
Jagannathan Kanniah
M. Fikret Ercan
Carlos A. Acosta Calderon

P
ra

c
tic

a
l R

o
b
o
t D

e
s
ig

n
G

a
m

e
 P

la
y
in

g
 R

o
b
o
ts

K
a
n
n
ia

h
E
r
c
a
n

A
c
o
s
ta

 C
a
ld

e
r
o
n

Practical Robot Design
Game Playing Robots

Designed for beginners, undergraduate students, and robotics
enthusiasts, Practical Robot Design: Game Playing Robots is
a comprehensive guide to the theory, design, and construction of
game-playing robots. Drawing on years of robot building and teaching
experience, the authors demonstrate the key steps of building a robot
from beginning to end, with independent examples for extra modules.
Each chapter covers basic theory and key topics, including actuators,
sensors, robot vision, and control, with examples and case studies
from robotic games. Furthermore, the book discusses the application
of AI techniques and provides algorithms and application examples
with MATLAB® code.

The book includes:

•	 Comprehensive coverage of drive motors and drive motor
control

•	 References to vendor websites as necessary

•	 Digital control techniques, with a focus on implementation

•	 Techniques for designing and implementing slightly advanced
controllers for pole-balancing robots

•	 Basic artificial intelligence techniques with examples in
MATLAB

•	 Discussion of the vision systems, sensor systems, and
controlling of robots

The result of a summer course for students taking up robotic
games as their final-year project, the authors hope that this book will
empower readers in terms of the necessary background as well as
the understanding of how various engineering fields are amalgamated
in robotics.

Robotics

ISBN: 978-1-4398-1033-0

9 781439 810330

90000

K10517

K10517_COVER_final_revised.indd 1 9/17/13 3:37 PM

www.allitebooks.com

http://www.allitebooks.org

Practical
Robot Design
Game Playing Robots

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Jagannathan Kanniah
M. Fikret Ercan
Carlos A. Acosta Calderon

Practical
Robot Design
Game Playing Robots

www.allitebooks.com

http://www.allitebooks.org

MATLAB® and Simulink® are trademarks of The MathWorks, Inc. and are used with permission. The MathWorks
does not warrant the accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB® and
Simulink® software or related products does not constitute endorsement or sponsorship by The MathWorks of a
particular pedagogical approach or particular use of the MATLAB® and Simulink® software.

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2014 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20130612

International Standard Book Number-13: 978-1-4822-1022-4 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the
validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the
copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to
publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let
us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted,
or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, includ-
ing photocopying, microfilming, and recording, or in any information storage or retrieval system, without written
permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com
(http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers,
MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety
of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment
has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

www.allitebooks.com

http://www.allitebooks.org

v

Contents
Preface.. xiii
Acknowledgments...xv
Authors..xvii

Chapter 1	 Game Robotics..1

1.1	 Introduction..1
1.2	 Robotics Games and Engineering Education.............................1
1.3	 Robotic Games in Singapore..2

1.3.1	 Pole-Balancing Robot Race...2
1.3.2	 Wall-Climbing Robot Race...3
1.3.3	 Robot Colonies..3
1.3.4	 Humanoid Robot Competition......................................4
1.3.5	 Other Competitions and Open Category.......................4

1.4	 Robotic Games around the World..6
1.5	 Overview of the Book... 11
References... 12

Chapter 2	 Basic Robotics... 13

2.1	 Introduction to Robotic Systems.. 13
2.1.1	 Terminology Used in Robotics.................................... 13

2.2	 Coordinate Transformations and Finding Position of
Moving Objects in Space.. 14
2.2.1	 Composite Rotations... 17
2.2.2	 Homogeneous Transformation Matrix........................ 19
2.2.3	 Composite Transformations..20

2.2.3.1	 Matrix Multiplication Order in
Composite Transformations.........................20

2.2.4	 Mathematical Description of Objects.........................23
2.3	 Wheel Drive in Mobile Robots...28

2.3.1	 Differential Drive.. 32
2.3.2	 Ackermann Steering (Car-Like Drive)........................34
2.3.3	 Track Drive..34
2.3.4	 Omniwheel Drive.. 35
2.3.5	 Odometry..36
2.3.6	 Case Study of Odometry for a Differential

Drive Robot... 37
2.4	 Robotic Arms... 39

2.4.1	 Forward Kinematic Solutions...................................... 45
2.4.2	 Inverse Kinematics..46

www.allitebooks.com

http://www.allitebooks.org

vi Contents

2.4.3	 Case Study: Three-Link Articulated Robot Arm.......48
References... 52

Chapter 3	 Sensors.. 53

3.1	 Sensors Used in Game Robotics...54
3.1.1	 Measuring Robot Speed..54
3.1.2	 Measuring Robot Heading and Inclination................. 56
3.1.3	 Measuring Range.. 57
3.1.4	 Detecting Color... 63

References...64

Chapter 4	 Robot Vision..65

4.1	 Introduction..65
4.2	 Camera Systems for Robotics...66
4.3	 Image Formation.. 67
4.4	 Digital Image-Processing Basics.. 71

4.4.1	 Color and Color Models.. 71
4.5	 Basic Image-Processing Operations... 73

4.5.1	 Convolution... 74
4.5.2	 Smoothing Filters.. 76

4.6	 Algorithms for Feature Extraction...77
4.6.1	 Thresholding... 78
4.6.2	 Edge Detection.. 81
4.6.3	 Color Detection... 83

4.7	 Symbolic Feature Extraction Methods.....................................86
4.7.1	 Hough Transform..86
4.7.2	 Connected Component Labeling.................................92

4.8	 Case Study: Tracking a Colored Ball.......................................98
4.9	 Summary.. 100
References... 101

Chapter 5	 Basic Theory of Electrical Machines and Drive Systems................. 103

5.1	 Actuators for Robots... 103
5.2	 Electrical Actuators.. 104

5.2.1	 Fundamental Concepts of Generating and
Motoring.. 104

5.2.2	 DC Machines... 106
5.2.3	 AC Motor Drives... 112

5.3	 Specific Needs of Robotics Drives... 113
5.3.1	 DC Permanent Magnet Motors................................. 114
5.3.2	 Servo Motors... 114
5.3.3	 Stepper Motors.. 116
5.3.4	 Brushless DC Motors.. 122

5.4	 Drive Systems... 126
5.4.1	 DC Motor Control... 126

www.allitebooks.com

http://www.allitebooks.org

viiContents

5.4.2	 Stepper Motors Drivers... 128
5.4.2.1	 Sequence Generator................................... 129
5.4.2.2	 Operating Modes of L297.......................... 130
5.4.2.3	 Applications... 131

5.4.3	 Brushless DC Motor Drive.. 133
5.4.3.1	 Back EMF Sensing-Based Switching........ 134
5.4.3.2	 Sensor-Based Switching............................ 136

5.5	 Conclusion.. 137
References... 137

Chapter 6	 Motor Power Selection and Gear Ratio Design for Mobile Robots.......139

6.1	 Gear Ratio for a Mobile Robot... 139
6.2	 Power Requirement of the Drive Motor................................. 141

6.2.1	 Role of Motor Inertia and Friction............................ 143
6.3	 Typical Motor Characteristics Data Sheet.............................. 145
6.4	 Friction Measurement in a Linear Motion System................. 146
6.5	 First Approach: Gear Ratio Design.. 148
6.6	 Second Approach: System Performance

as a Function of Gear Ratio.. 153
6.7	 Gear Ratio Design for Stepper Motors................................... 156
6.8	 Design Procedures for Mobile Robot That Are Not

Ground Based... 158
6.9	 Conclusion.. 164
References... 164

Chapter 7	 Control Fundamentals... 165

7.1	 Control Theory for Robotics.. 165
7.2	 Types of Plants... 166

7.2.1	 Linear versus Nonlinear Plants................................. 166
7.2.2	 Time-Invariant versus Time-Variant Plants.............. 167

7.3	 Classification Based on Control System................................. 167
7.3.1	 Analog versus Digital Systems.................................. 168
7.3.2	 Open-Loop versus Closed-Loop Systems................. 168

7.4	 Need for Intelligent Robot Structure...................................... 169
7.5	 A Typical Robot Control System.. 170
7.6	 Trends in Control.. 171
7.7	 Conclusion.. 171
References... 172

Chapter 8	 Review of Mathematical Modeling, Transfer Functions, State
Equations, and Controllers.. 173

8.1	 Introduction.. 173
8.2	 Importance of Modeling... 174
8.3	 Transfer Function Models... 174

8.3.1	 Different Forms of Transfer Functions..................... 175

www.allitebooks.com

http://www.allitebooks.org

viii Contents

8.4	 Steps in Modeling... 176
8.5	 Some Basic Components Often Encountered in Control

Systems... 177
8.5.1	 Electrical Components.. 177
8.5.2	 Mechanical Components... 178

8.6	 Block Diagram Concepts.. 179
8.6.1	 Block Diagram Reductions....................................... 180

8.7	 Some System Examples.. 180
8.8	 State Equations... 191

8.8.1	 Basic Concepts of State Equations from
Differential Equations... 191

8.8.2	 State Equations from Plant Knowledge.................... 193
8.8.3	 State Equations Directly from Transfer Functions.....195

8.9	 Time Domain Solutions Using Transfer
Functions Approach..203
8.9.1	 Analytical Solution for Mass, Spring, and

Damper System in Closed Loop...............................204
8.9.2	 Simulation Solution for Mass, Spring, and

Damper System in Closed Loop...............................205
8.9.3	 PID Controller Response...207

8.10	 Time Domain Solutions of State Equations...........................209
8.10.1	 Time Domain Solutions Using Analytical

Methods..209
8.11	 Regulator and Servo Controllers.. 214
8.12	 Conclusion.. 216
References... 216

Chapter 9	 Digital Control Fundamentals and Controller Design...................... 217

9.1	 Introduction.. 217
9.2	 Digital Control Overview... 217

9.2.1	 Signal Sampler.. 218
9.2.2	 Digital Controller.. 219
9.2.3	 Zero-Order Hold... 219

9.3	 Signal Representation in Digital Systems.............................. 221
9.3.1	 Sampling Process.. 221

9.3.1.1	 Sampling for Reconstruction..................... 223
9.3.1.2	 Sampling for the Purpose of Control......... 223

9.3.2	 Z-Transform of Signals.. 223
9.3.2.1	 Z-Transform of Continuous Signals...........224
9.3.2.2	 Z-Transform of Signals Represented

Only as Sample Count, k...........................226
9.4	 Plant Representation in Digital Systems................................228

9.4.1	 Transfer Function of ZOH... 229
9.4.2	 Z-Transform of Plant Fed from ZOH........................230
9.4.3	 Tustin’s Approximation...230

www.allitebooks.com

http://www.allitebooks.org

ixContents

9.5	 Closed-Loop System Transfer Functions............................... 231
9.5.1	 Systems with Digital Instrumentation....................... 232

9.6	 Response of Discrete Time Systems, Inverse
Z-Transforms... 234
9.6.1	 Partial Fraction Technique..234
9.6.2	 Difference Equation Techniques...............................234
9.6.3	 Time Domain Solution by MATLAB®..................... 235

9.7	 Typical Controller Software Implementation......................... 237
9.7.1	 Integral Calculations...240
9.7.2	 Derivative Calculations...240
9.7.3	 Implementation of a Digital Controller.....................240

9.8	 Discrete State Space Systems... 241
9.8.1	 Discrete State Space System from Discrete

Transfer Functions... 241
9.8.2	 Discrete State Space Model from Continuous

State Space Model...242
9.8.2.1	 Analytical Method.....................................242
9.8.2.2	 MATLAB Approach..................................245

9.8.3	 Time Domain Solution of Discrete State Space
Systems..245
9.8.3.1	 Computer Calculations..............................246
9.8.3.2	 Z-Transform Approach..............................246

9.9	 Discrete State Feedback Controllers......................................250
9.9.1	 Concept of State Controllability................................250
9.9.2	 Concept of State Observability................................. 251
9.9.3	 Common Condition for Controllability and

Observability of Sampled Data Systems................... 252
9.9.4	 Design of Pole Placement Regulators Using

State Feedback... 253
9.9.4.1	 Comparison of Coefficients Method..........254
9.9.4.2	 MATLAB Method of Pole Placement.......256
9.9.4.3	 MATLAB Simulation of the Controller

Performance...256
9.9.5	 Steady-State Quadratic Optimal Control.................. 258

9.9.5.1	 Use of MATLAB in LQC Design............. 259
9.9.6	 A Simple Servo Controller..260

9.10	 Typical Hardware Implementation of Controllers..................264
9.11	 Conclusion..266
References...266

Chapter 10	 Case Study with Pole- Balancing and Wall -Climbing Robots........... 267

10.1	 Introduction.. 267
10.2	 Pole-Balancing Robot...268

10.2.1	 Mathematical Modeling..269
10.2.2	 Transfer Function for Pole Angle Control................. 278

www.allitebooks.com

http://www.allitebooks.org

x Contents

10.2.3	 Pole-Balancing Robot State Model........................... 278
10.2.4	 State Model for the Pole-Balancing Robot from

Robot and Motor Data... 282
10.2.5	 Pole Placement Controller with Servo Input

Used as Offset... 283
10.2.6	 LQC Controller with Servo Input Used as Offset.....286

10.2.6.1	 Effect of a Change in Q Matrix.................287
10.2.7	 Implementation of the Pole-Balancing Robot

Controller Using DSP Processor............................... 291
10.2.7.1	 Hardware Setup... 291
10.2.7.2	 Software for the Robot............................... 293

10.2.8	 Two-Degree-Freedom Pole-Balancing Robot...........299
10.2.8.1	 Control Philosophy....................................299

10.2.9	 Estimation of Angular Friction Term b Used in
PBR from Experiment...300

10.3	 Wall-Climbing Robots..306
10.3.1	 Flipper Wall-Climbing Robot...................................306

10.3.1.1	 Overall System Configuration of
Flipper WCR..308

10.3.1.2	 Control of Suction Pad Arms and
Cruise Motor..308

10.3.1.3	 Operation Sequence of the Flipper WCR.....310
10.3.2	 Design of a Wall-Climbing Robot Using

Dynamic Suction... 312
10.3.2.1	 Dynamic Suction Principle........................ 313
10.3.2.2	 Operation of the WCR Using

Bernoulli’s Principle.................................. 314
10.4	 Conclusion.. 315
References... 315

Chapter 11	 Mapping, Navigation, and Path Planning.. 317

11.1	 Introduction.. 317
11.2	 Perception... 317

11.2.1	 From Sensor Measurements to Knowledge Models.....318
11.2.2	 Map Representation... 321
11.2.3	 Metric Map.. 322

11.2.3.1	 Case Study... 325
11.2.4	 Topological Map.. 328

11.2.4.1	 Case Study of Topological Map................. 328
11.3	 Navigation... 330

11.3.1	 Wall Following.. 331
11.3.2	 Obstacle Avoidance with Vector Force Histogram....333

11.3.2.1	 Case Study of Obstacle Avoidance with
Vector Force Histogram............................. 335

xiContents

11.4	 Path Planning.. 341
11.4.1	 Wavefront Planner... 341
11.4.2	 Path Planning Using Potential Fields........................ 343

11.4.2.1	 Case Study of Path Planning Using
Potential Fields..344

11.4.3	 Path Planning Using Topological Maps.................... 350
11.4.3.1	 Case Study of Path Planning Using

Topological Maps....................................... 350
References... 356

Chapter 12	 Robot Autonomy, Decision-Making, and Learning.......................... 357

12.1	 Introduction.. 357
12.2	 Robot Autonomy... 357
12.3	 Decision-Making.. 358

12.3.1	 Classical Decision-Making....................................... 359
12.3.2	 Reactive Decision-Making..360

12.3.2.1	 Case Study on Reactive Decision-
Making..361

12.3.3	 Hybrid Decision-Making.. 365
12.4	 Robot Learning...366

12.4.1	 Artificial Neural Networks.. 368
12.4.1.1	 Perceptron.. 369
12.4.1.2	 Case Study on Perceptron with Learning....372
12.4.1.3	 Multilayer Perceptron................................ 377

12.4.2	 Q-Learning.. 379
12.4.2.1	 Case Study Q-Learning.............................380

12.5	 Conclusion..384
References... 386

xiii

Preface
Robotic games and competitions are spawned from mainstream robotics, and they
are very popular among the engineering students, robotics enthusiasts, and hobby-
ists. Over the last decade, hundreds of robotic competitions have been organized in
different parts of the world. The interest in robotic games has also reached greater
heights with the availability of many affordable parts and components that can be
acquired easily over the Internet. Game robotics is a passion and provides great fun
and learning experiences.

As in every field of engineering, progress is also inevitable for robotic games.
The complexity of the games during the last decade has increased tremendously.
Robots developed to compete in such games are becoming more and more sophisti-
cated. Consequently, this makes robotic games not only entertaining, but also a great
way of learning engineering concepts and establishing the link between theory and
practice. Needless to say, robotics is a multidisciplinary subject. It expands to vari-
ous engineering and scientific disciplines such as electrical engineering, mechanical
engineering, computing, and many more. It is even a unifying platform for different
courses taught in one discipline. For instance, electronics, microprocessors, elec-
trical machines, and control theory are all distinct fields taught in electrical engi-
neering. Each of these courses has vast course materials and research opportunities
individually. Robotics is an application platform where all these fields converge nat-
urally. However, for students and robotics fans who are designing robots for games
and competitions, such a vast sources of material can be overwhelming. Our primary
objective in this book is to provide a starting point and immediate knowledge needed
for game robotics.

There are many good journals, workshops, books, and online resources for hobby
robotics, and they provide many creative ideas. The current state of robotic games is
reasonably advanced, as the mentioned competitions are becoming more and more
complex. The knowledge and experience required for designing robots for such
games also demand good understanding of engineering concepts. Robotic applica-
tions such as soccer-playing humanoids or wall-climbing robots not only require
expertise in robot intelligence and programming, but also require designing robots
well so that they can perform their actions and motions appropriately. Therefore, in
this book, we present some of the fundamental concepts and show how they benefit
the design process. In particular, we discuss the necessary basics to make the right
choices for gears and actuators as well as modeling and low-level controlling of robot
motions in Chapters 5 through 9. We present the application of these concepts in
game robotics with some case studies in Chapter 10.

The authors of this book have been involved in robotic games and have designed
many robots together with their students and colleagues for more than a decade. The
book resulted from our earlier notes prepared for a summer course for those students
taking up robotic games as their final year project. We hope that this book will
empower undergraduate students in terms of the necessary background as well as the

xiv Preface

understanding of how various engineering fields are amalgamated in robotics. We
hope that students and robot enthusiasts will benefit from this book in their endeavor
to build cool robots while having fun with robotic games.

MATLAB® is a registered trademark of The MathWorks, Inc. For product informa-
tion, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508 647 7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

xv

Acknowledgments
This book is the result of many years of research and development activities in the
area of game robotics carried out at Singapore Polytechnic. We are grateful to all our
students who spend long hours to labs to design, build, and tune robots for competi-
tions. Their passion and drive naturally got us involved even more, and we share the
fun of robotics with them. We are thankful to Jacqueline Oh, Lius Partawijiya, Mohd
Zakaria, and Zar Ni Lwin for their interest and expertise in robot design and all the
technical support they have provided over the years.

xvii

Authors
Jagannathan Kanniah received his BE and MSc degrees in electrical engineer-
ing from Annamalai University, India, in 1969 and 1971, respectively. He received
his PhD from the University of Calgary, Canada in 1983. He is a senior member
of IEEE, a member of IET, and a chartered engineer. He served as an academic
staff in various institutions in India from 1971 to 1978. He worked as postdoctoral
fellow at the University of Calgary from 1982 to 1983. After leaving Canada, he
joined Singapore Polytechnic and rose to the level of principal lecturer. During his
service at Singapore Polytechnic, he went as a visiting scientist to Lund Institute of
Technology, Sweden, for three months during 1992 and to Massachusetts Institute
of Technology, for 3 months during 1999. He has been the section head of the
robotics and automation group since 1994 and a technology leader and the man-
ager of the Singapore Robotics Games center since 1996 at Singapore Polytechnic
until he retired in 2007. He continued to work until 2011 at the SRG (Singapore
Robotic Games) center. His research interests are in the area of power systems,
adaptive control, instrumentation, and robotics. He has more than 35 publications,
including many journal papers. He has supervised many student groups working
on robotics that took part and won many awards in the Singapore robotics game
events over the years.

M. Fikret Ercan received his BSc and MSc degrees in electronics and communica-
tions engineering from Dokuz Eylul University, Turkey, in 1987 and 1991, respec-
tively. He received his PhD from the Hong Kong Polytechnic University in 1998.
He is a senior member of IEEE and a member of IEEE Ocean Engineering Society.
His research interests are in the field of image processing, robotics, and computing.
He has written one book (Digital Signal Processing Basics, Pearson, 2009) and two
book chapters, and has more than 80 publications, including journal papers. Prior to
his academic carrier, he worked in the electronic and computer industries primar-
ily as a research and development engineer in various countries, including Turkey,
Taiwan, and Hong Kong. He is currently a senior lecturer at Singapore Polytechnic.
In addition to his research in image processing and computing, he has been actively
involved in robotic games since 2000. The student teams that he had led participated
in competitions both locally and overseas.

Carlos A. Acosta Calderon received his BEng degree in computer systems from
the Pachuca Institute of Technology, Mexico, in 2000, his MSc degree in computer
science (robotics and intelligent machines) from the University of Essex, United
Kingdom, in 2001, and his PhD degree in computer science from the University
of Essex, United Kingdom, in 2006. Currently, he is a lecturer at the School of
Electrical and Electronic Engineering at Singapore Polytechnic. His research inter-
ests include social robots, coordination of multirobot systems, learning by imitation,
and humanoid robots. He has published two book chapters and over 50 papers in

xviii Authors

journals and conferences. He also serves as a member of the Technical Committee
of the Humanoid League at the RoboCup Competition, and as a member of the
Organizing Committee of the RoboCup Singapore Open. He has been involved in
robotics games since 2006 and guides student teams in local and international robot-
ics competitions. They are NJRC, WRO, RoboCup, and SRG.

1

Game Robotics

1.1  INTRODUCTION

Robotics is a fast-developing and highly popular field of engineering. It encompasses
a wide range of disciplines such as electrical engineering, mechanical engineering,
computer science, biology, sociology, and so on. A great deal of developments in
robotics was due to its applications in manufacturing. The need for more and more
automation in assembly lines was the main driving force for it. Robots can do repeti-
tive and mundane jobs a lot faster, more accurately, and cheaper than human beings.
Their use in industry naturally increases productivity and makes it more flexible.
Therefore, for a long period of time, robotics remained popular in manufacturing
and industry. However, during the last decade, robotics found applications in many
fields other than manufacturing such as service robotics, medicine, entertainment,
and education. Advances made in computer technology, sensor technology, semi-
conductor technology, and artificial intelligence were also instrumental. We are
now seeing interesting examples such as human-like robots interacting with people,
robots dancing to a tune, robots playing musical instruments, robots playing football,
or robots assisting surgeons in operating theaters (Baltes et al. 2010; Gao et al. 2010;
Kaneko et al. 2009; Ogura et al. 2006; Taylor and Stoianovici 2003).

A distinct class of robotics, namely game robotics, emerged recently, due to the
demand from academic institutions. It is also called edutainment robotics since it
combines education with entertainment. Game robotics makes learning more fun
and entertaining for the students. In this book, we are particularly interested in
game-playing robots. We try to provide a reference book for senior students doing
their projects in robotics or a guidebook for a robot enthusiast who wants to have a
higher level of understanding of robotics. We emphasize mainly practical aspects
of robotics and try to show how it is linked to conventional subjects learned from
engineering textbooks.

1.2  ROBOTICS GAMES AND ENGINEERING EDUCATION

Game robotics is essentially entertainment robotics and also serves very well in
engineering education (Malec 2001). The thrill of taking part in an “Olympics-like
competition for robots” generates more interest than what can be achieved by a mun-
dane project otherwise (Martin 2001). Needless to say, robotics easily captures the
interest of young people. Even the older generation, who grew up watching robots
in sci-fi movies, may find building robots interesting. However, building robots
requires an understanding of various aspects of engineering and science such as
mechanics, analog and digital circuits, programming, microcontrollers, and control
theory just to name a few. Our experiences over the years show that the students who

1

www.allitebooks.com

http://www.allitebooks.org

2 Practical Robot Design

are engaged in building robots, unsurprisingly, are motivated to learn all these fields
and more. They demonstrated a better understanding of linking theory with practice.
These observations are also backed by many studies published on engineering edu-
cation. For instance, a study conducted by Pisciotta et al. (2010) shows that students
who are engaged in robotics projects perform better in math–science, electronics,
and logic. Our experience over the years, working with students taking up robotic
projects showed that there are three major changes in students’ behavior. First, they
become self-learners and autonomous. Second, their confidence in their engineering
skills improves significantly. Third, they learn to collaborate and to be team players
because robotic game projects are usually team projects. These are highly sought
after traits in the industry.

1.3  ROBOTIC GAMES IN SINGAPORE

During the last decade, robotic games became very popular and spread all over the
world. There are a vast number of robotic games, festivals, and competitions held
in various parts of the world. In 1991, the first Singapore robotics festival was orga-
nized to create awareness about robotics. Later, the event was renamed as Singapore
Robotic Games (SRG). The first SRG competition was held in 1993. Since then,
the competition is held annually and it draws a lot of attention (SRG 2012). The
competitions are open to public and tertiary institutions. At the beginning, the main
events were few; today, competition have grown to more than 15 categories and are
evolving continuously in their complexity year after year. Typically, game rules are
revised every 3 years to accommodate the latest advances in technology and to make
the games more challenging. For example, the pole-balancing race used to be a game
where a mobile robot needs to balance a free-falling pole while moving from one
point to another. Challenge has evolved, a robot now has to move on a platform with
variable slopes and negotiate randomly placed obstacles on its path while balancing
a pole. At present, there are 14 categories: pole-balancing robot, intelligent robot,
robot colonies, wall-climbing robot, robot sumo, and legged robot race just to name a
few. More details about the Singapore Robotic Games can be found on the competi-
tion web site (SRG 2012). In the following sections, we will give a brief description
of technically challenging games, some of which are also presented as case studies
in this book.

1.3.1  Pole-Balancing Robot Race

This game is inspired from a well-known control theory problem, which is balanc-
ing an inverted pendulum. A robot supports an inverted pendulum, which is free
to swing around the horizontal axis, and balances it vertically by moving the point
of support. The competition platform consists of a horizontal wooden surface with
a dimension of 3 by 1.5 m. A robot is required to vertically balance the pole at the
starting zone, then move toward the other end of the platform and go back to the
starting zone while negotiating all the slopes and obstacles along the way. The above
cycle is repeated and the robots are ranked based on the number of successful cycles
within 5 min of time. Figure 1.1 shows a snapshot of a pole-balancing robot in action.

3Game Robotics

1.3.2  Wall-Climbing Robot Race

The objective of this competition is to demonstrate vertical and horizontal surface-
climbing abilities of robots. A competition platform is made of a wooden plank
forming the floor, wall, and ceiling sections, all of which are 2 m long. During the
competition, a robot starts from the frontmost part of the floor, moves toward the
wall, climbs the wall, reaches the ceiling, travels toward the edge of the ceiling, and
finally travels back to the starting point. Robots are ranked based on their comple-
tion time of this task. The competition platform is nonmagnetic, which makes this
game more challenging. Most of the robots in this competition employ pneumatic
principles with a variety of creative techniques to accomplish the task in the shortest
possible time. Figure 1.2 shows a snapshot of such a robot moving along the ceiling.

1.3.3  Robot Colonies

The objective of the competition is to build a pair of autonomous and cooperative
mobile robots. Their task is to search, detect, and collect colored pellets and deposit
them in a designated container. Each container is reserved for one color, and they are

FIGURE 1.1  Pole-balancing competition.

FIGURE 1.2  Wall-climbing robot. (a) Fine tuning a wall-climbing robot, (b) robot perform-
ing a climb.

4 Practical Robot Design

located at the opposite sides of the platform. There are two different colored pellets
used on the competition platform, and they are randomly placed. The goal is to collect
and deposit an equal number of pellets of the two different colors. The major con-
straint for the robots is that they have to operate within their dedicated zones. Each
robot is allowed to deposit one designated color at the collection point, which implies
that at some point in time robots have to swap the pellets that they have collected to
complete the task. For instance, a robot assigned to collect blue pellets will also col-
lect green pellets that fell in its zone. However, it needs to transfer green pellets to its
partner, which is in charge of green pellets in a dedicated zone. The center part of the
platform is allocated for this purpose where two robots are allowed to be at the same
time. This game induces the principles of autonomous and mobile robotics as well as
instills an understanding of multirobotic collaboration, coordination, and communi-
cation. Figure 1.3 shows a snapshot of the robot colony competition.

1.3.4  Humanoid Robot Competition

The primary objective of humanoid robot competition is to encourage technological
advances in humanoid robot technology so that robots can walk and run like human
beings. The competition is between bipedal robots, and there is no predefined race
arena for this game. The participating robots compete on the natural floor surface,
which can be carpet, concrete, parquet, and so on. However, a race track is created
using white reflective tape. A robot that covers the track from the starting point to
the end in a shortest period of time is the winner. Figure 1.4 shows an instance from
this competition.

1.3.5 O ther Competitions and Open Category

In addition to the aforementioned categories, there are many more interesting
games, which form more than 15 categories of games organized by the Singapore
Robotic Games society. Each one of these games specially targets certain techni-
cal challenges involved in robotics. For instance, the intelligent robot game targets
robot autonomy, object recognition, and handling aspects. Each team is required

FIGURE 1.3  Robot colony game.

5Game Robotics

to design and build either one or more autonomous robots to collect objects of
various shapes and colors scattered in the competition arena. The collected objects
are to be delivered to three different goal containers according to their respective
colors within 6 min. Also, underwater robot competition aims to raise interest in
marine engineering. Compared to land robots, designing underwater robots pres-
ents totally new challenges such as controlling robot buoyancy, autonomy, sens-
ing, and maneuvering in water. During the competition, teams try to complete the
given task with their robot either in the remote operative vehicle (ROV) category
or the autonomous underwater vehicle (AUV) category. In the robot sumo com-
petition, participants build mobile robots that can push an opponent out of the
ring. This game requires an understanding of dynamics, friction, power, and motor
control concepts. Additionally, an open category allows participants to show off
their creativity and technical skills. Participants demonstrate interesting tasks that
their robots can perform. Figure 1.5 shows some snapshots of these competitions.

FIGURE 1.4  Humanoid robot game. (a) Humanoid robot following a line, (b) tracking a ball.

FIGURE 1.5  Other interesting games in Singapore Robotic Games. (a) Open category
robots at display, (b) sumo robot competition, (c) open category robot in action, (d) intelligent
robot competition, (e) schools robotic competition-robo can collector.

6 Practical Robot Design

1.4  ROBOTIC GAMES AROUND THE WORLD

Robotics competitions are appearing all over the world, each with its own set of
unique objectives and rules. Some of these competitions may be started as national
or regional events, but soon turned into an international event. It is impossible to list
them all in this section; however, we will briefly mention those well-established and
popular competitions.

Micromouse: This is perhaps one of the earliest robotics competitions. In this
event, a robot mouse tries to solve a maze made of 16 × 16 cells. The technical chal-
lenge involves finding an optimum path and reaching the goal in the shortest time.
Competitions are held worldwide. This game is also part of the Singapore Robotics
Games. A description of the competition and its rules can be found in SRG (2012).

FIRA: This is one of the most established competitions around the world. It
began in South Korea in 1995; since then it is held annually in different venues.
The Federation of International Robot-Soccer Association (FIRA) was founded in
June 1997 (FIRA 2012). This initiative gives a good platform for research on mul-
tiagents while two robot teams play soccer. The participants deal with problems
such as cooperation, distributed control, effective communication, adaptation, and
reliability. There are seven leagues in FIRA, each league focuses on a different
type of robot and problem: HuroSot (humanoid robots), AmireSot (fully autono-
mous onboard robot), MicroSot (each team consists of three robots with dimensions
7.5 × 7.5 × 7.5 cm), NanoSot (each team consists of five robots with dimensions
4 × 4 × 5.5 cm), AndroSot (team of three robots, which are remotely controlled, with
dimensions up to 50 cm), RoboSot (team of three robots fully autonomous or semi-
autonomous, with dimensions of 20 × 20 cm × no limit in height), and SimuroSot
(Simulation server for games of 5 vs. 5 and 11 vs. 11 games).

RoboCup: RoboCup is an international initiative to promote robotics and arti-
ficial intelligence research by providing a standard platform through which a wide
range of technologies can be integrated and examined (RoboCup 2012). By 2050,
the RoboCup Federation aims to develop autonomous humanoid robots advanced
enough to compete against the human World Cup champions. If robots are able to
play soccer and beat the champion human team, the technology developed in this
team of robots will be good enough to provide robots that can help in any task.

The first RoboCup competition was held in 1997 in Nagoya, Japan. Since then,
the competition has traveled all over the world to cities including Osaka, Bremen,
Atlanta, Melbourne, and Singapore. Today, RoboCup is one of the largest robotics
events in the world; thousands of participants from more than 40 countries are tak-
ing part in this annual event. It has grown so big that its influence can be seen with
the amount of participants in the regional and country level events (called RoboCup
Opens). These events are mainly used as a qualification stage for teams that seek a
place in the international competition.

RoboCup events consist of competition, exhibition, and symposium. The competi-
tion is mainly divided into two great categories, the Junior Competitions for kids and
teenagers up to the age of 19 years, and the Senior Competitions with no restriction
on age, but mainly captivated by colleges and universities. The junior event includes
four competitions: RoboCupJunior Soccer, RoboCupJunior Rescue, RoboCupJunior

7Game Robotics

Dance, and CoSpace. RoboCupJunior is a new and exciting way for young engineers
to understand science and technology through hands-on experience with electronics,
hardware, and software. It also offers opportunities to learn about teamwork while
sharing ideas with friends. The development of study materials and innovative teach-
ing methods are among the objectives of RoboCupJunior. It primarily focuses on
education and comprises four challenges:

•	 RoboCupJunior Soccer is a challenge whereby teams are required to design
and program two robots to play a game with an opposing pair of robots
by kicking an infrared-transmitting ball into their designated goal. There
are two different leagues to separate students from primary and secondary
schools.

•	 RoboCupJunior Dance involves real team effort where participants are
required to create dancing robots and program them to dance to music.
Besides choreographing the motions of the robots, students are also
expected to participate in the performance. Robots and students perform
on a white-floored stage, which is bounded by black lines forming a square.
Robots are not allowed to cross these boundaries. The judges evaluate the
entertainment factor of the performance as well as the technical design of
the robots used for the dance.

•	 RoboCupJunior Rescue is a challenge, in which robots need to complete the
rescue mission by following a winding line or rooms to a designated area.
This whole process is timed. The rescue robot will start by following a line
and travel into different rooms. When inside the rooms, the robot will con-
tinue following the line without colliding with the obstacles or losing track
of the line that might be disrupted. In addition, there are victims in the floor
marked as human shapes with colors that the robots could recognize. Once
the rescue robot passes over the victim, it blinks its LEDs, which indicates
that the victim has been rescued by the robot. Robots encounter their final
challenge when they proceed to the second level. The slope that connects
that level is a hard challenge for the small motors of most robots. For those
robots that manage to reach the second level, the challenge becomes even
tougher since there is no line to follow at this stage. They are expected to
rescue the victim and find their way back to the slope. The task is completed
when the robot returns to its starting point.

•	 CoSpace Dance/CoSpace Rescue Challenge is an educational initiative to
promote knowledge and skills in engineering design, programming, elec-
tronic control, and the world of 3D simulation through robotics for young
minds. Using virtual environments provides great flexibility to manipulate
the environment where the researchers can develop and experiment with
new algorithms. It is not limited to a single robot; it can be a multirobot
system too. Each robot in the system can be controlled in different ways,
autonomous, semiautonomous, and manual. In each case, a multirobot sys-
tem consists of a mix of different control forms. The main advantage of
this platform, in contrast to other available simulators, becomes evident
when the work requires cooperation between real robots and their virtual

8 Practical Robot Design

counterparts. The CoSpace Development Platform eases the job by pro-
viding virtual environments and robots for the students. It also provides a
large set of options to be controlled and monitored, such as time, number of
teams, number of robots per team, obstacles, goals, and so on.

RoboCup senior competitions comprise: RoboCupSoccer, RoboCupRescue, and
RoboCup@Home. There are also sponsor competitions like the Festo Logistics
Competition (Festo 2012) and demo leagues like the Virtual Reality Competition.

RoboCupSoccer: The main focus of RoboCupSoccer is two teams of robots
competing on a designated soccer field to score against the opposing team as many
times as possible. The research outcome is mainly focused on multiagent coopera-
tion and coordination, kinematics, and dynamics of robots. There are five leagues
in this event: Small Size League, Middle Size League, Humanoid League, Standard
Platform League, and Simulation League.

RoboCupRescue: This aims to promote research and development in disaster res-
cue, with robots exploring a simulated disaster site to locate and identify signs of life
and produce a map of the site to safely perform a rescue. The competition aims to
develop intelligent agents and robots to respond to disasters. There are two leagues
here: Rescue Robot and Rescue Simulation.

RoboCup@Home: This aims to develop service and assistive robot technology for
personal domestic applications. The focus is on developing robotic applications in
human–machine interaction to enrich daily living. Participants compete in an envi-
ronment simulating current societal issues such as aging, urbanization, healthcare,
and assisted living.

RoboCup Singapore Open: RoboCup Singapore Open is a national-level robotics
competition mainly for the RoboCupJunior competitions for students up to the age of
19. Participants compete in four challenges, RoboCupJunior Soccer, RoboCupJunior
Rescue, RoboCupJunior Dance and CoSpace; the shortlisted teams advance to repre-
sent Singapore in the RoboCupJunior league during the international RoboCup event.

The objective of RoboCup Singapore Open is strongly educational, allowing
local students the opportunity to participate, interact, share, and learn from their
international peers. By competing in various leagues, the participants learn more
than just artificial intelligence and mechatronics, but also creativity and human
endeavor. It is truly a unique learning journey for students who have the opportu-
nity to combine creativity with scientific knowledge in a project-oriented activity.
Figure 1.6 shows some snapshots from RoboCup events.

MATES’ ROV competition: Another well-known competition to robotics enthu-
siast is coordinated by the Marine Advance Technology and Education Center
(MATE) (MATE 2012). This is a competition of ROVs built by students. The com-
petitions take place across the United States, Canada, Hong Kong, and Scotland.
Student teams from middle school to university levels participate in these events
under different categories with different levels of sophistication of ROVs and mission
requirements. The objective of the competition is not only to develop problem solv-
ing, critical thinking, and teamwork skills of students, but also to connect them with
employers and working professionals from marine industries and introduce marine-
related career opportunities.

9Game Robotics

Robotic sumo wrestling: It was introduced in Japan by Dr. Mato Hattori; it
became very popular and it is adopted by other robotic events such as Singapore
robotic games, Seattle Robotics Society, and many others. It involves two contestants
who operate their robots in the sumo ring (Miles 2002).

World Robotic Sailing Championship: This is relatively a new competition started
in Austria. World robotic sailing championship is a competition of fully autonomous
and unmanned sailing boats (WRSC 2012).

International Aerial Vehicles Competition: This is a competition of autonomous
flying robots, which is sponsored by the Association for Unmanned Vehicle Systems
International (AUVSI 2012). The complexity of the competition increases with dif-
ferent missions defined over the years.

FIRST (For Inspiration and Recognition of Science and Technology): This com-
petition was founded in 1989 in the United States to inspire interest in science and
technology among young people (FIRST 2012). There are various categories of com-
petition targeting different age groups. In junior FIRST LEGO League, children in
the age group of 6–9 design and build a model using LEGO components. In FIRST
LEGO League, children are exposed to real-world science and technology problems,
and they develop their own solutions to these problems using autonomous LEGO
robots. FIRST Tech Challenge is a higher level and designed for high school stu-
dents. Teams of students design, build, and program robots and compete against
other teams. FIRST Robotics Competition is for the age group of 14–18. Students
taking part in this competition work under strict rules with limited resources and
tight deadlines, which expose them to real world engineering problems. They design
and build a robot that can perform a set of prescribed tasks against other competitors.

A common factor for all these robotic games is that they provide avenues to
young engineers to develop their engineering skills. Hopefully, students will under-
stand scientific concepts better, apply engineering principles into practice, and fol-
low the current technological developments. As we mentioned, it is impossible to
list every robotics competition here. However, we can classify these robotic games

FIGURE 1.6  Snapshots from RoboCup event. (a) Humanoid adult size, (b) humanoid kid
size, (c) RoboCupJunior dance, (d) RoboCupJunior participants, (e) participants fine tuning
robots before the competition.

10 Practical Robot Design

based on the technology involved as shown in Figure 1.7. Basically, two main cat-
egories of robot competitions take place: autonomous and remotely operated. A large
number of robotic games falls into the autonomous category since challenges that
can be posed upon these robots are vast. Among the autonomous robots, we find
games designed either for a single robot or a team of robots. For a single robot, the
technical complexity involves object handling, navigation, intelligence, and other
well-known aspects of autonomy. However, basically two types of challenges are
imposed. Some games target technical complexity involved in certain robot motions
such as climbing, balancing a pole, bipedal or hexapod walking, and so on. Robots
designed for these competitions require a good understanding of control theory and
system dynamics. The other type of technical challenge is in robot intelligence. For
instance, micromouse and RoboCup rescue games require robots to navigate autono-
mously, understand their environment, and find an optimum path to target. These
games require a good understanding of higher level control of robots such as map
generation, decision making, path planning, and so on. In the autonomous category,
many exciting games are also designed for a team of robots. They instill principles
of multirobotics such as robot collaboration, communication, and collective problem
solving. Robot soccer and robot colony are the examples of such games.

In contrast to autonomous robots, we find a number of competitions that require
robots to be controlled and operated by participants. Needless to say entertainment
aspect is higher in these competitions. The users’ direct control of robot actions
significantly increases the level of entertainment and fun factor in such games.
For instance, a remotely controlled robot sumo game counts not only the robot’s
design, but also the operating skills of its user. On the other hand, the objective in

Autonomous

• Humanoids
• Pole-balancing robot
• Wall-climbing robot

• Micromouse
• AUVs
• Flying robot

• Robot soccer
• Robot colonies
• Intelligent robots

• Underwater robots
• RC wall-climbing
 robots

• RC robot sumo
• Battlebotts
• Combat robots

M
ot

io
ns

In
te

lli
ge

nc
e

En
te

rt
ai

nm
en

t

Remotely operated

In
di

vi
du

al
 ro

bo
ts

Ro
bo

t t
ea

m
s

Te
ch

ni
ca

l c
ha

lle
ng

e

FIGURE 1.7  A classification of robotic games.

11Game Robotics

ROV competitions is to promote awareness for marine engineering where ROVs are
widely used. Therefore, remote operation has practical needs and uses.

1.5  OVERVIEW OF THE BOOK

This chapter briefly introduced robotic games and some of the popular national and
international competitions.

Chapter 2 introduces some of the necessary fundamental knowledge in robotics
that will benefit the design process. Here, we consider mobile robots and relevant
principles such as forward and inverse kinematics.

Chapter 3 discusses the available sensor technology that can be utilized in game
robots. Sensing is needed for controlling robot actions, or detecting opponents, iden-
tifying objects to manipulate, and so on.

Chapter 4 discusses utilizing camera and image-processing techniques as a sen-
sory unit for robots. In some of the games, such as robot soccer or robot colonies,
having visual capability provides significant advantage. Image processing is a vast
research field, though this chapter summarizes the immediate knowledge needed
to incorporate a vision unit to robot design. The algorithms are presented with
MATLAB® code explicitly for better understanding, although many of them are
already available as built-in functions in MATLAB itself.

Chapter 5 discusses actuators. Actuators determine robot actions and play a key
role in successful design. In this chapter, various actuators available to robotics and
their operation principles are discussed. It is a topic worthy of a textbook alone;
however, the objective is to give enough preliminary knowledge for understanding
and utilizing actuators in robot design.

Chapter 6 discusses some of the basic calculations needed before starting to build
a robot, which is often overlooked by robotic enthusiasts. It is important to make
an appropriate choice such as required power, gear ratio, and so on when selecting
actuators at the beginning of the design stage to avoid the trial and error method.

Chapter 7 introduces control principles and their relevance to robotics.
Chapter 8 discusses the concepts of mathematical modeling, state equations, and

transfer functions. These are primarily analytical tools and help to understand the
basic system dynamics to design a suitable controller.

Chapter 9 discusses discrete time-control concepts and their implementation in
robotics. Robot actions are typically controlled by microprocessors or computers,
which are inherently discrete. In Chapters 8 and 9, we give a number of examples
and demonstrate how MATLAB can be used in these studies. We aim to illustrate
thought processes involved in the design of low-level control of robot motions.

Chapter 10 presents various robot designs such as pole-balancing robot, wall-
climbing robot, as case studies overtly showing how theory discussed in previous
chapters are put into practice. However, the application of control principles dis-
cussed in previous chapters is vast; it can be used for basic speed control of an auto
nomous mobile robot or to control motions of an autonomous flying machine.

Chapter 11 discusses robot map building and navigation, which are typically used
in every mobile robot application.

www.allitebooks.com

http://www.allitebooks.org

12 Practical Robot Design

Chapter 12 discusses robot autonomy, decision making, and learning, in other
words, robot intelligence. This can be perceived as the higher-level control of robots.
These techniques are important for robotic games such as soccer-playing robots,
robot rescue, and humanoids as they require robots to deal with a dynamic world and
make decisions autonomously.

Throughout the text, MATLAB is used as the main tool to programming and
algorithm examples as well as concepts and simulation studies.

REFERENCES

AUVSI-Association for Unmanned Vehicle Systems International. 2012. http://www.auvsi.
org/Home/.

Baltes, J., Lagoudakis, M.G., Naruse, T., and Shiry, S. 2010. RoboCup 2009: Robot Soccer
World Cup XIII. Series: Lecture Notes in Artificial Intelligence, Vol. 5949. Heidelberg:
Springer-Verlag.

Festo. 2012. http://www.festo-didactic.com/int-en/.
FIRA-The Federation of International Robot-soccer Association. 2012. http://fira.net/.
FIRST (For Inspiration and Recognition of Science and Technology) website.2012. http://

www.usfirst.org/.
Gao, Q., Zhang, B., Wu, X., Cheng, Z., Ou, Y., and Xu, Y. 2010. A music dancing robot based

on beat tracking of musical signal. IEEE International Conference on Robotics and
Biomimetics (ROBIO), Tianjin, China, 1536–1541.

Kaneko, K., Kanehiro, F., Morisawa, M., Miura, K., Nakaoka, S., and Kajita, S. 2009.
Cybernetic human HRP-4C. 9th IEEE-RAS International Conference on Humanoids,
Paris, France, 7–14.

Malec, J. 2001. Some thoughts on robotics for education. Proceedings of the 2001 AAAI
Spring Symposium on Robotics and Education. Palo Alto, California.

Martin, F. 2001. Robotic Explorations, A Hands-On Introduction to Engineering. Upper
Saddle River, New Jersey: Prentice-Hall.

MATE-Marine Advance Technology and Education Center. 2012. http://www.marinetech.org/
rov_competition/.

Miles, P. 2002. Robot Sumo: The Official Guide. Berkley: McGraw-Hill.
Ogura, Y., Aikawa, H., Shimomura, K., et al. 2006. Development of a humanoid robot

WABIAN-2. Proceedings of the IEEE International Conference on Robotics and
Automation, Orlando, Florida, 76–81.

Pisciotta, M., Vello, B., Bordo, C., and Morgavi, G. 2010. Robotic competition: A classroom
experience in a vocational school. 6th WSEAS/IASME International Conference on
Educational Technologies (EDUTE’10), Sousse, Tunisia, 151–156.

RoboCup Federation. 2012. http://www.robocup.org.
SRG-Singapore Robotics Games. 2012. http://guppy.mpe.nus.edu.sg/srg.
Taylor, R.H., and Stoianovici, D. 2003. Medical robotics in computer-integrated surgery. IEEE

Transactions on Robotics and Automation 19:765–781.
WRSC-World Robotic Sailing Championship. 2012. http://www.roboticsailing.org/.

13

Basic Robotics

2.1  INTRODUCTION TO ROBOTIC SYSTEMS

In the past, our encounters with robots were mainly as an automation tool for
speeding up the manufacturing process. This is evident with the early definition
of robotics. For instance, The British Robot Association (BRA) defines a robot as
“a reprogrammable device with a minimum of four degrees of freedom designed
to both manipulate and transport parts, tools or specialised manufacturing imple-
ments through variable programmed motions for the performance of the specific
manufacturing task.” Similarly, International Standards Organisation (ISO) defines
a robot as “an automatically controlled, reprogrammable, multipurpose, manipula-
tive machine with several degrees of freedom, which may be either fixed in place or
mobile for use in industrial automation applications.” Nowadays, robotics finds its
place in many diverse areas from medicine to planetary explorations. For instance,
two landmark examples are the da Vinci surgical robot used in surgeries demanding
great care and precision and the Curiosity Rover sent to explore Mars.

2.1.1 T erminology Used in Robotics

Robots can be designed for various applications; nevertheless, terms used to des
cribe their features and capabilities are common. This is also valid for robots
designed for games and competitions as well. Some of these terms are briefly dis-
cussed here:

	 Degree of freedom (DOF) and degree of mobility (DOM): The term “degree
of freedom” describes the number of independent movements that an
object can perform in a three-dimensional space. If an object is moving
freely in space, it has six DOFs. Three of them are about its location in
3D space and three of them are for its orientation as illustrated in Figure
2.1. The location of an object can be defined by translations along the x,
y, and z axes. Similarly, its orientation can be defined with three rotations
around the x, y, and z axes. Their combination can define the position of
an object in 3D space entirely.

	  To have six DOFs, a robot should have at least six joints, each acting
upon one of the motions. Robots with fewer than six joints obviously have
constrained motion, and many game robots do not need six DOFs. On the
other hand, humanoid robots have more than six joints; these surplus joints
enhance performance, providing human-like motions. In other words, each
joint contributes a DOM. A joint that provides translation or rotation adds
to the DOM, but not necessarily to the DOFs.

2

14 Practical Robot Design

	  Work envelope (work space): The work envelope implies all the points in
space that a robot can reach. For instance, a robot arm fixed on a workbench
can reach to only a limited geometry. Depending on robot type and configu-
ration, its work envelope will have different shape.

	  Autonomous robots: Autonomous robots perform their tasks in unstruc-
tured environments without human interference. There are various degrees
of autonomy. A fully autonomous robot is capable of making its decisions
and takes action upon them. Autonomous robots are highly complex and
many robotic games are intended for autonomous robots. Robot colonies,
intelligent robot game, and autonomous sumo are some of the examples.

	  Remotely operated robots: A remotely operated robot (also known as a
tele-robot) takes instructions from a human operator from a distance. The
human operator performs live actions in a distant environment and through
the sensors can measure the consequences of robot actions. Robot sumo
is an example of remotely operated robots in game robotics. However, in
practice, tele-robots have a wide range of use such as explosive disposal and
surgery.

2.2 � COORDINATE TRANSFORMATIONS AND FINDING
POSITION OF MOVING OBJECTS IN SPACE

An important part of robotics study is forward kinematics, which concerns the posi-
tion and orientation of a robot and its end effectors (such as robot gripper). In this
section, we will not consider the details of the robot, its sources of motion, and so on.

z

y

x

R3

T3

T2
R2

T1

R1

FIGURE 2.1  Representation of the six degrees of freedom.

15Basic Robotics

We will simply assume a rigid object freely moving in 3D space. As mentioned ear-
lier, there are two possible motions of a rigid object in space: rotation and translation.
Provided that geometrical representation of an object is given, it will be enough to
define the position and orientation of the coordinate system for reconstructing the
object at arbitrary places.

We now consider a point P in x, y plane as shown in Figure 2.2a and assume that
point P is rotated about θ degrees along the z axis. We can calculate the new coordi-
nates of point P using trigonometry. The coordinates of point P before the rotation
can be written as

	
P r P rx y= =cos sinf fand

	
(2.1)

After a rotation about θ degrees, P′ defines the new coordinates of point P and it
can be calculated as follows:

	
′ = + ′ = +P r P rx ycos() sin()f q f qand

	
(2.2)

Using trigonometric identities, we obtain

	 ′ = × − ×P r rx (cos cos) (sin sin)f q f q

	
′ = × + ×P r ry (sin cos) (cos sin)f q f q

	
(2.3)

And by using Equation 2.1 in Equation 2.3, we get

	
′ = −P P Px x ycos sinq q

	
′ = +P P Py y xcos sinq q

	
(2.4)

r

P P

a

b

P ′ P ′

P ′x P ′x

P ′y P ′y

Px Px

Py Py

θ

y(a) (b) y

z z

x x
φ

FIGURE 2.2  (a) Rotation along the z axis and (b) translation in the xy plane.

16 Practical Robot Design

In matrix form

	

′
′









 =

−



















P

P

P

P
x

y

x

y

cos sin

sin cos

q q

q q
	

(2.5)

Equation 2.5 defines a rotation of θ angle about the z axis in matrix form. Equation
2.5 operates on x and y coordinates of point P. Normally, a point in three-dimen-
sional space is defined with its three components x, y, and z. By considering this, a
rotation matrix can be defined as a 3 × 3 matrix. Thus, Equation 2.5 is rewritten as

	

′
′
′

















=
−















P

P

P

P

P

P

x

y

z

x

y

z

cos sin

sin cos

q q

q q

0

0

0 0 1

















	

(2.6)

We now have a rotation matrix, which represents a rotation of θ angle along the z axis

	

Rz ()

cos sin

sin cosq

q q

q q=
−















0

0

0 0 1
	

(2.7)

Similarly, a rotation around y axis is defined as

	

Ry ()

cos sin

sin cos

a

a a

a a

=
−

















0

0 1 0

0
	

(2.8)

and a rotation around x axis is defined as

	

Rx () cos sin

sin cos

g g g

g g

= −
















1 0 0

0

0
	

(2.9)

Rotation along z axis is called roll, rotation along y is called pitch, and rotation
along x is called yaw.

We now consider the linear translations shown in Figure 2.2b. New coordinates of
point P after the linear translations will be

	 ′ = +P P ax x

	
′ = +P P by y �

(2.10)

	 ′ =Pz 0 	

17Basic Robotics

We can organize these equations in a matrix form by taking into consideration x,
y, and z coordinates and obtain

	

′
′
′



















=



















P

P

P

a

b

P

P

P

x

y

z

x

y

z

1

1 0 0

0 1 0

0 0 1 0

0 0 0 1 1



















	

(2.11)

We can easily derive a generic equation representing translations in all three axes
as follows:

	

′
′
′



















=



















P

P

P

k

k

k

P

P
x

y

z

x

y

z

x

y

1

1 0 0

0 1 0

0 0 1

0 0 0 1

PPz

1



















	

(2.12)

Here, kx, ky, and kz are the displacements along the x, y, and z coordinates. It is
important to note that the resulting translation matrix is now 4 × 4 and a point is now
needed to be defined with 4 components instead of 3.

2.2.1 C omposite Rotations

An object in space may perform more than one rotation. This makes the calculation
of its final position complicated. The solution becomes easier by assuming that a
separate coordinate system is attached to the object as shown in Figure 2.3a. Let us
assume that point P represents the object and a coordinate frame, which is coincident
with the reference frame is firmly attached to it. We can find a transformation matrix
by decomposing individual motions. At first, a coordinate frame attached to point P
is rotated along the z axis about 90° as shown in Figure 2.3b. It is important to note
that a clockwise rotation is considered negative and a counterclockwise rotation is
considered positive. Transformation after this rotation is represented with coordinate

(a)

(b)

z z

y

x

y
P P

x

y0
y0

y1
z0

z0 z1 x2
y2

y3

x3

z3z2
x0 x0

x1

(c) (d)

(e)

FIGURE 2.3  (a) Reference and object frames, (b) first rotation along the z axis, (c) second
rotation along the y axis, (d) final rotation along the z axis, and (e) final coordinate frame
compared to the reference frame.

18 Practical Robot Design

frame x1, y1, z1. The following motion is a rotation along y1 axis about −90° (see
Figure 2.3c) and the resulting coordinate frame is x2, y2, z2. The final rotation is −90°
along z2 (Figure 2.3d) resulting in coordinate frame x3, y3, z3 as shown in Figure 2.3e.
The sequence of motions in this example is roll, pitch, and roll. The number of rota-
tions and the angles are not limited; however, for the convenience of illustration, in
this example, we chose right angles only.

In matrix form, the first motion is defined as

	

Rz ()

cos sin

sin cosq

q q

q q q=
−















=
0

0

0 0 1

90

	

(2.11)

Rotation matrix for the second motion is

	

Ry ()

cos sin

sin cos

a

a a

a a

a=
−

















= −
0

0 1 0

0

90

	

(2.12)

Rotation matrix for the last motion is

	

Rz ()

cos sin

sin cosf

f f

f f f=
−















=
0

0

0 0 1

90

	

(2.13)

Now using the rotation matrices for each motion as given earlier, we can obtain a
complex rotation matrix from coordinate frame x0, y0, z0 to x2, y2, z2 using the post-
multiplication rule:

	
R R R Rz y z() () () ()total = q a f

	
(2.14)

	

R(

cos() sin()

sin() cos()

cos(

total) =
−















−90 90 0

90 90 0

0 0 1

990 0 90

0 1 0

90 0 90

90 90

) sin()

sin() cos()

cos() sin(

−

− − −

















−))

sin() cos()

0

90 90 0

0 0 1

















	

	

R()total =
−

−
−

















1 0 0

0 0 1

0 1 0
	

(2.15)

19Basic Robotics

2.2.2  Homogeneous Transformation Matrix

The transformation matrices discussed earlier can represent rotation type of
motions, but not the translations. It is possible to combine rotation and translation
into a single transformation matrix. Let us assume that after the rotation transfor-
mations, the coordinate frame shown earlier in Figure 2.3e is now translated to x4,
y4, z4 as illustrated in Figure 2.4. The overall transformation can be disassembled as
a rotation, which transforms the frame x0, y0, z0 to x3, y3, z3 and a translation, which
brings x3, y3, z3 frame to x4, y4, z4. These rotation and translation motions can be
shown in a compact form as a 4 × 4 matrix, which is known as homogeneous trans-
formation matrix. It maps a position vector from one coordinate system to another.

	
H

R K
=









0 0 0 1 	

(2.16)

Here R is a 3 × 3 rotation matrix and K is a 3 × 1 translation vector. A homoge-
neous transformation matrix combines the position vector K with a rotation matrix
R to provide a complete description of the position and orientation of a second coor-
dinate system with respect to the base frame. By adding a fourth row, consisting
of three “zeros” and a “one,” a homogeneous transformation matrix is constructed.

	

H

r r r k

r r r k

r r r k

x

y

z

=



















11 12 13

21 22 23

31 32 33

0 0 0 1 	

(2.17)

z

z4

P ′

y4

y3

x4

x3

x

K

P y

z3

FIGURE 2.4  Transformation operation comprising both rotation and translation.

20 Practical Robot Design

2.2.3 C omposite Transformations

In practice, motions of a rigid body may be composed of a sequence of homogeneous
rotations and homogeneous translations. A composite homogeneous transformation
matrix, which represents the entire sequence of rotations and translations, can be
obtained by multiplying together all these transformation matrices (Fu et al. 1987).
However, it is important to do the right order of the matrix multiplication.

Assume that xr, yr, zr represents a reference coordinate frame and x0, y0, z0 repre-
sents the coordinate frame attached to the object and they both are initially coinci-
dent. Assume that two types of motions are defined on the coordinate frame x0, y0, z0.
One of them is a translation type of motion along y axis by B units. The correspond-
ing homogeneous translation matrix will be

	

H
B

TR =



















1 0 0 0

0 1 0

0 0 1 0

0 0 0 1 	

(2.18)

The second motion is θ angle rotation of x0, y0, z0 coordinate frame about z0 axis (or zr
axis since these coordinates are initially coincident), the homogeneous rotation matrix is

	

HROT =

−

















cosq q

q q

sin

sin cos

0 0

0 0

0 0 1 0

0 0 0 1 	

(2.19)

We now multiply the translation and rotation matrices to obtain the homogeneous
transformation matrix. If the sequence of multiplication is done as follows

	 H H HTR ROT= 	 (2.20)

then the homogeneous transformation matrix in Equation 2.20 defines a motion,
which is B units translation of x0, y0, z0 coordinate frame along y0 axis, followed
by a rotation of θ angle along z0 axis. On the other hand, the opposite sequence of
multiplication

	 H H HROT TR= 	 (2.21)

means x0, y0, z0 coordinate frame is rotated θ angle along z0 axis followed with B
units of translation along the y0 axis. The difference between these two motions can
be seen clearly in Figure 2.5.

2.2.3.1  Matrix Multiplication Order in Composite Transformations
There are two types of 4 × 4 matrices used in robot motion calculations. The first
type describes the transformations of a given coordinate system relative to the base

21Basic Robotics

coordinate frame. In this fixed coordinate frame approach, all the successive trans-
formations are defined relative to the original world coordinate frame (or static refer-
ence frame). Let us assume that a sequence of transformations is applied to a local
frame. These transformations, relative to a global frame, are given as H1, H2, . . . , Hn,
where transformation H1 is applied first and transformation Hn is applied last. In this
case, we premultiply the transformation matrices.

	 H H H Hn= × × ×� 2 1 	 (2.22)

The second type describes the relationship between any two coordinate systems
in a chain of moving local frame transformations. In this case, we assume that every
successive transformation is defined based on the moving local frame. Let us assume
that a sequence of transformations is applied to a local frame and transformations,
relative to a moving local frame, are given as H1,H2, . . ., Hn, where transformation
H1 is applied first and transformation Hn is applied last. In this case, we postmultiply
the transformation matrices as follows

	 H H H Hn= × × ×1 2 � 	 (2.23)

Visualizing transformations based on a fixed reference coordinate frame is rather
difficult. In composite transformations, we will consider motions of a robot or a rigid
body in space as a sequence of homogeneous coordinate transformations based on
a moving local frame. We will assume that the moving object approaches the target
point step by step from the origin of the reference frame. We assign a separate coor-
dinate system to each step of the transformation to visualize these motions easily.
The transformation matrix Hi,n describes the position and orientation of the n-th
coordinate system relative to the i-th one as follows

	

H H H H Hi n i i i i i i n n

i

n

, , , , ,= == × × ⋅ ⋅ ⋅ ×+ + + + −

−

∏ 1 1 1 2 1

1

	

(2.24)

where i = 0,1,. . ., n − 1, which may start from any number less than n. The resultant
transformation matrix Hi,n describes the state of the nth coordinate system relative to

zr zr

z0 B

H1 = HTRHROT

H2 = HROTHTR

B

(a) (b)

z0

y0 y0
yr yrθθ

xr xr

x0 x0

FIGURE 2.5  Composite transformations.

www.allitebooks.com

http://www.allitebooks.org

22 Practical Robot Design

any i-th component’s coordinate frame. Thus, the coordinates of the target point Pt in
the n-th coordinate system relative to any i-th component’s coordinate frame can be
expressed as

	
p H pt

i
i n t

n()
,

()= ×
	 (2.25)

	

x

y

z
H

x

y

z

t
i

t
i

t
i i n

t
n

t
n

t
n

()

()

() ,

()

()

()

1 1



















= ×



















	

(2.26)

EXAMPLE 2.1

We consider a series of transformations shown in Figure 2.6. The figure on the left
shows the final position of coordinate frame x′, y′, z′, which is initially coincident
with the reference frame x, y, z. We can visualize the transformation made by the
frame x′, y′, z′ by breaking it down to individual motions and by assigning a sepa-
rate frame for each step of motion. These sequences of motions are illustrated in
Figure 2.6. Assuming moving frames, the first motion is a rotation of 180° about
the z0 axis, which translates frame x0, y0, z0 to x1, y1, z1. The second motion trans-
forms x1, y1, z1 to x2, y2, z2 by a rotation about 90° along y1 axis. The final motion
transforms x2, y2, z2 to x3, y3, z3 by a translation of 10 units along z2 axis. The
coordinate frame x3, y3, z3 shows the final position of frame x′, y′, z′. Based on the
moving frames method, we postmultiply the transformation matrices starting from
the first motion to the last, as follows

	

H H H H

H

= × ×

=

−
1 2 3

180 180 0 0

180 180 0 0

0 0 1 0

0 0 0 1

cos() sin()

sin() cos()

















×
−








cos() sin()

sin() cos()

90 0 90 0

0 1 0 0

90 0 90 0

0 0 0 1













×



















=

−
−

−

1 0 0 0

0 1 0 0

0 0 1 10

0 0 0 1

0 0 1 10

0 1 0 0

1 0 1 0

0

H

00 0 1

















 	

(2.27)

We now visualize the same transformations made by the frame x′, y′, z′ by
breaking it down to individual transformations based on reference frame x, y, z. In
this case, the first motion is a rotation of 180° about z axis, which translates frame

23Basic Robotics

x0, y0, z0 to x1, y1, z1. The second motion transforms x1, y1, z1 to x2, y2, z2 by a rota-
tion about −90° along the y axis. The final motion transforms x2, y2, z2 to x3, y3, z3
by a translation of 10 units along the x axis. In the case of the fixed frame definition
of motions, we premultiply transformation matrices starting from the last motion
toward the first one, as follows

	

H H H H

H

= × ×

=



















×

− −
3 2 1

1 0 0 10

0 1 0 0

0 0 1 0

0 0 0 1

90 0 90cos() sin())

sin() cos()

cos() sin(

0

0 1 0 0

90 0 90 0

0 0 0 1

180 18

− − −



















×

− 00 0 0

180 180 0 0

0 0 1 0

0 0 0 1

0 0 1 10

0 1 0 0

1

)

sin() cos()


















=

−
−

−
H

00 1 0

0 0 0 1



















	

(2.28)

By comparing, Equations 2.27 and 2.28, we can see that we get the same homo-
geneous transformation matrix for the entire transformation.

2.2.4 M athematical Description of Objects

To use a homogeneous transformation matrix to determine the position of an object
(manufactured part, robot manipulator, or a mobile robot itself) after its motions, we
need to represent the objects mathematically. We assume that the object of interest
is surrounded by planar surfaces, and it is described as a 4 × N matrix. Here, N indi-
cates the number of vertices of the object chosen to represent the object. There are a
couple of ways to represent the object. We can consider that the origin of an object’s

Transformations
Moving frames: H1 = Rot-Z (180) H2 = Rot-Y (90) H3 = Trans-Z (10)
Fixed frame: H1 = Rot-Z (180) H2 = Rot-Y (–90) H3 = Trans-X (10)

z

10

y

x

x′
y′

z′

z0 z1

x1
y1
x1

x2 x3
y3y2

z2 z3
x0

y0

FIGURE 2.6  Series of transformations regarding Example 2.1.

24 Practical Robot Design

coordinate system is positioned arbitrarily in the space (as shown in Figure 2.7a) and
describes a general matrix presentation of the object with N vertices as follows:

	

M

x x x

y y y

z z z

N

N

N
object =


















−

−

−

0 1 1

0 1 1

0 1 1

1 1 1

...

...

...

...


	 (2.29)

Alternatively, we can consider that the origin of the object coordinate system
is fixed to one of its features (typically to its center of gravity) and derive object
description matrix accordingly (see Figure 2.7b). It is important to remember that
in either case during the initial state of homogeneous transformations, the reference
coordinate system and the object coordinate frame are coincident.

Let us consider the robot-like object shown in Figure 2.7b represented by its eight
vertices [P0,P1,. . .,P7] in Cartesian coordinates. The origin of the fixed coordinate
system is chosen at the center of gravity of the object. Assume that this object is a
cube with dimension A. The corresponding columns of the object description matrix
for the vertex P0 will be [A/2 − A/2  A/2  1]T, for the vertex P1 will be [A/2  A/2 
A/2  1]T, and so on. We can write a description matrix of this object as follows:

 

M

A A A A A A A A

A A A A A A A

obj =

− − − −
− − − −

/ / / / / / / /

/ / / / / / /

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 AA

A A A A A A A A

P P P P P P P P

/

/ / / / / / / /

2

2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1

0 1 2 3 4 5 6 7

− − − −























x

y

z

	

(2.30)

Let us now perform a translation and a rotation on the object just described. These
motions will be described by a 4 × 4 transformation matrix H. The relation between
the starting and final positions of an object is

	 M H Mobj new obj start_ _= × 	
(2.31)

zr

yr

z0

y0

xr

(a) (b)

x0 P0

P4 P5

P6

P2

P1

P3

zr

yr

z0

y0

xr

x0

P0

P4 P5

P6

P2P1
P3

FIGURE 2.7  (a) Origin of the object’s coordinate frame x0, y0, z0 is in an arbitrary position
in space. (b) Object’s center of gravity is aligned with the origin of its coordinate frame.

25Basic Robotics

Here, Mobj_start is the description matrix of the moving object at the starting
position, and Mobj_new is the new description matrix after the transformation. The
expanded form of the equation becomes

	

′ ′ ′
′ ′ ′
′ ′ ′

















−

−

−

x x x

y y y

z z z

N

N

N

0 1 1

0 1 1

0 1 1

1 1 1

...

...

...

...




=








 ×





−

−

−

R K

x x x

y y y

z z z

N

N

N0 0 0 1

1 1 1

0 1 1

0 1 1

0 1 1

...

...

...

...















	

(2.32)

The matrix on the left-hand side represents the vertices of the object in their new
position after transformation. Matrices on the right-hand side represent the transforma-
tion matrix and the vertices of the object in the starting coordinate frame, respectively.

Case Study

In this case study, we will study a more realistic scenario using the robot shown
in Figure 2.8a. It is a mobile land robot, hence its motions are limited to the
x,y plane. However, this does not affect the principles of our calculations. The
robot has eight ultrasonic range sensors and a digital compass and their posi-
tions on the robot body are illustrated in Figure 2.8b. The maximum range of
the ultrasonic range sensors is about 3 m and their resolution is in centimeters.
Robot captures ultrasonic and compass readings regularly. On board, compass
provides robot orientation with 1° resolution. However, as shown in Figure 2.9,
the angle received from the compass shows robot’s orientation based on the
earth’s magnetic field, and it needs to be converted to Cartesian coordinates to
use in our calculations. More details on range sensors will be discussed in the
next chapter. At this point, the information we need to do a realistic computa-
tion is distance traveled by the robot, its orientation, and the readings from its
range sensors.

Robot forward
move

0
1

2

3
4

5

6

7

Proximity
sensors

(a) (b)

Compass

FIGURE 2.8  (a) Mobile robot used in experiments. (b) Position of ultrasonic sensors.

26 Practical Robot Design

Let us assume that the robot shown in Figure 2.8 has a local coordinate frame
attached to its center of gravity as shown in Figure 2.10. Four corners of the robot
are used in the object description matrix, as well as coordinates of the sensors
on the robot based on this local frame at robot’s center of gravity. In the figure,
distance d indicates the range reading of a sensor and θ is the angle of the sen-
sor. All the units are in centimeters. Based on the four corner points selected, an
object description matrix for the robot can be written as

	

M

P P P P

x

y

zobj =

− −
− − −























7 7 7 7

7 7 7 7

0 0 0 0

1 1 1 1

0 1 2 3 	

(2.33)

S0(6,0,0)

y

x

d

P1

S1

S0

S2
S3

S4

S5 S6
S7

yr

xr

P0(7,7,0)
P1(7,–7,0)

P2(–7,–7,0) P3(7,–7,0)

θ

y1

x1

S1(4,4,0)
S2(0,6,0)
S3(4,–4,0)
S4(–6,0,0)
S5(–4,–4,0)
S6(–0,–6,0)
S7(4,–4,0)

FIGURE 2.10  Local coordinate frame and selected vertices to describe the robot.

North

South

90°
x

y

270°

90°

180°

180°

270°

(a) (b)

West East

FIGURE 2.9  (a) Angle readings from digital compass. (b) Its correspondence in Cartesian
coordinates.

27Basic Robotics

We now consider a number of motions performed by the robot. Robot in this
example is capable of making a turn and moving forward or backward by adjust-
ing the speed and the direction of its wheels. For simplicity, we assume that
robot performs either rotation or translation type of move at any given time. At
this point, we do not consider other parameters involved in robot motion such as
speed, odometry errors, and so on, which will be discussed later. Let us assume
that the robot travels 100 cm along the x axis and then makes a rotation to face
0° north (90° rotation about z axis) followed with 30 cm translation along the x
axis, followed with a rotation to face 300° south (another 120° rotation about z
axis). These motions in matrix form can be written as follows:

  

T

T

TR

ROT

1

1

1 0 0 100

0 1 0 0

0 0 1 0

0 0 0 1

90 90 0 0

=



















=

−cos sin() ()

ssin cos() ()90 90 0 0

0 0 1 0

0 0 0 1

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1



















=

−

















=



















=

T

T

TR

ROT

2

2

1 0 0 30

0 1 0 0

0 0 1 0

0 0 0 1

120cos() −−

















=

− −sin

sin cos

()

() ()

. .120 0 0

120 120 0 0

0 0 1 0

0 0 0 1

0 5 0 8866 0 0

0 866 0 5 0 0

0 0 1 0

0 0 0 1

. .−


















	

(2.34)

The overall transformation matrix is then

H T T T T

H

TR ROT TR ROT= × × ×

=



















×

−
1 1 2 2

1 0 0 100

0 1 0 0

0 0 1 0

0 0 0 1

0 11 0 0

1 0 0 0

0 0 1 0

0 0 0 1

1 0 0 30

0 1 0 0

0 0 1 0

0 0 0 1



















×



















××

− −
−



















=

−

0 5 0 866 0 0

0 866 0 5 0 0

0 0 1 0

0 0 0 1
0 866 0 5 0 1

. .

. .

. .

H

000

0 5 0 866 0 30

0 0 1 0

0 0 0 1

− −


















. .

		

(2.35)

28 Practical Robot Design

Multiplying with the object description matrix, we obtain positions of these
four points in the reference frame after the transformations as

	

Mobj_new =

−
− −



















×

0 866 0 5 0 100

0 5 0 866 0 30

0 0 1 0

0 0 0 1

7 7. .

. .

−−
− − −



















=

7 7

7 7 7 7

0 0 0 0

1 1 1 1

97 43 90 43 102 56 90

Mobj_new

.

. . . .

43

20 43 32 56 39 56 32 56

0 0 0 0

1 1 1 1



















	

(2.36)

We can expand the object description matrix by including range sensors and
their readings. In this case, we are not only concerned with the position of the
robot, but also calculate the coordinates of the obstacles detected by the range
sensors and mark them in the reference frame. For instance, referring to Figure
2.10, range sensor reading S1 for the point P1 can be translated into robot coor-
dinate frame as [4 + dcosθ,4 + dsinθ,0,1]T. Since we know the sensor angle θ
and its position in local frame, we can easily calculate coordinates of point P1.
In this example, we will assume that the robot makes a 30° turn toward north
initially and then travels along its x axis about 100 cm. It is important to note
that we assume the local coordinate frame is fixed to the center of the robot as
shown in Figure 2.10, therefore all the forward movements (translations) will
be along the x axis of this robot. The example code given in Figure 2.11 com-
putes the final position of the robot together with its sensor readings, which are
generated randomly in this case. A plot of these computation results is shown
in Figure 2.12.

2.3  WHEEL DRIVE IN MOBILE ROBOTS

Technological advances enable us to envision robots taking more substantial roles in
our daily lives. Robots will be interacting with human beings and operating in the
same environment. An important feature of robots operating in such environment
is their mobility. A wheel driver system enables a robot to gain mobility by the use
of wheels, and this is one of the simplest methods to achieve mobility. However, the
type of wheels, size, and their placement may increase or decrease the performance
of the robot for different types of tasks. It is important to understand the differ-
ent types of wheels and their advantages and disadvantages so that we can select a
proper wheel drive system when designing a mobile robot. A mobile robot design
also includes the control of these wheels to guide the robot properly and recognize
its whereabouts after its motions. The kinematic analysis of the wheel drives help us
understand how the wheel driver is going to move about under different parameters.

29Basic Robotics

A common wheel drive system consists of the following components: motors,
gearboxes, motor wheels, and caster wheels (Fred 2001). Motors provide the rota-
tional motion with certain torque and speed, and the gearbox is used to amplify
or reduce this motor torque/speed. Motor wheels provide the actual mobility to
the robot, and they are driven by the motor/gearbox system. The caster wheels are

%----------------------------------

% RSensor(1) -> Robot ID

% RSensor(2)~(9) -> Proximity sensor readings

% RSensor(10) -> Compass

RSensor=[1 15 55 53 59 59 50 57 55 45];% Random values of proximity sensors

% Proximity sensor orientations on the robot body (in radian)

Theta=[0 0.7854 1.5708 2.3562 3.1416 3.9270 4.7124 5.4978];

%Object matrix

%Position of four corner points

% s0 s1 s2 s3 s4 s5 s6 s7 p0 p1 p2 p3

Rob1_Pr=[0 0 0 0 0 0 0 0 7 -7 -7 7;

0 0 0 0 0 0 0 0 7 7 -7 -7;

0 0 0 0 0 0 0 0 0 0 0 0;

1 1 1 1 1 1 1 1 1 1 1 1];

Offset=[6 4 0 -4 -6 -4 0 4 0 0 0 0; %Position of sensors on robot body

0 4 6 4 0 -4 -6 -4 0 0 0 0;

0 0 0 0 0 0 0 0 0 0 0 0;

0 0 0 0 0 0 0 0 0 0 0 0];

Rob1_Prnew=[0 0 0 0 0 0 0 0 0 0 0 0;

0 0 0 0 0 0 0 0 0 0 0 0;

0 0 0 0 0 0 0 0 0 0 0 0;

1 1 1 1 1 1 1 1 1 1 1 1];

T_rot=[1 0 0 0; %Blank rotation matrix

FIGURE 2.11  MATLAB® code for demonstrating homogeneous transformations.

30 Practical Robot Design

0 1 0 0;

0 0 1 0;

0 0 0 1];

T_trans=T_rot;%Blank translation matrix

RSensor(1,10)=RSensor(1,10);

A1=(RSensor(1,2:9)); %get proximity sensor readings

cmp=RSensor(1,10); %get compass reading and translate

ang1=2*pi*((-1*cmp)+90)/360; %to XY frame

%angle and position of sensor are known

%convert distance readings from sensors to x-y coordinates

fori=1:8

Rob1_Pr(1,i)=(A1(i)*cos(Theta(i)));

Rob1_Pr(2,i)=(A1(i)*sin(Theta(i)));

end

Rob1_Pr=Rob1_Pr+Offset;

% Rotation matrix

T_rot(1,1)=cos(ang1); T_rot(1,2)=-sin(ang1);

T_rot(2,1)=sin(ang1); T_rot(2,2)=cos(ang1);

% Translation matrix

T_trans(1,4)=100;

Rob1_Prnew=(T_rot*T_trans)*Rob1_Pr;

%....... Display robot and sensor readings

% create square for robot

Robfrm1=[Rob1_Prnew(1,9:12),Rob1_Prnew(1,9:9); Rob1_Prnew(2,9:12),

Rob1_Prnew(2,9:9)];

%show sensor readings

plot(Rob1_Prnew(1,1:8),Rob1_Prnew(2,1:8),'og',Rob1_Prnew(1,9:12),Rob1_Prnew

FIGURE 2.11  (continued) MATLAB code for demonstrating homogeneous transformations.

31Basic Robotics

mainly used to balance the robot chassis when it is in motion and they are not driven
by the motor. Let us discuss further the different types of wheels.

