	('TD["level"]',	'ROW'),

	('TD["old"]',	None),

	('TD["new"]',

		{'data':	'firstrowdata',	'id':	1,	'ts':	'2013-05-13	12:04:03.676314'}),

	('TD["name"]',	'test_explore_trigger'),

	('TD["table_name"]',	'test'),

	('TD["relid"]',	'35163'),

	('TD["args"]',	['one',	'2',	'null']))

CONTEXT:		PL/Python	function	"explore_trigger"

INSERT	0	1

Most	of	this	is	expected	and	corresponds	well	to	the	table	of	the	TD	dictionary	values	given
in	the	previous	table.	What	may	be	a	little	unexpected,	is	the	fact	that	the	arguments	given
in	the	CREATE	TRIGGER	statement	are	all	converted	to	strings,	even	the	NULL.	When
developing	your	own	triggers,	either	in	PL/Python	or	any	other	language,	it	may	be	useful
to	put	this	trigger	on	the	table	as	well,	to	check	that	the	inputs	to	the	trigger	are	as
expected.	For	example,	it	is	easy	to	see	that	if	you	omit	the	FOR	EACH	ROW	part,	the
TD['old']	and	TD['new']	will	both	be	empty,	as	the	trigger	definition	defaults	to	FOR
EACH	STATEMENT.

A	log	trigger
Now,	we	can	put	this	knowledge	to	work	and	write	a	trigger	that	logs	changes	to	the	table
to	either	a	file	or	to	a	special	log-collector	process	over	the	network.	Logging	to	a	file	is
the	simplest	way	to	permanently	log	the	changes	in	transactions	which	were	rolled	back.	If
these	were	logged	to	a	log	table,	the	ROLLBACK	command	would	also	remove	the	log
records.	This	may	be	a	crucial	audit	requirement	for	your	business.

Of	course,	this	also	has	a	downside.	You	will	be	logging	the	changes	that	may	not	be
permanent	due	to	the	transaction	being	rolled	back.	Unfortunately,	this	is	the	price	you
have	to	pay	for	not	losing	the	log	records.

CREATE	OR	REPLACE	FUNCTION	log_trigger()

RETURNS	TRIGGER	AS	$$

				args	=	tuple(TD["args"])

				if	not	SD.has_key(args):

								protocol	=	args[0]

								if	protocol	==	'udp':

												import	socket

												sock	=	socket.socket(socket.AF_INET,

																																		socket.SOCK_DGRAM)

												def	logfunc(msg,	addr=args[1],

																													port=int(args[2]),	sock=sock):

																sock.sendto(msg,	(addr,	port))

								elif	protocol	==	'file':

												f	=	open(args[1],	'a+')

												def	logfunc(msg,f=f):

																f.write(msg+'\n')

																f.flush()

								else:

												raise	ValueError,	'bad	logdest	in	CREATE	TRIGGER'

								SD[args]	=	logfunc

								SD['env_plan']	=	plpy.prepare("""

													select	clock_timestamp(),

																				txid_current(),

																				current_user,

																				current_database()""",	[])

				logfunc	=	SD[args]

				env_info_row	=	plpy.execute(SD['env_plan'])[0]

				import	json

				log_msg	=	json.dumps(

								{'txid'	:	env_info_row['txid_current'],

									'time'	:	env_info_row['clock_timestamp'],

									'user'	:	env_info_row['current_user'],

									'db'			:	env_info_row['current_database'],

									'table'	:	'%s.%s'	%	(TD['table_name'],

																														TD['table_schema']),

									'event'	:	TD['event'],

									'old'	:	TD['old'],

									'new'	:	TD['new'],

								}

)

				logfunc(log_msg)

$$	LANGUAGE	plpythonu;

First,	this	trigger	checks	if	it	already	has	a	logger	function	defined	and	cached	in	the
function’s	local	dictionary	SD[].	As	the	same	trigger	may	be	used	with	many	different	log
destinations,	the	log	function	is	stored	under	the	key	constructed	as	a	Python	tuple	from
the	trigger	function	arguments	in	the	CREATE	TRIGGER	statement.	We	cannot	use	the
TD["args"]	list	directly	as	a	key,	as	Python	dictionary	keys	have	to	be	immutable,	which	a
list	is	not,	but	a	tuple	is.

If	the	key	is	not	present,	meaning	this	is	the	first	call	to	this	particular	trigger,	we	have	to
create	an	appropriate	log	function	and	store	it.	To	do	this,	we	examine	the	first	argument
for	the	log	destination	type.

For	the	udp	log	type,	we	create	a	UDP	socket	for	writing.	Then,	we	define	a	function
passing	in	this	socket	and	also	the	other	two	trigger	arguments	as	default	arguments	for	the

function.	This	is	the	most	convenient	way	to	create	a	closure	and	to	bundle	a	function	with
some	data	values	in	Python.

For	the	file	type,	we	just	open	this	file	in	the	append	mode	(a+)	and	also	create	a	log
function.	The	log	function	writes	a	message	to	this	file	and	flushes	the	write,	so	the	data	is
written	to	the	file	immediately	and	not	some	time	later	when	the	write	buffer	fills	up	(this
is	not	preferable	for	performance	critical	systems).	The	log	function	created	in	either	of
these	cases	is	stored	in	SD[tuple(TD["args"])].

At	this	point,	we	also	prepare	and	save	a	query	plan	for	getting	other	data	we	want	to	log
and	save	this	in	SD['env_plan'].	Now	that	we	are	done	with	the	one-time	preparations,
we	can	proceed	with	the	actual	logging	part,	which	is	really	very	simple.

Next,	we	retrieve	the	logging	function	(logfunc	=	SD[args])	and	get	the	row	of	the	other
logged	data:

env_info_row	=	plpy.execute(SD['env_plan'])[0]

Finally,	we	convert	all	the	logged	data	into	one	JSON	object	(log_msg	=
json.dumps({...}))	and	then	use	the	logging	function	to	send	it	to	the	log,
logfunc(log_msg).

And	that’s	it.

Next,	let’s	test	it	out	to	see	how	it	works	by	adding	another	trigger	to	our	test	table	we
created	earlier:

CREATE	TRIGGER	test_audit_trigger

	AFTER	INSERT	OR	UPDATE	OR	DELETE	ON	test

			FOR	EACH	ROW

EXECUTE	PROCEDURE	log_trigger('file',	'/tmp/test.json.log');

Any	changes	to	the	table	done	via	INSERT,	UPDATE,	or	DELETE	are	logged	into
/tmp/test.json.log.	This	file	is	initially	owned	by	the	same	user	running	the	server,
usually	postgres.	So,	to	look	at	it	you	need	to	either	be	that	user	or	root	user,	or	you	have
to	change	the	permissions	on	the	file	created	to	allow	reading.

If	you	want	to	test	the	UDP	logging	part,	you	just	have	to	define	another	trigger	with
different	arguments:

CREATE	TRIGGER	test_audit_trigger_udp

			AFTER	INSERT	OR	UPDATE	OR	DELETE	ON	test

			FOR	EACH	ROW

			EXECUTE	PROCEDURE	log_trigger('udp',	'localhost',	9999);

Of	course,	you	need	something	to	listen	at	the	UDP	port	there.	A	minimalist	UDP	listener
is	provided	for	testing	in	the	log_udp_listener.py	file	under	chapter07/logtrigger/.
Just	run	it,	and	it	prints	any	UDP	packets	received	to	stdout.

Constructing	queries
PL/Python	does	a	good	job	of	managing	values	passed	to	prepared	query	plans,	but	a
standard	PostgreSQL	query	plan	can	take	an	argument	in	a	very	limited	number	of	places.
Sometimes,	you	may	want	to	construct	whole	queries,	not	just	pass	values	to	predefined
queries.	For	example,	you	can’t	have	an	argument	for	a	table	name,	or	a	field	name.

So,	how	would	you	proceed	if	you	want	to	construct	a	query	from	the	function’s
arguments	and	be	sure	that	everything	is	quoted	properly	and	no	SQL	injection	would	be
possible?	PL/Python	provides	three	functions	to	help	you	with	proper	quoting	of
identifiers	and	data,	just	for	this	purpose.

The	function	plpy.quote_ident(name	is	meant	for	quoting	identifiers,	that	is,	anything
that	names	a	database	object	or	its	attribute	like	a	table,	a	view,	a	field	name,	or	function
name.	It	surrounds	the	name	with	double	quotes	and	takes	care	of	properly	escaping
anything	inside	the	string	which	would	break	the	quoting:

hannu=#	DO	LANGUAGE	plpythonu	$$	plpy.notice(plpy.quote_ident(r'5"\"'))

$$;

NOTICE:		"5""	\"""

CONTEXT:		PL/Python	anonymous	code	block

DO

And	yes,	5"	\"	is	a	legal	table	or	field	name	in	PostgreSQL;	you	just	have	to	always	quote
it	if	you	use	it	in	any	statement.

Note
The	DO	syntax	creates	an	anonymous	block	inside	your	database	session.	It	is	a	very	handy
way	to	run	some	procedural	language	code	without	needing	to	create	a	function.

The	other	two	functions	are	for	quoting	literal	values.	The	function,
plpy.quote_literal(litvalue),	is	for	quoting	strings	and
plpy.quote_nullable(value_or_none)	is	for	quoting	a	value,	which	may	be	None.	Both
of	these	functions	quote	strings	in	a	similar	way,	by	enclosing	them	in	single	quotes	(str
becomes	'str')	and	doubling	any	single	quotes	or	backslashes:

hannu=#	DO	LANGUAGE	plpythonu	$$	plpy.notice(plpy.quote_literal(r"	\'	"))

$$;

NOTICE:		E'	\\''	'

CONTEXT:		PL/Python	anonymous	code	block

DO

The	only	difference	between	these	two,	is	that	plpy.quote_nullable()	can	also	take	a
value	None,	which	will	be	rendered	as	a	string	NULL	without	any	surrounding	quotes.	The
argument	to	both	of	these	has	to	be	a	string	or	a	unicode	string.	If	you	want	it	to	work	with
a	value	of	any	Python	type,	wrapping	the	value	in	str(value)	usually	works	well.

Handling	exceptions
With	any	bit	of	code,	you	need	to	make	sure	you	handle	when	errors	occur	and	your
PL/Python	functions	are	not	an	exception.

Before	Version	9.1	of	PostgreSQL,	any	error	in	an	SQL	query	caused	the	surrounding
transaction	to	be	rolled	back:

DO	LANGUAGE	plpythonu	$$

plpy.execute('insert	into	ttable	values(1)')

plpy.execute('fail!')

$$;

ERROR:		spiexceptions.SyntaxError:	syntax	error	at	or	near	"fail"

LINE	1:	fail!

								^

QUERY:		fail!

CONTEXT:		Traceback	(most	recent	call	last):

		PL/Python	anonymous	code	block,	line	3,	in	<module>

				plpy.execute('fail!')

PL/Python	anonymous	code	block

You	can	manually	use	the	SAVEPOINT	attributes	to	control	the	boundaries	of	the	rolled-
back	block,	at	least	as	far	back	as	Version	8.4	of	PostgreSQL.	This	will	reduce	the	amount
of	the	transaction	that	is	rolled	back:

CREATE	OR	REPLACE	FUNCTION	syntax_error_rollback_test()	

		RETURNS	void

AS	$$

plpy.execute('insert	into	ttable	values(1)')

try:

			plpy.execute('SAVEPOINT	foo;')

			plpy.execute('insert	into	ttable	values(2)')

			plpy.execute('fail!')

except:

			pass

plpy.execute('insert	into	ttable	values(3)')

$$	LANGUAGE	plpythonu;

hannu=#	SELECT	syntax_error_rollback_test();

	syntax_error_rollback_test

(1	row)

When	the	SAVEPOINT	foo;	command	is	executed	in	PL/Python,	an	SQL	error	will	not
cause	full	ROLLBACK;	but	an	equivalent	of	ROLLBACK	TO	SAVEPOINT	foo;,	so,	only	the
effects	of	commands	between	SAVEPOINT	and	the	error	are	rolled	back:

hannu=#	SELECT	*	FROM	ttable	;

	id	

		1

		3

(2	rows)

Starting	in	Version	9.1,	there	are	two	important	changes	in	how	PostgreSQL	exceptions
are	handled.	If	no	SAVEPOINT	or	subtransaction	is	used,	each	invocation	of
plpy.prepare()	and	plpy.execute()	is	run	in	its	own	subtransaction,	so	that	an	error
will	only	rollback	this	subtransaction	and	not	all	of	the	current	transaction.	Since	using	a
separate	subtransaction	for	each	database	interaction	involves	extra	costs,	and	you	may
want	to	control	the	subtransaction	boundaries	anyway,	a	new	Python	context	manager,
plpy.subtransaction()	,	is	provided.

For	an	explanation	of	Python’s	context	managers,	refer	to
http://docs.python.org/library/stdtypes.html#context-manager-types,	so	that	you	can	use
the	with	statement	in	Python	2.6,	or	newer,	to	wrap	a	group	of	database	interactions	in	one
subtransaction	in	a	more	Pythonic	way:

hannu=#	CREATE	TABLE	test_ex(i	int);

CREATE	TABLE

DO	LANGUAGE	plpythonu	$$

plpy.execute('insert	into	test_ex	values(1)')

try:

		with	plpy.subtransaction():

				plpy.execute('insert	into	test_ex	values(2)')

				plpy.execute('fail!')

		except	plpy.spiexceptions.SyntaxError:

				pass	#	silently	ignore,	avoid	doing	this	in	prod.	code

				plpy.execute('insert	into	test_ex	values(3)')

$$;

DO

hannu=#	SELECT	*	FROM	test_ex;

	i	

	1

	3

(2	rows)

http://docs.python.org/library/stdtypes.html#context-manager-types

Atomicity	in	Python
While	the	subtransactions	manage	data	changes	in	the	PostgreSQL	database,	the	variables
on	the	Python	side	of	the	fence	live	their	separate	lives.	Python	does	not	provide	even	a
single-statement	level	atomicity,	as	demonstrated	by	the	following:

>>>	a	=	1

>>>	a[1]	=	a	=	2

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

TypeError:	'int'	object	does	not	support	item	assignment

>>>	a

1

>>>	a	=	a[1]	=	2

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

TypeError:	'int'	object	does	not	support	item	assignment

>>>	a

2

As	you	can	see,	it	is	possible	that	even	a	single	multi-assignment	statement	can	be
executed	only	halfway	through.	This	means	that	you	have	to	be	prepared	to	fully	manage
your	Python	data	yourself.	The	function,	plpy.subtransaction(),	won’t	help	you	in	any
way	with	managing	Python	variables.

Debugging	PL/Python
First,	let’s	start	by	stating	that	there	is	no	debugger	support	when	running	functions	in
PL/Python;	so,	it	is	a	good	idea	to	develop	and	debug	a	PL/Python	function	as	a	pure
Python	function	as	much	as	possible	and	only	do	the	final	integration	in	PL/Python.	To
help	with	this,	you	can	have	a	similar	environment	in	your	Python	development
environment	using	the	plpy	module.

Just	put	the	module	in	your	path	and	do	import	plpy	before	you	try	running	your
prospective	PL/PythonU	functions	in	an	ordinary	interpreter.	If	you	use	any	of	the
plpy.execute(...)	or	plpy.prepare()	functions	,	you	also	need	to	set	up	a	database
connection	before	using	these	by	calling	plpy.connect(<connectstring>).

Using	plpy.notice()	to	track	the	function’s	progress
The	debugging	technology	I	use	most	often	in	any	language,	is	printing	out	intermediate
values	as	the	function	progresses.	If	the	printout	rolls	past	too	fast,	you	can	slow	it	down
by	sleeping	a	second	or	two	after	each	print.

In	standard	Python,	it	would	look	like	this:

def	fact(x):

				f	=	1

				while	(x	>	0):

								f	=	f	*	x

								x	=	x	–	1

								print	'f:%d,	x:%d'	%	(f,	x)

				return	f

It	will	print	out	all	intermediate	values	for	f	and	x	as	it	runs:

>>>	fact(3)

f:3,	x:2

f:6,	x:1

f:6,	x:0

6

If	you	try	to	use	print	in	a	PL/Python	function,	you	will	discover	that	nothing	is	printed.	In
fact,	there	is	no	single	logical	place	to	print	to	when	running	a	pluggable	language	inside	a
PostgreSQL	server.

The	closest	thing	to	print	in	PL/Python	is	the	function	plpy.notice()	,	which	sends	a
PostgreSQL	NOTICE	to	the	client	and	also	to	the	server	log	if	log_min_messages	is	set	to
the	value	notice	or	smaller.

CREATE	FUNCTION	fact(x	int)	RETURNS	int

AS	$$

				global	x

				f	=	1

				while	(x	>	0):

								f	=	f	*	x

								x	=	x	-	1

								plpy.notice('f:%d,	x:%d'	%	(f,	x))

				return	f

$$	LANGUAGE	plpythonu;

Running	this	is	much	more	verbose	than	the	version	with	print,	because	each	NOTICE	also
includes	information	about	the	CONTEXT	from	where	the	NOTICE	comes:

hannu=#	SELECT	fact(3);

NOTICE:		f:3,	x:2

CONTEXT:		PL/Python	function	"fact"

NOTICE:		f:6,	x:1

CONTEXT:		PL/Python	function	"fact"

NOTICE:		f:6,	x:0

CONTEXT:		PL/Python	function	"fact"

	fact

				6

(1	row)

Tip
PL/PythonU	function	arguments	are	passed	in	as	globals

If	you	compared	the	fact(x)	function	in	Python	and	PL/Python,	you	noticed	an	extra	line
at	the	beginning	of	the	PL/Python	function:

				global	x

This	is	needed	to	overcome	an	implementation	detail	that	often	surprises	PL/PythonU
developers;	the	function	arguments	are	not	the	function	arguments	in	the	Python	sense	and
neither	are	they	locals.	They	are	passed	in	as	variables	in	the	function’s	global	scope.

Using	assert
Similar	to	ordinary	Python	programming,	you	can	also	use	Python’s	assert	statement	to
catch	conditions	which	should	not	happen:

CREATE	OR	REPLACE	FUNCTION	fact(x	int)	

		RETURNS	int

AS	$$

				global	x

				assert	x>=0,	"argument	must	be	a	positive	integer"

				f	=	1

				while	(x	>	0):

								f	=	f	*	x

								x	=	x	-	1

				return	f

$$	LANGUAGE	plpythonu;

To	test	this,	call	fact()	with	a	negative	number:

hannu=#	SELECT	fact(-1);

ERROR:		AssertionError:	argument	must	be	a	positive	integer

CONTEXT:		Traceback	(most	recent	call	last):

		PL/Python	function	"fact",	line	3,	in	<module>

				assert	x>=0,	"argument	must	be	a	positive	integer"

PL/Python	function	"fact"

You	will	get	a	message	about	AssertionError,	together	with	the	location	of	the	failing
line	number.

Redirecting	sys.stdout	and	sys.stderr
If	all	the	code	you	need	to	debug	is	your	own,	the	preceding	two	techniques	will	cover
most	of	your	needs.	However,	what	do	you	do	in	cases	where	you	use	some	third	party
libraries	which	print	out	debug	information	to	sys.stdout	and/or	sys.stderr?

Well,	in	those	cases	you	can	replace	Python’s	sys.stdout	and	sys.stdin	with	your	own
pseudo	file	object	that	stores	everything	written	there	for	later	retrieval.	Here	is	a	pair	of
functions,	the	first	of	which	does	the	capturing	of	sys.stdout	or	uncapturing	if	it	is	called
with	the	argument,	do_capture	set	to	false,	and	the	second	one	returns	everything
captured:

CREATE	OR	REPLACE	FUNCTION	capture_stdout(do_capture	bool)

		RETURNS	text

AS	$$

				import	sys

				if	do_capture:

								try:

												sys.stdout	=	GD['stdout_to_notice']

								except	KeyError:

												class	WriteAsNotice:

																def	__init__(self,	old_stdout):

																				self.old_stdout	=	old_stdout

																				self.printed	=	[]

																def	write(self,	s):

																				self.printed.append(s)

																def	read(self):

																				text	=	''.join(self.printed)

																				self.printed	=	[]

																				return	text

												GD['stdout_to_notice']	=	WriteAsNotice(sys.stdout)

												sys.stdout	=	GD['stdout_to_notice']

								return	"sys.stdout	captured"

				else:

								sys.stdout	=	GD['stdout_to_notice'].old_stdout

								return	"restored	original	sys.stdout"

$$	LANGUAGE	plpythonu;

CREATE	OR	REPLACE	FUNCTION	read_stdout()

		RETURNS	text

AS	$$

				return	GD['stdout_to_notice'].read()

$$	LANGUAGE	plpythonu;

Here	is	a	sample	session	using	the	preceding	functions:

hannu=#	SELECT	capture_stdout(true);

			capture_stdout				

	sys.stdout	captured

(1	row)

DO	LANGUAGE	plpythonu	$$

print	'TESTING	sys.stdout	CAPTURING'

import	pprint

pprint.pprint({'a':[1,2,3],	'b':[4,5,6]})

$$;

DO

hannu=#	SELECT	read_stdout();

											read_stdout												

	TESTING	sys.stdout	CAPTURING				+

	{'a':	[1,	2,	3],	'b':	[4,	5,	6]}+

	

(1	row)

Thinking	out	of	the	“SQL	database
server”	box
We’ll	wrap	up	the	chapter	on	PL/Python	with	a	couple	of	sample	PL/PythonU	functions
for	doing	some	things	you	would	not	usually	consider	doing	inside	the	database	function
or	trigger.

Generating	thumbnails	when	saving	images
Our	first	example,	uses	Python’s	powerful	Python	Imaging	Library	(PIL)	module	to
generate	thumbnails	of	uploaded	photos.	For	ease	of	interfacing	with	various	client
libraries,	this	program	takes	the	incoming	image	data	as	a	Base64	encoded	string:

CREATE	FUNCTION	save_image_with_thumbnail(image64	text)

		RETURNS	int	

AS	$$

import	Image,	cStringIO

size	=	(64,64)	#	thumbnail	size

#	convert	base64	encoded	text	to	binary	image	data

raw_image_data	=	image64.decode('base64')

#	create	a	pseudo-file	to	read	image	from

infile	=	cStringIO.StringIO(raw_image_data)

pil_img	=	Image.open(infile)

pil_img.thumbnail(size,	Image.ANTIALIAS)

#	create	a	stream	to	write	the	thumbnail	to

outfile	=	cStringIO.StringIO()

pil_img.save(outfile,	'JPEG')

raw_thumbnail	=	outfile.getvalue()

#	store	result	into	database	and	return	row	id

q	=	plpy.prepare('''

		INSERT	INTO	photos(image,	thumbnail)

		VALUES	($1,$2)

		RETURNING	id''',	('bytea',	'bytea'))

res	=	plpy.execute(q,	(raw_image_data,raw_thumbnail))

#	return	column	id	of	first	row

return	res[0]['id']

$$	LANGUAGE	plpythonu;

The	Python	code	is	more	or	less	a	straight	rewrite	from	the	PIL	tutorial,	except	that	the
files	to	read	the	image	from,	and	write	the	thumbnail	image	to,	are	replaced	with	Python’s
standard	file-like	StringIO	objects.	For	all	this	to	work,	you	need	to	have	PIL	installed	on
your	database	server	host.

In	Debian/Ubuntu,	this	can	be	done	by	running	sudo	apt-get	install	python-imaging.
On	most	modern	Linux	distributions,	an	alternative	is	to	use	Python’s	own	package
distribution	system	by	running	sudo	easy_install	PIL.

Sending	an	e-mail
The	next	sample	is	a	function	for	sending	e-mails	from	inside	a	database	function:

CREATE	OR	REPLACE	FUNCTION	send_email(

				sender	text,					—sender	e-mail

				recipients	text,	—comma-separated	list	of	recipient	addresses

				subject	text,				—email	subject

				message	text,				—text	of	the	message

				smtp_server	text	—SMTP	server	to	use	for	sending

)	RETURNS	void	

AS	$$

				import	smtplib;

				msg	=	"From:	%s\r\nTo:	%s\r\nSubject:	%s\r\n\r\n%s"	%	\

									(sender,	recipients,	subject,	message)

				recipients_list	=	[r.strip()	for	r

																																	in	recipients.split(',')]

				server	=	smtplib.SMTP(smtp_server)

				server.sendmail(sender,	recipients_list,	msg)

				server.quit()

$$	LANGUAGE	plpythonu;

test=#	SELECT	send_email('dummy@gmail.com',	'abv@postgresql.org',	'test	

subject',	'message',	'localhost');

This	function	formats	a	message	(msg	=	""),	converts	a	comma-separated	To:	address	into
a	list	of	e-mail	addresses	(recipients_list	=	[r.strip()...),	connects	to	a	SMTP
server,	and	then	passes	the	message	to	the	SMTP	server	for	delivery.

To	use	this	function	in	a	production	system,	it	would	probably	require	a	bit	more	checking
on	the	formats	and	some	extra	error	handling,	in	case	something	goes	wrong.	You	can	read
more	about	Python’s	smtplib	at	http://docs.python.org/library/smtplib.html.

http://docs.python.org/library/smtplib.html

Listing	directory	contents
Here	is	another	interesting	use	case	for	an	untrusted	language.	The	function	below	can	list
the	contents	of	a	directory	in	your	system:

				CREATE	OR	REPLACE	FUNCTION	list_folder(

				directory	VARCHAR—directory	that	will	be	walked

)	RETURNS		SETOF	VARCHAR

				AS	$$

				import	os;

				file_paths	=	[];

				#	Walk	the	tree.

				for	root,	directories,	files	in	os.walk(directory):

								for	filename	in	files:

												#	Join	the	two	strings	in	order	to	form	the	full	filepath.

												filepath	=	os.path.join(root,	filename)

												file_paths.append(filepath)		#	Add	it	to	the	list.

				return	file_paths	

				$$	LANGUAGE	plpythonu;

Let	us	now	try	and	run	the	function:

test_db=#	SELECT	list_folder('/usr/local/pgsql/bin');

													list_folder													

	/usr/local/pgsql/bin/clusterdb

	/usr/local/pgsql/bin/createdb

	/usr/local/pgsql/bin/createlang

	/usr/local/pgsql/bin/createuser

	/usr/local/pgsql/bin/dropdb

	/usr/local/pgsql/bin/droplang

	/usr/local/pgsql/bin/dropuser

	/usr/local/pgsql/bin/ecpg

	/usr/local/pgsql/bin/initdb

	/usr/local/pgsql/bin/pg_basebackup

	/usr/local/pgsql/bin/pg_config

	/usr/local/pgsql/bin/pg_controldata

	/usr/local/pgsql/bin/pg_ctl

	/usr/local/pgsql/bin/pg_dump

	/usr/local/pgsql/bin/pg_dumpall

	/usr/local/pgsql/bin/pg_isready

	/usr/local/pgsql/bin/pg_receivexlog

	/usr/local/pgsql/bin/pg_resetxlog

	/usr/local/pgsql/bin/pg_restore

	/usr/local/pgsql/bin/postgres

	/usr/local/pgsql/bin/postmaster

	/usr/local/pgsql/bin/psql

	/usr/local/pgsql/bin/reindexdb

	/usr/local/pgsql/bin/vacuumdb

(24	rows)

The	function	above	uses	the	Python	os	module	and	walks	the	directory	tree,	top-down.
This	function	will	not	walk	down	into	symbolic	links	that	resolve	to	directories.	The	errors

are	ignored	by	default.	You	can	learn	more	about	how	Python’s	os.walk()	behaves	in
Python	2’s	(since	that	is	what	the	example	uses)	documentation	here
https://docs.python.org/2/library/os.html.

https://docs.python.org/2/library/os.html

Summary
In	this	chapter,	we	saw	that	it	is	relatively	easy	to	do	things	way	beyond	what	a	simple
SQL	database	server	normally	supports;	thanks	to	its	pluggable	language’s	support.

In	fact,	you	can	do	almost	anything	in	the	PostgreSQL	server	that	you	could	do	in	any
other	application	server.	Hopefully,	this	chapter	just	scratched	the	surface	of	what	can	be
done	inside	a	PostgreSQL	server.

In	the	next	chapter,	we	will	learn	about	writing	PostgreSQL’s	more	advanced	functions	in
C.	This	will	give	you	deeper	access	to	PostgreSQL,	allowing	you	to	use	a	PostgreSQL
server	for	much	more	powerful	things.

Chapter	9.	Writing	Advanced	Functions
in	C
In	the	previous	chapter,	we	introduced	you	to	the	possibilities	of	untrusted	pluggable
languages	being	available	to	a	PostgreSQL	developer	to	achieve	things	impossible	in	most
other	relational	databases.

While	using	a	pluggable	scripting	language	is	enough	for	a	large	class	of	problems,	there
are	two	main	categories,	where	they	may	fall	short:	performance	and	depth	of
functionality.

Most	scripting	languages	are	quite	a	bit	slower	than	optimized	C	code	when	executing	the
same	algorithms.	For	a	single	function,	this	may	not	be	the	case	because	common	things
such	as	dictionary	lookups	or	string	matching	have	been	optimized	so	well	over	the	years.
But	in	general,	C	code	will	be	faster	than	scripted	code.	Also,	in	cases	where	the	function
is	called	millions	of	times	per	query,	the	overhead	of	actually	calling	the	function	and
converting	the	arguments	and	return	values	to	and	from	the	scripting	language
counterparts	can	be	a	significant	portion	of	the	run	time.

The	second	potential	problem	with	pluggable	languages	is	that	most	of	them	just	do	not
support	the	full	range	of	possibilities	that	are	provided	by	PostgreSQL.	There	are	a	few
things	that	simply	cannot	be	coded	in	anything	else	but	C.	For	example,	when	you	define	a
completely	new	type	for	PostgreSQL,	the	type	input	and	output	functions,	which	convert
the	type’s	text	representation	to	internal	representation	and	back,	need	to	handle
PostgreSQL’s	pseudotype	cstring.	This	is	basically	the	C	string	or	a	zero-terminated
string.	Returning	cstring	is	simply	not	supported	by	any	of	the	PL	languages	included	in
the	core	distribution,	at	least	not	as	of	PostgreSQL	Version	9.3.	The	PL	languages	also	do
not	support	pseudotypes	ANYELEMENT,	ANYARRAY	and	especially	“any”	VARIADIC.

In	the	following	sections,	we	will	go	step-by-step	through	writing	some	PostgreSQL
extension	functions	in	increasing	complexity	in	C.

We	will	start	from	the	simplest	add	2	arguments	function	which	is	quite	similar	to	the
one	in	PostgreSQL	manual,	but	we	will	present	the	material	in	a	different	order.	So,	setting
up	the	build	environment	comes	early	enough	so	that	you	can	follow	us	hands-on	from	the
very	beginning.

After	that,	we	will	describe	some	important	things	to	be	aware	of	when	designing	and
writing	code	that	runs	inside	the	server,	such	as	memory	management,	executing	queries,
and	retrieving	results.

As	the	topic	of	writing	C-language	PostgreSQL	functions	can	be	quite	large	and	our	space
for	this	topic	is	limited,	we	will	occasionally	skip	some	of	the	details	and	refer	you	to	the
PostgreSQL	manual	for	extra	information	and	specifications.	We	are	also	limiting	this
section	to	reference	PostgreSQL	9.3.	While	most	things	will	work	perfectly	fine	across
versions,	there	are	references	to	paths	that	will	be	specific	to	a	version.

The	simplest	C	function	–	return	(a	+	b)
Let’s	start	with	a	simple	function,	which	takes	two	integer	arguments	and	returns	the	sum
of	these.	We	first	present	the	source	code	and	then	will	move	on	to	show	you	how	to
compile	it,	load	it	into	PostgreSQL,	and	then	use	it	as	any	native	function.

add_func.c
A	C	source	file	implementing	add(int,	int)	returns	int	function	looks	like	the
following	code	snippet:

#include	"postgres.h"

#include	"fmgr.h"

PG_MODULE_MAGIC;

PG_FUNCTION_INFO_V1(add_ab);

Datum

add_ab(PG_FUNCTION_ARGS)

{

				int32			arg_a	=	PG_GETARG_INT32(0);

				int32			arg_b	=	PG_GETARG_INT32(1);

				PG_RETURN_INT32(arg_a	+	arg_b);

}

Let’s	go	over	the	code	explaining	the	use	of	each	segment:

#include	"postgres.h":	This	includes	most	of	the	basic	definitions	and	declarations
needed	for	writing	any	C	code	for	running	in	PostgreSQL.
#include	"fmgr.h":	This	includes	the	definitions	for	PG_*	macros	used	in	this	code.
PG_MODULE_MAGIC;:	This	is	a	“magic	block”	defined	in	fmgr.h.	This	block	is	used	by
the	server	to	ensure	that	it	does	not	load	code	compiled	by	a	different	version	of
PostgreSQL,	potentially	crashing	the	server.	It	was	introduced	in	Version	8.2	of
PostgreSQL.	If	you	really	need	to	write	code	which	can	also	be	compiled	for
PostgreSQL	versions	before	8.2	you	need	to	put	this	between	#ifdef
PG_MODULE_MAGIC	/	#endif.	You	see	this	a	lot	in	samples	available	on	the	Internet,
but	you	probably	will	not	need	to	do	the	ifdef	for	any	new	code.	The	latest	pre-8.2
Version	became	officially	obsolete	(that	is	unsupported)	in	November	2010,	and	even
8.2	community	support	ended	in	December	2011.
PG_FUNCTION_INFO_V1(add_ab);:	This	introduces	the	function	to	PostgreSQL	as
Version	1	calling	a	convention	function.	Without	this	line,	it	will	be	treated	as	an	old-
style	Version	0	function.	(See	the	information	box	following	the	Version	0	reference.)
Datum:	This	is	the	return	type	of	a	C-language	PostgreSQL	function.
add_ab(PG_FUNCTION_ARGS):	The	function	name	is	add_ab	and	the	rest	are	its
arguments.	The	PG_FUNCTION_ARGS	definition	can	represent	any	number	of	arguments
and	has	to	be	present,	even	for	a	function	taking	no	arguments.
int32	arg_a	=	PG_GETARG_INT32(0);:	You	need	to	use	the
PG_GETARG_INT32(<argnr>)	macro	(or	corresponding	PG_GETARG_xxx(<argnr>)	for
other	argument	types)	to	get	the	argument	value.	The	arguments	are	numbered
starting	from	0.
int32	arg_b	=	PG_GETARG_INT32(1);:	Similar	to	the	previous	description.
PG_RETURN_INT32(arg_a	+	arg_b);:	Finally,	you	use	the	PG_RETURN_<rettype>
(<retvalue>)	macro	to	build	and	return	a	suitable	return	value.

You	could	also	have	written	the	whole	function	body	as	the	following	code:

			PG_RETURN_INT32(PG_GETARG_INT32(0)	+	PG_GETARG_INT32(1));

But,	it	is	much	more	readable	as	written,	and	most	likely	a	good	optimizing	C	compiler
will	compile	both	into	an	equivalently	fast	code.

Most	compilers	will	issue	a	warning	message	as:	warning:	no	previous	prototype	for
'add_ab'	for	the	preceding	code,	so	it	is	a	good	idea	to	also	put	a	prototype	for	the
function	in	the	file:

Datum	add_ab(PG_FUNCTION_ARGS);

The	usual	place	to	put	it,	is	just	before	the	code	line	PG_FUNCTION_INFO_V1(add_ab);.

Note
While	the	prototype	is	not	strictly	required,	it	enables	much	cleaner	compiles	with	no
warnings.

