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Designed for beginners, undergraduate students, and robotics 
enthusiasts, Practical Robot Design: Game Playing Robots is 
a comprehensive guide to the theory, design, and construction of 
game-playing robots. Drawing on years of robot building and teaching 
experience, the authors demonstrate the key steps of building a robot 
from beginning to end, with independent examples for extra modules. 
Each chapter covers basic theory and key topics, including actuators, 
sensors, robot vision, and control, with examples and case studies 
from robotic games. Furthermore, the book discusses the application 
of AI techniques and provides algorithms and application examples 
with MATLAB® code. 

The book includes:

•	 Comprehensive coverage of drive motors and drive motor 
control

•	 References to vendor websites as necessary 

•	 Digital control techniques, with a focus on implementation

•	 Techniques for designing and implementing slightly advanced 
controllers for pole-balancing robots

•	 Basic artificial intelligence techniques with examples in 
MATLAB 

•	 Discussion of the vision systems, sensor systems, and 
controlling of robots

The result of a summer course for students taking up robotic 
games as their final-year project, the authors hope that this book will 
empower readers in terms of the necessary background as well as 
the understanding of how various engineering fields are amalgamated 
in robotics. 
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Preface
Robotic games and competitions are spawned from mainstream robotics, and they 
are very popular among the engineering students, robotics enthusiasts, and hobby-
ists. Over the last decade, hundreds of robotic competitions have been organized in 
different parts of the world. The interest in robotic games has also reached greater 
heights with the availability of many affordable parts and components that can be 
acquired easily over the Internet. Game robotics is a passion and provides great fun 
and learning experiences.

As in every field of engineering, progress is also inevitable for robotic games. 
The complexity of the games during the last decade has increased tremendously. 
Robots developed to compete in such games are becoming more and more sophisti-
cated. Consequently, this makes robotic games not only entertaining, but also a great 
way of learning engineering concepts and establishing the link between theory and 
practice. Needless to say, robotics is a multidisciplinary subject. It expands to vari-
ous engineering and scientific disciplines such as electrical engineering, mechanical 
engineering, computing, and many more. It is even a unifying platform for different 
courses taught in one discipline. For instance, electronics, microprocessors, elec-
trical machines, and control theory are all distinct fields taught in electrical engi-
neering. Each of these courses has vast course materials and research opportunities 
individually. Robotics is an application platform where all these fields converge nat-
urally. However, for students and robotics fans who are designing robots for games 
and competitions, such a vast sources of material can be overwhelming. Our primary 
objective in this book is to provide a starting point and immediate knowledge needed 
for game robotics.

There are many good journals, workshops, books, and online resources for hobby 
robotics, and they provide many creative ideas. The current state of robotic games is 
reasonably advanced, as the mentioned competitions are becoming more and more 
complex. The knowledge and experience required for designing robots for such 
games also demand good understanding of engineering concepts. Robotic applica-
tions such as soccer-playing humanoids or wall-climbing robots not only require 
expertise in robot intelligence and programming, but also require designing robots 
well so that they can perform their actions and motions appropriately. Therefore, in 
this book, we present some of the fundamental concepts and show how they benefit 
the design process. In particular, we discuss the necessary basics to make the right 
choices for gears and actuators as well as modeling and low-level controlling of robot 
motions in Chapters 5 through 9. We present the application of these concepts in 
game robotics with some case studies in Chapter 10.

The authors of this book have been involved in robotic games and have designed 
many robots together with their students and colleagues for more than a decade. The 
book resulted from our earlier notes prepared for a summer course for those students 
taking up robotic games as their final year project. We hope that this book will 
empower undergraduate students in terms of the necessary background as well as the 
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understanding of how various engineering fields are amalgamated in robotics. We 
hope that students and robot enthusiasts will benefit from this book in their endeavor 
to build cool robots while having fun with robotic games.

MATLAB® is a registered trademark of The MathWorks, Inc. For product informa-
tion, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508 647 7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com
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1

Game Robotics

1.1  INTRODUCTION

Robotics is a fast-developing and highly popular field of engineering. It encompasses 
a wide range of disciplines such as electrical engineering, mechanical engineering, 
computer science, biology, sociology, and so on. A great deal of developments in 
robotics was due to its applications in manufacturing. The need for more and more 
automation in assembly lines was the main driving force for it. Robots can do repeti-
tive and mundane jobs a lot faster, more accurately, and cheaper than human beings. 
Their use in industry naturally increases productivity and makes it more flexible. 
Therefore, for a long period of time, robotics remained popular in manufacturing 
and industry. However, during the last decade, robotics found applications in many 
fields other than manufacturing such as service robotics, medicine, entertainment, 
and education. Advances made in computer technology, sensor technology, semi-
conductor technology, and artificial intelligence were also instrumental. We are 
now seeing interesting examples such as human-like robots interacting with people, 
robots dancing to a tune, robots playing musical instruments, robots playing football, 
or robots assisting surgeons in operating theaters (Baltes et al. 2010; Gao et al. 2010; 
Kaneko et al. 2009; Ogura et al. 2006; Taylor and Stoianovici 2003).

A distinct class of robotics, namely game robotics, emerged recently, due to the 
demand from academic institutions. It is also called edutainment robotics since it 
combines education with entertainment. Game robotics makes learning more fun 
and entertaining for the students. In this book, we are particularly interested in 
game-playing robots. We try to provide a reference book for senior students doing 
their projects in robotics or a guidebook for a robot enthusiast who wants to have a 
higher level of understanding of robotics. We emphasize mainly practical aspects 
of robotics and try to show how it is linked to conventional subjects learned from 
engineering textbooks.

1.2  ROBOTICS GAMES AND ENGINEERING EDUCATION

Game robotics is essentially entertainment robotics and also serves very well in 
engineering education (Malec 2001). The thrill of taking part in an “Olympics-like 
competition for robots” generates more interest than what can be achieved by a mun-
dane project otherwise (Martin 2001). Needless to say, robotics easily captures the 
interest of young people. Even the older generation, who grew up watching robots 
in sci-fi movies, may find building robots interesting. However, building robots 
requires an understanding of various aspects of engineering and science such as 
mechanics, analog and digital circuits, programming, microcontrollers, and control 
theory just to name a few. Our experiences over the years show that the students who 
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2 Practical Robot Design

are engaged in building robots, unsurprisingly, are motivated to learn all these fields 
and more. They demonstrated a better understanding of linking theory with practice. 
These observations are also backed by many studies published on engineering edu-
cation. For instance, a study conducted by Pisciotta et al. (2010) shows that students 
who are engaged in robotics projects perform better in math–science, electronics, 
and logic. Our experience over the years, working with students taking up robotic 
projects showed that there are three major changes in students’ behavior. First, they 
become self-learners and autonomous. Second, their confidence in their engineering 
skills improves significantly. Third, they learn to collaborate and to be team players 
because robotic game projects are usually team projects. These are highly sought 
after traits in the industry.

1.3  ROBOTIC GAMES IN SINGAPORE

During the last decade, robotic games became very popular and spread all over the 
world. There are a vast number of robotic games, festivals, and competitions held 
in various parts of the world. In 1991, the first Singapore robotics festival was orga-
nized to create awareness about robotics. Later, the event was renamed as Singapore 
Robotic Games (SRG). The first SRG competition was held in 1993. Since then, 
the competition is held annually and it draws a lot of attention (SRG 2012). The 
competitions are open to public and tertiary institutions. At the beginning, the main 
events were  few; today, competition have grown to more than 15 categories and are 
evolving continuously in their complexity year after year. Typically, game rules are 
revised every 3 years to accommodate the latest advances in technology and to make 
the games more challenging. For example, the pole-balancing race used to be a game 
where a mobile robot needs to balance a free-falling pole while moving from one 
point to another. Challenge has evolved, a robot now has to move on a platform with 
variable slopes and negotiate randomly placed obstacles on its path while balancing 
a pole. At present, there are 14 categories: pole-balancing robot, intelligent robot, 
robot colonies, wall-climbing robot, robot sumo, and legged robot race just to name a 
few. More details about the Singapore Robotic Games can be found on the competi-
tion web site (SRG 2012). In the following sections, we will give a brief description 
of technically challenging games, some of which are also presented as case studies 
in this book.

1.3.1  Pole-Balancing Robot Race

This game is inspired from a well-known control theory problem, which is balanc-
ing an inverted pendulum. A robot supports an inverted pendulum, which is free 
to swing around the horizontal axis, and balances it vertically by moving the point 
of support. The competition platform consists of a horizontal wooden surface with 
a dimension of 3 by 1.5 m. A robot is required to vertically balance the pole at the 
starting zone, then move toward the other end of the platform and go back to the 
starting zone while negotiating all the slopes and obstacles along the way. The above 
cycle is repeated and the robots are ranked based on the number of successful cycles 
within 5 min of time. Figure 1.1 shows a snapshot of a pole-balancing robot in action.
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1.3.2  Wall-Climbing Robot Race

The objective of this competition is to demonstrate vertical and horizontal surface-
climbing abilities of robots. A competition platform is made of a wooden plank 
forming the floor, wall, and ceiling sections, all of which are 2 m long. During the 
competition, a robot starts from the frontmost part of the floor, moves toward the 
wall, climbs the wall, reaches the ceiling, travels toward the edge of the ceiling, and 
finally travels back to the starting point. Robots are ranked based on their comple-
tion time of this task. The competition platform is nonmagnetic, which makes this 
game more challenging. Most of the robots in this competition employ pneumatic 
principles with a variety of creative techniques to accomplish the task in the shortest 
possible time. Figure 1.2 shows a snapshot of such a robot moving along the ceiling.

1.3.3  Robot Colonies

The objective of the competition is to build a pair of autonomous and cooperative 
mobile robots. Their task is to search, detect, and collect colored pellets and deposit 
them in a designated container. Each container is reserved for one color, and they are 

FIGURE 1.1  Pole-balancing competition.

FIGURE 1.2  Wall-climbing robot. (a) Fine tuning a wall-climbing robot, (b) robot perform-
ing a climb.
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located at the opposite sides of the platform. There are two different colored pellets 
used on the competition platform, and they are randomly placed. The goal is to collect 
and deposit an equal number of pellets of the two different colors. The major con-
straint for the robots is that they have to operate within their dedicated zones. Each 
robot is allowed to deposit one designated color at the collection point, which implies 
that at some point in time robots have to swap the pellets that they have collected to 
complete the task. For instance, a robot assigned to collect blue pellets will also col-
lect green pellets that fell in its zone. However, it needs to transfer green pellets to its 
partner, which is in charge of green pellets in a dedicated zone. The center part of the 
platform is allocated for this purpose where two robots are allowed to be at the same 
time. This game induces the principles of autonomous and mobile robotics as well as 
instills an understanding of multirobotic collaboration, coordination, and communi-
cation. Figure 1.3 shows a snapshot of the robot colony competition.

1.3.4  Humanoid Robot Competition

The primary objective of humanoid robot competition is to encourage technological 
advances in humanoid robot technology so that robots can walk and run like human 
beings. The competition is between bipedal robots, and there is no predefined race 
arena for this game. The participating robots compete on the natural floor surface, 
which can be carpet, concrete, parquet, and so on. However, a race track is created 
using white reflective tape. A robot that covers the track from the starting point to 
the end in a shortest period of time is the winner. Figure 1.4 shows an instance from 
this competition.

1.3.5 O ther Competitions and Open Category

In addition to the aforementioned categories, there are many more interesting 
games, which form more than 15 categories of games organized by the Singapore 
Robotic Games society. Each one of these games specially targets certain techni-
cal challenges involved in robotics. For instance, the intelligent robot game targets 
robot autonomy, object recognition, and handling aspects. Each team is required 

FIGURE 1.3  Robot colony game.
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to design and build either one or more autonomous robots to collect objects of 
various shapes and colors scattered in the competition arena. The collected objects 
are to be delivered to three different goal containers according to their respective 
colors within 6 min. Also, underwater robot competition aims to raise interest in 
marine engineering. Compared to land robots, designing underwater robots pres-
ents totally new challenges such as controlling robot buoyancy, autonomy, sens-
ing, and maneuvering in water. During the competition, teams try to complete the 
given task with their robot either in the remote operative vehicle (ROV) category 
or the autonomous underwater vehicle (AUV) category. In the robot sumo com-
petition, participants build mobile robots that can push an opponent out of the 
ring. This game requires an understanding of dynamics, friction, power, and motor 
control concepts. Additionally, an open category allows participants to show off 
their creativity and technical skills. Participants demonstrate interesting tasks that 
their robots can perform. Figure 1.5 shows some snapshots of these competitions.

FIGURE 1.4  Humanoid robot game. (a) Humanoid robot following a line, (b) tracking a ball.

FIGURE 1.5  Other interesting games in Singapore Robotic Games. (a) Open category 
robots at display, (b) sumo robot competition, (c) open category robot in action, (d) intelligent 
robot competition, (e) schools robotic competition-robo can collector.
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1.4  ROBOTIC GAMES AROUND THE WORLD

Robotics competitions are appearing all over the world, each with its own set of 
unique objectives and rules. Some of these competitions may be started as national 
or regional events, but soon turned into an international event. It is impossible to list 
them all in this section; however, we will briefly mention those well-established and 
popular competitions.

Micromouse: This is perhaps one of the earliest robotics competitions. In this 
event, a robot mouse tries to solve a maze made of 16 × 16 cells. The technical chal-
lenge involves finding an optimum path and reaching the goal in the shortest time. 
Competitions are held worldwide. This game is also part of the Singapore Robotics 
Games. A description of the competition and its rules can be found in SRG (2012).

FIRA: This is one of the most established competitions around the world. It 
began in South Korea in 1995; since then it is held annually in different venues. 
The Federation of International Robot-Soccer Association (FIRA) was founded in 
June 1997 (FIRA 2012). This initiative gives a good platform for research on mul-
tiagents while two robot teams play soccer. The participants deal with problems 
such as cooperation, distributed control, effective communication, adaptation, and 
reliability. There are seven leagues in FIRA, each league focuses on a different 
type of robot and problem: HuroSot (humanoid robots), AmireSot (fully autono-
mous onboard robot), MicroSot (each team consists of three robots with dimensions 
7.5 × 7.5 × 7.5 cm), NanoSot (each team consists of five robots with dimensions 
4 × 4 × 5.5 cm), AndroSot (team of three robots, which are remotely controlled, with 
dimensions up to 50 cm), RoboSot (team of three robots fully autonomous or semi-
autonomous, with dimensions of 20 × 20 cm × no limit in height), and SimuroSot 
(Simulation server for games of 5 vs. 5 and 11 vs. 11 games).

RoboCup: RoboCup is an international initiative to promote robotics and arti-
ficial intelligence research by providing a standard platform through which a wide 
range of technologies can be integrated and examined (RoboCup 2012). By 2050, 
the RoboCup Federation aims to develop autonomous humanoid robots advanced 
enough to compete against the human World Cup champions. If robots are able to 
play soccer and beat the champion human team, the technology developed in this 
team of robots will be good enough to provide robots that can help in any task.

The first RoboCup competition was held in 1997 in Nagoya, Japan. Since then, 
the competition has traveled all over the world to cities including Osaka, Bremen, 
Atlanta, Melbourne, and Singapore. Today, RoboCup is one of the largest robotics 
events in the world; thousands of participants from more than 40 countries are tak-
ing part in this annual event. It has grown so big that its influence can be seen with 
the amount of participants in the regional and country level events (called RoboCup 
Opens). These events are mainly used as a qualification stage for teams that seek a 
place in the international competition.

RoboCup events consist of competition, exhibition, and symposium. The competi-
tion is mainly divided into two great categories, the Junior Competitions for kids and 
teenagers up to the age of 19 years, and the Senior Competitions with no restriction 
on age, but mainly captivated by colleges and universities. The junior event includes 
four competitions: RoboCupJunior Soccer, RoboCupJunior Rescue, RoboCupJunior 
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Dance, and CoSpace. RoboCupJunior is a new and exciting way for young engineers 
to understand science and technology through hands-on experience with electronics, 
hardware, and software. It also offers opportunities to learn about teamwork while 
sharing ideas with friends. The development of study materials and innovative teach-
ing methods are among the objectives of RoboCupJunior. It primarily focuses on 
education and comprises four challenges:

•	 RoboCupJunior Soccer is a challenge whereby teams are required to design 
and program two robots to play a game with an opposing pair of robots 
by kicking an infrared-transmitting ball into their designated goal. There 
are two different leagues to separate students from primary and secondary 
schools.

•	 RoboCupJunior Dance involves real team effort where participants are 
required to create dancing robots and program them to dance to music. 
Besides choreographing the motions of the robots, students are also 
expected to participate in the performance. Robots and students perform 
on a white-floored stage, which is bounded by black lines forming a square. 
Robots are not allowed to cross these boundaries. The judges evaluate the 
entertainment factor of the performance as well as the technical design of 
the robots used for the dance.

•	 RoboCupJunior Rescue is a challenge, in which robots need to complete the 
rescue mission by following a winding line or rooms to a designated area. 
This whole process is timed. The rescue robot will start by following a line 
and travel into different rooms. When inside the rooms, the robot will con-
tinue following the line without colliding with the obstacles or losing track 
of the line that might be disrupted. In addition, there are victims in the floor 
marked as human shapes with colors that the robots could recognize. Once 
the rescue robot passes over the victim, it blinks its LEDs, which indicates 
that the victim has been rescued by the robot. Robots encounter their final 
challenge when they proceed to the second level. The slope that connects 
that level is a hard challenge for the small motors of most robots. For those 
robots that manage to reach the second level, the challenge becomes even 
tougher since there is no line to follow at this stage. They are expected to 
rescue the victim and find their way back to the slope. The task is completed 
when the robot returns to its starting point.

•	 CoSpace Dance/CoSpace Rescue Challenge is an educational initiative to 
promote knowledge and skills in engineering design, programming, elec-
tronic control, and the world of 3D simulation through robotics for young 
minds. Using virtual environments provides great flexibility to manipulate 
the environment where the researchers can develop and experiment with 
new algorithms. It is not limited to a single robot; it can be a multirobot 
system too. Each robot in the system can be controlled in different ways, 
autonomous, semiautonomous, and manual. In each case, a multirobot sys-
tem consists of a mix of different control forms. The main advantage of 
this platform, in contrast to other available simulators, becomes evident 
when the work requires cooperation between real robots and their virtual 
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counterparts. The CoSpace Development Platform eases the job by pro-
viding virtual environments and robots for the students. It also provides a 
large set of options to be controlled and monitored, such as time, number of 
teams, number of robots per team, obstacles, goals, and so on.

RoboCup senior competitions comprise: RoboCupSoccer, RoboCupRescue, and 
RoboCup@Home. There are also sponsor competitions like the Festo Logistics 
Competition (Festo 2012) and demo leagues like the Virtual Reality Competition.

RoboCupSoccer: The main focus of RoboCupSoccer is two teams of robots 
competing on a designated soccer field to score against the opposing team as many 
times as possible. The research outcome is mainly focused on multiagent coopera-
tion and coordination, kinematics, and dynamics of robots. There are five leagues 
in this event: Small Size League, Middle Size League, Humanoid League, Standard 
Platform League, and Simulation League.

RoboCupRescue: This aims to promote research and development in disaster res-
cue, with robots exploring a simulated disaster site to locate and identify signs of life 
and produce a map of the site to safely perform a rescue. The competition aims to 
develop intelligent agents and robots to respond to disasters. There are two leagues 
here: Rescue Robot and Rescue Simulation.

RoboCup@Home: This aims to develop service and assistive robot technology for 
personal domestic applications. The focus is on developing robotic applications in 
human–machine interaction to enrich daily living. Participants compete in an envi-
ronment simulating current societal issues such as aging, urbanization, healthcare, 
and assisted living.

RoboCup Singapore Open: RoboCup Singapore Open is a national-level robotics 
competition mainly for the RoboCupJunior competitions for students up to the age of 
19. Participants compete in four challenges, RoboCupJunior Soccer, RoboCupJunior 
Rescue, RoboCupJunior Dance and CoSpace; the shortlisted teams advance to repre-
sent Singapore in the RoboCupJunior league during the international RoboCup event.

The objective of RoboCup Singapore Open is strongly educational, allowing 
local students the opportunity to participate, interact, share, and learn from their 
international peers. By competing in various leagues, the participants learn more 
than just artificial intelligence and mechatronics, but also creativity and human 
endeavor. It is truly a unique learning journey for students who have the opportu-
nity to combine creativity with scientific knowledge in a project-oriented activity. 
Figure 1.6 shows some snapshots from RoboCup events.

MATES’ ROV competition: Another well-known competition to robotics enthu-
siast is coordinated by the Marine Advance Technology and Education Center 
(MATE) (MATE 2012). This is a competition of ROVs built by students. The com-
petitions take place across the United States, Canada, Hong Kong, and Scotland. 
Student teams from middle school to university levels participate in these events 
under different categories with different levels of sophistication of ROVs and mission 
requirements. The objective of the competition is not only to develop problem solv-
ing, critical thinking, and teamwork skills of students, but also to connect them with 
employers and working professionals from marine industries and introduce marine-
related career opportunities.
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Robotic sumo wrestling: It was introduced in Japan by Dr. Mato Hattori; it 
became very popular and it is adopted by other robotic events such as Singapore 
robotic games, Seattle Robotics Society, and many others. It involves two contestants 
who operate their robots in the sumo ring (Miles 2002).

World Robotic Sailing Championship: This is relatively a new competition started 
in Austria. World robotic sailing championship is a competition of fully autonomous 
and unmanned sailing boats (WRSC 2012).

International Aerial Vehicles Competition: This is a competition of autonomous 
flying robots, which is sponsored by the Association for Unmanned Vehicle Systems 
International (AUVSI 2012). The complexity of the competition increases with dif-
ferent missions defined over the years.

FIRST (For Inspiration and Recognition of Science and Technology): This com-
petition was founded in 1989 in the United States to inspire interest in science and 
technology among young people (FIRST 2012). There are various categories of com-
petition targeting different age groups. In junior FIRST LEGO League, children in 
the age group of 6–9 design and build a model using LEGO components. In FIRST 
LEGO League, children are exposed to real-world science and technology problems, 
and they develop their own solutions to these problems using autonomous LEGO 
robots. FIRST Tech Challenge is a higher level and designed for high school stu-
dents. Teams of students design, build, and program robots and compete against 
other teams. FIRST Robotics Competition is for the age group of 14–18. Students 
taking part in this competition work under strict rules with limited resources and 
tight deadlines, which expose them to real world engineering problems. They design 
and build a robot that can perform a set of prescribed tasks against other competitors.

A common factor for all these robotic games is that they provide avenues to 
young engineers to develop their engineering skills. Hopefully, students will under-
stand scientific concepts better, apply engineering principles into practice, and fol-
low the current technological developments. As we mentioned, it is impossible to 
list every robotics competition here. However, we can classify these robotic games 

FIGURE 1.6  Snapshots from RoboCup event. (a) Humanoid adult size, (b) humanoid kid 
size, (c) RoboCupJunior dance, (d) RoboCupJunior participants, (e) participants fine tuning 
robots before the competition.



10 Practical Robot Design

based on the technology involved as shown in Figure 1.7. Basically, two main cat-
egories of robot competitions take place: autonomous and remotely operated. A large 
number of robotic games falls into the autonomous category since challenges that 
can be posed upon these robots are vast. Among the autonomous robots, we find 
games designed either for a single robot or a team of robots. For a single robot, the 
technical complexity involves object handling, navigation, intelligence, and other 
well-known aspects of autonomy. However, basically two types of challenges are 
imposed. Some games target technical complexity involved in certain robot motions 
such as climbing, balancing a pole, bipedal or hexapod walking, and so on. Robots 
designed for these competitions require a good understanding of control theory and 
system dynamics. The other type of technical challenge is in robot intelligence. For 
instance, micromouse and RoboCup rescue games require robots to navigate autono-
mously, understand their environment, and find an optimum path to target. These 
games require a good understanding of higher level control of robots such as map 
generation, decision making, path planning, and so on. In the autonomous category, 
many exciting games are also designed for a team of robots. They instill principles 
of multirobotics such as robot collaboration, communication, and collective problem 
solving. Robot soccer and robot colony are the examples of such games.

In contrast to autonomous robots, we find a number of competitions that require 
robots to be controlled and operated by participants. Needless to say entertainment 
aspect is higher in these competitions. The users’ direct control of robot actions 
significantly increases the level of entertainment and fun factor in such games. 
For instance, a remotely controlled robot sumo game counts not only the robot’s 
design, but also the operating skills of its user. On the other hand, the objective in 
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ROV competitions is to promote awareness for marine engineering where ROVs are 
widely used. Therefore, remote operation has practical needs and uses.

1.5  OVERVIEW OF THE BOOK

This chapter briefly introduced robotic games and some of the popular national and 
international competitions.

Chapter 2 introduces some of the necessary fundamental knowledge in robotics 
that will benefit the design process. Here, we consider mobile robots and relevant 
principles such as forward and inverse kinematics.

Chapter 3 discusses the available sensor technology that can be utilized in game 
robots. Sensing is needed for controlling robot actions, or detecting opponents, iden-
tifying objects to manipulate, and so on.

Chapter 4 discusses utilizing camera and image-processing techniques as a sen-
sory unit for robots. In some of the games, such as robot soccer or robot colonies, 
having visual capability provides significant advantage. Image processing is a vast 
research field, though this chapter summarizes the immediate knowledge needed 
to incorporate a vision unit to robot design. The algorithms are presented with 
MATLAB® code explicitly for better understanding, although many of them are 
already available as built-in functions in MATLAB itself.

Chapter 5 discusses actuators. Actuators determine robot actions and play a key 
role in successful design. In this chapter, various actuators available to robotics and 
their operation principles are discussed. It is a topic worthy of a textbook alone; 
however, the objective is to give enough preliminary knowledge for understanding 
and utilizing actuators in robot design.

Chapter 6 discusses some of the basic calculations needed before starting to build 
a robot, which is often overlooked by robotic enthusiasts. It is important to make 
an appropriate choice such as required power, gear ratio, and so on when selecting 
actuators at the beginning of the design stage to avoid the trial and error method.

Chapter 7 introduces control principles and their relevance to robotics.
Chapter 8 discusses the concepts of mathematical modeling, state equations, and 

transfer functions. These are primarily analytical tools and help to understand the 
basic system dynamics to design a suitable controller.

Chapter 9 discusses discrete time-control concepts and their implementation in 
robotics. Robot actions are typically controlled by microprocessors or computers, 
which are inherently discrete. In Chapters 8 and 9, we give a number of examples 
and demonstrate how MATLAB can be used in these studies. We aim to illustrate 
thought processes involved in the design of low-level control of robot motions.

Chapter 10 presents various robot designs such as pole-balancing robot, wall-
climbing robot, as case studies overtly showing how theory discussed in previous 
chapters are put into practice. However, the application of control principles dis-
cussed in previous chapters is vast; it can be used for basic speed control of an auto
nomous mobile robot or to control motions of an autonomous flying machine.

Chapter 11 discusses robot map building and navigation, which are typically used 
in every mobile robot application.
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Chapter 12 discusses robot autonomy, decision making, and learning, in other 
words, robot intelligence. This can be perceived as the higher-level control of robots. 
These techniques are important for robotic games such as soccer-playing robots, 
robot rescue, and humanoids as they require robots to deal with a dynamic world and 
make decisions autonomously.

Throughout the text, MATLAB is used as the main tool to programming and 
algorithm examples as well as concepts and simulation studies.
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Basic Robotics

2.1  INTRODUCTION TO ROBOTIC SYSTEMS

In the past, our encounters with robots were mainly as an automation tool for 
speeding up the manufacturing process. This is evident with the early definition 
of robotics. For instance, The British Robot Association (BRA) defines a robot as 
“a reprogrammable device with a minimum of four degrees of freedom designed 
to both manipulate and transport parts, tools or specialised manufacturing imple-
ments through variable programmed motions for the performance of the specific 
manufacturing task.” Similarly, International Standards Organisation (ISO) defines 
a robot as “an automatically controlled, reprogrammable, multipurpose, manipula-
tive machine with several degrees of freedom, which may be either fixed in place or 
mobile for use in industrial automation applications.” Nowadays, robotics finds its 
place in many diverse areas from medicine to planetary explorations. For instance, 
two landmark examples are the da Vinci surgical robot used in surgeries demanding 
great care and precision and the Curiosity Rover sent to explore Mars.

2.1.1 T erminology Used in Robotics

Robots can be designed for various applications; nevertheless, terms used to des
cribe their features and capabilities are common. This is also valid for robots 
designed for games and competitions as well. Some of these terms are briefly dis-
cussed here:

	 Degree of freedom (DOF) and degree of mobility (DOM): The term “degree 
of freedom” describes the number of independent movements that an 
object can perform in a three-dimensional space. If an object is moving 
freely in space, it has six DOFs. Three of them are about its location in 
3D space and three of them are for its orientation as illustrated in Figure 
2.1. The location of an object can be defined by translations along the x, 
y, and z axes. Similarly, its orientation can be defined with three rotations 
around the x, y, and z axes. Their combination can define the position of 
an object in 3D space entirely.

	   To have six DOFs, a robot should have at least six joints, each acting 
upon one of the motions. Robots with fewer than six joints obviously have 
constrained motion, and many game robots do not need six DOFs. On the 
other hand, humanoid robots have more than six joints; these surplus joints 
enhance performance, providing human-like motions. In other words, each 
joint contributes a DOM. A joint that provides translation or rotation adds 
to the DOM, but not necessarily to the DOFs.

2



14 Practical Robot Design

	   Work envelope (work space): The work envelope implies all the points in 
space that a robot can reach. For instance, a robot arm fixed on a workbench 
can reach to only a limited geometry. Depending on robot type and configu-
ration, its work envelope will have different shape.

	   Autonomous robots: Autonomous robots perform their tasks in unstruc-
tured environments without human interference. There are various degrees 
of autonomy. A fully autonomous robot is capable of making its decisions 
and takes action upon them. Autonomous robots are highly complex and 
many robotic games are intended for autonomous robots. Robot colonies, 
intelligent robot game, and autonomous sumo are some of the examples.

	   Remotely operated robots: A remotely operated robot (also known as a 
tele-robot) takes instructions from a human operator from a distance. The 
human operator performs live actions in a distant environment and through 
the sensors can measure the consequences of robot actions. Robot sumo 
is an example of remotely operated robots in game robotics. However, in 
practice, tele-robots have a wide range of use such as explosive disposal and 
surgery.

2.2 � COORDINATE TRANSFORMATIONS AND FINDING 
POSITION OF MOVING OBJECTS IN SPACE

An important part of robotics study is forward kinematics, which concerns the posi-
tion and orientation of a robot and its end effectors (such as robot gripper). In this 
section, we will not consider the details of the robot, its sources of motion, and so on. 

z

y

x

R3

T3

T2
R2

T1

R1

FIGURE 2.1  Representation of the six degrees of freedom.
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We will simply assume a rigid object freely moving in 3D space. As mentioned ear-
lier, there are two possible motions of a rigid object in space: rotation and translation. 
Provided that geometrical representation of an object is given, it will be enough to 
define the position and orientation of the coordinate system for reconstructing the 
object at arbitrary places.

We now consider a point P in x, y plane as shown in Figure 2.2a and assume that 
point P is rotated about θ degrees along the z axis. We can calculate the new coordi-
nates of point P using trigonometry. The coordinates of point P before the rotation 
can be written as

	
P r P rx y= =cos sinf fand

	
(2.1)

After a rotation about θ degrees, P′ defines the new coordinates of point P and it 
can be calculated as follows:

	
′ = + ′ = +P r P rx ycos( ) sin( )f q f qand

	
(2.2)

Using trigonometric identities, we obtain

	 ′ = × − ×P r rx (cos cos ) (sin sin )f q f q

	
′ = × + ×P r ry (sin cos ) (cos sin )f q f q

	
(2.3)

And by using Equation 2.1 in Equation 2.3, we get

	
′ = −P P Px x ycos sinq q

	
′ = +P P Py y xcos sinq q

	
(2.4)

r

P P

a

b

P ′ P ′

P ′x P ′x

P ′y P ′y

Px Px

Py Py

θ

y(a) (b) y

z z

x x
φ

FIGURE 2.2  (a) Rotation along the z axis and (b) translation in the xy plane.
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In matrix form

	

′
′









 =

−



















P

P

P

P
x

y

x

y

cos sin

sin cos

q q

q q    
	

(2.5)

Equation 2.5 defines a rotation of θ angle about the z axis in matrix form. Equation 
2.5 operates on x and y coordinates of point P. Normally, a point in three-dimen-
sional space is defined with its three components x, y, and z. By considering this, a 
rotation matrix can be defined as a 3 × 3 matrix. Thus, Equation 2.5 is rewritten as

	

′
′
′

















=
−















P

P

P

P

P

P

x

y

z

x

y

z

cos sin

sin cos

q q

q q

0

0

0 0 1

















	

(2.6)

We now have a rotation matrix, which represents a rotation of θ angle along the z axis

	

Rz ( )

cos sin

sin cosq

q q

q q=
−















0

0

0 0 1
	

(2.7)

Similarly, a rotation around y axis is defined as

	

Ry ( )

cos sin

sin cos

a

a a

a a

=
−

















0

0 1 0

0
	

(2.8)

and a rotation around x axis is defined as

	

Rx ( ) cos sin

sin cos

g g g

g g

= −
















1 0 0

0

0
	

(2.9)

Rotation along z axis is called roll, rotation along y is called pitch, and rotation 
along x is called yaw.

We now consider the linear translations shown in Figure 2.2b. New coordinates of 
point P after the linear translations will be

	 ′ = +P P ax x

	
′ = +P P by y �

(2.10)

	 ′ =Pz 0 	
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We can organize these equations in a matrix form by taking into consideration x, 
y, and z coordinates and obtain

	

′
′
′



















=



















P

P

P

a

b

P

P

P

x

y

z

x

y

z

1

1 0 0

0 1 0

0 0 1 0

0 0 0 1 1



















	

(2.11)

We can easily derive a generic equation representing translations in all three axes 
as follows:

	

′
′
′



















=



















P

P

P

k

k

k

P

P
x

y

z

x

y

z

x

y

1

1 0 0

0 1 0

0 0 1

0 0 0 1

PPz

1



















	

(2.12)

Here, kx, ky, and kz are the displacements along the x, y, and z coordinates. It is 
important to note that the resulting translation matrix is now 4 × 4 and a point is now 
needed to be defined with 4 components instead of 3.

2.2.1 C omposite Rotations

An object in space may perform more than one rotation. This makes the calculation 
of its final position complicated. The solution becomes easier by assuming that a 
separate coordinate system is attached to the object as shown in Figure 2.3a. Let us 
assume that point P represents the object and a coordinate frame, which is coincident 
with the reference frame is firmly attached to it. We can find a transformation matrix 
by decomposing individual motions. At first, a coordinate frame attached to point P 
is rotated along the z axis about 90° as shown in Figure 2.3b. It is important to note 
that a clockwise rotation is considered negative and a counterclockwise rotation is 
considered positive. Transformation after this rotation is represented with coordinate 

(a)

(b)

z z

y

x

y
P P

x

y0
y0

y1
z0

z0 z1 x2
y2

y3

x3

z3z2
x0 x0

x1

(c) (d)

(e)

FIGURE 2.3  (a) Reference and object frames, (b) first rotation along the z axis, (c) second 
rotation along the y axis, (d) final rotation along the z axis, and (e) final coordinate frame 
compared to the reference frame.
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frame x1, y1, z1. The following motion is a rotation along y1 axis about −90° (see 
Figure 2.3c) and the resulting coordinate frame is x2, y2, z2. The final rotation is −90° 
along z2 (Figure 2.3d) resulting in coordinate frame x3, y3, z3 as shown in Figure 2.3e. 
The sequence of motions in this example is roll, pitch, and roll. The number of rota-
tions and the angles are not limited; however, for the convenience of illustration, in 
this example, we chose right angles only.

In matrix form, the first motion is defined as

	

Rz ( )

cos sin

sin cosq

q q

q q q=
−















=
0

0

0 0 1

90

	

(2.11)

Rotation matrix for the second motion is

	

Ry ( )

cos sin

sin cos

a

a a

a a

a=
−

















= −
0

0 1 0

0

90

	

(2.12)

Rotation matrix for the last motion is

	

Rz ( )

cos sin

sin cosf

f f

f f f=
−















=
0

0

0 0 1

90

	

(2.13)

Now using the rotation matrices for each motion as given earlier, we can obtain a 
complex rotation matrix from coordinate frame x0, y0, z0 to x2, y2, z2 using the post-
multiplication rule:

	
R R R Rz y z( ) ( ) ( ) ( )total = q a f

	
(2.14)

	

R(

cos( ) sin( )

sin( ) cos( )

cos(

total) =
−















−90 90 0

90 90 0

0 0 1

990 0 90

0 1 0

90 0 90

90 90

) sin( )

sin( ) cos( )

cos( ) sin(

−

− − −

















− ))

sin( ) cos( )

0

90 90 0

0 0 1

















	

	

R( )total =
−

−
−

















1 0 0

0 0 1

0 1 0
	

(2.15)
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2.2.2  Homogeneous Transformation Matrix

The transformation matrices discussed earlier can represent rotation type of 
motions, but not the translations. It is possible to combine rotation and translation 
into a single transformation matrix. Let us assume that after the rotation transfor-
mations, the coordinate frame shown earlier in Figure 2.3e is now translated to x4, 
y4, z4 as illustrated in Figure 2.4. The overall transformation can be disassembled as 
a rotation, which transforms the frame x0, y0, z0 to x3, y3, z3 and a translation, which 
brings x3, y3, z3 frame to x4, y4, z4. These rotation and translation motions can be 
shown in a compact form as a 4 × 4 matrix, which is known as homogeneous trans-
formation matrix. It maps a position vector from one coordinate system to another.

	
H

R K
=









0 0 0 1 	

(2.16)

Here R is a 3 × 3 rotation matrix and K is a 3 × 1 translation vector. A homoge-
neous transformation matrix combines the position vector K with a rotation matrix 
R to provide a complete description of the position and orientation of a second coor-
dinate system with respect to the base frame. By adding a fourth row, consisting 
of three “zeros” and a “one,” a homogeneous transformation matrix is constructed.

	

H

r r r k

r r r k

r r r k

x

y

z

=



















11 12 13

21 22 23

31 32 33

0 0 0 1 	

(2.17)

z

z4

P ′

y4

y3

x4

x3

x

K

P y

z3

FIGURE 2.4  Transformation operation comprising both rotation and translation.
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2.2.3 C omposite Transformations

In practice, motions of a rigid body may be composed of a sequence of homogeneous 
rotations and homogeneous translations. A composite homogeneous transformation 
matrix, which represents the entire sequence of rotations and translations, can be 
obtained by multiplying together all these transformation matrices (Fu et al. 1987). 
However, it is important to do the right order of the matrix multiplication.

Assume that xr, yr, zr represents a reference coordinate frame and x0, y0, z0 repre-
sents the coordinate frame attached to the object and they both are initially coinci-
dent. Assume that two types of motions are defined on the coordinate frame x0, y0, z0. 
One of them is a translation type of motion along y axis by B units. The correspond-
ing homogeneous translation matrix will be

	

H
B

TR =



















1 0 0 0

0 1 0

0 0 1 0

0 0 0 1 	

(2.18)

The second motion is θ angle rotation of x0, y0, z0 coordinate frame about z0 axis (or zr 
axis since these coordinates are initially coincident), the homogeneous rotation matrix is

	

HROT =

−

















cosq q

q q

sin

sin cos

0 0

0 0

0 0 1 0

0 0 0 1 	

(2.19)

We now multiply the translation and rotation matrices to obtain the homogeneous 
transformation matrix. If the sequence of multiplication is done as follows

	 H H HTR ROT= 	 (2.20)

then the homogeneous transformation matrix in Equation 2.20 defines a motion, 
which is B units translation of x0, y0, z0 coordinate frame along y0 axis, followed 
by a rotation of θ angle along z0 axis. On the other hand, the opposite sequence of 
multiplication

	 H H HROT TR= 	 (2.21)

means x0, y0, z0 coordinate frame is rotated θ angle along z0 axis followed with B 
units of translation along the y0 axis. The difference between these two motions can 
be seen clearly in Figure 2.5.

2.2.3.1  Matrix Multiplication Order in Composite Transformations
There are two types of 4 × 4 matrices used in robot motion calculations. The first 
type describes the transformations of a given coordinate system relative to the base 
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coordinate frame. In this fixed coordinate frame approach, all the successive trans-
formations are defined relative to the original world coordinate frame (or static refer-
ence frame). Let us assume that a sequence of transformations is applied to a local 
frame. These transformations, relative to a global frame, are given as H1, H2, . . . , Hn, 
where transformation H1 is applied first and transformation Hn is applied last. In this 
case, we premultiply the transformation matrices.

	 H H H Hn= × × ×� 2 1 	 (2.22)

The second type describes the relationship between any two coordinate systems 
in a chain of moving local frame transformations. In this case, we assume that every 
successive transformation is defined based on the moving local frame. Let us assume 
that a sequence of transformations is applied to a local frame and transformations, 
relative to a moving local frame, are given as H1,H2, . . ., Hn, where transformation 
H1 is applied first and transformation Hn is applied last. In this case, we postmultiply 
the transformation matrices as follows

	 H H H Hn= × × ×1 2 � 	 (2.23)

Visualizing transformations based on a fixed reference coordinate frame is rather 
difficult. In composite transformations, we will consider motions of a robot or a rigid 
body in space as a sequence of homogeneous coordinate transformations based on 
a moving local frame. We will assume that the moving object approaches the target 
point step by step from the origin of the reference frame. We assign a separate coor-
dinate system to each step of the transformation to visualize these motions easily. 
The transformation matrix Hi,n describes the position and orientation of the n-th 
coordinate system relative to the i-th one as follows

	

H H H H Hi n i i i i i i n n

i

n

, , , , ,= == × × ⋅ ⋅ ⋅ ×+ + + + −

−

∏ 1 1 1 2 1

1

	

(2.24)

where i = 0,1,. . ., n − 1, which may start from any number less than n. The resultant 
transformation matrix Hi,n describes the state of the nth coordinate system relative to 

zr zr

z0 B

H1 = HTRHROT

H2 = HROTHTR

B

(a) (b)

z0

y0 y0
yr yrθθ

xr xr

x0 x0

FIGURE 2.5  Composite transformations.
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any i-th component’s coordinate frame. Thus, the coordinates of the target point Pt in 
the n-th coordinate system relative to any i-th component’s coordinate frame can be 
expressed as

	
p H pt

i
i n t

n( )
,

( )= ×
	 (2.25)

	

x
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z
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x
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( )

( )

( ) ,

( )

( )

( )

1 1



















= ×



















	

(2.26)

EXAMPLE 2.1

We consider a series of transformations shown in Figure 2.6. The figure on the left 
shows the final position of coordinate frame x′, y′, z′, which is initially coincident 
with the reference frame x, y, z. We can visualize the transformation made by the 
frame x′, y′, z′ by breaking it down to individual motions and by assigning a sepa-
rate frame for each step of motion. These sequences of motions are illustrated in 
Figure 2.6. Assuming moving frames, the first motion is a rotation of 180° about 
the z0 axis, which translates frame x0, y0, z0 to x1, y1, z1. The second motion trans-
forms x1, y1, z1 to x2, y2, z2 by a rotation about 90° along y1 axis. The final motion 
transforms x2, y2, z2 to x3, y3, z3 by a translation of 10 units along z2 axis. The 
coordinate frame x3, y3, z3 shows the final position of frame x′, y′, z′. Based on the 
moving frames method, we postmultiply the transformation matrices starting from 
the first motion to the last, as follows

	

H H H H

H

= × ×

=

−
1 2 3

180 180 0 0

180 180 0 0

0 0 1 0

0 0 0 1

cos( ) sin( )

sin( ) cos( )

















×
−








cos( ) sin( )

sin( ) cos( )

90 0 90 0

0 1 0 0

90 0 90 0

0 0 0 1













×



















=

−
−

−

1 0 0 0

0 1 0 0

0 0 1 10

0 0 0 1

0 0 1 10

0 1 0 0

1 0 1 0

0

H

00 0 1

















 	

(2.27)

We now visualize the same transformations made by the frame x′, y′, z′ by 
breaking it down to individual transformations based on reference frame x, y, z. In 
this case, the first motion is a rotation of 180° about z axis, which translates frame 
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x0, y0, z0 to x1, y1, z1. The second motion transforms x1, y1, z1 to x2, y2, z2 by a rota-
tion about −90° along the y axis. The final motion transforms x2, y2, z2 to x3, y3, z3 
by a translation of 10 units along the x axis. In the case of the fixed frame definition 
of motions, we premultiply transformation matrices starting from the last motion 
toward the first one, as follows

	

H H H H

H

= × ×

=



















×

− −
3 2 1

1 0 0 10

0 1 0 0

0 0 1 0

0 0 0 1

90 0 90cos( ) sin( ))

sin( ) cos( )

cos( ) sin(

0
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0 0 0 1

180 18
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









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

	

(2.28)

By comparing, Equations 2.27 and 2.28, we can see that we get the same homo-
geneous transformation matrix for the entire transformation.

2.2.4 M athematical Description of Objects

To use a homogeneous transformation matrix to determine the position of an object 
(manufactured part, robot manipulator, or a mobile robot itself) after its motions, we 
need to represent the objects mathematically. We assume that the object of interest 
is surrounded by planar surfaces, and it is described as a 4 × N matrix. Here, N indi-
cates the number of vertices of the object chosen to represent the object. There are a 
couple of ways to represent the object. We can consider that the origin of an object’s 

Transformations
Moving frames: H1 = Rot-Z (180) H2 = Rot-Y (90) H3 = Trans-Z (10)
Fixed frame: H1 = Rot-Z (180) H2 = Rot-Y (–90) H3 = Trans-X (10)

z

10

y

x

x′
y′

z′

z0 z1

x1
y1
x1

x2 x3
y3y2

z2 z3
x0

y0

FIGURE 2.6  Series of transformations regarding Example 2.1.
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coordinate system is positioned arbitrarily in the space (as shown in Figure 2.7a) and 
describes a general matrix presentation of the object with N vertices as follows:

	

M

x x x

y y y

z z z

N

N

N
object =


















−

−

−

0 1 1

0 1 1

0 1 1

1 1 1

...

...

...

...


	 (2.29)

Alternatively, we can consider that the origin of the object coordinate system 
is fixed to one of its features (typically to its center of gravity) and derive object 
description matrix accordingly (see Figure 2.7b). It is important to remember that 
in either case during the initial state of homogeneous transformations, the reference 
coordinate system and the object coordinate frame are coincident.

Let us consider the robot-like object shown in Figure 2.7b represented by its eight 
vertices [P0,P1,. . .,P7] in Cartesian coordinates. The origin of the fixed coordinate 
system is chosen at the center of gravity of the object. Assume that this object is a 
cube with dimension A. The corresponding columns of the object description matrix 
for the vertex P0 will be [A/2 − A/2  A/2  1]T, for the vertex P1 will be [A/2  A/2  
A/2  1]T, and so on. We can write a description matrix of this object as follows:

 

M

A A A A A A A A

A A A A A A A

obj =

− − − −
− − − −

/ / / / / / / /

/ / / / / / /

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 AA

A A A A A A A A

P P P P P P P P

/

/ / / / / / / /

2

2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1

0 1 2 3 4 5 6 7

− − − −























x

y

z

	

(2.30)

Let us now perform a translation and a rotation on the object just described. These 
motions will be described by a 4 × 4 transformation matrix H. The relation between 
the starting and final positions of an object is

	 M H Mobj new obj start_ _= × 	
(2.31)
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y0

xr

(a) (b)

x0 P0

P4 P5

P6

P2

P1

P3
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yr

z0

y0

xr

x0

P0

P4 P5

P6

P2P1
P3

FIGURE 2.7  (a) Origin of the object’s coordinate frame x0, y0, z0 is in an arbitrary position 
in space. (b) Object’s center of gravity is aligned with the origin of its coordinate frame.
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Here, Mobj_start is the description matrix of the moving object at the starting 
position, and Mobj_new is the new description matrix after the transformation. The 
expanded form of the equation becomes
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The matrix on the left-hand side represents the vertices of the object in their new 
position after transformation. Matrices on the right-hand side represent the transforma-
tion matrix and the vertices of the object in the starting coordinate frame, respectively.

Case Study

In this case study, we will study a more realistic scenario using the robot shown 
in Figure 2.8a. It is a mobile land robot, hence its motions are limited to the 
x,y plane. However, this does not affect the principles of our calculations. The 
robot has eight ultrasonic range sensors and a digital compass and their posi-
tions on the robot body are illustrated in Figure 2.8b. The maximum range of 
the ultrasonic range sensors is about 3 m and their resolution is in centimeters. 
Robot captures ultrasonic and compass readings regularly. On board, compass 
provides robot orientation with 1° resolution. However, as shown in Figure 2.9, 
the angle received from the compass shows robot’s orientation based on the 
earth’s magnetic field, and it needs to be converted to Cartesian coordinates to 
use in our calculations. More details on range sensors will be discussed in the 
next chapter. At this point, the information we need to do a realistic computa-
tion is distance traveled by the robot, its orientation, and the readings from its 
range sensors.

Robot forward
move

0
1

2

3
4

5

6

7

Proximity
sensors

(a) (b)

Compass

FIGURE 2.8  (a) Mobile robot used in experiments. (b) Position of ultrasonic sensors.
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Let us assume that the robot shown in Figure 2.8 has a local coordinate frame 
attached to its center of gravity as shown in Figure 2.10. Four corners of the robot 
are used in the object description matrix, as well as coordinates of the sensors 
on the robot based on this local frame at robot’s center of gravity. In the figure, 
distance d indicates the range reading of a sensor and θ is the angle of the sen-
sor. All the units are in centimeters. Based on the four corner points selected, an 
object description matrix for the robot can be written as
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FIGURE 2.10  Local coordinate frame and selected vertices to describe the robot.
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FIGURE 2.9  (a) Angle readings from digital compass. (b) Its correspondence in Cartesian 
coordinates.
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We now consider a number of motions performed by the robot. Robot in this 
example is capable of making a turn and moving forward or backward by adjust-
ing the speed and the direction of its wheels. For simplicity, we assume that 
robot performs either rotation or translation type of move at any given time. At 
this point, we do not consider other parameters involved in robot motion such as 
speed, odometry errors, and so on, which will be discussed later. Let us assume 
that the robot travels 100 cm along the x axis and then makes a rotation to face 
0° north (90° rotation about z axis) followed with 30 cm translation along the x 
axis, followed with a rotation to face 300° south (another 120° rotation about z 
axis). These motions in matrix form can be written as follows:

  

T

T

TR

ROT

1

1

1 0 0 100

0 1 0 0

0 0 1 0

0 0 0 1

90 90 0 0

=



















=

−cos sin( ) ( )

ssin cos( ) ( )90 90 0 0

0 0 1 0

0 0 0 1

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1



















=

−

















=



















=

T

T

TR

ROT

2

2

1 0 0 30

0 1 0 0

0 0 1 0

0 0 0 1

120cos( ) −−

















=

− −sin

sin cos

( )

( ) ( )

. .120 0 0

120 120 0 0

0 0 1 0

0 0 0 1

0 5 0 8866 0 0

0 866 0 5 0 0

0 0 1 0

0 0 0 1

. .−


















	

(2.34)

The overall transformation matrix is then
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Multiplying with the object description matrix, we obtain positions of these 
four points in the reference frame after the transformations as
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We can expand the object description matrix by including range sensors and 
their readings. In this case, we are not only concerned with the position of the 
robot, but also calculate the coordinates of the obstacles detected by the range 
sensors and mark them in the reference frame. For instance, referring to Figure 
2.10, range sensor reading S1 for the point P1 can be translated into robot coor-
dinate frame as [4 + dcosθ,4 + dsinθ,0,1]T. Since we know the sensor angle θ 
and its position in local frame, we can easily calculate coordinates of point P1. 
In this example, we will assume that the robot makes a 30° turn toward north 
initially and then travels along its x axis about 100 cm. It is important to note 
that we assume the local coordinate frame is fixed to the center of the robot as 
shown in Figure 2.10, therefore all the forward movements (translations) will 
be along the x axis of this robot. The example code given in Figure 2.11 com-
putes the final position of the robot together with its sensor readings, which are 
generated randomly in this case. A plot of these computation results is shown 
in Figure 2.12.

2.3  WHEEL DRIVE IN MOBILE ROBOTS

Technological advances enable us to envision robots taking more substantial roles in 
our daily lives. Robots will be interacting with human beings and operating in the 
same environment. An important feature of robots operating in such environment 
is their mobility. A wheel driver system enables a robot to gain mobility by the use 
of wheels, and this is one of the simplest methods to achieve mobility. However, the 
type of wheels, size, and their placement may increase or decrease the performance 
of the robot for different types of tasks. It is important to understand the differ-
ent types of wheels and their advantages and disadvantages so that we can select a 
proper wheel drive system when designing a mobile robot. A mobile robot design 
also includes the control of these wheels to guide the robot properly and recognize 
its whereabouts after its motions. The kinematic analysis of the wheel drives help us 
understand how the wheel driver is going to move about under different parameters.
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A common wheel drive system consists of the following components: motors, 
gearboxes, motor wheels, and caster wheels (Fred 2001). Motors provide the rota-
tional motion with certain torque and speed, and the gearbox is used to amplify 
or reduce this motor torque/speed. Motor wheels provide the actual mobility to 
the robot, and they are driven by the motor/gearbox system. The caster wheels are 

%----------------------------------

% RSensor(1)     -> Robot ID

% RSensor(2)~(9) -> Proximity sensor readings 

% RSensor(10)    -> Compass

RSensor=[1 15 55 53 59 59 50 57 55 45];% Random values of proximity sensors

% Proximity sensor orientations on the robot body (in radian)

Theta=[0  0.7854 1.5708 2.3562 3.1416 3.9270 4.7124 5.4978];  

%Object matrix

%Position of four corner points   

%        s0 s1 s2 s3 s4 s5 s6 s7 p0 p1 p2 p3

Rob1_Pr=[0 0 0 0 0 0 0 0 7 -7 -7 7; 

0 0 0 0 0 0 0 0 7 7 -7 -7;

0 0 0 0 0 0 0 0 0 0 0 0;

1 1 1 1 1 1 1 1 1 1 1 1];

Offset=[ 6 4 0 -4 -6 -4 0 4 0 0 0 0;  %Position of sensors on robot body 

0 4 6 4  0 -4 -6 -4 0 0 0 0;   

0 0 0 0 0 0 0 0 0 0 0 0;

0 0 0 0 0 0 0 0 0 0 0 0];

Rob1_Prnew=[0 0 0 0 0 0 0 0 0 0 0 0;

0 0 0 0 0 0 0 0 0 0 0 0;

0 0 0 0 0 0 0 0 0 0 0 0;

1 1 1 1 1 1 1 1 1 1 1 1]; 

T_rot=[1 0 0 0;   %Blank rotation matrix 

FIGURE 2.11  MATLAB® code for demonstrating homogeneous transformations.
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0 1 0 0;

0 0 1 0; 

0 0 0 1]; 

T_trans=T_rot;%Blank translation matrix

RSensor(1,10)=RSensor(1,10); 

A1=(RSensor(1,2:9));                   %get proximity sensor readings 

cmp=RSensor(1,10);                     %get compass reading and translate 

ang1=2*pi*((-1*cmp)+90)/360;           %to XY frame

%angle and position of sensor are known

%convert distance readings from sensors to x-y coordinates     

fori=1:8

Rob1_Pr(1,i)=(A1(i)*cos(Theta(i)));

Rob1_Pr(2,i)=(A1(i)*sin(Theta(i)));

end

Rob1_Pr=Rob1_Pr+Offset;

% Rotation matrix  

T_rot(1,1)=cos(ang1); T_rot(1,2)=-sin(ang1);

T_rot(2,1)=sin(ang1); T_rot(2,2)=cos(ang1);  

% Translation matrix

T_trans(1,4)=100; 

Rob1_Prnew=(T_rot*T_trans)*Rob1_Pr;

%....... Display robot and sensor readings 

% create square for robot  

Robfrm1=[Rob1_Prnew(1,9:12),Rob1_Prnew(1,9:9); Rob1_Prnew(2,9:12), 

Rob1_Prnew(2,9:9)]; 

%show sensor readings 

plot(Rob1_Prnew(1,1:8),Rob1_Prnew(2,1:8),'og',Rob1_Prnew(1,9:12),Rob1_Prnew

FIGURE 2.11  (continued) MATLAB code for demonstrating homogeneous transformations.
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mainly used to balance the robot chassis when it is in motion and they are not driven 
by the motor. Let us discuss further the different types of wheels.

There are a few types of wheels used in robotics, and they are shown in Figure 
2.13. As mentioned, rigid caster wheels are attached to robots as a support mecha-
nism. This is the most basic type of wheels, and it is widely used. Swivel caster 
wheels function the same way; however, they are able to rotate 360° due to the swivel 
joint provided in their design. This type of caster wheel will align itself to the direc-
tion of robot motion by design. Steerable caster wheels are rigid wheels, and they are 
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FIGURE 2.12  Position of the robot after transformations and distance readings from its six 
range sensors marked with circles.

(2,9:12),'sr');

% draw robot and draw its compass reading

CompX1=30*cos(ang1);CompY1=30*sin(ang1);

Rob1OX=sum(Rob1_Prnew(1,9:12))/4; Rob1OY=sum(Rob1_Prnew(2,9:12))/4;

line(Robfrm1(1,:),Robfrm1(2,:));

line([Rob1OX Rob1OX+CompX1],[Rob1OY 

Rob1OY+CompY1],'Marker','d','LineStyle','-'); 

% draw platform 

axis([-50 400 -50 400]); whitebg([0.2 0.2 0.2]); 

line([0 0 350 350 0],[0 350 350 0 0],'Color','yellow','LineStyle','-'); 

title('Area Map (West)'); xlabel('X (east)'); ylabel('Y (south)');

FIGURE 2.11  (continued) MATLAB code for demonstrating homogeneous transformations.
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driven by a motor to rotate around the z axis. They are similar to the swivel caster 
with a difference that they not only do more than just support the robot chassis, but 
also affect their motions.

Most motor wheels used in mobile robots are steerable. They are directly driven 
by the motor to provide forward or backward movement for the robot. Omniwheel 
is a special type of wheel that has rollers on the wheel itself. These kinds of wheels 
are also called mecanum wheels. There are two types of mecanum wheels, mecanum 
wheels with roller at 45°, and mecanum wheels with rollers at 90°. These two types 
have a totally different look and design. When an omniwheel is driven, the rollers 
will be in contact with the ground and cause a rotation. The motion effect from all 
the rollers on the wheel will result in different motion directions. In other words, the 
motions provided by these wheels are not limited to backward and forward only; 
they can move in any direction.

There are different types of wheel drive configurations for mobile robots, and new 
configurations can be created by adding more wheels to the systems. Let us discuss 
the four basic configurations and their control.

2.3.1 D ifferential Drive

This type of wheel drive system consists of two independent motor-driven wheels. It 
can have one or two caster wheels to support the robot. By controlling the velocity 
of each wheel, robot motions can be controlled. Figure 2.14 illustrates the motion of 
the robot with different velocities of the wheels. A major challenge in differential 
drive systems is that the wheel speed has to be controlled properly and precisely to 
achieve desired robot motions (Siegwart and Nourbakhsh 2004). For instance, both 

FIGURE 2.14  Analysis of motion of a differential drive mobile robot for different left and 
right velocities.

FIGURE 2.13  Different type of wheels: (a) swivel caster, (b) rigid caster, (c) steerable caster, 
(d) omniwheel, and (e) motor wheel.
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wheels have to be driven at the same speed to move the robot forward. If one wheel 
is slightly faster than the other one, the faster wheel will overtake the slower one 
and cause a turning motion. A greater difference in the speed of the two wheels will 
determine how sharp the turn will be. If one wheel stops and the other wheel is still 
turning, the robot will spin around itself with the stopped wheel being the center 
point of this motion. When both wheels are driven in the opposite directions at the 
same speed, then the robot makes a turn on the spot. This turn will be around a point 
that is in the middle of the two motor wheels, which is also known as the center of 
rotation (COR).

The wheels of the mobile robot shown in Figure 2.15 are traveling at different 
velocities, causing a rotation toward the right-hand side. By referring to the snapshot 
of this traveling robot, it is possible to calculate the kinematic equations that describe 
the position of the mobile robot at a particular time. The robot speed V is defined as 
the average of the left and right wheels

	
V

V Vl r= +
2 	

(2.37)

and the speed on both axes will be

	 �x V= cosq 	 (2.38)

	 �y V= sinq 	 (2.39)

The angular speed �q  can be given as

	
�q = −V V

d
l r

	
(2.40)

where d is the distance between the wheels of the robot. As it is observed from 
above, the motion of this type of drive is a function of two variables, the left and right 
velocities. By controlling these two velocities, we are able to control the motion of 
any robot using differential drive systems.

Vr

Dr

d

θ

COR

D1

V1

V

FIGURE 2.15  The parameters and variables involved in the motion of a differential drive 
mobile robot.
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2.3.2 A ckermann Steering (Car-Like Drive)

This is a commonly used steering mechanism in cars, buses, and other land vehicles. 
It is also used in mobile robots. Basically, it is a four wheel drive system in which 
there are two steerable wheels and two motor-driven rear wheels. The front wheels 
are steerable to control the direction of the robot or the vehicle and the motor-driven 
rear wheels provide the forward or backward moves as illustrated in Figure 2.16.

Let us assume that the robot shown in Figure 2.16 has the velocity of V and head-
ing orientation of θ. The steering angle of the robot is defined as α, the radius of 
its wheels as R, and the wheelbase as B. Assume that the robot has the front-driven 
speed of ω (radian/s), then the kinematic equations of this drive can be defined as 
follows (Siegwart and Nourbakhsh 2004):

	 V = Rω cos α	 (2.41)

	 �x V= cosq 	 (2.42)

	 �y V= sinq 	 (2.43)

	
�q w a= R

B
sin

	
(2.44)

2.3.3 T rack Drive

The track drive is primarily a differential drive system. The main difference is that 
it uses tracks instead of wheels (see Figure 2.17). There is no need for caster wheels 
in this case since the tracks cover a large surface and keep the robot in balance. To 
move forward, both motors have to drive the tracks at the same speed. Similar to 
differential drive system, in track drive systems, a robot can make turns by stop-
ping one motor or by slowing one motor than the other. It can also make turns on 
the spot by driving the tracks in the opposite direction and at the same speed. The 
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FIGURE 2.16  The parameters and variables involved in the motion of an Ackermann drive 
mobile robot.
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track drive system is slower compared to the wheel drive system since there is more 
friction. However, it has certain advantages, which wheels cannot accomplish such 
as climbing up slopes, stairs, or going over obstacles and potholes (Mataric 2007). 
Robots that operate in unstructured terrains such as disaster zones and wheelchairs 
that climb stairs are some application examples of their use.

The kinematic equations of track drive systems are the same as the differential 
drive. However, it is important to note that these systems will suffer greater error com-
pared to wheeled systems when the kinematic equations are used to calculate the robot 
position. This is mainly due to the skid-steering operation of the track drive. Figure 
2.17 shows the COF of a track drive, and it is always located at the center of the robot.

2.3.4 O mniwheel Drive

The omniwheel drive is a unique drive system when compared to the other wheeled 
drive systems we have discussed so far. A common feature of the systems discussed 
is that not all the wheels are motor driven or are used to steer the robot. In omni-
wheel drive systems, all the wheels are motor driven and they are collectively used to 
steer the robot. Another major difference is that each omniwheel has rollers assembled 
on the wheel itself. The rollers act when the wheel is driven. The minor effects from 
all the rollers result in an ability to move different directions instantly. Owing to this 
special feature, an omniwheeled robot is able to move in any direction at all times, 
unlike the other drive systems, which all have some limitations. An omnidirectional 
robot comes with either three or four wheels. A major disadvantage of this drive system 
is the difficulty in controlling them. They have poor efficiency since not all the wheels 
are making the move in the direction of the robot motion. Furthermore, they have high 
slip; therefore, position control based on the motor encoders will not be accurate.

Figure 2.18 shows an example of a four wheel omniwheel robot and the resul-
tant robot motions when each wheel is driven. To move forward, all four wheels 
have to be driven forward or backward with the same speed to achieve forward and 
backward moves. To glide the robot left, wheels 1 and 4 are driven backwards and 
wheels 2 and 3 are driven forward. Similarly, to slide right, wheels 1 and 4 are 

COR

FIGURE 2.17  Track drive system.
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driven forward and wheels 2 and 3 are driven backwards. To accomplish a clockwise 
turn on the spot, wheels 1 and 3 are driven forward and wheels 2 and 4 are driven 
backwards. A counterclockwise turn is done by driving wheels 1 and 3 backwards 
and wheels 2 and 4 forward. RoboCupRescue robots and two degree freedom pole, 
balancing robots are examples of robots with omniwheels in competitions.

2.3.5 O dometry

By using the kinematic equations presented earlier, it is possible to calculate the 
location of a mobile robot. Odometry is a mathematical procedure to determine the 
current location of a robot by discrete-time integration of its previous positions and 
velocity information over a given length of time (Siegwart and Nourbakhsh 2004). 
The general equations for the odometry are defined as:

	 x(k) = x(k − 1) + Δx	 (2.45)

	 y(k) = y(k − 1) + Δy	 (2.46)

	 θ(k) = θ(k − 1) + Δθ	 (2.47)

The aforementioned equations give the current position of the robot by simply 
adding the amount of displacement that has been made from its previous position. 
This difference in position is calculated by using the kinematic equation depending 
on the type of wheel drive the system robot is using. To calculate this difference in 
position, the system reads the encoder values from the motor wheels, and the kine-
matic equations tell us how to use these values to calculate the difference in position.

Odometry is subject to cumulative errors due to the inaccuracy of the encoders, 
unevenness of the surface, and minute deviations in robot construction such as a 
minor difference between wheel sizes. Nevertheless, odometry is crucial for robot 
navigation and there are methods to reduce the odometry error. These techniques 
principally increase the confidence level in computations of the robot’s whereabouts.

