
www.allitebooks.com

http://www.allitebooks.org

PrimeFaces Blueprints

Create your very own portfolio of customized web
applications with PrimeFaces

Sudheer Jonna

Ramkumar Pillai

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

PrimeFaces Blueprints

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2014

Production reference: 1190814

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-322-3

www.packtpub.com

Cover image by Benoit Benedetti (benoit.benedetti@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors
Sudheer Jonna

Ramkumar Pillai

Reviewers
Ramanath Chandramohan Bhongale

Aristides Villarreal Bravo

Vineet Jain

S V Narayana

Enrique Enolva Tan

Commissioning Editor
Akram Hussain

Acquisition Editor
Richard Harvey

Content Development Editor
Sankalp Pawar

Technical Editor
Tanvi Bhatt

Copy Editors
Dipti Kapadia

Gladson Monteiro

Insiya Morbiwala

Aditya Nair

Alfida Paiva

Project Coordinator
Harshal Ved

Proofreaders
Simran Bhogal

Maria Gould

Ameesha Green

Paul Hindle

Indexers
Mariammal Chettiyar

Rekha Nair

Tejal Soni

Graphics
Valentina D'silva

Production Coordinator
Adonia Jones

Cover Work
Adonia Jones

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Sudheer Jonna was born in Andhra Pradesh, India, in 1987. Currently, he works
as a senior software engineer in Chennai, India. He completed his Master's degree
in Computer Applications from JNTU. In the past 3-4 years, he has worked on
providing architectural designs and building various web applications based on
Struts, JSF, Spring, jQuery, and JPA.

He is a JSF and PrimeFaces expert. He has been working with the PrimeFaces
component library since 2011. He is a committer / project member of PrimeFaces and
PrimeFaces Extensions open source projects. He has been a well-known, recognized
member of the PrimeFaces community for the past few years. He is also the author of
Learning PrimeFaces Extensions Development, Packt Publishing.

Besides working with the mentioned technologies, he also writes technical articles,
provides online training, designs and develops web application architecture, writes
books and reviews, and provides suggestions through online forums and blogs.
He is interested in the research and development of various popular Java EE
frameworks and many other latest technologies.

He shares his knowledge through GitHub (https://github.com/sudheerj);
you can also follow him on Twitter (@SudheerJonna) or contact him on Gmail at
sudheer.jonna@gmail.com.

I would like to thank my friend, Çağatay Çivici, the book reviewers,
and the team at Packt Publishing for their support and great
teamwork for the past few years.
Also, a very big thanks to my parents, brother, sister, colleagues,
roommates, and friends for their support in helping me complete
this book very quickly.

www.allitebooks.com

http://www.allitebooks.org

Ramkumar Pillai is the leading authority on latest global technical trends and
a proficient technical architect of the Java J2EE technology. He has been employed
by major software companies across the globe, and he currently works as a senior
consultant in advanced web technology.

He can be described as a smart professional with significant IT experience in
technical architecture and project management on leading Java technology stacks.
He has received acclaim for his contributions to PrimeFaces, Grails and Groovy, and
Play Frameworks all through his career in the form of deliverables, documentation,
or presentations. He was also a co-speaker at the conference on the latest trends in
the web technology stack at Dallas, Texas, in September 2012.

When he is not working, he creates web designs and illustrations for retail marketing
portals and blogs about almost anything, be it Big Data or his favorite Bonsai culture.

He has also been a lead consultant for companies such as Triadic Technologies and
Smarterscart. He is the kind of person who believes "good is the enemy of great",
and he is currently working on a few research and development projects that are not
related to his favorite subject, Java.

I would like to thank all who have supported me with the
production of this book, and also Packt Publishing for providing me
with this opportunity.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Ramanath Chandramohan Bhongale completed his engineering degree in
Information Science from KVGCE Sullia (affiliated to VTU) in 2005 and is currently
working at KPIT Technologies Ltd. as a technical lead on Java, J2EE, and various
development projects. He is passionate about sharing knowledge by conducting
corporate seminars and writing technical blogs. His major work experience is in
creating and managing automated systems for workflow and testing, developing,
and deploying flows.