There are a few types of wheels used in robotics, and they are shown in Figure
2.13. As mentioned, rigid caster wheels are attached to robots as a support mecha-
nism. This is the most basic type of wheels, and it is widely used. Swivel caster
wheels function the same way; however, they are able to rotate 360° due to the swivel
joint provided in their design. This type of caster wheel will align itself to the direc-
tion of robot motion by design. Steerable caster wheels are rigid wheels, and they are

200

180

160

140

120

100

80

60

40

20

0

20018016014012010080604020
X

Y

0

FIGURE 2.12  Position of the robot after transformations and distance readings from its six
range sensors marked with circles.

(2,9:12),'sr');

% draw robot and draw its compass reading

CompX1=30*cos(ang1);CompY1=30*sin(ang1);

Rob1OX=sum(Rob1_Prnew(1,9:12))/4; Rob1OY=sum(Rob1_Prnew(2,9:12))/4;

line(Robfrm1(1,:),Robfrm1(2,:));

line([Rob1OX Rob1OX+CompX1],[Rob1OY

Rob1OY+CompY1],'Marker','d','LineStyle','-');

% draw platform

axis([-50 400 -50 400]); whitebg([0.2 0.2 0.2]);

line([0 0 350 350 0],[0 350 350 0 0],'Color','yellow','LineStyle','-');

title('Area Map (West)'); xlabel('X (east)'); ylabel('Y (south)');

FIGURE 2.11  (continued) MATLAB code for demonstrating homogeneous transformations.

www.allitebooks.com

http://www.allitebooks.org

32 Practical Robot Design

driven by a motor to rotate around the z axis. They are similar to the swivel caster
with a difference that they not only do more than just support the robot chassis, but
also affect their motions.

Most motor wheels used in mobile robots are steerable. They are directly driven
by the motor to provide forward or backward movement for the robot. Omniwheel
is a special type of wheel that has rollers on the wheel itself. These kinds of wheels
are also called mecanum wheels. There are two types of mecanum wheels, mecanum
wheels with roller at 45°, and mecanum wheels with rollers at 90°. These two types
have a totally different look and design. When an omniwheel is driven, the rollers
will be in contact with the ground and cause a rotation. The motion effect from all
the rollers on the wheel will result in different motion directions. In other words, the
motions provided by these wheels are not limited to backward and forward only;
they can move in any direction.

There are different types of wheel drive configurations for mobile robots, and new
configurations can be created by adding more wheels to the systems. Let us discuss
the four basic configurations and their control.

2.3.1 D ifferential Drive

This type of wheel drive system consists of two independent motor-driven wheels. It
can have one or two caster wheels to support the robot. By controlling the velocity
of each wheel, robot motions can be controlled. Figure 2.14 illustrates the motion of
the robot with different velocities of the wheels. A major challenge in differential
drive systems is that the wheel speed has to be controlled properly and precisely to
achieve desired robot motions (Siegwart and Nourbakhsh 2004). For instance, both

FIGURE 2.14  Analysis of motion of a differential drive mobile robot for different left and
right velocities.

FIGURE 2.13  Different type of wheels: (a) swivel caster, (b) rigid caster, (c) steerable caster,
(d) omniwheel, and (e) motor wheel.

33Basic Robotics

wheels have to be driven at the same speed to move the robot forward. If one wheel
is slightly faster than the other one, the faster wheel will overtake the slower one
and cause a turning motion. A greater difference in the speed of the two wheels will
determine how sharp the turn will be. If one wheel stops and the other wheel is still
turning, the robot will spin around itself with the stopped wheel being the center
point of this motion. When both wheels are driven in the opposite directions at the
same speed, then the robot makes a turn on the spot. This turn will be around a point
that is in the middle of the two motor wheels, which is also known as the center of
rotation (COR).

The wheels of the mobile robot shown in Figure 2.15 are traveling at different
velocities, causing a rotation toward the right-hand side. By referring to the snapshot
of this traveling robot, it is possible to calculate the kinematic equations that describe
the position of the mobile robot at a particular time. The robot speed V is defined as
the average of the left and right wheels

	
V

V Vl r= +
2 	

(2.37)

and the speed on both axes will be

	 �x V= cosq 	 (2.38)

	 �y V= sinq 	 (2.39)

The angular speed �q can be given as

	
�q = −V V

d
l r

	
(2.40)

where d is the distance between the wheels of the robot. As it is observed from
above, the motion of this type of drive is a function of two variables, the left and right
velocities. By controlling these two velocities, we are able to control the motion of
any robot using differential drive systems.

Vr

Dr

d

θ

COR

D1

V1

V

FIGURE 2.15  The parameters and variables involved in the motion of a differential drive
mobile robot.

34 Practical Robot Design

2.3.2 A ckermann Steering (Car-Like Drive)

This is a commonly used steering mechanism in cars, buses, and other land vehicles.
It is also used in mobile robots. Basically, it is a four wheel drive system in which
there are two steerable wheels and two motor-driven rear wheels. The front wheels
are steerable to control the direction of the robot or the vehicle and the motor-driven
rear wheels provide the forward or backward moves as illustrated in Figure 2.16.

Let us assume that the robot shown in Figure 2.16 has the velocity of V and head-
ing orientation of θ. The steering angle of the robot is defined as α, the radius of
its wheels as R, and the wheelbase as B. Assume that the robot has the front-driven
speed of ω (radian/s), then the kinematic equations of this drive can be defined as
follows (Siegwart and Nourbakhsh 2004):

	 V = Rω cos α	 (2.41)

	 �x V= cosq 	 (2.42)

	 �y V= sinq 	 (2.43)

	
�q w a= R

B
sin

	
(2.44)

2.3.3 T rack Drive

The track drive is primarily a differential drive system. The main difference is that
it uses tracks instead of wheels (see Figure 2.17). There is no need for caster wheels
in this case since the tracks cover a large surface and keep the robot in balance. To
move forward, both motors have to drive the tracks at the same speed. Similar to
differential drive system, in track drive systems, a robot can make turns by stop-
ping one motor or by slowing one motor than the other. It can also make turns on
the spot by driving the tracks in the opposite direction and at the same speed. The

y

COR

B

x x

y

v

θ

α

0

FIGURE 2.16  The parameters and variables involved in the motion of an Ackermann drive
mobile robot.

35Basic Robotics

track drive system is slower compared to the wheel drive system since there is more
friction. However, it has certain advantages, which wheels cannot accomplish such
as climbing up slopes, stairs, or going over obstacles and potholes (Mataric 2007).
Robots that operate in unstructured terrains such as disaster zones and wheelchairs
that climb stairs are some application examples of their use.

The kinematic equations of track drive systems are the same as the differential
drive. However, it is important to note that these systems will suffer greater error com-
pared to wheeled systems when the kinematic equations are used to calculate the robot
position. This is mainly due to the skid-steering operation of the track drive. Figure
2.17 shows the COF of a track drive, and it is always located at the center of the robot.

2.3.4 O mniwheel Drive

The omniwheel drive is a unique drive system when compared to the other wheeled
drive systems we have discussed so far. A common feature of the systems discussed
is that not all the wheels are motor driven or are used to steer the robot. In omni-
wheel drive systems, all the wheels are motor driven and they are collectively used to
steer the robot. Another major difference is that each omniwheel has rollers assembled
on the wheel itself. The rollers act when the wheel is driven. The minor effects from
all the rollers result in an ability to move different directions instantly. Owing to this
special feature, an omniwheeled robot is able to move in any direction at all times,
unlike the other drive systems, which all have some limitations. An omnidirectional
robot comes with either three or four wheels. A major disadvantage of this drive system
is the difficulty in controlling them. They have poor efficiency since not all the wheels
are making the move in the direction of the robot motion. Furthermore, they have high
slip; therefore, position control based on the motor encoders will not be accurate.

Figure 2.18 shows an example of a four wheel omniwheel robot and the resul-
tant robot motions when each wheel is driven. To move forward, all four wheels
have to be driven forward or backward with the same speed to achieve forward and
backward moves. To glide the robot left, wheels 1 and 4 are driven backwards and
wheels 2 and 3 are driven forward. Similarly, to slide right, wheels 1 and 4 are

COR

FIGURE 2.17  Track drive system.

36 Practical Robot Design

driven forward and wheels 2 and 3 are driven backwards. To accomplish a clockwise
turn on the spot, wheels 1 and 3 are driven forward and wheels 2 and 4 are driven
backwards. A counterclockwise turn is done by driving wheels 1 and 3 backwards
and wheels 2 and 4 forward. RoboCupRescue robots and two degree freedom pole,
balancing robots are examples of robots with omniwheels in competitions.

2.3.5 O dometry

By using the kinematic equations presented earlier, it is possible to calculate the
location of a mobile robot. Odometry is a mathematical procedure to determine the
current location of a robot by discrete-time integration of its previous positions and
velocity information over a given length of time (Siegwart and Nourbakhsh 2004).
The general equations for the odometry are defined as:

	 x(k) = x(k − 1) + Δx	 (2.45)

	 y(k) = y(k − 1) + Δy	 (2.46)

	 θ(k) = θ(k − 1) + Δθ	 (2.47)

The aforementioned equations give the current position of the robot by simply
adding the amount of displacement that has been made from its previous position.
This difference in position is calculated by using the kinematic equation depending
on the type of wheel drive the system robot is using. To calculate this difference in
position, the system reads the encoder values from the motor wheels, and the kine-
matic equations tell us how to use these values to calculate the difference in position.

Odometry is subject to cumulative errors due to the inaccuracy of the encoders,
unevenness of the surface, and minute deviations in robot construction such as a
minor difference between wheel sizes. Nevertheless, odometry is crucial for robot
navigation and there are methods to reduce the odometry error. These techniques
principally increase the confidence level in computations of the robot’s whereabouts.

(a) (b) (c)

(d) (e) (f)

FIGURE 2.18  Different motions for a four omniwheel drive mobile robot. (a) Right turn
motion, (b) left turn motion, (c) forward move, (d) reverse move, (e) robot sliding left, and (f)
robot sliding right.

37Basic Robotics

2.3.6 C ase Study of Odometry for a Differential Drive Robot

For this case study, we will consider the robot presented in Figure 2.8. The robot uses
a differential drive system with two caster wheels. Each motor wheel has an encoder
that generates a fixed number of pulses when the wheel-driving motor makes a com-
plete rotation. Since the dimension of the wheel is known, by counting these pulses,
we can easily calculate the distance robot traveled. In addition, we can calculate the
speed of the robot by counting the number pulses within a fixed period of time. The
working principles of encoders are presented in the following chapter on sensors.

A simple block diagram of the motion control system for the differential drive
mobile robot in Figure 2.8 is presented in Figure 2.19. In the diagram, the path planner
gives a new desired position for the robot [xd, yd, θd]; this position is translated to left
and right velocities by the velocity controller, and these velocity commands are passed
to the left and right controllers. The velocity controller commands [vld, vrd] should not
be considered as the actual velocities of the system. This is because the left and right
controllers may not be able to achieve desired velocity immediately. Instead, the left
and right controllers will try to achieve these velocity requirements by comparing
feedback from the encoders [vlf, vrf] with the desired velocities [vld, vrd] and adjust the
controllers’ output. Normally, the comparison and adjustment of the velocity is the task
of a proportional integral derivative (PID) or other type of control system, which we
will discuss in the following chapters. Notice that the encoder information is also used
for estimating the current position of the robot [xf, yf, θf]. The current position of the
robot is compared against the desired position by the velocity controller to adjust the
velocity according to the distance from the desired position, that is, when the robot is
far from the desired position it will navigate faster, and when it gets closer, it will navi-
gate slowly. Since the path planner and the controller will be discussed further in the
following chapters, here we will emphasize on the odometry function of the system.

The odometry will provide the current position of the robot as coordinates of the
tuple [x, y, θ], which describe the position in a two-dimensional plane and the robot

Path
planning

Velocity
control

[xd, yd, θd]

[xf, yf, θf]

Vld Vl

Vr

Vlf

Vrf

Vrd

Vlf

Vrf

Controller

Controller

Odometry

Encoder

Amplifier

Amplifier

Encoder

Motor

Motor

FIGURE 2.19  The differential drive parameters of the robot presented in Figure 2.8 and
a block diagram of the odometry system in the motion and navigation system of the robot.

38 Practical Robot Design

heading. The kinematic equations 2.37 through 2.40 are applicable for this robot;
however, to use them in odometry equations 2.52 through 2.54, we need to obtain
the differential of the equations. The following equations are derived from the kine-
matic equations, and they are in terms of displacement of the wheels instead of the
velocities.

	
∆ ∆q = −D D

d
tl r

	
(2.48)

	
∆ ∆S

D D
tl r= +

2 	
(2.49)

	 ∆ ∆ ∆x S t= cosq 	 (2.50)

	 ∆ ∆ ∆y S t= sinq 	 (2.51)

where Dl and Dr are the displacements of the left and right wheel readings from
the encoder. ΔS is the distance that the vehicle has traveled in Δt period of time.
Parameters x and y are the coordinates in a global frame and θ is the robot heading.
The odometry equations for this robot are given as

	 x(k) = x(k − 1) + ΔS cos θ(k − 1)Δt	 (2.52)

	 y(k) = y(k − 1) + ΔS sin θ(k − 1)Δt	 (2.53)

	 θ(k) = θ(k − 1) + Δθ(k − 1)Δt	 (2.54)

It is necessary to clarify a few constant values before we implement this function.
The first value is d, which is the distance between the two wheels. In our robot, this
distance was 145 mm as shown in Figure 2.20a. Next, we need to understand the
encoder values to calculate the displacement of the left and right wheels Dl and Dr. The
encoders used in our robot are incremental with two channels, and each channel has
two signals. Each encoder provides 256 counts per turn, with two channels and two
signals per channel results in 256 × 4 = 1024 counts to complete a turn of the motor.
To translate these values into millimeters, we need to calculate the circumference of
the wheel. Radius of the robot wheel is 30 mm (see Figure 2.20b), which translates to
188.496 mm of circumference. By dividing the circumference to total counts per turn,
we obtain the displacement made by each count in millimeters. This value for the robot
shown in Figure 2.20b is 0.1840 mm per count of the encoder. Now that we clarified
the encoder values and calculated the millimeters per count, the displacement of the
left and right wheels Dl and Dr is calculated by multiplying the difference between the
current encoder readings and the previous encoder readings, by 0.1840 mm.

Figures 2.21 and 2.22 present the MATLAB® code for the odometry calculations
of the robot. The code could easily be translated into C++, or by writing the appro-
priate functions like the constructor, the ReadSensors(), and SendMotorCmd(), this
code in fact can control an actual robot.

39Basic Robotics

The structure DiffRobot, defined in Figure 2.21, contains all the variables to
represent the encoders, motor velocities, and odometry of the robot. The function
DifferentialWheels(), shown in Figure 2.22, is the main loop for the robot control. We
assumed that the constructor of the DiffRobot class can also initialize any physical
communication required to access the physical hardware. The function ReadSensors()
updates the encoder values from the hardware. The Odometry() function calculates the
odometry values based on the encoder values obtained from the ReadSensors() function.
Once the odometry has been calculated, the rest of the program will process the posi-
tion and heading orientation to calculate the new velocities for the left and right wheels.
The code also simulates some of the encoder values to observe odometry calculations.

Table 2.1 shows the actual encoder values obtained by the equivalent of
ReadSensors() function running on the robot itself. The position and heading val-
ues are calculated by the Odometry() function. When we plot all the (x,y) positions
calculated by the odometry code, we can clearly see the path that the robot moved
(see Figure 2.23). Figure 2.24 illustrates the calculation steps taking place in the
Odometry() function by using the first set of encoder values [100,100] from Table 2.1.

2.4  ROBOTIC ARMS

A significant part of robotics studies the manipulation of objects. Therefore, it is
not surprising to find that many robot competitions involve some degree of object
manipulation. In this section, we will discuss the robot arm configuration and how
to obtain the control equations. There are many ways of controlling a robot manipu-
lator. Here, we will focus on the kinematic calculations for the control of the robot,
which deal with the relationship between the joint angles and the Cartesian coordi-
nate positions.

A robotic arm consists of links, joints, and other structural elements. Links are the
physical structures that connect the joints. There are different types of joints, such
as prismatic, revolute, and spherical. Most robot manipulators have either prismatic

FIGURE 2.20  The physical dimensions of the robot presented in Figure 2.8.

40 Practical Robot Design

joints or revolute joints (see Figure 2.25). Prismatic joints are linear; there is no rota-
tion involved in their motion. They are either hydraulic or pneumatic cylinders, or
they are linear electrical actuators. Revolute joints are rotary and most rotary joints
are electrically driven by motors.

The configuration of revolute and prismatic joints together with the physical proper-
ties of the links defines the arm. By using the Denavit–Hartenberg (D–H) algorithm,
it is possible to extract four parameters that represent the relation between joints in a
robot arm, and thus we can calculate its control equations (Fu et al. 1987; Craig 1989).

% The DifferentialWheels function uses an object of class DiffRobot

% the members of the class robot are declared as:

%

% robot.encoders(2) - 1 - Left, 2 - Right

% - The current encoder values

% robot.oldEncoder(2) - 1 - Left, 2 - Right

% - The previous encoder values

% robot.motor_speed(2); - 1 - Left, 2 - Right

% robot.X - The robot position in X

% robot.Y - The robot position in Y

% robot.Theta - The robot heading theta

%

classdef DiffRobot < handle

properties

encoder = [0.0 0.0];

oldEncoder = [0.0 0.0];

X = 0.0;

Y = 0.0;

Theta = 0.0;

end

methods

function obj = DiffRobot() % constructor

end

end

end

FIGURE 2.21  The structure used for the DifferentialWheels() function in Figure 2.22.

41Basic Robotics

FIGURE 2.22  MATLAB code for the odometry calculation of the robot presented in
Figure 2.8.

www.allitebooks.com

http://www.allitebooks.org

42 Practical Robot Design

FIGURE 2.22  (continued) MATLAB code for the odometry calculation of the robot pre-
sented in Figure 2.8.

43Basic Robotics

FIGURE 2.22  (continued) MATLAB code for the odometry calculation of the robot pre-
sented in Figure 2.8.

TABLE 2.1
Encoder Values and Their Respective Odometry Values

Left Encoder Right Encoder Robot.X Robot.Y Robot.Theta

100 100 18.4000 0.0 0.0

400 400 73.6000 0.0 0.0

1200 1000 202.4000 0.0 0.2538

2600 1600 380.5059 −46.1982 −1.2690

3000 2300 410.5895 −142.8234 −0.8883

100

90

80

40

20

0

–20

–40

–60

–80

–100
0 50 100 150 200 250 300 350 400 450 500

FIGURE 2.23  The plotted path of the odometry values calculated from the encoder values
presented in Table 2.1. The units are in millimeters for both axes.

44 Practical Robot Design

D–H algorithm provides a systematic method, based on homogeneous transfor-
mations, to describe the position and orientation of each link with respect to its
neighboring link (Craig 1989).

The algorithm consists of the following steps:

	 1.	Assign coordinate frames to all links and the end effector of a robot
manipulator.

FIGURE 2.24  A step-by-step illustration of the calculations using the first set of values
from Table 2.1.

45Basic Robotics

	 2.	Derive a homogeneous transformation matrix including both rotation and
translation to describe the position and orientation of each link relative to
its neighboring link.

	 3.	Compute the forward kinematics of the robot manipulator using the post-
multiplication rule.

	 4.	Determine the position and orientation of the robot hand with respect to the
base frame from the forward kinematic equation.

The basic rules for the assignment of the frame (xi, yi, zi) to the link i are as follows
(Craig 1989; Niku 2000):

	 1.	zi axis is aligned with the motion axis of the rotary joint i + 1.
	 2.	xi axis is normal to both zi−1 and zi axes.
	 3.	yi axis is chosen from a right-handed frame (xi, yi, zi).

There are two parameters of the link i; they are the link length ai and the twist
angle αi. The link length ai defines the common normal between the zi−1 and zi axes.
The twist angle αi defines the rotational angle of the zi−1 axis about the xi axis. There
are also two joint parameters: the joint angle θi and the joint distance di. The joint
angle θi is the rotational angle of the xi−1 axis about the zi−1 axis. The joint distance
di is defined as the translation distance of the frame (xi−1, yi−1, zi−1) along the zi−1 axis.
Both the link parameters and the joint parameters are called arm parameters or D–H
parameters.

2.4.1 F orward Kinematic Solutions

The forward kinematic equations determine the position and orientation of the robot
hand (or end effector) in terms of the joint variables of the arm. Once the frame has

(a) (b)

FIGURE 2.25  (a) Revolute joint defined a DOF by the angle. (b) Prismatic joint defined a
DOF by the length of displacement.

46 Practical Robot Design

been assigned and the arm parameters have been obtained for each link, we calcu-
late a homogeneous transformation matrix Hi

i
−1 (see Equation 2.16 for the format of

the homogeneous matrix) from the frame (xi−1,yi−1,zi−1) to the frame (xi, yi, zi). This
transformation can be obtained by the following sequence of rotations and transla-
tions (Niku 2000):

	 1.	Rotate the frame (xi−1, yi−1, zi−1) about the zi−1 axis by θi angle.
	 2.	Translate the frame (xi−1, yi−1, zi−1) along the zi−1 axis by di units
	 3.	Translate the frame (xi−1, yi−1, zi−1) along the xi axis by ai units.
	 4.	Rotate the frame (xi−1, yi−1, zi−1) about the xi axis by αi angle.

Since these transformations are consecutive motions about the corresponding
mobile axes, the D–H transformation matrix from the frame (xi−1, yi−1, zi−1) to the
frame (xi, yi, zi) is defined as follows:

	 H H H d H a Hi
i

ROT i TR i TR i ROT i− =1 () () () ()q a 	 (2.55)

	

H

a

i
i

i i i i i i i

i
− =

−

1

cos() cos()sin() sin()sin() cos()

sin()

q a q a q q
q ccos()cos() sin()cos() sin()

sin() cos()

a q a q q
a a

i i i i i i

i i i

a

d

−
0

0 0 00 1



















	

(2.56)

Transformation matrix Hi
i
−1 describes the position and orientation of the link i

with respect to the link i − 1, hence the matrix H n
0 describes the position and orienta-

tion of the robot end effector frame with respect to the robot base frame

	 H H H Hn
n
n

0 0
1

1
2

1= ⋅ ⋅ ⋅ − 	 (2.57)

The transformation matrix H n
0 is called arm matrix or solution of forward kine-

matics of an n-link robot manipulator.

2.4.2 I nverse Kinematics

In the previous section, we discussed how to determine the robot hand (end effector)
position and orientation in terms of the joint variables using the forward kinematics.
In this section, we are concerned with the opposite problem, that of finding joint
variables in terms of the robot hand position and orientation. This is solved by using
inverse kinematics. The general problem of inverse kinematics can be stated as fol-
lows (Niku 2000; Man 2005):

47Basic Robotics

	 1.	Given a homogeneous transformation matrix H n
0 that represents the for-

ward kinematics expressed as

	

H H H H

h h h h

h h h h

h h h h
n

n
n

0 0
1

1
2

1

11 12 13 14

21 22 23 24

31 32 33 34

0 0 0

= ⋅ ⋅ ⋅ =−

11



















	

(2.58)

		 where each hij is an equation in terms of the joint variables, these variables
might be θi for revolute joints or di for prismatic joints.

	 2.	Specify the desired position and orientation of the robot hand relative to the
robot base frame, in terms of the homogeneous matrix.

	

H

d d d d

d d d d

d d d dd =



















11 12 13 14

21 22 23 24

31 32 33 34

0 0 0 1 	

(2.59)

	 3.	Solve the following equations:

	

h h h h

h h h h

h h h h

d d11 12 13 14

21 22 23 24

31 32 33 34

11 1

0 0 0 1



















=

22 13 14

21 22 23 24

31 32 33 34

0 0 0 1

d d

d d d d

d d d d



















	

(2.60)

The joint variables, in order to reach to the desired position Hd, will be determined
by solving the 12 equations presented in Equation 2.60. However, as we have seen
in the previous section, the elements of each hij of the forward kinematics matrix are
often nonlinear functions of the joint variables, and thus it is difficult to solve these
equations to find a solution. The solution is even harder when we have to consider
constraints of robot motions, singularities, and multiple possible solutions caused by
the redundancy of the joints.

There are different approaches to obtain the inverse kinematic equations. An alge-
braic approach tries to solve the 12 equations presented in Equation 2.60. Another
approach uses geometrical decomposition of the spatial geometry of the arm into
several plane geometry problems (Man 2005). Both of these approaches have their
limitations especially when the robot arm consists of several joints. In those cases,
the equation becomes even more complicated and the geometrical analysis becomes
too tedious. In those cases, a numerical method can be used to solve the equations
presented in Equation 2.60.

48 Practical Robot Design

2.4.3 C ase Study: Three-Link Articulated Robot Arm

In the RoboCup@Home competition, there are several challenges that require the
robot to manipulate objects or at least be able to move them by pushing them. The
position of the object is determined by sensors such as a camera, ultrasonic sensors,
or a laser range finder. Figure 2.26 shows a three-link articulated robot arm with
three rotary joints that was used in RoboCup@Home. It is possible to put a simple
gripper actuated by a servo-motor on the robot end to manipulate the objects.

First of all, we need to assign a frame to each robot joint as shown in Figure 2.26b.
The z0, z1, and z2 axes are assigned along the motion axes of the three rotary joints.
The origin of the frame x0 y0 z0 is chosen at the center of the robot base along with
the z0 axis and x0 and y0 axes are chosen to form a right-handed frame. For the frame
x1 y1 z1, the x1 axis is chosen to be perpendicular to both z0 and z1 axes and the y1 axis
is chosen to form a right-handed frame. The frame x2 y2 z2 and x3 y3 z3 are parallel to
x1 y1 z1. The origin of the frame x3 y3 z3 is located at the end of the third link.

After assigning the coordinate frames for each joint in the robot, we need to
determine the arm parameters. Table 2.2 shows the arm parameters where only link

(a) (b) y2

y0

θ3

θ2

θ1

x2

z3

z1

z2

y1

x3

x1

x0

y3

z0

FIGURE 2.26  (a) A picture of the robot arm used. (b) Coordinate frames for three rotary
joints.

TABLE 2.2
Arm Parameters for a Three Articulated Robot Presented
in Figure 2.26

Link θi di ai αi

1 θ1 d1 0 90°

2 θ2 0 a2 0°

3 θ3 0 a3 0°

49Basic Robotics

1 has a twist angle of 90°. Notice the change in the position of the axis from z0 to z1
in Figure 2.26b.

Using the D–H matrix parameters and the arm parameters given in Table 2.2, we
obtain the following transformation matrices for each link:

	

H
d0

1

1 1

1 1

1

0 0

0 0

0 1 0

0 0 0 1

=
−



















cos() sin()

sin() cos()

q q

q q

HH

a

a
1
2

2 2 2 2

2 2 2 2

0

0

0 0 1 0
=

−cos() sin() cos()

sin() cos() sin()

q q q

q q q

00 0 0 1

0

2
3

3 3 3 3

3



















=

−

H

acos() sin() cos()

sin() cos(

q q q

qθ 33 3 30

0 0 1 0

0 0 0 1

) sin()a q



















	

(2.61)

Therefore, the forward kinematic solution for this robot arm is given by

	

H H H H

a

0
3

0
1

1
2

2
3

1 2 3 1 2 3 1 1 2

=

=

+ − +cos cos() cos sin() sin cos cq q q q q q q q oos cos

sin cos() sin sin() cos sin

q q

q q q q q q q q
2 3 3

1 2 3 1 2 3 1 1

+()
+ − + −

a

a22 2 3 3

2 3 2 3 2 2 3 2 30

cos cos

sin() cos() sin sin()

q q

q q q q q q q

+()
+ + + +

a

a a ++





















d1

0 0 0 1
	

		 (2.62)

Now, let us calculate the inverse kinematics for the arm. We will use the geomet-
ric approach since it is a simple configuration with only three joints. Figure 2.27a
shows the projection of the arm and the joints in different planes. By considering
each of these planes independently, it is possible to calculate the values of the angles.
Thus, the plane of (x,y) will be used to obtain θ1, and the plane (x,y,z) will be used to
calculate the values of θ2 and θ3.

Figure 2.27b shows the plane (x,y). Observing the triangle formed by (px, py), the
angle θ1 can be derived by using arctangent. Since the arctangent will produce solu-
tions in the first and the fourth quadrants, and the signs of px and py are determined
by the quadrant, the arc tangent 2 function would be a better choice

	
q1 2= a p px ytan (,)

	 (2.63)

50 Practical Robot Design

In the plane (x,y,z) presented in Figure 2.28a, a triangle is formed from joint 2 to
the pz as shown in Figure 2.28b. Let us calculate the hypotenuse, and by doing this
we will try to extract a common factor that can help us to obtain the other two angles.

	
r p p a ax y= + = + +2 2

2 2 3 2 3cos cos()q q q
	

(2.64)

	 s p d a az= − = − +1 2 2 3 2 3sin sin()q q q 	 (2.65)

	
p p p d r sx y z

2 2
1

2 2 2+ + − = −()

where cos(θ2 + θ3) = cos θ2cos θ3 − sin θ2sin θ3 and sin (θ2 + θ3) = sin θ2cosθ3 + cos θ2

sin θ3. The solution of θ3 can be found by expanding and solving the aforementioned
equation. Let us start by expanding the right side of the equation. To simplify the
representation of solution equations, we will use the following acronyms:

(a)

k1

a2 a3

k2

pz

sr
py

θ1
θ1

θ2

θ3

γ

d1

y0

y0

py

px x0

pz0

px

x0

(b)

FIGURE 2.27  (a) A 3D view of the robot arm and geometrical projection into the planes
(b) projection on (x,y) plane.

(a) (b)

z0

r d1 d1

r

a2
a3

z0
k1

a2

k2

a3
pz pz

s s

a3sin(θ2+θ3)

θ3

θ2

a2sinθ2

θ2

θ2
γ

a3cos(θ2+θ3)a2cosθ2

x0y0pxpy x0y0pxpy

FIGURE 2.28  Geometrical projection of the joint 2 and 3 into the plane (a) xy and (b) z.

51Basic Robotics

	

S

C

S

C

ij i j

ij i j

i i

i i

= +

= +

=
=

sin()

cos()

sin()

cos()

q q

q q

q

q

hence,

	 = + + + + +a C a C a a C C a S a S a a S S2
2

2
2

3
2

23
2

2 3 2 23 2
2

2
2

3
2

23
2

2 3 2 232 2

	 = + + + + +a C S a C S a a C C S S2
2

2
2

2
2

3
2

23
3

23
2

2 3 2 23 2 232() () () 	 (2.66)

Since sin θ2 + cos θ2 = 1, the aforementioned equation can be simplified further

	 = + + − + +a a a a C C C S S S S C C S2
2

3
2

2 3 2 2 3 2 3 2 2 3 2 32 ([] [])

	 = + + − + +a a a a C C C S S S C C S S2
2

3
2

2 3 2
2

3 2 2 3 2
2

3 2 2 32 ()

	 = + + +a a a a C C S2
2

3
2

2 3 3 2
2

2
22 ([])

	 = + +a a a a C2
2

3
2

2 3 32 		 (2.67)

and now we can solve all the equations for C3

	
C

p p p d a a

a a
x y z

3

2 2
1

2
2
2

3
2

2 32
=

+ + − − −()

	
(2.68)

Once again using trigonometric identity sin θ2 + cos θ2 = 1, we can also obtain S3

	
S C3 3

21= ± −
	

(2.69)

Because the sine has a period of 2π, the value of the angle could be positive or
negative. This means that there are two solutions for the sine. The positive solution
will represent a “joint up” configuration, and the negative solution will be a “joint
down” configuration. In either case, θ3 is obtained with

	 q3 3 32= a S Ctan (,) 	 (2.70)

For the last angle θ2, let us see the triangle form by k1 and k2 with an angle γ (see
Figure 2.28b)

	 k1 = a2 + a3C3

	 k2 = a3S3

www.allitebooks.com

http://www.allitebooks.org

52 Practical Robot Design

	 γ = a tan 2(k2,k1)	 (2.71)

Once the angle γ is calculated, it is evident that θ2 consists of the angle γ and the
angle formed by the component r and s.

	 θ2 = a tan 2(h,r) − γ

	
q2 1

2 2
3 3 2 3 32 2= − + − +a atan (,) tan (,)p d p p a S a a Cz x y 	

(2.72)

From the equation, we can see that θ2 will also have two possible values for the
inclusion of S3, thus the final inverse kinematics equations for the robotic arm can
be described as

	 θ1 = a tan 2(px, py)

	
C

p p p d a a

a a
x y z

3

2 2
1

2
2
2

3
2

2 32
=

+ + − − −()

	
S C3 3

21= ± −

	 θ3 = a tan 2(S3,C3)

	
q2 1

2 2
3 3 2 3 32 2= − + − +a p d p p a a S a a Cz x ytan (,) tan (,)

	
(2.73)

Finally, it is possible to calculate the values of θ1, θ2, and θ3 from a target position
[px, py, pz]. As mentioned earlier, in practice, the target position is obtained by the
sensors of the robot. The inverse kinematic equations calculate the values of the joint
angles to reach that position with the robotic arm. The forward kinematics can be
used to know exactly where the arm is in motion.

REFERENCES

Craig, J.J. 1989. Introduction to Robotics: Mechanics and Control. Reading, MA:
Addison-Wesley.

Fred, G.M. 2001. Robotic Explorations: An Introduction to Engineering through Design.
Upper Saddle River, NJ: Prentice-Hall.

Fu, K.S., Gonzales, R.C., and Lee, C.S.G. 1987. Robotics, Control, Sensing, Vision and
Intelligence. New York: McGraw-Hill.

Man, Z. 2005. Robotics. Singapore: Prentice–Hall, Pearson Education Asia Pte Ltd.
Mataric, M.J. 2007. The Robotics Primer. Cambridge, MA: The MIT Press.
Niku, S.B. 2000. Introduction to Robotics: Analysis, Systems, Applications. Upper Saddle

River, NJ: Prentice-Hall.
Siegwart, R. and Nourbakhsh, I.R. 2004. Introduction to Autonomous Mobile Robots.

Cambridge, MA: The MIT Press.

53

Sensors

A fundamental component of the robot is its sensors, which are used for acquiring
information about the robot itself and its environment. There are a vast number of
sensors available for the robotics and automation industry. Depending on the appli-
cation, we employ a combination of them in robot design. A detailed description
of these sensors and their properties can be found in Soloman (2009) and Fraden
(1996). In this chapter, we will discuss sensors commonly used in game robotics and
competitions.

Sensors give measures about physical properties of the environment such as
illumination, temperature, distance, size, and so on. In other words, a sensor is a
measurement tool that converts physical quantities from one domain to another. In
robotics, we are interested in sensors that convert physical phenomenon, electrical or
nonelectrical in nature, to an electrical signal so that it can be processed by a micro-
processor. A number of parameters determine the characteristics of sensors, which
indicate their capabilities and limitations. It is important to know these parameters
for the proper selection of a sensor for a robot design. Some of these parameters are
discussed below:

Range: Maximum and minimum values that can be measured by the sensor.
For instance, the range for the Microchip MCP9501 temperature sensor is
from −40° to +125°. The term dynamic range refers to the overall range of
the sensor from its minimum to maximum reading.

Resolution or discrimination: The resolution of a sensor is the smallest distinct
change in the measured value it can reliably detect. For example, the Honeywell
HR3000 digital compass has a resolution of 0.1°. Resolution does not indicate
accuracy. A sensor can have high resolution, but may not be accurate. A sen-
sor’s ability to detect minute changes is mainly limited by the electrical noise.

Error: Difference between the measured and actual values.
Accuracy/inaccuracy/uncertainty: Accuracy indicates the maximum differ-

ence between the actual value of the measured parameter and its measured
value by the sensor. In other words, it is an indicator of the maximum
expected error.

Linearity: Maximum deviation from a linear response. The term linearity of a
sensor implies the extent that measured curve of a sensor departs from an
ideal straight-line curve. Sensors with linear response simplify robot design
and programming.

Sensitivity: It is a measure of change at the output of the sensor for a change in
the amount being measured.

Precision/repeatability: Precision of a sensor, also called repeatability, shows
the difference in measurements on the same thing and under the same con-
ditions. A sensor can have high precision/repeatability yet poor accuracy if

3

54 Practical Robot Design

there is a systematic error in the measuring system. On the other hand, a
highly accurate sensor will not have poor repeatability since repeatability
is a requirement for accuracy.

Response time: Sensor output does not change immediately when there is a
change in the input parameter. Its response will change over a period of
time, which is known as response time. Fast response time is desirable for
robotics application.

Output: The type of output from the sensors determines the peripheral cir-
cuitry needed to be built for the robot. As listed in Table 3.1, many sensors
deliver analog as well as digital output. The latest sensors include built-in
circuitry not only for producing digital output, but also to do part of the sig-
nal processing, such as filtering, on the sensor unit. Many of these sensors
also come with data bus compatible output, which makes their interfacing
to processors very straightforward.

Frequency of measurement: The other parameter of concern in robot design
is the sensor frequency, which indicates the number of readings that can be
done per second. This is a major bottleneck preventing robots from doing
fast motions in their environment.

When a robot is negotiating its environment, information obtained from its sen-
sors determines a great deal of its actions and behavior. Therefore, reliability of its
sensors is very crucial. We look at accuracy and repeatability parameter of a sensor
as a measure of its reliability. Ideally, a good sensor is sensitive to the measured
property only and it is not affected by other environmental parameters. However, in
practice, data obtained from sensors are noisy and prone to errors.

3.1  SENSORS USED IN GAME ROBOTICS

The type of sensors used in robotics varies depending on the application. However,
robots designed for robotic games are mostly low-cost mobile robots, and they need
a small set of these sensors. In this section, we will first look into sensors that give a
reading of the robot itself.

The sensors used in game robotics are mainly of two types. A set of sensors
is used to get information about the robot itself such as its speed and orientation
(proprioception). Another set of sensors is used to obtain information about its sur-
rounding, such as distance from an obstacle (exteroception). Table 3.1 shows a clas-
sification of these sensors and their potential use in robot design.

3.1.1 M easuring Robot Speed

Sensors are placed in the motors or wheels of a robot to obtain feedback on its
motions. In mobile robotics, encoders are assembled to its driving motors, and a
direct reading of the angular speed is obtained. This enables control of the position,
direction, and the speed of the motor-controlled wheels. Encoders are also used to
gather position information from rotary parts of the robot such as the pole-balancing
robot that will be discussed in Chapter 10, or joint angles of a robotic arm. Optical
and magnetic encoders are the most commonly used encoders in robotics.

55Sensors

Optical encoders: An optical encoder is made of a rotor disk with engraved opti-
cal grids, a light source, and a photo sensor as shown in Figure 3.1a. The rotor moves
with the angular motion of the motor and causes a change in the amount of light
received by the optical sensor. The resulting sine wave-like signal is converted to
square wave by thresholding. High and low cycles of square wave indicate the black
and white areas passing through the optical sensors. The resolution of encoders is
described as the number of pulses per revolution (PPR). The encoder illustrated in
Figure 3.1a is of incremental type. By placing another optical unit 90° apart from
the original, quadrature-type encoders are obtained. This arrangement produces
two square waves with 90° phase shift. By utilizing the phase shift between them,

TABLE 3.1
Classification of Sensors Used in Game Robotics

Sensor Application Type of Sensor Output Type

Contact switches, strain
gauge, infrared sensors

Detection of physical contact and
closeness

Tactile sensors Binary on/off
analog

Optical and magnetic
encoders,
potentiometers

Rotation, motor speed, and
position

Wheel/motor
sensors

Digital

Compass, gyroscopes,
accelerometers,
inclinometers

Detecting inclination,
acceleration, and orientation of
the robot

Heading sensors Analog/digital

Ultrasonic sensors, laser
rangefinders, infrared
sensors, optical
triangulation sensors

Detecting proximity to objects,
map generation, obstacle
detection

Range sensors Analog/digital

Camera, color sensors,
linear sensor array

Object recognition and
manipulation, analysis of robot
environment

Vision-based
sensors

Analog/digital

Altimeter, depth gauge,
GPS

Flying robots, underwater robots,
land robots

Position and
navigation sensors

Analog/digital

Photosensor
(a) (b)

Light source

Motor shaft

Rotor disk

Output
Sensor and circuit

board

Magnetized rotorN

S
S

N

FIGURE 3.1  (a) Optical and (b) magnetic encoder.

56 Practical Robot Design

the resolution (PPR) is increased by four times. Furthermore, by determining the
sequence of square pulses, the direction of rotation is also found easily.

Magnetic encoders: These encoders convert mechanical motion into a digital
output by means of magnetism. Typically, a magnetized disk with a flux pattern is
attached to the rotor; by detecting the change of flux, a magnetic encoder generates a
signal at the output as shown in Figure 3.1b. Hall effect sensors or magnetoresistive
sensors are widely used for detecting the flux change. A magnetized rotor is attached
to the shaft, and there is a thin air gap between the rotor and the sensor. Sensors pro-
duce a sine wave signal when the rotor turns and flies over the sensor. The sine wave
signal is then converted to a square wave and delivered as output from the encoder
system. Magnetic encoders have good reliability and durability. They are not eas-
ily affected by environmental factors such as dirt, dust, and oil. However, they are
subject to magnetic interference. Apparently, encoders used in robotics must be fast
enough to be able to count the shaft speed. Many encoders available in the market
have no limitations to use in robotics, and they are reliable.

3.1.2 M easuring Robot Heading and Inclination

Heading sensors are mainly used for determining orientation as well as inclination
of a robot.

By knowing the orientation and the speed of a mobile robot, we can estimate its
whereabouts. Similarly, knowing the inclination of a humanoid robot, we can correct
its motions so that it does not topple.

Compass: The principle of a digital compass is based on measuring the direc-
tion of Earth’s magnetic field. Many cost-effective digital compasses are built with
Hall effect sensors, which are based on the principle that electric potential changes
in a semiconductor when it is exposed to a magnetic field. An example of this type
of sensor is the Allegro A132X family Hall effect sensors, where the presence of a
south pole magnetic field perpendicular to the IC package face increases (decreases
in the case of north pole) the output voltage from its neutral value, proportional to the
magnetic field applied depending on the sensitivity of the device. A single Hall effect
sensor measures flux in one dimension. To measure the two axes of magnetic fields,
two of these sensors are placed at 90° angles. The resolution obtained with Hall effect
sensors is low and prone to errors, particularly due to interfering magnetic fields.

Another technology used in digital compasses exploits magnetoresistivity, which is
the property of change in resistivity of a current-carrying magnetic material in the pres-
ence of a magnetic field. Assume that the current is passing through the ferromagnetic
material as shown in Figure 3.2. When the material is exposed to an external mag-
netic field, the internal magnetization vector changes its position. The strip resistance
depends on the angle θ between magnetization and the direction of the current flow.
This resistance will have the largest value if the current flow and magnetization vector
are parallel. Conversely, it will be the smallest when the angle between them is 90°.

To measure magnetic field, four sensors are connected in a bridge configuration with
each resistor oriented to maximize the sensitivity and minimize the temperature effects.
The values of the resistors will change when they are exposed to a magnetic field and
the bridge will be imbalanced, thus generating an output voltage proportional to the

57Sensors

magnetic field strength. Digital compasses developed with this technology are reliable,
and they have good resolution and fast response. Nevertheless, they are also sensitive to
interfering magnetic fields. Therefore, using them in manmade environments requires
caution. Examples of these sensors are Devantech’s CMPS03 magnetic compass, which
uses the Philips KMZ51 magnetic field sensor and the Honeywell HMR3000 digital
compass module that provides heading, pitch, and roll outputs for navigation.

Gyroscope: It can measure the angular motion of a robot relative to an inertial frame
of reference; hence, the gyroscope is also a device for measuring orientation. There are
various types of gyroscopes available; however, digital gyroscope using MEMS (small
microelectromechanical systems) technology is the most popular and cost-effective
sensor used in many electronic devices as well as in robotics. MEMS gyroscopes
detect rotational rate about the X, Y, and Z (or roll, pitch, and yaw) axes. When the
gyroscope is rotated about any of these axes, the Coriolis effect causes a deflection,
which is detected, demodulated, and filtered to produce a voltage that is proportional
to the angular rate. Analog Device’s ADIS16485 is an example of a MEMS-based
gyroscope, which provides three axes gyroscope readings in digital form via serial
parallel interface (SPI) bus.

Accelerometer: An external force acting upon a system, such as gravity, causes
a change in the velocity. This sensor measures acceleration caused by such external
forces. They are mainly used for sensing robot motions. Dynamic balancing of a
walking robot is a good example of accelerometer use in robotics. An accelerometer
can be considered as a damped mass on a spring. When the sensor faces acceleration,
the mass will be displaced toward a point that the spring permits. By measuring this
displacement, the acceleration is found. By arranging three of them orthogonally, it is
possible to detect acceleration in all three axes. There are various types of commer-
cial devices using piezoelectric, piezoresistive, and capacitive components. However,
the latest accelerometers are often MEMS devices. Analog Device’s ADXL202 is an
example of such accelerometers. The sensor has ±2 g sensing range with a pulse width
modulated (PWM) or analog signal output.

3.1.3 M easuring Range

The sensors we have discussed so far provide feedback about the robot itself. In the
following, we will discuss sensors that gather feedback about the robot’s environment.
One of the key components used in mobile robots is the range sensor. These sensors
measure the distance of the objects from the sensor. In robotics, they are mainly used
for detecting objects, generating a map of the environment, and avoiding collisions.

θ
Direction of

current
Permalloy

+ –

External magnetic
field

Magnetization

FIGURE 3.2  The magnetoresistive effect.

58 Practical Robot Design

Ultrasonic sensors: Ultrasonic sensors transmit an ultrasonic wave package and
receive the reflected signal. The time taken for a signal to travel and return gives
an indication of the distance. The ultrasound a frequency range is between 40 and
180 kHz. It permits more concentrated direction of the sound since at higher fre-
quencies sound dissipates less in the environment. We can consider the ultrasonic
sensor as a pair of speaker and microphone, one produces the sound and another
receives the echo (see Figure 3.3a and b). A short ultrasonic signal is generated as
shown in Figure 3.3c, and the timer is triggered. The receiver captures the echoing

Re
ce

iv
er

Tr
an

sm
itt

er

(a)

(b)

(c)

d

Tr
an

sm
itt

ed
 si

gn
al

t

t

td

Re
ce

iv
ed

 si
gn

al

FIGURE 3.3  (a) Ultrasonic sensor assembled on the robot body. (b) Ultrasound signal is
reflected from an object at distance d. (c) Sent and received signals and the time difference
between them.

59Sensors

sound and stops the timer. This period of time, known as time of flight (ToF), is
given as td. Hence, the distance d is calculated as

	
d

c td= ×air

2 	
(3.1)

Here, cair indicates the speed of sound. It is about 330 m/s in air and 1500 m/s in
water.

There are a number of issues that have to be understood when working with ultra-
sonic sensors.

	 i.	Maximum range: One of them is the maximum distance that can be sensed
by the sensors and it is related to the frequency used in the sensor design.
Depending on the application, the appropriate one should be selected. For
example, the sensor shown in Figure 3.3a is “Ping” from Parallax and it has
a maximum range of 3 m, while Maxbotics MB1260 has a range of 10 m.
Ultrasonic sensors cannot accurately measure the distance to an object,
which is further than the sensing range.

	 ii.	Blind zone: An inherent issue with ultrasonic sensors is the blind zone,
which is the close range in front of them. The readings in this range are not
reliable. The blind zone varies from sensor to sensor. For example, the length
of blind zone is 2 cm for Parallax’s Ping and 20 cm for Maxbotics MB1260.

	 iii.	Reflection: The basic operation principle of an ultrasonic sensor is based on
detecting reflected sound. There are many situations when this reflection
may not take place. For example, the objects with a soft or irregular surface
may absorb sound. Objects may be too small to reflect enough sound back
to the sensor. The object surface may be at a shallow angle; hence, not
enough sound reflection occurs. The shape of the beam is like a cone, so if
the sensor is mounted very low on the robot there may be wrong readings
from the reflections off the floor.

	 iv.	Temperature: Temperature affects the speed of sound in air. If the tempera-
ture change in the environment is large, then the errors can be significant.

Laser rangefinder: The operation principle of a laser rangefinder is similar to
ultrasound sensors except that these sensors use a laser beam, typically a near infra-
red light, instead of sound. In the case of a laser beam, time of flight is very short.
Measuring such short time of flight requires very fast circuitry, which operates at the
picosecond range and it makes the sensor expensive. The low-cost laser rangefind-
ers utilize the phase shift between transmitted and received signals. Commercially
available laser rangefinders have a wide choice of maximum range reaching up to
hundreds of meters. Since the operation principle of these sensors is based on send-
ing a light beam and detecting its reflection, color and texture of objects may affect
their accuracy consequently. Shiny, bright colored objects reflect light better; on the
other hand, dark objects absorb the light and reflect a lot less to the sensor, causing
a reduction of the sensing range. Similarly, rough or smooth surfaces also affect
the specular reflection. Nevertheless, laser rangefinders are a lot better in accuracy

60 Practical Robot Design

compared to sonar sensors discussed earlier. The laser rangefinder shown in Figure
3.4b is the Hokuyo URG-04LX-UG01, which uses infrared laser of wavelength
785 nm. The direction of light is altered by a rotating mirror. The reflected light is
captured by the photo diode. The phases of the emitted and received light are com-
pared, and the distance between the sensor and the object is calculated. A rotating
mirror sweeps the laser beam horizontally over a range of 240°, with an angular
resolution of 0.36°, which corresponds to 683 measured points in its scanned region.
The sensor has a scan area of 240° semicircle with a maximum distance of 4000 mm
radius. Figure 3.4c shows a scan of the robot at the end of a corridor. Owing to the
high resolution of the sensor, even the corners of the corridor can be seen clearly.
Each scan takes 100 ms, which gives a 10 Hz scan rate. A thorough analysis of this
sensor can be found in Okubo et al. (2009). A sensor of this range is satisfactory for
many indoor robotics applications such as the service robot shown in Figure 3.4a,
which uses the SICK LMS 110 laser scanner.

Optical sensors: Infrared transmitters and receivers are simple and inexpensive
sensors that are used for detecting objects. They are normally used for detecting
the existence of an object rather than measuring the distance. For instance, an
infrared transmitter and receiver pair is used for line following (reflective tapes
placed on the competition platform) in pole-balancing robot (see Figure 1.1) or the

FIGURE 3.4  (a) Service robot using multiple sensors such as laser rangefinder, camera, and
ultrasonic sensors. (b) Laser rangefinder from Hokuyo. (c) 240° scan of an indoor environ-
ment where the robot is at the end of a corridor.

61Sensors

presence of a pellet in the gripper of the robot designed for colony competition (see
Figure 3.7), or detecting the existence of walls in micromouse competition. The
principle of operation is based on detecting reflected infrared light emitted by the
transmitter diode from the surface of objects. The reflected light amount depends
on the object color and surface as well as the distance. In robotic games, compe-
tition platforms are well defined and uniform; therefore, simple infrared sensor
pairs can be used to measure the distance, to sense objects, and even the hue of the
object color. Figure 3.5 shows a typical arrangement of infrared emitter (D1) and
photodiode (D2) receiver circuit used for detecting lines drawn on the competition
platform. The transistor T1 is used for switching on IR emitter D1 when necessary.
The resistor R4 provides means to compare light intensity by the receiving diode. If
the light intensity is above a threshold value, the output of the operational amplifier
will be high. By tuning this resistor, minor reflections can be omitted; the robot
only responds to strong reflection. The competition platforms are usually painted
in contrasting colors, such as a black field with white reflective tapes or a white
field with black tapes, and are used for indicating boundaries. For instance, the
platform for robot colony competition is black and boundaries are marked with
reflective tapes. As black color returns no light, the output from the circuit will
be logic zero indicating that robot is in the black zone. The robot shown in Figure
3.7a has three pairs of transmitter and receiver for reliable sensing of reflected light
from boundaries placed on the floor.

The circuit shown in Figure 3.5 produces binary output by comparing received
signal strength with a threshold value. The same IR sensor pair can also be used
for measuring the distance of objects at close proximity by measuring the strength
of the reflected light. The circuit for such an application is shown in Figure 3.6.
The current passing through D2 is proportional to the reflected light; hence, the
voltage is induced on resistor R3. By using an analog-to-digital convertor (ADC)
port of the microcontroller, this voltage can be measured and calibrated to mea-
sure the distance. However, there are also compact infrared sensors such as the
Sharp GD2D02 series, which is very popular in game robotics due to its low cost.

Vcc

R1 R5

T1 R3

R2

R4

D1

C1

D2 LM399D
To input port

FIGURE 3.5  Basic circuit used for an IR sensor pair.

62 Practical Robot Design

It works on the same principle of emitting infrared light and detecting its reflec-
tion from objects. The emitted infrared light is high in intensity and collimated.
When the light is reflected from the surface of the object at the receiver end, a lens
setup directs it to a photo sensor array strip. The position on this array in which
the light falls is used to calculate the distance from the transmitter. The sensor
is highly accurate, although it has limitations. For instance, the reliable operat-
ing range of the sensor is 8–80 cm. The measurements are also affected by the
color of objects. The output from the sensor is an analog signal proportional to the
distance. However, it is not a linear output, therefore a look-up table is necessary
to derive the distance measured. The output of the digital version of this sensor,
GP2D15, is a pulse and its width is proportional to the distance. Figure 3.7b shows
the robot using Sharp sensors for distance measurement.

Vcc

R1

R2

C1
To ADC port

IR transmitter/
receiver pair

R3

D1 D2

FIGURE 3.6  A simple circuit that can be used for measuring the distance to objects at close
distance.

FIGURE 3.7  (a) IR sensor pairs for line following. (b) Robot using Sharp GD2D02 sensors.

63Sensors

3.1.4 D etecting Color

In many robotic competitions, robots are expected to detect and handle objects. The
color is a prominent feature that can be used to identify them. For example, in the robot
colony game, robots collect pellets and deposit them into bins based on their color. In an
intelligent robot game, the robot collects colored objects and deposits them in allocated
bins based on their shape and color. A quick solution to color detection is to use infrared
sensors as mentioned earlier. The reflected light intensity depends on the object color.
This property can be exploited to identify color since the objects used in these com-
petitions are standard. The color of the objects can also be detected using camera and
some basic image-processing algorithms. This topic will be discussed in the following
chapter. Here, we will consider another low-cost color sensor, which we can consider
as a one pixel camera. These sensors are mainly developed for the automation industry,
and they are also convenient to use in robotic games. MRGBiCT and MTCSiCT from
Mazet, S9706 and the S10942 series sensors from Hamamatsu are some examples of
color sensors. The sensor produces analog signals corresponding to red, green, and blue
components of a color. Apparently, a wide range of colors can be detected with these
three components. However, sensing distance is rather short, about 2–6 cm.

Colors to be detected in robotic games are well specified. In the robot colony game,
robots need to identify pellets in blue and green color; therefore, a comparator circuit
was enough to complete color recognition in hardware. For example, the color sensor
used in robot colony design is the Mazet MTCSiTC (Mazet 2012). The sensor is made
of SI-PIN diodes, and it is covered with RGB filters, a microlens array, and an imag-
ing microlens. The four terminals are the RGB signal outputs and a common cathode
(5 V). MT104Bx is a complementing device for amplifying the signal. It is necessary
to illuminate objects during detection phase for a better performance of the sensor.
The signals from the amplifier MTI04B are fed to a comparator circuit to produce
a binary value indicating the detection of a particular color as shown in Figure 3.8.

Vcc

LM311

To logic circuit or
µP IO port

R1

Vref

R G

–
+ –

+

–
+

–
+

–
+

–
+

MTI04

VR

VG

VB
B

Co
lo

r s
en

so
r

(M
TC

Si
CT

)

R2 R3

R 4 R 5 R 6

FIGURE 3.8  Color sensor (Mazet MTCSiCT) and circuit to detect pellet color in hardware
for robots designed for robot colony game.

64 Practical Robot Design

Alternatively, if the microcontroller used in the robot design has an ADC port, then
RGB signals can be connected to ADC inputs. The color detection is completed in
software with look-up tables. This is a much more flexible method, and a wide spec-
trum of colors can be identified. Refer to videos that show robot competitions that rely
on color sensing (Intelligent Robot 2010; Robot Colony 2010).

REFERENCES

Fraden, J. 1996. Handbook of Modern Sensors. New York: Springer-Verlag.
Intelligent Robot. 2010. http://www.youtube.com/watch?v=A34vIthvFSY.
Mazet Electronic Engineering and Manufacturing. 2012. http://www.mazet.de.
Okubo, Y., Ye, C., and Borenstein J., 2009. Characterization of the Hokuyo URG-04LX laser

rangefinder for mobile robot obstacle negotiation. In Proceedings of SPIE Conference
on Unmanned, Robotic, and Layered Systems. Orlando, FL, Vol. 7332.

Robot Colony. 2010. http://www.youtube.com/watch?v=_R7iyWzOOzA
Soloman, S. 2009. Sensors Handbook. NewYork; Singapore: McGraw-Hill.

65

Robot Vision

4.1  INTRODUCTION

There is a vast amount of research in the field of computer vision, which has great
potential in various fields of engineering, in particular robotics and automation.
Computer vision units are effectively used in industrial robotics for inspection and
handling of manufactured parts. Most of these systems operate in a controlled envi-
ronment with good illumination and minimum interference. However, mobile robots
mostly operate in unpredictable environments. Typically, a vision unit is employed
for steering a robot, avoiding obstacles, detecting landmarks, handling objects of
interest, tracking objects, or navigation (Chen and Tsai 1997; DeSouza and Kak
2002; Kosaka and Kak 1992; Kumagai and Emura 2000). In early mobile robots,
visual feedback was commonly used for robot navigation and obstacle avoidance.
Recently, particularly in service robotics, vision is used for interacting with people,
recognizing the environment and handling objects. Needless to say, vision is one of
the most desirable features that we would like to have in a robot.

Vision capability can be incorporated in a robot by using a camera and a proces-
sor setup. A camera can be treated as another sensory unit for the robot. However,
a camera alone will not be enough. To extract useful information from this sensor, a
series of sophisticated computations has to be performed on the image data, typically
using an on-board processor. There is an immense amount of material available on this
topic, which could be overwhelming when a robot designer wants to incorporate vision
into robot design. This chapter is solely dedicated to this topic, and our objective is to
provide basic information on robot vision for a quick start. We present algorithms and
techniques that could be useful for incorporating vision as a sensory input for game-
playing robots such as in robot soccer where a vision unit is used for identifying relevant
objects in the game such as the ball, opponents, and teammates based on their features.

In the following, we will first look into the available hardware, particularly inex-
pensive systems, suitable for use in game robotics. We will also discuss how an
image is formed and the parameters that affect the quality of the image acquired.
We will also present some of the fundamental algorithms and their use in robot
vision. The image-processing algorithms that we will consider in this chapter can
be classified into two categories. The first category of algorithms deals with pix-
els only. That is, the input and the output of the algorithms are all pixels. We will
refer to them as basic image-processing algorithms or low-level image processing
as commonly known in the literature. The second type of algorithms takes pixels
as input, but delivers symbolic representations as output. For instance, an algorithm
that detects circular objects in the image takes pixels as input, but delivers centroid
and radius of circles at the output. The output in this case is not pixels, but a symbolic

4

66 Practical Robot Design

representation of the object with its parameters. We will consider this type of algo-
rithms as symbolic feature-extracting algorithms or intermediate-level algorithms
as commonly known in the computer vision community. Typically, a combination of
these algorithms is used to enable a robot to detect certain objects of interest in its
vicinity and take action accordingly.

4.2  CAMERA SYSTEMS FOR ROBOTICS

In the early days, hardware for robot vision used to be bulky and costly. This was
a major disadvantage in applying artificial vision in robots designed for education
or entertainment purposes. With the advances made in very large scale integration
(VLSI) technology, it became viable to incorporate vision systems in the design of
robots. There are many inexpensive camera systems in the market with an embed-
ded preprocessing unit and with very low power consumption. Figure 4.1 shows
examples of such systems. The vision unit of the robot shown in Figure 4.1a is the

FIGURE 4.1  (a) Humanoid robot with CMU cam. (b) Mobile robot with SRV-1 Blackfin.
(c) Autonomous robot with USB camera.

67Robot Vision

CMUcam, the latest of which is CMUcam4 (CMUCAM 2012), which employs a
propeller P8X32A processor with eight built-in parallel microprocessors. This com-
pact vision unit has a resolution of 640 × 480 color pixels, and it can be programmed
through a serial port. Another embedded vision system, SRV-1 Blackfin (Surveyor
2012), is shown in Figure 4.1b, and it employs a powerful digital signal processor for
vision algorithms. It has a resolution of 640 × 480 with plenty of I/O options. The
advantage of these systems is their low cost, small size, and programmability. Their
software is open source, that is, the source code and many fundamental image-pro-
cessing algorithms are readily available. If a robot is controlled by an embedded PC
such as PC104 or a notebook computer, a simple webcam can be utilized as a vision
unit (Figure 4.1c). In all these systems, a video signal is delivered to the host system
through various means such as USB, RS-232, or wireless connection.

4.3  IMAGE FORMATION

Image formation comprises three major components as illustrated in Figure 4.2. The
first component is the illumination which makes the environment visible. The second
component is the optical system which transmits the illuminated scene onto a sensor
unit. The third component is the sensor unit which is made up of a matrix of photo-
sensors that responds to the light and transforms the image into an electrical signal.

Illumination: Illumination is the first step, and it directly affects the image quality,
which consequently determines the performance of the vision process. In industrial
applications, illumination is customized for the application. Back lighting, front light-
ing, and structured lighting are some of the illumination techniques that are used to
improve image quality, enhance the object features, and maximize the signal-to-noise
ratio. These illumination techniques improve the reliability of the vision algorithms
and reduce computation time by eliminating the need for many preprocessing algo-
rithms to enhance the image quality. On the other hand, mobile robots rarely use such
illumination techniques as they operate under available ambient light. It means that

Optical
system

Image
sensor Signal

Illumination

Object

FIGURE 4.2  Three components of image formation.

68 Practical Robot Design

they are likely to work with images of poor illumination and noise. Therefore, some
preprocessing is required to improve the image quality in software.

Optical system: A lens is the common optical tool for focusing an image on the
sensor array. An important parameter associated with this optical system is its focal
length. The focusing property of a lens is the result of light waves having a higher
velocity of propagation in air than in glass or other optical material. The lens con-
verges the light rays on a point known as focal point (see Figure 4.3). The distance
from the lens to the focal point f is also known as the focal length. In other words,
the focal length is an indicator of the convergence power of a lens. A smaller f value
indicates more severe convergence; it also means a wider angle of view. For instance,
a 28 mm lens has a wider angle of view then a 50 mm lens. If an imaging sensor or
photographic film is placed at the focal point as shown in Figure 4.3, then we can get
a sharp image of the distant object. However, if an object is at near distance to the
lens as shown in Figure 4.4, then a relation to the focal length is defined in terms of
distance of the lens to the object, Do, and distance of the lens to the image plane, Di,
using the Gaussian lens formula

	

1 1 1
f D Di o

= +
	

(4.1)

Assume that a camera system is using a 35 mm lens. If the object is placed at a
distance very far from the lens, that is, Do = ∞, then the image distance will be at the
focal point f = Di. However, if the object is at 1 m distance, then we get

	

1
35

1 1
1000

36 26
mm mm

or mm= + =
D

D
i

i .

This result implies that the lens has to be shifted 1.26 mm away from the sensor
so that a sharp image of it appears on the sensor surface. The cameras that we intend
to use in our robotic applications are simple, inexpensive cameras; naturally, they do
not have a built-in autofocus mechanism. In other words, the lens has to be focused

f

Normal vector of the
surface

FIGURE 4.3  Path of light rays through a lens.

69Robot Vision

manually up to a certain range once, and it will remain the same during the entire
operation of the robot whether it is facing an object at a 10 or 100 cm distance.

In Figure 4.4, we can see that the size of the object image formed on the sensor
is determined by the focal length of the lens. A proper focal length depends on the
sensor size. For instance, typical sensor sizes used in charge-coupled device (CCD)
or complementary metal–oxide–semiconductor (CMOS) cameras are 4.9 × 3.7 and
8.8 × 6.6 mm. Now, let us compare these sensors with a full frame sensor, which
is the size of photographic film of 36 × 24 mm, used in the latest DSLR cameras.
Apparently, a lens used in a CCD or CMOS camera has to converge a lot more to
cover the same area of a full frame DSLR lens. For instance, the focal length of
a lens, equivalent to 18 mm with 90° view angle, used in a photographic camera
should be a lot smaller in CCD or CMOS cameras used in our application. In this
case, a proper lens can be chosen using the magnification ratio, which is defined as

	
M

H
H

M
D
D

i

o

i

o

= =or
	

(4.2)

Here, Ho indicates the size of the real object and Hi indicates the size of its image.
By substituting the magnification ratio in Equation 4.1, we get

	
f

D M
M

o= +1 	
(4.3)

If M is considerably <1, then we can approximate

	
f

D H
H
o i

o

≈
	

(4.4)

Di

Image planeObject plane

Do

Ho

Hi

FIGURE 4.4  Magnification factor of lens.

70 Practical Robot Design

The above formula can be used to calculate a suitable lens. For example, the sen-
sor size of SRV-1 Blackfin (Surveyor 2012) used in the robot shown in Figure 4.1b is
4.14 × 3.29 mm. If a 30 cm tall object is to be imaged on this sensor from a distance
of 50 cm, the magnification ratio will be

	
M = =3 29

300
0 011

.
.

and the focal length will be

	
f = ×

+ =500 0 011
1 0 011

5 49
.

.
. mm

A suitable lens should be <5.5 mm. The default lens on SRV-1 is 3.6 mm; hence,
the object will fit into the image frame.

The other parameters that play an important role in image formation are relative
aperture, f-number, and depth of field. The light-gathering capabilities of a lens are
determined by the f-number, which is the ratio of the focal point and the lens aper-
ture (largest usable diameter). Lenses manufactured for photography come with a
pupil mechanism assembled in front of them, and the amount of light that will pass
through the lens depends on the diameter of the pupil mechanism (for a fixed focal
point). For example, a 50 mm lens with an aperture setting of 4 will have a pupil
diameter of 12.5 mm as calculated below:

	
f

f
D D

Dnum hence= = =, .4
50

12 5

The light-gathering capability of a circular lens is proportional to the square of its
diameter. Therefore, to receive twice the amount of light for a fixed focal point, the

aperture has to be 2 or 1.141 times larger (Hecht 2002). So, typical f-numbers are

a sequence of the powers of 2 , that is, f f f f/ , / , / , / ,2 2 2 2
0 1 2 3

… . For
convenience, these numbers are approximated as 1, 1.4, 2, 2.8, 4, 5.6, The lower
f-number means a larger aperture; hence, more light will pass through the optical sys-
tem. In contrast, higher f-numbers will limit the amount of light passing through the
lens. Another effect of changing the aperture is the depth of the field, or the difference
between the farthest and nearest points in focus. Simply, the depth of field is larger
for a shorter focal length and for a higher f-number. By varying the f-number, we are
able to manipulate the depth of the focused area in the image as well as the contrast
between the object and the background. However, the simple camera systems utilized
in game robotics usually come with a fixed f-number allowing a suitable depth of field.

Image sensing: The image-sensing unit is a solid-state sensor array that trans-
forms the image formed by the optical system into an electrical signal. The sen-
sor array is made of photosensitive sensors, namely pixels. The number of pixels
that are fit into a sensor array naturally affects the resolution and the quality of
the image obtained. The pixel size of the sensors used in the latest digital cameras

71Robot Vision

reached 7360 × 4912 pixels (approximately 36 megapixels). A large number of pixels
naturally means more computation time and large memory requirement. The typical
camera resolution used in robotics application is about 640 × 480 pixels.

CCD image sensors have long been the dominant imaging sensor in most of the
state-of-the-art vision units. A CCD image sensor is simply a matrix of photosen-
sors, with adequate circuitry, which brings out the signal from each column of pix-
els in serial form. Recently, CMOS image sensors have been developed drastically.
CMOS sensors are now widely used in consumer electronics, such as digital cameras
and mobile phones. Consequently, they are also used in robot vision. The operation
of these sensors basically has two phases. The first stage is the charging of individual
sensors proportional to the intensity of light focused on them, and the second stage
is to transfer the charge information to the camera output as an electrical signal. A
major advantage of CMOS sensors is that they do not need a clock synchronization
and relevant circuitry to deliver image data since each pixel data is transmitted in
parallel. They also consume significantly less power, which is favorable in robot-
ics. It is obvious that future developments in image-sensing technology will only
benefit robot vision applications more. For instance, color image processing was not
common in early systems because of the high cost. Recent advances in imaging
technology brought color image processing into robotics. Since color is one of the
distinguishing features of objects, in the following, we will also discuss color detec-
tion and tracking techniques, which are very useful in robotic games.

4.4  DIGITAL IMAGE-PROCESSING BASICS

A visual scene is a continuous function of reflectance, which is an analog quantity.
Such representation of image cannot be processed in a computer since computers
are intrinsically discrete. A digital image on the other hand represents the scene in a
sampled and quantized form. Sampling is naturally done at the image sensor during
the sensing, and the scene is divided into a matrix of pixels. The sampling density,
that is, the number of sampling points per unit measure, is the spatial resolution and
is usually measured in terms of the number of pixels in both horizontal and vertical
directions such as 640 × 480 pixels as mentioned earlier. Quantization is done while
converting the electrical charge of photosensors into integer values using analog-to-
digital converters. The resulting digital image is a matrix of numbers representing
the scene in terms of gray levels, RGB, YUV, or HSV color formats. In summary, a
digital image is a two-dimensional array of values representing the reflectance func-
tion of the actual scene. In the following sections, digital images will be expressed in
a discrete function form of f(x,y).

4.4.1 C olor and Color Models

Color is an important feature that makes the identification of objects and shapes
easier in robotic games. It also provides plenty of information that can be used to
analyze an image. The color of objects is primarily determined by their reflectance
properties. Our sensors (either human eye or CMOS sensors) are able to respond to
reflected light rays.

72 Practical Robot Design

A color model is a standard way of describing colors, and they are typically defined
in a three-dimensional coordinate system. Three-dimensional space also shows all
the possible colors that can be constructed by mixing primary colors from three
axes. Color models are regulated toward specific hardware or software applications.

RGB: The RGB model is one of the most common color model employed in many
digital cameras, color monitors, and most video cameras. In this model, an image
is made of three independent image planes. These three image planes represent the
primary colors: red, green, and blue. All the colors in the image are defined by com-
bining these three primary colors. The Cartesian coordinate system shown in Figure
4.5 represents the geometry of the RGB color model for specifying colors. A color is
made up of different amounts from these three axes. For example, grayscale lies on
the line that connects white and black points. As it can be seen in the figure, all the
color components have the same magnitude along this line.

Grayscale: A digital RGB image is composed of three matrices to represent a
scene where each matrix represents one primary color channel. Naturally, a color
image requires large memory space, and processing them requires longer computa-
tion times. Therefore, many robot vision systems still use monochrome images. The
light intensity is represented with different shades of gray. The number of gray levels
in grayscale is called the gray-level resolution of the system, and it is bounded by
two gray levels, black and white. Black and white correspond to the minimum and
the maximum measurable intensity level, respectively. Typically, 256 discrete gray
levels are used, each of which can be easily represented by a single byte; hence, a
monochrome image needs a single matrix of grayscale values. However, if the cap-
tured image is in color, then it can be converted from the RGB image to grayscale
image by simply averaging three color components as follows:

Blue (0,0,1)

Green (0,1,0)

Red (1,0,0)
Yellow

White

Black
Gray

 sc
ale

Cyan

Magenta

FIGURE 4.5  The RGB color cube where each axis represents one primary color.

73Robot Vision

	
I x y

R x y G x y B x y
gray (,)

(,) (,) (,)= + +
3 	

(4.5a)

Another method of grayscale conversion gives more weight to the green compo-
nent (since the human eye is more sensitive to green) then others when averaging:

	
I x y R x y G x y B x ygray (,) . (,) . (,) . (,)= + +0 299 0 587 0 114

	 (4.5b)

Equation 4.5b simply gives a measurement of brightness and would be suitable if
brightness is a feature to be exploited.

YUV: When the vision application is based on analyzing colors, it needs to be
robust against alterations in illumination. In that case, using YUV color space is
more practical since the color components and the illumination are represented sepa-
rately. The U and V channel represent color, and the Y channel represents brightness.
The conversion between the RGB and the YUV color space is also defined with a
linear transformation:

	

Y x y R x y G x y B x y

U x y R x

(,) . (,) . (,) . (,)

(,) . (

= + +
= −

0 299 0 587 0 114

0 147 ,,) . (,) . (,)

(,) . (,) . (,)

y G x y B x y

V x y R x y G x y

− +
= −

0 289 0 436

0 615 0 514 −− 0 101. (,)B x y 	

(4.6)

HSV: Recently, the HSV color model has been more widely used in robotics, in
particular when identifying objects based on their colors. It is effective in filtering
out unreliable color information in low illumination or low saturation areas of the
image (Cheng and Sun 2000). The color space transformation from RGB to HSV can
be done with an algorithm as described in Russ (2002).

The conversion between color spaces can be done simply using MATLAB®
functions. For instance, “rgb2hsv” converts RGB to HSV. Similarly, the func-
tion “rgb2gray” converts RGB color values to grayscale, and the function
“rgb2ycbcr” converts to YCbCr color space (or YUV color space).

4.5  BASIC IMAGE-PROCESSING OPERATIONS

The very first step of the vision process deals directly with pixels. The objective of
such operations would be to improve the quality of image (such as increasing the
contrast, reducing the noise level, etc.) or finding pixels that contain some object
features such as corners, colors, edges, and so on. As mentioned, a distinct feature
of the basic image-processing algorithms is that the input of the algorithms and the
outputs are both image pixels.

The basic image-processing techniques broadly manipulate image in the spatial
or frequency domain. The spatial domain algorithms deal with image itself and oper-
ate on pixels directly. The frequency domain operations require the image to be
transformed to the frequency domain by Fourier transform. In the following, we
will present spatial domain operators as they are commonly used in robot vision.
However, sometimes the frequency domain methods are preferred to speed up com-
putation time, especially for large images.

74 Practical Robot Design

The spatial operators can be point type or neighborhood type. The point-type
operators deal with individual pixels such as thresholding and contrast stretching.
The neighborhood operations, also known as group operations, make use of immedi-
ate neighbors of a processed pixel. This group of operators frequently employs a con-
volution mask (other common names for convolution mask are templates, windows,
and filters). In the following sections, we will present some of the common spatial
domain operators and algorithms used in image processing. However, an important
mathematical tool used in these operations is two-dimensional convolution, and we
will describe it first.

4.5.1 C onvolution

The convolution operation is defined by the following function:

	

g x y f x m y n h m n
m M

M

n M

M

(,) (,) (,)
()/

()/

()/

(

= + + ×
=− −

+ −

=− −

+ −

∑
1 2

1 2

1 2

1))/2

∑
	

(4.7)

Here, f is the image matrix, h is the convolution mask (or template), and g is the
resulting image and they are all two-dimensional arrays. By observing the above equa-
tion, we see that matrix h scans through the entire image while performing a series of
multiply and add operations. Figure 4.6 illustrates the convolution operation graphi-
cally. The template used in this illustration is a 3 × 3 matrix. It is superimposed upon
the image, and each image pixel is multiplied with the corresponding weights in the
mask. The resulting nine values from these multiplications are summed to produce the
new pixel value for the output image. Referring to Figure 4.6, the new value for the
pixel at position x = 1 and y = 1 is 11 + 7 + 10 − 3 − 6 − 7 = 12. The operation contin-
ues by shifting the mask to the next pixel and by scanning the entire image sequentially.

From the figure, we can see that if we align the center of the template with top left
most corner of the image, part of the template will fall outside the image boundaries.
This problem will arise when calculating convolution at image borders. The typical

1 1 1

0 0 0

–1 –1 –1

12 ...

x
11 7 10

4 9 2

3 6 7

6 1 7

1 1 8

7 3 9

12 25 43

23 34 44

14 55 33

23 42 51

18 14 28

28 23 14

y

0 1 2 3 4 5

0

1

2

3

4

5

6×6 input image f (x,y)Convolution mask h (x,y) 6×6 output image g (x,y)

FIGURE 4.6  Two-dimensional convolution of image with a mask.

75Robot Vision

solution for this is to leave the borders blank. Another approach is to assume that
the image is periodic and it gets the missing pixel values from a cyclic shift from the
opposite border. For the example image in Figure 4.6, convolution starts from x = 1
and y = 1 and finishes at x = 4 and y = 4. For the larger templates, we may need to
leave out border pixels accordingly. For instance, if the template is 5 × 5, then two
rows and columns of border pixels are left blank.

The program shown in Figure 4.7 is a rough illustration of convolution operation
in MATLAB. It can be easily translated to C++ or any other programming language.
In MATLAB, two-dimensional convolution can also be done by simply calling the
“conv2” or “imfilter” functions.

FIGURE 4.7  Convolution of image with a mask.

76 Practical Robot Design

4.5.2 S moothing Filters

Smoothing eliminates noise and other fine changes and variations in the image due
to quantization, environmental effects, or poor data-acquiring conditions. It is neces-
sary to eliminate fine details in the image, particularly when we are searching large
shapes and forms in the image.

Mean filter: Mean filter, also known as moving average filter, is the simplest
approach in image smoothing. In this operation, a pixel is replaced with the average
of the pixels in its m × m neighborhood. A mean filter can be realized using convolu-
tion operator using a template with equal weights. For example, a 3 × 3 template for
mean filter is defined as

	

h x y(,) =
















1 9 1 9 1 9

1 9 1 9 1 9

1 9 1 9 1 9

/ / /

/ / /

/ / /
	

(4.8)

Convoluting the image with this mask blurs the image and suppresses the noise.
Consequently, it also erodes fine details in the image; since it is as a low-pass filter.
For more severe blurring effects, the dimension of mask size, m, is increased.

Gaussian filter: The Gaussian filter employs Gaussian function in calculating
weights in filter kernel. The mask obtained in this method has higher weights for pixels
at the center pixel and lower weights at the edges. The Gaussian function is defined as

	
G x y

x y

(,) =
− +1

2

2 2

22

ps
se

	
(4.9)

where x,y are the mask coordinates and σ is a standard deviation of the Gaussian
distribution. Once the filter mask is determined using Equation 4.9, it can be imple-
mented on the image using convolution operator. The template for a 5 × 5 Gaussian
filter is given as

	

h x y(,) =























1
53

0 1 2 1 0

1 3 4 3 1

2 4 9 4 2

1 3 4 3 1

0 1 2 1 0
	

(4.10)

In robotic application, edges of objects, obstacles, or a robot path can be detected
more reliably after a Gaussian smoothing. More explicitly, when the application
requires only the global edges to be detected, then standard deviation is increased.
For example, Figure 4.8 shows the resulting effect of smoothing filters for a test
image. An edge-detection filter, which will be discussed in the following sections,
can detect the edges of objects. Figure 4.8b shows the result of an edge detection
algorithm where white pixels indicate edge points over the image and in this example
edge detection produced many minor details, and it is not needed. However, after

77Robot Vision

smoothing the image with a Gaussian filter and then applying the edge detector, we
get the major boundaries of the object.

Median filter: In some applications, we would like to eliminate noise while keep-
ing the sharp edges and fine details of the objects in the image. The mean filter and
Gaussian filters blur the image, while eroding the sharp edges and other details. To
overcome this problem, a median filter is employed. The median filter is a nonlinear
approach, and it reduces the noise with minimal effect on the edge pixels. When we
implement a median filter of m × m neighborhood, we sort all the pixels in ascend-
ing or descending order and take the central one as the new value for the resulting
image. Figure 4.9 depicts an example to 3 × 3 median filtering. Sorting pixels in the
shaded area will result in {11, 10, 9, 8, 7, 6, 4, 3, 2}, then the pixel value replacing
the center pixel will be 7. This operation will continue by scanning the entire image
from left to right and top to bottom. Figure 4.10 shows a MATLAB code for com-
paring all the image smoothing filters described above.