Version	0	call	conventions
There	is	an	even	simpler	way	to	write	PostgreSQL	functions	in	C,	called	the	Version	0
calling	conventions.	The	preceding	a	+	b	function	can	be	written	as	the	following	code:

int	add_ab(int	arg_a,	int	arg_b)

{

				return	arg_a	+	arg_b;

}

Version	0	is	shorter	for	very	simple	functions,	but	it	is	severely	limited	for	most	other
usages—you	can’t	do	even	some	basic	things	such	as	checking	if	a	pass	by	value
argument	is	null,	return	a	set	of	values,	or	write	aggregate	functions.	Also,	Version	0	does
not	automatically	take	care	of	hiding	most	differences	of	pass	by	value	and	pass	by
reference	types	that	Version	1	does.	Therefore,	it	is	better	to	just	write	all	your	functions
using	Version	1	calling	conventions	and	ignore	the	fact	that	Version	0	even	exists.

From	this	point	forward,	we	are	only	going	to	discuss	Version	1	calling	conventions	for	a
C	function.

Note
In	case	you	are	interested,	there	is	some	more	information	on	Version	0	at
http://www.postgresql.org/docs/current/static/xfunc-c.html#AEN50495,	in	the	section
titled	35.9.3.	Version	0	Calling	Conventions.

http://www.postgresql.org/docs/current/static/xfunc-c.html#AEN50495

Makefile
The	next	step	is	compiling	and	linking	the	.c	source	file	into	a	form	that	can	be	loaded
into	the	PostgreSQL	server.	This	can	all	be	done	as	a	series	of	commands	defined	in	a
Makefile	function.

The	PostgreSQL	manual	has	a	complete	section	about	which	flags	and	included	paths	you
should	pass	on	each	of	the	supported	platforms,	and	how	to	determine	correct	paths	for
including	files	and	libraries.

Fortunately,	all	of	this	is	also	automated	nicely	for	developers	via	the	PostgreSQL
extension	building	infrastructure—or	PGXS	for	short—which	makes	this	really	easy	for
most	modules.

Note
Depending	on	which	version	of	PostgreSQL	you	have	installed,	you	may	need	to	add	the
development	package	for	your	platform.	These	are	usually	the	-dev	or	-devel	packages.

Now,	let’s	create	our	Makefile	function.	It	will	look	like	the	following	code:

MODULES	=	add_func

PG_CONFIG	=	pg_config

PGXS	:=	$(shell	$(PG_CONFIG)	--pgxs)

include	$(PGXS)

And	you	can	compile	and	link	the	module	by	simply	running	make:

$make

gcc…	-c	-o	add_func.o	add_func.c	

gcc…	-o	add_func.so	add_func.o	

rm	add_func.o	

Here,	“…”	stands	for	quite	some	amount	of	flags,	includes,	and	libraries	added	by	PGXS.

This	produces	a	dynamically	loadable	module	in	the	current	directory	which	can	be	used
directly	by	PostgreSQL,	if	your	server	has	access	to	this	directory,	which	may	be	the	case
on	a	development	server.

For	a	“standard”	server,	as	installed	by	your	package	management	system,	you	will	need
to	put	the	module	in	a	standard	place.	This	can	be	done	using	the	PGXS	as	well.

You	simply	execute	sudo	make	install	and	everything	will	be	copied	to	the	right	place,
$sudo	make	install:

[sudo]	password	for	hannu:	

/bin/mkdir	-p	'/usr/lib/postgresql/9.3/lib'	

/bin/sh	

/usr/lib/postgresql/9.3/lib/pgxs/src/makefiles/../../config/install-sh	-c	-

m	755		add_func.so	'/usr/lib/postgresql/9.3/lib/'	

CREATE	FUNCTION	add(int,	int)
You	are	just	one	step	away	from	being	able	to	use	this	function	in	your	database.	You	just
need	to	introduce	the	module	you	just	compiled	to	a	PostgreSQL	database	using	the
CREATE	FUNCTION	statement.

If	you	followed	the	samples	up	to	this	point,	the	following	statement	is	all	that	is	needed,
along	with	adjusting	the	path	appropriately	to	where	PostgreSQL	is	installed	on	your
server:

hannu=#	CREATE	FUNCTION	add(int,	int)	

hannu-#			RETURNS	int	

hannu-#	AS	'/usr/lib/postgresql/9.3/lib/add_func',	'add_ab_null'	

hannu-#	LANGUAGE	C	STRICT;	

CREATE	FUNCTION	

And	voilá—you	have	created	your	first	PostgreSQL	C-language	extension	function:

hannu=#	select	add(1,2);	

	add	

			3	

(1	row)	

add_func.sql.in
While	what	we	just	covered	is	all	that	is	needed	to	have	a	C	function	in	your	database,	it	is
often	more	convenient	to	put	the	preceding	CREATE	FUNCTION	statement	in	an	SQL	file.

You	usually	do	not	know	the	final	path	of	where	PostgreSQL	is	installed	when	writing	the
code,	especially	in	the	light	of	running	on	multiple	versions	of	PostgreSQL	and/or	on
multiple	operation	systems.	Here	also,	PGXS	can	help.

You	need	to	write	a	file	called	add_funcs.sql.in	as	follows:

CREATE	FUNCTION	add(int,	int)	RETURNS	int	

					AS	'MODULE_PATHNAME',	'add_ab'	

					LANGUAGE	C	STRICT;	

Then	add	the	following	line	in	your	Makefile	function	right	after	the	MODULES=	…	line:

DATA_built	=	add_funcs.sql

Now,	when	running	make,	the	add_funcs.sql.in	is	compiled	into	a	file	add_funcs.sql
with	MODULE_PATHNAME	replaced	by	the	real	path	where	the	module	will	be	installed.

[add_func]$	make	

sed	's,MODULE_PATHNAME,$libdir/add_func,g'	add_func.sql.in	>add_func.sql	

Also,	sudo	make	install	will	copy	the	generated	.sql	file	into	the	directory	with	other
.sql	files	for	extensions,	as	shown:

$	sudo	make	install	

/usr/bin/mkdir	-p	'/usr/lib/postgresql/9.3/share/contrib'	

/usr/bin/mkdir	-p	'/usr/lib/postgresql/9.3/lib'	

/bin/sh	

/usr/lib/postgresql/9.3/lib/pgxs/src/makefiles/../../config/install-sh	-c	-

m	644		add_func.sql	'/usr/lib/postgresql/9.3/share/contrib/'	

/bin/sh	

/usr/lib/postgresql/9.3/lib/pgxs/src/makefiles/../../config/install-sh	-c	-

m	755		add_func.so	'/usr/lib/postgresql/9.3/lib/'	

After	this,	the	introduction	of	your	C	functions	to	a	PostgreSQL	database	is	as	simple	as
hannu=#	\i	/usr/lib/postgresql/9.3/share/contrib/add_func.sql:

CREATE	FUNCTION	

The	path	/usr/lib/postgresql/9.3/share/contrib/	to	add_funcs.sql	needs	to	be
looked	up	from	the	output	of	the	make	install	command.

Note
There	is	a	much	cleaner	way	to	package	up	your	code	called	Extensions	where	you	don’t
need	to	look	up	for	any	paths	and	the	preceding	step	would	just	be	as	follows:
CREATE	EXTENSION	chap8_add;

But	it	is	relatively	more	complex	to	set	up,	so	we	are	not	explaining	it	here.	Chapter	13,
Publishing	Your	Code	as	PostgreSQL	Extensions	dedicated	to	extensions	appears	later	in
this	book.

Summary	for	writing	a	C	function
Writing	a	C	function	used	in	PostgreSQL	is	a	straightforward	process:

1.	 Write	the	C	code	in	modulename.c.
2.	 Write	the	SQL	code	for	CREATE	FUNCTION	in	modulename.sql.in.
3.	 Write	a	Makefile	function.
4.	 Run	make	to	compile	a	C	file	and	generate	modulename.sql.
5.	 Run	sudo	make	install	to	install	the	generated	files.
6.	 Run	the	generated	modulename.sql	in	your	target	database:

hannu#	\i	/<path>/modulename.sql

Note
You	must	run	the	SQL	code	in	any	database	you	want	to	use	your	function.	If	you	want	all
your	new	databases	to	have	access	to	your	newly	generated	function,	add	the	function	to
your	template	database	by	running	the	modulename.sql	file	in	database	template1	or	any
other	database	you	are	explicitly	specifying	in	the	CREATE	DATABASE	command.

You	may	have	noticed	that	while	creating	the	function,	you	specified	the	name	of	the
loadable	object	file	and	the	name	of	the	C	function.	When	the	SQL	function	is	called	for
the	first	time,	the	dynamic	loader	loads	the	object	file	in	memory.	If	you	would	like	some
object	files	to	be	preloaded	at	server	startup,	you	should	specify	them	in	the	PostgreSQL
shared_preload_libraries	configuration	parameter.

Adding	functionality	to	add(int,	int)
While	our	function	works,	it	adds	nothing	in	the	preceding	code	just	using	SELECT	A	+	B.
But	functions	written	in	C	are	capable	of	so	much	more.	So	let’s	start	adding	some	more
functionality	to	our	function.

Smart	handling	of	NULL	arguments
Notice	the	use	of	a	STRICT	keyword	in	the	CREATE	FUNCTION	add(int	a,	int	b)	in	the
previously	mentioned	code.	This	means	that	the	function	will	not	be	called	if	any	of	the
arguments	are	NULL,	but	instead	NULL	is	returned	straightaway.	This	is	similar	to	how	most
PostgreSQL	operators	work,	including	the	+	sign	when	adding	two	integers—if	any	of	the
arguments	are	NULL	the	complete	result	is	NULL	as	well.

Next,	we	will	extend	our	function	to	be	smarter	about	NULL	inputs	and	act	like
PostgreSQL’s	sum()	aggregate	function,	which	ignores	NULL	values	in	inputs	and	still
produces	the	sum	of	all	non-null	values.

For	this,	we	need	to	do	two	things:

Make	sure	that	the	function	is	called	when	either	of	the	arguments	are	NULL.
Handle	NULL	arguments	by	effectively	converting	a	NULL	argument	to	0	and	returning
NULL	only	in	cases	where	both	arguments	are	null.

The	first	one	is	easy—just	leave	out	the	STRICT	keyword	when	declaring	the	function.	The
latter	one	also	seems	easy	as	we	just	leave	out	STRICT	and	let	the	function	execute.	For	a
function	with	int	arguments,	this	almost	seems	to	do	the	trick.	All	NULL	values	show	up	as
0s,	and	the	only	thing	you	miss	will	be	returning	NULL	if	both	arguments	are	NULL.

Unfortunately,	this	only	works	by	coincidence	and	is	not	guaranteed	to	work	in	future
versions.	Worse	still,	if	you	do	it	the	same	way	for	pass	by	reference	types,	it	will	cause
PostgreSQL	to	crash	on	null	pointer	references.

Next,	we	show	you	how	to	do	it	properly.	We	need	now	to	do	two	things:	record	if	we
have	any	non-null	values	and	add	all	the	non-null	values	we	see:

PG_FUNCTION_INFO_V1(add_ab_null);

Datum

add_ab_null(PG_FUNCTION_ARGS)

{

				int32			not_null	=	0;

				int32			sum	=	0;

				if	(!PG_ARGISNULL(0))	{

								sum	+=	PG_GETARG_INT32(0);

								not_null	=	1;

				}

				if	(!PG_ARGISNULL(1))	{

								sum	+=	PG_GETARG_INT32(1);

								not_null	=	1;

				}

				if	(not_null)	{

								PG_RETURN_INT32(sum);

				}

				PG_RETURN_NULL();

}

This	indeed	does	what	we	need:

hannu=#	CREATE	FUNCTION	add(int,	int)	RETURNS	int

					AS	'$libdir/add_func',	'add_ab_null'	

					LANGUAGE	C;	

CREATE	FUNCTION	

hannu=#	SELECT	add(NULL,	NULL)	as	must_be_null,	add(NULL,	1)	as	

must_be_one;	

-[RECORD	1]+--	

must_be_null	|	

must_be_one		|	1	

Achieving	the	same	result	using	standard	PostgreSQL	statements,	functions,	and	operators
would	be	much	more	verbose:

hannu=#	SELECT	(case	when	(a	is	null)	and	(b	is	null)

hannu(#														then	null	

hannu(#														else	coalesce(a,0)	+	coalesce(b,0)	

hannu(#									end)	

hannu-#	FROM	(select	1::int	as	a,	null::int	as	b)s;	

-[RECORD	1]	

case	|	1	

In	addition	to	restructuring	the	code,	we	also	introduced	two	new	macros
PG_ARGISNULL(<argnr>)	for	checking	if	the	argument	<argnr>	is	NULL	and
PG_RETURN_NULL()	for	returning	NULL	from	a	function.

Note
PG_RETURN_NULL()	is	different	from	PG_RETURN_VOID().	The	latter	is	for	using	functions
which	are	declared	to	return	pseudotype	void	or	in	other	words,	not	to	return	anything.

Working	with	any	number	of	arguments
After	the	rewrite	to	handle	NULL	values,	it	seems	that	with	just	a	little	more	effort,	we
could	make	it	work	with	any	number	of	arguments.	Just	move	the	following	code	inside
the	for(;;)	cycle	over	the	arguments	and	we	are	done:

if	(!PG_ARGISNULL(<N>))	{

								sum	+=	PG_GETARG_INT32(<N>);

								not_null	=	1;

				}

Actually,	making	the	code	use	an	array	instead	of	a	simple	type	is	not	that	simple	after	all.
To	make	things	more	difficult,	there	is	no	information	or	sample	code	on	how	to	work
with	arrays	in	the	official	PostgreSQL	manual	for	C-language	extension	functions.	The
line	between	“supported”	and	“unsupported”	when	writing	C-language	functions	is	quite
blurred,	and	the	programmer	doing	so	is	expected	to	be	able	to	figure	some	things	out
independently.

The	bright	side	is	that	the	friendly	folks	at	the	PostgreSQL	mailing	lists	are	usually	happy
to	help	you	out	if	they	see	that	your	question	is	a	serious	one	and	that	you	have	made	some
effort	to	figure	out	the	basic	stuff	yourself.

To	see	how	arguments	of	array	types	are	handled,	you	have	to	start	digging	around	on	the
Internet	and/or	in	the	backend	code.	One	place	where	you	can	find	a	sample	is	the
contrib/hstore/	module	in	the	PostgreSQL	source	code.	The	contrib	modules	are	a
great	reference	for	examples	of	officially	supported	extension	modules	from	PostgreSQL.

Though	the	code	there	does	not	do	exactly	what	we	need—it	works	on	text[]	and	not
int[]—it	is	close	enough	to	figure	out	what	is	needed,	by	supplying	the	basic	structure	of
array	handling	and	sample	usage	of	some	utility	macros	and	functions.

After	some	digging	around	in	the	backend	code	and	doing	some	web	searches,	it	is	not
very	hard	to	come	up	with	a	code	for	integer	arrays.

So,	here	is	the	C	code	for	a	function	which	sums	all	non-null	elements	in	its	argument
array.	The	code	should	be	added	to	add_func.c:

#include	"utils/array.h"		//	array	utility	functions	and	macros

#include	"catalog/pg_type.h"	//	for	INT4OID	

PG_MODULE_MAGIC;	

Datum	add_int32_array(PG_FUNCTION_ARGS);	

PG_FUNCTION_INFO_V1(add_int32_array);	

Datum	

add_int32_array(PG_FUNCTION_ARGS)	

{	

				ArrayType		*input_array;	

				int32			sum	=	0;	

				bool					not_null	=	false;	

				//	variables	for	"deconstructed"	array

				Datum						*datums;	

				bool							*nulls;	

				int									count;	

				//	for	loop	counter

				int									i;	

				input_array	=	PG_GETARG_ARRAYTYPE_P(0);	

				//	check	that	we	do	indeed	have	a	one-dimensional	int	array	

				Assert(ARR_ELEMTYPE(input_array)	==	INT4OID);	

				if	(ARR_NDIM(input_array)	>	1)

								ereport(ERROR,

																(errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR),

																	errmsg("1-dimensional	array	needed")));

				deconstruct_array(input_array,		//	one-dimensional	array	

																						INT4OID,						//	of	integers	

																						4,												//	size	of	integer	in	bytes	

																						true,									//	int4	is	pass-by	value	

																						'i',										//	alignment	type	is	'i'	

																						&datums,	&nulls,	&count);	//	result	here	

				for(i=0;i<count;i++)	{	

								//	first	check	and	ignore	null	elements	

								if	(nulls[i])	

												continue;	

								//	accumulate	and	remember	there	were	non-null	values	

								sum	+=	DatumGetInt32(datums[i]);	

								not_null	=	true;	

				}	

				if	(not_null)	

								PG_RETURN_INT32(sum);	

				PG_RETURN_NULL();	

}	

So,	what	new	things	are	needed	for	handling	array	types	as	arguments?	First,	you	need	to
include	definitions	for	array	utility	functions:

#include	"utils/array.h"

Next,	you	need	a	pointer	to	your	array:

ArrayType		*input_array;	

Notice	that	there	is	no	specific	array-of-integers	type	but	just	a	generic	ArrayType,	which
is	used	for	any	array.

To	initialize	the	array	from	the	first	argument,	you	use	an	already	familiar	looking	macro:

input_array	=	PG_GETARG_ARRAYTYPE_P(0);

Except	that	instead	of	returning	an	INT32	value,	it	returns	an	array	pointer	ARRAYTYPE_P.

After	getting	the	array	pointer,	we	perform	a	couple	of	checks:

Assert(ARR_ELEMTYPE(input_array)	==	INT4OID);	

We	assert	that	the	element	type	of	returned	array	is	indeed	an	integer.	(There	are	some
inconsistencies	in	PostgreSQL	code	as	the	plain	integer	type	can	be	called	either	int32	or
int4	depending	on	where	the	definition	comes	from.	But	they	both	mean	the	same	thing,
except	that	one	is	based	on	the	length	in	bits	and	the	other	in	bytes.)

The	type	check	is	an	assert	and	not	a	plain	runtime	check,	because	after	you	have	your
SQL	definition	part	of	the	function	in	place,	PostgreSQL	itself	takes	care	not	to	call	the
function	with	any	other	type	of	array.

The	second	check	is	for	checking	that	the	argument	is	really	a	one-dimensional	array
(PostgreSQL	arrays	can	have	1	to	n	dimensions	and	still	be	of	the	same	type),	as	shown:

				if	(ARR_NDIM(input_array)	>	1)

								ereport(ERROR,

																(errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR),

																	errmsg("use	only	one-dimensional	arrays!")));	

If	the	input	array	has	more	than	one	dimension,	we	raise	an	error.	(We	will	discuss
PostgreSQL’s	error	reporting	in	C	later,	in	its	own	section.)

If	you	need	to	work	on	arrays	of	an	arbitrary	number	of	dimensions,	take	a	look	at	the
source	code	of	the	unnest()	SQL	function	which	turns	any	array	into	a	set	of	array
elements.

Note
The	code	is	located	in	the	backend/utils/adt/arrayfuncs.c	file	in	the	C	function
array_unnest(...).

After	we	have	done	basic	sanity	checking	on	the	argument,	we	are	ready	to	start
processing	the	array.	As	a	PostgreSQL	array	can	be	quite	a	complex	beast,	with	multiple
dimensions	and	array	elements	starting	at	an	arbitrary	index,	it	is	easiest	to	use	a	ready-
made	utility	function	for	most	tasks.	So,	here	we	use	the	deconstruct_array(...)
function	to	extract	a	PostgreSQL	array	in	three	separate	C	variables:

				Datum						*datums;	

				bool							*nulls;	

				int									count;	

The	datums	pointer	will	be	set	to	point	to	an	array	filled	with	actual	elements.	The	*nulls
pointer	will	contain	a	pointer	to	an	array	of	Booleans,	which	will	be	true	if	the
corresponding	array	element	was	NULL,	and	count	will	be	set	to	the	number	of	elements
found	in	the	array,	as	shown:

			deconstruct_array(input_array,		//	one-dimensional	array	

																						INT4OID,						//	of	integers	

																						4,												//	size	of	integer	in	bytes	

																						true,									//	int4	is	pass-by	value	

																						'i',										//	alignment	type	is	'i'	

																						&datums,	&nulls,	&count);	//	result	here

The	other	arguments	are	as	follows:

input_array:	This	is	the	pointer	to	the	PostgreSQL	array
INT4OID:	This	is	the	type	of	array	element
element	size:	This	is	the	in-memory	size	of	the	element	type
true:	This	is	the	element	pass-by-value
element	alignment	id

The	type	OID	for	int4	(=23)	is	already	conveniently	defined	as	INT4OID.	The	others,	you
just	have	to	look	up.

The	easiest	way	to	get	the	values	for	type,	size,	passbyvalue,	and	alignment	is	to	query
these	from	the	database:

c_samples=#	select	oid,	typlen,	typbyval,	typalign	from	pg_type

c_samples-#	where	typname	=	'int4';	

-[RECORD	1]	

oid						|	23	

typlen			|	4	

typbyval	|	t	

typalign	|	i	

After	the	call	to	deconstruct_array(...)	the	rest	is	easy—just	iterate	over	the	value	and
null	arrays	and	accumulate	the	sum:

for(i=0;i<count;i++)	{	

								//	first	check	and	ignore	null	elements	

								if	(nulls[i])	

												continue;	

								//	accumulate	and	remember	there	were	non-null	values	

								sum	+=	DatumGetInt32(datums[i]);	

								not_null	=	true;	

				}	

The	only	PostgreSQL-specific	thing	here	is	the	use	of	the	DatumGetInt32(<datum>)
macro	for	converting	the	Datum	to	integer.	The	DatumGetInt32(<datum>)	macro
performs	no	checking	of	its	argument	to	verify	that	it	is	indeed	an	integer	(if	you
remember,	this	is	C,	so	no	type	of	info	is	available	in	the	data	itself),	but	using	the
DatumGet*()	macro	helps	us	to	make	the	compiler	happy.

We	are	almost	done	here,	as	returning	the	sum	(or	NULL	in	case	all	elements	were	NULL
values)	is	exactly	the	same	as	in	our	previous	function.

While	this	is	all	from	the	C	side,	we	still	need	to	teach	PostgreSQL	about	this	new
function.	The	simplest	way	is	to	declare	a	function	which	takes	an	int[]	argument:

CREATE	OR	REPLACE	FUNCTION	add_arr(int[])	RETURNS	int	

					AS	'$libdir/add_func',	'add_int32_array'	

					LANGUAGE	C	STRICT;	

It	works	fine	for	any	integer	array	you	pass	it	for:

hannu=#	SELECT	add_arr('{1,2,3,4,5,6,7,8,9}');	

-[RECORD	1]	

add_arr	|	45	

hannu=#	SELECT	add_arr(ARRAY[1,2,NULL]);	

-[RECORD	1]	

add_arr	|	3	

hannu=#	SELECT	add_arr(ARRAY[NULL::int]);	

-[RECORD	1]	

add_arr	|	

It	even	detects	multidimensional	arrays	and	errors	out	if	it	is	passed	one:

hannu=#	select	add_arr('{{1,2,3},{4,5,6}}');

ERROR:		1-dimensional	array	needed	

What	if	we	want	to	use	it	the	same	way	as	our	two-argument	add(a,b)	function?

Since	Version	8.4	of	PostgreSQL,	it	is	possible	using	support	for	VARIADIC	functions,	or
functions	taking	a	variable	number	of	arguments.

Create	the	function	as	follows:

	CREATE	OR	REPLACE	FUNCTION	add(VARIADIC	a	int[])	RETURNS	int	

					AS	'$libdir/add_func',	'add_int32_array'	

					LANGUAGE	C		STRICT;	

The	previous	calls	to	add_arr()	can	be	rewritten	as:

hannu=#	select	add(1,2,3,4,5,6,7,8,9);	

-[RECORD	1]	

add	|	45	

hannu=#	select	add(NULL);	

-[RECORD	1]	

add	|	

hannu=#	select	add(1,2,NULL);	

-[RECORD	1]	

add	|	3	

Notice	that	you	can’t	easily	get	ERROR:	1-dimensional	array	needed	as	VARIADIC
always	constructs	a	one-dimensional	array	from	the	arguments.

The	only	thing	missing	is	that	you	can’t	have	PostgreSQL’s	function	overloading
mechanism	to	distinguish	between	add(a	int[])	and	add(VARIADIC	a	int[])—you
simply	can’t	declare	both	of	these	at	the	same	time	because	for	PostgreSQL	they	are	the
same	function	with	only	the	initial	argument	detection	done	differently.	That	is	why	the
array	version	of	the	function	was	named	add_arr.	In	case	you	need	to	call	one	VARIADIC
function	from	another,	there	is	a	way.	You	can	call	the	VARIADIC	version	with	an	argument
of	the	array	type	by	prefixing	the	argument	with	VARIADIC	on	the	call	side	as	hannu=#
select	add(ARRAY[1,2,NULL]);:

ERROR:		function	add(integer[])	does	not	exist	

LINE	1:	select	add(ARRAY[1,2,NULL]);	

HINT:		No	function	matches	the	given	name	and	argument	types.	You	might	

need	to	add	explicit	type	casts.

hannu=#	select	add(VARIADIC	ARRAY[1,2,NULL]);	

-[RECORD	1]	

add	|	3	

You	can	even	smuggle	in	a	multi	dimensional	array:

hannu=#	select	add(VARIADIC	'{{1,2,3},{4,5,6}}');

ERROR:		1-dimensional	array	needed	

This	calling	convention	also	means,	that	even	when	you	create	VARIADIC	functions,	you
need	to	check	the	array	dimensions.

Basic	guidelines	for	writing	C	code
After	having	written	our	first	function,	let’s	look	at	some	of	the	basic	coding	guidelines	for
PostgreSQL	backend	coding.

Memory	allocation
One	of	the	places	you	have	to	be	extra	careful	when	writing	C	code	in	general	is	memory
management.	For	any	non-trivial	C	program,	you	have	to	carefully	design	and	implement
your	programs,	so	that	all	your	allocated	memory	is	freed	when	you	are	done	with	it,	or
else	you	will	“leak	memory”	and	will	probably	run	out	of	memory	at	some	point.

As	this	is	also	a	common	concern	for	PostgreSQL,	it	has	its	own	solution—memory
contexts.	Let’s	take	a	deeper	dive	into	them.

Use	palloc()	and	pfree()
Most	PostgreSQL	memory	allocations	are	done	using	PostgreSQL’s	memory	allocation
function	palloc()	and	not	standard	C	malloc().	What	makes	palloc()	special	is	that	it
allocates	the	memory	in	the	current	context	and	the	whole	memory	is	freed	in	one	go
when	the	context	is	destroyed.	For	example,	the	transaction	context—which	is	the	current
context	when	a	user-defined	function	is	called—is	destroyed	and	memory	allocated	is
freed	at	the	end	of	transaction.	This	means	that	most	times	the	programmers	do	not	need	to
worry	about	tracking	palloc()	allocated	memory	and	freeing	it.

It	is	also	easy	to	create	your	own	memory	contexts	if	you	have	some	memory	allocation
needs	with	different	life	spans.	For	example,	the	functions	for	returning	a	set	of	rows
(described	in	further	detail	later	in	this	chapter)	have	a	structure	passed	to	them,	where	one
of	the	members	is	reserved	for	a	pointer	to	a	temporary	context	specifically	for	keeping	a
function-level	memory	context.

Zero-fill	the	structures
Always	make	sure	that	new	structures	are	zero-filled,	either	by	using	memset	after
allocating	them	or	using	palloc0().

PostgreSQL	sometimes	relies	on	logically	equivalent	data	items	being	also	the	same	for
bit-wise	comparisons.	Even	when	you	set	all	the	items	in	a	structure,	it	is	possible	that
some	alignment	issues	leave	garbage	in	the	areas	between	structure	elements	if	any
alignment	padding	was	done	by	the	compiler.

If	you	don’t	do	this,	then	hash	indexes	and	hash	joins	of	PostgreSQL	may	work
inefficiently	or	even	give	wrong	results.	The	planner’s	constant	comparisons	may	also	be
wrong	if	constants	which	are	logically	the	same	are	not	the	same	via	bit-wise	equality,
resulting	in	undesirable	planning	results.

Include	files
Most	of	PostgreSQL	internal	types	are	declared	in	postgres.h,	and	the	function	manager
interfaces	(PG_MODULE_MAGIC,	PG_FUNCTION_INFO_V1,	PG_FUNCTION_ARGS,
PG_GETARG_<type>,	PG_RETURN_<type>,	and	so	on)	are	in	fmgr.h.	Therefore,	all	your	C
extension	modules	need	to	include	at	least	these	two	files.	It	is	a	good	habit	to	include
postgres.h	first	as	it	gives	your	code	the	best	portability	by	(re)defining	some	platform
dependent	constants	and	macros.	Including	postgres.h	also	includes	utils/elog.h	and
utils/palloc.h	for	you.

There	are	other	useful	include	files	in	the	utils/	subdirectory	which	you	also	may	need	to
include	like	utils/array.h	used	in	the	last	example.

Another	often	used	include	directory	is	catalog/	which	gives	you	the	initial	(and	by
convention	constant)	part	of	most	system	tables,	so	you	do	not	need	to	look	up	things	like
type	identifier	for	the	int4	data	type,	but	can	use	its	predefined	value	INT4OID	directly.

The	values	in	catalog/pg_*	include	files	are	always	in	sync	with	what	gets	put	into	the
database	catalogs	by	virtue	of	being	the	definition	of	the	structure	and	contents	of	the
system	catalog	tables.	The	.bki	files	used	when	the	initdb	command	sets	up	a	new	empty
database	cluster	are	generated	from	these	.h	files	by	the	genbki.pl	script.

Public	symbol	names
It	is	the	programmer’s	task	to	make	sure	that	any	symbol	names	visible	in	the	.so	files	do
not	conflict	with	those	already	present	in	the	PostgreSQL	backend,	including	those	used
by	other	dynamically	loaded	libraries.	You	will	have	to	rename	your	functions	or	variables
if	you	get	messages	to	this	effect.	Pick	sufficiently	distinctive	names	for	functions	to	avoid
any	such	problems.	Avoid	short	names	that	might	be	a	source	of	potential	conflict.	This
may	be	a	bigger	problem	if	the	conflicts	come	from	a	third-party	library	your	code	is
using.	So	test	early	in	the	development	if	you	can	link	all	the	planned	libraries	to	your
PostgreSQL	extension	module.

Error	reporting	from	C	functions
One	thing	which	went	unexplained	in	the	previous	sample	was	the	error	reporting	part:

				if	(ARR_NDIM(input_array)	>	1)

								ereport(ERROR,

																(errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR),

																	errmsg("use	only	one-dimensional	arrays!")));	

All	error	reporting	and	other	off-channel	messaging	in	PostgreSQL	is	done	using	the
ereport(<errorlevel>,	rest)	macro	whose	main	purpose	is	to	make	error	reporting
look	like	a	function	call.

The	only	parameter	which	is	processed	directly	by	ereport()	is	the	first	argument	error
level,	or	perhaps	more	exactly,	the	severity	level	or	log	level.	All	the	other	parameters	are
actually	function	calls	which	independently	generate	and	store	additional	error
information	in	the	system	to	be	written	to	logs	and/or	be	sent	to	the	client.	Being	placed	in
the	argument	list	of	the	ereport()	makes	sure	that	these	other	functions	are	called	before
the	actual	error	is	reported.	This	is	important	because	in	the	case	of	an	error	level	being
ERROR,	FATAL,	or	PANIC	the	system	cleans	up	all	current	transaction	states	and	anything
after	the	ereport()	call	will	never	get	a	chance	to	run.	Error	states	the	end	of	the
transaction.

In	case	of	ERROR,	the	system	is	returned	to	a	clean	state	and	it	will	be	ready	to	accept	new
commands.

Error	level	FATAL	will	clean	up	the	backend	and	exit	the	current	session.

PANIC	is	the	most	destructive	one	and	it	will	not	only	end	the	current	connection,	but	will
also	cause	all	other	connections	to	be	terminated.	PANIC	means	that	shared	state	(shared
memory)	is	potentially	corrupted	and	it	is	not	safe	to	continue.	It	is	used	automatically	for
things	like	core	dumps	or	other	“hard”	crashes.

“Error”	states	that	are	not	errors
WARNING	is	the	highest	non-error	level.	It	means	that	something	may	be	wrong	and	needs
user/administrator	attention.	It	is	a	good	practice	to	periodically	scan	system	logs	for
warnings.	Use	this	only	for	unexpected	conditions.	See	the	next	one	for	things	happening
on	a	regular	basis.	Warnings	go	to	client	and	server	logs	by	default.

NOTICE	is	for	things	which	are	likely	of	higher	interest	to	users,	like	information	about
creating	a	primary	key	index	or	sequence	for	serial	type	(though	these	stopped	to	be
NOTICE	in	the	latest	version	of	PostgreSQL).	Like	the	previous	one,	NOTICE	is	sent	both	to
client	and	server	logs	by	default.

INFO	is	for	things	specifically	requested	by	client,	like	VACUUM	/	ANALYSE	VERBOSE.	It	is
always	sent	to	the	client	regardless	of	the	client_min_messages	GUC	setting,	but	is	not
written	to	a	server	log	when	using	default	settings.

LOG	and	COMMERROR	are	for	servers,	operational	messages,	and	by	default	are	only	written
to	the	server	log.	The	error	level	LOG	can	also	be	sent	to	the	client	if	client_min_messages
is	set	appropriately,	but	COMMERROR	never	is.

There	are	DEBUG1	to	DEBUG5	in	increasing	order	of	verbosity.	They	are	specifically	meant
for	reporting	debugging	info	and	are	not	really	useful	in	most	other	cases,	except	perhaps
for	curiosity.	Setting	higher	DEBUGx	levels	is	not	recommended	in	production	servers,	as
the	amount	logged	or	reported	can	be	really	huge.

When	are	messages	sent	to	the	client?
While	most	communication	from	the	server	to	the	client	takes	place	after	the	command
completes	(or	even	after	the	transaction	is	committed	in	case	of	LISTEN/NOTIFY),
everything	emitted	by	ereport()	is	sent	to	the	client	immediately,	thus	the	mention	of	off-
channel	messaging	previously.	This	makes	ereport()	a	useful	tool	for	monitoring	long-
running	commands	such	as	VACUUM	and	also	a	simple	debugging	aid	to	print	out	useful
debug	info.

Note
You	can	read	a	much	more	detailed	description	of	error	reporting	at
http://www.postgresql.org/docs/current/static/error-message-reporting.html.

http://www.postgresql.org/docs/current/static/error-message-reporting.html

Running	queries	and	calling	PostgreSQL
functions
Our	next	stop	is	running	SQL	queries	inside	the	database.	When	you	want	to	run	a	query
against	the	database,	you	need	to	use	something	called	Server	Programming	Interface
(SPI).	SPI	gives	programmer	the	ability	to	run	SQL	queries	via	a	set	of	interface	functions
for	using	PostgreSQL’s	parser,	planner,	and	executor.

Note
If	the	SQL	statement	you	are	running	via	SPI	fails,	the	control	is	not	returned	to	the	caller,
but	instead	the	system	reverts	to	a	clean	state	via	internal	mechanisms	for	ROLLBACK.	It	is
possible	to	catch	SQL	errors	by	establishing	a	sub-transaction	around	your	calls.	It	is	an
involved	process	not	yet	officially	declared	“stable”	and	therefore,	it	is	not	present	in	the
documentation	on	C	extensions.	If	you	need	it,	one	good	place	to	look	at	would	be	the
source	code	for	various	pluggable	languages	(PL/python,	PL/proxy,	and	so	on)	which	do	it
and	are	likely	to	be	maintained	in	good	order	if	the	interface	changes.

In	the	PL/python	source,	the	functions	to	examine	are	in	the	plpython/plpy_spi.c	file
and	are	appropriately	named	Ply_spi_subtransaction_[begin|commit|abort]().