I would like to express my special gratitude to my wife, Raksha, who
gave me the support that I needed in carrying out this assignment.
Additionally, I would like to thank my friend, Pankaj Patel, who
helped me in re-reviewing difficult sections. Finally, I would like to
thank the team at Packt Publishing who gave me an opportunity to
contribute to the successful publication of this book.

Aristides Villarreal Bravo is a Java developer, a member of the NetBeans Dream
Team, and the leader of a Java User Group. He is also the CEO of Javscaz Software
Developers.

Aristides has organized and participated in various conferences and seminars related
to Java, Java EE, the NetBeans platform, free software, and mobile devices, both
nationally and internationally. He writes tutorials and blogs about Java, NetBeans,
and web development too.

He has given several interviews on sites such as NetBeans, NetBeans Dzone, and
javaHispano and developed various plugins for NetBeans. He specializes in JSE, JEE,
JPA, Agile, and Continuous Integration.

You can visit him at http://avbravo.blogspot.com.

I would like to thank my grandfather for his lighting over time.

www.allitebooks.com

http://www.allitebooks.org

Vineet Jain is currently working as a project lead in a leading software company.
He has a total of over 6 years of experience, during which time he has worked for
a number of projects in Java and other technologies. He has a rich experience in
building applications using PrimeFaces and PrimeFaces extensions.

S V Narayana was born in Andhra Pradesh, India, in 1981. Currently, he is working
as a project lead in Chennai, India. He has completed his professional degree (BTech)
in Electrical and Electronic Engineering from S.V. University (NBKRIST, Vidyanagar,
Nellore, Andhra Pradesh). For the past eight years (since 2006), he has been
architecting, designing, and developing software professionally and has been using
Java as his primary programming language. He is a Java, Java EE, and PrimeFaces
expert. He has been working with the healthcare and BFS domains.

You can contact him at svnari@gmail.com.

Enrique Enolva Tan currently works as senior Java web developer at STM
Philippines, a division of Duke Manufacturing based in St. Louis, Missouri,
United States, with more than 7 years of experience in Java EE and related
frameworks, and 16 years of overall experience in both IT infrastructure and
application development engineering.

He has developed and deployed various types of application websites, which
range from retail and fast food to online gaming casinos. He has also held several
managerial positions in information technology in the online gaming casino
industry.

He aspires to be a successful technopreneur—he is working on several concepts for
patents in Mobile Name System (MNS), Mobile Certificate Authority (MCA), and
Subscriber Identity Module Search and Trust Platform (SIM-STP).

He devotes his free time to develop his own website (www.hanapsim.com) for SIM
Search and Trust Platform using the Java, JSF, and PrimeFaces technologies.

I would like to thank Rechil Lentejas Artizo and my kids, Aerozekiel,
Aerikezedek, and Aerika Faith for bearing with me even though I
sacrificed some of our family time to review this book.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Creating a "Hello World" Application 7

An introduction to JavaServer Faces and PrimeFaces 8
Setting up and configuring PrimeFaces 9

Setting up and configuring using Maven 9
Setting up and configuring for non-Maven (or Ant) users 11
Application-level configuration 11
Checking the JSF runtime compatibility 13

Developing your first PrimeFaces application 14
Change the old trend of development with Ajaxified components 15

Learning Partial Processing 15
Partial Page Rendering 17
Partial submit 17
PrimeFaces polling 18

PrimeFaces code completion, NetBeans bundles PrimeFaces,
and the code generation tool 18

Eclipse code completion 19
NetBeans code completion 21
NetBeans bundles PrimeFaces 21
The code generation tool 22

Generating a CRUD application 23
Adding entities and generating PrimeFaces pages 23

Summary 27
Chapter 2: Creating an Employee Registration Application 29

Introduction to the employee registration project 30
The employee registration application 30
Application use cases 30

The UML use case diagram 31

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

The architectural design 31
Creating a project and implementing the application screens 32