4.6  ALGORITHMS FOR FEATURE EXTRACTION

To identify objects in a scene, we need to identify certain features of them. The
main objective of this section is to describe some of the essential algorithms that can

FIGURE 4.8  An application of Gaussian smoothing. (a) Original image. (b) The result of
edge detection. (c) Smoothed image with 13 × 13 Gaussian filter with σ = 4.5. (d) Edge detec-
tion after Gaussian smoothing where only major object boundaries are detected.

78 Practical Robot Design

deliver object features in an image. There are plenty of algorithms that fall into this
category. Choosing a proper set of algorithms is the role of the application developer.
Basic algorithms like thresholding can be used for segmenting an image into object
and background; on the other hand, more complex algorithms can deliver specific
object features such as corners, lines, circles, and so on.

4.6.1 T hresholding

Thresholding is one of the most basic image-processing operations. It is also an
elementary tool used in image segmentation. It segregates the image into uniform
regions, mainly to mark objects or features and background pixels, based on some
threshold value. The algorithm scans the image. If a pixel is greater than the thresh-
old value, T, it is marked as “1” to indicate the object or it is marked as “0” to indicate
the background or vice versa. The output of a threshold operator is a binary picture
containing two levels of intensity. Briefly, we create a threshold image by defining

	
g x y

f x y T

f x y T
(,)

(,)

(,)
=

≥
<





1

0 	
(4.11)

The above definition can be quickly altered to separate a range of gray values
between T1 and T2 in an image. This is known as multilevel thresholding and is
described as follows:

	

g x y

f x y T

T f x y T

f x y T

(,)

(,)

(,)

(,)

=
≥ >
≥ ≥

>







0 0

1

0

1

1 2

2 	

(4.12)

7

x

11 8 10

4 9 2

3 6 7

6 1 7

1 1 8

7 3 9

12 25 43

23 34 44

14 55 33

23 42 51

18 14 28

28 23 14

y

0 1 2 3 4 5

0

1

2

3

4

5

Input image Output image

FIGURE 4.9  Example of 3 × 3 median filter.

79Robot Vision

An important issue in thresholding is to choose a proper threshold value to
optimally segregate an object from the background. Often, a single global thresh-
old value is applied to the whole image. However, objects in the image may not
have uniform intensity due to various reasons such as poor illumination. In this
case, a global threshold value may not produce a good result. To overcome this

FIGURE 4.10  MATLAB code for smoothing filters.

80 Practical Robot Design

problem, there are various techniques developed, one of them being adaptive
thresholding (Haralick and Shapiro 1992). In adaptive thresholding, a threshold
value for each pixel in the image is calculated. There are a number of ways to
calculate this threshold value, although many of them are based on using smaller
overlapping image regions. It is more likely that smaller image regions will have
nearly uniform illumination. One of the adaptive algorithms is known as the
Chow and Kaneko method (Chow and Kaneko 1972). After dividing the image
into subimages, histograms of these subimages are analyzed, and an optimum
threshold is obtained for each region. Since the subimages overlap, a threshold
value for each pixel is then obtained by interpolating the thresholds found for the
subimages. Another approach, which is a lot less computationally intensive, is by
a statistical analysis of the local neighborhood of each pixel. The calculation of
threshold value based on this statistical analysis can be as simple as the mean,
median, or the average of the maximum and minimum values of the local inten-
sity distributions.

Figure 4.11 shows the implementation of the threshold operator to segregate object
from background. The available MATLAB command for this purpose is “im2bw.”
Figure 4.12 shows a test image and the output image after thresholding.

FIGURE 4.11  MATLAB code for threshold operation.

81Robot Vision

4.6.2 E dge Detection

Edge detection is one of the fundamental operators in image processing and com-
puter vision. Typically, in edge detection, the gradient of image, which is change
in intensity, is measured as an indicator of edges using a “gradient operator.” The
basic idea employed in most edge-detection techniques is the computation of a local
derivative operator. Ideally, an edge can be modeled as a step function although this
is unlikely for natural images. Therefore, an edge is usually modeled as a ramp.
The first-order derivative of a region with uniform intensity will be zero. If there is
a change in intensity, then the result of the first-order derivative will be nonzero. If
we calculate the second-order derivative, the result will be nonzero at the beginning
and at the end of an intensity transition. Referring to the magnitude of the first-
order derivative, we can detect the presence of an edge. Utilizing the second-order
derivative, we can determine the direction of change as well. The gradient of image
is defined as

	

G f x y
G

G

f
x
f
y

x

y

((,)) =








 =



















d
d
d
d 	

(4.13)

To identify edges, calculating the magnitude of this vector G is satisfactory.

	
G f x y G Gx y((,)) = +2 2

	
(4.14)

Gradients Gx and Gy can be obtained by convoluting the image with two masks
known as Sobel operators, and they are illustrated in Figure 4.13 (see Fu et al. (1987)
and Gonzales and Woods (1992) for further reading on this topic).

The edge-detection algorithm based on the second-order derivative of the image
is known as the Laplacian operator. The second-order derivative of the image f(x,y)

FIGURE 4.12  (a) Original image. (b) Thresholded with a global value at T = 128.

82 Practical Robot Design

with respect to x and y directions is defined as

	
∇ = +2

2

2

2

2
f x y

f x y
x

f x y
y

(,)
(,) (,)d
d

d
d 	

(4.15)

By definition, the first-order derivatives in the x and y directions, considering that
the smallest increment in x and y direction is 1 unit, will be as follows:

	

d
d

f x y
x

f x y f x y(,) (,) (,)= + −1
1

	

d
d

f x y
y

f x y f x y(,) (,) (,)= + −1
1 	

(4.16)

The second-order derivative of image f(x,y) in the x direction will be

d
d

2

2

1
1

2 1 1f x y
x

f x y f x y f x y f x y f x(,) (,) (,) [(,) (,)] [(,= ′ + − ′ = + − + − + yy f x y) (,)]−
1

	

d
d

2

2

2 2 1
1

f x y
x

f x y f x y f x y(,) [(,) (,) (,)]= + − + +
	

(4.17)

Similarly, the second-order derivative for the y direction will be

	

d
d

2

2

2 2 1
1

f x y
y

f x y f x y f x y(,) [(,) (,) (,)]= + − + +

	
(4.18)

Using the shifting property, we replace x x x x x x→ − + → + → +1 1 2 1
and y y y y y y→ − + → + → +1 1 2 1. We now obtain

d
d

2

2
1 4 1 1 1

f x y
y

f x y f x y f x y f x y f x y
(,)

(,) (,) (,) (,) (,)= + − + − + + + −
	

(4.19)

Computation of the second-order derivative of a pixel at position x and y is defined
with Equation 4.18. This equation can be transformed in a convolution mask as

–1 –2 –1

0 0 0

1 2 1

Gx

–1 0 1

–2 0 2

–1 0 1

Gy

FIGURE 4.13  Sobel operators.

83Robot Vision

illustrated in Figure 4.14. The Laplace edge detector requires only one mask and
finds edge pixels in a single convolution.

The algorithms described above give a starting point for edge-detection tech-
niques. Other common edge detectors are Prewitt’s edge detector, Robert’s edge
detector, and Canny’s edge detector (Gonzales and Woods 1992). The MATLAB
code in Figure 4.15 illustrates edge detection using Sobel operators. The output of
the algorithm for a test image is also shown in Figure 4.16. The same result can be
achieved using the “edge” function from MATLAB image-processing library.

4.6.3 C olor Detection

Color is one of the important features of objects, and it is highly utilized in game
robotics. For example, when a soccer robot is chasing a ball or a humanoid robot is
performing a penalty kick, exploiting the color feature of the objects is very con-
venient. A straightforward method of color detection is done by using HSV color
space. Normally, an image is captured in RGB color space first then converted to
HSV color space. Hue specifies the intrinsic color, saturation defines the purity of
the color, and value gives a measure of the brightness of the color. Subsequently,
the detection of a particular color is performed by referring to the hue and value
components of the object. Pixels within a certain range of object hue and value
are marked as white pixels, and the remaining pixels are marked as black. Figure
4.17 shows an example of MATLAB code for color detection. The HSV values of
the tennis ball are measured as H = 0.33, S = 0.38, and V = 0.96. Threshold values
are chosen as ±30% of hue and value components. Figure 4.18 shows the detection
result.

Commonly, inexpensive and less powerful processors are used for image pro-
cessing in game robotics. The processor speed being a constraint, a fast method
for color segmentation is necessary. A good example of such an algorithm is given
in Leclercq and Bräunl (2001) where the authors present a color segmentation and
an object localization method using a look-up table to speed up pixel classification
in color classes.

f (x–1,y+1) f (x,y+1) f (x+1,y+1)

f (x–1,y–1) f (x,y–1) f (x+1,y–1)

f (x–1,y) f (x,y) f (x+1,y)

0 1 0

1 –4 1

0 1 0

FIGURE 4.14  Pixel coordinates and corresponding mask for the Laplacian operator.

84 Practical Robot Design

FIGURE 4.15  MATLAB code for implementing Sobel edge detector.

FIGURE 4.16  An example of edge detection with Sobel operators. (a) Original picture.
(b) Result after edge detection.

85Robot Vision

FIGURE 4.17  MATLAB code for detecting colors using HSV color space.

86 Practical Robot Design

4.7  SYMBOLIC FEATURE EXTRACTION METHODS

A common property of the algorithms discussed so far is that they take an image as input
and produce another image as output. The pixels in the output image indicate certain
object features detected in the input image. For example, nonblack pixels in Figure 4.18b
imply that a yellow-colored object is detected in that region. Similarly, white pixels in
Figure 4.16 indicate the edges of objects found in the image. However, these results do
not say much about intrinsic object features. For example, on the basis of these results,
a robot will not know whether the objects are circles or straight lines, their location,
their size, and any other useful information. There are more elegant algorithms that
can deliver such features. Consequently, the output of these algorithms is not pixels, but
object parameters in symbolic form. In the following, we will describe the Hough trans-
form algorithm, which is a popular method used for detecting useful object features.

4.7.1  Hough Transform

The Hough transform identifies linear line segments (Hough 1962). It has been
extended to detect circular shapes in an image and any other arbitrary shape that can

FIGURE 4.17  (continued) MATLAB code for detecting colors using HSV color space.

FIGURE 4.18  (a) Test image with yellow- and orange-colored tennis balls. (b) Detected
yellow object in the image.

87Robot Vision

be represented by a set of parameters (Ballard 1981). In general, the computation of
Hough transform has two phases. The first phase is a voting process for collecting
evidence. The result of voting is accumulated in a parameter space. In the second
phase, parameter space is elaborated and strong candidates are selected as objects
in the image.

We first look into a well-known line detection algorithm. The voting phase
involves calculating the prospective line candidates, which are represented in terms
of parameters. The typical Hough transform method employs a polar form of lines.
Figure 4.19a illustrates a point p1, which is along a straight line in a given image.
This point can be defined in polar form by

	 r = x cos θ + y sin θ	 (4.20)

Here, θ is the angle of the line normal to the line segment in the image, and r is
the distance to origin. It is obvious that the range for θ is up to 180° and r is limited to

r n m= +2 2 for n × m image. During the voting phase, a point along the line will
map to a curve in parameter space using Equation 4.20. Two points along the same
line will intersect at the parameters space. This intersection point also describes the
line that is connecting them. As shown in Figure 4.19b, the intersection point is now
having two votes for points p1 and p2. When we continue these calculations for all
the points along the line segment in the image, we will observe a large vote count
in the parameter space at the intersection point, which clearly implies a linear line
segment and its parameters.

(a)

Parameter spacer

Curve
for p1 Curve

for p2x

Imagey

r

p1

p2

Intersection of
p1 and p2

(b)

θ

θ

FIGURE 4.19  (a) A line in the image and polar form representation in Hough transform. (b)
Curves build up in parameter space due to the voting process for each pixel along the line.

88 Practical Robot Design

FIGURE 4.20  MATLAB code for Hough transform.

89Robot Vision

The MATLAB code for the Hough transform is given in Figure 4.20, which is
adapted from C language code given in Pitas (2000). The calculation of parameters
and mapping into an accumulator array is done by Hough function call. Once the
accumulator array is filled, the line segment extraction is done by simply threshold-
ing the accumulator array and selecting strong peaks as linear line candidates. To
illustrate better, they are superimposed to the image in the second part of the pro-
gram. An example image and the processing result are also shown in Figure 4.21.

FIGURE 4.20  (continued) MATLAB code for Hough transform.

90 Practical Robot Design

The Hough transform algorithm presented above is also extended for detecting
circles in an image. The equation for a circle is given by

	 r x x y y2
0

2
0

2= − + −() () 	 (4.21)

The above equation defines the locus of points with a radius of r from a given
center point (x0, y0). The first phase of the Hough transform is the same as before,
but this time voting is done for the above equation, which is defined in a parametric
form as

	 x x r0 = − cos()q

	 y x r0 = − sin()q 	

(4.22)

The MATLAB code shown in Figure 4.22 illustrates the two phases of Hough trans-
form calculations for detecting an example circle of 38 pixels radius. In the accumulator
space, the votes counted for such a circle will appear as the highest peak as shown in

(a) (b)

(c) (d)

400

300

200

100
0

800
600

400
200

0 0
50 100

150
200

FIGURE 4.21  (a) Original picture. (b) Edge picture. (c) Strong candidates for linear line
segments detected with Hough transform and superimposed on the image. (d) Hough space.

91Robot Vision

FIGURE 4.22  Hough transform for detecting circles.

92 Practical Robot Design

Figure 4.23b for the test image shown in Figure 4.23a. The position of these peaks in
the accumulator space also shows the center coordinates of the circles. In this example,
the nearest ball to the camera is detected. When we repeat the Hough transform calcula-
tions for a radius of 36 pixels, we are able to detect the ball on the left-hand side of the
image as shown in Figure 4.23d. Its radius is smaller since it is slightly further away than
the ball in front. In robotic games, the size of the circular objects in the field, pellets,
balls, and so on are prefixed; hence, the possible radius of a circular object to look for
is usually known to the robot developer. For example, the ball shown in Figure 4.23 is
used in robot soccer games. By manipulating the code in Figure 4.22 and scanning for a
range of radius and ranking corresponding peak votes in the accumulator space, we can
enhance this algorithm to detect any circular object in the image.

4.7.2 C onnected Component Labeling

Connected component labeling is a fundamental and frequently used technique for
categorizing chunks of pixels (or blobs) identified as object features. For instance, in
Figure 4.12, after a threshold operation, three blobs of white pixels are obtained. It
would be difficult to analyze these shapes and make a decision unless we provide a

FIGURE 4.22  (continued) Hough transform for detecting circles.

93Robot Vision

means to segregate one blob from another. The connected component labeling algo-
rithm identifies each blob and gives it a unique number. A typical definition of con-
nectivity is given as for every pair of vertices i and j, in an undirected graph P, if there
is a path from i to j, then the graph P is defined as connected (Haralick and Shapiro
1992). The objective of the connected component labeling algorithm is to find such
connected pixels and assign them a label so that all the connected pixels share the
same label. Hence, a collection of four or eight adjacent pixels with the same intensity
value will be grouped into a connected region. In four-connected pixels, neighbors of
a pixel will be touching horizontally and vertically. A pixel at (x,y) is four-connected
to pixels at (x + 1,y), (x − 1,y), (x,y + 1), and (x,y − 1). Similarly, in the case of eight-
connected pixels, the neighbors of a pixel will be connected horizontally, vertically,
and diagonally. Hence, a pixel at (x,y) is eight-connected to pixels at (x − 1,y − 1),
(x,y − 1), (x + 1,y − 1), (x − 1,y), (x + 1,y), (x − 1,y + 1), (x,y + 1), and (x + 1,y + 1). In
the example binary image (i.e., black and white image) shown in Figure 4.24a, a
pixel value of 0 indicates a black pixel and a pixel value of 1 indicates a white pixel.
Typically, the objects of interest are marked as white pixels. The connected compo-
nent-labeling algorithm will assign a unique number to each blob of white pixels that
are connected. We can conclude that this operation performs a transformation from
pixels to regions, which make the analysis of these regions a lot easier.

There are many connected component algorithms published in the literature.
A collection of classical methods is given in Haralick and Shapiro (1992), more

(a) (b)

150

100

50

0
600

400
200

0 0 200 400
600

800

(c) (d)

FIGURE 4.23  (a) The edge picture. (b) Hough space. (c) Strong candidate for a circle of
radius 38 is highlighted on the actual image. (d) Repeated calculations for a circle of radius
36 are highlighted on the actual image.

94 Practical Robot Design

recent techniques are described in Suzuki et al. (2003) and Hea et al. (2009).
Figure 4.25 shows the MATLAB function for an iterative connected component
labeling algorithm described by Haralick (1981). The algorithm has three phases;
at the initialization phase, a top down left to right scan is performed over the image
and each pixel with a value of 1 is given a unique label in an incremental fashion.
The next two phases are the iterative part of the algorithm, where a top down pass,
followed by a bottom up pass, are performed. At the first top down pass, the image
is scanned from top to bottom and left to right by replacing each pixel value by the
minimum value of its nonzero neighbors. Similarly, the bottom up phase image
is scanned from bottom to top and right to left by replacing each pixel value by
the minimum value of its nonzero neighbors. Iteration stops when no pixel value
change is performed during these passes. The MATLAB code shown in Figure
4.25 is an implementation of the iterative connected component labeling algorithm
for the illustration purpose. Nonetheless, in the following sections, we will employ
built-in MATLAB functions for connected component labeling such as “bwla-
bel” and “bwconncomp” for the same purpose. Figure 4.26 shows an example
image and connected component labeling result where the pixels of each blob are
replaced with the label given to that blob.

As we have seen above, the connected component algorithm produced regions
that are individually labeled. After this step, a number of properties of those regions
such as area, centroid, and boundaries can be obtained. Furthermore, many statisti-
cal properties such as mean and variance can be studied by referring to pixels in that
region in the original image. Let us take a look at the labeled image given in Figure
4.27 and study the region labeled as 1. By simply counting the pixels labeled as 1, we
obtain the area of that blob or region. In the example image, the area of an object,
labeled as 1, is 6 pixels. Summing up all the x coordinates of the pixels in this blob

0 0 0

0 0 1

0 0 0

0 1 0

1 1 0

1 1 0

0 0 0

2 2 0

2 2 2

0 0 0

0 3 3

0 0 3

Binary input image Result after labeling(b)

x
0 1 2 3 4 5

y

0

1

2

3

4

5

0 0 0

0 0 1

0 0 0

0 1 0

1 1 0

1 1 0

0 0 0

1 1 0

1 1 1

0 0 0

0 1 1

0 0 1

(a)

x
0 1 2 3 4 5

y

0

1

2

3

4

5

FIGURE 4.24  (a) Binary image with three blobs. (b) The result after component labeling
algorithm.

95Robot Vision

FIGURE 4.25  MATLAB code for two pass connected component labeling algorithm.

96 Practical Robot Design

and dividing it to the area, we obtain the x coordinates of its centroid and similarly
repeating it for y coordinates, we obtain the y coordinates of its centroid. For the
example image, the centroid of the blob (x0,y0) will be

	
x0

4 2 3 4 3 4
6

3 33 3= + + + + + = ≈.

FIGURE 4.25  (continued) MATLAB code for two pass connected component labeling
algorithm.

97Robot Vision

(a) (b)

x 104

3
2.5

1.5

0.5
1

0
600

400
200

0 200
400

600
800

0

2

(c)

FIGURE 4.26  (a) Original picture. (b) Binary image after threshold. (c) Connected compo-
nent output in 3D where each blob is labeled with a different number.

Max (x,y)
coordinates

0 0 0

0 0 1

0 0 0

0 1 0

1 1 0

1 1 0

0 0 0

2 2 0

2 2 2

0 0 0

0 3 3

0 0 3

Min (x,y) coordinates

x
0 1 2 3 4 5

y

0

1

2

3

4

5

Centroid
(x0,y0)

FIGURE 4.27  An example of labeled regions in an image and their properties.

98 Practical Robot Design

	
y0

0 1 1 1 2 2
6

1 16 1= + + + + + = ≈.

Furthermore, by finding the minimum x and y coordinates of the blob, we deter-
mine the top left most corner of the rectangle that encloses this region likewise by
finding the maximum of x and y coordinates, we obtain bottom right most corner
of it.

4.8  CASE STUDY TRACKING A COLORED BALL

In this section, we will put what has been discussed above into practical use. A
soccer-playing humanoid robot is expected to detect the ball in the field, approach
it, and perform a kick to score a goal. Detecting and locating the ball is done by the
vision unit of the robot. The flow of operations for this case study is demonstrated in
Figure 4.28 and the corresponding MATLAB code is given in Figure 4.29.

We first convert the captured image to HSV color space and separate the yellow
objects based on their hue and value range, which is determined experimentally. The
result is a binary image where white pixels imply yellow-colored objects. However,
before we perform connected component labeling, we try to eliminate single isolated
white pixels that are due to noise and reflections by using the “imerode” function,
which is also known as the erosion algorithm (Haralick and Shapiro 1992; Russ
2002). In the following, we perform “imfill” to fill out empty pixels in blobs, in
a process also known as the dilation algorithm (Haralick and Shapiro 1992; Russ
2002). These two steps make the blobs in the binary image more compact and tidy.
This way we can also speed up the labeling process by avoiding isolated insignifi-
cant pixels. The final stage is the analysis of blobs, which is done with the dedicated

Convert to
HSV

Segment
yellow objects

Label-detected
regions

Input RGB image
from camera

Send result to
controller for robot

action

Analyse
regions.

Ignore small
ones.

Find centroid
and the

bounding box.

FIGURE 4.28  An example set of operations for ball tracking based on its color.

99Robot Vision

FIGURE 4.29  MATLAB code for tracking an object based on its color.

100 Practical Robot Design

MATLAB function “regionprops.” It delivers the desired features of the labeled
regions such as area, centroid, and so on. The program given in Figure 4.29 captures
the image from a webcam attached to a PC and performs the color detection on the
captured image frame. To track an object continuously, the sequence of operations
shown in Figure 4.28 is put in a loop and repeated for each captured frame. Figure
4.30 shows the screen captures from the experiments with a tracking program. The
program is very simple using the image-processing library functions of MATLAB.
However, as we describe the details of the algorithms used in these functions, rewrit-
ing this code in C or other relevant programming language to implement on a stand-
alone system is rather straightforward.

4.9  SUMMARY

In this chapter, we have discussed the available hardware and software tools for robot
vision. By employing a low-cost camera and some fundamental image-processing

FIGURE 4.29  (continued) MATLAB code for tracking an object based on its color.

FIGURE 4.30  Screen shots from object tracking application.

101Robot Vision

techniques, we can provide a higher level of sensing to the robot. As camera and
image-processing tools are becoming more widely available and cheaper, their use
in robotic games is also becoming popular. Nevertheless, image-processing litera-
ture encompasses a huge number of algorithms and techniques. In this chapter, we
presented the fundamental techniques that can provide a quick start in realizing a
vision unit for the robot.

REFERENCES

Ballard, D.H. 1981. Generalising the Hough transform to detect arbitrary shapes. Pattern
Recognition 13:111–122.

Chen, K.H. and Tsai, W.H. 1997. Vision-based autonomous land vehicle guidance in out-
door road environments using combined line and road following techniques. Journal of
Robotic Systems 14:711–728.

Cheng, H.D. and Sun, Y. 2000. A hierarchical approach to colour image segmentation using
homogeneity. IEEE Transactions in Image Processing 9:2071–2082.

Chow, C.K. and Kaneko, T. 1972. Automatic boundary detection of the left ventricle from
cineangiograms. Computers and Biomedical Research 5:388–410.

CMUCAM 2012. http://www.cmucam.org/projects/cmucam4/
DeSouza, G.N. and Kak, A.C. 2002. Vision for mobile robot navigation: A survey. IEEE

Transactions on Pattern Analysis and Machine Intelligence 24:237–267.
Fu, K.S., Gonzales, R.C., and Lee, C.S.G. 1987. Robotics Control, Sensing, Vision and

Intelligence. New York: McGraw-Hill.
Gonzales, R.C. and Woods, R.E. 1992. Digital Image Processing. Reading, MA: Addison-Wesley.
Haralick, R.M. 1981. Some neighbourhood operations. In: Real Time/Parallel Computing

Image Analysis, eds. M. Onoe, K. Preston and A. Roselfeld. New York: Plenum Press.
Haralick, R.M. and Shapiro, L.G. 1992. Computer and Robot Vision. Reading, MA:

Addison-Wesley.
Hea, L., Chao, Y., Suzuki, K. and Wu, K. 2009. Fast connected-component labelling. Pattern

Recognition 42:1977–1987.
Hecht, E. 2002. Optics. 4th edition. San Francisco: Addison-Wesley.
Hough, P.V.C. 1962. Methods and means for recognizing complex patterns. U.S. Patent

3,069,654.
Kosaka, A. and Kak, A.C. 1992. Fast vision-guided mobile robot navigation using model based

reasoning and prediction of uncertainties. Computer Vision and Image Processing:
Image Understanding 56:271–329.

Kumagai, M. and Emura, T. 2000.Vision based walking of human type biped robot on undulat-
ing ground. Proceedings of International Conference on Intelligent Robots and Systems,
Takamatsu, Japan, Vol. 2, 1352–1357.

Leclercq, P. and Bräunl, T. 2001. A color segmentation algorithm for real-time object localiza-
tion on small embedded systems. Lecture Notes in Computer Science 1998:69–76.

Pitas, I. 2000. Digital Image Processing Algorithms and Applications. New York: John Wiley
and Sons.

Russ, J.C. 2002. The Image Processing Handbook. Boca Raton, FL: CRC Press.
Surveyor 2012. http://www.surveyor.com/blackfin/
Suzuki, K., Horiba, I. and Sugie, N. 2003. Linear-time connected-component labelling based

on sequential local operations. Computer Vision and Image Understanding 89:1–23.

103

Basic Theory of Electrical
Machines and Drive
Systems

This chapter presents a brief description of electrical machines used in robots. The
term “electrical machine” defines devices that convert mechanical energy to elec-
trical energy or vice versa. In this chapter, we will cover the basic concepts and
describe the relevant issues required to choose a suitable system for powering robots.
Since the requirements of motion differ from robot to robot, it is imperative to know
the particular requirements of a robot before choosing a drive system. For example,
a robot designed to work in a car-manufacturing factory may need the same speed
requirements in all the joints, but may need different requirements of torque depend-
ing on the joint. (Torque is defined as the rotational force that rotates a shaft and it
is usually measured in newton-meters. In comparison, force pushes along a straight
line and is measured in newtons.) The actuators at the robot end effector may need
only relatively less torque when compared to the base motion joints. On the other
hand, a humanoid robot may need high torque in its “roll” joints (joints that sway the
robot sideways), however, rotating with less speed. The knee joints may have exactly
opposite requirements.

The main objective of this chapter is to provide a starting point for the robot
designer, without spending too much time on machine theory, which is a broad sub-
ject. In the following, we will first describe the principle of operation of common
actuators used in game robotics and later discuss issues concerning their control.
Clayton (1969), Say (1984), Cotton (1970), McKenzie-Smith and Hughes (1995),
Fitzgerald et al. (1990), and Langsdorf (2001) are valuable resources for further read-
ing on electrical machines.

5.1  ACTUATORS FOR ROBOTS

Robots need some source of torque and power to accomplish the desired motion;
in other words, every robot needs some form of actuation. The devices that provide
that actuation are in general called “actuators.” When a robot moves on a terrain on
wheels, the motion needs to be generated by a drive system with one or more prime
movers. When a robot moves its arm, in most cases, there is a power source inside
every joint, which is actually moving the arm. In comparison, when a human being
is moving each joint in an arm, the motion is generated by some pushing and pulling
caused by muscles. This type of mechanism governs the motion of many living organ-
isms. Accomplishing the same mechanism is very complex for man-made systems. In

5

104 Practical Robot Design

most cases, a joint itself is self-powered and provides the motion desired. There are
various types of actuators that can be used in robotics. They can be largely classified
as electrical, pneumatic, and hydraulic. In mobile robots, pneumatic actuators are
used occasionally if there is a need for a very high torque. A main disadvantage is that
the system requires an external air supply to operate. Hydraulic actuators are common
in earthmoving machines. We may come across hydraulic actuators on mobile robots
as well, although these are exceptions. In this book, we will focus only on electrical
devices as most game robots work with electrical actuators.

5.2  ELECTRICAL ACTUATORS

Electrical actuators are electrical motors, which are mainly classified as AC (alter-
nating current) and DC (direct current) motors. AC drives are seldom used in mobile
robots or game-playing robots. Usually, powerful industrial robots operating in man-
ufacturing lines use AC drives. Similarly, underwater robots and ROVs (remotely
operated vehicles) with power cables may also use AC drives.

5.2.1 F undamental Concepts of Generating and Motoring

Before we explore further, we need to go through some basic concepts of generating
and motoring. One surprising fact is that in principle there is no major difference
between a motor and a generator. Both are energy conversion devices converting elec-
trical energy to mechanical energy and vice versa. There is only a handful of rules that
we need to understand their operation even though the construction of such machines
is quite complex and still labor intensive even in this age of automation. Let us recall
some of the basic laws needed to understand the operation of motors. Even though we
are only interested in motors, these laws apply to both motors and generators.

Faraday’s law: The law states that whenever there is a change of flux linkages
associated with a coil, an electromotive force (EMF) is induced in the coil, which is
proportional to the rate of change of flux linkages.

Lenz’s law: This law states that the direction of that EMF induced (above) acts in
such a way as to oppose the cause (whatever is causing the EMF to be induced). The
above laws can be combined into one equation:

	
e t N

d
dt

() = − f

	
(5.1)

where e(t) represents the instantaneous value of the voltage induced, N is the number
of turns in the coil in question, and φ is the flux linking through the coil. The nega-
tive sign is due to Lenz’s law.

The right-hand rule (RHR) and induced voltage: The rule is applied for genera-
tion. Figure 5.1 shows a conductor in a magnetic field, which is acting perpendicu-
larly toward the plane of the figure. The flow direction of magnetic field is illustrated
with an arrow. In this case, since it is pointing toward the plane of the figure, it is
indicated by a circle with a cross in the center. The conductor segment, a–a′ is mov-
ing to the right with a velocity of V. Imagine that a voltmeter is connected to the

105Basic Theory of Electrical Machines and Drive Systems

circuit as shown in Figure 5.1. Then, the induced EMF that will be measured with
the voltmeter is defined as

	 e(t) = BLV	 (5.2)

where B is the flux density in webers/m2 or tesla, and L is the length of the conductor.
The direction of EMF induced is found by the RHR. Stretching the three fingers of
the right hand with thumb pointing toward the direction of motion of the conduc-
tor and first finger (index) pointing toward the direction of the flux, we find that the
second finger shows the direction of the EMF. The example in Figure 5.1 shows the
application of the RHR to find the direction of the induced EMF.

The left-hand rule (LHR) and the force: Whenever a current-carrying conductor
is placed in a magnetic field, it experiences a force. Figure 5.2 shows such a situation.
The magnitude of this force (in newtons) is given by

	 f = BLI	 (5.3)

where B is the flux density, I is the current, and L is the length of the conductor. The
direction of this force is found using the LHR. By stretching three fingers of the left
hand with the first finger pointing toward the direction of the flux and the second
finger pointing toward the direction of the current flow, the direction of the thumb
indicates the direction of the force. Hence, following the LHR, the direction of the
force will be toward the right-hand side for the setup shown in Figure 5.2.

V

+
e B

V–B

a′

e

a

Conductor
L meter

FIGURE 5.1  Right-hand rule for induced EMF.

Force

Conductor
L

a

i

B

+

V

a′

B

Force

I

+
+

FIGURE 5.2  Left-hand rule for force on a conductor.

106 Practical Robot Design

Motoring and generating happens simultaneously: We can learn something more
by looking at Figure 5.2, assuming that a voltage V is driving the current and that
creates the force to the right. The RHR implies that because the conductor is mov-
ing to the right (as shown in Figure 5.1), there must be an EMF of E induced in
the conductor, which is actually acting upward, thus obeying Lenz’s law that the
induced voltage “will oppose the cause.” As the conductor moves, only the differ-
ence between the applied voltage V and the induced EMF (often called “back EMF”)
E is available to drive the current. Hence, it is obvious that both RHR and LHR will
simultaneously come into play. In conclusion, in an electrical machine, the generat-
ing and motoring actions are inseparable. When the applied voltage is higher than
the back EMF, the machine is motoring and when back EMF is higher than the
applied voltage, the machine is generating.

In the above discussion, when the conductor moves or is moved toward the edge
of the magnetic field, the action will stop. There will be no more generating or
motoring actions. To get a working machine, we need a proper structure and it will
be described in the following sections.

5.2.2 DC Machines

DC machines are still the mainstay in robotic drives. Hence, it is important for us to
become familiar with their theory and operation. Let us start the process of under-
standing DC machines from a simple case. We have already mentioned that when a
DC motor is working, both generating and motoring actions happen simultaneously.
To understand the operation of a DC motor, we need to understand its operation as a
generator. Hence, in the following section, we first look at it as a generator.

Primitive DC machine as a generator: In this section, we examine the back
EMF induced in a primitive motor. Figure 5.3 shows a very basic structure of a DC
machine. In this figure, we assume that there is a magnetic field of B acting from top
to the bottom of the north pole to the south pole. Assume that at the starting instant,
the coil is perpendicular to the magnetic field as shown. Assume that the coil has N

N

B

x x′

S

ω rad/sec

FIGURE 5.3  Basic slip ring generator.

107Basic Theory of Electrical Machines and Drive Systems

turns, its area is A, and it is rotating with an angular velocity ω, then the maximum
flux linkage is given as

	 λ = NAB	 (5.4)

At the instant shown in Figure 5.3, the flux linkage as a function of time can be
written as

	 λ(t) = NAB cos(ωt)	 (5.5)

Then, defining that the maximum flux, φ = AB, we can write

	 λ(t) = Nφ cos(ωt)� (5.6)

Then, invoking Faraday’s law and Lenz’s law, we derive the induced EMF as

	
e t

d
dt

N() sin()= − =l w f w t

	 e(t) = Vmaxsin(ωt)	 (5.7)

The voltage pattern that can be tapped from the brushes touching the slip rings
is a sine wave with a maximum magnitude of value Vmax and angular frequency of
ω, with which we are all familiar. Since the waveform is sinusoidal, the device is a
primitive AC generator. Furthermore, the waveform is periodic and the period of
the waveform is T = (2π/ω). We realize that we started our discussion to understand
how DC motors are made, but we ended up on a device that produces AC waveform
as back EMF. Such a device cannot work on a DC power supply. In fact, by simply
replacing the slip rings shown in Figure 5.3 with split rings shown in Figure 5.4,
we can obtain a primitive DC motor, which will produce a waveform of back EMF

Copper ring

N

S

Insulator
Copper brush

FIGURE 5.4  Split ring DC machine that can act as a DC motor.

108 Practical Robot Design

with DC average value. From the machine shown in Figure 5.3, we get a sinusoidal
alternating voltage wave form since brushes are always in touch with the same ter-
minals of the winding. If we can interchange connection at each zero crossings of the
waveform by swapping the brushes from one part of the ring to the other, the brush
polarity will remain the same.

We know that the split ring is rotating continuously. The split positions of the
ring are placed appropriately on the motor/generator shaft so that the brushes on
the frame of the machine touch the rings. Thus, when the metal ring, connected to
the terminal with positive voltage, is about to turn negative, the positive brush slips
to the other half of the ring. When the metal half ring, connected to the terminal
with negative voltage, is about to turn positive, the negative brush slips to the other
half of the ring. This is achieved by mechanically placing the split part in the ring
and brushes appropriately. The above process is called “commutation.” The split ring
shown in Figure 5.4 is a primitive commutator. The resulting voltage will look like a
rectified AC wave form. Nevertheless, such a DC voltage will create many problems
in usage. Over the years, DC machine design has gone through many milestones,
and now it has been stabilized. DC voltage induced is made smooth, constant, and
steady by distributing the winding over the armature surface and by increasing the
commutator segments to much more than just two.

We will now try to describe the basic operations of a modern DC motor. As we
mentioned earlier, there should be a magnetic field established. This is usually real-
ized by field winding and pole configuration as shown in Figure 5.5. This pole con-
figuration is called a stator consisting of a drum-like yoke fitted with salient poles.
Figure 5.5 shows a machine with two poles. Obviously, the number of poles must be
even. The magnetic field is established by field windings. The field winding can be
a separate circuit, or as in some small DC machines, such a field is established by
using permanent magnets. The yoke completes the magnetic path.

The rotating structure is called the armature, and it is made of a laminated mag-
netic material. This assembly provides axial slots on the surface for windings to be

Yoke
a

N

Armature

S

–a

Field windings

FIGURE 5.5  The complete DC machine that can act as a motor as well as a generator.

109Basic Theory of Electrical Machines and Drive Systems

placed. The copper conductors are placed in those slots and form the armature wind-
ing. The ends of these windings are terminated on commutator segments. The setup
is much more sophisticated than what we have shown in Figure 5.5. A picture of a
typical commutator is shown in Figure 5.6.

Back EMF induced in a DC motor: Figure 5.7 shows a skeleton winding on the
armature of four-pole DC machine. Let us assume that one coil consisting of conduc-
tors a and a′ is in position as shown in Figure 5.7. The conductor pair a–a′ forms one

FIGURE 5.6  A typical commutator and armature setup.

N

a

S S

a′

b′

N

b

FIGURE 5.7  Primitive four-pole winding.

110 Practical Robot Design

turn. We assume that the flux per pole is φ, emanating from the north-pole on the
top. This flux enters the coil and divides into two parts and enters the S-poles on two
sides. The same thing happens to the flux originating from the north-pole below, but
linking the coil formed by b–b′. The mechanical commutator connects the turns a–a′
and b–b′ in series so that whatever EMF induced in them add to each other.

Let us focus on the turn a–a′. The flux linkage for that coil is given by λ = φ
since there is only one turn. Let us assume that the armature rotates through 90˚
clockwise so that the turn a–a′ comes directly under an S-pole taking a time of T
seconds. The flux linked by the same turn would have reversed from +φ to −φ. We
can write that the average rate of change of flux linkage per turn in coil formed by
a–a′ is 2φ/T, which is the same as the average EMF induced in one coil, eav, accord-
ing to Faraday’s law. However, a typical DC machine armature has a large number of
conductors, say, Z of them, thus producing Z/2 turns. The commutator setup groups
them into “A” number of parallel paths. Then, the number of turns in any parallel
path is Z/2A. There are two categories of windings. Depending on the winding type,
A can be 2 or P, where P is the number of poles in the machine. Hence, the EMF
induced in one of the parallel elements of the winding will be

	
E

Z
A T

Z
ATav = × =

2
2f f

	
(5.8)

The time taken by a coil to move from one pole center to the next pole center is
given by

	
T

P N P
= =1 1 60 1

rps 	
(5.9)

where P is the number of poles, N is the speed (in revolutions per minute, rpm), and
rps is revolutions per second. Hence, by substituting this in Equation 5.8, we get the
EMF equation as

	
E

P ZN
Aav = f

60 	
(5.10)

An alternative form of EMF equation: We may encounter different forms of EMF
formulas in motor data sheets, especially for permanent magnet motors commonly
used in robotics where φ is fixed. For instance, the angular velocity can be written as

	
w p= 2

60
N

	
(5.11)

By substituting Equation 5.11 in Equation 5.10 for EMF, we can write

	
E

P Z
A

P Z
A

Kb= = =f w
p

f w
p w[]

[]
60

60 2 2 	
(5.12)

111Basic Theory of Electrical Machines and Drive Systems

where Kb is defined as the EMF constant in terms of volt/radian per second such that

	
K

P Z
Ab = f

p2
V/rad/s

	
(5.13)

This information is often provided in the data sheets as volts/unit angular speed
or in a different scale as volts/1000 rpm.

Torque equation: The average value of the flux density crossing the air gap
between the armature surface and the pole surface can be written as a ratio of total
flux divided by the total armature surface area. Hence, we obtain

	
B

P
L rav = f

p2 	
(5.14)

where r is the radius of the armature and L is the length of the armature. Using the
LHR, we can obtain the average force on one conductor as

	
f

P
r

i= f
p2 	

(5.15)

where i is the current passing through a conductor. Since there are A parallel paths, i
can be written in terms of total input current I as I/A.

Hence, the expression for force is given as

	
f

P I
Ar

= f
p2

Since there are Z number of such conductors, the total peripheral force can be
written as

	
F

P I Z
Ar

= f
p2 	

(5.16)

Since torque is the product of force and armature radius, then the torque equation
becomes

	
T

P I Z
A

= f
p2 	

(5.17)

Alternate torque equation: Once again considering the case of permanent magnet
motors, the above torque equation can also be written as

	
T

P I Z
A

K It= =f
p2 	

(5.18)

112 Practical Robot Design

where Kt is defined as the torque constant such that

	
K

P Z
At = f

p2
Nm/A

	
(5.19)

Referring to Equation 5.13, we can see that Kt and Kb are numerically the same.
DC motor types: In nonpermanent magnet DC motors, there are two electrical

windings, one for the field excitation and the other for armature. Moreover, the field
excitation can be from a high-voltage source such as its own armature, or it can be
excited by the armature current using only a few turns. The former is called shunt
winding and the latter is called series winding. There are many ways these three
windings (armature, shunt-field, and series field) can be interconnected. For a given
DC motor, there is no need for both kinds of field windings to be available. DC
motors are classified by the way the windings are connected with each other. They
are permanent magnet motors, separately excited DC motors, shunt DC motors,
series DC motors, and cumulatively compounded DC motors, where series winding
field supports the shunt winding field, and differentially compounded DC motors,
where the series winding field opposes the shunt winding. Each of these motors will
have different speed versus torque characteristics. However, our main interest lies in
separately excited motors and permanent magnet motors. The speed variation of per-
manent magnet motors and separately excited motors will be somewhat flat which
implies that the change of speed with respect to load is minimal. They both are suit-
able for robotic applications. Permanent magnet motors are the most preferred since
there is no need to supply magnetization current.

Nowadays, to reduce the rotational inertia, air-core armatures are used, instead of
rotating heavy magnetic core armatures. These advanced techniques are all due to
the research in machines and materials technology.

5.2.3 AC Motor Drives

As mentioned earlier, AC motors are mainly used in large stationary robots in
industry. We rarely encounter them in robotic games. These motors are meant for
fixed load, and they run at a given fixed speed. For the sake of completeness, we
will briefly describe their operating principle here. AC motors can be of synchro-
nous or induction type. Rotating magnetic field is the most important concept used
in understanding synchronous motors. It is possible to show that when three-phase
currents are passed through the three windings spaced 120° apart on the stator
(outer part) of synchronous motor, a magnetic field that rotates at a particular speed
is created. Similarly, when two-phase currents are passed through the windings
spaced 90° apart on the stator, again a rotating magnetic field is created. This mag-
netic field rotates with a speed given by NS = (120/P)f, where P is the number of
poles and f is the frequency of the polyphase power supply. The speed of rota-
tion of the magnetic field is called the synchronous speed. This concept has been
well discussed in the literature (Cotton 1970; McKenzie-Smith and Hughes 1995;
Fitzgerald et al. 1990; Langsdorf 2001).

113Basic Theory of Electrical Machines and Drive Systems

Operation of a synchronous motor: A three-phase, two-pole synchronous motor
with pole pattern is shown in Figure 5.8. The windings are not shown in order to
simplify the picture. Assume that a rotor has a field winding that establishes a pair
of N–S poles. This field winding in the rotor is fed with a DC supply through slip
rings. Then, the stator poles and rotor poles will lock with each other and hence, the
rotor rotates along with the rotating magnetic poles at synchronous speed. If there
is no load, the stator and rotor poles will be fully aligned. As the load increases, the
rotor poles will start to lag behind through an angle called load angle, δ, as shown in
Figure 5.8. As the load further increases, the rotor may no longer be able to follow
the stator, and it will simply stop.

Induction motors: An induction motor also has a stator winding similar to that
of a synchronous motor and produces a rotating magnetic field. However, the rotor
does not have magnetic poles. Instead, the rotor has a core and short-circuited wind-
ings on it. Torque is produced due to the induced currents in the rotor windings.
Unlike synchronous motors, induction motors always run at less than the synchro-
nous speed. They are widely used in industry.

5.3  SPECIFIC NEEDS OF ROBOTICS DRIVES

In the previous sections, we discussed operations of motors, but we did not consider
their manipulation by computers. They are all designed to operate under planned,
that is, known loading conditions and once they are switched on they will operate
without any intervention.

When these motors are used for actuating motions of robots, they have to be
controlled using computers and appropriate electronics. One of the important char-
acteristics of these motors is their speed. The speed of AC motors is bounded by the
supply frequency. For instance, with a 60 Hz supply, a two-pole AC machine can
run up to a speed of 3600 rpm. On the other hand, DC machines run at designated

Stator field

δ

N

S

Rotor

N

S

FIGURE 5.8  Operation of a synchronous motor and the concept of load angle.

114 Practical Robot Design

speeds, which can vary from very slow to very high speeds. At this point, it is
necessary to point out that when we use electronics to switch winding currents the
distinction between AC and DC motors gets somewhat blurred. For example, the
power supply to a stepper motor may be just DC, but the current passing through
the winding is in fact alternating. The same is the case for brushless DC (BLDC)
motors.

In many robotics applications, we need a very close control of speed and position.
A major issue in robotics practice is that we need smaller motors to build robots of
reasonable size. The power needs of such motors may vary from milliwatts to several
tens of watts. The work done per revolution by a motor depends on the size of the
motor, the quality of the material, insulation type, and the waste power it can dis-
sipate. However, the power rating of the motor is the product of the work done per
revolution and the speed of the motor. The conflict is that they have to be small with
weights not more than few hundred grams. A small motor can only produce small
power at low speed. However, if the same motor runs safely at a higher speed, then it
can deliver higher power. The logical conclusion is that to satisfy the size and power
requirements, motors used in robotics have to run at very high speeds.

The above argument easily explains why many DC motors for robotics drives
offered by manufacturers have ratings of low torque of around 75 milli-newton-
meters, but speeds of around 10,000 rpm or more. The motion in robotics does not
require such high speeds but requires high torque. These motors are always used
with speed reduction gears. Many DC motor manufacturers offer motors with built-
in gears and boast elaborate catalogs of many power, speed, torque, and gear ratio
combinations (see, e.g., Faulhaber 2011).

5.3.1 DC Permanent Magnet Motors

Among the DC motors, permanent magnet motors are commonly used in game
robotics. They are used along with driver circuits and their actions are continuously
monitored using encoders or potentiometers attached to their shafts. They are sel-
dom directly connected to a supply since in robotics we need to control position and
speed precisely. More details on their control will be discussed later in this chapter.

5.3.2 S ervo Motors

Servo motors are very popular in game robotics. They are nothing but DC motors
with built-in control electronics. Unlike DC motors, they are not meant for continu-
ous rotation, but used for a fixed angular rotation. Their built-in electronics provides
the means of controlling angular position by using a potentiometer, and they are all
encased as a part of the motor body. In applications such as a humanoid limb or a
grabber where joints need to make fixed angular motions, a servo motor is a good
choice to power it. Such motors eliminate the trouble of position control, since the
position control circuit is built in and the user only has to provide a specific signal
to achieve the angular rotation. Figure 5.9 shows the assembling of a servo motor to
a robot joint. Note that a flange is fitted to the rotor shaft, and the load is fastened to
this flange.

115Basic Theory of Electrical Machines and Drive Systems

There are three wires connected to the motor, usually color coded as red for
motor power supply line Vs, black for ground line G, and white for control signal line
C. Figure 5.10a shows the control signal for a Hitec 422 servo motor (Hitec 2012).
The control signal is a series of square pulses with a frequency of 50–100 Hz, or a
period of 10–20 ms. When the “ON” period is 1.5 ms, the load flange is in the neutral

FIGURE 5.9  Servo motor and its assembly to a robot joint.

1.5 ms(a)

(b)

(c)

1.5 ms

10–20 ms

1 ms

2 ms 2 ms

1 ms

FIGURE 5.10  (a) Pulse train to achieve neutral position. (b) Pulse train to achieve −90°
position. (c) Pulse train to achieve +90° position.

116 Practical Robot Design

position. When the pulse width is reduced to a lower value of 1.0 ms, as shown in
Figure 5.10b, the wheel rotates through 90° in one direction and stops. If the pulse
width is increased to 2.0 ms, as shown in Figure 5.10c, the flange wheel rotates in the
opposite direction through 90° and stops. These actions are repeatable, and the range
of the angular rotation is from −90° to +90° which is 180°. This range may change
according to the specifications supplied by the manufacturer. Here, we described
only a typical example.

Apparently, controlling of a servo motor with computers is very straightforward.
If the train of pulse stops, the angular position may drift due to the load. Hence,
for achieving and holding a certain angular position, the computer has to continue
providing the required pulse width periodically. Typical specifications provided for
servo motors are as follows: Holding torque (in units of kg-cm), speed of response
(in units of s/60°), input voltage range, gearing type, and overall size and weight.

5.3.3 S tepper Motors

Stepper motors provide easy and precise control of motions. As the name indicates,
the motions are in steps activated by pulse trains (Kenjo and Sugawara 1994). The
number of pulses decides the number of angular steps the motor rotates. The step
size of these motors can have a wide range. As long as the pulses are fed, the motor
will keep rotating. When the pulses stop, the motor will also stop. It is in major con-
trast to DC motors, which will continue to rotate as long as there is power connected.
Hence, stepper motors are used in many applications where we need exact position
control. The ratings of such motors are rather limited to small power values. There
are various types of stepper motors. A widely acceptable classification of them is as
follows:

	 a.	Variable reluctance (VR) motors (further classified as single stack and
multistack)

	 b.	Permanent magnet stepper motors
	 c.	Hybrid stepper motors

This is not a complete classification, although it is sufficient for our understanding
of their application in robotics.

Single-stack VR stepper motors: A diagram of a single-stack VR stepper motor
(Kuo 1979; Edwards 1991), illustrating its features, is given in Figure 5.11. The sin-
gle-stack VR stepper motors are compact. They usually have two or three phases.
The step size obtainable is quite large, with a practical number of teeth on stators
and rotors. There are more stator teeth than the teeth on the rotor or vice versa.
Obviously, this difference is important for incremental motion. The achievable step
size ranges from 0.9° to 30°. The example motor to be used here for discussions has
12 stator teeth, and winding is provided for three phases. Hence, there are four teeth
per phase. Thus, three phases are covering all the 12 teeth. The motor shown in
Figure 5.11 has 16 teeth on the rotor. We can observe that five rotor teeth cover four
stator teeth. Phase A winding is covering four teeth. Similarly, phase B and phase C
also cover four teeth; hence, all the 12 teeth are covered. Let us assume that phase A

117Basic Theory of Electrical Machines and Drive Systems

is energized. Magnetic polarity for phase A winding is marked on Figure 5.11. The
tooth pitch of the stator is 360/12 = 30°, and the tooth pitch of rotor is 360/16 = 22.5°.
Figure 5.11 shows that only four rotor teeth are aligned with the stator teeth and the
rest of them are all misaligned. Now, assume that phase B is energized at the same
time when phase A is switched off. This will result in rotor to rotate 7.5° counter-
clockwise so that four rotor teeth will again align with teeth wound with phase B.
Consequently, others will be misaligned. This motion goes on as phases are cycli-
cally switched on and off. Apparently, in this example, the step size is 7.5°. By chang-
ing the switching sequence ABC to ACB, the direction of rotation can be changed.

To draw some conclusions, let us go through some requirements for proper opera-
tion. Let us define some terms as below:

Ps = the number of teeth on the stator
Pr = the number of teeth on the rotor
n = the number of phases wound on the stator

The number of stator teeth per phase will be

	
p

P
n

s=
	

(5.20)

Or

	 Ps = np	 (5.21)

It is obvious that p must be an even integer in order to have a viable distribution
of phases on stator teeth. When any one of the phases is energized, there should be

PHASE A +

A

S

S

B

C

A

B

C
A

B

C

A

Rotor poles

B

Stator poles

C

22.5°30°

NN

–

FIGURE 5.11  Single-stack three-phase VR stepper motor.

118 Practical Robot Design

p stator teeth that get exactly locked with the p rotor teeth. The stator teeth found
per adjacent pairs of locked teeth are the same as the number of phases which is just
n and those teeth would be wound with one phase each. However, if the number of
teeth on the rotor per adjacent pairs of locked teeth are also the same as n, no motion
will be possible when windings are switched. There should be a misalignment to
facilitate motion, and hence the number of teeth on the rotor per those two pairs of
locked teeth should be one less (n − 1) or one more (n + 1). This is also clear from
Figure 5.11.

Case I (when Pr > Ps):

	 Pr = (n + 1)p	 (5.22)

Then step size is given by

	
q = −360 360

P Ps r 	
(5.23)

	
q = − +

360 360
1n p n p() 	

(5.24)

Case II (when Pr < Ps):

	 Pr = (n − 1)p	 (5.25)

Then step size is given by

	
q = −360 360

P Pr s 	
(5.26)

	
q = − −360

1
360

()n p n p 	
(5.27)

EXAMPLE 5.1

For the motor shown in Figure 5.11, we see that Pr > Ps and n = 3 and the number
of teeth per phase, p = 4. Hence, the step size can be calculated by applying the
formula

	
q = −

+
=

×
−

×
= − = °360 360

1
360

3 4
360

4 4
30 22 5 7 5

n p n p()
. .

The number of steps per revolution will be

	
S = =360

7 5
48

.

119Basic Theory of Electrical Machines and Drive Systems

Design issues: Given the step size, we should be able to decide the number of
teeth on stator, rotor teeth, and the number of phases. For this, we simply rewrite
Equations 5.24 and 5.27 to obtain p.

Case I (when Pr > Ps):

	
p

n n
= − +

360 360
1q q() 	

(5.28)

We can start from the value of n = 3 onwards for the given value of θ and iterate
until we get an even integer for p. Then

	

P n p

P n p
s

r

=
= +()1 	

(5.29)

Case II (when Pr < Ps):

	
p

n n
= − −360

1
360

()q q 	
(5.30)

After getting an appropriate value for p, we can obtain

	

P n p

P n p
s

r

=
= −()1 	

(5.31)

Caution: For n ≥ 3 and for p being an even integer, it is possible to realize a motor
design and compute the step size. On the other hand, it is not possible to design a motor
for any arbitrary value of step size. Some step sizes may be impossible to realize.

EXAMPLE 5.2

Let us assume that in a robot design, we need a smaller step size, say 0.9°. Can we
achieve that? Let us try. Assume that Pr > Ps. Using the equations in case I, design
calculations will yield to

n	 p
n n

= × − + ×
360

0 9
360
1 0 9. () .

3	 33.333	 Discard
4	 20	 Accept

Then the number of teeth required will be

	

P

P
s

r

= × =
= × =

4 20 80

5 20 100

From the above example, we can conclude that to have smaller and smaller step
size, enormous number of teeth are needed. To avoid this problem, multistack VR
stepper motors came into existence.

120 Practical Robot Design

Multistack VR stepper motors: The design concepts used in multistack VR
stepper motors are much simpler. On a common rotor axis, n sets of rotors each
having their own sets of poles are mounted on a single shaft. In one design, all
the teeth of n rotors are aligned. However, each rotor segment is covered by a
separate stator phase and its own winding. The stator teeth are misaligned from
one another by 1/n of the stator tooth pitch, where n is the number of phases,
which is the same as the number of rotor segments. This situation is shown with
an example in Figure 5.12, where n = 4 and the stator tooth pitch is 60°. In this
design, the step size obtainable is 15°, which is rather large. Obviously, when the
power is switched from phase A to phase B, the rotor moves by 15° to be aligned
with the midstator section. This will continue as phases are switched. The opera-
tion principle is rather straightforward.

Alternative design: There are other alternative designs that can offer even much
smaller step size. In one such design, the stator poles of each stack are provided with
teeth, and they are energized by different phases. The stator teeth are all aligned.
The rotor has three stacks, and each stack is misaligned from one another. The cut
sections of three phases of such design are shown in Figure 5.13. Note that the tooth
pitch of rotor teeth and stator teeth of all the phases is the same and in this case it

Phase A

Phase C

Phase B

15°

S

N

S

N

S
S

N
S

N

S

NN

30°
Phase D

45°

FIGURE 5.12  A multistack four-phase VR stepper motor.

121Basic Theory of Electrical Machines and Drive Systems

is 12°. Assume that n is the number of phases, which is the same as the number of
stator stacks. Furthermore, phase B rotor teeth are misaligned by 1/n of the tooth
pitch from phase A stack, similarly the teeth of phase C rotor stack are misaligned
by another 4° from phase B teeth. At the start, let us assume that the first stack is
energized with a current in phase A. The whole stator will be aligned with stack A as
shown in the first diagram of Figure 5.13.

At this instance, owing to the arrangement of stacks, phase B teeth will fall behind
by an angle of 4° and phase C teeth will be by a further 4°. Hence, when the phase B
is energized, while switching off phase A at the same time, the rotor will move by 4°
counterclockwise. Similarly, when phase C is energized, while switching off phase
B at the same time, the rotor will move counterclockwise by another 4°. Thus, if we
cyclically energize A, B, C, A,. . ., the rotor continues to move in steps of 1/n of the
tooth pitch, which is 4° in this example. This type of multistack stepper motors are
easy to manufacture, and the step size only depends on the tooth pitch and the num-
ber of phases. Some designers arrange rotor teeth aligned, but stator teeth misaligned
though the principle of operation is still the same.

Permanent magnet stepper motors: The operational principle of permanent magnet
stepper motors is rather straightforward. One such motor is shown in Figure 5.14
(Kenjo and Sugawara 1994). The machine has a cylindrical permanent magnet mag-
netized radially and mounted on a shaft. The stator of the machine has four poles and
two phase windings. Pole 1 and pole 3 have windings A and A′ connected in series
appropriately so that their fields will be on the same direction. Similarly, pole 2 and
4 have windings B and B′ connected in series appropriately so that their fields will
support each other. This implies for a particular direction of current in windings A,
if pole 1 is south then pole 3 will be north. If the current is reversed, the polarity
will be opposite. Let us assume that windings A is excited with pole 1 having south
polarity and pole 3 having north polarity. Then, the rotor will be aligned vertically. If
windings B are excited such that pole 2 is south and pole 4 is north before switching
off winding A, the rotor will move clockwise 45°. If winding A is switched off at this
time, the rotor will move further to align with poles 2 and 4. At this time if winding
A is excited in reverse direction, the rotor will move further 45°. Now, if winding B
is switched off, the rotor will move further 45°. It is important to notice that by this

30 teeth
in total

A

A B C

B C
Misalignment

of 8°
Misalignment

of 4°

RotorRotorRotor

12°

FIGURE 5.13  Stack cut section view showing misalignment.

122 Practical Robot Design

method two step sizes can be achieved. A step size of 90° can be achieved by switch-
ing off A before switching on B. A step size of 45° can be achieved by keeping A and
B “on” for a brief period and then switching off A.

Other stepper motor designs: There are many other designs of stepper motors
such as hybrid stepper motors, linear stepper motors, and so on. Some of them are
designed to achieve higher holding torque; some of them are designed for precision
applications such as printers.

5.3.4  Brushless DC Motors

Another development due to the availability of cheap and reliable electronics and com-
puting power is the advent of BLDC motors (Edwards 1991). They are just DC motors
where the mechanical commutator is replaced by an electronic commutator. We know
that usually armature windings are placed in rotors. However, since electronics can be
easily fixed to a nonmoving part, the armature windings of BLDC motors are placed
on the stator. The rotor has poles of permanent magnets. The only difference is that in
a classic DC motor, there would be large number of commutator segments. In BLDC
motors, it is uneconomical to duplicate this since large number of semiconductor
switches will be needed. Hence, BLDC motors have usually three phases supplied by a
three-phase inverter. There are two possible ways to connect these three phases: star or
delta. The switching of the inverter must be according to the rotor position. This can be
achieved by using optical sensors, or Hall effect sensors. Another alternative is to use
electronic methods of measuring the back EMF, and hence finding the rotor position.

Star-connected BLDC motor: Figure 5.15 shows a typical simplified cross-sec-
tional diagram of a motor with two poles, along with winding connections. The
stator carries a three-phase winding. Typically, winding A consists of conductors
distributed in segment “a” and conductors distributed in segment. “a ” placed in a
diagonally opposite position. A similar arrangement is shown for windings of phases
B and C. The rotor is mounted with a permanent magnet with its poles facing radially

Stator
A

1

N

SRotor

3

A′

4B′ B2

FIGURE 5.14  A simple permanent motor stepper motor.

123Basic Theory of Electrical Machines and Drive Systems

outwards. Each pole spans 180°, and the flux density is usually constant through the
pole surfaces. Current is supplied to the windings from a controller.

All the diagrams discussed in this section show the cross-sectional view of the
BLDC motors. See Figure 5.15 for example. Typically, the conductor segments a and
a are connected behind to form winding A. What we see up front are the terminals
of the winding. Since the conductor segments are axially placed, they are shown as
small circles, which indicate their cross-sectional view. If the current in a specific
conductor segment flows toward the observer or away from the plane of the figure,
it is marked as a dot inside the circle. If the current flows away from the observer or
toward the plane of the figure, it is marked as a cross inside the circle. Hence, positive
current Ia is denoted with a cross on segment a and a dot on segment a .

The following discussion is based on Figure 5.16. In the first row the rotor position
is shown on the left. Winding currents are shown on the right hand side. The cur-
rent flowing from terminal toward center is considered positive. When the controller
sends current from line 1 to line 2, Ia is positive, Ib = −Ia and Ic = 0. The current direc-
tions in conductors are shown in Figure 5.16a. N pole is under conductor segments a
and b . Applying the LHR, we can say that the conductors a and b suffer forces that
tend to move them clockwise, but they are fixed and cannot move. So the reaction
moves the magnetic rotor counterclockwise. This motion is further aided by currents
in the conductor segments b and a , since they are under the S pole. Hence all the
forces are such that the rotor rotates counterclockwise.

The situation does not change until the rotor turns 60 degrees in the counter-
clockwise direction. Figure 5.16b shows the position at the end of 60 degrees. For
the rotation to continue, the conductor segments c and c should have currents in
the appropriate direction and winding B can now be disconnected. The appropriate
currents are shown in Figure 5.16b. This switching is done based on position sensor
information. In this case, after the switching, currents will be as Ic = −Ia and Ib = 0.
In this manner, the rotation continues. Respective rotor positions and corresponding
winding currents are shown in the subsequent parts of the diagram in Figure 5.16.
After the sixth row, one cycle is completed; the condition reverts back to Figure
5.16a, and the sequence continues cyclically. In all these cases, at the end of every

Winding band aac

b N bS

a c

Stator

Permanent
magnet

Air gap

Line 3

Line 1

Line 2

c

a

b

FIGURE 5.15  Star-connected BLDC motor.

124 Practical Robot Design

60° of rotation, the current switching is done based on either encoder feedback, back
EMF sensing or by Hall effect sensor feedback.

One disadvantage of star connection is that one of the windings is not carrying
current at any given time. In addition, one-third of the magnet surface is not utilized.

Delta-connected BLDC motor: Figure 5.17 shows a typical simplified cross-sec-
tional diagram of a delta-connected BLDC motor with two poles, along with wind-
ing connections. The rotor magnets span only 120°. As before, the flux density is

(c)
c

N
b

S
b

c
3 2

bc

a

1
a

a

bNSb

b

c
(a)

a c
3 2

b
c

a

1

N

S

(b)
c a

a 23

c
b

a

1

c

b

(f)
ac

b

aa c
3 2

bc

a

1

b
N

S

a

b

c
3 2

b
c

a

1

a

b

c
(d)

N S

(e)
c a

1

a

b

23

c

b

ca

b
S

N

c

FIGURE 5.16  (a–f) Winding switching sequence for star-connected BLDC motor.

Winding band a

Air gap

b

a c

b

ac

N

S

Line 1

b

Line 2cLine 3

aStator

Permanent
magnet

FIGURE 5.17  Delta-connected BLDC motor.

125Basic Theory of Electrical Machines and Drive Systems

mostly constant through the pole surfaces. Current is supplied to the winding from a
controller. Winding A is formed by the conductor segment a and conductor segment
a . Similar notation applies to windings B and winding C. To establish a convention
and a basis for determining the force directions, we assume that clockwise current
that flows in the loop formed by the delta is positive. It implies that currents from
terminals 3 to 1 in winding A, from terminals 1 to 2 in winding B, and from termi-
nals 2 to 3 in winding C are positive. The sequence of rotor positions and winding
and conductor currents are shown in Figure 5.18. Let us consider the rotor position
shown in Figure 5.18a and the current flow shown next to it. Here, we use the terms
line1, line2, and line3 to indicate supply lines connected to delta points 1, 2, and 3.
The current flows from line 3 to line 1, and no current flows through line 2, since it
is disconnected. In this case, Ic = Ib since they are in series. According to the conven-
tions we established earlier, they are both negative. But, Ia is positive and has a higher
value since phase a is directly across the supply. The current markings in the conduc-
tor segments shown in Figure 5.18a are also according to the conventions we have
established. Applying the LHR, we see that the force on conductor segments a and b
is clockwise. As discussed before, since the conductors are fixed, the reactive force
moves the magnets in the counterclockwise direction. As the rotor rotates through
the next 60°, conductor segment c is covered and conductor segment b is uncovered
by N-pole without any change in torque. Similar things happen to the conductors
under S-pole where conductor segment c is getting covered and conductor segment b
is getting uncovered without any change in force or torque, since both phases carry
the same current.

1

ba

3 2c

ac

b
S

N
b

ca

(b)

1

ba

3 2c

ac

b
S

N
b

ca

(c)

a
1

ba

3 2c

b

ca

b

(a) c

S
N

1

ba

3 2c

1

ba

3 2c

1

ba

3 2c

ac

b
N

S
b

ca

(e)

ac

b
N

S
b

ca

(f)

a

b

ca

b

(d) c

N
S

FIGURE 5.18  (a–f) Winding switching sequence for delta-connected BLDC motor.

126 Practical Robot Design

At the end of this 60° counterclockwise rotation, rotor position is shown in Figure
5.18b. At this point, the current in winding B, which is formed by conductor seg-
ments b and b , alone should be reversed to achieve further motion. Therefore, a new
connection is made such that current flows from line 3 to line 2. Now, the motion
continues counterclockwise as before. At the end of the 60° rotation, rotor position is
now shown in Figure 5.18c. These principles are similar until the sixth row in Figure
5.18, after which the situation reverts back to the conditions shown in the first row.
In all these cases, at the end of a 60° rotation, the current switching is done based
on either encoder feedback, by back EMF sensing or by Hall effect sensor feedback.

The advantages of a delta-connected machine over star-connected machines are
twofold. First, current flows in all three windings resulting in a better use of wind-
ings. Second, the volume of permanent magnet material used is only two-thirds the
equivalent of star-connected machine. Hence, the majority of BLDC motors are
delta-connected machines.

5.4  DRIVE SYSTEMS

In the previous section, we discussed the operation principles of commonly used
motors in robotics systems. These motors need control mechanisms to deliver speed,
motion, and position requirements of the robot designed. In this section, we describe
some of drive schemes used for this purpose.

5.4.1 DC Motor Control

In robotics, a very tight control of speed and position of the motors is needed. This
is normally achieved by a feedback mechanism using the optical encoders discussed
in earlier chapters and a driver circuit. Many commercially available DC motors
come invariably with optical encoders and gear heads attached to them. To control
DC motors, there are many drive circuits commercially available. Some of them are
analog devices based on FETs and power transistors. However, the majority of such
devices are bridge drivers, which are very cost effective and energy efficient.

Basic principle: The basic principle behind a bridge driver (commonly known
as H bridge) can be explained using the circuit shown in Figure 5.19. When the

Vss

b1

a2

M

b2

a1

FIGURE 5.19  H-bridge driver principle.

127Basic Theory of Electrical Machines and Drive Systems

transistors a1 and a2 are activated, current flows from left to right through the motor.
On the other hand, when b1 and b2 are activated, the current flow through the motor
is reversed and thus it becomes a bipolar device. When there is no transistor acti-
vated, there will be no current fed to the motor. During the transition, there is a
possibility of dead-short of the power supply. Assume that transistors a1 and a2 are
on and b1 and b2 are off. To reverse the current, a1 and a2 should be turned off and
b1 and b2 should be turned on. Under fast-switching conditions, there is often a situ-
ation where turn-on happens before the other pair has completely turned off. This
results in a transient dead-short of the supply, which causes heating. The number
of such dead-shorts will increase as switching frequency increases, thus limiting
the switching frequency. There are electronics as well as software means to avoid a
dead-short. Commercially available driver ICs avoid dead-short problems with built-
in circuitry and furthermore they provide many other safeguarding features.

DC motor controllers and their operation: The switching components shown in
Figure 5.19 are incorporated in commercial DC motor controller ICs that are sup-
plied by many manufacturers. These integrated units also provide additional conve-
niences such as protection from overheating, line to ground short circuits, current
limiting (chopping) features, and so on.

Figure 5.20 shows the input signals and motor connections of typical DC motor
controllers available commercially. The H bridge shown in Figure 5.19 is the core
of such DC motor drivers. The protections, current chopping, and so on are built
around the H-bridge core and only the signal and output lines, relevant for the user,
are provided as pins. The motor terminals are floating. This circuit is designed for
pulse width modulation (PWM) control of DC motors. Many commercially avail-
able devices are capable of supplying a current of around 2.5 A through the load at
the operating voltage of up to 40 V. For control purposes, “phase” and “enable” lines
are provided. A high in the “enable” line and a high in “phase” line will send current
through from m0 to m1, through the motor. With the enable line still being high, if the
“phase” signal goes low, the applied voltage appearing across the motor will reverse.
When “enable” goes low, the output terminals go into high impedance mode.

Type 1 application: In one type of application, the PWM is connected to the
“enable” line. The enable signal may be of high active or low active type. In general,

Vss

m0

m1

Rs

H-bridge
driver IC

Direction/
phase

Enable
M

FIGURE 5.20  Block diagram of a commercial DC motor controller.

128 Practical Robot Design

the “phase” line controls the direction of the motor and “enable” (PWM) controls
the speed of the motor.

When a computer calculates the manipulated variable, the magnitude is used to
fix the PWM duty cycle and the phase signal is set high or low depending on the
sign, high for positive or low for negative. Hence, if a high positive manipulated vari-
able produces high current from, say, m0 to m1 through the motor, a high negative
manipulated variable will produce high current from m1 to m0 through the motor.
This is the most popular method of using the motor controller.

Type 2 application: Some users prefer to use the enable line for on/off control,
while supplying the PWM to the phase line. By this method, a 50% duty cycle in the
phase line commands the motor to move forward and reverse at the PWM frequency,
for which the motor does not respond and stands still. A PWM with duty cycle higher
than 50% moves the motor forward and a PWM with duty cycle <50% moves the
motor in the opposite direction. This method begets faster response of the motor, but
heats up the switching devices, needing heavier heat sinks. A further analysis of this
method will be presented in Chapter 10. There are many other DC drive devices,
employing similar principles frequently used in robotic applications.

Some examples of commercial DC motor controllers: Two popular examples of DC
motor controllers are Allegro A4973 (Allegro 2012) and L6203 (ST-Microelectronics
2012). They both have an H bridge as their core and other circuits are built around it
in a single package. The A4973 provides the input signals as explained earlier. The
IC provides low active enable line E and phase line distinctly. Full schematic and
application notes can be found in Allegro (2012). In addition to its basic motor con-
trol, this IC also provides internal circuit protection including motor lead short-to-
supply/short-to-ground, thermal shutdown with hysteresis, undervoltage monitoring,
and crossover-current protection.

Another popular full bridge driver is L6203. The full schematic of this device
can be found in ST-Microelectronics (2012). In L6203, high active enable line is
provided, but the phase effect is achieved by two input signals IN1 and IN2. That
is, instead of a phase input, two other inputs, namely, IN1 and IN2 are provided.
Referring to the basic H bridge shown in Figure 5.19, when IN1 input is set to high
and IN2 is set to low, the top left and lower right FETs of the bridge circuit will con-
duct and pass the current through the motor in one direction. If IN1 is low and IN2 is
high, then the top right and lower left FETs will conduct and thus reverse the current.
Hence, we need to generate IN1 and IN2 from a single external phase signal. L6203
also provides the protections mentioned above.

5.4.2 S tepper Motors Drivers

The main functions needed for stepper motor controllers are switching sequence
generation, power current driving, and current limiting and regulation. All the
sequence signals can be generated using computers, microprocessors, or microcon-
trollers. This will need programming efforts, and execution will consume processor
time. Employing a separate sequence generator will enable the processor to deal with
higher-level functions rather than performming low-level power-driving functions.
Consequently, this also simplifies the programing task. As discussed previously,

129Basic Theory of Electrical Machines and Drive Systems

there are many types of stepper motors. We will not be able to describe drivers for
all types of motors, but we will give some examples.

5.4.2.1  Sequence Generator
Most stepper motor drive systems come in pairs. One of them is a sequence genera-
tor that cannot drive the motor on its own. The other one is a driver which uses the
signals from the sequence generator and drives the currents through the windings
appropriately.

The sequence generator should be able to

•	 Provide drive signals to the power driver in appropriate sequence for for-
ward or reverse motion.

•	 Run the stepper motor in half or full steps.
•	 Provide the current control signals to the driver for safety of motor and driver.

For this purpose, the sequence generator normally takes the following signals:
clock for deciding the speed, half/full step, direction, enable, current feedback sig-
nals, and current reference signals. One such popular sequence generator is SGS
Thompson L297 IC (ST-Microelectronics 2012), which may be used independently
using discrete power semiconductor components or along with other bridge-based
chopper drivers. We will describe functions, capabilities, and applications of L297.
In particular, we will see drivers for four-phase unipolar motors and two-phase bipo-
lar motors. A block diagram of L297 is shown in Figure 5.21 to serve our purpose.
The L297 can be used with any other power stage or standard power driver. As we
mentioned above, this sequencer takes in basic input from a microprocessor and
generates output signals required for the power stage using the built-in internal logic.
The outputs are phase signals A, B, C, and D, and inhibit signals INH1 and INH2.
The input signal “control” decides the mode of current control.

A

V s

Reset

HALF/FULL

CW/CCW

Clock
L297

sequencer

Enable

Control

B

C

D

INH1

INH2

G
N

D

SE
N

SE
2

SE
N

SE
1

Vr
ef

FIGURE 5.21  Block diagram of a sequence generator L297.

130 Practical Robot Design

In any power driver system, the current pumped into the motor needs to be regu-
lated for the sake of torque control and for the safety of the motors and electronics.
This needs current feedback. For the current feedback, three inputs Vref, SENSE1,
and SENSE2 are provided. Using these signals, L297 is capable of producing two
types of current control either for fast current decay mode or slow current decay
mode. The choice is made by means of input line “control.”

5.4.2.2  Operating Modes of L297
There are four logic outputs (A, B, C, and D) from L297, which can produce 16
states. But the hardware limits it to only eight states as listed below in Table 5.1. The
device transits through the states cyclically according to the choice of user control.
The home state is stage 1 where ABCD = 0101. Depending on the instruction, the
sequencer output combination can move

	 1.	Through all states from state 1 to state 8 sequentially
	 2.	Only through even states, that is, 2,4,6,8,2
	 3.	Only through odd states, that is, 1,3,5,7,1

The two additional output signals INH1 and INH2 are generated according to the
following logic in all modes:

	

INH A B

INH C D

1

2

= +

= + 	
(5.32)

These two signals are used for current termination. However, a robot designer has
the choice of using either phase signal or inhibit signal for current control. In follow-
ing, we will see the modes of operation one by one.

Transition through all states (half-step mode): This is achieved by providing a
logic high signal to the HALF/FULL line of L297 at any time. When the sequence
generators move through all states 1, 2, 3, 4, and so on, the ON states of the out-
put signal change as A, AC, C, CB, B, BD, D, DA, A, AC, and so on. It means that
states transit as ABCD = 1000, 1010, 0010, 0110, 0100, 0101, 0001, 1001, 1000, 1010,
. . .. This is also called the half-step mode, since when it is applied, a stepper motor
moves in half steps.

Transition through even states (wave mode—full step): Transition through even
states is not straightforward. This is achieved by providing a logic low signal to the
HALF/FULL line of L297 at an even state. When the sequencer moves through even

TABLE 5.1
L297 States

Stage 1 2 3 4 5 6 7 8

ABCD 0101 0001 1001 1000 1010 0010 0110 0100

Logic ones BD D AD A AC C BC B

131Basic Theory of Electrical Machines and Drive Systems

states, it results in “one phase ON” states 4, 6, 8, 2, which implies that only one phase
is ON and other phases are OFF at any given instant. The sequence of switching is
A,C,B,D,A,. . .. This can be used to run unipolar four-phase stepper motors. INH1 and
INH2 are generated according to the same logic given in Equation 5.32. Application
of this mode typically produces the full step motion of stepper motors. We will see
examples in a later section.

Transition through odd states (full step mode): Once again, the implementation of

this mode is not straightforward. A logic low signal is provided to HALF/FULL line
of L297 at an odd state to achieve this mode. Thus, the states move through only odd
states such as 1,3,5,7,1,. . .. This results in two phases ON at any given instant. The states
move through DA, AC, CB, BD, DA,. . .. This mode is usually applied to motors where
winding currents can be reversed. As discussed in the previous section, the application
of this mode results typically in the full step motion of stepper motors. It is important
to note that for the logic sequence given above that INH1 and INH2 lines are always
high which forces the designer to use only phase lines for current regulation.

5.4.2.3  Applications
We have seen the three modes of operation of the sequence generator in the previous
section. Here, we will present how those sequences generated can be used to control
a stepper motor. We use a driver using discrete components as shown in Figure 5.22.

Operation of four phase VR stepper motor with unipolar windings: The stepper
motor in our example has four windings, each passing through two poles; hence, there
are eight poles in the motor. Furthermore, currents cannot be reversed. The motor and
its windings are shown in Figure 5.23. From an earlier discussion on stepper motors, we
can deduce that the step size of the motor shown in this figure is 9˚ in full step mode.
Since there are four windings, the four-phase signals can be readily used for this motor
and L297 can be used to create the sequencing in all the three modes of the L297. The
power stage is built using four power-switching devices as shown in Figure 5.22.

In half step, “all” state mode, the switching ON sequence is A, AC, C, CB, B,
BD, . . . , which will result in half-step motions of stepper motor. Referring to Figure
5.23, the step size in this case will be 4.5°. In full step wave mode of even state

Vcc Vss

A B C D
a
b
c
d

L297

Control
Enable
Home
Clock
Direction

M
ic

ro
co

nt
ro

lle
r

Reset
Half/Full

FIGURE 5.22  Typical discrete component-based driver for unipolar four-phase stepper motor.

132 Practical Robot Design

operation, the switching ON sequence is A, C, B, D, A,. . . , and it will yield full step
motions of the motor. In full step odd state operation, the sequence moving through
AC, CB, BD, DA, … , and the rotor step size is 9°. In this mode, at no stage is the
rotor pole aligned with any stator pole.

Current control: There are two ways of current control offered by L297. One
method uses INH1 and INH2 signals, and the other method uses phase signals along
with chopping oscillator and a complex circuitry. While using discrete component
implementation, it is rather difficult to use these methods.

Direction control: When input signal CW/CCW is low, the switching ON sequence
of states will reverse, and this in turn will reverse the motor direction.

Four-phase permanent magnet stepper motor with unipolar windings: An exam-
ple of such a motor is shown in Figure 5.24. Consider the upper and lower poles in
the figure, with coils wound on them where each coil has two windings. Individual
windings on the upper pole coil are connected in series to the windings in the lower
pole coil. When the current flows from A to A′, a magnetic field is established in one
direction. Similarly, when the current flows B to B′, the magnetic field will be in
the opposite direction. Hence, we can reverse the magnetic field without having to
reverse the current in any coil. This type of winding is called bifilar winding. The
same configuration of the driver circuit shown in Figure 5.22 can also be used here.
However, the full step size is 90˚ for this motor.