The	SPI	functions	do	return	non-negative	values	for	success,	either	directly	via	a	return
value	or	in	a	global	variable	SPI_result.	Errors	produce	a	negative	value	or	Null.

A	sample	C	function	using	SPI
Here	is	a	sample	function	doing	an	SQL	query	via	SPI_*()	functions.	It	is	a	modified
version	of	the	sample	from	the	standard	documentation	(it	uses	Version	1	calling
conventions	and	outputs	an	extra	bit	of	information).	The	.c,	.sql.in,	and	Makefile
functions	for	this	sample	are	available	in	the	spi_samples/	subdirectory.

Datum	

count_returned_rows(PG_FUNCTION_ARGS)	

{	

				char	*command;	

				int	cnt;	

				int	ret;	

				int	proc;	

				/*	get	arguments,	convert	command	to	C	string	*/	

				command	=	text_to_cstring(PG_GETARG_TEXT_P(0));	

				cnt	=	PG_GETARG_INT32(1);	

				

				/*	open	internal	connection	*/	

				SPI_connect();	

				/*	run	the	SQL	command	*/

				ret	=	SPI_exec(command,	cnt);	

			/*	save	the	number	of	rows	*/

				proc	=	SPI_processed;	

				/*	If	some	rows	were	fetched,	print	them	via	elog(INFO).	*/	

				if	(ret	>	0	&&	SPI_tuptable	!=	NULL)	

				{	

								TupleDesc	tupdesc	=	SPI_tuptable->tupdesc;	

								SPITupleTable	*tuptable	=	SPI_tuptable;	

								char	buf[8192];	

								int	i,	j;	

								for	(j	=	0;	j	<	proc;	j++)	

								{	

												HeapTuple	tuple	=	tuptable->vals[j];	

												//	construct	a	string	representing	the	tuple

												for	(i	=	1,	buf[0]	=	0;	i	<=	tupdesc->natts;	i++)	

																snprintf(buf	+	strlen	(buf),	

																									sizeof(buf)	–	strlen(buf),

																									"	%s(%s::%s)%s",	

																									SPI_fname(tupdesc,	i),	

																									SPI_getvalue(tuple,	tupdesc,	i),	

																									SPI_gettype(tupdesc,	i),	

																									(i	==	tupdesc->natts)	?	"	"	:	"	|");	

												ereport(INFO,	(errmsg("ROW:	%s",	buf)));	

								}	

				}	

				SPI_finish();	

				pfree(command);	

				PG_RETURN_INT32(proc);	

}	

After	getting	the	arguments	using	the	PG_GETARG_*	macro,	the	first	new	thing	shown	is
opening	an	internal	connection	via	SPI_connect()	which	sets	up	the	internal	state	for	the
following	SPI_*()	function	calls.	The	next	step	is	to	execute	a	full	SQL	statement	using
SPI_exec(command,	cnt).

The	SPI_exec()	function	is	a	convenient	variant	of	SPI_execute(...)	with	the
read_only	flag	set	to	false.	The	read_only	flag,	if	set	to	true	means	that	only	a	read
only	command	can	be	executed.	There	is	also	a	third	version	of	the	execute	at	once	SPI
function,	the	SPI_execute_with_args(...),	which	prepares	the	query,	binds	the	passed-
in	arguments,	and	executes	in	a	single	call.

After	the	query	is	executed,	we	save	the	SPI_processed	value	for	returning	the	number	of
rows	processed	at	the	end	of	the	function.	In	this	sample,	it	is	not	strictly	necessary,	but	in
general	you	need	to	save	any	SPI_*	global	variable	because	they	could	be	overwritten	by
the	next	SPI_*(...)	call.

To	show	what	was	returned	by	the	query	and	also	to	show	how	to	access	fields	returned	by
SPI	functions,	we	next	print	out	detailed	info	on	any	tuples	returned	by	the	query	via	the
ereport(INFO,	…)	call.	We	first	checked	that	the	SPI_exec	call	was	successful	(ret	>	0)
and	that	some	tuples	were	returned	(SPI_tuptable	!=	NULL),	and	then	for	each	returned
tuple	for(j	=	0;	j	<	proc;	...)	we	looped	over	the	fields	for(i	=	1;	i	<=
tupdesc->natts;...)	formatting	the	fields	info	into	a	buffer.	We	get	the	string
representations	of	the	field	name,	value,	and	data	type	using	SPI	functions	SPI_fname(),
SPI_getvalue(),	and	SPI_gettype()	and	then	send	the	row	to	the	user	using
ereport(INFO,	…).	If	you	want	to	return	the	values	from	the	function	instead,	see	the	next
sections	on	returning	the	SETOF	values	and	composite	types.

Finally,	we	freed	the	SPI	internal	state	using	SPI_finish();.	One	can	also	free	the	space
allocated	for	the	command	variable	by	the	text_to_cstring(<textarg>)	function,
though	it	is	not	strictly	necessary,	thanks	to	the	function	call	context	being	destroyed	and
memory	allocated	in	it	being	freed	anyway	at	the	function	exit.

Visibility	of	data	changes
The	visibility	rules	for	data	changes	in	PostgreSQL	are	that	each	command	cannot	see	its
own	changes	but	usually	can	see	changes	made	by	commands	which	were	started	before
it,	even	when	the	command	is	started	by	the	outer	command	or	query.

The	exception	is	when	the	query	is	executed	with	a	read-only	flag	set,	in	which	case	the
changes	made	by	outer	commands	are	invisible	to	inner	or	called	commands.

The	visibility	rules	are	described	in	the	documentation	at
http://www.postgresql.org/docs/current/static/spi-visibility.html	and	may	be	quite	complex
to	understand	at	first,	but	it	may	help	to	think	of	a	read-only	SPI_execute()	call	as	being
command-level,	similar	to	the	transaction	isolation	level	serializable;	and	a	read-write	call
similar	to	the	read-committed	isolation	level.

This	is	further	explained	at	http://www.postgresql.org/docs/current/static/spi-
examples.html	in	the	Sample	session	section.

http://www.postgresql.org/docs/current/static/spi-visibility.html
http://www.postgresql.org/docs/current/static/spi-examples.html

More	info	on	SPI_*	functions
There	is	a	lot	more	information	on	specific	SPI_*()	functions	in	the	official
documentation.

For	PostgreSQL	Version	9.3	functions,
http://www.postgresql.org/docs/current/static/spi.html	is	the	starting	point	for	the	SPI
docs.

More	sample	code	is	also	available	in	the	PostgreSQL	source	in	regression	tests	at
src/test/regress/regress.c	and	in	the	contrib/spi/	module.

http://www.postgresql.org/docs/current/static/spi.html

Handling	records	as	arguments	or
returned	values
As	our	next	exercise,	let’s	write	a	function	which	takes	a	record	of	three	integers	a,	b,	and
c	as	an	argument	and	returns	a	set	of	different	records—all	permutations	of	a,	b,	and	c
with	an	extra	field	x	computed	as	a	*	b	+	c.

First,	this	function	is	written	in	PL/python	to	make	it	easier	to	understand	what	we	are
trying	to	do:

hannu=#	CREATE	LANGUAGE	plpythonu;

CREATE	LANGUAGE	

hannu=#	CREATE	TYPE	abc	AS	(a	int,	b	int,	c	int);	

CREATE	TYPE	

hannu=#	CREATE	OR	REPLACE	FUNCTION	

hannu-#					reverse_permutations(r	abc)	

hannu-#			RETURNS	TABLE(c	int,	b	int,	a	int,	x	int)	

hannu-#	AS	$$	

hannu$#					a,b,c	=	r['a'],	r['b'],	r['c']	

hannu$#					yield	a,b,c,a*b+c	

hannu$#					yield	a,c,b,a*c+b	

hannu$#					yield	b,a,c,b*b+c	

hannu$#					yield	b,c,a,b*c+a	

hannu$#					yield	c,a,b,c*a+b	

hannu$#					yield	c,b,a,c*b+a	

hannu$#	$$	LANGUAGE	plpythonu;	

CREATE	FUNCTION	

hannu=#	SELECT	*	FROM	reverse_permutations(row(2,7,13));	

-[RECORD	1]	

c	|	2	

b	|	7	

a	|	13	

x	|	27	

-[RECORD	2]	

c	|	2	

b	|	13	

a	|	7	

x	|	33	

-[RECORD	3]	

c	|	7	

b	|	2	

a	|	13	

x	|	62	

-[RECORD	4]	

c	|	7	

b	|	13	

a	|	2	

x	|	93	

-[RECORD	5]	

c	|	13	

b	|	2	

a	|	7	

x	|	33	

-[RECORD	6]	

c	|	13	

b	|	7	

a	|	2	

x	|	93	

There	are	three	new	things	that	we	are	going	to	touch	in	the	following	C	implementation
of	a	similar	function:

How	to	fetch	an	element	of	RECORD	passed	as	an	argument
How	to	construct	a	tuple	to	return	a	RECORD	type
How	to	return	SETOF	(also	known	as	TABLE)	of	this	RECORD

So	let’s	dive	into	the	C	code	for	this	right	away	(a	sample	can	be	found	in	the
chap9/c_records/	directory).

For	better	clarity,	we	will	explain	this	function	in	two	parts:	first,	doing	a	simple
reverse(a,b,c)	function,	which	returns	just	a	single	record	of	(c,b,a,x=c*b+a),	and
then	expanding	it	to	return	a	set	of	permutations	such	as	the	sample	PL/pythonu	function.

Returning	a	single	tuple	of	a	complex	type
The	first	step	in	constructing	a	version	of	the	reverse	permutations	function	in	C	is	to	start
with	simply	being	able	to	return	a	single	record	of	type	abc:

Datum	

c_reverse_tuple(PG_FUNCTION_ARGS)	

{	

				HeapTupleHeader	th;	

				int32			a,b,c;	

				bool				aisnull,	bisnull,	cisnull;	

				

				TupleDesc	resultTupleDesc;	

				Oid	resultTypeId;	

				Datum	retvals[4];	

				bool		retnulls[4];	

				HeapTuple	rettuple;	

				

				//	get	the	tuple	header	of	1st	argument	

				th	=	PG_GETARG_HEAPTUPLEHEADER(0);	

				//	get	argument	Datum's	and	convert	them	to	int32	

				a	=	DatumGetInt32(GetAttributeByName(th,	"a",	&aisnull));	

				b	=	DatumGetInt32(GetAttributeByName(th,	"b",	&bisnull));	

				c	=	DatumGetInt32(GetAttributeByName(th,	"c",	&cisnull));	

			//	debug:	report	the	extracted	field	values

				ereport(INFO,	

															(errmsg("arg:	(a:	%d,b:	%d,	c:	%d)",	a,	b,	c)));	

				

				//	set	up	tuple	descriptor	for	result	info	

				get_call_result_type(fcinfo,	&resultTypeId,	&resultTupleDesc);	

				//	check	that	SQL	function	definition	is	set	up	to	return	arecord	

				Assert(resultTypeId	==	TYPEFUNC_COMPOSITE);	

				//	make	the	tuple	descriptor	known	to	postgres	as	valid	return	type	

				BlessTupleDesc(resultTupleDesc);	

				

				retvals[0]	=	Int32GetDatum(c);	

				retvals[1]	=	Int32GetDatum(b);	

				retvals[2]	=	Int32GetDatum(a);	

				retvals[3]	=	Int32GetDatum(retvals[0]*retvals[1]+retvals[2]);	

				

				retnulls[0]	=	aisnull;	

				retnulls[1]	=	bisnull;	

				retnulls[2]	=	cisnull;	

				retnulls[3]	=	aisnull	||	bisnull	||	cisnull;	

				

				rettuple	=	heap_form_tuple(resultTupleDesc,	retvals,	retnulls);	

				PG_RETURN_DATUM(HeapTupleGetDatum(rettuple));	

}

Extracting	fields	from	an	argument	tuple
Getting	the	fields	of	an	argument	tuple	is	easy.	First,	you	fetch	the	HeapTupleHeader	file
of	the	argument	into	the	th	variable	using	the	PG_GETARG_HEAPTUPLEHEADER(0)	macro,
and	then	for	each	field	you	get	the	Datum	(a	generic	type	which	can	hold	any	field	value	in
PostgreSQL)	by	the	field	name	using	the	GetAttributeByName()	function	and	then	assign
its	value	to	a	local	variable	after	converting	it	to	int32	via	DatumGetInt32():

a	=	DatumGetInt32(GetAttributeByName(th,	"a",	&aisnull));

The	third	argument	to	GetAttributeByName(...)	is	an	address	of	a	bool	which	is	set	to
true	if	the	field	was	NULL.

There	is	also	a	companion	function	GetAttributeByNum()	if	you	prefer	to	get	the
attributes	by	their	numbers	instead	of	names.

Constructing	a	return	tuple
Constructing	the	return	tuple(s)	is	almost	as	easy.

First,	you	get	the	called	functions	return	type	descriptor	using	the
get_call_result_type()	function:

get_call_result_type(fcinfo,	&resultTypeId,	&resultTupleDesc);

The	first	argument	to	this	function	is	the	FunctionCallInfo	structure	fcinfo	which	is
used	when	calling	the	function	you	are	currently	writing	(hidden	behind	the
PG_FUNCTION_ARGS	macro	in	the	C	function	declaration).	The	other	two	arguments	are
addresses	of	the	return	type	Oid	and	TupleDesc	to	receive	the	return	tuple	descriptor	in
case	the	function	returns	a	record	type.

Next,	there	is	a	safety	assert	for	checking	that	the	return	type	is	really	a	record	(or
composite)	type:

Assert(resultTypeId	==	TYPEFUNC_COMPOSITE);

This	is	to	guard	against	errors	in	the	CREATE	FUNCTION	declaration	in	SQL	which	tells
PostgreSQL	about	this	new	function.

And	there	still	remains	one	thing	before	we	construct	the	tuple:

BlessTupleDesc(resultTupleDesc);

The	purpose	of	BlessTupleDesc()	is	to	fill	in	the	missing	parts	of	the	structure,	which	are
not	needed	for	internal	operations	on	the	tuple,	but	are	essential	when	the	tuple	is	returned
from	the	function.

So	we	are	done	with	the	tuple	descriptor	and	finally,	we	can	construct	the	tuple	or	record	it
to	be	returned.

The	tuple	is	constructed	using	the	heap_form_tuple(resultTupleDesc,	retvals,
retnulls);	function	which	uses	TupleDesc	we	just	prepared.	It	also	needs	an	array	of
Datum	to	be	used	as	values	in	the	return	tuple,	and	an	array	of	bool,	which	is	used	to
determine	if	any	field	should	be	set	to	NULL	instead	of	their	corresponding	Datum	value.	As
all	our	fields	are	of	type	int32,	their	values	in	retvals	are	set	using
Int32GetDatum(<localvar>).	The	array	retnull	is	a	simple	array	of	bool	and	needs	no
special	tricks	to	set	its	values.

Finally	we	return	the	constructed	tuple:

PG_RETURN_DATUM(HeapTupleGetDatum(rettuple));

Here,	we	first	construct	Datum	from	the	tuple	we	just	constructed	using
HeapTupleGetDatum()	and	then	use	the	PG_RETURN_DATUM	macro.

Interlude	–	what	is	Datum?
In	this	chapter,	we	use	something	called	Datum	in	several	places.	This	calls	for	a	bit	of
explanation	about	what	a	Datum	is.

In	short,	a	Datum	is	any	data	item	the	PostgreSQL	processes	and	passes	around.	Datum
itself	does	not	contain	any	type	information	or	info	on	whether	the	field	is	actually	NULL.	It
is	just	a	pointer	to	a	memory.	You	always	have	to	find	out	(or	know	beforehand)	the	type
of	any	Datum	you	use	and	also	how	to	find	out	if	your	data	may	be	NULL	instead	of	any	real
value.

In	the	preceding	example,	GetAttributeByName(th,	"b",	&bisnull)	returns	a	Datum,
and	it	can	return	something	even	when	the	field	in	the	tuple	is	NULL,	so	always	check	for
null-ness	first.	Also,	the	returned	Datum	itself	cannot	be	used	for	much	unless	we	convert	it
to	some	real	type,	as	done	in	the	next	step	using	DatumGetInt32(),	which	simply	converts
the	vague	Datum	to	a	real	int32	value	basically	doing	a	cast	from	a	memory	location	of	an
undefined	type	to	int32.

The	definition	of	Datum	in	postgresql.h	is	typedef	Datum	*DatumPtr;	that	is	anything
pointed	to	by	a	DatumPtr.	Even	though	DatumPtr	is	defined	as	typedef	uintptr_t
Datum;	it	may	be	easier	to	think	of	it	as	a	(slightly	restricted)	void	*.

Once	more,	any	real	substance	is	added	to	a	Datum	by	converting	it	to	a	real	type.

You	can	also	go	the	other	way,	turning	almost	anything	into	a	Datum	as	seen	at	the	end	of
the	function:

HeapTupleGetDatum(rettuple)

Again,	for	anything	else	in	PostgreSQL	to	make	use	of	such	Datum,	the	type	information
must	be	available	somewhere	else,	in	our	case	the	return	type	definitions	of	the	function.

Returning	a	set	of	records
Next,	we	will	modify	our	function	to	not	just	return	a	single	record	of	reordered	fields
from	an	argument	record,	but	to	return	all	possible	orderings.	We	will	still	add	one	extra
field	x	as	an	example	of	how	you	can	use	the	values	you	extracted	from	the	argument.

For	set-returning	functions,	PostgreSQL	has	a	special	calling	mechanism	where
PostgreSQL’s	executor	machinery	will	keep	calling	the	function	over	and	over	again	until
it	reports	back	that	it	does	not	have	any	more	values	to	return.	This	return-and-continue
behavior	is	very	similar	to	how	the	yield	keyword	works	in	Python	or	JavaScript.

All	calls	to	the	set	returning	function	get	an	argument	a	persistent	structure	maintained
outside	the	function	and	made	available	to	the	function	via	macros:
SRF_FIRSTCALL_INIT()	for	the	first	call	and	SRF_PERCALL_SETUP()	for	subsequent	calls.

To	further	clarify	the	example,	we	provide	a	constant	array	of	possible	orderings	to	be
used	when	permuting	the	values.

Also,	we	read	argument	fields	a,	b,	and	c	only	once	at	the	beginning	of	the	function	and
save	the	extracted	values	in	a	structure	c_reverse_tuple_args,	which	we	allocate	and
initialize	at	the	first	call.	For	the	structure	to	survive	through	all	calls,	we	allocate	this
structure	in	a	special	memory	context	which	is	maintained	in	the	funcctx	->
multi_call_memory_ctx	and	store	the	pointer	to	this	structure	in	funcctx	->	user_fctx.
We	also	make	use	of	funcctx	fields:	call_cntr	and	max_calls.

In	the	same	code	section	run	once	at	the	first	call,	we	also	prepare	the	descriptor	structure
needed	for	returning	the	tuples.	To	do	so,	we	fetch	the	return	tuple	descriptor	by	passing
the	address	we	get	in	funcctx->tuple_desc	to	the	function	get_call_result_type(...),
and	we	complete	the	preparation	by	calling	BlessTuple(...)	on	it	to	fill	in	the	missing
bits	needed	for	using	it	for	returning	values.

At	the	end	of	this	section,	we	restore	the	memory	context.	While	you	usually	do	not	need
to	pfree()	the	things	you	have	palloc()	allocated,	you	should	always	remember	to
restore	the	memory	context	when	you	are	done	using	any	context	you	have	switched	to,	or
else	you	risk	messing	up	PostgreSQL	in	a	way	that	can	be	hard	to	debug	later!

The	rest	is	something	that	gets	done	at	each	call,	including	the	first	one.

We	start	by	checking	that	there	is	still	something	to	do	by	comparing	the	current	call	to	the
max	calls	parameter.	This	is	by	no	means	the	only	way	to	determine	if	we	have	returned
all	values,	but	it	is	indeed	the	simplest	way	if	you	know	ahead	how	many	rows	you	are
going	to	return.	If	there	are	no	more	rows	to	return,	we	signal	this	back	using
SRF_RETURN_DONE().

The	rest	is	very	similar	to	what	the	previous	single-tuple	function	did.	We	compute	the
retvals	and	retnulls	arrays	using	the	index	permutations	array	ips	and	then	construct	a
tuple	to	return	using	heap_form_tuple(funcctx->tuple_desc,	retvals,	retnulls);.

Finally,	we	return	the	tuple	using	macro	SRF_RETURN_NEXT(...),	converting	the	tuple	to
Datum,	as	this	is	what	the	macro	expects.

One	more	thing	to	note,	all	current	versions	of	PostgreSQL	will	always	keep	calling	your
function	until	it	returns	SRF_RETURN_DONE().	There	is	currently	no	way	to	do	an	“early
exit”	from	the	callers	side.	This	means	that	if	your	function	returns	1	million	rows	and	you
do:

SELECT	*	FROM	mymillionrowfunction()	LIMIT	3;

The	function	will	be	called	1	million	times	internally,	and	all	the	results	will	be	cached,
and	only	after	this,	the	first	three	rows	will	be	returned	and	the	remaining	9,99,997	rows
are	discarded.	This	is	not	a	fundamental	limitation,	but	just	an	implementation	detail
which	is	likely	to	change	in	some	future	version	of	PostgreSQL.	Don’t	hold	your	breath
though,	this	will	only	happen	if	somebody	finds	this	valuable	enough	to	implement.

The	source	with	modifications	described	previously	is	as	follows:

struct	c_reverse_tuple_args	{	

				int32			argvals[3];	

				bool				argnulls[3];	

				bool				anyargnull;	

};	

Datum	

c_permutations_x(PG_FUNCTION_ARGS)	

{	

				FuncCallContext					*funcctx;	

				

				const	char		*argnames[3]	=	{"a","b","c"};	

				//	6	possible	index	permutations	for	0,1,2	

				const	int			ips[6][3]	=	{{0,1,2},{0,2,1},	

																													{1,0,2},{1,2,0},	

																													{2,0,1},{2,1,0}};	

				int	i,	call_nr;	

				

				struct	c_reverse_tuple_args*	args;	

				

				if(SRF_IS_FIRSTCALL())	

				{	

								HeapTupleHeader	th	=	PG_GETARG_HEAPTUPLEHEADER(0);	

								MemoryContext			oldcontext;	

								/*	create	a	function	context	for	cross-call	persistence	*/	

								funcctx	=	SRF_FIRSTCALL_INIT();	

								/*	switch	to	memory	context	appropriate	for	multiple	function	calls	

*/	

								oldcontext	=	MemoryContextSwitchTo(

																					funcctx->multi_call_memory_ctx

);	

								/*	allocate	and	zero-fill	struct	for	persisting	extracted	

arguments*/	

								args	=	palloc0(sizeof(struct	c_reverse_tuple_args));	

								args->anyargnull	=	false;	

								funcctx->user_fctx	=	args;	

								/*	total	number	of	tuples	to	be	returned	*/	

								funcctx->max_calls	=	6;	

								//	there	are	6	permutations	of	3	elements	

								//	extract	argument	values	and	NULL-ness	

								for(i=0;i<3;i++){	

												args->argvals[i]	=	DatumGetInt32(GetAttributeByName(th,	

argnames[i],	&(args->argnulls[i])));	

												if	(args->argnulls[i])	

																args->anyargnull	=	true;	

								}	

								//	set	up	tuple	for	result	info	

								if	(get_call_result_type(fcinfo,	NULL,	&funcctx->tuple_desc)

												!=	TYPEFUNC_COMPOSITE)	

												ereport(ERROR,	

																	(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),	

																	errmsg("function	returning	record	called	in	context	"	

																								"that	cannot	accept	type	record")));	

								BlessTupleDesc(funcctx->tuple_desc);	

								//	restore	memory	context	

								MemoryContextSwitchTo(oldcontext);	

				}	

				

				funcctx	=	SRF_PERCALL_SETUP();	

				args	=	funcctx->user_fctx;	

				call_nr	=	funcctx->call_cntr;	

				

				if	(call_nr	<	funcctx->max_calls)	{	

								HeapTuple			rettuple;	

								Datum							retvals[4];	

								bool	retnulls[4];	

								

								for(i=0;i<3;i++){	

											retvals[i]	=	Int32GetDatum(args->argvals[ips[call_nr][i]]);	

											retnulls[i]	=	args->argnulls[ips[call_nr][i]];	

								}

								retvals[3]	=	Int32GetDatum(args->argvals[ips[call_nr][0]]

																																	*	args->argvals[ips[call_nr][1]]

																																	+	args->argvals[ips[call_nr][2]]);	

								retnulls[3]	=	args->anyargnull;	

								

								rettuple	=	heap_form_tuple(funcctx->tuple_desc,	retvals,	retnulls);		

								SRF_RETURN_NEXT(funcctx,	HeapTupleGetDatum(rettuple));

				}	

				else				/*	do	when	there	is	no	more	left	*/	

				{	

								SRF_RETURN_DONE(funcctx);	

				}	

				

}

Fast	capturing	of	database	changes
Some	obvious	things	to	code	in	C	are	logging	or	auditing	triggers,	which	get	called	at	each
INSERT,	UPDATE,	or	DELETE	to	a	table.	We	have	not	set	aside	enough	space	in	this	book	to
explain	everything	needed	for	C	triggers,	but	interested	readers	can	look	up	the	source
code	for	the	skytools	package	where	you	can	find	more	than	one	way	to	write	triggers	in
C.

The	highly	optimized	C	source	for	the	two	main	triggers:	logtriga	and	logutriga,
includes	everything	you	need	to	capture	these	changes	to	a	table	and	also	to	detect	table
structure	changes	while	the	code	is	running.

The	latest	source	code	for	skytools	can	be	found	at
http://pgfoundry.org/projects/skytools.

http://pgfoundry.org/projects/skytools

Doing	something	at	commit/rollback
As	of	this	writing,	there	is	no	possibility	to	define	a	trigger	function	which	is	executed	ON
COMMIT	or	ON	ROLLBACK.	However,	if	you	really	need	to	have	some	code	executed	on	these
database	events,	you	have	a	possibility	to	register	a	C-language	function	to	be	called	on
these	events.	Unfortunately,	this	registration	cannot	be	done	in	a	permanent	way	like
triggers,	but	the	registration	function	has	to	be	called	each	time	a	new	connection	starts:

RegisterXactCallback(my_xact_callback,	NULL);	

Use	grep	-r	RegisterXactCallback	in	the	contrib/	directory	of	PostgreSQL’s	source
code	to	find	files	with	examples	of	actual	callback	functions.

Synchronizing	between	backends
All	the	preceding	functions	are	designed	to	run	in	a	single	process/backend	as	if	the	other
PostgreSQL	processes	did	not	exist.

But	what	if	you	want	to	log	something	to	a	single	file	from	multiple	backends?

Seems	easy—just	open	the	file	and	write	what	you	want.	Unfortunately,	it	is	not	that	easy
if	you	want	to	do	it	from	multiple	parallel	processes	and	you	do	not	overwrite	or	mix	up
the	data	with	what	other	processes	write.

To	have	more	control	over	the	writing	order	between	backends,	you	need	to	have	some
kind	of	inter-process	synchronization,	and	the	easiest	way	to	do	this	in	PostgreSQL	is	to
use	shared	memory	and	light-weight	locks	(LWLocks).

To	allocate	its	own	shared	memory	segment	your	.so	file	needs	to	be	preloaded,	that	is,	it
should	be	one	of	the	preloaded	libraries	given	in	the	postgresql.conf	variable
shared_preload_libraries.

In	the	_PG_init()	function	of	your	module,	you	ask	for	the	address	of	a	name	shared
memory	segment.	If	you	are	the	first	one	asking	for	the	segment,	you	are	also	responsible
for	initializing	the	shared	structures;	including,	creating,	and	storing	any	LWLocks	you
wish	to	use	in	your	module.

Writing	functions	in	C++
It	is	a	bad	idea	to	mix	PostgreSQL	with	C++	for	a	number	of	reasons.	It	is	better	to	wrap
your	C++	code	into	C	code	behind	extern	C	functions.	This	can	be	a	problem	if	you
heavily	use	templates	and	libraries	like	boost.

For	more	discussion	on	use	of	C++	read	the	PostgreSQL	documentation	here
http://www.postgresql.org/docs/current/static/xfunc-c.html#EXTEND-CPP.

http://www.postgresql.org/docs/current/static/xfunc-c.html#EXTEND-CPP

Additional	resources	for	C
In	this	chapter,	we	were	able	to	only	give	you	a	very	basic	introduction	to	what	is	possible
in	C.	Here	is	some	advice	on	how	to	get	more	information.

First,	there	is	of	course	the	chapter	C-Language	Functions	in	the	PostgreSQL	manual.
This	can	be	found	online	at	http://www.postgresql.org/docs/current/static/xfunc-c.html	and
as	with	most	of	the	online	PostgreSQL	manuals,	you	usually	can	get	to	older	versions	if
they	exist.

The	next	one,	surprisingly,	is	the	PostgreSQL	source	code	itself.	However,	you	will
usually	not	get	very	far	by	just	opening	the	files	or	using	grep	to	find	what	you	need.	If
you	are	good	with	using	ctags	(http://en.wikipedia.org/wiki/Ctags)	or	another	similar	tool,
it	is	definitely	recommended.

Also,	if	you	are	new	to	these	types	of	large-code	exploration	systems,	then	a	really	good
resource	for	finding	and	examining	PostgreSQL	internals	is	maintained	at
http://doxygen.postgresql.org/.	This	points	to	the	latest	git	master,	so	it	may	not	be
accurate	for	your	version	of	PostgreSQL,	but	it	is	usually	good	enough	and	at	least
provides	a	nice	starting	point	for	digging	around	in	the	source	code	of	your	version.

Quite	often,	you	will	find	something	to	base	(parts	of)	your	C	source	on	in	the	contrib/
directory	in	the	source	code.	To	get	an	idea	of	what	lies	there,	read	through	the	Appendix
F,	Additional	Supplied	Modules
(http://www.postgresql.org/docs/current/static/contrib.html).	It’s	entirely	possible	that
somebody	has	already	written	what	you	need.	There	are	many	more	modules	in
http://pgfoundry.org	for	you	to	examine	and	choose	from.	A	word	of	warning	though,
while	modules	in	contrib/	are	checked	at	least	by	one	or	two	competent	PostgreSQL	core
programmers,	the	things	at	pgfoundry	can	be	of	wildly	varying	quality.	The	top	active
projects	are	really	good;	however,	so	the	main	things	to	look	at	when	determining	if	you
can	use	them	as	a	learning	source	are	how	active	the	project	is	and	when	was	it	last
updated.

There	is	also	a	set	of	GUC	parameters	specifically	for	development	and	debugging	which
are	usually	left	out	of	the	sample	postgresql.conf	file.	The	descriptions	and	an
explanation	are	available	at	http://www.postgresql.org/docs/current/static/runtime-config-
developer.html.

http://www.postgresql.org/docs/current/static/xfunc-c.html
http://en.wikipedia.org/wiki/Ctags
http://doxygen.postgresql.org/
http://www.postgresql.org/docs/current/static/contrib.html
http://pgfoundry.org
http://www.postgresql.org/docs/current/static/runtime-config-developer.html

Summary
As	C	is	the	language	that	PostgreSQL	itself	is	written	in,	it	is	very	hard	to	draw	a
distinction	on	what	is	an	extension	function	using	a	defined	API	and	what	is	hacking
PostgreSQL	itself.

Some	of	the	topics	that	we	did	not	touch	at	all	were:

Creating	new	installable	types	from	scratch—see	contrib/hstore/	for	a	full
implementation	of	a	new	type.
Creating	new	index	methods—download	an	older	version	of	PostgreSQL	to	see	how
full	text	indexing	support	was	provided	as	an	add-on.
Implementing	a	new	PL/*	language—search	for	pl/lolcode	for	a	language,	the	sole
purpose	of	which	is	to	demonstrate	how	a	PostgreSQL’s	PL/*	language	should	be
written	(see	http://pgfoundry.org/projects/pllolcode/).	You	may	also	want	to	check	out
the	source	code	for	PL/Proxy	for	a	clean	and	well-maintained	PL	language.	(The
usage	of	PL/Proxy	is	described	in	the	next	chapter.)

Hopefully,	this	chapter	gave	you	enough	info	to	at	least	start	writing	PostgreSQL
extension	functions	in	C.

If	you	need	more	than	what	is	available	here	or	in	the	official	PostgreSQL	documentation,
then	remember	that	lots	of	PostgreSQL’s	backend	developer	documentation—often
including	answers	to	the	questions	How?	and	Why?—is	in	the	source	files.	A	lot	of	that
can	also	be	relevant	to	C	extensions.

So	remember—Use	The	Source,	Luke!

In	the	next	chapter	we	will	discuss	scaling	the	database	using	PL/Proxy.

http://pgfoundry.org/projects/pllolcode/

Chapter	10.	Scaling	Your	Database	with
PL/Proxy
If	you	have	followed	the	advice	in	the	previous	chapters	for	doing	all	your	database	access
through	functions,	you	are	in	a	great	position	to	scale	your	database	by	horizontally
distributing	the	data	over	multiple	servers,	also	known	as	database	sharding.	Horizontal
distribution	means	that	you	keep	just	a	portion	of	a	table	on	each	partition	of	the	database,
and	that	you	have	a	method	to	automatically	access	the	right	database	when	accessing	the
data.

We	will	gently	introduce	the	concepts	leading	to	the	PL/Proxy	partitioning	language,	and
then	delve	into	the	syntax	and	proper	usage	of	the	language	itself.	Let’s	start	with	writing	a
scalable	application	from	scratch.	First,	we	will	write	it	to	be	as	highly	performing	as
possible	on	one	server.	Then,	we	will	scale	it	by	spreading	it	out	on	several	servers.	We
will	first	get	this	implemented	in	PL/Pythonu	and	then	in	PL/Proxy.

Note
This	approach	is	worth	taking,	only	if	you	have	(plans	for)	a	really	large	database.	For
most	databases,	one	server	plus	one	or	perhaps	two	hot	standby	servers	should	be	more
than	enough.

Creating	a	simple	single-server	chat
Perhaps,	the	simplest	application	needing	this	kind	of	scalability	is	a	messaging	(or	chat)
application;	so,	let’s	write	one.

The	initial	single-server	implementation	has	the	following	specifications:

There	should	be	users	and	messages
Each	user	has	a	username,	password,	e-mail,	list	of	friends,	and	a	flag	to	indicate	if
the	user	wants	to	get	messages	from	only	their	friends,	or	from	everybody
For	users,	there	are	methods	for:

Registering	new	users
Updating	the	list	of	friends
Logging	in

Each	message	has	a	sender,	receiver,	message	body,	and	timestamps	for	sending	and
reading	the	message
For	messages,	there	are	methods	for:

Sending	a	message
Retrieving	new	messages

A	minimalistic	system	implementing	this,	could	look	like	the	following:

Here,	a	web	page	opens	a	WebSocket	(ws://)	to	a	HUB	(a	message	concentrator)	which	in
turn	talks	to	a	database.	On	each	new	connection,	the	HUB	logs	in	and	on	successful	login
opens	a	WebSocket	connection	to	the	web	page.	It	then	sends	all	new	messages	that	have
accumulated	for	the	logged-in	user	since	the	last	time	they	retrieved	their	messages.	After
that,	the	HUB	waits	for	new	messages	and	pushes	them	to	the	web	page	as	they	arrive.