(a) (b) (c)

(d) (e) (f )

FIGURE 2.18  Different motions for a four omniwheel drive mobile robot. (a) Right turn 
motion, (b) left turn motion, (c) forward move, (d) reverse move, (e) robot sliding left, and (f) 
robot sliding right.
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2.3.6 C ase Study of Odometry for a Differential Drive Robot

For this case study, we will consider the robot presented in Figure 2.8. The robot uses 
a differential drive system with two caster wheels. Each motor wheel has an encoder 
that generates a fixed number of pulses when the wheel-driving motor makes a com-
plete rotation. Since the dimension of the wheel is known, by counting these pulses, 
we can easily calculate the distance robot traveled. In addition, we can calculate the 
speed of the robot by counting the number pulses within a fixed period of time. The 
working principles of encoders are presented in the following chapter on sensors.

A simple block diagram of the motion control system for the differential drive 
mobile robot in Figure 2.8 is presented in Figure 2.19. In the diagram, the path planner 
gives a new desired position for the robot [xd, yd, θd]; this position is translated to left 
and right velocities by the velocity controller, and these velocity commands are passed 
to the left and right controllers. The velocity controller commands [vld, vrd] should not 
be considered as the actual velocities of the system. This is because the left and right 
controllers may not be able to achieve desired velocity immediately. Instead, the left 
and right controllers will try to achieve these velocity requirements by comparing 
feedback from the encoders [vlf, vrf] with the desired velocities [vld, vrd] and adjust the 
controllers’ output. Normally, the comparison and adjustment of the velocity is the task 
of a proportional integral derivative (PID) or other type of control system, which we 
will discuss in the following chapters. Notice that the encoder information is also used 
for estimating the current position of the robot [xf, yf, θf]. The current position of the 
robot is compared against the desired position by the velocity controller to adjust the 
velocity according to the distance from the desired position, that is, when the robot is 
far from the desired position it will navigate faster, and when it gets closer, it will navi-
gate slowly. Since the path planner and the controller will be discussed further in the 
following chapters, here we will emphasize on the odometry function of the system.

The odometry will provide the current position of the robot as coordinates of the 
tuple [x, y, θ], which describe the position in a two-dimensional plane and the robot 

Path
planning

Velocity
control

[xd, yd, θd]

[xf, yf, θf]

Vld Vl

Vr

Vlf

Vrf

Vrd

Vlf

Vrf

Controller

Controller

Odometry

Encoder

Amplifier

Amplifier

Encoder

Motor

Motor

FIGURE 2.19  The differential drive parameters of the robot presented in Figure 2.8 and 
a block diagram of the odometry system in the motion and navigation system of the robot.
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heading. The kinematic equations 2.37 through 2.40 are applicable for this robot; 
however, to use them in odometry equations 2.52 through 2.54, we need to obtain 
the differential of the equations. The following equations are derived from the kine-
matic equations, and they are in terms of displacement of the wheels instead of the 
velocities.

	
∆ ∆q = −D D

d
tl r

	
(2.48)

	
∆ ∆S

D D
tl r= +

2 	
(2.49)

	 ∆ ∆ ∆x S t= cosq 	 (2.50)

	 ∆ ∆ ∆y S t= sinq 	 (2.51)

where Dl and Dr are the displacements of the left and right wheel readings from 
the encoder. ΔS is the distance that the vehicle has traveled in Δt period of time. 
Parameters x and y are the coordinates in a global frame and θ is the robot heading. 
The odometry equations for this robot are given as

	 x(k) = x(k − 1) + ΔS cos θ(k − 1)Δt	 (2.52)

	 y(k) = y(k − 1) + ΔS sin θ(k − 1)Δt	 (2.53)

	 θ(k) = θ(k − 1) + Δθ(k − 1)Δt	 (2.54)

It is necessary to clarify a few constant values before we implement this function. 
The first value is d, which is the distance between the two wheels. In our robot, this 
distance was 145 mm as shown in Figure 2.20a. Next, we need to understand the 
encoder values to calculate the displacement of the left and right wheels Dl and Dr. The 
encoders used in our robot are incremental with two channels, and each channel has 
two signals. Each encoder provides 256 counts per turn, with two channels and two 
signals per channel results in 256 × 4 = 1024 counts to complete a turn of the motor. 
To translate these values into millimeters, we need to calculate the circumference of 
the wheel. Radius of the robot wheel is 30 mm (see Figure 2.20b), which translates to 
188.496 mm of circumference. By dividing the circumference to total counts per turn, 
we obtain the displacement made by each count in millimeters. This value for the robot 
shown in Figure 2.20b is 0.1840 mm per count of the encoder. Now that we clarified 
the encoder values and calculated the millimeters per count, the displacement of the 
left and right wheels Dl and Dr is calculated by multiplying the difference between the 
current encoder readings and the previous encoder readings, by 0.1840 mm.

Figures 2.21 and 2.22 present the MATLAB® code for the odometry calculations 
of the robot. The code could easily be translated into C++, or by writing the appro-
priate functions like the constructor, the ReadSensors(), and SendMotorCmd(), this 
code in fact can control an actual robot.
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The structure DiffRobot, defined in Figure 2.21, contains all the variables to 
represent the encoders, motor velocities, and odometry of the robot. The function 
DifferentialWheels(), shown in Figure 2.22, is the main loop for the robot control. We 
assumed that the constructor of the DiffRobot class can also initialize any physical 
communication required to access the physical hardware. The function ReadSensors() 
updates the encoder values from the hardware. The Odometry() function calculates the 
odometry values based on the encoder values obtained from the ReadSensors() function. 
Once the odometry has been calculated, the rest of the program will process the posi-
tion and heading orientation to calculate the new velocities for the left and right wheels. 
The code also simulates some of the encoder values to observe odometry calculations.

Table 2.1 shows the actual encoder values obtained by the equivalent of 
ReadSensors() function running on the robot itself. The position and heading val-
ues are calculated by the Odometry() function. When we plot all the (x,y) positions 
calculated by the odometry code, we can clearly see the path that the robot moved 
(see Figure 2.23). Figure 2.24 illustrates the calculation steps taking place in the 
Odometry() function by using the first set of encoder values [100,100] from Table 2.1.

2.4  ROBOTIC ARMS

A significant part of robotics studies the manipulation of objects. Therefore, it is 
not surprising to find that many robot competitions involve some degree of object 
manipulation. In this section, we will discuss the robot arm configuration and how 
to obtain the control equations. There are many ways of controlling a robot manipu-
lator. Here, we will focus on the kinematic calculations for the control of the robot, 
which deal with the relationship between the joint angles and the Cartesian coordi-
nate positions.

A robotic arm consists of links, joints, and other structural elements. Links are the 
physical structures that connect the joints. There are different types of joints, such 
as prismatic, revolute, and spherical. Most robot manipulators have either prismatic 

FIGURE 2.20  The physical dimensions of the robot presented in Figure 2.8.
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joints or revolute joints (see Figure 2.25). Prismatic joints are linear; there is no rota-
tion involved in their motion. They are either hydraulic or pneumatic cylinders, or 
they are linear electrical actuators. Revolute joints are rotary and most rotary joints 
are electrically driven by motors.

The configuration of revolute and prismatic joints together with the physical proper-
ties of the links defines the arm. By using the Denavit–Hartenberg (D–H) algorithm, 
it is possible to extract four parameters that represent the relation between joints in a 
robot arm, and thus we can calculate its control equations (Fu et al. 1987; Craig 1989).

% The DifferentialWheels function uses an object of class DiffRobot 

% the members of the class robot are declared as:

%

% robot.encoders(2) - 1 - Left, 2 - Right

% - The current encoder values

% robot.oldEncoder(2) - 1 - Left, 2 - Right

% - The previous encoder values

% robot.motor_speed(2); - 1 - Left, 2 - Right

% robot.X - The robot position in X

% robot.Y - The robot position in Y

% robot.Theta - The robot heading theta

%

classdef DiffRobot < handle

properties

encoder = [ 0.0 0.0 ];

oldEncoder = [ 0.0 0.0 ];

X = 0.0;

Y = 0.0;

Theta = 0.0;

end

methods

function obj = DiffRobot() % constructor

end

end

end

FIGURE 2.21  The structure used for the DifferentialWheels() function in Figure 2.22.
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FIGURE 2.22  MATLAB code for the odometry calculation of the robot presented in 
Figure 2.8.
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FIGURE 2.22  (continued) MATLAB code for the odometry calculation of the robot pre-
sented in Figure 2.8.
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FIGURE 2.22  (continued) MATLAB code for the odometry calculation of the robot pre-
sented in Figure 2.8.

TABLE 2.1
Encoder Values and Their Respective Odometry Values

Left Encoder Right Encoder Robot.X Robot.Y Robot.Theta

100 100 18.4000 0.0 0.0

400 400 73.6000 0.0 0.0

1200 1000 202.4000 0.0 0.2538

2600 1600 380.5059 −46.1982 −1.2690

3000 2300 410.5895 −142.8234 −0.8883
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FIGURE 2.23  The plotted path of the odometry values calculated from the encoder values 
presented in Table 2.1. The units are in millimeters for both axes.
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D–H algorithm provides a systematic method, based on homogeneous transfor-
mations, to describe the position and orientation of each link with respect to its 
neighboring link (Craig 1989).

The algorithm consists of the following steps:

	 1.	Assign coordinate frames to all links and the end effector of a robot 
manipulator.

FIGURE 2.24  A step-by-step illustration of the calculations using the first set of values 
from Table 2.1.
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	 2.	Derive a homogeneous transformation matrix including both rotation and 
translation to describe the position and orientation of each link relative to 
its neighboring link.

	 3.	Compute the forward kinematics of the robot manipulator using the post-
multiplication rule.

	 4.	Determine the position and orientation of the robot hand with respect to the 
base frame from the forward kinematic equation.

The basic rules for the assignment of the frame (xi, yi, zi) to the link i are as follows 
(Craig 1989; Niku 2000):

	 1.	zi axis is aligned with the motion axis of the rotary joint i + 1.
	 2.	xi axis is normal to both zi−1 and zi axes.
	 3.	yi axis is chosen from a right-handed frame (xi, yi, zi).

There are two parameters of the link i; they are the link length ai and the twist 
angle αi. The link length ai defines the common normal between the zi−1 and zi axes. 
The twist angle αi defines the rotational angle of the zi−1 axis about the xi axis. There 
are also two joint parameters: the joint angle θi and the joint distance di. The joint 
angle θi is the rotational angle of the xi−1 axis about the zi−1 axis. The joint distance 
di is defined as the translation distance of the frame (xi−1, yi−1, zi−1) along the zi−1 axis. 
Both the link parameters and the joint parameters are called arm parameters or D–H 
parameters.

2.4.1 F orward Kinematic Solutions

The forward kinematic equations determine the position and orientation of the robot 
hand (or end effector) in terms of the joint variables of the arm. Once the frame has 

(a) (b)

FIGURE 2.25  (a) Revolute joint defined a DOF by the angle. (b) Prismatic joint defined a 
DOF by the length of displacement.
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been assigned and the arm parameters have been obtained for each link, we calcu-
late a homogeneous transformation matrix Hi

i
−1 (see Equation 2.16 for the format of 

the homogeneous matrix) from the frame (xi−1,yi−1,zi−1) to the frame (xi, yi, zi). This 
transformation can be obtained by the following sequence of rotations and transla-
tions (Niku 2000):

	 1.	Rotate the frame (xi−1, yi−1, zi−1) about the zi−1 axis by θi angle.
	 2.	Translate the frame (xi−1, yi−1, zi−1) along the zi−1 axis by di units
	 3.	Translate the frame (xi−1, yi−1, zi−1) along the xi axis by ai units.
	 4.	Rotate the frame (xi−1, yi−1, zi−1) about the xi axis by αi angle.

Since these transformations are consecutive motions about the corresponding 
mobile axes, the D–H transformation matrix from the frame (xi−1, yi−1, zi−1) to the 
frame (xi, yi, zi) is defined as follows:

	 H H H d H a Hi
i
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(2.56)

Transformation matrix Hi
i
−1 describes the position and orientation of the link i 

with respect to the link i − 1, hence the matrix H n
0  describes the position and orienta-

tion of the robot end effector frame with respect to the robot base frame

	 H H H Hn
n
n

0 0
1

1
2

1= ⋅ ⋅ ⋅ − 	 (2.57)

The transformation matrix H n
0  is called arm matrix or solution of forward kine-

matics of an n-link robot manipulator.

2.4.2 I nverse Kinematics

In the previous section, we discussed how to determine the robot hand (end effector) 
position and orientation in terms of the joint variables using the forward kinematics. 
In this section, we are concerned with the opposite problem, that of finding joint 
variables in terms of the robot hand position and orientation. This is solved by using 
inverse kinematics. The general problem of inverse kinematics can be stated as fol-
lows (Niku 2000; Man 2005):
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	 1.	Given a homogeneous transformation matrix H n
0  that represents the for-

ward kinematics expressed as
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(2.58)

		  where each hij is an equation in terms of the joint variables, these variables 
might be θi for revolute joints or di for prismatic joints.

	 2.	Specify the desired position and orientation of the robot hand relative to the 
robot base frame, in terms of the homogeneous matrix.
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	 3.	Solve the following equations:
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(2.60)

The joint variables, in order to reach to the desired position Hd, will be determined 
by solving the 12 equations presented in Equation 2.60. However, as we have seen 
in the previous section, the elements of each hij of the forward kinematics matrix are 
often nonlinear functions of the joint variables, and thus it is difficult to solve these 
equations to find a solution. The solution is even harder when we have to consider 
constraints of robot motions, singularities, and multiple possible solutions caused by 
the redundancy of the joints.

There are different approaches to obtain the inverse kinematic equations. An alge-
braic approach tries to solve the 12 equations presented in Equation 2.60. Another 
approach uses geometrical decomposition of the spatial geometry of the arm into 
several plane geometry problems (Man 2005). Both of these approaches have their 
limitations especially when the robot arm consists of several joints. In those cases, 
the equation becomes even more complicated and the geometrical analysis becomes 
too tedious. In those cases, a numerical method can be used to solve the equations 
presented in Equation 2.60.
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2.4.3 C ase Study: Three-Link Articulated Robot Arm

In the RoboCup@Home competition, there are several challenges that require the 
robot to manipulate objects or at least be able to move them by pushing them. The 
position of the object is determined by sensors such as a camera, ultrasonic sensors, 
or a laser range finder. Figure 2.26 shows a three-link articulated robot arm with 
three rotary joints that was used in RoboCup@Home. It is possible to put a simple 
gripper actuated by a servo-motor on the robot end to manipulate the objects.

First of all, we need to assign a frame to each robot joint as shown in Figure 2.26b. 
The z0, z1, and z2 axes are assigned along the motion axes of the three rotary joints. 
The origin of the frame x0 y0 z0 is chosen at the center of the robot base along with 
the z0 axis and x0 and y0 axes are chosen to form a right-handed frame. For the frame 
x1 y1 z1, the x1 axis is chosen to be perpendicular to both z0 and z1 axes and the y1 axis 
is chosen to form a right-handed frame. The frame x2 y2 z2 and x3 y3 z3 are parallel to 
x1 y1 z1. The origin of the frame x3 y3 z3 is located at the end of the third link.

After assigning the coordinate frames for each joint in the robot, we need to 
determine the arm parameters. Table 2.2 shows the arm parameters where only link 

(a) (b) y2

y0

θ3

θ2

θ1

x2

z3

z1

z2

y1

x3

x1

x0

y3

z0

FIGURE 2.26  (a) A picture of the robot arm used. (b) Coordinate frames for three rotary 
joints.

TABLE 2.2
Arm Parameters for a Three Articulated Robot Presented 
in Figure 2.26

Link θi di ai αi

1 θ1 d1 0 90°

2 θ2 0 a2 0°

3 θ3 0 a3 0°
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1 has a twist angle of 90°. Notice the change in the position of the axis from z0 to z1 
in Figure 2.26b.

Using the D–H matrix parameters and the arm parameters given in Table 2.2, we 
obtain the following transformation matrices for each link:
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Therefore, the forward kinematic solution for this robot arm is given by
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Now, let us calculate the inverse kinematics for the arm. We will use the geomet-
ric approach since it is a simple configuration with only three joints. Figure 2.27a 
shows the projection of the arm and the joints in different planes. By considering 
each of these planes independently, it is possible to calculate the values of the angles. 
Thus, the plane of (x,y) will be used to obtain θ1, and the plane (x,y,z) will be used to 
calculate the values of θ2 and θ3.

Figure 2.27b shows the plane (x,y). Observing the triangle formed by (px, py), the 
angle θ1 can be derived by using arctangent. Since the arctangent will produce solu-
tions in the first and the fourth quadrants, and the signs of px and py are determined 
by the quadrant, the arc tangent 2 function would be a better choice

	
q1 2= a p px ytan ( , )

	 (2.63)
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In the plane (x,y,z) presented in Figure 2.28a, a triangle is formed from joint 2 to 
the pz as shown in Figure 2.28b. Let us calculate the hypotenuse, and by doing this 
we will try to extract a common factor that can help us to obtain the other two angles.

	
r p p a ax y= + = + +2 2

2 2 3 2 3cos cos( )q q q
	

(2.64)
 

	 s p d a az= − = − +1 2 2 3 2 3sin sin( )q q q 	 (2.65)

	
p p p d r sx y z

2 2
1

2 2 2+ + − = −( )

where cos(θ2 + θ3) = cos θ2cos θ3 − sin θ2sin θ3 and sin (θ2 + θ3) = sin θ2cosθ3 + cos θ2 

sin θ3. The solution of θ3 can be found by expanding and solving the aforementioned 
equation. Let us start by expanding the right side of the equation. To simplify the 
representation of solution equations, we will use the following acronyms:
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FIGURE 2.27  (a) A 3D view of the robot arm and geometrical projection into the planes 
(b) projection on (x,y) plane.
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FIGURE 2.28  Geometrical projection of the joint 2 and 3 into the plane (a) xy and (b) z.
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Since sin θ2 + cos θ2 = 1, the aforementioned equation can be simplified further
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and now we can solve all the equations for C3
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Once again using trigonometric identity sin θ2 + cos θ2 = 1, we can also obtain S3

	
S C3 3

21= ± −
	

(2.69)

Because the sine has a period of 2π, the value of the angle could be positive or 
negative. This means that there are two solutions for the sine. The positive solution 
will represent a “joint up” configuration, and the negative solution will be a “joint 
down” configuration. In either case, θ3 is obtained with

	 q3 3 32= a S Ctan ( , ) 	 (2.70)

For the last angle θ2, let us see the triangle form by k1 and k2 with an angle γ (see 
Figure 2.28b)

	 k1 = a2 + a3C3

	 k2 = a3S3
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	 γ = a tan 2(k2,k1)	 (2.71)

Once the angle γ is calculated, it is evident that θ2 consists of the angle γ and the 
angle formed by the component r and s.

	 θ2 = a tan 2(h,r) − γ
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(2.72)

From the equation, we can see that θ2 will also have two possible values for the 
inclusion of S3, thus the final inverse kinematics equations for the robotic arm can 
be described as

	 θ1 = a tan 2(px, py)
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	 θ3 = a tan 2(S3,C3)
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(2.73)

Finally, it is possible to calculate the values of θ1, θ2, and θ3 from a target position 
[px, py, pz]. As mentioned earlier, in practice, the target position is obtained by the 
sensors of the robot. The inverse kinematic equations calculate the values of the joint 
angles to reach that position with the robotic arm. The forward kinematics can be 
used to know exactly where the arm is in motion.
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Sensors

A fundamental component of the robot is its sensors, which are used for acquiring 
information about the robot itself and its environment. There are a vast number of 
sensors available for the robotics and automation industry. Depending on the appli-
cation, we employ a combination of them in robot design. A detailed description 
of these sensors and their properties can be found in Soloman (2009) and Fraden 
(1996). In this chapter, we will discuss sensors commonly used in game robotics and 
competitions.

Sensors give measures about physical properties of the environment such as 
illumination, temperature, distance, size, and so on. In other words, a sensor is a 
measurement tool that converts physical quantities from one domain to another. In 
robotics, we are interested in sensors that convert physical phenomenon, electrical or 
nonelectrical in nature, to an electrical signal so that it can be processed by a micro-
processor. A number of parameters determine the characteristics of sensors, which 
indicate their capabilities and limitations. It is important to know these parameters 
for the proper selection of a sensor for a robot design. Some of these parameters are 
discussed below:

Range: Maximum and minimum values that can be measured by the sensor. 
For instance, the range for the Microchip MCP9501 temperature sensor is 
from −40° to +125°. The term dynamic range refers to the overall range of 
the sensor from its minimum to maximum reading.

Resolution or discrimination: The resolution of a sensor is the smallest distinct 
change in the measured value it can reliably detect. For example, the Honeywell 
HR3000 digital compass has a resolution of 0.1°. Resolution does not indicate 
accuracy. A sensor can have high resolution, but may not be accurate. A sen-
sor’s ability to detect minute changes is mainly limited by the electrical noise.

Error: Difference between the measured and actual values.
Accuracy/inaccuracy/uncertainty: Accuracy indicates the maximum differ-

ence between the actual value of the measured parameter and its measured 
value by the sensor. In other words, it is an indicator of the maximum 
expected error.

Linearity: Maximum deviation from a linear response. The term linearity of a 
sensor implies the extent that measured curve of a sensor departs from an 
ideal straight-line curve. Sensors with linear response simplify robot design 
and programming.

Sensitivity: It is a measure of change at the output of the sensor for a change in 
the amount being measured.

Precision/repeatability: Precision of a sensor, also called repeatability, shows 
the difference in measurements on the same thing and under the same con-
ditions. A sensor can have high precision/repeatability yet poor accuracy if 

3
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there is a systematic error in the measuring system. On the other hand, a 
highly accurate sensor will not have poor repeatability since repeatability 
is a requirement for accuracy.

Response time: Sensor output does not change immediately when there is a 
change in the input parameter. Its response will change over a period of 
time, which is known as response time. Fast response time is desirable for 
robotics application.

Output: The type of output from the sensors determines the peripheral cir-
cuitry needed to be built for the robot. As listed in Table 3.1, many sensors 
deliver analog as well as digital output. The latest sensors include built-in 
circuitry not only for producing digital output, but also to do part of the sig-
nal processing, such as filtering, on the sensor unit. Many of these sensors 
also come with data bus compatible output, which makes their interfacing 
to processors very straightforward.

Frequency of measurement: The other parameter of concern in robot design 
is the sensor frequency, which indicates the number of readings that can be 
done per second. This is a major bottleneck preventing robots from doing 
fast motions in their environment.

When a robot is negotiating its environment, information obtained from its sen-
sors determines a great deal of its actions and behavior. Therefore, reliability of its 
sensors is very crucial. We look at accuracy and repeatability parameter of a sensor 
as a measure of its reliability. Ideally, a good sensor is sensitive to the measured 
property only and it is not affected by other environmental parameters. However, in 
practice, data obtained from sensors are noisy and prone to errors.

3.1  SENSORS USED IN GAME ROBOTICS

The type of sensors used in robotics varies depending on the application. However, 
robots designed for robotic games are mostly low-cost mobile robots, and they need 
a small set of these sensors. In this section, we will first look into sensors that give a 
reading of the robot itself.

The sensors used in game robotics are mainly of two types. A set of sensors 
is used to get information about the robot itself such as its speed and orientation 
(proprioception). Another set of sensors is used to obtain information about its sur-
rounding, such as distance from an obstacle (exteroception). Table 3.1 shows a clas-
sification of these sensors and their potential use in robot design.

3.1.1 M easuring Robot Speed

Sensors are placed in the motors or wheels of a robot to obtain feedback on its 
motions. In mobile robotics, encoders are assembled to its driving motors, and a 
direct reading of the angular speed is obtained. This enables control of the position, 
direction, and the speed of the motor-controlled wheels. Encoders are also used to 
gather position information from rotary parts of the robot such as the pole-balancing 
robot that will be discussed in Chapter 10, or joint angles of a robotic arm. Optical 
and magnetic encoders are the most commonly used encoders in robotics.
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Optical encoders: An optical encoder is made of a rotor disk with engraved opti-
cal grids, a light source, and a photo sensor as shown in Figure 3.1a. The rotor moves 
with the angular motion of the motor and causes a change in the amount of light 
received by the optical sensor. The resulting sine wave-like signal is converted to 
square wave by thresholding. High and low cycles of square wave indicate the black 
and white areas passing through the optical sensors. The resolution of encoders is 
described as the number of pulses per revolution (PPR). The encoder illustrated in 
Figure 3.1a is of incremental type. By placing another optical unit 90° apart from 
the original, quadrature-type encoders are obtained. This arrangement produces 
two square waves with 90° phase shift. By utilizing the phase shift between them, 

TABLE 3.1
Classification of Sensors Used in Game Robotics

Sensor Application Type of Sensor Output Type

Contact switches, strain 
gauge, infrared sensors

Detection of physical contact and 
closeness

Tactile sensors Binary on/off 
analog

Optical and magnetic 
encoders, 
potentiometers

Rotation, motor speed, and 
position

Wheel/motor 
sensors

Digital

Compass, gyroscopes, 
accelerometers, 
inclinometers

Detecting inclination, 
acceleration, and orientation of 
the robot

Heading sensors Analog/digital

Ultrasonic sensors, laser 
rangefinders, infrared 
sensors, optical 
triangulation sensors

Detecting proximity to objects, 
map generation, obstacle 
detection

Range sensors Analog/digital

Camera, color sensors, 
linear sensor array

Object recognition and 
manipulation, analysis of robot 
environment

Vision-based 
sensors

Analog/digital

Altimeter, depth gauge, 
GPS

Flying robots, underwater robots, 
land robots

Position and 
navigation sensors

Analog/digital

Photosensor
(a) (b)

Light source

Motor shaft

Rotor disk

Output
Sensor and circuit

board

Magnetized rotorN

S
S

N

FIGURE 3.1  (a) Optical and (b) magnetic encoder.
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the resolution (PPR) is increased by four times. Furthermore, by determining the 
sequence of square pulses, the direction of rotation is also found easily.

Magnetic encoders: These encoders convert mechanical motion into a digital 
output by means of magnetism. Typically, a magnetized disk with a flux pattern is 
attached to the rotor; by detecting the change of flux, a magnetic encoder generates a 
signal at the output as shown in Figure 3.1b. Hall effect sensors or magnetoresistive 
sensors are widely used for detecting the flux change. A magnetized rotor is attached 
to the shaft, and there is a thin air gap between the rotor and the sensor. Sensors pro-
duce a sine wave signal when the rotor turns and flies over the sensor. The sine wave 
signal is then converted to a square wave and delivered as output from the encoder 
system. Magnetic encoders have good reliability and durability. They are not eas-
ily affected by environmental factors such as dirt, dust, and oil. However, they are 
subject to magnetic interference. Apparently, encoders used in robotics must be fast 
enough to be able to count the shaft speed. Many encoders available in the market 
have no limitations to use in robotics, and they are reliable.

3.1.2 M easuring Robot Heading and Inclination

Heading sensors are mainly used for determining orientation as well as inclination 
of a robot.

By knowing the orientation and the speed of a mobile robot, we can estimate its 
whereabouts. Similarly, knowing the inclination of a humanoid robot, we can correct 
its motions so that it does not topple.

Compass: The principle of a digital compass is based on measuring the direc-
tion of Earth’s magnetic field. Many cost-effective digital compasses are built with 
Hall effect sensors, which are based on the principle that electric potential changes 
in a semiconductor when it is exposed to a magnetic field. An example of this type 
of sensor is the Allegro A132X family Hall effect sensors, where the presence of a 
south pole magnetic field perpendicular to the IC package face increases (decreases 
in the case of north pole) the output voltage from its neutral value, proportional to the 
magnetic field applied depending on the sensitivity of the device. A single Hall effect 
sensor measures flux in one dimension. To measure the two axes of magnetic fields, 
two of these sensors are placed at 90° angles. The resolution obtained with Hall effect 
sensors is low and prone to errors, particularly due to interfering magnetic fields.

Another technology used in digital compasses exploits magnetoresistivity, which is 
the property of change in resistivity of a current-carrying magnetic material in the pres-
ence of a magnetic field. Assume that the current is passing through the ferromagnetic 
material as shown in Figure 3.2. When the material is exposed to an external mag-
netic field, the internal magnetization vector changes its position. The strip resistance 
depends on the angle θ between magnetization and the direction of the current flow. 
This resistance will have the largest value if the current flow and magnetization vector 
are parallel. Conversely, it will be the smallest when the angle between them is 90°.

To measure magnetic field, four sensors are connected in a bridge configuration with 
each resistor oriented to maximize the sensitivity and minimize the temperature effects. 
The values of the resistors will change when they are exposed to a magnetic field and 
the bridge will be imbalanced, thus generating an output voltage proportional to the 
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magnetic field strength. Digital compasses developed with this technology are reliable, 
and they have good resolution and fast response. Nevertheless, they are also sensitive to 
interfering magnetic fields. Therefore, using them in manmade environments requires 
caution. Examples of these sensors are Devantech’s CMPS03 magnetic compass, which 
uses the Philips KMZ51 magnetic field sensor and the Honeywell HMR3000 digital 
compass module that provides heading, pitch, and roll outputs for navigation.

Gyroscope: It can measure the angular motion of a robot relative to an inertial frame 
of reference; hence, the gyroscope is also a device for measuring orientation. There are 
various types of gyroscopes available; however, digital gyroscope using MEMS (small 
microelectromechanical systems) technology is the most popular and cost-effective 
sensor used in many electronic devices as well as in robotics. MEMS gyroscopes 
detect rotational rate about the X, Y, and Z (or roll, pitch, and yaw) axes. When the 
gyroscope is rotated about any of these axes, the Coriolis effect causes a deflection, 
which is detected, demodulated, and filtered to produce a voltage that is proportional 
to the angular rate. Analog Device’s ADIS16485 is an example of a MEMS-based 
gyroscope, which provides three axes gyroscope readings in digital form via serial 
parallel interface (SPI) bus.

Accelerometer: An external force acting upon a system, such as gravity, causes 
a change in the velocity. This sensor measures acceleration caused by such external 
forces. They are mainly used for sensing robot motions. Dynamic balancing of a 
walking robot is a good example of accelerometer use in robotics. An accelerometer 
can be considered as a damped mass on a spring. When the sensor faces acceleration, 
the mass will be displaced toward a point that the spring permits. By measuring this 
displacement, the acceleration is found. By arranging three of them orthogonally, it is 
possible to detect acceleration in all three axes. There are various types of commer-
cial devices using piezoelectric, piezoresistive, and capacitive components. However, 
the latest accelerometers are often MEMS devices. Analog Device’s ADXL202 is an 
example of such accelerometers. The sensor has ±2 g sensing range with a pulse width 
modulated (PWM) or analog signal output.

3.1.3 M easuring Range

The sensors we have discussed so far provide feedback about the robot itself. In the 
following, we will discuss sensors that gather feedback about the robot’s environment. 
One of the key components used in mobile robots is the range sensor. These sensors 
measure the distance of the objects from the sensor. In robotics, they are mainly used 
for detecting objects, generating a map of the environment, and avoiding collisions.

θ
Direction of

current
Permalloy

+ –

External magnetic
field

Magnetization

FIGURE 3.2  The magnetoresistive effect.
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Ultrasonic sensors: Ultrasonic sensors transmit an ultrasonic wave package and 
receive the reflected signal. The time taken for a signal to travel and return gives 
an indication of the distance. The ultrasound a frequency range is between 40 and 
180 kHz. It permits more concentrated direction of the sound since at higher fre-
quencies sound dissipates less in the environment. We can consider the ultrasonic 
sensor as a pair of speaker and microphone, one produces the sound and another 
receives the echo (see Figure 3.3a and b). A short ultrasonic signal is generated as 
shown in Figure 3.3c, and the timer is triggered. The receiver captures the echoing 
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FIGURE 3.3  (a) Ultrasonic sensor assembled on the robot body. (b) Ultrasound signal is 
reflected from an object at distance d. (c) Sent and received signals and the time difference 
between them.
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sound and stops the timer. This period of time, known as time of flight (ToF), is 
given as td. Hence, the distance d is calculated as

	
d

c td= ×air

2 	
(3.1)

Here, cair indicates the speed of sound. It is about 330 m/s in air and 1500 m/s in 
water.

There are a number of issues that have to be understood when working with ultra-
sonic sensors.

	 i.	Maximum range: One of them is the maximum distance that can be sensed 
by the sensors and it is related to the frequency used in the sensor design. 
Depending on the application, the appropriate one should be selected. For 
example, the sensor shown in Figure 3.3a is “Ping” from Parallax and it has 
a maximum range of 3 m, while Maxbotics MB1260 has a range of 10 m. 
Ultrasonic sensors cannot accurately measure the distance to an object, 
which is further than the sensing range.

	 ii.	Blind zone: An inherent issue with ultrasonic sensors is the blind zone, 
which is the close range in front of them. The readings in this range are not 
reliable. The blind zone varies from sensor to sensor. For example, the length 
of blind zone is 2 cm for Parallax’s Ping and 20 cm for Maxbotics MB1260.

	 iii.	Reflection: The basic operation principle of an ultrasonic sensor is based on 
detecting reflected sound. There are many situations when this reflection 
may not take place. For example, the objects with a soft or irregular surface 
may absorb sound. Objects may be too small to reflect enough sound back 
to the sensor. The object surface may be at a shallow angle; hence, not 
enough sound reflection occurs. The shape of the beam is like a cone, so if 
the sensor is mounted very low on the robot there may be wrong readings 
from the reflections off the floor.

	 iv.	Temperature: Temperature affects the speed of sound in air. If the tempera-
ture change in the environment is large, then the errors can be significant.

Laser rangefinder: The operation principle of a laser rangefinder is similar to 
ultrasound sensors except that these sensors use a laser beam, typically a near infra-
red light, instead of sound. In the case of a laser beam, time of flight is very short. 
Measuring such short time of flight requires very fast circuitry, which operates at the 
picosecond range and it makes the sensor expensive. The low-cost laser rangefind-
ers utilize the phase shift between transmitted and received signals. Commercially 
available laser rangefinders have a wide choice of maximum range reaching up to 
hundreds of meters. Since the operation principle of these sensors is based on send-
ing a light beam and detecting its reflection, color and texture of objects may affect 
their accuracy consequently. Shiny, bright colored objects reflect light better; on the 
other hand, dark objects absorb the light and reflect a lot less to the sensor, causing 
a reduction of the sensing range. Similarly, rough or smooth surfaces also affect 
the specular reflection. Nevertheless, laser rangefinders are a lot better in accuracy 
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compared to sonar sensors discussed earlier. The laser rangefinder shown in Figure 
3.4b is the Hokuyo URG-04LX-UG01, which uses infrared laser of wavelength 
785 nm. The direction of light is altered by a rotating mirror. The reflected light is 
captured by the photo diode. The phases of the emitted and received light are com-
pared, and the distance between the sensor and the object is calculated. A rotating 
mirror sweeps the laser beam horizontally over a range of 240°, with an angular 
resolution of 0.36°, which corresponds to 683 measured points in its scanned region. 
The sensor has a scan area of 240° semicircle with a maximum distance of 4000 mm 
radius. Figure 3.4c shows a scan of the robot at the end of a corridor. Owing to the 
high resolution of the sensor, even the corners of the corridor can be seen clearly. 
Each scan takes 100 ms, which gives a 10 Hz scan rate. A thorough analysis of this 
sensor can be found in Okubo et al. (2009). A sensor of this range is satisfactory for 
many indoor robotics applications such as the service robot shown in Figure 3.4a, 
which uses the SICK LMS 110 laser scanner.

Optical sensors: Infrared transmitters and receivers are simple and inexpensive 
sensors that are used for detecting objects. They are normally used for detecting 
the existence of an object rather than measuring the distance. For instance, an 
infrared transmitter and receiver pair is used for line following (reflective tapes 
placed on the competition platform) in pole-balancing robot (see Figure 1.1) or the 

FIGURE 3.4  (a) Service robot using multiple sensors such as laser rangefinder, camera, and 
ultrasonic sensors. (b) Laser rangefinder from Hokuyo. (c) 240° scan of an indoor environ-
ment where the robot is at the end of a corridor.
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presence of a pellet in the gripper of the robot designed for colony competition (see 
Figure 3.7), or detecting the existence of walls in micromouse competition. The 
principle of operation is based on detecting reflected infrared light emitted by the 
transmitter diode from the surface of objects. The reflected light amount depends 
on the object color and surface as well as the distance. In robotic games, compe-
tition platforms are well defined and uniform; therefore, simple infrared sensor 
pairs can be used to measure the distance, to sense objects, and even the hue of the 
object color. Figure 3.5 shows a typical arrangement of infrared emitter (D1) and 
photodiode (D2) receiver circuit used for detecting lines drawn on the competition 
platform. The transistor T1 is used for switching on IR emitter D1 when necessary. 
The resistor R4 provides means to compare light intensity by the receiving diode. If 
the light intensity is above a threshold value, the output of the operational amplifier 
will be high. By tuning this resistor, minor reflections can be omitted; the robot 
only responds to strong reflection. The competition platforms are usually painted 
in contrasting colors, such as a black field with white reflective tapes or a white 
field with black tapes, and are used for indicating boundaries. For instance, the 
platform for robot colony competition is black and boundaries are marked with 
reflective tapes. As black color returns no light, the output from the circuit will 
be logic zero indicating that robot is in the black zone. The robot shown in Figure 
3.7a has three pairs of transmitter and receiver for reliable sensing of reflected light 
from boundaries placed on the floor.

The circuit shown in Figure 3.5 produces binary output by comparing received 
signal strength with a threshold value. The same IR sensor pair can also be used 
for measuring the distance of objects at close proximity by measuring the strength 
of the reflected light. The circuit for such an application is shown in Figure 3.6. 
The current passing through D2 is proportional to the reflected light; hence, the 
voltage is induced on resistor R3. By using an analog-to-digital convertor (ADC) 
port of the microcontroller, this voltage can be measured and calibrated to mea-
sure the distance. However, there are also compact infrared sensors such as the 
Sharp GD2D02 series, which is very popular in game robotics due to its low cost. 

Vcc

R1 R5

T1 R3

R2

R4

D1

C1

D2 LM399D
To input port

FIGURE 3.5  Basic circuit used for an IR sensor pair.
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It works on the same principle of emitting infrared light and detecting its reflec-
tion from objects. The emitted infrared light is high in intensity and collimated. 
When the light is reflected from the surface of the object at the receiver end, a lens 
setup directs it to a photo sensor array strip. The position on this array in which 
the light falls is used to calculate the distance from the transmitter. The sensor 
is highly accurate, although it has limitations. For instance, the reliable operat-
ing range of the sensor is 8–80 cm. The measurements are also affected by the 
color of objects. The output from the sensor is an analog signal proportional to the 
distance. However, it is not a linear output, therefore a look-up table is necessary 
to derive the distance measured. The output of the digital version of this sensor, 
GP2D15, is a pulse and its width is proportional to the distance. Figure 3.7b shows 
the robot using Sharp sensors for distance measurement.

Vcc

R1

R2

C1
To ADC port

IR transmitter/
receiver pair

R3

D1 D2

FIGURE 3.6  A simple circuit that can be used for measuring the distance to objects at close 
distance.

FIGURE 3.7  (a) IR sensor pairs for line following. (b) Robot using Sharp GD2D02 sensors.
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3.1.4 D etecting Color

In many robotic competitions, robots are expected to detect and handle objects. The 
color is a prominent feature that can be used to identify them. For example, in the robot 
colony game, robots collect pellets and deposit them into bins based on their color. In an 
intelligent robot game, the robot collects colored objects and deposits them in allocated 
bins based on their shape and color. A quick solution to color detection is to use infrared 
sensors as mentioned earlier. The reflected light intensity depends on the object color. 
This property can be exploited to identify color since the objects used in these com-
petitions are standard. The color of the objects can also be detected using camera and 
some basic image-processing algorithms. This topic will be discussed in the following 
chapter. Here, we will consider another low-cost color sensor, which we can consider 
as a one pixel camera. These sensors are mainly developed for the automation industry, 
and they are also convenient to use in robotic games. MRGBiCT and MTCSiCT from 
Mazet, S9706 and the S10942 series sensors from Hamamatsu are some examples of 
color sensors. The sensor produces analog signals corresponding to red, green, and blue 
components of a color. Apparently, a wide range of colors can be detected with these 
three components. However, sensing distance is rather short, about 2–6 cm.

Colors to be detected in robotic games are well specified. In the robot colony game, 
robots need to identify pellets in blue and green color; therefore, a comparator circuit 
was enough to complete color recognition in hardware. For example, the color sensor 
used in robot colony design is the Mazet MTCSiTC (Mazet 2012). The sensor is made 
of SI-PIN diodes, and it is covered with RGB filters, a microlens array, and an imag-
ing microlens. The four terminals are the RGB signal outputs and a common cathode 
(5 V). MT104Bx is a complementing device for amplifying the signal. It is necessary 
to illuminate objects during detection phase for a better performance of the sensor. 
The signals from the amplifier MTI04B are fed to a comparator circuit to produce 
a binary value indicating the detection of a particular color as shown in Figure 3.8. 
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FIGURE 3.8  Color sensor (Mazet MTCSiCT) and circuit to detect pellet color in hardware 
for robots designed for robot colony game.
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Alternatively, if the microcontroller used in the robot design has an ADC port, then 
RGB signals can be connected to ADC inputs. The color detection is completed in 
software with look-up tables. This is a much more flexible method, and a wide spec-
trum of colors can be identified. Refer to videos that show robot competitions that rely 
on color sensing (Intelligent Robot 2010; Robot Colony 2010).
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Robot Vision

4.1  INTRODUCTION

There is a vast amount of research in the field of computer vision, which has great 
potential in various fields of engineering, in particular robotics and automation. 
Computer vision units are effectively used in industrial robotics for inspection and 
handling of manufactured parts. Most of these systems operate in a controlled envi-
ronment with good illumination and minimum interference. However, mobile robots 
mostly operate in unpredictable environments. Typically, a vision unit is employed 
for steering a robot, avoiding obstacles, detecting landmarks, handling objects of 
interest, tracking objects, or navigation (Chen and Tsai 1997; DeSouza and Kak 
2002; Kosaka and Kak 1992; Kumagai and Emura 2000). In early mobile robots, 
visual feedback was commonly used for robot navigation and obstacle avoidance. 
Recently, particularly in service robotics, vision is used for interacting with people, 
recognizing the environment and handling objects. Needless to say, vision is one of 
the most desirable features that we would like to have in a robot.

Vision capability can be incorporated in a robot by using a camera and a proces-
sor setup. A camera can be treated as another sensory unit for the robot. However, 
a camera alone will not be enough. To extract useful information from this sensor, a 
series of sophisticated computations has to be performed on the image data, typically 
using an on-board processor. There is an immense amount of material available on this 
topic, which could be overwhelming when a robot designer wants to incorporate vision 
into robot design. This chapter is solely dedicated to this topic, and our objective is to 
provide basic information on robot vision for a quick start. We present algorithms and 
techniques that could be useful for incorporating vision as a sensory input for game-
playing robots such as in robot soccer where a vision unit is used for identifying relevant 
objects in the game such as the ball, opponents, and teammates based on their features.

In the following, we will first look into the available hardware, particularly inex-
pensive systems, suitable for use in game robotics. We will also discuss how an 
image is formed and the parameters that affect the quality of the image acquired. 
We will also present some of the fundamental algorithms and their use in robot 
vision. The image-processing algorithms that we will consider in this chapter can 
be classified into two categories. The first category of algorithms deals with pix-
els only. That is, the input and the output of the algorithms are all pixels. We will 
refer to them as basic image-processing algorithms or low-level image processing 
as commonly known in the literature. The second type of algorithms takes pixels 
as input, but delivers symbolic representations as output. For instance, an algorithm 
that detects circular objects in the image takes pixels as input, but delivers centroid 
and radius of circles at the output. The output in this case is not pixels, but a symbolic 

4
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representation of the object with its parameters. We will consider this type of algo-
rithms as symbolic feature-extracting algorithms or intermediate-level algorithms 
as commonly known in the computer vision community. Typically, a combination of 
these algorithms is used to enable a robot to detect certain objects of interest in its 
vicinity and take action accordingly.

4.2  CAMERA SYSTEMS FOR ROBOTICS

In the early days, hardware for robot vision used to be bulky and costly. This was 
a major disadvantage in applying artificial vision in robots designed for education 
or entertainment purposes. With the advances made in very large scale integration 
(VLSI) technology, it became viable to incorporate vision systems in the design of 
robots. There are many inexpensive camera systems in the market with an embed-
ded preprocessing unit and with very low power consumption. Figure 4.1 shows 
examples of such systems. The vision unit of the robot shown in Figure 4.1a is the 

FIGURE 4.1  (a) Humanoid robot with CMU cam. (b) Mobile robot with SRV-1 Blackfin. 
(c) Autonomous robot with USB camera.
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CMUcam, the latest of which is CMUcam4 (CMUCAM 2012), which employs a 
propeller P8X32A processor with eight built-in parallel microprocessors. This com-
pact vision unit has a resolution of 640 × 480 color pixels, and it can be programmed 
through a serial port. Another embedded vision system, SRV-1 Blackfin (Surveyor 
2012), is shown in Figure 4.1b, and it employs a powerful digital signal processor for 
vision algorithms. It has a resolution of 640 × 480 with plenty of I/O options. The 
advantage of these systems is their low cost, small size, and programmability. Their 
software is open source, that is, the source code and many fundamental image-pro-
cessing algorithms are readily available. If a robot is controlled by an embedded PC 
such as PC104 or a notebook computer, a simple webcam can be utilized as a vision 
unit (Figure 4.1c). In all these systems, a video signal is delivered to the host system 
through various means such as USB, RS-232, or wireless connection.

4.3  IMAGE FORMATION

Image formation comprises three major components as illustrated in Figure 4.2. The 
first component is the illumination which makes the environment visible. The second 
component is the optical system which transmits the illuminated scene onto a sensor 
unit. The third component is the sensor unit which is made up of a matrix of photo-
sensors that responds to the light and transforms the image into an electrical signal.

Illumination: Illumination is the first step, and it directly affects the image quality, 
which consequently determines the performance of the vision process. In industrial 
applications, illumination is customized for the application. Back lighting, front light-
ing, and structured lighting are some of the illumination techniques that are used to 
improve image quality, enhance the object features, and maximize the signal-to-noise 
ratio. These illumination techniques improve the reliability of the vision algorithms 
and reduce computation time by eliminating the need for many preprocessing algo-
rithms to enhance the image quality. On the other hand, mobile robots rarely use such 
illumination techniques as they operate under available ambient light. It means that 

Optical
system 

Image
sensor Signal

Illumination

Object

FIGURE 4.2  Three components of image formation.
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they are likely to work with images of poor illumination and noise. Therefore, some 
preprocessing is required to improve the image quality in software.

Optical system: A lens is the common optical tool for focusing an image on the 
sensor array. An important parameter associated with this optical system is its focal 
length. The focusing property of a lens is the result of light waves having a higher 
velocity of propagation in air than in glass or other optical material. The lens con-
verges the light rays on a point known as focal point (see Figure 4.3). The distance 
from the lens to the focal point f is also known as the focal length. In other words, 
the focal length is an indicator of the convergence power of a lens. A smaller f value 
indicates more severe convergence; it also means a wider angle of view. For instance, 
a 28 mm lens has a wider angle of view then a 50 mm lens. If an imaging sensor or 
photographic film is placed at the focal point as shown in Figure 4.3, then we can get 
a sharp image of the distant object. However, if an object is at near distance to the 
lens as shown in Figure 4.4, then a relation to the focal length is defined in terms of 
distance of the lens to the object, Do, and distance of the lens to the image plane, Di, 
using the Gaussian lens formula
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f D Di o

= +
	

(4.1)

Assume that a camera system is using a 35 mm lens. If the object is placed at a 
distance very far from the lens, that is, Do = ∞, then the image distance will be at the 
focal point f = Di. However, if the object is at 1 m distance, then we get
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This result implies that the lens has to be shifted 1.26 mm away from the sensor 
so that a sharp image of it appears on the sensor surface. The cameras that we intend 
to use in our robotic applications are simple, inexpensive cameras; naturally, they do 
not have a built-in autofocus mechanism. In other words, the lens has to be focused 

f

Normal vector of the
surface 

FIGURE 4.3  Path of light rays through a lens.
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manually up to a certain range once, and it will remain the same during the entire 
operation of the robot whether it is facing an object at a 10 or 100 cm distance.

In Figure 4.4, we can see that the size of the object image formed on the sensor 
is determined by the focal length of the lens. A proper focal length depends on the 
sensor size. For instance, typical sensor sizes used in charge-coupled device (CCD) 
or complementary metal–oxide–semiconductor (CMOS) cameras are 4.9 × 3.7 and 
8.8 × 6.6 mm. Now, let us compare these sensors with a full frame sensor, which 
is the size of photographic film of 36 × 24 mm, used in the latest DSLR cameras. 
Apparently, a lens used in a CCD or CMOS camera has to converge a lot more to 
cover the same area of a full frame DSLR lens. For instance, the focal length of 
a lens, equivalent to 18 mm with 90° view angle, used in a photographic camera 
should be a lot smaller in CCD or CMOS cameras used in our application. In this 
case, a proper lens can be chosen using the magnification ratio, which is defined as
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Here, Ho indicates the size of the real object and Hi indicates the size of its image. 
By substituting the magnification ratio in Equation 4.1, we get
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If M is considerably <1, then we can approximate
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FIGURE 4.4  Magnification factor of lens.
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The above formula can be used to calculate a suitable lens. For example, the sen-
sor size of SRV-1 Blackfin (Surveyor 2012) used in the robot shown in Figure 4.1b is 
4.14 × 3.29 mm. If a 30 cm tall object is to be imaged on this sensor from a distance 
of 50 cm, the magnification ratio will be

	
M = =3 29

300
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.

and the focal length will be
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A suitable lens should be <5.5 mm. The default lens on SRV-1 is 3.6 mm; hence, 
the object will fit into the image frame.

The other parameters that play an important role in image formation are relative 
aperture, f-number, and depth of field. The light-gathering capabilities of a lens are 
determined by the f-number, which is the ratio of the focal point and the lens aper-
ture (largest usable diameter). Lenses manufactured for photography come with a 
pupil mechanism assembled in front of them, and the amount of light that will pass 
through the lens depends on the diameter of the pupil mechanism (for a fixed focal 
point). For example, a 50 mm lens with an aperture setting of 4 will have a pupil 
diameter of 12.5 mm as calculated below:
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The light-gathering capability of a circular lens is proportional to the square of its 
diameter. Therefore, to receive twice the amount of light for a fixed focal point, the 

aperture has to be 2  or 1.141 times larger (Hecht 2002). So, typical f-numbers are 

a sequence of the powers of 2 , that is, f f f f/ , / , / , / ,2 2 2 2
0 1 2 3

… . For 
convenience, these numbers are approximated as 1, 1.4, 2, 2.8, 4, 5.6, . . . . The lower 
f-number means a larger aperture; hence, more light will pass through the optical sys-
tem. In contrast, higher f-numbers will limit the amount of light passing through the 
lens. Another effect of changing the aperture is the depth of the field, or the difference 
between the farthest and nearest points in focus. Simply, the depth of field is larger 
for a shorter focal length and for a higher f-number. By varying the f-number, we are 
able to manipulate the depth of the focused area in the image as well as the contrast 
between the object and the background. However, the simple camera systems utilized 
in game robotics usually come with a fixed f-number allowing a suitable depth of field.

Image sensing: The image-sensing unit is a solid-state sensor array that trans-
forms the image formed by the optical system into an electrical signal. The sen-
sor array is made of photosensitive sensors, namely pixels. The number of pixels 
that are fit into a sensor array naturally affects the resolution and the quality of 
the image obtained. The pixel size of the sensors used in the latest digital cameras 
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reached 7360 × 4912 pixels (approximately 36 megapixels). A large number of pixels 
naturally means more computation time and large memory requirement. The typical 
camera resolution used in robotics application is about 640 × 480 pixels.

CCD image sensors have long been the dominant imaging sensor in most of the 
state-of-the-art vision units. A CCD image sensor is simply a matrix of photosen-
sors, with adequate circuitry, which brings out the signal from each column of pix-
els in serial form. Recently, CMOS image sensors have been developed drastically. 
CMOS sensors are now widely used in consumer electronics, such as digital cameras 
and mobile phones. Consequently, they are also used in robot vision. The operation 
of these sensors basically has two phases. The first stage is the charging of individual 
sensors proportional to the intensity of light focused on them, and the second stage 
is to transfer the charge information to the camera output as an electrical signal. A 
major advantage of CMOS sensors is that they do not need a clock synchronization 
and relevant circuitry to deliver image data since each pixel data is transmitted in 
parallel. They also consume significantly less power, which is favorable in robot-
ics. It is obvious that future developments in image-sensing technology will only 
benefit robot vision applications more. For instance, color image processing was not 
common in early systems because of the high cost. Recent advances in imaging 
technology brought color image processing into robotics. Since color is one of the 
distinguishing features of objects, in the following, we will also discuss color detec-
tion and tracking techniques, which are very useful in robotic games.

4.4  DIGITAL IMAGE-PROCESSING BASICS

A visual scene is a continuous function of reflectance, which is an analog quantity. 
Such representation of image cannot be processed in a computer since computers 
are intrinsically discrete. A digital image on the other hand represents the scene in a 
sampled and quantized form. Sampling is naturally done at the image sensor during 
the sensing, and the scene is divided into a matrix of pixels. The sampling density, 
that is, the number of sampling points per unit measure, is the spatial resolution and 
is usually measured in terms of the number of pixels in both horizontal and vertical 
directions such as 640 × 480 pixels as mentioned earlier. Quantization is done while 
converting the electrical charge of photosensors into integer values using analog-to-
digital converters. The resulting digital image is a matrix of numbers representing 
the scene in terms of gray levels, RGB, YUV, or HSV color formats. In summary, a 
digital image is a two-dimensional array of values representing the reflectance func-
tion of the actual scene. In the following sections, digital images will be expressed in 
a discrete function form of f(x,y).

4.4.1 C olor and Color Models

Color is an important feature that makes the identification of objects and shapes 
easier in robotic games. It also provides plenty of information that can be used to 
analyze an image. The color of objects is primarily determined by their reflectance 
properties. Our sensors (either human eye or CMOS sensors) are able to respond to 
reflected light rays.
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A color model is a standard way of describing colors, and they are typically defined 
in a three-dimensional coordinate system. Three-dimensional space also shows all 
the possible colors that can be constructed by mixing primary colors from three 
axes. Color models are regulated toward specific hardware or software applications.

RGB: The RGB model is one of the most common color model employed in many 
digital cameras, color monitors, and most video cameras. In this model, an image 
is made of three independent image planes. These three image planes represent the 
primary colors: red, green, and blue. All the colors in the image are defined by com-
bining these three primary colors. The Cartesian coordinate system shown in Figure 
4.5 represents the geometry of the RGB color model for specifying colors. A color is 
made up of different amounts from these three axes. For example, grayscale lies on 
the line that connects white and black points. As it can be seen in the figure, all the 
color components have the same magnitude along this line.

Grayscale: A digital RGB image is composed of three matrices to represent a 
scene where each matrix represents one primary color channel. Naturally, a color 
image requires large memory space, and processing them requires longer computa-
tion times. Therefore, many robot vision systems still use monochrome images. The 
light intensity is represented with different shades of gray. The number of gray levels 
in grayscale is called the gray-level resolution of the system, and it is bounded by 
two gray levels, black and white. Black and white correspond to the minimum and 
the maximum measurable intensity level, respectively. Typically, 256 discrete gray 
levels are used, each of which can be easily represented by a single byte; hence, a 
monochrome image needs a single matrix of grayscale values. However, if the cap-
tured image is in color, then it can be converted from the RGB image to grayscale 
image by simply averaging three color components as follows:

Blue (0,0,1)

Green (0,1,0)

Red (1,0,0)
Yellow

White

Black
Gray

 sc
ale

Cyan

Magenta

FIGURE 4.5  The RGB color cube where each axis represents one primary color.
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I x y
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(4.5a)

Another method of grayscale conversion gives more weight to the green compo-
nent (since the human eye is more sensitive to green) then others when averaging:

	
I x y R x y G x y B x ygray ( , ) . ( , ) . ( , ) . ( , )= + +0 299 0 587 0 114

	 (4.5b)

Equation 4.5b simply gives a measurement of brightness and would be suitable if 
brightness is a feature to be exploited.

YUV: When the vision application is based on analyzing colors, it needs to be 
robust against alterations in illumination. In that case, using YUV color space is 
more practical since the color components and the illumination are represented sepa-
rately. The U and V channel represent color, and the Y channel represents brightness. 
The conversion between the RGB and the YUV color space is also defined with a 
linear transformation:

	

Y x y R x y G x y B x y

U x y R x

( , ) . ( , ) . ( , ) . ( , )

( , ) . (

= + +
= −

0 299 0 587 0 114

0 147 ,, ) . ( , ) . ( , )

( , ) . ( , ) . ( , )

y G x y B x y

V x y R x y G x y

− +
= −

0 289 0 436

0 615 0 514 −− 0 101. ( , )B x y 	

(4.6)

HSV: Recently, the HSV color model has been more widely used in robotics, in 
particular when identifying objects based on their colors. It is effective in filtering 
out unreliable color information in low illumination or low saturation areas of the 
image (Cheng and Sun 2000). The color space transformation from RGB to HSV can 
be done with an algorithm as described in Russ (2002).

The conversion between color spaces can be done simply using MATLAB® 
functions. For instance, “rgb2hsv” converts RGB to HSV. Similarly, the func-
tion “rgb2gray” converts RGB color values to grayscale, and the function 
“rgb2ycbcr” converts to YCbCr color space (or YUV color space).

4.5  BASIC IMAGE-PROCESSING OPERATIONS

The very first step of the vision process deals directly with pixels. The objective of 
such operations would be to improve the quality of image (such as increasing the 
contrast, reducing the noise level, etc.) or finding pixels that contain some object 
features such as corners, colors, edges, and so on. As mentioned, a distinct feature 
of the basic image-processing algorithms is that the input of the algorithms and the 
outputs are both image pixels.

The basic image-processing techniques broadly manipulate image in the spatial 
or frequency domain. The spatial domain algorithms deal with image itself and oper-
ate on pixels directly. The frequency domain operations require the image to be 
transformed to the frequency domain by Fourier transform. In the following, we 
will present spatial domain operators as they are commonly used in robot vision. 
However, sometimes the frequency domain methods are preferred to speed up com-
putation time, especially for large images.
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The spatial operators can be point type or neighborhood type. The point-type 
operators deal with individual pixels such as thresholding and contrast stretching. 
The neighborhood operations, also known as group operations, make use of immedi-
ate neighbors of a processed pixel. This group of operators frequently employs a con-
volution mask (other common names for convolution mask are templates, windows, 
and filters). In the following sections, we will present some of the common spatial 
domain operators and algorithms used in image processing. However, an important 
mathematical tool used in these operations is two-dimensional convolution, and we 
will describe it first.

4.5.1 C onvolution

The convolution operation is defined by the following function:
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Here, f is the image matrix, h is the convolution mask (or template), and g is the 
resulting image and they are all two-dimensional arrays. By observing the above equa-
tion, we see that matrix h scans through the entire image while performing a series of 
multiply and add operations. Figure 4.6 illustrates the convolution operation graphi-
cally. The template used in this illustration is a 3 × 3 matrix. It is superimposed upon 
the image, and each image pixel is multiplied with the corresponding weights in the 
mask. The resulting nine values from these multiplications are summed to produce the 
new pixel value for the output image. Referring to Figure 4.6, the new value for the 
pixel at position x = 1 and y = 1 is 11 + 7 + 10 − 3 − 6 − 7 = 12. The operation contin-
ues by shifting the mask to the next pixel and by scanning the entire image sequentially.

From the figure, we can see that if we align the center of the template with top left 
most corner of the image, part of the template will fall outside the image boundaries. 
This problem will arise when calculating convolution at image borders. The typical 
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FIGURE 4.6  Two-dimensional convolution of image with a mask.
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solution for this is to leave the borders blank. Another approach is to assume that 
the image is periodic and it gets the missing pixel values from a cyclic shift from the 
opposite border. For the example image in Figure 4.6, convolution starts from x = 1 
and y = 1 and finishes at x = 4 and y = 4. For the larger templates, we may need to 
leave out border pixels accordingly. For instance, if the template is 5 × 5, then two 
rows and columns of border pixels are left blank.

The program shown in Figure 4.7 is a rough illustration of convolution operation 
in MATLAB. It can be easily translated to C++ or any other programming language. 
In MATLAB, two-dimensional convolution can also be done by simply calling the 
“conv2” or “imfilter” functions.

FIGURE 4.7  Convolution of image with a mask.
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4.5.2 S moothing Filters

Smoothing eliminates noise and other fine changes and variations in the image due 
to quantization, environmental effects, or poor data-acquiring conditions. It is neces-
sary to eliminate fine details in the image, particularly when we are searching large 
shapes and forms in the image.

Mean filter: Mean filter, also known as moving average filter, is the simplest 
approach in image smoothing. In this operation, a pixel is replaced with the average 
of the pixels in its m × m neighborhood. A mean filter can be realized using convolu-
tion operator using a template with equal weights. For example, a 3 × 3 template for 
mean filter is defined as
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Convoluting the image with this mask blurs the image and suppresses the noise. 
Consequently, it also erodes fine details in the image; since it is as a low-pass filter. 
For more severe blurring effects, the dimension of mask size, m, is increased.

Gaussian filter: The Gaussian filter employs Gaussian function in calculating 
weights in filter kernel. The mask obtained in this method has higher weights for pixels 
at the center pixel and lower weights at the edges. The Gaussian function is defined as
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where x,y are the mask coordinates and σ is a standard deviation of the Gaussian 
distribution. Once the filter mask is determined using Equation 4.9, it can be imple-
mented on the image using convolution operator. The template for a 5 × 5 Gaussian 
filter is given as
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(4.10)

In robotic application, edges of objects, obstacles, or a robot path can be detected 
more reliably after a Gaussian smoothing. More explicitly, when the application 
requires only the global edges to be detected, then standard deviation is increased. 
For example, Figure 4.8 shows the resulting effect of smoothing filters for a test 
image. An edge-detection filter, which will be discussed in the following sections, 
can detect the edges of objects. Figure 4.8b shows the result of an edge detection 
algorithm where white pixels indicate edge points over the image and in this example 
edge detection produced many minor details, and it is not needed. However, after 
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smoothing the image with a Gaussian filter and then applying the edge detector, we 
get the major boundaries of the object.

Median filter: In some applications, we would like to eliminate noise while keep-
ing the sharp edges and fine details of the objects in the image. The mean filter and 
Gaussian filters blur the image, while eroding the sharp edges and other details. To 
overcome this problem, a median filter is employed. The median filter is a nonlinear 
approach, and it reduces the noise with minimal effect on the edge pixels. When we 
implement a median filter of m × m neighborhood, we sort all the pixels in ascend-
ing or descending order and take the central one as the new value for the resulting 
image. Figure 4.9 depicts an example to 3 × 3 median filtering. Sorting pixels in the 
shaded area will result in {11, 10, 9, 8, 7, 6, 4, 3, 2}, then the pixel value replacing 
the center pixel will be 7. This operation will continue by scanning the entire image 
from left to right and top to bottom. Figure 4.10 shows a MATLAB code for com-
paring all the image smoothing filters described above.

4.6  ALGORITHMS FOR FEATURE EXTRACTION

To identify objects in a scene, we need to identify certain features of them. The 
main objective of this section is to describe some of the essential algorithms that can 

FIGURE 4.8  An application of Gaussian smoothing. (a) Original image. (b) The result of 
edge detection. (c) Smoothed image with 13 × 13 Gaussian filter with σ = 4.5. (d) Edge detec-
tion after Gaussian smoothing where only major object boundaries are detected.
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deliver object features in an image. There are plenty of algorithms that fall into this 
category. Choosing a proper set of algorithms is the role of the application developer. 
Basic algorithms like thresholding can be used for segmenting an image into object 
and background; on the other hand, more complex algorithms can deliver specific 
object features such as corners, lines, circles, and so on.

4.6.1 T hresholding

Thresholding is one of the most basic image-processing operations. It is also an 
elementary tool used in image segmentation. It segregates the image into uniform 
regions, mainly to mark objects or features and background pixels, based on some 
threshold value. The algorithm scans the image. If a pixel is greater than the thresh-
old value, T, it is marked as “1” to indicate the object or it is marked as “0” to indicate 
the background or vice versa. The output of a threshold operator is a binary picture 
containing two levels of intensity. Briefly, we create a threshold image by defining

	
g x y

f x y T

f x y T
( , )

( , )

( , )
=

≥
<





1

0 	
(4.11)

The above definition can be quickly altered to separate a range of gray values 
between T1 and T2 in an image. This is known as multilevel thresholding and is 
described as follows:
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FIGURE 4.9  Example of 3 × 3 median filter.
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An important issue in thresholding is to choose a proper threshold value to 
optimally segregate an object from the background. Often, a single global thresh-
old value is applied to the whole image. However, objects in the image may not 
have uniform intensity due to various reasons such as poor illumination. In this 
case, a global threshold value may not produce a good result. To overcome this 

FIGURE 4.10  MATLAB code for smoothing filters.



80 Practical Robot Design

problem, there are various techniques developed, one of them being adaptive 
thresholding (Haralick and Shapiro 1992). In adaptive thresholding, a threshold 
value for each pixel in the image is calculated. There are a number of ways to 
calculate this threshold value, although many of them are based on using smaller 
overlapping image regions. It is more likely that smaller image regions will have 
nearly uniform illumination. One of the adaptive algorithms is known as the 
Chow and Kaneko method (Chow and Kaneko 1972). After dividing the image 
into subimages, histograms of these subimages are analyzed, and an optimum 
threshold is obtained for each region. Since the subimages overlap, a threshold 
value for each pixel is then obtained by interpolating the thresholds found for the 
subimages. Another approach, which is a lot less computationally intensive, is by 
a statistical analysis of the local neighborhood of each pixel. The calculation of 
threshold value based on this statistical analysis can be as simple as the mean, 
median, or the average of the maximum and minimum values of the local inten-
sity distributions.

Figure 4.11 shows the implementation of the threshold operator to segregate object 
from background. The available MATLAB command for this purpose is “im2bw.” 
Figure 4.12 shows a test image and the output image after thresholding.