In Figure 5.24, we have assumed that when A is ON, upper pole is S and lower
pole is N and when C is ON the right-side pole is S and left-side pole is N. When B
is ON, upper pole is N and lower pole is S; when D is ON, right pole is N and the left
pole is S. When two ON states occur, for instance, A and C are ON, then the upper
pole and the right side pole both become S and left and the bottom poles become N.

A
A1

C

C1

B

B1

D

D1

A1

C1

B1

D1

FIGURE 5.23  A unipolar four-phase stepper motor example.

133Basic Theory of Electrical Machines and Drive Systems

In half step, all state mode, the switching sequence is A, AC, C, CB, B, BD, . . . ,
which will result in half-step operation. In full step wave mode (even states), the
sequence is A, C, B, D. This will produce a full step operation. In full step mode (odd
states), the outputs move through the sequence of DA, AC, CB, BD, DA, However,
the rotor poles do not align with stator poles. They move from one midpoint between
the two stator poles to the other midpoint, still maintaining the step sizes of 90˚.

Two-phase permanent magnet stepper motor with bipolar windings: Bipolar
windings should have reversible currents on each winding; this requires both ter-
minals of each winding to be floating. The circuit shown in Figure 5.22 will not
serve the purpose. In such cases, L297 is used in collaboration with a driver L298 or
any other dual H-bridge driver, which can reverse the current in a winding (refer to
ST-Microelectronics (2012) for more application details). The example step motors
we gave here are all have large step sizes, and this is for simplicity of illustration. In
real applications, the number of poles is usually quite large, thus resulting in small
values of step sizes.

5.4.3  Brushless DC Motor Drive

BLDC motors are applied in many fields of engineering apart from robotics. There
are two broad types of controllers depending on whether the direction needs to be
changed or not. In some applications, such as drones and hobby planes, the motors
need not change direction. Surprisingly, owing to enormous demand for such appli-
cations, there are many ready-to-use “sensor-less” controllers in the market. The
second type of controllers provides bidirectional rotations, and they use feedback

AB′

A′

D′

C′

S

N C

B

D

FIGURE 5.24  Permanent magnet motor with unipolar windings (each pole has two unipo-
lar windings) controllable in all three modes by 297 using circuit shown in Figure 5.22.

134 Practical Robot Design

devices. These feedback devices are encoders, Hall effect sensors, or back EMF sen-
sors, whose outputs provide appropriate locations of the rotor at which the switching
of the windings to be effected. A generic bridge drive circuit used for driving BLDC
motors is shown in Figure 5.25.

5.4.3.1  Back EMF Sensing-Based Switching
It is easier to describe the operation of EMF-based sensing switching with star-wound
machines. At any given time, one winding is free from any electrical excitation, but
that winding is placed in a moving magnetic field. Hence, there is EMF induced on
that winding. This property can be easily exploited to find proper instants of switching.

We look at the back EMF transitions for winding C. Let us look at the case depicted
in the first row of Figure 5.16. The current in winding C is just switched off. Figure 5.26
shows the current flow directions in conductor segments a and b in this case. Since,
winding “C” is disconnected, there is no current in that winding. However, EMFs are
always induced in all the windings, which apply to unconnected winding C also. At
the instant shown in Figure 5.26b, segment c is marked with a cross and segment c is
marked with a dot to indicate the direction of induced EMFs. The two segments are
connected behind to form coil C. The EMFs add to each other in the loop formed by
the segment cand c. The front end of segment c is positive, and hence the EMF induced
in winding C is positive maximum. As the rotor continues to rotate counterclockwise,

V/2

T1

T2

–V/2

D1

D2 D4

T3

T4 T6

T5
D3 D5

D6

1

a

3 2c

b

FIGURE 5.25  Bridge circuit to drive a BLDC motor (delta connection).

a c a

bNS

a c

1

E

c

a

b
E

E

i

3 2

bNSb

a c

c(a) (b) (c)

b

FIGURE 5.26  The situation when c is not connected and the rotor is rotating counterclock-
wise. (a) Current. (b) Induced EMF. (c) EMF and current directions.

135Basic Theory of Electrical Machines and Drive Systems

the winding that is spanned by N-pole will be approached by S-pole. Hence, the EMF
magnitude starts decreasing and at the point when S- and N-poles equally span the
conductor segment “c” (when the magnetic neutral axis of the rotor is in middle of seg-
ment “c”), the EMF becomes zero. It takes 30° of rotation to get zero back EMF and
the next 30° of rotation will reverse the sign of the induced EMF as conductor segment
“c” gets completely covered by S-pole. Hence, the transition takes 60° of rotation. This
instant is shown in the second row of Figure 5.16. The negative back EMF remains dur-
ing the next 120° of rotation. Then the next transition from negative to positive maxi-
mum will take place during the further rotation of 60°. This positive maximum back
EMF will remain for the next 120° of rotation. At the end, the cycle will repeat itself.

In summary, as the motor rotates, the back EMF patterns go through the follow-
ing sequence:

	 a.	Remain at positive value for 120° of rotation
	 b.	Transition from positive to negative value during the next 60° of rotation
	 c.	Remain at negative value for the next 120° of rotation
	 d.	Transition from negative to positive value during the next 60° of rotation

The cycle occurs for all three windings. Since the back EMF transitions indi-
cate the position of the rotor, we can decide when the switching of windings should
be done, based on the back EMF observation. The switching-on and switching-off
timings of the three windings have different phase relationships.

In practice, a combination of analog-sensing electronics and fast-computing devices
are used to implement the switching. This will also involve some electronic design.
There are a few problems in implementing a back EMF sensor-based switching scheme:

Usually, the neutral point may not be always available.
There is PWM switching going on all the time for speed and current control;

therefore the waveforms are not easy to interpret.

A general schematic diagram for implementing such scheme is shown in Figure 5.27.

Speed

Controller
Trigger
signals

Power
driver
circuit

Zero-crossing
signals

Zero-crossing
detector

Back EMF signals

c b

a
Motor

FIGURE 5.27  Generic scheme of back EMF sensing-based BLDC motor.

136 Practical Robot Design

The general idea is that the controller processes the zero crossing signals and
determines the appropriate instants of switching. At those appropriate instants of
switching, the trigger signals are sent to the three-phase bridge inverter. There are
many manufacturers who have solved the problem of determining the right instants
of switching from zero crossings of the back EMF waveforms and provided off-the-
shelf solutions. AVR444 is a good example of such a ready to use device (Atmel
2012). The method of switching is quite similar to the concept discussed above.
Back EMF signal conditioning is done using a suitable filter due to the presence
of switching noise. Since back EMF measurement is quite tricky at low speeds, a
preprogrammed sensorless switching is implemented during start-up, and as speed
picks up the back EMF-based switching is implemented.

5.4.3.2  Sensor-Based Switching
In earlier cases, we discussed the indirect way of locating the rotor position to deter-
mine the instants of commutation. However, if we have sensors fitted to sense the
rotor position, then it is a straightforward task to do switching. Considering a two-pole
machine, let us assume that Hall effect sensors are fitted around the stator spaced 120°
apart. Then, we can see that N-pole, as well as S-pole, will hit the sensor three times,
making the total hits six times in one rotation. Needless to say, if there are four poles
in the system, they will be spaced 60° apart. By appropriately spacing the sensors, we
can directly derive the instants of commutation. This method is a bit more expensive
and requires more wiring, but completely eliminates the computational requirements.
A block diagram of such a system is shown in Figure 5.28. For a four pole winding,
the spread of the sensors need to be only 60° apart. As the rotor rotates, the poles “hit”
the sensors and provide switching signals every 30° of rotation.

A commercial system to achieve the above control is available from Atmel with
ICs ATA6832, ATmega88, and ATA6624. The system consists of three integrated
circuits, Microcontroller ATmega88, Triple Half Bridge Driver ATA6832, and LIN
System Basis Chip ATA6624 (Atmel 2012).

Ready pairs: There are also working pairs of a BLDC motor and its control-
ler available on the market. Hobbywing Pentium-85A that drives a fan motor is an

Speed
Controller Trigger

signals

3-Phase
inverter

bridge and
driver

Motor

A

C B

Rotor position
sensor

FIGURE 5.28  Block diagram of Hall effect sensor-based control of BLDC motors.

137Basic Theory of Electrical Machines and Drive Systems

example (Hobbywing 2012). Such controller systems are capable of controlling the
motor using RC signals or PWM signals connected physically through a standard
three wire logic. These motor and controller pairs are mostly used in hobby model
planes. The motors are capable of speeds of 50,000 rpm, and currents can reach up
to 60 A.

5.5  CONCLUSION

In this chapter, we provided concise information regarding the electrical drive
schemes that are commonly used in robot design and highlighted the practical issues.
We presented basic DC electric motors and their operating principles using basic
electrical laws that govern them. We presented a brief overview of servo motors.
We furthered our discussion to describe more sophisticated actuators such as AC
machines, stepping motors, and finally BLDC motors. Wherever necessary, we have
provided information regarding the control of these machines, since accurate drive
control is imperative to achieve precise robot motion.

REFERENCES

Allegro website. 2012. http://www.allegromicro.com/Products/Motor-Driver-And-Interface-
ICs/Brush-DC-Motor-Drivers/A4973.aspx.

Atmel website. 2012. http://www.atmel.com.
Clayton, A.E. 1969. The Performance and Design of Direct Current Machines. London: Sir

Isaac Pitman & Sons, Ltd.
Cotton, H. 1970. Electrical Technology. London: Sir Isaac Pitman & Sons, Ltd.
Edwards, J.D. 1991. Electrical Machines and Drives. Hampshire: Macmillan Education Ltd.
Faulhaber, 2011. Miniature Drive Systems Catalogue.
Fitzgerald, A.E., Kingsley, J.C. and Umans, S.D. 1990. Electric Machinery. New York:

McGraw-Hill Publishing Company.
Hitec website. 2012. http://www.hitecrcd.com/products/servos/analog/standard-sport/hs-422.

html.
Hobbywing website. 2012. http://www.hobbywing.com.
Kenjo, T. and Sugawara, A. 1994. Stepping Motors and Their Microprocessor Controls.

Oxford: Oxford University Press.
Kuo, B.C. 1979. Incremental Motion Control (Vol. II)—Step Motors and Control Systems.

Champaign, IL: SRL Publishing Company.
Langsdorf, A. 2001. Theory of Alternating Current Machinery. New Delhi: Tata McGraw-Hill.
McKenzie-Smith, I. and Hughes, E. 1995. Hughes Electrical Technology. Englewood Cliffs,

NJ: Prentice-Hall.
Say, M.G. 1984. Alternating Current Machines. London: Pitman Publishing.
ST-Microelectronics. 2012. http://www.st.com/.

139

Motor Power Selection
and Gear Ratio Design
for Mobile Robots

6.1  GEAR RATIO FOR A MOBILE ROBOT

We have seen the various types of actuator motors and drive systems to power the
robot motion. The most prominent form of drive used in robotics is electrical motors,
which also come in various types such as DC motors (with commutator), brushless
DC motors, DC servomotors, stepper motors, and so on. During the design phase,
suitable motors have to be decided for the robot. This selection is usually done based
on the experience and the specific needs of the robot. For example, if the desired
robot motion is continuous, a DC motor can be selected and if there are motions in
steps, then stepper motors can be chosen. Once the motor type is chosen, the next
task is to decide power and torque requirements. In general, robots driven by such
motors may need a high torque up to several newton-meters, even though they need
to move relatively slow. We have seen the torque equation of motors in Chapter 5 on
drives. The power developed by a motor is the product of the angular speed and the
torque developed. If the motor develops a certain torque of τ Nm and runs at a speed
of n revolution/s, then the equivalent power, in watts, is given as 2πnτ. To keep the
robot at a reasonable weight, the motors should be light and small. Such small motors
inherently develop low torque measured in milli-newton-meters. The motor needs to
rotate faster, up to a few tens of thousands of revolution per minute (rpm), to achieve
the high power required. This presents a conflicting situation where we have to use
low-torque high-speed motors to power robot loads that move relatively slow, but
require high torque. Therefore, the primary reason for using gears in any system is
load matching since the high-speed low-torque motors have to drive low-speed high-
inertia/friction loads requiring heavy torque. For example, it is not a good idea to
drive a car up a slope in fourth gear. Car drive systems provide many selectable gear
ratios, so that the driver can choose a ratio according to the circumstance. In robotic
systems, it is quite difficult to have a gear-changing mechanism since it will make
mechanical design cumbersome and complicated. In addition, limitations on robot
size will preclude this approach. In robotics, only one gear ratio is used as shown in
Figure 6.1, and a proper gear ratio is often decided by a trial-and-error method. This
chapter aims to discuss the methods that may be useful in choosing the appropriate
gear ratio (Kanniah, Ercan et al., 2004).

Inertia equivalent values reflected across a gear box: It often becomes neces-
sary to calculate the reflected value of inertia across the gear box during the design
process. We see below how the load inertia will appear at the motor side and motor

6

140 Practical Robot Design

inertia will appear at the load side when there is a gear box between load and motor.
However, the power is invariant from whatever side we see it due to the law of con-
servation of energy. Assume that the angular velocities at the load side and motor
side are denoted by ωl and ωm, respectively. Let the motor moment of inertia be Jm
and the equivalent reflected motor moment of inertia at the load side be Jme.

For a given angular acceleration of motor dωm/dt, the torque required is given as
Jm(dωm/dt).

The power at the motor side is defined by the product of the torque and the angu-
lar velocity. Hence, the power at the motor side is given by

	
P J

d
dtm m

m
m= w

w
	

(6.1)

Considering only the motor moment of inertia at the load side, the power at the
load side can be written as

	
P J

d
dtl me

l
l= w

w
	

(6.2)

where Jme is the equivalent reflected value of the motor moment of inertia at the
load side.

Using the law of conservation of energy, both the above power terms can be
equated:

	
J

d
dt

J
d
dtme

l
l m

m
m

w
w

w
w=

	
(6.3)

If the gear reduction ratio is Ng, we can write

	
w wm g lN=

Motor

Rotor with moment
of inertia Jm

Gear wheels

Load with moment
of inertia J1

FIGURE 6.1  A typical use of speed reduction gear.

141Motor Power Selection and Gear Ratio Design for Mobile Robots

Substituting this into Equation 6.3, we get

	
J

d
dt

J N
d
dtme

l
l m g

l
l

w
w

w
w= 2

	
(6.4)

Hence

	
J J Nme m g= 2

	 (6.5)

Similarly, if the load inertia is Jl, the equivalent reflected value of the load inertia
Jle on the motor side can be derived as

	
J

J
Nle

l

g

=
2

	
(6.6)

6.2  POWER REQUIREMENT OF THE DRIVE MOTOR

Let us continue our discussion of motor power selection. After the type of motor
is decided, the next task is to find the power rating of that motor. In the follow-
ing discussions, commutator DC motors will be used as an example; however, the
ideas developed can be easily modified and applied to other types of motors. The
power requirement of the drive motor is a complex issue as it depends on the specific
application. In robotics, speed and acceleration as well as accuracy are the major
concerns. Any robot may have to achieve a velocity profile. It may be the change of
angle of a joint or motion of a robot on a surface. The surface may be horizontal or
inclined. Let us consider a mobile robot that has to adhere to a velocity profile to fol-
low as shown in Figure 6.2. It is also assumed that the terrain is not horizontal and
the robot is climbing on a slope as shown in Figure 6.3. Assume that the mass of the
robot shown in these figures is M (kg), the required acceleration is a (m/s2), and the

Vmax

t

V (m/s)

0

FIGURE 6.2  Desired velocity profile.

142 Practical Robot Design

maximum velocity required is Vmax (m/s). The slope of climbing shown in Figure 6.3
is described by sin(α), and the linear equivalent friction is B, which is measured in
newton-second/meter.

To achieve the acceleration, the required force on the wheel contacts with the
surface will be

	
f Maa =

	
(6.7)

The force required for overcoming gravity is

	
f Mgg = sin()a

	 (6.8)

and the force to overcome friction is

	 f B vb = 	 (6.9)

where v is the velocity of the robot. Hence, the total force can be given as

	
f f f fa g b= + +

	 (6.10)

and the maximum power requirement in watts can be written as

	 P S f V= max 	 (6.11)

In Equation 6.11, S is the factor of ignorance. The factor S has to be more than
1, while its actual value depends on how well the uncertainties in the system are
estimated, such as rolling friction, gear friction, and so on. Depending on the robot
design, forces acting upon the system that affect Equation 6.10 will be different,
and hence the calculation of power in Equation 6.11 will also be different. The basic
idea is to find out what maximum torque or force is required at the maximum angu-
lar velocity of the motor or linear speed of the robot. In other words, the worst

v M

fb

α

a

FIGURE 6.3  Robot moving on a mild slope.

143Motor Power Selection and Gear Ratio Design for Mobile Robots

loading condition should be tackled so that less severe conditions will be covered
automatically.

EXAMPLE 6.1

Assume that for the robot shown in Figure 6.3 values for the parameters are given
as follows:

	

M

B

V

a

S

=
=

=

=

=
=

°

2

1 8

2

2

5 71

1 2

2

kg

Ns/m

m/s

m/s

.

.

.

max

a

Using Equations 6.10 and 6.11, the power needed for the robot can be calcu-
lated as

	
P = × × + × × + ×() × =1 2 2 2 2 9 81 5 71 1 8 2 2 22 95. . sin(.) . . W

6.2.1  Role of Motor Inertia and Friction

All motors have their own friction, mostly in their sleeve bearings and commutators.
They do have some inertia as well. The fact is that most high-speed motors are made
of air-core armatures, with very little inertia. Motor manufacturers usually include
these figures as standard specifications in their manuals and data sheets. However,
it is important to consider the effect of the motor friction and inertia when they are
used in robots with appropriate gears. Let us consider an example to compare the
relative effects of these quantities with respect to the overall system values, which
include loads as well.

EXAMPLE 6.2

Motor inertia, Jm, for a typical 27 W motor is given as

	 Jm = × −20 10 7 2kg m

Using Equation 6.5, if the gear ratio is 10, then the reflected motor inertia on
the load side Jme is

	 J Jme m= × = × =−10 20 10 0 00022 5 2. kg m

This is the motor inertia reflected at the wheel. Now, let us assume that we are
driving a load of 2 kg on wheels of 0.03 m radius mounted on an axis to which
the output side of the gear system is attached. We need to compute the moment
of inertia of the load at the drive wheel.

144 Practical Robot Design

Assuming an acceleration of a, the linear force to be supplied by the drive
wheel is given by

		

Assuming that the drive wheel radius is Rw, the torque from the drive wheels
is given by

	 t M aRw w1 = 	 (6.12)

Looking at the wheel side, let the equivalent moment of inertia of the load be
Jl; then, the drive wheel torque can be written as

	
t J

d
dt

w l2 = w

	
(6.13)

Since the linear velocity is the product of the wheel radius and the angular
velocity of the wheel

	 ν = Rwω	 (6.14)

Substituting for ω from above into the second torque equation, we get

	
t

J
R

dv
dt

J
R

aw
l

w

l

w
2 = =

	
(6.15)

Since both torque values must be the same, let us equate the above two equa-
tions for the drive wheel torque

	

t t

M aR
J

R
a

w w

w
l

w

1 2=

=
	

(6.16)

This yields

	 J MRl w= 2

	
(6.17)

Then, the moment of inertia of load “seen” on the driving wheel Jl can be
calculated as

	 Jl = =2 0 03 0 00182 2(.) . kg m

A comparison of Jl and Jme reveals that the motor inertia is quite small when
compared to that of the load it is driving.

f M aw =

145Motor Power Selection and Gear Ratio Design for Mobile Robots

6.3  TYPICAL MOTOR CHARACTERISTICS DATA SHEET

Manufacturers list quite a number of specifications of their motors in data sheets.
This information is valuable during the design process. An example data, based on
Portescap minimotor manufacturer’s information on ESCAP® 28 DT 12-222E DC
motor, is shown in Table 6.1 (Portescap 2013).

There are other information and characteristics, though they are not critically
important at this stage. We have seen in the chapter on drive systems that Kb and
Kt must be numerically the same Chapter 5. However, they are different in Table
6.1, since the value for Kb is given in units of V/1000 rpm. For the analysis pro-
vided in the later sections, the values of Kb in Vs/rad are needed. Let us convert
the units from V/1000 rpm to Vs/rad for this case as shown in Example 6.3.

EXAMPLE 6.3

	 Kb = 3.4 V/1000 rpm
	 =0.0034 V/rpm
	 =0.0034 × 60 V/rps
	 =0.0034 × 60/(2π) V/rad/s

Hence

	 Kb = 0.0325 Vs/rad = Kt

In summary, whenever we need Kb in the unit of Vs/rad in our calculations, we
can take Kt from the catalog and readily use it.

Some of the motor parameters in the above list immediately help in the design
process. For example, rotor inductance to rotor terminal resistance ratio (L/R)
should be considered in deciding the PWM frequency. The L/R ratio is also the

TABLE 6.1
Typical Motor Data Sheet Information

Characteristics Specification

Voltage 24 V

No-load speed (full voltage applied with no load on shaft) 6900 rpm

Stall torque (full voltage applied, but shaft arrested forcibly) 126 mNm

No load current 110 mA

Maximum continuous current 1.4 A

Maximum speed—recommended 9000 rpm

Maximum angular acceleration 91,000 rad/s2

Maximum continuous power 37 W

Back EMF constant, Kb 3.4 V/1000 rpm

Torque constant, Kt 32.5 mNm/A

Rotor inductance, L 0.75 mH

Rotor terminal resistance, ra 6.2 ohms

Rotor moment of inertia 20 × 10−7 kg m2

146 Practical Robot Design

time constant of the current path. If the L/R ratio is high and the PWM frequency
is also too high, this will reduce the duration of the applied voltage and the current
will have no time to rise.

Another instantly useful parameter is maximum acceleration. For example, the
maximum acceleration given in Table 6.1 is 91,000 rad/s2, which means that this
motor can reach a speed of (91,000 × 60/2π) × 0.01 = 8690 rpm in 0.01 s. A higher
acceleration rate will damage the motor mechanically. Apparently, the design
should not push the motor beyond this rate.

6.4  FRICTION MEASUREMENT IN A LINEAR MOTION SYSTEM

A good robot design depends upon reasonable knowledge of robot parameters.
Some of these parameters are obtained easily, such as the mass of a robot, which
can be weighed with no trouble. However, measuring friction parameter is not
very straightforward. It is not possible to use the values in specifications provided
in data sheets to compute the overall friction coefficient. Moreover, when we are
concerned about friction, there are so many friction coefficients involved, such as
friction of motor bearings, commutators, friction of wheel bearings, and friction
of the gear train, to name a few. To cloud the picture further, there are other loss-
making elements as well, such as rolling friction of the rubber tire on the wheel
of a mobile robot. It may be possible to measure all these individually, but it is
not practical. What is needed is an approximation of the overall picture of fric-
tion interfering with the motion of the robot. It is important to note that the fric-
tion is a highly nonlinear phenomenon, even without considering static friction,
which results in requiring a force to get the robot moving initially from standstill.
However, the friction force can be approximately considered as a linear function
of velocity during motion.

Any linear motion of a moving body may be considered to consist of a combina-
tion of a mass and an overall friction coefficient acted upon by a force. How do we
get a reasonable idea about the linear motion friction coefficient? It is possible to
devise a simple experiment to measure this friction as shown in Figure 6.4.

In this arrangement, the robot is allowed to slide down from the top to the lower
end of the platform and we measure the time taken. Some precautions are necessary
during the experiment. First, the slope angle θ cannot be very large. Second, the
robot should travel down the slope in a straight line.

θ

M, B

FIGURE 6.4  Measuring overall linear friction.

147Motor Power Selection and Gear Ratio Design for Mobile Robots

Let us perform a simple analysis. Assume that the distance traveled is X meters
along the platform, and the time taken by the robot to travel is T seconds. We know
that

	
M g M

d x

dt
B

dx
dt

sinq = +
2

2

	
(6.18)

where x is the distance measured from the starting point. By assuming that all the
initial conditions are zero and taking the Laplace transform, we get

	

Mg
s

M B X ss ssin
()[]q = +2

	
(6.19)

Substituting β = (B/M), which is the corner frequency of the system response and
taking the inverse Laplace transform, we obtain

	
x t

g
t

e t

()
sin ()= − −





−q
b b

b1

	
(6.20)

As mentioned, assume that t = T, x(t) = X are obtained conducting the above
experiment.

Hence, we obtain

	
b q b b= − − − 

g
X

T e Tsin ()1
	

(6.21)

It is important to note that in Equation 6.21, β appears in both sides of the equa-
tion. This equation can be solved easily by iterative techniques as shown with the
simple MATLAB® program given in Figure 6.5.

EXAMPLE 6.4

Assume that in one such experiment described above, the following results were
obtained:

Mass of the robot, M = 2.2 kg
Time taken by the robot to descend, T = 3.2 s
The distance traveled, X = 2.13 m
Slope of the platform, θ = 5.17°

By running the MATLAB program shown in Figure 6.5, with these values, we
can obtain the result for β. The program given in Figure 6.5 needs an initial guess
for β and in this example it is taken as β = 3. Hence, we obtain

	 β = 0.8880  and  B = 1.9537 Ns/m

148 Practical Robot Design

6.5  FIRST APPROACH: GEAR RATIO DESIGN

The gear ratio design will vary according to the specific application. The robot may
have to move on a horizontal surface, move on a slope, follow a velocity profile, or
climb a wall carrying its own weight. In an industrial robot, requirements will vary
from joint to joint, since some joints may be required to carry load vertically and
other joints just move horizontally. This is also the case for a two-legged humanoid
robot, where knees will be the fastest-moving joint and the hip pitch will be the
heaviest-load-bearing joint. The question is for a given application how to design the
suitable gear ratio. There could be many criteria used for this purpose. It is not pos-
sible to cover all the possible approaches, but some specific cases will be illustrated
in the following discussions.

Let us assume that the robot has to follow the velocity profile shown in Figure 6.2
while traveling on an inclined plane as shown in Figure 6.3. This is a safe practice
since it is not possible to assume that the terrain will always be horizontal. A sketch
of the system is shown in Figure 6.6. The motor is designed for high-speed operation.
The robot does not need to move that fast, but it needs to provide a high torque at
the drive wheels. Therefore, we need a reduction gear to drive the robot. The discus-
sion starts with an overall torque required on the drive wheel to move the robot. It is
assumed that the proposed gear ratio is Ng and the drive wheel radius is Rw.

The force required on the drive wheel is given by the sum of Equations 6.7 through
6.9. Referring to the quantities shown in Figure 6.3 as well as Figure 6.6, the torque
required on the drive wheel can be obtained easily as shown below.

FIGURE 6.5  MATLAB code for calculating β and B values.

149Motor Power Selection and Gear Ratio Design for Mobile Robots

	
tw a b g wf f f R= + +()

	
(6.22)

	 t aw M a B v Mg Rw= + +(sin) 	 (6.23)

Then, the torque to be developed by the motor is given by

	
t

a
m

w

g

M a B v Mg R

N
=

+ +(sin)

	

(6.24)

Some assumptions made regarding the motor parameters are as follows:

Supply voltage = Vs

Armature resistance = ra

Torque constant (Nm/A) = Kt

Back EMF contant (Vs/rad) = Kb

Motor speed (rps) = nm

Armature current (amp) = ia

From the basic knowledge of the DC machine theory (Rosenblatt and Friedman
1984), the torque developed by the motor will be

	
τm

s b m

a
t

V K n
r

K= − 2p

	
(6.25)

or

	
τm

s t

a

b t m

a

V K
r

K K n
r

= − 2p

	
(6.26)

For any ground speed of v, the drive wheel speed can be obtained as

	
n

v
Rw

w

=
2p 	

(6.27)

Motor
Gear Ratio: Ng

Rw

FIGURE 6.6  Block diagram of a gear-driven robot.

150 Practical Robot Design

or motor speed as

	
n

vN

Rm
g

w

=
2p 	

(6.28)

Then, using Equation 6.28 in Equation 6.26, the torque developed by the motor at
any ground speed v can be obtained as

	
t p

pm
s t

a

b t

a

g

w

V K
r

K K
r

vN

R
= − 2

2 	
(6.29)

or

	
tm

s t

a

b t g

a w

V K
r

K K vN

r R
= −

	
(6.30)

The robot has to move with an acceleration of a and reach a velocity of ν.
Combining Equations 6.24 and 6.30, we can write

	

V K
r

K K vN

r R

Ma Bv Mg R

N
s t

a

b t g

a w

w

g

− ≥
+ +()sina

	
(6.31)

At the limit, it becomes

	

V K
r

K K vN

r R

Ma Bv Mg R

N
s t

a

b t g

a w

w

g

− =
+ +()sina

	
(6.32)

or

	

K K vN

r R

V K N

r
Ma Bv Mg Rb t g

a w

s t g

a
w

2

0− + + +() =sina
	

(6.33)

The above equation is quadratic in Ng, the solution of which yields two values Ng1
and Ng2. For the above two gear ratios obtained, the current drawn ia1 and per-unit
power efficiency η1 can be calculated by ignoring iron and frictional losses of the
DC motor as given below:

	
i V

K vN

R ra s
b g

w a
1

1 1= −










	
(6.34)

	
h1

1 1
2

1

= −V i i r
V i

s a a a

s a 	
(6.35)

151Motor Power Selection and Gear Ratio Design for Mobile Robots

and

	
i V

K vN

R ra s
b g

w a
2

2 1= −










	
(6.36)

	
h2

2 2
2

2

= −V i i r
V i

s a a a

s a 	
(6.37)

The above results created a dilemma. Which one of these two values should be
used? The following numerical example throws some light on this problem.

EXAMPLE 6.5

Let us assume that we would like a robot to accelerate at 2  m/s2 and reach a
velocity of 2 m/s, while climbing a slope of 5.7°. The robot parameters are given as

	 Vs = 24 V, m = 2 kg, b = 2 Ns/m, sin(θ) = 0.1, v = 2 m/s, a = 2 m/s2,

	 Kb = 0.033 V-s/rad, Kt = 0.033 Nm/rad, ra = 6.2 Ω, Rw = 0.03 m

Let us decide a suitable gear ratio using the above technique. For the solution, a
simple MATLAB program can be utilized. By entering the above values and executing
the MATLAB code shown in Figure 6.7, the two values of gear ratios are obtained.

The computation result produced two sets of solutions. Let us elaborate more
by computing the motor speeds for both cases and decide on an acceptable
solution.

For the higher gear ratio, the back EMF will be

	 Eb1 = Vs − Ia1ra

	 Eb1 = 24 − 1.2047 × 6.2 = 16.53 V

Hence, the angular velocity of the motor is

	
wm

b

b

E
1

1 16 53
0 033

500 93= = =
K

.
.

. rad s/

and then the motor shaft speed is

	
nm

m
1

1

2
500 93

2
79 77 4786= = =w

p p
.

. rps or rpm

For the lower gear ratio, the back EMF is

	 Eb2 = 24 − 2.6663 × 6.2 = 7.469 V

Hence, the angular velocity of the motor is

	
wm2

7 469
0 033

2= =.
.

26.33 radian/s

152 Practical Robot Design

and then the motor shaft speed is

	
nm2

226 33
2

36 02= =.
.

p
rps or 2161rpm

Referring to the results obtained above, the following observations can be made. The
higher gear ratio (Ng1 = 7.5140) allows the motor to run at a higher speed of 4786 rpm,
developing a higher back EMF of 16.53 V, thus drawing a lower current (ia1 = 1.2047).
The lower current results in lower copper loss of i ra a1

2 21.2047 6.2 9= × = W and
delivers a higher efficiency of 0.6888 as shown above.

FIGURE 6.7  MATLAB code and results for gear ratio, motor current, and efficiency.

153Motor Power Selection and Gear Ratio Design for Mobile Robots

On the other hand, the lower gear ratio (Ng1 = 3.3950) is in fact “strangling”
the motor, although it will still do the job. This ratio makes the motor run at a
lower speed of 2161 rpm, developing a lower back EMF of 7.469 V, thus drawing
a higher current (ia2 = 2.6663) to develop a high torque. This current for the given
example will generate a higher copper loss of i ra a2

2 22.6663 6.2 44 W= × = and
result in a lower efficiency of 0.3112. In that case, a bigger problem will emerge,
which is the heating of the motor and the drive system. Consequently, power dis-
sipation has to be resolved. The above example provided one “good” and one
“bad” solution. Apparently, for the robot in this example, a high gear ratio must
be selected.

The case of inadequate power rating: If the motor power selection was not
done properly, the given requirements will be impossible to achieve. It is inter-
esting to find what happens if an impossible task is given to the system. Assume
that the objective is to achieve a ground velocity of, say, 4 m/s and also a slightly
higher acceleration. The following example highlights the consequence of such
a situation.

EXAMPLE 6.6

Assume that the following requirements are given for the same system, v = 4 m/s,
a = 2.3 m/s2, while the other parameters remain the same as in Example 6.5. The
program in Figure 6.6 can now be used just by entering these new values. Then,
the results will be

Ng1 = 4.7431 + j1.0114
Ng1 = 4.7431 − j1.0114

The complex numbers obtained for gear ratios simply indicate that the task is
impossible. The power check was not done properly to start with. If the power
selection was marginally inadequate, we can have a quick-fix solution by raising
the voltage a few volts. For instance, if we set Vs = 27 V and repeat the same cal-
culations, keeping all other parameters unchanged, the results are

Ng1 = 7.5615
Ng2 = 3.1105
i1 = 1.2693
i2 = 3.0856
e1 = 0.7085
e2 = 0.2915

In many cases, it is not wrong to use this adjustment provided that motor is not
driven with excessive voltages.

6.6 � SECOND APPROACH: SYSTEM PERFORMANCE
AS A FUNCTION OF GEAR RATIO

In the previous section, the optimum gear ratio was calculated by solving a quadratic
equation, which yields two choices. We have no information as to what happens if
the gear ratio is different from the two values obtained. Thus, we can analyze how
the performance gets affected for a wide range of gear ratios. For this purpose, we

154 Practical Robot Design

can fix acceleration, and solve for maximum velocity obtainable as a function of gear
ratio. We can develop a program to find the effect of gear ratio to find where the best
performance occurs. From Equation 6.33, the limiting velocity can be obtained as

	

v

V K N

r
Ma Mg R

K K N

r R
BR

s t g

a
w

b t g

a w
w

=
− +

+

()
(sin)a

2

	

(6.38)

A sample program listing is provided in Figure 6.8. The program plots the maxi-
mum velocity obtainable, the current drawn from power source, and the efficiency
of the motor. They are shown in Figures 6.9 through 6.11, respectively, as functions
of the gear ratio selected.

FIGURE 6.8  MATLAB code that shows the effect of gear ratio on maximum velocity.

155Motor Power Selection and Gear Ratio Design for Mobile Robots

The aim of this exercise is not to obtain the maximum velocity, but to examine
the effect of gear ratio on the system performance. Referring to Figure 6.9, we notice
that for a desired velocity, two gear ratios are available. A higher gear ratio may be
chosen as before. However, it is important to consider the current drawn and the
efficiency before selecting a gear ratio. Referring to Figure 6.9, we notice that as we
increase the gear ratio, the maximum velocity achievable by the robot increases and

2 4 6 8 10 12 14 16 18 20 22
0

0.5

1

1.5

2

2.5

3

Gear ratio

M
ax

im
um

 ve
lo

ci
ty

 (m
/s

)

FIGURE 6.9  Effect of gear ratio on maximum velocity.

2 4 6 8 10 12 14 16 18 20 22
0

0.5

1

1.5

2

2.5

3

3.5

4

Gear ratio

Cu
rr

en
t d

ra
w

n
by

 m
ot

or
 (A

m
ps

)

FIGURE 6.10  Effect of gear ratio on current drawn by motor.

156 Practical Robot Design

then decreases. Let us consider the point of maximum velocity (2.25 m/s) where the
gear ratio is 5. Referring to Figure 6.10, the current drawn at the chosen gear ratio
is 2 A. Furthermore, referring to Figure 6.11, the same gear ratio shows that the
efficiency is only 0.5. It implies that half of the power drawn will be used to heat the
motor. This may result in dissipation issues and the motor and the driver may get
overheated. Considering all the three charts, a gear ratio of 8 may result in accept-
able maximum velocity (1.9 m/s), current (1.1 A), and efficiency (0.71). Consulting all
the three plots is essential when deciding upon a gear ratio.

6.7  GEAR RATIO DESIGN FOR STEPPER MOTORS

The working principle of stepper motors is different from that of DC motors. For
these devices, the magnetic reluctance between the rotor and the stator of the stepper
motor changes with respect to the position of the rotor. When a winding is excited,
the rotor aligns with that winding. The power supply is switched to different wind-
ings in a sequence so that the rotor continues to rotate in the desirable direction and
speed, which corresponds to the switching frequency. There are well-known switching
circuits to achieve this. However, stepper motor-based design needs to be done cau-
tiously. Let us evaluate this in detail. A typical stepper motor characteristic graph is
shown in Figure 6.12 (for a typical stepper motor specification, see Portescap 2013).
The motor can start at a given load condition from zero to any pulse rate (speed) as
long as the point of operation falls within the region enclosed by “pull-in” line and two
axes. Then, if the load torque increases gradually, from there the motor will continue
to rotate. However, when the point of operation crosses the “pull-out” line upward, the
motor will suddenly stop. Similarly, starting from the “pull-in” region, if the pulse rate
(speed) is increased gradually, the motor will continue to accelerate. However, when

2 4 6 8 10 12 14 16 18 20 22
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Gear ratio

Effi
ci

en
cy

 (p
.u

)

FIGURE 6.11  Effect of gear ratio on efficiency.

157Motor Power Selection and Gear Ratio Design for Mobile Robots

the point of operation crosses the “pull-out” line toward the right, the motor will sud-
denly stop. A fully analytical solution for gear ratio design is not strictly possible.

The following steps are useful in arriving at an optimum gear ratio for stepper
motors:

	 1.	Compute power requirement as before with a high S (ignorance factor)
value.

	 2.	Find the linear force and the driving wheel torque using Equation 6.23. The
maximum speed of the robot is also known.

	 3.	As a starting point, assume a large gear ratio.
	 4.	Using the above gear ratio, calculate the required motor torque and stepping

speed.
	 5.	Place the point indicated by the torque and stepping speed on motor charac-

teristic graph.
	 6.	Check if this point falls on the left-hand side of the pull-in line on step

motor characteristic graph with enough margin. If yes, then the design is
complete!

	 7.	 If the margin is too low, or the point falls to the right-hand side of the pull-in
line, lower the gear ratio in steps. Repeat the design from step 4.

	 8.	 If the margin is too large, raise the gear ratio in steps to achieve the desired
margin.

The above design procedure starts with a high gear ratio and decides on the
appropriate ratio by iteration. Alternatively, we can start with a gear ratio of 1 and
increase it iteratively. That is, after steps 1 and 2, we can now proceed as follows:

	 1.	Assume a gear ratio of 1 as a starting point.
	 2.	Using the above gear ratio, find the torque and the stepping speed of the motor.
	 3.	Place the point indicated by the torque and the stepping speed on the motor

characteristic graph. By intuition, this point will fall too far to the left of the
pull-in line. We will be underutilizing the motor.

Pull-out
characteristics

Pull-in
characteristics

Pull-in
region

To
rq

ue

Step per second

Operating
region

FIGURE 6.12  A typical stepper motor characteristic.

158 Practical Robot Design

	 4.	 If it is so, gradually increment the gear ratio until the torque versus speed
point falls reasonably close but below the pull-in characteristics with the
desired margin.

Using the “pull-in” line for design is conservative. In fact, this line gives the
maximum stepping speed to which the motor can start from a standstill position for
a given load torque on the motor shaft. In applications where the robot can accelerate
slowly from standstill, the operating region may be used for the design.

6.8 � DESIGN PROCEDURES FOR MOBILE ROBOT THAT ARE NOT
GROUND BASED

The above discussions described procedures for gear ratio design for robots that are
mobile and ground based. But there are many other applications where robots are
not moving on a horizontal surface. For example, a wall-climbing robot moves on a
vertical surface or even under the ceiling. A two-legged robot has many joints that
will have different load–speed demands on them. For such special robots, the above
techniques are not readily applicable, though the design procedure is still based on
estimating the maximum torque and speed requirements. Since it is not possible to
give a general procedure that is applicable to all, we will give some practical design
examples with the following case studies.

Case Study I:  Design of Robotic Arm Joints

The aim of the exercise is to rate the motors and gear ratios at the joints for a
robot arm shown in Figure 6.13. We assume that the length of robot links are
l1, l2, and l3. The weights of the links are assumed to be negligible when com-
pared to the load at the end point PA. The design values are computed to cater
to the worst-case situation. Let us find the maximum load variables of PA in the
worst-case situation. This will occur when the robot arm is horizontal and fully
stretched as shown in Figure 6.14.

J1

J2
J3

l1

l2

l3

PA

M

F = Mg

FIGURE 6.13  Block diagram of a three-joint robot arm.

159Motor Power Selection and Gear Ratio Design for Mobile Robots

Assume that the following parameters are given for the design process:

The load at the end effector: M
The acceleration with which the load has to be lifted: a
The required vertical velocity to be reached: v
Then, the downward load on the system: M(a + g)

For joint J1: The torque on joint J1 will be tj1 = (l1 + l2 + l3)M(a + g), and the
angular velocity will be w j1

 = v/(l1 + l2 + l3). Hence, the motor power at joint 1
can be estimated as P1 = w j1

(l1 + l2 + l3)M(a + g) or P1 = vM(a + g). Now, we can
select a suitable motor with a power rating of P1.

From the given angular velocity, the load shaft speed can be derived as
NS1 = (w j1

/2π). Assume that the no-load speed of the selected motor is NM1 Hence,
the required gear ratio is G1 = (NM1/NS1). DC motors that will be used for this
application are permanent magnet motors that have shunt motor characteristics
and the speed drop at the loaded condition is minimal. Hence, the speed at full
torque will not be different from the no-load speed. We can now pick a suit-
able ratio from a manufacturer’s catalog. Let this selected ratio be G11 such that
G11 ≤ G1 to guarantee the speed requirement of the arm. We now need to check
the motor safety and performance. With the selected gear ratio, the torque on
the motor shaft will be τM1 = (τj1/G11). Assume that the torque constant given
in the motor specifications is Kt1. The current drawn by the first joint motor will
then be IM1 = τj1/(G11 ⋅ Kt1). If IM1 is less than the maximum current rating of the
selected motor, then the selected gear ratio is fine. Otherwise, a next higher gear
ratio, say, G12 that is still less than G1 should be considered and the motor cur-
rent must also be recalculated accordingly. If such a gear ratio is not available,
a higher motor power should be selected and the above calculations should be
repeated.

For joint J2: Let us assume that the vertical velocity, v, and acceleration, a,
need to be achieved using J2, while J1 is fixed. The torque on joint, J2, will
be tJ l l M a g

2 2 3= + +() (), and the angular velocity will be w J v l l
2 2 3= +/()

. The power of the motor at joint J2 should be P l l M a gJ2 2 32
= + +w () () or

P2 = vM(a + g). Now, we select a suitable motor at the rating of P2 watts. At the
driving shaft of J2, the load shaft speed is given by NS J2 2

2= ()w p/ .
Assume that the no-load speed of the selected motor is NM2, then the required

gear ratio will be G2 = (NM2/NS2). We can now pick a suitable gear ratio G21 so

J1 J2 J3
l1 l2 l3

PA

M

F = Mg

FIGURE 6.14  Robot joints having the maximum load.

160 Practical Robot Design

that G21 ≤ G2. Again, we need to check the motor safety and performance. The
torque on the motor shaft is given as τM2 = (τj2/G21); hence, the current drawn by
the motor is IM2 = τj2/(G21 ⋅ Kt2) A, where Kt2 is the torque constant of the selected
motor. As discussed earlier, the current IM2 should be less than the maximum
current rating of the motor.

For the rest of the joints, a similar procedure can be applied as discussed
above. In the following, a numerical example of the design procedure using
actual motors from a manufacturer’s catalog will be given.

EXAMPLE 6.7

Assume that the basic design requirements of a robot arm are given as follows:

Load (M) = 2 kg
Length of link 1 (l1) = 0.2 m
Length of link 2 (l2) = 0.2 m
Length of link 3 (l3) = 0.2 m
Maximum load velocity (v) = 0.5 m/s
Maximum load acceleration (a) = 0.5 m/s2

Let us design and select suitable drive motors with appropriate gear ratios.
For joint J1, the downward load is equal to M(a + g); hence, with the given

parameters, it will be 20.62 N. The torque on J1 is defined as τJ1 = (l1 + l2 + l3)
M(a + g) and with the given parameters this will yield 12.372 Nm. Similarly,
the angular speed ωJ1 = v/(l1 + l2 + l3) is 0.833 rad/s and the load shaft speed is
NS1 = (ωJ1/2π) = (0.833/2π) = 0.1326 rps. The power required for J1 is P1 = ωJ1τJ1 or
10.31 W.

Let us select type 2342024CR from the minimotor series offered by
Faulhaber’s minimotor catalog (Faulhaber 2013), which has the following speci-
fications, power = 19 W, nominal speed = 8500 rpm, supply voltage = 24 V,
torque constant = 26.1 mNm/A, and maximum current = 0.72 A. We find that
the no-load speed of the motor is 141.7 rps and the ideal gear ratio is (Nm1/
NS1) = (141.7/0.1326) = 1068. The gears provided by the manufacturer, which can
be factory fitted, are types 23/1, 26A, 26/1, 22/7, 30/1, and 38/3 (Faulhaber 2013).
As we search for the gears, none of the above available gears is capable of giving
this torque of 12.372 Nm.

Apparently, we need to change the motor, though it was satisfactory, since
none of the factory-fitted gears will serve the purpose. Let us select the minimo-
tor number 3242024CR (Faulhaber 2013), which has the following specifications:
power = 26.3 W, nominal speed = 5300 rpm, supply voltage = 24 V, torque con-
stant = 41.3 mNm/A, maximum current = 1.20 A. Then the no-load speed is 88.33
rps and the ideal gear ratio will be (Nm1/NS1) = (88.33/0.1326) = 666.16. Gears pro-
vided by the manufacturer are types 32/3, 38/1, and 38/2 (Faulhaber 2013). Let us
choose the gear heads series 38/1s and 38/2s (“s” indicates all steel gears), where
the continuous output torque of the gear is 10 Nm and the intermittent maximum
torque will be 15 Nm. We can pick that gear since our calculations for torque are
for the worst-case scenarios and the torque of 12.372 Nm will not be continuous.
We need to the select ratio that is <666.16. From the available ratios, let us choose
a gear ratio for joint one, G11, as 592 (Faulhaber 2013). In this case, the torque

161Motor Power Selection and Gear Ratio Design for Mobile Robots

on the motor shaft will be τm1 = (τJ1/G11) = (12.372/592) = 0.02089 Nm. The torque
constant of the motor, Kt1, from the given specifications will be 0.0413 Nm/A.
Hence, the current drawn can be calculated as IM1 = (0.02089/0.0413) = 0.505 
A. For this motor, the maximum continuous current is specified as 1.20 A, so the
estimated IM1 value is still acceptable in this case.

For joint J2, the downward load will be the same, that is, 20.62 N. The torque on
J2 is given by τJ2 = (l2 + l3)M(a + g) or 8.248 Nm. The angular speed ωJ2 = v/(l2 + l3)
or 1.25 rad/s and the power required for J2 is P2 = ωJ2τJ2 or 10.31 W. As the power
will be the same as in joint 1, let us use the same motor which is Minimotor series
3242024CR (Faulhaber 2013). Similar to the above calculations, load shaft speed
NS2 is calculated as 0.1989 rps for ωJ2 = 1.25 rad/s. Hence, the ideal gear ratio will
be (Nm2/NS2) = (88.33/0.1989) ≈ 444.1. Let us choose the gear heads series 38/1 and
38/2 (Faulhaber 2013) in which a gear ratio of 415 is available, which is <444.1.
The torque on the motor shaft will be τm1 = (τJ2/G22) = (8.248/415) = 0.01987 Nm,
and the motor current will be IM2 = (0.01987/0.0413) = 0.482 A. This is less than
the maximum current of 1.2 A. Therefore, the motor and gear with a gear ratio of
415:1 is suitable.

Repeating the same calculations for the third joint and assuming the same
velocity, mass, and acceleration will lead to the same motor power require-
ment, the torque on J3 is given by τJ3 = l3M(a + g) or 4.124 Nm. The angu-
lar speed ωJ3 = (ν/l3) or 2.5 rad/s and the power required for J3 is P3 = ωJ3τJ3 or
10.31 W. That is, we can still employ the same motor (3242024CR) for this
joint. NS3 is calculated as 0.3981 rps for ωJ3 = 2.5 rad/s. Hence, the ideal gear
ratio will be (Nm3/NS3) = (88.33/0.3981) ≈ 221.9. Let us choose the gear heads
series 38/1 and 38/2 (Faulhaber 2013) in which gear ratios of 159:1 and 246:1
are available. Let us pick 159, which is <221.9. The torque on the motor shaft
will be τm3 = (τJ3/G31) = (4.124/159) ≈ 0.0259 Nm and the motor current will be
IM3 = (0.0259/0.0413) = 0.627 A, which is less than the maximum current of 1.2 A.

In summary, in the above example, we insisted on using the gears provided by
the manufacturer and found out that the output torque provided by those gears
meant for motors with suitable power ratings were inadequate. Hence, our motor
selection was overshadowed by the availability of a suitable gear. At the end, the
motors we chose were far more powerful than needed. An alternative for this kind
of predicament is to use an external gear as an additional stage. However, this addi-
tional gear may cost more than the cost of a higher power-rated motor that we used
in the above design. Furthermore, an external gear stage may occupy more space.

Case Study II:  Motor Power and Gear Ratio
Calculation for a Wall-Climbing Robot

In this second case study, we discuss another design example, which is a wall-
climbing robot. It is possible to design a robot to climb a vertical wall, and there
are many possible designs. A unique triangular structure design is shown in Figure
6.15. In this robot, A, B, and C are the pivotal joints that are powered by geared DC
motors. Each joint is provided with a sticking pad that can be activated to stick to
the surface. The problem is to design these joints so that the robot will be able to
climb the vertical wall. Figure 6.15 shows the instant when the robot is climbing
a vertical wall. We start this discussion considering the instant when the pads are
stuck to the vertical wall. These pads, associated with joints A and C, are named

162 Practical Robot Design

A1 and C1, respectively. To climb, the robot needs to release the grip on pad C1 and
crank joint A so that the robot body rotates clockwise until the joint pad B1 touches
the vertical surface above and then gets stuck to it. After this motion, joint C will
be the farthest away point of the robot from the climbing surface. Obviously, this
sequence is continued to crank joint B and so on to achieve a climbing motion.

We need to design the joints in such a way that it will work when the load
torque is maximum at the desired speed. In this case, the design approach used
for a mobile robot discussed earlier is not strictly followed. Figure 6.16 shows
the instant in which the load torque on joint A is nearly the maximum. This is
only approximate since the actual position of the center of gravity will only be
known when the exact positions of the motors and other components are known.
Hence, only the approximate position is considered. Furthermore, joint A is not
part of the load. We can argue that the major part of the load comes from these
three joints and hence only two-third of the weight of the robot, W, needs to be
cranked upward with a torque arm length of Lcos(30°), which makes the maxi-
mum torque on joint A as () cos() ()2 3 30 3/ /WL W L° = . This is not strictly cor-
rect, since there are additional masses of the frame and electronics and others
on the robot. Hence, a factor of ignorance S can be included and the maximum
torque on joint A is written as

	
T S W

L
max =





3

kgm

or

	
tmax .=







S W
L

9 81
3

Nm

d

L

θ = 120°

A

B1

B

C

C1

A1

FIGURE 6.15  Block diagram of a wall-climbing robot.

163Motor Power Selection and Gear Ratio Design for Mobile Robots

The other important parameter is the speed with which the joint has to
rotate. Assume that a duration of ts seconds is allowed for the robot to rotate
120°, which is needed for sticker pad C1 to leave the wall and sticker pad
B1 to stick to the wall. Then, the angular velocity of joint A cranking up
will be ω0 = (120/ts) × (π/180) ≈ (2.09/ts) rad/s. The power developed by the
motor, powering joint A, can be written as P = τmaxω0 and the power rating
of the motor can be calculated as P S W L ts= × =t wmax . ()(.).0 9 81 3 2 09/ /
The shaft speed is given as ω0/2π, which is N0 = (60ω0/2π) rpm. We now
have to choose a motor that has adequate power rating Pm. To simplify mat-
ters, we did not include the power required for the acceleration; therefore,
we need to choose a slightly higher power rating than P. Furthermore, other
than the instant shown in Figure 6.16, there will be excess torque available
for acceleration.

Let the nominal speed of this motor, listed in the catalog, be Nm rpm; then,
the ideal gear ratio is G1 = (Nm/N0). As before, we need to find a gear ratio
available for the gear head provided by the manufacturer. We pick the value
G11 which is slightly less than G1 such that G11 ≤ G1. For this gear ratio, the
torque to be developed by the motor will be τm1 = (τmax/G11). If the torque con-
stant of the motor is Kt1, it yields a motor current of iM1 = (τm1/Kt1), and it should
be less than the rated maximum current of the chosen motor. Otherwise, a
higher gear ratio G21 may have to be chosen. If G21 is greater than G1, the speed
performance will be compromised. In an extreme case, the motor may have to
be changed.

A
A1

B
B1

C

C1

30o

FIGURE 6.16  Robot position that has the maximum torque on the joint.

164 Practical Robot Design

EXAMPLE 6.8

Assume that the following data are provided for the wall-climbing robot shown in
Figure 6.15:

	 W = 4 kg

	 L = 0.4 m

	 ts = 0.4 s

Assuming S = 1.3, let us calculate the required motor power and gear ratio.
From the above definition, the motor power will be P = 1.3 × 9.81(4 × 0.4/ 3)

× (2.09/0.4) = 61.55 W and the shaft speed will be N0 = (60/2π)(2.09/0.4) ≈ 50 rpm.
Now, we select a suitable motor (such as minimotor 3257024C (Faulhaber 2013))
that has the following specifications: power = 83.2 W, nominal speed = 5900 rpm,
supply voltage = 24 V, torque constant, Kt = 37.7 mNm/A, maximum current = 2.3 A.
With these parameters, the ideal gear ratio will be G1 ≈ (5900/50) ≈ 118 and the
torque on the shaft will be tmax . . (.) .= × × =1 3 9 814 0 4 3 11 78/ Nm. From the
available gears (Faulhaber 2013), all steel gears types 38/1s and 38/2s with maxi-
mum output torque option of 15 Nm, for intermittent peak loads, can be selected.
From the catalog, the nearest gear ratios available are 66 or 134. We have to select
134, even though this value is higher than 118. For this gear ratio, the motor torque
can be obtained as τm1 = (11.78/134) × 1000 = 87.9 mNm, and the motor current
is (τm1/Kt) = (87.9/37.7) = 2.33 A. This compares well with the maximum current of
2.3 A, bearing in mind that this will only be a peak value coming on intermittently.
Since the gear ratio is 134, which is higher than the required 118, the robot will
climb at a slightly slower speed, which is a compromise.

6.9  CONCLUSION

In this chapter, we have described various ways of arriving at a suitable gear ratio
for mobile robots. A low gear ratio demands a low-speed operation of a DC motor
and needs more current, resulting in large copper losses and heating. It is necessary
to check if more current is really needed. On the other hand, a very large gear ratio
will result in too safe currents, but slows down the motion of the robot and its perfor-
mance, which may not meet the objectives.

REFERENCES

Faulhaber. 2013. http://www.faulhaber.de.
Kanniah, J., Ercan, M.F. et al. 2004. Bits and Bytes of Robotics. Singapore: Prentice Hall.
Portescap. 2013. http://www.portescap.com.
Rosenblatt, J. and Friedman, M.H. 1984. Direct and Alternating Current Machinery. London:

Charles E. Merrill Publishing Company.

165

Control Fundamentals

7.1  CONTROL THEORY FOR ROBOTICS

In the previous chapters, we looked into the various parts and components that go
into building a robot. Nevertheless, these various parts need to be assembled and the
ensemble must be controlled in a coordinated way to achieve the objective. There are
many ways to build a robot, but typically in any robot design there will be a control
system in place that is usually an onboard computing device. For example, a robotic
arm is made of joints, links, and a grabber mechanism. If the robotic arm needs to
pick up an object, all the joint motions must be coordinated so that the gripper moves
to the target, opens the gripper, and picks up the object. This requires a close control
of many actuators.

Let us take a micromouse robot as an example, where the constituent parts are
sensors with relevant circuitry, motors, battery pack, motor-driving circuits, and a
suitable microcontroller along with its support ICs. The assembled robot has to move
appropriately. Typically, the onboard intelligence takes the decision as to where it
should go and what it should do. This intelligence is handled by a program developed
and stored in the memory of the onboard computing device. However, the very basic
motions of the robot would be moving forward or backward, maintaining a certain
speed, and making turns. Let us consider the situation that this two-wheeled robot
starts from one point, accelerates to reach a certain speed, and decelerates and stops
at the destination. This motion is simply achieved by making both wheels accelerate
according to a profile until the top speed is reached, then decelerate and stop at the
stipulated distance or target spot. Then, we have to fix the speed according to a plan
or profile. The question is how to enforce those desired speeds? This is where the
control theory comes in.

In fact, control theory can be applied to any robot joint, to a drive wheel motor, to
an economy, or even to a population as long as the objective is clearly known. In this
book, we are interested in applying control theory to robotics.

Over the years, control theory has grown immensely, and many techniques have
been developed. Mathematical principles have been developed to facilitate better under-
standing of the “plants” to be controlled. For this, the first step is to understand the plant
in terms of cause and effect or input and output. Then, controllers can be put in place
to make the plants yield the desired results. Raven (1987), Philips and Harbor (1988),
Ogata (1990), D’Azzo and Houpis (1995), Kuo (1987), and Astrom and Wittenmark
(1990) are some of the valuable resources for further reading on this topic. Before pro-
ceeding any further, we will describe some of the basic terms as used in control.

Plant: A plant can be defined as a physical entity, which takes any form of energy
as input (cause) and produces an output (effect). A DC motor driving the robot wheel

7

166 Practical Robot Design

is a simple plant. A voltage applied to its terminals is the input, and the speed is the
output. System and plant are two widely used terms in control engineering literature.
At times, they are used interchangeably, which may be very confusing. A typical
block diagram of a plant is shown in Figure 7.1.

Inputs and outputs: Input to the plant is the manipulated variable. For example, in
a speed control system, the voltage applied to the DC motor is the input (manipulated
variable), and the speed of rotation of the load shaft is the output.

Systems and subsystems: A system is more than a plant. It consists of a plant in
its core together with other components around it. For example, a motor is the core
for a “speed control system.” There are instrumentation devices such as an encoder
attached to the motor shaft. An encoder also needs additional devices such as a
“decoder IC” to measure the position digitally. We can call the combination of the
encoder and the decoder as an instrumentation “subsystem.” The speed is measured
and compared with the given desired value by the computer. The computer produces
a manipulated variable to control the input voltage, hence the speed, of the motor.
This action needs many intermediate stages. Each stage may be called a subsystem.
The overall assembly of the plant (motor) and all the peripheral devices put together
is called the “control system.” In many cases, a control system may also comprise
many control subsystems that are parts of it.

7.2  TYPES OF PLANTS

It is necessary to understand how plants and systems are classified. As a whole,
controlled plants can be classified in several ways based on their nature of input and
output relationship or the nature of their parameters.

7.2.1 L inear versus Nonlinear Plants

In linear plants, the input versus output relationship is linear and hence the plant
obeys the superposition theorem. For example, the relationship between current and
voltage in a resistance is linear as shown in Figure 7.2. The increase in the voltage
across a resistor causes the current flowing through it to increase proportionally. On
the other hand, for nonlinear plants, the input/output relationship is nonlinear. A
good example is the relationship between the magnetizing current and flux density,
which is nonlinear. As shown in Figure 7.2, by increasing the current further, we do
not see a proportional increase in the flux density in a magnetic core.

Output

Plant

Manipulated
variable

FIGURE 7.1  A plant with its input and output.

167Control Fundamentals

7.2.2  Time-Invariant versus Time-Variant Plants

In a time-invariant linear plant, all the plant parameters do not vary with time. A
resistor circuit is a good example, as the voltage versus current relationship will not
be affected by time. On the other hand, in time-variant linear plants, one or more
plant parameters change with time.

EXAMPLE 7.1

The total mass of a rocket will continuously change as the fuel gets consumed
along the way. This is a plant with a slowly time-varying parameter. But, when this
rocket ejects a fuel stage, there will be a sudden change of weight and there will
be a step change in weight parameter.

EXAMPLE 7.2

In the robot colony competition, a robot carries pellets on its basket, and the robot
weight and speed response will not be the same as when the robot has dropped
all the pellets in the goal location. If the pellet weight is substantial, then there
should be a change in control strategy.

EXAMPLE 7.3

The load on the joint of a humanoid robot carrying an object in its arms will
change as soon as it has placed the object in its destination.

In all the above examples, the controller gain may need adjustments at different
time instances.

7.3  CLASSIFICATION BASED ON CONTROL SYSTEM

Another classification of the control system is based on the system implementations.
The classification may depend on the type of control we use to make the system
perform according to our requirements and specifications. These classifications are
applicable to the entire system architecture.

Cu
rr

en
t

Fl
ux

 d
en

sit
y

Voltage Magnetizing current

FIGURE 7.2  Examples of a linear plant (resistance) and a nonlinear plant (magnetic core).

168 Practical Robot Design

7.3.1 A nalog versus Digital Systems

Analog controllers control the plants directly using analog components such as
amplifiers, pneumatic, or hydraulic controllers. However, the usage of analog control
systems in robotics is almost obsolete.

Because of the availability of cheap computing hardware, which is more flexible
and capable of handling sophisticated modern control methods, digital control has
come to stay and dominate. In systems that use digital controllers, the computer
reads the output of the plant, compares with the desired value, and computes the
required control input or manipulated variable. As mentioned earlier, such systems
are more flexible, cheaper, and more powerful. Furthermore, digital controllers can
easily communicate with other systems both inside and outside. These characteris-
tics make them fit very well into hierarchical systems as well as distributed systems.
Robots are complex devices with many subsystems that respond or report to external
systems. Therefore, it will not be wrong to assume that all robot controllers are digi-
tal as a rule.

EXAMPLE 7.4

An example of an analog controller is the voltage regulator. A typical voltage
regulator, such as 7805, is an analog controller that regulates the output voltage
for varying input voltage.

EXAMPLE 7.5

All off-the-shelf controllers sold now are digital controllers. Programmable logic
controllers (PLCs) are a good example. They are flexible and reliable. Most con-
trollers used in robots, such as humanoid robot, micromouse, and wall-climbing
robots, are digital using onboard computers.

7.3.2 O pen-Loop versus Closed-Loop Systems

Open loop: The output of an open-loop system is neither measured nor used. So, the
output does not influence the manipulated variable. A precise mathematical model
must be evaluated and then the controller system should be carefully calibrated.
Open-loop systems are hardly used in robotics.

EXAMPLE 7.6

Many humanoids move their hip and leg joints according to predetermined tra-
jectories, without any gyro and foot sensor feedback. If the walking surface is a
level ground with enough friction, the robot will walk smoothly. If there is level
difference, the robot may take the next step before its swing foot has landed on
the ground, since the controller will assume that the swing leg has landed based
on joint angle values. Hence, the robot will topple. This is a typical example of
an open-loop robotic system. For proper walking, there should be gyro and foot
sensor feedback. What we have described above is a complex situation. Even
though individual joints are activated by accurate servomotors, the overall walking
control system is an open-loop system. In summary, any system without output
monitoring is considered an open-loop system.

169Control Fundamentals

Closed loop: In closed-loop systems, the output is constantly monitored and fed
back. According to the error, the manipulated variable is adjusted to achieve the
objective. The main idea of a closed-loop system is a feedback-based control. The
feedback must be adequate.

EXAMPLE 7.7

A pole-balancing robot control system has many control subsystems. Balancing
the pole and moving the vehicle at the same time is done by one subsystem.
Assume that the robot has to move through a distance of 1 m. A motor may be
fitted with an encoder. But, if the program depends only upon this, the robot will
not work due to the slippage of the drive wheel. Owing to inadequate feedback,
the system behaves like an open-loop system and the distance moved will be
inaccurate. To overcome this problem, we include ground feedback sensors that
monitor the cross tapes placed on the platform and correct the errors in distance
measurement. Here, we highlighted a case where the system has adequate feed-
back. In simple terms, a control system that uses adequate feedback to adjust the
performance can be defined as a closed-loop system.

A popular closed-loop controller: So far, we have been using the term “control-
ler” in general. Before we go any further, we discuss some basic ideas of what a “con-
troller” is. Most closed-loop controllers are error based. The controller uses the error
between the desired value and the actual value of the output to decide the magnitude
and sign to be applied to the plant. The most popular error-based controller is called
the PID controller, which means the proportional, integral, and derivative controllers
together. Mathematically, we can write an expression for the output of such a control-
ler that is fed to the plant as

	
m t K e K edt K

de
dtp i d() = + +∫ 	

(7.1)

where e is the error between the desired value and the output, Kp is the proportional
gain, Ki is the integral gain, and Kd is the derivative gain. After adjusting these three
parameters, the output from a PID controller can be input to plant. We will discuss
more about PID controllers in the following chapters.

7.4  NEED FOR INTELLIGENT ROBOT STRUCTURE

In control theory, we assume that the plant is already there to start with. However, in
game robotics, the first task is to design the mechanical structure of the plant. This
must be executed carefully, and the controller must be designed for that structure.
Assume that we have a robot with two wheels, with unsymmetrical loading on them.
Then, the robot will have a problem in moving straight. The controller will help, but
the basic things such as load distribution must be done right. A badly designed robot
cannot be forced to perform well just by using a good controller. One example is the
wall-climbing robot. Most wall-climbing robots are event-driven systems. The term
“event-driven” implies that when the robot has successfully completed one climbing

170 Practical Robot Design

step, then the next step should start. However, the task of finding when one step got
safely completed is easier said than done. The sensor configuration used in robot
design plays an important role. In another example, a good biped robot must be
balanced and must have enough degrees of freedom. We can see some biped robots
with intelligent structure that can walk down a slope without any external power or
control. There are many such designs (see, e.g., Passive Walker 2009; Walking Robot
2010). It is easier to put a controller for robots with sound designs in which the con-
trol intelligence is built into the mechanical structure. Hence, the intelligence must
be embedded in the mechanical structure of the robot.

7.5  A TYPICAL ROBOT CONTROL SYSTEM

The next task in game robotics is to design the robotics control system with many
plants along with their control subsystems. For example, a biped robot has a master
processor, which coordinates the control of many joints according to joint trajecto-
ries. For every joint, there is a control subsystem. There will be vision cameras, foot
sensors, and gyroscopes, which are parts of the overall biped control system. The
master coordinates all these subsystems. These coordinations must also be planned
and programmed by the robot designer.

In any complex control system, the constituents are simple closed-loop control-
lers, which are the subsystems, and when assembled together they form the overall
control system. We would like to look at one basic feedback controller.

Basic closed-loop controller and some terminologies used in control: Having
provided basic ideas on controller classifications, we now consider a simple single-
loop control system to familiarize ourselves with terminologies used in such systems
(Raven 1987; Philips and Harbor 1988). A simplified block diagram of a typical
single-loop control system is shown in Figure 7.3.

In Figure 7.3, the signal R is the reference signal or the set point and B is the feed-
back signal. Error E is obtained by subtracting B from R and fed to a PID controller.
The controller can be any one of the controllers we mentioned earlier. The controller
may also be one of the many other types. This controller produces an appropriate
control signal U, which is fed to the final control element. This final control element

PID
R +

–

E

Controller

U M Y

B

Final
control
element

Plant

Measuring
element

FIGURE 7.3  Simplified block diagram of a closed-loop control system.

171Control Fundamentals

can be a PWM-based H-bridge driver or a pneumatic valve controller. There are
many other possibilities. The output M of the final control element may produce a
power voltage, pressure, or heat to the controlled plant. The output Y is measured by
measurement element whose output B is fed back.

7.6  TRENDS IN CONTROL

In addition to the above classifications, a number of new controller types are emerg-
ing in modern control systems. Some of them are very useful in robotics. This has
been made possible by advances in technology, control theory, instrumentation tech-
nology, and computing power. All these new control techniques are digitally imple-
mented. Therefore, they also fall under the general category of digital controls. The
list is growing as research progresses in this field. We briefly mention some relevant
ones below.

In the case of a biped robot, there are many joints to be controlled to make a
humanoid robot walk without falling. Here, we may have a master controller and
many other subcontrollers controlling the joints, which act like slaves taking com-
mands from the master. This type of control is usually called a hierarchical control.

In a complex industrial environment, there may be many control systems acting
independently, but cooperating with each other. Actually, in swarm robotics, each
robot has its own controller, but they constantly communicate with each other. This
can be broadly classified as a distributed control system.

In adaptive controllers, the parameters of the controller will be adapted according
to the plant parameters that are identified by an iterative identifier (Mendel 1973).
Model reference adaptive controllers are also used in robot control (Astrom and
Wittenmark 1989).

In systems that cannot be modeled mathematically with the desired ease, fuzzy
logic-based controllers are used. Nowadays, they are everywhere, starting from
washing machines to pole balancing robots and biped robots. Similar difficulties are
tackled by neural network-based controllers that mimic the human brain model of
functioning (Kosko 1992).

In systems where the plant parameters change as the operating point changes, the
controller structure is changed to suit the operating point. They are called variable
structure controllers. In such systems, fast adaptation is also useful.

7.7  CONCLUSION

Typically, all feedback control systems are error based, which implies “no error–no
action” with a few exceptions. Open-loop systems do not use error or feedback to
produce control action. If there is no disturbance, they work well. When a distur-
bance occurs, we need error feedback to take care of it.

We have provided a brief introduction to the concept of control in the above sec-
tions. This has been an exercise in generality. We have not provided any detailed
discussion on any specific system here. However, we have provided a brief descrip-
tion of the objectives of control, types of control, and their relevance. We have also
introduced some terminologies used in control. We have also indicated that error is

172 Practical Robot Design

an important factor in control. In many systems, the error is the driving force in tak-
ing corrective action. In the subsequent chapters, we will discuss more quantitative
aspects of controllers, their mathematical modeling, and their time domain analysis
and synthesis.

REFERENCES

Astrom, K.J. and Wittenmark, B. 1990. Computer Controlled Systems: Theory and Design,
2nd Edition. Englewood cliffs, NJ: Prentice-Hall International Editions.

Astrom, K.J. and Wittenmark, B. 1989. Adaptive Control. New York: Addison-Wesley.
D’Azzo, J.J. and Houpis, C.H. 1995. Linear Control System Analysis and Design: Conventional

and Modern, 3rd Edition. New York: McGraw-Hill Book Company.
Kosko, B. 1992. Neural Networks and Fuzzy Systems: A Dynamical Systems Approach to

Machine Intelligence. Englewood Cliffs, NJ: Prentice-Hall.
Kuo, B.C. 1987. Automatic Control Systems, 5th Edition. Englewood Cliffs, NJ: Prentice-Hall.
Mendel, J.M. 1973. Discrete Techniques of Parameter Estimation: The Equation Error

Formulation. New York: Marcel Dekker, Inc.
Ogata, K. 1990. Modern Control Engineering. Englewood Cliffs, NJ: Prentice-Hall.
Passive Walker. 2009. http://www.youtube.com/watch?NR=1&feature=endscreen&v=N64K

OQkbyiI
Philips, C.L. and Harbor, R. 1988. Feedback Control Systems. Englewood Cliffs, NJ: Prentice-

Hall International Editions.
Raven, F.H. 1987. Automatic Control Engineering. New York: McGraw-Hill International

Editions.
Walking Robot. 2010. http://www.youtube.com/watch?v=UJLH5GYyVhY

173

Review of Mathematical
Modeling, Transfer
Functions, State
Equations, and
Controllers

8.1  INTRODUCTION

Every part or subsystem of a control system has some input to output relationship.
This relationship is implicitly contained in its transfer function. A transfer function
is nothing but the ratio of Laplace transforms of the output and the input. Transfer
functions provide good insight into the subsystems they represent. For example, this
can be the relationship between the speed and input voltage to the armature of the
robot drive motor or can be the output to input relationship of a transducer used for
feedback. However, such transfer functions in bits and pieces themselves will not be
very useful for understanding the overall system. We should be able to obtain the ratio
of output of any part to the input to any part of the system in terms of Laplace trans-
forms ratio. That leads to the conclusion that there can be many transfer functions
for a single system depending on the objective. If we look at such a ratio while the
feedback is absent (open loop), then we call it the open-loop transfer function. Usually,
an important aim of modeling is to obtain the transfer function of the open-loop plant.
If the feedback is included (close loop), then we call it the closed-loop transfer func-
tion. These ideas are well discussed in the control literature (Ogata 1990; D’Azzo and
Houpis 1995; Kuo 1987; Palani 1997; Nagrath and Gopal 1985), and we only wish to
highlight the basic concepts for a robotics engineer so that it provides a starting point
in forming system equations to design the controllers for the robot.

A state equation is another variant of a transfer function, which still represents the
system dynamics. The main distinction between transfer functions and state equa-
tions is that where a transfer function has only one input and one output, a state equa-
tion is capable of representing more than one input and more than one output. Where
the controller specifications focus on only one output of the plant, transfer func-
tions are used to design controllers using classical control theory. However, when
the specifications involve a few outputs of the plant, the state space approach is more
convenient. Hence, depending on the complexity of the problem, either the trans-
fer function-based design or the state equation-based design is chosen. In modern

8

174 Practical Robot Design

practice, whatever method is chosen, during the design of controllers, software tools
such as MATLAB® are actively used (Cavallo et al. 1996).

8.2  IMPORTANCE OF MODELING

The understanding of the plant dynamics is the first step in designing a suitable con-
troller. Once we know the dynamics, we can choose a suitable controller structure.
The controller has to cater to the nature of the plant. For robotics application, we can
summarize the major benefits of modeling as follows.

When we use transfer functions of plants with known components, this knowl-
edge leads us to the order and the possible behavioral patterns of the plant. This plays
an important part in deciding the controller. Even if the components are not known,
we may have to use some identification techniques to understand the plant dynamics.
In robotics, most components are with known dynamics, and this should be used to
our advantage.

To study the stability of a system, we need to examine the open-loop transfer
function. Some types of plants may become unstable when controlled in a closed
loop. If the model is known, it provides an opportunity for offline testing of the con-
troller. Before actually testing the controller in real time, it is important to predict
to some extent how the closed-loop system will behave in terms of performance
and safety. Once we see some discrepancy between the model performance and the
expected performance, we can correct the mistakes in design. By the same reason-
ing, we can say that a mathematical model also helps in designing various controllers
rapidly. Using the model, we can generate different designs of controllers. Then, they
can be tried in simulation, and the time response can be readily computed. Different
controller responses can be compared to choose the most suitable one for possible
adoption in the actual implementation. In the following sections, the term “model” is
used for a transfer function model as well as a state model.

8.3  TRANSFER FUNCTION MODELS

Transfer functions give a better understanding of the system behavior. The transfer
function concept is applicable to only “linear and time-invariant” plants, which can
be described by linear differential equations with constant coefficients. For solutions
of such systems, Laplace transform techniques are very useful. The transfer function
for a plant is defined as the ratio of the Laplace transform of the output to the Laplace
transform of the input, where the initial conditions are assumed to be zeros.

Consider the following nth-order differential equation:

	

a
d y
dt

a
d y
dt

a
dy
dt

a y b
d x
dt

b
d x
dtn

n

n n

n

n m

m

m m

m

m
+ + + + = +−

−

− −

−

1

1

1 1 0 1

1

� −− + + +

<

1 1 0� b
dx
dt

b x

m nfor 	
(8.1)

In the above equation, y(t) is the output and x(t) is the input.

175Review of Mathematical Modeling

By taking the Laplace transform of Equation 8.1, we can obtain

	
a s a s a s a Y s b s b s b s bn

n
n

n
m

m
m

m+ + + +  = + + + + −
−

−
−

1
1

1 0 1
1

1
1

0� �() XX s()
	

(8.2)

We have ignored the initial conditions completely. The transfer function is then

	
G s

Y s
X s

b s b s b s b s b s b
a s a
m

m
m

m
m

m

n
n

n

()
()
()

= = + + + + + +
+

−
−

−
−

−

1
1

2
2

2
2

1 0�

11
1

2
2

2
2

1 0s a s a s a s an
n

n−
−

−+ + + + +� 	
(8.3)

We note from the above equation that the transfer function of a system is an oper-
ational method of expressing the differential equation that relates the output variable
to the input variable. We add a few thoughts on transfer functions below.

Even though the applicability of the concept of the transfer function is limited to sys-
tems that can be described by linear differential equations with constant, time-invariant
coefficients, some nonlinear systems can be approximated to their linear equivalent,
and this approach is extensively used in the analysis and design of controllers for such
nonlinear systems as well. While we say that the transfer function is a property of a
system itself, independent of the magnitude and nature of the input or driving function,
if saturation occurs, the linearity may not be applicable. Then, the model becomes an
inadequate representation. We will highlight this later in our case studies.

If the plant representation or differential equation is known, the transfer function
can be derived as shown above. However, even if the constituent components of a
plant are unknown, the overall transfer function may be established experimentally
by introducing known inputs and studying the output of the system. Once estab-
lished, a transfer function gives a full description of the dynamic characteristics of
the system, as distinct from its physical description.

8.3.1 D ifferent Forms of Transfer Functions

The transfer function given in Equation 8.3 is in a polynomial form, since we start
from differential equations. There are a few different forms of transfer functions;
depending on the purpose, it will be used for.

Polynomial form: This polynomial form is the result of taking the Laplace trans-
form of the differential equation. An example of it is given in Equation 8.4.

	
G s

b s b s b
s a s a s a

() = + +
+ + +

2
2

1 0
3

2
2

1 0 	
(8.4)

Pole/zero form: Factorizing and rewriting, we get the form

	
G s

K s s
s s s

()
[][]

[][][]
= − −

− − −
1 1 2

1 2 3

a a
b b b 	

(8.5)

176 Practical Robot Design

which is in the pole/zero form. The roots of the numerator polynomial are called
zeros. For the above system, it is obvious that s = α1, s = α2 are the zeros of the plant;
similarly, the β values are the poles of the plant. These poles represent stability char-
acteristics of the open-loop system. The negative real parts of the poles indicate an
open-loop stable system. But, considering the numerator, if the real parts of zeros
are negative, the plant is called a minimum phase system. If they have positive real
parts, they are called nonmiminum phase systems, and it will be difficult to control
them in a closed loop.

Time-constant form: Again, rearranging the above equation differently, we get
another form:

	
G s

K T s T s
T s T s T s

z z

p p p

()
()()

()()()
=

+ +
+ + +

2 1 2

1 2 3

1 1
1 1 1 	

(8.6)

We can observe that the DC gain is K2 and the Tzi terms are numerator time con-
stants and the Tpi terms are denominator time constants. This information may be
helpful in assessing the speed of the response of the open-loop system. The shorter
time constant indicates a fast response of the open-loop system.

Corner frequency form: We can reorganize the above to reveal more information
about the frequency response of the system:

	
G s K

s s
s s s

z z

p p

()
(()) (())

(()) (()) ((
=

+ +
+ + +3

1 2

1 2

1 1
1 1 1

/ /
/ / /

w w
w w w pp3)) 	

(8.7)

In the above equation, K3 is DC gain and the numerator ω terms are the corner
frequencies related to the zero terms and denominator ω terms are the corner fre-
quencies related to the pole terms. The corner frequency form is useful in sketching
Bode diagrams for analyzing the frequency response and stability criteria.