The	database	part	has	two	tables,	the	user_info	table	and	message	table.	The	following
code	will	create	the	user_info	table:

CREATE	TABLE	user_info	(

					username	text	primary	key,

					pwdhash	text	not	null,	—base64	encoded	md5	hash	of	password

					email	text,

					friend_list	text[],—list	of	buddies	usernames

					friends_only	boolean	not	null	default	false

);

The	following	code	will	create	the	message	table:

CREATE	TABLE	message	(

				from_user	text	not	null	references	user_info(username),

				sent_at	timestamp	not	null	default	current_timestamp,	

				to_user	text	not	null	references	user_info(username),

				read_at	timestamp,—when	was	this	retrieved	by	to_user

				msg_body	text	not	null,

				delivery_status	text	not	null	default	'outgoing'—	('sent',	"failed")

);

As	this	is	still	an	all-in-one	database	implementation,	the	database	functions
corresponding	to	application	methods	are	very	simple.

The	following	code	will	create	a	user:

CREATE	or	REPLACE	FUNCTION	new_user(

				IN	i_username	text,	IN	i_pwdhash	text,	IN	i_email	text,

				OUT	status	int,	OUT	message	text)	

AS	$$

BEGIN

				INSERT	INTO	user_info(username,	pwdhash,	email)

																VALUES	(i_username,	i_pwdhash,	i_email);

				status	=	200;

				message	=	'OK';

EXCEPTION	WHEN	unique_violation	THEN	

				status	=	500;

				message	=	'USER	EXISTS';

END;

$$	LANGUAGE	plpgsql	SECURITY	DEFINER;

This	method	just	fails	when	the	user	is	already	defined.	A	more	real-life	function	would
propose	a	list	of	available	usernames	in	this	case.

The	following	method	for	login	returns	status	500	for	failure	and	200	or	201	for	success.	If
the	method	returns	201,	it	means	that	there	are	unread	messages	for	this	user:

CREATE	OR	REPLACE	FUNCTION	login(

				IN	i_username	text,	IN	i_pwdhash	text,

				OUT	status	int,	OUT	message	text)	

AS	$$

BEGIN

				PERFORM	1	FROM	user_info	

				WHERE	(username,	pwdhash)	=	(i_username,	i_pwdhash);

				IF	NOT	FOUND	THEN

								status	=	500;

								message	=	'NOT	FOUND';

							return;

				END	IF;

				PERFORM	1	FROM		message

				WHERE		to_user	=		i_username

						AND		read_at	IS	NULL;

				IF	FOUND	THEN

								status	=	201;

								message	=	'OK.	NEW	MESSAGES';

				ELSE

								status	=	200;

								message	=	'OK.	NO	MESSAGES';

				END	IF;

END;

$$	LANGUAGE	plpgsql	SECURITY	DEFINER;	

The	following	are	the	other	two	user	methods	for	changing	the	friends,	list	and	telling	the
system	whether	they	want	to	receive	mails	that	are	only	from	friends.	Error	checking	is
omitted	here	for	brevity:

CREATE	or	REPLACE	FUNCTION	set_friends_list(

				IN	i_username	text,	IN	i_friends_list	text[],	

				OUT	status	int,	OUT	message	text)	

AS	$$

BEGIN

				UPDATE	user_info	

							SET		friend_list	=		i_friends_list

				WHERE		username	=		i_username;

				status	=	200;

				message	=	'OK';

END;

$$	LANGUAGE	plpgsql	SECURITY	DEFINER;

CREATE	or	REPLACE	FUNCTION	msg_from_friends_only(

				IN	i_username	text,	IN	i_friends_only	boolean,OUT	status	int,	OUT	

message	text)	

AS	$$

BEGIN

				UPDATE	user_info	SET		friends_only	=			i_friends_only

				WHERE		username	=		i_username;

				status	=	200;

				message	=	'OK';

END;

$$	LANGUAGE	plpgsql	SECURITY	DEFINER;

The	send_message()function	is	used	for	messaging,	which	simply	sends	messages,	as
shown	in	the	following	code:

CREATE	or	REPLACE	FUNCTION	send_message(

				IN	i_from_user	text,	IN	i_to_user	text,	IN	i_message	text,	

				OUT	status	int,	OUT	message	text)	

AS	$$

BEGIN

				PERFORM	1	FROM		user_info

				WHERE		username	=	i_to_user

						AND	(NOT	friends_only	OR	friend_list	@>	ARRAY[i_from_user]);

				IF	NOT	FOUND	THEN

								status	=	400;

								message	=	'SENDING	FAILED';

								RETURN;

				END	IF;

				INSERT	INTO	message(from_user,	to_user,	msg_body,	delivery_status)

				VALUES	(i_from_user,	i_to_user,	i_message,	'sent');

				status	=	200;

				message	=	'OK';

EXCEPTION

				WHEN	foreign_key_violation	THEN

								status	=	500;

								message	=	'FAILED';

END;

$$	LANGUAGE	plpgsql	SECURITY	DEFINER;

The	function	used	for	retrieving	messages,	is	as	follows:

CREATE	or	REPLACE	FUNCTION	get_new_messages(

				IN	i_username	text,

				OUT	o_status	int,	OUT	o_message_text	text,	

				OUT	o_from_user	text,	OUT	o_sent_at	timestamp)

RETURNS	SETOF	RECORD

AS	$$

BEGIN

				FOR	o_status,		o_message_text,	o_from_user,		o_sent_at	IN

								UPDATE	message	

								SET	read_at	=	CURRENT_TIMESTAMP,

												delivery_status	=	'read'

								WHERE	to_user	=		i_username	AND	read_at	IS	NULL

								RETURNING	200,	msg_body,	from_user	,	sent_at

				LOOP

								RETURN	NEXT;

				END	LOOP;

END;

$$	LANGUAGE	plpgsql	SECURITY	DEFINER;

We	are	almost	done	with	the	database	part	of	our	simple	server.	To	finish	it	up,	we	need	to
do	some	initial	performance	tuning,	and	for	that,	we	need	some	data	in	our	tables.	The
easiest	way	is	to	use	the	generate_series()	function	to	generate	a	list	of	numbers,	which
we	will	use	as	usernames.	For	our	initial	testing,	names	like	7	or	42	are	as	good	as	Bob,
Mary,	or	Jill:

hannu=#	SELECT	new_user(generate_series::text,	'pwd',	generate_series::text	

||	'@pg.org')	

hannu-#			FROM	generate_series(1,100000);

hannu=#	WITH	ns(n,len)	AS	(

hannu(#								SELECT	*,(random()	*	10)::int	FROM	

generate_series(1,100000))	

hannu-#															SELECT	set_friends_list(ns.n::text,	

hannu(#																		ARRAY((SELECT	(random()	*	100000)::int	

hannu(#																												FROM	generate_series(1,len)))::text[]	

hannu(#)	

hannu-#	FROM	ns	;

Now,	we	have	100,000	users	with	0	to	10	friends	each,	for	a	total	of	501,900	friends.

hannu=#	SELECT	count(*)	FROM	(SELECT	username,unnest(friend_list)	FROM	

user_info)	a;	

-[RECORD	1]-	

count	|	501900	

Now,	let’s	send	each	of	the	friends	a	message:

hannu=#	SELECT	send_message(username,unnest(friend_list),'hello	friend!')	

FROM	user_info;	

Look	how	fast	we	can	retrieve	the	messages:

hannu=#	SELECT	get_new_messages('50000');	

																					get_new_messages																					

--	

	(200,"hello	friend!",49992,"2012-01-09	02:23:28.470979")	

	(200,"hello	friend!",49994,"2012-01-09	02:23:28.470979")	

	(200,"hello	friend!",49995,"2012-01-09	02:23:28.470979")	

	(200,"hello	friend!",49996,"2012-01-09	02:23:28.470979")	

	(200,"hello	friend!",49997,"2012-01-09	02:23:28.470979")	

	(200,"hello	friend!",49999,"2012-01-09	02:23:28.470979")	

	(200,"hello	friend!",50000,"2012-01-09	02:23:28.470979")	

(7	rows)	

Time:	763.513	ms	

Spending	almost	a	second	getting	seven	messages	seems	slow,	so	we	need	to	optimize	a
bit.

The	first	thing	to	do	is	to	add	indexes	for	retrieving	the	messages:

hannu=#	CREATE	INDEX	message_from_user_ndx	ON		message(from_user);	

CREATE	INDEX	

Time:	4341.890	ms	

hannu=#	CREATE	INDEX	message_to_user_ndx	ON		message(to_user);	

CREATE	INDEX	

Time:	4340.841	ms	

And	check	if	this	helped	to	solve	our	problem:

hannu=#	SELECT	get_new_messages('52000');	

																					get_new_messages																					

--	

	(200,"hello	friend!",51993,"2012-01-09	02:23:28.470979")	

	(200,"hello	friend!",51994,"2012-01-09	02:23:28.470979")	

	(200,"hello	friend!",51996,"2012-01-09	02:23:28.470979")	

	(200,"hello	friend!",51997,"2012-01-09	02:23:28.470979")	

	(200,"hello	friend!",51998,"2012-01-09	02:23:28.470979")	

	(200,"hello	friend!",51999,"2012-01-09	02:23:28.470979")	

	(200,"hello	friend!",52000,"2012-01-09	02:23:28.470979")	

(7	rows)	

Time:	2.949	ms	

Much	better—indexed	lookups	are	300	times	faster	than	sequential	scans,	and	this
difference	will	grow	as	tables	get	bigger!

As	we	are	updating	the	messages	and	setting	their	status	to	read,	it	is	also	a	good	idea	to
set	fillfactor	to	something	less	than	100	percent	and	this	is	shown	in	the	following
example:

Note
Fillfactor	tells	PostgreSQL	not	to	fill	up	database	pages	completely,	but	to	leave	some
space	for	HOT	updates.	When	PostgreSQL	updates	a	row,	it	only	marks	the	old	row	for
deletion	and	adds	a	new	row	to	the	data	file.	If	the	row	that	is	updated	only	changes
unindexed	fields,	and	there	is	enough	room	in	the	page	to	store	a	second	copy,	a	HOT
update	will	be	done	instead.	In	this	case,	the	copy	can	be	found	using	original	index
pointers	to	the	first	copy,	and	no	expensive	index	updates	are	done	while	updating.	You
can	read	more	about	the	fillfactor	at	http://www.postgresql.org/docs/current/static/sql-
createtable.html

hannu=#	ALTER	TABLE	message	SET	(fillfactor	=	90);	

ALTER	TABLE	

Time:	75.729	ms	

http://www.postgresql.org/docs/current/static/sql-createtable.html

hannu=#	CLUSTER	message_from_user_ndx	ON	message;	

CLUSTER	

Time:	9797.639	ms	

hannu=#	SELECT	get_new_messages('55022');	

																					get_new_messages																					

--	

	(200,"hello	friend!",55014,"2012-01-09	02:23:28.470979")	

	(200,"hello	friend!",55016,"2012-01-09	02:23:28.470979")	

	(200,"hello	friend!",55017,"2012-01-09	02:23:28.470979")	

	(200,"hello	friend!",55019,"2012-01-09	02:23:28.470979")	

	(200,"hello	friend!",55020,"2012-01-09	02:23:28.470979")	

	(200,"hello	friend!",55021,"2012-01-09	02:23:28.470979")	

	(200,"hello	friend!",55022,"2012-01-09	02:23:28.470979")	

(7	rows)	

Time:	1.895	ms	

Still	better!	The	fillfactor	made	the	get_new_messages()	function	another	20	to	30
percent	faster,	thanks	to	enabling	the	faster	HOT	updates!

Dealing	with	success	–	splitting	tables	over
multiple	databases
Now,	let’s	roll	forward	a	little	in	time	and	assume	you	have	been	successful	enough	to
attract	tens	of	thousands	of	users	and	your	single	database	starts	creaking	under	the	load.

My	general	rule	of	thumb,	is	to	start	planning	for	a	bigger	machine,	or	splitting	the
database,	when	you	are	over	80	percent	utilization	at	least	for	a	few	hours	a	day.	It’s	good
to	have	a	plan	earlier,	but	now	you	have	to	start	doing	something	about	really	carrying	out
the	plan.

What	expansion	plans	work	and	when?
There	are	a	couple	of	popular	ways	to	grow	database-backed	systems.	Depending	on	your
use	case,	not	all	ways	will	work.

Moving	to	a	bigger	server
If	you	suspect	that	you	are	near	your	top	load	for	the	service	or	product,	you	can	simply
move	to	a	more	powerful	server.	This	may	not	be	the	best	long-time	scaling	solution	if	you
are	still	in	the	middle,	or	even	in	the	beginning	of	your	growth.	You	will	run	out	of	bigger
machines	to	buy	long	before	you	are	done.	Servers	also	become	disproportionately	more
expensive	as	the	size	increases,	and	you	will	be	left	with	at	least	one	different,	and	thus	not
easily	replaceable,	server	once	you	implement	a	proper	scaling	solution.

On	the	other	hand,	this	will	work	for	some	time	and	is	often	the	easiest	way	to	get	some
headroom	while	implementing	real	scaling	solutions.

Master-slave	replication	–	moving	reads	to	slave
Master-slave	replication,	either	trigger-based	or	WAL-based,	works	reasonably	well	in
cases	where	the	large	majority	of	the	database	accesses	are	reads.	Some	things	that	fall
under	this	case,	are	website	content	managers,	blogs,	and	other	publishing	systems.

As	our	chat	system	has	more	or	less	a	1:1	ratio	of	writes	and	reads,	moving	reads	to	a
separate	server	will	buy	us	nothing.	The	replication	itself	is	more	expensive	than	the
possible	win	from	reading	from	a	second	server.

Multimaster	replication
Multi	master	replication	is	even	worse	than	master-slave(s)	when	the	problem	is	scaling	a
write-heavy	workload.	It	has	all	the	problems	of	master-slave,	plus	it	introduces	extra	load
via	cross-partition	locking	or	conflict	resolution	requirements,	which	further	slows	down
the	whole	cluster.

Data	partitioning	across	multiple	servers
The	obvious	solution	to	scaling	writes	is	to	split	them	between	several	servers.	Ideally	you
could	have,	for	example,	four	servers	and	each	of	them	getting	exactly	one	fourth	of	the
load.

In	this	case,	each	server	would	hold	a	quarter	of	users	and	messages,	and	serve	a	quarter	of
all	requests.

To	make	the	change	transparent	for	database	clients,	we	introduce	a	layer	of	proxy
databases.	These	proxy	databases	can	either	reside	on	the	same	hosts	as	the	partition
databases	or	be	on	their	own	host.	The	role	of	the	proxy	databases	is	to	pretend	to	be	the
database	for	clients,	but	in	fact	delegate	the	real	work	to	partitions	by	calling	the	right
function	in	the	right	partition	database.

This	client	transparency	is	not	terribly	important	if	you	have	just	one	application	accessing
the	database.	If	you	did,	you	could	then	do	the	splitting	in	the	client	application.	It
becomes	very	handy	as	your	system	grows	to	have	several	applications,	perhaps	using
many	different	platforms	and	frameworks	on	the	client	side.

Having	a	separate	layer	of	proxy	databases	enables	easy	management	of	data	splitting,	so
that	the	client	applications	don’t	need	to	know	anything	about	the	underlying	data
architecture.	They	just	call	the	functions	they	need	and	that’s	all	they	need	to	know.	In
fact,	you	can	switch	out	the	whole	database	structure	without	the	clients	ever	noticing
anything,	except	the	better	performance	from	the	new	architecture.

More	on	how	exactly	the	proxy	works	later.	For	now,	let	us	tackle	splitting	the	data.

Splitting	the	data
If	we	split	the	data,	we	need	a	simple	and	efficient	way	to	determine	which	server	stores
each	data	row.	If	the	data	had	an	integer	primary	key,	you	could	just	go	round-robin,	store
the	first	row	on	the	first	server,	the	second	row	on	the	second,	and	so	on.	This	would	give
you	a	fairly	even	distribution,	even	when	rows	with	certain	IDs	are	missing.

The	partitioning	function	for	selecting	between	four	servers	would	be	simply:

partition_nr	=	id	&	3

The	partitioning	mask	3	(binary	11)	is	for	the	first	two	bits.	For	eight	partitions,	you	would
use	7	(binary	111),	and	for	64	servers	it	would	be	63	(00111111).	It	is	not	as	easy	with
things	like	usernames,	where	putting	all	names	starting	with	an	A	first,	B	second,	and	so
on,	does	not	produce	an	even	distribution.

Turning	the	username	into	a	fairly	evenly	distributed	integer	via	the	hash	function	solves
this	problem	and	can	be	used	directly	to	select	the	partition.

partition_nr	=	hashtext(username)	&	3

This	would	distribute	the	users	in	the	following	manner:

hannu=#	SELECT	username,	hashtext(username)	&	3	as	partition_nr	FROM	

user_info;	

-[RECORD	1]+--------	

username					|	bob	

partition_nr	|	1	

-[RECORD	2]+--------	

username					|	jane	

partition_nr	|	2	

-[RECORD	3]+--------	

username					|	tom	

partition_nr	|	1	

-[RECORD	4]+--------	

username					|	mary	

partition_nr	|	3	

-[RECORD	5]+--------	

username					|	jill	

partition_nr	|	2	

-[RECORD	6]+--------	

username					|	abigail	

partition_nr	|	3	

-[RECORD	7]+--------	

username					|	ted	

partition_nr	|	3	

-[RECORD	8]+--------	

username					|	alfonso	

partition_nr	|	0	

So,	partition	0	gets	user	alfonso,	partition	1	bob	and	tom,	partition	2	jane	and	jill,	and
partition	3	gets	mary,	abigail,	and	ted.	The	distribution	is	not	exactly	one	fourth	to	each
partition;	but	as	the	number	of	partitions	increase,	it	will	be	pretty	close	where	this
actually	matters.

If	we	had	no	PL/Proxy	language,	we	could	write	the	partitioning	functions	in	the	most
untrusted	PL	languages.	For	example,	a	simple	login	proxy	function	written	in	PL/Pythonu
looks	like	this:

CREATE	OR	REPLACE	FUNCTION	pylogin(

				IN	i_username	text,	IN	i_pwdhash	text,

				OUT	status	int,	OUT	message	text)	

AS	$$

				import	psycopg2

				partitions	=	[

								'dbname=chap10p0	port=5433',

								'dbname=chap10p1	port=5433',

								'dbname=chap10p2	port=5433',

								'dbname=chap10p3	port=5433',

]

				partition_nr	=	hash(i_username)	&	3

				con	=	psycopg2.connect(partitions[partition_nr])

				cur	=	con.cursor()

				cur.execute('select	*	from	login(%s,%s)',	(i_username,	i_pwdhash))

				status,	message	=	cur.fetchone()

				return	(status,	message)

$$	LANGUAGE	plpythonu	SECURITY	DEFINER;

Here,	we	defined	a	set	of	four	partition	databases,	given	by	their	connect	strings	and	stored

as	a	list	in	variable	partitions.

When	executing	the	function,	we	first	evaluate	the	hash	function	on	the	username
argument	(hash(i_username))	and	extract	two	bits	from	it	(&	3)	to	get	an	index	into	the
partitions’	list	(the	partition	number)	for	executing	each	call.

Then,	we	open	a	connection	to	a	partition	database	using	the	connect	string	selected	by	the
partition	number	(con=psycopg2.connect(partitions[partition_nr])).

Finally,	we	execute	a	remote	query	in	the	partition	database	and	return	the	results	of	this	to
the	caller	of	this	proxy	function.

This	works	reasonably	well,	if	implemented	like	this,	but	it	also	has	at	least	two	places
where	it	is	suboptimal:

First,	it	opens	a	new	database	connection	each	time	the	function	is	called,	which	kills
performance
Second,	it	is	a	maintenance	nightmare	if	you	hard-wire	the	partition	information	in
full,	in	all	functions

The	performance	problem	can	be	solved	by	caching	the	open	connections,	and	the
maintenance	problem	can	be	solved	by	having	a	single	function	returning	the	partition
information.	However,	even	when	we	do	these	changes	and	stay	with	PL/Pythonu	for
partitioning,	we	will	still	be	doing	a	lot	of	copy	and	paste	programming	in	each	of	our
proxy	functions.

Once	we	had	reached	the	preceding	conclusions,	when	growing	our	database	systems	at
Skype,	the	next	logical	step	was	quite	obvious.	We	needed	a	special	partitioning	language,
which	would	do	just	this	one	thing—calling	remote	SQL	functions,	and	then	make	it	as
fast	as	possible.	And	thus,	the	PL/Proxy	database	partitioning	language	was	born.

PL/Proxy	–	the	partitioning	language
The	rest	of	this	chapter	is	devoted	to	the	PL/Proxy	language.	First,	we	will	install	it.	Then,
we	will	look	at	its	syntax	and	ways	to	configure	the	partitions	for	its	use.	Finally,	we	will
discuss	how	to	do	the	actual	data	migration	from	a	single	database	to	a	partitioned	one	and
then	look	at	several	usage	examples.

Installing	PL/Proxy
If	you	are	on	Debian,	Ubuntu,	or	a	Red	Hat	variant,	installing	the	language	is	easy.

First,	you	have	to	install	the	required	packages	on	your	operating	system:

sudo	apt-get	install	postgresql-9.4-plproxy	

Or:

sudo	yum	install	plproxy94	

If	you	need	to	install	PL/Proxy	from	the	source,	you	can	download	it	from
http://pgfoundry.org/projects/plprox,	extract	the	sources	in	the	contrib	folder	of	your
PostgreSQL	source	tree	and	run	make	and	make	install.

To	install	PL/Proxy	you	should	run	the	plproxy.sql	file,	which	is	part	of	the	source	code
or	the	package	you	installed.

The	PL/Proxy	language	syntax
The	PL/Proxy	language	itself	is	very	simple.	The	purpose	of	a	PL/Proxy	function	is	to
hand	off	the	processing	to	another	server,	so	that	the	language	only	needs	six	statements:

CONNECT	or	CLUSTER	and	RUN	ON	for	selecting	the	target	database	partition
SELECT	and	TARGET	for	specifying	the	query	to	run
SPLIT	for	splitting	an	ARRAY	argument	between	several	sub	arrays	for	running	on
multiple	partitions

CONNECT,	CLUSTER,	and	RUN	ON
The	first	group	of	statements	handles	the	remote	connectivity	to	the	partitions.	The	help
determines	which	database	to	run	the	query	on.	You	specify	the	exact	partition	to	run	the
query	using	CONNECT:

CONNECT	'connect	string'	;

Here,	connect	string	determines	the	database	to	run.	connect	string	is	the	standard
PostgreSQL	connect	string	you	would	use	to	connect	to	the	database	from	a	client
application,	for	example:	dbname=p0	port=5433	username=test	host=localhost.

Or,	you	can	specify	a	name	using	CLUSTER:

CLUSTER	'usercluster';

Finally,	you	can	specify	a	partition	number	using	RUN	ON:

RUN	ON	part_func(arg[,	...])	;	

http://pgfoundry.org/projects/plprox

part_func()can	be	any	existing	or	user-defined	PostgreSQL	function	returning	an	integer.
PL/Proxy	calls	that	function	with	the	given	arguments	and	then	uses	N	lower	bits	from	the
result	to	select	a	connection	to	a	cluster	partition.

There	are	two	more	versions	of	the	RUN	ON	statement:

RUN	ON	ANY;

This	means	that	the	function	can	be	executed	on	any	partition	in	a	cluster.	This	can	be
used	when	all	the	required	data	for	a	function	is	present	on	all	partitions.

The	other	version	is:

RUN	ON	ALL;

This	runs	the	statement	on	all	partitions	in	parallel	and	then	returns	a	concatenation	of
results	from	the	partitions.	This	has	at	least	three	main	uses:

For	cases	when	you	don’t	know	where	the	required	data	row	is,	like	when	getting
data	using	non-partition	keys.	For	example,	getting	a	user	by	its	e-mail	when	the
table	is	partitioned	by	username.
Running	aggregate	functions	over	larger	subsets	of	data,	say	counting	all	users.	For
example,	getting	all	the	users	who	have	a	certain	user	in	their	friends’	lists.
Manipulating	data	that	needs	to	be	the	same	on	all	partitions.	For	example,	when	you
have	a	price	list	that	other	functions	are	using,	then	one	simple	way	to	manage	this
price	list	is	using	a	RUN	ON	ALL	function.

SELECT	and	TARGET
The	default	behavior	of	a	PL/Proxy	function,	if	no	SELECT	or	TARGET	is	present,	is	to	call
the	function	with	the	exact	same	signature	as	itself	in	the	remote	partition.

Suppose	we	have	the	function:

CREATE	OR	REPLACE	FUNCTION	login(

				IN	i_username	text,	IN	i_pwdhash	text,

				OUT	status	int,	OUT	message	text)	

AS	$$

				CONNECT	'dbname=chap10	host=10.10.10.1';

$$	LANGUAGE	plproxy	SECURITY	DEFINER;

If	it	is	defined	in	schema	public,	the	following	call	select	*	from	login('bob',
'secret')	connects	to	the	database	chap10	on	host	10.10.10.1	and	runs	the	following
SQL	statement	there:

SELECT	*	FROM	public.login('bob',	'secret')

This	retrieves	the	result	and	returns	it	to	its	caller.

If	you	don’t	want	to	define	a	function	inside	the	remote	database,	you	can	substitute	the
default	select	*	from	<thisfunction>(<arg1>,	...)	call	with	your	own	by	writing	it
in	the	function	body	of	the	PL/Proxy	function:

CREATE	OR	REPLACE	FUNCTION	get_user_email(i_username	text)	

RETURNS	SETOF	text	AS	$$

				CONNECT	'dbname=chap10	host=10.10.10.1';

				SELECT	email	FROM	user_info	where	username	=	i_username;

$$	LANGUAGE	plproxy	SECURITY	DEFINER;

Only	a	single	SELECT	is	supported;	for	any	other,	or	more	complex	SQL	statements,	you
have	to	write	a	remote	function	and	call	it.

The	third	option,	is	to	still	call	a	function	similar	to	itself,	but	named	differently.	For
example,	if	you	have	a	proxy	function	defined	not	in	a	separate	proxy	database,	but	in	a
partition,	you	may	want	it	to	target	the	local	database	for	some	data:

CREATE	OR	REPLACE	FUNCTION	public.get_user_email(i_username	text)	RETURNS	

SETOF	text	AS	$$

				CLUSTER	'messaging';				

				RUN	ON	hashtext(i_username);

				TARGET	local.get_user_email;

$$	LANGUAGE	plproxy	SECURITY	DEFINER;

In	this	setup,	the	local	version	of	get_user_email()is	in	schema	local	on	all	partitions.
Therefore,	if	one	of	the	partitions	connects	back	to	the	same	database	that	it	is	defined	in,
it	avoids	circular	calling.

SPLIT	–	distributing	array	elements	over	several	partitions
The	last	PL/Proxy	statement	is	for	cases	where	you	want	some	bigger	chunk	of	work	to	be
done	in	appropriate	partitions.

For	example,	if	you	have	a	function	to	create	several	users	in	one	call	and	you	still	want	to
be	able	to	use	it	after	partitioning,	the	SPLIT	statement	is	a	way	to	tell	PL/Proxy	to	split
the	arrays	between	the	partitions	based	on	the	partitioning	function:

CREATE	or	REPLACE	FUNCTION	create_new_users(

				IN	i_username	text[],	IN	i_pwdhash	text[],	IN	i_email	text[],

				OUT	status	int,	OUT	message	text)		RETURNS	SETOF	RECORD

AS	$$

BEGIN

		FOR	i	IN	1..array_length(i_username,1)	LOOP

						SELECT	*

								INTO	status,	message

								FROM	new_user(i_username[i],	i_pwdhash[i],	i_email[i]);

						RETURN	NEXT;

		END	LOOP;

END;

$$	LANGUAGE	plpgsql	SECURITY	DEFINER;

The	following	PL/Proxy	function	definition,	created	on	the	proxy	database,	can	be	used	to
split	the	calls	across	the	partitions:

CREATE	or	REPLACE	FUNCTION	create_new_users(

				IN	i_username	text[],	IN	i_pwdhash	text[],	IN	i_email	text[],

				OUT	status	int,	OUT	message	text)		RETURNS	SETOF	RECORD

AS	$$

		CLUSTER	'messaging';

		RUN	ON	hashtext(i_username);

		SPLIT		i_username,		i_pwdhash,		i_email;

$$	LANGUAGE	plproxy	SECURITY	DEFINER;

It	would	be	called	by	sending	in	three	arrays	to	the	function:

SELECT	*	FROM	create_new_users(

				ARRAY['bob',	'jane',	'tom'],

				ARRAY[md5('bobs_pwd'),	md5('janes_pwd'),	md5('toms_pwd')],

				ARRAY['bob@mail.com',	'jane@mail.com',	'tom@mail.com']

);

It	will	result	in	two	parallel	calls	to	partitions	1	and	2	(as	using	hashtext(i_username)
bob	and	tom	map	to	partition	1	and	mary	to	partition	2	of	the	total	for	the	partitions,	as
explained	earlier),	with	the	following	arguments	for	partition	1:

SELECT	*	FROM	create_new_users(

				ARRAY['bob',	'tom'],

				

ARRAY['6c6e5b564fb0b192f66b2a0a60c751bb','edcc36c33f7529f430a1bc6eb7191dfe'

],

				ARRAY['bob@mail.com','tom@mail.com']

);

And	this	for	partition	2:

SELECT	*	FROM	create_new_users(

				ARRAY['jane'],

				ARRAY['cbbf391d3ef4c60afd851d851bda2dc8'],

				ARRAY['jane@mail.com']

);

Then,	it	returns	a	concatenation	of	the	results:

status	|	message	

--------+---------	

				200	|	OK	

				200	|	OK	

				200	|	OK	

(3	rows)	

The	distribution	of	data
First,	what	is	a	cluster	in	PL/Proxy?	Well,	the	cluster	is	a	set	of	partitions	that	make	up	the
whole	database.	Each	cluster	consists	of	a	number	of	partitions,	as	determined	by	the
cluster	configuration.	Each	partition	is	uniquely	specified	by	its	connect	string.	The	list	of
connection	strings	is	what	makes	up	a	cluster.	The	position	of	the	partition	in	this	list	is
what	determines	the	partition	number,	so	the	first	element	in	the	list	is	partition	0,	the
second	partition	is	1,	and	so	on.

The	partition	is	selected	by	the	output	of	the	RUN	ON	function,	and	then	masked	by	the
right	number	of	bits	to	map	it	on	the	partitions.	So,	if	hashtext(i_username)	returns	14
and	there	are	four	partitions	(2	bits,	mask	binary	11	or	3	in	decimal),	the	partition	number
will	be	14	and	3	=	2,	and	the	function	will	be	called	on	partition	2	(starting	from	zero),
which	is	the	third	element	in	the	partition	list.

Note
The	constraint	that	the	number	of	partitions	has	to	be	a	power	of	two	may	seem	an
unnecessary	restriction	at	first,	but	it	was	done	in	order	to	make	sure	that	it	is,	and	will
remain	to	be,	easy	to	expand	the	number	of	partitions	without	the	need	to	redistribute	all
the	data.

For	example,	if	you	tried	to	move	from	three	partitions	to	four,	most	likely	three	fourths	of
the	data	rows	in	partitions	0	to	2	have	to	be	moved	to	new	partitions	to	evenly	cover	0	to	3.
On	the	other	hand,	when	moving	from	four	to	eight	partitions,	the	data	for	partitions	0	and
1	is	exactly	the	same	that	was	previously	on	partition	0,	2-3	is	the	old	1	and	so	on.	That	is,
your	data	does	not	need	to	be	moved	immediately,	and	half	of	the	data	does	not	need	to	be
moved	at	all.

The	actual	configuration	of	the	cluster,	the	definition	of	partitions,	can	be	done	in	two
ways,	either	by	using	a	set	of	functions	in	schema	plproxy,	or	you	can	take	advantage	of
the	SQL/MED	connection	management	(SQL/MED	is	available	starting	at	PostgreSQL
8.4	and	above).	You	can	read	more	about	SQL/MED	here
https://wiki.postgresql.org/wiki/SQL/MED

Configuring	the	PL/Proxy	cluster	using	functions
This	is	the	original	way	to	configure	PL/Proxy,	which	works	on	all	versions	of
PostgreSQL.	When	a	query	needs	to	be	forwarded	to	a	remote	database,	the	function
plproxy.get_cluster_partitions(cluster)	is	invoked	by	PL/Proxy	to	get	the
connection	string	to	use	for	each	partition.

The	following	function	is	an	example,	which	returns	information	for	a	cluster	with	four
partitions,	p0	to	p3:

CREATE	OR	REPLACE	FUNCTION	plproxy.get_cluster_partitions(cluster_name	

text)	

RETURNS	SETOF	text	AS	$$	

BEGIN	

				IF	cluster_name	=	'messaging'	THEN	

								RETURN	NEXT	'dbname=p0';	

								RETURN	NEXT	'dbname=p1';	

								RETURN	NEXT	'dbname=p2';	

								RETURN	NEXT	'dbname=p3';	

				ELSE

								RAISE	EXCEPTION	'Unknown	cluster';	

				END	IF;	

END;	

$$	LANGUAGE	plpgsql;	

A	production	application	might	query	some	configuration	tables,	or	even	read	some
configuration	files	to	return	the	connection	strings.	Once	again,	the	number	of	partitions
returned	must	be	a	power	of	two.	If	you	are	absolutely	sure	that	some	partitions	are	never
used,	you	can	return	empty	strings	for	these.

We	also	need	to	define	a	plproxy.get_cluster_version(cluster_name)	function.	This
is	called	on	each	request	and	if	the	cluster	version	has	not	changed,	the	output	from	a

https://wiki.postgresql.org/wiki/SQL/MED

cached	result	from	plproxy.get_cluster_partitions	can	be	reused.	So,	it	is	best	to
make	sure	that	this	function	is	as	fast	as	possible:

CREATE	OR	REPLACE	FUNCTION	plproxy.get_cluster_version(cluster_name	text)	

RETURNS	int4	AS	$$	

BEGIN	

				IF	cluster_name	=	'messaging'	THEN	

								RETURN	1;	

				ELSE

								RAISE	EXCEPTION	'Unknown	cluster';	

				END	IF;	

END;	

$$	LANGUAGE	plpgsql;	

The	last	function	needed	is	plproxy.get_cluster_config,	which	enables	you	to
configure	the	behavior	of	PL/Proxy.	This	sample	will	set	the	connection	lifetime	to	10
minutes:

CREATE	OR	REPLACE	FUNCTION	plproxy.get_cluster_config(

				in	cluster_name	text,	

				out	key	text,	

				out	val	text)	

RETURNS	SETOF	record	AS	$$	

BEGIN	

			—lets	use	same	config	for	all	clusters	

				key	:=	'connection_lifetime';	

				val	:=	10*60;	

				RETURN	NEXT;	

				RETURN;	

END;	

$$	LANGUAGE	plpgsql;	

Configuring	the	PL/Proxy	cluster	using	SQL/MED
Since	version	8.4,	PostgreSQL	has	support	for	an	SQL	standard	for	management	of
external	data,	usually	referred	to	as	SQL/MED.	SQL/MED	is	simply	a	standard	way	to
access	a	database.	Using	functions	to	configure	partitions	is	arguably	insecure,	as	any
caller	of	plproxy.get_cluster_partitions()	can	learn	connection	strings	for	partitions
that	may	contain	sensitive	info	like	passwords.	PL/Proxy	also	provides	a	way	to	do	the
cluster	configuration	using	SQL/MED,	which	follows	the	standard	SQL	security	practices.