FIGURE 4.11  MATLAB code for threshold operation.
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4.6.2 E dge Detection

Edge detection is one of the fundamental operators in image processing and com-
puter vision. Typically, in edge detection, the gradient of image, which is change 
in intensity, is measured as an indicator of edges using a “gradient operator.” The 
basic idea employed in most edge-detection techniques is the computation of a local 
derivative operator. Ideally, an edge can be modeled as a step function although this 
is unlikely for natural images. Therefore, an edge is usually modeled as a ramp. 
The first-order derivative of a region with uniform intensity will be zero. If there is 
a change in intensity, then the result of the first-order derivative will be nonzero. If 
we calculate the second-order derivative, the result will be nonzero at the beginning 
and at the end of an intensity transition. Referring to the magnitude of the first-
order derivative, we can detect the presence of an edge. Utilizing the second-order 
derivative, we can determine the direction of change as well. The gradient of image 
is defined as
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To identify edges, calculating the magnitude of this vector G is satisfactory.

	
G f x y G Gx y( ( , )) = +2 2

	
(4.14)

Gradients Gx and Gy can be obtained by convoluting the image with two masks 
known as Sobel operators, and they are illustrated in Figure 4.13 (see Fu et al. (1987)  
and Gonzales and Woods (1992) for further reading on this topic).

The edge-detection algorithm based on the second-order derivative of the image 
is known as the Laplacian operator. The second-order derivative of the image f(x,y) 

FIGURE 4.12  (a) Original image. (b) Thresholded with a global value at T = 128.
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with respect to x and y directions is defined as
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By definition, the first-order derivatives in the x and y directions, considering that 
the smallest increment in x and y direction is 1 unit, will be as follows:
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The second-order derivative of image f(x,y) in the x direction will be
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Similarly, the second-order derivative for the y direction will be
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(4.18)

Using the shifting property, we replace x x x x x x→ − + → + → +1 1 2 1 
and y y y y y y→ − + → + → +1 1 2 1. We now obtain
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(4.19)

Computation of the second-order derivative of a pixel at position x and y is defined 
with Equation 4.18. This equation can be transformed in a convolution mask as 
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–2 0 2

–1 0 1
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FIGURE 4.13  Sobel operators.
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illustrated in Figure 4.14. The Laplace edge detector requires only one mask and 
finds edge pixels in a single convolution.

The algorithms described above give a starting point for edge-detection tech-
niques. Other common edge detectors are Prewitt’s edge detector, Robert’s edge 
detector, and Canny’s edge detector (Gonzales and Woods 1992). The MATLAB 
code in Figure 4.15 illustrates edge detection using Sobel operators. The output of 
the algorithm for a test image is also shown in Figure 4.16. The same result can be 
achieved using the “edge” function from MATLAB image-processing library.

4.6.3 C olor Detection

Color is one of the important features of objects, and it is highly utilized in game 
robotics. For example, when a soccer robot is chasing a ball or a humanoid robot is 
performing a penalty kick, exploiting the color feature of the objects is very con-
venient. A straightforward method of color detection is done by using HSV color 
space. Normally, an image is captured in RGB color space first then converted to 
HSV color space. Hue specifies the intrinsic color, saturation defines the purity of 
the color, and value gives a measure of the brightness of the color. Subsequently, 
the detection of a particular color is performed by referring to the hue and value 
components of the object. Pixels within a certain range of object hue and value 
are marked as white pixels, and the remaining pixels are marked as black. Figure 
4.17 shows an example of MATLAB code for color detection. The HSV values of 
the tennis ball are measured as H = 0.33, S = 0.38, and V = 0.96. Threshold values 
are chosen as ±30% of hue and value components. Figure 4.18 shows the detection 
result.

Commonly, inexpensive and less powerful processors are used for image pro-
cessing in game robotics. The processor speed being a constraint, a fast method 
for color segmentation is necessary. A good example of such an algorithm is given 
in Leclercq and Bräunl (2001) where the authors present a color segmentation and 
an object localization method using a look-up table to speed up pixel classification 
in color classes.

f (x–1,y+1) f (x,y+1) f (x+1,y+1)

f (x–1,y–1) f (x,y–1) f (x+1,y–1)

f (x–1,y) f (x,y) f (x+1,y)

0 1 0

1 –4 1

0 1 0

FIGURE 4.14  Pixel coordinates and corresponding mask for the Laplacian operator.
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FIGURE 4.15  MATLAB code for implementing Sobel edge detector.

FIGURE 4.16  An example of edge detection with Sobel operators. (a) Original picture. 
(b) Result after edge detection.
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FIGURE 4.17  MATLAB code for detecting colors using HSV color space.
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4.7  SYMBOLIC FEATURE EXTRACTION METHODS

A common property of the algorithms discussed so far is that they take an image as input 
and produce another image as output. The pixels in the output image indicate certain 
object features detected in the input image. For example, nonblack pixels in Figure 4.18b 
imply that a yellow-colored object is detected in that region. Similarly, white pixels in 
Figure 4.16 indicate the edges of objects found in the image. However, these results do 
not say much about intrinsic object features. For example, on the basis of these results, 
a robot will not know whether the objects are circles or straight lines, their location, 
their size, and any other useful information. There are more elegant algorithms that 
can deliver such features. Consequently, the output of these algorithms is not pixels, but 
object parameters in symbolic form. In the following, we will describe the Hough trans-
form algorithm, which is a popular method used for detecting useful object features.

4.7.1  Hough Transform

The Hough transform identifies linear line segments (Hough 1962). It has been 
extended to detect circular shapes in an image and any other arbitrary shape that can 

FIGURE 4.17  (continued) MATLAB code for detecting colors using HSV color space.

FIGURE 4.18  (a) Test image with yellow- and orange-colored tennis balls. (b) Detected 
yellow object in the image.
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be represented by a set of parameters (Ballard 1981). In general, the computation of 
Hough transform has two phases. The first phase is a voting process for collecting 
evidence. The result of voting is accumulated in a parameter space. In the second 
phase, parameter space is elaborated and strong candidates are selected as objects 
in the image.

We first look into a well-known line detection algorithm. The voting phase 
involves calculating the prospective line candidates, which are represented in terms 
of parameters. The typical Hough transform method employs a polar form of lines. 
Figure 4.19a illustrates a point p1, which is along a straight line in a given image. 
This point can be defined in polar form by

	 r = x cos θ + y sin θ	 (4.20)

Here, θ is the angle of the line normal to the line segment in the image, and r is 
the distance to origin. It is obvious that the range for θ is up to 180° and r is limited to 

r n m= +2 2  for n × m image. During the voting phase, a point along the line will 
map to a curve in parameter space using Equation 4.20. Two points along the same 
line will intersect at the parameters space. This intersection point also describes the 
line that is connecting them. As shown in Figure 4.19b, the intersection point is now 
having two votes for points p1 and p2. When we continue these calculations for all 
the points along the line segment in the image, we will observe a large vote count 
in the parameter space at the intersection point, which clearly implies a linear line 
segment and its parameters.
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θ

FIGURE 4.19  (a) A line in the image and polar form representation in Hough transform. (b) 
Curves build up in parameter space due to the voting process for each pixel along the line.
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FIGURE 4.20  MATLAB code for Hough transform.
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The MATLAB code for the Hough transform is given in Figure 4.20, which is 
adapted from C language code given in Pitas (2000). The calculation of parameters 
and mapping into an accumulator array is done by Hough function call. Once the 
accumulator array is filled, the line segment extraction is done by simply threshold-
ing the accumulator array and selecting strong peaks as linear line candidates. To 
illustrate better, they are superimposed to the image in the second part of the pro-
gram. An example image and the processing result are also shown in Figure 4.21.

FIGURE 4.20  (continued) MATLAB code for Hough transform.
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The Hough transform algorithm presented above is also extended for detecting 
circles in an image. The equation for a circle is given by

	 r x x y y2
0

2
0

2= − + −( ) ( ) 	 (4.21)

The above equation defines the locus of points with a radius of r from a given 
center point (x0, y0). The first phase of the Hough transform is the same as before, 
but this time voting is done for the above equation, which is defined in a parametric 
form as

	 x x r0 = − cos( )q

	 y x r0 = − sin( )q 	

(4.22)

The MATLAB code shown in Figure 4.22 illustrates the two phases of Hough trans-
form calculations for detecting an example circle of 38 pixels radius. In the accumulator 
space, the votes counted for such a circle will appear as the highest peak as shown in 
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FIGURE 4.21  (a) Original picture. (b) Edge picture. (c) Strong candidates for linear line 
segments detected with Hough transform and superimposed on the image. (d) Hough space.
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FIGURE 4.22  Hough transform for detecting circles.
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Figure 4.23b for the test image shown in Figure 4.23a. The position of these peaks in 
the accumulator space also shows the center coordinates of the circles. In this example, 
the nearest ball to the camera is detected. When we repeat the Hough transform calcula-
tions for a radius of 36 pixels, we are able to detect the ball on the left-hand side of the 
image as shown in Figure 4.23d. Its radius is smaller since it is slightly further away than 
the ball in front. In robotic games, the size of the circular objects in the field, pellets, 
balls, and so on are prefixed; hence, the possible radius of a circular object to look for 
is usually known to the robot developer. For example, the ball shown in Figure 4.23 is 
used in robot soccer games. By manipulating the code in Figure 4.22 and scanning for a 
range of radius and ranking corresponding peak votes in the accumulator space, we can 
enhance this algorithm to detect any circular object in the image.

4.7.2 C onnected Component Labeling

Connected component labeling is a fundamental and frequently used technique for 
categorizing chunks of pixels (or blobs) identified as object features. For instance, in 
Figure 4.12, after a threshold operation, three blobs of white pixels are obtained. It 
would be difficult to analyze these shapes and make a decision unless we provide a 

FIGURE 4.22  (continued) Hough transform for detecting circles.
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means to segregate one blob from another. The connected component labeling algo-
rithm identifies each blob and gives it a unique number. A typical definition of con-
nectivity is given as for every pair of vertices i and j, in an undirected graph P, if there 
is a path from i to j, then the graph P is defined as connected (Haralick and Shapiro 
1992). The objective of the connected component labeling algorithm is to find such 
connected pixels and assign them a label so that all the connected pixels share the 
same label. Hence, a collection of four or eight adjacent pixels with the same intensity 
value will be grouped into a connected region. In four-connected pixels, neighbors of 
a pixel will be touching horizontally and vertically. A pixel at (x,y) is four-connected 
to pixels at (x + 1,y), (x − 1,y), (x,y + 1), and (x,y − 1). Similarly, in the case of eight-
connected pixels, the neighbors of a pixel will be connected horizontally, vertically, 
and diagonally. Hence, a pixel at (x,y) is eight-connected to pixels at (x − 1,y − 1), 
(x,y − 1), (x + 1,y − 1), (x − 1,y), (x + 1,y), (x − 1,y + 1), (x,y + 1), and (x + 1,y + 1). In 
the example binary image (i.e., black and white image) shown in Figure 4.24a, a 
pixel value of 0 indicates a black pixel and a pixel value of 1 indicates a white pixel. 
Typically, the objects of interest are marked as white pixels. The connected compo-
nent-labeling algorithm will assign a unique number to each blob of white pixels that 
are connected. We can conclude that this operation performs a transformation from 
pixels to regions, which make the analysis of these regions a lot easier.

There are many connected component algorithms published in the literature. 
A collection of classical methods is given in Haralick and Shapiro (1992), more 
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FIGURE 4.23  (a) The edge picture. (b) Hough space. (c) Strong candidate for a circle of 
radius 38 is highlighted on the actual image. (d) Repeated calculations for a circle of radius 
36 are highlighted on the actual image.
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recent techniques are described in Suzuki et  al. (2003) and Hea et  al. (2009). 
Figure 4.25 shows the MATLAB function for an iterative connected component 
labeling algorithm described by Haralick (1981). The algorithm has three phases; 
at the initialization phase, a top down left to right scan is performed over the image 
and each pixel with a value of 1 is given a unique label in an incremental fashion. 
The next two phases are the iterative part of the algorithm, where a top down pass, 
followed by a bottom up pass, are performed. At the first top down pass, the image 
is scanned from top to bottom and left to right by replacing each pixel value by the 
minimum value of its nonzero neighbors. Similarly, the bottom up phase image 
is scanned from bottom to top and right to left by replacing each pixel value by 
the minimum value of its nonzero neighbors. Iteration stops when no pixel value 
change is performed during these passes. The MATLAB code shown in Figure 
4.25 is an implementation of the iterative connected component labeling algorithm 
for the illustration purpose. Nonetheless, in the following sections, we will employ 
built-in MATLAB functions for connected component labeling such as “bwla-
bel” and “bwconncomp” for the same purpose. Figure 4.26 shows an example 
image and connected component labeling result where the pixels of each blob are 
replaced with the label given to that blob.

As we have seen above, the connected component algorithm produced regions 
that are individually labeled. After this step, a number of properties of those regions 
such as area, centroid, and boundaries can be obtained. Furthermore, many statisti-
cal properties such as mean and variance can be studied by referring to pixels in that 
region in the original image. Let us take a look at the labeled image given in Figure 
4.27 and study the region labeled as 1. By simply counting the pixels labeled as 1, we 
obtain the area of that blob or region. In the example image, the area of an object, 
labeled as 1, is 6 pixels. Summing up all the x coordinates of the pixels in this blob 
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FIGURE 4.24  (a) Binary image with three blobs. (b) The result after component labeling 
algorithm.
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FIGURE 4.25  MATLAB code for two pass connected component labeling algorithm.
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and dividing it to the area, we obtain the x coordinates of its centroid and similarly 
repeating it for y coordinates, we obtain the y coordinates of its centroid. For the 
example image, the centroid of the blob (x0,y0) will be

	
x0

4 2 3 4 3 4
6

3 33 3= + + + + + = ≈.

FIGURE 4.25  (continued) MATLAB code for two pass connected component labeling 
algorithm.
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FIGURE 4.26  (a) Original picture. (b) Binary image after threshold. (c) Connected compo-
nent output in 3D where each blob is labeled with a different number.
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98 Practical Robot Design

	
y0

0 1 1 1 2 2
6

1 16 1= + + + + + = ≈.

Furthermore, by finding the minimum x and y coordinates of the blob, we deter-
mine the top left most corner of the rectangle that encloses this region likewise by 
finding the maximum of x and y coordinates, we obtain bottom right most corner 
of it.

4.8  CASE STUDY TRACKING A COLORED BALL

In this section, we will put what has been discussed above into practical use. A 
soccer-playing humanoid robot is expected to detect the ball in the field, approach 
it, and perform a kick to score a goal. Detecting and locating the ball is done by the 
vision unit of the robot. The flow of operations for this case study is demonstrated in 
Figure 4.28 and the corresponding MATLAB code is given in Figure 4.29.

We first convert the captured image to HSV color space and separate the yellow 
objects based on their hue and value range, which is determined experimentally. The 
result is a binary image where white pixels imply yellow-colored objects. However, 
before we perform connected component labeling, we try to eliminate single isolated 
white pixels that are due to noise and reflections by using the “imerode” function, 
which is also known as the erosion algorithm (Haralick and Shapiro 1992; Russ 
2002). In the following, we perform “imfill” to fill out empty pixels in blobs, in 
a process also known as the dilation algorithm (Haralick and Shapiro 1992; Russ 
2002). These two steps make the blobs in the binary image more compact and tidy. 
This way we can also speed up the labeling process by avoiding isolated insignifi-
cant pixels. The final stage is the analysis of blobs, which is done with the dedicated 
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FIGURE 4.28  An example set of operations for ball tracking based on its color.
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FIGURE 4.29  MATLAB code for tracking an object based on its color.
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MATLAB function “regionprops.” It delivers the desired features of the labeled 
regions such as area, centroid, and so on. The program given in Figure 4.29 captures 
the image from a webcam attached to a PC and performs the color detection on the 
captured image frame. To track an object continuously, the sequence of operations 
shown in Figure 4.28 is put in a loop and repeated for each captured frame. Figure 
4.30 shows the screen captures from the experiments with a tracking program. The 
program is very simple using the image-processing library functions of MATLAB. 
However, as we describe the details of the algorithms used in these functions, rewrit-
ing this code in C or other relevant programming language to implement on a stand-
alone system is rather straightforward.

4.9  SUMMARY

In this chapter, we have discussed the available hardware and software tools for robot 
vision. By employing a low-cost camera and some fundamental image-processing 

FIGURE 4.29  (continued) MATLAB code for tracking an object based on its color.

FIGURE 4.30  Screen shots from object tracking application.
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techniques, we can provide a higher level of sensing to the robot. As camera and 
image-processing tools are becoming more widely available and cheaper, their use 
in robotic games is also becoming popular. Nevertheless, image-processing litera-
ture encompasses a huge number of algorithms and techniques. In this chapter, we 
presented the fundamental techniques that can provide a quick start in realizing a 
vision unit for the robot.
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Basic Theory of Electrical 
Machines and Drive 
Systems

This chapter presents a brief description of electrical machines used in robots. The 
term “electrical machine” defines devices that convert mechanical energy to elec-
trical energy or vice versa. In this chapter, we will cover the basic concepts and 
describe the relevant issues required to choose a suitable system for powering robots. 
Since the requirements of motion differ from robot to robot, it is imperative to know 
the particular requirements of a robot before choosing a drive system. For example, 
a robot designed to work in a car-manufacturing factory may need the same speed 
requirements in all the joints, but may need different requirements of torque depend-
ing on the joint. (Torque is defined as the rotational force that rotates a shaft and it 
is usually measured in newton-meters. In comparison, force pushes along a straight 
line and is measured in newtons.) The actuators at the robot end effector may need 
only relatively less torque when compared to the base motion joints. On the other 
hand, a humanoid robot may need high torque in its “roll” joints (joints that sway the 
robot sideways), however, rotating with less speed. The knee joints may have exactly 
opposite requirements.

The main objective of this chapter is to provide a starting point for the robot 
designer, without spending too much time on machine theory, which is a broad sub-
ject. In the following, we will first describe the principle of operation of common 
actuators used in game robotics and later discuss issues concerning their control. 
Clayton (1969), Say (1984), Cotton (1970), McKenzie-Smith and Hughes (1995), 
Fitzgerald et al. (1990), and Langsdorf (2001) are valuable resources for further read-
ing on electrical machines.

5.1  ACTUATORS FOR ROBOTS

Robots need some source of torque and power to accomplish the desired motion; 
in other words, every robot needs some form of actuation. The devices that provide 
that actuation are in general called “actuators.” When a robot moves on a terrain on 
wheels, the motion needs to be generated by a drive system with one or more prime 
movers. When a robot moves its arm, in most cases, there is a power source inside 
every joint, which is actually moving the arm. In comparison, when a human being 
is moving each joint in an arm, the motion is generated by some pushing and pulling 
caused by muscles. This type of mechanism governs the motion of many living organ-
isms. Accomplishing the same mechanism is very complex for man-made systems. In 

5
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most cases, a joint itself is self-powered and provides the motion desired. There are 
various types of actuators that can be used in robotics. They can be largely classified 
as electrical, pneumatic, and hydraulic. In mobile robots, pneumatic actuators are 
used occasionally if there is a need for a very high torque. A main disadvantage is that 
the system requires an external air supply to operate. Hydraulic actuators are common 
in earthmoving machines. We may come across hydraulic actuators on mobile robots 
as well, although these are exceptions. In this book, we will focus only on electrical 
devices as most game robots work with electrical actuators.

5.2  ELECTRICAL ACTUATORS

Electrical actuators are electrical motors, which are mainly classified as AC (alter-
nating current) and DC (direct current) motors. AC drives are seldom used in mobile 
robots or game-playing robots. Usually, powerful industrial robots operating in man-
ufacturing lines use AC drives. Similarly, underwater robots and ROVs (remotely 
operated vehicles) with power cables may also use AC drives.

5.2.1 F undamental Concepts of Generating and Motoring

Before we explore further, we need to go through some basic concepts of generating 
and motoring. One surprising fact is that in principle there is no major difference 
between a motor and a generator. Both are energy conversion devices converting elec-
trical energy to mechanical energy and vice versa. There is only a handful of rules that 
we need to understand their operation even though the construction of such machines 
is quite complex and still labor intensive even in this age of automation. Let us recall 
some of the basic laws needed to understand the operation of motors. Even though we 
are only interested in motors, these laws apply to both motors and generators.

Faraday’s law: The law states that whenever there is a change of flux linkages 
associated with a coil, an electromotive force (EMF) is induced in the coil, which is 
proportional to the rate of change of flux linkages.

Lenz’s law: This law states that the direction of that EMF induced (above) acts in 
such a way as to oppose the cause (whatever is causing the EMF to be induced). The 
above laws can be combined into one equation:

	
e t N

d
dt

( ) = − f

	
(5.1)

where e(t) represents the instantaneous value of the voltage induced, N is the number 
of turns in the coil in question, and φ is the flux linking through the coil. The nega-
tive sign is due to Lenz’s law.

The right-hand rule (RHR) and induced voltage: The rule is applied for genera-
tion. Figure 5.1 shows a conductor in a magnetic field, which is acting perpendicu-
larly toward the plane of the figure. The flow direction of magnetic field is illustrated 
with an arrow. In this case, since it is pointing toward the plane of the figure, it is 
indicated by a circle with a cross in the center. The conductor segment, a–a′ is mov-
ing to the right with a velocity of V. Imagine that a voltmeter is connected to the 
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circuit as shown in Figure 5.1. Then, the induced EMF that will be measured with 
the voltmeter is defined as

	 e(t) = BLV	 (5.2)

where B is the flux density in webers/m2 or tesla, and L is the length of the conductor. 
The direction of EMF induced is found by the RHR. Stretching the three fingers of 
the right hand with thumb pointing toward the direction of motion of the conduc-
tor and first finger (index) pointing toward the direction of the flux, we find that the 
second finger shows the direction of the EMF. The example in Figure 5.1 shows the 
application of the RHR to find the direction of the induced EMF.

The left-hand rule (LHR) and the force: Whenever a current-carrying conductor 
is placed in a magnetic field, it experiences a force. Figure 5.2 shows such a situation. 
The magnitude of this force (in newtons) is given by

	 f = BLI	 (5.3)

where B is the flux density, I is the current, and L is the length of the conductor. The 
direction of this force is found using the LHR. By stretching three fingers of the left 
hand with the first finger pointing toward the direction of the flux and the second 
finger pointing toward the direction of the current flow, the direction of the thumb 
indicates the direction of the force. Hence, following the LHR, the direction of the 
force will be toward the right-hand side for the setup shown in Figure 5.2.
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FIGURE 5.1  Right-hand rule for induced EMF.
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FIGURE 5.2  Left-hand rule for force on a conductor.
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Motoring and generating happens simultaneously: We can learn something more 
by looking at Figure 5.2, assuming that a voltage V is driving the current and that 
creates the force to the right. The RHR implies that because the conductor is mov-
ing to the right (as shown in Figure 5.1), there must be an EMF of E induced in 
the conductor, which is actually acting upward, thus obeying Lenz’s law that the 
induced voltage “will oppose the cause.” As the conductor moves, only the differ-
ence between the applied voltage V and the induced EMF (often called “back EMF”) 
E is available to drive the current. Hence, it is obvious that both RHR and LHR will 
simultaneously come into play. In conclusion, in an electrical machine, the generat-
ing and motoring actions are inseparable. When the applied voltage is higher than 
the back EMF, the machine is motoring and when back EMF is higher than the 
applied voltage, the machine is generating.

In the above discussion, when the conductor moves or is moved toward the edge 
of the magnetic field, the action will stop. There will be no more generating or 
motoring actions. To get a working machine, we need a proper structure and it will 
be described in the following sections.

5.2.2 DC  Machines

DC machines are still the mainstay in robotic drives. Hence, it is important for us to 
become familiar with their theory and operation. Let us start the process of under-
standing DC machines from a simple case. We have already mentioned that when a 
DC motor is working, both generating and motoring actions happen simultaneously. 
To understand the operation of a DC motor, we need to understand its operation as a 
generator. Hence, in the following section, we first look at it as a generator.

Primitive DC machine as a generator: In this section, we examine the back 
EMF induced in a primitive motor. Figure 5.3 shows a very basic structure of a DC 
machine. In this figure, we assume that there is a magnetic field of B acting from top 
to the bottom of the north pole to the south pole. Assume that at the starting instant, 
the coil is perpendicular to the magnetic field as shown. Assume that the coil has N 

N

B

x x′

S

ω rad/sec

FIGURE 5.3  Basic slip ring generator.
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turns, its area is A, and it is rotating with an angular velocity ω, then the maximum 
flux linkage is given as

	 λ = NAB	 (5.4)

At the instant shown in Figure 5.3, the flux linkage as a function of time can be 
written as

	 λ(t) = NAB cos(ωt)	 (5.5)

Then, defining that the maximum flux, φ = AB, we can write

	 λ(t) = Nφ cos(ωt)� (5.6)

Then, invoking Faraday’s law and Lenz’s law, we derive the induced EMF as

	
e t

d
dt

N( ) sin( )= − =l w f w t

	 e(t) = Vmaxsin(ωt)	 (5.7)

The voltage pattern that can be tapped from the brushes touching the slip rings 
is a sine wave with a maximum magnitude of value Vmax and angular frequency of 
ω, with which we are all familiar. Since the waveform is sinusoidal, the device is a 
primitive AC generator. Furthermore, the waveform is periodic and the period of 
the waveform is T = (2π/ω). We realize that we started our discussion to understand 
how DC motors are made, but we ended up on a device that produces AC waveform 
as back EMF. Such a device cannot work on a DC power supply. In fact, by simply 
replacing the slip rings shown in Figure 5.3 with split rings shown in Figure 5.4, 
we can obtain a primitive DC motor, which will produce a waveform of back EMF 

Copper ring

N

S

Insulator
Copper brush

FIGURE 5.4  Split ring DC machine that can act as a DC motor.
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with DC average value. From the machine shown in Figure 5.3, we get a sinusoidal 
alternating voltage wave form since brushes are always in touch with the same ter-
minals of the winding. If we can interchange connection at each zero crossings of the 
waveform by swapping the brushes from one part of the ring to the other, the brush 
polarity will remain the same.

We know that the split ring is rotating continuously. The split positions of the 
ring are placed appropriately on the motor/generator shaft so that the brushes on 
the frame of the machine touch the rings. Thus, when the metal ring, connected to 
the terminal with positive voltage, is about to turn negative, the positive brush slips 
to the other half of the ring. When the metal half ring, connected to the terminal 
with negative voltage, is about to turn positive, the negative brush slips to the other 
half of the ring. This is achieved by mechanically placing the split part in the ring 
and brushes appropriately. The above process is called “commutation.” The split ring 
shown in Figure 5.4 is a primitive commutator. The resulting voltage will look like a 
rectified AC wave form. Nevertheless, such a DC voltage will create many problems 
in usage. Over the years, DC machine design has gone through many milestones, 
and now it has been stabilized. DC voltage induced is made smooth, constant, and 
steady by distributing the winding over the armature surface and by increasing the 
commutator segments to much more than just two.

We will now try to describe the basic operations of a modern DC motor. As we 
mentioned earlier, there should be a magnetic field established. This is usually real-
ized by field winding and pole configuration as shown in Figure 5.5. This pole con-
figuration is called a stator consisting of a drum-like yoke fitted with salient poles. 
Figure 5.5 shows a machine with two poles. Obviously, the number of poles must be 
even. The magnetic field is established by field windings. The field winding can be 
a separate circuit, or as in some small DC machines, such a field is established by 
using permanent magnets. The yoke completes the magnetic path.

The rotating structure is called the armature, and it is made of a laminated mag-
netic material. This assembly provides axial slots on the surface for windings to be 

Yoke
a

N

Armature

S

–a

Field windings

FIGURE 5.5  The complete DC machine that can act as a motor as well as a generator.
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placed. The copper conductors are placed in those slots and form the armature wind-
ing. The ends of these windings are terminated on commutator segments. The setup 
is much more sophisticated than what we have shown in Figure 5.5. A picture of a 
typical commutator is shown in Figure 5.6.

Back EMF induced in a DC motor: Figure 5.7 shows a skeleton winding on the 
armature of four-pole DC machine. Let us assume that one coil consisting of conduc-
tors a and a′ is in position as shown in Figure 5.7. The conductor pair a–a′ forms one 

FIGURE 5.6  A typical commutator and armature setup.
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FIGURE 5.7  Primitive four-pole winding.
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turn. We assume that the flux per pole is φ, emanating from the north-pole on the 
top. This flux enters the coil and divides into two parts and enters the S-poles on two 
sides. The same thing happens to the flux originating from the north-pole below, but 
linking the coil formed by b–b′. The mechanical commutator connects the turns a–a′ 
and b–b′ in series so that whatever EMF induced in them add to each other.

Let us focus on the turn a–a′. The flux linkage for that coil is given by λ = φ 
since there is only one turn. Let us assume that the armature rotates through 90˚ 
clockwise so that the turn a–a′ comes directly under an S-pole taking a time of T 
seconds. The flux linked by the same turn would have reversed from +φ to −φ. We 
can write that the average rate of change of flux linkage per turn in coil formed by 
a–a′ is 2φ/T, which is the same as the average EMF induced in one coil, eav, accord-
ing to Faraday’s law. However, a typical DC machine armature has a large number of 
conductors, say, Z of them, thus producing Z/2 turns. The commutator setup groups 
them into “A” number of parallel paths. Then, the number of turns in any parallel 
path is Z/2A. There are two categories of windings. Depending on the winding type, 
A can be 2 or P, where P is the number of poles in the machine. Hence, the EMF 
induced in one of the parallel elements of the winding will be

	
E

Z
A T

Z
ATav = × =

2
2f f

	
(5.8)

The time taken by a coil to move from one pole center to the next pole center is 
given by

	
T

P N P
= =1 1 60 1

rps 	
(5.9)

where P is the number of poles, N is the speed (in revolutions per minute, rpm), and 
rps is revolutions per second. Hence, by substituting this in Equation 5.8, we get the 
EMF equation as

	
E

P ZN
Aav = f

60 	
(5.10)

An alternative form of EMF equation: We may encounter different forms of EMF 
formulas in motor data sheets, especially for permanent magnet motors commonly 
used in robotics where φ is fixed. For instance, the angular velocity can be written as

	
w p= 2

60
N

	
(5.11)

By substituting Equation 5.11 in Equation 5.10 for EMF, we can write

	
E

P Z
A

P Z
A

Kb= = =f w
p

f w
p w[ ]

[ ]
60

60 2 2 	
(5.12)
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where Kb is defined as the EMF constant in terms of volt/radian per second such that

	
K

P Z
Ab = f

p2
V/rad/s

	
(5.13)

This information is often provided in the data sheets as volts/unit angular speed 
or in a different scale as volts/1000 rpm.

Torque equation: The average value of the flux density crossing the air gap 
between the armature surface and the pole surface can be written as a ratio of total 
flux divided by the total armature surface area. Hence, we obtain

	
B

P
L rav = f

p2 	
(5.14)

where r is the radius of the armature and L is the length of the armature. Using the 
LHR, we can obtain the average force on one conductor as

	
f

P
r

i= f
p2 	

(5.15)

where i is the current passing through a conductor. Since there are A parallel paths, i 
can be written in terms of total input current I as I/A.

Hence, the expression for force is given as

	
f

P I
Ar

= f
p2

Since there are Z number of such conductors, the total peripheral force can be 
written as

	
F

P I Z
Ar

= f
p2 	

(5.16)

Since torque is the product of force and armature radius, then the torque equation 
becomes

	
T

P I Z
A

= f
p2 	

(5.17)

Alternate torque equation: Once again considering the case of permanent magnet 
motors, the above torque equation can also be written as

	
T

P I Z
A

K It= =f
p2 	

(5.18)
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where Kt is defined as the torque constant such that

	
K

P Z
At = f

p2
Nm/A

	
(5.19)

Referring to Equation 5.13, we can see that Kt and Kb are numerically the same.
DC motor types: In nonpermanent magnet DC motors, there are two electrical 

windings, one for the field excitation and the other for armature. Moreover, the field 
excitation can be from a high-voltage source such as its own armature, or it can be 
excited by the armature current using only a few turns. The former is called shunt 
winding and the latter is called series winding. There are many ways these three 
windings (armature, shunt-field, and series field) can be interconnected. For a given 
DC motor, there is no need for both kinds of field windings to be available. DC 
motors are classified by the way the windings are connected with each other. They 
are permanent magnet motors, separately excited DC motors, shunt DC motors, 
series DC motors, and cumulatively compounded DC motors, where series winding 
field supports the shunt winding field, and differentially compounded DC motors, 
where the series winding field opposes the shunt winding. Each of these motors will 
have different speed versus torque characteristics. However, our main interest lies in 
separately excited motors and permanent magnet motors. The speed variation of per-
manent magnet motors and separately excited motors will be somewhat flat which 
implies that the change of speed with respect to load is minimal. They both are suit-
able for robotic applications. Permanent magnet motors are the most preferred since 
there is no need to supply magnetization current.

Nowadays, to reduce the rotational inertia, air-core armatures are used, instead of 
rotating heavy magnetic core armatures. These advanced techniques are all due to 
the research in machines and materials technology.

5.2.3 AC  Motor Drives

As mentioned earlier, AC motors are mainly used in large stationary robots in 
industry. We rarely encounter them in robotic games. These motors are meant for 
fixed load, and they run at a given fixed speed. For the sake of completeness, we 
will briefly describe their operating principle here. AC motors can be of synchro-
nous or induction type. Rotating magnetic field is the most important concept used 
in understanding synchronous motors. It is possible to show that when three-phase 
currents are passed through the three windings spaced 120° apart on the stator 
(outer part) of synchronous motor, a magnetic field that rotates at a particular speed 
is created. Similarly, when two-phase currents are passed through the windings 
spaced 90° apart on the stator, again a rotating magnetic field is created. This mag-
netic field rotates with a speed given by NS = (120/P)f, where P is the number of 
poles and f is the frequency of the polyphase power supply. The speed of rota-
tion of the magnetic field is called the synchronous speed. This concept has been 
well discussed in the literature (Cotton 1970; McKenzie-Smith and Hughes 1995; 
Fitzgerald et al. 1990; Langsdorf 2001).
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Operation of a synchronous motor: A three-phase, two-pole synchronous motor 
with pole pattern is shown in Figure 5.8. The windings are not shown in order to 
simplify the picture. Assume that a rotor has a field winding that establishes a pair 
of N–S poles. This field winding in the rotor is fed with a DC supply through slip 
rings. Then, the stator poles and rotor poles will lock with each other and hence, the 
rotor rotates along with the rotating magnetic poles at synchronous speed. If there 
is no load, the stator and rotor poles will be fully aligned. As the load increases, the 
rotor poles will start to lag behind through an angle called load angle, δ, as shown in 
Figure 5.8. As the load further increases, the rotor may no longer be able to follow 
the stator, and it will simply stop.

Induction motors: An induction motor also has a stator winding similar to that 
of a synchronous motor and produces a rotating magnetic field. However, the rotor 
does not have magnetic poles. Instead, the rotor has a core and short-circuited wind-
ings on it. Torque is produced due to the induced currents in the rotor windings. 
Unlike synchronous motors, induction motors always run at less than the synchro-
nous speed. They are widely used in industry.

5.3  SPECIFIC NEEDS OF ROBOTICS DRIVES

In the previous sections, we discussed operations of motors, but we did not consider 
their manipulation by computers. They are all designed to operate under planned, 
that is, known loading conditions and once they are switched on they will operate 
without any intervention.

When these motors are used for actuating motions of robots, they have to be 
controlled using computers and appropriate electronics. One of the important char-
acteristics of these motors is their speed. The speed of AC motors is bounded by the 
supply frequency. For instance, with a 60 Hz supply, a two-pole AC machine can 
run up to a speed of 3600 rpm. On the other hand, DC machines run at designated 
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FIGURE 5.8  Operation of a synchronous motor and the concept of load angle.
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speeds, which can vary from very slow to very high speeds. At this point, it is 
necessary to point out that when we use electronics to switch winding currents the 
distinction between AC and DC motors gets somewhat blurred. For example, the 
power supply to a stepper motor may be just DC, but the current passing through 
the winding is in fact alternating. The same is the case for brushless DC (BLDC) 
motors.

In many robotics applications, we need a very close control of speed and position. 
A major issue in robotics practice is that we need smaller motors to build robots of 
reasonable size. The power needs of such motors may vary from milliwatts to several 
tens of watts. The work done per revolution by a motor depends on the size of the 
motor, the quality of the material, insulation type, and the waste power it can dis-
sipate. However, the power rating of the motor is the product of the work done per 
revolution and the speed of the motor. The conflict is that they have to be small with 
weights not more than few hundred grams. A small motor can only produce small 
power at low speed. However, if the same motor runs safely at a higher speed, then it 
can deliver higher power. The logical conclusion is that to satisfy the size and power 
requirements, motors used in robotics have to run at very high speeds.

The above argument easily explains why many DC motors for robotics drives 
offered by manufacturers have ratings of low torque of around 75 milli-newton-
meters, but speeds of around 10,000 rpm or more. The motion in robotics does not 
require such high speeds but requires high torque. These motors are always used 
with speed reduction gears. Many DC motor manufacturers offer motors with built-
in gears and boast elaborate catalogs of many power, speed, torque, and gear ratio 
combinations (see, e.g., Faulhaber 2011).

5.3.1 DC  Permanent Magnet Motors

Among the DC motors, permanent magnet motors are commonly used in game 
robotics. They are used along with driver circuits and their actions are continuously 
monitored using encoders or potentiometers attached to their shafts. They are sel-
dom directly connected to a supply since in robotics we need to control position and 
speed precisely. More details on their control will be discussed later in this chapter.

5.3.2 S ervo Motors

Servo motors are very popular in game robotics. They are nothing but DC motors 
with built-in control electronics. Unlike DC motors, they are not meant for continu-
ous rotation, but used for a fixed angular rotation. Their built-in electronics provides 
the means of controlling angular position by using a potentiometer, and they are all 
encased as a part of the motor body. In applications such as a humanoid limb or a 
grabber where joints need to make fixed angular motions, a servo motor is a good 
choice to power it. Such motors eliminate the trouble of position control, since the 
position control circuit is built in and the user only has to provide a specific signal 
to achieve the angular rotation. Figure 5.9 shows the assembling of a servo motor to 
a robot joint. Note that a flange is fitted to the rotor shaft, and the load is fastened to 
this flange.
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There are three wires connected to the motor, usually color coded as red for 
motor power supply line Vs, black for ground line G, and white for control signal line 
C. Figure 5.10a shows the control signal for a Hitec 422 servo motor (Hitec 2012). 
The control signal is a series of square pulses with a frequency of 50–100 Hz, or a 
period of 10–20 ms. When the “ON” period is 1.5 ms, the load flange is in the neutral 

FIGURE 5.9  Servo motor and its assembly to a robot joint.
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FIGURE 5.10  (a) Pulse train to achieve neutral position. (b) Pulse train to achieve −90° 
position. (c) Pulse train to achieve +90° position.
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position. When the pulse width is reduced to a lower value of 1.0 ms, as shown in 
Figure 5.10b, the wheel rotates through 90° in one direction and stops. If the pulse 
width is increased to 2.0 ms, as shown in Figure 5.10c, the flange wheel rotates in the 
opposite direction through 90° and stops. These actions are repeatable, and the range 
of the angular rotation is from −90° to +90° which is 180°. This range may change 
according to the specifications supplied by the manufacturer. Here, we described 
only a typical example.

Apparently, controlling of a servo motor with computers is very straightforward. 
If the train of pulse stops, the angular position may drift due to the load. Hence, 
for achieving and holding a certain angular position, the computer has to continue 
providing the required pulse width periodically. Typical specifications provided for 
servo motors are as follows: Holding torque (in units of kg-cm), speed of response 
(in units of s/60°), input voltage range, gearing type, and overall size and weight.

5.3.3 S tepper Motors

Stepper motors provide easy and precise control of motions. As the name indicates, 
the motions are in steps activated by pulse trains (Kenjo and Sugawara 1994). The 
number of pulses decides the number of angular steps the motor rotates. The step 
size of these motors can have a wide range. As long as the pulses are fed, the motor 
will keep rotating. When the pulses stop, the motor will also stop. It is in major con-
trast to DC motors, which will continue to rotate as long as there is power connected. 
Hence, stepper motors are used in many applications where we need exact position 
control. The ratings of such motors are rather limited to small power values. There 
are various types of stepper motors. A widely acceptable classification of them is as 
follows:

	 a.	Variable reluctance (VR) motors (further classified as single stack and 
multistack)

	 b.	Permanent magnet stepper motors
	 c.	Hybrid stepper motors

This is not a complete classification, although it is sufficient for our understanding 
of their application in robotics.

Single-stack VR stepper motors: A diagram of a single-stack VR stepper motor 
(Kuo 1979; Edwards 1991), illustrating its features, is given in Figure 5.11. The sin-
gle-stack VR stepper motors are compact. They usually have two or three phases. 
The step size obtainable is quite large, with a practical number of teeth on stators 
and rotors. There are more stator teeth than the teeth on the rotor or vice versa. 
Obviously, this difference is important for incremental motion. The achievable step 
size ranges from 0.9° to 30°. The example motor to be used here for discussions has 
12 stator teeth, and winding is provided for three phases. Hence, there are four teeth 
per phase. Thus, three phases are covering all the 12 teeth. The motor shown in 
Figure 5.11 has 16 teeth on the rotor. We can observe that five rotor teeth cover four 
stator teeth. Phase A winding is covering four teeth. Similarly, phase B and phase C 
also cover four teeth; hence, all the 12 teeth are covered. Let us assume that phase A 



117Basic Theory of Electrical Machines and Drive Systems

is energized. Magnetic polarity for phase A winding is marked on Figure 5.11. The 
tooth pitch of the stator is 360/12 = 30°, and the tooth pitch of rotor is 360/16 = 22.5°. 
Figure 5.11 shows that only four rotor teeth are aligned with the stator teeth and the 
rest of them are all misaligned. Now, assume that phase B is energized at the same 
time when phase A is switched off. This will result in rotor to rotate 7.5° counter-
clockwise so that four rotor teeth will again align with teeth wound with phase B. 
Consequently, others will be misaligned. This motion goes on as phases are cycli-
cally switched on and off. Apparently, in this example, the step size is 7.5°. By chang-
ing the switching sequence ABC to ACB, the direction of rotation can be changed.

To draw some conclusions, let us go through some requirements for proper opera-
tion. Let us define some terms as below:

Ps = the number of teeth on the stator
Pr = the number of teeth on the rotor
n = the number of phases wound on the stator

The number of stator teeth per phase will be

	
p

P
n

s=
	

(5.20)

Or

	 Ps = np	 (5.21)

It is obvious that p must be an even integer in order to have a viable distribution 
of phases on stator teeth. When any one of the phases is energized, there should be 
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FIGURE 5.11  Single-stack three-phase VR stepper motor.
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p stator teeth that get exactly locked with the p rotor teeth. The stator teeth found 
per adjacent pairs of locked teeth are the same as the number of phases which is just 
n and those teeth would be wound with one phase each. However, if the number of 
teeth on the rotor per adjacent pairs of locked teeth are also the same as n, no motion 
will be possible when windings are switched. There should be a misalignment to 
facilitate motion, and hence the number of teeth on the rotor per those two pairs of 
locked teeth should be one less (n − 1) or one more (n + 1). This is also clear from 
Figure 5.11.

Case I (when Pr > Ps):

	 Pr = (n + 1)p	 (5.22)

Then step size is given by

	
q = −360 360

P Ps r 	
(5.23)

	
q = − +

360 360
1n p n p( ) 	

(5.24)

Case II (when Pr < Ps):

	 Pr = (n − 1)p	 (5.25)

Then step size is given by

	
q = −360 360

P Pr s 	
(5.26)

	
q = − −360

1
360

( )n p n p 	
(5.27)

EXAMPLE 5.1

For the motor shown in Figure 5.11, we see that Pr > Ps and n = 3 and the number 
of teeth per phase, p = 4. Hence, the step size can be calculated by applying the 
formula

	
q = −

+
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−

×
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The number of steps per revolution will be

	
S = =360
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Design issues: Given the step size, we should be able to decide the number of 
teeth on stator, rotor teeth, and the number of phases. For this, we simply rewrite 
Equations 5.24 and 5.27 to obtain p.

Case I (when Pr > Ps):

	
p

n n
= − +

360 360
1q q( ) 	

(5.28)

We can start from the value of n = 3 onwards for the given value of θ and iterate 
until we get an even integer for p. Then
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Case II (when Pr < Ps):
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360
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(5.30)

After getting an appropriate value for p, we can obtain

	

P n p

P n p
s

r

=
= −( )1 	

(5.31)

Caution: For n ≥ 3 and for p being an even integer, it is possible to realize a motor 
design and compute the step size. On the other hand, it is not possible to design a motor 
for any arbitrary value of step size. Some step sizes may be impossible to realize.

EXAMPLE 5.2

Let us assume that in a robot design, we need a smaller step size, say 0.9°. Can we 
achieve that? Let us try. Assume that Pr > Ps. Using the equations in case I, design 
calculations will yield to

n	 p
n n

= × − + ×
360

0 9
360
1 0 9. ( ) .

3	 33.333	 Discard
4	 20	 Accept

Then the number of teeth required will be

	

P

P
s

r

= × =
= × =

4 20 80

5 20 100

From the above example, we can conclude that to have smaller and smaller step 
size, enormous number of teeth are needed. To avoid this problem, multistack VR 
stepper motors came into existence.
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Multistack VR stepper motors: The design concepts used in multistack VR 
stepper motors are much simpler. On a common rotor axis, n sets of rotors each 
having their own sets of poles are mounted on a single shaft. In one design, all 
the teeth of n rotors are aligned. However, each rotor segment is covered by a 
separate stator phase and its own winding. The stator teeth are misaligned from 
one another by 1/n of the stator tooth pitch, where n is the number of phases, 
which is the same as the number of rotor segments. This situation is shown with 
an example in Figure 5.12, where n = 4 and the stator tooth pitch is 60°. In this 
design, the step size obtainable is 15°, which is rather large. Obviously, when the 
power is switched from phase A to phase B, the rotor moves by 15° to be aligned 
with the midstator section. This will continue as phases are switched. The opera-
tion principle is rather straightforward.

Alternative design: There are other alternative designs that can offer even much 
smaller step size. In one such design, the stator poles of each stack are provided with 
teeth, and they are energized by different phases. The stator teeth are all aligned. 
The rotor has three stacks, and each stack is misaligned from one another. The cut 
sections of three phases of such design are shown in Figure 5.13. Note that the tooth 
pitch of rotor teeth and stator teeth of all the phases is the same and in this case it 
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FIGURE 5.12  A multistack four-phase VR stepper motor.
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is 12°. Assume that n is the number of phases, which is the same as the number of 
stator stacks. Furthermore, phase B rotor teeth are misaligned by 1/n of the tooth 
pitch from phase A stack, similarly the teeth of phase C rotor stack are misaligned 
by another 4° from phase B teeth. At the start, let us assume that the first stack is 
energized with a current in phase A. The whole stator will be aligned with stack A as 
shown in the first diagram of Figure 5.13.

At this instance, owing to the arrangement of stacks, phase B teeth will fall behind 
by an angle of 4° and phase C teeth will be by a further 4°. Hence, when the phase B 
is energized, while switching off phase A at the same time, the rotor will move by 4° 
counterclockwise. Similarly, when phase C is energized, while switching off phase 
B at the same time, the rotor will move counterclockwise by another 4°. Thus, if we 
cyclically energize A, B, C, A,. . ., the rotor continues to move in steps of 1/n of the 
tooth pitch, which is 4° in this example. This type of multistack stepper motors are 
easy to manufacture, and the step size only depends on the tooth pitch and the num-
ber of phases. Some designers arrange rotor teeth aligned, but stator teeth misaligned 
though the principle of operation is still the same.

Permanent magnet stepper motors: The operational principle of permanent magnet 
stepper motors is rather straightforward. One such motor is shown in Figure 5.14 
(Kenjo and Sugawara 1994). The machine has a cylindrical permanent magnet mag-
netized radially and mounted on a shaft. The stator of the machine has four poles and 
two phase windings. Pole 1 and pole 3 have windings A and A′ connected in series 
appropriately so that their fields will be on the same direction. Similarly, pole 2 and 
4 have windings B and B′ connected in series appropriately so that their fields will 
support each other. This implies for a particular direction of current in windings A, 
if pole 1 is south then pole 3 will be north. If the current is reversed, the polarity 
will be opposite. Let us assume that windings A is excited with pole 1 having south 
polarity and pole 3 having north polarity. Then, the rotor will be aligned vertically. If 
windings B are excited such that pole 2 is south and pole 4 is north before switching 
off winding A, the rotor will move clockwise 45°. If winding A is switched off at this 
time, the rotor will move further to align with poles 2 and 4. At this time if winding 
A is excited in reverse direction, the rotor will move further 45°. Now, if winding B 
is switched off, the rotor will move further 45°. It is important to notice that by this 
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FIGURE 5.13  Stack cut section view showing misalignment.
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method two step sizes can be achieved. A step size of 90° can be achieved by switch-
ing off A before switching on B. A step size of 45° can be achieved by keeping A and 
B “on” for a brief period and then switching off A.

Other stepper motor designs: There are many other designs of stepper motors 
such as hybrid stepper motors, linear stepper motors, and so on. Some of them are 
designed to achieve higher holding torque; some of them are designed for precision 
applications such as printers.

5.3.4  Brushless DC Motors

Another development due to the availability of cheap and reliable electronics and com-
puting power is the advent of BLDC motors (Edwards 1991). They are just DC motors 
where the mechanical commutator is replaced by an electronic commutator. We know 
that usually armature windings are placed in rotors. However, since electronics can be 
easily fixed to a nonmoving part, the armature windings of BLDC motors are placed 
on the stator. The rotor has poles of permanent magnets. The only difference is that in 
a classic DC motor, there would be large number of commutator segments. In BLDC 
motors, it is uneconomical to duplicate this since large number of semiconductor 
switches will be needed. Hence, BLDC motors have usually three phases supplied by a 
three-phase inverter. There are two possible ways to connect these three phases: star or 
delta. The switching of the inverter must be according to the rotor position. This can be 
achieved by using optical sensors, or Hall effect sensors. Another alternative is to use 
electronic methods of measuring the back EMF, and hence finding the rotor position.

Star-connected BLDC motor: Figure 5.15 shows a typical simplified cross-sec-
tional diagram of a motor with two poles, along with winding connections. The 
stator carries a three-phase winding. Typically, winding A consists of conductors 
distributed in segment “a” and conductors distributed in segment. “a ” placed in a 
diagonally opposite position. A similar arrangement is shown for windings of phases 
B and C. The rotor is mounted with a permanent magnet with its poles facing radially 
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FIGURE 5.14  A simple permanent motor stepper motor.
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outwards. Each pole spans 180°, and the flux density is usually constant through the 
pole surfaces. Current is supplied to the windings from a controller.

All the diagrams discussed in this section show the cross-sectional view of the 
BLDC motors. See Figure 5.15 for example. Typically, the conductor segments a and 
a  are connected behind to form winding A. What we see up front are the terminals 
of the winding. Since the conductor segments are axially placed, they are shown as 
small circles, which indicate their cross-sectional view. If the current in a specific 
conductor segment flows toward the observer or away from the plane of the figure, 
it is marked as a dot inside the circle. If the current flows away from the observer or 
toward the plane of the figure, it is marked as a cross inside the circle. Hence, positive 
current Ia is denoted with a cross on segment a and a dot on segment a .

The following discussion is based on Figure 5.16. In the first row the rotor position 
is shown on the left. Winding currents are shown on the right hand side. The cur-
rent flowing from terminal toward center is considered positive. When the controller 
sends current from line 1 to line 2, Ia is positive, Ib = −Ia and Ic = 0. The current direc-
tions in conductors are shown in Figure 5.16a. N pole is under conductor segments a 
and b . Applying the LHR, we can say that the conductors a and b  suffer forces that 
tend to move them clockwise, but they are fixed and cannot move. So the reaction 
moves the magnetic rotor counterclockwise. This motion is further aided by currents 
in the conductor segments b and a , since they are under the S pole. Hence all the 
forces are such that the rotor rotates counterclockwise.

The situation does not change until the rotor turns 60 degrees in the counter-
clockwise direction. Figure 5.16b shows the position at the end of 60 degrees. For 
the rotation to continue, the conductor segments c and c  should have currents in 
the appropriate direction and winding B can now be disconnected. The appropriate 
currents are shown in Figure 5.16b. This switching is done based on position sensor 
information. In this case, after the switching, currents will be as Ic = −Ia and Ib = 0. 
In this manner, the rotation continues. Respective rotor positions and corresponding 
winding currents are shown in the subsequent parts of the diagram in Figure 5.16. 
After the sixth row, one cycle is completed; the condition reverts back to Figure 
5.16a, and the sequence continues cyclically. In all these cases, at the end of every 
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FIGURE 5.15  Star-connected BLDC motor.
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60° of rotation, the current switching is done based on either encoder feedback, back 
EMF sensing or by Hall effect sensor feedback.

One disadvantage of star connection is that one of the windings is not carrying 
current at any given time. In addition, one-third of the magnet surface is not utilized.

Delta-connected BLDC motor: Figure 5.17 shows a typical simplified cross-sec-
tional diagram of a delta-connected BLDC motor with two poles, along with wind-
ing connections. The rotor magnets span only 120°. As before, the flux density is 
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mostly constant through the pole surfaces. Current is supplied to the winding from a 
controller. Winding A is formed by the conductor segment a and conductor segment 
a . Similar notation applies to windings B and winding C. To establish a convention 
and a basis for determining the force directions, we assume that clockwise current 
that flows in the loop formed by the delta is positive. It implies that currents from 
terminals 3 to 1 in winding A, from terminals 1 to 2 in winding B, and from termi-
nals 2 to 3 in winding C are positive. The sequence of rotor positions and winding 
and conductor currents are shown in Figure 5.18. Let us consider the rotor position 
shown in Figure 5.18a and the current flow shown next to it. Here, we use the terms 
line1, line2, and line3 to indicate supply lines connected to delta points 1, 2, and 3. 
The current flows from line 3 to line 1, and no current flows through line 2, since it 
is disconnected. In this case, Ic = Ib since they are in series. According to the conven-
tions we established earlier, they are both negative. But, Ia is positive and has a higher 
value since phase a is directly across the supply. The current markings in the conduc-
tor segments shown in Figure 5.18a are also according to the conventions we have 
established. Applying the LHR, we see that the force on conductor segments a and b  
is clockwise. As discussed before, since the conductors are fixed, the reactive force 
moves the magnets in the counterclockwise direction. As the rotor rotates through 
the next 60°, conductor segment c  is covered and conductor segment b  is uncovered 
by N-pole without any change in torque. Similar things happen to the conductors 
under S-pole where conductor segment c is getting covered and conductor segment b 
is getting uncovered without any change in force or torque, since both phases carry 
the same current.
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At the end of this 60° counterclockwise rotation, rotor position is shown in Figure 
5.18b. At this point, the current in winding B, which is formed by conductor seg-
ments b and b , alone should be reversed to achieve further motion. Therefore, a new 
connection is made such that current flows from line 3 to line 2. Now, the motion 
continues counterclockwise as before. At the end of the 60° rotation, rotor position is 
now shown in Figure 5.18c. These principles are similar until the sixth row in Figure 
5.18, after which the situation reverts back to the conditions shown in the first row. 
In all these cases, at the end of a 60° rotation, the current switching is done based 
on either encoder feedback, by back EMF sensing or by Hall effect sensor feedback.

The advantages of a delta-connected machine over star-connected machines are 
twofold. First, current flows in all three windings resulting in a better use of wind-
ings. Second, the volume of permanent magnet material used is only two-thirds the 
equivalent of star-connected machine. Hence, the majority of BLDC motors are 
delta-connected machines.

5.4  DRIVE SYSTEMS

In the previous section, we discussed the operation principles of commonly used 
motors in robotics systems. These motors need control mechanisms to deliver speed, 
motion, and position requirements of the robot designed. In this section, we describe 
some of drive schemes used for this purpose.

5.4.1 DC  Motor Control

In robotics, a very tight control of speed and position of the motors is needed. This 
is normally achieved by a feedback mechanism using the optical encoders discussed 
in earlier chapters and a driver circuit. Many commercially available DC motors 
come invariably with optical encoders and gear heads attached to them. To control 
DC motors, there are many drive circuits commercially available. Some of them are 
analog devices based on FETs and power transistors. However, the majority of such 
devices are bridge drivers, which are very cost effective and energy efficient.

Basic principle: The basic principle behind a bridge driver (commonly known 
as H bridge) can be explained using the circuit shown in Figure 5.19. When the 
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FIGURE 5.19  H-bridge driver principle.
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transistors a1 and a2 are activated, current flows from left to right through the motor. 
On the other hand, when b1 and b2 are activated, the current flow through the motor 
is reversed and thus it becomes a bipolar device. When there is no transistor acti-
vated, there will be no current fed to the motor. During the transition, there is a 
possibility of dead-short of the power supply. Assume that transistors a1 and a2 are 
on and b1 and b2 are off. To reverse the current, a1 and a2 should be turned off and 
b1 and b2 should be turned on. Under fast-switching conditions, there is often a situ-
ation where turn-on happens before the other pair has completely turned off. This 
results in a transient dead-short of the supply, which causes heating. The number 
of such dead-shorts will increase as switching frequency increases, thus limiting 
the switching frequency. There are electronics as well as software means to avoid a 
dead-short. Commercially available driver ICs avoid dead-short problems with built-
in circuitry and furthermore they provide many other safeguarding features.

DC motor controllers and their operation: The switching components shown in 
Figure 5.19 are incorporated in commercial DC motor controller ICs that are sup-
plied by many manufacturers. These integrated units also provide additional conve-
niences such as protection from overheating, line to ground short circuits, current 
limiting (chopping) features, and so on.

Figure 5.20 shows the input signals and motor connections of typical DC motor 
controllers available commercially. The H bridge shown in Figure 5.19 is the core 
of such DC motor drivers. The protections, current chopping, and so on are built 
around the H-bridge core and only the signal and output lines, relevant for the user, 
are provided as pins. The motor terminals are floating. This circuit is designed for 
pulse width modulation (PWM) control of DC motors. Many commercially avail-
able devices are capable of supplying a current of around 2.5 A through the load at 
the operating voltage of up to 40 V. For control purposes, “phase” and “enable” lines 
are provided. A high in the “enable” line and a high in “phase” line will send current 
through from m0 to m1, through the motor. With the enable line still being high, if the 
“phase” signal goes low, the applied voltage appearing across the motor will reverse. 
When “enable” goes low, the output terminals go into high impedance mode.

Type 1 application: In one type of application, the PWM is connected to the 
“enable” line. The enable signal may be of high active or low active type. In general, 
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FIGURE 5.20  Block diagram of a commercial DC motor controller.
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the “phase” line controls the direction of the motor and “enable” (PWM) controls 
the speed of the motor.

When a computer calculates the manipulated variable, the magnitude is used to 
fix the PWM duty cycle and the phase signal is set high or low depending on the 
sign, high for positive or low for negative. Hence, if a high positive manipulated vari-
able produces high current from, say, m0 to m1 through the motor, a high negative 
manipulated variable will produce high current from m1 to m0 through the motor. 
This is the most popular method of using the motor controller.

Type 2 application: Some users prefer to use the enable line for on/off control, 
while supplying the PWM to the phase line. By this method, a 50% duty cycle in the 
phase line commands the motor to move forward and reverse at the PWM frequency, 
for which the motor does not respond and stands still. A PWM with duty cycle higher 
than 50% moves the motor forward and a PWM with duty cycle <50% moves the 
motor in the opposite direction. This method begets faster response of the motor, but 
heats up the switching devices, needing heavier heat sinks. A further analysis of this 
method will be presented in Chapter 10. There are many other DC drive devices, 
employing similar principles frequently used in robotic applications.

Some examples of commercial DC motor controllers: Two popular examples of DC 
motor controllers are Allegro A4973 (Allegro 2012) and L6203 (ST-Microelectronics 
2012). They both have an H bridge as their core and other circuits are built around it 
in a single package. The A4973 provides the input signals as explained earlier. The 
IC provides low active enable line E  and phase line distinctly. Full schematic and 
application notes can be found in Allegro (2012). In addition to its basic motor con-
trol, this IC also provides internal circuit protection including motor lead short-to-
supply/short-to-ground, thermal shutdown with hysteresis, undervoltage monitoring, 
and crossover-current protection.

Another popular full bridge driver is L6203. The full schematic of this device 
can be found in ST-Microelectronics (2012). In L6203, high active enable line is 
provided, but the phase effect is achieved by two input signals IN1 and IN2. That 
is, instead of a phase input, two other inputs, namely, IN1 and IN2 are provided. 
Referring to the basic H bridge shown in Figure 5.19, when IN1 input is set to high 
and IN2 is set to low, the top left and lower right FETs of the bridge circuit will con-
duct and pass the current through the motor in one direction. If IN1 is low and IN2 is 
high, then the top right and lower left FETs will conduct and thus reverse the current. 
Hence, we need to generate IN1 and IN2 from a single external phase signal. L6203 
also provides the protections mentioned above.

5.4.2 S tepper Motors Drivers

The main functions needed for stepper motor controllers are switching sequence 
generation, power current driving, and current limiting and regulation. All the 
sequence signals can be generated using computers, microprocessors, or microcon-
trollers. This will need programming efforts, and execution will consume processor 
time. Employing a separate sequence generator will enable the processor to deal with 
higher-level functions rather than performming low-level power-driving functions. 
Consequently, this also simplifies the programing task. As discussed previously, 
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there are many types of stepper motors. We will not be able to describe drivers for 
all types of motors, but we will give some examples.

5.4.2.1  Sequence Generator
Most stepper motor drive systems come in pairs. One of them is a sequence genera-
tor that cannot drive the motor on its own. The other one is a driver which uses the 
signals from the sequence generator and drives the currents through the windings 
appropriately.

The sequence generator should be able to

•	 Provide drive signals to the power driver in appropriate sequence for for-
ward or reverse motion.

•	 Run the stepper motor in half or full steps.
•	 Provide the current control signals to the driver for safety of motor and driver.

For this purpose, the sequence generator normally takes the following signals: 
clock for deciding the speed, half/full step, direction, enable, current feedback sig-
nals, and current reference signals. One such popular sequence generator is SGS 
Thompson L297 IC (ST-Microelectronics 2012), which may be used independently 
using discrete power semiconductor components or along with other bridge-based 
chopper drivers. We will describe functions, capabilities, and applications of L297. 
In particular, we will see drivers for four-phase unipolar motors and two-phase bipo-
lar motors. A block diagram of L297 is shown in Figure 5.21 to serve our purpose. 
The L297 can be used with any other power stage or standard power driver. As we 
mentioned above, this sequencer takes in basic input from a microprocessor and 
generates output signals required for the power stage using the built-in internal logic. 
The outputs are phase signals A, B, C, and D, and inhibit signals INH1 and INH2. 
The input signal “control” decides the mode of current control.
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130 Practical Robot Design

In any power driver system, the current pumped into the motor needs to be regu-
lated for the sake of torque control and for the safety of the motors and electronics. 
This needs current feedback. For the current feedback, three inputs Vref, SENSE1, 
and SENSE2 are provided. Using these signals, L297 is capable of producing two 
types of current control either for fast current decay mode or slow current decay 
mode. The choice is made by means of input line “control.”

5.4.2.2  Operating Modes of L297
There are four logic outputs (A, B, C, and D) from L297, which can produce 16 
states. But the hardware limits it to only eight states as listed below in Table 5.1. The 
device transits through the states cyclically according to the choice of user control. 
The home state is stage 1 where ABCD = 0101. Depending on the instruction, the 
sequencer output combination can move

	 1.	Through all states from state 1 to state 8 sequentially
	 2.	Only through even states, that is, 2,4,6,8,2
	 3.	Only through odd states, that is, 1,3,5,7,1

The two additional output signals INH1 and INH2 are generated according to the 
following logic in all modes:

	

INH A B

INH C D

1

2

= +

= + 	
(5.32)

These two signals are used for current termination. However, a robot designer has 
the choice of using either phase signal or inhibit signal for current control. In follow-
ing, we will see the modes of operation one by one.

Transition through all states (half-step mode): This is achieved by providing a 
logic high signal to the HALF/FULL  line of L297 at any time. When the sequence 
generators move through all states 1, 2, 3, 4, and so on, the ON states of the out-
put signal change as A, AC, C, CB, B, BD, D, DA, A, AC, and so on. It means that 
states transit as ABCD = 1000, 1010, 0010, 0110, 0100, 0101, 0001, 1001, 1000, 1010, 
. . .. This is also called the half-step mode, since when it is applied, a stepper motor 
moves in half steps.

Transition through even states (wave mode—full step): Transition through even 
states is not straightforward. This is achieved by providing a logic low signal to the 
HALF/FULL  line of L297 at an even state. When the sequencer moves through even 

TABLE 5.1
L297 States

Stage 1 2 3 4 5 6 7 8

ABCD 0101 0001 1001 1000 1010 0010 0110 0100

Logic ones BD D AD A AC C BC B
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states, it results in “one phase ON” states 4, 6, 8, 2, which implies that only one phase 
is ON and other phases are OFF at any given instant. The sequence of switching is 
A,C,B,D,A,. . .. This can be used to run unipolar four-phase stepper motors. INH1 and 
INH2 are generated according to the same logic given in Equation 5.32. Application 
of this mode typically produces the full step motion of stepper motors. We will see 
examples in a later section.

Transition through odd states (full step mode): Once again, the implementation of 

this mode is not straightforward. A logic low signal is provided to HALF/FULL  line 
of L297 at an odd state to achieve this mode. Thus, the states move through only odd 
states such as 1,3,5,7,1,. . .. This results in two phases ON at any given instant. The states 
move through DA, AC, CB, BD, DA,. . .. This mode is usually applied to motors where 
winding currents can be reversed. As discussed in the previous section, the application 
of this mode results typically in the full step motion of stepper motors. It is important 
to note that for the logic sequence given above that INH1 and INH2 lines are always 
high which forces the designer to use only phase lines for current regulation.

5.4.2.3  Applications
We have seen the three modes of operation of the sequence generator in the previous 
section. Here, we will present how those sequences generated can be used to control 
a stepper motor. We use a driver using discrete components as shown in Figure 5.22.

Operation of four phase VR stepper motor with unipolar windings: The stepper 
motor in our example has four windings, each passing through two poles; hence, there 
are eight poles in the motor. Furthermore, currents cannot be reversed. The motor and 
its windings are shown in Figure 5.23. From an earlier discussion on stepper motors, we 
can deduce that the step size of the motor shown in this figure is 9˚ in full step mode. 
Since there are four windings, the four-phase signals can be readily used for this motor 
and L297 can be used to create the sequencing in all the three modes of the L297. The 
power stage is built using four power-switching devices as shown in Figure 5.22.