8.4  STEPS IN MODELING

We can arrive from the discussion in the previous section that the primary aim of
modeling is to obtain the open-loop transfer function or the state equation of the
physical subsystem of the robot for which we want to design a controller. Then, the
steps followed in modeling can be listed as follows.

The first thing to do is to identify the output of the plant and the possible input that
will influence that output. Then, we find out if the plant has a linear input to output
relationship. If that relationship is not linear, we decide the operating point around
which we want to use the plant and find the linear approximation of the plant around
that point. In case of electrical systems, we write the differential equations connect-
ing the inputs and outputs by applying the circuit laws. For mechanical systems,
we apply Newton’s second law and write the applied forces and the reactive forces.
Again, we write the differential equations connecting the input and the output.

If we are focusing on transfer functions, we take the Laplace transform of the
relevant differential equations and deduce the ratio of the output to the input. If we

177Review of Mathematical Modeling

need to formulate state equations, we define the states and write the state equations
directly from the differential equations. If the transfer functions are readily avail-
able, state space equations can also be written from them directly. Similarly, transfer
functions can also be obtained from the state space model. Once the model, either
in the transfer function or in the state equation, has been obtained, we can design a
viable controller.

8.5 � SOME BASIC COMPONENTS OFTEN ENCOUNTERED
IN CONTROL SYSTEMS

Control is an interdisciplinary subject. A control system may include electrical,
mechanical, hydraulic, and pneumatic plants. Hence, we need to familiarize our-
selves with components found in all of them. For example, some two-legged robots
use hydraulic drives while some wall-climbing robots use pneumatic drives. To
implement an effective controller, we need to understand them. On the other hand,
feedback devices may also involve many disciplines. For example, simple encod-
ers and gyroscopes are integral parts of the feedback control in many robotic sys-
tems. In the same robot, thermistors may be needed for monitoring temperature
for safety. Here, we will mainly focus on electrical and some mechanical systems
as a starting point.

8.5.1 E lectrical Components

The main electrical components are resistances, inductances, and capacitors, and
they are described below.

Ohm’s law is the system equation of a resistor, where R is in ohms, vR is in volts,
and  i is in amperes as shown in Figure 8.1a.

	 v R iR = 	 (8.8)

The ideal inductance is shown in Figure 8.1b. The input–output relationship for
an inductance is given by Faraday’s law, where L is in henries, i is in amperes, and
vL is in volts.

	
nL L

di
dt

=
	

(8.9)

V
i i i

R VR

(a) (b) (c)

VL
VCV V CL

+

–

+

–

+

–

FIGURE 8.1  Common electrical components: (a) Resistance, (b) inductance, (c) capacitance.

178 Practical Robot Design

A capacitor is shown in Figure 8.1c. The relationship between the input and the
output of a capacitor is given in Equation 8.10, where C is in farads, i is in amperes,
and vC is the voltage across the capacitor in volts.

	
v

C
idt i C

dv
dtc

c= =∫1
or

	
(8.10)

Note that in Figure 8.1, the diagrams are marked with uppercase letters, empha-
sizing the Laplace transform relationship. Note that we have ignored “s” terms within
brackets for simplicity. But, Equations 8.8 through 8.10 are written for instantaneous
values.

8.5.2 M echanical Components

The main mechanical components are mass, damper, and spring. Masses are distrib-
uted everywhere on robots and form an integral part of it. A mass placed on “fric-
tionless” wheels is shown in Figure 8.2a. The input–output relationship of a mass is
nothing but Newton’s second law as given in Equation 8.11, where f is the applied
force in newtons, x is the translation in meters, and M is the mass in kilograms.

	
f M

d x
dt

=
2

2
	

(8.11)

Dampers are also important in robotics. Dampers may be introduced on purpose
to stabilize the system; on the other hand, friction in the system may act as a damper.
The symbolic representation is shown in Figure 8.2b. The input–output relation-
ship of a damper is given in Equation 8.12, where D is the damping coefficient in
newtons-seconds/meter.

	
f D

dx
dt

=
	

(8.12)

Springs are used in many applications of control theory, including robotics.
Springs are devices that produce a restraining force against pushing or pulling. For
example, a spring can be used to press an encoder wheel toward the platform for

f
M

x

f
Kf

D
x x

(a) (b) (c)

FIGURE 8.2  Common mechanical components: (a) mass, (b) damper, (c) spring.

179Review of Mathematical Modeling

achieving a proper contact. Springs are also an integral part of elastic actuators. A
symbolic representation is shown in Figure 8.2c. The applied force, f, is in newtons,
the linear translation, x, is in meters, and K is the spring constant in newtons/meter,
the relationship is described in Equation 8.13.

	 f = Kx	 (8.13)

In addition to the above, we will encounter pneumatic, hydraulic, thermal, and
other types of systems in robotics. We are not dealing with all such systems here,
since the list of such components is very long. More details about them can be found
in D’Azzo and Houpis (1995), Kuo (1987), and Nagrath and Gopal (1985).

8.6  BLOCK DIAGRAM CONCEPTS

We saw earlier some transfer function concepts. The plant transfer function is writ-
ten inside the block that represents the plant. Usually, a complex control system has
many components represented by blocks with their own respective transfer functions.
They are interconnected in such a way that one block’s output is the input of another
block and so on. Hence, an overall block diagram provides information regarding
the interconnections and functional relationships among the various constituents that
form the controlled system. The basic components of a block diagram are blocks rep-
resenting transfer functions, summing points, take-off points, and arrows indicating
the direction of signal flow. When we start deciphering the relationship among the
blocks, our aim is to obtain a simplified diagram with the forward system, a feedback
loop, and a summing point, clearly marking the input and the output of the system.
This is generally called the canonical form and is shown in Figure 8.3. In the figure,
G(s) represents the overall forward transfer function and H(s) is the overall feedback
transfer function. We emphasis the term “overall” because they are usually derived
by simplifying many constituent blocks.

The following notations are typically used in the literature:

The system output is C(s).
The reference input is R(s).
The feedback signal is B(s).

R(s) E(s) G(s)
C(s)

H(s)

+

–

B(s)

FIGURE 8.3  Canonical form.

180 Practical Robot Design

The open-loop transfer function is

	 G(s)H(s) = B(s)/E(s)	 (8.14)

The feedback transfer function is

	 H(s) = B(s)/C(s)	 (8.15)

The closed-loop transfer function is C(s)/R(s), and it is derived in the following steps:

	 E(s) = R(s) − H(s)C(s)	 (8.16)

Then

	 C(s) = G(s)E(s) = G(s)[R(s) − H(s)C(s)]

	 C(s)[1 + G(s)H(s)] = G(s)R(s)

	

C s
R s

G s
G s H s

H s
G s

()
()

()
() ()

()
()

= + =
+1
1

1

	

(8.17)

8.6.1  Block Diagram Reductions

We mentioned earlier that G(s) and H(s) may not represent one block diagram, and
the overall transfer function may have to be derived. Hence, when a block diagram
is very complicated, it may be necessary to use some reduction techniques to obtain
the overall transfer function. There are a number of guidelines for achieving this
reduction, and it is well described in the literature. Some sample types are shown in
Table 8.1. For a complete list of such possibilities, refer to Ogata (1990), D’Azzo and
Houpis (1995), Kuo (1987), and Nagrath and Gopal (1985).

8.7  SOME SYSTEM EXAMPLES

Having learned the concepts of transfer functions and block diagrams, let us apply
them to derive and simplify the transfer functions of systems we would often encounter
in robotics. The devices described in Section 8.5 are seldom used in isolation. They are
used in many forms of interconnections in real-world systems. The control designer
should be able to write transfer functions for all types of interconnections. Let us see a
few examples. In the notations used in the following sections, variables indicated with
lowercase are functions of time and for simplicity, we may ignore showing (t).

EXAMPLE 8.1:  SIMPLE ELECTRICAL SYSTEM

Let us start with a simple example. Consider the system shown in Figure 8.4 con-
sisting of resistive, inductive, and capacitive components. Using Kirchoff’s law,
we can write

181Review of Mathematical Modeling

TA
B

LE
 8

.1
B

lo
ck

 D
ia

gr
am

 R
ed

uc
ti

on
s

O
ri

gi
na

l D
ia

gr
am

A
ct

io
n

Eq
ui

va
le

nt
 D

ia
gr

am
 a

nd
 P

ro
of

R(
s)

R(
s)[

G
1(

s)
+

G
2(

s)]

G
2(

s)

G
1(

s)

+

+
C

om
bi

ni
ng

sp

lit

bl
oc

ks
G

1(
s)

+
G

2(
s)

R(
s)[

G
1(

s)
+

G
2(

s)]
R(

s)

R(
s)

R(
s)

–
B(

s)

B(
s)

G
(s)

[R
(s)

 –
 B

(s)
]

G
(s)

–

+
M

ov
in

g
su

m
m

in
g

po
in

t a
ft

er

a
bl

oc
k

R(
s)

B(
s)

G
(s)

[R
(s)

 –
 B

(s)
]

G
(s)

G
(s)

–

+

co
nt

in
ue

d

182 Practical Robot Design

TA
B

LE
 8

.1
 (

co
nt

in
ue

d)
B

lo
ck

 D
ia

gr
am

 R
ed

uc
ti

on
s

O
ri

gi
na

l D
ia

gr
am

A
ct

io
n

Eq
ui

va
le

nt
 D

ia
gr

am
 a

nd
 P

ro
of

R(
s)

R(
s)[

G
1(

s)
+

G
2(

s)]
G

1(
s)

G
2(

s)

+

+
M

ov
in

g
pi

ck
-o

ff

po
in

t a
ft

er

a
bl

oc
k

R(
s)

R(
s)[

G
1(

s)
+

G
2(

s)]
G

1(
s)

G
2(

s)/
G

1(
s)

+

+

R(
s)

Y(
s)

G
1(

s)

G
2(

s)

+

–

Y
s

G
s

G
s

G
s

R
s

(
)

(
)

(
)

(
)

(
)

=
+

 
 

1
1

2
1

M
ov

in
g

th
e

fe
ed

ba
ck

el

em
en

t
ou

t o
f

lo
op

G
1(

s)
Y(

s)
R(

s)
G

2(
s)

1/
G

2(
s)

+

–

Y
s

G
s

G
s

G
s

R
s

(
)

(
)

(
)

(
)

(
)

=
+

 
 

1
1

2
1

183Review of Mathematical Modeling

	
R i

C
idt L

di
dt

ti+ + =∫1
n ()

	
(8.18)

Taking the Laplace transform, while ignoring initial conditions, we can obtain

	
RI s

Cs
I s LsI s V si() () () ()+ + =1

	
(8.19)

	
I s R

Cs
Ls V si()[] ()+ + =1

	
(8.20)

Multiply both sides with R and using the fact that Vo(s) = RI(s), we get

  

V s
V s

R
R Cs Ls

RCs
RCs LCs

R L s
s R L s

o

i

()
() [(/)] []

()
()

=
+ +

=
+ +

=
+ +1 1 2 2

/
/ (()1/LC 	

(8.21)

EXAMPLE 8.2:  TRANSFER FUNCTION OF A PERMANENT MAGNET
DC MOTOR DRIVE SYSTEM (ELECTROMECHANICAL SYSTEM)

The basic components of a permanent magnet DC motor are shown in Figure 8.5.
There is one electrical system which is a motor armature circuit. We also have the
rotating mechanical system with its inherent mass and friction. We can use the
following steps to derive a transfer function:

	 i.	Write the equation describing each system and its transfer function.
	 ii.	Simplify the equation to obtain the transfer function relating angular veloc-

ity to the input voltage.

The relevant quantities are marked on the diagram in Figure 8.5. Given that
the back EMF constant is Kb, the torque constant is Km, the outputs of the system
are ω(s) and θ(s), the input of the system is Va(s), and the armature current is ia, our
objective is to derive the transfer functions ω(s)/Va(s) and θ(s)/Va(s).

Consider the electrical circuit

	
na a a a

a
bt R i L

di
dt

e() = + +
	

(8.22)

L

i RVi(s)

C

Vo(s)

FIGURE 8.4  Simple electrical system with resistive, inductive, and capacitive components.

184 Practical Robot Design

where the back EMF is eb. Then, using the back EMF constant

	 eb = Kbω	 (8.23)

Using the torque constant, the motor torque can be written as

	 tm = Kmia	 (8.24)

Since there is no other load, the motor torque generated is equal to the load
torque due to the motor inertia and friction. Then, the torque balance equation is
written as

	
t J

d
dt

Fm = +w
w

	
(8.25)

Taking the Laplace transforms of Equations 8.22 through 8.25, respectively, we
can write

	 Va(s) = [Ra + Las]Ia(s) + Eb(s)	 (8.26)

	 Eb(s) = Kbω(s)	 (8.27)

	 Tm(s) = KmIa(s)	 (8.28)

	 Tm(s) = [Js + F]ω(s)	 (8.29)

ω,θ

Va

Ra

ia

La
Inertia = J
Friction = F

S N

FIGURE 8.5  Servomotor system.

185Review of Mathematical Modeling

Our first objective is to derive ω(s)/Va(s), which can be done using mathemati-
cal manipulations, since the numerator term and the denominator term are found
in the above equations. Substituting for Tm and Ia, we can write

	

[] ()
[() ()] [() ()]

(

Js F s K
V s E s

R L s
K

V s K s
R L s

R

m
a b

a a
m

a b

a a

a

+ = −
+

= −
+

w
w

++ + = −L s Js F s K V s K K sa m a m b)[] () () ()w w 	 (8.30)

Assembling these terms, we get

	
G s

s
V s

K
R L s Js F K Ka

m

a a m b
1()

()
() ()[]

= =
+ + +

w

	
(8.31)

Since, we know

	
w q w q() () ()t

d
dt

s s s= =and
	

(8.32)

We get

	
G s

s
V s

K
R L s Js Fs K K sa

m

a a m b
2 2()

()
() ()[]

= =
+ + +

q

	
(8.33)

Intuitive approach: Referring to Figure 8.6, we can draw a block diagram, first,
by obtaining the driving voltage E(s) as the difference between Va(s) and Eb(s). After
that, we put a block of impedance to get current Ia(s). Following this, adding a
block with Km leads to torque Tm(s). From there, we add a block using the inertia
and friction terms to get the angular speed ω(s). From the angular speed, we obtain
the back EMF, Eb, by including a block with Kb and feed it back to the summing
point. We now obtain the angle as an integral of the angular speed. Figure 8.6
represents the overall block diagram of the system.

From the above diagram, we can obtain the closed-loop transfer function quite
easily.

The forward transfer function is

	
G s

s
E s

K
R L s Js F

m

a a
()

()
()

= =
+ +

w 1

	
(8.34)

Ra + Las

Eb(s)

E(s)Va(s) Ia(s)+

–

Kb s

Km

Tm(s)
1

s
1

Js + F
1 ω(s) θ(s)

FIGURE 8.6  Overall block diagram.

186 Practical Robot Design

The feedback transfer function is

	
H s

E s
s

Kb
b()

()
()

= =
w 	

(8.35)

The open-loop transfer function is

	
G s H s

E s
E s

K
R L s

K
Js F

b m

a a

b() ()
()
()

= =
+ + 	

(8.36)

Then, the closed-loop transfer function is

	
G s

s
V s

G s
G s H s

K
K Ka

m

m b
1

1
()

()
()

()
() ()

= = =
+

w
+ (+)() +Js F R L sa a 	

(8.37)

Then, by using the relationship between ω(s) and θ(s), we write

	
G s

s
V s

K
K K sa

m

m b
2()

()
()

= =q
(+)(+) +2

aJs Fs R L sa 	
(8.38)

The above transfer function is of the third order; however, if the motor leakage
inductance can be ignored, then it is reduced to the second order.

EXAMPLE 8.3:  MASS DAMPER AND SPRING ASSEMBLY

Let us find the transfer function, Y(s)/F(s) of the mechanical translation system
shown in Figure 8.7, which is another popular mention in the literature.

The quantities are marked in the figure, and the mass is supported with friction-
less wheels.

Considering only the two ends of the spring, we know that the force is transmit-
ted through the mass partly to the spring and partly to the damper or dash-pot.
Hence, we can write

	
f t M

d y
dt

D
dy
dt

K y() = + +
2

2
	

(8.39)

f (t)

y(t)

M

D

K

FIGURE 8.7  A mechanical translation system.

187Review of Mathematical Modeling

Now, taking the Laplace transform, we obtain

	
F s Ms Ds Ky Y s() ()= + + 

2

	
(8.40)

	

Y s
F s Ms Ds K

()
()

=
+ +

1
2

	
(8.41)

Usually, in practical systems, the damper gets connected in parallel to a spring,
and this combination is used in tandem with a mass. In fact, if we turn the system
clockwise, it becomes a setup of a shock absorber of an automobile or some
autonomous robot.

EXAMPLE 8.4:  VEHICLE INSIDE A VEHICLE

This is a popular example that can be found in the literature (Palani 1997). We
will analyze this system since it is a bit more complex for the transfer function as
well as the state equation. Figure 8.8 shows such an arrangement of a system in
which a vehicle is placed inside another vehicle. The outer vehicle is a container
of mass M2, which can move on wheels on a platform with no friction. This is
attached to the wall on the right by a spring with stiffness of K2 and a damper
of damping coefficient B2. Inside this vehicle, there is another mass M1 moving
without friction. This mass is attached to the wall of the outer vessel (vehicle)
wall through a spring of constant, K1. Assume that a force f(t) is applied to the
outer vehicle as shown in Figure 8.8. The displacements of the inner and outer
masses are marked as y1 and y2, respectively, and are measured with respect to
the reference wall on the right. We are interested in displacements y1(t) and y2(t)
in response to the input force f(t).

This example needs a careful observation. Let us first look at the forces that act
upon mass M2. The forces can be listed as follows:

	 1.	The applied force f(t) acting to the right.
	 2.	The reaction force, due to acceleration of M2 to the right, is M2(d2y2/dt2) act-

ing to the left.

y2(t) y2(t) Reference wall

K1
M1

M2

B2

K2

y1(t)

f (t)

FIGURE 8.8  Vehicle inside a vehicle.

188 Practical Robot Design

	 3.	The restraining spring force K2y2, which is acting to the left.
	 4.	The damping force B2(dy2/dt) which is acting to the left.
	 5.	As the inner vehicle moves, the spring K1 will generate a force K1(y2 − y1),

which is also acting to the left. This can be understood by visualizing the
situation if M1 does not move (y1 = 0), y2 motion will compress the spring K1,
and hence it will push back the mass M2 to the left.

We can write a force balance equation as

	
M

d y
dt

B
dy
dt

K y K y y f t2

2
2

2 2
2

2 2 1 2 1+ + + − =() ()
	

(8.42)

and taking the Laplace transform, we get

	
M s B s K K Y s K Y s F s2

2
2 2 1 2 1 1+ + +  − =() () () ()

	
(8.43)

Next, let us list the forces acting on mass M1 for the positive displacement of y1:

	 1.	The inertial reaction of mass M1 equal to M1(d2y1/dt2), acting to the left
	 2.	The restraining force of spring K1 equal to K1(y1 − y2), acting to the left

There is no other directly applied force. We can write the force balance equa-
tion as

	
M

d y
dt

K y y1

2
1

2 1 1 2 0+ − =()
	

(8.44)

Taking the Laplace transform, we have

	
M s K Y s K Y s1

2
1 1 1 2+  =() ()

	
(8.45)

Substituting for Y2(s) in Equation 8.43, we get

	
M s B s K K

M s K

K
Y s K Y s F s2

2
2 2 1

1
2

1

1
1 1 1+ + + 

+  − =() () () ()

	
M s B s K K M s K Y s K Y s K F s2

2
2 2 1 1

2
1 1 1

2
1 1+ + +  +  − =() () () ()

	
(8.46)

This yields the transfer function

	

Y s
F s

K
M M s M B s M K K K M s K B s K K

1 1

2 1
4

1 2
3

1 2 1 1 2
2

1 2 1 2

()
() ()

=
+ + + +[] + + 	

(8.47)

Alternative approach: We now attempt to solve the same problem using the
block diagram reduction approach. We can get a block diagram for Equation 8.45
as shown in Figure 8.9.

189Review of Mathematical Modeling

We can get a block diagram for Equation 8.43 as shown in Figure 8.10.
There is a positive feed-in of Y1(s). This has to be dealt with later. Let us now

combine the two block diagrams of Figures 8.9 and 8.10 as shown in Figure 8.11.
Note that we have introduced two “-” signs in the feedback loop, which

changes nothing to make it an usual negative feedback system. Then, the overall
transfer function can be written as

  

Y s
F s H G K M s B s K K M s K K
1

1 2
2

2 1 2 1
2

1 1

1
1

1()
() () (()())

=
+

=
− + + + +/ + / 	

(8.48)

    

Y s
F s

K
M M s M B s M K K K M s K B s K K

1 1

2 1
4

1 2
3

1 2 1 1 2
2

1 2 1 2

()
() ()

=
+ +[] ++ + + 	

(8.49)

This is exactly the same result that we got earlier in Equation 8.47.

1

M2s2 + B2s + K1 + K2

Y1(s)

Y2(s)F(s) +

+

K1

FIGURE 8.10  Block diagram from Equation 8.43.

1 K1

M2s2 + B2s + K1 + K2 M1s2 + K1

Y2(s) Y1(s)F(s) +

–

–K1

FIGURE 8.11  Overall block diagram from Figures 8.9 and 8.10.

Y2(s) Y1(s)K1

M1s2 + K1

FIGURE 8.9  Block diagram from Equation 8.45.

190 Practical Robot Design

EXAMPLE 8.5:  A MECHANICAL ACCELEROMETER

Now, take a look at another popular example found in the literature (Nagrath and
Gopal 1985). We will study accelerometers that are often used in robotics, espe-
cially in humanoid and mobile robots. We present one version of such a device
here and derive the transfer function as well as the state equation. The physical
arrangement of an accelerometer is shown in Figure 8.12. It shows a simplified
accelerometer fitted to a moving vehicle the displacement of which as the vehicle
moves is y2(t).

The device is shown as mounted on a robot body. It has a box consisting of a
mass spring and a damper fitted to it. The encoder reading at standstill is y1(t) = 0.
We want to show that the linear encoder reading is a measure of the acceleration
of the vehicle. We assume that the mass M moves without any friction. Obviously,
y1(t) is measured with respect to the frame of the accelerometer, while y2(t) is mea-
sured with respect to an external stationary absolute frame. We further assume
that the positive movement of the robot,y2(t), is to the left.

As marked, y1(t) moving to the right of the scale is positive. Then, the absolute
displacement of M toward the left is (y2(t) − y1(t)) since the positive y1(t) motion is
opposite to the vehicle motion y2(t).

For the positive displacement of y1(t) on the scale, the forces acting on the
mass, M, are

	 1.	The reactive force M(d2(y2 − y1)/dt2) acting to the right
	 2.	The reactive damping force of B, B(dy1/dt) acting to the left
	 3.	The restraining force of spring K1,y1 acting to the left

Since there is no other force, the total of these three should be zero.

	
M

d y y
dt

B
dy
dt

K y
2

1 2
2

1
1 0

()− + + =

	
M

d y
dt

B
dy
dt

K y M
d y
dt

2
1

2
1

1

2
2

2+ + =
	

(8.50)

y2(t)

y1(t)

y1 = 0
Linear encoder

Accelerometer box

A part of robot fitted with
accelerometer

K
M B

FIGURE 8.12  Simplified arrangement of an accelerometer.

191Review of Mathematical Modeling

For a steady acceleration of (d2y2/dt2) = a, (dy1/dt) = (d2y1/dt2) = 0.
Hence, a = (K/M)y1 and the encoder reads the acceleration value of the outer

vehicle. Moreover, if we are interested in finding the response of Y1(s)/Y2(s), then
we can take the Laplace transform and obtain

	

Y s
Y s

Ms
Ms Bs K

1

2

2

2

()
()

=
+ + 	

(8.51)

8.8  STATE EQUATIONS

We will introduce the concept of state equations purely with an objective of design-
ing controllers for state control. At the outset, one can say that the state equations
are used to represent an nth-order differential equation of a system as a set of n first-
order equations and assemble them in a matrix form by defining the state vectors,
output vectors, and system matrices.

Where the transfer functions can represent one output and one input in a single
transfer function, the state equations can take care of many inputs and many outputs.
State equations are a well-developed concept and hence quite a few control tools are
available for designing the controllers for the systems, such as pole-balancing robots
and biped robots represented by state equations (Ogata 1990; Kuo 1987; Nagrath and
Gopal 1985; Wilburg 1971).

8.8.1  Basic Concepts of State Equations from Differential Equations

Let us consider the differential equation in Equation 8.52, which is of the nth order.

	
a

d y
dt

a
d y
dt

a
d y
dt

a
dy
dt

a y b u bn

n

n n

n

n n

n

n
+ + + + = +−

−

− −

−

−1

1

1 2

2

2 1 0 1 1 0� uu0
	

(8.52)

We have included two inputs to make it a general system with more than one
input. Let us define the following quantities as states:

	

x y

x
dy
dt

x

x
d y
dt

x

x
d y
dt

x

x
d

n

n

n n

n

n

1

2 1

3

2

2 2

1

2

2 2

=

= =

= =

= =

=

−

−

− −

−

�

�

�

...

11

1 1
y

dt
x

n n− −= �
	

(8.53)

192 Practical Robot Design

We can rewrite Equation 8.52 as

  

a
d y
dt

a
d y
dt

a
d y
dt

a
dy
dt

a y b un

n

n n

n

n n

n

n
= − − − − − + +−

−

− −

−

−1

1

1 2

2

2 1 0 0 0� bb u

d y
dt

a
a

d y
dt

a
a

d y
dt

a
a

dy
d

n

n
n

n

n

n
n

n

n

n
n

1 1

1
1

1
2

2

2
1

or

= − − − −−
−

−
−

−

− �
tt

a
a

y
b
a

u
b
a

u
n n n

− + +0 0
0

1
1

	

(8.54)

Using the definitions in Equation 8.53, we can write

  
� �x

d y
dt

a
a

x
a
a

x
a
a

x
a
a

x
b
a

u
b
an

n

n
n

n
n

n

n
n

n n n

= = − − − − − + +− −
−

1 2
1

1
2

0
1

0
0

1

nn

u1

	
(8.55)

We can assemble Equations 8.53 and 8.55 into a matrix form as

	

�
�
�

�
�

x
x
x

x
x

n

n

1

2

3

1

0 1 0 0
0 0 1 0

0 0...

...

...
...

−

























=
.... ..

...

..1

0 1 2 1

1

2

3

− − − −

























−a
a

a
a

a
a

a
a

x

x

x

n n n

n

n

..
... ...

x

x
b
a

b
a

n

n n n

−



























+











1
0 1

0 0
0 0
0 0

0 0


























u

u
0

1

	

(8.56)

Equation 8.56 is called the state equation and is usually abbreviated as

	
�X A X B U= [] + [] 	

(8.57)

where A is the system matrix, B is the control matrix, X is the sate vector, and U is
the control vector. If y is the output, then the output can be expressed as a function
of states as follows:

	
y C X DU= [] +

	 (8.58)

Here, D is the transmission matrix. Usually, input is seldom transmitted directly
to the output, except in rare cases where the orders of numerator polynomial and
denominator polynomial of the system transfer function are equal. The “bars” above
the vectors X and U are dropped for convenience.

Thus far, we have provided some introduction to the state space representation of
linear systems. What we must note is that states consist of higher derivatives, if we
follow the above method of forming state equations. In noisy situations, only the first
two states can be measured or estimated, but other states involve taking derivatives
of second or higher order and it is almost impossible. Even estimates of second-order

193Review of Mathematical Modeling

derivatives will be inaccurate in a noisy situation. When we implement state feed-
back control techniques, we may need most of the states. This presents a tricky
situation in which we need state observers, and they are costly in terms of computa-
tion time. A good practice is to select state variables that can either be measured or
estimated easily with good accuracy.

8.8.2 S tate Equations from Plant Knowledge

In many robotic systems, we have good knowledge regarding the dynamics of the
constituent plants. Hence, it is easy to write the differential equations and hence
derive the state equations directly without the need for transfer functions. In many
such cases, the state measurement or estimation is quite straightforward. We see
such examples below.

EXAMPLE 8.6:  MASS, SPRING, AND DAMPER SYSTEM

Here, we would like to work on the example of a mechanical plant and derive
the state equations for it. Earlier in Example 8.3, we derived the transfer function
for a mechanical plant. Here, we will take up the same example and derive state
equations for that plant. The mechanical structure is shown in Figure 8.7. The dif-
ferential equations are as follows:

	
f M

d y
dt

D
dy
dt

K y= + +
2

2
	

(8.59)

Let us define states

	

x y

x
dy
dt

x

u f

1

2 1

=

= =

=

�

	

(8.60)

We can rewrite the differential equation as

	 u Mx D x K x= + +�2 2 1, hence

	
�x

K
M

x
D
M

x
M

u2 1 2
1= − − +

	
(8.61)

Combining, we can obtain

	

�
�
x

x K
M

D
M

x

x M

1

2

1

2

0 1 0

1








 =

− −

































+















u

	

(8.62)

194 Practical Robot Design

EXAMPLE 8.7:  VEHICLE INSIDE A VEHICLE
PROBLEM USING STATE EQUATIONS

Consider the system in Figure 8.8. The differential equations are given as
follows:

	
M

d y
dt

B
dy
dt

K y K y y f t2

2
2

2 2
2

2 2 1 2 1+ + + − =() ()
	

(8.63)

Also, we have

	
M

d y
dt

K y y1

2
1

2 1 1 2 0+ − =()
	

(8.64)

Let us define the following states:

	

x y

x
dy
dt

x

x y

x
dy
dt

x

1 1

2
1

1

3 2

4
2

3

=

= =

=

= =

�

�
	

(8.65)

Substituting into above equations, we get

	

M x B x K x K x x u t

x
B
M

x
K
M

K
M

x

2 4 2 4 2 3 1 3 1

4
2

2
4

2

2

1

2

�

�

+ + + − =

= − − +





() ()

33
1

2
1

2

1+ +K
M

x
M

u t()

	
(8.66)

and

	

M x K x x

x
K
M

x
K
M

x

1 2 1 1 3

2
1

1
1

1

1
3

0�

�

+ − =

= − +

()

	
(8.67)

Assembling Equations 8.65, 8.66, and 8.67, we get

	

�
�
�
�

x

x

x

x

K
M

K
M

K
M

K K
M

1

2

3

4

1

1

1

1

1

2

1 2

2

0 1 0 0

0 0

0 0 0 1

0



















=
−

− + − BB
M

x

x

x

x
M

2

2

1

2

3

4
2

0

0

0

1











































+























u

	

(8.68)

In this example, all states can be easily measured or estimated.

195Review of Mathematical Modeling

EXAMPLE 8.8:  MECHANICAL ACCELEROMETER

We considered the case of a mechanical accelerometer in Example 8.5. We
derived a transfer function describing the relationship between Y1(s)/Y2(s) in
Equation 8.51. Here, we would like to define the states for that system and
explore how those states are affected by the acceleration of the vehicle. If one of
the states chosen is the scale reading y1, we get a better picture of the response
of the acceleration measurement of the system. For Figure 8.12, the differential
equation is given as

	
M

d y
dt

B
dy
dt

K y M
d y
dt

M a
2

1
2

1
1

2
2

2+ + = =
	

(8.69)

Let us define the states as

	

x y

x
dy
dt

x

1 1

2
1

1

=

= = �
	

(8.70)

And substituting for x2

	
�x

B
M

x
K
M

x a2 2 1= − − +
	

(8.71)

Hence, the state and output equations are

	

�
�
x

x K
M

B
M

x

x
a

y

1

2

1

2

0 1 0

1

1 0









 =

− −

























 +











=  










x

x
1

2 	
(8.72)

Here, the input is the acceleration, a, and the output is the reading y1 on the
accelerometer scale. In this example, all states can be easily measured or esti-
mated as well.

8.8.3 S tate Equations Directly from Transfer Functions

In many cases, transfer functions are obtained by running a frequency response test
of the systems. In other words, only transfer functions are available for getting the
system insight.

Cross-multiplying the transfer function equation relating the output to the input
and taking the inverse Laplace transform, we can write the differential equation.
Then, we can define the states and write the state equations. Also, state equations
can be formed from transfer functions directly even without writing any differential

196 Practical Robot Design

equations. We provide some examples to describe methods widely discussed in the
control literature (Ogata 1990; Kuo 1987; Palani 1997; Nagrath and Gopal 1985).

EXAMPLE 8.9

Consider the transfer function

	

Y s
U s s s s s

()
()

=
+ + + +

5
5 4 4 74 3 2

	
(8.73)

This example has no zero term, which makes things straightforward. The
numerator polynomial order, m, is 0 and the denominator polynomial order, n, is
4. We define the following states:

	

x y

x x
dy
dt

x x
d y
dt

x x
d y
dt

1

2 1

3 2

2

2

4 3

3

3

=

= =

= =

= =

�

�

�
	

(8.74)

Using the definition of the states, the state equation can be written as

	

�
�
�
�

x

x

x

x

x1

2

3

4

0 1 0 0

0 0 1 0

0 0 0 1

7 4 4 5



















=

− − − −



















11

2

3

4

0

0

0

5

x

x

x

u



















+



















	

(8.75)

The output equation becomes

	

y

x

x

x

x

=  



















1 0 0 0

1

2

3

4 	

(8.76)

Again, the drawback is that the states involve higher derivatives of the output.

EXAMPLE 8.10: ALTERNATIVE APPROACH FOR EXAMPLE 8.9

As it is obvious from the example given above, the solution to the state feedback
becomes difficult to tackle, since states involve higher-order derivatives and can-
not be evaluated. However, in the following, we employ an alternative approach

197Review of Mathematical Modeling

(Palani 1997). In this method, the states are defined in such a way that they do
not involve higher-order derivatives in state definitions. Here, the numerator order
m = 0, and the denominator order n = 4. We repeat Example 8.9 for some com-
parison of state equations. Given that

	

Y s
U s s s s s

()
()

=
+ + + +

5
5 4 4 74 3 2

	
(8.77)

Cross-multiplying and taking the inverse Laplace transform, we have

	
���� ��� �� �y y y y y u= − − − − +5 4 4 7 5

Then, integrating three times, we get

	
�y y y y y u= − − − − +∫ ∫∫∫∫∫∫∫∫5 4 4 7 5

	
(8.78)

Defining x1 = y as before

	 �x x x1 1 25= − +

where x2 is tacitly defined as

	
x y y y u2 4 4 7 5= − − − +∫ ∫∫ ∫∫∫ ∫∫∫ 	

(8.79)

Now, differentiating Equation 8.79 once

	
�x y y y u2 4 4 7 5= − − − +∫ ∫∫ ∫∫

	 �x x x2 1 34= − + 	 (8.80)

where

	
x y y u3 4 7 5= − − +∫ ∫∫ ∫∫ 	

(8.81)

Again, differentiating Equation 8.81 once

	
�x y y u3 4 7 5= − − + ∫∫

198 Practical Robot Design

	 �x x x3 1 44= − + 	 (8.82)

where

	
x y u4 7 5= − + ∫∫ 	

(8.83)

Again, differentiating Equation 8.83 once

	
�x y u x u4 17 5 7 5= − + = − + 	 (8.84)

Let us assemble the above equations into the state equations

	

�
�
�
�

x

x

x

x

x
1

2

3

4

5 1 0 0

4 0 1 0

4 0 0 1

7 0 0 0



















=

−
−
−
−



















11

2

3

4

0

0

0

5

x

x

x

u





















+



















	

(8.85)

and the output is given by

	

y

x

x

x

x

=  



















1 0 0 0

1

2

3

4 	

(8.86)

When we compare this set (Equations 8.85 and 8.86) with the state equation
set obtained earlier (Equations 8.75 and 8.76), we note that the output equations
are the same, but system matrices look different. We know that both state mod-
els originate from the same system represented by the transfer function given by
Equation 8.73 and hence should represent the same dynamics as that of the trans-
fer function. In state equations, the eigenvalues represent the system dynamics.
Since both state models were derived from the same transfer function, their eigen-
values cannot be different and must be the same as the poles of the original trans-
fer function. Let us use MATLAB to check the poles of the original transfer function
and the eigenvalues of both state equations, for comparison. The MATLAB dialog
is listed in Figure 8.13 (Cavallo et al. 1996).

From Figure 8.13, it is clear that both state matrices obtained by different meth-
ods yield the same eigenvalues, which are also the same as the roots of the charac-
teristic equation. It is important to note that in Example 8.9, the state variables are
not measurable since the states’ estimation involves higher-order derivatives as it
can be seen in Equation 8.74. Hence, states are not available for feedback. But, in
Example 8.10, the state variables can be estimated with some efforts of integration
as it can be seen from Equations 8.79, 8.81, and 8.83.

199Review of Mathematical Modeling

EXAMPLE 8.11:  CASE WHERE PLANT HAS ZERO
TERMS WITH M = 2 AND N = 4

Consider

	

Y s
U s

s s
s s s s

()
()

= + +
+ + + +

24 32 48
4 5 8 12 120

2

4 3 2
	

(8.87)

In this case, m < n and there will be no direct transmission term D (i.e., D = 0).
This can be directly dealt without factorizing it. Cross-multiplying and taking

the inverse Laplace transform, we have

	 4 5 8 12 120 24 32 48���� ��� �� � �� �y y y y y u u u+ + + + = + +

Solving for the highest derivative

	
���� ��� �� � �� �y y y y y u u u= − − − − + + +1 25 2 3 30 6 8 12.

and integrating both sides four times, we obtain

	
y y y y y u u u= − − − − + + +∫∫∫∫∫∫∫∫∫∫∫∫ ∫∫∫ ∫∫∫∫1 25 2 3 30 6 8 12.

	
(8.88)

FIGURE 8.13  MATLAB code and results for comparing the eigenvalues of the two state
systems.

200 Practical Robot Design

The above step is somewhat redundant, but written to streamline the thinking
process. Now, let us define the first state variable, which is also the output:

	 x1 = y

At this step, if there is a nonintegral term u on the right-hand side, it must be
included in the state variable x1. Since there was no such term, the definition of
x1 was equated to a simple measurement. Let us differentiate Equation 8.88 once:

�y y y y y u u u= − − − − + + + ∫∫∫∫∫∫∫∫∫∫∫∫1 25 2 3 30 6 8 12.

	 �x x x1 1 21 25= − +. 	 (8.89)

We have tacitly equated the integral terms to a new state variable as

	
x y y y u u u2 2 3 30 6 8 12= − − − + + + ∫∫∫∫∫∫∫∫∫∫∫∫ 	

(8.90)

Let us differentiate above equation once:

	
�x y y y u u u2 2 3 30 6 8 12= − − − + + + ∫∫∫∫∫∫

	 �x x x u2 1 32 6= − + + 	 (8.91)

where, as before, we have equated all integral terms to a new state variable as

	
x y y u u3 3 30 8 12= − − + + ∫∫∫∫∫∫ 	

(8.92)

Differentiating Equation 8.92 once

	
�x y y u u3 3 30 8 12= − − + + ∫∫

	 �x x x u3 1 43 8= − + + 	 (8.93)

Again, we have equated all integral terms to the fourth state variable as

	
x y u4 30 12= − + ∫∫ 	

(8.94)

Differentiating Equation 8.94 once again, we get

	
�x y u4 30 12= − +

	 �x x u4 130 12= − + 	 (8.95)

201Review of Mathematical Modeling

Then, the state equation becomes

	

�
�
�
�

x

x

x

x

1

2

3

4

1 25 1 0 0

2 0 1 0

3 0 0 1

30 1 1 1



















=

−
−
−

−















.























+



















x

x

x

x

u

1

2

3

4

0

6

8

12
	

(8.96)

	

y

x

x

x

x

=  



















1 0 0 0

1

2

3

4 	

(8.97)

Note: In both Examples 8.10 and 8.11, the approach is very similar.

EXAMPLE 8.12:  CASE WHERE NUMERATOR AND DENOMINATOR
ORDERS ARE EQUAL WITH M = N = 3

Let us consider

	

Y s
U s

s s s
s s s

()
()

= + + +
+ + +

3 2

3 2

13 50 62
12 47 60 	

(8.98)

In this case, m = n and we will see that it will result in the direct transmission
term D.

We will also realize that the state definition needs to be done a bit more cautiously.
Cross-multiplying the original Equation 8.98 and taking the inverse Laplace

transform, we have

	
��� �� � ��� �� �y y y y u u u u+ + + = + + +12 47 60 13 50 62

Solving for the highest derivative, we get

	
��� �� � ��� �� �y y y y u u u u= − − − + + + +12 47 60 13 50 62 	 (8.99)

By integrating both sides two times, we have

	
� �y y y y u u u u= − − − + + + +∫ ∫∫∫∫∫12 47 60 13 50 62

	
(8.100)

Now, we need to define the state variable. But, if we define x1 = y, we will get
one state equation as

	
� �x y y y u u u u1 12 47 60 13 50 62= − − − + + + +∫ ∫∫∫∫∫ 	

(8.101)

202 Practical Robot Design

Note that we have �u on the right-hand side of the state equation we wrote
above. This is not acceptable in the standard form of state equations, where u is
expected to assume piecewise constant values from sample to sample. Hence, its
derivatives cannot be dealt with in the solution methods employed. So, x1 = y is
not a valid state definition. So, we need to include u in the definition of the first
state variable. Let us redefine the first state variable as

	 x1 = y − u	 (8.102)

With the above definition in mind, Equation 8.100 can be written as

	
� � �y u x y u u y y u u u− = = − − − − − + + + ∫∫∫∫∫∫1 12 12 47 60 13 50 62()

	
�x x u u y y u u x x u1 1 1 212 12 13 47 60 50 62 12= − − + − − + + = − + +∫∫ ∫∫∫∫ 	

(8.103)

where we have tacitly equated the integral terms to a new state variable as

	
x y y u u2 47 60 50 62= − − + + ∫∫∫∫∫∫ 	

(8.104)

Let us differentiate the above equation once:

	
�x y y u u2 47 60 50 62= − − + + ∫∫ 	

(8.105)

	

�x y u u y u u

x y u u

x x

2

1

1 3

47 47 60 50 62

47 60 62 3

47

= − − − − + +

= − − + +

= − +

∫∫
∫∫

()

++ 3u 	 (8.106)

where, as before, we have equated all integral terms to a new state variable as

	
x y u3 60 62= − + ∫∫ 	

(8.107)

Differentiating equation once

   
� �x y u y u u u x x u3 3 160 62 60 60 62 60 2= − + = − − − + ⇒ = − +() 	 (8.108)

	

�
�
�

x

x

x

x

x

x

1

2

3

1

2

3

12 1 0

47 0 1

60 0 0

















=
−
−
−

































+
















1

3

2

u

	

(8.109)

203Review of Mathematical Modeling

From Equation 8.102, the output can be written as

	

y

x

x

x

u=  

















+1 0 0 1
1

2

3 	

(8.110)

There is a direct transmission term in the output equation because m = n. In
Examples 8.10 through 8.12, we see that the states do not involve higher-order
derivative terms. If the initial values of u and y are zeros, the states can be esti-
mated with relative ease. We have seen a few methods of forming state equations
with examples. We have only focused on those methods that yield state equations
where states can be easily measured or estimated. We may conclude that the
modeling must keep the actual measurable or easy-to-estimate variables as the
state variables so that they are available for feedback control. Whether the state
equations are derived from the actual dynamic system knowledge, or by factor-
izing transfer functions, or from polynomials directly, this point must be kept in
mind. When we have a distributed control system where we encounter many
subsystems, it is easy to pick measurable variables as state variables. This is true in
the case of robotic systems.

8.9 � TIME DOMAIN SOLUTIONS USING TRANSFER
FUNCTIONS APPROACH

In this section, we will deal with the closed system along with a controller of some
sort. We will exclude open-loop systems, since open-loop system response or open-
loop stability matters are usually trivial once the system poles are determined.
Therefore, we will focus on closed-loop performance with a controller in place.

For a system with a frequency domain transfer function, the steps involved
in getting a system with desirable performance are rather straightforward. The
first thing we need to do is to decide on the controller configuration. In this sec-
tion, we will see closed-system responses for some elementary controllers such
as proportional controller (P-only) and proportional, derivative, and integral con-
trollers (PID), to get familiar with time domain solutions with controllers. For
more controller types and further reading on this issue, refer to Ogata (1990),
D’Azzo and Houpis (1995), and Kuo (1987). Once the controller is decided, the
feedback system must be analyzed and the overall transfer function must be com-
puted. Then, by applying partial fraction techniques, such complex systems can
be broken down, and the inverse Laplace transform solutions can be applied to
obtain time domain solutions. We can also analyze the system performance by
using software simulation tools such as MATLAB. If necessary, the design can
be further improved iteratively. Here, we will demonstrate one example using a
few different techniques.

EXAMPLE 8.13:  MASS, SPRING, AND DAMPER SYSTEM IN CLOSED LOOP

We have seen a mechanical system in Example 8.3, and the plant configura-
tion is shown in Figure 8.7. We derived the open-loop transfer function of the

204 Practical Robot Design

plant and the output versus input relationship is given by Equation 8.41, which
is repeated here:

	

Y s
F s Ms Ds K

()
()

=
+ +

1
2

	
(8.111)

We would like to consider the performance of the plant when controlled in a
closed loop. We may consider a few types of controllers. Let us assume that we
want to control y to follow a reference input, yr, which may be a step input. To
do this, we need to select a controller and create a feedback control system. Let
us choose a “P-only controller,” the action of which is proportional to the error.
Such a controller uses a gain factor, denoted by Kp, to amplify the error between
the desired value and the actual value of the output and feeds the resulting value
as the input to the plant. Then, the feedback system can be formulated as shown
in Figure 8.14.

Let us assume that the following arbitrary parameters for the above system are
given:

	 M = 1 kg, D = 1.5 Ns/m, K = 6 kg/m, and Kp = 20

8.9.1 �A nalytical Solution for Mass, Spring, and Damper System
in Closed Loop

By referring to Figure 8.14, the closed-loop transfer function is obtained as

	

Y s
Y s Ms Ds K K

K

Ms Ds K K

K M

s D M s

r p

p

p

p

()
() () ()

() (

=
+ + +

=
+ + +

=
+ +

1
1 2 2

2

/

/

/ (())K K Mp+ /
	

(8.112)

 

Y s
Y s

K

K K

K K M

s D M s K K Mr

p

p

p

p

()
() ()

(())

() (())
= +

+
+ + +

= 





/

/ /2

20
26 + +

26
1 5 262s s.

	
(8.113)

For a step input

	
Y s

s s s s s s
n

n n

()
.

= 



 + +

=
+ +

20
26

26
1 5 26

1 20
26 2

1
2

2

2 2

w
xw w 	

(8.114)

1

Ms2 + Ds + K

Yr(s) Y(s)+

–

Kp

FIGURE 8.14  Closed-loop system used for simulation.

205Review of Mathematical Modeling

For finding solution, we match it with a suitable entry in the standard Laplace
transform table. The comparison yields

	

w w
xw V
n n

n

2 26 26 5 1

2 1 5 0 1471

= ⇒ = =
= ⇒ =

.

. . 	
(8.115)

Then, the solution is

	

y t
e

t
nt

() sin(. .)= −
−

− +












−20
26

1
1

5 1 1 0 1471
2

2
Vw

x
f

	

(8.116)

where ϕ = cos−1 0.1471 = 81.54°.
The simple code to plot this is shown in Figure 8.15. The response obtained using

MATLAB is shown in Figure 8.16.

8.9.2 �S imulation Solution for Mass, Spring, and Damper System
in Closed Loop

In the MATLAB environment, Simulink® can be easily used to test various control-
lers. We do not need to do any closed-loop system calculations or deal with Laplace
transforms. A Simulink setup for this simple proportional controller is shown in
Figure 8.17.

The MATLAB code that calls this Simulink model is given in Figure 8.18. Using
this code, we can pass the system parameters to the model. This gives some flexibil-
ity to the programmer. In all the codes in which we have used sim(“xyz”), xyz is the
file name of the Simulink model shown in the figure referred.

The response we obtain is shown in Figure 8.19. We can see that the response is
quite oscillatory, and it has a large steady-state error as well. We may try to improve
this by adding a few additional terms in the controller function.

FIGURE 8.15  Code for plotting response yielded by Equation 8.116.

206 Practical Robot Design

FIGURE 8.18  MATLAB code for P-only controller.

1.4

1.2

0.8

0.6

0.4

0.2

0
0 5

Time (s)

Po
sit

io
n

10 15

1

FIGURE 8.16  Time response of the system.

Step Gain
Transfer Fcn1

1
Out1

Scope1

ms2 + ds + k

1kp+–

FIGURE 8.17  Simulation setup.

207Review of Mathematical Modeling

8.9.3  PID Controller Response

We presented a basic PID controller equation in Chapter 7 as

	
m t k e t k e t dt k

de t
dtp i d() () ()
()= + +∫ 	

(8.117)

where kp is the proportional gain, ki is the integral gain, kd is the derivative gain, and
e(t) = yr − y.

In terms of the Laplace transform, the controller output can be written as

	
M s k E s k

E s
s

k s E sp i d() ()
()

()= + +
	

(8.118)

We would like to apply such a controller to the plant and see how the system responds.
Before we do that, we would like to discuss some fundamental concepts regarding
PID controllers.

Controller actions: As it can be seen from Equation 8.117, the controller output
is the sum of three terms. The first term kpe(t) represents the proportional control
action, which produces an output proportional to the error. This is usually used as
the base controller. The second term k e t dti ∫ () represents the integral control action.
As long as the error is present, this term keeps growing. For example, if the output
is less than the desired value, the error will be positive and the integral term’s value
grows and increases the input to the plant, thus pushing the output closer toward the
desired value. In general, an integral controller eliminates the error.

The third term, kd(de/dt), represents the derivative control action. When the
derivative of the error is positive, implying a tendency for the error to increase,

1.4

1.2

0.8

0.6

0.4

0.2

0
0 5

Time (s)

O
ut

pu
t

10 15

1

FIGURE 8.19  Time response from Simulink P-only controller.

208 Practical Robot Design

this controller produces an output to reduce the error, thus producing an anticipa-
tory/preemptive action. The process of adjusting the proportional, integral, and
derivative gains to get a good performance is called “‘tuning.” Tuning a PID con-
troller is usually a trial-and-error process, which itself is a vast area of research.
At first, the proportional gain is adjusted to get a reasonably fast response without
much oscillations of the output. Then, the integral gain is adjusted to eliminate the
steady-state error. Finally, the derivative gain is adjusted to reduce the oscillations.
These adjustments need to be repeated a few times, until response is satisfactory.

We can see that the PID controller is implemented as a sum of “PI” block
(kps + ki)/s and a derivative block kd(de/dt) in Figure 8.20. It takes considerable effort
of tuning by trial-and-error to get the appropriate parameters kp = 50, kd = 8, and
ki = 50 for the controller. Now, we will apply this PID controller to the same mass,
spring, damper problem, and compare its performance.

The MATLAB code for implementing it is given in Figure 8.21. The response can
be viewed in Figure 8.22.

Step

Gain Derivative

Transfer Fcn 1Transfer Fcn

1
Out 1

Scope 1

ms2 + ds + k
kps + ki

s
1

kd du/dt

+ ++–

FIGURE 8.20  Simulink setup for PID implementation.

FIGURE 8.21  MATLAB code for PID controller simulation.

209Review of Mathematical Modeling

Figure 8.22 shows the system response. See that the overshoot above the reference
value is <5%, and the final steady-state value is reached in <1 s. Comparing these
values to the response obtained using the P-only controller, we can observe that the
performance has tremendously improved in terms of overshoot and settling time.

8.10  TIME DOMAIN SOLUTIONS OF STATE EQUATIONS

As mentioned earlier, in robotics, we prefer state space representation because that
will be more suitable to represent multi-input multi-output (MIMO) systems, which
we often encounter in this field. Furthermore, there are well-established methods of
controller design for such representation. For state space equations, the time domain
solutions can be obtained using computational methods, analytical methods, and
simulation methods. We discuss them in the following sections.

8.10.1 T ime Domain Solutions Using Analytical Methods

Computer solution: A system is represented by state equations in the form

	

�X A X BU

Y CX DU

= +
= + 	

(8.119)

We can drop the “bars” above the vectors for convenience. If there are n states, r
inputs, and m outputs, then X is a vector of size n, A is an n × n matrix, U is a vector

1.4

1.2

0.8

0.6

0.4

0.2

0
0 5

Time (s)

O
ut

pu
t (

PI
D

 co
nt

ro
lle

r)

10 15

1

FIGURE 8.22  Time response of PID controller implemented in Simulink.

210 Practical Robot Design

of size r, B is an n × r matrix, C is an m × n matrix, and D is m × r matrix. In most
physical systems, the direct transmission term may not be present, hence, D = 0.

The solution is of the form

	

X t e X e BU dAt A t

t

() () ()()= + −∫0
0

t t t

	

(8.120)

and in general, if the initial time is t0, then the solution consists of two terms a free
solution plus a forced solution (Ogata 1990; Nagrath and Gopal 1985; Wilburg, 1971):

	

X t e X t e BU dA t t A t

t

t

() () ()() ()= +− −∫0

0

0
t t t

	

(8.121)

In the above equations, eAt and eA t t()− 0 are called the state transition matrices. The
free solution implies the state variable response when there is no input. We imply
that system states will drift according to the free solution pattern. When we have an
input U that will create an additional response, it is called the forced solution. The
total solution is the sum of these two.

Hence, it becomes necessary to compute eAt to obtain the solution. It can in fact
be computed as a series given below:

	
e I At

A t A t A t
tAt = + + + + + =

2 2 3 3 4 4

2 3 4
0

! ! !
(,)� j

or

	
e I A t t

A t t A t t A t tA t t() ()
()

!
()

!
()

!
− = + − + − + − + − + =0

0

2
0

2 3
0

3 4
0

4

2 3 4
� j ((,)t t0

	
(8.122)

The solution of the systems can be easily programmed in computers. In addition
to the free (undriven) solution, even the forced solution can be computed in steps
using a suitable computer program. We will now proceed to see some analytical
solutions in the following sections. We are not providing an example for this since
we will provide a simulation procedure later.

Laplace transform technique: Let us take the Laplace transform of the state equa-
tion, which is straightforward and write

	 sX(s) − X(0) = AX(s) + BU(s)	 (8.123)

Rearranging

	 [sI - A]X(s) = X(0) + BU(s)	 (8.124)

211Review of Mathematical Modeling

Premultiply by [sI − A]−1

	 X(s) = [sI − A]−1X(0) + [sI − A]−1BU(s)	 (8.125)

By taking the inverse Laplace transform, we get

	
X t L sI A X L sI A BU s() [] () [] ()= −{ } + −{ }− − − −1 1 1 10

	
(8.126)

In the above step, X(0) is constant, so we can rewrite Equation 8.126 as

	
X t L sI A X L sI A BU s() [] () [] ()= −{ } + −{ }− − − −1 1 1 10

	
(8.127)

The output vector becomes

	
Y t CX t CL sI A X CL sI A BU s() () [] () [] ()= = −{ } + −{ }− − − −1 1 1 10

	
(8.128)

Comparing Equations 8.120 and 8.127, we can see that the term L sI A− −−1 1{[] } is
in fact the state transition matrix. However, this procedure is quite hard to compute,
which we will show in the example below. We will use the same example for all the
methods in this section, and we are not attempting any controller design yet.

EXAMPLE 8.14:  TYPICAL STATE EQUATION SOLUTION

Evaluate the time domain solution for the following system:

	

�X X u y X Du=
−
−









 +









 =









 +

6 8

1 0

1

0

1 0

0 1
and

	
Given that andX()0

1

1
0=

−








 =D

	
(8.129)

Solution

We write the characteristic equation as

	
sI A

s

s
−[] =

+ −









6 8

1
	

(8.130)

	 s s s s s s() ()()+ + = + + = + +6 8 6 8 2 42
	 (8.131)

	
sI A

s s

s

s
−[] =

+ +
+

− +










−1 1
2 4

8

1 6()() 	
(8.132)

212 Practical Robot Design

The free solution in the Laplace form is represented by

	
sI A X

s s

s

s
−[] =

+ +
+

− +








 −











−1
0

1
2 4

8

1 6

1

1
()

()() 	
(8.133)

The forced solution in terms of the Laplace transform is represented by

	
sI A BU s

s s

s

s s
−[] =

+ +
+

− +




















−1 1
2 4

8

1 6

1

0
1

()
()()

	

=
+ + −









 =

+ + −

















1
2 4 1

1 1
2 4

1

1()() ()()s s

s

s s s
s 	

(8.134)

Hence, the solution is

	

X t L

s
s s

s
s s

L
s

()
()()

()
()()

(=

−
+ +
− +
+ +



















+ +− −1 1

8
2 4

7
2 4

1
2))()

()()

s

s s s

+
−

+ +



















4
1

2 4 	

(8.135)

Referring to any standard Laplace transform table in the literature, we can write
the solution as

	

X t
e e e e

e e e

t t t t

t t
()

. () ()

. () . (
=

− − −
− − −

− − − −

− − −

0 5 4 2 4

0 5 4 2 3 5

4 2 2 4

4 2 22 4

2 4

2 4

0 5

1
8

1 0 5 4 2t t

t t

t te

e e

e e−








 +

−

− − −{ }








−

− −

− −)

. ()

. ()







 	

(8.136)

Simplifying, we get

	
X t

e e

e e

e et t

t t

t t

()
. .

. .

.
=

− +
− +









 +

−
−

− −

− −

− −5 6

2 5 1 5

0 5 0 5

0

2 4

2 4

2 4

1125 0 25 0 1252 4+ −








− −. .e et t

	
(8.137)

Note that the initial values of states (at t = 0) are 1 and −1, respectively, in the
first term, while the forced solution in the second term is zero for both states. The
total solution is

	
X t

e e

e e
t

t t

t t
()

. .

. . .
=

− +
− − +









 >

− −

− −

4 5 5 5

0 125 2 25 1 375
0

2 4

2 4
for

	

(8.138)

Let us plot the above states using the MATLAB code in Figure 8.23 for future
comparison.

The plots are shown in Figure 8.24.

213Review of Mathematical Modeling

FIGURE 8.23  Code for calculation for plotting Equation 8.138.

0 1 2
Time (s)

3 4 5 6 7 8 9 10

0

1

0.5

0

–0.5

St
at

e X
1

St
at

e X
2

–1

0

–0.5

–1.5

–1

1 2 3 4 5 6 7 8 9 10

FIGURE 8.24  Time response of regulator output from calculations.

214 Practical Robot Design

Time domain solutions using simulation: Here, we would like to take the same
example for continuity of discussion and get the outputs using MATLAB simulation
of state space system and compare the results.

	

�X X u y X Du=
−
−









 +









 =









   +

6 8

1 0

1

0

1 0

0 1
and

	
Given that whereX() ,0

1

1
0=

−








 =D

	
(8.139)

The simulation diagram is quite routine, and it is shown in Figure 8.25. A
MATLAB program that defines the parameters and invokes the Simulink model is
listed in Figure 8.26. The simulation results in Figure 8.27 tally with the results of
earlier methods shown in Figure 8.24.

8.11  REGULATOR AND SERVO CONTROLLERS

Earlier, we have seen simple types of P-only and PID controllers. For many systems
in robotics, such simple controllers may not work. We may need more sophisticated

Step State-space
Demux

x′ = Ax + Bu
y = Cx + Du

1

2

Out 1

Out 2

FIGURE 8.25  Simulink setup for state space system.

FIGURE 8.26  MATLAB code for state model simulation.

215Review of Mathematical Modeling

controllers. The most popular types of controllers used in robotics are pole place-
ment regulators, servos with integrator using pole placement concept, linear qua-
dratic criteria-based regulators, linear quadratic criteria-based servo controllers,
adaptive regulators, and adaptive servo controllers.

At the outset, in a day-to-day industrial control application, the objectives of the
control and the actual specifications for performance are not really clear. However,
to some extent, the picture gets better in robotics. In most of the cases in robotics,
the objectives are clearly known in the beginning of the design process. On the other
hand, there may be little knowledge of some parameters that are difficult to estimate.
For example, in game robotics, we may not know the parameters such as friction of
the robotic vehicle or reflectivity of a maze wall.

The design is going to be challenging and iterative mainly in two stages. We
derive a model and evaluate its parameters. The next step is to check the model accu-
racy by experimenting. If our plant response is not according to the expectation of
the model, then we have to revise the model. This has to be repeated until the model
response and the plant response match.

The next stage is controller design. Once we design the controller, we simulate the
response; if the result is satisfactory, then we test the actual closed-loop system tak-
ing utmost care. If the response matches the expectations, then we can conclude that
the design is complete. Otherwise, controller structure or parameters may have to
change. We can improve the performance to match the specifications still following

0 1 2
Time (s)

3 4 5 6 7 8 9 10

0

0

1

0.5

0

–0.5

St
at

e X
1

St
at

e X
2

–1

–1

–1.5

–0.5

1 2 3 4 5 6 7 8 9 10

FIGURE 8.27  Time response from simulation.

216 Practical Robot Design

the process of “simulate first and test later.” This process has to go on through a few
cycles until the result is satisfactory.

So far, we have discussed analog controllers to introduce the concepts in control-
ler design. However, in robotics, controllers are hardly implemented in analog form.
Therefore, we will present the design exercise in the next chapter where we describe
digital controllers.

8.12  CONCLUSION

In this chapter, we have reviewed the basics of modeling of physical systems in
terms of transfer functions and state variable analysis. Even though the transfer func-
tion models are sufficient to design and implement controllers of different types,
we skipped detailed designs of controllers in favor of state models since all trans-
fer function model-based designs are by trial and error. Another problem is that as
the systems get complicated as in the case of robotics, such trial-and-error-based
design is very time consuming and at times becomes impractical. We only presented
a P-only controller and a PID controller as examples. Then, we moved on to state
modeling. We went through some analytical methods of response calculations and
dwelled upon some simulation techniques as well. We skipped the design methods
for regulator problem and servo control problem, since digital controllers are used in
robotics. We have focused on analog techniques so far, since we believe that control
systems are learned first from analog systems. Since the actual implementations are
done using digital computers, it is necessary to learn discrete system concepts. In
the next chapter, we will discuss the discrete systems concepts before we go through
some case studies.

REFERENCES

Cavallo, A., Setola, R., and Vasca, F. 1996. Using MATLAB, Simulink, and Control System
Toolbox: A Practical Approach. Hertfordshire, UK: Prentice Hall Europe.

D’Azzo, J.J. and Houpis, C.H. 1995. Linear Control System Analysis and Design: Conventional
and Modern. New York: McGraw-Hill Book Company.

Kuo, B.C. 1987. Automatic Control Systems. Englewood Cliffs, NJ: Prentice-Hall.
Nagrath, I.J. and Gopal, M. 1985. Control Systems Engineering. New Delhi: New Age

International Limited Publishers.
Ogata, K. 1990. Modern Control Engineering. Englewood Cliffs, NJ: Prentice-Hall.
Palani, S. 1997. Control Systems. Regional Engineering College, Tiruchirappalli, India:

Shanmuga Priya Publishers.
Wilburg, D.M. 1971. Schaum’s Outline Series: State Space and Linear Systems. New York:

McGraw-Hill.

217

Digital Control
Fundamentals and
Controller Design

9.1  INTRODUCTION

In earlier chapters, we focused on systems working in continuous mode, which
implies that the system is monitored and controlled at each and every instant of time.

While analog control is quite important to understand control theory, implement-
ing the designed controller using analog components would pose a number of prob-
lems. We will describe these issues in the following sections. In fact, as we have
pointed out earlier, analog controllers are seldom implemented in modern control
systems especially in robotics. They are expensive in the long run, since they need
more calibration and maintenance than a digital system, due to aging of analog
components. The falling price of computing hardware also makes digital control-
lers more attractive. They can work in most of the harsh environments where some
robots are deployed. Furthermore, the distributed processing, which is very useful
in robotics, is also possible to implement with digital controllers. They can fit in to
small spaces and communicate with systems in the vicinity or far away. The neces-
sary hardware or protocols for such communication network such as IEEE-488 are
readily available. The instrumentation field also is moving toward digital systems.
Therefore, digital controllers fit well with digital instrumentation.

We will present some ideas related to digital implementation of controllers in the
next section. These concepts can be learned from a whole body of control litera-
ture (Astrom and Wittenmark 1990; Cadzow 1973; Nagrath and Gopal 1996; Ogata
1995). We have provided a glimpse of what we feel is essential knowledge for a robot
designer from a large collection of literature. We have provided some examples in
this chapter and some case studies in Chapter 10, where we show how this knowl-
edge is used in robotics.

9.2  DIGITAL CONTROL OVERVIEW

A robot operates in a continuous world, and all the processes involved in robotics
are also continuous by nature. Hence, digital controllers cannot directly deal with
such continuous systems. Therefore, we need to introduce some intermediate steps
to adapt digital systems to control analog plants. Figure 9.1 shows a block diagram

9

218 Practical Robot Design

of a typical single-input single-output digital control system. We explain briefly the
basic elements involved in digital control below.

9.2.1 S ignal Sampler

This is usually denoted by a switch in all diagrams, though there is more to it. The
computer represents the controller, and it only works with numbers. Hence, to take
decisions and produce a control output, it needs to sample the system outputs peri-
odically and receive them as numbers. On the other hand, an analog controller acts
on the signal values every instant, which is not possible for digital controllers. The
computer has to take one value of error at a time and compute the output. The func-
tion of a sampler is to catch the samples of the system variables and keep them until
they can be converted into a digital value. A typical sampler is shown in Figure 9.2.

Even though Figure 9.1 shows only one input, there may be more than one channel
to be sampled. Figure 9.2 shows a case where there are four signals to be sampled
simultaneously. The digital computer takes control action at periodic intervals called
sampling time. At the instant of sampling time, sample/hold signal is activated and
all the signals are captured simultaneously at the current values and are available
at the multiplexer inputs. Then multiplexer passes the captured signals to the ADC
one by one for conversion based on the select lines provided by the computer. The

Digital system
controller

Instrumentation

Reference
Sampling

+

–

ZOH PlantActuator
T

Output

Signal
reconstruction

T

FIGURE 9.1  General block diagram of a digital controlled system.

Analog
multiplexer

A
na

lo
g

in
pu

ts

Analog to
digital

converter

S0 S1

Selection

D0~D7

Sample/
hold

Hold

Sample/
hold

Sample/
hold

Sample/
hold

0

1

2

3

FIGURE 9.2  A typical synchronous sampling system.

219Digital Control Fundamentals and Controller Design

program should allow enough settling time for the output of the multiplexer to be
stabilized before conversion begins. In the example given in Figure 9.2, ADC is 8
bits; hence, captured samples are converted into 8-bit length digital numbers. The
number of bits of conversion depends upon the resolution required. These operations
are usually done under software control of the microcontroller or microprocessor.
Some devices, such as HCTL 2016 decoder with on-board processor, provide data
directly in digital form. For such input signals, there is no need for conversion.

When the system variables change quite slowly, compared to the ADC conversion
speed, sample/hold devices are not needed. In such cases, the total time taken by
ADC to convert all channels may be far less than the shortest time constant of the
closed-loop system.

9.2.2 D igital Controller

The digital controller is nothing but a computing device equipped with software
stored in its memory. In the case of a microcontroller, the software is stored in its
EEPROM or “flash” memory. Sometimes, programmable logic controller (PLC)
devices play the role of digital controllers. In many cases, the designers tend to use
readily available motherboards (such as eZdsp 2407), which come with serial and
parallel ports for communication and adopt them as digital controllers. Such boards
also come with usable software development tools. These motherboards do need
additional sister boards for power driving, and it is the task of the robotics engineer
to develop sister boards that suit his needs. This ensemble described above as a
whole can be called a digital controller.

9.2.3  Zero-Order Hold

As we mentioned at the outset, physical systems are continuous in nature, such as DC
motors, hydraulic systems, or pneumatic systems, to name a few. They need continu-
ous signal inputs. In contrast, digital controllers can only provide a set of numbers
at each and every control instant. These numbers need to be converted to analog
signals to be used by the plant. Since a microprocessor is used as a controller, the
output number from the controller stays on the data bus for a short period of time.
We need to keep this number for the duration of sampling time (control interval) and
convert it to analog value so that it can be used by the plant. The dual function of
holding the number and converting into analog value is achieved by the combination
of zero-order hold (ZOH) and digital-to-analog converter (DAC). Figure 9.3 shows

Microprocessor/
PC Digital latch

Digital-to-
analog

converter

Control output
on data bus

Latched data Continuous
signal

FIGURE 9.3  Implementation of zero-order hold.

220 Practical Robot Design

the basic structure of ZOH implementation. After this, the continuous control signal
can be processed as in any other analog control system.

When a microprocessor is used as controller, a separate digital latch circuit is nec-
essary as shown in Figure 9.3. Nowadays, many microcontrollers come with built-in
output ports with latches. Even the DACs are integrated to microcontrollers, which
simplifies the circuit design significantly.

After considering all three important parts of a digital controller, we can incorpo-
rate all the constituent devices and redraw the block diagram as a general guide line
as shown in Figure 9.4.

Since digital controllers are popular these days, it will be useful to compare them
with analog controllers. Is it worth-learning microcontrollers, encoders, H-bridges,
and so on, instead of simply implementing an analog controller which only requires
the knowledge of power electronics and analog control theory? In practice, it is nec-
essary to make this additional effort to implement a reliable and cheaper system,
which avoids expensive precision analog hardware. Even though digital controllers
are more complex, their advantages largely outweigh their complexity. Since they
need less maintenance and calibration, digital controllers are far more reliable than
analog control systems.

Digital computers are very flexible because the controller parameters can be
changed by changing a value in the program without doing any hardware changes. One
digital controller can take care of many control loops simultaneously due to the possi-
bility of fast computation. Moreover, sophisticated control techniques such as adaptive
control can be implemented using digital controllers. Such controllers include adaptive
prefiltering following an anti-aliasing filter in data acquisition. They also use a post-
filtering stage to smoothen the control output to avoid exciting hidden resonance espe-
cially in robotic systems. These features cannot be implemented in analog systems. For
the examples of fast digital adaptive control, using prefiltering and postfiltering with
sampling time of 0.5 ms, refer to Astrom et al. (1994) and Astrom and Kanniah (1993).

Warning messages, alarms, and other safety systems along with a user-friendly
interface can be implemented in a digital system. The instrumentation technologies
are also moving fast into digital types. It is difficult to make use of digital informa-
tion obtained from such devices in an analog control system. Recently, hierarchical
and distributed control systems are employed in robotics as well as in many other
complex systems. Obviously, such controllers can be implemented within the frame-
work of a digital control system easily.

Instrumentation

Reference

Sampling

+

–

ADC
Actuator

and
plant

DAC Output

Digital
controller

Sample/
hold Computer Latch

Zero order hold

FIGURE 9.4  General outline of a direct digital control system.

221Digital Control Fundamentals and Controller Design

9.3  SIGNAL REPRESENTATION IN DIGITAL SYSTEMS

When analog plants are controlled digitally, they are called sampled data systems.
For this, we need to sample the analog signals and represent them digitally. Plants
also need to be represented in discrete domain. In this section, we will consider the
representation of sampled signals and the analog plants, in a computer-controlled
environment.

9.3.1 S ampling Process

A standard representation of a sampler switch is shown in Figure 9.5a. The switch
closes every T seconds to sample input signal. Input signal is represented by the con-
tinuous function f(t) as shown in Figure 9.5b. The outputs of the sampler are shown
by a train of impulses f*(t) in Figure 9.5c. Sampling is equivalent to multiplying the
signal by an infinite sequence of impulses spaced at constant intervals.

T

f *(t)

f *(t)

f (t)

f (t)

(a)

(b)

(c)

0 T 2T 3T 4T 5T 6T

0 T 2T 3T 4T 5T 6T

t

t

Sampled signalContinuous time signal

FIGURE 9.5  (a) Sampler switch, (b) continuous signal f(t), (c) impulse approximation of
switch output f*(t).

222 Practical Robot Design

Summing up the unit impulse train, we can represent them mathematically as

	

d dT

k

t t kT() ()= −
=−∞

∞

∑
	

(9.1)

We multiply f(t) using the sequence of impulses δT(t) and define it as f*(t) which
represents the sampled signal. We can now write

	

f t f t t f t t kT dtT

k

* () () () () ()= = −
=−∞

∞

∑d d

	 f t f t f T t T f T t T* () () () () () () ()= + − + − +0 2 2d d d �

	

f t f nT t nT
n

* () () ()= −
=

∞

∑ d
0 	

(9.2)

Figure 9.6 illustrates a part of the above function.
In Figure 9.6, δ(t) is a unit impulse at t = 0 and δ(t − nT) is a unit impulse at t = nT.

Since

	
L t nT e nTsd()−{ } = −

	
L f nT t nT f nT e nTs() () ()d −{ } = −

	 (9.3)

then taking the Laplace transform of Equation 9.2 and using Equation 9.3, we can
obtain the Laplace transform of the sampled signal as

	

F s L f t L f t f T t T f T t T

f f

* *() [()] () () () () () ()

() (

= = + − + − +{ }
= +

0

0

d d d �

TT e f T eTs Ts) ()− −+ +2 2 �

t

f (t)

0

f (T)δ(t – T)
f (0)δ(t)

T

FIGURE 9.6  Sampled signal as weighted impulses.

223Digital Control Fundamentals and Controller Design

	

F s f nT e
n

nTs* () ()=
=

∞
−∑

0 	
(9.4)

A major question in digital systems is that how often should we sample. It depends
upon the purpose of sampling and we will elaborate below.

9.3.1.1  Sampling for Reconstruction
Sampling theorem states that a sampled continuous signal may be reconstructed
from the samples if and only if the sampling frequency is more than twice the high-
est-frequency content of the signal. Otherwise, the high-frequency component of the
signal may pass as a low-frequency signal in the output.

9.3.1.2  Sampling for the Purpose of Control
The sampling frequency described above is not sufficient for control purposes. The
sampling frequency should be more than 12 times the closed-loop system bandwidth.
That leads to the conclusion that the sampling interval should be less than half of
the smallest time constant of the closed-loop system. We have to bear in mind that
the closed-loop system bandwidth will be much higher than the open-loop system
bandwidth depending upon the gain of the controller.

9.3.2  Z-Transform of Signals

The Z-transform is an important mathematical tool for understanding and analyzing
discrete time systems. Similar to the Laplace transform analysis, which is used for
analyzing continuous time systems, we need another tool to analyze digital systems.
Z-transform analysis serves that purpose. We have three possible scenarios:

	 1.	Taking the Z-transform of continuous signals if they are sampled at regular
intervals and represent them in the Z-domain. Then the continuous signal
of the system output is recoverable from samples, if the sampling interval
had been chosen appropriately.

	 2.	 If only signal description is available as sample values in terms of sample
count k, they can still be represented in the Z-domain. But in this case,
sampling time is transparent since it is not explicitly stated. This situation
happens when one system receives data from another system in digital form
only and the receiving system has to process the data further. The receiving
system can be a filter or control computer. For design purposes, we need to
have the Z-transform of such signals as well.

	 3.	Z-domain representation can be obtained from s-domain transfer func-
tions, by introducing a ZOH block as shown in Figure 9.4. We will deal
with such a case in a later section. For now, we will discuss the first two
cases only.

224 Practical Robot Design

9.3.2.1  Z-Transform of Continuous Signals
Equation 9.4 gives the generic description of the Laplace transform of the sampled
signal.

The relationship between the Z-transform and the Laplace transform is defined as

	 z esT= 	 (9.5)

Substituting Equation 9.5 in Equation 9.4, it can be rewritten as

	

F s f nT z F zn

n

* () () ()= =−

=

∞

∑
0 	

(9.6)

Equation 9.6 defines the Z-transform of the sampled signal f*(t). We note that the
Laplace transform of the sampled signal is nothing but the Z-transform of that sig-
nal. This concept is the foundation of sampled system analysis. Now, let us see some
example signals to get familiarized with the idea.

EXAMPLE 9.1

A unit impulse function is given in Equation 9.7. It has a unity value at k = 0 and
zero at all other instants of sampling.

	

f kT k

k

() = ≠
= =

0 0

1 0

for

for 	
(9.7)

The graphical representation of an impulse is shown in Figure 9.7.
Applying Equation 9.4 to the signal shown in Figure 9.7

	

F s L f t f f T e f T e

F z

Ts Ts* *() [()] () () ()

()

= = + + +
=

− −0 2

1

2 �

	 (9.8)

Hence, we find that the Z-transform of a unit impulse is just 1.

0 1 2 3
k

f (kT)

1

FIGURE 9.7  A unit impulse function.

225Digital Control Fundamentals and Controller Design

EXAMPLE 9.2

A unit step function is defined as

	

f kT k

k

() = <
= ≥

0 0

1 0

for

for 	
(9.9)

Figure 9.8 shows the sampled unit step function.
By using Equation 9.6 and following the definition below

	

F z f nT z f z f T z f T zn

n

() () () () ()= = + + +−

=

∞
− −∑

0

0 1 20 2 �

the Z-transform of unit step function becomes

	
F z z z

z
z

() = + + + =
−

− −1
1

1 2 �
	

(9.10)

EXAMPLE 9.3

Find the Z-transform of the sampled signal

	 f(t) = t  for  t ≥ 0	 (9.11)

Using the definition given in Equation 9.6, we can write

	

Z f t F z kTz Tz Tz Tz
T z

z
k

k

[()] ()
()

= = = + + + =
−

− − − −

=

∞

∑ 1 2 3
2

0

2 3
1

�

	

(9.12)

EXAMPLE 9.4

To further illustrate the preceding concepts, consider the continuous input

	 f(t) = e−at	 (9.13)

f (kT)

1

0 1 2 3 4 5 6
k

Train of pulse

FIGURE 9.8  A unit step function.

226 Practical Robot Design

The Z-transform of the sampled signal by definition is

	

F z e z e z e znT n

n

T T() = = + + +− −

=

∞
− − − −∑ a a a

0

1 2 21 �

	

(9.14)

	

F z e z
z

z e
naT

n

n
aT() = =

−
−

=

∞
−

−∑
0 	

(9.15)

EXAMPLE 9.5

Find the Z-transform of the time function

	 f(t) = 1 − e−at,  for  t ≥ 0	 (9.16)

Using the definition in Equation 9.6

	 F z e z e zT T() () ()= + − + − +− − − −0 1 11 2 2a a � 	 (9.17)

Adding and subtracting a 1

	 F z z z e z e z e zaT aT aT() [] []= + + + − + + + +− − − − − − − −1 11 2 1 2 2 3 3� � 	 (9.18)

	

F z z e z
z

z
z

z e
e z

z z
n

n

naT

n

n
aT

aT

()
()

()(
= − =

−
−

−
= −

− −
−

=

∞
−

=

∞
−

−

−

∑ ∑
0 0

1
1

1 ee aT−)
	

(9.19)

The above derivations illustrate the methods used for calculating Z-transforms.
Normally, Z-transform tables provide these transform values for sampled signals in
terms of sampling time.

9.3.2.2  Z-Transform of Signals Represented Only as Sample Count, k
In all the previous five examples, we took continuous signals and sampled them at
constant interval, say, T seconds. Then, term T appeared explicitly in the transform
equations. Under some circumstances, the signal values are provided only at sam-
ples as a function of sample count, k, without indicating the sampling time explic-
itly. Then in that case, the sampling time is not known, and it cannot appear in the
Z-transform. This kind of insight about the sampling time is not relevant, but we still
need the Z-transform representation to analyze the overall system. To get a better
picture, let us consider some examples here.