The project structure 33
Understanding the application template design 34
Implementing the application screens using the form components 34

Creating the login screen using the input components 35
Exploring the employee registration form 40
The Client Side Validation framework in form validations 44
Exploring the change password functionality 53
Tracking the list of job posts 55
Managing the application through an admin role 56

Working with the employee registration project code 57
Summary 57

Chapter 3: Creating a Simple Restaurant Point of Sale Application 59
A quick start 59
Application use cases 60
The architectural design 60

The application architecture diagram 61
The entity diagram 62

Implementing the application 62
Template tags 63

The UI composition tag 63
The layout component 66
The grouping components 70

Supporting tags in the login screen 73
The dataGrid component 74
The dataTable component and its usage 76
The accordion component and its usage 77

Integrating the restaurant's menu card model 78
Updating the component on a click 79

Working with sample code 85
Summary 85

Chapter 4: Global Mutual Funds Tracking 87
An introduction to the global mutual funds tracking project 88

The global mutual funds tracking application 88
Application use cases 88

Sketching the UML use case diagram 89
The architectural design 89

Creating a project and implementing the application screens 91
The project structure 91
Understanding the application template design 92
Database configurations 92

Table of Contents

[iii]

Implementing the application screens using data iteration components 93
Implementing the login screen 93
Login credentials 97
Exploring the mutual funds screens 98

Working with the project code of the global mutual funds
tracking application 119
Summary 119

Chapter 5: Investor Information Analysis and Reporting 121
Understanding the investor information analysis and reporting project 122

About the application 122
Application use cases 123

The UML use case diagram 124
The architectural design 124

Creating the project and implementing the application screens 126
The project structure 126
The application template design 127
Database configurations 127
Implementing application screens using analysis and reporting
components 128

Implementing the login screen 128
The login credentials 131
Exploring the summary tables 131
Implementing the export functionality in summary screens 143
Implementing the charts functionality in summary screens 153

Working with investor information analysis and reporting
the application project code 163
Summary 163

Chapter 6: Creating a Simple Online Shopping Cart Application 165
Understanding the application 165

The application use case 166
Functional requirements 166
The architecture 167

The ER diagram 168
The implementation 168

The persistence layer 169
The administration / back office module 171

The menubar component 173
Store management 173
The category page 175
The flow diagram 176

The storefront 177
Implementing the cart mechanism 177
Code walk-through 182

Table of Contents

[iv]

Working with the sample code 183
Summary 183

Chapter 7: Creating an Online Video Portal Application 185
A quick overview 185
Understanding our requirements 186
The system architecture 187
Implementations 187

The ER diagram 188
Working on the application persistence layer 189

Possible errors in hibernate DML 189
Working on the presentation layer 190

The home page 190
Enabling registration and login 193
The user dashboard page 197

Scheduling the application components 199
Implementing the location page 202
Integration 202

Working with the sample code 206
Summary 206

Chapter 8: Creating an Online Printing Station Application 207
Understanding the need of this application 207
Requirement analysis 208

Functional requirements 208
The architecture 209
Fulfilling our application requirements using PrimeFaces 209

The ER diagram 209
Implementing our landing page 210

The TagCloud component 211
The scrollPanel component 213
The chart component 214
The contentFlow component 215
Supporting components 216

The login page 216
The registration page 218

The user dashboard page 220
Placing the print job order 223

The slider component 224
Code walk-through 225
The fileUpload component 226
The file download component 229

Working with the sample code 230
Summary 230

Table of Contents

[v]

Chapter 9: Creating an Online Chat Application 231
The application use case 232
Requirement analysis 232

A flow diagram 232
The architecture 233
Implementing the requirements 233

The ER diagram 233
Implementing, deploying, and running the application 234

The editor component 235
The selectOneButton component 235
The password component 236
Code walk-through – the landing page before login 236
The landing page after login 239
Supporting components 241
The User Profile page 242

The Push technology 243
Implementing the chat module using PrimePush 244

Working with the sample code 249
Summary 250

Chapter 10: Creating a Healthcare Products Application 251
Introducing our healthcare products application 252