In half step, “all” state mode, the switching ON sequence is A, AC, C, CB, B, 
BD, . . . , which will result in half-step motions of stepper motor. Referring to Figure 
5.23, the step size in this case will be 4.5°. In full step wave mode of even state 
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FIGURE 5.22  Typical discrete component-based driver for unipolar four-phase stepper motor.



132 Practical Robot Design

operation, the switching ON sequence is A, C, B, D, A,. . . , and it will yield full step 
motions of the motor. In full step odd state operation, the sequence moving through 
AC, CB, BD, DA, … , and the rotor step size is 9°. In this mode, at no stage is the 
rotor pole aligned with any stator pole.

Current control: There are two ways of current control offered by L297. One 
method uses INH1 and INH2 signals, and the other method uses phase signals along 
with chopping oscillator and a complex circuitry. While using discrete component 
implementation, it is rather difficult to use these methods.

Direction control: When input signal CW/CCW is low, the switching ON sequence 
of states will reverse, and this in turn will reverse the motor direction.

Four-phase permanent magnet stepper motor with unipolar windings: An exam-
ple of such a motor is shown in Figure 5.24. Consider the upper and lower poles in 
the figure, with coils wound on them where each coil has two windings. Individual 
windings on the upper pole coil are connected in series to the windings in the lower 
pole coil. When the current flows from A to A′, a magnetic field is established in one 
direction. Similarly, when the current flows B to B′, the magnetic field will be in 
the opposite direction. Hence, we can reverse the magnetic field without having to 
reverse the current in any coil. This type of winding is called bifilar winding. The 
same configuration of the driver circuit shown in Figure 5.22 can also be used here. 
However, the full step size is 90˚ for this motor.

In Figure 5.24, we have assumed that when A is ON, upper pole is S and lower 
pole is N and when C is ON the right-side pole is S and left-side pole is N. When B 
is ON, upper pole is N and lower pole is S; when D is ON, right pole is N and the left 
pole is S. When two ON states occur, for instance, A and C are ON, then the upper 
pole and the right side pole both become S and left and the bottom poles become N.

A
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C

C1

B

B1

D

D1

A1

C1

B1

D1

FIGURE 5.23  A unipolar four-phase stepper motor example.
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In half step, all state mode, the switching sequence is A, AC, C, CB, B, BD, . . . , 
which will result in half-step operation. In full step wave mode (even states), the 
sequence is A, C, B, D. This will produce a full step operation. In full step mode (odd 
states), the outputs move through the sequence of DA, AC, CB, BD, DA, . . . . However, 
the rotor poles do not align with stator poles. They move from one midpoint between 
the two stator poles to the other midpoint, still maintaining the step sizes of 90˚.

Two-phase permanent magnet stepper motor with bipolar windings: Bipolar 
windings should have reversible currents on each winding; this requires both ter-
minals of each winding to be floating. The circuit shown in Figure 5.22 will not 
serve the purpose. In such cases, L297 is used in collaboration with a driver L298 or 
any other dual H-bridge driver, which can reverse the current in a winding (refer to 
ST-Microelectronics (2012) for more application details). The example step motors 
we gave here are all have large step sizes, and this is for simplicity of illustration. In 
real applications, the number of poles is usually quite large, thus resulting in small 
values of step sizes.

5.4.3  Brushless DC Motor Drive

BLDC motors are applied in many fields of engineering apart from robotics. There 
are two broad types of controllers depending on whether the direction needs to be 
changed or not. In some applications, such as drones and hobby planes, the motors 
need not change direction. Surprisingly, owing to enormous demand for such appli-
cations, there are many ready-to-use “sensor-less” controllers in the market. The 
second type of controllers provides bidirectional rotations, and they use feedback 

AB′
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N C
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D

FIGURE 5.24  Permanent magnet motor with unipolar windings (each pole has two unipo-
lar windings) controllable in all three modes by 297 using circuit shown in Figure 5.22.
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devices. These feedback devices are encoders, Hall effect sensors, or back EMF sen-
sors, whose outputs provide appropriate locations of the rotor at which the switching 
of the windings to be effected. A generic bridge drive circuit used for driving BLDC 
motors is shown in Figure 5.25.

5.4.3.1  Back EMF Sensing-Based Switching
It is easier to describe the operation of EMF-based sensing switching with star-wound 
machines. At any given time, one winding is free from any electrical excitation, but 
that winding is placed in a moving magnetic field. Hence, there is EMF induced on 
that winding. This property can be easily exploited to find proper instants of switching.

We look at the back EMF transitions for winding C. Let us look at the case depicted 
in the first row of Figure 5.16. The current in winding C is just switched off. Figure 5.26 
shows the current flow directions in conductor segments a and b in this case. Since, 
winding “C” is disconnected, there is no current in that winding. However, EMFs are 
always induced in all the windings, which apply to unconnected winding C also. At 
the instant shown in Figure 5.26b, segment c  is marked with a cross and segment c is 
marked with a dot to indicate the direction of induced EMFs. The two segments are 
connected behind to form coil C. The EMFs add to each other in the loop formed by 
the segment cand c. The front end of segment c is positive, and hence the EMF induced 
in winding C is positive maximum. As the rotor continues to rotate counterclockwise, 
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FIGURE 5.25  Bridge circuit to drive a BLDC motor (delta connection).
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FIGURE 5.26  The situation when c is not connected and the rotor is rotating counterclock-
wise. (a) Current. (b) Induced EMF. (c) EMF and current directions.
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the winding that is spanned by N-pole will be approached by S-pole. Hence, the EMF 
magnitude starts decreasing and at the point when S- and N-poles equally span the 
conductor segment “c” (when the magnetic neutral axis of the rotor is in middle of seg-
ment “c”), the EMF becomes zero. It takes 30° of rotation to get zero back EMF and 
the next 30° of rotation will reverse the sign of the induced EMF as conductor segment 
“c” gets completely covered by S-pole. Hence, the transition takes 60° of rotation. This 
instant is shown in the second row of Figure 5.16. The negative back EMF remains dur-
ing the next 120° of rotation. Then the next transition from negative to positive maxi-
mum will take place during the further rotation of 60°. This positive maximum back 
EMF will remain for the next 120° of rotation. At the end, the cycle will repeat itself.

In summary, as the motor rotates, the back EMF patterns go through the follow-
ing sequence:

	 a.	Remain at positive value for 120° of rotation
	 b.	Transition from positive to negative value during the next 60° of rotation
	 c.	Remain at negative value for the next 120° of rotation
	 d.	Transition from negative to positive value during the next 60° of rotation

The cycle occurs for all three windings. Since the back EMF transitions indi-
cate the position of the rotor, we can decide when the switching of windings should 
be done, based on the back EMF observation. The switching-on and switching-off 
timings of the three windings have different phase relationships.

In practice, a combination of analog-sensing electronics and fast-computing devices 
are used to implement the switching. This will also involve some electronic design. 
There are a few problems in implementing a back EMF sensor-based switching scheme:

Usually, the neutral point may not be always available.
There is PWM switching going on all the time for speed and current control; 

therefore the waveforms are not easy to interpret.

A general schematic diagram for implementing such scheme is shown in Figure 5.27.

Speed

Controller
Trigger
signals

Power
driver
circuit

Zero-crossing
signals

Zero-crossing
detector

Back EMF signals

c b

a
Motor

FIGURE 5.27  Generic scheme of back EMF sensing-based BLDC motor.
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The general idea is that the controller processes the zero crossing signals and 
determines the appropriate instants of switching. At those appropriate instants of 
switching, the trigger signals are sent to the three-phase bridge inverter. There are 
many manufacturers who have solved the problem of determining the right instants 
of switching from zero crossings of the back EMF waveforms and provided off-the-
shelf solutions. AVR444 is a good example of such a ready to use device (Atmel 
2012). The method of switching is quite similar to the concept discussed above. 
Back EMF signal conditioning is done using a suitable filter due to the presence 
of switching noise. Since back EMF measurement is quite tricky at low speeds, a 
preprogrammed sensorless switching is implemented during start-up, and as speed 
picks up the back EMF-based switching is implemented.

5.4.3.2  Sensor-Based Switching
In earlier cases, we discussed the indirect way of locating the rotor position to deter-
mine the instants of commutation. However, if we have sensors fitted to sense the 
rotor position, then it is a straightforward task to do switching. Considering a two-pole 
machine, let us assume that Hall effect sensors are fitted around the stator spaced 120° 
apart. Then, we can see that N-pole, as well as S-pole, will hit the sensor three times, 
making the total hits six times in one rotation. Needless to say, if there are four poles 
in the system, they will be spaced 60° apart. By appropriately spacing the sensors, we 
can directly derive the instants of commutation. This method is a bit more expensive 
and requires more wiring, but completely eliminates the computational requirements. 
A block diagram of such a system is shown in Figure 5.28. For a four pole winding, 
the spread of the sensors need to be only 60° apart. As the rotor rotates, the poles “hit” 
the sensors and provide switching signals every 30° of rotation.

A commercial system to achieve the above control is available from Atmel with 
ICs ATA6832, ATmega88, and ATA6624. The system consists of three integrated 
circuits, Microcontroller ATmega88, Triple Half Bridge Driver ATA6832, and LIN 
System Basis Chip ATA6624 (Atmel 2012).

Ready pairs: There are also working pairs of a BLDC motor and its control-
ler available on the market. Hobbywing Pentium-85A that drives a fan motor is an 
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FIGURE 5.28  Block diagram of Hall effect sensor-based control of BLDC motors.
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example (Hobbywing 2012). Such controller systems are capable of controlling the 
motor using RC signals or PWM signals connected physically through a standard 
three wire logic. These motor and controller pairs are mostly used in hobby model 
planes. The motors are capable of speeds of 50,000 rpm, and currents can reach up 
to 60 A.

5.5  CONCLUSION

In this chapter, we provided concise information regarding the electrical drive 
schemes that are commonly used in robot design and highlighted the practical issues. 
We presented basic DC electric motors and their operating principles using basic 
electrical laws that govern them. We presented a brief overview of servo motors. 
We furthered our discussion to describe more sophisticated actuators such as AC 
machines, stepping motors, and finally BLDC motors. Wherever necessary, we have 
provided information regarding the control of these machines, since accurate drive 
control is imperative to achieve precise robot motion.
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Motor Power Selection 
and Gear Ratio Design 
for Mobile Robots

6.1  GEAR RATIO FOR A MOBILE ROBOT

We have seen the various types of actuator motors and drive systems to power the 
robot motion. The most prominent form of drive used in robotics is electrical motors, 
which also come in various types such as DC motors (with commutator), brushless 
DC motors, DC servomotors, stepper motors, and so on. During the design phase, 
suitable motors have to be decided for the robot. This selection is usually done based 
on the experience and the specific needs of the robot. For example, if the desired 
robot motion is continuous, a DC motor can be selected and if there are motions in 
steps, then stepper motors can be chosen. Once the motor type is chosen, the next 
task is to decide power and torque requirements. In general, robots driven by such 
motors may need a high torque up to several newton-meters, even though they need 
to move relatively slow. We have seen the torque equation of motors in Chapter 5 on 
drives. The power developed by a motor is the product of the angular speed and the 
torque developed. If the motor develops a certain torque of τ Nm and runs at a speed 
of n revolution/s, then the equivalent power, in watts, is given as 2πnτ. To keep the 
robot at a reasonable weight, the motors should be light and small. Such small motors 
inherently develop low torque measured in milli-newton-meters. The motor needs to 
rotate faster, up to a few tens of thousands of revolution per minute (rpm), to achieve 
the high power required. This presents a conflicting situation where we have to use 
low-torque high-speed motors to power robot loads that move relatively slow, but 
require high torque. Therefore, the primary reason for using gears in any system is 
load matching since the high-speed low-torque motors have to drive low-speed high-
inertia/friction loads requiring heavy torque. For example, it is not a good idea to 
drive a car up a slope in fourth gear. Car drive systems provide many selectable gear 
ratios, so that the driver can choose a ratio according to the circumstance. In robotic 
systems, it is quite difficult to have a gear-changing mechanism since it will make 
mechanical design cumbersome and complicated. In addition, limitations on robot 
size will preclude this approach. In robotics, only one gear ratio is used as shown in 
Figure 6.1, and a proper gear ratio is often decided by a trial-and-error method. This 
chapter aims to discuss the methods that may be useful in choosing the appropriate 
gear ratio (Kanniah, Ercan et al., 2004).

Inertia equivalent values reflected across a gear box: It often becomes neces-
sary to calculate the reflected value of inertia across the gear box during the design 
process. We see below how the load inertia will appear at the motor side and motor 

6
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inertia will appear at the load side when there is a gear box between load and motor. 
However, the power is invariant from whatever side we see it due to the law of con-
servation of energy. Assume that the angular velocities at the load side and motor 
side are denoted by ωl and ωm, respectively. Let the motor moment of inertia be Jm 
and the equivalent reflected motor moment of inertia at the load side be Jme.

For a given angular acceleration of motor dωm/dt, the torque required is given as 
Jm(dωm/dt).

The power at the motor side is defined by the product of the torque and the angu-
lar velocity. Hence, the power at the motor side is given by

	
P J

d
dtm m

m
m= w

w
	

(6.1)

Considering only the motor moment of inertia at the load side, the power at the 
load side can be written as

	
P J

d
dtl me

l
l= w

w
	

(6.2)

where Jme is the equivalent reflected value of the motor moment of inertia at the 
load side.

Using the law of conservation of energy, both the above power terms can be 
equated:
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(6.3)

If the gear reduction ratio is Ng, we can write

	
w wm g lN=

Motor

Rotor with moment
of inertia Jm

Gear wheels

Load with moment
of inertia J1

FIGURE 6.1  A typical use of speed reduction gear.
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Substituting this into Equation 6.3, we get
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(6.4)

Hence

	
J J Nme m g= 2

	 (6.5)

Similarly, if the load inertia is Jl, the equivalent reflected value of the load inertia 
Jle on the motor side can be derived as

	
J

J
Nle

l

g

=
2

	
(6.6)

6.2  POWER REQUIREMENT OF THE DRIVE MOTOR

Let us continue our discussion of motor power selection. After the type of motor 
is decided, the next task is to find the power rating of that motor. In the follow-
ing discussions, commutator DC motors will be used as an example; however, the 
ideas developed can be easily modified and applied to other types of motors. The 
power requirement of the drive motor is a complex issue as it depends on the specific 
application. In robotics, speed and acceleration as well as accuracy are the major 
concerns. Any robot may have to achieve a velocity profile. It may be the change of 
angle of a joint or motion of a robot on a surface. The surface may be horizontal or 
inclined. Let us consider a mobile robot that has to adhere to a velocity profile to fol-
low as shown in Figure 6.2. It is also assumed that the terrain is not horizontal and 
the robot is climbing on a slope as shown in Figure 6.3. Assume that the mass of the 
robot shown in these figures is M (kg), the required acceleration is a (m/s2), and the 
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FIGURE 6.2  Desired velocity profile.
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maximum velocity required is Vmax (m/s). The slope of climbing shown in Figure 6.3 
is described by sin(α), and the linear equivalent friction is B, which is measured in 
newton-second/meter.

To achieve the acceleration, the required force on the wheel contacts with the 
surface will be

	
f Maa =

	
(6.7)

The force required for overcoming gravity is

	
f Mgg = sin( )a

	 (6.8)

and the force to overcome friction is

	 f B vb = 	 (6.9)

where v is the velocity of the robot. Hence, the total force can be given as

	
f f f fa g b= + +

	 (6.10)

and the maximum power requirement in watts can be written as

	 P S f V= max 	 (6.11)

In Equation 6.11, S is the factor of ignorance. The factor S has to be more than 
1, while its actual value depends on how well the uncertainties in the system are 
estimated, such as rolling friction, gear friction, and so on. Depending on the robot 
design, forces acting upon the system that affect Equation 6.10 will be different, 
and hence the calculation of power in Equation 6.11 will also be different. The basic 
idea is to find out what maximum torque or force is required at the maximum angu-
lar velocity of the motor or linear speed of the robot. In other words, the worst 
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FIGURE 6.3  Robot moving on a mild slope.
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loading condition should be tackled so that less severe conditions will be covered 
automatically.

EXAMPLE 6.1

Assume that for the robot shown in Figure 6.3 values for the parameters are given 
as follows:
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Using Equations 6.10 and 6.11, the power needed for the robot can be calcu-
lated as

	
P = × × + × × + ×( ) × =1 2 2 2 2 9 81 5 71 1 8 2 2 22 95. . sin( . ) . . W

6.2.1  Role of Motor Inertia and Friction

All motors have their own friction, mostly in their sleeve bearings and commutators. 
They do have some inertia as well. The fact is that most high-speed motors are made 
of air-core armatures, with very little inertia. Motor manufacturers usually include 
these figures as standard specifications in their manuals and data sheets. However, 
it is important to consider the effect of the motor friction and inertia when they are 
used in robots with appropriate gears. Let us consider an example to compare the 
relative effects of these quantities with respect to the overall system values, which 
include loads as well.

EXAMPLE 6.2

Motor inertia, Jm, for a typical 27 W motor is given as

	 Jm = × −20 10 7 2kg m

Using Equation 6.5, if the gear ratio is 10, then the reflected motor inertia on 
the load side Jme is

	 J Jme m= × = × =−10 20 10 0 00022 5 2. kg m

This is the motor inertia reflected at the wheel. Now, let us assume that we are 
driving a load of 2 kg on wheels of 0.03 m radius mounted on an axis to which 
the output side of the gear system is attached. We need to compute the moment 
of inertia of the load at the drive wheel.
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Assuming an acceleration of a, the linear force to be supplied by the drive 
wheel is given by

		

Assuming that the drive wheel radius is Rw, the torque from the drive wheels 
is given by

	 t M aRw w1 = 	 (6.12)

Looking at the wheel side, let the equivalent moment of inertia of the load be 
Jl; then, the drive wheel torque can be written as

	
t J

d
dt

w l2 = w

	
(6.13)

Since the linear velocity is the product of the wheel radius and the angular 
velocity of the wheel

	 ν = Rwω	 (6.14)

Substituting for ω from above into the second torque equation, we get
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(6.15)

Since both torque values must be the same, let us equate the above two equa-
tions for the drive wheel torque
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(6.16)

This yields

	 J MRl w= 2

	
(6.17)

Then, the moment of inertia of load “seen” on the driving wheel Jl can be 
calculated as

	 Jl = =2 0 03 0 00182 2( . ) . kg m

A comparison of Jl and Jme reveals that the motor inertia is quite small when 
compared to that of the load it is driving.

f M aw =
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6.3  TYPICAL MOTOR CHARACTERISTICS DATA SHEET

Manufacturers list quite a number of specifications of their motors in data sheets. 
This information is valuable during the design process. An example data, based on 
Portescap minimotor manufacturer’s information on ESCAP® 28 DT 12-222E DC 
motor, is shown in Table 6.1 (Portescap 2013).

There are other information and characteristics, though they are not critically 
important at this stage. We have seen in the chapter on drive systems that Kb and 
Kt must be numerically the same Chapter 5. However, they are different in Table 
6.1, since the value for Kb is given in units of V/1000 rpm. For the analysis pro-
vided in the later sections, the values of Kb in Vs/rad are needed. Let us convert 
the units from V/1000 rpm to Vs/rad for this case as shown in Example 6.3.

EXAMPLE 6.3

	 Kb = 3.4 V/1000 rpm
	 =0.0034 V/rpm
	 =0.0034 × 60 V/rps
	 =0.0034 × 60/(2π) V/rad/s

Hence

	 Kb = 0.0325 Vs/rad = Kt

In summary, whenever we need Kb in the unit of Vs/rad in our calculations, we 
can take Kt from the catalog and readily use it.

Some of the motor parameters in the above list immediately help in the design 
process. For example, rotor inductance to rotor terminal resistance ratio (L/R) 
should be considered in deciding the PWM frequency. The L/R ratio is also the 

TABLE 6.1
Typical Motor Data Sheet Information

Characteristics Specification

Voltage 24 V

No-load speed (full voltage applied with no load on shaft) 6900 rpm

Stall torque (full voltage applied, but shaft arrested forcibly) 126 mNm

No load current 110 mA

Maximum continuous current 1.4 A

Maximum speed—recommended 9000 rpm

Maximum angular acceleration 91,000 rad/s2

Maximum continuous power 37 W

Back EMF constant, Kb 3.4 V/1000 rpm

Torque constant, Kt 32.5 mNm/A

Rotor inductance, L 0.75 mH

Rotor terminal resistance, ra 6.2 ohms

Rotor moment of inertia 20 × 10−7 kg m2
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time constant of the current path. If the L/R ratio is high and the PWM frequency 
is also too high, this will reduce the duration of the applied voltage and the current 
will have no time to rise.

Another instantly useful parameter is maximum acceleration. For example, the 
maximum acceleration given in Table 6.1 is 91,000 rad/s2, which means that this 
motor can reach a speed of (91,000 × 60/2π) × 0.01 = 8690 rpm in 0.01 s. A higher 
acceleration rate will damage the motor mechanically. Apparently, the design 
should not push the motor beyond this rate.

6.4  FRICTION MEASUREMENT IN A LINEAR MOTION SYSTEM

A good robot design depends upon reasonable knowledge of robot parameters. 
Some of these parameters are obtained easily, such as the mass of a robot, which 
can be weighed with no trouble. However, measuring friction parameter is not 
very straightforward. It is not possible to use the values in specifications provided 
in data sheets to compute the overall friction coefficient. Moreover, when we are 
concerned about friction, there are so many friction coefficients involved, such as 
friction of motor bearings, commutators, friction of wheel bearings, and friction 
of the gear train, to name a few. To cloud the picture further, there are other loss-
making elements as well, such as rolling friction of the rubber tire on the wheel 
of a mobile robot. It may be possible to measure all these individually, but it is 
not practical. What is needed is an approximation of the overall picture of fric-
tion interfering with the motion of the robot. It is important to note that the fric-
tion is a highly nonlinear phenomenon, even without considering static friction, 
which results in requiring a force to get the robot moving initially from standstill. 
However, the friction force can be approximately considered as a linear function 
of velocity during motion.

Any linear motion of a moving body may be considered to consist of a combina-
tion of a mass and an overall friction coefficient acted upon by a force. How do we 
get a reasonable idea about the linear motion friction coefficient? It is possible to 
devise a simple experiment to measure this friction as shown in Figure 6.4.

In this arrangement, the robot is allowed to slide down from the top to the lower 
end of the platform and we measure the time taken. Some precautions are necessary 
during the experiment. First, the slope angle θ cannot be very large. Second, the 
robot should travel down the slope in a straight line.

θ

M, B

FIGURE 6.4  Measuring overall linear friction.
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Let us perform a simple analysis. Assume that the distance traveled is X meters 
along the platform, and the time taken by the robot to travel is T seconds. We know 
that

	
M g M

d x

dt
B

dx
dt

sinq = +
2

2

	
(6.18)

where x is the distance measured from the starting point. By assuming that all the 
initial conditions are zero and taking the Laplace transform, we get
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(6.19)

Substituting β = (B/M), which is the corner frequency of the system response and 
taking the inverse Laplace transform, we obtain
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As mentioned, assume that t = T, x(t) = X are obtained conducting the above 
experiment.

Hence, we obtain

	
b q b b= − − − 

g
X

T e Tsin ( )1
	

(6.21)

It is important to note that in Equation 6.21, β appears in both sides of the equa-
tion. This equation can be solved easily by iterative techniques as shown with the 
simple MATLAB® program given in Figure 6.5.

EXAMPLE 6.4

Assume that in one such experiment described above, the following results were 
obtained:

Mass of the robot, M = 2.2 kg
Time taken by the robot to descend, T = 3.2 s
The distance traveled, X = 2.13 m
Slope of the platform, θ = 5.17°

By running the MATLAB program shown in Figure 6.5, with these values, we 
can obtain the result for β. The program given in Figure 6.5 needs an initial guess 
for β and in this example it is taken as β = 3. Hence, we obtain

	 β = 0.8880  and  B = 1.9537 Ns/m
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6.5  FIRST APPROACH: GEAR RATIO DESIGN

The gear ratio design will vary according to the specific application. The robot may 
have to move on a horizontal surface, move on a slope, follow a velocity profile, or 
climb a wall carrying its own weight. In an industrial robot, requirements will vary 
from joint to joint, since some joints may be required to carry load vertically and 
other joints just move horizontally. This is also the case for a two-legged humanoid 
robot, where knees will be the fastest-moving joint and the hip pitch will be the 
heaviest-load-bearing joint. The question is for a given application how to design the 
suitable gear ratio. There could be many criteria used for this purpose. It is not pos-
sible to cover all the possible approaches, but some specific cases will be illustrated 
in the following discussions.

Let us assume that the robot has to follow the velocity profile shown in Figure 6.2 
while traveling on an inclined plane as shown in Figure 6.3. This is a safe practice 
since it is not possible to assume that the terrain will always be horizontal. A sketch 
of the system is shown in Figure 6.6. The motor is designed for high-speed operation. 
The robot does not need to move that fast, but it needs to provide a high torque at 
the drive wheels. Therefore, we need a reduction gear to drive the robot. The discus-
sion starts with an overall torque required on the drive wheel to move the robot. It is 
assumed that the proposed gear ratio is Ng and the drive wheel radius is Rw.

The force required on the drive wheel is given by the sum of Equations 6.7 through 
6.9. Referring to the quantities shown in Figure 6.3 as well as Figure 6.6, the torque 
required on the drive wheel can be obtained easily as shown below.

FIGURE 6.5  MATLAB code for calculating β and B values.
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tw a b g wf f f R= + +( )

	
(6.22)

	 t aw M a B v Mg Rw= + +( sin ) 	 (6.23)

Then, the torque to be developed by the motor is given by
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Some assumptions made regarding the motor parameters are as follows:

Supply voltage = Vs

Armature resistance = ra

Torque constant (Nm/A) = Kt

Back EMF contant (Vs/rad) = Kb

Motor speed (rps) = nm

Armature current (amp) = ia

From the basic knowledge of the DC machine theory (Rosenblatt and Friedman 
1984), the torque developed by the motor will be
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For any ground speed of v, the drive wheel speed can be obtained as
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(6.27)

Motor
Gear Ratio: Ng

Rw

FIGURE 6.6  Block diagram of a gear-driven robot.
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or motor speed as
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Then, using Equation 6.28 in Equation 6.26, the torque developed by the motor at 
any ground speed v can be obtained as
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or
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The robot has to move with an acceleration of a and reach a velocity of ν. 
Combining Equations 6.24 and 6.30, we can write
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At the limit, it becomes
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or
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The above equation is quadratic in Ng, the solution of which yields two values Ng1 
and Ng2. For the above two gear ratios obtained, the current drawn ia1 and per-unit 
power efficiency η1 can be calculated by ignoring iron and frictional losses of the 
DC motor as given below:
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and
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The above results created a dilemma. Which one of these two values should be 
used? The following numerical example throws some light on this problem.

EXAMPLE 6.5

Let us assume that we would like a robot to accelerate at 2  m/s2 and reach a 
velocity of 2 m/s, while climbing a slope of 5.7°. The robot parameters are given as

	 Vs = 24 V, m = 2 kg, b = 2 Ns/m, sin(θ) = 0.1, v = 2 m/s, a = 2 m/s2,

	 Kb = 0.033 V-s/rad, Kt = 0.033 Nm/rad, ra = 6.2 Ω, Rw = 0.03 m

Let us decide a suitable gear ratio using the above technique. For the solution, a 
simple MATLAB program can be utilized. By entering the above values and executing 
the MATLAB code shown in Figure 6.7, the two values of gear ratios are obtained.

The computation result produced two sets of solutions. Let us elaborate more 
by computing the motor speeds for both cases and decide on an acceptable 
solution.

For the higher gear ratio, the back EMF will be

	 Eb1 = Vs − Ia1ra

	 Eb1 = 24 − 1.2047 × 6.2 = 16.53 V

Hence, the angular velocity of the motor is
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For the lower gear ratio, the back EMF is

	 Eb2 = 24 − 2.6663 × 6.2 = 7.469 V

Hence, the angular velocity of the motor is
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and then the motor shaft speed is

	
nm2

226 33
2

36 02= =.
.

p
rps or 2161rpm

Referring to the results obtained above, the following observations can be made. The 
higher gear ratio (Ng1 = 7.5140) allows the motor to run at a higher speed of 4786 rpm, 
developing a higher back EMF of 16.53 V, thus drawing a lower current (ia1 = 1.2047). 
The lower current results in lower copper loss of i ra a1

2 21.2047 6.2 9= × =  W and 
delivers a higher efficiency of 0.6888 as shown above.

FIGURE 6.7  MATLAB code and results for gear ratio, motor current, and efficiency.
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On the other hand, the lower gear ratio (Ng1 = 3.3950) is in fact “strangling” 
the motor, although it will still do the job. This ratio makes the motor run at a 
lower speed of 2161 rpm, developing a lower back EMF of 7.469 V, thus drawing 
a higher current (ia2 = 2.6663) to develop a high torque. This current for the given 
example will generate a higher copper loss of i ra a2

2 22.6663 6.2 44 W= × =  and 
result in a lower efficiency of 0.3112. In that case, a bigger problem will emerge, 
which is the heating of the motor and the drive system. Consequently, power dis-
sipation has to be resolved. The above example provided one “good” and one 
“bad” solution. Apparently, for the robot in this example, a high gear ratio must 
be selected.

The case of inadequate power rating: If the motor power selection was not 
done properly, the given requirements will be impossible to achieve. It is inter-
esting to find what happens if an impossible task is given to the system. Assume 
that the objective is to achieve a ground velocity of, say, 4 m/s and also a slightly 
higher acceleration. The following example highlights the consequence of such 
a situation.

EXAMPLE 6.6

Assume that the following requirements are given for the same system, v = 4 m/s, 
a = 2.3 m/s2, while the other parameters remain the same as in Example 6.5. The 
program in Figure 6.6 can now be used just by entering these new values. Then, 
the results will be

Ng1 = 4.7431 + j1.0114
Ng1 = 4.7431 − j1.0114

The complex numbers obtained for gear ratios simply indicate that the task is 
impossible. The power check was not done properly to start with. If the power 
selection was marginally inadequate, we can have a quick-fix solution by raising 
the voltage a few volts. For instance, if we set Vs = 27 V and repeat the same cal-
culations, keeping all other parameters unchanged, the results are

Ng1 = 7.5615
Ng2 = 3.1105
i1 = 1.2693
i2 = 3.0856
e1 = 0.7085
e2 = 0.2915

In many cases, it is not wrong to use this adjustment provided that motor is not 
driven with excessive voltages.

6.6 � SECOND APPROACH: SYSTEM PERFORMANCE 
AS A FUNCTION OF GEAR RATIO

In the previous section, the optimum gear ratio was calculated by solving a quadratic 
equation, which yields two choices. We have no information as to what happens if 
the gear ratio is different from the two values obtained. Thus, we can analyze how 
the performance gets affected for a wide range of gear ratios. For this purpose, we 
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can fix acceleration, and solve for maximum velocity obtainable as a function of gear 
ratio. We can develop a program to find the effect of gear ratio to find where the best 
performance occurs. From Equation 6.33, the limiting velocity can be obtained as
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A sample program listing is provided in Figure 6.8. The program plots the maxi-
mum velocity obtainable, the current drawn from power source, and the efficiency 
of the motor. They are shown in Figures 6.9 through 6.11, respectively, as functions 
of the gear ratio selected.

FIGURE 6.8  MATLAB code that shows the effect of gear ratio on maximum velocity.
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The aim of this exercise is not to obtain the maximum velocity, but to examine 
the effect of gear ratio on the system performance. Referring to Figure 6.9, we notice 
that for a desired velocity, two gear ratios are available. A higher gear ratio may be 
chosen as before. However, it is important to consider the current drawn and the 
efficiency before selecting a gear ratio. Referring to Figure 6.9, we notice that as we 
increase the gear ratio, the maximum velocity achievable by the robot increases and 
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FIGURE 6.9  Effect of gear ratio on maximum velocity.
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then decreases. Let us consider the point of maximum velocity (2.25 m/s) where the 
gear ratio is 5. Referring to Figure 6.10, the current drawn at the chosen gear ratio 
is 2 A. Furthermore, referring to Figure 6.11, the same gear ratio shows that the 
efficiency is only 0.5. It implies that half of the power drawn will be used to heat the 
motor. This may result in dissipation issues and the motor and the driver may get 
overheated. Considering all the three charts, a gear ratio of 8 may result in accept-
able maximum velocity (1.9 m/s), current (1.1 A), and efficiency (0.71). Consulting all 
the three plots is essential when deciding upon a gear ratio.

6.7  GEAR RATIO DESIGN FOR STEPPER MOTORS

The working principle of stepper motors is different from that of DC motors. For 
these devices, the magnetic reluctance between the rotor and the stator of the stepper 
motor changes with respect to the position of the rotor. When a winding is excited, 
the rotor aligns with that winding. The power supply is switched to different wind-
ings in a sequence so that the rotor continues to rotate in the desirable direction and 
speed, which corresponds to the switching frequency. There are well-known switching 
circuits to achieve this. However, stepper motor-based design needs to be done cau-
tiously. Let us evaluate this in detail. A typical stepper motor characteristic graph is 
shown in Figure 6.12 (for a typical stepper motor specification, see Portescap 2013). 
The motor can start at a given load condition from zero to any pulse rate (speed) as 
long as the point of operation falls within the region enclosed by “pull-in” line and two 
axes. Then, if the load torque increases gradually, from there the motor will continue 
to rotate. However, when the point of operation crosses the “pull-out” line upward, the 
motor will suddenly stop. Similarly, starting from the “pull-in” region, if the pulse rate 
(speed) is increased gradually, the motor will continue to accelerate. However, when 
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the point of operation crosses the “pull-out” line toward the right, the motor will sud-
denly stop. A fully analytical solution for gear ratio design is not strictly possible.

The following steps are useful in arriving at an optimum gear ratio for stepper 
motors:

	 1.	Compute power requirement as before with a high S (ignorance factor) 
value.

	 2.	Find the linear force and the driving wheel torque using Equation 6.23. The 
maximum speed of the robot is also known.

	 3.	As a starting point, assume a large gear ratio.
	 4.	Using the above gear ratio, calculate the required motor torque and stepping 

speed.
	 5.	Place the point indicated by the torque and stepping speed on motor charac-

teristic graph.
	 6.	Check if this point falls on the left-hand side of the pull-in line on step 

motor characteristic graph with enough margin. If yes, then the design is 
complete!

	 7.	 If the margin is too low, or the point falls to the right-hand side of the pull-in 
line, lower the gear ratio in steps. Repeat the design from step 4.

	 8.	 If the margin is too large, raise the gear ratio in steps to achieve the desired 
margin.

The above design procedure starts with a high gear ratio and decides on the 
appropriate ratio by iteration. Alternatively, we can start with a gear ratio of 1 and 
increase it iteratively. That is, after steps 1 and 2, we can now proceed as follows:

	 1.	Assume a gear ratio of 1 as a starting point.
	 2.	Using the above gear ratio, find the torque and the stepping speed of the motor.
	 3.	Place the point indicated by the torque and the stepping speed on the motor 

characteristic graph. By intuition, this point will fall too far to the left of the 
pull-in line. We will be underutilizing the motor.
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FIGURE 6.12  A typical stepper motor characteristic.
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	 4.	 If it is so, gradually increment the gear ratio until the torque versus speed 
point falls reasonably close but below the pull-in characteristics with the 
desired margin.

Using the “pull-in” line for design is conservative. In fact, this line gives the 
maximum stepping speed to which the motor can start from a standstill position for 
a given load torque on the motor shaft. In applications where the robot can accelerate 
slowly from standstill, the operating region may be used for the design.

6.8 � DESIGN PROCEDURES FOR MOBILE ROBOT THAT ARE NOT 
GROUND BASED

The above discussions described procedures for gear ratio design for robots that are 
mobile and ground based. But there are many other applications where robots are 
not moving on a horizontal surface. For example, a wall-climbing robot moves on a 
vertical surface or even under the ceiling. A two-legged robot has many joints that 
will have different load–speed demands on them. For such special robots, the above 
techniques are not readily applicable, though the design procedure is still based on 
estimating the maximum torque and speed requirements. Since it is not possible to 
give a general procedure that is applicable to all, we will give some practical design 
examples with the following case studies.

Case Study I:  Design of Robotic Arm Joints

The aim of the exercise is to rate the motors and gear ratios at the joints for a 
robot arm shown in Figure 6.13. We assume that the length of robot links are 
l1, l2, and l3. The weights of the links are assumed to be negligible when com-
pared to the load at the end point PA. The design values are computed to cater 
to the worst-case situation. Let us find the maximum load variables of PA in the 
worst-case situation. This will occur when the robot arm is horizontal and fully 
stretched as shown in Figure 6.14.

J1

J2
J3

l1

l2

l3

PA

M

F = Mg

FIGURE 6.13  Block diagram of a three-joint robot arm.



159Motor Power Selection and Gear Ratio Design for Mobile Robots

Assume that the following parameters are given for the design process:

The load at the end effector: M
The acceleration with which the load has to be lifted: a
The required vertical velocity to be reached: v
Then, the downward load on the system: M(a + g)

For joint J1: The torque on joint J1 will be tj1 = (l1 + l2 + l3)M(a + g), and the 
angular velocity will be w j1

 = v/(l1 + l2 + l3). Hence, the motor power at joint 1 
can be estimated as P1 = w j1

(l1 + l2 + l3)M(a + g) or P1 = vM(a + g). Now, we can 
select a suitable motor with a power rating of P1.

From the given angular velocity, the load shaft speed can be derived as 
NS1 = (w j1

/2π). Assume that the no-load speed of the selected motor is NM1 Hence, 
the required gear ratio is G1 = (NM1/NS1). DC motors that will be used for this 
application are permanent magnet motors that have shunt motor characteristics 
and the speed drop at the loaded condition is minimal. Hence, the speed at full 
torque will not be different from the no-load speed. We can now pick a suit-
able ratio from a manufacturer’s catalog. Let this selected ratio be G11 such that 
G11 ≤ G1 to guarantee the speed requirement of the arm. We now need to check 
the motor safety and performance. With the selected gear ratio, the torque on 
the motor shaft will be τM1 = (τj1/G11). Assume that the torque constant given 
in the motor specifications is Kt1. The current drawn by the first joint motor will 
then be IM1 = τj1/(G11 ⋅ Kt1). If IM1 is less than the maximum current rating of the 
selected motor, then the selected gear ratio is fine. Otherwise, a next higher gear 
ratio, say, G12 that is still less than G1 should be considered and the motor cur-
rent must also be recalculated accordingly. If such a gear ratio is not available, 
a higher motor power should be selected and the above calculations should be 
repeated.

For joint J2: Let us assume that the vertical velocity, v, and acceleration, a, 
need to be achieved using J2, while J1 is fixed. The torque on joint, J2, will 
be tJ l l M a g

2 2 3= + +( ) ( ), and the angular velocity will be w J v l l
2 2 3= +/( )

. The power of the motor at joint J2 should be P l l M a gJ2 2 32
= + +w ( ) ( ) or 

P2 = vM(a + g). Now, we select a suitable motor at the rating of P2 watts. At the 
driving shaft of J2, the load shaft speed is given by NS J2 2

2= ( )w p/ .
Assume that the no-load speed of the selected motor is NM2, then the required 

gear ratio will be G2 = (NM2/NS2). We can now pick a suitable gear ratio G21 so 

J1 J2 J3
l1 l2 l3

PA

M

F = Mg

FIGURE 6.14  Robot joints having the maximum load.
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that G21 ≤ G2. Again, we need to check the motor safety and performance. The 
torque on the motor shaft is given as τM2 = (τj2/G21); hence, the current drawn by 
the motor is IM2 = τj2/(G21 ⋅ Kt2) A, where Kt2 is the torque constant of the selected 
motor. As discussed earlier, the current IM2 should be less than the maximum 
current rating of the motor.

For the rest of the joints, a similar procedure can be applied as discussed 
above. In the following, a numerical example of the design procedure using 
actual motors from a manufacturer’s catalog will be given.

EXAMPLE 6.7

Assume that the basic design requirements of a robot arm are given as follows:

Load (M) = 2 kg
Length of link 1 (l1) = 0.2 m
Length of link 2 (l2) = 0.2 m
Length of link 3 (l3) = 0.2 m
Maximum load velocity (v) = 0.5 m/s
Maximum load acceleration (a) = 0.5 m/s2

Let us design and select suitable drive motors with appropriate gear ratios.
For joint J1, the downward load is equal to M(a + g); hence, with the given 

parameters, it will be 20.62 N. The torque on J1 is defined as τJ1 = (l1 + l2 + l3)
M(a + g) and with the given parameters this will yield 12.372 Nm. Similarly, 
the angular speed ωJ1 = v/(l1 + l2 + l3) is 0.833 rad/s and the load shaft speed is 
NS1 = (ωJ1/2π) = (0.833/2π) = 0.1326 rps. The power required for J1 is P1 = ωJ1τJ1 or 
10.31 W.

Let us select type 2342024CR from the minimotor series offered by 
Faulhaber’s minimotor catalog (Faulhaber 2013), which has the following speci-
fications, power = 19 W, nominal speed = 8500 rpm, supply voltage = 24 V, 
torque constant = 26.1 mNm/A, and maximum current = 0.72 A. We find that 
the no-load speed of the motor is 141.7 rps and the ideal gear ratio is (Nm1/
NS1) = (141.7/0.1326) = 1068. The gears provided by the manufacturer, which can 
be factory fitted, are types 23/1, 26A, 26/1, 22/7, 30/1, and 38/3 (Faulhaber 2013). 
As we search for the gears, none of the above available gears is capable of giving 
this torque of 12.372 Nm.

Apparently, we need to change the motor, though it was satisfactory, since 
none of the factory-fitted gears will serve the purpose. Let us select the minimo-
tor number 3242024CR (Faulhaber 2013), which has the following specifications: 
power = 26.3 W, nominal speed = 5300 rpm, supply voltage = 24 V, torque con-
stant = 41.3 mNm/A, maximum current = 1.20 A. Then the no-load speed is 88.33 
rps and the ideal gear ratio will be (Nm1/NS1) = (88.33/0.1326) = 666.16. Gears pro-
vided by the manufacturer are types 32/3, 38/1, and 38/2 (Faulhaber 2013). Let us 
choose the gear heads series 38/1s and 38/2s (“s” indicates all steel gears), where 
the continuous output torque of the gear is 10 Nm and the intermittent maximum 
torque will be 15 Nm. We can pick that gear since our calculations for torque are 
for the worst-case scenarios and the torque of 12.372 Nm will not be continuous. 
We need to the select ratio that is <666.16. From the available ratios, let us choose 
a gear ratio for joint one, G11, as 592 (Faulhaber 2013). In this case, the torque 
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on the motor shaft will be τm1 = (τJ1/G11) = (12.372/592) = 0.02089 Nm. The torque 
constant of the motor, Kt1, from the given specifications will be 0.0413 Nm/A. 
Hence, the current drawn can be calculated as IM1 = (0.02089/0.0413) = 0.505 
A. For this motor, the maximum continuous current is specified as 1.20 A, so the 
estimated IM1 value is still acceptable in this case.

For joint J2, the downward load will be the same, that is, 20.62 N. The torque on 
J2 is given by τJ2 = (l2 + l3 )M(a + g) or 8.248 Nm. The angular speed ωJ2 = v/(l2 + l3) 
or 1.25 rad/s and the power required for J2 is P2 = ωJ2τJ2 or 10.31 W. As the power 
will be the same as in joint 1, let us use the same motor which is Minimotor series 
3242024CR (Faulhaber 2013). Similar to the above calculations, load shaft speed 
NS2 is calculated as 0.1989 rps for ωJ2 = 1.25 rad/s. Hence, the ideal gear ratio will 
be (Nm2/NS2) = (88.33/0.1989) ≈ 444.1. Let us choose the gear heads series 38/1 and 
38/2 (Faulhaber 2013) in which a gear ratio of 415 is available, which is <444.1. 
The torque on the motor shaft will be τm1 = (τJ2/G22) = (8.248/415) = 0.01987 Nm, 
and the motor current will be IM2 = (0.01987/0.0413) = 0.482 A. This is less than 
the maximum current of 1.2 A. Therefore, the motor and gear with a gear ratio of 
415:1 is suitable.

Repeating the same calculations for the third joint and assuming the same 
velocity, mass, and acceleration will lead to the same motor power require-
ment, the torque on J3 is given by τJ3 = l3M(a + g) or 4.124 Nm. The angu-
lar speed ωJ3 = (ν/l3) or 2.5 rad/s and the power required for J3 is P3 = ωJ3τJ3 or 
10.31 W. That is, we can still employ the same motor (3242024CR) for this 
joint. NS3 is calculated as 0.3981 rps for ωJ3 = 2.5 rad/s. Hence, the ideal gear 
ratio will be (Nm3/NS3) = (88.33/0.3981) ≈ 221.9. Let us choose the gear heads 
series 38/1 and 38/2 (Faulhaber 2013) in which gear ratios of 159:1 and 246:1 
are available. Let us pick 159, which is <221.9. The torque on the motor shaft 
will be τm3 = (τJ3/G31) = (4.124/159) ≈ 0.0259 Nm and the motor current will be 
IM3 = (0.0259/0.0413) = 0.627 A, which is less than the maximum current of 1.2 A.

In summary, in the above example, we insisted on using the gears provided by 
the manufacturer and found out that the output torque provided by those gears 
meant for motors with suitable power ratings were inadequate. Hence, our motor 
selection was overshadowed by the availability of a suitable gear. At the end, the 
motors we chose were far more powerful than needed. An alternative for this kind 
of predicament is to use an external gear as an additional stage. However, this addi-
tional gear may cost more than the cost of a higher power-rated motor that we used 
in the above design. Furthermore, an external gear stage may occupy more space.

Case Study II:  Motor Power and Gear Ratio 
Calculation for a Wall-Climbing Robot

In this second case study, we discuss another design example, which is a wall-
climbing robot. It is possible to design a robot to climb a vertical wall, and there 
are many possible designs. A unique triangular structure design is shown in Figure 
6.15. In this robot, A, B, and C are the pivotal joints that are powered by geared DC 
motors. Each joint is provided with a sticking pad that can be activated to stick to 
the surface. The problem is to design these joints so that the robot will be able to 
climb the vertical wall. Figure 6.15 shows the instant when the robot is climbing 
a vertical wall. We start this discussion considering the instant when the pads are 
stuck to the vertical wall. These pads, associated with joints A and C, are named 
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A1 and C1, respectively. To climb, the robot needs to release the grip on pad C1 and 
crank joint A so that the robot body rotates clockwise until the joint pad B1 touches 
the vertical surface above and then gets stuck to it. After this motion, joint C will 
be the farthest away point of the robot from the climbing surface. Obviously, this 
sequence is continued to crank joint B and so on to achieve a climbing motion.

We need to design the joints in such a way that it will work when the load 
torque is maximum at the desired speed. In this case, the design approach used 
for a mobile robot discussed earlier is not strictly followed. Figure 6.16 shows 
the instant in which the load torque on joint A is nearly the maximum. This is 
only approximate since the actual position of the center of gravity will only be 
known when the exact positions of the motors and other components are known. 
Hence, only the approximate position is considered. Furthermore, joint A is not 
part of the load. We can argue that the major part of the load comes from these 
three joints and hence only two-third of the weight of the robot, W, needs to be 
cranked upward with a torque arm length of Lcos(30°), which makes the maxi-
mum torque on joint A as ( ) cos( ) ( )2 3 30 3/ /WL W L° = . This is not strictly cor-
rect, since there are additional masses of the frame and electronics and others 
on the robot. Hence, a factor of ignorance S can be included and the maximum 
torque on joint A is written as

	
T S W

L
max =





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FIGURE 6.15  Block diagram of a wall-climbing robot.
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The other important parameter is the speed with which the joint has to 
rotate. Assume that a duration of ts seconds is allowed for the robot to rotate 
120°, which is needed for sticker pad C1 to leave the wall and sticker pad 
B1 to stick to the wall. Then, the angular velocity of joint A cranking up 
will be ω0 = (120/ts) × (π/180) ≈ (2.09/ts) rad/s. The power developed by the 
motor, powering joint A, can be written as P = τmaxω0 and the power rating 
of the motor can be calculated as P S W L ts= × =t wmax . ( )( . ).0 9 81 3 2 09/ /  
The shaft speed is given as ω0/2π, which is N0 = (60ω0/2π) rpm. We now 
have to choose a motor that has adequate power rating Pm. To simplify mat-
ters, we did not include the power required for the acceleration; therefore, 
we need to choose a slightly higher power rating than P. Furthermore, other 
than the instant shown in Figure 6.16, there will be excess torque available 
for acceleration.

Let the nominal speed of this motor, listed in the catalog, be Nm rpm; then, 
the ideal gear ratio is G1 = (Nm/N0). As before, we need to find a gear ratio 
available for the gear head provided by the manufacturer. We pick the value 
G11 which is slightly less than G1 such that G11 ≤ G1. For this gear ratio, the 
torque to be developed by the motor will be τm1 = (τmax/G11). If the torque con-
stant of the motor is Kt1, it yields a motor current of iM1 = (τm1/Kt1), and it should 
be less than the rated maximum current of the chosen motor. Otherwise, a 
higher gear ratio G21 may have to be chosen. If G21 is greater than G1, the speed 
performance will be compromised. In an extreme case, the motor may have to 
be changed.

A
A1

B
B1

C

C1

30o

FIGURE 6.16  Robot position that has the maximum torque on the joint.
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EXAMPLE 6.8

Assume that the following data are provided for the wall-climbing robot shown in 
Figure 6.15:

	 W = 4 kg

	 L = 0.4 m

	 ts = 0.4 s

Assuming S = 1.3, let us calculate the required motor power and gear ratio.
From the above definition, the motor power will be P = 1.3 × 9.81(4 × 0.4/ 3 ) 

× (2.09/0.4) = 61.55 W and the shaft speed will be N0 = (60/2π)(2.09/0.4) ≈ 50 rpm. 
Now, we select a suitable motor (such as minimotor 3257024C (Faulhaber 2013)) 
that has the following specifications: power = 83.2 W, nominal speed = 5900 rpm, 
supply voltage = 24 V, torque constant, Kt = 37.7 mNm/A, maximum current = 2.3 A. 
With these parameters, the ideal gear ratio will be G1 ≈ (5900/50) ≈ 118 and the 
torque on the shaft will be tmax . . ( . ) .= × × =1 3 9 814 0 4 3 11 78/ Nm. From the 
available gears (Faulhaber 2013), all steel gears types 38/1s and 38/2s with maxi-
mum output torque option of 15 Nm, for intermittent peak loads, can be selected. 
From the catalog, the nearest gear ratios available are 66 or 134. We have to select 
134, even though this value is higher than 118. For this gear ratio, the motor torque 
can be obtained as τm1 = (11.78/134) × 1000 = 87.9 mNm, and the motor current 
is (τm1/Kt) = (87.9/37.7) = 2.33 A. This compares well with the maximum current of 
2.3 A, bearing in mind that this will only be a peak value coming on intermittently. 
Since the gear ratio is 134, which is higher than the required 118, the robot will 
climb at a slightly slower speed, which is a compromise.

6.9  CONCLUSION

In this chapter, we have described various ways of arriving at a suitable gear ratio 
for mobile robots. A low gear ratio demands a low-speed operation of a DC motor 
and needs more current, resulting in large copper losses and heating. It is necessary 
to check if more current is really needed. On the other hand, a very large gear ratio 
will result in too safe currents, but slows down the motion of the robot and its perfor-
mance, which may not meet the objectives.
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Control Fundamentals

7.1  CONTROL THEORY FOR ROBOTICS

In the previous chapters, we looked into the various parts and components that go 
into building a robot. Nevertheless, these various parts need to be assembled and the 
ensemble must be controlled in a coordinated way to achieve the objective. There are 
many ways to build a robot, but typically in any robot design there will be a control 
system in place that is usually an onboard computing device. For example, a robotic 
arm is made of joints, links, and a grabber mechanism. If the robotic arm needs to 
pick up an object, all the joint motions must be coordinated so that the gripper moves 
to the target, opens the gripper, and picks up the object. This requires a close control 
of many actuators.

Let us take a micromouse robot as an example, where the constituent parts are 
sensors with relevant circuitry, motors, battery pack, motor-driving circuits, and a 
suitable microcontroller along with its support ICs. The assembled robot has to move 
appropriately. Typically, the onboard intelligence takes the decision as to where it 
should go and what it should do. This intelligence is handled by a program developed 
and stored in the memory of the onboard computing device. However, the very basic 
motions of the robot would be moving forward or backward, maintaining a certain 
speed, and making turns. Let us consider the situation that this two-wheeled robot 
starts from one point, accelerates to reach a certain speed, and decelerates and stops 
at the destination. This motion is simply achieved by making both wheels accelerate 
according to a profile until the top speed is reached, then decelerate and stop at the 
stipulated distance or target spot. Then, we have to fix the speed according to a plan 
or profile. The question is how to enforce those desired speeds? This is where the 
control theory comes in.

In fact, control theory can be applied to any robot joint, to a drive wheel motor, to 
an economy, or even to a population as long as the objective is clearly known. In this 
book, we are interested in applying control theory to robotics.

Over the years, control theory has grown immensely, and many techniques have 
been developed. Mathematical principles have been developed to facilitate better under-
standing of the “plants” to be controlled. For this, the first step is to understand the plant 
in terms of cause and effect or input and output. Then, controllers can be put in place 
to make the plants yield the desired results. Raven (1987), Philips and Harbor (1988), 
Ogata (1990), D’Azzo and Houpis (1995), Kuo (1987), and Astrom and Wittenmark 
(1990) are some of the valuable resources for further reading on this topic. Before pro-
ceeding any further, we will describe some of the basic terms as used in control.

Plant: A plant can be defined as a physical entity, which takes any form of energy 
as input (cause) and produces an output (effect). A DC motor driving the robot wheel 

7
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is a simple plant. A voltage applied to its terminals is the input, and the speed is the 
output. System and plant are two widely used terms in control engineering literature. 
At times, they are used interchangeably, which may be very confusing. A typical 
block diagram of a plant is shown in Figure 7.1.

Inputs and outputs: Input to the plant is the manipulated variable. For example, in 
a speed control system, the voltage applied to the DC motor is the input (manipulated 
variable), and the speed of rotation of the load shaft is the output.

Systems and subsystems: A system is more than a plant. It consists of a plant in 
its core together with other components around it. For example, a motor is the core 
for a “speed control system.” There are instrumentation devices such as an encoder 
attached to the motor shaft. An encoder also needs additional devices such as a 
“decoder IC” to measure the position digitally. We can call the combination of the 
encoder and the decoder as an instrumentation “subsystem.” The speed is measured 
and compared with the given desired value by the computer. The computer produces 
a manipulated variable to control the input voltage, hence the speed, of the motor. 
This action needs many intermediate stages. Each stage may be called a subsystem. 
The overall assembly of the plant (motor) and all the peripheral devices put together 
is called the “control system.” In many cases, a control system may also comprise 
many control subsystems that are parts of it.

7.2  TYPES OF PLANTS

It is necessary to understand how plants and systems are classified. As a whole, 
controlled plants can be classified in several ways based on their nature of input and 
output relationship or the nature of their parameters.

7.2.1 L inear versus Nonlinear Plants

In linear plants, the input versus output relationship is linear and hence the plant 
obeys the superposition theorem. For example, the relationship between current and 
voltage in a resistance is linear as shown in Figure 7.2. The increase in the voltage 
across a resistor causes the current flowing through it to increase proportionally. On 
the other hand, for nonlinear plants, the input/output relationship is nonlinear. A 
good example is the relationship between the magnetizing current and flux density, 
which is nonlinear. As shown in Figure 7.2, by increasing the current further, we do 
not see a proportional increase in the flux density in a magnetic core.

Output

Plant

Manipulated
variable

FIGURE 7.1  A plant with its input and output.
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7.2.2   Time-Invariant versus Time-Variant Plants

In a time-invariant linear plant, all the plant parameters do not vary with time. A 
resistor circuit is a good example, as the voltage versus current relationship will not 
be affected by time. On the other hand, in time-variant linear plants, one or more 
plant parameters change with time.

EXAMPLE 7.1

The total mass of a rocket will continuously change as the fuel gets consumed 
along the way. This is a plant with a slowly time-varying parameter. But, when this 
rocket ejects a fuel stage, there will be a sudden change of weight and there will 
be a step change in weight parameter.

EXAMPLE 7.2

In the robot colony competition, a robot carries pellets on its basket, and the robot 
weight and speed response will not be the same as when the robot has dropped 
all the pellets in the goal location. If the pellet weight is substantial, then there 
should be a change in control strategy.

EXAMPLE 7.3

The load on the joint of a humanoid robot carrying an object in its arms will 
change as soon as it has placed the object in its destination.

In all the above examples, the controller gain may need adjustments at different 
time instances.

7.3  CLASSIFICATION BASED ON CONTROL SYSTEM

Another classification of the control system is based on the system implementations. 
The classification may depend on the type of control we use to make the system 
perform according to our requirements and specifications. These classifications are 
applicable to the entire system architecture.
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FIGURE 7.2  Examples of a linear plant (resistance) and a nonlinear plant (magnetic core).
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7.3.1 A nalog versus Digital Systems

Analog controllers control the plants directly using analog components such as 
amplifiers, pneumatic, or hydraulic controllers. However, the usage of analog control 
systems in robotics is almost obsolete.

Because of the availability of cheap computing hardware, which is more flexible 
and capable of handling sophisticated modern control methods, digital control has 
come to stay and dominate. In systems that use digital controllers, the computer 
reads the output of the plant, compares with the desired value, and computes the 
required control input or manipulated variable. As mentioned earlier, such systems 
are more flexible, cheaper, and more powerful. Furthermore, digital controllers can 
easily communicate with other systems both inside and outside. These characteris-
tics make them fit very well into hierarchical systems as well as distributed systems. 
Robots are complex devices with many subsystems that respond or report to external 
systems. Therefore, it will not be wrong to assume that all robot controllers are digi-
tal as a rule.

EXAMPLE 7.4

An example of an analog controller is the voltage regulator. A typical voltage 
regulator, such as 7805, is an analog controller that regulates the output voltage 
for varying input voltage.

EXAMPLE 7.5

All off-the-shelf controllers sold now are digital controllers. Programmable logic 
controllers (PLCs) are a good example. They are flexible and reliable. Most con-
trollers used in robots, such as humanoid robot, micromouse, and wall-climbing 
robots, are digital using onboard computers.

7.3.2 O pen-Loop versus Closed-Loop Systems

Open loop: The output of an open-loop system is neither measured nor used. So, the 
output does not influence the manipulated variable. A precise mathematical model 
must be evaluated and then the controller system should be carefully calibrated. 
Open-loop systems are hardly used in robotics.

EXAMPLE 7.6

Many humanoids move their hip and leg joints according to predetermined tra-
jectories, without any gyro and foot sensor feedback. If the walking surface is a 
level ground with enough friction, the robot will walk smoothly. If there is level 
difference, the robot may take the next step before its swing foot has landed on 
the ground, since the controller will assume that the swing leg has landed based 
on joint angle values. Hence, the robot will topple. This is a typical example of 
an open-loop robotic system. For proper walking, there should be gyro and foot 
sensor feedback. What we have described above is a complex situation. Even 
though individual joints are activated by accurate servomotors, the overall walking 
control system is an open-loop system. In summary, any system without output 
monitoring is considered an open-loop system.
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Closed loop: In closed-loop systems, the output is constantly monitored and fed 
back. According to the error, the manipulated variable is adjusted to achieve the 
objective. The main idea of a closed-loop system is a feedback-based control. The 
feedback must be adequate.

EXAMPLE 7.7

A pole-balancing robot control system has many control subsystems. Balancing 
the pole and moving the vehicle at the same time is done by one subsystem. 
Assume that the robot has to move through a distance of 1 m. A motor may be 
fitted with an encoder. But, if the program depends only upon this, the robot will 
not work due to the slippage of the drive wheel. Owing to inadequate feedback, 
the system behaves like an open-loop system and the distance moved will be 
inaccurate. To overcome this problem, we include ground feedback sensors that 
monitor the cross tapes placed on the platform and correct the errors in distance 
measurement. Here, we highlighted a case where the system has adequate feed-
back. In simple terms, a control system that uses adequate feedback to adjust the 
performance can be defined as a closed-loop system.

A popular closed-loop controller: So far, we have been using the term “control-
ler” in general. Before we go any further, we discuss some basic ideas of what a “con-
troller” is. Most closed-loop controllers are error based. The controller uses the error 
between the desired value and the actual value of the output to decide the magnitude 
and sign to be applied to the plant. The most popular error-based controller is called 
the PID controller, which means the proportional, integral, and derivative controllers 
together. Mathematically, we can write an expression for the output of such a control-
ler that is fed to the plant as

	
m t K e K edt K

de
dtp i d( ) = + +∫ 	

(7.1)

where e is the error between the desired value and the output, Kp is the proportional 
gain, Ki is the integral gain, and Kd is the derivative gain. After adjusting these three 
parameters, the output from a PID controller can be input to plant. We will discuss 
more about PID controllers in the following chapters.

7.4  NEED FOR INTELLIGENT ROBOT STRUCTURE

In control theory, we assume that the plant is already there to start with. However, in 
game robotics, the first task is to design the mechanical structure of the plant. This 
must be executed carefully, and the controller must be designed for that structure. 
Assume that we have a robot with two wheels, with unsymmetrical loading on them. 
Then, the robot will have a problem in moving straight. The controller will help, but 
the basic things such as load distribution must be done right. A badly designed robot 
cannot be forced to perform well just by using a good controller. One example is the 
wall-climbing robot. Most wall-climbing robots are event-driven systems. The term 
“event-driven” implies that when the robot has successfully completed one climbing 
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step, then the next step should start. However, the task of finding when one step got 
safely completed is easier said than done. The sensor configuration used in robot 
design plays an important role. In another example, a good biped robot must be 
balanced and must have enough degrees of freedom. We can see some biped robots 
with intelligent structure that can walk down a slope without any external power or 
control. There are many such designs (see, e.g., Passive Walker 2009; Walking Robot 
2010). It is easier to put a controller for robots with sound designs in which the con-
trol intelligence is built into the mechanical structure. Hence, the intelligence must 
be embedded in the mechanical structure of the robot.

7.5  A TYPICAL ROBOT CONTROL SYSTEM

The next task in game robotics is to design the robotics control system with many 
plants along with their control subsystems. For example, a biped robot has a master 
processor, which coordinates the control of many joints according to joint trajecto-
ries. For every joint, there is a control subsystem. There will be vision cameras, foot 
sensors, and gyroscopes, which are parts of the overall biped control system. The 
master coordinates all these subsystems. These coordinations must also be planned 
and programmed by the robot designer.

In any complex control system, the constituents are simple closed-loop control-
lers, which are the subsystems, and when assembled together they form the overall 
control system. We would like to look at one basic feedback controller.

Basic closed-loop controller and some terminologies used in control: Having 
provided basic ideas on controller classifications, we now consider a simple single-
loop control system to familiarize ourselves with terminologies used in such systems 
(Raven 1987; Philips and Harbor 1988). A simplified block diagram of a typical 
single-loop control system is shown in Figure 7.3.

In Figure 7.3, the signal R is the reference signal or the set point and B is the feed-
back signal. Error E is obtained by subtracting B from R and fed to a PID controller. 
The controller can be any one of the controllers we mentioned earlier. The controller 
may also be one of the many other types. This controller produces an appropriate 
control signal U, which is fed to the final control element. This final control element 

PID
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FIGURE 7.3  Simplified block diagram of a closed-loop control system.
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can be a PWM-based H-bridge driver or a pneumatic valve controller. There are 
many other possibilities. The output M of the final control element may produce a 
power voltage, pressure, or heat to the controlled plant. The output Y is measured by 
measurement element whose output B is fed back.

7.6  TRENDS IN CONTROL

In addition to the above classifications, a number of new controller types are emerg-
ing in modern control systems. Some of them are very useful in robotics. This has 
been made possible by advances in technology, control theory, instrumentation tech-
nology, and computing power. All these new control techniques are digitally imple-
mented. Therefore, they also fall under the general category of digital controls. The 
list is growing as research progresses in this field. We briefly mention some relevant 
ones below.

In the case of a biped robot, there are many joints to be controlled to make a 
humanoid robot walk without falling. Here, we may have a master controller and 
many other subcontrollers controlling the joints, which act like slaves taking com-
mands from the master. This type of control is usually called a hierarchical control.

In a complex industrial environment, there may be many control systems acting 
independently, but cooperating with each other. Actually, in swarm robotics, each 
robot has its own controller, but they constantly communicate with each other. This 
can be broadly classified as a distributed control system.

In adaptive controllers, the parameters of the controller will be adapted according 
to the plant parameters that are identified by an iterative identifier (Mendel 1973). 
Model reference adaptive controllers are also used in robot control (Astrom and 
Wittenmark 1989).

In systems that cannot be modeled mathematically with the desired ease, fuzzy 
logic-based controllers are used. Nowadays, they are everywhere, starting from 
washing machines to pole balancing robots and biped robots. Similar difficulties are 
tackled by neural network-based controllers that mimic the human brain model of 
functioning (Kosko 1992).

In systems where the plant parameters change as the operating point changes, the 
controller structure is changed to suit the operating point. They are called variable 
structure controllers. In such systems, fast adaptation is also useful.

7.7  CONCLUSION

Typically, all feedback control systems are error based, which implies “no error–no 
action” with a few exceptions. Open-loop systems do not use error or feedback to 
produce control action. If there is no disturbance, they work well. When a distur-
bance occurs, we need error feedback to take care of it.