EXAMPLE 9.6

Find the Z-transform of the sampled signal

	 f(k) = k  for  k ≥ 0	 (9.20)

227Digital Control Fundamentals and Controller Design

Let us invoke the definition in Equation 9.6. By dropping T from it, we can write

	

Z f k F z kz z z z
z

z
k

k

[()] ()
()

= = = + + + =
−

− − − −

=

∞

∑ 1 2 3
2

0

2 3
1

�

	

(9.21)

On comparing Equation 9.21 with Equation 9.12, we note that T is not explicit
in Equation 9.21.

EXAMPLE 9.7

Find the Z-transform of the sampled signal

	 f(k) = ak,  for  k ≥ 0	 (9.22)

Let us invoke the definition in Equation 9.6. By dropping T from it, we can write

	

Z f k F z a z az a z a zk k

k

[()] ()= = = + + + +− − − −

=

∞

∑ 1 1 2 2 3 3

0

�

This is being a geometric progression, we can write

	
F z

az
z

z a
() =

−
=

−−
1

1 1
	

(9.23)

Alternatively, let us choose an arbitrary sampling time T and a constant α such
that

	 a = e−αT	 (9.24)

then

	 f(k) = ak  for  k ≥ 0

can be written as

	

f kT e k

e k

T k

kT

() ()= ≥

= ≥

−

−

a

a

for

for

0

0 	 (9.25)

This is similar to signal e−αt sampled at arbitrary intervals of T seconds.
Since

	
Z e

z
z e

t
T[]−

−=
−

a
a

228 Practical Robot Design

we can conclude

	
Z e Z a

z
z e

z
z a

kT k
T[] []−

−= =
−

=
−

a
a

	
(9.26)

EXAMPLE 9.8

Find the Z-transform of the sampled signal

	 f(k) = 1 − ak  for  k ≥ 0	 (9.27)

Let us choose as before an arbitrary sampling time T and a constant α such that

	 a = e−αT	 (9.28)

then f(k) = 1 − ak for k ≥ 0 can be written as

	

f kT e k

e k

T k

kT

() ()= − ≥

= − ≥

−

−

1 0

1 0

a

a

for

for 	 (9.29)

This is similar to signal 1 − e−αt sampled at arbitrary intervals of T seconds.
Since

	
Z e

z
z e

t
T[]−

−=
−

a
a

	
(9.30)

we can conclude

	
Z e Z a

z
z

z
z e

z
z

z
z a

a z
z z a

kT k
T[] []

()
()()

1 1
1 1

1
1

− = − =
−

−
−

=
−

−
−

= −
− −

−
−

a
a

		
� (9.31)

9.4  PLANT REPRESENTATION IN DIGITAL SYSTEMS

So far we have seen how the sampled signals and signals that are represented in
terms of sample count can be written in a discrete domain. We note that in Figure 9.4
there is a latch and a DAC just before the process under digital control that operates
as ZOH. The control computer uses a program and produces appropriate values as
manipulated variables. They are nothing more than numbers. These numbers have to
be used to activate power control devices in robot systems. As we have seen earlier,
there are two processes involved. One process is to hold the numerical value until it
is changed, and the other is to convert it to analog form.

We will ignore the conversion process during our analysis. Actually, it does not
affect the basic understanding of the process of reconstruction and implementation.

229Digital Control Fundamentals and Controller Design

In practice, the holding process is done by a digital latch and the overall system as
illustrated in Figure 9.4. The controller output signal m(t) is shown in Figure 9.9.

Our aim is to find a mathematical representation for the ZOH shown in Figure 9.9
starting from computer output f*(t) to the ZOH output of the plant m(t). This repre-
sentation can be used to calculate the overall system transfer function. For this, we
need to consider the transfer function of ZOH first.

9.4.1 T ransfer Function of ZOH

The ZOH is very important to understand and be accounted for when the physical
system is being controlled from the computer. We will derive a transfer function for
the ZOH. Referring to Figure 9.9, the reconstructed output can be written as

	

m t f u t u t T f T u t T u t T

f T u t T u

() () () () () () ()

() ()

= − −[] + − − −[]
+ − −

0 2

2 2 (()t T−[] +3 �
	 (9.32)

The Laplace transform of Equation 9.32 is

	
M s f

e
s

f T
e e

s
f T

e e
s

Ts Ts Ts Ts Ts

() () () ()= − + − + − +
− − − − −

0
1

2
2 2 3

�

	
M s

e
s

f f T e f T e
Ts

Ts Ts() () () ()= − + + + 
−

− −1
0 2 2 �

	
M s

e
s

F s
Ts

() ()*= − −1

	
(9.33)

Hence, the Laplace transform for a ZOH is

	

1 1 1− = − =
− −e

s
z

s
z e

Ts
Tssince

	
(9.34)

T
f*(t)

ZOH
m(t)

m(t)

0 T 2T 3T 4T 5T 6T
t

FIGURE 9.9  Signal reconstruction for control manipulation.

230 Practical Robot Design

9.4.2  Z-Transform of Plant Fed from ZOH

Combining the above ideas, the discrete domain transfer function of a plant can be
written as

	
G z z Z

G s
s

() ()
()= − 








−1 1

	
(9.35)

EXAMPLE 9.9

Let us find the Z-transform of the following computer-controlled plant: K/(s + a). It
is a first-order plant fed through a ZOH from a computer as shown in Figure 9.10.
Hence, it becomes necessary to find the Z-transform representation of this plant.

The discrete transfer function can be obtained as

	
G z

C z
M z

z Z
K

s s a
()

()
()

()
()

= = −
+







−1 1

	
(9.36)

Referring to the standard Z-transform tables found in the control literature (see
for instance Ogata 1995), we can write the Z-transform as

	
G z

C z
M z

z
Kz e

z z e

aT

aT()
()
()

()
()()

= = − −
− −











−
−

−1
1
1

1

	
(9.37)

Hence

	
G z

C z
M z

K e
z e

aT

aT()
()
()

()
()

= = −
−

−

−
1

	
(9.38)

Then, the Z-transform of the output is

	 C(z) = G(z)M(z)	 (9.39)

9.4.3 T ustin’s Approximation

At times, the evaluation of the Z-transform becomes a lengthy process. It is possible to
use some approximate methods to obtain Z-domain representation of plants and still
achieve reasonable accuracy of results in discrete domain analysis and simulations.
Tustin’s formula is one of such methods available and provides a good approximation
of the Z-transform (Astrom and Wittenmark 1990). Tustin’s formula is given as

M(t)
ZOH

M(z) C(z)

(s + a)
K

FIGURE 9.10  Manipulated variable acting on the plant through ZOH.

231Digital Control Fundamentals and Controller Design

	
s

T
z
z T

z
z

→ −
+

= −
+

−

−
2 1

1
2 1

1

1

1
	

(9.40)

It simply implies that the discrete domain approximation can be obtained by
replacing s terms by the above function in Equation 9.40 in the s-domain transfer
function. A ZOH is built into this approximation. Therefore, there is no need to
include a separate ZOH.

EXAMPLE 9.10

Let us rework Example 9.9 using Tustin’s approximation. All we need to do is sub-
stitute Equation 9.40 into the system transfer function.

	

Z
K

s a
K

T
z
z

a

KT z
z aTz aT

K z
z a+







= −
+

+
= +

− + +
= +

Tustin
2 1

1

1
2 2

1() ()
(TT aT+ + −2 2) ()

		
		 (9.41)

We note that Equations 9.38 and 9.41 are different. However, if we compute
the responses, we will see that they yield the same results for any arbitrary input
function.

9.5  CLOSED-LOOP SYSTEM TRANSFER FUNCTIONS

We have learned to compute the overall transfer functions of digital sampled data
systems. Since there are rarely any open-loop control systems, we need to understand
calculating closed-loop transfer functions. Even though fundamentally there is no
major difference between analog and digital systems in this aspect, there are some
minor differences depending upon how and at which points the sampling is done.
We are deriving some useful formulas similar to what we saw in Chapter 8. Let us
consider a typical closed-loop control system and see how the closed-loop transfer
function can be derived.

In Figure 9.11, Gc(z) is the controller implemented by a digital system such as a
computer. There is an equivalent controller transfer function as Gc(s) in frequency
domain. We prefer that the controller be in Z-domain, since such a controller exists

H(s)

R(s)
+

–

Gc(z)
Y(z)

Gp(s)

Yfb(s)

FIGURE 9.11  Block diagram of a closed-loop computer-controlled system.

232 Practical Robot Design

only in the discrete domain. Furthermore, the plant transfer function Gp(s) includes
a ZOH. Also note that the output measurement, broadly called instrumentation, hap-
pens in the continuous domain through the feedback transfer function H(s). In some
cases, instrumentation can be digital. We will see such a scenario later. In fact in
real systems, we can replace one sampler before Gc(z) with two samplers, one on the
path of R(s) and another on the path of Yfb(s) without changing anything. After all,
we are aware that the reference R(s) may be even generated by the computer itself or
in response to an external command link, say, from another computer. Let us derive
the closed-loop transfer function for this system. However, before we proceed, it is
important to note that

	 Z[Gp(s)H(s)] ≠ Gp(z)H(z)

The left-hand side of the equation implies “multiply the transfer functions
and find the Z-transform of the product” and the right-hand side means “find the
Z-transforms individually and then multiply.” These two are not the same. The typi-
cal notation used for Z[Gp(s)H(s)] is GpH(z).

Now, referring to Figure 9.11

	

e R Y

e z R z G H z m z

R z G z G H z e z

fb

p

c p

= −

= −

= −

() () () ()

() () () ()
	

(9.42)

then we have

	

[() ()] () ()

()
()
() ()

1

1

+ =

= +

G H z G z e z R z

e z
R z

G H z G z

p c

p c 	

(9.43)

We see that

	 Y(z) = Gc(z)Gp(z)e(z)	 (9.44)

Substituting for e(z), we get

	

Y z
R z

G z G z

G z G H z
c p

c p

()
()

() ()

() ()
= +1 	

(9.45)

9.5.1 S ystems with Digital Instrumentation

What happens if the instrumentation is done digitally by taking in the sampled signal,
Y(z)? We can redraw the block diagram by shifting the take off point for feedback path
after the sampler as shown in Figure 9.12. We may have an awkward situation where
the error detector deals with analog R(s) and sampled feedback from H(z). To avoid

233Digital Control Fundamentals and Controller Design

this, we replace one sampler after the subtraction by two samplers before it. Shifting
the samplers does not make any difference in the analysis, except that it indicates
the control computer now does the subtraction of feedback from the reference. The
new transfer function can be derived by changing the steps of analog instrumentation
described earlier. We have rewritten H(s) as H(z) since it represents digital instru-
mentation. The difference finder is a part of the digital controller program, which is
marked by dotted lines in Figure 9.12. We can now write the error equation as

	

e R Y

e z R z G z H z m z

f b

p

= −

= −() () () () ()

From Figure 9.12, m(z) = Gc(z)e(z); hence

	 e(z) = R(z) − Gc(z)Gp(z)H(z)e(z)	 (9.46)

We note that the term GpH(z) in Equation 9.42 has been replaced by Gp(z)H(z) in
Equation 9.46, since there is a sampler between Y(s) and Y(z) as shown in Figure 9.12.

Then, Equation 9.43 gets modified as

	

[() () ()] () ()

()
()

[() () ()]

1

1

+ =

= +

G z H z G z e z R z

e z
R z

G z H z G z

p c

p c 	

(9.47)

Following the same logic, we can proceed

	
Y z G z G z e zc p() () () ()=

	 (9.48)

Substituting for e(z) from Equation 9.47, we get

	

Y z
R z

G z G z

G z G z H z
c p

c p

()
()

() ()

() () ()
= +1 	

(9.49)

H(z)

R(s) +

–

Gc(z) Y(z)Gp(s)

Yfb(s)

Y(s)M(z)

FIGURE 9.12  System with digital instrumentation.

234 Practical Robot Design

In complex systems, instrumentation may be happening in more than one point,
making the block diagram much more complex than what we discussed in Figure
9.12. This may result in more complex interconnections.

9.6 � RESPONSE OF DISCRETE TIME SYSTEMS, INVERSE
Z-TRANSFORMS

We have so far presented the techniques to obtain the pulse transfer functions of sig-
nals and systems. If we know the pulse transfer functions of control systems, then it
is easy to obtain pulse transfer functions of the output. Inverse Z-transform provides
methods of finding the output as sequence of numbers in sampled instances, say, y(k)
from Y(z). There are a few methods of obtaining such time responses. We will pres-
ent two techniques and give some examples to provide insight into the techniques.
One method is by splitting the signal into partial fractions and using Z-transform
tables. The other method uses the “difference equation” concept.

9.6.1  Partial Fraction Technique

EXAMPLE 9.11

Assume that Z-transform of a signal is given by

	
C z

z
z z

()
()()

=
− −1 2 	

(9.50)

We would like to determine the inverse Z-transform using partial fractions and
apply the transform tables to obtain signal description in terms of sample count k.

Partial faction expansion of Equation 9.50 yields

	
C z

z
z z

z
z

z
z

()
()() () ()

=
− −

= −
−

+
−1 2 1 2 	

(9.51)

The inverse Z-transform using the standard Z-transform table found in the lit-
erature is

	 x(k) = −1 + (2)k  for  k ≥ 0	 (9.52)

9.6.2 D ifference Equation Techniques

Another example shows how time domain solution can be obtained by difference
equations.

EXAMPLE 9.12

The transfer function of a closed-loop system is given below, and we would like to
compute the solution in terms of sample count.

	

C z
R z

z z
z z

()
()

= + +
+ +

2

2

2 1
10 8 1 	

(9.53)

235Digital Control Fundamentals and Controller Design

We can cross multiply Equation 9.56 and get the difference equation from
there:

	 C z z z z z R z()() () ()10 8 1 2 12 2+ + = + + 	 (9.54)

	 C z z z z z R z()() () ()10 8 1 21 2 1 2+ + = + +− − − −

	 10 8 21 2 1 2C z z C z z C z R z z R z z R z() () () () () ()= − − + + +− − − −
	 (9.55)

We now take the inverse Z-transform using time shift theorem

	 c(k) = −0.8c(k − 1) − 0.1c(k − 2) + 0.1r(k) + 0.2r(k − 1) + 0.1r(k − 2)	 (9.56)

We know that the input r(k) is one for all k ≥ 0 and let us assume that output
c(k) = 0 for k < 0, which implies that c(−1) and c(−2) are zeros.

Now, we are ready to compute the c(k) by substituting values for k = 0,...,n in
Equation 9.56

	 c(0) = −0.8c(−1) − 0.1c(−2) + 0.1r(0) + 0.2r(−1) + 0.1r(−2) = 0.1	 (9.57)

	

c c c r r r() . () . () . () . () . ()

. .

1 0 8 0 0 1 1 0 1 1 0 2 0 0 1 1

0 8 0 1 0

= − − − + + + −
= − × +1 0 2 0 22+ = 	

(9.58)

	

c c c r r r() . () . () . () . () . ()

. . .

2 0 8 1 0 1 0 0 1 2 0 2 1 0 1 0

0 8 0 22 0

= − − + + +
= − × − 11 0 1 0 1 0 2 0 1 0 214× + + + =. 	

(9.59)

This calculation continues for all the values of k.

9.6.3 T ime Domain Solution by MATLAB®

It is possible to obtain time responses using MATLAB simulation for digital systems
(Cavallo et al. 1996; Ogata 1994). If we compute the closed-loop transfer function,
then we can use the “filter” command to obtain the response. We will see a few dif-
ferent MATLAB techniques to achieve the same objective for the sake of diversity.

EXAMPLE 9.13

Consider an open-loop plant with transfer function G(s) = (2α/s + α) controlled in
a closed loop digitally with ZOH. It will have an open-loop transfer function of

	
G z

a
z a

()
()= −

−
21

	
(9.60)

where a is the system constant dependent on sampling time and defined as

	 a = e−αT	 (9.61)

236 Practical Robot Design

Then the closed-loop transfer function of

	

w
w

()
()

()
()

z

R z
a

z a
= −

− −
21

3 2
	

(9.62)

We would like to compute the system response for a step input, using the
MATLAB command “dstep” assuming that α is 15 and the sampling time is 0.01 s.
The code and the response are shown in Figures 9.13 and 9.14, respectively. Note
that in the code, the number of samples selected is 50, which correspond to dura-
tion of 0.5 s.

The response is shown in Figure 9.14.

FIGURE 9.13  MATLAB program to calculate output sequence (sample time T = 0.01 s).

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Unit step response

k

y(
k)

FIGURE 9.14  Unit step response using “dstep” command for 0.5 s.

237Digital Control Fundamentals and Controller Design

EXAMPLE 9.14

In this example, we intend to get the response for Example 9.13 using simula-
tion. We needed to compute the closed-loop transfer function in order to use the
“dstep” command. Using the MATLAB Simulink modeling tool, the response can
be plotted without having to compute the closed-loop transfer function. This is
quite straightforward, using a Simulink model as shown in Figure 9.15.

A sample program is listed in Figure 9.16. The response obtained is shown in
Figure 9.17, which is the same as Figure 9.14.

EXAMPLE 9.15

It is possible to simulate a sampled system directly using MATLAB. Consider the
continuous system

	
G s

s s
() =

+ +
2

7 102
	

(9.63)

We have created a simulation model as shown in Figure 9.18. The MATLAB
code to drive it is given in Figure 9.19, and the response is given in Figure 9.20.

9.7  TYPICAL CONTROLLER SOFTWARE IMPLEMENTATION

Controller transfer functions are written as difference equations to implement them
in microprocessors. The program running on the processor performs the calcula-
tions in a sequence. We will illustrate how this is done by using a PID controller as
an example. Such computer implementations of controllers are usually done using

Step Discrete
transfer function

2*(1 – a)+ 1– z – a Out 1

FIGURE 9.15  Simulink model for simulating a discrete system.

FIGURE 9.16  MATLAB code for closed-loop simulation of a discrete system.

238 Practical Robot Design

2
Out 2

1
Out 1

Zero-order
hold

2

s2 + 7s + 10
Transfer fcnStep

FIGURE 9.18  Simulation model of a system with ZOH.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Unit step response

k

y(
k)

FIGURE 9.17  Response of discrete system simulation for 0.5 s.

FIGURE 9.19  MATLAB code for the simulation.

239Digital Control Fundamentals and Controller Design

approximations. A PID controller has three terms, namely, proportional, derivative,
and integral. In time domain, it is written as

	

m t K e
T

edt T
de
dt

m t K e K e dt K
de
dt

p
i

d

p i d

()

()

= + +







= + ⋅ +

∫

∫

1

or

	
(9.64)

where Kp is the proportional gain, Ti is the integral time, and Td is the derivative time.
It can be seen that the first term is proportional control, the second term is the

integral part, and the third term is the derivative part. In general, the proportional
part provides the basic control, the integral part tackles the steady-state error, and the
derivative part speeds up the response.

Ki and Kd are defined appropriately as

	
K

K

Ti
p

i

=
	

(9.65)

	 Kd = KpTd	 (9.66)

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2
Sampled data simulation

O
ut

pu
t

0 1 2 3 4 5 6 7 8 9 10
0.8

0.85

0.9

0.95

1

Co
nt

ro
l v

ar
ia

bl
e

Time, seconds (ZOH hold time T = 0.25 s)

FIGURE 9.20  Response of the sampled data system.

240 Practical Robot Design

9.7.1 I ntegral Calculations

Let us assume that the values of sampled errors are denoted as e(k), e(k − 1), e(k − 2),
and so on and the manipulated variables calculated by the controller are denoted as
m(k), m(k − 1), m(k − 2), and so on. The k and k − 1 indicate the current and the last
sampling instant, respectively. Let the control interval be T seconds, which should
be chosen after considering the closed-loop system time constants. At any sampling
instant k, the integral of error can be approximated as

	
ei k ei k e k e k

T
() () [() ()]= − + + −1 1

2 	
(9.67)

where ei(k − 1) is the last integral of system error.

9.7.2 D erivative Calculations

The current value of the derivative of error is approximated as

	
e k

e k e k
Td ()

() ()= − − 1

	
(9.68)

Finally, the controller output can be computed as

	
m k K e k K e k K e kp i i d d() () () ()= × + × + ×

	 (9.69)

9.7.3 I mplementation of a Digital Controller

A control system in which a digital processor controls a plant by sampling output
data, calculating the manipulated variable, and outputting it to the plant in real time
is called direct digital control (DDC). The term “real time” is used here because
for every sample, the processor must respond before the next sample is taken. An
important requirement of DDC is that the data acquisition, control computation, and
outputting of control signal to the plant through ZOH should be performed at regu-
lar intervals. There are two ways of implementing constant sampling and control
intervals. One method uses computation time to achieve the constant and control
interval. A second method uses interrupts to achieve this. Let us consider both types
of implementation in detail.

Loop time-based sampling and control: The controller performs calculations and
it takes certain time duration. Most of the computations take fixed duration. After
the computation of control output, it must be implemented and then the processor
goes into a fixed time delay loop. By utilizing this method, we can create a pseu-
dosampling period effect. It is desirable to select a processor which can perform all
the calculations within a small fraction of sampling time, and the remaining time is
decided by the delay loop.

Timer-based sampling and control: It is possible to use CPU interrupt as a time
keeper to maintain constant sampling intervals. Within the timer interrupt service

241Digital Control Fundamentals and Controller Design

routine, an index is incremented and it can be used to decide when the next sampling
and control is to be done. Furthermore, some data sampling/filtering may also be
performed within the timer interrupt routines. After the program starts, the main loop
performs instrumentation and control functions. As an example, let us assume that
this process takes 2 ms and processor outputs the control signal. Let us also assume
that the sampling interval has been fixed as 12 ms, and timer interrupts occur every
1 ms. As the main calculations are being executed at the main loop, two interrupts
would have occurred within those 2 ms of computation, since timer interrupt occurs
every 1 ms. This number is being counted at the interrupt service routine. After out-
putting the control signal, the processor waits in a loop, checking the counted inter-
rupts. When the counted interrupts reach 12, the processor resets the interrupt count
to zero and loops back. Then, in the next step, samples are taken, control outputs are
computed and this cycle continues.

It is important to realize that in the above procedure, immediately after perform-
ing instrumentation and control computations, the control signal should be put to the
output port. If the program waits for the end of the sampling time to do this, then
we would be introducing one sampling time delay. This delay in fact was not part
of the plant model, and hence the control may not work satisfactorily. Considering
the above example, if the processor can take <1 or 2 ms, it is a small fraction of the
total sampling time, and there is no delay introduced. The processor still can wait
for the 12th interrupt before looping back. This is not a serious problem as modern
processors are very fast.

9.8  DISCRETE STATE SPACE SYSTEMS

We presented some ideas on using state space techniques earlier in Chapter 8. We
have stated that state space representation has many advantages over transfer func-
tion representation since the former is more suitable for multi-input/multi-output
(MIMO) systems. Robots are typically MIMO systems. In modern controller imple-
mentations, the trend is not only to use digital controllers, but more and more such
controllers are based on state feedback. Intuitively, this leads to the point that we
ought to implement digital state space-based controllers. For this purpose, let us first
learn a few techniques to derive discrete state space equations.

9.8.1 D iscrete State Space System from Discrete Transfer Functions

There are a few ways of deriving discrete state space equations from discrete transfer
functions, and they result in the following types of state models:

	 1.	Controllable cannonical form
	 2.	Observable canonical form
	 3.	Diagonal canonical forms

They differ in the way the states are chosen and the specific purpose of the model.
Since pulse transfer functions have one input and one output, in higher-order sys-
tems states need to be estimated. In the above methods, efforts needed to obtain state

242 Practical Robot Design

variables (for feedback) differ from each other. Regardless of the method used, the
bottom line is that during the design process we need to be sure that the state esti-
mation is possible or that states are readily available for measurement. Based on our
experience, complicated calculation for state estimation is time consuming and there-
fore such calculation should be avoided wherever possible. Furthermore, in robotics,
we are more interested in direct derivation of discrete state equations from continu-
ous state models such that either states are directly measurable or they can be easily
estimated. Here, MATLAB also can provide some useful tools in the design process.

9.8.2 D iscrete State Space Model from Continuous State Space Model

Once we derive continuous time state space models, it is relatively straightforward to
derive the discrete state space model from there. There are various methods for this,
and we will discuss them in the following sections.

9.8.2.1  Analytical Method
Let us start with the continuous state space model

	

X t AX t Bu t

y t Cx t Du t

•
= +
= +

() () ()

() () () 	

(9.70)

If the model is sampled regularly at intervals of T seconds and u(t) is fed through
ZOH, we can write

	 u(t) = u(kT)  for kT < t < (k + 1)T	 (9.71)

This means that the input is taken in at time t = kT and held constant by the latch
(and converted to analog form by the DAC for analog systems), until t = (k + 1)T,
when next value of manipulated variable u is supplied to the latch by the digital
controller.

Usual discrete time state space representation is

	 X k G X k Hu k() () ()+ = +1 	 (9.72)

To make things clear, we will rewrite the required solution as

	 X k T G T X kT H T u kT(()) () () () ()+ = +1 	 (9.73)

Hence, to obtain the discrete time state representation from the continuous time
state representation, we need to compute the matrices G(T) and H(T) in Equation
9.73. The solutions are available in the control literature (see, for instance, Astrom
and Wittenmark 1990; Nagrath and Gopal 1996; Ogata 1995). The results are given
below as

243Digital Control Fundamentals and Controller Design

	

G T e H T e dt BAT At

T

() ()= =











∫and
0 	

(9.74)

where

	
e L sI AAt = −[]{ }− −1 1

	
(9.75)

Furthermore, if A is nonsingular

	 G(T) = eAT

	

H T e dt B A e I B A G T I BAt

T

AT() () [()]=











= − = −∫ − −

0

1 1

	

(9.76)

Then, we can obtain the discrete time state representation as in Equation 9.73.
The output can be written as

	 Y kT CX kT Du kT() () ()= + 	 (9.77)

From Equation 9.71, we can see that ZOH is built into this model. At the sampling
instants, the model output is the same as the plant output. We have simply integrated
the continuous time state model over a sampling period and gotten the discrete state
model. Also, it is interesting to note that as T approaches zero, G(T) approaches to
become a unity matrix.

EXAMPLE 9.16

Let us derive the discrete time state model for the plant given by

	
G s

Y s
U s s s

()
()
()

= =
+ +

1
3 22

	
(9.78)

for a sample time of 1 s. Continuous time state model can be written as

	

�
�
x

x

x

x
u

y
x

x

1

2

1

2

1

2

0 1

2 3

0

1

1 0









 =

− −


















 +











=



[]






	
(9.79)

244 Practical Robot Design

Using Equation 9.74, we need to evaluate G(T). Using the inverse Laplace trans-
form method

	

eAt L sI A L
s

s
L

s
s= −[]{ } =

−
+ +






















=

+
+− − −

−
−1 1 1

1

1
21

2 3

3
3ss s s

s s
s

s s

L
s s

+ + +
−

+ + + +



















=

−
+

+
+−

2
1
3 2

2
3 2 3 2

1
2

2
1

2

2 2

1 () ()) () ()

() () () (







−
+

+
+







+
+ −

+




 +

+ −

1
2

1
1

2
2

2
1

2
2

1

s s

s s s ss +
























1)
		

		

(9.80)

we obtain

	

eAt e e e e

e e e e

t t t t

t t t t
=

− +() − +()
+ −() + −()












− − − −

− − − −

2 2

2 2

2

2 2 2



	

(9.81)

This leads to

	

G T eAT e e e e

e e e e

T T T T

T T T T
() = =

− +() − +()
+ −() + −()

 − − − −

− − − −

2 2

2 2

2

2 2 2











=

=
− −











T 1
0 6004 0 2325

0 4651 0 0972

. .

. .
	

(9.82)

To compute H(T), we use Equation 9.74

	

H T eAtdt B
e e e e

e e

T t t t t

t
() =












=

− +() − +()
+ −∫

− − − −

− −
0

2 2

2

2

2 2 tt t t

T

e e
dt B

() + −()

























− −∫ 2 2

0
	

(9.83)

After integrating and using T = 1

	

H T

e e e e

e e e

t t t t

t t
() =

−






−






− +






−

− − − −

− −

2 2

2

2
2

1 2 1

1
2

1

−− −

+


























=
− − −[] −

2

1 1
0

1

0 6681 1 5 0 30

t te
B

(.) (.) (. 002 0 5

0 6004 1 0 2325 0

0

1
) (.)

(.) () (.) ()

− −[]
−[] −[]























=
((.) (.)

(.) (.)

.

.

0 8319 0 1998

0 3996 0 2325

0

1

0 1998

0 2−

















 =

3325










	
(9.84)

245Digital Control Fundamentals and Controller Design

Let us try out the other form given in Equation 9.76 here:

	

H T A G T I B() [()]
. .

. .
= − =

− −








 − −

−
−

1

1
0 1

2 3

0 6004 0 2325

0 4651 0 0972








 −

































=
− −









−

1 0

0 1

0

1

1 5 0 5

1 0

0 39. . . 996 0 2325

0 4651 1 0972

0

1

0 1998

0 2325

.

. .

.

.− −

















 =











		
		 (9.85)

The result agrees with the earlier result. Hence, the model is

	

x k

x k

x k1

2

11

1

0 6004 0 2325

0 4651 0 0972

()

()

. .

. .

()+
+









 =

− −








 xx k

u k

y k
x k

x k

2

1

2

0 1998

0 2325

1 0

()

.

.
()

() []
()

()









 +











=










	
(9.86)

9.8.2.2  MATLAB Approach
We can use MATLAB for obtaining discrete state space model from the continu-
ous state space model. MATLAB provides the “c2d(A,B,T)” command where nota-
tions are standard. We will attempt the solution for Example 9.16 using MATLAB.
A program segment for this purpose and the result obtained are shown in Figure
9.21. We can see that discrete time state equations can be obtained analytically
from continuous time state equations, as well as by using software tools such as
MATLAB.

9.8.3 T ime Domain Solution of Discrete State Space Systems

To understand the nature of a system, we need to see the time domain response
of that system. Furthermore, when we design controllers, we also need to see the
response of the controlled system in order to assess the performance of the control-
ler. For this, we need to calculate the time domain solutions. We will discuss two
ways of obtaining the time domain solutions.

FIGURE 9.21  MATLAB commands and results obtained for getting digital state model.

246 Practical Robot Design

9.8.3.1  Computer Calculations
Computer calculations are done from sample to sample. It starts from the knowl-
edge of initial values of the states and the values of the input sequence. Calculating
the states can be easily achieved by programming a computer for recursive calcula-
tions from sample to sample as long as the input u(kT) < t < u((k + 1)T) is piecewise
constant. That is, the input is held constant between controller outputs to the plant
through the latch–DAC combination. Let us look at the case of time-invariant state
equations only. Hence, the state equations become

	

X k GX k Hu k

y K CX k Du k

() () ()

() () ()

+ = +
= +
1

	
(9.87)

With k = 0 in Equation 9.87, using u(0) and X(0) vector values, X(1) vector can be
calculated and hence y(1) can also be calculated. The same calculation is repeated
for k = 1. This leads to X(2), which can be calculated from u(1) and X(1). This process
is repeated for obtaining the complete solution. We have assumed that input u is a
scalar. The procedure is similar for vector U as well.

9.8.3.2  Z-Transform Approach
Let us consider Equation 9.87 and write the Z-transform using the usual notation
with initial conditions, keeping in mind that G and H are constant matrices:

	 zX(z) − zX(0) = GX(z) + Hu(z)	 (9.88)

Then

	

() () () ()

() () () () ()

zI G X z zX Hu z

X z zI G zX zI G Hu z

− = + +
= − + −− −

0

01 1
	

(9.89)

Taking the inverse Z-transform

	
X k Z zI G z X Z zI G Hu z() () () () ()= −  + − 

− − − −1 1 1 10
	

(9.90)

The first part is the undriven part, and the second part is the driven part of the
solution. This involves matrix inversion as well as the inverse Z-transform, and it
may get complicated if the plant is more than second order. Let us see an example.

EXAMPLE 9.17

To describe the above concept, we repeat Example 9.16 here. For the system rep-
resented by discrete model given below, let us compute the total solution in terms
of sample count k, assuming that the input is a unit step function.

	

x k

x k
1

2

1

1

0 6004 0 2325

0 4651 0 0972

0 19()

()

. .

. .

.+
+









 =

− −








 +

998

0 2325.
()









u k

	
(9.91)

247Digital Control Fundamentals and Controller Design

	
y k

x k

x k

x

x
() []

()

()

()

()
=



















 =

−








1 0

0

0

1

1
1

2

1

2
and

	
(9.92)

Referring to Equation 9.89, the Z-transform of X(k) is given by

	

Z X k X z zI G zX zI G Hu z

zI G zX Hu

[()] () () () () ()

() [()

= = − + −

= − +

− −

−

1 1

1

0

0 (()]z 	
(9.93)

Since, u(k) is a unit step, we can write

	

zX Hu z
z

z
z

z

z

() ()
.

.

.

0
0 1998

0 2325 1

0 802

+ =
−









 +









 −







=

− 002
1

1 2325
1

2

z
z

z z
z

−
− +

−



















.

	

(9.94)

Hence, the output transform is

	

X z zI G zX HU z zI G

z z
z

z
() () [() ()] ()

.

.
= − + = −

−
−

− +
− −1 1

2

2
0

0 8002
1

1 2325zz
z −

















1 	

(9.95)

Substituting for the first term on right-hand side, we get

	

X z
z

z

z z z
()

. .

. .

.
=

− −
+ +







− −(−
0 6004 0 2325

0 4651 0 0972

0 8002 11 2 /))
− + −()













z z z2 1 2325 1. /

	

(9.96)

After finding the inverse of the first term, we have

	

X z
z z x

z

()
(.)(.) . .

(.) .

=
− + +[]

×
+ +

1
0 6004 0 0972 0 2325 0 4651

0 0972 0 23225

0 4651 0 6004

0 8002
1

1 2325

2

2− −






−
−







− +
−

. (.)

.

.z

z z
z

z z
z 11



























	

(9.97)

after simplifying, we obtain

	

X z
z

z z z

()
()

(.)(.)

=
− +  −

×
+ − +

1
1

0 0972 0 80022

z 0.5032z 0.04982

00 2325 1 2325

0 4651 0 8002 0 6004 1 2

2

2 2

. (.)

. (.) (.)(.

− +
− − + − − +

z z

z z z z 3325z)







	

(9.98)

248 Practical Robot Design

Further simplifying yields

	

X z() =
− + −()

− +1
z 1.5032z 0.5530z 0.0498

(z 0.9355z 0.2088z
3 2

3 2))

(z 1.3678z 0.3678z)

(z 0.9355z 0.2088z)
z

3 2

3 2

3

− + −







=

− +
− 11.5032z 0.5530z 0.0498

(z 1.3678z 0.3678z)
z 1.50

2

3 2

3

+ −()
− + −

− 332z 0.5530z 0.04982 + −()





















		
		

(9.99)

We need to keep z in the denominator of the left-hand side of the equation for
matching Z table entries.

	

X z
z
() =

+
+()

(z 0.9355z 0.2088)
z 1.5032z 0.5530z 0.0498

(z

2

3 2

−
− −

− 22

3 2

 1.3678z 0.3678)
z 1.5032z 0.5530z 0.0498

+
+()















−
− −







	

(9.100)

Let us do some partial fraction expansions utilizing the “residue” command of
MATLAB.

	

X z

z
z

z
z

z
z

z
z

()
. .

.
.

.

. .
= −

+
−

+
−

−
+

0 500
1

0 00
0 3678

0 5000
0 1354

0 000
1

0 0000
0 3678

1 000
0 1354

z
z

z
z−

−
−

















.

.
. 	

(9.101)

Note that we moved z back to the right-hand side of the equation after partial
fraction expansion. We realize that the coefficient of pole term at 0.3678 became
zero. If we check the roots of the first row of Equation 9.100, there is a pole-zero
cancellation at 0.3678. Similarly, at the second row of Equation 9.100, there are
two pairs of pole zero cancellation, one at 0.3678 and another one at 1 resulting in
two coefficient terms in Equation 9.101, vanishing, although the original continu-
ous model has no pole-zero cancellation. The results we have obtained here are
accurate. Now, taking the inverse Z-transform, we get

	

x k

x k

k k
1

2

0 5 0 0 0 3678 0 5 0 1354

0 0 0 0 0 36

()

()

. . (.) . (.)

. . (.









 =

− +

+ 778 1 0 0 1354

0 5 0 5 0 1354

1 0 0 1354

) . (.)

. . (.)

. (.)

k k

k

k

−















=
+

−















	

(9.102)

249Digital Control Fundamentals and Controller Design

We can check the initial values from the above results, which is obviously

	

x

x
1

2

0

0

1

1

()

()








 =

−










	
(9.103)

To understand why some coefficients vanished, let us go back to Equation 9.93
and keep the undriven and driven solutions separate. We reevaluate Equation 9.93 as

 

X z
z z

z

()
(.)(.) . .

(.) .

=
− + + ×[]

×
+ +

1
0 6004 0 0972 0 2325 0 4651

0 0972 0 23225

0 4651 0 6004

0 1998

0 2325
1

− −




 −









 +









. (.)

.

.z

z

z

z

z z −−
















1

	

(9.104)

then

	

X z
z z z

z z
()

. .

.
=

− + 

+ −
− − +

1 0 0972 0 2325

0 4651

2

2z 0.5032z 0.04982 00 6004

1
1

0 1998 0 1992

.

()

. .

z

z

z











+
− +  −

×
+

z 0.5032z 0.04982

88 0 0972 0 2325

0 1998 0 4651 0 2325 0 2325 0 6004

2

2

× +
− × + − ×

. .

.

z z

z z z











	

(9.105)

Collecting terms in the columns above, we get

	

X z
z z

z z
()

.

.
=

− + 

−
− +











+

1 0 1353

0 1353

1

2

2z 0.5032z 0.0498

z

2

22 0.5032z 0.0498− +  −
+
−()

. .

. .z

z z

z1

0 1998 0 0735

0 2325 0 2325

2

2 zz











	

(9.106)

Let us move one z term to the left as before and write

	

X z
z

z

z
()

.
[]

(.)
[

=

−
− +

− −
− +

0 1353

0 1353
z z

z z

2

2

0.5032 0.0498

0.5032 0.00498

1.5032 0.5530 0.3 2

]

. .
(



















+

+
− + −

0 1998 0 0735z
z z z 00498

1.5032 0.5530 0.04983 2

)
. .

()
0 2325 0 2325z −

− + −
















z z z





		
		 (9.107)

After calculating the partial fractions, we have

	

X z
z

z z

z z

() . (.)

. (.)

= −
+

−
−

−
+ −

−














1
0 3678

0
0 1354

1
0 3678

0
0 1354






+ −
+ −

−
+

−

−
+

−
+ −

−

0 5
1

1
0 3678

0 5
0 1354

0
1

1
0 3678

1
0 13

.
.

.

.

. .

z z z

z z z 554



















		
		 (9.108)

250 Practical Robot Design

In Equation 9.108, we still see some pole-zero cancellations. In the undriven
term, if the initial conditions were different (say, x1(0) = 1, x2(0) = 0), the second
term in partial fraction expansion would not have vanished. We can move z to the
right-hand side and take the inverse Z-transform.

	

x k

x k

k

k

k
1

2

0 3678

0 3678

0 5 0 3678()

()

(.)

(.)

. (.)







 =

−















+
− ++

+ −















0 5 0 1354

0 3678 0 1354

. (.)

(.) (.)

k

k k
	

(9.109)

The first part of the right-hand side of Equation 9.109 represents the undriven solu-
tion and the second term represents the driven solution. Note that the driven solution
vanishes for k = 0, and the undriven solution is the same, as the initial conditions as
assumed. The total solution is written here for comparison with Equation 9.102.

	

x k

x k

k

k
1

2

0 5 0 5 0 1354

0 1354

()

()

. . (.)

(.)









 =

+

−















	

(9.110)

9.9  DISCRETE STATE FEEDBACK CONTROLLERS

So far we have introduced the analytical solutions to the discrete state equations. Our
next task is to look at the methods of designing stable controllers. We will focus only
on two types of controllers, namely, pole placement controllers (PPC) and linear
quadratic controllers (LQC). However, it is important to realize before starting to
design controllers that the system is controllable and states are available for feed-
back. Hence, let us first see the concepts of controllability and state observability.
In the following sections, we will utilize required results and formulas from control
literature without going through their details and proofs, since our primary concern
is to demonstrate application of these concepts in robotics.

9.9.1 C oncept of State Controllability

The concepts of controllability were originally introduced by Kalman, and further
work was done on it mainly by Gilbert (Nagrath and Gopal 1996). Kalman’s work
gives a solution to the problem based on system matrices. In literature, many defini-
tions of controllability can be found (Astrom and Wittenmark 1990; Nagrath and
Gopal 1996; Ogata 1995). A typical definition of controllability is that a control
system is said to be completely controllable if the system can be transferred from any
arbitrary initial states to any other arbitrary states within finite time using a control
sequence, where the control magnitudes are unbounded. It implies that if any state
is independent of control signal, then that renders the state uncontrollable and hence
the system is not controllable. Consider the typical system equation given with usual
notation. We assume that control variable is a scalar.

	

X k T GX kT Hu kT

Y kT CX kT

(()) () ()

() ()

+ = +
=
1

	
(9.111)

251Digital Control Fundamentals and Controller Design

where u(k) is the constant control signal from instant kT to (k + 1)T, X(k) is an n × 1
state vector, G is an n × n state matrix, H is an n × 1 vector, Y(k) is an r × 1 vector,
and C is an r × n matrix.

Here, we are concerned about discrete systems only. The necessary and suffi-
cient condition for complete state controllability is that the rank of the controllability
matrix [CM] is n. Then the controllability condition can be stated as

	 rank[CM] = n	 (9.112)

where the controllability matrix is defined as

	 CM H GH G H G H G Hn n= − −[]2 2 1� 	 (9.113)

Gilbert suggested using Jordan’s canonical form to derive a different condition for
testing controllability.

Hence, if both conditions in Equations 9.112 and 9.113 are satisfied, we can con-
clude that it is possible to transfer any initial state to any final state in utmost n
sampling periods, provided the control inputs u(0) to u((n − 1)T) are unbounded. The
above conditions can also be interpreted, as that there exists a sequence of control
inputs u(0),u(T),. . .,u((n − 1)T) to bring the initial state X(0) to final state X(tf) within
n sampling periods.

9.9.2 C oncept of State Observability

In designing controllers for state space systems, we need to feed back the state
variables, and these are called state feedback controllers. However, in complex
systems it may not be possible to directly measure the states, simply because
they may be hidden inside the systems or simply they are not physical quantities,
such as voltage, current, or torque. In many cases, there are hidden modes of the
systems. In that case, if we need to feed them back, we have to measure them or
estimate them. This leads to the concept of observability. A simple definition of
observability is that the system is said to be completely observable if the mea-
surements of output samples taken over a finite duration are sufficient to compute
all the initial states. There are a few versions of this definition in literature. The
conditions of observability with the relevant proof have been well discussed in the
literature (Astrom and WittenMark 1990; Nagrath and Gopal 1996; Ogata 1995).
We will only present the results here. We can start by considering the system
equations:

	

X k T GX T Hu kT

Y kT CX kT Du kT

(()) () ()

() () ()

+ = +
= +
1

	
(9.114)

where X is an n × 1 vector, G is an n × n matrix, H is n × 1, C is an m × n matrix, D
is an m × 1 matrix, and Y is an m × 1 vector. We assume that only one control input

252 Practical Robot Design

exists for simplicity. The observability condition can be stated as that nm × n matrix
given by

	

C

CG

CG

CGn

2

1

…
−























	

(9.115)

should have a rank of n. The above equation can be transposed without changing
the rank.

We went through the above two sections because any control designer needs to
ascertain that the plant he is controlling is controllable in the first place. Once that is
done, the problem of state feedback arises. The observability condition assures that
states can be estimated for feedback, if not measurable directly.

9.9.3 �C ommon Condition for Controllability and Observability of
Sampled Data Systems

There is also an additional common condition for state controllability and observ-
ability for sampled data systems. It refers to the possible existence of complex roots,
say, σ ± jω. Supposing that the system has such complex roots with a natural fre-
quency component of ω, then by selecting a wrong sampling time controllability can
be jeopardized by sampling at wrong points periodically. To avoid such synchronous
sampling at the wrong points, the condition can be stated as

	
T

i≠ p
w 	

(9.116)

where ω is the natural angular frequency of the system, and i is an integer. Since
the half period of natural oscillation will be π/ω, the sampling period T should not
be a multiple of that (refer to Astrom and Wittenmark (1990) and Ogata (1995) for
mathematical proof).

EXAMPLE 9.18

Let us consider a plant whose discrete model is given by

	

Y z
U z

z z
z z z

()
()

. .
. . .

= − +
− + −

2

3 2

1 7 0 6
2 8 2 5 0 728 	

(9.117)

	 a.	Check the controllability of the system.
	 b.	Check the observability of the system.

We can get the state model by calculation or by using MATLAB. A use-
ful MATLAB command for this conversion is “tf2ss.” By entering command
“[G,H,C,D] = tf2ss(numz,denz)” in the MATLAB command window, we get

253Digital Control Fundamentals and Controller Design

	

G

H

C

=
−















=
















= −

2 8 2 51 0 728

1 0 0 0

0 1 0 0

1

0

0

1 1 7 0

. . .

.

.

. ..6

0

 
=D 	 (9.118)

To check for controllability, we compute the controllability matrix
CM H GH G H= []2 , which can be evaluated as

	

CM =
















1 2 8 5 33

0 1 0 2 8

0 0 1 0

. .

. .

.
	

(9.119)

Using the MATLAB command “rank(CM),” we obtain the rank of the matrix CM
as 3. So the system is completely state controllable and hence the arbitrary pole
placement is possible.

To check for observability, we compute the observability matrix in transposed
form:

	 OM C G C G C= [()]* * * * *2

	 (9.120)

Above, we have used the notation C*and G*, where the superfixes “*” indicate
that they are the conjugate transpose of matrices C and G,respectively.

Matrix OM can be evaluated as

	

OM = − − −
















1 1 1 1 17

1 7 1 91 2 033

0 6 0 728 0 8008

. .

. . .

. . .
	

(9.121)

and its rank is 3. Hence, the system is controllable as well as observable, and the
state feedback control for arbitrary pole placement is possible.

9.9.4  Design of Pole Placement Regulators Using State Feedback

In this section, we present the controller design method called pole placement or pole
assignment technique, which is well discussed in the literature (Ogata 1995; Astrom
and Wittenmark 1990). We assume that all the state variables are measurable and
are available for feedback. It can be shown that if all states are controllable, then the
poles of the closed-loop system can be placed arbitrarily anywhere by means of state
feedback. This is only true if the control signals are unbounded. If there is satura-
tion, then the system turns nonlinear, and such design becomes invalid. Having said

254 Practical Robot Design

that, we have found in our experience that occasional saturation of u is usually well
tolerated in many practical systems.

The first step in this procedure is to decide the “desirable locations” of the closed-
loop poles based on the transient response or frequency response specifications such
as speed, damping ratio, or bandwidth. Another consideration in designing sampled
data controllers is the sampling period. Selecting a very small sampling time may
result in large values of control signals, and this may lead to saturation. In what fol-
lows, we are considering a case where control signal is a scalar. Also, we assume
that the necessary and sufficient condition for arbitrary pole placement is that the
system is completely state controllable. We are going to present two methods for pole
placement design, one by comparison of coefficients and the other one by “place”
command from MATLAB.

9.9.4.1  Comparison of Coefficients Method
This is a straightforward method, and it does not require the use of any formula,
which is applicable for systems of order 3 or less. We only consider the regulator
problem from fundamental concepts, assuming that the system is completely con-
trollable and hence arbitrary pole placement is possible. Let us consider the discrete
system given by

	 X(k + 1) = GX(k) + Hu(k)	 (9.122)

Let us formulate an admissible control law using a feedback gain vector K such
that

	 u k KX k k k k X kn() () [] ()= − = − 1 2� 	 (9.123)

where the vector K k k kn= [].1 2�
Then substituting Equation 9.123 in Equation 9.122, we can write the closed-loop

system equation as

	 X(k + 1) = GX(k) − HKX(k) = [G − HK]X(k)	 (9.124)

The comparison of coefficients method involves determining the feedback gain
values K, such that the characteristic equation of the closed-loop system represented
by Equation 9.124 has desired roots. We will illustrate the method by an example.

EXAMPLE 9.19

Let us consider a plant whose discrete state model is given by

	

X k X k()

. . .

.

.

()+ =
−















+
















1

2 8 2 51 0 728

1 0 0 0

0 1 0 0

1

0

0

uu k

y k X k

()

() . . ()= − 1 1 7 0 6
	

(9.125)

255Digital Control Fundamentals and Controller Design

This is as the same system we saw in Example 9.18. Let us design a state feed-
back controller such that the closed-loop poles are at 0.5, 0.7, and 0.8.

Using the chosen roots, the closed-loop characteristic equation can be calcu-
lated as

	 (0.5)(0.7)(0.8) 2.0 1.31 0.28 02z z z z z z− − − − −= + =3
	 (9.126)

Furthermore, the closed-loop system is written as

	 X(k + 1) = [G − HK]X(k)	 (9.127)

Taking the Z-transform of Equation 9.127, the closed-loop characteristic equa-
tion of the controlled system can be obtained as

  

z

z

z

0 0

0 0

0 0

2 8 2 51 0 728

1 0 0

0 1 0

1

0

0

















−
−















+








. . . 







  =k k k1 2 3 0

	 (9.128)

The above determinant can be evaluated in polynomial form as

	 z k z k z k3
1

2
2 32 8 2 51 0 728 0+ − + + + − =(.) (.) (.) 	 (9.129)

Equation 9.129 is the characteristic polynomial of the closed-loop system
involving unknown gain values of k1,k2 and k3, and Equation 9.126 is the char-
acteristic polynomial having the desired poles as its roots. Then, if the closed-
loop system is to have desired roots, the two polynomials have to be equated to
evaluate suitable gain values, k1,k2, and k3. When those gain values are used for
state feedback, the closed-loop system will behave as though it has the desired
closed-loop poles. Then, the left-hand sides of Equations 9.126 and 9.129 can
be equated as

z k z k z k z z z3
1

2
2 3

32 8 2 51 0 728+ − + + + − = − + −(.) (.) (.) 2.0 1.31 0.282

	 (9.130)

Comparing coefficients of z-terms with the same power from both sides, we
can evaluate the feedback gain values.

Comparing the coefficients of z2 on both sides

	

k

k
1

1

2 8 2 0

0 8

− . .

.

= −
= 	 (9.131)

Comparing the coefficients of z on both sides

	

k

k
2

2

2 51 1 31

1 2

+ =
= −

. .

. 	 (9.132)

256 Practical Robot Design

Comparing the constant terms on both sides

	

k

k
3

3

0 728 0 28

0 448

− = −
=

. .

. 	 (9.133)

9.9.4.2  MATLAB Method of Pole Placement
What we have demonstrated above can be achieved by the “place” command in
MATLAB. The dialog is given in Figure 9.22.

9.9.4.3  MATLAB Simulation of the Controller Performance
One possible Simulink model is shown in Figure 9.23. Let us study this simulation
model. We have made some small changes to the C vector and call it Cx. By making

FIGURE 9.22  Using “place” command.

4
Out4

3
Out3

2
Out2

1
Out1

0.448

Gain5

–1.2

Gain4

0.8

Gain3

0.6

Gain2

–1.7

Gain1

1

Gain

y(n) = Cx(n) + Du(n)
x(n + 1) = Ax(n) + Bu(n)

Discrete state-space Demux

FIGURE 9.23  Simulation of state feedback control setup for pole placement control.

257Digital Control Fundamentals and Controller Design

Cx a unity matrix of size n, we get all the n state variables as outputs. Also, we are
using actual components of the C vector to weigh the state variables to obtain the
system output y. Thus, we have state variables readily available for feedback and
display as well as the system output synthesized. We have introduced an initial value
of x1(0) = 3 to state 1, to see if the system stabilizes under the controller. Note that
this appears in the MATLAB code given in Figure 9.24, which calls the Simulink
model. Without this initial value, we will only see a flat response for all the states as
well as the output.

The MATLAB program that drives the simulation model shown in Figure 9.23, is
listed in Figure 9.24, and the simulation results are shown in Figure 9.25.

We note that the system in Example 9.19 was derived from the pulse transfer
function given in Equation 9.117. By factorizing the numerator and denominator of
that pulse transfer function, we can see that the open-loop system has zeros at 0.5,
and 1.2 and poles at 1.3, 0.8, and 0.7. At the beginning, the plant is in the open-loop,
unstable, and nonminimum phase. When we design the gains to place the poles at the
desired locations, we see all the states, as well as the outputs, are quite stable upon
the application of the pole placement controller.

FIGURE 9.24  MATLAB listing for driving model in Figure 9.23.

258 Practical Robot Design

9.9.5 S teady-State Quadratic Optimal Control

It is possible to use a different criteria for deciding the feedback gain values. In
optimal control, we define a cost function or index involving the system states
and other relevant quantities such as control variables. After that we devise a
strategy to minimize this cost function. This can be over a fixed duration of time
or at steady state. We will provide the basic outline for steady state optimization
design here.

We are considering the system described by

	

X k GX k Hu k

y k CX k

() () ()

() ()

+ = +
=

1

the feedback law is u(k) = −KX(k). Then the performance index that we want to opti-
mize is given below:

	

J X k QX k U k RU k
k

= +





=

∞

∑1
2

0

*() () *() ()

	
(9.134)

0 5 10 15 20 25 30 35 40 45 50

0 5 10 15 20 25 30 35 40 45 50

0 5 10 15 20 25 30 35 40 45 50

0 5 10 15 20 25 30 35 40 45 50

–10

0

10
Output and states in feedback control

St
at

e x
1

–10

0

10

St
at

e x
2

–10

0

10

St
at

e x
3

–10

0

10

k, sample count

O
ut

pu
t y

FIGURE 9.25  Results of pole placement regulator simulation.

259Digital Control Fundamentals and Controller Design

In the above equation, Q is a diagonal positive definite matrix of order n, compris-
ing the weights we want to give to the respective state variables, and R is a diagonal
positive definite matrix comprising the weights we want to use for the manipulated
variables U. When we consider cases of single control variable, it is a single positive
element.

For a system of order n with m control inputs, Equation 9.134 can be rewritten as

	

J
q x k q x k q x k

r u k r u k r u
n n

m m

=
+ + +

+ + + +
1
2

1 1
2

2 2
2 2

1 1
2

2 2
2 2

() () ()

() ()

�

� (()kk











=

∞

∑
0 	

(9.135)

where q1,q2, and so on are the diagonal elements of the Q matrix and r1,r2, and so
on are the diagonal elements of the R matrix. The importance of state xi in the cost
function is decided by qi.

Similarly, the importance of input ui in the cost function is decided by ri. This
property can be used to influence the response of the individual states and control
inputs. We will demonstrate this in the next chapter using a case study.

In a formal procedure for LQC design, we have to solve a form of matrix Riccati
equation by iterative procedure and then solve for feedback gains. Since we are inter-
ested only in application, we prefer to use a MATLAB command for obtaining solu-
tions for gain values. This is illustrated below.

9.9.5.1  Use of MATLAB in LQC Design
What we have presented above can be easily achieved by the “dlqr” command in
MATLAB in the format [K,P,E] = dlqr(G,H,Q,R). This command yields gain vec-
tor K, P matrix, and closed-loop system eigenvalues E. Here, P matrix is a positive
definite matrix, which is an intermediate result in design. However, we are only
interested in the closed-loop system eigenvalues E, and the feedback gain vector K.

EXAMPLE 9.20

Consider a plant given in Example 9.19. It is represented by a state model with
parameters

	

G H

C

=
−















=
















= −

2 8 2 51 0 728

1 0 0 0

0 1 0 0

1

0

0

1 1 7 0

. . .

.

.

. ..6 0  =D
	

(9.136)

We have stated earlier that the open-loop plant is an unstable and nonmini-
mum phase system, but it is completely state controllable and state observable.
Our objectives in this example are listed as follows:

	 a.	Design a steady-state optimal regulator to minimize the cost function

	

J X k QX k U k RU k
k

= + +





=

∞

∑1
2

0

*() () *() ()

	

(9.137)

260 Practical Robot Design

where

	

Q =
















=
10 0 0

0 5 0

0 0 5

0and 1R .

	

(9.138)

	 b.	Check the closed-loop stability.
	 c.	Simulate the response of the controlled system by MATLAB.

First, we will use the MATLAB command “dlqr” to obtain the feedback gains,
which will optimize the linear quadratic criteria and the closed-loop eigenvalues
to check the stability.

Later, we will use a simulation diagram and a MATLAB program to check the
performance of the controller. The MATLAB codes for controller design and simu-
lation diagrams are shown in Figures 9.26 and 9.27, respectively. The code results
in gain values and the closed-loop poles.

The MATLAB program to drive simulation is listed in Figure 9.28, and the
results of the LQC-based state feedback are shown in Figure 9.29. We note that
because of the optimization process, system response is faster than the pole place-
ment controller performance shown in Figure 9.25. However, a better choice of
the closed-loop poles may compare favorably with LQC response.

9.9.6 A Simple Servo Controller

In Sections 9.9.4 and 9.9.5, we saw cases where state variables are regulated against
disturbances using state feedback. In robotics, there are instances where the output
needs to track a reference input. Such cases are called servo control. A typical system
with only one reference is shown in Figure 9.30.

The objective is to make y(k) to track yr(k). We see that there is the usual state
feedback for regulation and additional input kryr(k), which is called the feedforward
input. Since the state feedback would have changed the gain of the system, we need

FIGURE 9.26  Using “dlqr” command.

261Digital Control Fundamentals and Controller Design

to have an adjustable gain kr to make the overall transmission gain from yr(k) to y(k)
unity so that accurate tracking can be achieved (Ogata 1995). The discrete state
equation is given by

	

X k G X k H u k

y k C X k

() () ()

() ()

+ = +
=

1

	
(9.139)

Owing to the presence of the feedforward term, the manipulated variable is writ-
ten with an additional term as

	

u k K X k k y k

K k k k
r

n

() () ()

[]

= − +
= 1 2� 	

(9.140)

Ignoring the feedforward term, it is straightforward to determine the feedback gain
vector K, using one of the methods described earlier. Since K has been found, the only
other unknown to be evaluated is the feedforward gain kr. One popular method to find
kr is to find the pulse transfer function (Y(z)/Yr(z)) = T(z). By applying the final value
theorem in Z-domain to Y(z) = T(z)Yr(z), an expression for y(∞)in terms of kr can be
written since T(z) involves kr. By equating the expression for final value y(∞) to yr, kr
can be evaluated. However, the evaluation of T(z) involves the inversion of nth-order
matrix in terms of variable z. When the order is 3 or less, this is quite trivial.

Special case: We are interested in a class of systems where we need not use the
above method, which involves the inversion of an n-dimensional matrix in terms of
z. Let us assume that the plant has the following characteristics:

	 1.	The output involves only one of the state variables, say, x1(k), which implies
that C = []1 0 0� , and hence

	 y(k) = x1(k)	 (9.141)

4
Out4

3
Out3

2
Out2

1
Out1

k3

Gain5

k2

Gain4

k1

Gain3

c3

Gain2

c2

Gain1

c1

Gain

y(n) = Cx(n) + Du(n)
x(n + 1) = Ax(n) + Bu(n)

Discrete state-space Demux

FIGURE 9.27  The Simulink diagram for LQC-based state feedback regulation.

262 Practical Robot Design

	 2.	At steady state, all the state variables have to go to zero with the exception
of x1(k). This implies that

	 x x xn2 3 0() () ()∞ = ∞ = = ∞ =� 	 (9.142)

	 3.	At steady state, the manipulated variable can be zero. Hence

	 u(∞) = 0	 (9.143)

FIGURE 9.28  The MATLAB program that drives the Simulink for LQC-based state
feedback.

263Digital Control Fundamentals and Controller Design

0 5 10 15 20 25 30 35 40 45 50
–5

0

5
Output and states in LQC feedback control

St
at

e x
1

0 5 10 15 20 25 30 35 40 45 50
–5

–5

–5

0

5

St
at

e x
2

0 5 10 15 20 25 30 35 40 45 50

0

5

St
at

e x
3

0 5 10 15 20 25 30 35 40 45 50

0

5

O
ut

pu
t y

k, sample count

FIGURE 9.29  The output and state response of the LQC-based state feedback control.

Discrete plant

kn

k2

k1

.

.

.

y(k)+
–

kr
yr(k)

–

–

.

.

u(k)

xn(k)

x1(k)

x2(k)

FIGURE 9.30  A servo system.

264 Practical Robot Design

There are a few systems that satisfy the above assumptions. For example, a posi-
tion control servo using a DC motor will satisfy the above conditions

Let us rewrite Equation 9.140 as

	 u k k y k k x k k x k k x kr r n n() () () () ()= − − −1 1 2 2 � 	 (9.144)

For k = ∞, using Equations 9.142 and 9.143 (assumptions 2 and 3), Equation 9.144
becomes

	 u(∞) = kryr(∞) − k1x1(∞) = 0

From Equation 9.141 (assumption 1)

	 kryr(∞) − k1y(∞) = 0

Since at steady state y = yr

	 kr = k1

In general, if y(k) = xi(k)

	 kr = ki	 (9.145)

We can redraw Figure 9.30 as shown in Figure 9.31. We will see such an example
in the following chapter. However, this system will not work for all systems that do
not satisfy the assumptions stated. Otherwise, we need to apply final value theorem
to Y(z) = T(z)Yr(z) to find y(∞) and proceed as described earlier. Of course, there are
many other sophisticated methods of servo control (Astrom and Wittenmark 1990;
Ogata 1995).

9.10  TYPICAL HARDWARE IMPLEMENTATION OF CONTROLLERS

Since hardware changes fast, we will show only a generic setup in Figure 9.32, which
is popular in the literature, avoiding hardware details. In the figure, the load can be
the weight of a mobile robot or the weight that a robot arm is lifting.

Any manufacturer of a development platform provides a hardware setup consist-
ing of an embedded system and provides a tool set for development, and the code is
developed using a PC. The computational hardware used to be microcontrollers in
the past, but the trend is rapidly changing. They were replaced by processors such
as PIC systems. Recently, there have been many manufacturers that provide well-
packed DSP processors, as embedded systems complete with digital and analog I/Os
as well as good communication interface. The role of the PC ends at the completion
of program development, and the system becomes standalone without the need for a
PC. Once developed and downloaded, the control algorithm is executed by the pro-
cessor. Sampling time is decided by the processor interrupts in software. The pro-
cessor periodically takes in required feedback signals and computes a control signal

265Digital Control Fundamentals and Controller Design

Discrete plant

kn

k2

k1

.

.

.

y(k)–
–

–

.

.

u(k)

xn(k)

x1(k)

x2(k)

+

yr(k)

–

FIGURE 9.31  Servo control for a special case using reference as offset.

Processor
board

Driver board
PWM

PC
LoadMotorEncoder

Power armature
connection

Encoder lines

8 or 16 bit data
Decoder

Decoder control lines

Robot system

O
ther feedbacks

FIGURE 9.32  Development setup for a robot control system design.

266 Practical Robot Design

based on them. In the block diagram above, the control signal manipulates PWM to
the motor driver board. In the beginning of the program development, the robot may
be operated along with the PC link for debugging purposes. Otherwise, for normal
operation, especially for mobile robots, the PC link will not be there. The features of
the block diagram shown in Figure 9.32 will be found in all the robots that will be
presented in the following chapter on our case studies.

9.11  CONCLUSION

In this chapter, the basic ideas necessary to understand computer-controlled systems
have been presented. This by no means is a complete treatise on digital control, but
only a starting point. Most of the time, stabilizing a robotic structure needs some
feedback. For example, a pole-balancing robot is unstable by its very nature. To
stabilize it, we have provided some information on pole placement design. If we
need to achieve speed and stability in response, optimal controllers will be very
useful. If a robot arm has to be moved, then a servo control would be necessary.
We have not gone much deeper into optimization or pole placement designs beyond
what is necessary. However, we have provided enough material as starting point for
a robot designer so that he/she can get started right way without spending too much
time on learning the control aspects of the design. We took this approach because,
as such, control theory is a deep and wide subject, and it takes a lifetime to mas-
ter it. Furthermore, robots being a multidisciplinary subject, it requires knowledge
in many other fields such as embedded systems, instrumentation, and actuation to
name a few. To design and implement advanced controllers, further reading is rec-
ommended. The material presented in this chapter is satisfactory to start designing
a robot controller. However, the references listed in this chapter are recommended
for further reading.

REFERENCES

Astrom, K.J. and Kanniah, J. 1993. A fast adaptive controller for motion control. Proceedings
of IEEE Asia-Pacific Workshop on Advances in Motion Control. Singapore, 63–68.

Astrom, K.J. and Wittenmark, B. 1990. Computer Controlled Systems: Theory and Design.
2nd Edition. Englewood Cliffs, NJ: Prentice-Hall.

Astrom, K.J., Carlsson, A., and Kanniah, J. 1994. A flexible system for adaptive motion con-
trol. Journal of Mechatronics 4: 99–112.

Cadzow, J.A. 1973. Discrete-Time Systems: An Introduction with Interdisciplinary
Applications. Englewood Cliffs, NJ: Prentice-Hall.

Cavallo, A., Setola, R., and Vasca, F. 1996. Using MATLAB, Simulink, and Control System
Toolbox: A Practical Approach. Hertfordshire, UK: Prentice Hall Europe.

Nagrath, I.J. and Gopal. M. 1996. Control System Engineering. 2nd Edition. New Delhi: New
Age International (P) Limited Publishers.

Ogata, K. 1994. Designing Linear Control Systems with MATLAB. Englewood Cliffs, NJ:
Prentice-Hall.

Ogata, K. 1995. Discrete-Time Control Systems. 2nd Edition. Englewood Cliffs, NJ:
Prentice-Hall.

267

Case Study with
Pole- Balancing and
Wall -Climbing Robots

10.1  INTRODUCTION

In earlier chapters, we went through various components of knowledge needed to
understand the basics of robot control. A study of robotics will not be complete
unless we go through a design process and encounter real-world problems. In this
chapter, we intend to give an overview of the steps involved in designing and imple-
menting a workable robot for robotic games. However, there are other stipulations
one has to take into account as listed below:

	 1.	Function of the robot: This simply involves some knowledge of what the
robot is expected to do. Of course, it can be obvious from the name itself.
For example, the name “wall-climbing robot” (WCR) indicates what that
robot is supposed to do. In some cases, the functions may not be so obvious.
In summary, specific functions of that robot need to be defined.

	 2.	Specifications: Beyond functions, a robot will have specifications for per-
formance such as speed, load, and so on. Furthermore, in some robotic
game events, the weight and dimensions of robots are limited by the game
rules. The designer has to take note of these factors as well.

	 3.	Conditions of operation: For example, it may be stipulated that the WCR
should not use magnets, or it should not use nonelectrical drives. Or, in
some cases, the power requirements may be limited, such as the robot can-
not use internal combustion engines for locomotion.

It is impossible to go through the design process of every robotic game. However,
we intend to describe the design steps of a few game robots so that the reader may be
able to appreciate how theories are applied to achieve what is expected of the robots,
along with component and material selection. We will study the design processes
of two types of game robots, namely the pole-balancing robot (PBR) and the WCR,
which compete in the Singapore Robotic Games (SRG 2012).

The PBR is expected to operate on a horizontal platform 3 m long and 1 m wide,
moving from one end to other while balancing the free-falling pole. The first thing
that the robot needs to do is to balance the pole for a given duration of time when
started. After completing this task, it should move to the other side of the platform
and then return to the starting point. It can repeat this as many times as possible

10

268 Practical Robot Design

within the permitted time. At the end, it returns to the starting point and stays there
balancing the pole for another specific period of time.

The WCR game is held using a structure that consists of a horizontal surface, a
vertical surface, and a ceiling, all of which are nonmagnetic. The WCR is expected
to start on the horizontal part of the surface, climb the vertical surface, and move
under the ceiling. The robot designed for this competition must be autonomous.
Now, let us discuss design steps.

10.2  POLE-BALANCING ROBOT

As the name implies, the main challenge in this case is to design a motorized vehicle
that supports an inverted pendulum using a pivot joint with one degree of freedom so
that the pole is able to fall freely along the direction of motion of the robotic vehicle.
The vehicle should keep the pole in the vertical position, without falling off and at
the same time move along a straight line up and down. The basic system is shown
with a block diagram in Figure 10.1.

In this particular game, we can see that the challenge is to design an appropriate
control strategy to achieve the goal. We are leaving all the problems of instrumenta-
tion and power driving out of our discussion in this section to keep things simple.
This game is particularly designed upon a well-known study problem in control the-
ory. Hence, theoretical solutions for it have been discussed by many authors (Ogata
1990, 1995). The main thrust in these theoretical studies presented is force control
of the vehicle using state variable feedback, where feedback gains are computed
using either the closed-loop system pole placement technique or the linear quadratic
control concept. Furthermore, it is cleverly assumed that the system is linear. If the

Ve
rt

ic
al

Massless pole of
length l

Mass, m
x

mg

Pole axle with encoder
(rotary friction, b)

Motorized vehicle
(mass M, friction Br)

Vehicle velocity, v
Drop encoder
wheel

Effective motor
force f

Pole axle reference
position

Drive motor

Drive wheel

θ

FIGURE 10.1  A block diagram of pole-balancing robot.

269Case Study with Pole-Balancing and Wall-Climbing Robots

pole does not fall off too far from the vertical, say, not more than 7°, the linearity
assumption holds good (since for small values of θ, sin θ ≈ θ). Here, θ is the angle of
deviation of the pole from the vertical axis. While the theoretical solutions for this
problem are readily available, the practical implementation is not so straightforward.
Apparently, the challenge put upon robot designers in this game is to put theory into
practice. In this chapter, we would like to focus on implementation issues.

10.2.1 M athematical Modeling

We believe that velocity control of the vehicle, as shown in Figure 10.1, is far eas-
ier to implement than force control because it involves torque control using motor
back EMF and current measurements. Here, we develop our control strategy based
on velocity control, even though force control models have been derived and given
widely in control literature. Furthermore, those models ignore friction terms. We
also need to include friction terms since friction plays a role in robot movement as
well as in pole-swinging motion. We assume that mass, m, is attached to a rigid pole
of length l. In reality, the pole weight may be uniformly distributed along a length of
2 × l. In that sense, the analysis is approximate and sufficient for a practical design.
A more accurate analysis is quite involved, and it is not presented here.

A detailed analysis of inverted pendulum dynamics can be found in Ogata (1990).
Here, we would like to include the friction terms in that analysis just by modifying
the two proven equations. There are two kinds of friction: the friction in the motion
of robotic vehicle and the rotary friction in the pole support system. The rotary fric-
tion force is depicted in Figure 10.2.

Let us define the following terms:

M = the mass of the vehicle in kg
m = the mass, attached to a weightless rigid of the pole in kg

cos θ
Mass, m

x

f

l

l
bθ

•

l
bθ

•

•
bθ

θ

θ

FIGURE 10.2  The rotary friction forces.

270 Practical Robot Design

l = the length of rigid massless pole in meters
Br = the linear friction coefficient of the vehicle motion in N/m/s
b = the rotational friction coefficient of the pole joint in Nm/rad/s
g = the acceleration due to gravity
x = the distance of the vehicle from reference in meters
f = the applied force in the horizontal direction in newtons

In the above definitions, we have used the terms Br and b, which require some
additional work to estimate. We have already explained how to estimate Br in Chapter
6 on gear ratio design. We will see the method to estimate the value of rotational fric-
tion “b” in Section 10.2.9.

Referring to Figure 10.2, the frictional torque of the pole support joint is

	
t b

d
dtf = q

	
(10.1)

Then, the equivalent to linear friction force at the mass center of the pole can be
written as

	
f

b
l

d
dtb = q

	
(10.2)

Hence, the horizontal component will be

	
f

b
l

d
dth = q

qcos
	

(10.3)

The additional reaction due to linear friction of the robotic vehicle is given by

	
f B

dx
dtv r=

	
(10.4)

Assuming that θ is small, and ignoring the additional friction terms, the linear
force balance equation can be written as

	
()M m

d x
dt

ml
d
dt

f+ + =
2

2

2

2

q

	
(10.5)

The additional friction terms are given in Equations 10.3 and 10.4. Since Equation
10.5 equates reaction forces on the left-hand side to the applied force on the right-
hand side, we can add the additional frictional forces to the left-hand side and modify
Equation 10.5 as given below:

	
() cosM m

d x
dt

B
dx
dt

ml
d
dt

b
l

d
dt

fr+ + + + =
2

2

2

2

q q
q

	
(10.6)

271Case Study with Pole-Balancing and Wall-Climbing Robots

Again, since θ is small, we can write

	
()M m

d x
dt

B
dx
dt

ml
d
dt

b
l

d
dt

fr+ + + + =
2

2

2

2

q q

	
(10.7)

This completes the motion dynamics in the horizontal direction. Next, we turn
our attention to rotary motion dynamics of the pole. Ignoring the pole axle friction,
the force balance equation for pole motion can be written as

	
m

d x
dt

ml
d
dt

mg
2

2

2

2
cos sinq

q
q+ =

	
(10.8)

Multiplying Equation 10.8 by l, we get

	
m

d x
dt

l ml
d
dt

mg l
2

2
2

2

2
cos sinq

q
q+ =

	
(10.9)

Now, we can identify the nature of the terms as follows. The moment of inertia of
the pole with respect to axle is

	 Im = ml2	 (10.10)

The torque due to pole mass m is

	 tm = mgl sinθ	 (10.11)

The torque due to the pure linear motion of mass m is

	
t m

d x
dt

lx =
2

2
cosq

	
(10.12)

Since Equation 10.9 is a torque balance equation, we can add the axle friction
torque given by Equation 10.1 to the left-hand side and write

	
m

d x
dt

l ml
d
dt

b
d
dt

mg l
2

2
2

2

2
cos sinq

q q
q+ + =

Using the assumption that θ is small, we can write

	
ml

d x
dt

ml
d
dt

b
d
dt

mg l
2

2
2

2

2
+ + =q q

q

or

	
m

d x
dt

ml
d
dt

b
l

d
dt

mg
2

2

2

2
+ + =q q

q
	

(10.13)

272 Practical Robot Design

Equations 10.7 and 10.13 include friction terms, and they are the two key equations
that describe the dynamics of the PBR. Since robots have friction in wheel bearings,
gears, motor, and pole axle, this approach better represents the actual robotic system.

Now, it is possible to form state equations and implement a control strategy
to regulate the pole angle and distance using force f as the manipulated variable.
However, at the beginning, we said that we wanted to eliminate force control, but
we see that Equation 10.7 still has force, f, as an input. In the following sections, we
show how we can avoid the force control and implement velocity control. Let us take
the Laplace transform of both equations and obtain

	
[()] () () () ()M m s B s X s ml s

b
l

s s F sr+ + + + 













 =2 2 q

	
(10.14)

	
ms X s ml s

b
l

s mg s2 2 0() () ()+ + 





−








 =q

	
(10.15)

Let us peruse the second equation above and write a transfer ratio as

	

q()
() ()
s

X s
ms

mls b l s mg
= −

+ −

2

2 / 	
(10.16)

We know that v = (dx/dt); hence, V(s) = sX(s). Equation 10.16 can be rewritten as

	

q q()
()

()
() ()

s
sX s

s
V s

ms
mls b l s mg

= = −
+ −2 / 	

(10.17)

Let us now concentrate on Equation 10.14, which describes how the position
depends on the force. We know that the effect of the second term consisting of θ(s)
is very small since M is much larger than m and θ is quite small. Typically, robot
mass M is a few kilograms, and the pole m is about 100 g. Hence, we want to make
an approximation by ignoring this term and rewrite Equation 10.14 as

	

[()] () ()

[()] () ()

M m s B s X s F s

M m s B V s F s
r

r

+ + =
+ + =

2

or

	
V s

M m s B
F s

r

()
[()]

()= + +
1

	
(10.18)

where F(s) represents the force. We can explore how we can represent force as a
function of motor parameters and other electrical inputs. Before we proceed any
further, let us define a few parameters and input quantities as follows:

273Case Study with Pole-Balancing and Wall-Climbing Robots

Es = the applied voltage to the motor in volts
Eb = the back EMF of the motor in volts
Ra = the armature resistance in ohms
Kb = the motor back EMF constant in volts/rad/s
Kt = the motor torque constant in Nm/A
Ng = the gear reduction ratio of the motor to the driving wheels
rw = the radius of the drive wheel in meters
tm = the torque of the motor in Nm
tw = the torque of the drive wheel in Nm

The torque developed by the motor can be given as tm = Kt(Es − Eb/Ra) by ignoring
the effect of leakage inductance of the armature. This leakage is usually very small,
and we can ignore it here. The torque on the drive wheel can be written as

	
t N K

E E
Rw g t

s b

a

= −

	
(10.19)

The thrust on the wheel contact to push the vehicle is given by

	
f

t
r

N K
E E

r R

N K

r R
E E T E Ew

w
g t

s b

w a

g t

w a
s b f s b= = − = − = −() ()

	
(10.20)

However, we know that

	
E K K Nb b m b g w= =w w

	 (10.21)

since ωm = Ngωw, where ωm is the angular velocity of the motor, and ωw is the angular
velocity of the drive wheel.

Furthermore, the velocity

	 V = rwωw	 (10.22)

Using Equation 10.22 in Equation 10.21, we get

	
E

K N V

r

K N

r
V H Vb

b g

w

b g

w
b= = =

	
(10.23)

Using Equations 10.18, 10.20, and 10.23, a partial block diagram can be drawn as
shown in Figure 10.3.

The closed-loop transfer function between applied voltage, Es, and velocity, V, can
be written as

	

V
E H M m s B T

T

H T M m s Bs b r f

f

b f r

= + + + = + + +
1

(()) ()/

274 Practical Robot Design

Substituting for Tf and Hb

	

V
E

K N r

M m R r s B R r K K Ns

t g w

a w r a w t b g

=
+ + +

[]

[()] []2 2 2

	
(10.24)

This describes the dynamics of the vehicle in response to the voltage applied to
the armature of the drive motor. Obviously, this is a first-order system and not as
complicated as it looks. We can set up a simple closed-loop control system to make
the velocity respond to an applied reference velocity. The applied voltage Es will be
used as a manipulated variable. The reference velocity VR will have to be compared
to the actual velocity V and the error can be amplified using a gain G (in digital
system it is just a multiplication instruction). We will use a pulse width modulation
control (PWM) where amplified (multiplied) error signal will change the duty cycle
of the PWM to handle the control of the motor speed. Such an implementation is
shown in Figure 10.4.

A number of new variables are introduced in Figure 10.4, and they are

Tpwm = the PWM period in clock counts
δ = ON fraction
G = proportional gain

There are two kinds of connections possible to achieve the effect of the block dia-
gram in Figure 10.4. In the type 1 connection shown in Figure 10.5, the direction-control

(M + m)s + Br

1 V(s)Es(S)

Eb(S)

+

–

Tf

Hb

FIGURE 10.3  Partial block diagram from applied voltage to velocity.

[KtNgrw]
Es

Vδ

[(M + m)Rarw
2]s + [BrRarw

2+KtKbNg
2]

G
Tpwm

VeVR +

–

FIGURE 10.4  Velocity control implementation.

275Case Study with Pole-Balancing and Wall-Climbing Robots

pin of the H-bridge driver is made to respond to the sign of the manipulated vari-
able computed by the control computer. The PWM signal goes to the enable pin of
the H-bridge driver. Then, δ = 0 duty cycle indicates zero push, and δ = 1 indicates
full push. However, the direction (or phase) signal input goes high for positive sign
and low for negative sign. It implies that if the sign signal is positive (direction pin
is high), PWM is 100% and motor thrust is maximum in the positive direction. On
the other hand, if the sign is negative (direction pin is low) and PWM is 100%, the
motor thrust is maximum in the negative direction. Obviously δ is limited within
limits of ±1. Note that the duty cycle cannot go negative. Hence, α = |δ| is the frac-
tion of the duty cycle, thereby providing an average voltage of αEs to the motor. The
direction pin decides how the voltage is connected to the motor, either forward or
reverse. Thus, Figure 10.4 mathematically represents the effect of the type 1 connec-
tion shown in Figure 10.5 accurately.