Application use cases 252
The UML use case diagram 252

The architectural design 253
Creating a project and implementing the application screens 254

Laying out our application structure 255
Designing the application template 255
Database configurations 256
Implementing application screens using data hierarchy, data display,
and utility components 256

Implementing the login screen 256
Login credentials 258
Implementing the HealthKart screen 259
Implementing the admin screen 262
Implementing the view-expired message using idleMonitor 265

Applying themes in your PrimeFaces applications 266
Applying existing themes 266
Creating a new theme from scratch 267

Font settings 268
Corners 269
Header/Toolbar 270
Content 271
Clickable states – default, hover, and active state 272
Cues – highlight and error 273

Table of Contents

[vi]

Overlays and shadows 274
Theme Converters 277

PrimeFaces Theme Converter 277
ThemeRoller to PrimeFaces Themes Converter 278

Changing themes on the fly using ThemeSwitcher 280
Working with the project code of the healthcare products application 280
Summary 281

Index 283

Preface
PrimeFaces is a leading lightweight open source user interface component library
for JSF-based web applications. It provides a rich set of 100+ UI components with a
single JAR, zero configuration, and no prerequisites. PrimeFaces aims to create
built-in Ajax components that are based on standard JSF 2.0 Ajax APIs with a rich
look and feel, with the help of a theming mechanism.

The initial development of PrimeFaces was started in 2008 by a Turkish JSF expert,
Çağatay Çivici. Prior to developing PrimeFaces, he had been working on the YUI4JSF
library. This experience of working with the YUI4JSF library allowed him to start
developing PrimeFaces, which was initially based on the YUI JavaScript library.
A few days later, the PrimeFaces team decided to replace this library with the
powerful jQuery framework in order to create the component widgets.

This book will guide you through the process of creating a wide range of rich UI
web applications based on successful, real-world business models. Each chapter
comes with a custom web project, which you can build with a detailed, step-by-step
procedure. This is accompanied by explanations of the key features used. By the end
of each chapter, you will learn how to build specific, customized web applications
using the PrimeFaces components. The projects inside this book make use of the
latest versions of PrimeFaces (Version 5.0) and JSF (Version 2.2).

What this book covers
Chapter 1, Creating a "Hello World" Application, discusses how to create a simple
"Hello World" PrimeFaces application in a step-by-step procedure and how to
create the recommended PrimeFaces - supported environment (required software,
browsers, IDE, tools, and so forth) that is required for real-world application
development. A brief introduction to PrimeFaces and its role in UI applications
will also be covered at the beginning of the chapter.

Preface

[2]

Chapter 2, Creating an Employee Registration Application, shows you how to create an
employee registration application, which is an example of how to form components
and their validations. The big set of PrimeFaces form components will be divided
into two main categories, which are input components and select components, to
create the registration type of the form filling application. These components and
their validations that are used will also be explained in detail.

Chapter 3, Creating a Simple Restaurant Point of Sale Application, explains how to create
a restaurant POS application with the help of the PrimeFaces layout and grouping
components. These topics provide the templating mechanism needed for a fancy
application, and each concept will be explained in detail.

Chapter 4, Global Mutual Funds Tracking, directs you on how to create a global mutual
funds tracking application with the help of a data container and dialog components.
This project emphasizes the usage of the data container and dialog components in
order to maintain the big datasets in investment/financial schemes. The master-client
and hierarchical data relationships (which are linked to these components) will also
be well explained.

Chapter 5, Investor Information Analysis and Reporting, shows you how to create an
investor information analysis application, which is useful because it is an example
of data visualization and reporting components. Big datasets for reporting data
will be analyzed in the form of charts and various formats of export features. The
data visualization and reporting components used within this application will also
be explained.

Chapter 6, Creating a Simple Online Shopping Cart Application, shows you how to
create an online shopping cart application using the major menu variations and
drag-and-drop components in PrimeFaces. This shopping cart application can be
used to cover various products, such as electrical goods or household products.