We have provided a brief introduction to the concept of control in the above sec-
tions. This has been an exercise in generality. We have not provided any detailed 
discussion on any specific system here. However, we have provided a brief descrip-
tion of the objectives of control, types of control, and their relevance. We have also 
introduced some terminologies used in control. We have also indicated that error is 
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an important factor in control. In many systems, the error is the driving force in tak-
ing corrective action. In the subsequent chapters, we will discuss more quantitative 
aspects of controllers, their mathematical modeling, and their time domain analysis 
and synthesis.
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Review of Mathematical 
Modeling, Transfer 
Functions, State 
Equations, and 
Controllers

8.1  INTRODUCTION

Every part or subsystem of a control system has some input to output relationship. 
This relationship is implicitly contained in its transfer function. A transfer function 
is nothing but the ratio of Laplace transforms of the output and the input. Transfer 
functions provide good insight into the subsystems they represent. For example, this 
can be the relationship between the speed and input voltage to the armature of the 
robot drive motor or can be the output to input relationship of a transducer used for 
feedback. However, such transfer functions in bits and pieces themselves will not be 
very useful for understanding the overall system. We should be able to obtain the ratio 
of output of any part to the input to any part of the system in terms of Laplace trans-
forms ratio. That leads to the conclusion that there can be many transfer functions 
for a single system depending on the objective. If we look at such a ratio while the 
feedback is absent (open loop), then we call it the open-loop transfer function. Usually, 
an important aim of modeling is to obtain the transfer function of the open-loop plant. 
If the feedback is included (close loop), then we call it the closed-loop transfer func-
tion. These ideas are well discussed in the control literature (Ogata 1990; D’Azzo and 
Houpis 1995; Kuo 1987; Palani 1997; Nagrath and Gopal 1985), and we only wish to 
highlight the basic concepts for a robotics engineer so that it provides a starting point 
in forming system equations to design the controllers for the robot.

A state equation is another variant of a transfer function, which still represents the 
system dynamics. The main distinction between transfer functions and state equa-
tions is that where a transfer function has only one input and one output, a state equa-
tion is capable of representing more than one input and more than one output. Where 
the controller specifications focus on only one output of the plant, transfer func-
tions are used to design controllers using classical control theory. However, when 
the specifications involve a few outputs of the plant, the state space approach is more 
convenient. Hence, depending on the complexity of the problem, either the trans-
fer function-based design or the state equation-based design is chosen. In modern 

8



174 Practical Robot Design

practice, whatever method is chosen, during the design of controllers, software tools 
such as MATLAB® are actively used (Cavallo et al. 1996).

8.2  IMPORTANCE OF MODELING

The understanding of the plant dynamics is the first step in designing a suitable con-
troller. Once we know the dynamics, we can choose a suitable controller structure. 
The controller has to cater to the nature of the plant. For robotics application, we can 
summarize the major benefits of modeling as follows.

When we use transfer functions of plants with known components, this knowl-
edge leads us to the order and the possible behavioral patterns of the plant. This plays 
an important part in deciding the controller. Even if the components are not known, 
we may have to use some identification techniques to understand the plant dynamics. 
In robotics, most components are with known dynamics, and this should be used to 
our advantage.

To study the stability of a system, we need to examine the open-loop transfer 
function. Some types of plants may become unstable when controlled in a closed 
loop. If the model is known, it provides an opportunity for offline testing of the con-
troller. Before actually testing the controller in real time, it is important to predict 
to some extent how the closed-loop system will behave in terms of performance 
and safety. Once we see some discrepancy between the model performance and the 
expected performance, we can correct the mistakes in design. By the same reason-
ing, we can say that a mathematical model also helps in designing various controllers 
rapidly. Using the model, we can generate different designs of controllers. Then, they 
can be tried in simulation, and the time response can be readily computed. Different 
controller responses can be compared to choose the most suitable one for possible 
adoption in the actual implementation. In the following sections, the term “model” is 
used for a transfer function model as well as a state model.

8.3  TRANSFER FUNCTION MODELS

Transfer functions give a better understanding of the system behavior. The transfer 
function concept is applicable to only “linear and time-invariant” plants, which can 
be described by linear differential equations with constant coefficients. For solutions 
of such systems, Laplace transform techniques are very useful. The transfer function 
for a plant is defined as the ratio of the Laplace transform of the output to the Laplace 
transform of the input, where the initial conditions are assumed to be zeros.

Consider the following nth-order differential equation:
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In the above equation, y(t) is the output and x(t) is the input.
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By taking the Laplace transform of Equation 8.1, we can obtain
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(8.2)

We have ignored the initial conditions completely. The transfer function is then
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(8.3)

We note from the above equation that the transfer function of a system is an oper-
ational method of expressing the differential equation that relates the output variable 
to the input variable. We add a few thoughts on transfer functions below.

Even though the applicability of the concept of the transfer function is limited to sys-
tems that can be described by linear differential equations with constant, time-invariant 
coefficients, some nonlinear systems can be approximated to their linear equivalent, 
and this approach is extensively used in the analysis and design of controllers for such 
nonlinear systems as well. While we say that the transfer function is a property of a 
system itself, independent of the magnitude and nature of the input or driving function, 
if saturation occurs, the linearity may not be applicable. Then, the model becomes an 
inadequate representation. We will highlight this later in our case studies.

If the plant representation or differential equation is known, the transfer function 
can be derived as shown above. However, even if the constituent components of a 
plant are unknown, the overall transfer function may be established experimentally 
by introducing known inputs and studying the output of the system. Once estab-
lished, a transfer function gives a full description of the dynamic characteristics of 
the system, as distinct from its physical description.

8.3.1 D ifferent Forms of Transfer Functions

The transfer function given in Equation 8.3 is in a polynomial form, since we start 
from differential equations. There are a few different forms of transfer functions; 
depending on the purpose, it will be used for.

Polynomial form: This polynomial form is the result of taking the Laplace trans-
form of the differential equation. An example of it is given in Equation 8.4.
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Pole/zero form: Factorizing and rewriting, we get the form
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which is in the pole/zero form. The roots of the numerator polynomial are called 
zeros. For the above system, it is obvious that s = α1, s = α2 are the zeros of the plant; 
similarly, the β values are the poles of the plant. These poles represent stability char-
acteristics of the open-loop system. The negative real parts of the poles indicate an 
open-loop stable system. But, considering the numerator, if the real parts of zeros 
are negative, the plant is called a minimum phase system. If they have positive real 
parts, they are called nonmiminum phase systems, and it will be difficult to control 
them in a closed loop.

Time-constant form: Again, rearranging the above equation differently, we get 
another form:
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We can observe that the DC gain is K2 and the Tzi terms are numerator time con-
stants and the Tpi terms are denominator time constants. This information may be 
helpful in assessing the speed of the response of the open-loop system. The shorter 
time constant indicates a fast response of the open-loop system.

Corner frequency form: We can reorganize the above to reveal more information 
about the frequency response of the system:
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In the above equation, K3 is DC gain and the numerator ω terms are the corner 
frequencies related to the zero terms and denominator ω terms are the corner fre-
quencies related to the pole terms. The corner frequency form is useful in sketching 
Bode diagrams for analyzing the frequency response and stability criteria.

8.4  STEPS IN MODELING

We can arrive from the discussion in the previous section that the primary aim of 
modeling is to obtain the open-loop transfer function or the state equation of the 
physical subsystem of the robot for which we want to design a controller. Then, the 
steps followed in modeling can be listed as follows.

The first thing to do is to identify the output of the plant and the possible input that 
will influence that output. Then, we find out if the plant has a linear input to output 
relationship. If that relationship is not linear, we decide the operating point around 
which we want to use the plant and find the linear approximation of the plant around 
that point. In case of electrical systems, we write the differential equations connect-
ing the inputs and outputs by applying the circuit laws. For mechanical systems, 
we apply Newton’s second law and write the applied forces and the reactive forces. 
Again, we write the differential equations connecting the input and the output.

If we are focusing on transfer functions, we take the Laplace transform of the 
relevant differential equations and deduce the ratio of the output to the input. If we 
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need to formulate state equations, we define the states and write the state equations 
directly from the differential equations. If the transfer functions are readily avail-
able, state space equations can also be written from them directly. Similarly, transfer 
functions can also be obtained from the state space model. Once the model, either 
in the transfer function or in the state equation, has been obtained, we can design a 
viable controller.

8.5 � SOME BASIC COMPONENTS OFTEN ENCOUNTERED 
IN CONTROL SYSTEMS

Control is an interdisciplinary subject. A control system may include electrical, 
mechanical, hydraulic, and pneumatic plants. Hence, we need to familiarize our-
selves with components found in all of them. For example, some two-legged robots 
use hydraulic drives while some wall-climbing robots use pneumatic drives. To 
implement an effective controller, we need to understand them. On the other hand, 
feedback devices may also involve many disciplines. For example, simple encod-
ers and gyroscopes are integral parts of the feedback control in many robotic sys-
tems. In the same robot, thermistors may be needed for monitoring temperature 
for safety. Here, we will mainly focus on electrical and some mechanical systems 
as a starting point.

8.5.1 E lectrical Components

The main electrical components are resistances, inductances, and capacitors, and 
they are described below.

Ohm’s law is the system equation of a resistor, where R is in ohms, vR is in volts, 
and  i is in amperes as shown in Figure 8.1a.

	 v R iR = 	 (8.8)

The ideal inductance is shown in Figure 8.1b. The input–output relationship for 
an inductance is given by Faraday’s law, where L is in henries, i is in amperes, and  
vL is in volts.
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FIGURE 8.1  Common electrical components: (a) Resistance, (b) inductance, (c) capacitance.
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A capacitor is shown in Figure 8.1c. The relationship between the input and the 
output of a capacitor is given in Equation 8.10, where C is in farads, i is in amperes, 
and vC is the voltage across the capacitor in volts.

	
v

C
idt i C

dv
dtc

c= =∫1
or

	
(8.10)

Note that in Figure 8.1, the diagrams are marked with uppercase letters, empha-
sizing the Laplace transform relationship. Note that we have ignored “s” terms within 
brackets for simplicity. But, Equations 8.8 through 8.10 are written for instantaneous 
values.

8.5.2 M echanical Components

The main mechanical components are mass, damper, and spring. Masses are distrib-
uted everywhere on robots and form an integral part of it. A mass placed on “fric-
tionless” wheels is shown in Figure 8.2a. The input–output relationship of a mass is 
nothing but Newton’s second law as given in Equation 8.11, where f is the applied 
force in newtons, x is the translation in meters, and M is the mass in kilograms.
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(8.11)

Dampers are also important in robotics. Dampers may be introduced on purpose 
to stabilize the system; on the other hand, friction in the system may act as a damper. 
The symbolic representation is shown in Figure 8.2b. The input–output relation-
ship of a damper is given in Equation 8.12, where D is the damping coefficient in 
newtons-seconds/meter.

	
f D
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(8.12)

Springs are used in many applications of control theory, including robotics. 
Springs are devices that produce a restraining force against pushing or pulling. For 
example, a spring can be used to press an encoder wheel toward the platform for 
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FIGURE 8.2  Common mechanical components: (a) mass, (b) damper, (c) spring.
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achieving a proper contact. Springs are also an integral part of elastic actuators. A 
symbolic representation is shown in Figure 8.2c. The applied force, f, is in newtons, 
the linear translation, x, is in meters, and K is the spring constant in newtons/meter, 
the relationship is described in Equation 8.13.

	 f = Kx	 (8.13)

In addition to the above, we will encounter pneumatic, hydraulic, thermal, and 
other types of systems in robotics. We are not dealing with all such systems here, 
since the list of such components is very long. More details about them can be found 
in D’Azzo and Houpis (1995), Kuo (1987), and Nagrath and Gopal (1985).

8.6  BLOCK DIAGRAM CONCEPTS

We saw earlier some transfer function concepts. The plant transfer function is writ-
ten inside the block that represents the plant. Usually, a complex control system has 
many components represented by blocks with their own respective transfer functions. 
They are interconnected in such a way that one block’s output is the input of another 
block and so on. Hence, an overall block diagram provides information regarding 
the interconnections and functional relationships among the various constituents that 
form the controlled system. The basic components of a block diagram are blocks rep-
resenting transfer functions, summing points, take-off points, and arrows indicating 
the direction of signal flow. When we start deciphering the relationship among the 
blocks, our aim is to obtain a simplified diagram with the forward system, a feedback 
loop, and a summing point, clearly marking the input and the output of the system. 
This is generally called the canonical form and is shown in Figure 8.3. In the figure, 
G(s) represents the overall forward transfer function and H(s) is the overall feedback 
transfer function. We emphasis the term “overall” because they are usually derived 
by simplifying many constituent blocks.

The following notations are typically used in the literature:

The system output is C(s).
The reference input is R(s).
The feedback signal is B(s).

R(s) E(s) G(s)
C(s)

H(s)

+

–

B(s)

FIGURE 8.3  Canonical form.
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The open-loop transfer function is

	 G(s)H(s) = B(s)/E(s)	 (8.14)

The feedback transfer function is

	 H(s) = B(s)/C(s)	 (8.15)

The closed-loop transfer function is C(s)/R(s), and it is derived in the following steps:

	 E(s) = R(s) − H(s)C(s)	 (8.16)

Then

	 C(s) = G(s)E(s) = G(s)[R(s) − H(s)C(s)]

	 C(s)[1 + G(s)H(s)] = G(s)R(s)
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(8.17)

8.6.1  Block Diagram Reductions

We mentioned earlier that G(s) and H(s) may not represent one block diagram, and 
the overall transfer function may have to be derived. Hence, when a block diagram 
is very complicated, it may be necessary to use some reduction techniques to obtain 
the overall transfer function. There are a number of guidelines for achieving this 
reduction, and it is well described in the literature. Some sample types are shown in 
Table 8.1. For a complete list of such possibilities, refer to Ogata (1990), D’Azzo and 
Houpis (1995), Kuo (1987), and Nagrath and Gopal (1985).

8.7  SOME SYSTEM EXAMPLES

Having learned the concepts of transfer functions and block diagrams, let us apply 
them to derive and simplify the transfer functions of systems we would often encounter 
in robotics. The devices described in Section 8.5 are seldom used in isolation. They are 
used in many forms of interconnections in real-world systems. The control designer 
should be able to write transfer functions for all types of interconnections. Let us see a 
few examples. In the notations used in the following sections, variables indicated with 
lowercase are functions of time and for simplicity, we may ignore showing (t).

EXAMPLE 8.1:  SIMPLE ELECTRICAL SYSTEM

Let us start with a simple example. Consider the system shown in Figure 8.4 con-
sisting of resistive, inductive, and capacitive components. Using Kirchoff’s law, 
we can write



181Review of Mathematical Modeling

TA
B

LE
 8

.1
B

lo
ck

 D
ia

gr
am

 R
ed

uc
ti

on
s

O
ri

gi
na

l D
ia

gr
am

A
ct

io
n

Eq
ui

va
le

nt
 D

ia
gr

am
 a

nd
 P

ro
of

R(
s)

R(
s)[

G
1(

s) 
+ 

G
2(

s)]

G
2(

s)

G
1(

s)

+

+
C

om
bi

ni
ng

 
sp

lit
 

bl
oc

ks
G

1(
s) 

+ 
G

2(
s)

R(
s)[

G
1(

s) 
+ 

G
2(

s )]
R(

s)

R(
s)

R(
s) 

– 
B(

s)

B(
s)

G
(s)

[R
(s)

 –
 B

(s)
]

G
(s)

–

+
M

ov
in

g 
su

m
m

in
g 

po
in

t a
ft

er
 

a 
bl

oc
k

R(
s)

B(
s)

G
(s)

[R
(s)

 –
 B

(s )
]

G
(s)

G
(s)

–

+

co
nt

in
ue

d



182 Practical Robot Design

TA
B

LE
 8

.1
 (

co
nt

in
ue

d)
B

lo
ck

 D
ia

gr
am

 R
ed

uc
ti

on
s

O
ri

gi
na

l D
ia

gr
am

A
ct

io
n

Eq
ui

va
le

nt
 D

ia
gr

am
 a

nd
 P

ro
of

R(
s)

R(
s)[

G
1(

s) 
+ 

G
2(

s )]
G

1(
s)

G
2(

s)

+

+
M

ov
in

g 
pi

ck
-o

ff
 

po
in

t a
ft

er
 

a 
bl

oc
k

R(
s)

R(
s)[

G
1(

s) 
+ 

G
2(

s)]
G

1(
s)

G
2(

s)/
G

1(
s)

+

+

R(
s)

Y(
s)

G
1(

s)

G
2(

s)

+

–

Y
s

G
s

G
s

G
s

R
s

(
)

(
)

(
)

(
)

(
)

=
+

 
 

1
1

2
1

M
ov

in
g 

th
e 

fe
ed

ba
ck

 
el

em
en

t 
ou

t o
f 

lo
op

G
1(

s)
Y(

s)
R(

s)
G

2(
s)

1/
G

2(
s)

+

–

Y
s

G
s

G
s

G
s

R
s

(
)

(
)

(
)

(
)

(
)

=
+

 
 

1
1

2
1



183Review of Mathematical Modeling

	
R i

C
idt L

di
dt

ti+ + =∫1
n ( )

	
(8.18)

Taking the Laplace transform, while ignoring initial conditions, we can obtain
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Multiply both sides with R and using the fact that Vo(s) = RI(s), we get
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EXAMPLE 8.2:  TRANSFER FUNCTION OF A PERMANENT MAGNET 
DC MOTOR DRIVE SYSTEM (ELECTROMECHANICAL SYSTEM)

The basic components of a permanent magnet DC motor are shown in Figure 8.5. 
There is one electrical system which is a motor armature circuit. We also have the 
rotating mechanical system with its inherent mass and friction. We can use the 
following steps to derive a transfer function:

	 i.	Write the equation describing each system and its transfer function.
	 ii.	Simplify the equation to obtain the transfer function relating angular veloc-

ity to the input voltage.

The relevant quantities are marked on the diagram in Figure 8.5. Given that 
the back EMF constant is Kb, the torque constant is Km, the outputs of the system 
are ω(s) and θ(s), the input of the system is Va(s), and the armature current is ia, our 
objective is to derive the transfer functions ω(s)/Va(s) and θ(s)/Va(s).

Consider the electrical circuit

	
na a a a

a
bt R i L

di
dt

e( ) = + +
	

(8.22)

L

i RVi(s)

C

Vo(s)

FIGURE 8.4  Simple electrical system with resistive, inductive, and capacitive components.
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where the back EMF is eb. Then, using the back EMF constant

	 eb = Kbω	 (8.23)

Using the torque constant, the motor torque can be written as

	 tm = Kmia	 (8.24)

Since there is no other load, the motor torque generated is equal to the load 
torque due to the motor inertia and friction. Then, the torque balance equation is 
written as

	
t J

d
dt

Fm = +w
w

	
(8.25)

Taking the Laplace transforms of Equations 8.22 through 8.25, respectively, we 
can write

	 Va(s) = [Ra + Las]Ia(s) + Eb(s)	 (8.26)

	 Eb(s) = Kbω(s)	 (8.27)

	 Tm(s) = KmIa(s)	 (8.28)

	 Tm(s) = [Js + F]ω(s)	 (8.29)

ω,θ

Va

Ra

ia

La
Inertia = J
Friction = F

S N

FIGURE 8.5  Servomotor system.
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Our first objective is to derive ω(s)/Va(s), which can be done using mathemati-
cal manipulations, since the numerator term and the denominator term are found 
in the above equations. Substituting for Tm and Ia, we can write
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Assembling these terms, we get
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Since, we know
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We get
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Intuitive approach: Referring to Figure 8.6, we can draw a block diagram, first, 
by obtaining the driving voltage E(s) as the difference between Va(s) and Eb(s). After 
that, we put a block of impedance to get current Ia(s). Following this, adding a 
block with Km leads to torque Tm(s). From there, we add a block using the inertia 
and friction terms to get the angular speed ω(s). From the angular speed, we obtain 
the back EMF, Eb, by including a block with Kb and feed it back to the summing 
point. We now obtain the angle as an integral of the angular speed. Figure 8.6 
represents the overall block diagram of the system.

From the above diagram, we can obtain the closed-loop transfer function quite 
easily.

The forward transfer function is
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FIGURE 8.6  Overall block diagram.
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The feedback transfer function is
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The open-loop transfer function is
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Then, the closed-loop transfer function is
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Then, by using the relationship between ω(s) and θ(s), we write
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The above transfer function is of the third order; however, if the motor leakage 
inductance can be ignored, then it is reduced to the second order.

EXAMPLE 8.3:  MASS DAMPER AND SPRING ASSEMBLY

Let us find the transfer function, Y(s)/F(s) of the mechanical translation system 
shown in Figure 8.7, which is another popular mention in the literature.

The quantities are marked in the figure, and the mass is supported with friction-
less wheels.

Considering only the two ends of the spring, we know that the force is transmit-
ted through the mass partly to the spring and partly to the damper or dash-pot. 
Hence, we can write

	
f t M

d y
dt

D
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K y( ) = + +
2

2
	

(8.39)

f (t)

y(t)

M

D

K

FIGURE 8.7  A mechanical translation system.
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Now, taking the Laplace transform, we obtain

	
F s Ms Ds Ky Y s( ) ( )= + + 

2

	
(8.40)

	

Y s
F s Ms Ds K

( )
( )

=
+ +

1
2

	
(8.41)

Usually, in practical systems, the damper gets connected in parallel to a spring, 
and this combination is used in tandem with a mass. In fact, if we turn the system 
clockwise, it becomes a setup of a shock absorber of an automobile or some 
autonomous robot.

EXAMPLE 8.4:  VEHICLE INSIDE A VEHICLE

This is a popular example that can be found in the literature (Palani 1997). We 
will analyze this system since it is a bit more complex for the transfer function as 
well as the state equation. Figure 8.8 shows such an arrangement of a system in 
which a vehicle is placed inside another vehicle. The outer vehicle is a container 
of mass M2, which can move on wheels on a platform with no friction. This is 
attached to the wall on the right by a spring with stiffness of K2 and a damper 
of damping coefficient B2. Inside this vehicle, there is another mass M1 moving 
without friction. This mass is attached to the wall of the outer vessel (vehicle) 
wall through a spring of constant, K1. Assume that a force f(t) is applied to the 
outer vehicle as shown in Figure 8.8. The displacements of the inner and outer 
masses are marked as y1 and y2, respectively, and are measured with respect to 
the reference wall on the right. We are interested in displacements y1(t) and y2(t) 
in response to the input force f(t).

This example needs a careful observation. Let us first look at the forces that act 
upon mass M2. The forces can be listed as follows:

	 1.	The applied force f(t) acting to the right.
	 2.	The reaction force, due to acceleration of M2 to the right, is M2(d2y2/dt2) act-

ing to the left.

y2(t) y2(t) Reference wall

K1
M1

M2

B2

K2

y1(t)

f (t)

FIGURE 8.8  Vehicle inside a vehicle.
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	 3.	The restraining spring force K2y2, which is acting to the left.
	 4.	The damping force B2(dy2/dt) which is acting to the left.
	 5.	As the inner vehicle moves, the spring K1 will generate a force K1(y2 − y1), 

which is also acting to the left. This can be understood by visualizing the 
situation if M1 does not move (y1 = 0), y2 motion will compress the spring K1, 
and hence it will push back the mass M2 to the left.

We can write a force balance equation as

	
M

d y
dt

B
dy
dt

K y K y y f t2

2
2

2 2
2

2 2 1 2 1+ + + − =( ) ( )
	

(8.42)

and taking the Laplace transform, we get

	
M s B s K K Y s K Y s F s2

2
2 2 1 2 1 1+ + +  − =( ) ( ) ( ) ( )

	
(8.43)

Next, let us list the forces acting on mass M1 for the positive displacement of y1:

	 1.	The inertial reaction of mass M1 equal to M1(d2y1/dt2), acting to the left
	 2.	The restraining force of spring K1 equal to K1(y1 − y2), acting to the left

There is no other directly applied force. We can write the force balance equa-
tion as

	
M

d y
dt

K y y1

2
1

2 1 1 2 0+ − =( )
	

(8.44)

Taking the Laplace transform, we have

	
M s K Y s K Y s1

2
1 1 1 2+  =( ) ( )

	
(8.45)

Substituting for Y2(s) in Equation 8.43, we get
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M s K

K
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2 2 1

1
2
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1
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2
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(8.46)

This yields the transfer function
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1 1

2 1
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1 2
3

1 2 1 1 2
2

1 2 1 2
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( ) ( )

=
+ + + +[ ] + + 	

(8.47)

Alternative approach: We now attempt to solve the same problem using the 
block diagram reduction approach. We can get a block diagram for Equation 8.45 
as shown in Figure 8.9.
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We can get a block diagram for Equation 8.43 as shown in Figure 8.10.
There is a positive feed-in of Y1(s). This has to be dealt with later. Let us now 

combine the two block diagrams of Figures 8.9 and 8.10 as shown in Figure 8.11.
Note that we have introduced two “-” signs in the feedback loop, which 

changes nothing to make it an usual negative feedback system. Then, the overall 
transfer function can be written as

  

Y s
F s H G K M s B s K K M s K K
1

1 2
2

2 1 2 1
2

1 1

1
1

1( )
( ) ( ) (( )( ) )

=
+

=
− + + + +/ + / 	

(8.48)
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1 1
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4

1 2
3

1 2 1 1 2
2

1 2 1 2

( )
( ) ( )

=
+ +[ ] ++ + + 	

(8.49)

This is exactly the same result that we got earlier in Equation 8.47.

1

M2s2 + B2s + K1 + K2

Y1(s)

Y2(s)F(s) +

+

K1

FIGURE 8.10  Block diagram from Equation 8.43.

1 K1

M2s2 + B2s + K1 + K2 M1s2 + K1

Y2(s) Y1(s)F(s) +

–

–K1

FIGURE 8.11  Overall block diagram from Figures 8.9 and 8.10.

Y2(s) Y1(s)K1

M1s2 + K1

FIGURE 8.9  Block diagram from Equation 8.45.
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EXAMPLE 8.5:  A MECHANICAL ACCELEROMETER

Now, take a look at another popular example found in the literature (Nagrath and 
Gopal 1985). We will study accelerometers that are often used in robotics, espe-
cially in humanoid and mobile robots. We present one version of such a device 
here and derive the transfer function as well as the state equation. The physical 
arrangement of an accelerometer is shown in Figure 8.12. It shows a simplified 
accelerometer fitted to a moving vehicle the displacement of which as the vehicle 
moves is y2(t).

The device is shown as mounted on a robot body. It has a box consisting of a 
mass spring and a damper fitted to it. The encoder reading at standstill is y1(t) = 0. 
We want to show that the linear encoder reading is a measure of the acceleration 
of the vehicle. We assume that the mass M moves without any friction. Obviously, 
y1(t) is measured with respect to the frame of the accelerometer, while y2(t) is mea-
sured with respect to an external stationary absolute frame. We further assume 
that the positive movement of the robot,y2(t), is to the left.

As marked, y1(t) moving to the right of the scale is positive. Then, the absolute 
displacement of M toward the left is (y2(t) − y1(t)) since the positive y1(t) motion is 
opposite to the vehicle motion y2(t).

For the positive displacement of y1(t) on the scale, the forces acting on the 
mass, M, are

	 1.	The reactive force M(d2(y2 − y1)/dt2) acting to the right
	 2.	The reactive damping force of B, B(dy1/dt) acting to the left
	 3.	The restraining force of spring K1,y1 acting to the left

Since there is no other force, the total of these three should be zero.

	
M

d y y
dt

B
dy
dt

K y
2

1 2
2

1
1 0

( )− + + =

	
M

d y
dt

B
dy
dt

K y M
d y
dt

2
1

2
1

1

2
2

2+ + =
	

(8.50)

y2(t)

y1(t)

y1 = 0
Linear encoder

Accelerometer box

A part of robot fitted with
accelerometer

K
M B

FIGURE 8.12  Simplified arrangement of an accelerometer.
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For a steady acceleration of (d2y2/dt2) = a, (dy1/dt) = (d2y1/dt2) = 0.
Hence, a = (K/M)y1 and the encoder reads the acceleration value of the outer 

vehicle. Moreover, if we are interested in finding the response of Y1(s)/Y2(s), then 
we can take the Laplace transform and obtain

	

Y s
Y s

Ms
Ms Bs K

1

2

2

2

( )
( )

=
+ + 	

(8.51)

8.8  STATE EQUATIONS

We will introduce the concept of state equations purely with an objective of design-
ing controllers for state control. At the outset, one can say that the state equations 
are used to represent an nth-order differential equation of a system as a set of n first-
order equations and assemble them in a matrix form by defining the state vectors, 
output vectors, and system matrices.

Where the transfer functions can represent one output and one input in a single 
transfer function, the state equations can take care of many inputs and many outputs. 
State equations are a well-developed concept and hence quite a few control tools are 
available for designing the controllers for the systems, such as pole-balancing robots 
and biped robots represented by state equations (Ogata 1990; Kuo 1987; Nagrath and 
Gopal 1985; Wilburg 1971).

8.8.1  Basic Concepts of State Equations from Differential Equations

Let us consider the differential equation in Equation 8.52, which is of the nth order.
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(8.52)

We have included two inputs to make it a general system with more than one 
input. Let us define the following quantities as states:
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(8.53)
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We can rewrite Equation 8.52 as
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(8.54)

Using the definitions in Equation 8.53, we can write

  
� �x

d y
dt

a
a

x
a
a

x
a
a

x
a
a

x
b
a

u
b
an

n

n
n

n
n

n

n
n

n n n

= = − − − − − + +− −
−

1 2
1

1
2

0
1

0
0

1

nn

u1

	
(8.55)

We can assemble Equations 8.53 and 8.55 into a matrix form as
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(8.56)

Equation 8.56 is called the state equation and is usually abbreviated as

	
�X A X B U= [ ] + [ ] 	

(8.57)

where A is the system matrix, B is the control matrix, X is the sate vector, and U is 
the control vector. If y is the output, then the output can be expressed as a function 
of states as follows:

	
y C X DU= [ ] +

	 (8.58)

Here, D is the transmission matrix. Usually, input is seldom transmitted directly 
to the output, except in rare cases where the orders of numerator polynomial and 
denominator polynomial of the system transfer function are equal. The “bars” above 
the vectors X and U are dropped for convenience.

Thus far, we have provided some introduction to the state space representation of 
linear systems. What we must note is that states consist of higher derivatives, if we 
follow the above method of forming state equations. In noisy situations, only the first 
two states can be measured or estimated, but other states involve taking derivatives 
of second or higher order and it is almost impossible. Even estimates of second-order 
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derivatives will be inaccurate in a noisy situation. When we implement state feed-
back control techniques, we may need most of the states. This presents a tricky 
situation in which we need state observers, and they are costly in terms of computa-
tion time. A good practice is to select state variables that can either be measured or 
estimated easily with good accuracy.

8.8.2 S tate Equations from Plant Knowledge

In many robotic systems, we have good knowledge regarding the dynamics of the 
constituent plants. Hence, it is easy to write the differential equations and hence 
derive the state equations directly without the need for transfer functions. In many 
such cases, the state measurement or estimation is quite straightforward. We see 
such examples below.

EXAMPLE 8.6:  MASS, SPRING, AND DAMPER SYSTEM

Here, we would like to work on the example of a mechanical plant and derive 
the state equations for it. Earlier in Example 8.3, we derived the transfer function 
for a mechanical plant. Here, we will take up the same example and derive state 
equations for that plant. The mechanical structure is shown in Figure 8.7. The dif-
ferential equations are as follows:
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(8.59)

Let us define states
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We can rewrite the differential equation as

	 u Mx D x K x= + +�2 2 1, hence
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Combining, we can obtain
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(8.62)
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EXAMPLE 8.7:  VEHICLE INSIDE A VEHICLE 
PROBLEM USING STATE EQUATIONS

Consider the system in Figure 8.8. The differential equations are given as 
follows:
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Also, we have
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Let us define the following states:
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Substituting into above equations, we get
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and
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Assembling Equations 8.65, 8.66, and 8.67, we get
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(8.68)

In this example, all states can be easily measured or estimated.
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EXAMPLE 8.8:  MECHANICAL ACCELEROMETER

We considered the case of a mechanical accelerometer in Example 8.5. We 
derived a transfer function describing the relationship between Y1(s)/Y2(s) in 
Equation 8.51. Here, we would like to define the states for that system and 
explore how those states are affected by the acceleration of the vehicle. If one of 
the states chosen is the scale reading y1, we get a better picture of the response 
of the acceleration measurement of the system. For Figure 8.12, the differential 
equation is given as
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(8.69)

Let us define the states as
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And substituting for x2
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Hence, the state and output equations are
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Here, the input is the acceleration, a, and the output is the reading y1 on the 
accelerometer scale. In this example, all states can be easily measured or esti-
mated as well.

8.8.3 S tate Equations Directly from Transfer Functions

In many cases, transfer functions are obtained by running a frequency response test 
of the systems. In other words, only transfer functions are available for getting the 
system insight.

Cross-multiplying the transfer function equation relating the output to the input 
and taking the inverse Laplace transform, we can write the differential equation. 
Then, we can define the states and write the state equations. Also, state equations 
can be formed from transfer functions directly even without writing any differential 
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equations. We provide some examples to describe methods widely discussed in the 
control literature (Ogata 1990; Kuo 1987; Palani 1997; Nagrath and Gopal 1985).

EXAMPLE 8.9

Consider the transfer function

	

Y s
U s s s s s

( )
( )

=
+ + + +

5
5 4 4 74 3 2

	
(8.73)

This example has no zero term, which makes things straightforward. The 
numerator polynomial order, m, is 0 and the denominator polynomial order, n, is 
4. We define the following states:

	

x y

x x
dy
dt

x x
d y
dt

x x
d y
dt

1

2 1

3 2

2

2

4 3

3

3

=

= =

= =

= =

�

�

�
	

(8.74)

Using the definition of the states, the state equation can be written as
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(8.75)

The output equation becomes
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Again, the drawback is that the states involve higher derivatives of the output.

EXAMPLE 8.10: ALTERNATIVE APPROACH FOR EXAMPLE 8.9

As it is obvious from the example given above, the solution to the state feedback 
becomes difficult to tackle, since states involve higher-order derivatives and can-
not be evaluated. However, in the following, we employ an alternative approach 
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(Palani 1997). In this method, the states are defined in such a way that they do 
not involve higher-order derivatives in state definitions. Here, the numerator order 
m = 0, and the denominator order n = 4. We repeat Example 8.9 for some com-
parison of state equations. Given that
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Cross-multiplying and taking the inverse Laplace transform, we have

	
���� ��� �� �y y y y y u= − − − − +5 4 4 7 5

Then, integrating three times, we get

	
�y y y y y u= − − − − +∫ ∫∫∫∫∫∫∫∫5 4 4 7 5

	
(8.78)

Defining x1 = y as before

	 �x x x1 1 25= − +

where x2 is tacitly defined as

	
x y y y u2 4 4 7 5= − − − +∫ ∫∫ ∫∫∫ ∫∫∫ 	

(8.79)

Now, differentiating Equation 8.79 once

	
�x y y y u2 4 4 7 5= − − − +∫ ∫∫ ∫∫

	 �x x x2 1 34= − + 	 (8.80)

where

	
x y y u3 4 7 5= − − +∫ ∫∫ ∫∫ 	

(8.81)

Again, differentiating Equation 8.81 once

	
�x y y u3 4 7 5= − − + ∫∫
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	 �x x x3 1 44= − + 	 (8.82)

where

	
x y u4 7 5= − + ∫∫ 	

(8.83)

Again, differentiating Equation 8.83 once

	
�x y u x u4 17 5 7 5= − + = − + 	 (8.84)

Let us assemble the above equations into the state equations
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(8.85)

and the output is given by
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(8.86)

When we compare this set (Equations 8.85 and 8.86) with the state equation 
set obtained earlier (Equations 8.75 and 8.76), we note that the output equations 
are the same, but system matrices look different. We know that both state mod-
els originate from the same system represented by the transfer function given by 
Equation 8.73 and hence should represent the same dynamics as that of the trans-
fer function. In state equations, the eigenvalues represent the system dynamics. 
Since both state models were derived from the same transfer function, their eigen-
values cannot be different and must be the same as the poles of the original trans-
fer function. Let us use MATLAB to check the poles of the original transfer function 
and the eigenvalues of both state equations, for comparison. The MATLAB dialog 
is listed in Figure 8.13 (Cavallo et al. 1996).

From Figure 8.13, it is clear that both state matrices obtained by different meth-
ods yield the same eigenvalues, which are also the same as the roots of the charac-
teristic equation. It is important to note that in Example 8.9, the state variables are 
not measurable since the states’ estimation involves higher-order derivatives as it 
can be seen in Equation 8.74. Hence, states are not available for feedback. But, in 
Example 8.10, the state variables can be estimated with some efforts of integration 
as it can be seen from Equations 8.79, 8.81, and 8.83.
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EXAMPLE 8.11:  CASE WHERE PLANT HAS ZERO 
TERMS WITH M = 2 AND N = 4

Consider

	

Y s
U s

s s
s s s s

( )
( )

= + +
+ + + +

24 32 48
4 5 8 12 120

2

4 3 2
	

(8.87)

In this case, m < n and there will be no direct transmission term D (i.e., D = 0).
This can be directly dealt without factorizing it. Cross-multiplying and taking 

the inverse Laplace transform, we have

	 4 5 8 12 120 24 32 48���� ��� �� � �� �y y y y y u u u+ + + + = + +

Solving for the highest derivative

	
���� ��� �� � �� �y y y y y u u u= − − − − + + +1 25 2 3 30 6 8 12.

and integrating both sides four times, we obtain

	
y y y y y u u u= − − − − + + +∫∫∫∫∫∫∫∫∫∫∫∫ ∫∫∫ ∫∫∫∫1 25 2 3 30 6 8 12.

	
(8.88)

FIGURE 8.13  MATLAB code and results for comparing the eigenvalues of the two state 
systems.
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The above step is somewhat redundant, but written to streamline the thinking 
process. Now, let us define the first state variable, which is also the output:

	 x1 = y

At this step, if there is a nonintegral term u on the right-hand side, it must be 
included in the state variable x1. Since there was no such term, the definition of 
x1 was equated to a simple measurement. Let us differentiate Equation 8.88 once:

�y y y y y u u u= − − − − + + + ∫∫∫∫∫∫∫∫∫∫∫∫1 25 2 3 30 6 8 12.

	 �x x x1 1 21 25= − +. 	 (8.89)

We have tacitly equated the integral terms to a new state variable as

	
x y y y u u u2 2 3 30 6 8 12= − − − + + + ∫∫∫∫∫∫∫∫∫∫∫∫ 	

(8.90)

Let us differentiate above equation once:

	
�x y y y u u u2 2 3 30 6 8 12= − − − + + + ∫∫∫∫∫∫

	 �x x x u2 1 32 6= − + + 	 (8.91)

where, as before, we have equated all integral terms to a new state variable as

	
x y y u u3 3 30 8 12= − − + + ∫∫∫∫∫∫ 	

(8.92)

Differentiating Equation 8.92 once

	
�x y y u u3 3 30 8 12= − − + + ∫∫

	 �x x x u3 1 43 8= − + + 	 (8.93)

Again, we have equated all integral terms to the fourth state variable as

	
x y u4 30 12= − + ∫∫ 	

(8.94)

Differentiating Equation 8.94 once again, we get

	
�x y u4 30 12= − +

	 �x x u4 130 12= − + 	 (8.95)
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Then, the state equation becomes
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(8.96)
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(8.97)

Note: In both Examples 8.10 and 8.11, the approach is very similar.

EXAMPLE 8.12:  CASE WHERE NUMERATOR AND DENOMINATOR
ORDERS ARE EQUAL WITH M = N = 3

Let us consider

	

Y s
U s

s s s
s s s

( )
( )

= + + +
+ + +

3 2

3 2

13 50 62
12 47 60 	

(8.98)

In this case, m = n and we will see that it will result in the direct transmission 
term D.

We will also realize that the state definition needs to be done a bit more cautiously.
Cross-multiplying the original Equation 8.98 and taking the inverse Laplace 

transform, we have

	
��� �� � ��� �� �y y y y u u u u+ + + = + + +12 47 60 13 50 62

Solving for the highest derivative, we get

	
��� �� � ��� �� �y y y y u u u u= − − − + + + +12 47 60 13 50 62 	 (8.99)

By integrating both sides two times, we have

	
� �y y y y u u u u= − − − + + + +∫ ∫∫∫∫∫12 47 60 13 50 62

	
(8.100)

Now, we need to define the state variable. But, if we define x1 = y, we will get 
one state equation as

	
� �x y y y u u u u1 12 47 60 13 50 62= − − − + + + +∫ ∫∫∫∫∫ 	

(8.101)
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Note that we have �u on the right-hand side of the state equation we wrote 
above. This is not acceptable in the standard form of state equations, where u is 
expected to assume piecewise constant values from sample to sample. Hence, its 
derivatives cannot be dealt with in the solution methods employed. So, x1 = y is 
not a valid state definition. So, we need to include u in the definition of the first 
state variable. Let us redefine the first state variable as

	 x1 = y − u	 (8.102)

With the above definition in mind, Equation 8.100 can be written as

	
� � �y u x y u u y y u u u− = = − − − − − + + + ∫∫∫∫∫∫1 12 12 47 60 13 50 62( )

	
�x x u u y y u u x x u1 1 1 212 12 13 47 60 50 62 12= − − + − − + + = − + +∫∫ ∫∫∫∫ 	

(8.103)

where we have tacitly equated the integral terms to a new state variable as

	
x y y u u2 47 60 50 62= − − + + ∫∫∫∫∫∫ 	

(8.104)

Let us differentiate the above equation once:

	
�x y y u u2 47 60 50 62= − − + + ∫∫ 	

(8.105)
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++ 3u 	 (8.106)

where, as before, we have equated all integral terms to a new state variable as

	
x y u3 60 62= − + ∫∫ 	

(8.107)

Differentiating equation once

    
� �x y u y u u u x x u3 3 160 62 60 60 62 60 2= − + = − − − + ⇒ = − +( ) 	 (8.108)
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(8.109)
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From Equation 8.102, the output can be written as
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(8.110)

There is a direct transmission term in the output equation because m = n. In 
Examples 8.10 through 8.12, we see that the states do not involve higher-order 
derivative terms. If the initial values of u and y are zeros, the states can be esti-
mated with relative ease. We have seen a few methods of forming state equations 
with examples. We have only focused on those methods that yield state equations 
where states can be easily measured or estimated. We may conclude that the 
modeling must keep the actual measurable or easy-to-estimate variables as the 
state variables so that they are available for feedback control. Whether the state 
equations are derived from the actual dynamic system knowledge, or by factor-
izing transfer functions, or from polynomials directly, this point must be kept in 
mind. When we have a distributed control system where we encounter many 
subsystems, it is easy to pick measurable variables as state variables. This is true in 
the case of robotic systems.

8.9 � TIME DOMAIN SOLUTIONS USING TRANSFER 
FUNCTIONS APPROACH

In this section, we will deal with the closed system along with a controller of some 
sort. We will exclude open-loop systems, since open-loop system response or open-
loop stability matters are usually trivial once the system poles are determined. 
Therefore, we will focus on closed-loop performance with a controller in place.

For a system with a frequency domain transfer function, the steps involved 
in getting a system with desirable performance are rather straightforward. The 
first thing we need to do is to decide on the controller configuration. In this sec-
tion, we will see closed-system responses for some elementary controllers such 
as proportional controller (P-only) and proportional, derivative, and integral con-
trollers (PID), to get familiar with time domain solutions with controllers. For 
more controller types and further reading on this issue, refer to Ogata (1990), 
D’Azzo and Houpis (1995), and Kuo (1987). Once the controller is decided, the 
feedback system must be analyzed and the overall transfer function must be com-
puted. Then, by applying partial fraction techniques, such complex systems can 
be broken down, and the inverse Laplace transform solutions can be applied to 
obtain time domain solutions. We can also analyze the system performance by 
using software simulation tools such as MATLAB. If necessary, the design can 
be further improved iteratively. Here, we will demonstrate one example using a 
few different techniques.

EXAMPLE 8.13:  MASS, SPRING, AND DAMPER SYSTEM IN CLOSED LOOP

We have seen a mechanical system in Example 8.3, and the plant configura-
tion is shown in Figure 8.7. We derived the open-loop transfer function of the 
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plant and the output versus input relationship is given by Equation 8.41, which 
is repeated here:

	

Y s
F s Ms Ds K

( )
( )

=
+ +

1
2

	
(8.111)

We would like to consider the performance of the plant when controlled in a 
closed loop. We may consider a few types of controllers. Let us assume that we 
want to control y to follow a reference input, yr, which may be a step input. To 
do this, we need to select a controller and create a feedback control system. Let 
us choose a “P-only controller,” the action of which is proportional to the error. 
Such a controller uses a gain factor, denoted by Kp, to amplify the error between 
the desired value and the actual value of the output and feeds the resulting value 
as the input to the plant. Then, the feedback system can be formulated as shown 
in Figure 8.14.

Let us assume that the following arbitrary parameters for the above system are 
given:

	 M = 1 kg, D = 1.5 Ns/m, K = 6 kg/m, and Kp = 20

8.9.1 �A nalytical Solution for Mass, Spring, and Damper System 
in Closed Loop

By referring to Figure 8.14, the closed-loop transfer function is obtained as
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For a step input
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1

Ms2 + Ds + K

Yr(s) Y(s)+

–

Kp

FIGURE 8.14  Closed-loop system used for simulation.
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For finding solution, we match it with a suitable entry in the standard Laplace 
transform table. The comparison yields

	

w w
xw V
n n

n

2 26 26 5 1

2 1 5 0 1471

= ⇒ = =
= ⇒ =

.

. . 	
(8.115)

Then, the solution is
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(8.116)

where ϕ = cos−1 0.1471 = 81.54°.
The simple code to plot this is shown in Figure 8.15. The response obtained using 

MATLAB is shown in Figure 8.16.

8.9.2 �S imulation Solution for Mass, Spring, and Damper System 
in Closed Loop

In the MATLAB environment, Simulink® can be easily used to test various control-
lers. We do not need to do any closed-loop system calculations or deal with Laplace 
transforms. A Simulink setup for this simple proportional controller is shown in 
Figure 8.17.

The MATLAB code that calls this Simulink model is given in Figure 8.18. Using 
this code, we can pass the system parameters to the model. This gives some flexibil-
ity to the programmer. In all the codes in which we have used sim(“xyz”), xyz is the 
file name of the Simulink model shown in the figure referred.

The response we obtain is shown in Figure 8.19. We can see that the response is 
quite oscillatory, and it has a large steady-state error as well. We may try to improve 
this by adding a few additional terms in the controller function.

FIGURE 8.15  Code for plotting response yielded by Equation 8.116.
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FIGURE 8.18  MATLAB code for P-only controller.
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FIGURE 8.16  Time response of the system.
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ms2 + ds + k

1kp+–

FIGURE 8.17  Simulation setup.



207Review of Mathematical Modeling

8.9.3  PID Controller Response

We presented a basic PID controller equation in Chapter 7 as

	
m t k e t k e t dt k

de t
dtp i d( ) ( ) ( )
( )= + +∫ 	

(8.117)

where kp is the proportional gain, ki is the integral gain, kd is the derivative gain, and 
e(t) = yr − y.

In terms of the Laplace transform, the controller output can be written as

	
M s k E s k

E s
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k s E sp i d( ) ( )
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(8.118)

We would like to apply such a controller to the plant and see how the system responds. 
Before we do that, we would like to discuss some fundamental concepts regarding 
PID controllers.

Controller actions: As it can be seen from Equation 8.117, the controller output 
is the sum of three terms. The first term kpe(t) represents the proportional control 
action, which produces an output proportional to the error. This is usually used as 
the base controller. The second term k e t dti ∫ ( )  represents the integral control action. 
As long as the error is present, this term keeps growing. For example, if the output 
is less than the desired value, the error will be positive and the integral term’s value 
grows and increases the input to the plant, thus pushing the output closer toward the 
desired value. In general, an integral controller eliminates the error.

The third term, kd(de/dt), represents the derivative control action. When the 
derivative of the error is positive, implying a tendency for the error to increase, 
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FIGURE 8.19  Time response from Simulink P-only controller.
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this controller produces an output to reduce the error, thus producing an anticipa-
tory/preemptive action. The process of adjusting the proportional, integral, and 
derivative gains to get a good performance is called “‘tuning.” Tuning a PID con-
troller is usually a trial-and-error process, which itself is a vast area of research. 
At first, the proportional gain is adjusted to get a reasonably fast response without 
much oscillations of the output. Then, the integral gain is adjusted to eliminate the 
steady-state error. Finally, the derivative gain is adjusted to reduce the oscillations. 
These adjustments need to be repeated a few times, until response is satisfactory.

We can see that the PID controller is implemented as a sum of “PI” block 
(kps + ki)/s and a derivative block kd(de/dt) in Figure 8.20. It takes considerable effort 
of tuning by trial-and-error to get the appropriate parameters kp = 50, kd = 8, and 
ki = 50 for the controller. Now, we will apply this PID controller to the same mass, 
spring, damper problem, and compare its performance.

The MATLAB code for implementing it is given in Figure 8.21. The response can 
be viewed in Figure 8.22.

Step

Gain Derivative

Transfer Fcn 1Transfer Fcn

1
Out 1

Scope 1

ms2 + ds + k
kps + ki

s
1

kd du/dt

+ ++–

FIGURE 8.20  Simulink setup for PID implementation.

FIGURE 8.21  MATLAB code for PID controller simulation.
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Figure 8.22 shows the system response. See that the overshoot above the reference 
value is <5%, and the final steady-state value is reached in <1 s. Comparing these 
values to the response obtained using the P-only controller, we can observe that the 
performance has tremendously improved in terms of overshoot and settling time.

8.10  TIME DOMAIN SOLUTIONS OF STATE EQUATIONS

As mentioned earlier, in robotics, we prefer state space representation because that 
will be more suitable to represent multi-input multi-output (MIMO) systems, which 
we often encounter in this field. Furthermore, there are well-established methods of 
controller design for such representation. For state space equations, the time domain 
solutions can be obtained using computational methods, analytical methods, and 
simulation methods. We discuss them in the following sections.

8.10.1 T ime Domain Solutions Using Analytical Methods

Computer solution: A system is represented by state equations in the form

	

�X A X BU

Y CX DU

= +
= + 	

(8.119)

We can drop the “bars” above the vectors for convenience. If there are n states, r 
inputs, and m outputs, then X is a vector of size n, A is an n × n matrix, U is a vector 
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FIGURE 8.22  Time response of PID controller implemented in Simulink.
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of size r, B is an n × r matrix, C is an m × n matrix, and D is m × r matrix. In most 
physical systems, the direct transmission term may not be present, hence, D = 0.

The solution is of the form

	

X t e X e BU dAt A t

t

( ) ( ) ( )( )= + −∫0
0

t t t

	

(8.120)

and in general, if the initial time is t0, then the solution consists of two terms a free 
solution plus a forced solution (Ogata 1990; Nagrath and Gopal 1985; Wilburg, 1971):
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(8.121)

In the above equations, eAt and eA t t( )− 0  are called the state transition matrices. The 
free solution implies the state variable response when there is no input. We imply 
that system states will drift according to the free solution pattern. When we have an 
input U that will create an additional response, it is called the forced solution. The 
total solution is the sum of these two.

Hence, it becomes necessary to compute eAt to obtain the solution. It can in fact 
be computed as a series given below:
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(8.122)

The solution of the systems can be easily programmed in computers. In addition 
to the free (undriven) solution, even the forced solution can be computed in steps 
using a suitable computer program. We will now proceed to see some analytical 
solutions in the following sections. We are not providing an example for this since 
we will provide a simulation procedure later.

Laplace transform technique: Let us take the Laplace transform of the state equa-
tion, which is straightforward and write

	 sX(s) − X(0) = AX(s) + BU(s)	 (8.123)

Rearranging

	 [sI - A]X(s) = X(0) + BU(s)	 (8.124)
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Premultiply by [sI − A]−1

	 X(s) = [sI − A]−1X(0) + [sI − A]−1BU(s)	 (8.125)

By taking the inverse Laplace transform, we get

	
X t L sI A X L sI A BU s( ) [ ] ( ) [ ] ( )= −{ } + −{ }− − − −1 1 1 10

	
(8.126)

In the above step, X(0) is constant, so we can rewrite Equation 8.126 as

	
X t L sI A X L sI A BU s( ) [ ] ( ) [ ] ( )= −{ } + −{ }− − − −1 1 1 10

	
(8.127)

The output vector becomes

	
Y t CX t CL sI A X CL sI A BU s( ) ( ) [ ] ( ) [ ] ( )= = −{ } + −{ }− − − −1 1 1 10

	
(8.128)

Comparing Equations 8.120 and 8.127, we can see that the term L sI A− −−1 1{[ ] } is 
in fact the state transition matrix. However, this procedure is quite hard to compute, 
which we will show in the example below. We will use the same example for all the 
methods in this section, and we are not attempting any controller design yet.

EXAMPLE 8.14:  TYPICAL STATE EQUATION SOLUTION

Evaluate the time domain solution for the following system:
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Solution

We write the characteristic equation as
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(8.130)
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The free solution in the Laplace form is represented by
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The forced solution in terms of the Laplace transform is represented by
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Hence, the solution is
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Referring to any standard Laplace transform table in the literature, we can write 
the solution as
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Simplifying, we get

	
X t

e e

e e

e et t

t t

t t

( )
. .

. .

.
=

− +
− +









 +

−
−

− −

− −

− −5 6

2 5 1 5

0 5 0 5

0

2 4

2 4

2 4

1125 0 25 0 1252 4+ −








− −. .e et t

	
(8.137)

Note that the initial values of states (at t = 0) are 1 and −1, respectively, in the 
first term, while the forced solution in the second term is zero for both states. The 
total solution is
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(8.138)

Let us plot the above states using the MATLAB code in Figure 8.23 for future 
comparison.

The plots are shown in Figure 8.24.
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FIGURE 8.23  Code for calculation for plotting Equation 8.138.
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FIGURE 8.24  Time response of regulator output from calculations.
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Time domain solutions using simulation: Here, we would like to take the same 
example for continuity of discussion and get the outputs using MATLAB simulation 
of state space system and compare the results.
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The simulation diagram is quite routine, and it is shown in Figure 8.25. A 
MATLAB program that defines the parameters and invokes the Simulink model is 
listed in Figure 8.26. The simulation results in Figure 8.27 tally with the results of 
earlier methods shown in Figure 8.24.

8.11  REGULATOR AND SERVO CONTROLLERS

Earlier, we have seen simple types of P-only and PID controllers. For many systems 
in robotics, such simple controllers may not work. We may need more sophisticated 

Step State-space
Demux

x′ = Ax + Bu
y = Cx + Du

1

2

Out 1

Out 2

FIGURE 8.25  Simulink setup for state space system.

FIGURE 8.26  MATLAB code for state model simulation.
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controllers. The most popular types of controllers used in robotics are pole place-
ment regulators, servos with integrator using pole placement concept, linear qua-
dratic criteria-based regulators, linear quadratic criteria-based servo controllers, 
adaptive regulators, and adaptive servo controllers.

At the outset, in a day-to-day industrial control application, the objectives of the 
control and the actual specifications for performance are not really clear. However, 
to some extent, the picture gets better in robotics. In most of the cases in robotics, 
the objectives are clearly known in the beginning of the design process. On the other 
hand, there may be little knowledge of some parameters that are difficult to estimate. 
For example, in game robotics, we may not know the parameters such as friction of 
the robotic vehicle or reflectivity of a maze wall.

The design is going to be challenging and iterative mainly in two stages. We 
derive a model and evaluate its parameters. The next step is to check the model accu-
racy by experimenting. If our plant response is not according to the expectation of 
the model, then we have to revise the model. This has to be repeated until the model 
response and the plant response match.

The next stage is controller design. Once we design the controller, we simulate the 
response; if the result is satisfactory, then we test the actual closed-loop system tak-
ing utmost care. If the response matches the expectations, then we can conclude that 
the design is complete. Otherwise, controller structure or parameters may have to 
change. We can improve the performance to match the specifications still following 
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the process of “simulate first and test later.” This process has to go on through a few 
cycles until the result is satisfactory.

So far, we have discussed analog controllers to introduce the concepts in control-
ler design. However, in robotics, controllers are hardly implemented in analog form. 
Therefore, we will present the design exercise in the next chapter where we describe 
digital controllers.

8.12  CONCLUSION

In this chapter, we have reviewed the basics of modeling of physical systems in 
terms of transfer functions and state variable analysis. Even though the transfer func-
tion models are sufficient to design and implement controllers of different types, 
we skipped detailed designs of controllers in favor of state models since all trans-
fer function model-based designs are by trial and error. Another problem is that as 
the systems get complicated as in the case of robotics, such trial-and-error-based 
design is very time consuming and at times becomes impractical. We only presented 
a P-only controller and a PID controller as examples. Then, we moved on to state 
modeling. We went through some analytical methods of response calculations and 
dwelled upon some simulation techniques as well. We skipped the design methods 
for regulator problem and servo control problem, since digital controllers are used in 
robotics. We have focused on analog techniques so far, since we believe that control 
systems are learned first from analog systems. Since the actual implementations are 
done using digital computers, it is necessary to learn discrete system concepts. In 
the next chapter, we will discuss the discrete systems concepts before we go through 
some case studies.
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Digital Control 
Fundamentals and 
Controller Design

9.1  INTRODUCTION

In earlier chapters, we focused on systems working in continuous mode, which 
implies that the system is monitored and controlled at each and every instant of time.

While analog control is quite important to understand control theory, implement-
ing the designed controller using analog components would pose a number of prob-
lems. We will describe these issues in the following sections. In fact, as we have 
pointed out earlier, analog controllers are seldom implemented in modern control 
systems especially in robotics. They are expensive in the long run, since they need 
more calibration and maintenance than a digital system, due to aging of analog 
components. The falling price of computing hardware also makes digital control-
lers more attractive. They can work in most of the harsh environments where some 
robots are deployed. Furthermore, the distributed processing, which is very useful 
in robotics, is also possible to implement with digital controllers. They can fit in to 
small spaces and communicate with systems in the vicinity or far away. The neces-
sary hardware or protocols for such communication network such as IEEE-488 are 
readily available. The instrumentation field also is moving toward digital systems. 
Therefore, digital controllers fit well with digital instrumentation.

We will present some ideas related to digital implementation of controllers in the 
next section. These concepts can be learned from a whole body of control litera-
ture (Astrom and Wittenmark 1990; Cadzow 1973; Nagrath and Gopal 1996; Ogata 
1995). We have provided a glimpse of what we feel is essential knowledge for a robot 
designer from a large collection of literature. We have provided some examples in 
this chapter and some case studies in Chapter 10, where we show how this knowl-
edge is used in robotics.

9.2  DIGITAL CONTROL OVERVIEW

A robot operates in a continuous world, and all the processes involved in robotics 
are also continuous by nature. Hence, digital controllers cannot directly deal with 
such continuous systems. Therefore, we need to introduce some intermediate steps 
to adapt digital systems to control analog plants. Figure 9.1 shows a block diagram 

9
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of a typical single-input single-output digital control system. We explain briefly the 
basic elements involved in digital control below.

9.2.1 S ignal Sampler

This is usually denoted by a switch in all diagrams, though there is more to it. The 
computer represents the controller, and it only works with numbers. Hence, to take 
decisions and produce a control output, it needs to sample the system outputs peri-
odically and receive them as numbers. On the other hand, an analog controller acts 
on the signal values every instant, which is not possible for digital controllers. The 
computer has to take one value of error at a time and compute the output. The func-
tion of a sampler is to catch the samples of the system variables and keep them until 
they can be converted into a digital value. A typical sampler is shown in Figure 9.2.

Even though Figure 9.1 shows only one input, there may be more than one channel 
to be sampled. Figure 9.2 shows a case where there are four signals to be sampled 
simultaneously. The digital computer takes control action at periodic intervals called 
sampling time. At the instant of sampling time, sample/hold signal is activated and 
all the signals are captured simultaneously at the current values and are available 
at the multiplexer inputs. Then multiplexer passes the captured signals to the ADC 
one by one for conversion based on the select lines provided by the computer. The 
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FIGURE 9.1  General block diagram of a digital controlled system.
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program should allow enough settling time for the output of the multiplexer to be 
stabilized before conversion begins. In the example given in Figure 9.2, ADC is 8 
bits; hence, captured samples are converted into 8-bit length digital numbers. The 
number of bits of conversion depends upon the resolution required. These operations 
are usually done under software control of the microcontroller or microprocessor. 
Some devices, such as HCTL 2016 decoder with on-board processor, provide data 
directly in digital form. For such input signals, there is no need for conversion.

When the system variables change quite slowly, compared to the ADC conversion 
speed, sample/hold devices are not needed. In such cases, the total time taken by 
ADC to convert all channels may be far less than the shortest time constant of the 
closed-loop system.

9.2.2 D igital Controller

The digital controller is nothing but a computing device equipped with software 
stored in its memory. In the case of a microcontroller, the software is stored in its 
EEPROM or “flash” memory. Sometimes, programmable logic controller (PLC) 
devices play the role of digital controllers. In many cases, the designers tend to use 
readily available motherboards (such as eZdsp 2407), which come with serial and 
parallel ports for communication and adopt them as digital controllers. Such boards 
also come with usable software development tools. These motherboards do need 
additional sister boards for power driving, and it is the task of the robotics engineer 
to develop sister boards that suit his needs. This ensemble described above as a 
whole can be called a digital controller.

9.2.3  Zero-Order Hold

As we mentioned at the outset, physical systems are continuous in nature, such as DC 
motors, hydraulic systems, or pneumatic systems, to name a few. They need continu-
ous signal inputs. In contrast, digital controllers can only provide a set of numbers 
at each and every control instant. These numbers need to be converted to analog 
signals to be used by the plant. Since a microprocessor is used as a controller, the 
output number from the controller stays on the data bus for a short period of time. 
We need to keep this number for the duration of sampling time (control interval) and 
convert it to analog value so that it can be used by the plant. The dual function of 
holding the number and converting into analog value is achieved by the combination 
of zero-order hold (ZOH) and digital-to-analog converter (DAC). Figure 9.3 shows 
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converter

Control output
on data bus

Latched data Continuous
signal

FIGURE 9.3  Implementation of zero-order hold.
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the basic structure of ZOH implementation. After this, the continuous control signal 
can be processed as in any other analog control system.

When a microprocessor is used as controller, a separate digital latch circuit is nec-
essary as shown in Figure 9.3. Nowadays, many microcontrollers come with built-in 
output ports with latches. Even the DACs are integrated to microcontrollers, which 
simplifies the circuit design significantly.

After considering all three important parts of a digital controller, we can incorpo-
rate all the constituent devices and redraw the block diagram as a general guide line 
as shown in Figure 9.4.

Since digital controllers are popular these days, it will be useful to compare them 
with analog controllers. Is it worth-learning microcontrollers, encoders, H-bridges, 
and so on, instead of simply implementing an analog controller which only requires 
the knowledge of power electronics and analog control theory? In practice, it is nec-
essary to make this additional effort to implement a reliable and cheaper system, 
which avoids expensive precision analog hardware. Even though digital controllers 
are more complex, their advantages largely outweigh their complexity. Since they 
need less maintenance and calibration, digital controllers are far more reliable than 
analog control systems.

Digital computers are very flexible because the controller parameters can be 
changed by changing a value in the program without doing any hardware changes. One 
digital controller can take care of many control loops simultaneously due to the possi-
bility of fast computation. Moreover, sophisticated control techniques such as adaptive 
control can be implemented using digital controllers. Such controllers include adaptive 
prefiltering following an anti-aliasing filter in data acquisition. They also use a post-
filtering stage to smoothen the control output to avoid exciting hidden resonance espe-
cially in robotic systems. These features cannot be implemented in analog systems. For 
the examples of fast digital adaptive control, using prefiltering and postfiltering with 
sampling time of 0.5 ms, refer to Astrom et al. (1994) and Astrom and Kanniah (1993).

Warning messages, alarms, and other safety systems along with a user-friendly 
interface can be implemented in a digital system. The instrumentation technologies 
are also moving fast into digital types. It is difficult to make use of digital informa-
tion obtained from such devices in an analog control system. Recently, hierarchical 
and distributed control systems are employed in robotics as well as in many other 
complex systems. Obviously, such controllers can be implemented within the frame-
work of a digital control system easily.
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FIGURE 9.4  General outline of a direct digital control system.
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9.3  SIGNAL REPRESENTATION IN DIGITAL SYSTEMS

When analog plants are controlled digitally, they are called sampled data systems. 
For this, we need to sample the analog signals and represent them digitally. Plants 
also need to be represented in discrete domain. In this section, we will consider the 
representation of sampled signals and the analog plants, in a computer-controlled 
environment.

9.3.1 S ampling Process

A standard representation of a sampler switch is shown in Figure 9.5a. The switch 
closes every T seconds to sample input signal. Input signal is represented by the con-
tinuous function f(t) as shown in Figure 9.5b. The outputs of the sampler are shown 
by a train of impulses f*(t) in Figure 9.5c. Sampling is equivalent to multiplying the 
signal by an infinite sequence of impulses spaced at constant intervals.

T

f *(t)

f *(t)

f (t)

f (t)

(a)

(b)

(c)

0 T 2T 3T 4T 5T 6T

0 T 2T 3T 4T 5T 6T

t

t

Sampled signalContinuous time signal

FIGURE 9.5  (a) Sampler switch, (b) continuous signal f(t), (c) impulse approximation of 
switch output f*(t).
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Summing up the unit impulse train, we can represent them mathematically as
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We multiply f(t) using the sequence of impulses δT(t) and define it as f*(t) which 
represents the sampled signal. We can now write
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Figure 9.6 illustrates a part of the above function.
In Figure 9.6, δ(t) is a unit impulse at t = 0 and δ(t − nT) is a unit impulse at t = nT. 

Since

	
L t nT e nTsd( )−{ } = −

	
L f nT t nT f nT e nTs( ) ( ) ( )d −{ } = −

	 (9.3)

then taking the Laplace transform of Equation 9.2 and using Equation 9.3, we can 
obtain the Laplace transform of the sampled signal as
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FIGURE 9.6  Sampled signal as weighted impulses.
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A major question in digital systems is that how often should we sample. It depends 
upon the purpose of sampling and we will elaborate below.

9.3.1.1  Sampling for Reconstruction
Sampling theorem states that a sampled continuous signal may be reconstructed 
from the samples if and only if the sampling frequency is more than twice the high-
est-frequency content of the signal. Otherwise, the high-frequency component of the 
signal may pass as a low-frequency signal in the output.

9.3.1.2  Sampling for the Purpose of Control
The sampling frequency described above is not sufficient for control purposes. The 
sampling frequency should be more than 12 times the closed-loop system bandwidth. 
That leads to the conclusion that the sampling interval should be less than half of 
the smallest time constant of the closed-loop system. We have to bear in mind that 
the closed-loop system bandwidth will be much higher than the open-loop system 
bandwidth depending upon the gain of the controller.