The	same	configuration,	as	discussed	earlier,	when	done	using	SQL/MED,	is	as	follows:

1.	 First,	create	a	foreign	data	wrapper	called	plproxy:

proxy1=#	CREATE	FOREIGN	DATA	WRAPPER	plproxy;

2.	 Then,	create	an	external	server	that	defines	both	the	connection	options	and	the
partitions:

proxy1=#	CREATE	SERVER	messaging	FOREIGN	DATA	WRAPPER	plproxy

proxy1-#	OPTIONS	(connection_lifetime	'1800',

proxy1(#										p0	'dbname=p0',

proxy1(#										p1	'dbname=p1',

proxy1(#										p2	'dbname=p2',

proxy1(#										p3	'dbname=p3'

proxy1(#);

CREATE	SERVER

3.	 Then,	grant	usage	on	this	server	to	either	PUBLIC,	so	all	users	can	use	it:

proxy1=#	CREATE	USER	MAPPING	FOR	PUBLIC	SERVER	messaging;

CREATE	USER	MAPPING

Or,	to	some	specific	users	or	groups:

proxy1=#	CREATE	USER	MAPPING	FOR	bob	SERVER		messaging

proxy1-#			OPTIONS	(user	'plproxy',	password	'very.secret');

CREATE	USER	MAPPING

4.	 Finally,	grant	usage	on	the	cluster	to	the	users	who	need	to	use	it:

proxy1=#	GRANT	USAGE	ON	FOREIGN	SERVER	messaging	TO	bob;

GRANT

Note
More	info	on	SQL/MED,	as	implemented	in	PostgreSQL,	can	be	found	at
http://www.postgresql.org/docs/current/static/sql-createforeigndatawrapper.html.

http://www.postgresql.org/docs/current/static/sql-createforeigndatawrapper.html

Moving	data	from	the	single	to	the	partitioned
database
If	you	can	schedule	some	downtime	and	your	new	partition	databases	are	as	big	as	your
original	single	database,	the	easiest	way	to	partition	the	data	is	to	make	a	full	copy	of	each
of	the	nodes	and	then	simply	delete	the	rows	that	do	not	belong	to	the	partition:

pg_dump	chap10	|	psql	p0

psql	p0	-c	'delete	from	message	where	hashtext(to_user)	&	3	<>	0'

psql	p0	-c	'delete	from	user_info	where	hashtext(username)	&	3	<>	0'

Repeat	this	for	partitions	p1	to	p3,	each	time	deleting	rows	which	don’t	match	the	partition
number	(psql	chap10p1	-c	'delete	…	&	3	<>	1).

Note
Remember	to	vacuum	when	you	are	finished	deleting	the	rows.	PostgreSQL	will	leave	the
dead	rows	in	the	data	tables,	so	do	a	little	maintenance	while	you	have	some	downtime.

When	trying	to	delete	from	user_info,	you	will	notice	that	you	can’t	do	it	without
dropping	a	foreign	key	from	message.from_user.

Here,	we	could	decide	that	it	is	Okay	to	keep	the	messages	on	the	receivers	partition	only,
and	if	needed,	that	the	sent	messages	can	be	retrieved	using	a	RUN	ON	ALL	function.	So,	we
will	drop	the	foreign	key	from	messages.from_user.

psql	p0	-c	'alter	table	message	drop	constraint	message_from_user_fkey'

There	are	other	options,	when	splitting	the	data,	that	require	less	disk	space	usage	for	a
database	system,	if	you	are	willing	to	do	more	manual	work.

For	example,	you	can	copy	over	just	the	schema	using	pg_dump	-s	and	then	use	COPY
from	an	SQL	statement	to	move	over	just	the	needed	rows:

pg_dump	-s	chap10	|	psql	p0

psql	chap10	-c	"COPY	(select	*	from	message	where	hashtext(to_user)	&	3	=	

0)	TO	stdout"	|	psql	p0	-c	'COPY	messages	FROM	stdin'

Or	even	set	up	a	specially	designed	Londiste	replica	and	do	the	switch	from	a	single
database	to	a	partitioned	cluster	in	only	seconds,	once	the	replica	has	reached	a	stable
state.

Connection	Pooling
PL/Proxy	does	not	include	a	connection	pooler	and	it	is	a	good	idea	to	use	one	like
pgbouncer	and	pgpool.	A	connection	pooler	is	a	utility	that	helps	you	reduce	the	operating
cost	of	database,	when	its	large	number	of	physical	connections	are	pulling	performance
down.

PL/Proxy	opens	a	connection	to	each	partition	from	each	backend	process	and	a	large
number	of	connections	can	bring	the	performance	of	the	server	down.	Using	the
connection	pool	will	allow	you	to	multiplex	a	lot	of	client	connections	over	a	small
number	of	database	connections.	The	pgbouncer	is	a	recommended	connection	pooler
because	it’s	lightweight	and	very	easy	to	setup.	PL/Proxy	attempts	to	connect	to
pgbouncer	using	the	same	database	connection	interface	that	it	uses	to	connect	to	any
PostgreSQL	database.	The	client	application	supplies	the	IP	address	of	the	host	running
pgbouncer	and	the	port	number	on	which	pgbouncer	is	listening	for	connections.

Summary
In	this	chapter,	we	have	gone	over	the	process	of	database	sharding	for	databases	that	are
too	big	to	take	the	write	load	on	a	single	host,	or	where	you	just	want	to	have	the	added
resilience	of	having	a	system	where	one	host	being	down	does	not	bring	the	whole	system
down.

In	short,	the	process	is:

Decide	which	tables	you	want	to	split	over	multiple	hosts
Define	a	partitioning	key
Add	the	partition	databases	and	move	the	data
Set	up	the	proxy	functions	for	all	the	functions	accessing	those	tables
Watch	for	a	little	while	that	everything	is	working
Relax

We	also	took	a	brief	look	at	using	PL/Proxy	for	simple	remote	queries	to	other
PostgreSQL	databases,	which	may	be	handy	for	some	tasks,	even	after	the	new	Foreign
Data	Wrapper	(FDW)	functionality	in	PostgreSQL	replaced	it	for	many	uses.

While	PL/Proxy	is	not	for	everyone,	it	may	well	save	the	day	if	you	are	suddenly	faced
with	rapid	database	growth	and	have	the	need	for	an	easy	and	clean	way	to	spread	the
database	over	many	hosts.

In	the	next	chapter,	we	will	look	at	the	PL/Perl	programming	language.

Chapter	11.	PL/Perl	–	Perl	Procedural
Language
Perl	is	a	feature-rich	language,	which	has	been	around	for	a	long	time.	PostgreSQL	allows
you	to	write	Perl	routines	that	are	stored	and	executed	inside	the	database.	This	ability	is
quite	unique	to	PostgreSQL	and	allows	you	to	do	a	lot	of	cool	things,	such	as	using	Perl’s
text	manipulation	features	inside	a	database.	PL/Perl	is	one	of	the	many	languages	that
PostgreSQL	supports	for	writing	server-side	routines.

As	discussed	in	the	earlier	chapters,	PostgreSQL	supports	trusted	and	untrusted	languages.
PL/Perl	is	available	in	both	these	flavors.	The	trusted	version	runs	inside	a	safe	container
and,	therefore,	not	the	entire	set	of	familiar	native	Perl	operations	is	allowed.

In	this	chapter,	we	will	cover	the	following	topics:

When	to	use	PL/Perl
How	to	install	and	write	a	basic	function
Passing	arguments	to	and	from	PL/Perl	functions
Writing	triggers	in	PL/Perl
A	brief	introduction	to	untrusted	PL/Perl

When	to	use	PL/Perl
We	will	briefly	discuss	how	to	create	Perl	functions	and	use	them	in	triggers.	Some	of	you
might	ask	when	it	is	beneficial	to	use	PL/Perl,	since	PostgreSQL	supports	a	variety	of
languages	that	can	be	used	to	create	triggers	or	write	stored	procedures/functions.

You	might	be	more	familiar	with	a	language	such	as	Perl	than	with	Python	or	Tcl.	This	is	a
pretty	good	reason	to	choose	a	certain	language	over	the	other.

However,	if	the	performance	of	the	function	is	one	of	your	considerations,	then	you	might
want	to	choose	a	language	based	on	the	nature	of	the	code	you	want	to	write.

In	general,	PL/Perl	will	outperform	PL/pgSQL,	if	the	focus	of	the	stored	procedure	is
computational	tasks,	athematic,	and	string	parsing	and	manipulation.	However,	PL/pgSQL
will	often	be	a	clear	winner	if	you	need	to	access	the	database.	PL/pgSQL	is	closely	tied
into	the	PostgreSQL	execution	engine	and	has	a	very	low	overhead	of	running	a	query,
compared	to	other	procedural	languages.

Installing	PL/Perl
PL/Perl	is	not	installed	by	default	if	you	used	the	standard	source	distribution	to	install
PostgreSQL.	If	you	compile	PostgreSQL	from	the	source,	you	need	to	configure	the	script
with	the	--with-perl	option.

If	you	used	a	binary	distribution	on	your	platform,	you	can	normally	install	PL/Perl	using
your	package	manager.	You	can	search	for	postgresql-plperl,	or	a	similar	package
name,	as	it	differs	across	the	distributions.	Once	PostgreSQL	is	compiled	with	the	correct
option,	or	you	have	installed	the	appropriate	package,	you	can	create	the	PL	language
using	the	createlang	utility	or	the	CREATE	LANGUAGE	command,	as	shown	here:

$	createlang	plperl	template1

Or	the	untrusted	version,	such	as	the	following	command:

$	createlang	plperlu	template1

hon

A	simple	PL/Perl	function
Now,	let’s	write	our	first	simple	Perl	function	to	make	sure	that	PL/Perl	is	installed
correctly.	We	will	use	a	sample	function	from	the	Perl	FAQs,	at
http://perldoc.perl.org/perlfaq5.html#How-can-I-output-my-numbers-with-commas-
added%3f,	to	write	a	PL/Perl	function	that	adds	commas	to	a	number:

CREATE	OR	REPLACE	FUNCTION	commafy	(integer)	RETURNS	text	

AS	$$

		local	$_		=	shift;

		1	while	s/^([-+]?\d+)(\d{3})/$1,$2/;

		return	$_;

$$	LANGUAGE	plperl;

This	function	uses	a	smartly	written	regex	to	add	commas	to	your	numbers.	Let’s	try	and
run	it:

testdb=#	SELECT	commafy(1000000);

	commafy		

	1,000,000

(1	row)

The	code	works	and	the	function	looks	similar	to	other	functions	we	have	been	writing	in
PL/pgSQL	and	PL/Python.	The	CREATE	FUNCTION	statement	creates	a	function.	It	needs	a
name,	function	argument	type	list	(you	have	to	use	parentheses,	even	if	there	are	no
arguments),	a	result	type,	and	a	language.

The	function	body	is	just	an	anonymous	Perl	subroutine.	PostgreSQL	passes	this	on	to	a
Perl	interpreter,	in	order	to	run	this	subroutine	and	return	the	results.	Each	function	is
compiled	once	per	session.	PL/Perl	function	arguments	are	stored	in	@_,	just	as	in	normal
Perl	subroutines	and	your	code	can	handle	them	the	same	way.

The	arguments	passed	to	the	PL/Perl	function	are	converted	to	UTF-8	from	the	database
encoding,	and	the	return	value	is	converted	from	UTF-8	back	to	the	database	encoding.

Tip
Using	UTF-8	for	database	encoding	is	encouraged	as	well.	This	will	avoid	the	overhead	of
converting	back	and	forth	between	encodings.

PL/Perl	functions	run	in	a	scalar	context	and	cannot	return	non-scalar	types	such	as	lists.
You	can	return	the	non-scalar	types,	such	as	arrays,	records,	and	sets,	by	returning	a
reference.

http://perldoc.perl.org/perlfaq5.html#How-can-I-output-my-numbers-with-commas-added%3f

Passing	and	returning	non-scalar	types
If	you	pass	array	types	as	arguments	to	the	PL/Perl	function,	they	are	passed	as	the	blessed
ostgreSQL::InServer::ARRAY	objects.	In	Perl,	bless	associates	an	object	with	a	class.
This	object	can	be	treated	as	an	array	reference	or	as	a	string.	If	you	have	to	return	an
array	type,	you	must	return	an	array	by	reference.	Let’s	take	a	look	at	the	following
example:

CREATE	OR	REPLACE	FUNCTION	reverse(int[])	RETURNS	int[]

AS	$$

		my	$arg	=	shift;	#	get	the	reference	of	the	argument

		my	@rev	=	reverse	@{$arg};	#	reverse	the	array

		return	\@rev	#	return	the	array	reference

$$	LANGUAGE	plperl;

testdb=#	select	reverse(ARRAY[1,2,3,4]);	

		reverse		

	{4,3,2,1}

(1	row)

The	preceding	function	reverses	an	integer	array	passed	to	the	function	using	the	reverse
function	of	Perl.	You	can	take	a	look	at	the	comments	in	the	code	to	understand	it.	First,
we	get	the	reference	of	the	passed	argument.	We	then	reverse	the	array	using	a	reference
notation,	@{$arg},	and	store	the	result	in	an	array	called	@rev.	In	the	end,	we	return	the
reference	of	the	array	using	the	backslash.	If	you	try	to	return	the	array	directly,	you	will
get	an	error.

Let’s	take	a	look	at	another	function	that	concatenates	two	arrays	and	then	reverses	their
order:

CREATE	OR	REPLACE	FUNCTION	concat_reverse_arrays(int[],	int[])	RETURNS	

int[]	

AS	$$

		my	$arr1	=	$_[0];

		my	$arr2	=	$_[1];

		push(@{$arr1},	@{$arr2});

		my	@reverse	=	reverse	@{$arr1};

		return	\@reverse;

$$	LANGUAGE	plperl;

testdb=#	select	concat_reverse_arrays(ARRAY[1,2,3],ARRAY[4,5,6]);	

	concat_reverse_arrays

				{6,5,4,3,2,1}

Again,	the	code	is	quite	simple.	It	takes	two	integer	arrays	as	parameters,	concatenates
them	into	arr1,	and	reverses	the	order	using	standard	Perl	functions.

PL/Perl	can	take	arguments	of	composite	types	and	can	also	return	composite	types.	The
composite	types	are	passed	as	a	reference	to	hashes,	and	the	keys	of	the	hash	are	simply

attribute	names	of	the	passed	complex	type.	Let’s	take	a	look	at	an	example:

CREATE	TABLE	item	(item_name	varchar,	item_price	int,	discount	int);

INSERT	INTO	item(item_name,	item_price)	VALUES('macbook',1200);

INSERT	INTO	item(item_name,	item_price)	VALUES('pen',5);

INSERT	INTO	item(item_name,	item_price)	VALUES('fridge',1000);

CREATE	OR	REPLACE	FUNCTION	add_discount(item)	RETURNS	item

AS	$$

		my	$item	=	shift;

		if	($item->{item_price}	>=	1000)	{

		$item->{discount}	=	10;	

		}	else	{

		$item->{discount}	=	5;	

		}

		return	$item;

$$	LANGUAGE	plperl;

testdb=#	select	add_discount(item.*)	from	item;

			add_discount				

	(macbook,1200,10)

	(pen,5,5)

	(fridge,1000,10)

(3	rows)

The	preceding	function	is	probably	not	the	best	use	case	for	a	complex	type	example,	but
it	demonstrates	the	concepts	sufficiently.	First,	we	create	a	table	and	fill	it	up	with	some
data,	except	the	discount	field.	We	then	create	a	function	that	is	passed	an	item	type,	and	it
fills	up	the	discount	field	based	on	the	price.	You	can	see	that	since	the	complex	types	are
passed	as	hash	references,	we	need	to	use	the	$item->{discount}	notation	to	access	the
keys,	where	each	key	corresponds	to	a	field	in	the	type.

You	can	also	return	the	SETOF	primitive	and	complex	types	from	a	PL/Perl	function.	In	the
next	example,	we	will	try	to	return	a	SETOF	item	type	and	also	demonstrate	how	to	run	an
SQL	query	in	a	PL/Perl	function:

CREATE	OR	REPLACE	FUNCTION	set_dicounts()	RETURNS	SETOF	item

AS	$$

			my	$rv	=	spi_exec_query('select	*	from	item;');

			my	$nrows	=	$rv->{processed};

				foreach	my	$rn	(0	..	$nrows	-	1)	{

								my	$item	=	$rv->{rows}[$rn];

										if	($item->{item_price}	>=	1000)	{

												$item->{discount}	=	10;	

										}	else	{

												$item->{discount}	=	5;	

										}

								return_next($item);

				}

				return	undef;

$$	LANGUAGE	plperl;

postgres=#	select	*	from	set_dicounts();

-[RECORD	1]-------

item_name		|	macbook

item_price	|	1200

discount			|	10

-[RECORD	2]-------

item_name		|	pen

item_price	|	5

discount			|	5

-[RECORD	3]-------

item_name		|	fridge

item_price	|	1000

discount			|	10

The	first	thing	you	notice	about	this	function,	is	that	it	returns	a	SETOF	item	type.	It	uses
return_next	to	build	up	the	result	set	as	it	processes	rows	from	the	item	table.	The
function	is	then	terminated	with	a	final	return	undef	(you	can	also	use	just	return).
spi_exec_query	executes	SQL	and	returns	the	complete	result	set	as	a	reference	to	an
array	of	hash	references.	If	you	are	dealing	with	a	large	number	of	rows,	you	may	not
want	to	use	spi_exec_query	as	it	returns	all	the	rows	at	once,	but	you’d	rather	use	the
spi_query	and	spi_fetch_row	functions,	which	allow	you	to	iterate	over	the	data	like	a
cursor.

Note
You	can	read	more	about	using	data	in	a	PL/Perl	function	in	the	PostgreSQL
documentation	at	http://www.postgresql.org/docs/current/static/plperl-builtins.html.

http://www.postgresql.org/docs/current/static/plperl-builtins.htm

Writing	PL/Perl	triggers
If	you	want	to	write	trigger	functions	using	Perl,	then	PL/Perl	allows	you	to	do	all	the
good	stuff	that	you	have	learned	so	far	using	PL/PgSQL.	Let’s	rewrite	an	example	we
demonstrated	in	Chapter	5,	PL/pgSQL	Trigger	Functions,	in	PL/Perl.	Recall	the	simple,
“Hey,	I	am	called”	trigger.	The	PL/Perl	version	of	the	example	looks	as	shown	in	the
following	code.	We	probably	don’t	need	to	provide	a	more	complex	example,	as	this
simple	example	demonstrates	the	PL/Perl	syntax	in	a	sufficient	way:

CREATE	OR	REPLACE	FUNCTION	notify_trigger_plperl()	RETURNS	TRIGGER	

AS	$$	

		$result	=	sprintf('Hi,	I	got	%s	invoked	FOR	%s	%s	%s	on	%s',	

																				$_TD->{name},	

																				$_TD->{level},	

																				$_TD->{when},	

																				$_TD->{event},	

																				$_TD->{table_name}

);

				if(($_TD->{event}	cmp	'UPDATE')	==	0){

						$result	.=	sprintf('	OLD	=	%s	AND	NEW=%s',	$_TD->{old}{i},	$_TD->

{new}{i});

						$_TD->{new}{i}	=	$_TD->{old}{i}	+	$_TD->{new}{i};

						elog(NOTICE,	$result);

						return	"MODIFY";

				}	elsif(($_TD->{event}	cmp	'DELETE')	==	0){

						elog(NOTICE,	"Skipping	Delete");

						return	"SKIP";

				}

		elog(NOTICE,	$result);

$$	LANGUAGE	plperl;

CREATE	TABLE	notify_test_plperl(i	int);

CREATE		TRIGGER	notify_insert_plperl_trigger

		BEFORE	INSERT	OR	UPDATE	OR	DELETE	ON	notify_test_plperl

		FOR	EACH	ROW

EXECUTE	PROCEDURE	notify_trigger_plperl();

Let’s	try	to	run	the	INSERT,	UPDATE,	and	DELETE	commands:

testdb=#	INSERT	INTO	notify_test_plperl	VALUES(1);

NOTICE:		Hi,	I	got	notify_insert_plperl_trigger	invoked	FOR	ROW	BEFORE	

INSERT	on	notify_test_plperl

CONTEXT:		PL/Perl	function	"notify_trigger_plperl"

INSERT	0	1

testdb=#	UPDATE	notify_test_plperl	SET	i	=	10;

NOTICE:		Hi,	I	got	notify_insert_plperl_trigger	invoked	FOR	ROW	BEFORE	

UPDATE	on	notify_test_plperl	OLD	=	1	AND	NEW=10

CONTEXT:		PL/Perl	function	"notify_trigger_plperl"

UPDATE	1

testdb=#	select	*	from	notify_test_plperl;

		i

	11

(1	row)

postgres=#	DELETE	FROM	notify_test_plperl;

NOTICE:		Skipping	Delete

CONTEXT:		PL/Perl	function	"notify_trigger_plperl"

DELETE	0

Let’s	review	what	we	have	done	so	far.	We	have	created	a	trigger	function,	a	test	table,	and
an	actual	trigger	that	runs	before	an	INSERT,	UPDATE,	or	DELETE	for	each	row.

The	trigger	function	uses	a	couple	of	things	we	have	not	discussed	so	far.	In	a	PL/Perl
trigger	function,	the	hash	reference	$_TD	contains	information	about	the	current	trigger
event.	You	can	see	the	full	list	of	keys	in	$_TD	at
http://www.postgresql.org/docs/current/static/plperl-triggers.html.

The	triggers	we	have	used	in	our	example	are	explained	in	the	following	table:

Trigger	name Trigger	description

$_TD->{name} This	denotes	the	name	of	the	trigger.	In	our	example,	this	will	contain	notify_trigger_plperl.

$_TD->{level} This	is	a	ROW	or	STATEMENT	trigger.	In	our	example,	this	will	contain	ROW.

$_TD->{when} The	BEFORE,	AFTER,	or	INSTEAD	OF	trigger.	In	our	example,	this	will	contain	BEFORE.

$_TD->{event}
The	INSERT,	UPDATE,	DELETE,	or	TRUNCATE	command.	In	our	example,	this	will	contain	INSERT,
UPDATE,	or	DELETE.

$_TD->

{table_name}
This	denotes	the	name	of	the	table.	In	our	example,	this	will	contain	notify_test_plperl.

$_TD->{old}{i} This	will	contain	the	OLD	value	of	the	column	i.	In	our	example,	this	will	contain	1.

TD->{new}{i} This	will	contain	the	NEW	value	of	the	column	i.	In	our	example,	this	will	contain	10.

We	have	also	used	a	utility	function	called	elog()	in	the	trigger	function.	This	function
emits	log	messages.	The	level	values	that	are	possible	are	DEBUG,	LOG,	INFO,	NOTICE,
WARNING,	and	ERROR.	The	ERROR	value	propagates	an	error	to	the	calling	query	and	is
similar	to	a	Perl	die	command.

Note
You	can	view	all	the	available	built-ins	and	utility	functions	available	in	PL/Perl	at
http://www.postgresql.org/docs/current/static/plperl-builtins.html.

Our	trigger	function	returns	the	special	values	"MODIFY"	and	"SKIP"	in	the	case	of	UPDATE
and	DELETE,	respectively.	If	a	PL/Perl	trigger	function	returns	"MODIFY",	it	means	that	the
NEW	value	has	been	modified	by	the	trigger	function.	If	a	trigger	function	modifies	a	NEW
value	but	does	not	return	"MODIFY",	then	the	change	done	by	the	function	will	be
discarded.	The	"SKIP"	implies	that	the	operation	should	not	be	executed.

http://www.postgresql.org/docs/current/static/plperl-triggers.html
http://www.postgresql.org/docs/current/static/plperl-builtins.html

Untrusted	Perl
We	discussed	untrusted	PL/PythonU	in	Chapter	8,	Using	Unrestricted	Languages.	PL/Perl
is	also	available	as	an	untrusted	language.	The	trusted	version	runs	inside	a	security
context	that	does	not	allow	interaction	with	the	environment.	Just	like	PL/Pythonu,	we	can
bypass	the	security	restrictions	using	PL/Perlu	or	the	untrusted	version.	Let’s	rewrite	the
directory	listing	function	list_folder	from	Chapter	8,	Listing	directory	contents	to	a	Perl
equivalent:

CREATE	OR	REPLACE	FUNCTION	list_folder_plperl(directory	VARCHAR)	RETURNS	

SETOF	TEXT

AS	$$

		my	$d	=	shift;

		opendir(D,	"$d")	||	elog	(ERROR,'Cant	open	directory	'.$d)	;

		my	@list	=	readdir(D);

		closedir(D);

		foreach	my	$f	(@list)	{

				return_next($f);

		}

		return	undef;

$$	LANGUAGE	plperlu;

Let’s	run	our	function,	as	shown	here:

testdb=#	SELECT	list_folder_plperl('/usr/local/pgsql/bin');																																																																																																																																																

list_folder_plperl	

	.

	..

	clusterdb

	createdb

	createlang

	createuser

	dropdb

	droplang

	dropuser

	ecpg

	initdb

	pg_basebackup

	pg_config

	pg_controldata

	pg_ctl

	pg_dump

	pg_dumpall

	pg_isready

	pg_receivexlog

	pg_resetxlog

	pg_restore

	postgres

	postmaster

	psql

	reindexdb

	vacuumdb

(26	rows)

If	we	try	to	create	the	preceding	function	as	plperl	instead	of	plperlu,	we	will	get	an
error	such	as	ERROR:	'opendir'	trapped	by	operation	mask	at	line	3	by	the
validator,	because	we	are	trying	to	access	the	host	system.

Summary
The	powerful	Perl	language	is	available	in	PostgreSQL	as	PL/Perl	or	PL/Perlu.	This
allows	you	to	write	stored	procedures	in	Perl	and	to	take	advantage	of	all	the	cool	features
that	Perl	has	to	offer,	such	as	a	very	large	collection	of	modules	available	on	CPAN.	You
can	do	almost	everything	you	want	with	PL/pgSQL	or	PL/Python,	including	database
access	and	writing	triggers.	The	untrusted	version	of	PL/Perl	allows	you	to	interact	with
the	environment.	PL/Perl	will	normally	outperform	PL/pgSQL	in	non-data	intensive
functions	that	focus	more	on	string	manipulation	and	computation.

In	the	next	chapter,	we	will	discuss	another	popular	PL	language	called	Pl/Tcl.

Chapter	12.	PL/Tcl	–	Tcl	Procedural
Language
Tools	Command	Language	(Tcl),	also	commonly	known	as	tickle,	has	been	around	for	a
long	time.	It	was	created	by	John	Ousterhout	in	1988	and	got	a	lot	of	traction	for	rapid
prototyping	and	scripted	applications.

In	this	chapter,	we	will	take	a	brief	look	at	PL/Tcl.	Between	PL/Perl,	PL/Python,	and
PL/pgSQL,	you	have	very	powerful	languages	available	at	your	disposal	that	can	do
almost	anything	you	need.	For	some	other	things,	you	have	the	option	to	write	your
functions	in	C.	You	might	wonder	why	it	is	useful	to	discuss	PL/Tcl.	For	a	long	time,	in
the	early	days	of	PostgreSQL,	PL/Tclu	(untrusted	PL/Tcl)	was	the	only	way	to	do	things
outside	PostgreSQL,	such	as	interacting	with	the	operating	system.	A	lot	of	people	still	use
it,	and	I	personally	think	that	it	is	so	clean	and	powerful	that	it	should	not	be	overlooked.

PL/Tcl	is	available	as	a	trusted	and	an	untrusted	language.	This	is	achieved	by	providing
two	different	Tcl	interpreters.	PL/Tclu	uses	the	standard	Tcl	interpreter,	while	PL/Tcl	uses
a	special	Safe	Tcl	mechanism.

Note
You	can	read	more	about	safe	Tcl	at	http://www.tcl.tk/software/plugin/safetcl.html.

In	this	chapter,	we	will	cover	the	following	topics:

Installing	PL/Tcl	and	writing	a	simple	function
Passing	simple	and	complex	parameters
Accessing	a	database	from	a	Pl/Tcl	function
Writing	database	triggers	using	Pl/Tcl

http://www.tcl.tk/software/plugin/safetcl.html

Installing	PL/Tcl
PL/Tcl	is	not	installed	by	default,	if	you’ve	used	the	standard	source	distribution	to	install
PostgreSQL.	If	you	compiled	PostgreSQL	from	the	source,	you	need	to	run	the	configure
script	with	the	–-with-tcl	option.

If	you’ve	used	a	binary	distribution	on	your	platform,	you	can	normally	install	PL/Tcl
using	your	package	manager.	You	can	search	for	postgresql-pltcl,	or	a	similar	package
name,	as	it	differs	across	distributions.	Once	PostgreSQL	is	compiled	with	the	correct
option,	or	you	have	installed	the	appropriate	package,	you	can	create	the	language	using
the	createlang	utility	or	the	CREATE	LANGUAGE	command:

$	createlang	pltcl	template1

You	can	use	also	use	the	untrusted	version	to	create	the	language,	as	follows:

$	createlang	pltclu	template1

A	simple	PL/Tcl	function
Now,	let’s	write	our	first	simple	Tcl	function	to	make	sure	that	PL/Tcl	is	installed.	We	will
write	a	simple	factorial	calculation	function,	as	shown	here:

CREATE	OR	REPLACE	FUNCTION	tcl_factorial(integer)	RETURNS	integer

AS	$$

		set	i	1;	set	fact	1

		while	{$i	<=	$1}	{

				set	fact	[expr	$fact	*	$i]

				incr	i

		}

		return	$fact

$$	LANGUAGE	pltcl		STRICT;

This	function	calculates	the	factorial	of	a	number	in	an	iterative	way.	Let’s	try	and	run	it:

postgres=#	SELECT	tcl_factorial(5);

	tcl_factorial	

											120

(1	row)

It	works	and	the	function	looks	similar	to	other	functions	we	have	been	writing	in
PL/pgSQL	and	PL/Python.	The	CREATE	FUNCTION	statement	creates	a	function.	It	needs	a
name,	function	argument	type	list	(you	have	to	use	parentheses,	even	if	there	are	no
arguments),	a	result	type,	and	a	language.

The	body	of	the	function	is	just	a	Tcl	script.	PostgreSQL	passes	the	body	on	to	a	Tcl
interpreter	to	run	this	subroutine	and	return	the	results.	The	function	arguments	are	passed
on	to	the	script	as	$1,	$2,…$n.

Null	checking	with	Strict	functions
The	STRICT	keyword	will	save	us	from	checking	the	null	input	parameters.	If	you	have
specified	a	function	as	STRICT	and	any	of	the	input	parameters	are	null,	it	results	in	the
function	not	being	called	and	a	null	result	set	is	returned	immediately:

postgres=#	SELECT	tcl_factorial(null);

	tcl_factorial	

(1	row)

If	you	don’t	want	to	create	a	STRICT	function,	or	you’d	like	to	do	the	null	checking
yourself,	you	can	rewrite	the	function,	as	shown	in	the	following	code	snippet.	This	is
useful	if	you	have	multiple	parameters	and	you	want	to	allow	some	parameters	to	be	null:

CREATE	OR	REPLACE	FUNCTION	tcl_factorial_ns(integer)	RETURNS	integer

AS	$$

			if	{[argisnull	1]}	{

				 					elog	NOTICE	"input	is	null"

								return	-1

				}	

				set	i	1;	set	fact	1

				while	{$i	<=	$1}	{

						set	fact	[expr	$fact	*	$i]

						incr	i

				}

		return	$fact

$$	LANGUAGE	pltcl;

The	argisnull	function	is	used	to	check	for	null	values.	In	the	preceding	example,	the
function	returns	-1	if	the	input	argument	is	null,	just	to	demonstrate	that	it	works.	If	you
want	to	return	a	null	value	from	the	function,	you	can	use	the	built-in	function
return_null.	In	the	preceding	example,	you	can	also	see	how	to	use	the	elog	function	in
PL/Tcl:

postgres=#	SELECT	tcl_factorial_ns(null);																																																																																																																																																																				

tcl_factorial_ns	

															-1

(1	row)

The	parameter	format
All	input	parameters	passed	to	PL/Tcl	are	converted	to	text.	Within	a	PL/Tcl	function,	all
values	are	text.	When	the	function	returns,	another	conversion	is	performed	from	the	text
string	to	the	return	type	of	the	function,	as	long	as	the	text	being	returned	is	an	appropriate
representation	of	the	return	type	of	the	Pl/Tcl	function;	otherwise,	the	function	will	result
in	an	error.

Passing	and	returning	arrays
If	you	pass	array	types	as	an	argument	to	the	PL/Tcl	function,	they	are	passed	as	a	string
value,	along	with	the	brackets	and	the	commas.	Let’s	take	a	look	at	an	example:

CREATE	OR	REPLACE	FUNCTION	tcl_array_test(integer[])	RETURNS	int

AS	$$

				set	length	[string	length	$1]

				return	$length

$$	LANGUAGE	pltcl;

testdb=#	select	tcl_array_test(ARRAY[1,2,3]);

	tcl_array_test	

							7

				(1	row)

You	are	probably	surprised	at	the	return	value	of	the	preceding	function.	You	passed	an
integer	array	to	the	function	that	is	converted	to	a	string	value	{1,2,3},	the	length	of
which	is	indeed	7.	If	you	want	to	process	array	values	independently,	you	need	a	bit	of
string	manipulation	to	extract	the	list	out	of	the	string,	do	the	manipulation,	and	convert	it
back	to	the	string	format	that	you	received	it	in.

Let’s	take	a	look	at	an	example	PL/Tcl	function	that	will	reverse	an	integer	array	and
return	the	reversed	integer	array:

CREATE	OR	REPLACE	FUNCTION	tcl_reverse_array(integer[])	RETURNS	integer[]

AS	$$

		set	lst	[regexp	-all	-inline	{[0-9]}	$1]

		set	lst	[join	[lreverse	$lst]	","]

		set	lst		"{$lst}"

		return	$lst

$$	LANGUAGE	pltcl;

postgres=#	select	tcl_reverse_array(ARRAY[1,2,3]);

	tcl_reverse_array	

	{3,2,1}

(1	row)

The	preceding	function	does	the	following:

1.	 The	tcl_reverse_array	function	cleans	up	the	input	parameter	by	creating	a	list	out
of	the	string	and	removing	the	{	and	,	characters.	This	is	done	using	a	regular
expression	and	by	only	extracting	numeric	values	out	of	the	string.

2.	 It	uses	the	lreverse	function	to	reverse	the	contents	of	the	list	and	then	join	the
elements	of	the	list	back	as	an	array,	using	the	join	function	and	using	,	as	the	join
character.

3.	 Then,	it	adds	brackets	to	the	string	before	returning	it.	The	return	string	is	converted
to	an	integer	array	as	it	is	returned	by	the	function.

Passing	composite-type	arguments
A	composite-type,	such	as	a	table,	or	a	user-defined	type	is	passed	to	the	PL/Tcl	function
as	an	associative	array	(Hash	table).	The	attribute	names	of	the	composite-type	are	the
element	names	in	the	array.	Attributes	with	NULL	values	are	not	available	in	the	Tcl	array.

Let’s	take	a	look	at	an	arbitrary	example.	We	will	create	a	function	that	takes	a	composite
type	as	an	argument	and	does	some	calculations	based	on	the	attribute	values	of	the	type.
Let’s	create	our	type	and	the	function:

CREATE	TABLE	orders(orderid	int,	num_people	integer,	order_amount	decimal);

INSERT	INTO	orders	VALUES(1,1,23);

INSERT	INTO	orders	VALUES(2,3,157);

INSERT	INTO	orders	VALUES(3,5,567.25);

INSERT	INTO	orders	VALUES(4,1,100);

CREATE	OR	REPLACE	FUNCTION	tip_calculator(orders,	integer)	RETURNS	decimal

AS	$$

		if	{$1(order_amount)	>	0}	{

				set	tip	[expr	(double($1(order_amount)	*	$2)/100)/$1(num_people)]

				set	tip	[format	"%.2f"	$tip]

				return	$tip

		}

		return	0;

$$	LANGUAGE	pltcl;

The	orders	table	is	quite	simple	to	understand:	it	contains	an	order	ID,	the	number	of
people	in	the	orders	table	(num_people),	and	the	total	cost	of	the	order	(order_amount).