In the type 2 connection shown in Figure 10.5, we connect the PWM signal to the
direction input of the H-bridge driver and tie the enable pin high either by hardware
or software. Then the PWM base is half of the PWM period and δ is within the lim-
its of ±1. When δ = 0, the overall PWM is 50%. Since this goes to the direction pin,
the motor current alternates equally between negative and positive. This happens at
very high frequency in comparison to the time constant of the motor. Therefore, the
motor does not move. When δ = 1, the overall PWM is 100% and full forward volt-
age is applied to the motor resulting in full forward thrust. When δ = −1, the overall
PWM is 0% and full reverse voltage is applied to the motor resulting in full reverse
thrust. These were discussed earlier in Chapter 6 on motors and drivers; however, for
convenience, it is illustrated in Figure 10.5. Effectively, as δ changes from −1 to 0 to
+1, motor power changes from negative maximum to zero and then toward positive
maximum. Still, we see that Figure 10.4 mathematically represents the effect of the
type 2 connection also (shown in Figure 10.5) accurately.

E

Dir/phase
Driver

E

Dir/phase
Driver

PWM

Sign

Type-1 connection �e PWM set-up

Run

PWM

Type-2 connection �e PWM set-up

αTpwm

2 2
δ

Tpwm

Tpwm Tpwm

Tpwm

FIGURE 10.5  Two kinds of connection commonly used in H-bridge drivers.

276 Practical Robot Design

Usually, the PWM is implemented by introducing timer interrupts. These meth-
ods are very processor specific. Now, let us go back to the main aspects of our dis-
cussion, which is back to what is shown in Figure 10.4. Simplification will provide
us with the overall closed-loop transfer function as below:

  

V
V

GE K N r T

M m R r s B R r K K N GE KR

s t g w pwm

a w r a w t b g s t

=
 

+ + + +

/

[()] (2 2 2 NN r Tg w pwm/)  	

(10.25)

	

V
V

GE K N T R r

M m s B K K N R r GE K NR

s t g pwm a w

r t b g a w s t g

=
 

+ + + +

/

/[] () (2 2 //T R r

G

M m s B

pwm a w)

()

 

=
+ +

�

�
	

(10.26)

It may look complicated even though it is only a first-order system. Furthermore,
it can also be written in time constant form as

	

V
V

G B

M m B s TsR

=
+ +

= +
()

[()]

� �
�

/

/ 1 1
a

	
(10.27)

By comparing terms in Equations 10.26 and 10.27, we can compute the param-
eters of this system. Using Equations 10.17 and 10.27, the overall block diagram of
this control system may be redrawn as shown in Figure 10.6.

In fact, an objective block diagram should also show the displacement, x, as an
output as illustrated in Figure 10.7.

Sample calculations: Let us consider a sample case with the following given
parameters:

G = 1000
Kt = 0.033 Nm/amp
Kb = 0.033 V/rad/s
rw = 0.03 m
Ra = 6 ohms
b = 0.01 Nm/rad/s
l = 0.5 m
Tpwm = 1000 clock counts

s−mg
l
bmls2 +

−msVR(s)

Ts + 1
θ(s)α

FIGURE 10.6  Block diagram for pole angle control only.

277Case Study with Pole-Balancing and Wall-Climbing Robots

Ng = 8 (ratio)
M = 2.5 kg
m = 0.13 kg
Br = 2 N/m/s
Es = 28 V

Then, substituting the values in Equation 10.26, we obtain

	
ˆ .

.
.G = × × ×

× × =1000 28 0 033 8
1000 6 0 03

41 067
	

(10.28)

	

ˆ . .
.

.
.

B = + × ×
×

+ × × ×
× ×

= +

2
0 033 0 033 8

6 0 03
1000 28 0 033 8

1000 6 0 03
2 12

2

2

.. . .906666 41 06666 55 9733+ = 	 (10.29)

	 M + m = 2.5 + 0.13 = 2.63	 (10.30)

which yields

	

a = =

= =

41 0667
55 9733

0 7337

2 63
55 9733

0 047

.

.
.

.
.

.T
	

(10.31)

The above parameter calculations tacitly assume that there is no duty cycle satu-
ration, even though saturation is provided in the original system, with a formulation
shown in Figure 10.4. We imply that the ratio GVe/Tpwm in Figure 10.4 is limited to
−1 to +1.

Furthermore, we need to compute the pole angle dynamics to understand the
system given in Figure 10.7. Then, we can write

	

q()
() ()

.
. . .

s
V s

ms
mls b l s mg

s
s s

= −
+ −

= −
+ −2 2

0 13
0 065 0 02 1 2753/ 	

(10.32)

s − mg
l
bmls2 +

–ms

Ts + 1
α θ(s)VR(s) V(s)

X(s)
s
1

FIGURE 10.7  Overall block diagram for pole angle control and position control.

278 Practical Robot Design

Our primary objective is to control the position and the pole angle together. Let
us downgrade our objective to control only pole angle θ while ignoring position x.
Let us simply apply a proportional control and see how the closed-loop poles move
as we change the gain.

10.2.2 T ransfer Function for Pole Angle Control

To get some insight into the problem, we will use MATLAB® as a tool for further anal-
ysis. As a first step, we want to consider a system in which we intend to control θ only,
instead of controlling x and θ at the same time, even though it was the original problem
definition. Such a setup is shown in Figure 10.8. Note that the variable x is ignored.

Such a system can never achieve a steady-state value for θ. This exercise only
serves the purpose of understanding the problem. We know that Equations 10.17
and 10.27 describe the cascaded system. We further take note that the values of α
and T are dependent on G. These parameters are considered preset and are not dis-
turbed, which are parts of the cascade controller that controls the vehicle velocity in
response to reference velocity. This reference velocity plays the role of the manipu-
lated variable. Let us try a simple program to find the open-loop poles and plot the
root locus of the above system as the gain K changes. Even though we have done
some sample calculations, we let MATLAB do all the calculations and do the pole
trajectory plotting (Cavello et al. 1996). This gives us some insight into the nature of
the problem. The code and the results are listed in Figure 10.9.

In the above code, variable “pden” shows that the overall open-loop system has one
unstable root. The plot of the closed-loop system root locus is shown in Figure 10.10.

Apparently, as we close the loop, the system will not stabilize, irrespective of the
magnitude or sign of K used in Figure 10.8. Here, we only make the point that in
this particular case, simple feedback control will not work. We can try some other
techniques, say, integral controller, PD controller, or PID controller. Even if we find
a suitable controller that can regulate θ with θR = 0, the robotic vehicle will drift. Our
objective is to regulate θ and control x, with a single manipulated variable VR. Such
systems may be classified as single-input multi-output (SIMO) systems. We will pur-
sue this objective in the following sections.

10.2.3  Pole-Balancing Robot State Model

Controller design for an inverted pendulum has been widely discussed and presented
in the literature using force as the manipulated variable while ignoring friction terms

s – mg
l
bmls2

–ms

+

θ(s)

Ts + 1
αVR(s)

K+

–

θR(s)

FIGURE 10.8  A simple θ control system with a proportional controller with gain K.

279Case Study with Pole-Balancing and Wall-Climbing Robots

FIGURE 10.9  MATLAB code and result for computing the root locus of simple closed-loop
system.

280 Practical Robot Design

(Ogata 1990, 1995). The main difference in the presentation given here is that we
include friction terms in the model, and we are using velocity reference as the manip-
ulated variable. This applies to all controller designs described in the sections below.
To proceed further, we need to write the state equations of the system. Let us define
the states as follows:

	

x x

x x v x

x

x x

1

2 1

3

4 3

=

= = =

=

= =

• •

• •

q

q 	

(10.33)

We consider Equation 10.17 and do a trivial operation of cross-multiplying the
terms

	

q q()
()

()
()

s
sX s

s
V s

ms

mls
b
l

s mg
= = −

+ −2

–60 –50 –40 –30 –20 –10 0 10 20 30 40
–1

–0.5

0

0.5

1

–25 –20 –15 –10 –5 0 5–40

–20

0

20

40

Root locus for positive K

Real axis

Im
ag

in
ar

y a
xi

s

Root locus for negative K

Real axis

Im
ag

in
ar

y a
xi

s

FIGURE 10.10  Closed-loop root locus plots for pure pole angle control for positive and
negative gain values of K.

281Case Study with Pole-Balancing and Wall-Climbing Robots

	
mls s

b
l

s s mg s msV s2q q q() () () ()+ − = −
	

(10.34)

By taking the inverse Laplace transform, we obtain

	
ml

d
dt

b
l

d
dt

mg m
dV
dt

2

2

q q
q+ − = −

	
(10.35)

Now, using Equation 10.33 in Equation 10.35, we get

	
ml x

b
l

x mgx m x4 4 3 2

• •
+ − = −

	
(10.36)

To form a state equation, we need to eliminate the dot term on the right-hand side
of Equation 10.36. For this purpose, let us rewrite Equation 10.27 and process it as
follows:

	

V
V Ts

TsV s V s V s
R

R

= +
+ =

a

a

1

() () ()

By taking the inverse Laplace transform, we get

	

T
dV
dt

V V

T x V x

R

R

+ =

= −
•

a

a2 2

	
x

V
T

x
T

R
2

2•
= −a

	
(10.37)

Using Equation 10.37 in Equation 10.36, we get

	
ml x

b
l

x mgx m
V
T

m
x
T

R
4 4 3

2•
+ − = − +a

Now, we assemble the state equations:

	

x x

x
T

x
T

V

x x

R

1 2

2 2

3 4

1

•

•

•

=

= − +

=

a

282 Practical Robot Design

	
x

Tl
x

g
l

x
b

ml
x

Tl
VR4 2 3 2 4

1•
= + − − a

	
(10.38)

The above equations can be brought together into a state equation as shown below:

	

x

x

x

x

T

Tl
g
l

b
ml

1

2

3

4
2

0 1 0 0

0
1

0 0

0 0 0 1

0
1

•

•

•

•

























=
−

−











































+

−

















x

x

x

x

T

Tl

1

2

3

4

0

0

a

a








VR

	

(10.39)

This is of the general form

	 X A X B u
•

= ⋅ + ⋅ 	
(10.40)

where A is the state matrix and B is the input vector of dimensions 4 × 4 and 4 × 1,
respectively. What we have done in this section can be summarized as follows:

	 1.	We have derived a model where reference velocity VR is the manipulated
input to achieve the objectives of keeping the pole from falling and moving
the vehicle according to command signal.

	 2.	We have mentioned duty cycle-based chopper control as shown in Figure
10.4 in Section 10.2.1. It is important to note that the chopper duty cycle
period would be far shorter than the time constants of the system and the
sampling time to be used. This results in an equivalent cascade speed con-
troller gain of α and time constant T, which can be considered as an analog
system with the input VR and the output V. Once proportional gain G is
fixed, these two parameters above, α and T, remain fixed as it is evident
from Equations 10.25 through 10.27.

	 3.	We are just trying to understand the characteristics of the system by consid-
ering it as a continuous analog system. However, we have to bear in mind
that no analog controller is implemented in such modern systems. At the
end of this chapter, we will show how a digital controller can be imple-
mented for this system.

10.2.4 �S tate Model for the Pole-Balancing Robot from Robot
and Motor Data

Let us derive the continuous state model from the above equations to process it
further for controller design purposes. The following MATLAB code computes the
continuous state model.

The resulting A and B matrices calculated with the code given in Figure 10.11 are
important system matrices, which will be used hereafter.

283Case Study with Pole-Balancing and Wall-Climbing Robots

10.2.5  Pole Placement Controller with Servo Input Used as Offset

First, let us look at the nature of the PBR. We have discussed in Chapter 9 (Section
9.9.6) about a class of systems where

	 i.	The output to be servo controlled involves only one state variable.
	 ii.	All other state variables go to zero at steady state.
	 iii.	The system does not require a nonzero value of manipulated variable at

steady state.

FIGURE 10.11  Plant model calculations.

284 Practical Robot Design

In the case of the PBR, the servo-controlled output is distance x(k) = x1(k) and all
other states are only regulated. Hence, the first item is satisfied. At the beginning when
there is no position command, and at the end of motion at steady state, the robot should
stay still if there is no disturbance; hence, all states, except the output state, are zeros
that satisfy the second item above. Since, at steady state, the robot is stationary, the
velocity reference input has to go to zero, thus satisfying the third item. Thus, the PBR
fits well into the description of the class of systems we discussed in Section 9.9.6. Then,
we can use a control system as shown in Figure 9.31, which implies that we will try to
move the robot just by introducing an offset to the state variable x, using a step func-
tion. We will not include any integrator in the system but just an offset. We also know
that from the results we obtained with MATLAB code in Figure 10.9, there is one
unstable open-loop pole. We want to achieve a system behavior such that the closed-
loop system poles are where we want them, by using pole placement technique.

For the design, we normally start from the analog state model and from there
obtain a discrete state model and finally proceed to design the controller. We convert
the analog model to a digital state model with the sampling period of 9 ms. This is
the actual sampling time used in our practical implementation. It was possible to
implement such a sampling time using on-board DSP processor. We use MATLAB
code to obtain the discrete state model matrices, G and H, from analog system matri-
ces A and B. Matrices C and D do not change.

We discussed a few techniques for a discrete pole placement controller in an
earlier chapter. However, we are not concerned with writing algorithms for such
problems; we will simply use MATLAB command “K = place(G,H,p),” where G is
the discrete system matrix, H is the control vector, and p is the vector consisting of
the desired pole locations. We list the code assuming the values of A, B, C, and D
matrices obtained in Section 10.2.4. The MATLAB code, and the results are listed
in Figure 10.12. This code also calls a Simulink® model.

It is important to note that the closed-loop poles are just arbitrary for illustration
purpose and are not thought through. The Simulink model of the closed-loop system
that uses the newly designed controller is shown in Figure 10.13. The MATLAB com-
mand in the code that invokes the Simulink model is “[k,x,Out1,Out2,Out3]
=sim(‘figure1013mdl’)” where “figure1013mdl” is the file name of the
Simulink model. This command takes the simulation model and runs it to get outputs
Out1, Out2, and Out3 for plotting. When executed, simulation will plot the outputs of
distance, pole angle, and velocity reference, which is the only manipulated variable.

The simulation result is shown in Figure 10.14.
At this point, by carefully examining the results, we can get some insights into

the way this controller and the system functions as a whole. How is the robot made
to move? It is interesting to see that at the starting instant, the pole falls forward
and follows a certain pattern as shown in the “pole-angle” response in Figure 10.14.
Because of the forward leaning of the pole, the robot is made to move forward to
“catch” the pole. To understand this completely, we need to see how the controller
achieves this action using the manipulated variable VR. This can be seen with graph
marked as Vref manipulation in Figure 10.14. We see that the manipulated variable,
speed reference, goes slightly negative. In response to this, the robot moves slightly
backward; this causes the pole to fall forward and thus causes the chain of events.

285Case Study with Pole-Balancing and Wall-Climbing Robots

We have seen the responses in Figure 10.14, and we would like to take a second
look at the method we have used. In the above exercise, we did not make any effort
to achieve servo control. We simply introduced the reference position as an offset in
the distance measurement. This apparent “shortcut” will not always work for any
arbitrary system. The response gives us further insight into why this method works
here. The robot in its initial position as well as in its final position need not have any
steady-state velocity and hence the steady-state value of the control input (velocity
reference) is going to be zero as shown in Figure 10.14. At the end of the motion, the
position minus its offset should become zero and none of the other states, such as dx/
dt, θ, or dθ/dt, can have a nonzero value, and this is confirmed by Figure 10.14. Since
x and θ have stabilized, their derivatives cannot exist. Hence, at the steady state, all
the feedback signals are zero, which makes the computed value of the manipulated
variable zero, which is also confirmed in Figure 10.14. Since the steady-state velocity

FIGURE 10.12  MATLAB code and results for pole placement design.

286 Practical Robot Design

reference can be zero, error integration is not needed in this case. Error integration is
required only when a nonzero value of the manipulated variable is needed at steady
state. Because of this, this method of just introducing an offset to position feedback
works for this robot. In the above discussion, we have ignored disturbances, which
are always taken care of.

We have just made use of the unique nature of the PBR and avoided the use
of an integrator-based servo controller or any other sophisticated servo technique.
Moreover, an integrator will, in general, slow down the response. In a competition
environment, it is not desirable.

10.2.6 LQC Controller with Servo Input Used as Offset

The same model can also be controlled by the LQC-based controller. We have pro-
vided a MATLAB code to design and simulate the controller in Figure 10.15. The
Simulink model used here is the same as shown in Figure 10.13. Note the diagonal
matrices Q and R are chosen at first arbitrarily.

The response is given in Figure 10.16. Note that the response takes around 800
samples, and the maximum deviation of the pole angle is 0.07 radians and the veloc-
ity reference input is quite acceptable. The result can be influenced by the choice of

Demux

3
Out3

2
Out2

1
Out1

Step

k4

Gain4

k3

Gain3

k2

Gain2

k1

Gain1

y(n) = Cx(n) + Du(n)
x(n + 1) = Ax(n) + Bu(n)

Discrete state-space

FIGURE 10.13  Simulation model of the PBR controlled by a pole placement controller.

287Case Study with Pole-Balancing and Wall-Climbing Robots

Q and R matrices. The weight given to position is 20, the weight given to pole angle
is 200, and the value of R is 30.

10.2.6.1  Effect of a Change in Q Matrix
The response can be changed by choosing different weights for position and pole
angle. Let us change the weight given to position as 100 and the weight assigned
to pole angle as 10. Let us not change the value of R. The modified Q matrix in the
MATLAB code becomes

Q = [100 0 0 0;0 10 0 0;0 0 10 0;0 0 0 10];

When this is used, replace Q in the MATLAB code in Figure 10.15, the design
results obtained are shown in Figure 10.17.

The response obtained is shown in Figure 10.18. Notice that the position response
has become faster. However, the pole deviation goes to 0.15 radians. The demand on
reference velocity is actually higher than what we see in Figure 10.16.

0 100 200 300 400 500 600 700 800 900 1000
–0.5

0

0.5

1
Digital servo just by inserting an offset into output

Po
sit

io
n

0 100 200 300 400 500 600 700 800 900 1000
–0.05

0

0.05

0.1

0.15

Po
le

 an
gl

e

0 100 200 300 400 500 600 700 800 900 1000
–0.5

0

0.5

1

k; time = (k * 0.009) seconds

V re
f m

an
ip

ul
at

io
n

FIGURE 10.14  Responses for the simulation of robot for a step command (PPC design).

288 Practical Robot Design

Competition environment: In game-playing robotics, speed of response is a con-
sideration. In such a competition environment, to achieve the required speed of
response, the weight given to the position has to be higher than the weight given to
the pole angle. The price paid for this is that the pole angle deviation will be larger.
Furthermore, there will be more demand on velocity reference, which is used as
the manipulated input. This kind of explicit trade-off is possible in LQC design.
Nevertheless, the weights must be chosen carefully. The designer needs to consider
physical limits such as maximum thrust available and the slippage of the wheels

FIGURE 10.15  MATLAB code for LQC design and simulation with design results.

289Case Study with Pole-Balancing and Wall-Climbing Robots

on the floor, and so on. Another consideration is that too large values of pole angle
deviation will violate the linearity assumptions.

In pole placement design, the assigned closed-loop poles decide the response
of the system modes. It is not possible to identify which pole controls which state
variable. However, an experienced designer may still use pole placement design to
achieve the desired results.

A practical constraint regarding step input: The step command for position is
not a good idea in practice, even though it looks satisfactory in simulation. While
responding to a step input, we have observed that real robots would rush forward and
in the process the drive wheels would end up slipping on the floor. This will invari-
ably cause instability. To avoid this problem, the position reference must be increased
in small steps.

Servo control with integrator: What we have attempted here is to move the robot
just by introducing an offset to the position feedback. We have not attempted servo
control with an integrator. For more detailed information on servo implementation
using an error integrator, refer to Ogata (1995).

0 100 200 300 400 500 600 700 800 900 1000
–0.5

0

0.5

1
Servo control by adding offset to output (LQC)

Po
sit

io
n

0 100 200 300 400 500 600 700 800 900 1000
–0.05

0

0.05

0.1

0.15

Po
le

 an
gl

e

0 100 200 300 400 500 600 700 800 900 1000
–1

–0.5

0

0.5

1

V re
f m

an
ip

ul
at

io
n

k; time = (k * 0.009) seconds

FIGURE 10.16  Response for LQC controller for the given Q and R values.

290 Practical Robot Design

FIGURE 10.17  Design results for the new Q matrix values.

0 100 200 300 400 500 600 700 800 900 1000
–0.5

0

0.5

1
Servo control by adding offset to output (LQC)

Po
sit

io
n

0 100 200 300 400 500 600 700 800 900 1000
–0.1

0

0.1

0.2

0.3

Po
le

 an
gl

e

0 100 200 300 400 500 600 700 800 900 1000
–2

–1

0

1

2

V re
f m

an
ip

ul
at

io
n

k; time = (k * 0.009) seconds

FIGURE 10.18  Response for the modified Q matrix.

291Case Study with Pole-Balancing and Wall-Climbing Robots

10.2.7 �I mplementation of the Pole-Balancing Robot Controller Using
DSP Processor

It is possible to implement the controllers using many types of microcontrollers,
microprocessors, or even from PCs. In this design, we employed a DSP processor.
Many powerful DSP processors are available in the market, which have faster com-
putational speeds than microcontrollers. Also, there are many vendors offering DSP-
based motherboards with all the necessary accessories such as flash memory, RAM
onboard, and communication means. We will discuss the general principles involved
in such implementations using a DSP processor.

10.2.7.1  Hardware Setup
The system block diagram is shown in Figure 10.19. We have seen earlier that any
digital controller will have the following hardware parts around the plant to be
controlled:

	 1.	The processor with program memory and data memory
	 2.	The data acquisition system, which is used to collect data from the plant
	 3.	The controller output connected to a power amplifier
	 4.	The driver system, which provides the power to the motors

In many recent products, such hardware units may be integrated and the distinc-
tion between them may get fuzzy.

Figure 10.19 shows the robot and its control system. Note that the robot has a
motor driving a wheel through a gear mechanism. The power for the drive motor

DSP

Power
driver

Encoder
modules

Drop
encoder Motor

Pole

Motor
terminals

Encoder bus

Tape sensor feedback

Tape sensor array

FIGURE 10.19  Simplified setup of a pole-balancing robot control system.

292 Practical Robot Design

comes from the driver IC. It is necessary to make two kinds of measurement pole
angles and distance measurements. Pole angle measurement is done by the incre-
mental encoder. In fact, the pole is mounted on the shaft of the encoder so that, as
the pole swings, the encoder provides the angle of swing. The distance measurement
is done by another encoder attached to a drop wheel. It will be useless to just make
an encoder to cling to one of the wheels, since due to strong torque the driven wheels
will invariably slip on the floor. Then the distance measurements will be erroneous.
A better practice is to have drop-encoders attached to the body such that an addi-
tional free encoder wheel is always in contact with the support surface due to grav-
ity, or by spring loading it with just enough force to ensure contact. The figure also
shows the side view of sensor arrays mounted at the bottom of the base board to give
feedback on the cross-tapes on the platform.

Even though we show the processor and encoder driver assembly in one box, it
is rarely possible to do that. DSP boards used in this design are pretty standard and
are available off the shelf. Here, we use a Texas Instruments ezDSP 2047 board from
Spectrum Digital Inc., which has a 32-bit fixed point DSP processor, with enough
data as well as program memories. For practical reasons, such boards rarely come
with power drivers. This board provides two channels of encoder inputs and many
digital and analog I/Os.

Some systems may need additional encoders as well. There may be ground sensors
to see the demarcation tapes stuck on the robot platform. All these support systems are
usually provided on a sisterboard, and they are designed in such away to be attached
to the motherboard consisting of the main DSP processor. While the motherboards
are bought off the shelf, the sisterboards need to be designed and fabricated, unless a
suitable board with drivers and encoders can be found. The safe practice in robotics is
to avoid ribbon cables and multiconnectors as much as possible to link these boards.
Typically, the boards are piggybacked on each other for firmer mechanical grip and
reliable signal flow between them. These kinds of detail need to be worked out depend-
ing on the main platform the designer chooses. A system designed and used by the
authors in an earlier version of their robot is shown in Figure 10.20. The figure shows

FIGURE 10.20  Photograph of the single-degree-freedom PBR with pole detached.

293Case Study with Pole-Balancing and Wall-Climbing Robots

the sensor arrays and the threaded pole supports bolt to which the pole can be fitted
firmly, so that it can swing in the sagittal plane freely. Such a pole will have a single
degree of freedom.

In this early design, note that there is a DSP motherboard, a driverboard linked by
a ribbon cable contrary to our recommendation. Figure 10.21 shows the pole when
fitted to the pole support system and a drop-encoder. The drop-encoder makes sure
that the encoder is always in touch with the platform surface and reduces the error in
distance measurement. There are ground LED sensors to locate the tapes, which are
essential to synchronize and correct the distance measurements. Even though we use
drop-encoders which are not “supposed” to slip, errors do occur due to high accel-
eration especially at the places where the robot changes direction. The encoders used
were MTL MES 20-1000P. When fed to the 2016-quadrature decoders, they can give
a resolution of 4000 counts per revolution. The driver IC used is the L6203 H-bridge
driver, which has enough power capacity to drive the motor.

10.2.7.2  Software for the Robot
So far, we have seen the control methods to keep the pole close to the vertical posi-
tion and move the robot at the same time. It is necessary for us to first enlist what
we expect the robot to do, before we start discussing the program sequence. In some
competitions, the first task of the robot is to balance the pole and stand in one region
of the platform for a predefined period. This is called the static balancing part. Then,
the robot is expected to move to the other side of the platform and then retrace the
path back to the starting place. The robot may repeat this many times. Every time
one up and down travel is completed, it is counted as one lap. A robot is expected to
perform as many laps as possible within a given fixed period of time. To increase the
challenge, if there is a curved path on the platform, then the robot should move along
the curved path. All these functions should be fulfilled without any operator interven-
tion. Hence, the robot should have the capability to keep track of the time. Usually,
time keeping is performed by means of timer interrupts. These interrupts are set up
at the beginning of the program, before the processor begins to start controlling the

FIGURE 10.21  The drop-encoder and the pole support system.

294 Practical Robot Design

robot during initialization of the processor. We have mentioned the cascade control
of the velocity with prefixed gain earlier, G. In our design, the basic interrupt period
is set to 0.125 ms. The cascade control can be done inside the interrupt service rou-
tine or in the main loop. Because of this, the velocity control is transparent to the
main loop of the program. We choose to change the manipulated variable every 9 ms
in the main loop. We know that this is short enough to get smooth control of the robot
motion and balancing. This is the robot sampling and control interval. Every 9 ms,
the processor has to perform many operations including capturing data about the
robot position, velocity, pole angle, and pole angular velocity. In addition, the robot
calculates the feedback control value for the manipulated variable and outputs it as
velocity reference. Every major sampling interval, which is 9 ms, the overall servo
controller produces a velocity reference value. But, the cascade controller acts every
basic sampling interval of 0.125 ms to obtain the velocity error and implements a
duty cycle. This mimics the case of a continuous time cascade control. If cascade
control cannot be done inside the interrupt service routine, it can be done even in the
main loop every 9 ms without compromising the performance.

The first part of the general flowchart is shown in Figure 10.22. Let us summarize
the events taking place at the initial part of the software. First, the processor is set up
with necessary pins as inputs and output lines and the motors are disabled. We know
that at this time that the motor power is switched off. In some cases, the enable line
of the driver is directly controlled by the processor, and hence the software is used to
disable the motor irrespective of the PWM value. Then, the timer interrupt is set up
for creating interrupts every 0.125 ms. This value is decided empirically. The ezDSP
2047 is a complex processor with many timers. Some are dedicated for PWMs, and
some are dedicated for encoder readings, and so on. We found that 0.125 ms is suit-
able, since we are using the same timer for generating interrupts as well as PWM sig-
nals. In any case, we have an instruction to keep the PWM neutral. What is neutral
depends upon what connection we choose for the driver (refer to Figure 10.5). Then,
we also have to set the reference velocity VR to zero. Inside the interrupt routine,
we need to maintain a count of these basic intervals (IntCount), and we set them to
zero. After the completion of the initialization stage, we enable the interrupts. At this
time, the robot operator would have placed the robot at the starting point and would
be holding the pole vertically. The robot power switch has not been switched on yet.

Once the robot is powered on, the program enters the initial loop. At this point, the
processor reads all the I/Os of pole angle and position encoders. It also sets the PWM
neutral. During this part, the timer interrupts keep occurring and incrementing the
“Intcount.” Here, we wait for a count of 72 to occur since 72 × 0.125 ms = 9 ms,
which is our control interval.

When this happens, the processor checks if the start button has been pressed.
If it is not, then it moves on repeat the “idle” loop after resetting the “Intcount.” If
pressed, it implies that the motor has been switched on and the robot has to start the
first static balancing part. Before we go any further, let us see what happens inside
the interrupt service routine. This routine increments the interrupt count and also
implements the cascade controller to make the robot move in accordance with the
velocity reference provided by the controller. Even though this velocity reference
changes every 9 ms, we may need to control the motor more often. This is shown

295Case Study with Pole-Balancing and Wall-Climbing Robots

Initialize I/O pins for
encoder and sensor inputs

and driver pins outputs

Disable motors

Start

Setup timer for minor interrupts at 0.125 ms
Keep motor PWM neutral and VR = 0

Clear integrator output
Clear interrupt count (intcount)

Enable interrupts

Update pole angle and
position data. Keep motor

PWM neutral

Yes

Yes

No

No

A

Timer
interrupt

Return

Intcount = 72?

Intcount = 0
start pressed?

Ti
m

er
 in

te
rr

up
t s

er
vi

ce
 ro

ut
in

e o
cc

ur
rin

g
ev

er
y 0

.1
25

 m
s

FIGURE 10.22  First part of the software flowchart (initialization and waiting for start
button).

296 Practical Robot Design

in Figure 10.23. However, we have given two versions of it. In version 1, the proces-
sors just increments the interrupt count and returns. It is a trivial action, but still
it is needed to keep track of time. After all, the entire data processing cannot be
completed in 0.125 ms. Since the system is implemented with one timer taking care
of interrupts and PWM, the interrupt interval has to be small. With the addition of
overheads of entering and leaving the service routine, all operations cannot be com-
pleted. If the processor is fast enough, some of the functions such as motor cascade
control can be done inside the interrupt service routine. This is shown in version 2.
In earlier models, we used the second version, but in complex cases which will be
described latter, the version 1 was implemented. Then, one can conclude that in ver-
sion 1, motor cascade control must be executed in the main loop and in version 2, that
part can be left out of the main loop.

Now, we are ready to discuss the next part. We know that the robot has a few
different functions. We may arbitrarily divide them as stages. We introduce a vari-
able “stage” for convenience. Stage = 1 indicates that robot is doing static balancing
keeping the pole balanced close to the vertical position while staying within the first
boundary lines for the prescribed duration of time. During this time, the robot should
not move beyond the demarcation of start position. Then, it becomes necessary to bal-
ance the pole by mildly moving the base and keep track of time to find when to start
moving by switching the stage to 2. Stage = 2 indicates that robot is moving to the
other side of the platform beyond the second boundary line. Stage = 3 indicates that
the robot is returning to reach the starting region, and finally Stage = 4 indicates that

Timer interrupt

Increment intcount

RTI

Timer interrupt

Increment intcount

RTI

Read encoders
Compute velocity

Compute velocity error
Compute PWM

Implement PWM

Version-1 Version-2

FIGURE 10.23  Interrupt service routine for cascade control.

297Case Study with Pole-Balancing and Wall-Climbing Robots

the robot is doing final static balancing after repeating stage 2 and stage 3 as many
times as possible, within the allocated time. We have terminated the flowchart at point
A in Figure 10.22. We continue that in Figure 10.24. After we enter the loop at “A,” we
set stage = 1 and also we introduce a “LoopCnt” and set it to 0. The purpose is to keep
a track of time. The next part of the software manages the robot through the stages
while also changing stage numbers as the robot performance progresses.

The “Master Controller” box of Figure 10.24 is shown in detail in Figure 10.25.
The process of stage manipulation and motion management are done in an inte-

grated manner starting from point “A” until the “Master Controller” box. Through
this section, timer interrupts are active. Interrupts occur every 0.125 ms and IntCount
is incremented in the interrupt service routine. In the main loop, after performing
the Master Controller’s action, the processor waits for “IntCount” to reach 72, which

xcom = 0

A

Timer interrupt
service routine

occurring
every 0.125

msec.

Stage = 1
LoopCnt = 0

Stage = 1?Time < Tstatic?
Yes

Stage = 2

Stage = 2?x < xmax?
Yes

Yes

No

xcom = xcom + xinc
Yes

Stage = 3

No

Stage = 3?x > xmin?
Yes

xcom = xcom - xinc
Yes

Timeleft >
onelaptime +
Finbaltime?

Stage = 4
xcom = 0

NoYesxcom = 0
Stage = 2

Master
controllers

No No

No

Intcount <= 72
Motor

switch off?
Yes

No
Yes

Neutral
PWM
VR = 0

Disable int
End

No

Timer
interrupt

Return

Inc LoopCnt
Time = LoopCnt x 0.009

IntCount = 0

FIGURE 10.24  Main flowchart of the pole-balancing robot.

298 Practical Robot Design

is equivalent to 9 ms and then major looping is executed. This guarantees that the
major control interval is strictly 9 ms, and this is the basic requirement of DDC.
After 9 ms elapses, if the motor switch is still ON, “LoopCnt” is incremented and
the elapsed time is calculated. Here, the IntCount is also reset for the next loop, after
which the processor loops back to the top.

Now, we look into how the stages are manipulated. “xcom” is introduced to
indicate the position command. At Stage = 1, initially the processor loops through
the static balancing part, keeping track of time. The robot does not move since
xcom = 0. When the time goes beyond Tstatic, then the stage is set to 2. After
this, the xcom is slowly incremented in steps of “xinc.” Then, the processor keeps
executing second horizontal segments of the flowchart until x goes beyond xmax,
which is the upper demarcation distance on the platform. At this point, the stage
is set to 3 and xcom is slowly decremented in steps. The processor keeps execut-
ing the third horizontal segment of the flowchart until x goes below xmin, which
is the lower demarcation at the starting point of the platform. When this happens,
the software checks if there is enough time for one more up and down travel and
final balancing time (Timeleft > One lap time + Finbaltime?). If the answer is yes,
the stage is set to 2 again and one up travel will be executed, followed by Stage = 3
for one down travel. This sequence will continue until there is not enough time to
complete one more lap and final balancing time. Obviously, the programmer should
have a good idea of how long it will take the robot complete one up and down

Output duty cycle

Compute

Update pole angle θ,
angular velocity ω,

position x,
velocity v

u = KtX

VR = u

Tpwm

G(vR − v)
=δ

FIGURE 10.25  “Master Controllers” shown in Figure 10.24.

299Case Study with Pole-Balancing and Wall-Climbing Robots

motion. When there is no enough time, the stage is set to 4. This makes the robot
keep balancing at the starting point with the “xcom” set to zero. When the operator
switches the motor enable off, PWM is set to neutral and interrupts are disabled.
This marks the end of the run. The robot we discussed in detail thus far was imple-
mented and tested successfully. A video showing the robot in action can be viewed
at (PBR-Single Degree 2012). In the video, the PBR travels on a platform which
has flat and mildly sloping surfaces. It needs to be mentioned that when the terrain
is inclined, pole angle calculations are adjusted to find the actual inclination of the
pole from vertical. Since we are using a cascade velocity controller, this mild slope
(5.7°) does not affect the performance.

10.2.8 T wo-Degree-Freedom Pole-Balancing Robot

The robot described earlier has only one degree of freedom. The pole is free to move
forward or backward, since it is fixed to horizontal shaft-supported bearings on both
sides. In an advanced game event, it was stipulated that the pole should have two
degrees of freedom. A picture of the support mechanism is shown in Figure 10.26a.

When the pole can fall in front–back (sagittal) as well left–right (transverse)
directions, the robot base should be able to move in both X and Y directions. In other
words, robot mobility requires “omni-wheels” as shown in Figure 10.26b.

10.2.8.1  Control Philosophy
If we write and analyze the state equations for controllers, we will have a state equa-
tion with twice the dimension and things will get mathematically out of hand. If
we assume that the dynamics of X and Y directions are decoupled, then they can be
treated separately. The situation is described below where As are system matrices,
Bs are control matrices, and ux and uy are manipulated variables in the x and y direc-
tions, respectively.

FIGURE 10.26  (a) The pole support for two degrees of freedom. (b) A typical omni-wheel.

300 Practical Robot Design

	

X

Y

A A

A A

X

Y

B B

B B

•

•

















=


















 +






11 12

21 22

11 12

21 22 












u

u
x

y

	

(10.41)

We can assume that the nondiagonal elements in A and B matrices are sparse or
null and separate them as

	

X A X B u

Y A Y B u

x

y

•

•

= +

= +

11 11

22 22 	

(10.42)

Then, two controllers can be implemented independently. A picture of the PBR
with two degrees of freedom is shown in Figure 10.27 and a video of it can be viewed
at PBR-Two Degree (2012).

10.2.9 �E stimation of Angular Friction Term b Used in PBR
from Experiment

We have used friction coefficient, b, of the pole support system in Equation 10.17
and the robot friction coefficient, Br, in Equation 10.18. Subsequently, the assumed

FIGURE 10.27  A two-degree-freedom pole-balancing robot.

301Case Study with Pole-Balancing and Wall-Climbing Robots

values of those constants are used in many calculations, for example, in MATLAB
programs given in Figures 10.9 and 10.11. We have illustrated the method to evaluate
the robot friction coefficient Br in Chapter 6. In this section, we illustrate a procedure
to estimate b. The angular friction of a pole support system can be easily estimated
by conducting a simple experiment and by treating it as a regular pendulum. Most
analysis of pendulums does not take into account the friction term. For reasonable
control accuracy, we need to have at least an idea of the order of magnitude of this
friction. In robotic games, the limiting value of b is directly or indirectly specified.

First, let us undertake some modeling and analysis by referring to Figure 10.28.
We reiterate our assumptions that the pole consists of a mass, m, attached to a rigid
massless pole of length l. The unit of the angular friction term “b” is in Nm/rad/s.

Then, the frictional torque is given by

	
t b

d
dtf = q

	
(10.43)

If the force due to friction acting on the mass is Ff, then lFf = tf = b(dθ/dt).
Obviously,

	
F

b
l

d
dtf = q

	
(10.44)

Hence, the force balance equation can be written as

	
ml

d
dt

b
l

d
dt

m g
2

2

q q
q+ = − sin

mg cos θ

mg sin θ

mg

Pole-balancing robot
upside down

θ

θ

FIGURE 10.28  Pole-balancing robot kept upside down for pendulum experiment.

302 Practical Robot Design

Since sinθ ≈ θ

	
ml

d
dt

b
l

d
dt

m g
2

2 0
q q

q+ + =
	

(10.45)

Taking the Laplace transform, we can write

	

ml s s s
d
dt

b
l

s s m g s

m

2 0 0 0 0q q
q

q q q() () () () () ()− −





+ −  + =− − −

ll s
b
l

s m g s ml s
b
l

ml
d
dt

2 0 0+ +





= +





+− −q q
q

() () ()
	

(10.46)

Let us assume that

	
q q

q
() ()0 0 0− −= =m

d
dt

and
	

(10.47)

Our analysis starting from the instant pendulum is let go at an angle of θm.

	
q q()

()
()

s
ml s b l

ml s b l s m g m= +
+ +

/
/2

	
q q()

()
() ()

s
s b ml

s b ml s g l m= +
+ +

/
/ /

2

2 2
	

(10.48)

Standard solutions for Equation 10.48 can be found in the control literature. Here,
we derive the time domain solution from basics. For mathematical manipulation, we
reorganize Equation 10.48 and obtain

	

q()
()

() () ()

(

s
s b ml

s b ml g l b m l

b

=
+

+() + −()






+

/

/ / /

/

2

2 4

2

2

2 2 2 2 4
2

mml

s b ml g l b m l
m

2

2 2 2 2 4
2

2 4

)

() () ()+() + −()





/ / /

q

	

(10.49)

Let us define

	

a
b
ml

g
l

g
l

b
m l

n

=

=

= −

2

4

2

2

2 4

w

w
	

(10.50)

303Case Study with Pole-Balancing and Wall-Climbing Robots

Then, taking the inverse Laplace transform, we can write

	
q w w w q() cos sint e t

a
e t m= +





− −at at

	
(10.51)

Now, let us define an angle φ as in Figure 10.29.
Then, the solution can be rewritten as

	
q q w

w w f() sin()t e tm
n at= +−

	
(10.52)

a = (b/2 ml2) is the attenuation factor for the oscillation, which happens to be half
of the coefficient of the s term in the denominator polynomial in Equation 10.48. In
the control theory, this is a standard result. Obviously, at t = 0

	 θ(t) = θ(0) = θm	 (10.53)

Now, let us consider Equation 10.52. While ignoring the actual wave form, we
denote the amplitude by A(t) and write

	
A t em

n at() = −q w
w 	

(10.54)

It is very clear that the envelope of the sine wave decays according to an exponen-
tial law. At t = t1, the amplitude of the envelope is A1 and at t = t2, the amplitude of
the envelope is A2. Then

	

A
A

e

e
e e

a
t t

m
n a t

m
n a t

a t t a t t1

2

2 1

1

2

1 2 2 1

1

= = =

= −

−

−

− − −
q w

w
q w

w

() ()

()
ln

AA
A

1

2 	

(10.55)

2ml2
ba =

l
g=

4m2l4
b2

l
gω −=

φ

ωn

FIGURE 10.29  Definition of angle φ.

304 Practical Robot Design

	
b ml a

ml
t t

A
A

= = −2
22

2

2 1

1

2()
ln

	
(10.56)

EXAMPLE 10.1

Let us simulate a case with known b and verify.

Mass = 0.127 kg
Length = 0.99/2 m

From Equation 10.45

	

ml
d
dt

b
l

d
dt

m g

d
dt

b
ml

d
dt

g
l

2

2

2

2 2

0
q q

q

q q
q

+ + =

= − −

	

d
dt

C
d
dt

C
2

2 1 0
q q

q= − −
	

(10.57)

Of course the angle θ can be solved by double integration, while taking care to
provide appropriate initial conditions. A Simulink diagram for the friction estima-
tion test is shown in Figure 10.30.

Let us assume that the friction coefficient b is 0.01 Nm/rad/s. Then, the initial
angle, θ = 0.10 rad and the ω = 0. The MATLAB program for the simulation is listed
in Figure 10.31.

	
b ml a

ml
t t

A
A

= =
−

2
22

2

2 1

1

2()
ln

	
(10.58)

We notice from Figure 10.32 that at time

	 t1 = 5s  A1 = 0.045

Integrator

C1

CO

Gain

Gain 1

Integrator1
Out1

Scope

1–
– 1 1s s

FIGURE 10.30  Simulink model for friction test example.

305Case Study with Pole-Balancing and Wall-Climbing Robots

and

	 t2 = 10s  A2 = 0.021	 (10.59)

Hence

	
b = × ×

−
=2 0 13 0 495

10 5
0 045
0 021

0 00971
2. .

()
ln

.

.
.

	
(10.60)

This estimate is quite close to the assumed b value of 0.01 used in the simula-
tion experiment.

FIGURE 10.31  MATLAB program for simulation of pole as a “normal” pendulum.

0 5 10 15 20 25 30
–0.1

–0.08

–0.06

–0.04

–0.02

0

0.02

0.04

0.06

0.08

0.1

Time, s

A
m

pl
itu

de
, r

ad
ia

ns

FIGURE 10.32  Simulation result.

306 Practical Robot Design

10.3  WALL-CLIMBING ROBOTS

WCRs can be very useful in real world. The WCR competition stimulates techno-
logical development in this field. While making a robot to climb a structured wall
is quite straightforward, it may be difficult if the wall involved is unstructured.
Furthermore, the recent trend in this competition is to restrict the clinging methods
and in some games the walls are made of nonmagnetic material. Even in structured
environments, nonmagnetic clinging may pose a problem. In this section, we will see
two kinds of philosophies involved in making a WCR. Before we do that, let us see
a sample structure used in wall-climbing competition concerned here. Figure 10.33
shows a diagram of the structure that is made of nonmagnetic material. The robot
has to be placed in the start region. It is expected to move toward the wall, move
up the wall, and travel under the ceiling beyond the finish line. Then, it is expected
to travel back by retracing the path back to the start region. All along, a part of the
robot should be in contact with the platform (that is flying or other means are not
allowed). The robot should climb and travel by clinging to the surfaces. The travel-
ing time from start to the finish and back to the start line is clocked, and the fastest
robot is the winner.

10.3.1 F lipper Wall-Climbing Robot

The flipper WCR, shown in Figure 10.34, is similar to what we saw in the in the gear
ratio design example discussed in Chapter 5, except that it has two main drive motors
and one motor for cruising.

This flipper robot is much simpler to construct, program, and operate. It consists
of two main arms, which can rotate through more than 180° using two driver motors.
The robot also has four wheels placed on two axles, one in front and one in back at
the one side of the arm linking the flipping arms, which is the main body on which
the motherboard and driverboards are mounted. As shown in Figure 10.34, the robot
has suction pads that are operated with a suction pump and valves. The suction pads
provide the gripping needed for climbing. There can be two, four, or even six suction
pads depending on the design. The robot has limit switches to indicate the limits of

Start region

Finish line

Start line

FIGURE 10.33  Wall-climbing robot competition platform.

307Case Study with Pole-Balancing and Wall-Climbing Robots

motion and also marking the completion of the specific step. The wiring diagram of
pneumatic system is shown in Figure 10.35.

Figure 10.35 shows a typical and simplest pneumatic wiring diagram used for the
robot. The suction cups are named group A and group B. The pneumatic valves A
and B are connected to the respective groups. These valves are electrically activated.
If turned ON, then they do a straight connection from inlet to outlet (top to bottom),
which is m to q and n to p as shown. If switched OFF, they cross-connect, by con-
necting m to p and n to q. The ON and OFF conditions vary from manufacturer to
manufacturer. Off-the-shelf suction pumps are usually the diaphragm type and have

Base wheels

Mother board
driver board

Flipper motors

Suction cups

Limit switch

FIGURE 10.34  Diagram of the WCR-flipper robot.

Vacuum pump

Valve A

Suction cup (set A)

Valve B

m

q p p

nn m

q

Suction cup (set B)

Sealed

Vac Out

FIGURE 10.35  Pneumatic wiring diagram.

308 Practical Robot Design

one inlet and one outlet. When switched on, they draw air through inlet and send air
through the outlet. The above wiring is done in such a way that the pump is always
ON. As can be seen in the wiring diagram, when valve A is ON, it is straight-con-
nected and valve B is cross-connected. Also, note that the points marked p are sealed
airtight on both valves. Obviously, the suction is applied to suction cups set A since
path m–p in valve B is sealed. Outgoing air from the pump has two paths. But, path
n–p of valve A is sealed. Hence, the outgoing air goes through path n–q of valve B
and exits via cups set B. So, while suction is applied to cups set A, the air is purged
through suction cups set B. If switching is reversed, the suction cups set B will suck
and get attached to the wall and suction cups set A will be purged away from the wall.

10.3.1.1  Overall System Configuration of Flipper WCR
Since the flipper WCR has three motors, sensors, vacuum pumps, and pneumatic
valves, we would like to illustrate a simplified system diagram for the same in
Figure 10.36.

The figure is self-explanatory. We can see that the three motors can be controlled
using encoder feedback. The suction pumps can be turned on or off. Valves can be
individually controlled to produce vacuum to stick the pad to the surface or purge the
pad from surface. Pad sensors provide information regarding the respective pads stick-
ing to the wall surface. The photograph of the entire robot is shown in Figure 10.37.

10.3.1.2  Control of Suction Pad Arms and Cruise Motor
The suction pads A and B are rotated using the flipper motors shown in Figure
10.34. Both joints are equipped with encoders. In most stages of climbing, typically,
the motor controller implements a velocity control to rotate the joint of the suction

DSP and sister board for instrumentation and motor drives

Pad A motor
and encoder

Pow
er

Fe
ed

ba
ck

Pad B motor
and encoder

Pow
er

Fe
ed

ba
ck

Cruise
motor and
encoder

O
n/off

Suction
pump

A

Suction
pump

B

O
n/off

Valve
for pad

 A

Valve
for pad

B

Pow
er

Fe
ed

ba
ck

Vacuum
/purge

Vacuum
/purge

Pad A
sensors

Pad B
sensors

Sensor
feedback

Sensor
feedback

Pad A Pad B

FIGURE 10.36  System configuration for flipper WCR.

309Case Study with Pole-Balancing and Wall-Climbing Robots

pad, stuck to the wall, until the other suction pad touches the wall or ceiling, which
is indicated by the sensors. When this happens, the controller switches to position
control mode and the pad arms are held at the given positions briefly before the next
move. Thus, depending on the need to hold position or rotate the suction pad arm
with the given angular velocity, the software implements the either position con-
trol or velocity control, using a simple P-only controller. The software generates an
appropriate velocity reference or a position reference to control the motors. For the
cruise motor, only velocity control is implemented.

There are three motors in the robot, two for pad arm joints and one for cruise
wheel. The controller for any particular motor is shown in Figure 10.38.

The processor can act as a position controller as well as a velocity controller. In
the case of position control, a simple P-only control is computed as

	
u k K p r() ()= × −1 q q

	 (10.61)

where Kp1 is the proportional gain for position control, θr is the reference position
generated by the program, and θ is the position obtained from the encoder. In the
case of velocity control, a P-only controller is computed as

	 u k K p r() ()= × −2 w w 	 (10.62)

FIGURE 10.37  Photograph of the flipping WCR.

310 Practical Robot Design

where Kp2 is the proportional gain for velocity control, ωr is the reference angular
velocity generated by the program, and ω is the angular velocity calculated based on
two consecutive encoder readings. There is no difference in wiring between position
control and velocity control.

10.3.1.3  Operation Sequence of the Flipper WCR
We will explain the operation sequence of the robot using line diagrams given
in Figure 10.39. Stages are indicated in circled numbers. In the beginning, the
robot is placed on its base, so that it rests on the four wheels attached to the body.
The arm A is turned horizontal in such a way that the pad holding the cups of
set A is vertical as shown in stage 1. Then, power is applied to the cruise wheels
fixed to the present bottom side of the frame, to make it go toward the wall.
This motion continues until the limit switches in pad A sense the vertical wall
as shown in stage 2. At this time, valve A is straight connected and the pump is
also turned ON, and the set A cups get attached to the wall. Once the suction cups
are attached to the wall, the motor of arm A is activated to turn the whole body
counterclockwise so that the set B cups get to touch the vertical wall as shown in
stage 3 of Figure 10.39. Subsequently, valve A is cross-connected and valve B is
straight-connected. This causes the set B cups to get stuck to the wall, and the set
A cups lose grip, ready to be purged and cranked away from wall. Now, joint B
is activated so that the body turns again counterclockwise and at the same time
joint A rotates to make pad A ready to face the wall, when it approaches the wall
as shown in stage 4. At the end of stage 5, a complete flipping motion for climbing
is accomplished. This process can go on until the upgoing arm cannot reach the
vertical wall because the ceiling is obstructing. This indicates that the robot has
reached stage 6. After how many upward steps this happens must be precalculated
or found out by experiments.

At stage 6, both joints are activated, and they are all on the move. Here, we have
not shown cruise wheels in the figure, since they can be on the either side of the body.
Joints are not named, and we call them lower and upper joints. The speeds must be
carefully programmed so that the upper suction pad’s outer side touches the ceiling
first. After sensing this, the upper joint is eased and the lower joint pushes further.
This causes the upper pad to tilt until it completely touches the ceiling, activating
all sensors. Appropriate time delays may need to be introduced. Now, suction is
switched to the upper pads, and the lower pads will lose grip. Again, the upper joint

Processor and
instrumentation

Encoder feedback

Power
driver

PWM Motor
encoder
system

FIGURE 10.38  Control system for pad arms and cruise motors.

311Case Study with Pole-Balancing and Wall-Climbing Robots

is asserted and cranked counterclockwise, and the lower arm is flipped so that it is
ready to touch the ceiling. Further motion is continued until the robot crosses the
finish line. The steps are usually precalculated. The return journey is similar, except
that on the way back, the ceiling to wall search has to be performed. At the end of
downward motion, the situation will look as stage i shown in Figure 10.40. Now, the
lower joint will be A, and pad A will be stuck to the wall. The upper joint is B and
the set B cups will be purged. For a successful return cruising, this must be the situ-
ation. Once again, this is ensured by conducting experiments and by trial and error.
The body length is adjusted so that at stage i, joint A is at the bottom. Also, as joint
A is eased to let the cruise wheels touch the floor again by going through the motion
shown in stage j, the clearance should be just sufficient and not too large for smooth
landing. After landing, valve A is set to purge the set A cups. Now, the cruise wheels
are powered to go back to the starting point. A video of the flipper WCR can be
found in WCR-Flipper Type (2012). This video will also give a better understanding
of the programming involved.

1 2

43

5 6

B

A

B

A

A

B B A

A

B

FIGURE 10.39  Stages of climbing action by the flipper wall-climbing robot.

312 Practical Robot Design

10.3.2 D esign of a Wall-Climbing Robot Using Dynamic Suction

The robot we describe here uses Bernoulli’s equations to achieve the same objectives
discussed for the WCR in the previous secton. Therefore, we will call it “Bernoulli’s
WCR.” A line diagram of the robot is given in Figure 10.41.

Figure 10.41a shows the line diagram of the robot. It shows a box with two open-
ings: one on the top and the other on the front side, fitted with cone-like structures
extending inward. Both are fitted with very high power fans driven by brushless
DC motors. These motors have been explained in Chapter 6 on actuators. At the
bottom and top of the front side of the robot, we have driven wheels for moving on
the horizontal part of the platform and climbing the front wall. On the horizontal
part, the bottom wheels can do the job. But, while climbing up, both wheels are
activated. While moving under the ceiling, only the top-driven wheel is sufficient
and effective. On the front and top, we have four tiny caster wheels to keep the
robot at a carefully chosen distance from the vertical and ceiling surfaces, respec-
tively. The distances are chosen experimentally. The driven wheels are also placed
to maintain the same clearance. Both driven wheels can be activated individually
or together. They have encoders fitted to measure the distance traveled. Both front
and top surfaces are fitted with limit switches as well. The system configuration is
shown in Figure 10.42.

ji

B

A

B

A

FIGURE 10.40  The transition from wall to base on return path.

(a) (b)

Fans

Caster wheels
Driven wheels

Top

Fr
on

t

Point X

Point Y

FIGURE 10.41  WCR using dynamic suction: (a) basic robot structure and (b) air flow.

313Case Study with Pole-Balancing and Wall-Climbing Robots

10.3.2.1  Dynamic Suction Principle
Let us first describe the dynamic suction principle. For this purpose, we must study
some illustrations before we embark on the concept of dynamic suction as applied
to WCR.

The well-known Bernoulli’s principle states that in the environment of steady
flow of liquid, the increase in flow velocity causes a decrease in pressure and vice
versa. This is shown in the case of a liquid flowing through a constriction in a pipe
in Figure 10.43a and in the case of an airfoil in Figure 10.43b. These are the basic
principles that we exploit in the design of a WCR design.

An experiment can be easily devised to demonstrate what happens when on one
side of a foil or thin plate air flows fast and on the other side it is almost stationary.
You will see that the foil experiences a force, which pushes it toward the side where
there is high velocity airflow (Air-flow 2013).

The original equation was derived for the case of incompressible liquids by
Bernoulli (Rajput 2011), and it is given below

	

p
z

v

g
p

z
v
g

y
y

y x
x

x

r r
+ + = + +

2 2

2 2 	
(10.63)

DSP and sister board for instrumentation and motor drives

Sensor
feedback

Front bottom
cruise motor
and encoder

Front side
BLDC motor

Front
sensors

Front top cruise
motor and

encoder

Top
sensors

Top side
BLDC motor

Sensor
feedback

Fe
ed

ba
ck

Fe
ed

ba
ckPow

er

Pow
er

BLDC motor
control

BLDC motor
control

FIGURE 10.42  The system configuration for WCR using Bernoulli’s principle.

(b)

Decreased pressure

Lift

Increased pressure

(a)

Decreased pressure

Increased velocity

FIGURE 10.43  Bernoulli’s principle in action.

314 Practical Robot Design

where px and py are the static pressures at two points X and Y, respectively, and ρ is
the density of the fluid at points X and Y. Since the fluid is incompressible, the density
remains the same. zx and zy are the altitudes of points X and Y from an arbitrary refer-
ence and finally vx and vy are the velocities of air flow at points X and Y, respectively.

Bernoulli’s equation is written in many forms. We have considered a type where
dimensions of all terms in the equation are in meters of fluid head. For example, the
unit of py/ρ is (kg/m2)(m3/kg) = m.

Similarly, the unit of v gy
2 2/ is (m2/s2)(s2/m) = m as well. Obviously, the unit of zy

is meter.
When we try to apply this theory to air, which is readily compressible, we face

some discrepancies due to possible changes in densities. However, it is generally
agreed that the density does not change considerably for speeds up to Mach 0.3. This
translates to 100 m/s, which is hardly reached in our application so we can safely
assume that density does not change.

Now coming back to our application, Figure 10.41b shows the air flow pattern
between the ceiling and the top of the robot. We have marked two points X and Y. Let
us apply Bernoulli’s equation for these two points

	
p z

v

g
p z

v
gy y

y
x x

x+ + = + +r r r r
2 2

2 2 	
(10.64)

where px and py are the static pressures at point X and Y, respectively. Let us rewrite
Equation 10.64 as

	

p p z z
v
g

v

gy x x y
x y− = + −() + −







r r r
2 2

2 2
	

(10.65)

Note that vx ≫ vy and in fact vy = 0. Furthermore, we know that zx ≈ zy. Hence,
we can conclude that in the right-hand side of Equation 10.65, the second term
dominates, and it is a large positive quantity, while the first term is insignificant.
This indicates that there is a large difference in pressure from X to Y. That pushes
the robot upward and keeps it stuck to the ceiling. The caster wheels maintain the
appropriate gap. The same phenomenon applies to the front also when the front fan
is activated in the vicinity of the front wall. The photograph of such a robot is shown
in Figure 10.44.

10.3.2.2  Operation of the WCR Using Bernoulli’s Principle
The operation of this robot is quite straightforward. First, the front cruise motor is
activated. The robot moves forward from the base of the competition structure until
front sensors indicate that the robot is pushing against the wall. At this point, the air
flow fan motor for the front is activated, which makes the front side stick to the wall
and both the drive motors are controlled to move the robot upward. When the top
sensors indicate that the robot is pushing against the ceiling, the airflow fan motor

315Case Study with Pole-Balancing and Wall-Climbing Robots

for the top is activated, which makes the robot top stick to the ceiling and the fan
motor for the front is deactivated. The robot moves under the ceiling until the desti-
nation line is crossed. Then, the cruise motor on top is reversed. A similar procedure
is used to retrace the path. The operation of this particular robot during a competi-
tion can be viewed in WCR Using Bernoulli’s Principle (2013).

10.4  CONCLUSION

In this chapter, we have considered a few cases of game robots. We have illustrated
how the principles discussed in earlier chapters can be applied for the successful
design of such robots. In addition to simulation studies, the videos cited provide a
good idea of how the robots perform.

REFERENCES

Air-flow. 2013. http://www.youtube.com/watch?v=9GQk1rps6j8.
Cavello, A., Setola, R., and Vasca, F. 1996. Using MATLAB, Simulink and Control System Tool

Box: A Practical Approach. Hertfordshire, UK: Prentice Hall Europe.
Ogata, K. 1990. Modern Control Engineering. 2nd Edition. Englewood Cliffs, NJ:

Prentice-Hall.
Ogata, K. 1995. Discrete-Time Control Systems. 2nd Edition. Englewood Cliffs, NJ:

Prentice-Hall.
PBR-Single Degree. 2012. http://guppy.mpe.nus.edu.sg/srg/srg03-media/pole-bal/index.htm.
PBR-Two Degree. 2012. http://www.youtube.com/watch?v=T_an16oQpsc.
Rajput, R.K. 2011. A Text Book of Fluid Mechanics: In SI Units. New Delhi: S. Chand and

Company Ltd.
SRG—Singapore Robotics Games. 2012. http://guppy.mpe.nus.edu.sg/srg.
Wall Climbing Robot-Flipper Type. 2012. http://www.youtube.com/watch?v=CyQkoBEMEUM.
WCR Using Bernoulli’s Principle. 2013. http://www.youtube.com/watch?v=v3X1WTiOd84.

FIGURE 10.44  Photograph of the WCR using Bernoulli’s principle.

317

Mapping, Navigation,
and Path Planning

11.1  INTRODUCTION

An autonomous robot must be able to perceive its environment and act on it to achieve
its goal. Sensors provide the robot with measurements about some physical phenom-
ena. In some cases, these measurements are enough to make decisions, but at most of
the time it is necessary to process these data to obtain more useful information about
the environment. This process is called perception (Jones and Flynn 1993). The main
information obtained by perception is the state, which is the representation of the
environment and robot itself at some point of time. The robot’s state would consist
of what the robot is able to sense, process, and represent. For example, the state of
a mobile robot will normally consist of a map of its environment, its position in the
environment, its speed, its battery level, and so on.

The robot unit that makes decisions is called the controller. However, it is neces-
sary to emphasize that the controller we are referring here is a higher-level control
system that is responsible for the decision-making and planning of robot actions as
a whole system. The robot control issues discussed earlier in Chapters 8 and 9 are
referring to a lower-level control that handles the basic motions of the robot by act-
ing upon its actuators. The remainder of this chapter, the term “controller” should
be understood as high-level controller, unless otherwise stated. To achieve a high-
level control, the robot utilizes data generated by the perception unit to make a plan,
which is a set of actions that the robot must follow to achieve its goal. An important
issue for a high-level controller is the rapid and timely decision-making capability.
When a robot takes too long to deliberate about what actions it should take, those
actions might be irrelevant and the plan may be invalid due to the changes in its
environment. Normally, the environment for autonomous robot games is dynamic
and unpredictable.

In the following sections, we will discuss the roles of perception and decision-
making when developing autonomous robots. Different strategies will be discussed
to provide a better understanding of the alternatives for perception and decision-
making, but the final decision of what to use indeed depends on the environment, the
robot structure, and the task.

11.2  PERCEPTION

Robots understand their environment through the limited information gathered by
their sensors. As explained earlier in Chapter 3, there is a wide variety of sensors to

11

318 Practical Robot Design

measure different types of physical phenomena. We presented some of the sensors
that are suitable for designing robots for games. Here, we will focus on the way that
the sensor data are processed to become meaningful and to make the robot aware
of its environment. Perception is more than merely reading the measurements from
the sensors, but it is a process of understanding the environment by organizing and
interpreting the information collected from the sensors.

11.2.1 F rom Sensor Measurements to Knowledge Models

The data collected from sensors are inexact due to sensor noise and limitations of the
hardware. To overcome the uncertainty, in the state of a robot or its environment, the
perception system employs models that minimize the effects of uncertainty.

There are mainly three strategies when processing sensor measurements to deal
with uncertainty. These three strategies that will be presented here are similar to
those strategies in the following chapter about decision-making. The fundamental
reason for this is that the way sensor information is used to deal with uncertainty is
intrinsically related to the decision-making. Processing sensorial data and reducing
its uncertainty is a fundamental part in decision-making that tries to minimize the
possible failures in the system (Siegwart and Nourbakhsh 2004). Let us target these
strategies here from a data-processing angle.

The first strategy is to use the raw sensorial information of each individual sensor
to control or influence directly the robot behavior. In this strategy, the information
about previous states of the sensors is not relevant, only the current measurement is
considered, regardless of its accuracy. This strategy will yield to fast robot actions
since it is looking for a particular stimulus in the sensors to respond accordingly.
Inaccuracy of sensors may induce uncertainties that produce false reactions. These
types of systems are continually assessing their sensor values; hence, it is expected
that the uncertainty will reduce overtime. For example, a robot designed for micro-
mouse competition moves forward, but it must turn left or right once a wall has been
detected in front of it. If we consider a robot with three sensors, one on the left, one
on the right, and one in front, this robot will make a turn as soon as the front sensor
detects the wall; besides, the current information of the side sensors will be used to
determine the direction of the turning. In this example, the robot only uses the cur-
rent information of the sensors; it is not important to consider the previous informa-
tion captured from sensors to avoid the wall in front.

The second strategy is to generate a higher level of representation of the envi-
ronment through the information from one or more sensors. This high-level repre-
sentation can then be used to trigger the appropriate robot behavior. This strategy
requires extracting features that are relevant in the robot’s task, but these features
may not be obtained directly from the raw sensorial data or from one single sen-
sor. Needless to say, this strategy is slow when compared to the first strategy of
using the raw sensor data, but it handles uncertainty by using previous informa-
tion recorded from sensors. However, if the process of feature extraction takes too
long, there is the risk that the processed information would be irrelevant due to the
dynamic nature of the world. For example, if we consider robots competing in the
Humanoid League of the RoboCupSoccer competition, the position of robots and

319Mapping, Navigation, and Path Planning

ball are changing constantly. Furthermore, the state of a robot might be changing
due to external unforeseen circumstances such as being pushed by another robot or
being moved to a new position by a robot handler in the field, and so on. In this type
of task, the robot should not take too long to process sensor data; otherwise, the
resulting information will be irrelevant to make adequate decisions. On the other
hand, it is necessary to process current and past data to obtain essential information
like robot position, an estimation of whereabouts of other robots and objects in the
field, and so on.

The third strategy is a hybrid process that combines the two methods already dis-
cussed. Some of the raw information is utilized to control “survival” behaviors, while
the feature extraction is used to identify relevant information to complete a given task.
This strategy takes advantage of the quick response of the first strategy as well as
the strength of feature extraction of the second strategy, while trying to minimize
the response time to the changes in the environment. For example, in humanoid
RoboCupSoccer, the robots should use current and past data for determining the posi-
tion of the robots and the objects in the field. This process is slow and it might take a
long time to compute. Nevertheless, robots should also be able to react fast if the ball is
detected nearby, and the robot needs to kick the ball. Obtaining the position of objects
in the field or at least a good estimation of them is useful so that a humanoid robot can
make a decision to kick the ball to score a goal (Acosta-Calderon et al. 2010).

Let us discuss more about the feature-extraction process that is used in these
strategies. The process consists of first collecting raw measurements from one or
more sensors, second, filtering the raw measurements to remove redundant data, and
finally extract distinct features from the filtered data. Feature extraction is a power-
ful technique to enable robots with high-level information. Collecting sensorial data
requires a huge amount of memory space and heavy computation, which takes a long
period of time to make sense of the data. One of the benefits of feature extraction
is that it reduces the volume of data to represent a feature by simply producing an
abstract representation of it from the raw data. These features could then be com-
bined to produce a set of high-level abstracted features found about the environment.
Subsequently, accessing and using high-level information speeds up the computation
process, which is also another advantage of feature extraction.

Figure 11.1 illustrates the process of feature extraction with a mobile robot. Let
us consider a mobile robot that uses laser ranging information from a sensor that
provides 100 measurements per sample, 10 samples per second; the information can
be recorded in polar coordinates (a distance and an angle), along with the odometry
measurement of the robot (X, Y positions and a heading angle of the robot). After 20 s,
the robot will collect 20,000 laser samples and 200 odometry measurements. From
this large set of data, information about the two walls can be extracted. The question
is now to represent the walls. One possibility is to store the entire raw data from the
laser and the odometry readings, but this will require too much memory space just
for a wall. The wall can also be represented as a straight line with only two points
representing the beginning and the end of it. This way, all the raw data recorded
previously can be discarded. Using representation saves considerable memory space,
but with a risk of losing some important information. So, the way that information
and features are stored in the memory will impact the control of the robot.

320 Practical Robot Design

FIGURE 11.1  A mobile robot collects information from its laser ranger; the distance informa-
tion is combined with its position and orientation to generate a map of its environment. (a) The
robot is only able to generate points in the map space that represents space that might be occupied
by an obstacle. (b) As the robot collects more data, the points cluster in different locations, increas-
ing the likelihood that those locations are occupied by obstacles. (c) A postprocessing of the data
collected by the robot helps to connect points to identify wall, and to remove erroneous data in the
map. (d) The final step is the extraction of higher-level features such as wall, rooms, and corridors.

321Mapping, Navigation, and Path Planning

The type of features that the robot would be able to extract should be considered
in the design of the entire system. The physical phenomena to be measured and the
level of uncertainty of the sensors should be considered to see if it is suitable for the
desired environment where the robot would operate. In this regard, the sensors and
the environment need to be considered wisely in the robot design as they will influ-
ence the feature extraction process, and consequently the performance of the robot.
For example, a robot navigating in an office environment will benefit by using range
sensors to detect walls, corridors, rooms, and objects. In contrast, the same robot
will not be so useful in a rescue scenario where the environment is a disaster area
without structured walls, corridors, rooms, or doors. The rescue robot then may ben-
efit from being equipped with sensors that would enable the robot to detect human
victims, fire, gas, and so on. Earlier in Chapter 4, we have discussed the methods
for detecting features from images obtained by a camera. A combination of what is
described in this chapter and the features obtained with the camera is likely to result
in a more robust perception tool.

11.2.2 M ap Representation

Autonomous robots should be able to represent their environment in an efficient
way. The representation of the environment is of particular importance for mobile
robots, since they need to plan their paths to reach target locations, as well as to
know which locations they have visited. This representation of the environment
is better known as a map. The way that the environment is represented in a map
affects the choices that the robot has to plan its path, as well as the representation
of the robot’s position on the map. There are many map representations, and the
decision of choosing a particular representation should be based on the following
points:

•	 The features represented in the map and its precision of must be based on the
information extracted by the robot’s sensors. For example, a robot equipped
with a laser ranger would be able to detect the distance to the object in the
same plane of the laser; this means that this robot can only represent 2D
features in its map. In contrast, a robot equipped with a stereo camera would
be able to extract the depth information for every single pixel of the image,
as well as color information of the objects; these additional data will enable
the robot to add a 3D representation of the features into its map.

•	 The size of the information used to represent the features in the map also
determines the computational complexity required to handle the map for
adding new features, searching, and planning. We consider two robots, one
equipped with a laser ranger and the other with a stereo camera. The 2D map
generated by the laser will require less storage space, and thus it will be faster
to process compared to the 3D map generated by a stereo camera system.

Let us consider two most common map representations: the metric map and the
topological map. The advantages and disadvantages of both representations will be
discussed in the following sections.

322 Practical Robot Design

11.2.3 M etric Map

The metric map is perhaps the most common representation technique used in
mobile robotics. It is a two-dimensional representation of the space and the objects
in the environment at the level of sensor point of view. In other words, objects are
not represented with their volume, but the space they occupy at the sensor level. For
instance, a table will appear with four blobs in the map since the robot sensor’s plane
intersects the legs of the table.

The space and shape of the objects are accurately represented in the map, which
implies that a large memory space is required to store the map. There are a few types
of metric maps, the most common one is the occupancy grid.

The occupancy grid map is based on the principle of fixed decomposition that
transforms the environment into a discrete approximation. That is, the environment
is represented by a discrete, coarse, fixed-size cell grid instead of having millimeter
range accuracy for each feature in the map. The map is represented by a grid and the
accuracy of the map will depend on the size of the cells in the grid. As described in
the previous section, the size of the cells for this map depends on the task as well
as the sensor accuracy. For example, the cells will be 10 cm2, assuming that sensors
have an accuracy of ±5 cm. Another approach for choosing the size of the grid cell
is to use the size of the robot. For instance, CoSpace robot, shown in Figure 12.5b,
is 16.5 cm length by 17 cm width. For this robot, the grid cells could be of a size
between 17 and 20 cm2.

The values of the cells in the map represent obstacles, free space, or unknown
space. A robot equipped with a range-based sensor (ultrasonic, laser ranger, etc.)
combines the sensorial data with the robot position to update the odds that grid cells
are occupied. The way that the cell values are updated may differ depending on
the method employed. Let us consider a robot equipped with an ultrasonic sensor
mounted in front of the robot. Assuming that the ultrasonic sensor has a cone beam
of 30°, as depicted in Figure 11.2, the probability that a cell within the cone is occu-
pied or free is determined by the probabilities as shown in the figure. The values of
each cell in the map are then updated with Bayes’ rule. A simplified version of this
process can be described as follows.

Each cell in the map is initialized as “−1,” which will represent the unknown
space. As the sonar cone passes by the cells, they will be set to “0,” which represents
free space. If the cell is within the range of the sensor, then this cell value will be
increased. When the value of a cell passes a threshold value, then the cell is consid-
ered an obstacle. Values of the cells could also decrease when the sonar beam travels
through the entire range without an encounter. Cells beyond the range of the sensor
are not updated (see Figure 11.3).

Obtaining the map of an environment is useful and an autonomous robot should
be able to store the maps to use them in future tasks. The occupancy grid maps are
easy to generate, but instead of just storing the data of the grid, further processing
can be applied to this map if we have some knowledge about the environment. Most
of the man-made environments such as hallways, corridors, doorways, room, and so
on can be modeled by connected straight lines. Thus, extracting line segments can
improve the representation of objects and save space in the map. There are online

323Mapping, Navigation, and Path Planning

and offline methods to extract this information. A typical method is the Hough trans-
form that was discussed earlier in Chapter 4 for image processing. In this case, the
Hough transform is applied to the collected data by range sensors instead of the
pixels of an image. This is an offline method, and it is performed after the robot
completes the data collection.

Let us discuss how to apply the Hough transform for an occupancy map. The
occupancy map generated by the robot produces a matrix or grid with cells that
represents the free space, unknown, and obstacles. We are interested in cells that rep-
resent the obstacles. Let us assume that a set of cells corresponds to a wall; unfortu-
nately, they are not fully aligned and there will be a few missing connections. These
errors will happen mainly due to the inaccuracy of the sensors, drifting position of

Object

D
ist

an
ce

 m
ea

su
re

d

Probability
occupied

Probability
empty

Probability
occupied

Sonar

FIGURE 11.2  The probability model for an ultrasonic sonar sensor. The signal cone hits an
object on one side, but it is impossible to predict if the object is located on the center or any
side of the cone with certainty. The probability information of the sonar model can be then
combined to update the value of the cells in the map with Bayes’ rule.

324 Practical Robot Design

the robot, and even the surface of the wall. The Hough transform is used to identify
straight lines that fit to these points. The occupancy grid map is also a two-dimen-
sional matrix, and it can be treated as an image assuming that each cell in the grid
is like a pixel in the image where a black pixel represents obstacles and white pixels
free space or vice versa.

The Hough transform considers the points of a line to be represented in polar
coordinates (r,θ) rather than in Cartesian coordinates (x,y) as discussed earlier in
Chapter 4. The parameter r represents the distance between the point and the origin
of the image, while θ is the angle of the vector from the origin to this point. So, each
cell in the map would be treated as a point and be represented with the parameters
(r,θ) and be projected to the Hough space. As discussed before, a point in the Hough
space corresponds to a sinusoidal curve, which is unique to that point. When the
curves corresponding to the two points are superimposed in the Hough space, the
point these two curves intersect corresponds to a line in the metric map that passes
through both points. Finding the parameters with more number of intersections will
result in finding the more salient lines in the map.

The resulting Hough space is examined and the maximum intersection points
are interpreted as potential line segments. However, this does not guarantee that
straight lines in the map are obtained accurately. Usually, a postprocess is applied
to the information returned by the inverse Hough transform. This is mainly due to

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1 1 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1 1 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 1 1 2 2 2 2 2 2 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 1 1 1 2 2 2 2 2 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0

0 0

1 1

0 0

0 0

1 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0

0 0 0 0 0

2 2

0 0 0 0

0 0

0

0 0

0

Object
0 0 0 0 0 0 0

0 0 0 0 0

1 1 1

0 0 0 0 0

0 0 0 0

0 0

0

Object

FIGURE 11.3  An occupancy grid example of how a map could be obtained. The robot in
this figure consists of only one ultrasonic sensor.

325Mapping, Navigation, and Path Planning

two factors: First, the inverse Hough transform is able to find the line, but it is not
able to say where the line is starting or ending in the image (see the output of the
inverse Hough transform in Figure 11.4c). Second, false lines may also be found due
to scattered points in the map that may look like forming a possible line. A common
post-processing method is to overlap the lines detected by inverse Hough transform
on to the map and compare them with actual points to validate.

The computational cost of the Hough transform depends mainly on the dimen-
sion of the map to process, as well as the accuracy of the samplings involved for
the θ in the Hough space. These two parameters determine the additional memory
required for the Hough space, as well as the number of iterations for each point in
the Hough space.

11.2.3.1  Case Study
The RoboCup@Home league is part of the RoboCup competition, which aims to
develop service and assistive robot technology with high relevance for future per-
sonal domestic applications (RoboCup@Home 2012). All the challenges are con-
ducted in a real-world living room scenario. The RoboCup@Home league limits
the mode of interaction between human and robot to natural ways like speech and

FIGURE 11.4  (a) The metric representation of the robot’s environment generated by the
ultrasonic readings. (b) The straight lines obtained from the Hough transform. (c) The Hough
space for the points in the metric map.

326 Practical Robot Design

gestures. In addition, to be able to perform all the challenges, the robots should be
able to safely navigate in the environment without colliding with humans or obsta-
cles in the room. Most of the challenges include some type of navigation abilities
from the robot; this means that the robot should be able to recognize the environ-
ment and be able to localize itself in the environment. A map helps the robot with
these two issues.

Figure 11.5 shows the Ariel robot from Singapore Polytechnic. This social robot
has been developed to take part in the RoboCup@Home competition. The robot uses
a Pioneer 3-AT robot, a four-wheel drive robotic platform, for navigation. The robot
is also equipped with a laser rangefinder SICK LMS100; using the odometry system
of the mobile robot and the information gathered by the laser, it is possible to gener-
ate a metric map.

Since the laser rangefinder has a higher accuracy, the odometry of the robot is
also rather accurate and consequently so is the metric map generated with it. The
resolution of the map is 20 mm; needless to say, this will produce a large volume of
data and demand a large memory space to store it. Moreover, high accuracy is a key
factor for this robot, so that it is capable of identifying not only walls and corridors,
but also objects in the environment.

Let us assume that the laser rangefinder only returns one point instead of an
array of points to simplify the explanation. At each iteration, the controller system

FIGURE 11.5  The Ariel robot is a social robot interacting with public in an exhibition.

327Mapping, Navigation, and Path Planning

will have the robot position as [X,Y,θ], where θ is the orientation or heading of the
robot, with respect to its origin, and the laser rangefinder readings that consist of the
distance for each point and its orientation [D,α]. Since the laser rangefinder is not
located at the center of the axis of the robot (the point considered as reference for
the odometry), it is important to consider the displacement (m) of the sensor in our
calculations.

Figure 11.6 shows the frame reference for the robot and how coordinates of a point,
detected by laser rangefinder, can be calculated. The figure also shows the relation
between the laser rangefinder frame and the mobile robot frame. In this example, there
is only one displacement of the frames, which is on the X-axis. There is no displace-
ment in the Y-axis or a distinct orientation of the laser range finder on the robot body.
Also note that in this scenario all the information is in 2D; thus, the Z-axis is ignored.

We can calculate the position of the point provided by the laser rangefinder by
considering all the previously discussed features. First, we obtain the components
for the point read by the laser rangefinder as

	 x D mlaser = +cos()a 	 (11.1)

	 y Dlaser = sin()a 	 (11.2)

After that, we can rotate and translate them to the global coordinate system as
follows:

	 P x y Xx = − +(cos() sin())laser laserq q 	 (11.3)

	
P y x Yy = + +(cos() sin())laser laserq q

	 (11.4)

Y

X Px

Py

0

m

ylaser

xlaser

α

θ

D

FIGURE 11.6  The frame reference for the Ariel robot base.