9.3.2  Z-Transform of Signals

The Z-transform is an important mathematical tool for understanding and analyzing 
discrete time systems. Similar to the Laplace transform analysis, which is used for 
analyzing continuous time systems, we need another tool to analyze digital systems. 
Z-transform analysis serves that purpose. We have three possible scenarios:

	 1.	Taking the Z-transform of continuous signals if they are sampled at regular 
intervals and represent them in the Z-domain. Then the continuous signal 
of the system output is recoverable from samples, if the sampling interval 
had been chosen appropriately.

	 2.	 If only signal description is available as sample values in terms of sample 
count k, they can still be represented in the Z-domain. But in this case, 
sampling time is transparent since it is not explicitly stated. This situation 
happens when one system receives data from another system in digital form 
only and the receiving system has to process the data further. The receiving 
system can be a filter or control computer. For design purposes, we need to 
have the Z-transform of such signals as well.

	 3.	Z-domain representation can be obtained from s-domain transfer func-
tions, by introducing a ZOH block as shown in Figure 9.4. We will deal 
with such a case in a later section. For now, we will discuss the first two 
cases only.
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9.3.2.1  Z-Transform of Continuous Signals
Equation 9.4 gives the generic description of the Laplace transform of the sampled 
signal.

The relationship between the Z-transform and the Laplace transform is defined as

	 z esT= 	 (9.5)

Substituting Equation 9.5 in Equation 9.4, it can be rewritten as

	

F s f nT z F zn

n

* ( ) ( ) ( )= =−

=

∞

∑
0 	

(9.6)

Equation 9.6 defines the Z-transform of the sampled signal f*(t). We note that the 
Laplace transform of the sampled signal is nothing but the Z-transform of that sig-
nal. This concept is the foundation of sampled system analysis. Now, let us see some 
example signals to get familiarized with the idea.

EXAMPLE 9.1

A unit impulse function is given in Equation 9.7. It has a unity value at k = 0 and 
zero at all other instants of sampling.
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The graphical representation of an impulse is shown in Figure 9.7.
Applying Equation 9.4 to the signal shown in Figure 9.7
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Hence, we find that the Z-transform of a unit impulse is just 1.
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FIGURE 9.7  A unit impulse function.
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EXAMPLE 9.2

A unit step function is defined as
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Figure 9.8 shows the sampled unit step function.
By using Equation 9.6 and following the definition below
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EXAMPLE 9.3

Find the Z-transform of the sampled signal

	 f(t) = t  for  t ≥ 0	 (9.11)

Using the definition given in Equation 9.6, we can write
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(9.12)

EXAMPLE 9.4

To further illustrate the preceding concepts, consider the continuous input

	 f(t) = e−at	 (9.13)

f (kT )

1

0 1 2 3 4 5 6
k

Train of pulse

FIGURE 9.8  A unit step function.
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The Z-transform of the sampled signal by definition is
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EXAMPLE 9.5

Find the Z-transform of the time function

	 f(t) = 1 − e−at,  for  t ≥ 0	 (9.16)

Using the definition in Equation 9.6

	 F z e z e zT T( ) ( ) ( )= + − + − +− − − −0 1 11 2 2a a � 	 (9.17)

Adding and subtracting a 1

	 F z z z e z e z e zaT aT aT( ) [ ] [ ]= + + + − + + + +− − − − − − − −1 11 2 1 2 2 3 3� � 	 (9.18)
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The above derivations illustrate the methods used for calculating Z-transforms. 
Normally, Z-transform tables provide these transform values for sampled signals in 
terms of sampling time.

9.3.2.2  Z-Transform of Signals Represented Only as Sample Count, k
In all the previous five examples, we took continuous signals and sampled them at 
constant interval, say, T seconds. Then, term T appeared explicitly in the transform 
equations. Under some circumstances, the signal values are provided only at sam-
ples as a function of sample count, k, without indicating the sampling time explic-
itly. Then in that case, the sampling time is not known, and it cannot appear in the 
Z-transform. This kind of insight about the sampling time is not relevant, but we still 
need the Z-transform representation to analyze the overall system. To get a better 
picture, let us consider some examples here.

EXAMPLE 9.6

Find the Z-transform of the sampled signal

	 f(k) = k  for  k ≥ 0	 (9.20)
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Let us invoke the definition in Equation 9.6. By dropping T from it, we can write
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(9.21)

On comparing Equation 9.21 with Equation 9.12, we note that T is not explicit 
in Equation 9.21.

EXAMPLE 9.7

Find the Z-transform of the sampled signal

	 f(k) = ak,  for  k ≥ 0	 (9.22)

Let us invoke the definition in Equation 9.6. By dropping T from it, we can write
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This is being a geometric progression, we can write
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Alternatively, let us choose an arbitrary sampling time T and a constant α such 
that

	 a = e−αT	 (9.24)

then

	 f(k) = ak  for  k ≥ 0

can be written as
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This is similar to signal e−αt sampled at arbitrary intervals of T seconds.
Since
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we can conclude
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EXAMPLE 9.8

Find the Z-transform of the sampled signal

	 f(k) = 1 − ak  for  k ≥ 0	 (9.27)

Let us choose as before an arbitrary sampling time T and a constant α such that

	 a = e−αT	 (9.28)

then f(k) = 1 − ak for k ≥ 0 can be written as
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This is similar to signal 1 − e−αt sampled at arbitrary intervals of T seconds.
Since
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we can conclude
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9.4  PLANT REPRESENTATION IN DIGITAL SYSTEMS

So far we have seen how the sampled signals and signals that are represented in 
terms of sample count can be written in a discrete domain. We note that in Figure 9.4 
there is a latch and a DAC just before the process under digital control that operates 
as ZOH. The control computer uses a program and produces appropriate values as 
manipulated variables. They are nothing more than numbers. These numbers have to 
be used to activate power control devices in robot systems. As we have seen earlier, 
there are two processes involved. One process is to hold the numerical value until it 
is changed, and the other is to convert it to analog form.

We will ignore the conversion process during our analysis. Actually, it does not 
affect the basic understanding of the process of reconstruction and implementation. 
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In practice, the holding process is done by a digital latch and the overall system as 
illustrated in Figure 9.4. The controller output signal m(t) is shown in Figure 9.9.

Our aim is to find a mathematical representation for the ZOH shown in Figure 9.9 
starting from computer output f*(t) to the ZOH output of the plant m(t). This repre-
sentation can be used to calculate the overall system transfer function. For this, we 
need to consider the transfer function of ZOH first.

9.4.1 T ransfer Function of ZOH

The ZOH is very important to understand and be accounted for when the physical 
system is being controlled from the computer. We will derive a transfer function for 
the ZOH. Referring to Figure 9.9, the reconstructed output can be written as
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The Laplace transform of Equation 9.32 is
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Hence, the Laplace transform for a ZOH is
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T
f*(t)

ZOH
m(t)

m(t)

0 T 2T 3T 4T 5T 6T
t

FIGURE 9.9  Signal reconstruction for control manipulation.
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9.4.2  Z-Transform of Plant Fed from ZOH

Combining the above ideas, the discrete domain transfer function of a plant can be 
written as
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EXAMPLE 9.9

Let us find the Z-transform of the following computer-controlled plant: K/(s + a). It 
is a first-order plant fed through a ZOH from a computer as shown in Figure 9.10. 
Hence, it becomes necessary to find the Z-transform representation of this plant.

The discrete transfer function can be obtained as
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Referring to the standard Z-transform tables found in the control literature (see 
for instance Ogata 1995), we can write the Z-transform as
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Hence
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Then, the Z-transform of the output is

	 C(z) = G(z)M(z)	 (9.39)

9.4.3 T ustin’s Approximation

At times, the evaluation of the Z-transform becomes a lengthy process. It is possible to 
use some approximate methods to obtain Z-domain representation of plants and still 
achieve reasonable accuracy of results in discrete domain analysis and simulations. 
Tustin’s formula is one of such methods available and provides a good approximation 
of the Z-transform (Astrom and Wittenmark 1990). Tustin’s formula is given as

M(t)
ZOH

M(z) C(z)

(s + a)
K

FIGURE 9.10  Manipulated variable acting on the plant through ZOH.
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(9.40)

It simply implies that the discrete domain approximation can be obtained by 
replacing s terms by the above function in Equation 9.40 in the s-domain transfer 
function. A ZOH is built into this approximation. Therefore, there is no need to 
include a separate ZOH.

EXAMPLE 9.10

Let us rework Example 9.9 using Tustin’s approximation. All we need to do is sub-
stitute Equation 9.40 into the system transfer function.

	

Z
K

s a
K

T
z
z

a

KT z
z aTz aT

K z
z a+







= −
+

+
= +

− + +
= +

Tustin
2 1

1

1
2 2

1( ) ( )
( TT aT+ + −2 2) ( )

		
		  (9.41)

We note that Equations 9.38 and 9.41 are different. However, if we compute 
the responses, we will see that they yield the same results for any arbitrary input 
function.

9.5  CLOSED-LOOP SYSTEM TRANSFER FUNCTIONS

We have learned to compute the overall transfer functions of digital sampled data 
systems. Since there are rarely any open-loop control systems, we need to understand 
calculating closed-loop transfer functions. Even though fundamentally there is no 
major difference between analog and digital systems in this aspect, there are some 
minor differences depending upon how and at which points the sampling is done. 
We are deriving some useful formulas similar to what we saw in Chapter 8. Let us 
consider a typical closed-loop control system and see how the closed-loop transfer 
function can be derived.

In Figure 9.11, Gc(z) is the controller implemented by a digital system such as a 
computer. There is an equivalent controller transfer function as Gc(s) in frequency 
domain. We prefer that the controller be in Z-domain, since such a controller exists 

H(s)

R(s)
+

–

Gc(z)
Y(z)

Gp(s)

Yfb(s)

FIGURE 9.11  Block diagram of a closed-loop computer-controlled system.
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only in the discrete domain. Furthermore, the plant transfer function Gp(s) includes 
a ZOH. Also note that the output measurement, broadly called instrumentation, hap-
pens in the continuous domain through the feedback transfer function H(s). In some 
cases, instrumentation can be digital. We will see such a scenario later. In fact in 
real systems, we can replace one sampler before Gc(z) with two samplers, one on the 
path of R(s) and another on the path of Yfb(s) without changing anything. After all, 
we are aware that the reference R(s) may be even generated by the computer itself or 
in response to an external command link, say, from another computer. Let us derive 
the closed-loop transfer function for this system. However, before we proceed, it is 
important to note that

	 Z[Gp(s)H(s)] ≠ Gp(z)H(z)

The left-hand side of the equation implies “multiply the transfer functions 
and find the Z-transform of the product” and the right-hand side means “find the 
Z-transforms individually and then multiply.” These two are not the same. The typi-
cal notation used for Z[Gp(s)H(s)] is GpH(z).

Now, referring to Figure 9.11
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then we have
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We see that

	 Y(z) = Gc(z)Gp(z)e(z)	 (9.44)

Substituting for e(z), we get
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(9.45)

9.5.1 S ystems with Digital Instrumentation

What happens if the instrumentation is done digitally by taking in the sampled signal, 
Y(z)? We can redraw the block diagram by shifting the take off point for feedback path 
after the sampler as shown in Figure 9.12. We may have an awkward situation where 
the error detector deals with analog R(s) and sampled feedback from H(z). To avoid 
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this, we replace one sampler after the subtraction by two samplers before it. Shifting 
the samplers does not make any difference in the analysis, except that it indicates 
the control computer now does the subtraction of feedback from the reference. The 
new transfer function can be derived by changing the steps of analog instrumentation 
described earlier. We have rewritten H(s) as H(z) since it represents digital instru-
mentation. The difference finder is a part of the digital controller program, which is 
marked by dotted lines in Figure 9.12. We can now write the error equation as

	

e R Y

e z R z G z H z m z

f b

p

= −

= −( ) ( ) ( ) ( ) ( )

From Figure 9.12, m(z) = Gc(z)e(z); hence

	 e(z) = R(z) − Gc(z)Gp(z)H(z)e(z)	 (9.46)

We note that the term GpH(z) in Equation 9.42 has been replaced by Gp(z)H(z) in 
Equation 9.46, since there is a sampler between Y(s) and Y(z) as shown in Figure 9.12.

Then, Equation 9.43 gets modified as
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Following the same logic, we can proceed
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	 (9.48)

Substituting for e(z) from Equation 9.47, we get
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H(z)

R(s) +

–

Gc(z) Y(z)Gp(s)

Yfb(s)

Y(s)M(z)

FIGURE 9.12  System with digital instrumentation.
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In complex systems, instrumentation may be happening in more than one point, 
making the block diagram much more complex than what we discussed in Figure 
9.12. This may result in more complex interconnections.

9.6 � RESPONSE OF DISCRETE TIME SYSTEMS, INVERSE 
Z-TRANSFORMS

We have so far presented the techniques to obtain the pulse transfer functions of sig-
nals and systems. If we know the pulse transfer functions of control systems, then it 
is easy to obtain pulse transfer functions of the output. Inverse Z-transform provides 
methods of finding the output as sequence of numbers in sampled instances, say, y(k) 
from Y(z). There are a few methods of obtaining such time responses. We will pres-
ent two techniques and give some examples to provide insight into the techniques. 
One method is by splitting the signal into partial fractions and using Z-transform 
tables. The other method uses the “difference equation” concept.

9.6.1  Partial Fraction Technique

EXAMPLE 9.11

Assume that Z-transform of a signal is given by
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(9.50)

We would like to determine the inverse Z-transform using partial fractions and 
apply the transform tables to obtain signal description in terms of sample count k.

Partial faction expansion of Equation 9.50 yields
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The inverse Z-transform using the standard Z-transform table found in the lit-
erature is

	 x(k) = −1 + (2)k  for  k ≥ 0	 (9.52)

9.6.2 D ifference Equation Techniques

Another example shows how time domain solution can be obtained by difference 
equations.

EXAMPLE 9.12

The transfer function of a closed-loop system is given below, and we would like to 
compute the solution in terms of sample count.
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(9.53)
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We can cross multiply Equation 9.56 and get the difference equation from 
there:

	 C z z z z z R z( )( ) ( ) ( )10 8 1 2 12 2+ + = + + 	 (9.54)

	 C z z z z z R z( )( ) ( ) ( )10 8 1 21 2 1 2+ + = + +− − − −

	 10 8 21 2 1 2C z z C z z C z R z z R z z R z( ) ( ) ( ) ( ) ( ) ( )= − − + + +− − − −
	 (9.55)

We now take the inverse Z-transform using time shift theorem

	 c(k) = −0.8c(k − 1) − 0.1c(k − 2) + 0.1r(k) + 0.2r(k − 1) + 0.1r(k − 2)	 (9.56)

We know that the input r(k) is one for all k ≥ 0 and let us assume that output 
c(k) = 0 for k < 0, which implies that c(−1) and c(−2) are zeros.

Now, we are ready to compute the c(k) by substituting values for k = 0,...,n in 
Equation 9.56

	 c(0) = −0.8c(−1) − 0.1c(−2) + 0.1r(0) + 0.2r(−1) + 0.1r(−2) = 0.1	 (9.57)
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(9.59)

This calculation continues for all the values of k.

9.6.3 T ime Domain Solution by MATLAB®

It is possible to obtain time responses using MATLAB simulation for digital systems 
(Cavallo et al. 1996; Ogata 1994). If we compute the closed-loop transfer function, 
then we can use the “filter” command to obtain the response. We will see a few dif-
ferent MATLAB techniques to achieve the same objective for the sake of diversity.

EXAMPLE 9.13

Consider an open-loop plant with transfer function G(s) = (2α/s + α) controlled in 
a closed loop digitally with ZOH. It will have an open-loop transfer function of
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(9.60)

where a is the system constant dependent on sampling time and defined as

	 a = e−αT	 (9.61)
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Then the closed-loop transfer function of
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(9.62)

We would like to compute the system response for a step input, using the 
MATLAB command “dstep” assuming that α is 15 and the sampling time is 0.01 s. 
The code and the response are shown in Figures 9.13 and 9.14, respectively. Note 
that in the code, the number of samples selected is 50, which correspond to dura-
tion of 0.5 s.

The response is shown in Figure 9.14.

FIGURE 9.13  MATLAB program to calculate output sequence (sample time T = 0.01 s).
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FIGURE 9.14  Unit step response using “dstep” command for 0.5 s.
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EXAMPLE 9.14

In this example, we intend to get the response for Example 9.13 using simula-
tion. We needed to compute the closed-loop transfer function in order to use the 
“dstep” command. Using the MATLAB Simulink modeling tool, the response can 
be plotted without having to compute the closed-loop transfer function. This is 
quite straightforward, using a Simulink model as shown in Figure 9.15.

A sample program is listed in Figure 9.16. The response obtained is shown in 
Figure 9.17, which is the same as Figure 9.14.

EXAMPLE 9.15

It is possible to simulate a sampled system directly using MATLAB. Consider the 
continuous system

	
G s

s s
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7 102
	

(9.63)

We have created a simulation model as shown in Figure 9.18. The MATLAB 
code to drive it is given in Figure 9.19, and the response is given in Figure 9.20.

9.7  TYPICAL CONTROLLER SOFTWARE IMPLEMENTATION

Controller transfer functions are written as difference equations to implement them 
in microprocessors. The program running on the processor performs the calcula-
tions in a sequence. We will illustrate how this is done by using a PID controller as 
an example. Such computer implementations of controllers are usually done using 

Step Discrete
transfer function

2*(1 – a)+ 1– z – a Out 1

FIGURE 9.15  Simulink model for simulating a discrete system.

FIGURE 9.16  MATLAB code for closed-loop simulation of a discrete system.
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2
Out 2

1
Out 1

Zero-order
hold

2

s2 + 7s + 10
Transfer fcnStep

FIGURE 9.18  Simulation model of a system with ZOH.
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FIGURE 9.17  Response of discrete system simulation for 0.5 s.

FIGURE 9.19  MATLAB code for the simulation.
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approximations. A PID controller has three terms, namely, proportional, derivative, 
and integral. In time domain, it is written as
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(9.64)

where Kp is the proportional gain, Ti is the integral time, and Td is the derivative time.
It can be seen that the first term is proportional control, the second term is the 

integral part, and the third term is the derivative part. In general, the proportional 
part provides the basic control, the integral part tackles the steady-state error, and the 
derivative part speeds up the response.

Ki and Kd are defined appropriately as
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(9.65)

	 Kd = KpTd	 (9.66)
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FIGURE 9.20  Response of the sampled data system.
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9.7.1 I ntegral Calculations

Let us assume that the values of sampled errors are denoted as e(k), e(k − 1), e(k − 2), 
and so on and the manipulated variables calculated by the controller are denoted as 
m(k), m(k − 1), m(k − 2), and so on. The k and k − 1 indicate the current and the last 
sampling instant, respectively. Let the control interval be T seconds, which should 
be chosen after considering the closed-loop system time constants. At any sampling 
instant k, the integral of error can be approximated as

	
ei k ei k e k e k

T
( ) ( ) [ ( ) ( )]= − + + −1 1

2 	
(9.67)

where ei(k − 1) is the last integral of system error.

9.7.2 D erivative Calculations

The current value of the derivative of error is approximated as

	
e k

e k e k
Td ( )

( ) ( )= − − 1

	
(9.68)

Finally, the controller output can be computed as

	
m k K e k K e k K e kp i i d d( ) ( ) ( ) ( )= × + × + ×

	 (9.69)

9.7.3 I mplementation of a Digital Controller

A control system in which a digital processor controls a plant by sampling output 
data, calculating the manipulated variable, and outputting it to the plant in real time 
is called direct digital control (DDC). The term “real time” is used here because 
for every sample, the processor must respond before the next sample is taken. An 
important requirement of DDC is that the data acquisition, control computation, and 
outputting of control signal to the plant through ZOH should be performed at regu-
lar intervals. There are two ways of implementing constant sampling and control 
intervals. One method uses computation time to achieve the constant and control 
interval. A second method uses interrupts to achieve this. Let us consider both types 
of implementation in detail.

Loop time-based sampling and control: The controller performs calculations and 
it takes certain time duration. Most of the computations take fixed duration. After 
the computation of control output, it must be implemented and then the processor 
goes into a fixed time delay loop. By utilizing this method, we can create a pseu-
dosampling period effect. It is desirable to select a processor which can perform all 
the calculations within a small fraction of sampling time, and the remaining time is 
decided by the delay loop.

Timer-based sampling and control: It is possible to use CPU interrupt as a time 
keeper to maintain constant sampling intervals. Within the timer interrupt service 
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routine, an index is incremented and it can be used to decide when the next sampling 
and control is to be done. Furthermore, some data sampling/filtering may also be 
performed within the timer interrupt routines. After the program starts, the main loop 
performs instrumentation and control functions. As an example, let us assume that 
this process takes 2 ms and processor outputs the control signal. Let us also assume 
that the sampling interval has been fixed as 12 ms, and timer interrupts occur every 
1 ms. As the main calculations are being executed at the main loop, two interrupts 
would have occurred within those 2 ms of computation, since timer interrupt occurs 
every 1 ms. This number is being counted at the interrupt service routine. After out-
putting the control signal, the processor waits in a loop, checking the counted inter-
rupts. When the counted interrupts reach 12, the processor resets the interrupt count 
to zero and loops back. Then, in the next step, samples are taken, control outputs are 
computed and this cycle continues.

It is important to realize that in the above procedure, immediately after perform-
ing instrumentation and control computations, the control signal should be put to the 
output port. If the program waits for the end of the sampling time to do this, then 
we would be introducing one sampling time delay. This delay in fact was not part 
of the plant model, and hence the control may not work satisfactorily. Considering 
the above example, if the processor can take <1 or 2 ms, it is a small fraction of the 
total sampling time, and there is no delay introduced. The processor still can wait 
for the 12th interrupt before looping back. This is not a serious problem as modern 
processors are very fast.

9.8  DISCRETE STATE SPACE SYSTEMS

We presented some ideas on using state space techniques earlier in Chapter 8. We 
have stated that state space representation has many advantages over transfer func-
tion representation since the former is more suitable for multi-input/multi-output 
(MIMO) systems. Robots are typically MIMO systems. In modern controller imple-
mentations, the trend is not only to use digital controllers, but more and more such 
controllers are based on state feedback. Intuitively, this leads to the point that we 
ought to implement digital state space-based controllers. For this purpose, let us first 
learn a few techniques to derive discrete state space equations.

9.8.1 D iscrete State Space System from Discrete Transfer Functions

There are a few ways of deriving discrete state space equations from discrete transfer 
functions, and they result in the following types of state models:

	 1.	Controllable cannonical form
	 2.	Observable canonical form
	 3.	Diagonal canonical forms

They differ in the way the states are chosen and the specific purpose of the model. 
Since pulse transfer functions have one input and one output, in higher-order sys-
tems states need to be estimated. In the above methods, efforts needed to obtain state 
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variables (for feedback) differ from each other. Regardless of the method used, the 
bottom line is that during the design process we need to be sure that the state esti-
mation is possible or that states are readily available for measurement. Based on our 
experience, complicated calculation for state estimation is time consuming and there-
fore such calculation should be avoided wherever possible. Furthermore, in robotics, 
we are more interested in direct derivation of discrete state equations from continu-
ous state models such that either states are directly measurable or they can be easily 
estimated. Here, MATLAB also can provide some useful tools in the design process.

9.8.2 D iscrete State Space Model from Continuous State Space Model

Once we derive continuous time state space models, it is relatively straightforward to 
derive the discrete state space model from there. There are various methods for this, 
and we will discuss them in the following sections.

9.8.2.1  Analytical Method
Let us start with the continuous state space model

	

X t AX t Bu t

y t Cx t Du t

•
= +
= +

( ) ( ) ( )

( ) ( ) ( ) 	

(9.70)

If the model is sampled regularly at intervals of T seconds and u(t) is fed through 
ZOH, we can write

	 u(t) = u(kT)  for kT < t < (k + 1)T	 (9.71)

This means that the input is taken in at time t = kT and held constant by the latch 
(and converted to analog form by the DAC for analog systems), until t = (k + 1)T, 
when next value of manipulated variable u is supplied to the latch by the digital 
controller.

Usual discrete time state space representation is

	 X k G X k Hu k( ) ( ) ( )+ = +1 	 (9.72)

To make things clear, we will rewrite the required solution as

	 X k T G T X kT H T u kT(( ) ) ( ) ( ) ( ) ( )+ = +1 	 (9.73)

Hence, to obtain the discrete time state representation from the continuous time 
state representation, we need to compute the matrices G(T) and H(T) in Equation 
9.73. The solutions are available in the control literature (see, for instance, Astrom 
and Wittenmark 1990; Nagrath and Gopal 1996; Ogata 1995). The results are given 
below as
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G T e H T e dt BAT At

T

( ) ( )= =











∫and
0 	

(9.74)

where

	
e L sI AAt = −[ ]{ }− −1 1

	
(9.75)

Furthermore, if A is nonsingular

	 G(T) = eAT

	

H T e dt B A e I B A G T I BAt

T

AT( ) ( ) [ ( ) ]=











= − = −∫ − −

0

1 1

	

(9.76)

Then, we can obtain the discrete time state representation as in Equation 9.73. 
The output can be written as

	 Y kT CX kT Du kT( ) ( ) ( )= + 	 (9.77)

From Equation 9.71, we can see that ZOH is built into this model. At the sampling 
instants, the model output is the same as the plant output. We have simply integrated 
the continuous time state model over a sampling period and gotten the discrete state 
model. Also, it is interesting to note that as T approaches zero, G(T) approaches to 
become a unity matrix.

EXAMPLE 9.16

Let us derive the discrete time state model for the plant given by

	
G s

Y s
U s s s

( )
( )
( )

= =
+ +

1
3 22

	
(9.78)

for a sample time of 1 s. Continuous time state model can be written as
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Using Equation 9.74, we need to evaluate G(T). Using the inverse Laplace trans-
form method
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we obtain
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(9.81)

This leads to
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To compute H(T), we use Equation 9.74
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After integrating and using T = 1
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Let us try out the other form given in Equation 9.76 here:
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The result agrees with the earlier result. Hence, the model is

	

x k

x k

x k1

2

11

1

0 6004 0 2325

0 4651 0 0972

( )

( )

. .

. .

( )+
+









 =

− −








 xx k

u k

y k
x k

x k

2

1

2

0 1998

0 2325

1 0

( )

.

.
( )

( ) [ ]
( )

( )









 +











=










	
(9.86)

9.8.2.2  MATLAB Approach
We can use MATLAB for obtaining discrete state space model from the continu-
ous state space model. MATLAB provides the “c2d(A,B,T)” command where nota-
tions are standard. We will attempt the solution for Example 9.16 using MATLAB. 
A program segment for this purpose and the result obtained are shown in Figure 
9.21. We can see that discrete time state equations can be obtained analytically 
from continuous time state equations, as well as by using software tools such as 
MATLAB.

9.8.3 T ime Domain Solution of Discrete State Space Systems

To understand the nature of a system, we need to see the time domain response 
of that system. Furthermore, when we design controllers, we also need to see the 
response of the controlled system in order to assess the performance of the control-
ler. For this, we need to calculate the time domain solutions. We will discuss two 
ways of obtaining the time domain solutions.

FIGURE 9.21  MATLAB commands and results obtained for getting digital state model.
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9.8.3.1  Computer Calculations
Computer calculations are done from sample to sample. It starts from the knowl-
edge of initial values of the states and the values of the input sequence. Calculating 
the states can be easily achieved by programming a computer for recursive calcula-
tions from sample to sample as long as the input u(kT) < t < u((k + 1)T) is piecewise 
constant. That is, the input is held constant between controller outputs to the plant 
through the latch–DAC combination. Let us look at the case of time-invariant state 
equations only. Hence, the state equations become

	

X k GX k Hu k

y K CX k Du k

( ) ( ) ( )

( ) ( ) ( )

+ = +
= +
1

	
(9.87)

With k = 0 in Equation 9.87, using u(0) and X(0) vector values, X(1) vector can be 
calculated and hence y(1) can also be calculated. The same calculation is repeated 
for k = 1. This leads to X(2), which can be calculated from u(1) and X(1). This process 
is repeated for obtaining the complete solution. We have assumed that input u is a 
scalar. The procedure is similar for vector U as well.

9.8.3.2  Z-Transform Approach
Let us consider Equation 9.87 and write the Z-transform using the usual notation 
with initial conditions, keeping in mind that G and H are constant matrices:

	 zX(z) − zX(0) = GX(z) + Hu(z)	 (9.88)

Then
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( ) ( ) ( ) ( ) ( )
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(9.89)

Taking the inverse Z-transform

	
X k Z zI G z X Z zI G Hu z( ) ( ) ( ) ( ) ( )= −  + − 

− − − −1 1 1 10
	

(9.90)

The first part is the undriven part, and the second part is the driven part of the 
solution. This involves matrix inversion as well as the inverse Z-transform, and it 
may get complicated if the plant is more than second order. Let us see an example.

EXAMPLE 9.17

To describe the above concept, we repeat Example 9.16 here. For the system rep-
resented by discrete model given below, let us compute the total solution in terms 
of sample count k, assuming that the input is a unit step function.
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Referring to Equation 9.89, the Z-transform of X(k) is given by
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Since, u(k) is a unit step, we can write
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Hence, the output transform is
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Substituting for the first term on right-hand side, we get
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After finding the inverse of the first term, we have
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after simplifying, we obtain
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Further simplifying yields
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We need to keep z in the denominator of the left-hand side of the equation for 
matching Z table entries.
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Let us do some partial fraction expansions utilizing the “residue” command of 
MATLAB.
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Note that we moved z back to the right-hand side of the equation after partial 
fraction expansion. We realize that the coefficient of pole term at 0.3678 became 
zero. If we check the roots of the first row of Equation 9.100, there is a pole-zero 
cancellation at 0.3678. Similarly, at the second row of Equation 9.100, there are 
two pairs of pole zero cancellation, one at 0.3678 and another one at 1 resulting in 
two coefficient terms in Equation 9.101, vanishing, although the original continu-
ous model has no pole-zero cancellation. The results we have obtained here are 
accurate. Now, taking the inverse Z-transform, we get
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(9.102)



249Digital Control Fundamentals and Controller Design

We can check the initial values from the above results, which is obviously
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To understand why some coefficients vanished, let us go back to Equation 9.93 
and keep the undriven and driven solutions separate. We reevaluate Equation 9.93 as
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then
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Collecting terms in the columns above, we get
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Let us move one z term to the left as before and write
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After calculating the partial fractions, we have
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In Equation 9.108, we still see some pole-zero cancellations. In the undriven 
term, if the initial conditions were different (say, x1(0) = 1, x2(0) = 0), the second 
term in partial fraction expansion would not have vanished. We can move z to the 
right-hand side and take the inverse Z-transform.
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The first part of the right-hand side of Equation 9.109 represents the undriven solu-
tion and the second term represents the driven solution. Note that the driven solution 
vanishes for k = 0, and the undriven solution is the same, as the initial conditions as 
assumed. The total solution is written here for comparison with Equation 9.102.
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9.9  DISCRETE STATE FEEDBACK CONTROLLERS

So far we have introduced the analytical solutions to the discrete state equations. Our 
next task is to look at the methods of designing stable controllers. We will focus only 
on two types of controllers, namely, pole placement controllers (PPC) and linear 
quadratic controllers (LQC). However, it is important to realize before starting to 
design controllers that the system is controllable and states are available for feed-
back. Hence, let us first see the concepts of controllability and state observability. 
In the following sections, we will utilize required results and formulas from control 
literature without going through their details and proofs, since our primary concern 
is to demonstrate application of these concepts in robotics.

9.9.1 C oncept of State Controllability

The concepts of controllability were originally introduced by Kalman, and further 
work was done on it mainly by Gilbert (Nagrath and Gopal 1996). Kalman’s work 
gives a solution to the problem based on system matrices. In literature, many defini-
tions of controllability can be found (Astrom and Wittenmark 1990; Nagrath and 
Gopal 1996; Ogata 1995). A typical definition of controllability is that a control 
system is said to be completely controllable if the system can be transferred from any 
arbitrary initial states to any other arbitrary states within finite time using a control 
sequence, where the control magnitudes are unbounded. It implies that if any state 
is independent of control signal, then that renders the state uncontrollable and hence 
the system is not controllable. Consider the typical system equation given with usual 
notation. We assume that control variable is a scalar.

	

X k T GX kT Hu kT

Y kT CX kT

(( ) ) ( ) ( )

( ) ( )

+ = +
=
1

	
(9.111)
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where u(k) is the constant control signal from instant kT to (k + 1)T, X(k) is an n × 1 
state vector, G is an n × n state matrix, H is an n × 1 vector, Y(k) is an r × 1 vector, 
and C is an r × n matrix.

Here, we are concerned about discrete systems only. The necessary and suffi-
cient condition for complete state controllability is that the rank of the controllability 
matrix [CM] is n. Then the controllability condition can be stated as

	 rank[CM] = n	 (9.112)

where the controllability matrix is defined as

	 CM H GH G H G H G Hn n= − −[ ]2 2 1� 	 (9.113)

Gilbert suggested using Jordan’s canonical form to derive a different condition for 
testing controllability.

Hence, if both conditions in Equations 9.112 and 9.113 are satisfied, we can con-
clude that it is possible to transfer any initial state to any final state in utmost n 
sampling periods, provided the control inputs u(0) to u((n − 1)T) are unbounded. The 
above conditions can also be interpreted, as that there exists a sequence of control 
inputs u(0),u(T),. . .,u((n − 1)T) to bring the initial state X(0) to final state X(tf) within 
n sampling periods.

9.9.2 C oncept of State Observability

In designing controllers for state space systems, we need to feed back the state 
variables, and these are called state feedback controllers. However, in complex 
systems it may not be possible to directly measure the states, simply because 
they may be hidden inside the systems or simply they are not physical quantities, 
such as voltage, current, or torque. In many cases, there are hidden modes of the 
systems. In that case, if we need to feed them back, we have to measure them or 
estimate them. This leads to the concept of observability. A simple definition of 
observability is that the system is said to be completely observable if the mea-
surements of output samples taken over a finite duration are sufficient to compute 
all the initial states. There are a few versions of this definition in literature. The 
conditions of observability with the relevant proof have been well discussed in the 
literature (Astrom and WittenMark 1990; Nagrath and Gopal 1996; Ogata 1995). 
We will only present the results here. We can start by considering the system 
equations:

	

X k T GX T Hu kT

Y kT CX kT Du kT
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where X is an n × 1 vector, G is an n × n matrix, H is n × 1, C is an m × n matrix, D 
is an m × 1 matrix, and Y is an m × 1 vector. We assume that only one control input 
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exists for simplicity. The observability condition can be stated as that nm × n matrix 
given by
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should have a rank of n. The above equation can be transposed without changing 
the rank.

We went through the above two sections because any control designer needs to 
ascertain that the plant he is controlling is controllable in the first place. Once that is 
done, the problem of state feedback arises. The observability condition assures that 
states can be estimated for feedback, if not measurable directly.

9.9.3 �C ommon Condition for Controllability and Observability of 
Sampled Data Systems

There is also an additional common condition for state controllability and observ-
ability for sampled data systems. It refers to the possible existence of complex roots, 
say, σ ± jω. Supposing that the system has such complex roots with a natural fre-
quency component of ω, then by selecting a wrong sampling time controllability can 
be jeopardized by sampling at wrong points periodically. To avoid such synchronous 
sampling at the wrong points, the condition can be stated as

	
T

i≠ p
w 	

(9.116)

where ω is the natural angular frequency of the system, and i is an integer. Since 
the half period of natural oscillation will be π/ω, the sampling period T should not 
be a multiple of that (refer to Astrom and Wittenmark (1990) and Ogata (1995) for 
mathematical proof).

EXAMPLE 9.18

Let us consider a plant whose discrete model is given by
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(9.117)

	 a.	Check the controllability of the system.
	 b.	Check the observability of the system.

We can get the state model by calculation or by using MATLAB. A use-
ful MATLAB command for this conversion is “tf2ss.” By entering command 
“[G,H,C,D] = tf2ss(numz,denz)” in the MATLAB command window, we get
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To check for controllability, we compute the controllability matrix 
CM H GH G H= [ ]2 , which can be evaluated as
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Using the MATLAB command “rank(CM),” we obtain the rank of the matrix CM 
as 3. So the system is completely state controllable and hence the arbitrary pole 
placement is possible.

To check for observability, we compute the observability matrix in transposed 
form:

	 OM C G C G C= [ ( ) ]* * * * *2

	 (9.120)

Above, we have used the notation C*and G*, where the superfixes “*” indicate 
that they are the conjugate transpose of matrices C and G,respectively.

Matrix OM can be evaluated as
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and its rank is 3. Hence, the system is controllable as well as observable, and the 
state feedback control for arbitrary pole placement is possible.

9.9.4   Design of Pole Placement Regulators Using State Feedback

In this section, we present the controller design method called pole placement or pole 
assignment technique, which is well discussed in the literature (Ogata 1995; Astrom 
and Wittenmark 1990). We assume that all the state variables are measurable and 
are available for feedback. It can be shown that if all states are controllable, then the 
poles of the closed-loop system can be placed arbitrarily anywhere by means of state 
feedback. This is only true if the control signals are unbounded. If there is satura-
tion, then the system turns nonlinear, and such design becomes invalid. Having said 
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that, we have found in our experience that occasional saturation of u is usually well 
tolerated in many practical systems.

The first step in this procedure is to decide the “desirable locations” of the closed-
loop poles based on the transient response or frequency response specifications such 
as speed, damping ratio, or bandwidth. Another consideration in designing sampled 
data controllers is the sampling period. Selecting a very small sampling time may 
result in large values of control signals, and this may lead to saturation. In what fol-
lows, we are considering a case where control signal is a scalar. Also, we assume 
that the necessary and sufficient condition for arbitrary pole placement is that the 
system is completely state controllable. We are going to present two methods for pole 
placement design, one by comparison of coefficients and the other one by “place” 
command from MATLAB.

9.9.4.1  Comparison of Coefficients Method
This is a straightforward method, and it does not require the use of any formula, 
which is applicable for systems of order 3 or less. We only consider the regulator 
problem from fundamental concepts, assuming that the system is completely con-
trollable and hence arbitrary pole placement is possible. Let us consider the discrete 
system given by

	 X(k + 1) = GX(k) + Hu(k)	 (9.122)

Let us formulate an admissible control law using a feedback gain vector K such 
that

	 u k KX k k k k X kn( ) ( ) [ ] ( )= − = − 1 2� 	 (9.123)

where the vector K k k kn= [ ].1 2�
Then substituting Equation 9.123 in Equation 9.122, we can write the closed-loop 

system equation as

	 X(k + 1) = GX(k) − HKX(k) = [G − HK]X(k)	 (9.124)

The comparison of coefficients method involves determining the feedback gain 
values K, such that the characteristic equation of the closed-loop system represented 
by Equation 9.124 has desired roots. We will illustrate the method by an example.

EXAMPLE 9.19

Let us consider a plant whose discrete state model is given by
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(9.125)
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This is as the same system we saw in Example 9.18. Let us design a state feed-
back controller such that the closed-loop poles are at 0.5, 0.7, and 0.8.

Using the chosen roots, the closed-loop characteristic equation can be calcu-
lated as

	 ( 0.5)( 0.7)( 0.8) 2.0  1.31 0.28 02z z z z z z− − − − −= + =3
	 (9.126)

Furthermore, the closed-loop system is written as

	 X(k + 1) = [G − HK]X(k)	 (9.127)

Taking the Z-transform of Equation 9.127, the closed-loop characteristic equa-
tion of the controlled system can be obtained as
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The above determinant can be evaluated in polynomial form as

	 z k z k z k3
1

2
2 32 8 2 51 0 728 0+ − + + + − =( . ) ( . ) ( . ) 	 (9.129)

Equation 9.129 is the characteristic polynomial of the closed-loop system 
involving unknown gain values of k1,k2 and k3, and Equation 9.126 is the char-
acteristic polynomial having the desired poles as its roots. Then, if the closed-
loop system is to have desired roots, the two polynomials have to be equated to 
evaluate suitable gain values, k1,k2, and k3. When those gain values are used for 
state feedback, the closed-loop system will behave as though it has the desired 
closed-loop poles. Then, the left-hand sides of Equations 9.126 and 9.129 can 
be equated as

z k z k z k z z z3
1

2
2 3

32 8 2 51 0 728+ − + + + − = − + −( . ) ( . ) ( . ) 2.0 1.31 0.282

	 (9.130)

Comparing coefficients of z-terms with the same power from both sides, we 
can evaluate the feedback gain values.

Comparing the coefficients of z2 on both sides
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Comparing the coefficients of z on both sides
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Comparing the constant terms on both sides
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. 	 (9.133)

9.9.4.2  MATLAB Method of Pole Placement
What we have demonstrated above can be achieved by the “place” command in 
MATLAB. The dialog is given in Figure 9.22.

9.9.4.3  MATLAB Simulation of the Controller Performance
One possible Simulink model is shown in Figure 9.23. Let us study this simulation 
model. We have made some small changes to the C vector and call it Cx. By making 

FIGURE 9.22  Using “place” command.
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Discrete state-space Demux

FIGURE 9.23  Simulation of state feedback control setup for pole placement control.
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Cx a unity matrix of size n, we get all the n state variables as outputs. Also, we are 
using actual components of the C vector to weigh the state variables to obtain the 
system output y. Thus, we have state variables readily available for feedback and 
display as well as the system output synthesized. We have introduced an initial value 
of x1(0) = 3 to state 1, to see if the system stabilizes under the controller. Note that 
this appears in the MATLAB code given in Figure 9.24, which calls the Simulink 
model. Without this initial value, we will only see a flat response for all the states as 
well as the output.

The MATLAB program that drives the simulation model shown in Figure 9.23, is 
listed in Figure 9.24, and the simulation results are shown in Figure 9.25.

We note that the system in Example 9.19 was derived from the pulse transfer 
function given in Equation 9.117. By factorizing the numerator and denominator of 
that pulse transfer function, we can see that the open-loop system has zeros at 0.5, 
and 1.2 and poles at 1.3, 0.8, and 0.7. At the beginning, the plant is in the open-loop, 
unstable, and nonminimum phase. When we design the gains to place the poles at the 
desired locations, we see all the states, as well as the outputs, are quite stable upon 
the application of the pole placement controller.

FIGURE 9.24  MATLAB listing for driving model in Figure 9.23.
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9.9.5 S teady-State Quadratic Optimal Control

It is possible to use a different criteria for deciding the feedback gain values. In 
optimal control, we define a cost function or index involving the system states 
and other relevant quantities such as control variables. After that we devise a 
strategy to minimize this cost function. This can be over a fixed duration of time 
or at steady state. We will provide the basic outline for steady state optimization 
design here.

We are considering the system described by
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the feedback law is u(k) = −KX(k). Then the performance index that we want to opti-
mize is given below:
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FIGURE 9.25  Results of pole placement regulator simulation.
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In the above equation, Q is a diagonal positive definite matrix of order n, compris-
ing the weights we want to give to the respective state variables, and R is a diagonal 
positive definite matrix comprising the weights we want to use for the manipulated 
variables U. When we consider cases of single control variable, it is a single positive 
element.

For a system of order n with m control inputs, Equation 9.134 can be rewritten as
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where q1,q2, and so on are the diagonal elements of the Q matrix and r1,r2, and so 
on are the diagonal elements of the R matrix. The importance of state xi in the cost 
function is decided by qi.

Similarly, the importance of input ui in the cost function is decided by ri. This 
property can be used to influence the response of the individual states and control 
inputs. We will demonstrate this in the next chapter using a case study.

In a formal procedure for LQC design, we have to solve a form of matrix Riccati 
equation by iterative procedure and then solve for feedback gains. Since we are inter-
ested only in application, we prefer to use a MATLAB command for obtaining solu-
tions for gain values. This is illustrated below.

9.9.5.1  Use of MATLAB in LQC Design
What we have presented above can be easily achieved by the “dlqr” command in 
MATLAB in the format [K,P,E] = dlqr(G,H,Q,R). This command yields gain vec-
tor K, P matrix, and closed-loop system eigenvalues E. Here, P matrix is a positive 
definite matrix, which is an intermediate result in design. However, we are only 
interested in the closed-loop system eigenvalues E, and the feedback gain vector K.

EXAMPLE 9.20

Consider a plant given in Example 9.19. It is represented by a state model with 
parameters
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We have stated earlier that the open-loop plant is an unstable and nonmini-
mum phase system, but it is completely state controllable and state observable. 
Our objectives in this example are listed as follows:

	 a.	Design a steady-state optimal regulator to minimize the cost function
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where

	

Q =
















=
10 0 0

0 5 0

0 0 5

0and 1R .

	

(9.138)

	 b.	Check the closed-loop stability.
	 c.	Simulate the response of the controlled system by MATLAB.

First, we will use the MATLAB command “dlqr” to obtain the feedback gains, 
which will optimize the linear quadratic criteria and the closed-loop eigenvalues 
to check the stability.

Later, we will use a simulation diagram and a MATLAB program to check the 
performance of the controller. The MATLAB codes for controller design and simu-
lation diagrams are shown in Figures 9.26 and 9.27, respectively. The code results 
in gain values and the closed-loop poles.

The MATLAB program to drive simulation is listed in Figure 9.28, and the 
results of the LQC-based state feedback are shown in Figure 9.29. We note that 
because of the optimization process, system response is faster than the pole place-
ment controller performance shown in Figure 9.25. However, a better choice of 
the closed-loop poles may compare favorably with LQC response.

9.9.6 A  Simple Servo Controller

In Sections 9.9.4 and 9.9.5, we saw cases where state variables are regulated against 
disturbances using state feedback. In robotics, there are instances where the output 
needs to track a reference input. Such cases are called servo control. A typical system 
with only one reference is shown in Figure 9.30.

The objective is to make y(k) to track yr(k). We see that there is the usual state 
feedback for regulation and additional input kryr(k), which is called the feedforward 
input. Since the state feedback would have changed the gain of the system, we need 

FIGURE 9.26  Using “dlqr” command.
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to have an adjustable gain kr to make the overall transmission gain from yr(k) to y(k) 
unity so that accurate tracking can be achieved (Ogata 1995). The discrete state 
equation is given by
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Owing to the presence of the feedforward term, the manipulated variable is writ-
ten with an additional term as
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Ignoring the feedforward term, it is straightforward to determine the feedback gain 
vector K, using one of the methods described earlier. Since K has been found, the only 
other unknown to be evaluated is the feedforward gain kr. One popular method to find 
kr is to find the pulse transfer function (Y(z)/Yr(z)) = T(z). By applying the final value 
theorem in Z-domain to Y(z) = T(z)Yr(z), an expression for y(∞)in terms of kr can be 
written since T(z) involves kr. By equating the expression for final value y(∞) to yr, kr 
can be evaluated. However, the evaluation of T(z) involves the inversion of nth-order 
matrix in terms of variable z. When the order is 3 or less, this is quite trivial.

Special case: We are interested in a class of systems where we need not use the 
above method, which involves the inversion of an n-dimensional matrix in terms of 
z. Let us assume that the plant has the following characteristics:

	 1.	The output involves only one of the state variables, say, x1(k), which implies 
that C = [ ]1 0 0� , and hence

	 y(k) = x1(k)	 (9.141)
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FIGURE 9.27  The Simulink diagram for LQC-based state feedback regulation.
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	 2.	At steady state, all the state variables have to go to zero with the exception 
of x1(k). This implies that

	 x x xn2 3 0( ) ( ) ( )∞ = ∞ = = ∞ =� 	 (9.142)

	 3.	At steady state, the manipulated variable can be zero. Hence

	 u(∞) = 0	 (9.143)

FIGURE 9.28  The MATLAB program that drives the Simulink for LQC-based state 
feedback.
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There are a few systems that satisfy the above assumptions. For example, a posi-
tion control servo using a DC motor will satisfy the above conditions

Let us rewrite Equation 9.140 as

	 u k k y k k x k k x k k x kr r n n( ) ( ) ( ) ( ) ( )= − − −1 1 2 2 � 	 (9.144)

For k = ∞, using Equations 9.142 and 9.143 (assumptions 2 and 3), Equation 9.144 
becomes

	 u(∞) = kryr(∞) − k1x1(∞) = 0

From Equation 9.141 (assumption 1)

	 kryr(∞) − k1y(∞) = 0

Since at steady state y = yr

	 kr = k1

In general, if y(k) = xi(k)

	 kr = ki	 (9.145)

We can redraw Figure 9.30 as shown in Figure 9.31. We will see such an example 
in the following chapter. However, this system will not work for all systems that do 
not satisfy the assumptions stated. Otherwise, we need to apply final value theorem 
to Y(z) = T(z)Yr(z) to find y(∞) and proceed as described earlier. Of course, there are 
many other sophisticated methods of servo control (Astrom and Wittenmark 1990; 
Ogata 1995).

9.10  TYPICAL HARDWARE IMPLEMENTATION OF CONTROLLERS

Since hardware changes fast, we will show only a generic setup in Figure 9.32, which 
is popular in the literature, avoiding hardware details. In the figure, the load can be 
the weight of a mobile robot or the weight that a robot arm is lifting.

Any manufacturer of a development platform provides a hardware setup consist-
ing of an embedded system and provides a tool set for development, and the code is 
developed using a PC. The computational hardware used to be microcontrollers in 
the past, but the trend is rapidly changing. They were replaced by processors such 
as PIC systems. Recently, there have been many manufacturers that provide well-
packed DSP processors, as embedded systems complete with digital and analog I/Os 
as well as good communication interface. The role of the PC ends at the completion 
of program development, and the system becomes standalone without the need for a 
PC. Once developed and downloaded, the control algorithm is executed by the pro-
cessor. Sampling time is decided by the processor interrupts in software. The pro-
cessor periodically takes in required feedback signals and computes a control signal 
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based on them. In the block diagram above, the control signal manipulates PWM to 
the motor driver board. In the beginning of the program development, the robot may 
be operated along with the PC link for debugging purposes. Otherwise, for normal 
operation, especially for mobile robots, the PC link will not be there. The features of 
the block diagram shown in Figure 9.32 will be found in all the robots that will be 
presented in the following chapter on our case studies.

9.11  CONCLUSION

In this chapter, the basic ideas necessary to understand computer-controlled systems 
have been presented. This by no means is a complete treatise on digital control, but 
only a starting point. Most of the time, stabilizing a robotic structure needs some 
feedback. For example, a pole-balancing robot is unstable by its very nature. To 
stabilize it, we have provided some information on pole placement design. If we 
need to achieve speed and stability in response, optimal controllers will be very 
useful. If a robot arm has to be moved, then a servo control would be necessary. 
We have not gone much deeper into optimization or pole placement designs beyond 
what is necessary. However, we have provided enough material as starting point for 
a robot designer so that he/she can get started right way without spending too much 
time on learning the control aspects of the design. We took this approach because, 
as such, control theory is a deep and wide subject, and it takes a lifetime to mas-
ter it. Furthermore, robots being a multidisciplinary subject, it requires knowledge 
in many other fields such as embedded systems, instrumentation, and actuation to 
name a few. To design and implement advanced controllers, further reading is rec-
ommended. The material presented in this chapter is satisfactory to start designing 
a robot controller. However, the references listed in this chapter are recommended 
for further reading.
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Case Study with 
Pole- Balancing and 
Wall -Climbing Robots

10.1  INTRODUCTION

In earlier chapters, we went through various components of knowledge needed to 
understand the basics of robot control. A study of robotics will not be complete 
unless we go through a design process and encounter real-world problems. In this 
chapter, we intend to give an overview of the steps involved in designing and imple-
menting a workable robot for robotic games. However, there are other stipulations 
one has to take into account as listed below:

	 1.	Function of the robot: This simply involves some knowledge of what the 
robot is expected to do. Of course, it can be obvious from the name itself. 
For example, the name “wall-climbing robot” (WCR) indicates what that 
robot is supposed to do. In some cases, the functions may not be so obvious. 
In summary, specific functions of that robot need to be defined.

	 2.	Specifications: Beyond functions, a robot will have specifications for per-
formance such as speed, load, and so on. Furthermore, in some robotic 
game events, the weight and dimensions of robots are limited by the game 
rules. The designer has to take note of these factors as well.

	 3.	Conditions of operation: For example, it may be stipulated that the WCR 
should not use magnets, or it should not use nonelectrical drives. Or, in 
some cases, the power requirements may be limited, such as the robot can-
not use internal combustion engines for locomotion.

It is impossible to go through the design process of every robotic game. However, 
we intend to describe the design steps of a few game robots so that the reader may be 
able to appreciate how theories are applied to achieve what is expected of the robots, 
along with component and material selection. We will study the design processes 
of two types of game robots, namely the pole-balancing robot (PBR) and the WCR, 
which compete in the Singapore Robotic Games (SRG 2012).

The PBR is expected to operate on a horizontal platform 3 m long and 1 m wide, 
moving from one end to other while balancing the free-falling pole. The first thing 
that the robot needs to do is to balance the pole for a given duration of time when 
started. After completing this task, it should move to the other side of the platform 
and then return to the starting point. It can repeat this as many times as possible 

10
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within the permitted time. At the end, it returns to the starting point and stays there 
balancing the pole for another specific period of time.

The WCR game is held using a structure that consists of a horizontal surface, a 
vertical surface, and a ceiling, all of which are nonmagnetic. The WCR is expected 
to start on the horizontal part of the surface, climb the vertical surface, and move 
under the ceiling. The robot designed for this competition must be autonomous. 
Now, let us discuss design steps.

10.2  POLE-BALANCING ROBOT

As the name implies, the main challenge in this case is to design a motorized vehicle 
that supports an inverted pendulum using a pivot joint with one degree of freedom so 
that the pole is able to fall freely along the direction of motion of the robotic vehicle. 
The vehicle should keep the pole in the vertical position, without falling off and at 
the same time move along a straight line up and down. The basic system is shown 
with a block diagram in Figure 10.1.

In this particular game, we can see that the challenge is to design an appropriate 
control strategy to achieve the goal. We are leaving all the problems of instrumenta-
tion and power driving out of our discussion in this section to keep things simple. 
This game is particularly designed upon a well-known study problem in control the-
ory. Hence, theoretical solutions for it have been discussed by many authors (Ogata 
1990, 1995). The main thrust in these theoretical studies presented is force control 
of the vehicle using state variable feedback, where feedback gains are computed 
using either the closed-loop system pole placement technique or the linear quadratic 
control concept. Furthermore, it is cleverly assumed that the system is linear. If the 
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FIGURE 10.1  A block diagram of pole-balancing robot.
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pole does not fall off too far from the vertical, say, not more than 7°, the linearity 
assumption holds good (since for small values of θ, sin θ ≈ θ). Here, θ is the angle of 
deviation of the pole from the vertical axis. While the theoretical solutions for this 
problem are readily available, the practical implementation is not so straightforward. 
Apparently, the challenge put upon robot designers in this game is to put theory into 
practice. In this chapter, we would like to focus on implementation issues.

10.2.1 M athematical Modeling

We believe that velocity control of the vehicle, as shown in Figure 10.1, is far eas-
ier to implement than force control because it involves torque control using motor 
back EMF and current measurements. Here, we develop our control strategy based 
on velocity control, even though force control models have been derived and given 
widely in control literature. Furthermore, those models ignore friction terms. We 
also need to include friction terms since friction plays a role in robot movement as 
well as in pole-swinging motion. We assume that mass, m, is attached to a rigid pole 
of length l. In reality, the pole weight may be uniformly distributed along a length of 
2 × l. In that sense, the analysis is approximate and sufficient for a practical design. 
A more accurate analysis is quite involved, and it is not presented here.

A detailed analysis of inverted pendulum dynamics can be found in Ogata (1990). 
Here, we would like to include the friction terms in that analysis just by modifying 
the two proven equations. There are two kinds of friction: the friction in the motion 
of robotic vehicle and the rotary friction in the pole support system. The rotary fric-
tion force is depicted in Figure 10.2.

Let us define the following terms:

M = the mass of the vehicle in kg
m = the mass, attached to a weightless rigid of the pole in kg

cos θ
Mass, m

x

f

l

l
bθ

•

l
bθ

•

•
bθ

θ

θ

FIGURE 10.2  The rotary friction forces.
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l = the length of rigid massless pole in meters
Br = the linear friction coefficient of the vehicle motion in N/m/s
b = the rotational friction coefficient of the pole joint in Nm/rad/s
g = the acceleration due to gravity
x = the distance of the vehicle from reference in meters
f = the applied force in the horizontal direction in newtons

In the above definitions, we have used the terms Br and b, which require some 
additional work to estimate. We have already explained how to estimate Br in Chapter 
6 on gear ratio design. We will see the method to estimate the value of rotational fric-
tion “b” in Section 10.2.9.

Referring to Figure 10.2, the frictional torque of the pole support joint is

	
t b

d
dtf = q

	
(10.1)

Then, the equivalent to linear friction force at the mass center of the pole can be 
written as

	
f

b
l

d
dtb = q

	
(10.2)

Hence, the horizontal component will be
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(10.3)

The additional reaction due to linear friction of the robotic vehicle is given by

	
f B

dx
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(10.4)

Assuming that θ is small, and ignoring the additional friction terms, the linear 
force balance equation can be written as
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(10.5)

The additional friction terms are given in Equations 10.3 and 10.4. Since Equation 
10.5 equates reaction forces on the left-hand side to the applied force on the right-
hand side, we can add the additional frictional forces to the left-hand side and modify 
Equation 10.5 as given below:
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Again, since θ is small, we can write
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(10.7)

This completes the motion dynamics in the horizontal direction. Next, we turn 
our attention to rotary motion dynamics of the pole. Ignoring the pole axle friction, 
the force balance equation for pole motion can be written as
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Multiplying Equation 10.8 by l, we get
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Now, we can identify the nature of the terms as follows. The moment of inertia of 
the pole with respect to axle is

	 Im = ml2	 (10.10)

The torque due to pole mass m is

	 tm = mgl sinθ	 (10.11)

The torque due to the pure linear motion of mass m is
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Since Equation 10.9 is a torque balance equation, we can add the axle friction 
torque given by Equation 10.1 to the left-hand side and write
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Using the assumption that θ is small, we can write
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Equations 10.7 and 10.13 include friction terms, and they are the two key equations 
that describe the dynamics of the PBR. Since robots have friction in wheel bearings, 
gears, motor, and pole axle, this approach better represents the actual robotic system.

Now, it is possible to form state equations and implement a control strategy 
to regulate the pole angle and distance using force f as the manipulated variable. 
However, at the beginning, we said that we wanted to eliminate force control, but 
we see that Equation 10.7 still has force, f, as an input. In the following sections, we 
show how we can avoid the force control and implement velocity control. Let us take 
the Laplace transform of both equations and obtain
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Let us peruse the second equation above and write a transfer ratio as
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We know that v = (dx/dt); hence, V(s) = sX(s). Equation 10.16 can be rewritten as
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Let us now concentrate on Equation 10.14, which describes how the position 
depends on the force. We know that the effect of the second term consisting of θ(s) 
is very small since M is much larger than m and θ is quite small. Typically, robot 
mass M is a few kilograms, and the pole m is about 100 g. Hence, we want to make 
an approximation by ignoring this term and rewrite Equation 10.14 as
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where F(s) represents the force. We can explore how we can represent force as a 
function of motor parameters and other electrical inputs. Before we proceed any 
further, let us define a few parameters and input quantities as follows:
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Es = the applied voltage to the motor in volts
Eb = the back EMF of the motor in volts
Ra = the armature resistance in ohms
Kb = the motor back EMF constant in volts/rad/s
Kt = the motor torque constant in Nm/A
Ng = the gear reduction ratio of the motor to the driving wheels
rw = the radius of the drive wheel in meters
tm = the torque of the motor in Nm
tw = the torque of the drive wheel in Nm

The torque developed by the motor can be given as tm = Kt(Es − Eb/Ra) by ignoring 
the effect of leakage inductance of the armature. This leakage is usually very small, 
and we can ignore it here. The torque on the drive wheel can be written as
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(10.19)

The thrust on the wheel contact to push the vehicle is given by
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(10.20)

However, we know that

	
E K K Nb b m b g w= =w w

	 (10.21)

since ωm = Ngωw, where ωm is the angular velocity of the motor, and ωw is the angular 
velocity of the drive wheel.

Furthermore, the velocity

	 V = rwωw	 (10.22)

Using Equation 10.22 in Equation 10.21, we get
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(10.23)

Using Equations 10.18, 10.20, and 10.23, a partial block diagram can be drawn as 
shown in Figure 10.3.

The closed-loop transfer function between applied voltage, Es, and velocity, V, can 
be written as
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Substituting for Tf and Hb
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(10.24)

This describes the dynamics of the vehicle in response to the voltage applied to 
the armature of the drive motor. Obviously, this is a first-order system and not as 
complicated as it looks. We can set up a simple closed-loop control system to make 
the velocity respond to an applied reference velocity. The applied voltage Es will be 
used as a manipulated variable. The reference velocity VR will have to be compared 
to the actual velocity V and the error can be amplified using a gain G (in digital 
system it is just a multiplication instruction). We will use a pulse width modulation 
control (PWM) where amplified (multiplied) error signal will change the duty cycle 
of the PWM to handle the control of the motor speed. Such an implementation is 
shown in Figure 10.4.

A number of new variables are introduced in Figure 10.4, and they are

Tpwm = the PWM period in clock counts
δ = ON fraction
G = proportional gain

There are two kinds of connections possible to achieve the effect of the block dia-
gram in Figure 10.4. In the type 1 connection shown in Figure 10.5, the direction-control 

(M + m)s + Br

1 V(s)Es(S)

Eb(S)

+

–

Tf

Hb

FIGURE 10.3  Partial block diagram from applied voltage to velocity.

[KtNgrw]
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Vδ

[(M + m)Rarw
2]s + [BrRarw

2+KtKbNg
2]

G
Tpwm

VeVR +

–

FIGURE 10.4  Velocity control implementation.
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pin of the H-bridge driver is made to respond to the sign of the manipulated vari-
able computed by the control computer. The PWM signal goes to the enable pin of 
the H-bridge driver. Then, δ = 0 duty cycle indicates zero push, and δ = 1 indicates 
full push. However, the direction (or phase) signal input goes high for positive sign 
and low for negative sign. It implies that if the sign signal is positive (direction pin 
is high), PWM is 100% and motor thrust is maximum in the positive direction. On 
the other hand, if the sign is negative (direction pin is low) and PWM is 100%, the 
motor thrust is maximum in the negative direction. Obviously δ is limited within 
limits of ±1. Note that the duty cycle cannot go negative. Hence, α = |δ| is the frac-
tion of the duty cycle, thereby providing an average voltage of αEs to the motor. The 
direction pin decides how the voltage is connected to the motor, either forward or 
reverse. Thus, Figure 10.4 mathematically represents the effect of the type 1 connec-
tion shown in Figure 10.5 accurately.

In the type 2 connection shown in Figure 10.5, we connect the PWM signal to the 
direction input of the H-bridge driver and tie the enable pin high either by hardware 
or software. Then the PWM base is half of the PWM period and δ is within the lim-
its of ±1. When δ = 0, the overall PWM is 50%. Since this goes to the direction pin, 
the motor current alternates equally between negative and positive. This happens at 
very high frequency in comparison to the time constant of the motor. Therefore, the 
motor does not move. When δ = 1, the overall PWM is 100% and full forward volt-
age is applied to the motor resulting in full forward thrust. When δ = −1, the overall 
PWM is 0% and full reverse voltage is applied to the motor resulting in full reverse 
thrust. These were discussed earlier in Chapter 6 on motors and drivers; however, for 
convenience, it is illustrated in Figure 10.5. Effectively, as δ changes from −1 to 0 to 
+1, motor power changes from negative maximum to zero and then toward positive 
maximum. Still, we see that Figure 10.4 mathematically represents the effect of the 
type 2 connection also (shown in Figure 10.5) accurately.

E

Dir/phase
Driver

E

Dir/phase
Driver

PWM

Sign

Type-1 connection �e PWM set-up

Run

PWM

Type-2 connection �e PWM set-up

αTpwm

2 2
δ

Tpwm

Tpwm Tpwm

Tpwm

FIGURE 10.5  Two kinds of connection commonly used in H-bridge drivers.
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Usually, the PWM is implemented by introducing timer interrupts. These meth-
ods are very processor specific. Now, let us go back to the main aspects of our dis-
cussion, which is back to what is shown in Figure 10.4. Simplification will provide 
us with the overall closed-loop transfer function as below:
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It may look complicated even though it is only a first-order system. Furthermore, 
it can also be written in time constant form as
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By comparing terms in Equations 10.26 and 10.27, we can compute the param-
eters of this system. Using Equations 10.17 and 10.27, the overall block diagram of 
this control system may be redrawn as shown in Figure 10.6.

In fact, an objective block diagram should also show the displacement, x, as an 
output as illustrated in Figure 10.7.

Sample calculations: Let us consider a sample case with the following given 
parameters:

G = 1000
Kt = 0.033 Nm/amp
Kb = 0.033 V/rad/s
rw = 0.03 m
Ra = 6 ohms
b = 0.01 Nm/rad/s
l = 0.5 m
Tpwm = 1000 clock counts

s−mg
l
bmls2 +

−msVR(s)

Ts + 1
θ(s)α

FIGURE 10.6  Block diagram for pole angle control only.
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Ng = 8 (ratio)
M = 2.5 kg
m = 0.13 kg
Br = 2 N/m/s
Es = 28 V

Then, substituting the values in Equation 10.26, we obtain
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	 M + m = 2.5 + 0.13 = 2.63	 (10.30)

which yields
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The above parameter calculations tacitly assume that there is no duty cycle satu-
ration, even though saturation is provided in the original system, with a formulation 
shown in Figure 10.4. We imply that the ratio GVe/Tpwm in Figure 10.4 is limited to 
−1 to +1.

Furthermore, we need to compute the pole angle dynamics to understand the 
system given in Figure 10.7. Then, we can write
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FIGURE 10.7  Overall block diagram for pole angle control and position control.
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Our primary objective is to control the position and the pole angle together. Let 
us downgrade our objective to control only pole angle θ while ignoring position x. 
Let us simply apply a proportional control and see how the closed-loop poles move 
as we change the gain.