The	function	calculates	the	tip	per	person,	based	on	the	price	of	the	meal	(order_amount)
and	number	of	people.	It	takes	an	argument	of	the	type	orders	and	an	integer	value	that
represent	the	percentage	of	the	tip	that	should	be	paid.

The	function	body	calculates	the	tip	and	formats	the	result	to	two	decimal	places.	If	we
run	our	function,	this	is	what	we	should	see:

postgres=#	SELECT	tip_calculator(orders.*,5)	AS	"tip	per	person"	FROM	

orders;

	tip	per	person	

						1.15

						2.62

						5.67

						5.00

(4	rows)

You	can	see	that	all	the	attributes	of	the	orders	type	can	be	accessed	in	the	function	as
$1(order_amount),	$1(num_people),	and	so	on.	This	function	gets	called	once	for	each
row	of	the	orders	table	and	calculates	the	amount	of	the	tip	to	be	paid	per	person	for	each
order,	according	to	various	parameters.

Note

You	can	see	the	full	list	of	associative	array	commands	in	the	official	documentation	for
Tcl	at	http://www.tcl.tk/man/tcl8.5/tutorial/Tcl22.html.

At	this	moment,	PL/Tcl	functions	don’t	allow	the	returning	of	a	SETOF	type,	or	composite
type,	from	a	function.

http://www.tcl.tk/man/tcl8.5/tutorial/Tcl22.html

Accessing	databases
PL/Tcl	functions	provide	you	with	SPI	functions	to	access	the	database	and	run
DML/DDL	statements.

The	functions	are	the	following:

spi_exec:	This	executes	a	SQL	statement
spi_prepare:	This	prepares	a	SQL	statement
spi_execp:	This	executes	a	prepared	statement

The	spi_exec	function	has	the	following	syntax:

spi_exec	?-count	n?	?-array	name?	command	?loop-body?

The	spi_exec	function	runs	a	SQL	statement,	and	it	takes	some	optional	parameters,	as
follows:

-count:	This	parameter	allows	you	to	specify	the	maximum	number	of	rows
processed	by	the	command.	If	you	provide	the	value	3,	only	3	rows	will	be
processed.	This	is	similar	to	specifying	FETCH	[n]	in	a	cursor.
-array:	If	this	parameter	is	specified,	the	column	values	are	stored	into	a	named
associative	array	and	the	column	names	are	used	as	array	indexes.	If	this	parameter	is
not	specified,	the	result	values	are	stored	in	the	Tcl	variables	of	the	same	name.

If	there	is	a	loop	body	specified,	then	it	is	treated	as	a	script	that	is	run	for	each	row.

Let’s	take	a	look	at	an	example	of	how	to	run	SQL	statements	inside	a	PL/Tcl	function.
The	following	example,	creates	a	function	that	loops	over	the	rows	in	a	table	and	updates	a
column	in	each	row:

CREATE	TABLE	emp_sales(empid	int	PRIMARY	KEY,	sales_amnt	decimal,	

																							comm_perc	decimal,	

																							comm_amnt	decimal);

INSERT	INTO	emp_sales	VALUES	(1,32000,	5,	NULL);

INSERT	INTO	emp_sales	VALUES	(2,5231.23,	3,	NULL);

INSERT	INTO	emp_sales	VALUES	(3,64890,	7.5,	NULL);

CREATE	OR	REPLACE	FUNCTION	tcl_calc_comm()	RETURNS	int	

AS	$$

		spi_exec	-array	C	"SELECT	*	FROM	emp_sales"	{

				set	camnt	[expr	($C(sales_amnt)	*	$C(comm_perc))/100]

								spi_exec	"update	emp_sales

								set	comm_amnt	=	[format	"%.2f"	$camnt]

								where	empid	=	$C(empid)"

}

$$	LANGUAGE	pltcl;

The	preceding	example,	does	the	following:

It	creates	a	table	emp_sales,	which	contains	the	employee	ID,	how	much	sales	the
employee	has	made,	and	what	is	their	commission	percentage.	The	last	column	that

represents	the	total	commission	to	be	paid	to	the	employee	based	on	his/her	sales	and
his/her	commission	percentage	is	left	blank	intentionally,	and	it	is	filled	by	our
function.
It	fills	the	table	with	some	random	data.
Then,	the	function	body	runs	a	SQL	statement	using	the	spi_exec	command,	and	the
column	values	are	returned	in	the	associative	array	called	C.
Finally,	the	loop	body	calculates	the	commission	value	and	updates	the	comm_amnt
column	for	each	row.

Note
You	can	read	more	about	accessing	the	database	in	a	PL/Tcl	function	at
http://www.postgresql.org/docs/current/interactive/pltcl-dbaccess.html.

http://www.postgresql.org/docs/current/interactive/pltcl-dbaccess.htm

Writing	PL/Tcl	triggers
If	you	want	to	write	trigger	functions	using	Tcl,	then	PL/PTcl	allows	you	to	do	all	the	good
stuff	that	you	have	learned	so	far,	using	PL/pgSQL,	PL/Perl,	and	PL/Python.	Let’s	rewrite
an	example	we	demonstrated	in	Chapter	5,	PL/pgSQL	Trigger	Functions.	Recall	the
simple,	“Hey,	I	am	called”	trigger.	This	is	how	the	PL/Tcl	version	of	the	example	looks:

CREATE	OR	REPLACE	FUNCTION	notify_trigger_pltcl()	RETURNS	TRIGGER	

AS	$$	

		set	result	[format	"Hi,	I	got	%s	invoked	FOR	%s	%s	%s	on	%s"	$TG_name	

$TG_level	$TG_when	$TG_op	$TG_table_name]

		if	{$TG_op	==	"UPDATE"}	{	

				append	result	[format	"	OLD	=	%s	AND	NEW=%s"	$OLD(i)	$NEW(i)]

						set	NEW(i)	[expr	$OLD(i)	+	$NEW(i)]

						elog	NOTICE	$result

						return	[array	get	NEW]

		}	elseif	{$TG_op	==	"DELETE"}	{

						elog	NOTICE	"DELETE"

						return	SKIP

				}	elog	NOTICE	$result

		return	OK

$$	LANGUAGE	pltcl;

CREATE	TABLE	notify_test_pltcl(i	int);

CREATE		TRIGGER	notify_insert_pltcl_trigger

		BEFORE	INSERT	OR	UPDATE	OR	DELETE	ON	notify_test_pltcl

		FOR	EACH	ROW

EXECUTE	PROCEDURE	notify_trigger_pltcl();

The	preceding	code	is	almost	a	carbon	copy	of	the	one	in	Chapter	11,	PL/Perl	–	Perl
Procedural	Language,	but	in	the	Tcl	syntax.	It	demonstrates	how	to	use	TG	variables,	how
to	modify	NEW	values,	and	how	to	SKIP	an	operation.

It	prints	“Hey	I	got	invoked”	with	different	attributes	of	the	trigger.	In	the	case	of	an
UPDATE,	it	also	prints	the	NEW	and	OLD	values,	as	well	as	modifies	the	NEW	value	and	skips
the	DELETE	operation.	A	PL/Tcl	trigger	function	can	return	the	following	values:

OK:	This	is	the	default	value	and	implies	that	the	operation	executed	by	the	user	will
proceed	normally
SKIP:	This	return	value	implies	that	the	user-executed	operation	will	be	silently
ignored
LIST:	This	is	returned	by	array	get	and	implies	that	a	modified	version	of	the	NEW
array	should	be	returned
OLD	and	NEW:	These	values	are	available	as	associative	arrays	in	a	PL/Tcl	trigger
function,	and	the	attributes	of	the	table	are	the	names	of	the	elements	in	the	array

Let’s	run	INSERT,	UPDATE,	and	DELETE	to	see	the	results:

postgres=#	INSERT	INTO	notify_test_pltcl	VALUES(1);

NOTICE:		Hi,	I	got	notify_insert_pltcl_trigger	invoked	FOR	ROW	BEFORE	

INSERT	on	notify_test_pltcl

INSERT	0	1

postgres=#	UPDATE	notify_test_pltcl	SET	i=10;

NOTICE:		Hi,	I	got	notify_insert_pltcl_trigger	invoked	FOR	ROW	BEFORE	

UPDATE	on	notify_test_pltcl	OLD	=	1	AND	NEW=10

UPDATE	1

postgres=#	DELETE	FROM	notify_test_pltcl;

NOTICE:		DELETE

DELETE	0

postgres=#	SELECT	*	FROM	notify_test_pltcl;

	i		

	11

(1	row)

In	a	PL/Tcl	trigger	function,	the	$TG	variables	contain	information	about	the	current	trigger
event.	You	can	see	the	full	list	of	variables	at
http://www.postgresql.org/docs/current/interactive/pltcl-trigger.html.

The	variables	we	have	used	in	our	example	are	explained	in	the	following	table:

Trigger	name Description

$TG_name This	denotes	the	name	of	the	trigger.	In	our	example,	this	will	contain	notify_trigger_pltcl.

$TG_level This	is	a	ROW	or	STATEMENT	trigger.	In	our	example,	this	will	contain	ROW.

$TG_when This	is	a	BEFORE,	AFTER,	or	INSTEAD	OF	trigger.	In	our	example,	this	will	contain	BEFORE.

$TG_op
This	is	an	INSERT,	UPDATE,	DELETE,	or	TRUNCATE	trigger.	In	our	example,	this	will	contain	INSERT,
UPDATE,	or	DELETE.

$TG_table_name This	denotes	the	name	of	the	table.	In	our	example,	this	will	contain	notify_test_pltcl.

$OLD(i) This	will	contain	the	OLD	value	of	the	column	i.	In	our	example,	this	will	contain	1.

$NEW(i) This	will	contain	the	NEW	value	of	the	column	i.	In	our	example,	this	will	contain	10.

http://www.postgresql.org/docs/current/interactive/pltcl-trigger.html

Untrusted	Tcl
Using	untrusted	Tcl	(pltclu)	is	one	of	the	oldest	ways	to	do	things	outside	the	database.
pltclu	is	executed	using	a	normal	Tcl	interpreter	and	is	pretty	much	free	to	do	anything
you’d	like.	Tcl	has	a	lot	of	commands	available	to	interact	with	the	operating	system	and
the	environment.	We	will	now	take	a	look	at	a	few	simple	examples.

The	first	example,	reads	the	contents	of	the	file	and	returns	them	as	text,	as	shown	in	the
following	code:

CREATE	OR	REPLACE	FUNCTION	read_file(text)	RETURNS	text

AS	$$

		set	fptr	[open	$1]

		set	file_data	[read	$fptr]

		close	$fptr	#close	the	file	as	it	is	already	read

		return	$file_data

$$	LANGUAGE	pltclu;

The	function	is	quite	simple;	it	opens	a	file	provided	as	a	parameter,	reads	all	its	contents
at	once,	and	returns	the	text.

Let’s	run	the	preceding	function:

postgres=#	select	read_file('/usr/local/pgsql/data/postmaster.pid');

							read_file							

	61588																+

	/usr/local/pgsql/data+

	1401041744											+

	5432																	+

	/tmp																	+

	localhost												+

			5432001				196608		+

	

(1	row)

Here	is	another	function	that	does	a	directory	listing,	similar	to	the	plperlu	example	in
Chapter	11,	PL/Perl	–	Perl	Procedural	Language.	Since	PL/Tcl	does	not	support	the
returning	of	the	SETOF	text,	we	will	simply	return	the	complete	directory	listing	as	one
string.	As	you	can	see	in	the	following	code,	this	can	be	done	with	a	single	line	in	Tcl:

CREATE	OR	REPLACE	FUNCTION	list_directory(text)	RETURNS	text

AS	$$

		set	dirList	[glob	-nocomplain	-directory	$1	*.*]

		return	$dirList

$$	LANGUAGE	pltclu;

testdb=#	SELECT	list_directory('/tmp');

															list_directory																

	/tmp/lu84iont.tmp	/tmp/unity_support_test.0

(1	row)

We	read	the	contents	of	the	file	using	Tcl’s	glob	function	and	just	returned	the	contents	as
a	string.

Let’s	take	a	look	at	one	last	PL/Tclu	function	that	will	export	the	contents	to	a	table	as	a
.csv	file:

CREATE	OR	REPLACE	FUNCTION	dump_table(text,	text)	RETURNS	int

AS	$$

		set	filename	$1

				set	fileId	[open	$filename	"w"]

		spi_exec	-array	emp	"SELECT	*	FROM	$2"	{

				set	row	[format	"%d,%.2f,%.2f,%.2f"	$emp(empid)	$emp(sales_amnt)	

$emp(comm_perc)	$emp(comm_amnt)]

						puts	$fileId	$row

				}

				close	$fileId

				return	0;

	$$	LANGUAGE	pltclu	STRICT;

Again,	this	function	is	quite	simple	and	uses	the	concepts	we	have	discussed	before.	It
iterates	over	the	table	provided	as	the	second	parameter	to	this	function	and	stores	the	data
in	a	file	named,	as	per	the	first	parameter	of	this	function.	The	file	is	written	line	by	line	as
comma-separated	values	by	iterating	over	the	table	data	using	spi_exec.

Let’s	run	this	function	on	the	emp_sales	table	that	we	created	earlier	in	this	chapter:

postgres=#	select	dump_table('emp.txt','emp_sales');

	dump_table	

										0

(1	row)

This	seems	to	work.	We	can	verify	this	by	running	the	read_file	function	we	wrote
earlier:

postgres=#	select	read_file('emp.txt');

								read_file								

	1,32000.00,5.00,1600.00+

	2,5231.23,3.00,156.94		+

	3,64890.00,7.50,4866.75+

	

(1	row)

It	seems	that	the	function	works,	and	we	have	a	CSV	dump	of	the	table	in	no	time.

Summary
The	powerful,	yet	clean,	Tcl	language	is	available	in	PostgreSQL	as	PL/Tcl	and	the
untrusted	PL/Tclu.	Both	the	languages	use	different	Tcl	interpreters.	PL/Tclu	is	the	oldest
language	used	in	PostgreSQL,	to	access	things	outside	the	database.	It	allows	you	to	write
stored	procedures	in	Tcl	and	takes	advantage	of	all	the	cool	features	that	Tcl	has	to	offer.
You	can	do	almost	everything	you	can	with	other	PL	languages,	including	database	access
and	writing	triggers.	The	only	major	disadvantage	of	PL/Tcl	is	that	it	does	not	allow	you
to	return	composite	types	and	sets	from	a	function.

In	the	next	chapter,	we	will	explore	how	to	publish	your	code	as	a	PostgreSQL	extension.

Chapter	13.	Publishing	Your	Code	as
PostgreSQL	Extensions
If	you	are	new	to	PostgreSQL,	now	is	the	time	to	dance	for	joy.

Now	that	you’re	done	dancing,	I’ll	tell	you	why.	You	have	managed	to	avoid	the	“bad	old
days”	of	contrib	modules.	Contrib	modules	are	the	installation	systems	that	were	used	to
install	related	PostgreSQL	objects	prior	to	Version	9.1.	They	may	be	additional	data	types,
enhanced	management	functions,	or	just	really	any	type	of	module	you	want	to	add	to
PostgreSQL.	They	consist	of	any	group	of	related	functions,	views,	tables,	operators,
types,	and	indexes	that	were	lumped	into	an	installation	file	and	committed	to	the	database
in	one	fell	swoop.	Unfortunately,	contrib	modules	only	provided	for	installation,	and
nothing	else.	In	fact,	they	were	not	really	an	installation	system	at	all.	They	were	just	some
unrelated	SQL	scripts	that	happened	to	install	everything	that	the	author	thought	you
needed.

PostgreSQL	extensions	provide	many	new	services	that	a	package	management	system
should	have.	Well,	at	least	the	ones	that	module	authors	complained	the	most	about	not
being	present.

Some	of	the	new	features	that	you	will	be	introduced	to	in	this	chapter	include:

Versioning
Dependencies
Updates
Removal

When	to	create	an	extension
Well,	first	you	have	to	understand	that	extensions	are	all	about	togetherness.	Once	the
objects	from	a	contrib	module	were	installed,	PostgreSQL	provided	no	way	to	show	a
relationship	between	them.	This	led	many	developers	to	create	their	own	(and	at	times
rather	ingenious)	methods	to	version,	update,	upgrade,	and	uninstall	all	of	the	necessary
“stuff”	to	get	a	feature	to	work.

So,	the	first	question	to	ask	yourself	when	contemplating	a	PostgreSQL	extension	as	a
way	to	publish	your	code	is	“How	does	all	of	the	‘stuff’	in	my	extension	relate	together?”

This	question	will	help	you	make	extensions	that	are	as	granular	as	reasonable.	If	the
objective	is	to	enhance	PostgreSQL	with	the	ability	to	provide	an	inventory	management
system,	it	might	be	better	to	start	with	an	extension	that	provides	a	bill	of	materials	data
type	first,	and	subsequently	build	additional	extensions	that	are	dependent	upon	that	one.
The	moral	of	the	story	is	to	dream	big,	but	create	each	extension	with	only	the	smallest
number	of	related	items	that	make	sense.

A	good	example	of	an	extension	that	provides	a	feature	to	PostgreSQL	is	OpenFTS.	This
extension	provides	full	text	searching	capabilities	to	PostgreSQL	by	creating	data	types,
indexes,	and	functions	that	are	well	related	to	each	other.

Another	type	of	extension	is	PostGIS,	which	provides	a	rich	set	of	tools	to	deal	with
geographic	information	systems.	Although	this	extension	provides	many	more	bits	of
functionality	than	OpenFTS,	it	is	still	as	granular	as	possible	by	virtue	of	the	fact	that
everything	that	is	provided	is	necessary	for	geographic	software	development.

Possibly,	you	are	a	book	author,	and	the	only	relationship	that	the	objects	in	your
extension	have	is	that	they	need	to	be	conveniently	removed	when	your	poor	victim	…
ahem…the	reader	is	through	with	them.	Welcome	to	the	wonders	of	extensions.

For	a	list	of	very	useful	extensions	that	have	gained	some	community	popularity,	you
might	want	to	take	a	look	at	this	page	fairly	often:
http://www.postgresql.org/download/products/6/.

You	should	also	take	a	look	at	the	PostgreSQL	extension	network	at	http://www.pgxn.org.
Please	note	that	installing	extensions	generally	means	running	a	script	as	a	superuser;	and
nearly	anyone	can	upload	to	pgxn,	meaning	that	individuals	really	need	to	vet	anything
they	get	from	pgxn	very	carefully.

Note
To	find	out	what	objects	can	be	packaged	into	an	extension,	look	at	the	ALTER	EXTENSION
ADD	command	in	the	PostgreSQL	documentation:

http://www.postgresql.org/docs/current/static/sql-alterextension.html

http://www.postgresql.org/download/products/6/
http://www.pgxn.org
http://www.postgresql.org/docs/current/static/sql-alterextension.html

Unpackaged	extensions
Starting	with	Version	9.1,	PostgreSQL	provides	a	convenient	way	to	move	from	the
primordial	ooze	of	unversioned	contrib	modules	into	the	brave	new	world	of	extensions.
Basically,	you	provide	a	SQL	file	to	show	the	relationship	of	the	objects	to	the	extension.
The	contrib	module’s	cube	provides	a	good	example	of	this	in	cube--unpackaged-
-1.0.sql:

/*	contrib/cube/cube--unpackaged--1.0.sql	*/

—complain	if	script	is	sourced	in	psql,	rather	than	via	CREATE	EXTENSION

\echo	Use	"CREATE	EXTENSION	cube"	to	load	this	file.	\quit

ALTER	EXTENSION	cube	ADD	type	cube;

ALTER	EXTENSION	cube	ADD	function	cube_in(cstring);

ALTER	EXTENSION	cube	ADD	function	cube(double	precision[],double	

precision[]);

ALTER	EXTENSION	cube	ADD	function	cube(double	precision[]);

...

The	code	that	provides	multidimensional	cubes	for	PostgreSQL	has	been	stable	for	quite
some	time.	It	is	unlikely	that	a	new	version	will	be	created	any	time	soon.	The	only	reason
for	this	module	to	be	converted	into	an	extension	is	to	allow	for	easy	installation	and
removal.

You	would	then	execute	the	command:

CREATE	EXTENSION	cube	FROM	unpackaged;

The	unrelated	items	are	now	grouped	together	into	the	extension	named	cube.	This	also
makes	it	easier	for	the	packaging	maintainer	on	any	platform	to	include	your	extension
into	the	repository.	We’ll	show	you	how	to	make	the	packages	to	install	your	extension	in
the	Building	an	extension	section.

Extension	versions
The	version	mechanism	for	PostgreSQL	extensions	is	simple.	Name	it	whatever	you	want
and	give	it	whatever	alphanumeric	version	number	that	suits	your	fancy.	Easy,	eh?	Just
name	the	files	in	this	format:

extension--version.sql

If	you	want	to	provide	an	upgrade	path	from	one	version	of	your	extension	to	another,	you
would	provide	the	file:

extension--oldversion--newversion.sql

This	simple	mechanism	allows	PostgreSQL	to	update	an	extension	that	is	already	in	place.
Gone	are	the	days	of	painful	exporting	and	re-importing	data	just	to	change	the	definition
of	a	data	type.	So,	let’s	go	ahead	and	update	our	example	extension	using	the	file	postal-
-1.0--1.1.sql.	This	update	is	as	easy	as:

ALTER	EXTENSION	postal	UPDATE	TO	'1.1';

Note
A	note	of	caution:	PostgreSQL	does	not	have	any	concept	of	what	your	version	number
means.	In	this	example,	the	extension	was	updated	from	Version	1.0	to	1.1	because	we
explicitly	provided	a	script	for	that	specific	conversion.	PostgreSQL	did	not	deduce	that
1.1	follows	1.0.	We	could	have	just	as	easily	used	the	names	of	fruits	or	historical
battleships	for	our	version	numbers	and	the	result	would	have	been	the	same.

PostgreSQL	will	use	multiple	update	files	if	necessary	to	achieve	the	desired	result.	Given
the	following	command:

ALTER	EXTENSION	postal	UPDATE	TO	'1.4';

PostgreSQL	will	apply	the	files	postal--1.1--1.2.sql,	postal--1.2--1.3.sql	and
postal--1.3--1.4.sql	in	the	correct	order	to	achieve	the	desired	version.

You	may	also	use	this	technique	to	provide	upgrade	scripts	that	are	in	fact	downgrade
scripts,	that	is,	they	actually	remove	functionality.	Be	careful	with	this	though.	If	a	path	to
a	desired	version	is	to	downgrade	before	an	upgrade,	PostgreSQL	will	take	the	shortest
route.	This	may	result	in	some	unintended	results,	including	data	loss.	My	advice	would
be	to	not	provide	downgrade	scripts.	The	risk	just	isn’t	worth	it.

The	.control	file
Along	with	the	extension	installation	script	file,	you	must	provide	a	.control	file.	The
.control	file	for	our	example	postal.control	looks	like	this:

#	postal	address	processing	extension

comment	=	'utilities	for	postal	processing'

default_version	=	'1.0'

module_pathname	=	'$libdir/postal'

relocatable	=	true

requires	=	'plpgsql'

The	purpose	of	the	.control	file	is	to	provide	a	description	of	your	extension.	This
metadata	may	include	directory,	default_version,	comment,	encoding,
module_pathname,	requires,	superuser,	relocatable,	and	schema.

The	main	PostgreSQL	documentation	for	this	file	is	located	at
http://www.postgresql.org/docs/current/static/extend-extensions.html.

This	example	shows	the	requires	configuration	parameter.	Our	extension	depends	on	the
procedural	language	PL/pgSQL.	On	most	platforms,	it	is	installed	by	default.
Unfortunately,	it	is	not	installed	on	all	platforms,	and	nothing	should	be	taken	for	granted.

Multiple	dependencies	can	be	indicated	by	separating	them	with	commas.	This	comes	in
very	handy	when	constructing	a	set	of	services	based	on	multiple	extensions.

As	we	mentioned	in	the	previous	section,	PostgreSQL	does	not	provide	any	interpretation
of	the	version	number	of	an	extension.	Versions	can	be	names	as	well	as	numbers,	so	there
is	no	way	for	PostgreSQL	to	interpret	that	postal--lamb.sql	comes	before	postal--
sheep.sql.	This	design	limitation	poses	a	problem	to	the	extension	developer,	in	that	there
is	no	way	to	specify	that	your	extension	depends	on	a	specific	version	of	another
extension.	I	would	love	to	see	this	configuration	parameter	enhanced	with	a	syntax	like
requires	=	postgis	>=	1.3,	but	alas,	no	such	construction	exists	at	the	moment.

http://www.postgresql.org/docs/current/static/extend-extensions.html

Building	an	extension
We	have	already	covered	the	basics	of	creating	a	script	file	and	a	.control	file.	Actually,
that	is	all	that	is	necessary	for	a	PostgreSQL	extension.	You	may	simply	copy	these	files
into	the	shared	extension	directory	on	your	computer	and	execute	the	following	command:

CREATE	EXTENSION	postal;

This	will	install	your	extension	into	the	currently	selected	database.

The	shared	extension	path	is	dependent	on	how	PostgreSQL	is	installed,	but	for	Ubuntu,	it
is	/usr/share/postgresql/9.2/extension.

However,	there	is	a	much	better	way	to	do	this	that	works	with	any	package	manager	on
any	platform.

PostgreSQL	provides	an	extension-building	toolkit	as	a	part	of	the	server	development
package.	To	install	this	package	on	Ubuntu,	you	can	type:

sudo	apt-get	install	postgresql-dev-9.4

This	will	install	all	of	the	PostgreSQL	source	code	necessary	to	create	and	install	an
extension.	You	would	then	create	a	file	named	Makefile	in	the	same	directory	as	the	rest
of	your	extension	files.	The	content	of	this	file	looks	like	this:

EXTENSION	=	postal	

DATA	=	postal--1.0.sql	

			

PG_CONFIG	=	pg_config	

PGXS	:=	$(shell	$(PG_CONFIG)	--pgxs)	

include	$(PGXS)		

This	simple	Makefile	file	will	copy	your	extension	script	file	and	the	.control	file	into
the	proper	shared	extension	directory	on	any	platform.	Invoke	it	with	this	command:

sudo	make	install

You	will	see	some	output	like	this:

/bin/mkdir	-p	'/usr/share/postgresql/9.4/extension'

/bin/sh	

/usr/lib/postgresql/9.4/lib/pgxs/src/makefiles/../../config/install-sh	-c	-

m	644	./postal.control	'/usr/share/postgresql/9.4/extension/'

/bin/sh	

/usr/lib/postgresql/9.4/lib/pgxs/src/makefiles/../../config/install-sh	-c	-

m	644	./postal--1.0.sql		'/usr/share/postgresql/9.4/extension/'

Your	extension	is	now	located	in	the	proper	directory	for	installation.	You	can	install	it
into	the	current	database	with:

CREATE	EXTENSION	postal;

You	will	then	see	the	confirmation	text	letting	you	know	that	you	have	now	gone	postal:

CREATE	EXTENSION

Installing	an	extension
Extensions	that	have	been	packaged	for	you	by	your	friendly	distribution	manager	are
very	simple	to	install	using	the	following	command:

CREATE	EXTENSION	extension_name;

Most	of	the	popular	Linux	distributions	include	a	package	called	something	like
postgresql-contrib-9.4.	This	naming	convention	is	left	over	from	the	contrib	style
installation	of	PostgreSQL	objects.	Don’t	worry,	for	PostgreSQL	9.4,	this	package	will
actually	provide	extensions	rather	than	contrib	modules.

To	find	out	where	the	files	were	placed	on	Ubuntu	Linux,	you	can	execute	the	following
command:

pg_config	--sharedir

This	will	show	you	the	installation	directory	of	shared	components:

/usr/share/postgresql/9.4

The	extensions	will	be	located	in	a	directory	called	,extension,	immediately	below	the
shared	directory.	This	will	then	be	named	/usr/share/postgresql/9.2/extension.

To	see	what	extensions	are	available	for	you	to	install,	try	this	command:

ls	$(pg_config	–sharedir)/extension/*.control

You	can	also	see	the	list	of	installed	extensions	using	the	plsql	meta-command	\dx.

This	will	show	you	all	the	extensions	that	have	been	made	available	to	you	by	your	Linux
distribution’s	package	management	system.

For	extensions	that	you	have	created	yourself,	you	must	copy	your	SQL	script	file	and	the
.control	file	to	the	shared	extension	directory	before	invoking	CREATE	EXTENSION	in
PostgreSQL.

cp	postal.control	postal--1.0.sql	$(pg_config	--sharedir)/extension

To	see	the	procedure	for	doing	this	reliably	on	any	target	platform,	refer	to	the	Building	an
Extension	section.

Viewing	extensions
Querying	the	pg_extension	system	view	or	using	the	meta-command	\dx	will	show	the
extensions	currently	installed	in	the	database.

postgres=#	\dx

List	of	installed	extensions

-[RECORD	1]-----------------------------

Name								|	pgcrypto

Version					|	1.0

Schema						|	public

Description	|	cryptographic	functions

-[RECORD	2]-----------------------------

Name								|	plperl

Version					|	1.0

Schema						|	pg_catalog

Description	|	PL/Perl	procedural	language

-[RECORD	3]-----------------------------

Name								|	plpgsql

Version					|	1.0

Schema						|	pg_catalog

Description	|	PL/pgSQL	procedural	language

The	extensions	that	are	ready	to	be	installed	can	be	viewed	from	the
pg_available_extensions	or	pg_available_extension_versions	system	views.

Publishing	your	extension
Thank	you	for	contributing	to	the	PostgreSQL	community!	Your	support	will	not	go
unnoticed	in	this	gathering	of	like-minded	individuals	who	are	all	slightly	smarter	than
each	other.	Your	work	will	be	seen	by	dozens	of	developers	looking	for	community
solutions	to	common	problems.	You	have	indeed	made	the	open	source	world	a	better
place.

Since	we	are	talking	about	publication,	you	should	consider	the	licensing	model	for	your
extension.	The	publication	methods	that	we	are	about	to	describe	assume	that	the
extension	will	be	made	available	to	the	general	public.	As	such,	please	consider	the
PostgreSQL	license	for	your	extension.	You	can	find	the	current	one	here:

http://www.postgresql.org/about/licence/

http://www.postgresql.org/about/licence/

Introduction	to	PostgreSQL	Extension	Network
When	you	want	to	publish	your	module,	you	could	start	writing	packaging	scripts	for	each
of	the	distribution	systems	for	every	operating	system.	This	is	the	way	the	PostgreSQL
extensions	have	been	distributed	in	the	past.	That	distribution	system	has	not	been	very
friendly	to	the	open	source	community,	or	very	well	received.	In	an	effort	to	make
extension	publication	more	palatable,	a	group	of	open	source	writers	and	backing
companies	got	together	and	founded	the	PostgreSQL	Extension	Network	(PGXN).

The	PostgreSQL	Extension	Network	http://pgxn.org/	provides	a	central	repository	for	your
open	source	extensions.	By	the	kindness	of	the	maintainers,	it	also	provides	installation
scripts	for	your	extensions	that	will	work	on	most	of	the	popular	PostgreSQL	deployment
operating	systems.

http://pgxn.org/

Signing	up	to	publish	your	extension
To	sign	up	to	publish	your	extension,	perform	the	following	steps:

1.	 Start	by	requesting	an	account	on	the	management	page:	http://manager.pgxn.org.
2.	 Click	on	Request	Account	and	fill	in	your	personal	information.	The	PostgreSQL

Extension	Network	folks	will	get	back	to	you	via	e-mail.	Enrollment	requests	are
currently	processed	by	an	actual	human,	so	the	e-mail	response	will	not	be	immediate
.

3.	 Click	on	the	provided	link	in	the	e-mail	to	confirm	your	account	and	set	a	new
password	on	the	PGXN	website:

4.	 You	will	then	be	prompted	to	create	a	password	for	your	account:

http://manager.pgxn.org

5.	 Set	a	password	that	you	will	remember,	and	confirm	by	typing	it	again.	Click	on
Change	and	you	will	be	welcomed	to	the	site:

That	is	all	there	is	to	getting	signed	up.	Once	you	have	your	new	account	set	up,	you	can
do	a	few	things	that	will	make	PostgreSQL	extension	programming	much	more	painless.

Creating	an	extension	project	the	easy	way
First,	let’s	install	some	utility	packages	that	will	create	a	lot	of	boilerplate	files	that	we
have	already	described	in	earlier	sections.	The	commands	below	are	for	a	Debian/Ubuntu
system:

apt-get	install	ruby

apt-get	install	rubygems

apt-get	install	ruby1.8-dev

apt-get	install	libopenssl-ruby1.8

gem	install	rubygems-update

/var/lib/gems/1.8/bin/update_rubygems

gem	install	pgxn_utils

You	will	now	find	that	you	have	a	utility	installed	named	pgxn-utils.	This	utility	makes	it
super	simple	to	create	an	extension	project.

pgxn-utils	skeleton	myextension

						create		myextension

						create		myextension/myextension.control

						create		myextension/META.json

						create		myextension/Makefile

						create		myextension/README.md

						create		myextension/doc/myextension.md

						create		myextension/sql/myextension.sql

						create		myextension/sql/uninstall_myextension.sql

						create		myextension/test/expected/base.out

						create		myextension/test/sql/base.sql

Wow!	All	of	the	files	that	we	have	mentioned	so	far	just	got	created	in	a	single	step.
Several	files	also	got	created	to	support	the	old	contrib	style	of	deployment.	The	next	few
sections	will	show	which	ones	are	important	to	you	for	extension	development.

This	package	management	system	has	one	notable	restriction.	In	contrast	to	PostgreSQL,
which	allows	version	numbers	to	be	any	alphanumeric	text,	this	package	management
requires	version	numbers	to	follow	the	rules	of	semantic	versioning.

This	version	format	includes	major	version,	minor	version,	and	release	number	in	the
format	major.minor.release.	This	is	to	assist	the	package	manager	in	installing	your
package	on	multiple	operating	system	platforms.	Just	go	with	it,	you’ll	thank	us	later.

Providing	the	metadata	about	the	extension
There	are	three	files	used	to	provide	data	about	the	extension.	The	PostgreSQL	Extension
Network	uses	one	of	them	on	the	website,	META.json,	for	search	criteria	and	description
text	for	the	extension.	META.json	will	be	located	in	myextension/META.json.