328 Practical Robot Design

Once the Cartesian position of the point is calculated, it is possible to mark this
point in the map by fitting it to the nearest cell in the map. It might be necessary to do
further processing for the cells between the robot and the detected point in the map
to indicate the free space or increase the probability of cells being empty or occu-
pied. This could be done in a similar manner as described previously in this section
for the ultrasonic sensor. The entire process will repeat for all the points in the laser
rangefinder. This is a computationally heavy task, as it is repeated in every iteration.
Once all these points are collected, it is possible to find fitting lines by applying the
Hough transform as before.

11.2.4 T opological Map

Metric maps consider every feature in the environment, which translates into a huge
amount of memory to store the map as well as a slower search or analysis of the
map. An alternative to this representation is the topological map. Topological maps
consider certain distinctive features in the environment and the relationship between
these features without representing them in the map. The features used for these
maps are called landmarks. A landmark must be a distinctive object or place of
interest that the robot is able to perceive. Landmarks could be artificial. The features
can be embedded in objects or locations to ease the recognition of the landmark. For
example, colored markers or signs that are put on doors can indicate locations for
robots. Landmarks can also be natural elements such as gateways or junctions.

Topological maps are built on top of grid-based maps. The free space of a grid-
based map is partitioned into a small number of regions, and the regions are sepa-
rated by critical lines. The critical lines correspond to passages such as doorways or
other landmarks. As shown in Figure 11.7, the nodes are the critical points and the
lines connecting each critical point are the critical lines. The critical lines partition
the free space into disjoint regions. The lines provide information that the robot uses
for planning and navigation; some of the information stored in this representation is
the orientation and the distance between the nodes.

Gateways are commonly used as landmarks in robotics. They also provide an oppor-
tunity to change direction for a robot. The most common representation of the topologi-
cal map is a relational graph as shown with the example in Figure 11.7. Note that the
information of how these landmarks are related is embedded in the graph; however, it
is not as explicit or as accurate as in the metric map. For example, for node 6, the exact
orientation of the room (node 7) is not clear. However, it is clear that the room is located
somewhere on the right-hand side of the robot coming from the direction of nodes 4–6.

11.2.4.1  Case Study of Topological Map
In the micromouse robotics competition a small autonomous robot equipped with
few infrared sensors and differential motors must find its way to the destination point
in a maze (see Figure 11.8). The robot is allowed to do multiple runs within 5 min.
The initial runs are usually referred to as “searching runs,” and they are meant for
the robot to build the map of the maze and find the shortest path to the destination.
Once the search has been completed, the robot will move as fast as it can, following
the shortest path it has computed. The fastest robot wins the competition (Singapore

329Mapping, Navigation, and Path Planning

Robotic Games 2012). Since the maze is made of square and rectangular shapes, all
the turns should be 90° to the left or the right; this means that a corridor a gateway
can be easily determined since it is either on the left or on the right of the robot.
Thus, when a gateway is found, it is possible to follow the corridors that connect to
the gateway. The micromouse robot tries to explore the maze as much as possible
while mapping the gateways and its connecting corridors. It is also possible to record

11 8 6 4 2

1

3

9 5

10 7

FIGURE 11.7  A topological map. The gateways are used as the main landmarks in this rep-
resentation. The information of how these landmarks are related is stored as a relational graph.

FIGURE 11.8  Micromouse developed at the Singapore Polytechnic.

330 Practical Robot Design

certain corridors that have not been mapped yet. So, the robot can map those cor-
ridors once it completes working on its current corridor.

Figure 11.8 illustrates a micromouse robot that consists of six infrared sensors
(three on each side), two motor wheels for differential control, and a caster wheel.
The latest generation of micromouse robots also incorporates encoders on the wheel
motors. This helps the robots to add distance to the segments that connect nodes as
well as to discover paths that loop back to the main corridor. It is also possible to
incorporate a digital compass to provide further information about the orientation of
the robot, although this is not so common.

As the micromouse moves through the maze, the infrared sensors placed in front
and on the sides of the robot assist identifying the wall. The robot will also main-
tain its position in the center of the corridor without crashing into the walls. If no
obstacles are detected in front of the robot, then it will keep moving forward. When
the sensors detect an open space in a direction other than the current direction of
the robot, the location will be considered as a gateway, and the open space will be
marked as one possible direction. According to the strategy of the team, the robot
then follows any one of the newly discovered directions or it can just continue its
exploring moving forward in the current corridor. Figures 11.9a and 11.9b show a
part of the maze that the micromouse has to explore and its correspondent topologi-
cal map. After the map has been built, a planner helps to choose the shortest path
to the destination point. In the next section, we will discuss more on planners and
navigation using topological maps.

11.3  NAVIGATION

A desirable ability for an autonomous mobile robot is to be able to go from one
place to another. The term “navigation” refers to the way that a robot moves in its
environment to reach its destination. The locomotion system of the robot tells the
actuators of the robot how to move, whereas the navigation system tells the robot
about its destination.

FIGURE 11.9  (a) A section of the maze that the micromouse has to explore. (b) Topological
map built to represent this section of the maze.

331Mapping, Navigation, and Path Planning

There are several behaviors that are involved in navigation and locomotion; some
of these behaviors are simple and some others are more complicated. What behav-
iors should go into a robot depend directly on the type of task and the design of the
robot. The final performance of the robot may vary according to the type and num-
ber of sensors as well as the mobile configuration of the robot. Nevertheless, these
behaviors can be used to produce more complicated behaviors with a subsumption
architecture, or a hybrid architecture as will be described in Section 12.3.3.

As discussed in the previous section, the uncertainty in the perception of the
robot’s sensors makes any kind of decision making a difficult task. As the robot
moves, its odometry system will have errors, and as the robot keeps moving, the
error will accumulate. This causes the uncertainty that the position of the robot is
not really known. There are different methods that can help to reduce the uncertainty
of the robot’s whereabouts during motion. In the majority of the methods discussed
below, it is necessary to have a map built about the environment. The following sec-
tions discuss some of these methods and their application to robotic competitions.

11.3.1  Wall Following

Wall following is a behavior that makes a robot move smoothly and follow the con-
tour of the wall. To produce a smooth motion, the alignment of the robot is the key
component; thus, it is essential that the robot maintains a parallel heading to the
wall during its motion. If robot has a distance sensor facing toward the wall side,
then wall-following behavior will maintain a constant distance from the wall. This
means that if the distance increases, the robot must turn toward the wall, and when
the distance decreases, the robot must turn away from the wall (see Figure 11.10).
The rotation of the robot toward the wall or away from the wall should stop when the
robot is within the range of the constant distance required. In the figure, the dotted
line shows the distance D that the robot should maintain from the wall. It is better to
use a tolerance range X, in centimeters, so that distance from wall is within D ± X.
This will minimize the swinging of the robot while trying to follow the wall.

Sensor = D

Sensor > D
Sensor < D

FIGURE 11.10  Wall-following behavior for a mobile robot with a distance sensor.

332 Practical Robot Design

%
% The class DiffRobot the members of the class robot are declared as:
%
% robot.ultrasonic_sensors(3) - 1 - Left, 2 - Right, 3 - Front
% robot.motor_vel(2); - 1 - Left, 2 - Right
%

classdef DiffRobot < handle
properties

 motor_vel = [0.0 0.0];
 ultrasonic_sensors = [0.0 0.0 0.0];

end
methods

function obj = DiffRobot() % constructor
end

end
end

% This is the main function of the mobile robot. It will
% loop reading the sensors, Processing, and sending the motor command.
%

function MainRobot()

% Initialized robot
robot = DiffRobot();

while 1
% Read the New Values of the Sensors

 ReadSensors(robot);

% Follow the wall
 WallFollowing(robot, Desire_Dist);

% Write to Motors
 SetMotorCmd(robot);
end
end

function ReadSensors(robot)
% Obtain the new readings of the sensors
end

function WallFollowing(robot, Desire_Dist)

% Difference between the wall and our desired distance from it
% it only uses the right sensor, to follow from left to right the wall.
diff = Desire_Dist - robot.ultrasonic_sensors(2);

% New Translational and Rotational Veloci
trans = Const_Vel;
rot = gain * diff;

% Convert velocities to Left and Right Velocities
robot.motor_vel(1) = (2*trans - rot) / 2; % Left Velocity
robot.motor_vel(2) = rot + robot.motor_vel(1); % Right Velocity

end

function SetMotorCmd(robot)
% Send the motor velocities to the robot
End

FIGURE 11.11  MATLAB code for the wall-following behavior presented in Figure 11.10.

333Mapping, Navigation, and Path Planning

Figure 11.11 presents the MATLAB® code of the wall-following behavior. It is
important to mention that the rotation will be proportional to the difference of the
distance of the robot from the wall. This means that if the robot deviates from the
desired distance severely, then robot angular velocity will change rapidly to com-
pensate the error. Similarly, if the deviation is small, then the compensation of the
angular velocity will be minor. The value of the gain needs to be adjusted to specify
how fast or slow the robot reacts to the difference of distance. In practice, we know
that no sensor is entirely accurate, so it is important to consider the noise of the sen-
sor to minimize the possible effect of the noise in the motion of the robot.

In the code presented in Figure 11.11, the constant value assigned for the trans-
lational velocity can be adjusted to a suitable value for the hardware used in robot
design. The rotational and translational velocities need to be converted to left and
right velocities since the robot used in this example is a differential drive robot.
Furthermore, the code presented here only follows the wall from left to right. If the
robot must follow from the opposite direction, the left ultrasonic sensor can be used,
and both left and right ultrasonic sensors can be used to follow a wall on either side,
or when moving in a corridor.

11.3.2 O bstacle Avoidance with Vector Force Histogram

Vector field histogram (VFH) was first presented by Johann Borenstein and Yoram
Koren. It was further improved by Iwan Ulrich and Johann Borenstein and it was
renamed VFH+. It is lately renamed VFH*. VFH is a real-time obstacle-avoidance
method for mobile robots. The VFH is a computationally efficient method for navi-
gation that has proven to be fast and reliable, especially when roaming in environ-
ments with many obstacles. In this approach, a robot does not need to know the
environment prior to its navigation. This is advantageous when navigating in a highly
dynamic environment, like the one where rescue robots operate. VFH enables the
robot to detect obstacles and steer while avoiding collisions along its desired route.

The VFH method uses a two-dimensional Cartesian grid, which is updated by its
environment continuously with the information of the robot’s sensors, such as sonar
or laser rangefinder. This grid is similar in principle to the metric map generated by
an occupancy grid (presented in Section 11.2.2); however, this grid is smaller and
it only represents the surroundings of the robot, much more like egocentric view
because the robot will always remain in the center of this grid (see Figure 11.12a).
This egocentric grid provides information about obstacles that are near. Let us imag-
ine a vector coming from the center of the robot toward the obstacle or to the end
of the grid, and we now repeat these vector calculations for 360° around the robot.
Thus, all these vectors are further transformed into a polar histogram, where all the
vectors are placed side by side and compared by their magnitude.

Three valleys are obtained from the histogram. Valley A is located in front of the
robot in Figure 11.12a, valley B is located in the adjacent corridor besides the box,
and it is also because of this obstacle that the valley is quite small. Finally, valley C
is located behind the robot. Figure 11.13 shows the polar histogram. The horizontal
dotted line in the polar histogram represents a threshold that indicates the robot is
too close to obstacles.

334 Practical Robot Design

From this polar histogram, it is possible to compute a candidate valley, which
is an area where sectors with polar obstacle density are below a threshold. The
candidate valley is also selected based on the proximity toward the robot-desired
route. In Figure 11.13, the vectors calculated from Figure 11.12b are represented
in the polar histogram. Three valleys are obtained in the histograms; these are
marked with the letters A, B, and C. According to the target direction presented
in Figure 11.12a, valley A is chosen as the candidate valley for the navigation of
the robot.

VFH+ improves the smoothness of the mobile robot’s navigation by taking into
account the size of the robot, thus allowing the candidate valley to be more precise.
Obstacle looking-ahead is a feature of VFH+ that will discard candidate sectors that
appear to be unobstructed in egocentric view, but they are obstructed outside the
egocentric view. Finally, the last improvement of VFH+ is adding the cost function
to better characterize the performance of the algorithm.

There are also disadvantages and limitations of the VFH. For example, it does not
concurrently search for the optimal path toward the destination because it only uses
local information instead of global information. The robot will also face difficulties
at narrow paths due to the tolerances used in the VFH algorithm. The VFH cannot
guarantee to reach the desired location since it is only using local information.

The VFH algorithm is still widely used in robotics for real-time obstacle avoid-
ance to maintain the robot’s path towards its destination despite all the above short-
comings. It is for this reason that VFH is used in combination with the path planners
that can produce waypoints that the robot must reach before it can reach its final des-
tination. Thus, these waypoints are input to the VFH method to reach the waypoint
while avoiding any obstacles in the way.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1
1 1 1
1 1 1
1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0

(a) (b)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1
1 1 1
1 1 1
1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0
90°

0°

Target

FIGURE 11.12  The egocentric grid of a robot moving in a corridor (a) Robot, which is
always at the center of egocentric view, corridors and target direction for the robot. (b) A
representation of obstacles in grid cells and vectors from the robot to the obstacles.

335Mapping, Navigation, and Path Planning

11.3.2.1  Case Study of Obstacle Avoidance with Vector Force Histogram
Most mobile robots implement some form of obstacle avoidance. Robots taking part
in competitions are of special interest since they must achieve their task without hit-
ting obstacles or without deviating from a desired path. RoboCup@Home, RoboCup
Rescue, Robot Colony, and Intelligent Robot are some of the robot competition
events where the obstacle-avoidance algorithm is needed. However, any competition
that involves mobile robots will require robots to avoid collisions.

The code shown in Figure 11.14 is for a mobile robot to go to a target while
avoiding obstacles employing the VFH method. In the example code, the function

0° 90° 180° 270° 0°

A(a) (b)

(c) A A

B C A

90° 180° 270°

0° 90° 180° 270°

FIGURE 11.13  Polar histogram obtained from the vectors calculated in Figure 11.12b.

336 Practical Robot Design

FIGURE 11.14  MATLAB code of the VFH algorithm.

337Mapping, Navigation, and Path Planning

FIGURE 11.14  (continued) MATLAB code of the VFH algorithm.

338 Practical Robot Design

FIGURE 11.14  (continued) MATLAB code of the VFH algorithm.

339Mapping, Navigation, and Path Planning

VFH() takes three arguments. The first argument is a structure that contains the
current position and heading of the robot. The second argument is a target posi-
tion for the robot in the format of [X, Y]; this is used to specify the target direction
that the robot should pursue. The final argument is an egocentric grid of the robot;
this can be obtained from the metric map by specifying a square grid around the
robot. The dimension of the grid can be defined by the task or about the maximum
range of the distance sensor used. However, to simplify the further processing, the
egocentric grid data should be in the format of zeros and ones to represent free and
occupied space, respectively. In the code, the VFH() function returns the angle and

FIGURE 11.14  (continued) MATLAB code of the VFH algorithm.

340 Practical Robot Design

the distance. The distance returned by VFH is not the distance to the target posi-
tion. It indicates that the free space within the egocentric map that robot can move
without encountering an obstacle. This distance can be used for speed control. Let
us consider the following values for the arguments of the VFH() function:

robot.X = 0;
robot.Y = 0;
robot.Theta = 1.5;
targetPos = [20 20];
ec_grid =[0 0 1 1 1 0 0 0 0 1 1 1;
	 0 0 1 1 1 0 0 0 0 1 1 1;
	 0 0 0 0 0 0 0 0 0 1 1 1;
	 0 0 0 0 0 0 0 0 0 0 0 0;
	 1 1 0 0 0 0 0 0 0 0 0 0;
	 1 1 0 0 0 0 0 0 0 0 0 0;
	 1 1 0 0 0 0 0 0 0 0 0 0;
	 1 1 0 0 0 0 0 0 0 0 0 0;
	 1 1 0 0 0 0 0 0 0 0 0 0;
	 0 0 0 0 0 0 0 0 0 0 0 1;
	 0 0 0 0 0 0 0 0 1 1 1 1;
	 0 0 0 0 0 0 0 1 1 1 1 1;];

This will produce an output as shown in Figure 11.15. The output from the
VFH() function corresponds to the angle 75° represented by a bold line in the
figure. It is also possible that the robot navigates toward the target by taking an
angle of 0°. The VFH() function takes into consideration the current heading of
the robot, which is around 85°. Thus, the robot heading that is closer to the valley
is represented by 75°.

20

15

10

5

0

–5

–10
–10 –5 0 5 10 15 20

FIGURE 11.15  Representation of the egocentric grid with the vectors. The vector in bold
represents the output from the VFH() function.

341Mapping, Navigation, and Path Planning

11.4  PATH PLANNING

Path planning is the process of finding a path from the robot’s current location to
its next destination. Assuming that both positions are known and represented in the
robot’s map, the path planner will look for the optimal path between these points.
An optimal path is a path that satisfies the criteria defined by the robot task. This
means that in most cases, checking all the possible paths will result into a heavy
computation time.

The autonomous robot navigation problem consists of the calculation of a path
between two points, a starting and a target point. The local navigation approach
should produce an optimal (usually shortest) path, avoiding the obstacles present in
the working environment.

However, not all path planners work in the same way. Some search only for part of
a path and others look at the complete path. Both types of planners have advantages
and disadvantages. For instance, while partial planners are fast they do not always
warrant a shortest or optimal path. In contrast, full-path planners are able to compute
the shortest or the optimal path that satisfy a given criterion, but the time required
for this computation depends on the size of the map used. In addition, some methods
only work with specific map representations. As discussed in the previous section,
building a map representation is mainly determined by the task and the robot percep-
tion system. The following sections will discuss the use of two planners, the first one
is for metric maps, and the second method is for topological maps.

11.4.1  Wavefront Planner

Wavefront is a common algorithm used to determine the shortest path between
two points that works on occupancy grid maps. In this method, a full-path planner
assumes that each cell in the map is able to fit the robot.

Let us assume that a robot generated two-dimensional occupancy grid map (as
described in Section 11.2.2) that represents its environment, and both the current
position of the robot and the desired position are known in the map.

A second map is used for the wavefront method to update the values of each cell.
The information in the original map is ported to the new map during the first step of
the algorithm. The values in the cells will be updated by using neighborhood connec-
tivity. The connectivity between the cells can be expressed as four-point or eight-point
connectivity. The choice between four- or eight-point connectivity mainly depends on
the size that each cell represents in the map as well as the locomotion capabilities of the
robot to move between cell units. It is important to determine the connectivity, since
this will not only affect the way that the values in the map are updated, but also the way
that the planner will search for the shortest path. Once the new map is ready and the
neighborhood connectivity has been selected, we can start with the algorithm, which
employs the following steps:

	 1.	All the free space in the map is set to the value of zero, the cells with obsta-
cles are set to the value of one, the current position of the robot is labeled as
“start,” and the desired position of the robot is labeled as “destination,” and
it is set to the value of two.

342 Practical Robot Design

	 2.	Starting from the destination cell, increment the value of all the adjacent
cells of the free space by one.

	 3.	Repeat the previous step, but this time starting from only recently modified
cells.

	 4.	Repeat the previous step until completing the map. Cells with zero values
should only exist in unreachable regions.

Figure 11.16 shows an example map and its update with wavefront planner. The
method only deals with occupied and free space; however, it is possible to mark an
unknown space as occupied space instead of free space to avoid the uncertainty that
the unknown space represents for the planner. After filling the map with values as

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1
1 1 1
1 1 1
1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0

(a) (b)

(c) (d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1
1 1 1
1 1 1
1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 3 3
0 0 0 0 0 0 0 0 0 0 0 0 0 3 2

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0

20 19 18 17 16 15 14 14 14 14 14 14 14 14 14
20 19 18 17 16 15 14 13 13 13 13 13 13 13 13
20 19 18 17 16 15 14 13 12 12 12 12 12 12 12

1 1 1 1 1 1
1 1 1
1 1 1
1 1 1

20 19 18 17 16 15 15 15 15 15 15 15 15 15 15
20 19 18 17 16 16 16 16 16 16 16 16 16 16 16

1 1 1 1 1 15 14 13 12 11 11 11 11 11 11
1 1 1 1 1 15 14 13 12 11 10 10 10 10 10

16 15 14 13 12 11 10 9 8 7 6 5 5 5 5
16 15 14 13 12 11 10 9 8 7 6 5 4 4 4
16 15 14 13 12 11 10 9 8 7 6 5 4 3 3
16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

9 9 9 9
8 8 8 8
7 7 7 7
6 6 6 6

16 15 14 13 12 1 1 1
16 15 14 13 12 11 10 10
16 15 14 13 12 11 10 9

16 15 14 13 13

20 19 18 17 16 15 14 14 14 14 14 14 14 14 14
20 19 18 17 16 15 14 13 13 13 13 13 13 13 13
20 19 18 17 16 15 14 13 12 12 12 12 12 12 12

1 1 1 1 1 1
1 1 1
1 1 1
1 1 1

20 19 18 17 16 15 15 15 15 15 15 15 15 15 15
20 19 18 17 16 16 16 16 16 16 16 16 16 16 16

1 1 1 1 1 15 14 13 12 11 11 11 11 11 11
1 1 1 1 1 15 14 13 12 11 10 10 10 10 10

16 15 14 13 12 11 10 9 8 7 6 5 5 5 5
16 15 14 13 12 11 10 9 8 7 6 5 4 4 4
16 15 14 13 12 11 10 9 8 7 6 5 4 3 3
16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

9 9 9 9
8 8 8 8
7 7 7 7
6 6 6 6

16 15 14 13 12 1 1 1
16 15 14 13 12 11 10 10
16 15 14 13 12 11 10 9

16 15 14 13 13

FIGURE 11.16  An illustration of the wavefront planner algorithm. (a) Initializing the map
with zeros for free space and ones for the occupied areas. (b) Expansion from the destination
to fill the map. (c) The resulting map after updating all the cells. (d) The shortest path to reach
the destination.

343Mapping, Navigation, and Path Planning

shown in Figure 11.16c, it is now possible to search for the shortest path using the
following steps:

	 1.	From the starting position, follow the adjacent cell with the lowest value
toward the direction of the starting position.

	 2.	Move to the cell and repeat the previous step from the current cell.
	 3.	Repeat the previous steps until the destination is reached.

The wavefront planner may discover more than one path. In all these paths, cells
are connected by an uninterrupted sequence of decreasing numbers that leads to the
destination. Figure 11.16d shows a path found for the given map. The path can be
represented as a list of waypoints. A waypoint is a point in the map that indicates
direction change for the robot on its path. In Figure 11.16d, the waypoints are indi-
cated with circles along the path.

Once a path has been found, the robot must navigate from one waypoint to the
next to reach its destination. Usually, VFH is employed to navigate the robot along
waypoints since the VFH method ensures navigation without collisions.

11.4.2  Path Planning Using Potential Fields

The main idea behind the path finding of the potential field method is to generate
attraction and repulsion forces within the working environment of the robot to guide
it to the target. The approach used is to generate the artificial potential fields to have
obstacles exert repulsive forces onto the mobile robot, while the target applies an
attractive force to the mobile robot.

Potential field is an array of force vectors represented in space. This will pro-
duce a force field analogous to a magnetic or gravitational field. Thus, the robot
will be affected by this field and the force of attraction or repulsion of each object
in the environment will contribute to this field. The vectors in each part of the field
will be translated to direction and speed of the robot during its motion. Figure
11.17 shows an example of a two-dimensional map consists of attractive and repul-
sive forces.

Considering a metric map with two-dimensional space, and each cell in the map
is defined by (x,y), it is possible to calculate the vector field F for a single element in
the map; this is given as a vector sum of the two forces:

	
F x y F x y F x yG O(,) (,) (,)= + ∑∑ 	

(11.5)

where FG is the attraction force toward the goal, and FO is the repulsive force from
the obstacles. Potential fields represent the description of the environment, which
can be obtained completely a priori at the start of the motion process. Vector fields
represent a map of actuator values, the orientation and magnitude.

The first step is to define what type of potential field primitive would be used for
each element in the map. Figure 11.18 shows the different primitives for the potential

344 Practical Robot Design

fields. After choosing the primitives, it is essential to associate a magnitude profile
with the objects for their potential field primitive. This magnitude of the vectors as
mentioned before will be used to control the velocity of the robot. Thus, the profiles
could indicate a constant velocity, a linear decrease, or even an exponential increase
of the velocity. The calculation of the magnitude of the forces according to its profile
will also need to specify a distance where the field is acting from the object. For
example, the attraction field of the goal target should act in the entire map, in contrast
the repulsion field of the objects should only act within the vicinity of the objects
(see Figure 11.17).

11.4.2.1  Case Study of Path Planning Using Potential Fields
Let us consider the RoboCup@Home robot that needs to navigate from the entrance
of a room to a table located at the other end of the room. The robot is required to

Goal

Obstacle

FIGURE 11.17  Obstacle on the left-hand side has repulsive forces for the robot to avoid.
The target point on the right-hand side has attraction forces for the robot to move toward it.

FIGURE 11.18  Potential field primitives: (a) repulsion, (b) attraction, (c) tangential, and (d)
perpendicular.

345Mapping, Navigation, and Path Planning

perform a manipulation task once it reaches the table, but first it needs to plan its way
to reach the table without colliding with obstacles.

The potential field method will be employed for this purpose. An existent map
of the room is shown in Figure 11.19; the map is a metric map. The potential field
method will calculate the force in each robot location to produce the robot path to
reach the table.

The tables and sofa in the room have a repulsive primitive in all directions; how-
ever, we do not want this repulsion to be felt everywhere. Thus, we specified a dis-
tance of 3 m radius in any direction for the force of repulsion to be felt. Furthermore,
the repulsion force will be linearly increased as the robot approaches the objects
in the map (see Figure 11.19b). For the goal, a constant attraction in all directions
has been chosen, and this force should be felt everywhere in the room. Figure 11.20
shows the MATLAB functions used to calculate the force exerted by each obstacle
and the goal to the robot.

There are two approaches for path planning. The first one is to generate a full path
that the robot should follow to the target. In the second method at each location that
robot visits, a local calculation of the next position will be performed. The second
approach is widely used since it allows robot to cope with the changes in a dynamic
environment. In Figure 11.20, the function “MainRobot()” initializes the robot and
the position of the objects and goal. In the actual competition, after the robot has
generated the metric map, a human user marks the location of the obstacles and goal
position in the map and specifies the radius of the circles enclosing the objects. The
function, “MainRobot(),” will continuously read the sensor values, calculate the next
vector in the path according to its current position, and consequently navigate the
robot according to the vector obtained. The process continues until the robot reaches
the goal position.

The function “PotentialField()” in Figure 11.20 calculates the force that the obsta-
cles and the goal are exerting to the current position of the robot. The arguments

FIGURE 11.19  (a) The metric map of the room where the robot will perform the manipula-
tion task. (b) The center and the sofa marked with a circle to ensure that the repulsion force
will be strong enough to repel the robot if it gets closer to this circle. The goal position “table”
is at the top right side of the map, and the robot is at the bottom left.

346 Practical Robot Design

FIGURE 11.20  MATLAB code for the potential fields of the obstacles and the target as
illustrated in Figure 11.19.

347Mapping, Navigation, and Path Planning

FIGURE 11.20  (continued) MATLAB code for the potential fields of the obstacles and the
target as illustrated in Figure 11.19.

348 Practical Robot Design

FIGURE 11.20  (continued) MATLAB code for the potential fields of the obstacles and the
target as illustrated in Figure 11.19.

349Mapping, Navigation, and Path Planning

FIGURE 11.20  (continued) MATLAB code for the potential fields of the obstacles and the
target as illustrated in Figure 11.19.

350 Practical Robot Design

for the function are the robot structure that contains the current (x,y) position of
the robot, a list of the obstacles (each obstacle has (x,y) position, radius, and type
of primitive), and finally the goal position for the robot in (x,y) coordinates. For the
different types of force primitives, the function will calculate the force to the current
position of the robot. In our sample code, only the repulsion force has been imple-
mented. As described before, the repulsion force can only be felt when the robot is
within 3 m from the object, and it linearly increases when the robot gets closer to the
obstacle. After each obstacle’s force has been calculated, the attraction force of the
goal is computed. This force is always constant and it will be felt everywhere. The
last part of the function “PotentialField()” is to add all these forces to produce a vec-
tor that will tell the robot the new orientation and magnitude of the maximum speed
to use in order to navigate. Figure 11.21b shows the path generated by the resulting
vector forces, assuming that the robot is able to navigate accurately to the position
described by each calculated vector.

11.4.3  Path Planning Using Topological Maps

Topological maps contain only essential information (landmarks); unnecessary
details are eliminated. Topological maps are graphs that use nodes to represent dif-
ferent fixed objects, for example, rooms and doors. Using topological maps saves
processing time and memory space, as the robot does not have to process so many
details. Earlier in Section 11.2.3, topological maps were discussed, and building
those maps was described.

The path planning for topological maps takes an initial node and a goal or target
node as input. Using an algorithm such as Dijkstra’s or Floyd–Warshall’s shortest
path, it is easy to find the shortest path plans between the two nodes in a topologi-
cal map. Dijkstra’s shortest path algorithm (Sniedovich 2011) is illustrated in Figure
11.22. From the initial node, the algorithm will calculate the distance between the
node and its direct neighbors. Then, it will choose the shortest distance to all of its
adjacent nodes and mark them according to the calculated distance. Once all the
neighbors of the node have been covered, the algorithm will proceed to the next node
with the shortest distance. This will continue until the algorithm reaches to the goal
node and then it will terminate. The robot will then follow the path pointing toward
the shortest line.

11.4.3.1  Case Study of Path Planning Using Topological Maps
In the micromouse competition, the objective is to complete the maze as fast as pos-
sible. Apparently, the micromouse robot should find the shortest path in the maze to
achieve a fast trial. As discussed in Section 11.2.3, it is possible to generate a topo-
logical map from the micromouse maze. When the micromouse detects a gateway,
distance and orientation from the previous gateway will be used to connect the new
gateway with the previous one. Then, the robot will explore a new direction in the
gateway and repeat the previous method when a new gateway is found. The change
in direction is also recorded to help identify the gateways. The following matrix
provides an example of a topological map:

351Mapping, Navigation, and Path Planning

Map = [-1 5 −1 −1 −1 -1;
	 5 −1 2 −1 −1 -1;
	 -1 2 −1 6 7 -1;
	 -1 −1 6 −1 −1 -1;
	 -1 −1 7 −1 −1 8;
	 -1 −1 −1 −1 8 -1;];

8000(a)

(b)

7000

6000

5000

4000

3000

2000

3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000

8000

7000

6000

5000

4000

3000

2000

3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000

FIGURE 11.21  (a) The resulting force from the objects and the goal in every part for the
map. The magnitude of the force is represented by the length of the line and the orientation is
shown by the arrow side of the vector. (b) The calculated path.

352 Practical Robot Design

In this map, each row and column represents a node (gateway) in the map, the
number in the matrix represents the distance between the node in the row position
and the node in the column position. If the distance is −1, it means that there is no
direct connection between the nodes. In this map, only the relationship between the
nodes and distances is presented, but not the orientation (which can be stored in
another matrix).

In Figure 11.23, the MATLAB code for the path planning in a topological map
is presented. The Dijkstra algorithm is used to find the shortest path. The function
“Dijkstra()” receives three arguments, the map as a relational matrix with the dis-
tance between the nodes, the initial node, and the goal or target node. The function
“Dijkstra()” will return a path from the initial node to the goal node. If there is a
path, it will be a list of waypoints that robot must follow to reach the goal node. Note
that in the function “MainRobot()” the path is calculated first before the robot starts
moving; hence, this is a full path planner. This approach is different than the partial
path planner presented for the force field in Section 11.4.2.1.

0

∞ ∞

∞∞

∞

2
5

7
4

2

0

2 ∞

∞∞

∞

2
5

7
4

2

0

7

9 ∞

∞

2

2
5

7
4

2

0

7

9 ∞

∞

2

2
5

7
4

2

0

7

9 13

∞ ∞

2

2
5

7
4

2

0

7

9 13

2

2
5

7
4

2

0

7

9 13

15

2

2
5

7
4

2

0

7

9 13

15

2

2
5

7
4

2

FIGURE 11.22  Dijkstra’s shortest path algorithm for finding the shortest path between the
initial node and the goal node.

353Mapping, Navigation, and Path Planning

FIGURE 11.23  MATLAB code for the micromouse during a race run. It will first calculate
the path and visit each node until it reaches the target node. The path is found by using the
Dijkstra algorithm.

354 Practical Robot Design

FIGURE 11.23  (continued) MATLAB code for the micromouse during a race run. It will
first calculate the path and visit each node until it reaches the target node. The path is found
by using the Dijkstra algorithm.

355Mapping, Navigation, and Path Planning

FIGURE 11.23  (continued) MATLAB code for the micromouse during a race run. It will
first calculate the path and visit each node until it reaches the target node. The path is found
by using the Dijkstra algorithm.

356 Practical Robot Design

REFERENCES

Acosta-Calderon, C.A., Mohan, R.E. and Zhou, C. 2010. Distributed architecture for dynamic
role behaviour in humanoid soccer robots. Robot Soccer, Ed. Kordic, V. Vienna, Austria:
IN-TECH, 121–138.

Jones, J.L. and Flynn, A.M. 1993. Mobile Robots: Inspiration to Implementation. Wellesley,
MA: A. K. Peters.

RoboErectus@Home, 2012, RoboCup//www.robo-erectus.org/HomeLeague.php.
Siegwart, R. and Nourbakhsh, I.R. 2004. Introduction to Autonomous Mobile Robots.

Cambridge. MA: The MIT Press.
Singapore Robotic Games website. Micromouse Competition 2010, http://guppy.mpe.nus.edu.

sg/srg/srg10/mm.pdf
Sniedovich, M. 2011. Dynamic Programming: Foundations and Principles. Boca Raton, FL:

CRC Press.

FIGURE 11.23  (continued) MATLAB code for the micromouse during a race run. It will
first calculate the path and visit each node until it reaches the target node. The path is found
by using the Dijkstra algorithm.

357

Robot Autonomy,
Decision-Making,
and Learning

12.1  INTRODUCTION

In most robotic games, the robots are expected to display some level of autonomy. In
robotics, autonomy is understood as the ability to perceive the environment and take
decisions about the actions that would help to accomplish a given task. Furthermore,
autonomy can be expressed at different levels, from a fully autonomous robot to a
teleoperated robot. A fully autonomous robot is robust to the changes in the dynamic
environment and requires no human intervention to accomplish a given task (Jones
and Flynn 1993). A teleoperated robot, on the other hand, needs every decision from
the user to perform its actions to achieve its task. To achieve autonomy, a robot should
have a well-structured mechanism to link the sensor information to the action with
a purpose. This mechanism uses the sensor information to make the best decisions,
as well as to deal with situations when the actions fail to achieve the desired states
in the environment. The robot architecture defines how sensor information is used as
an input to make decisions and how actions are monitored until the desired state has
been achieved. The selection of the robot architecture will depend on the task at hand,
but most importantly on the level of autonomy we would like to achieve. Some of
the behaviors that we would like a robot to demonstrate are very hard to program. In
those situations, learning methods can help us to achieve the desired behavior. In this
chapter, we will discuss robot autonomy and the different types of robot architectures
and how they help the decision-making process. This chapter also shows some learn-
ing algorithms to achieve certain robot behaviors.

12.2  ROBOT AUTONOMY

Autonomous robots are able to carry out useful tasks without human supervision. As
mentioned, robots exhibit different levels of autonomy. Fully autonomous robots are
able to make their own decisions and execute actions without any human interven-
tion. Semiautonomous robots are partially controlled by a human operator; these
robots might make some decisions and execute some actions on their own, but the
human operator might control the robot or overwrite its decisions. A teleoperated
robot is a remotely controlled system that receives commands from the human oper-
ator. What a robot can perceive and what decisions it can make depend on its degree
of autonomy. Consequently, the design of what a robot should accomplish is directly

12

358 Practical Robot Design

related to what type of sensors it has and the processing and decision-making capa-
bility based on this sensorial data.

The RC Sumo robot competition is a good example of teleoperated robots in
robotic games (RC Sumo 2013). The objective in this competition is to push the
opponent’s robot out of the ring. In this game, the human operator observes the ring
and both the robots. The operator makes the decisions to win the game by simply
estimating the behavior of the opponent. In this game, the robots are not equipped
with any sensors since the human operator is able to do the perception, decision-
making, and controlling of the robot (see Figure 12.1a).

On the other hand, the Autonomous Sumo Robot competition has the same objec-
tive as the RC Sumo robot, which is simply to push the opponent out of the ring
(Autonomous Sumo Robot 2013). However, in this case, the robots are not controlled
by human operators. Robots are equipped with sensors and controller boards to col-
lect the sensor data, make sense of what is detected, and take action to win the game
(see Figure 12.1b). As discussed in the earlier chapters, a robot needs to perceive its
environment and extract relevant information to perform its task. For example, if a
robot is equipped with ultrasonic sensors, it is able to detect the position of the oppo-
nent by using the data provided by the sensors.

12.3  DECISION-MAKING

Decision-making is a crucial part of robot autonomy. Autonomous robots form
models of the environment and the objects around them using sensorial data, and
eventually take actions to complete their goals. Using environment models gives
an advantage in delivering a plan. However, executing the plan will not be so easy
when the environment is constantly changing. The real world is unpredictable and
the robot should work under that assumption. What goes between the sensing and
the acting determines the success or failure of the robot significantly. For example,
a robot that connects sensing to the acting directly may not demonstrate a great

FIGURE 12.1  (a) RC Sumo robot game. Humans observe the state of the game and decide
what actions should be executed. These actions are transmitted to the robot via a remote con-
trol. (b) Autonomous Sumo robot competition. Humans are only allowed to place the robots
in the ring and press the start button. The robot then senses the opponent and tries to push it
out of the ring.

359Robot Autonomy, Decision-Making, and Learning

intelligence capability. However, its actions will be rapid since it does not make
lengthy computations and deliberate on them.

Simple behaviors can be achieved by connecting sensors to actuators, as is proven
by the work of Valentino Braitenberg (Braitenberg 1984). Braitenberg developed a
model of simple vehicles with sensors and actuators and simply provided intercon-
nections between these two components. These connections produce behavior that is
not as simple as the vehicle itself. Figure 12.2 shows a Braitenberg vehicle with two
light sensors and two motors; the behavior depicted in the figure is often interpreted
as love because the vehicle is attracted to the light.

In the following sections, we will discuss three different approaches for decision-
making: the classical approach, the reactive approach, and the hybrid approach.
These approaches will sound much like the three strategies to process the sen-
sor measurements discussed earlier in Chapter 11. The reason for this is that in
robotics it is almost impossible to separate completely the perception, decision, and
actuation.

12.3.1 C lassical Decision-Making

The classical architecture to control a robot is defined as “sense–plan–act.” This
architecture performs each of these three processes in sequence; the robot will col-
lect data from the sensors, then these data are used to obtain a plan, and finally
the plan is executed. However, sense–plan–act has serious complications for most

FIGURE 12.2  A simple Braitenberg vehicle displaying “love” for the light source.

360 Practical Robot Design

real-world applications. To generate a plan for the real dynamic world, the robot may
need to collect a lot of information, which results in a huge amount of data and slow
computation of a proper plan. The dynamic nature of the real world also implies
that the robot needs to update its sensorial data constantly. Consequently, the world
model needs to be updated. This may invalidate the current plan that the robot is
executing and a new plan must be computed again.

12.3.2  Reactive Decision-Making

Reactive control for robots is based on the direct connection between the sensors
and the actuators with minimal information for representing the state of the world.
A reactive robot presents instinctive responses to particular situations, like a reflex
to dangerous situations. Reactive rules or behaviors can be seen as independent
modules (as shown in Figure 12.3) that are triggered by stimuli in the sensors to
produce a specific action. For example, a robot makes a turn to avoid an obstacle
sensed in front, or the robot may follow a wall that is sensed on its right-hand
side. Reactive rules should be designed as unique situations, where only a sensor
triggers a particular action. However, this is not always possible. In those cases,
it is necessary to find a way to solve the conflicts between the reactive rules. For
example, consider that the above examples of reactive rules are implemented in
a robot. If the robot faces an obstacle in front and a wall on its right, which one
of the two behaviors should be triggered? There are different techniques of solv-
ing conflicts between the reactive rules or behaviors. One method is by arbitra-
tion, which means an action will be chosen from multiple candidates (see Figure
12.3a). Another alternative is fusion, where the commands to the actuators from
the actions are fused into a single signal for the actuators (see Figure 12.3b). Using
fusion will produce more different types of behaviors than just arbitration, and it
will increase the level of complexity of the system. It is important to note that in
some situations the robot is required to perform more sophisticated behaviors to
achieve its goal.

(a)

(b)

Actuators

Reactive rule 1

Reactive rule 2

Sensors

Sensors

Reactive rule 1

Reactive rule 2

Actuators+

FIGURE 12.3  Two ways of solving conflicts between the reactive rules: (a) arbitration and
(b) fusion.

361Robot Autonomy, Decision-Making, and Learning

Another approach used in resolving conflict is the subsumption method. The sub-
sumption architecture helps to solve conflicts between rules and enables to create
complex reactive systems that consist of simple parts that can be added or removed to
change the functionality of a system. This architecture uses a prioritized arbitration
scheme to resolve any possible conflict among the reactive rules (Brooks 1985). This
means that reactive rules or behaviors will have priorities that should be considered
in the design of the system. A higher-level behavior can temporarily supress lower-
level behaviors as shown in Figure 12.4. The implementation of the subsumption
controller always starts from the lower-level behaviors. The higher-level behaviors
are implemented only after the lower-level behaviors are debugged and tested. This
way the complexity of the system will be reduced during implementation (not for the
execution). The complexity is also reduced because the connection among the behav-
iors is reduced to a simple suppression or inhibition of the sensor or motor signals.

12.3.2.1  Case Study on Reactive Decision-Making
The theme of the RoboCupJunior Rescue competition is disaster scenarios where
a robot must follow a line and deal with obstacles and victims on its path. During
the competition, the robot faces different challenges. For example, the robot needs
to follow a line, and these lines may be broken. The robot may need to avoid obsta-
cles, climb up and down slopes, and identify and rescue victims. Of course, the
robot tries to perform all this as fast as it can. Figure 12.5a presents a scenario of
RoboCupJunior Rescue, where a robot follows the line and detects an obstacle on its
path. The robot should avoid colliding with the obstacle and go around it, find the
line again, and continue its course by following the line.

For this study case, we use the RoboCup CoSpace robot, shown in Figure 12.5b,
which is equipped with two infrared sensors located at the front of the robot facing
the floor; three ultrasonic sensors, one at the front and one on each side of the robot;
and two independent motor wheels and one caster wheel (RoboCup CoSpace 2012).
Let us also use the scenario presented in Figure 12.5a for this study case. There are
two situations the robot needs to address: the line following and the going around
the obstacle. The CoSpace robot achieves line following by using two infrared sen-
sors that are facing down toward the floor and located in front of the robot. Obstacle
detection is performed by the three ultrasonic sensors located in front of the robot

Bumper

IR Detector

Avoid

Follow

Cruise MotorsS

S

S

FIGURE 12.4  A subsumption controller consisting of three reactive rules (or behaviors).
The lower-level behaviors are located at the bottom, and their output can be supressed by the
higher-level behaviors on top.

362 Practical Robot Design

collectively covering a wide range. Although it is possible to use other types of sen-
sors to detect obstacles, in this case study, the robot employs ultrasonic sensors to
detect them from a distance.

The robot controller should consider two situations: follow the line and avoid
the obstacles. Since the robot has to follow the line most of the time, this should be
the simplest of the behaviors and thus Follow-Line will be the lower-level behavior.
The obstacle avoidance should take control of the system to avoid a collision with the
obstacles; however, since the obstacles are located on the line, the robot should be
able to go around the obstacle and find the line again; thus, Round-Obstacle will be
a higher-level behavior. With these design considerations, the subsumption controller
for the rescue robot is presented in Figure 12.6.

As discussed before, the implementation will start from the lower-level behav-
iors. The Follow-Line behavior will use the data from the infrared sensors; the value
returned by the sensors will be different for an area white in color (the arena space) and
an area black in color (the line). The idea is to implement these behaviors in parallel;
however, if the microprocessor or the processing unit that is used does not support this,
then the behaviors can be implemented as functions. The code shown in Figure 12.7

Ultrasonic sonars

Infra-red sensors

Round-Obstacle

Follow-Line MotorsS

FIGURE 12.6  The proposed controller for the rescue challenge. It consists of two behav-
iors: Follow-Line and Round-Obstacle. Follow-Line is the lower-level behavior that can be
supressed by the higher-level behavior Round-Obstacle.

FIGURE 12.5  (a) A robot trying the rescue field during the RoboCup Singapore Open 2012.
(b) The RoboCup CoSpace robot is a simple robot used for RoboCupJunior and educational
purposes. The robot was developed at the Advanced Robotics and Intelligent Control Centre
of the Singapore Polytechnic.

363Robot Autonomy, Decision-Making, and Learning

FIGURE 12.7  MATLAB code of the implementation for the Follow-Line behavior for the
CoSpace robot.

364 Practical Robot Design

presents the Follow-Line behavior and subsequent behavior considering a sequential
processing instead of parallel processing.

The main function in this code is CoSpace, and it has two key components, the
first one is to initialize the robot by calling the function “Init()” and the second one
is to execute the controller of the robot in an endless loop. The initialization of the
robot is left blank in this example since it is different from robot to robot. However,
everything necessary to set up the robot and the communication with the hardware
must be placed inside this function. When all the initialization is completed, the
function must return the value of “one” that indicates that everything is ready to
proceed with the control of the robot, any other value returned will not start the
endless loop, causing the program to end. The control loop will obtain the sensor
readings from the hardware once the readings are available. The hardware state will
be conveyed to the variable named “robot”; this information will be used to make
decisions. After that, the control loop will call the function “FollowLine().” This
function will compare the values of the left and right infrared sensors to follow the
line; based on these comparisons, a motor command will be selected. Motor com-
mands are used by the function “SetMotorCmd()” to be translated into hardware
signals and finally to be sent to the motors of the robot. Functions “ReadSensors(),”
“SetMotorCmd(),” and “Init()” are hardware dependent; therefore, we did not explic-
itly show them here. Another point about the example code is that it needs to be
tuned for the certain values of the sensors for comparison. For these, we prefer to use
names that provide a better understanding of what this value should be; in the actual
implementation, these names correspond to the readings from the sensors.

The robot is expected to follow the line; when it reaches the end of the line, it will
stop. The robot will detect the difference between the left and right infrared sensors
to determine where the line is located and produce the appropriate command. Since
the robot is reacting to this difference and the processing of this value is fast, the
reaction of the robot to these stimuli is almost instantaneous.

Once the Follow-Line behavior has been tested and properly debugged, then it
is time to write the higher-level behavior to avoid the collision and to go around
the object. Usually higher-level behavior would be more complex than those in the
lower levels. The proposed Round-Obstacle behavior may require a few steps, and
it may not be possible to achieve on a single iteration of the program. In this case, a
finite-state machine (FSM) is used to represent a behavior that is composed of a fixed
number of states and transitions. An FSM consists of states and transitions; a state
would represent a state of the environment or the robot, while the transitions would
represent the actions that the robot need to execute to reach a particular state. The
proposed behavior is illustrated as FSM in Figure 12.8.

Note that the transition among the states may take several iterations, and it is
important to monitor the sensors to perceive the changes in the states. Figure 12.9
presents the MATLAB® code implementation of the Round-Obstacle behavior as
described by the FSM in Figure 12.8. The names written in uppercase letters corre-
spond to the values that need to be tuned for actual system. For example, when using
the infrared sensors to check for a black line, the real value returned by the sensor
should be replaced with the name “LINE” in the code. The value of the LINE should
be greater than the background color value. The final remark is the function “Init()”

365Robot Autonomy, Decision-Making, and Learning

will now also initialize the value of the robot.state variable to NO_STATE, and this
will ensure that the FSM will start with the state determined by the sensors.

Introducing this behavior as a higher-level behavior would require modifying the
main function to give the priority to the Round-Obstacle behavior when an obstacle
is detected and thus suppress the output of the Follow-Line behavior. Figure 12.10
presents the main function after adding the suppression of the Follow-Line behavior
by the Round-Obstacle behavior.

In Figure 12.10, the function “RoundObstacle()” is called; if the function returns
true, then the “FollowLine()” function will not be called. This may seem similar to
suppress the output of the “FollowLine()” function. The advantage is that the perfor-
mance of the system will not be affected by increasing computations. The emerging
behavior of the system can be seen as the robot follows the line and avoids the obstacle.

12.3.3  Hybrid Decision-Making

Reactive control has very a fast response when compared to the classic sense–plan–
act control paradigm. On the other hand, it is not a flexible method when it comes to
deliberating a plan. The hybrid control mechanism involves a combination of reac-
tive and deliberative control paradigms to get the best of both the worlds. A hybrid
control mechanism aims for fast response to sensory inputs as well as for producing
a flexible plan to attain the goal (Mataric 2007). A common way of implementing
these systems consists of three layers as shown in Figure 12.11.

Signals from the sensors will usually input to the reactive and middle layer.
Actuators of the robot are also connected to the reactive layer. The role of the middle
layer is to generate environment models that will be used by the planning layer, and
to keep these updated regularly. In addition, the middle layer receives the actions to
execute from the planning layer. These actions are passed down to the reactive layer
for execution and the success or failure of them is monitored by the middle layer. In
the case of failure, the middle layer avoids replanning by trying other actions that
could lead to the same goal. The design and implementation of hybrid systems is
challenging because they must bring together the components of the reactive and

Follow line

Follow
line Stop

Turn rightObstacle
front line

Line Obstacle
left

Round
obstacle

Obstacle
left line

FIGURE 12.8  The finite-state machine representation for the Round-Obstacle behavior.

366 Practical Robot Design

deliberative systems. All these components should be coupled in such a way that they
work seamlessly as a single system.

12.4  ROBOT LEARNING

The challenges put in robotic games are increasing continuously. Robots are expected
to accomplish tasks in unknown and dynamic environments. This objective is in line
with expectations from mobile robots in practice.

FIGURE 12.9  The implementation of the Round-Obstacle behavior. Note that the state vari-
able is part of the robot structure, and it is used to point at the current state in the FSM.

367Robot Autonomy, Decision-Making, and Learning

Nowadays, mobile robots are utilized to perform tasks in remote, dangerous, and
unknown environments such as in nuclear disasters, remote planets, or ocean explo-
rations. It is important for a mobile robot to have an understanding of its environment
to operate in that environment and to deal with any possible situation. However, it is
impossible to write programs that are able to predict every single possible situation
that might arise in an environment. This problem becomes even more complex if
the robot has to work in an unknown and unpredictable environment. On the other

Sensory
inputs Actuators

Middle layer

Decision layer

Reactive layer

Escape

Avoid

Follow

Cruise

S

S

S

FIGURE 12.11  A hybrid system brings together the classical deliberative system and the
reactive systems.

FIGURE 12.10  The suppression of the lower-level behavior could be implemented in code
with if-else or switch structures. Notice that the higher-level behavior here returns a Boolean
(one or zero) value that is used to determine if the lower-level behavior is suppressed or executed.

368 Practical Robot Design

hand, the learning capability provides the robot to learn about its environment and
the task it has to accomplish so that it can adapt to the changing environment and
achieve its goal. In this section, we will introduce some learning methods that can be
implemented for different applications.

12.4.1 A rtificial Neural Networks

An artificial neural network (ANN) is a network that connects artificial neurons
that are programmed to behave like biological neurons. A neural network is able to
gain knowledge through the process of learning, also referred to as training. The
knowledge is stored within the connections of the artificial neurons in the form of
weights. These weights play an important role in decision-making. Neural networks
are good at generalizing information, and they are able to respond to new situations.
As neurons form the basis of a network, we will first discuss these basic elements and
behavior of an artificial neuron.

There are four key elements in an artificial neuron; they are: inputs, weights, acti-
vation function, and output. As illustrated in Figure 12.12, the inputs (like synapses)
are multiplied by weights (strength of the respective signals). All these values are then
added and then computed by a mathematical function that determines the activation
of the neuron. The amplitude of the output of the artificial neuron depends on the acti-
vation function. In mathematical terms, we describe a neuron with a pair of equations:

	

v w xi i

i

M

=
=

∑
1 	

(12.1)

	 y v= j () 	 (12.2)

where [, , , ,]x x xi M1 … … are the input signals, [, , , ,]w w wi M1 … … are the synaptic
weights of the neuron, v is the induced local field or activation potential of neuron,

w1

Output

Inputs yv

w2

wi

wm

ϕ∑

x1

x2

xi

xm

FIGURE 12.12  Basic elements of an artificial neuron.

369Robot Autonomy, Decision-Making, and Learning

ϕ is the activation function, and y is the output signal of the neuron. The activation
function defines the output of the neuron in terms of the induced local field. The out-
put of the activation function is in the range of 0–1, and this output depends on the
type of activation function employed by the neuron. Figure 12.13 shows three types
of common activation functions: threshold, piecewise-linear, and sigmoid functions.

There are many different types of neural networks; each type needs to be mod-
eled according to the task in hand and the number of inputs and outputs. An ANN is
typically defined by three parameters:

	 1.	The interconnection pattern between different layers of neurons
	 2.	The learning process for updating the weights of the interconnections
	 3.	The activation function that converts a neuron’s weighted input to its output

activation

12.4.1.1  Perceptron
The perceptron is the simplest neural network. It is designed to solve two-class pat-
tern classification problems. The McCulloch–Pitts neuron model is adopted in the
perceptron, and it uses a threshold activation function. All the inputs are connected to
a single neuron, and it has only one output. It is considered as a feedforward network.
Feedforward neural networks solve problems by input–output functional mappings,
which are formed by learning from examples used as training data. Feedforward

1(a) (b)

(c)

0.8

0.6

0.4

0.2

0
–4 –3 –2 –1 0 1 2 3 4

1

0.8

0.6

0.4

0.2

0
–4 –3 –2 –1 0 1 2 3 4

1

0.8

0.6

0.4

0.2

0
–4 –3 –2 –1 0 1 2 3 4

FIGURE 12.13  Three different types of activation functions: (a) threshold, (b) piecewise-
linear, and (c) sigmoid functions. According to the required output, an activation function can
be used for the neurons in a network.

370 Practical Robot Design

networks have the good ability to approximate new situations. This is because feed-
forward networks use the new inputs and the weights of the networks to interpolate
new output data that were not encountered in the training data set.

Figure 12.14 shows a perceptron using the McCulloch–Pitts neuron. The neu-
ron computes the weighted sum v of all M inputs x, as shown in Equation 12.1. As
this neuron uses a threshold activation function, according to Equation 12.2, the
weighted sum v is then compared to a fix threshold value to produce the output.
Equation 12.3 presents the threshold activation function:

	
f v

v

v
() =

≥
<





1 0

0 0

if

if 	
(12.3)

The perceptron is capable of computing any function when suitable weights have
been given. As mentioned before, the information to solve a given problem or to
take a decision resides in the weights. The problem is how to choose those suitable
weights. When the number of inputs is small, the values of the weights can be manu-
ally adjusted to obtain the desired behavior. However, when the number of inputs is
large, this method will not be effective. In those cases, the network can learn by using
the backpropagation algorithm which exposes the neural network to training data
constantly. This would mean that some data are collected from the inputs and desired
output, and this training set of data is used to teach the network to produce similar
outputs when similar inputs occur. The training data are then defined as

	
x n x n x n d ni M n

N
1 1
(), , (), , (), ()… …[] = 	

(12.4)

where [, , , ,]x x xi M1 … … are the input signals, and [d] is the desired output for the nth
training example of the training dataset. The number of training examples N must
not be too small; otherwise, the network will not be flexible enough to react to dif-
ferent situations. If the training set is too large, the learning process will take a very
long time. There is also the risk of overtraining, which means making the network
specialized to respond to only certain inputs or situations. Overtraining happens

x1

Output

Input

x2

xi

xm

wm

wi

w2

w1

v y
∑

FIGURE 12.14  A perceptron with McCulloch–Pitts neuron.

371Robot Autonomy, Decision-Making, and Learning

when a large number of training samples is biased toward specific inputs or situa-
tions. A good training set should have a broad distribution of samples representing
most of the possible situations that a robot will encounter.

An important issue is how to obtain the training data. In robotics, we commonly
use the sensor values as inputs and the motor drive values as outputs. Thus, it is pos-
sible to write a program to log both the sensor values and motor drive values while
the robot is performing a task or robot being teleoperated for the task to perform.

In the backpropagation algorithm, the learning consists of two stages, namely
forward and backward stages. In the forward stage, an input activates the network
to produce an output. The network output is then compared with a desired output
to compute the error. During the backward stage, this error is fed back to the net-
work to adjust its weights and to reduce the error. Thus, the model gets closer to
the desired output with every iteration, and this is repeated until the error is small.
Backpropagation calculates the gradient of the error of the network regarding the
network’s weights. The error signal at the output of the neuron at iteration n (i.e.,
presentation of the nth training example) is defined by

	 e n d n y n() () ()= − 	 (12.5)

where d(n) is the desired output for the nth training example at the neuron. The
total error of the network is obtained by summing all the errors of the neurons.
Apparently, for a perceptron, this would be only one neuron.

	
e() ()n e n= ∑1

2
2

	
(12.6)

The average squared error is obtained by summing the total error of all the data
in the training set. The objective of the learning process is to minimize this average
error.

	

e eav

n

N

n=
=

∑1
2

1

()

	
(12.7)

The update rule of the synaptic weights is defined by the correction Δwi

	 w n w n w ni i i() () ()+ = +1 ∆ 	 (12.8)

	 ∆w n n x ni i() () ()= −hd 	 (12.9)

	 d j() () (())n e n v n= ′ 	
(12.10)

The correction Δwi is defined by the learning parameter η, the local gradient δ,
and the current input xi. The local gradient δ is composed of the neuron error and the
derivative of the activation function.

372 Practical Robot Design

The activation function used by the McCulloch–Pitts model presented in Equation
12.3 is not differentiable; therefore, it is necessary to use an activation function such
as a sigmoid or a hyperbolic tangent. As discussed in the previous section, there are
a number of activation functions, and many can be modeled according to the desired
output. The sigmoid function and its derivative are represented as follows:

	
j ()v

e av
=

+ −
1

1 	
(12.11)

	 ′ = −j j j() ()(())v a v v1 	
(12.12)

Parameter a in the equation defines the length of the shape produced by the equa-
tion. The training algorithm for the neural network is described with the following
steps:

	 1.	 Initialize the weights of the neuron to zero.
	 2.	For each training data

	 2.1.	 Calculate the output of the network y(n) for the training data n with
Equations 12.1 and 12.2.

	 2.2.	 Calculate the error of the neuron e(n) with Equation 12.5.
	 2.3.	 Calculate the local gradient for the neuron δ(n) with Equation 12.10.
	 2.4.	 For each input
	 2.4.1.	 Calculate the weight correction Δwi(n) with Equation 12.9.
	 2.4.2.	 Update the weight wi(n + 1) with Equation 12.8.

	 2.5.	 Calculate the total error of the network ε(n) for the training data n
with Equation 12.6.

	 3.	Calculate the average error of the total errors for all the training data sets,
with Equation 12.7.

	 4.	 If the average error is greater than a threshold, go back to step 2. If the
learning process has been repeated by a maximum number of epochs and
the average network does not converge, then stop to avoid an endless loop.

In robotics, input to neural network will be the sensor signals, such as sonar and
lasers range sensors, which deliver distance to objects and the output from the net-
work will be translated to a signal for actuators. So, the decision on robot movements
will be dependent on the neural network directly. The distance values from the sen-
sors have to be normalized to the 0–1 range before passing them to the network. The
output from the network will be in the range of 0–1. Similarly, the output from the
network also needs to be translated to proper motor signal.

12.4.1.2  Case Study on Perceptron with Learning
In this case study, we will again study the CoSpace robot presented in Section
12.3.2.1 to illustrate how a robot navigates in an unknown environment after learn-
ing with an ANN. We will focus on the scenario where the robot needs to move in
random directions and avoid obstacles. Obstacle avoidance is a behavior that could

373Robot Autonomy, Decision-Making, and Learning

be programmed in any robot; however, using an ANN will provide an advantage
when the robot faces new types of obstacles or unknown environments.

We need to start by modeling the ANN. In this case, we need to observe the robot
and decide how the neural network will be interfaced with the robot hardware. The
robot consists of four ultrasonic sensors, and they are used to determine the distance
of the obstacles from the front, the left, and the right directions. A fourth ultrasonic
sensor is located at the rear of the robot, and it can only perceive obstacles at the back
of the robot. Since the front and the two side sensors are mainly used for avoiding
obstacles, only these sensors will be used as inputs to the neural network. The output
of the network should then produce the necessary speed for the left and right wheels so
that the robot can avoid the obstacle. The neural network in this case will consist of two
neurons as shown in Figure 12.15. Since two output signals are needed for the motors,
each neuron will be associated to one motor. The output signal to motors can be posi-
tive (forward) or negative (backward); we need to have an activation function that can
provide us the required range. Here, we will employ the hyperbolic tangent function,
which is a nonlinear sigmoid function, and its output range extends from −1 to 1.

	 j () tanh()v v= 	 (12.13)

The derivative of the hyperbolic tangent activation function is needed for the
learning using the backpropagation method.

	 ′ = −j () tanh ()v v1 2
	 (12.14)

As we have a model of the neural network, it is necessary to collect the training
data. As described previously, the data can be collected from a previous program,
or by teleoperating the robot and logging the sensors and motor values. Most of
the mobile robotic systems nowadays have an option to be controlled by a human

Inputs

Output

∑

∑ φ

φ

x1

v1

v2

y1

y2

x2

x3 w32

w
22

w
12

w
11

w 21

w 31

FIGURE 12.15  The proposed neural network for the obstacle avoidance in the CoSpace
robot with two perceptrons and three common inputs.

374 Practical Robot Design

operator. In the case of CoSpace robot, we developed a PC-based program that sends
commands, entered by the user via keyboard, directly to the controller board of the
robot. The controller board then sends these commands to the wheel motors of the
robot. It also reads the three ultrasonic sensors and the speeds of the two motors to
record this information into a file. A new set of data is added in every cycle of the
controller board; for the CoSpace robot, that means every 100 ms. We stop data
recording when the robot has been driven to a few situations which we would like to
teach. A sample of the content of this file is presented in Table 12.1. The user controls
the robot to avoid obstacles when the obstacles are presented in the front, right, or
left side of the robot, speeds are decreased when obstacles are detected, and a simple
strategy of turning to the right when an obstacle is faced in front is applied. For the
obstacles at the sides, the strategy is simply to turn to the opposite direction. When
there is no obstacle in view of the robot, the speed is increased and robot is allowed
to move forward.

From Table 12.1, we observe that none of the input values range from 0 to 1, and
neither the output range is from −1 to 1. The next thing is to normalize these values
by taking into consideration the maximum and minimum range of the sensors and
motors. Table 12.2 shows the normalized values of the file presented in Table 12.1.

Once the network is trained and used for controlling the robot, all the inputs must
be normalized and the output signal must be converted to suit actual motor com-
mands. After collecting enough training data, the learning process can start. The
program presented in Figure 12.16 performs the learning of the network, using the
backpropagation method introduced previously.

TABLE 12.1
Parts of the Training Data Set Generated for the CoSpace Robot Generated
by Controlling the Robot with a Keyboard

Sensor Front Sensor Left Sensor Right Velocity Left Velocity Right

1000.00 1000.00 1000.00 16,384 16,384

1000.00 1000.00 1000.00 16,384 16,384

1000.00 1000.00 995.58 4096 4096

1000.00 1000.00 982.52 4096 4096

1000.00 1000.00 795.15 4096 4096

1000.00 1000.00 781.75 4096 8192

988.90 1000.00 767.11 4096 8192

982.73 1000.00 745.75 4096 8192

1000.00 1000.00 445.66 4096 8192

1000.00 1000.00 459.46 4096 8192

1000.00 1000.00 476.16 4096 8192

1000.00 1000.00 769.26 4096 8192

1000.00 1000.00 823.71 4096 8192

1000.00 1000.00 888.03 4096 8192

1000.00 1000.00 956.39 4096 8192

1000.00 1000.00 1000.00 16,384 16,384

1000.00 1000.00 1000.00 16,384 16,384

375Robot Autonomy, Decision-Making, and Learning

Once the learning process is completed, the final weight values are saved into
a file to be used during the realization of the network on the actual system. It is
important to note that neural networks do not always converge; in other words, its
learning is not complete. As described in Step 4 of the presented learning algorithm,
the learning process will sometimes stop after a number of iterations. This happens
when the error of the network is not decreasing during training and thus if the error
is not less than a threshold value, the network may not be able to provide a good
performance or exhibit the expected behavior.

If a network does not converge, there are a few methods for troubleshooting. The
first thing to do is to identify what was the final error of the network. If the error
is somehow close to the threshold value, the performance of the network could be
acceptable. This happens when the threshold is too low to be reached. If the error
is high and the behavior is not what is expected, then we should be looking at the
training data. When a few training sets describe a particular situation, and many
others describe other possible situations, it is possible that the network has too few
information to understand and learn a particular pattern. To approach this situation,
it is necessary to collect a new training data that includes a broad distribution of all
the possible situations that the network should encounter.

To test the system with the newly learnt weights, connection between sensors, net-
work, and output to motors is needed, and this is done using software. Figure 12.17

TABLE 12.2
Normalized Training Data Presented in the File of Table 12.1

Sensor Front Sensor Left Sensor Right Velocity Left Velocity Right

1 1 1 0.5 0.5

1 1 1 0.5 0.5

1 1 0.99558 0.125 0.125

1 1 0.98252 0.125 0.125

1 1 0.79515 0.125 0.125

1 1 0.78175 0.125 0.25

0.9889 1 0.76711 0.125 0.25

0.98273 1 0.74575 0.125 0.25

1 1 0.44566 0.125 0.25

1 1 0.45946 0.125 0.25

1 1 0.47616 0.125 0.25

1 1 0.76926 0.125 0.25

1 1 0.82371 0.125 0.25

1 1 0.88803 0.125 0.25

1 1 0.95639 0.125 0.25

1 1 1 0.5 0.5

1 1 1 0.5 0.5

Note:	 The original input values range from 0 to MAXDIST, and now they go from 0 to 1. The original
output values range from (−) MAXSPEED to (+) MAXSPEED; after the conversion, they range
from −1 to 1.

376 Practical Robot Design

FIGURE 12.16  MATLAB code of the learning process for the neural network presented
in Figure 12.15. This network uses the backpropagation method to update the weights. The
training data used in this code is presented in Table 12.2.

377Robot Autonomy, Decision-Making, and Learning

presents the MATLAB code to test the neural network, which controls the robot with
the trained weights. If the performance of the robot is up to the expectation, then it
is possible to run this program as a controller for the robot. The learning process can
be repeated if needed with a new set of training data.

12.4.1.3  Multilayer Perceptron
One of the commonly used neural network model is the multilayer perceptron (MLP).
MLP is a popular machine learning solution and finds applications in diverse fields
such as speech recognition, image recognition, and stock market forecasting. More
recently, there has been some renewed interest in this network due to its success of
superior learning capability.

The MLP is a feedforward ANN, consisting of an input layer, one or more layers
of hidden neurons, and an output layer as shown in Figure 12.18. The hidden neu-
rons are not directly accessible, but they extract important features contained in the
input data. Learning occurs in the perceptron by changing the connection weights
after each piece of data is processed and based on the amount of error in the output
compared to the expected result.

These networks have found their way into countless applications requiring static
pattern classification. Their main advantage is that they are easy to use, and that they
can approximate any input/output map. However, a major disadvantage is their train-
ing is slow and it requires a large set of training data. Among the various artificial
intelligence techniques available in the literature, neural networks offer promising

FIGURE 12.16  (continued) MATLAB code of the learning process for the neural network
presented in Figure 12.15. This network uses the backpropagation method to update the
weights. The training data used in this code is presented in Table 12.2.

378 Practical Robot Design

FIGURE 12.17  MATLAB code for testing the obtained weights from the learning process
presented in Figure 12.16.

379Robot Autonomy, Decision-Making, and Learning

solutions to robot navigation problem because of their ability to learn complex non-
linear relationships between input sensor values and the output control variables.
This ability of neural networks has attracted many researchers across the globe in
developing neural network-based controllers for reactive navigation of mobile robots
in indoor as well as outdoor environments.

12.4.2  Q-Learning

Q-Learning is a simple algorithm from reinforcement learning that has been used in
many applications in robotics such as navigation, manipulation, motion planning, and
multirobot systems. As the name implies, in a reinforcement learning algorithm, a rein-
forcement signal or reward is given to the robot according to the selected action for a
particular environment. The robot constantly adjusts its actions and finds the optimal
strategy through trial and error. This will maximize the reinforcement function, which
is the objective of this method while the robot learns how to deal with specific situations.

In Q-Learning, a matrix named Q represents the “brain” of the robot and the Q
matrix represents the learning of the robot. The objective of the method is to obtain
this representation. In the Q matrix, each row represents a state of the robot and each
column represents an action. In other words, the matrix tells the robot what action
should be taken when the robot is in a particular state. The entries of the Q matrix are
updated by the reinforcement learning function (Sutton and Barto 1998) defined as

	 Q(s,a) = R(s,a) + γmax(Q(s′,a′))	 (12.15)

where R is a matrix that contains the reward or reinforcement signals for taking the
action a in the state s. γ is the learning parameter that multiplies the maximum value
of the Q matrix for all actions a′ in the next state s′. The next state s′ is determined
by taking the action a in the current state s. Given a reward matrix for the states and
the actions, the Q-Learning algorithm will converge to an optimal solution to reach
the goal state defined by the problem. The algorithm for Q-Learning is as follows:

	 1.	 Initialize the Q matrix for each state and action with zeros.
	 2.	Repeat for each episode:

	 2.1.	 Select a random current state s.
	 2.2.	 Repeat while s is not the goal state.

−− Select an action a among all the possible action of the state s.
−− Receive the immediate reward R(s,a).
−− Observe the next state s′.

FIGURE 12.17  (continued) MATLAB code for testing the obtained weights from the learn-
ing process presented in Figure 12.16.

380 Practical Robot Design

−− Update the entry in the Q matrix with Equation 12.15.
−− Set the next state s′ as the current state s.

In the above algorithm, an episode is referring to a scenario where the robot will
explore different states in the reward matrix until it reaches the goal state. At the
same time, this exploration will update the Q matrix of the robot. More training
scenarios will produce further improvements in the values of the Q matrix.

12.4.2.1  Case Study Q-Learning
The Intelligent Robot competition (Intelligent Robot 2013) is a game where a robot
must collect objects of different types and colors and sort them into three different
baskets (see Figure 12.19). In this case study, we will use Q-Learning to teach the robot
about the objects and the actions that the robot must achieve to complete the challenge.
Let us discuss a simple scenario to illustrate the application of Q-Learning here.

Let us consider a scenario where there are two different objects (red and blue), and
two baskets are provided in the environment. We assume that the robot is equipped
with a gripper that allows it to grab one object at a time. Each state in this scenario

FIGURE 12.19  The Intelligent Robot competition is a game where robots must collect and
sort colored objects into three different baskets.

Inputs ∑ ϕ

ϕ ϕ

ϕ

∑ ∑

∑

Hidden

Output
x1

x2

FIGURE 12.18  A multilayer perceptron is a feedforward artificial neural network.

381Robot Autonomy, Decision-Making, and Learning

consists of the gripper of the robot, the objects on the field, and the baskets. Let us
define the possible states for the Finite State Machine (FSM). Figure 12.20 shows
a FSM with all the possible states for this scenario. The transitions between the states
in Figure 12.20 represent the reward values for executing that action. The Reward
matrix for this FSM is expressed in Table 12.3.

R

BRRobot
Red and blue baskets

Red and blue objects
R

R

B

R

R

B

B

B0

0

0

0

0

0

100 100

100

R

B

B

B
B

R B

R B

R

R

R

B

R B

R
R

B
B

R B

FIGURE 12.20  The finite-state machine for the states in the scenario of two objects for the
Intelligent Robot competition. The rewards for taking an action are indicated in the transi-
tions. The goal state has an additional loop that makes the robot to remain in this goal state
after it has reached it.

TABLE 12.3
Reward Matrix Obtained from the Finite-State Machine Presented
in Figure 12.20

Action State 1 2 3 4 5 6 7 8

1 – 0 – – – 0 – –

2 – – 0 – – – – –

3 – – – 0 – – – –

4 – – – – 100 – – –

5 – – – – 100 – – –

6 – – – – – – 0 –

7 – – – – – – – 0

8 – – – – 100 – – –

382 Practical Robot Design

FIGURE 12.21  The MATLAB code for the Q-Learning for the Intelligent Robot scenario.

383Robot Autonomy, Decision-Making, and Learning

The MATLAB code for the Q-Learning algorithm is presented in Figure 12.21,
the QLearning() function receives the reward matrix R and the learning parameter
γ and the learned Q matrix is saved in to a file named “QMatrix.csv” so that it can
be used later to control the robot. The learning parameter γ ranges between 0 and
1. When it is close to zero, the robot tends to consider the immediate reward; in
contrast, if the value is close to one, the robot tends to consider the future reward
associated with taking an action.

The code in Figure 12.21 will converge to produce the following matrix:

	

Q =

0 256 0 0 0 256 0 0

0 0 320 0 0 0 0 0

0 0 0 400 0 0 0 0

0 0 0 0 500 0 0 0

0 0 0 0 500 0 0 0

0 0 0 0 00 0 320 0

0 0 0 0 0 0 0 400

0 0 0 0 500 0 0 0

































From this matrix, it is clear that the robot could pick either the red or blue object at
the beginning and converge to the goal. Let us now consider the scenario where the
robot should collect the objects in a particular order. In that case, the reward matrix

FIGURE 12.21  (continued) The MATLAB code for the Q-Learning for the Intelligent
Robot scenario.

384 Practical Robot Design

should indicate that a particular state like placing the object red in the basket has a
reward:

	

R =

− − − − − −
− − − − − − −
− − − − − − −
− − − − − − −
− − − − − − −
− − − − − − −
− − −

0 0

20

0

100

100

0

−− − − −
− − − − − − −

































0

100

With this new reward, the Q-Learning matrix looks like:

	

Q =

0 272 0 0 0 256 0 0

0 0 340 0 0 0 0 0

0 0 0 400 0 0 0 0

0 0 0 0 500 0 0 0

0 0 0 0 500 0 0 0

0 0 0 0 00 0 320 0

0 0 0 0 0 0 0 400

0 0 0 0 500 0 0 0

































With these values, the robot will give priority to pick up the red object, repre-
sented by the state in the second row of the Q matrix.

To apply the learned Q matrix to control the robot, a hybrid architecture can be
employed as presented in Section 12.3.3. Figure 12.22 presents a code for decision-
making. The code related to hardware such as the sensor readings and motor drives
is not shown here, though it gives an idea of how to use the Q matrix for the robot’s
decision-making. The decision layer is the important part in this code and shows the
application of the learned Q matrix. After each change of state, the decision function
will get a new action from the Q matrix, and this action can be broken into primitive
actions or actions that can be applied on the robot platform. Once an action is com-
pleted and the state changes, a new action must be obtained from the Q matrix. The
process will continue until the robot state remains the same as the action, in other
words, when the Q matrix reaches the goal state.

12.5  CONCLUSION

Autonomy is a desirable feature in robots, and it is a fundamental part in many robot-
ics competitions. This chapter discussed decision-making and learning for autono-
mous robots. Autonomous robots act on the environment based on their sensorial

385Robot Autonomy, Decision-Making, and Learning

FIGURE 12.22  Code for a hybrid architecture taking a high-level decision with the states
and goals learned from the Q-Learning algorithm.

386 Practical Robot Design

information. The chapter presented some of the algorithms employed in learning as
well as the implementation of the decision in an autonomous robot.

REFERENCES

Autonomous Sumo Robot Competition, Singapore Robotic Games website 2013, http://guppy.
mpe.nus.edu.sg/srg/asumo.pdf.

Braitenberg, V. 1984. Vehicles: Experiments in Synthetic Psychology. Cambridge, MA: The
MIT Press.

Brooks, R.A. 1985. Layered control system for a mobile robot. IEEE Journal of Robotics and
Automation RA-2:14–23.

Intelligent Robot Contest, Singapore Robotic Games website 2013, http://guppy.mpe.nus.edu.
sg/srg/srg13/irc.pdf.

Jones, J.L. and Flynn, A.M. 1993. Mobile Robots: Inspiration to Implementation. Wellesley,
MA: A K Peters.

Mataric, M.J. 2007. The Robotics Primer. Cambridge, MA: The MIT Press.
RC Sumo Robot Competition, Singapore Robotic Games website 2013, http://guppy.mpe.nus.

edu.sg/srg/rcsumo.pdf.
RoboCup CoSpace Robot, CoSpace Robot, September 2012, http://www.cospacerobot.org/.
Sutton, R.S. and Barto, A.G. 1998. Reinforcement Learning: An Introduction. Cambridge,

MA: The MIT Press.

FIGURE 12.22  (continued) Code for a hybrid architecture taking a high-level decision with
the states and goals learned from the Q-Learning algorithm.

Jagannathan Kanniah
M. Fikret Ercan
Carlos A. Acosta Calderon

P
ra

c
tic

a
l R

o
b
o
t D

e
s
ig

n
G

a
m

e
 P

la
y
in

g
 R

o
b
o
ts

K
a
n
n
ia

h
E
r
c
a
n

A
c
o
s
ta

 C
a
ld

e
r
o
n

Practical Robot Design
Game Playing Robots

Designed for beginners, undergraduate students, and robotics
enthusiasts, Practical Robot Design: Game Playing Robots is
a comprehensive guide to the theory, design, and construction of
game-playing robots. Drawing on years of robot building and teaching
experience, the authors demonstrate the key steps of building a robot
from beginning to end, with independent examples for extra modules.
Each chapter covers basic theory and key topics, including actuators,
sensors, robot vision, and control, with examples and case studies
from robotic games. Furthermore, the book discusses the application
of AI techniques and provides algorithms and application examples
with MATLAB® code.

The book includes:

•	 Comprehensive coverage of drive motors and drive motor
control

•	 References to vendor websites as necessary

•	 Digital control techniques, with a focus on implementation

•	 Techniques for designing and implementing slightly advanced
controllers for pole-balancing robots

•	 Basic artificial intelligence techniques with examples in
MATLAB

•	 Discussion of the vision systems, sensor systems, and
controlling of robots

The result of a summer course for students taking up robotic
games as their final-year project, the authors hope that this book will
empower readers in terms of the necessary background as well as
the understanding of how various engineering fields are amalgamated
in robotics.

Robotics

ISBN: 978-1-4398-1033-0

9 781439 810330

90000

K10517

K10517_COVER_final_revised.indd 1 9/17/13 3:37 PM

	Front Cover
	Contents
	Preface
	Acknowledgments
	Authors
	Chapter 1: Game Robotics
	Chapter 2: Basic Robotics
	Chapter 3: Sensors
	Chapter 4: Robot Vision
	Chapter 5: Basic Theory of Electrical Machines and Drive Systems
	Chapter 6: Motor Power Selection and Gear Ratio Design for Mobile Robots
	Chapter 7: Control Fundamentals
	Chapter 8: Review of Mathematical Modeling, Transfer Functions, State Equations, and Controllers
	Chapter 9: Digital Control Fundamentals and Controller Design
	Chapter 10: Case Study with Pole- Balancing and Wall -Climbing Robots
	Chapter 11: Mapping, Navigation, and Path Planning
	Chapter 12: Robot Autonomy, Decision-Making, and Learning
	Back Cover