10.2.2 T ransfer Function for Pole Angle Control

To get some insight into the problem, we will use MATLAB® as a tool for further anal-
ysis. As a first step, we want to consider a system in which we intend to control θ only, 
instead of controlling x and θ at the same time, even though it was the original problem 
definition. Such a setup is shown in Figure 10.8. Note that the variable x is ignored.

Such a system can never achieve a steady-state value for θ. This exercise only 
serves the purpose of understanding the problem. We know that Equations 10.17 
and 10.27 describe the cascaded system. We further take note that the values of α 
and T are dependent on G. These parameters are considered preset and are not dis-
turbed, which are parts of the cascade controller that controls the vehicle velocity in 
response to reference velocity. This reference velocity plays the role of the manipu-
lated variable. Let us try a simple program to find the open-loop poles and plot the 
root locus of the above system as the gain K changes. Even though we have done 
some sample calculations, we let MATLAB do all the calculations and do the pole 
trajectory plotting (Cavello et al. 1996). This gives us some insight into the nature of 
the problem. The code and the results are listed in Figure 10.9.

In the above code, variable “pden” shows that the overall open-loop system has one 
unstable root. The plot of the closed-loop system root locus is shown in Figure 10.10.

Apparently, as we close the loop, the system will not stabilize, irrespective of the 
magnitude or sign of K used in Figure 10.8. Here, we only make the point that in 
this particular case, simple feedback control will not work. We can try some other 
techniques, say, integral controller, PD controller, or PID controller. Even if we find 
a suitable controller that can regulate θ with θR = 0, the robotic vehicle will drift. Our 
objective is to regulate θ and control x, with a single manipulated variable VR. Such 
systems may be classified as single-input multi-output (SIMO) systems. We will pur-
sue this objective in the following sections.

10.2.3  Pole-Balancing Robot State Model

Controller design for an inverted pendulum has been widely discussed and presented 
in the literature using force as the manipulated variable while ignoring friction terms 

s – mg
l
bmls2

–ms

+

θ(s)

Ts + 1
αVR(s)

K+

–

θR(s)

FIGURE 10.8  A simple θ control system with a proportional controller with gain K.
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FIGURE 10.9  MATLAB code and result for computing the root locus of simple closed-loop 
system.
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(Ogata 1990, 1995). The main difference in the presentation given here is that we 
include friction terms in the model, and we are using velocity reference as the manip-
ulated variable. This applies to all controller designs described in the sections below. 
To proceed further, we need to write the state equations of the system. Let us define 
the states as follows:
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We consider Equation 10.17 and do a trivial operation of cross-multiplying the 
terms
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FIGURE 10.10  Closed-loop root locus plots for pure pole angle control for positive and 
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By taking the inverse Laplace transform, we obtain
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Now, using Equation 10.33 in Equation 10.35, we get
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To form a state equation, we need to eliminate the dot term on the right-hand side 
of Equation 10.36. For this purpose, let us rewrite Equation 10.27 and process it as 
follows:
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Using Equation 10.37 in Equation 10.36, we get
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Now, we assemble the state equations:
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The above equations can be brought together into a state equation as shown below:
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This is of the general form

	 X A X B u
•

= ⋅ + ⋅ 	
(10.40)

where A is the state matrix and B is the input vector of dimensions 4 × 4 and 4 × 1, 
respectively. What we have done in this section can be summarized as follows:

	 1.	We have derived a model where reference velocity VR is the manipulated 
input to achieve the objectives of keeping the pole from falling and moving 
the vehicle according to command signal.

	 2.	We have mentioned duty cycle-based chopper control as shown in Figure 
10.4 in Section 10.2.1. It is important to note that the chopper duty cycle 
period would be far shorter than the time constants of the system and the 
sampling time to be used. This results in an equivalent cascade speed con-
troller gain of α and time constant T, which can be considered as an analog 
system with the input VR and the output V. Once proportional gain G is 
fixed, these two parameters above, α and T, remain fixed as it is evident 
from Equations 10.25 through 10.27.

	 3.	We are just trying to understand the characteristics of the system by consid-
ering it as a continuous analog system. However, we have to bear in mind 
that no analog controller is implemented in such modern systems. At the 
end of this chapter, we will show how a digital controller can be imple-
mented for this system.

10.2.4 �S tate Model for the Pole-Balancing Robot from Robot 
and Motor Data

Let us derive the continuous state model from the above equations to process it 
further for controller design purposes. The following MATLAB code computes the 
continuous state model.

The resulting A and B matrices calculated with the code given in Figure 10.11 are 
important system matrices, which will be used hereafter.
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10.2.5  Pole Placement Controller with Servo Input Used as Offset

First, let us look at the nature of the PBR. We have discussed in Chapter 9 (Section 
9.9.6) about a class of systems where

	 i.	The output to be servo controlled involves only one state variable.
	 ii.	All other state variables go to zero at steady state.
	 iii.	The system does not require a nonzero value of manipulated variable at 

steady state.

FIGURE 10.11  Plant model calculations.
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In the case of the PBR, the servo-controlled output is distance x(k) = x1(k) and all 
other states are only regulated. Hence, the first item is satisfied. At the beginning when 
there is no position command, and at the end of motion at steady state, the robot should 
stay still if there is no disturbance; hence, all states, except the output state, are zeros 
that satisfy the second item above. Since, at steady state, the robot is stationary, the 
velocity reference input has to go to zero, thus satisfying the third item. Thus, the PBR 
fits well into the description of the class of systems we discussed in Section 9.9.6. Then, 
we can use a control system as shown in Figure 9.31, which implies that we will try to 
move the robot just by introducing an offset to the state variable x, using a step func-
tion. We will not include any integrator in the system but just an offset. We also know 
that from the results we obtained with MATLAB code in Figure 10.9, there is one 
unstable open-loop pole. We want to achieve a system behavior such that the closed-
loop system poles are where we want them, by using pole placement technique.

For the design, we normally start from the analog state model and from there 
obtain a discrete state model and finally proceed to design the controller. We convert 
the analog model to a digital state model with the sampling period of 9 ms. This is 
the actual sampling time used in our practical implementation. It was possible to 
implement such a sampling time using on-board DSP processor. We use MATLAB 
code to obtain the discrete state model matrices, G and H, from analog system matri-
ces A and B. Matrices C and D do not change.

We discussed a few techniques for a discrete pole placement controller in an 
earlier chapter. However, we are not concerned with writing algorithms for such 
problems; we will simply use MATLAB command “K = place(G,H,p),” where G is 
the discrete system matrix, H is the control vector, and p is the vector consisting of 
the desired pole locations. We list the code assuming the values of A, B, C, and D 
matrices obtained in Section 10.2.4. The MATLAB code, and the results are listed 
in Figure 10.12. This code also calls a Simulink® model.

It is important to note that the closed-loop poles are just arbitrary for illustration 
purpose and are not thought through. The Simulink model of the closed-loop system 
that uses the newly designed controller is shown in Figure 10.13. The MATLAB com-
mand in the code that invokes the Simulink model is “[k,x,Out1,Out2,Out3] 
=sim(‘figure1013mdl’)” where “figure1013mdl” is the file name of the 
Simulink model. This command takes the simulation model and runs it to get outputs 
Out1, Out2, and Out3 for plotting. When executed, simulation will plot the outputs of 
distance, pole angle, and velocity reference, which is the only manipulated variable.

The simulation result is shown in Figure 10.14.
At this point, by carefully examining the results, we can get some insights into 

the way this controller and the system functions as a whole. How is the robot made 
to move? It is interesting to see that at the starting instant, the pole falls forward 
and follows a certain pattern as shown in the “pole-angle” response in Figure 10.14. 
Because of the forward leaning of the pole, the robot is made to move forward to 
“catch” the pole. To understand this completely, we need to see how the controller 
achieves this action using the manipulated variable VR. This can be seen with graph 
marked as Vref manipulation in Figure 10.14. We see that the manipulated variable, 
speed reference, goes slightly negative. In response to this, the robot moves slightly 
backward; this causes the pole to fall forward and thus causes the chain of events.
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We have seen the responses in Figure 10.14, and we would like to take a second 
look at the method we have used. In the above exercise, we did not make any effort 
to achieve servo control. We simply introduced the reference position as an offset in 
the distance measurement. This apparent “shortcut” will not always work for any 
arbitrary system. The response gives us further insight into why this method works 
here. The robot in its initial position as well as in its final position need not have any 
steady-state velocity and hence the steady-state value of the control input (velocity 
reference) is going to be zero as shown in Figure 10.14. At the end of the motion, the 
position minus its offset should become zero and none of the other states, such as dx/
dt, θ, or dθ/dt, can have a nonzero value, and this is confirmed by Figure 10.14. Since 
x and θ have stabilized, their derivatives cannot exist. Hence, at the steady state, all 
the feedback signals are zero, which makes the computed value of the manipulated 
variable zero, which is also confirmed in Figure 10.14. Since the steady-state velocity 

FIGURE 10.12  MATLAB code and results for pole placement design.
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reference can be zero, error integration is not needed in this case. Error integration is 
required only when a nonzero value of the manipulated variable is needed at steady 
state. Because of this, this method of just introducing an offset to position feedback 
works for this robot. In the above discussion, we have ignored disturbances, which 
are always taken care of.

We have just made use of the unique nature of the PBR and avoided the use 
of an integrator-based servo controller or any other sophisticated servo technique. 
Moreover, an integrator will, in general, slow down the response. In a competition 
environment, it is not desirable.

10.2.6 LQC  Controller with Servo Input Used as Offset

The same model can also be controlled by the LQC-based controller. We have pro-
vided a MATLAB code to design and simulate the controller in Figure 10.15. The 
Simulink model used here is the same as shown in Figure 10.13. Note the diagonal 
matrices Q and R are chosen at first arbitrarily.

The response is given in Figure 10.16. Note that the response takes around 800 
samples, and the maximum deviation of the pole angle is 0.07 radians and the veloc-
ity reference input is quite acceptable. The result can be influenced by the choice of 
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FIGURE 10.13  Simulation model of the PBR controlled by a pole placement controller.
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Q and R matrices. The weight given to position is 20, the weight given to pole angle 
is 200, and the value of R is 30.

10.2.6.1  Effect of a Change in Q Matrix
The response can be changed by choosing different weights for position and pole 
angle. Let us change the weight given to position as 100 and the weight assigned 
to pole angle as 10. Let us not change the value of R. The modified Q matrix in the 
MATLAB code becomes

Q = [100 0 0 0;0 10 0 0;0 0 10 0;0 0 0 10];

When this is used, replace Q in the MATLAB code in Figure 10.15, the design 
results obtained are shown in Figure 10.17.

The response obtained is shown in Figure 10.18. Notice that the position response 
has become faster. However, the pole deviation goes to 0.15 radians. The demand on 
reference velocity is actually higher than what we see in Figure 10.16.
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FIGURE 10.14  Responses for the simulation of robot for a step command (PPC design).
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Competition environment: In game-playing robotics, speed of response is a con-
sideration. In such a competition environment, to achieve the required speed of 
response, the weight given to the position has to be higher than the weight given to 
the pole angle. The price paid for this is that the pole angle deviation will be larger. 
Furthermore, there will be more demand on velocity reference, which is used as 
the manipulated input. This kind of explicit trade-off is possible in LQC design. 
Nevertheless, the weights must be chosen carefully. The designer needs to consider 
physical limits such as maximum thrust available and the slippage of the wheels 

FIGURE 10.15  MATLAB code for LQC design and simulation with design results.
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on the floor, and so on. Another consideration is that too large values of pole angle 
deviation will violate the linearity assumptions.

In pole placement design, the assigned closed-loop poles decide the response 
of the system modes. It is not possible to identify which pole controls which state 
variable. However, an experienced designer may still use pole placement design to 
achieve the desired results.

A practical constraint regarding step input: The step command for position is 
not a good idea in practice, even though it looks satisfactory in simulation. While 
responding to a step input, we have observed that real robots would rush forward and 
in the process the drive wheels would end up slipping on the floor. This will invari-
ably cause instability. To avoid this problem, the position reference must be increased 
in small steps.

Servo control with integrator: What we have attempted here is to move the robot 
just by introducing an offset to the position feedback. We have not attempted servo 
control with an integrator. For more detailed information on servo implementation 
using an error integrator, refer to Ogata (1995).
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FIGURE 10.17  Design results for the new Q matrix values.
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10.2.7 �I mplementation of the Pole-Balancing Robot Controller Using 
DSP Processor

It is possible to implement the controllers using many types of microcontrollers, 
microprocessors, or even from PCs. In this design, we employed a DSP processor. 
Many powerful DSP processors are available in the market, which have faster com-
putational speeds than microcontrollers. Also, there are many vendors offering DSP-
based motherboards with all the necessary accessories such as flash memory, RAM 
onboard, and communication means. We will discuss the general principles involved 
in such implementations using a DSP processor.

10.2.7.1  Hardware Setup
The system block diagram is shown in Figure 10.19. We have seen earlier that any 
digital controller will have the following hardware parts around the plant to be 
controlled:

	 1.	The processor with program memory and data memory
	 2.	The data acquisition system, which is used to collect data from the plant
	 3.	The controller output connected to a power amplifier
	 4.	The driver system, which provides the power to the motors

In many recent products, such hardware units may be integrated and the distinc-
tion between them may get fuzzy.

Figure 10.19 shows the robot and its control system. Note that the robot has a 
motor driving a wheel through a gear mechanism. The power for the drive motor 

DSP

Power
driver 

Encoder
modules 

Drop
encoder Motor

Pole

Motor
terminals 

Encoder bus

Tape sensor feedback

Tape sensor array

FIGURE 10.19  Simplified setup of a pole-balancing robot control system.
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comes from the driver IC. It is necessary to make two kinds of measurement pole 
angles and distance measurements. Pole angle measurement is done by the incre-
mental encoder. In fact, the pole is mounted on the shaft of the encoder so that, as 
the pole swings, the encoder provides the angle of swing. The distance measurement 
is done by another encoder attached to a drop wheel. It will be useless to just make 
an encoder to cling to one of the wheels, since due to strong torque the driven wheels 
will invariably slip on the floor. Then the distance measurements will be erroneous. 
A better practice is to have drop-encoders attached to the body such that an addi-
tional free encoder wheel is always in contact with the support surface due to grav-
ity, or by spring loading it with just enough force to ensure contact. The figure also 
shows the side view of sensor arrays mounted at the bottom of the base board to give 
feedback on the cross-tapes on the platform.

Even though we show the processor and encoder driver assembly in one box, it 
is rarely possible to do that. DSP boards used in this design are pretty standard and 
are available off the shelf. Here, we use a Texas Instruments ezDSP 2047 board from 
Spectrum Digital Inc., which has a 32-bit fixed point DSP processor, with enough 
data as well as program memories. For practical reasons, such boards rarely come 
with power drivers. This board provides two channels of encoder inputs and many 
digital and analog I/Os.

Some systems may need additional encoders as well. There may be ground sensors 
to see the demarcation tapes stuck on the robot platform. All these support systems are 
usually provided on a sisterboard, and they are designed in such away to be attached 
to the motherboard consisting of the main DSP processor. While the motherboards 
are bought off the shelf, the sisterboards need to be designed and fabricated, unless a 
suitable board with drivers and encoders can be found. The safe practice in robotics is 
to avoid ribbon cables and multiconnectors as much as possible to link these boards. 
Typically, the boards are piggybacked on each other for firmer mechanical grip and 
reliable signal flow between them. These kinds of detail need to be worked out depend-
ing on the main platform the designer chooses. A system designed and used by the 
authors in an earlier version of their robot is shown in Figure 10.20. The figure shows 

FIGURE 10.20  Photograph of the single-degree-freedom PBR with pole detached.
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the sensor arrays and the threaded pole supports bolt to which the pole can be fitted 
firmly, so that it can swing in the sagittal plane freely. Such a pole will have a single 
degree of freedom.

In this early design, note that there is a DSP motherboard, a driverboard linked by 
a ribbon cable contrary to our recommendation. Figure 10.21 shows the pole when 
fitted to the pole support system and a drop-encoder. The drop-encoder makes sure 
that the encoder is always in touch with the platform surface and reduces the error in 
distance measurement. There are ground LED sensors to locate the tapes, which are 
essential to synchronize and correct the distance measurements. Even though we use 
drop-encoders which are not “supposed” to slip, errors do occur due to high accel-
eration especially at the places where the robot changes direction. The encoders used 
were MTL MES 20-1000P. When fed to the 2016-quadrature decoders, they can give 
a resolution of 4000 counts per revolution. The driver IC used is the L6203 H-bridge 
driver, which has enough power capacity to drive the motor.

10.2.7.2  Software for the Robot
So far, we have seen the control methods to keep the pole close to the vertical posi-
tion and move the robot at the same time. It is necessary for us to first enlist what 
we expect the robot to do, before we start discussing the program sequence. In some 
competitions, the first task of the robot is to balance the pole and stand in one region 
of the platform for a predefined period. This is called the static balancing part. Then, 
the robot is expected to move to the other side of the platform and then retrace the 
path back to the starting place. The robot may repeat this many times. Every time 
one up and down travel is completed, it is counted as one lap. A robot is expected to 
perform as many laps as possible within a given fixed period of time. To increase the 
challenge, if there is a curved path on the platform, then the robot should move along 
the curved path. All these functions should be fulfilled without any operator interven-
tion. Hence, the robot should have the capability to keep track of the time. Usually, 
time keeping is performed by means of timer interrupts. These interrupts are set up 
at the beginning of the program, before the processor begins to start controlling the 

FIGURE 10.21  The drop-encoder and the pole support system.
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robot during initialization of the processor. We have mentioned the cascade control 
of the velocity with prefixed gain earlier, G. In our design, the basic interrupt period 
is set to 0.125 ms. The cascade control can be done inside the interrupt service rou-
tine or in the main loop. Because of this, the velocity control is transparent to the 
main loop of the program. We choose to change the manipulated variable every 9 ms 
in the main loop. We know that this is short enough to get smooth control of the robot 
motion and balancing. This is the robot sampling and control interval. Every 9 ms, 
the processor has to perform many operations including capturing data about the 
robot position, velocity, pole angle, and pole angular velocity. In addition, the robot 
calculates the feedback control value for the manipulated variable and outputs it as 
velocity reference. Every major sampling interval, which is 9 ms, the overall servo 
controller produces a velocity reference value. But, the cascade controller acts every 
basic sampling interval of 0.125 ms to obtain the velocity error and implements a 
duty cycle. This mimics the case of a continuous time cascade control. If cascade 
control cannot be done inside the interrupt service routine, it can be done even in the 
main loop every 9 ms without compromising the performance.

The first part of the general flowchart is shown in Figure 10.22. Let us summarize 
the events taking place at the initial part of the software. First, the processor is set up 
with necessary pins as inputs and output lines and the motors are disabled. We know 
that at this time that the motor power is switched off. In some cases, the enable line 
of the driver is directly controlled by the processor, and hence the software is used to 
disable the motor irrespective of the PWM value. Then, the timer interrupt is set up 
for creating interrupts every 0.125 ms. This value is decided empirically. The ezDSP 
2047 is a complex processor with many timers. Some are dedicated for PWMs, and 
some are dedicated for encoder readings, and so on. We found that 0.125 ms is suit-
able, since we are using the same timer for generating interrupts as well as PWM sig-
nals. In any case, we have an instruction to keep the PWM neutral. What is neutral 
depends upon what connection we choose for the driver (refer to Figure 10.5). Then, 
we also have to set the reference velocity VR to zero. Inside the interrupt routine, 
we need to maintain a count of these basic intervals (IntCount), and we set them to 
zero. After the completion of the initialization stage, we enable the interrupts. At this 
time, the robot operator would have placed the robot at the starting point and would 
be holding the pole vertically. The robot power switch has not been switched on yet.

Once the robot is powered on, the program enters the initial loop. At this point, the 
processor reads all the I/Os of pole angle and position encoders. It also sets the PWM 
neutral. During this part, the timer interrupts keep occurring and incrementing the 
“Intcount.” Here, we wait for a count of 72 to occur since 72 × 0.125 ms = 9 ms, 
which is our control interval.

When this happens, the processor checks if the start button has been pressed. 
If it is not, then it moves on repeat the “idle” loop after resetting the “Intcount.” If 
pressed, it implies that the motor has been switched on and the robot has to start the 
first static balancing part. Before we go any further, let us see what happens inside 
the interrupt service routine. This routine increments the interrupt count and also 
implements the cascade controller to make the robot move in accordance with the 
velocity reference provided by the controller. Even though this velocity reference 
changes every 9 ms, we may need to control the motor more often. This is shown 
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in Figure 10.23. However, we have given two versions of it. In version 1, the proces-
sors just increments the interrupt count and returns. It is a trivial action, but still 
it is needed to keep track of time. After all, the entire data processing cannot be 
completed in 0.125 ms. Since the system is implemented with one timer taking care 
of interrupts and PWM, the interrupt interval has to be small. With the addition of 
overheads of entering and leaving the service routine, all operations cannot be com-
pleted. If the processor is fast enough, some of the functions such as motor cascade 
control can be done inside the interrupt service routine. This is shown in version 2. 
In earlier models, we used the second version, but in complex cases which will be 
described latter, the version 1 was implemented. Then, one can conclude that in ver-
sion 1, motor cascade control must be executed in the main loop and in version 2, that 
part can be left out of the main loop.

Now, we are ready to discuss the next part. We know that the robot has a few 
different functions. We may arbitrarily divide them as stages. We introduce a vari-
able “stage” for convenience. Stage = 1 indicates that robot is doing static balancing 
keeping the pole balanced close to the vertical position while staying within the first 
boundary lines for the prescribed duration of time. During this time, the robot should 
not move beyond the demarcation of start position. Then, it becomes necessary to bal-
ance the pole by mildly moving the base and keep track of time to find when to start 
moving by switching the stage to 2. Stage = 2 indicates that robot is moving to the 
other side of the platform beyond the second boundary line. Stage = 3 indicates that 
the robot is returning to reach the starting region, and finally Stage = 4 indicates that 

Timer interrupt

Increment intcount

RTI

Timer interrupt

Increment intcount

RTI

Read encoders
Compute velocity

Compute velocity error
Compute PWM

Implement PWM

Version-1 Version-2

FIGURE 10.23  Interrupt service routine for cascade control.
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the robot is doing final static balancing after repeating stage 2 and stage 3 as many 
times as possible, within the allocated time. We have terminated the flowchart at point 
A in Figure 10.22. We continue that in Figure 10.24. After we enter the loop at “A,” we 
set stage = 1 and also we introduce a “LoopCnt” and set it to 0. The purpose is to keep 
a track of time. The next part of the software manages the robot through the stages 
while also changing stage numbers as the robot performance progresses.

The “Master Controller” box of Figure 10.24 is shown in detail in Figure 10.25.
The process of stage manipulation and motion management are done in an inte-

grated manner starting from point “A” until the “Master Controller” box. Through 
this section, timer interrupts are active. Interrupts occur every 0.125 ms and IntCount 
is incremented in the interrupt service routine. In the main loop, after performing 
the Master Controller’s action, the processor waits for “IntCount” to reach 72, which 
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FIGURE 10.24  Main flowchart of the pole-balancing robot.
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is equivalent to 9 ms and then major looping is executed. This guarantees that the 
major control interval is strictly 9 ms, and this is the basic requirement of DDC. 
After 9 ms elapses, if the motor switch is still ON, “LoopCnt” is incremented and 
the elapsed time is calculated. Here, the IntCount is also reset for the next loop, after 
which the processor loops back to the top.

Now, we look into how the stages are manipulated. “xcom” is introduced to 
indicate the position command. At Stage = 1, initially the processor loops through 
the static balancing part, keeping track of time. The robot does not move since 
xcom = 0. When the time goes beyond Tstatic, then the stage is set to 2. After 
this, the xcom is slowly incremented in steps of “xinc.” Then, the processor keeps 
executing second horizontal segments of the flowchart until x goes beyond xmax, 
which is the upper demarcation distance on the platform. At this point, the stage 
is set to 3 and xcom is slowly decremented in steps. The processor keeps execut-
ing the third horizontal segment of the flowchart until x goes below xmin, which 
is the lower demarcation at the starting point of the platform. When this happens, 
the software checks if there is enough time for one more up and down travel and 
final balancing time (Timeleft > One lap time + Finbaltime?). If the answer is yes, 
the stage is set to 2 again and one up travel will be executed, followed by Stage = 3 
for one down travel. This sequence will continue until there is not enough time to 
complete one more lap and final balancing time. Obviously, the programmer should 
have a good idea of how long it will take the robot complete one up and down 

Output duty cycle

Compute

Update pole angle θ, 
angular velocity ω,

position x,
velocity v

u = KtX

VR = u

Tpwm

G(vR − v)
=δ

FIGURE 10.25  “Master Controllers” shown in Figure 10.24.
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motion. When there is no enough time, the stage is set to 4. This makes the robot 
keep balancing at the starting point with the “xcom” set to zero. When the operator 
switches the motor enable off, PWM is set to neutral and interrupts are disabled. 
This marks the end of the run. The robot we discussed in detail thus far was imple-
mented and tested successfully. A video showing the robot in action can be viewed 
at (PBR-Single Degree 2012). In the video, the PBR travels on a platform which 
has flat and mildly sloping surfaces. It needs to be mentioned that when the terrain 
is inclined, pole angle calculations are adjusted to find the actual inclination of the 
pole from vertical. Since we are using a cascade velocity controller, this mild slope 
(5.7°) does not affect the performance.

10.2.8 T wo-Degree-Freedom Pole-Balancing Robot

The robot described earlier has only one degree of freedom. The pole is free to move 
forward or backward, since it is fixed to horizontal shaft-supported bearings on both 
sides. In an advanced game event, it was stipulated that the pole should have two 
degrees of freedom. A picture of the support mechanism is shown in Figure 10.26a.

When the pole can fall in front–back (sagittal) as well left–right (transverse) 
directions, the robot base should be able to move in both X and Y directions. In other 
words, robot mobility requires “omni-wheels” as shown in Figure 10.26b.

10.2.8.1  Control Philosophy
If we write and analyze the state equations for controllers, we will have a state equa-
tion with twice the dimension and things will get mathematically out of hand. If 
we assume that the dynamics of X and Y directions are decoupled, then they can be 
treated separately. The situation is described below where As are system matrices, 
Bs are control matrices, and ux and uy are manipulated variables in the x and y direc-
tions, respectively.

FIGURE 10.26  (a) The pole support for two degrees of freedom. (b) A typical omni-wheel.
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We can assume that the nondiagonal elements in A and B matrices are sparse or 
null and separate them as
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(10.42)

Then, two controllers can be implemented independently. A picture of the PBR 
with two degrees of freedom is shown in Figure 10.27 and a video of it can be viewed 
at PBR-Two Degree (2012).

10.2.9 �E stimation of Angular Friction Term b Used in PBR 
from Experiment

We have used friction coefficient, b, of the pole support system in Equation 10.17 
and the robot friction coefficient, Br, in Equation 10.18. Subsequently, the assumed 

FIGURE 10.27  A two-degree-freedom pole-balancing robot.
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values of those constants are used in many calculations, for example, in MATLAB 
programs given in Figures 10.9 and 10.11. We have illustrated the method to evaluate 
the robot friction coefficient Br in Chapter 6. In this section, we illustrate a procedure 
to estimate b. The angular friction of a pole support system can be easily estimated 
by conducting a simple experiment and by treating it as a regular pendulum. Most 
analysis of pendulums does not take into account the friction term. For reasonable 
control accuracy, we need to have at least an idea of the order of magnitude of this 
friction. In robotic games, the limiting value of b is directly or indirectly specified.

First, let us undertake some modeling and analysis by referring to Figure 10.28. 
We reiterate our assumptions that the pole consists of a mass, m, attached to a rigid 
massless pole of length l. The unit of the angular friction term “b” is in Nm/rad/s.

Then, the frictional torque is given by

	
t b

d
dtf = q

	
(10.43)

If the force due to friction acting on the mass is Ff, then lFf = tf = b(dθ/dt).
Obviously,

	
F

b
l

d
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(10.44)

Hence, the force balance equation can be written as
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FIGURE 10.28  Pole-balancing robot kept upside down for pendulum experiment.
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Since sinθ ≈ θ
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Taking the Laplace transform, we can write
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Let us assume that
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Our analysis starting from the instant pendulum is let go at an angle of θm.
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Standard solutions for Equation 10.48 can be found in the control literature. Here, 
we derive the time domain solution from basics. For mathematical manipulation, we 
reorganize Equation 10.48 and obtain
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Let us define
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Then, taking the inverse Laplace transform, we can write
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(10.51)

Now, let us define an angle φ as in Figure 10.29.
Then, the solution can be rewritten as
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(10.52)

a = (b/2 ml2) is the attenuation factor for the oscillation, which happens to be half 
of the coefficient of the s term in the denominator polynomial in Equation 10.48. In 
the control theory, this is a standard result. Obviously, at t = 0

	 θ(t) = θ(0) = θm	 (10.53)

Now, let us consider Equation 10.52. While ignoring the actual wave form, we 
denote the amplitude by A(t) and write
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(10.54)

It is very clear that the envelope of the sine wave decays according to an exponen-
tial law. At t = t1, the amplitude of the envelope is A1 and at t = t2, the amplitude of 
the envelope is A2. Then
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EXAMPLE 10.1

Let us simulate a case with known b and verify.

Mass = 0.127 kg
Length = 0.99/2 m

From Equation 10.45
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Of course the angle θ can be solved by double integration, while taking care to 
provide appropriate initial conditions. A Simulink diagram for the friction estima-
tion test is shown in Figure 10.30.

Let us assume that the friction coefficient b is 0.01 Nm/rad/s. Then, the initial 
angle, θ = 0.10 rad and the ω = 0. The MATLAB program for the simulation is listed 
in Figure 10.31.
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We notice from Figure 10.32 that at time

	 t1 = 5s  A1 = 0.045
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FIGURE 10.30  Simulink model for friction test example.
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and

	 t2 = 10s  A2 = 0.021	 (10.59)

Hence

	
b = × ×
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.

.
.

	
(10.60)

This estimate is quite close to the assumed b value of 0.01 used in the simula-
tion experiment.

FIGURE 10.31  MATLAB program for simulation of pole as a “normal” pendulum.
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10.3  WALL-CLIMBING ROBOTS

WCRs can be very useful in real world. The WCR competition stimulates techno-
logical development in this field. While making a robot to climb a structured wall 
is quite straightforward, it may be difficult if the wall involved is unstructured. 
Furthermore, the recent trend in this competition is to restrict the clinging methods 
and in some games the walls are made of nonmagnetic material. Even in structured 
environments, nonmagnetic clinging may pose a problem. In this section, we will see 
two kinds of philosophies involved in making a WCR. Before we do that, let us see 
a sample structure used in wall-climbing competition concerned here. Figure 10.33 
shows a diagram of the structure that is made of nonmagnetic material. The robot 
has to be placed in the start region. It is expected to move toward the wall, move 
up the wall, and travel under the ceiling beyond the finish line. Then, it is expected 
to travel back by retracing the path back to the start region. All along, a part of the 
robot should be in contact with the platform (that is flying or other means are not 
allowed). The robot should climb and travel by clinging to the surfaces. The travel-
ing time from start to the finish and back to the start line is clocked, and the fastest 
robot is the winner.

10.3.1 F lipper Wall-Climbing Robot

The flipper WCR, shown in Figure 10.34, is similar to what we saw in the in the gear 
ratio design example discussed in Chapter 5, except that it has two main drive motors 
and one motor for cruising.

This flipper robot is much simpler to construct, program, and operate. It consists 
of two main arms, which can rotate through more than 180° using two driver motors. 
The robot also has four wheels placed on two axles, one in front and one in back at 
the one side of the arm linking the flipping arms, which is the main body on which 
the motherboard and driverboards are mounted. As shown in Figure 10.34, the robot 
has suction pads that are operated with a suction pump and valves. The suction pads 
provide the gripping needed for climbing. There can be two, four, or even six suction 
pads depending on the design. The robot has limit switches to indicate the limits of 
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Finish line
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FIGURE 10.33  Wall-climbing robot competition platform.
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motion and also marking the completion of the specific step. The wiring diagram of 
pneumatic system is shown in Figure 10.35.

Figure 10.35 shows a typical and simplest pneumatic wiring diagram used for the 
robot. The suction cups are named group A and group B. The pneumatic valves A 
and B are connected to the respective groups. These valves are electrically activated. 
If turned ON, then they do a straight connection from inlet to outlet (top to bottom), 
which is m to q and n to p as shown. If switched OFF, they cross-connect, by con-
necting m to p and n to q. The ON and OFF conditions vary from manufacturer to 
manufacturer. Off-the-shelf suction pumps are usually the diaphragm type and have 
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FIGURE 10.34  Diagram of the WCR-flipper robot.
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FIGURE 10.35  Pneumatic wiring diagram.
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one inlet and one outlet. When switched on, they draw air through inlet and send air 
through the outlet. The above wiring is done in such a way that the pump is always 
ON. As can be seen in the wiring diagram, when valve A is ON, it is straight-con-
nected and valve B is cross-connected. Also, note that the points marked p are sealed 
airtight on both valves. Obviously, the suction is applied to suction cups set A since 
path m–p in valve B is sealed. Outgoing air from the pump has two paths. But, path 
n–p of valve A is sealed. Hence, the outgoing air goes through path n–q of valve B 
and exits via cups set B. So, while suction is applied to cups set A, the air is purged 
through suction cups set B. If switching is reversed, the suction cups set B will suck 
and get attached to the wall and suction cups set A will be purged away from the wall.

10.3.1.1  Overall System Configuration of Flipper WCR
Since the flipper WCR has three motors, sensors, vacuum pumps, and pneumatic 
valves, we would like to illustrate a simplified system diagram for the same in 
Figure 10.36.

The figure is self-explanatory. We can see that the three motors can be controlled 
using encoder feedback. The suction pumps can be turned on or off. Valves can be 
individually controlled to produce vacuum to stick the pad to the surface or purge the 
pad from surface. Pad sensors provide information regarding the respective pads stick-
ing to the wall surface. The photograph of the entire robot is shown in Figure 10.37.

10.3.1.2  Control of Suction Pad Arms and Cruise Motor
The suction pads A and B are rotated using the flipper motors shown in Figure 
10.34. Both joints are equipped with encoders. In most stages of climbing, typically, 
the motor controller implements a velocity control to rotate the joint of the suction 
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FIGURE 10.36  System configuration for flipper WCR.
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pad, stuck to the wall, until the other suction pad touches the wall or ceiling, which 
is indicated by the sensors. When this happens, the controller switches to position 
control mode and the pad arms are held at the given positions briefly before the next 
move. Thus, depending on the need to hold position or rotate the suction pad arm 
with the given angular velocity, the software implements the either position con-
trol or velocity control, using a simple P-only controller. The software generates an 
appropriate velocity reference or a position reference to control the motors. For the 
cruise motor, only velocity control is implemented.

There are three motors in the robot, two for pad arm joints and one for cruise 
wheel. The controller for any particular motor is shown in Figure 10.38.

The processor can act as a position controller as well as a velocity controller. In 
the case of position control, a simple P-only control is computed as

	
u k K p r( ) ( )= × −1 q q

	 (10.61)

where Kp1 is the proportional gain for position control, θr is the reference position 
generated by the program, and θ is the position obtained from the encoder. In the 
case of velocity control, a P-only controller is computed as

	 u k K p r( ) ( )= × −2 w w 	 (10.62)

FIGURE 10.37  Photograph of the flipping WCR.



310 Practical Robot Design

where Kp2 is the proportional gain for velocity control, ωr is the reference angular 
velocity generated by the program, and ω is the angular velocity calculated based on 
two consecutive encoder readings. There is no difference in wiring between position 
control and velocity control.

10.3.1.3  Operation Sequence of the Flipper WCR
We will explain the operation sequence of the robot using line diagrams given 
in Figure 10.39. Stages are indicated in circled numbers. In the beginning, the 
robot is placed on its base, so that it rests on the four wheels attached to the body. 
The arm A is turned horizontal in such a way that the pad holding the cups of 
set A is vertical as shown in stage 1. Then, power is applied to the cruise wheels 
fixed to the present bottom side of the frame, to make it go toward the wall. 
This motion continues until the limit switches in pad A sense the vertical wall 
as shown in stage 2. At this time, valve A is straight connected and the pump is 
also turned ON, and the set A cups get attached to the wall. Once the suction cups 
are attached to the wall, the motor of arm A is activated to turn the whole body 
counterclockwise so that the set B cups get to touch the vertical wall as shown in 
stage 3 of Figure 10.39. Subsequently, valve A is cross-connected and valve B is 
straight-connected. This causes the set B cups to get stuck to the wall, and the set 
A cups lose grip, ready to be purged and cranked away from wall. Now, joint B 
is activated so that the body turns again counterclockwise and at the same time 
joint A rotates to make pad A ready to face the wall, when it approaches the wall 
as shown in stage 4. At the end of stage 5, a complete flipping motion for climbing 
is accomplished. This process can go on until the upgoing arm cannot reach the 
vertical wall because the ceiling is obstructing. This indicates that the robot has 
reached stage 6. After how many upward steps this happens must be precalculated 
or found out by experiments.

At stage 6, both joints are activated, and they are all on the move. Here, we have 
not shown cruise wheels in the figure, since they can be on the either side of the body. 
Joints are not named, and we call them lower and upper joints. The speeds must be 
carefully programmed so that the upper suction pad’s outer side touches the ceiling 
first. After sensing this, the upper joint is eased and the lower joint pushes further. 
This causes the upper pad to tilt until it completely touches the ceiling, activating 
all sensors. Appropriate time delays may need to be introduced. Now, suction is 
switched to the upper pads, and the lower pads will lose grip. Again, the upper joint 
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FIGURE 10.38  Control system for pad arms and cruise motors.
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is asserted and cranked counterclockwise, and the lower arm is flipped so that it is 
ready to touch the ceiling. Further motion is continued until the robot crosses the 
finish line. The steps are usually precalculated. The return journey is similar, except 
that on the way back, the ceiling to wall search has to be performed. At the end of 
downward motion, the situation will look as stage i shown in Figure 10.40. Now, the 
lower joint will be A, and pad A will be stuck to the wall. The upper joint is B and 
the set B cups will be purged. For a successful return cruising, this must be the situ-
ation. Once again, this is ensured by conducting experiments and by trial and error. 
The body length is adjusted so that at stage i, joint A is at the bottom. Also, as joint 
A is eased to let the cruise wheels touch the floor again by going through the motion 
shown in stage j, the clearance should be just sufficient and not too large for smooth 
landing. After landing, valve A is set to purge the set A cups. Now, the cruise wheels 
are powered to go back to the starting point. A video of the flipper WCR can be 
found in WCR-Flipper Type (2012). This video will also give a better understanding 
of the programming involved.
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FIGURE 10.39  Stages of climbing action by the flipper wall-climbing robot.
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10.3.2 D esign of a Wall-Climbing Robot Using Dynamic Suction

The robot we describe here uses Bernoulli’s equations to achieve the same objectives 
discussed for the WCR in the previous secton. Therefore, we will call it “Bernoulli’s 
WCR.” A line diagram of the robot is given in Figure 10.41.

Figure 10.41a shows the line diagram of the robot. It shows a box with two open-
ings: one on the top and the other on the front side, fitted with cone-like structures 
extending inward. Both are fitted with very high power fans driven by brushless 
DC motors. These motors have been explained in Chapter 6 on actuators. At the 
bottom and top of the front side of the robot, we have driven wheels for moving on 
the horizontal part of the platform and climbing the front wall. On the horizontal 
part, the bottom wheels can do the job. But, while climbing up, both wheels are 
activated. While moving under the ceiling, only the top-driven wheel is sufficient 
and effective. On the front and top, we have four tiny caster wheels to keep the 
robot at a carefully chosen distance from the vertical and ceiling surfaces, respec-
tively. The distances are chosen experimentally. The driven wheels are also placed 
to maintain the same clearance. Both driven wheels can be activated individually 
or together. They have encoders fitted to measure the distance traveled. Both front 
and top surfaces are fitted with limit switches as well. The system configuration is 
shown in Figure 10.42.
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FIGURE 10.40  The transition from wall to base on return path.
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FIGURE 10.41  WCR using dynamic suction: (a) basic robot structure and (b) air flow.
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10.3.2.1  Dynamic Suction Principle
Let us first describe the dynamic suction principle. For this purpose, we must study 
some illustrations before we embark on the concept of dynamic suction as applied 
to WCR.

The well-known Bernoulli’s principle states that in the environment of steady 
flow of liquid, the increase in flow velocity causes a decrease in pressure and vice 
versa. This is shown in the case of a liquid flowing through a constriction in a pipe 
in Figure 10.43a and in the case of an airfoil in Figure 10.43b. These are the basic 
principles that we exploit in the design of a WCR design.

An experiment can be easily devised to demonstrate what happens when on one 
side of a foil or thin plate air flows fast and on the other side it is almost stationary. 
You will see that the foil experiences a force, which pushes it toward the side where 
there is high velocity airflow (Air-flow 2013).

The original equation was derived for the case of incompressible liquids by 
Bernoulli (Rajput 2011), and it is given below
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where px and py are the static pressures at two points X and Y, respectively, and ρ is 
the density of the fluid at points X and Y. Since the fluid is incompressible, the density 
remains the same. zx and zy are the altitudes of points X and Y from an arbitrary refer-
ence and finally vx and vy are the velocities of air flow at points X and Y, respectively.

Bernoulli’s equation is written in many forms. We have considered a type where 
dimensions of all terms in the equation are in meters of fluid head. For example, the 
unit of py/ρ is (kg/m2)(m3/kg) = m.

Similarly, the unit of v gy
2 2/  is (m2/s2)(s2/m) = m as well. Obviously, the unit of zy 

is meter.
When we try to apply this theory to air, which is readily compressible, we face 

some discrepancies due to possible changes in densities. However, it is generally 
agreed that the density does not change considerably for speeds up to Mach 0.3. This 
translates to 100 m/s, which is hardly reached in our application so we can safely 
assume that density does not change.

Now coming back to our application, Figure 10.41b shows the air flow pattern 
between the ceiling and the top of the robot. We have marked two points X and Y. Let 
us apply Bernoulli’s equation for these two points
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where px and py are the static pressures at point X and Y, respectively. Let us rewrite 
Equation 10.64 as
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Note that vx ≫ vy and in fact vy = 0. Furthermore, we know that zx ≈ zy. Hence, 
we can conclude that in the right-hand side of Equation 10.65, the second term 
dominates, and it is a large positive quantity, while the first term is insignificant. 
This indicates that there is a large difference in pressure from X to Y. That pushes 
the robot upward and keeps it stuck to the ceiling. The caster wheels maintain the 
appropriate gap. The same phenomenon applies to the front also when the front fan 
is activated in the vicinity of the front wall. The photograph of such a robot is shown 
in Figure 10.44.

10.3.2.2  Operation of the WCR Using Bernoulli’s Principle
The operation of this robot is quite straightforward. First, the front cruise motor is 
activated. The robot moves forward from the base of the competition structure until 
front sensors indicate that the robot is pushing against the wall. At this point, the air 
flow fan motor for the front is activated, which makes the front side stick to the wall 
and both the drive motors are controlled to move the robot upward. When the top 
sensors indicate that the robot is pushing against the ceiling, the airflow fan motor 
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for the top is activated, which makes the robot top stick to the ceiling and the fan 
motor for the front is deactivated. The robot moves under the ceiling until the desti-
nation line is crossed. Then, the cruise motor on top is reversed. A similar procedure 
is used to retrace the path. The operation of this particular robot during a competi-
tion can be viewed in WCR Using Bernoulli’s Principle (2013).

10.4  CONCLUSION

In this chapter, we have considered a few cases of game robots. We have illustrated 
how the principles discussed in earlier chapters can be applied for the successful 
design of such robots. In addition to simulation studies, the videos cited provide a 
good idea of how the robots perform.
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FIGURE 10.44  Photograph of the WCR using Bernoulli’s principle.
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11.1  INTRODUCTION

An autonomous robot must be able to perceive its environment and act on it to achieve 
its goal. Sensors provide the robot with measurements about some physical phenom-
ena. In some cases, these measurements are enough to make decisions, but at most of 
the time it is necessary to process these data to obtain more useful information about 
the environment. This process is called perception (Jones and Flynn 1993). The main 
information obtained by perception is the state, which is the representation of the 
environment and robot itself at some point of time. The robot’s state would consist 
of what the robot is able to sense, process, and represent. For example, the state of 
a mobile robot will normally consist of a map of its environment, its position in the 
environment, its speed, its battery level, and so on.

The robot unit that makes decisions is called the controller. However, it is neces-
sary to emphasize that the controller we are referring here is a higher-level control 
system that is responsible for the decision-making and planning of robot actions as 
a whole system. The robot control issues discussed earlier in Chapters 8 and 9 are 
referring to a lower-level control that handles the basic motions of the robot by act-
ing upon its actuators. The remainder of this chapter, the term “controller” should 
be understood as high-level controller, unless otherwise stated. To achieve a high-
level control, the robot utilizes data generated by the perception unit to make a plan, 
which is a set of actions that the robot must follow to achieve its goal. An important 
issue for a high-level controller is the rapid and timely decision-making capability. 
When a robot takes too long to deliberate about what actions it should take, those 
actions might be irrelevant and the plan may be invalid due to the changes in its 
environment. Normally, the environment for autonomous robot games is dynamic 
and unpredictable.

In the following sections, we will discuss the roles of perception and decision-
making when developing autonomous robots. Different strategies will be discussed 
to provide a better understanding of the alternatives for perception and decision-
making, but the final decision of what to use indeed depends on the environment, the 
robot structure, and the task.

11.2  PERCEPTION

Robots understand their environment through the limited information gathered by 
their sensors. As explained earlier in Chapter 3, there is a wide variety of sensors to 

11
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measure different types of physical phenomena. We presented some of the sensors 
that are suitable for designing robots for games. Here, we will focus on the way that 
the sensor data are processed to become meaningful and to make the robot aware 
of its environment. Perception is more than merely reading the measurements from 
the sensors, but it is a process of understanding the environment by organizing and 
interpreting the information collected from the sensors.

11.2.1 F rom Sensor Measurements to Knowledge Models

The data collected from sensors are inexact due to sensor noise and limitations of the 
hardware. To overcome the uncertainty, in the state of a robot or its environment, the 
perception system employs models that minimize the effects of uncertainty.

There are mainly three strategies when processing sensor measurements to deal 
with uncertainty. These three strategies that will be presented here are similar to 
those strategies in the following chapter about decision-making. The fundamental 
reason for this is that the way sensor information is used to deal with uncertainty is 
intrinsically related to the decision-making. Processing sensorial data and reducing 
its uncertainty is a fundamental part in decision-making that tries to minimize the 
possible failures in the system (Siegwart and Nourbakhsh 2004). Let us target these 
strategies here from a data-processing angle.

The first strategy is to use the raw sensorial information of each individual sensor 
to control or influence directly the robot behavior. In this strategy, the information 
about previous states of the sensors is not relevant, only the current measurement is 
considered, regardless of its accuracy. This strategy will yield to fast robot actions 
since it is looking for a particular stimulus in the sensors to respond accordingly. 
Inaccuracy of sensors may induce uncertainties that produce false reactions. These 
types of systems are continually assessing their sensor values; hence, it is expected 
that the uncertainty will reduce overtime. For example, a robot designed for micro-
mouse competition moves forward, but it must turn left or right once a wall has been 
detected in front of it. If we consider a robot with three sensors, one on the left, one 
on the right, and one in front, this robot will make a turn as soon as the front sensor 
detects the wall; besides, the current information of the side sensors will be used to 
determine the direction of the turning. In this example, the robot only uses the cur-
rent information of the sensors; it is not important to consider the previous informa-
tion captured from sensors to avoid the wall in front.

The second strategy is to generate a higher level of representation of the envi-
ronment through the information from one or more sensors. This high-level repre-
sentation can then be used to trigger the appropriate robot behavior. This strategy 
requires extracting features that are relevant in the robot’s task, but these features 
may not be obtained directly from the raw sensorial data or from one single sen-
sor. Needless to say, this strategy is slow when compared to the first strategy of 
using the raw sensor data, but it handles uncertainty by using previous informa-
tion recorded from sensors. However, if the process of feature extraction takes too 
long, there is the risk that the processed information would be irrelevant due to the 
dynamic nature of the world. For example, if we consider robots competing in the 
Humanoid League of the RoboCupSoccer competition, the position of robots and 
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ball are changing constantly. Furthermore, the state of a robot might be changing 
due to external unforeseen circumstances such as being pushed by another robot or 
being moved to a new position by a robot handler in the field, and so on. In this type 
of task, the robot should not take too long to process sensor data; otherwise, the 
resulting information will be irrelevant to make adequate decisions. On the other 
hand, it is necessary to process current and past data to obtain essential information 
like robot position, an estimation of whereabouts of other robots and objects in the 
field, and so on.

The third strategy is a hybrid process that combines the two methods already dis-
cussed. Some of the raw information is utilized to control “survival” behaviors, while 
the feature extraction is used to identify relevant information to complete a given task. 
This strategy takes advantage of the quick response of the first strategy as well as 
the strength of feature extraction of the second strategy, while trying to minimize 
the response time to the changes in the environment. For example, in humanoid 
RoboCupSoccer, the robots should use current and past data for determining the posi-
tion of the robots and the objects in the field. This process is slow and it might take a 
long time to compute. Nevertheless, robots should also be able to react fast if the ball is 
detected nearby, and the robot needs to kick the ball. Obtaining the position of objects 
in the field or at least a good estimation of them is useful so that a humanoid robot can 
make a decision to kick the ball to score a goal (Acosta-Calderon et al. 2010).

Let us discuss more about the feature-extraction process that is used in these 
strategies. The process consists of first collecting raw measurements from one or 
more sensors, second, filtering the raw measurements to remove redundant data, and 
finally extract distinct features from the filtered data. Feature extraction is a power-
ful technique to enable robots with high-level information. Collecting sensorial data 
requires a huge amount of memory space and heavy computation, which takes a long 
period of time to make sense of the data. One of the benefits of feature extraction 
is that it reduces the volume of data to represent a feature by simply producing an 
abstract representation of it from the raw data. These features could then be com-
bined to produce a set of high-level abstracted features found about the environment. 
Subsequently, accessing and using high-level information speeds up the computation 
process, which is also another advantage of feature extraction.

Figure 11.1 illustrates the process of feature extraction with a mobile robot. Let 
us consider a mobile robot that uses laser ranging information from a sensor that 
provides 100 measurements per sample, 10 samples per second; the information can 
be recorded in polar coordinates (a distance and an angle), along with the odometry 
measurement of the robot (X, Y positions and a heading angle of the robot). After 20 s, 
the robot will collect 20,000 laser samples and 200 odometry measurements. From 
this large set of data, information about the two walls can be extracted. The question 
is now to represent the walls. One possibility is to store the entire raw data from the 
laser and the odometry readings, but this will require too much memory space just 
for a wall. The wall can also be represented as a straight line with only two points 
representing the beginning and the end of it. This way, all the raw data recorded 
previously can be discarded. Using representation saves considerable memory space, 
but with a risk of losing some important information. So, the way that information 
and features are stored in the memory will impact the control of the robot.
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FIGURE 11.1  A mobile robot collects information from its laser ranger; the distance informa-
tion is combined with its position and orientation to generate a map of its environment. (a) The 
robot is only able to generate points in the map space that represents space that might be occupied 
by an obstacle. (b) As the robot collects more data, the points cluster in different locations, increas-
ing the likelihood that those locations are occupied by obstacles. (c) A postprocessing of the data 
collected by the robot helps to connect points to identify wall, and to remove erroneous data in the 
map. (d) The final step is the extraction of higher-level features such as wall, rooms, and corridors.
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The type of features that the robot would be able to extract should be considered 
in the design of the entire system. The physical phenomena to be measured and the 
level of uncertainty of the sensors should be considered to see if it is suitable for the 
desired environment where the robot would operate. In this regard, the sensors and 
the environment need to be considered wisely in the robot design as they will influ-
ence the feature extraction process, and consequently the performance of the robot. 
For example, a robot navigating in an office environment will benefit by using range 
sensors to detect walls, corridors, rooms, and objects. In contrast, the same robot 
will not be so useful in a rescue scenario where the environment is a disaster area 
without structured walls, corridors, rooms, or doors. The rescue robot then may ben-
efit from being equipped with sensors that would enable the robot to detect human 
victims, fire, gas, and so on. Earlier in Chapter 4, we have discussed the methods 
for detecting features from images obtained by a camera. A combination of what is 
described in this chapter and the features obtained with the camera is likely to result 
in a more robust perception tool.

11.2.2 M ap Representation

Autonomous robots should be able to represent their environment in an efficient 
way. The representation of the environment is of particular importance for mobile 
robots, since they need to plan their paths to reach target locations, as well as to 
know which locations they have visited. This representation of the environment 
is better known as a map. The way that the environment is represented in a map 
affects the choices that the robot has to plan its path, as well as the representation 
of the robot’s position on the map. There are many map representations, and the 
decision of choosing a particular representation should be based on the following 
points:

•	 The features represented in the map and its precision of must be based on the 
information extracted by the robot’s sensors. For example, a robot equipped 
with a laser ranger would be able to detect the distance to the object in the 
same plane of the laser; this means that this robot can only represent 2D 
features in its map. In contrast, a robot equipped with a stereo camera would 
be able to extract the depth information for every single pixel of the image, 
as well as color information of the objects; these additional data will enable 
the robot to add a 3D representation of the features into its map.

•	 The size of the information used to represent the features in the map also 
determines the computational complexity required to handle the map for 
adding new features, searching, and planning. We consider two robots, one 
equipped with a laser ranger and the other with a stereo camera. The 2D map 
generated by the laser will require less storage space, and thus it will be faster 
to process compared to the 3D map generated by a stereo camera system.

Let us consider two most common map representations: the metric map and the 
topological map. The advantages and disadvantages of both representations will be 
discussed in the following sections.
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11.2.3 M etric Map

The metric map is perhaps the most common representation technique used in 
mobile robotics. It is a two-dimensional representation of the space and the objects 
in the environment at the level of sensor point of view. In other words, objects are 
not represented with their volume, but the space they occupy at the sensor level. For 
instance, a table will appear with four blobs in the map since the robot sensor’s plane 
intersects the legs of the table.

The space and shape of the objects are accurately represented in the map, which 
implies that a large memory space is required to store the map. There are a few types 
of metric maps, the most common one is the occupancy grid.

The occupancy grid map is based on the principle of fixed decomposition that 
transforms the environment into a discrete approximation. That is, the environment 
is represented by a discrete, coarse, fixed-size cell grid instead of having millimeter 
range accuracy for each feature in the map. The map is represented by a grid and the 
accuracy of the map will depend on the size of the cells in the grid. As described in 
the previous section, the size of the cells for this map depends on the task as well 
as the sensor accuracy. For example, the cells will be 10 cm2, assuming that sensors 
have an accuracy of ±5 cm. Another approach for choosing the size of the grid cell 
is to use the size of the robot. For instance, CoSpace robot, shown in Figure 12.5b, 
is 16.5 cm length by 17 cm width. For this robot, the grid cells could be of a size 
between 17 and 20 cm2.

The values of the cells in the map represent obstacles, free space, or unknown 
space. A robot equipped with a range-based sensor (ultrasonic, laser ranger, etc.) 
combines the sensorial data with the robot position to update the odds that grid cells 
are occupied. The way that the cell values are updated may differ depending on 
the method employed. Let us consider a robot equipped with an ultrasonic sensor 
mounted in front of the robot. Assuming that the ultrasonic sensor has a cone beam 
of 30°, as depicted in Figure 11.2, the probability that a cell within the cone is occu-
pied or free is determined by the probabilities as shown in the figure. The values of 
each cell in the map are then updated with Bayes’ rule. A simplified version of this 
process can be described as follows.

Each cell in the map is initialized as “−1,” which will represent the unknown 
space. As the sonar cone passes by the cells, they will be set to “0,” which represents 
free space. If the cell is within the range of the sensor, then this cell value will be 
increased. When the value of a cell passes a threshold value, then the cell is consid-
ered an obstacle. Values of the cells could also decrease when the sonar beam travels 
through the entire range without an encounter. Cells beyond the range of the sensor 
are not updated (see Figure 11.3).

Obtaining the map of an environment is useful and an autonomous robot should 
be able to store the maps to use them in future tasks. The occupancy grid maps are 
easy to generate, but instead of just storing the data of the grid, further processing 
can be applied to this map if we have some knowledge about the environment. Most 
of the man-made environments such as hallways, corridors, doorways, room, and so 
on can be modeled by connected straight lines. Thus, extracting line segments can 
improve the representation of objects and save space in the map. There are online 
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and offline methods to extract this information. A typical method is the Hough trans-
form that was discussed earlier in Chapter 4 for image processing. In this case, the 
Hough transform is applied to the collected data by range sensors instead of the 
pixels of an image. This is an offline method, and it is performed after the robot 
completes the data collection.

Let us discuss how to apply the Hough transform for an occupancy map. The 
occupancy map generated by the robot produces a matrix or grid with cells that 
represents the free space, unknown, and obstacles. We are interested in cells that rep-
resent the obstacles. Let us assume that a set of cells corresponds to a wall; unfortu-
nately, they are not fully aligned and there will be a few missing connections. These 
errors will happen mainly due to the inaccuracy of the sensors, drifting position of 
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FIGURE 11.2  The probability model for an ultrasonic sonar sensor. The signal cone hits an 
object on one side, but it is impossible to predict if the object is located on the center or any 
side of the cone with certainty. The probability information of the sonar model can be then 
combined to update the value of the cells in the map with Bayes’ rule.
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the robot, and even the surface of the wall. The Hough transform is used to identify 
straight lines that fit to these points. The occupancy grid map is also a two-dimen-
sional matrix, and it can be treated as an image assuming that each cell in the grid 
is like a pixel in the image where a black pixel represents obstacles and white pixels 
free space or vice versa.

The Hough transform considers the points of a line to be represented in polar 
coordinates (r,θ) rather than in Cartesian coordinates (x,y) as discussed earlier in 
Chapter 4. The parameter r represents the distance between the point and the origin 
of the image, while θ is the angle of the vector from the origin to this point. So, each 
cell in the map would be treated as a point and be represented with the parameters 
(r,θ) and be projected to the Hough space. As discussed before, a point in the Hough 
space corresponds to a sinusoidal curve, which is unique to that point. When the 
curves corresponding to the two points are superimposed in the Hough space, the 
point these two curves intersect corresponds to a line in the metric map that passes 
through both points. Finding the parameters with more number of intersections will 
result in finding the more salient lines in the map.

The resulting Hough space is examined and the maximum intersection points 
are interpreted as potential line segments. However, this does not guarantee that 
straight lines in the map are obtained accurately. Usually, a postprocess is applied 
to the information returned by the inverse Hough transform. This is mainly due to 
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FIGURE 11.3  An occupancy grid example of how a map could be obtained. The robot in 
this figure consists of only one ultrasonic sensor.
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two factors: First, the inverse Hough transform is able to find the line, but it is not 
able to say where the line is starting or ending in the image (see the output of the 
inverse Hough transform in Figure 11.4c). Second, false lines may also be found due 
to scattered points in the map that may look like forming a possible line. A common 
post-processing method is to overlap the lines detected by inverse Hough transform 
on to the map and compare them with actual points to validate.

The computational cost of the Hough transform depends mainly on the dimen-
sion of the map to process, as well as the accuracy of the samplings involved for 
the θ in the Hough space. These two parameters determine the additional memory 
required for the Hough space, as well as the number of iterations for each point in 
the Hough space.

11.2.3.1  Case Study
The RoboCup@Home league is part of the RoboCup competition, which aims to 
develop service and assistive robot technology with high relevance for future per-
sonal domestic applications (RoboCup@Home 2012). All the challenges are con-
ducted in a real-world living room scenario. The RoboCup@Home league limits 
the mode of interaction between human and robot to natural ways like speech and 

FIGURE 11.4  (a) The metric representation of the robot’s environment generated by the 
ultrasonic readings. (b) The straight lines obtained from the Hough transform. (c) The Hough 
space for the points in the metric map.
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gestures. In addition, to be able to perform all the challenges, the robots should be 
able to safely navigate in the environment without colliding with humans or obsta-
cles in the room. Most of the challenges include some type of navigation abilities 
from the robot; this means that the robot should be able to recognize the environ-
ment and be able to localize itself in the environment. A map helps the robot with 
these two issues.

Figure 11.5 shows the Ariel robot from Singapore Polytechnic. This social robot 
has been developed to take part in the RoboCup@Home competition. The robot uses 
a Pioneer 3-AT robot, a four-wheel drive robotic platform, for navigation. The robot 
is also equipped with a laser rangefinder SICK LMS100; using the odometry system 
of the mobile robot and the information gathered by the laser, it is possible to gener-
ate a metric map.

Since the laser rangefinder has a higher accuracy, the odometry of the robot is 
also rather accurate and consequently so is the metric map generated with it. The 
resolution of the map is 20 mm; needless to say, this will produce a large volume of 
data and demand a large memory space to store it. Moreover, high accuracy is a key 
factor for this robot, so that it is capable of identifying not only walls and corridors, 
but also objects in the environment.

Let us assume that the laser rangefinder only returns one point instead of an 
array of points to simplify the explanation. At each iteration, the controller system 

FIGURE 11.5  The Ariel robot is a social robot interacting with public in an exhibition.
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will have the robot position as [X,Y,θ], where θ is the orientation or heading of the 
robot, with respect to its origin, and the laser rangefinder readings that consist of the 
distance for each point and its orientation [D,α]. Since the laser rangefinder is not 
located at the center of the axis of the robot (the point considered as reference for 
the odometry), it is important to consider the displacement (m) of the sensor in our 
calculations.

Figure 11.6 shows the frame reference for the robot and how coordinates of a point, 
detected by laser rangefinder, can be calculated. The figure also shows the relation 
between the laser rangefinder frame and the mobile robot frame. In this example, there 
is only one displacement of the frames, which is on the X-axis. There is no displace-
ment in the Y-axis or a distinct orientation of the laser range finder on the robot body. 
Also note that in this scenario all the information is in 2D; thus, the Z-axis is ignored.

We can calculate the position of the point provided by the laser rangefinder by 
considering all the previously discussed features. First, we obtain the components 
for the point read by the laser rangefinder as

	 x D mlaser = +cos( )a 	 (11.1)

	 y Dlaser = sin( )a 	 (11.2)

After that, we can rotate and translate them to the global coordinate system as 
follows:

	 P x y Xx = − +( cos( ) sin( ))laser laserq q 	 (11.3)

	
P y x Yy = + +( cos( ) sin( ))laser laserq q

	 (11.4)
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FIGURE 11.6  The frame reference for the Ariel robot base.



328 Practical Robot Design

Once the Cartesian position of the point is calculated, it is possible to mark this 
point in the map by fitting it to the nearest cell in the map. It might be necessary to do 
further processing for the cells between the robot and the detected point in the map 
to indicate the free space or increase the probability of cells being empty or occu-
pied. This could be done in a similar manner as described previously in this section 
for the ultrasonic sensor. The entire process will repeat for all the points in the laser 
rangefinder. This is a computationally heavy task, as it is repeated in every iteration. 
Once all these points are collected, it is possible to find fitting lines by applying the 
Hough transform as before.

11.2.4 T opological Map

Metric maps consider every feature in the environment, which translates into a huge 
amount of memory to store the map as well as a slower search or analysis of the 
map. An alternative to this representation is the topological map. Topological maps 
consider certain distinctive features in the environment and the relationship between 
these features without representing them in the map. The features used for these 
maps are called landmarks. A landmark must be a distinctive object or place of 
interest that the robot is able to perceive. Landmarks could be artificial. The features 
can be embedded in objects or locations to ease the recognition of the landmark. For 
example, colored markers or signs that are put on doors can indicate locations for 
robots. Landmarks can also be natural elements such as gateways or junctions.

Topological maps are built on top of grid-based maps. The free space of a grid-
based map is partitioned into a small number of regions, and the regions are sepa-
rated by critical lines. The critical lines correspond to passages such as doorways or 
other landmarks. As shown in Figure 11.7, the nodes are the critical points and the 
lines connecting each critical point are the critical lines. The critical lines partition 
the free space into disjoint regions. The lines provide information that the robot uses 
for planning and navigation; some of the information stored in this representation is 
the orientation and the distance between the nodes.

Gateways are commonly used as landmarks in robotics. They also provide an oppor-
tunity to change direction for a robot. The most common representation of the topologi-
cal map is a relational graph as shown with the example in Figure 11.7. Note that the 
information of how these landmarks are related is embedded in the graph; however, it 
is not as explicit or as accurate as in the metric map. For example, for node 6, the exact 
orientation of the room (node 7) is not clear. However, it is clear that the room is located 
somewhere on the right-hand side of the robot coming from the direction of nodes 4–6.

11.2.4.1  Case Study of Topological Map
In the micromouse robotics competition a small autonomous robot equipped with 
few infrared sensors and differential motors must find its way to the destination point 
in a maze (see Figure 11.8). The robot is allowed to do multiple runs within 5 min. 
The initial runs are usually referred to as “searching runs,” and they are meant for 
the robot to build the map of the maze and find the shortest path to the destination. 
Once the search has been completed, the robot will move as fast as it can, following 
the shortest path it has computed. The fastest robot wins the competition (Singapore 
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Robotic Games 2012). Since the maze is made of square and rectangular shapes, all 
the turns should be 90° to the left or the right; this means that a corridor a gateway 
can be easily determined since it is either on the left or on the right of the robot. 
Thus, when a gateway is found, it is possible to follow the corridors that connect to 
the gateway. The micromouse robot tries to explore the maze as much as possible 
while mapping the gateways and its connecting corridors. It is also possible to record 
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FIGURE 11.7  A topological map. The gateways are used as the main landmarks in this rep-
resentation. The information of how these landmarks are related is stored as a relational graph.

FIGURE 11.8  Micromouse developed at the Singapore Polytechnic.
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certain corridors that have not been mapped yet. So, the robot can map those cor-
ridors once it completes working on its current corridor.

Figure 11.8 illustrates a micromouse robot that consists of six infrared sensors 
(three on each side), two motor wheels for differential control, and a caster wheel. 
The latest generation of micromouse robots also incorporates encoders on the wheel 
motors. This helps the robots to add distance to the segments that connect nodes as 
well as to discover paths that loop back to the main corridor. It is also possible to 
incorporate a digital compass to provide further information about the orientation of 
the robot, although this is not so common.