Here	is	an	example:

{

			"name":	"myextension",

			"abstract":	"A	short	description",

			"description":	"A	long	description",

			"version":	"0.0.1",

			"maintainer":	"The	maintainer's	name",

			"license":	"postgresql",

			"provides":	{

						"myextension":	{

									"abstract":	"A	short	description",

									"file":	"sql/myextension.sql",

									"docfile":	"doc/myextension.md",

									"version":	"0.0.1"

						}

			},

			"release_status":	"unstable",

			"generated_by":	"The	maintainer's	name",

			"meta-spec":	{

						"version":	"1.0.0",

						"url":	"http://pgxn.org/meta/spec.txt"

			}

}

You	should	add	some	sections	to	it	to	describe	your	keywords	and	any	additional
resources	that	you	make	available	to	the	user.	These	sections	would	look	like	this:

"tags":	[

		"cures	cancer",

		"myextension",

		"creates	world	peace"

],

"resources":	{

		"bugtracker":	

						{"web":	"https://github.com/myaccount/myextension/issues/"},

		"repository":	{

						"type":	"git",	

						"url":	"git://github.com/myaccount/myextension.git",

						"web":	"https://github.com/myaccount/myextension/"

				}

		}

The	complete	file	would	then	look	like	this:

{

			"name":	"myextension",

			"abstract":	"A	short	description",

			"description":	"A	long	description",

			"version":	"0.0.1",

			"maintainer":	"The	maintainer's	name",

			"license":	"postgresql",

			"provides":	{

						"myextension":	{

									"abstract":	"A	short	description",

									"file":	"sql/myextension.sql",

									"docfile":	"doc/myextension.md",

									"version":	"0.0.1"

						}

			},

			"release_status":	"unstable",

			"generated_by":	"The	maintainer's	name",

			"meta-spec":	{

						"version":	"1.0.0",

						"url":	"http://pgxn.org/meta/spec.txt"

			}

				"tags":	[

							"cures	cancer",

							"myextension",

							"creates	world	peace"

],

					"resources":	{

					"bugtracker":	

						{"web":	"https://github.com/myaccount/myextension/issues/"},

					"repository":	{

						"type":	"git",	

						"url":	"git://github.com/myaccount/myextension.git",

						"web":	"https://github.com/myaccount/myextension/"

				}

		}

}

The	next	file	that	you	will	need	to	modify	is	README.md.	This	file	is	located	in
myextension/README.md.	An	example	is	provided	with	the	code	that	accompanies	this
book.	Due	to	the	length,	it	will	not	be	reproduced	here.	This	file	is	distributed	along	with
your	extension.	It	is	a	markdown	syntax	file	that	is	meant	for	human	consumption.
Describe	anything	you	like	in	it.	Mine	includes	a	recipe	for	Döner	Kebabs.	Quite	tasty!
But	most	importantly,	put	a	nice	long	description	of	the	benefits	and	ease	of	use	of	your
extension.	Finally,	we	come	to	doc/myextension.md.	This	file	is	used	by	the	PostgreSQL
Extension	Network	to	provide	a	very	nice	landing	page	for	your	extension.	It	will	look
something	like	this:

This	file	is	formatted	with	markdown.	You	may	use	several	different	markup	syntaxes
here.	A	discussion	of	wiki	markup	is	beyond	the	scope	of	this	description,	but	the
formatting	that	is	in	the	example	is	likely	to	be	all	you	will	ever	need	anyway.

Here	is	an	example	of	the	content	of	the	file:

myextension

===========

Synopsis

		Show	a	brief	synopsis	of	the	extension.

Description

A	long	description

Usage

		Show	usage.

Support

		There	is	issues	tracker?	Github?	Put	this	information	here.

Author

[The	maintainer's	name]

Copyright	and	License

Copyright	(c)	2012	The	maintainer's	name.

Fill	out	the	file	with	some	descriptive	narrative	about	your	extension.	Add	anything	that
you	think	might	be	relevant	to	the	user	that	is	evaluating	your	extension	before	making	a
decision	to	install	it.	This	is	your	chance	to	impress	the	masses	of	PostgreSQL	developers.
So	don’t	be	shy	here.

Writing	your	extension	code
Put	your	SQL	code	in	the	file	that	was	provided	for	you	in
myextension/sql/myextension.sql.	This	file	should	contain	all	of	the	objects	that	make
up	your	extension.

/*	myextension.sql	*/

—complain	if	script	is	sourced	in	psql,	rather	than	via	CREATE	EXTENSION

\echo	Use	"CREATE	EXTENSION	myextension"	to	load	this	file.	\quit

CREATE	FUNCTION	feed_the_hungry()	...

You	can	provide	any	additional	SQL	files	in	the	same	directory	for	maintaining	versions	as
described	in	the	Extension	versions	section.	Anything	named	*.sql	that	is	located	in	this
directory	will	be	included	in	the	distribution.

Creating	the	package
To	ultimately	submit	our	extension	to	the	PostgreSQL	Extension	Network,	we	need	to
package	all	the	files	into	a	single	.zip	file.	Assuming	we’re	following	good	practices,	and
we’re	keeping	all	of	our	source	code	in	a	handy	Git	repository,	we	can	create	the	package
through	a	simple	Git	command.	Try	this	one	on	for	size:

git	archive	--format	zip	--prefix=myextension-0.0.1/	\

					--output	~/Desktop/myextension-0.0.1.zip	master

This	command	will	create	a	package	for	you	that	is	suitable	for	submission	to	the
PostgreSQL	Extension	Network.	All	we	need	to	do	now	is	submit	it.

Submitting	the	package	to	PGXN
Now	that	you	have	a	nice	ZIP	file	in	hand,	you	can	go	to	the	PostgreSQL	Extension
Network	and	make	your	accomplishment	available	to	the	community.

1.	 Start	by	going	to	http://www.pgxn.org:

2.	 At	the	bottom	of	the	page	is	a	link	named	Release	It.	Click	on	the	link	and	you	will
be	taken	to	the	PGXN	Manager	where	you	should	log	in	with	the	username	and
password	that	you	created	in	the	first	section:

http://www.pgxn.org

3.	 Click	on	the	link	Upload	a	Distribution.	This	will	bring	you	to	the	screen	where	you
can	upload	the	ZIP	file	that	you	created	in	the	Creating	the	package	section:

4.	 Browse	your	computer	for	the	ZIP	file	and	upload	it	to	the	PostgreSQL	Extension
Network.

That’s	it.	Thanks	again	for	contributing	to	the	PostgreSQL	community.

Installing	an	extension	from	PGXN
The	PostgreSQL	Extension	Network	provides	a	platform-independent	tool	to	install
PostgreSQL	extensions.	This	tool	is	written	in	Python,	and	uses	the	Python	installation
system	for	distributing	itself.	This	is	handy	because	the	Python	distribution	system	exists
virtually	on	every	PostgreSQL	supportable	platform	and	makes	it	very	simple	to	get
PostgreSQL	extensions	distributed	to	the	community.	The	extension	installer	works	with	a
single	set	of	instructions	on	all	targets:

easy_install	pgxnclient

Installing	pgxncli.py	script	to	/usr/local/bin

Installing	pgxn	script	to	/usr/local/bin

Processing	dependencies	for	pgxnclient

Finished	processing	dependencies	for	pgxnclient

Now	you	have	the	tools	installed	to	manage	PostgreSQL	extensions	provided	by	the
PostgreSQL	Extension	Network.

Installing	extensions	is	really	simple.	For	example,	if	we	had	a	requirement	to	use	a	new
tinyint	data	type,	we	could	add	it	with	this	command:

pgxn	install	tinyint

INFO:	best	version:	tinyint	0.1.1

INFO:	saving	/tmp/tmpKvr0kM/tinyint-0.1.1.zip

INFO:	unpacking:	/tmp/tmpKvr0kM/tinyint-0.1.1.zip

INFO:	building	extension…

The	extension	is	now	available	in	the	shared	extensions	directory	on	your	machine.	To
activate	it	for	any	database,	you	would	use	the	command	that	we	started	the	chapter	with:

CREATE	EXTENSION	tinyint;

You	will	then	see	the	confirmation	text	letting	you	know	that	tinyint	has	been	added:

CREATE	EXTENSION

You	now	have	the	extension	available	for	use	in	your	local	database.	Enjoy!

Summary
Wow,	this	has	been	a	long	hard	road	toward	getting	an	extension	configured	and	installed.
We	have	used	programming	skills,	system	administrative	skills,	database	administrative
skills,	and	wiki	editing.	Along	the	way,	we	saw	some	Ruby,	Python,	shell	scripting,
PL/pgSQL,	and	MediaWiki.

Believe	it	or	not,	this	is	the	simplified	process.	Hard	to	imagine,	eh?	Well,	continuous
work	is	being	done	on	the	PostgreSQL	Extension	Network	to	further	simplify	this
catastrophe	of	a	development	system.	My	thanks	go	out	to	David	E.	Wheeler	and	crew	for
making	this	new	system	available.	As	the	framework	now	exists	to	help	with	the	task,
there	will	be	dramatic	improvements	coming	in	the	months	and	years	ahead.

Now	that	I’m	done	complaining	about	it,	this	extension	system	is	actually	revolutionary.	I
say	this	because	no	other	database	platform	provides	any	such	framework	at	all.
PostgreSQL	leads	the	pack	when	it	comes	to	the	ability	to	make	changes	to	the	basic
functionality	of	the	product.	The	fact	that	extensions	can	be	installed	and	removed	from
the	product	is	an	indicator	of	how	inviting	PostgreSQL	is	to	the	open	source	community.

Extend	it	to	do	whatever	you	want,	and	they’ll	give	you	the	tools	to	do	it.	This	makes	a
PostgreSQL	server	the	perfect	framework	to	use	for	your	data	processing	needs.

In	the	next	chapter,	we	will	learn	more	about	PostgreSQL	as	an	extensible	database	and
look	at	how	to	create	user-defined	data	types	and	operators.

Chapter	14.	PostgreSQL	as	an	Extensible
RDBMS
PostgreSQL	is	an	extensible	database.	I	hope	you’ve	learned	this	much	by	now.	It	is
extensible	by	virtue	of	the	design	that	it	has.	As	discussed	before,	PostgreSQL	uses	a
catalog-driven	design.	In	fact,	PostgreSQL	is	more	catalog-driven	than	most	of	the
traditional	relational	databases.	The	key	benefit	here	is	that	the	catalogs	can	be	changed	or
added	to,	in	order	to	modify	or	extend	the	database	functionality.	PostgreSQL	also
supports	dynamic	loading,	that	is,	a	user-written	code	can	be	provided	as	a	shared	library,
and	PostgreSQL	will	load	it	as	required.

Extensibility	is	critical	for	many	businesses,	which	have	needs	that	are	specific	to	that
business	or	industry.	Sometimes,	the	tools	provided	by	the	traditional	database	systems	do
not	fulfill	those	needs.	People	in	those	businesses	know	best	how	to	solve	their	particular
problems,	but	they	are	not	experts	in	database	internals.	It	is	often	not	possible	for	them	to
cook	up	their	own	database	kernel	or	modify	the	core	or	customize	it	according	to	their
needs.	A	truly	extensible	database	will	then	allow	you	to	do	the	following:

Solve	domain-specific	problems	in	a	seamless	way,	like	a	native	solution
Build	complete	features	without	modifying	the	core	database	engine
Extend	the	database	without	interrupting	availability

PostgreSQL	not	only	allows	you	to	do	all	of	the	preceding	things,	but	also	does	these,	and
more	with	utmost	ease.	In	terms	of	extensibility,	you	can	do	the	following	things	in	a
PostgreSQL	database:

1.	 Create	your	own	data	types
2.	 Create	your	own	functions
3.	 Create	your	own	aggregates
4.	 Create	your	own	operators
5.	 Create	your	own	index	access	methods	(operator	classes)
6.	 Create	your	own	server	programming	language
7.	 Create	foreign	data	wrappers	(SQL/MED)	and	foreign	tables

So	far	in	this	book,	you	learned	to	create	functions	and	triggers	in	various	programming
languages	available	in	PostgreSQL,	as	well	as	create	user-defined	types.	You	also	learned
how	to	use	these	functions	in	triggers	and	rules.	As	you	can	see,	there	are	many	more
types	of	extensions	you	can	do	to	the	database,	and	this	provides	you	with	all	the	tools	you
need	to	customize	and	extend	the	database	to	suit	your	business	needs.	Before	we	discuss
the	previously	mentioned	cases	briefly,	let’s	take	a	look	at	what	you	can’t	extend	in
PostgreSQL.

What	can’t	be	extended?
Although	PostgreSQL	is	an	extensible	platform,	there	are	certain	things	that	you	can’t	do
or	change	without	explicitly	doing	a	fork,	as	follows:

1.	 You	can’t	change	or	plug	in	a	new	storage	engine.	If	you	are	coming	from	the
MySQL	world,	this	might	annoy	you	a	little.	However,	PostgreSQL’s	storage	engine
is	tightly	coupled	with	its	executor	and	the	rest	of	the	system,	which	has	its	own
benefits.

2.	 You	can’t	plug	in	your	own	planner/parser.	One	can	argue	for	and	against	the	ability
to	do	that,	but	at	the	moment,	the	planner,	parser,	optimizer,	and	so	on	are	baked	into
the	system	and	there	is	no	possibility	of	replacing	them.	There	has	been	some	talk	on
this	topic,	and	if	you	are	of	the	curious	kind,	you	can	read	some	of	the	discussion	at
http://bit.ly/1yRMkK7.

3.	 We	will	now	briefly	discuss	some	more	of	the	extensibility	capabilities	of
PostgreSQL.	We	will	not	dive	deep	into	the	topics,	but	we	will	point	you	to	the
appropriate	link	where	more	information	can	be	found.	The	chapter	material	will
serve	as	an	easy-to-understand	introductory	tutorial	on	the	subject	matter.	It	is	by	no
means	a	comprehensive	discussion	of	the	topics.

http://bit.ly/1yRMkK7

Creating	a	new	operator
Now,	let’s	take	look	at	how	we	can	add	a	new	operator	in	PostgreSQL.	Adding	new
operators	is	not	too	different	from	adding	new	functions.	In	fact,	an	operator	is
syntactically	just	a	different	way	to	use	an	existing	function.	For	example,	the	+	operator
calls	a	built-in	function	called	numeric_add	and	passes	it	the	two	arguments.

When	you	define	a	new	operator,	you	must	define	the	data	types	that	the	operator	expects
as	arguments	and	define	which	function	is	to	be	called.

Let’s	take	a	look	at	how	to	define	a	simple	operator.	You	have	to	use	the	CREATE	OPERATOR
command	to	create	an	operator.

In	Chapter	2,	Server	Programming	Environments,	we	wrote	a	function	to	calculate	the
Fibonacci	number	of	a	given	integer.	Let’s	use	that	function	to	create	a	new	Fibonacci
operator,	##,	which	will	have	an	integer	on	its	left-hand	side:

CREATE	OPERATOR	##	(PROCEDURE=fib,	LEFTARG=integer);

Now,	you	can	use	this	operator	in	your	SQL	to	calculate	a	Fibonacci	number:

testdb=#	SELECT	12##;

?column?	

						144

(1	row)

Note	that	we	defined	that	the	operator	will	have	an	integer	on	the	left-hand	side.	If	you	try
to	put	a	value	on	the	right-hand	side	of	the	operator,	you	will	get	an	error:

postgres=#	SELECT	##12;

ERROR:		operator	does	not	exist:	##	integer	at	character	8

HINT:		No	operator	matches	the	given	name	and	argument	type(s).	You	might	

need	to	add	explicit	type	casts.

STATEMENT:		select	##12;

ERROR:		operator	does	not	exist:	##	integer

LINE	1:	select	##12;

															^

HINT:		No	operator	matches	the	given	name	and	argument	type(s).	You	might	

need	to	add	explicit	type	casts.

Overloading	an	operator
Operators	can	be	overloaded	in	the	same	way	as	functions.	This	means,	that	an	operator
can	have	the	same	name	as	an	existing	operator	but	with	a	different	set	of	argument	types.
More	than	one	operator	can	have	the	same	name,	but	two	operators	can’t	share	the	same
name	if	they	accept	the	same	types	and	positions	of	the	arguments.	As	long	as	there	is	a
function	that	accepts	the	same	kind	and	number	of	arguments	that	an	operator	defines,	it
can	be	overloaded.

Let’s	override	the	##	operator	we	defined	in	the	last	example,	and	also	add	the	ability	to
provide	an	integer	on	the	right-hand	side	of	the	operator:

CREATE	OPERATOR	##	(PROCEDURE=fib,	RIGHTARG=integer);

Now,	running	the	same	SQL,	which	resulted	in	an	error	last	time,	should	succeed,	as
shown	here:

testdb=#	SELECT	##12;

	?column?	

			144

(1	row)

You	can	drop	the	operator	using	the	DROP	OPERATOR	command.

Note
You	can	read	more	about	creating	and	overloading	new	operators	in	the	PostgreSQL
documentation	at	http://www.postgresql.org/docs/current/static/sql-createoperator.html
and	http://www.postgresql.org/docs/current/static/xoper.html.

There	are	several	optional	clauses	in	the	operator	definition	that	can	optimize	the
execution	time	of	the	operators	by	providing	information	about	operator	behavior.	For
example,	you	can	specify	the	commutator	and	the	negator	of	an	operator	that	help	the
planner	use	the	operators	in	index	scans.	You	can	read	more	about	these	optional	clauses
at	http://www.postgresql.org/docs/current/static/xoper-optimization.html.

Since	this	chapter	is	just	an	introduction	to	the	additional	extensibility	capabilities	of
PostgreSQL,	we	will	just	introduce	a	couple	of	optimization	options;	any	serious
production	quality	operator	definitions	should	include	these	optimization	clauses,	if
applicable.

http://www.postgresql.org/docs/current/static/sql-createoperator.html
http://www.postgresql.org/docs/current/static/xoper.html
http://www.postgresql.org/docs/current/static/xoper-optimization.html

Optimizing	operators
The	optional	clauses	tell	the	PostgreSQL	server	about	how	the	operators	behave.	These
options	can	result	in	considerable	speedups	in	the	execution	of	queries	that	use	the
operator.	However,	if	you	provide	these	options	incorrectly,	it	can	result	in	a	slowdown	of
the	queries.	Let’s	take	a	look	at	two	optimization	clauses	called	commutator	and	negator.

COMMUTATOR
This	clause	defines	the	commuter	of	the	operator.	An	operator	A	is	a	commutator	of
operator	B	if	it	fulfils	the	following	condition:

x	A	y	=	y	B	x.

It	is	important	to	provide	this	information	for	the	operators	that	will	be	used	in	indexes
and	joins.	As	an	example,	the	commutator	for	>	is	<,	and	the	commutator	of	=	is	=	itself.

This	helps	the	optimizer	to	flip	the	operator	in	order	to	use	an	index.	For	example,
consider	the	following	query:

SELECT	*	FROM	employee	WHERE	new_salary	>	salary;

If	the	index	is	defined	on	the	salary	column,	then	PostgreSQL	can	rewrite	the	preceding
query	as	shown:

SELECT	*	from	employee	WHERE	salary	<	new_salary

This	allows	PostgreSQL	to	use	a	range	scan	on	the	index	column	salary.	For	a	user-
defined	operator,	the	optimizer	can	only	do	this	flip	around	if	the	commutator	of	a	user-
defined	operator	is	defined:

CREATE	OPERATOR	>	(LEFTARG=integer,	RIGHTARG=integer,	PROCEDURE=comp,	

COMMUTATOR	=	<)

NEGATOR
The	negator	clause	defines	the	negator	of	the	operator.	For	example,	<>	is	a	negator	of	=.
Consider	the	following	query:

SELECT	*	FROM	employee	WHERE	NOT	(dept	=	10);

Since	<>	is	defined	as	a	negator	of	=,	the	optimizer	can	simplify	the	preceding	query	as
follows:

SELECT	*	FROM	employee	WHERE	dept	<>	10;

You	can	even	verify	that	using	the	EXPLAIN	command:

postgres=#	EXPLAIN	SELECT	*	FROM	employee	WHERE	NOT	dept	=	'WATER	MGMNT';

																							QUERY	PLAN																								

	Foreign	Scan	on	employee		(cost=0.00..1.10	rows=1	width=160)

			Filter:	((dept)::text	<>	'WATER	MGMNT'::text)

			Foreign	File:	/Users/usamadar/testdata.csv

			Foreign	File	Size:	197

(4	rows)

Creating	index	access	methods
So	far	in	this	book,	you	came	across	examples	of	creating	new	data	types	or	user-defined
types	and	operators.	What	we	haven’t	discussed	so	far	is	how	to	index	these	types.	In
PostgreSQL,	an	index	is	more	of	a	framework	that	can	be	extended	or	customized	for
using	different	strategies.	In	order	to	create	new	index	access	methods,	we	have	to	create
an	operator	class.	Let’s	take	a	look	at	a	simple	example.

Let’s	consider	a	scenario	where	you	have	to	store	some	special	data	such	as	an	ID	or	a
social	security	number	in	the	database.	The	number	may	contain	non-numeric	characters,
so	it	is	defined	as	a	text	type:

CREATE	TABLE	test_ssn	(ssn	text);

	

INSERT	INTO	test_ssn	VALUES	('222-11-020878');

INSERT	INTO	test_ssn	VALUES	('111-11-020978');

Let’s	assume	that	the	correct	order	for	this	data	is	such	that	it	should	be	sorted	on	the	last
six	digits	and	not	the	ASCII	value	of	the	string.

The	fact	that	these	numbers	need	a	unique	sort	order	presents	a	challenge	when	it	comes	to
indexing	the	data.	This	is	where	PostgreSQL	operator	classes	are	useful.	An	operator
allows	a	user	to	create	a	custom	indexing	strategy.

Creating	an	indexing	strategy	is	about	creating	your	own	operators	and	using	them
alongside	a	normal	B-tree.

Let’s	start	by	writing	a	function	that	changes	the	order	of	digits	in	the	value	and	also	gets
rid	of	the	non-numeric	characters	in	the	string	to	be	able	to	compare	them	better:

CREATE	OR	REPLACE	FUNCTION	fix_ssn(text)

	RETURNS	text	AS	$$

	BEGIN

	

								RETURN	substring($1,8)	||	replace(substring($1,1,7),'-','');

	

END;	

$$LANGUAGE	'plpgsql'	IMMUTABLE;

Let’s	run	the	function	and	verify	that	it	works:

testdb=#	SELECT	fix_ssn(ssn)	FROM	test_ssn;

		fix_ssn			

	02087822211

	02097811111

(2	rows)

Before	an	index	can	be	used	with	a	new	strategy,	we	may	have	to	define	some	more
functions	depending	on	the	type	of	index.	In	our	case,	we	are	planning	to	use	a	simple	B-
tree,	so	we	need	a	comparison	function:

CREATE	OR	REPLACE	FUNCTION	ssn_compareTo(text,	text)

RETURNS	int	AS

$$

	BEGIN

				IF	fix_ssn($1)	<	fix_ssn($2)

				THEN

								RETURN	-1;

				ELSIF	fix_ssn($1)	>	fix_ssn($2)

				THEN

								RETURN	+1;

							ELSE

											RETURN	0;

					END	IF;

END;

$$	LANGUAGE	'plpgsql'	IMMUTABLE;

It’s	now	time	to	create	our	operator	class:

CREATE	OPERATOR	CLASS	ssn_ops

FOR	TYPE	text	USING	btree

AS

OPERATOR								1							<		,

OPERATOR								2							<=	,

OPERATOR								3							=		,

OPERATOR								4							>=	,

OPERATOR								5							>		,

FUNCTION								1							ssn_compareTo(text,	text);

You	can	also	overload	the	comparison	operators	if	you	need	to	compare	the	values	in	a
special	way,	and	use	the	functions	in	the	compareTo	function	as	well	as	provide	them	in
the	CREATE	OPERATOR	CLASS	command.

We	will	now	create	our	first	index	using	our	brand	new	operator	class:

CREATE	INDEX	idx_ssn	ON	test_ssn	(ssn	ssn_ops);

We	can	check	whether	the	optimizer	is	willing	to	use	our	special	index,	as	follows:

testdb=#	SET	enable_seqscan=off;	

testdb=#	EXPLAIN	SELECT	*	FROM	test_ssn	WHERE	ssn	=	'02087822211';

																																		QUERY	PLAN																																			

--

	Index	Only	Scan	using	idx_ssn	on	test_ssn		(cost=0.13..8.14	rows=1	

width=32)

			Index	Cond:	(ssn	=	'02087822211'::text)

(2	rows)

Therefore,	we	can	confirm	that	the	optimizer	is	able	to	use	our	new	index.

You	can	read	about	index	access	methods	in	the	PostgreSQL	documentation	at
http://www.postgresql.org/docs/current/static/xindex.html.

http://www.postgresql.org/docs/current/static/xindex.html

Creating	user-defined	aggregates
User-defined	aggregate	functions	are	probably	a	unique	PostgreSQL	feature,	yet	they	are
quite	obscure	and	perhaps	not	many	people	know	how	to	create	them.	However,	once	you
are	able	to	create	this	function,	you	will	wonder	how	you	have	lived	for	so	long	without
using	this	feature.

This	functionality	can	be	incredibly	useful,	because	it	allows	you	to	perform	custom
aggregates	inside	the	database,	instead	of	querying	all	the	data	from	the	client	and	doing	a
custom	aggregate	in	your	application	code,	that	is,	the	number	of	hits	on	your	website	per
minute	from	a	specific	country.

PostgreSQL	has	a	very	simple	process	for	defining	aggregates.	Aggregates	can	be	defined
using	any	functions	and	in	any	languages	that	are	installed	in	the	database.	Here	are	the
basic	steps	to	building	an	aggregate	function	in	PostgreSQL:

1.	 Define	a	start	function	that	will	take	in	the	values	of	a	result	set;	this	function	can	be
defined	in	any	PL	language	you	want.

2.	 Define	an	end	function	that	will	do	something	with	the	final	output	of	the	start
function.	This	can	be	in	any	PL	language	you	want.

3.	 Define	the	aggregate	using	the	CREATE	AGGREGATE	command,	providing	the	start	and
end	functions	you	just	created.

Let’s	steal	an	example	from	the	PostgreSQL	wiki	at
http://wiki.postgresql.org/wiki/Aggregate_Median.

In	this	example,	we	will	calculate	the	statistical	median	of	a	set	of	data.	For	this	purpose,
we	will	define	start	and	end	aggregate	functions.

Let’s	define	the	end	function	first,	which	takes	an	array	as	a	parameter	and	calculates	the
median.	We	are	assuming	here	that	our	start	function	will	pass	an	array	to	the	following
end	function:

CREATE	FUNCTION	_final_median(anyarray)	RETURNS	float8	AS	$$	

		WITH	q	AS

		(

					SELECT	val

					FROM	unnest($1)	val

					WHERE	VAL	IS	NOT	NULL

					ORDER	BY	1

),

		cnt	AS

		(

				SELECT	COUNT(*)	AS	c	FROM	q

)

		SELECT	AVG(val)::float8

		FROM	

		(

				SELECT	val	FROM	q

				LIMIT		2	-	MOD((SELECT	c	FROM	cnt),	2)

http://wiki.postgresql.org/wiki/Aggregate_Median

				OFFSET	GREATEST(CEIL((SELECT	c	FROM	cnt)	/	2.0)	-	1,0)		

)	q2;

$$	LANGUAGE	sql	IMMUTABLE;

Now,	we	create	the	aggregate	as	shown	in	the	following	code:

CREATE	AGGREGATE	median(anyelement)	(

		SFUNC=array_append,

		STYPE=anyarray,

		FINALFUNC=_final_median,

		INITCOND='{}'

);

The	array_append	start	function	is	already	defined	in	PostgreSQL.	This	function	appends
an	element	to	the	end	of	an	array.

In	our	example,	the	start	function	takes	all	the	column	values	and	creates	an	intermediate
array.	This	array	is	passed	on	to	the	end	function,	which	calculates	the	median.

Now,	let’s	create	a	table	and	some	test	data	to	run	our	function:

testdb=#	CREATE	TABLE	median_test(t	integer);

CREATE	TABLE

testdb=#	INSERT	INTO	median_test	SELECT	generate_series(1,10);

INSERT	0	10

The	generate_series	function	is	a	set	returning	function	that	generates	a	series	of	values,
from	start	to	stop	with	a	step	size	of	one.

Now,	we	are	all	set	to	test	the	function:

testdb=#	SELECT	median(t)	FROM	median_test;

	median	

				5.5

(1	row)

The	mechanics	of	the	preceding	example	are	quite	easy	to	understand.	When	you	run	the
aggregate,	the	start	function	is	used	to	append	all	the	table	data	from	column	t	into	an
array	using	the	append_array	PostgreSQL	built-in.	This	array	is	passed	on	to	the	final
function,	_final_median,	which	calculates	the	median	of	the	array	and	returns	the	result
in	the	same	data	type	as	the	input	parameter.	This	process	is	done	transparently	to	the	user
of	the	function	who	simply	has	a	convenient	aggregate	function	available	to	them.

You	can	read	more	about	the	user-defined	aggregates	in	the	PostgreSQL	documentation	in
much	more	detail	at	http://www.postgresql.org/docs/current/static/xaggr.html.

http://www.postgresql.org/docs/current/static/xaggr.html

Using	foreign	data	wrappers
PostgreSQL	foreign	data	wrappers	(FDW)	are	an	implementation	of	SQL	Management
of	External	Data	(SQL/MED),	which	is	a	standard	added	to	SQL	in	2013.

FDWs	are	drivers	that	allow	PostgreSQL	database	users	to	read	and	write	data	to	other
external	data	sources,	such	as	other	relational	databases,	NoSQL	data	sources,	files,	JSON,
LDAP,	and	even	Twitter.

You	can	query	the	foreign	data	sources	using	SQL	and	create	joins	across	different
systems	or	even	across	different	data	sources.

There	are	several	different	types	of	data	wrappers	developed	by	different	developers	and
not	all	of	them	are	production	quality.	You	can	see	a	select	list	of	wrappers	on	the
PostgreSQL	wiki	at	http://wiki.postgresql.org/wiki/Foreign_data_wrappers.

Another	list	of	FDWs	can	be	found	on	PGXN	at	http://pgxn.org/tag/fdw/.

Let’s	take	look	at	a	small	example	of	using	file_fdw	to	access	data	in	a	CSV	file.

First,	you	need	to	install	the	file_fdw	extension.	If	you	compiled	PostgreSQL	from	the
source,	you	will	need	to	install	the	file_fdw	contrib	module	that	is	distributed	with	the
source.	You	can	do	this	by	going	into	the	contrib/file_fdw	folder	and	running	make	and
make	install.	If	you	used	an	installer	or	a	package	for	your	platform,	this	module	might
have	been	installed	automatically.

Once	the	file_fdw	module	is	installed,	you	will	need	to	create	the	extension	in	the
database:

postgres=#	CREATE	EXTENSION	file_fdw;

CREATE	EXTENSION

Let’s	now	create	a	sample	CSV	file	that	uses	the	pipe,	|,	as	a	separator	and	contains	some
employee	data:

$	cat	testdata.csv	

AARON,	ELVIA	J|WATER	RATE	TAKER|WATER	MGMNT|81000.00|73862.00

AARON,	JEFFERY	M|POLICE	OFFICER|POLICE|74628.00|74628.00

AARON,	KIMBERLEI	R|CHIEF	CONTRACT	EXPEDITER|FLEET	

MANAGEMNT|77280.00|70174.00

Now,	we	should	create	a	foreign	server	that	is	pretty	much	a	formality	because	the	file	is
on	the	same	server.	A	foreign	server	normally	contains	the	connection	information	that	a
foreign	data	wrapper	uses	to	access	an	external	data	resource.	The	server	needs	to	be
unique	within	the	database:

CREATE	SERVER	file_server	FOREIGN	DATA	WRAPPER	file_fdw;

The	next	step,	is	to	create	a	foreign	table	that	encapsulates	our	CSV	file:

CREATE	FOREIGN	TABLE	employee	(

				emp_name				VARCHAR,

				job_title								VARCHAR,

http://wiki.postgresql.org/wiki/Foreign_data_wrappers
http://pgxn.org/tag/fdw/

				dept								VARCHAR,

				salary								NUMERIC,

				sal_after_tax				NUMERIC

)	SERVER	file_server

OPTIONS	(format	'csv',header	'false'	,	filename	

'/home/pgbook/14/testdata.csv',	delimiter	'|',	null	'');'');	

The	CREATE	FOREIGN	TABLE	command	creates	a	foreign	table	and	the	specifications	of	the
file	are	provided	in	the	OPTIONS	section	of	the	preceding	code.	You	can	provide	the
format,	and	if	the	first	line	of	the	file	is	a	header	(header	'false'),	in	our	case	there	is	no
file	header.

We	then	provide	the	name	and	path	of	the	file	and	the	delimiter	used	in	the	file,	which	in
our	case	is	the	pipe	symbol	|.	In	this	example,	we	also	specify	that	the	null	values	should
be	represented	as	an	empty	string.

Let’s	run	a	SQL	command	on	our	foreign	table:

postgres=#	select	*	from	employee;

-[RECORD	1]-+-------------------------

emp_name						|	AARON,	ELVIA	J

job_title					|	WATER	RATE	TAKER

dept										|	WATER	MGMNT

salary								|	81000.00

sal_after_tax	|	73862.00

-[RECORD	2]-+-------------------------

emp_name						|	AARON,	JEFFERY	M

job_title					|	POLICE	OFFICER

dept										|	POLICE

salary								|	74628.00

sal_after_tax	|	74628.00

-[RECORD	3]-+-------------------------

emp_name						|	AARON,	KIMBERLEI	R

job_title					|	CHIEF	CONTRACT	EXPEDITER

dept										|	FLEET	MANAGEMNT

salary								|	77280.00

sal_after_tax	|	70174.00

Great,	looks	like	our	data	is	successfully	loaded	from	the	file.

You	can	also	use	the	\d	meta	command	to	see	the	structure	of	the	employee	table:

postgres=#	\d	employee;

																	Foreign	table	"public.employee"

				Column					|							Type								|	Modifiers	|	FDW	Options	

---------------+-------------------+-----------+-------------

	emp_name						|	character	varying	|											|	

	job_title					|	character	varying	|											|	

	dept										|	character	varying	|											|	

	salary								|	numeric											|											|	

	sal_after_tax	|	numeric											|											|	

Server:	file_server

FDW	Options:	(format	'csv',	header	'false',	

				filename	'/home/pg_book/14/testdata.csv',	delimiter	'|',	"null"	'')

You	can	run	explain	on	the	query	to	understand	what	is	going	on	when	you	run	a	query	on
the	foreign	table:

postgres=#	EXPLAIN	SELECT	*	FROM	employee	WHERE	salary	>	5000;

																							QUERY	PLAN																								

	Foreign	Scan	on	employee		(cost=0.00..1.10	rows=1	width=160)

			Filter:	(salary	>	5000::numeric)

			Foreign	File:	/home/pgbook/14/testdata.csv

			Foreign	File	Size:	197

(4	rows)

The	ALTER	FOREIGN	TABLE	command	can	be	used	to	modify	the	options.

Note
More	information	about	the	file_fdw	is	available	at
http://www.postgresql.org/docs/current/static/file-fdw.html.

You	can	take	a	look	at	the	CREATE	SERVER	and	CREATE	FOREIGN	TABLE	commands	in	the
PostgreSQL	documentation	for	more	information	on	the	many	options	available.	Each	of
the	foreign	data	wrappers	comes	with	its	own	documentation	about	how	to	use	the
wrapper.	Make	sure	that	an	extension	is	stable	enough	before	it	is	used	in	production.	The
PostgreSQL	core	development	group	does	not	support	most	of	the	FDW	extensions.

If	you	want	to	create	your	own	data	wrappers,	you	can	find	the	documentation	at
http://www.postgresql.org/docs/current/static/fdwhandler.html	as	an	excellent	starting
point.	The	best	way	to	learn,	however,	is	to	read	the	code	of	other	available	extensions.

http://www.postgresql.org/docs/current/static/file-fdw.html
http://www.postgresql.org/docs/current/static/fdwhandler.html

Summary
PostgreSQL	can	be	extended	in	many	more	ways	than	what	we	have	discussed	so	far	in
the	book.	This	includes	the	ability	to	add	new	operators,	new	index	access	methods,	and
create	your	own	aggregates.	You	can	access	foreign	data	sources,	such	as	other	databases,
files,	and	web	services	using	PostgreSQL	foreign	data	wrappers.	These	wrappers	are
provided	as	extensions	and	should	be	used	with	caution,	as	most	of	them	are	not	officially
supported.

Even	though	PostgreSQL	is	very	extensible,	you	can’t	plug	in	a	new	storage	engine	or
change	the	parser/planner	and	executor	interfaces.	These	components	are	very	tightly
coupled	with	each	other	and	are,	therefore,	highly	optimized	and	mature.