As the micromouse moves through the maze, the infrared sensors placed in front 
and on the sides of the robot assist identifying the wall. The robot will also main-
tain its position in the center of the corridor without crashing into the walls. If no 
obstacles are detected in front of the robot, then it will keep moving forward. When 
the sensors detect an open space in a direction other than the current direction of 
the robot, the location will be considered as a gateway, and the open space will be 
marked as one possible direction. According to the strategy of the team, the robot 
then follows any one of the newly discovered directions or it can just continue its 
exploring moving forward in the current corridor. Figures 11.9a and 11.9b show a 
part of the maze that the micromouse has to explore and its correspondent topologi-
cal map. After the map has been built, a planner helps to choose the shortest path 
to the destination point. In the next section, we will discuss more on planners and 
navigation using topological maps.

11.3  NAVIGATION

A desirable ability for an autonomous mobile robot is to be able to go from one 
place to another. The term “navigation” refers to the way that a robot moves in its 
environment to reach its destination. The locomotion system of the robot tells the 
actuators of the robot how to move, whereas the navigation system tells the robot 
about its destination.

FIGURE 11.9  (a) A section of the maze that the micromouse has to explore. (b) Topological 
map built to represent this section of the maze.
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There are several behaviors that are involved in navigation and locomotion; some 
of these behaviors are simple and some others are more complicated. What behav-
iors should go into a robot depend directly on the type of task and the design of the 
robot. The final performance of the robot may vary according to the type and num-
ber of sensors as well as the mobile configuration of the robot. Nevertheless, these 
behaviors can be used to produce more complicated behaviors with a subsumption 
architecture, or a hybrid architecture as will be described in Section 12.3.3.

As discussed in the previous section, the uncertainty in the perception of the 
robot’s sensors makes any kind of decision making a difficult task. As the robot 
moves, its odometry system will have errors, and as the robot keeps moving, the 
error will accumulate. This causes the uncertainty that the position of the robot is 
not really known. There are different methods that can help to reduce the uncertainty 
of the robot’s whereabouts during motion. In the majority of the methods discussed 
below, it is necessary to have a map built about the environment. The following sec-
tions discuss some of these methods and their application to robotic competitions.

11.3.1  Wall Following

Wall following is a behavior that makes a robot move smoothly and follow the con-
tour of the wall. To produce a smooth motion, the alignment of the robot is the key 
component; thus, it is essential that the robot maintains a parallel heading to the 
wall during its motion. If robot has a distance sensor facing toward the wall side, 
then wall-following behavior will maintain a constant distance from the wall. This 
means that if the distance increases, the robot must turn toward the wall, and when 
the distance decreases, the robot must turn away from the wall (see Figure 11.10). 
The rotation of the robot toward the wall or away from the wall should stop when the 
robot is within the range of the constant distance required. In the figure, the dotted 
line shows the distance D that the robot should maintain from the wall. It is better to 
use a tolerance range X, in centimeters, so that distance from wall is within D ± X. 
This will minimize the swinging of the robot while trying to follow the wall.

Sensor = D

Sensor > D
Sensor < D

FIGURE 11.10  Wall-following behavior for a mobile robot with a distance sensor.
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%
% The class DiffRobot the members of the class robot are declared as:
%
% robot.ultrasonic_sensors(3)   - 1 - Left, 2 - Right, 3 - Front
% robot.motor_vel(2);           - 1 - Left, 2 - Right
%

classdef DiffRobot < handle
properties

        motor_vel = [ 0.0 0.0 ];
        ultrasonic_sensors = [ 0.0 0.0 0.0 ];

end
methods

function obj = DiffRobot() % constructor
end

end
end

% This is the main function of the mobile robot. It will 
% loop reading the sensors, Processing, and sending the motor command.
%

function MainRobot()

% Initialized robot
robot = DiffRobot();

while 1  
% Read the New Values of the Sensors

    ReadSensors(robot);

% Follow the wall
    WallFollowing(robot, Desire_Dist);

% Write to Motors
    SetMotorCmd(robot);
end
end

function ReadSensors(robot)
% Obtain the new readings of the sensors
end

function WallFollowing(robot, Desire_Dist)

% Difference between the wall and our desired distance from it
% it only uses the right sensor, to follow from left to right the wall.
diff = Desire_Dist - robot.ultrasonic_sensors(2);

% New Translational and Rotational Veloci
trans = Const_Vel;
rot = gain * diff;

% Convert velocities to Left and Right Velocities
robot.motor_vel(1) = ( 2*trans - rot ) / 2;     % Left Velocity
robot.motor_vel(2) = rot + robot.motor_vel(1);  % Right Velocity

end

function SetMotorCmd(robot)
% Send the motor velocities to the robot
End

FIGURE 11.11  MATLAB code for the wall-following behavior presented in Figure 11.10.
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Figure 11.11 presents the MATLAB® code of the wall-following behavior. It is 
important to mention that the rotation will be proportional to the difference of the 
distance of the robot from the wall. This means that if the robot deviates from the 
desired distance severely, then robot angular velocity will change rapidly to com-
pensate the error. Similarly, if the deviation is small, then the compensation of the 
angular velocity will be minor. The value of the gain needs to be adjusted to specify 
how fast or slow the robot reacts to the difference of distance. In practice, we know 
that no sensor is entirely accurate, so it is important to consider the noise of the sen-
sor to minimize the possible effect of the noise in the motion of the robot.

In the code presented in Figure 11.11, the constant value assigned for the trans-
lational velocity can be adjusted to a suitable value for the hardware used in robot 
design. The rotational and translational velocities need to be converted to left and 
right velocities since the robot used in this example is a differential drive robot. 
Furthermore, the code presented here only follows the wall from left to right. If the 
robot must follow from the opposite direction, the left ultrasonic sensor can be used, 
and both left and right ultrasonic sensors can be used to follow a wall on either side, 
or when moving in a corridor.

11.3.2 O bstacle Avoidance with Vector Force Histogram

Vector field histogram (VFH) was first presented by Johann Borenstein and Yoram 
Koren. It was further improved by Iwan Ulrich and Johann Borenstein and it was 
renamed VFH+. It is lately renamed VFH*. VFH is a real-time obstacle-avoidance 
method for mobile robots. The VFH is a computationally efficient method for navi-
gation that has proven to be fast and reliable, especially when roaming in environ-
ments with many obstacles. In this approach, a robot does not need to know the 
environment prior to its navigation. This is advantageous when navigating in a highly 
dynamic environment, like the one where rescue robots operate. VFH enables the 
robot to detect obstacles and steer while avoiding collisions along its desired route.

The VFH method uses a two-dimensional Cartesian grid, which is updated by its 
environment continuously with the information of the robot’s sensors, such as sonar 
or laser rangefinder. This grid is similar in principle to the metric map generated by 
an occupancy grid (presented in Section 11.2.2); however, this grid is smaller and 
it only represents the surroundings of the robot, much more like egocentric view 
because the robot will always remain in the center of this grid (see Figure 11.12a). 
This egocentric grid provides information about obstacles that are near. Let us imag-
ine a vector coming from the center of the robot toward the obstacle or to the end 
of the grid, and we now repeat these vector calculations for 360° around the robot. 
Thus, all these vectors are further transformed into a polar histogram, where all the 
vectors are placed side by side and compared by their magnitude.

Three valleys are obtained from the histogram. Valley A is located in front of the 
robot in Figure 11.12a, valley B is located in the adjacent corridor besides the box, 
and it is also because of this obstacle that the valley is quite small. Finally, valley C 
is located behind the robot. Figure 11.13 shows the polar histogram. The horizontal 
dotted line in the polar histogram represents a threshold that indicates the robot is 
too close to obstacles.
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From this polar histogram, it is possible to compute a candidate valley, which 
is an area where sectors with polar obstacle density are below a threshold. The 
candidate valley is also selected based on the proximity toward the robot-desired 
route. In Figure 11.13, the vectors calculated from Figure 11.12b are represented 
in the polar histogram. Three valleys are obtained in the histograms; these are 
marked with the letters A, B, and C. According to the target direction presented 
in Figure 11.12a, valley A is chosen as the candidate valley for the navigation of 
the robot.

VFH+ improves the smoothness of the mobile robot’s navigation by taking into 
account the size of the robot, thus allowing the candidate valley to be more precise. 
Obstacle looking-ahead is a feature of VFH+ that will discard candidate sectors that 
appear to be unobstructed in egocentric view, but they are obstructed outside the 
egocentric view. Finally, the last improvement of VFH+ is adding the cost function 
to better characterize the performance of the algorithm.

There are also disadvantages and limitations of the VFH. For example, it does not 
concurrently search for the optimal path toward the destination because it only uses 
local information instead of global information. The robot will also face difficulties 
at narrow paths due to the tolerances used in the VFH algorithm. The VFH cannot 
guarantee to reach the desired location since it is only using local information.

The VFH algorithm is still widely used in robotics for real-time obstacle avoid-
ance to maintain the robot’s path towards its destination despite all the above short-
comings. It is for this reason that VFH is used in combination with the path planners 
that can produce waypoints that the robot must reach before it can reach its final des-
tination. Thus, these waypoints are input to the VFH method to reach the waypoint 
while avoiding any obstacles in the way.
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FIGURE 11.12  The egocentric grid of a robot moving in a corridor (a) Robot, which is 
always at the center of egocentric view, corridors and target direction for the robot. (b) A 
representation of obstacles in grid cells and vectors from the robot to the obstacles.
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11.3.2.1  Case Study of Obstacle Avoidance with Vector Force Histogram
Most mobile robots implement some form of obstacle avoidance. Robots taking part 
in competitions are of special interest since they must achieve their task without hit-
ting obstacles or without deviating from a desired path. RoboCup@Home, RoboCup 
Rescue, Robot Colony, and Intelligent Robot are some of the robot competition 
events where the obstacle-avoidance algorithm is needed. However, any competition 
that involves mobile robots will require robots to avoid collisions.

The code shown in Figure 11.14 is for a mobile robot to go to a target while 
avoiding obstacles employing the VFH method. In the example code, the function 
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FIGURE 11.13  Polar histogram obtained from the vectors calculated in Figure 11.12b.
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FIGURE 11.14  MATLAB code of the VFH algorithm.
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FIGURE 11.14  (continued) MATLAB code of the VFH algorithm.
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FIGURE 11.14  (continued) MATLAB code of the VFH algorithm.
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VFH() takes three arguments. The first argument is a structure that contains the 
current position and heading of the robot. The second argument is a target posi-
tion for the robot in the format of [X, Y]; this is used to specify the target direction 
that the robot should pursue. The final argument is an egocentric grid of the robot; 
this can be obtained from the metric map by specifying a square grid around the 
robot. The dimension of the grid can be defined by the task or about the maximum 
range of the distance sensor used. However, to simplify the further processing, the 
egocentric grid data should be in the format of zeros and ones to represent free and 
occupied space, respectively. In the code, the VFH() function returns the angle and 

FIGURE 11.14  (continued) MATLAB code of the VFH algorithm.
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the distance. The distance returned by VFH is not the distance to the target posi-
tion. It indicates that the free space within the egocentric map that robot can move 
without encountering an obstacle. This distance can be used for speed control. Let 
us consider the following values for the arguments of the VFH() function:

robot.X = 0;
robot.Y = 0;
robot.Theta = 1.5;
targetPos = [20 20];
ec_grid =[0 0 1 1 1 0 0 0 0 1 1 1;
	 0 0 1 1 1 0 0 0 0 1 1 1;
	 0 0 0 0 0 0 0 0 0 1 1 1;
	 0 0 0 0 0 0 0 0 0 0 0 0;
	 1 1 0 0 0 0 0 0 0 0 0 0;
	 1 1 0 0 0 0 0 0 0 0 0 0;
	 1 1 0 0 0 0 0 0 0 0 0 0;
	 1 1 0 0 0 0 0 0 0 0 0 0;
	 1 1 0 0 0 0 0 0 0 0 0 0;
	 0 0 0 0 0 0 0 0 0 0 0 1;
	 0 0 0 0 0 0 0 0 1 1 1 1;
	 0 0 0 0 0 0 0 1 1 1 1 1;];

This will produce an output as shown in Figure 11.15. The output from the 
VFH() function corresponds to the angle 75° represented by a bold line in the 
figure. It is also possible that the robot navigates toward the target by taking an 
angle of 0°. The VFH() function takes into consideration the current heading of 
the robot, which is around 85°. Thus, the robot heading that is closer to the valley 
is represented by 75°.
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FIGURE 11.15  Representation of the egocentric grid with the vectors. The vector in bold 
represents the output from the VFH() function.
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11.4  PATH PLANNING

Path planning is the process of finding a path from the robot’s current location to 
its next destination. Assuming that both positions are known and represented in the 
robot’s map, the path planner will look for the optimal path between these points. 
An optimal path is a path that satisfies the criteria defined by the robot task. This 
means that in most cases, checking all the possible paths will result into a heavy 
computation time.

The autonomous robot navigation problem consists of the calculation of a path 
between two points, a starting and a target point. The local navigation approach 
should produce an optimal (usually shortest) path, avoiding the obstacles present in 
the working environment.

However, not all path planners work in the same way. Some search only for part of 
a path and others look at the complete path. Both types of planners have advantages 
and disadvantages. For instance, while partial planners are fast they do not always 
warrant a shortest or optimal path. In contrast, full-path planners are able to compute 
the shortest or the optimal path that satisfy a given criterion, but the time required 
for this computation depends on the size of the map used. In addition, some methods 
only work with specific map representations. As discussed in the previous section, 
building a map representation is mainly determined by the task and the robot percep-
tion system. The following sections will discuss the use of two planners, the first one 
is for metric maps, and the second method is for topological maps.

11.4.1  Wavefront Planner

Wavefront is a common algorithm used to determine the shortest path between 
two points that works on occupancy grid maps. In this method, a full-path planner 
assumes that each cell in the map is able to fit the robot.

Let us assume that a robot generated two-dimensional occupancy grid map (as 
described in Section 11.2.2) that represents its environment, and both the current 
position of the robot and the desired position are known in the map.

A second map is used for the wavefront method to update the values of each cell. 
The information in the original map is ported to the new map during the first step of 
the algorithm. The values in the cells will be updated by using neighborhood connec-
tivity. The connectivity between the cells can be expressed as four-point or eight-point 
connectivity. The choice between four- or eight-point connectivity mainly depends on 
the size that each cell represents in the map as well as the locomotion capabilities of the 
robot to move between cell units. It is important to determine the connectivity, since 
this will not only affect the way that the values in the map are updated, but also the way 
that the planner will search for the shortest path. Once the new map is ready and the 
neighborhood connectivity has been selected, we can start with the algorithm, which 
employs the following steps:

	 1.	All the free space in the map is set to the value of zero, the cells with obsta-
cles are set to the value of one, the current position of the robot is labeled as 
“start,” and the desired position of the robot is labeled as “destination,” and 
it is set to the value of two.
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	 2.	Starting from the destination cell, increment the value of all the adjacent 
cells of the free space by one.

	 3.	Repeat the previous step, but this time starting from only recently modified 
cells.

	 4.	Repeat the previous step until completing the map. Cells with zero values 
should only exist in unreachable regions.

Figure 11.16 shows an example map and its update with wavefront planner. The 
method only deals with occupied and free space; however, it is possible to mark an 
unknown space as occupied space instead of free space to avoid the uncertainty that 
the unknown space represents for the planner. After filling the map with values as 
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FIGURE 11.16  An illustration of the wavefront planner algorithm. (a) Initializing the map 
with zeros for free space and ones for the occupied areas. (b) Expansion from the destination 
to fill the map. (c) The resulting map after updating all the cells. (d) The shortest path to reach 
the destination.
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shown in Figure 11.16c, it is now possible to search for the shortest path using the 
following steps:

	 1.	From the starting position, follow the adjacent cell with the lowest value 
toward the direction of the starting position.

	 2.	Move to the cell and repeat the previous step from the current cell.
	 3.	Repeat the previous steps until the destination is reached.

The wavefront planner may discover more than one path. In all these paths, cells 
are connected by an uninterrupted sequence of decreasing numbers that leads to the 
destination. Figure 11.16d shows a path found for the given map. The path can be 
represented as a list of waypoints. A waypoint is a point in the map that indicates 
direction change for the robot on its path. In Figure 11.16d, the waypoints are indi-
cated with circles along the path.

Once a path has been found, the robot must navigate from one waypoint to the 
next to reach its destination. Usually, VFH is employed to navigate the robot along 
waypoints since the VFH method ensures navigation without collisions.

11.4.2  Path Planning Using Potential Fields

The main idea behind the path finding of the potential field method is to generate 
attraction and repulsion forces within the working environment of the robot to guide 
it to the target. The approach used is to generate the artificial potential fields to have 
obstacles exert repulsive forces onto the mobile robot, while the target applies an 
attractive force to the mobile robot.

Potential field is an array of force vectors represented in space. This will pro-
duce a force field analogous to a magnetic or gravitational field. Thus, the robot 
will be affected by this field and the force of attraction or repulsion of each object 
in the environment will contribute to this field. The vectors in each part of the field 
will be translated to direction and speed of the robot during its motion. Figure 
11.17 shows an example of a two-dimensional map consists of attractive and repul-
sive forces.

Considering a metric map with two-dimensional space, and each cell in the map 
is defined by (x,y), it is possible to calculate the vector field F for a single element in 
the map; this is given as a vector sum of the two forces:

	
F x y F x y F x yG O( , ) ( , ) ( , )= + ∑∑ 	

(11.5)

where FG is the attraction force toward the goal, and FO is the repulsive force from 
the obstacles. Potential fields represent the description of the environment, which 
can be obtained completely a priori at the start of the motion process. Vector fields 
represent a map of actuator values, the orientation and magnitude.

The first step is to define what type of potential field primitive would be used for 
each element in the map. Figure 11.18 shows the different primitives for the potential 
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fields. After choosing the primitives, it is essential to associate a magnitude profile 
with the objects for their potential field primitive. This magnitude of the vectors as 
mentioned before will be used to control the velocity of the robot. Thus, the profiles 
could indicate a constant velocity, a linear decrease, or even an exponential increase 
of the velocity. The calculation of the magnitude of the forces according to its profile 
will also need to specify a distance where the field is acting from the object. For 
example, the attraction field of the goal target should act in the entire map, in contrast 
the repulsion field of the objects should only act within the vicinity of the objects 
(see Figure 11.17).

11.4.2.1  Case Study of Path Planning Using Potential Fields
Let us consider the RoboCup@Home robot that needs to navigate from the entrance 
of a room to a table located at the other end of the room. The robot is required to 

Goal

Obstacle

FIGURE 11.17  Obstacle on the left-hand side has repulsive forces for the robot to avoid. 
The target point on the right-hand side has attraction forces for the robot to move toward it.

FIGURE 11.18  Potential field primitives: (a) repulsion, (b) attraction, (c) tangential, and (d) 
perpendicular.
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perform a manipulation task once it reaches the table, but first it needs to plan its way 
to reach the table without colliding with obstacles.

The potential field method will be employed for this purpose. An existent map 
of the room is shown in Figure 11.19; the map is a metric map. The potential field 
method will calculate the force in each robot location to produce the robot path to 
reach the table.

The tables and sofa in the room have a repulsive primitive in all directions; how-
ever, we do not want this repulsion to be felt everywhere. Thus, we specified a dis-
tance of 3 m radius in any direction for the force of repulsion to be felt. Furthermore, 
the repulsion force will be linearly increased as the robot approaches the objects 
in the map (see Figure 11.19b). For the goal, a constant attraction in all directions 
has been chosen, and this force should be felt everywhere in the room. Figure 11.20 
shows the MATLAB functions used to calculate the force exerted by each obstacle 
and the goal to the robot.

There are two approaches for path planning. The first one is to generate a full path 
that the robot should follow to the target. In the second method at each location that 
robot visits, a local calculation of the next position will be performed. The second 
approach is widely used since it allows robot to cope with the changes in a dynamic 
environment. In Figure 11.20, the function “MainRobot()” initializes the robot and 
the position of the objects and goal. In the actual competition, after the robot has 
generated the metric map, a human user marks the location of the obstacles and goal 
position in the map and specifies the radius of the circles enclosing the objects. The 
function, “MainRobot(),” will continuously read the sensor values, calculate the next 
vector in the path according to its current position, and consequently navigate the 
robot according to the vector obtained. The process continues until the robot reaches 
the goal position.

The function “PotentialField()” in Figure 11.20 calculates the force that the obsta-
cles and the goal are exerting to the current position of the robot. The arguments 

FIGURE 11.19  (a) The metric map of the room where the robot will perform the manipula-
tion task. (b) The center and the sofa marked with a circle to ensure that the repulsion force 
will be strong enough to repel the robot if it gets closer to this circle. The goal position “table” 
is at the top right side of the map, and the robot is at the bottom left.



346 Practical Robot Design

FIGURE 11.20  MATLAB code for the potential fields of the obstacles and the target as 
illustrated in Figure 11.19.
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FIGURE 11.20  (continued) MATLAB code for the potential fields of the obstacles and the 
target as illustrated in Figure 11.19.
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FIGURE 11.20  (continued) MATLAB code for the potential fields of the obstacles and the 
target as illustrated in Figure 11.19.
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FIGURE 11.20  (continued) MATLAB code for the potential fields of the obstacles and the 
target as illustrated in Figure 11.19.
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for the function are the robot structure that contains the current (x,y) position of 
the robot, a list of the obstacles (each obstacle has (x,y) position, radius, and type 
of primitive), and finally the goal position for the robot in (x,y) coordinates. For the 
different types of force primitives, the function will calculate the force to the current 
position of the robot. In our sample code, only the repulsion force has been imple-
mented. As described before, the repulsion force can only be felt when the robot is 
within 3 m from the object, and it linearly increases when the robot gets closer to the 
obstacle. After each obstacle’s force has been calculated, the attraction force of the 
goal is computed. This force is always constant and it will be felt everywhere. The 
last part of the function “PotentialField()” is to add all these forces to produce a vec-
tor that will tell the robot the new orientation and magnitude of the maximum speed 
to use in order to navigate. Figure 11.21b shows the path generated by the resulting 
vector forces, assuming that the robot is able to navigate accurately to the position 
described by each calculated vector.

11.4.3  Path Planning Using Topological Maps

Topological maps contain only essential information (landmarks); unnecessary 
details are eliminated. Topological maps are graphs that use nodes to represent dif-
ferent fixed objects, for example, rooms and doors. Using topological maps saves 
processing time and memory space, as the robot does not have to process so many 
details. Earlier in Section 11.2.3, topological maps were discussed, and building 
those maps was described.

The path planning for topological maps takes an initial node and a goal or target 
node as input. Using an algorithm such as Dijkstra’s or Floyd–Warshall’s shortest 
path, it is easy to find the shortest path plans between the two nodes in a topologi-
cal map. Dijkstra’s shortest path algorithm (Sniedovich 2011) is illustrated in Figure 
11.22. From the initial node, the algorithm will calculate the distance between the 
node and its direct neighbors. Then, it will choose the shortest distance to all of its 
adjacent nodes and mark them according to the calculated distance. Once all the 
neighbors of the node have been covered, the algorithm will proceed to the next node 
with the shortest distance. This will continue until the algorithm reaches to the goal 
node and then it will terminate. The robot will then follow the path pointing toward 
the shortest line.

11.4.3.1  Case Study of Path Planning Using Topological Maps
In the micromouse competition, the objective is to complete the maze as fast as pos-
sible. Apparently, the micromouse robot should find the shortest path in the maze to 
achieve a fast trial. As discussed in Section 11.2.3, it is possible to generate a topo-
logical map from the micromouse maze. When the micromouse detects a gateway, 
distance and orientation from the previous gateway will be used to connect the new 
gateway with the previous one. Then, the robot will explore a new direction in the 
gateway and repeat the previous method when a new gateway is found. The change 
in direction is also recorded to help identify the gateways. The following matrix 
provides an example of a topological map:
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Map = [-1 5 −1 −1 −1 -1;
	 5 −1 2 −1 −1 -1;
	 -1 2 −1 6 7 -1;
	 -1 −1 6 −1 −1 -1;
	 -1 −1 7 −1 −1 8;
	 -1 −1 −1 −1 8 -1;];
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FIGURE 11.21  (a) The resulting force from the objects and the goal in every part for the 
map. The magnitude of the force is represented by the length of the line and the orientation is 
shown by the arrow side of the vector. (b) The calculated path.
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In this map, each row and column represents a node (gateway) in the map, the 
number in the matrix represents the distance between the node in the row position 
and the node in the column position. If the distance is −1, it means that there is no 
direct connection between the nodes. In this map, only the relationship between the 
nodes and distances is presented, but not the orientation (which can be stored in 
another matrix).

In Figure 11.23, the MATLAB code for the path planning in a topological map 
is presented. The Dijkstra algorithm is used to find the shortest path. The function 
“Dijkstra()” receives three arguments, the map as a relational matrix with the dis-
tance between the nodes, the initial node, and the goal or target node. The function 
“Dijkstra()” will return a path from the initial node to the goal node. If there is a 
path, it will be a list of waypoints that robot must follow to reach the goal node. Note 
that in the function “MainRobot()” the path is calculated first before the robot starts 
moving; hence, this is a full path planner. This approach is different than the partial 
path planner presented for the force field in Section 11.4.2.1.
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FIGURE 11.22  Dijkstra’s shortest path algorithm for finding the shortest path between the 
initial node and the goal node.
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FIGURE 11.23  MATLAB code for the micromouse during a race run. It will first calculate 
the path and visit each node until it reaches the target node. The path is found by using the 
Dijkstra algorithm.
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FIGURE 11.23  (continued) MATLAB code for the micromouse during a race run. It will 
first calculate the path and visit each node until it reaches the target node. The path is found 
by using the Dijkstra algorithm.
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FIGURE 11.23  (continued) MATLAB code for the micromouse during a race run. It will 
first calculate the path and visit each node until it reaches the target node. The path is found 
by using the Dijkstra algorithm.
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first calculate the path and visit each node until it reaches the target node. The path is found 
by using the Dijkstra algorithm.
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Robot Autonomy, 
Decision-Making, 
and Learning

12.1  INTRODUCTION

In most robotic games, the robots are expected to display some level of autonomy. In 
robotics, autonomy is understood as the ability to perceive the environment and take 
decisions about the actions that would help to accomplish a given task. Furthermore, 
autonomy can be expressed at different levels, from a fully autonomous robot to a 
teleoperated robot. A fully autonomous robot is robust to the changes in the dynamic 
environment and requires no human intervention to accomplish a given task (Jones 
and Flynn 1993). A teleoperated robot, on the other hand, needs every decision from 
the user to perform its actions to achieve its task. To achieve autonomy, a robot should 
have a well-structured mechanism to link the sensor information to the action with 
a purpose. This mechanism uses the sensor information to make the best decisions, 
as well as to deal with situations when the actions fail to achieve the desired states 
in the environment. The robot architecture defines how sensor information is used as 
an input to make decisions and how actions are monitored until the desired state has 
been achieved. The selection of the robot architecture will depend on the task at hand, 
but most importantly on the level of autonomy we would like to achieve. Some of 
the behaviors that we would like a robot to demonstrate are very hard to program. In 
those situations, learning methods can help us to achieve the desired behavior. In this 
chapter, we will discuss robot autonomy and the different types of robot architectures 
and how they help the decision-making process. This chapter also shows some learn-
ing algorithms to achieve certain robot behaviors.

12.2  ROBOT AUTONOMY

Autonomous robots are able to carry out useful tasks without human supervision. As 
mentioned, robots exhibit different levels of autonomy. Fully autonomous robots are 
able to make their own decisions and execute actions without any human interven-
tion. Semiautonomous robots are partially controlled by a human operator; these 
robots might make some decisions and execute some actions on their own, but the 
human operator might control the robot or overwrite its decisions. A teleoperated 
robot is a remotely controlled system that receives commands from the human oper-
ator. What a robot can perceive and what decisions it can make depend on its degree 
of autonomy. Consequently, the design of what a robot should accomplish is directly 

12
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related to what type of sensors it has and the processing and decision-making capa-
bility based on this sensorial data.

The RC Sumo robot competition is a good example of teleoperated robots in 
robotic games (RC Sumo 2013). The objective in this competition is to push the 
opponent’s robot out of the ring. In this game, the human operator observes the ring 
and both the robots. The operator makes the decisions to win the game by simply 
estimating the behavior of the opponent. In this game, the robots are not equipped 
with any sensors since the human operator is able to do the perception, decision-
making, and controlling of the robot (see Figure 12.1a).

On the other hand, the Autonomous Sumo Robot competition has the same objec-
tive as the RC Sumo robot, which is simply to push the opponent out of the ring 
(Autonomous Sumo Robot 2013). However, in this case, the robots are not controlled 
by human operators. Robots are equipped with sensors and controller boards to col-
lect the sensor data, make sense of what is detected, and take action to win the game 
(see Figure 12.1b). As discussed in the earlier chapters, a robot needs to perceive its 
environment and extract relevant information to perform its task. For example, if a 
robot is equipped with ultrasonic sensors, it is able to detect the position of the oppo-
nent by using the data provided by the sensors.

12.3  DECISION-MAKING

Decision-making is a crucial part of robot autonomy. Autonomous robots form 
models of the environment and the objects around them using sensorial data, and 
eventually take actions to complete their goals. Using environment models gives 
an advantage in delivering a plan. However, executing the plan will not be so easy 
when the environment is constantly changing. The real world is unpredictable and 
the robot should work under that assumption. What goes between the sensing and 
the acting determines the success or failure of the robot significantly. For example, 
a robot that connects sensing to the acting directly may not demonstrate a great 

FIGURE 12.1  (a) RC Sumo robot game. Humans observe the state of the game and decide 
what actions should be executed. These actions are transmitted to the robot via a remote con-
trol. (b) Autonomous Sumo robot competition. Humans are only allowed to place the robots 
in the ring and press the start button. The robot then senses the opponent and tries to push it 
out of the ring.
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intelligence capability. However, its actions will be rapid since it does not make 
lengthy computations and deliberate on them.

Simple behaviors can be achieved by connecting sensors to actuators, as is proven 
by the work of Valentino Braitenberg (Braitenberg 1984). Braitenberg developed a 
model of simple vehicles with sensors and actuators and simply provided intercon-
nections between these two components. These connections produce behavior that is 
not as simple as the vehicle itself. Figure 12.2 shows a Braitenberg vehicle with two 
light sensors and two motors; the behavior depicted in the figure is often interpreted 
as love because the vehicle is attracted to the light.

In the following sections, we will discuss three different approaches for decision-
making: the classical approach, the reactive approach, and the hybrid approach. 
These approaches will sound much like the three strategies to process the sen-
sor measurements discussed earlier in Chapter 11. The reason for this is that in 
robotics it is almost impossible to separate completely the perception, decision, and 
actuation.

12.3.1 C lassical Decision-Making

The classical architecture to control a robot is defined as “sense–plan–act.” This 
architecture performs each of these three processes in sequence; the robot will col-
lect data from the sensors, then these data are used to obtain a plan, and finally 
the plan is executed. However, sense–plan–act has serious complications for most 

FIGURE 12.2  A simple Braitenberg vehicle displaying “love” for the light source.
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real-world applications. To generate a plan for the real dynamic world, the robot may 
need to collect a lot of information, which results in a huge amount of data and slow 
computation of a proper plan. The dynamic nature of the real world also implies 
that the robot needs to update its sensorial data constantly. Consequently, the world 
model needs to be updated. This may invalidate the current plan that the robot is 
executing and a new plan must be computed again.

12.3.2  Reactive Decision-Making

Reactive control for robots is based on the direct connection between the sensors 
and the actuators with minimal information for representing the state of the world. 
A reactive robot presents instinctive responses to particular situations, like a reflex 
to dangerous situations. Reactive rules or behaviors can be seen as independent 
modules (as shown in Figure 12.3) that are triggered by stimuli in the sensors to 
produce a specific action. For example, a robot makes a turn to avoid an obstacle 
sensed in front, or the robot may follow a wall that is sensed on its right-hand 
side. Reactive rules should be designed as unique situations, where only a sensor 
triggers a particular action. However, this is not always possible. In those cases, 
it is necessary to find a way to solve the conflicts between the reactive rules. For 
example, consider that the above examples of reactive rules are implemented in 
a robot. If the robot faces an obstacle in front and a wall on its right, which one 
of the two behaviors should be triggered? There are different techniques of solv-
ing conflicts between the reactive rules or behaviors. One method is by arbitra-
tion, which means an action will be chosen from multiple candidates (see Figure 
12.3a). Another alternative is fusion, where the commands to the actuators from 
the actions are fused into a single signal for the actuators (see Figure 12.3b). Using 
fusion will produce more different types of behaviors than just arbitration, and it 
will increase the level of complexity of the system. It is important to note that in 
some situations the robot is required to perform more sophisticated behaviors to 
achieve its goal.

(a)

(b)

Actuators

Reactive rule 1

Reactive rule 2

Sensors

Sensors

Reactive rule 1

Reactive rule 2

Actuators+

FIGURE 12.3  Two ways of solving conflicts between the reactive rules: (a) arbitration and 
(b) fusion.



361Robot Autonomy, Decision-Making, and Learning

Another approach used in resolving conflict is the subsumption method. The sub-
sumption architecture helps to solve conflicts between rules and enables to create 
complex reactive systems that consist of simple parts that can be added or removed to 
change the functionality of a system. This architecture uses a prioritized arbitration 
scheme to resolve any possible conflict among the reactive rules (Brooks 1985). This 
means that reactive rules or behaviors will have priorities that should be considered 
in the design of the system. A higher-level behavior can temporarily supress lower-
level behaviors as shown in Figure 12.4. The implementation of the subsumption 
controller always starts from the lower-level behaviors. The higher-level behaviors 
are implemented only after the lower-level behaviors are debugged and tested. This 
way the complexity of the system will be reduced during implementation (not for the 
execution). The complexity is also reduced because the connection among the behav-
iors is reduced to a simple suppression or inhibition of the sensor or motor signals.

12.3.2.1  Case Study on Reactive Decision-Making
The theme of the RoboCupJunior Rescue competition is disaster scenarios where 
a robot must follow a line and deal with obstacles and victims on its path. During 
the competition, the robot faces different challenges. For example, the robot needs 
to follow a line, and these lines may be broken. The robot may need to avoid obsta-
cles, climb up and down slopes, and identify and rescue victims. Of course, the 
robot tries to perform all this as fast as it can. Figure 12.5a presents a scenario of 
RoboCupJunior Rescue, where a robot follows the line and detects an obstacle on its 
path. The robot should avoid colliding with the obstacle and go around it, find the 
line again, and continue its course by following the line.

For this study case, we use the RoboCup CoSpace robot, shown in Figure 12.5b, 
which is equipped with two infrared sensors located at the front of the robot facing 
the floor; three ultrasonic sensors, one at the front and one on each side of the robot; 
and two independent motor wheels and one caster wheel (RoboCup CoSpace 2012). 
Let us also use the scenario presented in Figure 12.5a for this study case. There are 
two situations the robot needs to address: the line following and the going around 
the obstacle. The CoSpace robot achieves line following by using two infrared sen-
sors that are facing down toward the floor and located in front of the robot. Obstacle 
detection is performed by the three ultrasonic sensors located in front of the robot 

Bumper

IR Detector

Avoid

Follow

Cruise MotorsS

S

S

FIGURE 12.4  A subsumption controller consisting of three reactive rules (or behaviors). 
The lower-level behaviors are located at the bottom, and their output can be supressed by the 
higher-level behaviors on top.
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collectively covering a wide range. Although it is possible to use other types of sen-
sors to detect obstacles, in this case study, the robot employs ultrasonic sensors to 
detect them from a distance.

The robot controller should consider two situations: follow the line and avoid 
the obstacles. Since the robot has to follow the line most of the time, this should be 
the simplest of the behaviors and thus Follow-Line will be the lower-level behavior. 
The obstacle avoidance should take control of the system to avoid a collision with the 
obstacles; however, since the obstacles are located on the line, the robot should be 
able to go around the obstacle and find the line again; thus, Round-Obstacle will be 
a higher-level behavior. With these design considerations, the subsumption controller 
for the rescue robot is presented in Figure 12.6.

As discussed before, the implementation will start from the lower-level behav-
iors. The Follow-Line behavior will use the data from the infrared sensors; the value 
returned by the sensors will be different for an area white in color (the arena space) and 
an area black in color (the line). The idea is to implement these behaviors in parallel; 
however, if the microprocessor or the processing unit that is used does not support this, 
then the behaviors can be implemented as functions. The code shown in Figure 12.7 

Ultrasonic sonars

Infra-red sensors

Round-Obstacle

Follow-Line MotorsS

FIGURE 12.6  The proposed controller for the rescue challenge. It consists of two behav-
iors: Follow-Line and Round-Obstacle. Follow-Line is the lower-level behavior that can be 
supressed by the higher-level behavior Round-Obstacle.

FIGURE 12.5  (a) A robot trying the rescue field during the RoboCup Singapore Open 2012. 
(b) The RoboCup CoSpace robot is a simple robot used for RoboCupJunior and educational 
purposes. The robot was developed at the Advanced Robotics and Intelligent Control Centre 
of the Singapore Polytechnic.
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FIGURE 12.7  MATLAB code of the implementation for the Follow-Line behavior for the 
CoSpace robot.
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presents the Follow-Line behavior and subsequent behavior considering a sequential 
processing instead of parallel processing.

The main function in this code is CoSpace, and it has two key components, the 
first one is to initialize the robot by calling the function “Init()” and the second one 
is to execute the controller of the robot in an endless loop. The initialization of the 
robot is left blank in this example since it is different from robot to robot. However, 
everything necessary to set up the robot and the communication with the hardware 
must be placed inside this function. When all the initialization is completed, the 
function must return the value of “one” that indicates that everything is ready to 
proceed with the control of the robot, any other value returned will not start the 
endless loop, causing the program to end. The control loop will obtain the sensor 
readings from the hardware once the readings are available. The hardware state will 
be conveyed to the variable named “robot”; this information will be used to make 
decisions. After that, the control loop will call the function “FollowLine().” This 
function will compare the values of the left and right infrared sensors to follow the 
line; based on these comparisons, a motor command will be selected. Motor com-
mands are used by the function “SetMotorCmd()” to be translated into hardware 
signals and finally to be sent to the motors of the robot. Functions “ReadSensors(),” 
“SetMotorCmd(),” and “Init()” are hardware dependent; therefore, we did not explic-
itly show them here. Another point about the example code is that it needs to be 
tuned for the certain values of the sensors for comparison. For these, we prefer to use 
names that provide a better understanding of what this value should be; in the actual 
implementation, these names correspond to the readings from the sensors.

The robot is expected to follow the line; when it reaches the end of the line, it will 
stop. The robot will detect the difference between the left and right infrared sensors 
to determine where the line is located and produce the appropriate command. Since 
the robot is reacting to this difference and the processing of this value is fast, the 
reaction of the robot to these stimuli is almost instantaneous.

Once the Follow-Line behavior has been tested and properly debugged, then it 
is time to write the higher-level behavior to avoid the collision and to go around 
the object. Usually higher-level behavior would be more complex than those in the 
lower levels. The proposed Round-Obstacle behavior may require a few steps, and 
it may not be possible to achieve on a single iteration of the program. In this case, a 
finite-state machine (FSM) is used to represent a behavior that is composed of a fixed 
number of states and transitions. An FSM consists of states and transitions; a state 
would represent a state of the environment or the robot, while the transitions would 
represent the actions that the robot need to execute to reach a particular state. The 
proposed behavior is illustrated as FSM in Figure 12.8.

Note that the transition among the states may take several iterations, and it is 
important to monitor the sensors to perceive the changes in the states. Figure 12.9 
presents the MATLAB® code implementation of the Round-Obstacle behavior as 
described by the FSM in Figure 12.8. The names written in uppercase letters corre-
spond to the values that need to be tuned for actual system. For example, when using 
the infrared sensors to check for a black line, the real value returned by the sensor 
should be replaced with the name “LINE” in the code. The value of the LINE should 
be greater than the background color value. The final remark is the function “Init()” 
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will now also initialize the value of the robot.state variable to NO_STATE, and this 
will ensure that the FSM will start with the state determined by the sensors.

Introducing this behavior as a higher-level behavior would require modifying the 
main function to give the priority to the Round-Obstacle behavior when an obstacle 
is detected and thus suppress the output of the Follow-Line behavior. Figure 12.10 
presents the main function after adding the suppression of the Follow-Line behavior 
by the Round-Obstacle behavior.

In Figure 12.10, the function “RoundObstacle()” is called; if the function returns 
true, then the “FollowLine()” function will not be called. This may seem similar to 
suppress the output of the “FollowLine()” function. The advantage is that the perfor-
mance of the system will not be affected by increasing computations. The emerging 
behavior of the system can be seen as the robot follows the line and avoids the obstacle.

12.3.3  Hybrid Decision-Making

Reactive control has very a fast response when compared to the classic sense–plan–
act control paradigm. On the other hand, it is not a flexible method when it comes to 
deliberating a plan. The hybrid control mechanism involves a combination of reac-
tive and deliberative control paradigms to get the best of both the worlds. A hybrid 
control mechanism aims for fast response to sensory inputs as well as for producing 
a flexible plan to attain the goal (Mataric 2007). A common way of implementing 
these systems consists of three layers as shown in Figure 12.11.

Signals from the sensors will usually input to the reactive and middle layer. 
Actuators of the robot are also connected to the reactive layer. The role of the middle 
layer is to generate environment models that will be used by the planning layer, and 
to keep these updated regularly. In addition, the middle layer receives the actions to 
execute from the planning layer. These actions are passed down to the reactive layer 
for execution and the success or failure of them is monitored by the middle layer. In 
the case of failure, the middle layer avoids replanning by trying other actions that 
could lead to the same goal. The design and implementation of hybrid systems is 
challenging because they must bring together the components of the reactive and 
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FIGURE 12.8  The finite-state machine representation for the Round-Obstacle behavior.
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deliberative systems. All these components should be coupled in such a way that they 
work seamlessly as a single system.

12.4  ROBOT LEARNING

The challenges put in robotic games are increasing continuously. Robots are expected 
to accomplish tasks in unknown and dynamic environments. This objective is in line 
with expectations from mobile robots in practice.

FIGURE 12.9  The implementation of the Round-Obstacle behavior. Note that the state vari-
able is part of the robot structure, and it is used to point at the current state in the FSM.
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Nowadays, mobile robots are utilized to perform tasks in remote, dangerous, and 
unknown environments such as in nuclear disasters, remote planets, or ocean explo-
rations. It is important for a mobile robot to have an understanding of its environment 
to operate in that environment and to deal with any possible situation. However, it is 
impossible to write programs that are able to predict every single possible situation 
that might arise in an environment. This problem becomes even more complex if 
the robot has to work in an unknown and unpredictable environment. On the other 
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FIGURE 12.11  A hybrid system brings together the classical deliberative system and the 
reactive systems.

FIGURE 12.10  The suppression of the lower-level behavior could be implemented in code 
with if-else or switch structures. Notice that the higher-level behavior here returns a Boolean 
(one or zero) value that is used to determine if the lower-level behavior is suppressed or executed.
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hand, the learning capability provides the robot to learn about its environment and 
the task it has to accomplish so that it can adapt to the changing environment and 
achieve its goal. In this section, we will introduce some learning methods that can be 
implemented for different applications.

12.4.1 A rtificial Neural Networks

An artificial neural network (ANN) is a network that connects artificial neurons 
that are programmed to behave like biological neurons. A neural network is able to 
gain knowledge through the process of learning, also referred to as training. The 
knowledge is stored within the connections of the artificial neurons in the form of 
weights. These weights play an important role in decision-making. Neural networks 
are good at generalizing information, and they are able to respond to new situations. 
As neurons form the basis of a network, we will first discuss these basic elements and 
behavior of an artificial neuron.

There are four key elements in an artificial neuron; they are: inputs, weights, acti-
vation function, and output. As illustrated in Figure 12.12, the inputs (like synapses) 
are multiplied by weights (strength of the respective signals). All these values are then 
added and then computed by a mathematical function that determines the activation 
of the neuron. The amplitude of the output of the artificial neuron depends on the acti-
vation function. In mathematical terms, we describe a neuron with a pair of equations:
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weights of the neuron, v is the induced local field or activation potential of neuron, 
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FIGURE 12.12  Basic elements of an artificial neuron.
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ϕ is the activation function, and y is the output signal of the neuron. The activation 
function defines the output of the neuron in terms of the induced local field. The out-
put of the activation function is in the range of 0–1, and this output depends on the 
type of activation function employed by the neuron. Figure 12.13 shows three types 
of common activation functions: threshold, piecewise-linear, and sigmoid functions.

There are many different types of neural networks; each type needs to be mod-
eled according to the task in hand and the number of inputs and outputs. An ANN is 
typically defined by three parameters:

	 1.	The interconnection pattern between different layers of neurons
	 2.	The learning process for updating the weights of the interconnections
	 3.	The activation function that converts a neuron’s weighted input to its output 

activation

12.4.1.1  Perceptron
The perceptron is the simplest neural network. It is designed to solve two-class pat-
tern classification problems. The McCulloch–Pitts neuron model is adopted in the 
perceptron, and it uses a threshold activation function. All the inputs are connected to 
a single neuron, and it has only one output. It is considered as a feedforward network. 
Feedforward neural networks solve problems by input–output functional mappings, 
which are formed by learning from examples used as training data. Feedforward 
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FIGURE 12.13  Three different types of activation functions: (a) threshold, (b) piecewise-
linear, and (c) sigmoid functions. According to the required output, an activation function can 
be used for the neurons in a network.
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networks have the good ability to approximate new situations. This is because feed-
forward networks use the new inputs and the weights of the networks to interpolate 
new output data that were not encountered in the training data set.

Figure 12.14 shows a perceptron using the McCulloch–Pitts neuron. The neu-
ron computes the weighted sum v of all M inputs x, as shown in Equation 12.1. As 
this neuron uses a threshold activation function, according to Equation 12.2, the 
weighted sum v is then compared to a fix threshold value to produce the output. 
Equation 12.3 presents the threshold activation function:

	
f v

v

v
( ) =

≥
<





1 0

0 0

if

if 	
(12.3)

The perceptron is capable of computing any function when suitable weights have 
been given. As mentioned before, the information to solve a given problem or to 
take a decision resides in the weights. The problem is how to choose those suitable 
weights. When the number of inputs is small, the values of the weights can be manu-
ally adjusted to obtain the desired behavior. However, when the number of inputs is 
large, this method will not be effective. In those cases, the network can learn by using 
the backpropagation algorithm which exposes the neural network to training data 
constantly. This would mean that some data are collected from the inputs and desired 
output, and this training set of data is used to teach the network to produce similar 
outputs when similar inputs occur. The training data are then defined as
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where [ , , , , ]x x xi M1 … …  are the input signals, and [d] is the desired output for the nth 
training example of the training dataset. The number of training examples N must 
not be too small; otherwise, the network will not be flexible enough to react to dif-
ferent situations. If the training set is too large, the learning process will take a very 
long time. There is also the risk of overtraining, which means making the network 
specialized to respond to only certain inputs or situations. Overtraining happens 
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FIGURE 12.14  A perceptron with McCulloch–Pitts neuron.
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when a large number of training samples is biased toward specific inputs or situa-
tions. A good training set should have a broad distribution of samples representing 
most of the possible situations that a robot will encounter.

An important issue is how to obtain the training data. In robotics, we commonly 
use the sensor values as inputs and the motor drive values as outputs. Thus, it is pos-
sible to write a program to log both the sensor values and motor drive values while 
the robot is performing a task or robot being teleoperated for the task to perform.

In the backpropagation algorithm, the learning consists of two stages, namely 
forward and backward stages. In the forward stage, an input activates the network 
to produce an output. The network output is then compared with a desired output 
to compute the error. During the backward stage, this error is fed back to the net-
work to adjust its weights and to reduce the error. Thus, the model gets closer to 
the desired output with every iteration, and this is repeated until the error is small. 
Backpropagation calculates the gradient of the error of the network regarding the 
network’s weights. The error signal at the output of the neuron at iteration n (i.e., 
presentation of the nth training example) is defined by

	 e n d n y n( ) ( ) ( )= − 	 (12.5)

where d(n) is the desired output for the nth training example at the neuron. The 
total error of the network is obtained by summing all the errors of the neurons. 
Apparently, for a perceptron, this would be only one neuron.

	
e( ) ( )n e n= ∑1

2
2

	
(12.6)

The average squared error is obtained by summing the total error of all the data 
in the training set. The objective of the learning process is to minimize this average 
error.
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The update rule of the synaptic weights is defined by the correction Δwi

	 w n w n w ni i i( ) ( ) ( )+ = +1 ∆ 	 (12.8)

	 ∆w n n x ni i( ) ( ) ( )= −hd 	 (12.9)

	 d j( ) ( ) ( ( ))n e n v n= ′ 	
(12.10)

The correction Δwi is defined by the learning parameter η, the local gradient δ, 
and the current input xi. The local gradient δ is composed of the neuron error and the 
derivative of the activation function.
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The activation function used by the McCulloch–Pitts model presented in Equation 
12.3 is not differentiable; therefore, it is necessary to use an activation function such 
as a sigmoid or a hyperbolic tangent. As discussed in the previous section, there are 
a number of activation functions, and many can be modeled according to the desired 
output. The sigmoid function and its derivative are represented as follows:
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Parameter a in the equation defines the length of the shape produced by the equa-
tion. The training algorithm for the neural network is described with the following 
steps:

	 1.	 Initialize the weights of the neuron to zero.
	 2.	For each training data

	 2.1.	 Calculate the output of the network y(n) for the training data n with 
Equations 12.1 and 12.2.

	 2.2.	 Calculate the error of the neuron e(n) with Equation 12.5.
	 2.3.	 Calculate the local gradient for the neuron δ(n) with Equation 12.10.
	 2.4.	 For each input
	 2.4.1.	 Calculate the weight correction Δwi(n) with Equation 12.9.
	 2.4.2.	 Update the weight wi(n + 1) with Equation 12.8.

	 2.5.	 Calculate the total error of the network ε(n) for the training data n 
with Equation 12.6.

	 3.	Calculate the average error of the total errors for all the training data sets, 
with Equation 12.7.

	 4.	 If the average error is greater than a threshold, go back to step 2. If the 
learning process has been repeated by a maximum number of epochs and 
the average network does not converge, then stop to avoid an endless loop.

In robotics, input to neural network will be the sensor signals, such as sonar and 
lasers range sensors, which deliver distance to objects and the output from the net-
work will be translated to a signal for actuators. So, the decision on robot movements 
will be dependent on the neural network directly. The distance values from the sen-
sors have to be normalized to the 0–1 range before passing them to the network. The 
output from the network will be in the range of 0–1. Similarly, the output from the 
network also needs to be translated to proper motor signal.

12.4.1.2  Case Study on Perceptron with Learning
In this case study, we will again study the CoSpace robot presented in Section 
12.3.2.1 to illustrate how a robot navigates in an unknown environment after learn-
ing with an ANN. We will focus on the scenario where the robot needs to move in 
random directions and avoid obstacles. Obstacle avoidance is a behavior that could 
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be programmed in any robot; however, using an ANN will provide an advantage 
when the robot faces new types of obstacles or unknown environments.

We need to start by modeling the ANN. In this case, we need to observe the robot 
and decide how the neural network will be interfaced with the robot hardware. The 
robot consists of four ultrasonic sensors, and they are used to determine the distance 
of the obstacles from the front, the left, and the right directions. A fourth ultrasonic 
sensor is located at the rear of the robot, and it can only perceive obstacles at the back 
of the robot. Since the front and the two side sensors are mainly used for avoiding 
obstacles, only these sensors will be used as inputs to the neural network. The output 
of the network should then produce the necessary speed for the left and right wheels so 
that the robot can avoid the obstacle. The neural network in this case will consist of two 
neurons as shown in Figure 12.15. Since two output signals are needed for the motors, 
each neuron will be associated to one motor. The output signal to motors can be posi-
tive (forward) or negative (backward); we need to have an activation function that can 
provide us the required range. Here, we will employ the hyperbolic tangent function, 
which is a nonlinear sigmoid function, and its output range extends from −1 to 1.

	 j ( ) tanh( )v v= 	 (12.13)

The derivative of the hyperbolic tangent activation function is needed for the 
learning using the backpropagation method.

	 ′ = −j ( ) tanh ( )v v1 2
	 (12.14)

As we have a model of the neural network, it is necessary to collect the training 
data. As described previously, the data can be collected from a previous program, 
or by teleoperating the robot and logging the sensors and motor values. Most of 
the mobile robotic systems nowadays have an option to be controlled by a human 

Inputs

Output

∑

∑ φ

φ

x1

v1

v2

y1

y2

x2

x3 w32

w
22

w
12

w
11

w 21

w 31

FIGURE 12.15  The proposed neural network for the obstacle avoidance in the CoSpace 
robot with two perceptrons and three common inputs.
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operator. In the case of CoSpace robot, we developed a PC-based program that sends 
commands, entered by the user via keyboard, directly to the controller board of the 
robot. The controller board then sends these commands to the wheel motors of the 
robot. It also reads the three ultrasonic sensors and the speeds of the two motors to 
record this information into a file. A new set of data is added in every cycle of the 
controller board; for the CoSpace robot, that means every 100 ms. We stop data 
recording when the robot has been driven to a few situations which we would like to 
teach. A sample of the content of this file is presented in Table 12.1. The user controls 
the robot to avoid obstacles when the obstacles are presented in the front, right, or 
left side of the robot, speeds are decreased when obstacles are detected, and a simple 
strategy of turning to the right when an obstacle is faced in front is applied. For the 
obstacles at the sides, the strategy is simply to turn to the opposite direction. When 
there is no obstacle in view of the robot, the speed is increased and robot is allowed 
to move forward.

From Table 12.1, we observe that none of the input values range from 0 to 1, and 
neither the output range is from −1 to 1. The next thing is to normalize these values 
by taking into consideration the maximum and minimum range of the sensors and 
motors. Table 12.2 shows the normalized values of the file presented in Table 12.1.

Once the network is trained and used for controlling the robot, all the inputs must 
be normalized and the output signal must be converted to suit actual motor com-
mands. After collecting enough training data, the learning process can start. The 
program presented in Figure 12.16 performs the learning of the network, using the 
backpropagation method introduced previously.

TABLE 12.1
Parts of the Training Data Set Generated for the CoSpace Robot Generated 
by Controlling the Robot with a Keyboard

Sensor Front Sensor Left Sensor Right Velocity Left Velocity Right

1000.00 1000.00 1000.00 16,384 16,384

1000.00 1000.00 1000.00 16,384 16,384

1000.00 1000.00 995.58 4096 4096

1000.00 1000.00 982.52 4096 4096

1000.00 1000.00 795.15 4096 4096

1000.00 1000.00 781.75 4096 8192

988.90 1000.00 767.11 4096 8192

982.73 1000.00 745.75 4096 8192

1000.00 1000.00 445.66 4096 8192

1000.00 1000.00 459.46 4096 8192

1000.00 1000.00 476.16 4096 8192

1000.00 1000.00 769.26 4096 8192

1000.00 1000.00 823.71 4096 8192

1000.00 1000.00 888.03 4096 8192

1000.00 1000.00 956.39 4096 8192

1000.00 1000.00 1000.00 16,384 16,384

1000.00 1000.00 1000.00 16,384 16,384
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Once the learning process is completed, the final weight values are saved into 
a file to be used during the realization of the network on the actual system. It is 
important to note that neural networks do not always converge; in other words, its 
learning is not complete. As described in Step 4 of the presented learning algorithm, 
the learning process will sometimes stop after a number of iterations. This happens 
when the error of the network is not decreasing during training and thus if the error 
is not less than a threshold value, the network may not be able to provide a good 
performance or exhibit the expected behavior.

If a network does not converge, there are a few methods for troubleshooting. The 
first thing to do is to identify what was the final error of the network. If the error 
is somehow close to the threshold value, the performance of the network could be 
acceptable. This happens when the threshold is too low to be reached. If the error 
is high and the behavior is not what is expected, then we should be looking at the 
training data. When a few training sets describe a particular situation, and many 
others describe other possible situations, it is possible that the network has too few 
information to understand and learn a particular pattern. To approach this situation, 
it is necessary to collect a new training data that includes a broad distribution of all 
the possible situations that the network should encounter.

To test the system with the newly learnt weights, connection between sensors, net-
work, and output to motors is needed, and this is done using software. Figure 12.17 

TABLE 12.2
Normalized Training Data Presented in the File of Table 12.1

Sensor Front Sensor Left Sensor Right Velocity Left Velocity Right

1 1 1 0.5 0.5

1 1 1 0.5 0.5

1 1 0.99558 0.125 0.125

1 1 0.98252 0.125 0.125

1 1 0.79515 0.125 0.125

1 1 0.78175 0.125 0.25

0.9889 1 0.76711 0.125 0.25

0.98273 1 0.74575 0.125 0.25

1 1 0.44566 0.125 0.25

1 1 0.45946 0.125 0.25

1 1 0.47616 0.125 0.25

1 1 0.76926 0.125 0.25

1 1 0.82371 0.125 0.25

1 1 0.88803 0.125 0.25

1 1 0.95639 0.125 0.25

1 1 1 0.5 0.5

1 1 1 0.5 0.5

Note:	 The original input values range from 0 to MAXDIST, and now they go from 0 to 1. The original 
output values range from (−) MAXSPEED to (+) MAXSPEED; after the conversion, they range 
from −1 to 1.
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FIGURE 12.16  MATLAB code of the learning process for the neural network presented 
in Figure 12.15. This network uses the backpropagation method to update the weights. The 
training data used in this code is presented in Table 12.2.
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presents the MATLAB code to test the neural network, which controls the robot with 
the trained weights. If the performance of the robot is up to the expectation, then it 
is possible to run this program as a controller for the robot. The learning process can 
be repeated if needed with a new set of training data.

12.4.1.3  Multilayer Perceptron
One of the commonly used neural network model is the multilayer perceptron (MLP). 
MLP is a popular machine learning solution and finds applications in diverse fields 
such as speech recognition, image recognition, and stock market forecasting. More 
recently, there has been some renewed interest in this network due to its success of 
superior learning capability.

The MLP is a feedforward ANN, consisting of an input layer, one or more layers 
of hidden neurons, and an output layer as shown in Figure 12.18. The hidden neu-
rons are not directly accessible, but they extract important features contained in the 
input data. Learning occurs in the perceptron by changing the connection weights 
after each piece of data is processed and based on the amount of error in the output 
compared to the expected result.

These networks have found their way into countless applications requiring static 
pattern classification. Their main advantage is that they are easy to use, and that they 
can approximate any input/output map. However, a major disadvantage is their train-
ing is slow and it requires a large set of training data. Among the various artificial 
intelligence techniques available in the literature, neural networks offer promising 

FIGURE 12.16  (continued) MATLAB code of the learning process for the neural network 
presented in Figure 12.15. This network uses the backpropagation method to update the 
weights. The training data used in this code is presented in Table 12.2.
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FIGURE 12.17  MATLAB code for testing the obtained weights from the learning process 
presented in Figure 12.16.
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solutions to robot navigation problem because of their ability to learn complex non-
linear relationships between input sensor values and the output control variables. 
This ability of neural networks has attracted many researchers across the globe in 
developing neural network-based controllers for reactive navigation of mobile robots 
in indoor as well as outdoor environments.

12.4.2  Q-Learning

Q-Learning is a simple algorithm from reinforcement learning that has been used in 
many applications in robotics such as navigation, manipulation, motion planning, and 
multirobot systems. As the name implies, in a reinforcement learning algorithm, a rein-
forcement signal or reward is given to the robot according to the selected action for a 
particular environment. The robot constantly adjusts its actions and finds the optimal 
strategy through trial and error. This will maximize the reinforcement function, which 
is the objective of this method while the robot learns how to deal with specific situations.

In Q-Learning, a matrix named Q represents the “brain” of the robot and the Q 
matrix represents the learning of the robot. The objective of the method is to obtain 
this representation. In the Q matrix, each row represents a state of the robot and each 
column represents an action. In other words, the matrix tells the robot what action 
should be taken when the robot is in a particular state. The entries of the Q matrix are 
updated by the reinforcement learning function (Sutton and Barto 1998) defined as

	 Q(s,a) = R(s,a) + γmax(Q(s′,a′))	 (12.15)

where R is a matrix that contains the reward or reinforcement signals for taking the 
action a in the state s. γ is the learning parameter that multiplies the maximum value 
of the Q matrix for all actions a′ in the next state s′. The next state s′ is determined 
by taking the action a in the current state s. Given a reward matrix for the states and 
the actions, the Q-Learning algorithm will converge to an optimal solution to reach 
the goal state defined by the problem. The algorithm for Q-Learning is as follows:

	 1.	 Initialize the Q matrix for each state and action with zeros.
	 2.	Repeat for each episode:

	 2.1.	 Select a random current state s.
	 2.2.	 Repeat while s is not the goal state.

−− Select an action a among all the possible action of the state s.
−− Receive the immediate reward R(s,a).
−− Observe the next state s′.

FIGURE 12.17  (continued) MATLAB code for testing the obtained weights from the learn-
ing process presented in Figure 12.16.



380 Practical Robot Design

−− Update the entry in the Q matrix with Equation 12.15.
−− Set the next state s′ as the current state s.

In the above algorithm, an episode is referring to a scenario where the robot will 
explore different states in the reward matrix until it reaches the goal state. At the 
same time, this exploration will update the Q matrix of the robot. More training 
scenarios will produce further improvements in the values of the Q matrix.

12.4.2.1  Case Study Q-Learning
The Intelligent Robot competition (Intelligent Robot 2013) is a game where a robot 
must collect objects of different types and colors and sort them into three different 
baskets (see Figure 12.19). In this case study, we will use Q-Learning to teach the robot 
about the objects and the actions that the robot must achieve to complete the challenge. 
Let us discuss a simple scenario to illustrate the application of Q-Learning here.

Let us consider a scenario where there are two different objects (red and blue), and 
two baskets are provided in the environment. We assume that the robot is equipped 
with a gripper that allows it to grab one object at a time. Each state in this scenario 

FIGURE 12.19  The Intelligent Robot competition is a game where robots must collect and 
sort colored objects into three different baskets.
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FIGURE 12.18  A multilayer perceptron is a feedforward artificial neural network.
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consists of the gripper of the robot, the objects on the field, and the baskets. Let us 
define the possible states for the Finite State Machine (FSM). Figure 12.20 shows 
a FSM with all the possible states for this scenario. The transitions between the states 
in Figure 12.20 represent the reward values for executing that action. The Reward 
matrix for this FSM is expressed in Table 12.3.

R

BRRobot
Red and blue baskets

Red and blue objects
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R

B

R

R

B

B

B0

0

0

0

0

0

100 100

100

R
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R B
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R
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FIGURE 12.20  The finite-state machine for the states in the scenario of two objects for the 
Intelligent Robot competition. The rewards for taking an action are indicated in the transi-
tions. The goal state has an additional loop that makes the robot to remain in this goal state 
after it has reached it.

TABLE 12.3
Reward Matrix Obtained from the Finite-State Machine Presented 
in Figure 12.20

Action State 1 2 3 4 5 6 7 8

1 – 0 – – – 0 – –

2 – – 0 – – – – –

3 – – – 0 – – – –

4 – – – – 100 – – –

5 – – – – 100 – – –

6 – – – – – – 0 –

7 – – – – – – – 0

8 – – – – 100 – – –
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FIGURE 12.21  The MATLAB code for the Q-Learning for the Intelligent Robot scenario.
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The MATLAB code for the Q-Learning algorithm is presented in Figure 12.21, 
the QLearning() function receives the reward matrix R and the learning parameter 
γ and the learned Q matrix is saved in to a file named “QMatrix.csv” so that it can 
be used later to control the robot. The learning parameter γ ranges between 0 and 
1. When it is close to zero, the robot tends to consider the immediate reward; in 
contrast, if the value is close to one, the robot tends to consider the future reward 
associated with taking an action.

The code in Figure 12.21 will converge to produce the following matrix:

	

Q =

0 256 0 0 0 256 0 0

0 0 320 0 0 0 0 0

0 0 0 400 0 0 0 0

0 0 0 0 500 0 0 0

0 0 0 0 500 0 0 0

0 0 0 0 00 0 320 0

0 0 0 0 0 0 0 400

0 0 0 0 500 0 0 0

































From this matrix, it is clear that the robot could pick either the red or blue object at 
the beginning and converge to the goal. Let us now consider the scenario where the 
robot should collect the objects in a particular order. In that case, the reward matrix

FIGURE 12.21  (continued) The MATLAB code for the Q-Learning for the Intelligent 
Robot scenario.
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should indicate that a particular state like placing the object red in the basket has a 
reward:

	

R =

− − − − − −
− − − − − − −
− − − − − − −
− − − − − − −
− − − − − − −
− − − − − − −
− − −

0 0

20

0

100

100

0

−− − − −
− − − − − − −

































0

100

With this new reward, the Q-Learning matrix looks like:

	

Q =

0 272 0 0 0 256 0 0

0 0 340 0 0 0 0 0

0 0 0 400 0 0 0 0

0 0 0 0 500 0 0 0

0 0 0 0 500 0 0 0

0 0 0 0 00 0 320 0

0 0 0 0 0 0 0 400

0 0 0 0 500 0 0 0

































With these values, the robot will give priority to pick up the red object, repre-
sented by the state in the second row of the Q matrix.

To apply the learned Q matrix to control the robot, a hybrid architecture can be 
employed as presented in Section 12.3.3. Figure 12.22 presents a code for decision-
making. The code related to hardware such as the sensor readings and motor drives 
is not shown here, though it gives an idea of how to use the Q matrix for the robot’s 
decision-making. The decision layer is the important part in this code and shows the 
application of the learned Q matrix. After each change of state, the decision function 
will get a new action from the Q matrix, and this action can be broken into primitive 
actions or actions that can be applied on the robot platform. Once an action is com-
pleted and the state changes, a new action must be obtained from the Q matrix. The 
process will continue until the robot state remains the same as the action, in other 
words, when the Q matrix reaches the goal state.

12.5  CONCLUSION

Autonomy is a desirable feature in robots, and it is a fundamental part in many robot-
ics competitions. This chapter discussed decision-making and learning for autono-
mous robots. Autonomous robots act on the environment based on their sensorial 
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FIGURE 12.22  Code for a hybrid architecture taking a high-level decision with the states 
and goals learned from the Q-Learning algorithm.
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information. The chapter presented some of the algorithms employed in learning as 
well as the implementation of the decision in an autonomous robot.
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