Index
A

acquisition
cost	/	Cost	of	acquisition

add(int,	int)
functionality,	adding	/	Adding	functionality	to	add(int,	int)
NULL	arguments,	handling	/	Smart	handling	of	NULL	arguments
any	number	of	arguments,	working	with	/	Working	with	any	number	of
arguments

add_func.c	/	add_func.c
add_func.sql.in	/	add_func.sql.in
AFTER	trigger	/	Disallowing	DELETE
ALTER	EXTENSION	ADD	command

URL	/	When	to	create	an	extension
ANY	parameter	/	Other	parameters
application	design

about	/	Application	design
databases,	drawbacks	/	Databases	are	considered	harmful
databases	/	Databases	are	considered	harmful
encapsulation	/	Encapsulation
PostgreSQL	/	What	does	PostgreSQL	offer?
data	locality	/	Data	locality

arguments
about	/	Working	with	any	number	of	arguments
records,	handling	as	/	Handling	records	as	arguments	or	returned	values

argument	tuple
fields,	extracting	from	/	Extracting	fields	from	an	argument	tuple

arrays
looping	/	Looping	Through	Arrays

assert,	PL/Python
using	/	Using	assert

audit	trail
creating	/	Creating	an	audit	trail

audit	trigger	/	The	audit	trigger

B
backends

synchronizing	between	/	Synchronizing	between	backends
BEFORE	trigger	/	Disallowing	DELETE
BIRT	/	Third-party	tools

C
.control	file,	extension

about	/	The	.control	file
C

additional	resources	/	Additional	resources	for	C
C++

functions,	writing	in	/	Writing	functions	in	C++
caching

about	/	Caching
cancel	trigger	/	Disallowing	DELETE
C	code,	writing

about	/	Basic	guidelines	for	writing	C	code
memory,	allocating	/	Memory	allocation
palloc(),	using	/	Use	palloc()	and	pfree()
pfree(),	using	/	Use	palloc()	and	pfree()
structures,	zero	filling	/	Zero-fill	the	structures
files,	including	/	Include	files
symbol	names,	public	/	Public	symbol	names

C	function
about	/	The	simplest	C	function	–	return	(a	+	b)
return	(a	+	b)	/	The	simplest	C	function	–	return	(a	+	b)
add_func.c	/	add_func.c
Makefile	function	/	Makefile
CREATE	FUNCTION	add(int,	int)	/	CREATE	FUNCTION	add(int,	int)
add_func.sql.in	function	/	add_func.sql.in
writing	/	Summary	for	writing	a	C	function

C	functions
error,	reporting	/	Error	reporting	from	C	functions
error,	states	/	“Error”	states	that	are	not	errors
messages,	sent	to	client	/	When	are	messages	sent	to	the	client?

changes
auditing	/	Auditing	changes

CLUSTER	statement	/	CONNECT,	CLUSTER,	and	RUN	ON
code

examples	/	About	this	book’s	code	examples
commit	/	Doing	something	at	commit/rollback
Common	Language	Runtime	(CLR)	/	Procedural	languages
community

about	/	Community
COMMUTATOR	clause	/	COMMUTATOR
composite-type	arguments,	PL/Tcl

passing	/	Passing	composite-type	arguments
conditional	expressions

about	/	Conditional	expressions
URL	/	Conditional	expressions
loops,	with	counters	/	Loops	with	counters
query	results,	looping	/	Looping	through	query	results
PERFORM	command	versus	SELECT	command	/	PERFORM	versus	SELECT
looping,	through	arrays	/	Looping	Through	Arrays

conditional	triggers	/	Conditional	triggers
CONNECT	statement	/	CONNECT,	CLUSTER,	and	RUN	ON
context	manager

URL	/	Handling	exceptions
contrib

URL	/	Additional	resources	for	C
Coordinated	Universal	Time	(UTC)	/	The	audit	trigger
cost

about	/	More	control
CREATE	FUNCTION	add(int,	int)	/	CREATE	FUNCTION	add(int,	int)
ctags

URL	/	Additional	resources	for	C
cursors

returning	/	Returning	cursors
returned	from	another	function,	iterating	over	/	Iterating	over	cursors	returned
from	another	function
pros	/	Wrapping	up	of	functions	returning	cursors
cons	/	Wrapping	up	of	functions	returning	cursors
URL	/	Wrapping	up	of	functions	returning	cursors

D
data

cleaning	/	Data	cleaning
partitioning,	across	multiple	servers	/	Data	partitioning	across	multiple	servers
splitting	/	Splitting	the	data
distributing	/	The	distribution	of	data
moving,	from	single	to	partitioned	database	/	Moving	data	from	the	single	to	the
partitioned	database

database
changes,	fast	capturing	/	Fast	capturing	of	database	changes

database,	scaling
single-server	chat,	creating	/	Creating	a	simple	single-server	chat
tables,	splitting	over	multiple	databases	/	Dealing	with	success	–	splitting	tables
over	multiple	databases
data,	moving	from	single	to	partitioned	database	/	Moving	data	from	the	single
to	the	partitioned	database

database-backed	systems,	growing
ways	/	What	expansion	plans	work	and	when?
bigger	server,	moving	to	/	Moving	to	a	bigger	server
Master-slave	replication	/	Master-slave	replication	–	moving	reads	to	slave
Multi-master	replication	/	Multimaster	replication

database	abstraction	layer	/	Databases	are	considered	harmful
databases,	PL/Tcl

accessing	/	Accessing	databases
data	changes

visibility	/	Visibility	of	data	changes
data	comparisons

operators	used	/	Data	comparisons	using	operators
data	definition	language	(DDL)	/	Auditing	changes
Data	Manipulation	Language	(DML)	operation	/	Working	on	a	simple	“Hey,	I’m
called”	trigger
data	wrappers

URL	/	Using	foreign	data	wrappers
Datum	/	Interlude	–	what	is	Datum?
DB	API	2	/	Running	queries	in	the	database
ddl_command_end	event	/	Creating	event	triggers
ddl_command_start	event	/	Creating	event	triggers
debugging

manual	debugging,	with	RAISE	NOTICE	/	Manual	debugging	with	RAISE
NOTICE
visual	debugging	/	Visual	debugging

debugging,	manual
exceptions,	throwing	/	Throwing	exceptions

URL	/	Throwing	exceptions
file,	logging	to	/	Logging	to	a	file
RAISE	NOTICE,	advantages	/	The	advantages	of	RAISE	NOTICE
RAISE	NOTICE,	disadvantages	/	The	disadvantages	of	RAISE	NOTICE

DELETE	trigger
disallowing	/	Disallowing	DELETE

developers
availability	/	Availability	of	developers

don’t	repeat	yourself	(DIY)	/	DRY	–	don’t	repeat	yourself
dynamic	link	library	(DLL)	/	Procedural	languages

E
EnterpriseDB

URL	/	Installing	the	debugger	from	the	source
error

reporting,	from	C	functions	/	Error	reporting	from	C	functions
states	/	“Error”	states	that	are	not	errors
NOTICE	/	“Error”	states	that	are	not	errors
INFO	/	“Error”	states	that	are	not	errors
LOG	/	“Error”	states	that	are	not	errors
reporting,	URL	/	When	are	messages	sent	to	the	client?

error	handling	/	General	error	reporting	and	error	handling
error	reporting	/	General	error	reporting	and	error	handling
ERROR	trigger	/	Disallowing	DELETE
event	triggers

use	cases	/	Use	cases	for	creating	event	triggers
creating	/	Creating	event	triggers
ddl_command_start	event	/	Creating	event	triggers
ddl_command_end	event	/	Creating	event	triggers
sql_drop	event	/	Creating	event	triggers
URL	/	Creating	event	triggers,	A	roadmap	of	event	triggers
audit	trail,	creating	/	Creating	an	audit	trail
roadmap	/	A	roadmap	of	event	triggers

event	triggers,	PL/pgSQL	functions
TG_TAG	/	Creating	event	triggers
TG_EVENT	/	Creating	event	triggers

exceptions,	PL/Python
handling	/	Handling	exceptions

exceptions,	RAISE	NOTICE
throwing	/	Throwing	exceptions

expanded	display
switching	to	/	Switching	to	the	expanded	display

extensibility	/	What	can’t	be	extended?
extension

creating	/	When	to	create	an	extension
URL	/	When	to	create	an	extension,	The	.control	file
unpackaged	/	Unpackaged	extensions
versions	/	Extension	versions
.control	file	/	The	.control	file
building	/	Building	an	extension
installing	/	Installing	an	extension
viewing	/	Viewing	extensions
publishing	/	Publishing	your	extension
installing,	from	PGXN	/	Installing	an	extension	from	PGXN

extension,	publishing
PostgreSQL	Extension	Network	/	Introduction	to	PostgreSQL	Extension
Network
signing	up	/	Signing	up	to	publish	your	extension
extension	project,	creating	/	Creating	an	extension	project	the	easy	way
metadata,	providing	/	Providing	the	metadata	about	the	extension
extension	code,	writing	/	Writing	your	extension	code
package,	creating	/	Creating	the	package

extensions	/	add_func.sql.in

F
file_fdw

URL	/	Using	foreign	data	wrappers
fillfactor

URL	/	Creating	a	simple	single-server	chat
foreign	data	wrappers	(FDW)

using	/	Using	foreign	data	wrappers
function

used,	for	configuring	PL/Proxy	cluster	/	Configuring	the	PL/Proxy	cluster	using
functions

function	overloading	/	User-defined	functions

G
General	Inverted	Index	(GIN)	/	Type	extensibility
Git	repository

URL	/	Installing	the	debugger	from	the	source

I
immutable	fields	trigger	/	The	immutable	fields	trigger
index	access	methods

creating	/	Creating	index	access	methods
URL	/	Creating	index	access	methods

integer	set
returning	/	Returning	a	set	of	integers

K
keep	it	simple	stupid	(KISS)	/	KISS	–	keep	it	simple	stupid
k	nearest	neighbor	(KNN)	/	Type	extensibility

L
licensing

about	/	Licensing
light-weight	locks	(LWLocks)	/	Synchronizing	between	backends
log	trigger	/	A	log	trigger
looping	syntax

URL	/	Loops	with	counters
loops

with	counters	/	Loops	with	counters
statement,	terminating	/	Statement	termination

M
Makefile	function	/	Makefile
Master-slave	replication	/	Master-slave	replication	–	moving	reads	to	slave
metadata

providing,	for	extension	/	Providing	the	metadata	about	the	extension
Multi-master	replication

about	/	Multimaster	replication
Multiversion	Concurrency	Control	(MVCC)	/	Visibility

N
NEGATOR	clause	/	NEGATOR
NEW	record

modifying	/	Modifying	the	NEW	record
NULL	arguments

handling	/	Smart	handling	of	NULL	arguments

O
operator

new	operator,	creating	/	Creating	a	new	operator
overloading	/	Overloading	an	operator
optimizing	/	Optimizing	operators

operator,	optimizing
COMMUTATOR	/	COMMUTATOR
NEGATOR	/	NEGATOR

operators
used,	for	data	comparisons	/	Data	comparisons	using	operators
PostgreSQL	documentation,	URL	/	Overloading	an	operator

optional	clauses
URL	/	Overloading	an	operator

os.walk()
URL	/	Listing	directory	contents

OUT	parameters
and	records	/	OUT	parameters	and	records
about	/	OUT	parameters
records,	returning	/	Returning	records
RETURNS	TABLE,	using	/	Using	RETURNS	TABLE
no	predefined	structure,	returning	with	/	Returning	with	no	predefined	structure
SETOF	ANY,	returning	/	Returning	SETOF	ANY
variadic	argument	lists	/	Variadic	argument	lists

P
package

creating	/	Creating	the	package
submitting,	to	PGXN	/	Submitting	the	package	to	PGXN

palloc()
using	/	Use	palloc()	and	pfree()

parameters
about	/	Other	parameters

Pentaho	data	integration	(kettle)	/	Third-party	tools
Pentaho	Report	Server	/	Third-party	tools
PERFORM	command

versus	SELECT	command	/	PERFORM	versus	SELECT
pfree()

using	/	Use	palloc()	and	pfree()
pgAdmin3	/	Third-party	tools

installing	/	Installing	pgAdmin3
pgfoundry

URL	/	Additional	resources	for	C
PGXN

package,	submitting	/	Submitting	the	package	to	PGXN
URL	/	Submitting	the	package	to	PGXN
extension,	installing	from	/	Installing	an	extension	from	PGXN
FDWs	URL	/	Using	foreign	data	wrappers

php5-postgresql	/	Third-party	tools
pl/lolcode

URL	/	Summary
PL/Perl

using	/	When	to	use	PL/Perl
installing	/	Installing	PL/Perl
function	/	A	simple	PL/Perl	function
function,	URL	/	A	simple	PL/Perl	function,	Passing	and	returning	non-scalar
types,	Writing	PL/Perl	triggers
non-scalar	types,	passing	/	Passing	and	returning	non-scalar	types
non-scalar	types,	returning	/	Passing	and	returning	non-scalar	types
triggers,	writing	/	Writing	PL/Perl	triggers
untrusted	Perl	/	Untrusted	Perl

PL/pgSQL
used,	for	integrity	checks	/	Using	PL/pgSQL	for	integrity	checks
about	/	Why	PL/pgSQL?
disadvantages	/	Why	PL/pgSQL?
URL	/	Why	PL/pgSQL?
advantages	/	Why	PL/pgSQL?

PL/pgSQL	debugger

about	/	Visual	debugging
URL	/	Visual	debugging
installing	/	Installing	the	debugger
PostgreSQL	Windows	installer,	URL	/	Installing	the	debugger
installing,	from	source	/	Installing	the	debugger	from	the	source
pgAdmin3,	installing	/	Installing	pgAdmin3
using	/	Using	the	debugger
advantages	/	The	advantages	of	the	debugger
disadvantages	/	The	disadvantages	of	the	debugger

PL/pgSQL	function
structure	/	The	structure	of	a	PL/pgSQL	function
arguments,	accessing	/	Accessing	function	arguments
results	/	Acting	on	the	function’s	results

PL/pgSQL	TRIGGER	function
OLD,	NEW	/	Variables	passed	to	the	PL/pgSQL	TRIGGER	function
TG_NAME	/	Variables	passed	to	the	PL/pgSQL	TRIGGER	function
TG_WHEN	/	Variables	passed	to	the	PL/pgSQL	TRIGGER	function
TG_LEVEL	/	Variables	passed	to	the	PL/pgSQL	TRIGGER	function
TG_OP	/	Variables	passed	to	the	PL/pgSQL	TRIGGER	function
TG_RELID	/	Variables	passed	to	the	PL/pgSQL	TRIGGER	function
TG_TABLE_NAME	/	Variables	passed	to	the	PL/pgSQL	TRIGGER	function
TG_TABLE_SCHEMA	/	Variables	passed	to	the	PL/pgSQL	TRIGGER	function
TG_NARGS,	TG_ARGV[]	/	Variables	passed	to	the	PL/pgSQL	TRIGGER
function
TG_TAG	/	Variables	passed	to	the	PL/pgSQL	TRIGGER	function

PL/Proxy
about	/	PL/Proxy	–	the	partitioning	language
installing	/	Installing	PL/Proxy
URL	/	Installing	PL/Proxy
syntax	/	The	PL/Proxy	language	syntax
CONNECT	statement	/	CONNECT,	CLUSTER,	and	RUN	ON
CLUSTER	statement	/	CONNECT,	CLUSTER,	and	RUN	ON
RUN	ON	statement	/	CONNECT,	CLUSTER,	and	RUN	ON
SELECT	statement	/	SELECT	and	TARGET
TARGET	statement	/	SELECT	and	TARGET
SPLIT	statement	/	SPLIT	–	distributing	array	elements	over	several	partitions
data,	distributing	/	The	distribution	of	data
connection	pooling	/	Connection	Pooling

PL/Proxy	cluster
configuring,	functions	used	/	Configuring	the	PL/Proxy	cluster	using	functions
configuring,	SQL/MED	used	/	Configuring	the	PL/Proxy	cluster	using
SQL/MED

PL/Python
about	/	Why	PL/Python?,	Quick	introduction	to	PL/Python

function	/	A	minimal	PL/Python	function
data	type	conversions	/	Data	type	conversions
documentation,	URL	/	Data	type	conversions
simple	functions,	writing	/	Writing	simple	functions	in	PL/Python,	A	simple
function
record,	returning	from	Python	function	/	Functions	returning	a	record
table	functions	/	Table	functions
queries,	running	in	database	/	Running	queries	in	the	database
trigger	functions,	writing	/	Writing	trigger	functions	in	PL/Python
exceptions,	handling	/	Handling	exceptions
atomicity	/	Atomicity	in	Python
debugging	/	Debugging	PL/Python

PL/Python,	debugging
about	/	Debugging	PL/Python
function	progress	tracking,	plpy.notice()	used	/	Using	plpy.notice()	to	track	the
function’s	progress
assert	used	/	Using	assert
sys.stdout,	redirecting	/	Redirecting	sys.stdout	and	sys.stderr
sys.stderr,	redirecting	/	Redirecting	sys.stdout	and	sys.stderr

PL/Tcl
installing	/	Installing	PL/Tcl
function	/	A	simple	PL/Tcl	function
Strict	functions,	null	checking	with	/	Null	checking	with	Strict	functions
parameters	/	The	parameter	format
arrays,	passing	/	Passing	and	returning	arrays
arrays,	returning	/	Passing	and	returning	arrays
composite-type	arguments,	passing	/	Passing	composite-type	arguments
database,	accessing	/	Accessing	databases
function,	URL	/	Accessing	databases,	Writing	PL/Tcl	triggers
triggers,	writing	/	Writing	PL/Tcl	triggers
untrusted	Tcl	/	Untrusted	Tcl

PlpgGetNames()	function	/	Returning	a	record
plpy.notice()

used,	for	tracking	functions	progress	/	Using	plpy.notice()	to	track	the	function’s
progress

plugins	/	Procedural	languages
polymorphic	types	/	Other	parameters
PostgreSQL

acquisition	cost	/	Cost	of	acquisition
developers,	availability	/	Availability	of	developers
licensing	/	Licensing
predictability	/	Predictability
community	/	Community
procedural	languages	/	Procedural	languages

controls	/	More	control
URL	/	More	control
documentation,	URL	/	Returning	cursors
manual,	URL	/	Additional	resources	for	C
internals,	URL	/	Additional	resources	for	C

postgresql.conf	file
URL	/	Additional	resources	for	C

PostgreSQL	documentation
URL	/	Writing	functions	in	C++

PostgreSQL	Extension	Network
about	/	Introduction	to	PostgreSQL	Extension	Network

PostgreSQL	functions
calling	/	Running	queries	and	calling	PostgreSQL	functions

PostgreSQL	license
URL	/	Publishing	your	extension

PostgreSQL	Version	9.3	functions
URL	/	More	info	on	SPI_*	functions

predictability
about	/	Predictability

procedural	languages
about	/	Procedural	languages
third-party	tools	/	Third-party	tools
platform	compatibility	/	Platform	compatibility
application	design	/	Application	design

pseudotypes
URL	/	Other	parameters

psycopg2	/	Third-party	tools
Python	Database	API	Specification	v2.0	/	Running	queries	in	the	database
Python	Database	API	Specification	v2.0	(DB	API	2)	/	Running	queries	in	the
database
Python	Imaging	Library	(PIL)	module	/	Generating	thumbnails	when	saving	images

Q
QCubed	/	Third-party	tools
queries,	PL/Python

running,	in	database	/	Running	queries	in	the	database
simple	queries,	running	/	Running	simple	queries
prepared	queries,	using	/	Using	prepared	queries
prepared	queries,	caching	/	Caching	prepared	queries
constructing	/	Constructing	queries

query	results
looping	/	Looping	through	query	results

R
RAISE	NOTICE

manual	debugging	with	/	Manual	debugging	with	RAISE	NOTICE
advantages	/	The	advantages	of	RAISE	NOTICE
URL	/	The	advantages	of	RAISE	NOTICE
disadvantages	/	The	disadvantages	of	RAISE	NOTICE

Read	Committed	/	Transactions
record

returning	/	Returning	a	record
returning,	from	Python	function	/	Functions	returning	a	record

records
and	OUT	parameters	/	OUT	parameters	and	records
returning	/	Returning	records
handling,	as	arguments	/	Handling	records	as	arguments	or	returned	values
complex	type	single	tuple,	returning	/	Returning	a	single	tuple	of	a	complex	type
fields,	extracting	from	argument	type	/	Extracting	fields	from	an	argument	tuple
return	tuple,	constructing	/	Constructing	a	return	tuple
Datum	/	Interlude	–	what	is	Datum?
set,	returning	/	Returning	a	set	of	records

replication
Master-slave	replication	/	Master-slave	replication	–	moving	reads	to	slave
Multi-master	replication	/	Multimaster	replication

return	(a	+	b)	/	The	simplest	C	function	–	return	(a	+	b)
RETURN	SETOF	variants

about	/	A	summary	of	the	RETURN	SETOF	variants
RETURNS	TABLE

using	/	Using	RETURNS	TABLE
return	tuple

constructing	/	Constructing	a	return	tuple
rollback	/	Doing	something	at	commit/rollback
rows

returning,	from	function	/	Using	a	set	returning	function
rowsets	/	Sets	and	arrays
RUN	ON	statement	/	CONNECT,	CLUSTER,	and	RUN	ON

S
schema	changes

preventing	/	Preventing	schema	changes
SELECT	command

versus	PERFORM	command	/	PERFORM	versus	SELECT
SELECT	statement	/	SELECT	and	TARGET
server

data,	partitioning	across	multiple	servers	/	Data	partitioning	across	multiple
servers

server	programming
about	/	Moving	beyond	simple	functions
best	practices	/	Programming	best	practices
keep	it	simple	stupid	(KISS)	/	KISS	–	keep	it	simple	stupid
don’t	repeat	yourself	(DRY)	/	DRY	–	don’t	repeat	yourself
you	ain’t	gonna	need	it	(YAGNI)	/	YAGNI	–	you	ain’t	gonna	need	it
service-oriented	architecture	(SOA)	/	SOA	–	service-oriented	architecture

service-oriented	architecture	(SOA)	/	SOA	–	service-oriented	architecture
set-returning	function	(table	function)

using	/	Using	a	set	returning	function
set-returning	functions	(SRF)	/	Returning	a	record
SETOF	ANY

returning	/	Returning	SETOF	ANY
sets

about	/	Sets	and	arrays
returning	/	Returning	sets
integer	sets,	returning	/	Returning	a	set	of	integers
set-returning	function,	using	/	Using	a	set	returning	function
rows,	returning	from	function	/	Using	a	set	returning	function

sever	programming
about	/	Why	program	in	the	server?
advantages	/	Wrapping	up	–	why	program	in	the	server?,	Ease	of	maintenance

single-server	chat
specifications	/	Creating	a	simple	single-server	chat
implementing	/	Creating	a	simple	single-server	chat

skytools
URL	/	Fast	capturing	of	database	changes

smtplib
URL	/	Sending	an	e-mail

sort	orders
custom	/	Custom	sort	orders

SPI
used,	for	sample	C	function	/	A	sample	C	function	using	SPI

SPI_*	functions	/	More	info	on	SPI_*	functions

SPI_exec()	function	/	A	sample	C	function	using	SPI
SPLIT	statement

about	/	SPLIT	–	distributing	array	elements	over	several	partitions
SQL/MED

URL	/	The	distribution	of	data
used,	for	configuring	PL/Proxy	cluster	/	Configuring	the	PL/Proxy	cluster	using
SQL/MED

/	Using	foreign	data	wrappers
SQL	database	server

about	/	Thinking	out	of	the	“SQL	database	server”	box
thumbnails,	creating	/	Generating	thumbnails	when	saving	images
e-mail,	sending	/	Sending	an	e-mail
directory	contents,	listing	/	Listing	directory	contents

SQL	queries
running,	inside	database	/	Running	queries	and	calling	PostgreSQL	functions
sample	C	function,	SPI	used	/	A	sample	C	function	using	SPI
data	changes,	visibility	/	Visibility	of	data	changes
SPI_*	functions	/	More	info	on	SPI_*	functions

sql_drop	event	/	Creating	event	triggers
Strict	functions

null	checking	with	/	Null	checking	with	Strict	functions
structured	data

about	/	Other	ways	to	work	with	structured	data
data	types,	complex	/	Complex	data	types	for	the	modern	world	–	XML	and
JSON
XML	data	type	/	XML	data	type	and	returning	data	as	XML	from	functions
data,	returning	as	XML	from	functions	/	XML	data	type	and	returning	data	as
XML	from	functions
data,	returning	in	JSON	format	/	Returning	data	in	the	JSON	format

sys.stderr,	PL/Python
redirecting	/	Redirecting	sys.stdout	and	sys.stderr

sys.stdout,	PL/Python
redirecting	/	Redirecting	sys.stdout	and	sys.stderr

T
table	functions	/	Table	functions
tables

splitting,	over	multiple	databases	/	Dealing	with	success	–	splitting	tables	over
multiple	databases

Talend	/	Third-party	tools
TARGET	statement	/	SELECT	and	TARGET
Tcl

URL	/	Passing	composite-type	arguments
transactions

about	/	Transactions
isolation	methods,	URL	/	Transactions

trigger
function,	creating	/	Creating	the	trigger	function
creating	/	Creating	the	trigger
simple	trigger,	creating	/	Working	on	a	simple	“Hey,	I’m	called”	trigger
auditing	/	The	audit	trigger
DELETE	trigger,	disallowing	/	Disallowing	DELETE
cancel	trigger	/	Disallowing	DELETE
BEFORE	trigger	/	Disallowing	DELETE
AFTER	trigger	/	Disallowing	DELETE
ERROR	trigger	/	Disallowing	DELETE
TRUNCATE	trigger,	disallowing	/	Disallowing	TRUNCATE
NEW	record,	modifying	/	Modifying	the	NEW	record
timestamping	/	The	timestamping	trigger
immutable	fields	trigger	/	The	immutable	fields	trigger
fire,	controlling	/	Controlling	when	a	trigger	is	called
conditional	triggers	/	Conditional	triggers
on	specific	field	changes	/	Triggers	on	specific	field	changes
function,	visibility	/	Visibility
rules,	for	using	/	Most	importantly	–	use	triggers	cautiously!
PL/pgSQL	TRIGGER	function	/	Variables	passed	to	the	PL/pgSQL	TRIGGER
function

trigger	functions,	PL/Python
writing	/	Writing	trigger	functions	in	PL/Python
inputs,	exploring	/	Exploring	the	inputs	of	a	trigger
log	trigger	/	A	log	trigger

triggers
used,	for	managing	related	data	/	Managing	related	data	with	triggers

triggers,	PL/Perl
writing	/	Writing	PL/Perl	triggers

triggers,	PL/Tcl
writing	/	Writing	PL/Tcl	triggers

OK	value	/	Writing	PL/Tcl	triggers
SKIP	value	/	Writing	PL/Tcl	triggers
LIST	value	/	Writing	PL/Tcl	triggers
OLD	value	/	Writing	PL/Tcl	triggers
nEW	value	/	Writing	PL/Tcl	triggers
$TG_name	/	Writing	PL/Tcl	triggers
$TG_level	/	Writing	PL/Tcl	triggers
$TG_when	/	Writing	PL/Tcl	triggers
$TG_op	/	Writing	PL/Tcl	triggers
$TG_table_name	/	Writing	PL/Tcl	triggers
$OLD(i)	/	Writing	PL/Tcl	triggers
$NEW(i)	/	Writing	PL/Tcl	triggers

TRUNCATE	trigger
disallowing	/	Disallowing	TRUNCATE

type	extensibility	/	Type	extensibility

U
untrusted	languages

about	/	Are	untrusted	languages	inferior	to	trusted	ones?,	Can	you	use	untrusted
languages	for	important	functions?,	Will	untrusted	languages	corrupt	the
database?
features	/	Why	untrusted?

untrusted	Perl	/	Untrusted	Perl
untrusted	Tcl	/	Untrusted	Tcl
user-defined	aggregates

creating	/	Creating	user-defined	aggregates
example,	URL	/	Creating	user-defined	aggregates
URL	/	Creating	user-defined	aggregates

User-defined	functions	(UDF)
about	/	User-defined	functions

V
variable	parameters

URL	/	User-defined	functions
variables

URL	/	Variables	passed	to	the	PL/pgSQL	TRIGGER	function
variadic	argument	lists	/	Variadic	argument	lists
version	0	call	conventions

about	/	Version	0	call	conventions
URL	/	Version	0	call	conventions

views
functions	based	/	Functions	based	on	views

visibility
URL	/	Visibility

visibility	rules
URL	/	Visibility	of	data	changes

VOLATILE	function	/	Visibility

W
wrappers

URL	/	Using	foreign	data	wrappers

X
XML	data	type

about	/	XML	data	type	and	returning	data	as	XML	from	functions
URL	/	XML	data	type	and	returning	data	as	XML	from	functions

Y
Yii	/	Third-party	tools
you	ain’t	gonna	need	it	(YAGNI)	/	YAGNI	–	you	ain’t	gonna	need	it

	PostgreSQL Server Programming Second Edition
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. What Is a PostgreSQL Server?
	Why program in the server?
	Using PL/pgSQL for integrity checks
	About this book's code examples
	Switching to the expanded display
	Moving beyond simple functions
	Data comparisons using operators
	Managing related data with triggers
	Auditing changes
	Data cleaning
	Custom sort orders
	Programming best practices
	KISS – keep it simple stupid
	DRY – don't repeat yourself
	YAGNI – you ain't gonna need it
	SOA – service-oriented architecture
	Type extensibility
	Caching
	Wrapping up – why program in the server?
	Performance
	Ease of maintenance
	Improved productivity
	Simple ways to tighten security
	Summary
	2. Server Programming Environments
	Cost of acquisition
	Availability of developers
	Licensing
	Predictability
	Community
	Procedural languages
	Third-party tools
	Platform compatibility
	Application design
	Databases are considered harmful
	Encapsulation
	What does PostgreSQL offer?
	Data locality
	More basics
	Transactions
	General error reporting and error handling
	User-defined functions
	Other parameters
	More control
	Summary
	3. Your First PL/pgSQL Function
	Why PL/pgSQL?
	The structure of a PL/pgSQL function
	Accessing function arguments
	Conditional expressions
	Loops with counters
	Statement termination
	Looping through query results
	PERFORM versus SELECT
	Looping Through Arrays
	Returning a record
	Acting on the function's results
	Summary
	4. Returning Structured Data
	Sets and arrays
	Returning sets
	Returning a set of integers
	Using a set returning function
	Functions based on views
	OUT parameters and records
	OUT parameters
	Returning records
	Using RETURNS TABLE
	Returning with no predefined structure
	Returning SETOF ANY
	Variadic argument lists
	A summary of the RETURN SETOF variants
	Returning cursors
	Iterating over cursors returned from another function
	Wrapping up of functions returning cursors
	Other ways to work with structured data
	Complex data types for the modern world – XML and JSON
	XML data type and returning data as XML from functions
	Returning data in the JSON format
	Summary
	5. PL/pgSQL Trigger Functions
	Creating the trigger function
	Creating the trigger
	Working on a simple "Hey, I'm called" trigger
	The audit trigger
	Disallowing DELETE
	Disallowing TRUNCATE
	Modifying the NEW record
	The timestamping trigger
	The immutable fields trigger
	Controlling when a trigger is called
	Conditional triggers
	Triggers on specific field changes
	Visibility
	Most importantly – use triggers cautiously!
	Variables passed to the PL/pgSQL TRIGGER function
	Summary
	6. PostgreSQL Event Triggers
	Use cases for creating event triggers
	Creating event triggers
	Creating an audit trail
	Preventing schema changes
	A roadmap of event triggers
	Summary
	7. Debugging PL/pgSQL
	Manual debugging with RAISE NOTICE
	Throwing exceptions
	Logging to a file
	The advantages of RAISE NOTICE
	The disadvantages of RAISE NOTICE
	Visual debugging
	Installing the debugger
	Installing the debugger from the source
	Installing pgAdmin3
	Using the debugger
	The advantages of the debugger
	The disadvantages of the debugger
	Summary
	8. Using Unrestricted Languages
	Are untrusted languages inferior to trusted ones?
	Can you use untrusted languages for important functions?
	Will untrusted languages corrupt the database?
	Why untrusted?
	Why PL/Python?
	Quick introduction to PL/Python
	A minimal PL/Python function
	Data type conversions
	Writing simple functions in PL/Python
	A simple function
	Functions returning a record
	Table functions
	Running queries in the database
	Running simple queries
	Using prepared queries
	Caching prepared queries
	Writing trigger functions in PL/Python
	Exploring the inputs of a trigger
	A log trigger
	Constructing queries
	Handling exceptions
	Atomicity in Python
	Debugging PL/Python
	Using plpy.notice() to track the function's progress
	Using assert
	Redirecting sys.stdout and sys.stderr
	Thinking out of the "SQL database server" box
	Generating thumbnails when saving images
	Sending an e-mail
	Listing directory contents
	Summary
	9. Writing Advanced Functions in C
	The simplest C function – return (a + b)
	add_func.c
	Version 0 call conventions
	Makefile
	CREATE FUNCTION add(int, int)
	add_func.sql.in
	Summary for writing a C function
	Adding functionality to add(int, int)
	Smart handling of NULL arguments
	Working with any number of arguments
	Basic guidelines for writing C code
	Memory allocation
	Use palloc() and pfree()
	Zero-fill the structures
	Include files
	Public symbol names
	Error reporting from C functions
	"Error" states that are not errors
	When are messages sent to the client?
	Running queries and calling PostgreSQL functions
	A sample C function using SPI
	Visibility of data changes
	More info on SPI_* functions
	Handling records as arguments or returned values
	Returning a single tuple of a complex type
	Extracting fields from an argument tuple
	Constructing a return tuple
	Interlude – what is Datum?
	Returning a set of records
	Fast capturing of database changes
	Doing something at commit/rollback
	Synchronizing between backends
	Writing functions in C++
	Additional resources for C
	Summary
	10. Scaling Your Database with PL/Proxy
	Creating a simple single-server chat
	Dealing with success – splitting tables over multiple databases
	What expansion plans work and when?
	Moving to a bigger server
	Master-slave replication – moving reads to slave
	Multimaster replication
	Data partitioning across multiple servers
	Splitting the data
	PL/Proxy – the partitioning language
	Installing PL/Proxy
	The PL/Proxy language syntax
	CONNECT, CLUSTER, and RUN ON
	SELECT and TARGET
	SPLIT – distributing array elements over several partitions
	The distribution of data
	Configuring the PL/Proxy cluster using functions
	Configuring the PL/Proxy cluster using SQL/MED
	Moving data from the single to the partitioned database
	Connection Pooling
	Summary
	11. PL/Perl – Perl Procedural Language
	When to use PL/Perl
	Installing PL/Perl
	A simple PL/Perl function
	Passing and returning non-scalar types
	Writing PL/Perl triggers
	Untrusted Perl
	Summary
	12. PL/Tcl – Tcl Procedural Language
	Installing PL/Tcl
	A simple PL/Tcl function
	Null checking with Strict functions
	The parameter format
	Passing and returning arrays
	Passing composite-type arguments
	Accessing databases
	Writing PL/Tcl triggers
	Untrusted Tcl
	Summary
	13. Publishing Your Code as PostgreSQL Extensions
	When to create an extension
	Unpackaged extensions
	Extension versions
	The .control file
	Building an extension
	Installing an extension
	Viewing extensions
	Publishing your extension
	Introduction to PostgreSQL Extension Network
	Signing up to publish your extension
	Creating an extension project the easy way
	Providing the metadata about the extension
	Writing your extension code
	Creating the package
	Submitting the package to PGXN
	Installing an extension from PGXN
	Summary
	14. PostgreSQL as an Extensible RDBMS
	What can't be extended?
	Creating a new operator
	Overloading an operator
	Optimizing operators
	COMMUTATOR
	NEGATOR
	Creating index access methods
	Creating user-defined aggregates
	Using foreign data wrappers
	Summary
	Index