Chapter 7, Creating an Online Video Portal Application, directs you on how to create an
online movie portal application, which makes use of PrimeFaces multimedia, maps,
and schedule components. This application can be used in the entertainment world
and to book events that vary seasonally, such as special events in the summer or
winter. Customers can pick the events that interest them and book them accordingly.

Chapter 8, Creating an Online Printing Station Application, guides you through how
to build an online printing station application. This application handles all types of
files using the PrimeFaces file upload and download components. This application
will showcase a new concept that provides a platform to track, submit, and process
printing jobs from multiple users across different locations.

Preface

[3]

Chapter 9, Creating an Online Chat Application, shows you how to create an online
chat room application using the PrimePUSH. The PrimePUSH API deals with
the asynchronous communication between the server and client using this chat
room application. This chapter uses the simple social network application as our
sample project.

Chapter 10, Creating a Healthcare Products Application, shows you how to create an
online healthcare products application using common utility components and
theming concepts (such as using built-in themes, customizing these, and creating
new ones).

What you need for this book
As a reader of this book, you will need Java 5 or above and Maven installed on your
machine, along with the JSF and PrimeFaces libraries. Optionally, you can use software
and tools such as the Eclipse IDE, MySQL DB, and any browser tools to debug the
application. You should also have a basic knowledge of JSF, PrimeFaces, and jQuery.

In order to run the customized web projects in this book, you need to store them on
GitHub. This means that you can pull the source code at any time in order to have
an efficient practical experience.

The software libraries or tools used in all of the customized projects of this book are
listed as follows:

• JDK 1.5+ from Oracle's official site. You can download this at http://www.
oracle.com/technetwork/java/javase/downloads/index.html.

• The Mojarra Java Server Faces implementation's latest version. This can be
downloaded at https://javaserverfaces.java.net/download.html.

• The latest version of PrimeFaces from the PrimeFaces official site, which
can be downloaded at http://www.PrimeFaces.org/downloads.html.

• The latest version of PrimeFaces Extensions, which can be downloaded
at http://PrimeFaces-extensions.github.io/.

• MySQL from its official site (http://www.mysql.com/), or any other
relational database based on the JDBC driver.

• Eclipse from the official site (http://www.eclipse.org), or any other
Java IDE.

• The Apache Maven build tool from the official site
(http://maven.apache.org/) to work with customized projects.

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://javaserverfaces.java.net/download.html
http://www.PrimeFaces.org/downloads.html
http://PrimeFaces-extensions.github.io/
http://www.mysql.com/
http://www.eclipse.org
http://maven.apache.org/

Preface

[4]

• PrimeFaces components result in a rich UI application with lots of CSS, JS,
and HTML markup resources; it would be very helpful to use browser tools
such as the Firebug plugin for Firefox, FirebugLite for the Chrome browser,
Developer Tools (F12) for Internet Explorer, and Developers Tools (which
you can access using Ctrl + Shift + I) for the Chrome browser.

• To work with the Blueprint projects, you need to check out the source
code using a Git client or using IDE Git repositories. The step-by-step
instructions to run the customized web projects are covered in GitHub
(https://github.com/sudheerj/PrimeFaces-blueprints).

Who this book is for
This book is for anyone who wants to learn how to create customized PrimeFaces
web applications. If you want to create a different set of categories for customized
applications using PrimeFaces components, then this book is for you.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"These managed beans interact between XHTML/Facelets and the POJO class with
the @ManagedBean annotation."

A block of code is set as follows:

<div id="header">
<ui:insert name="header">
 <ui:includesrc="/templates/common/header.xhtml" />
</ui:insert>
</div>

Any command-line input or output is written as follows:

mvn clean package

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"Select the PrimeFaces component suite from the Components tab."

https://github.com/sudheerj/PrimeFaces-blueprints

Preface

[5]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or e-mail
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

www.allitebooks.com

www.packtpub.com
www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.allitebooks.org

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

http://www.packtpub.com/support
http://www.packtpub.com/support

Creating a "Hello World"
Application

This chapter will show you how to create your own "Hello World" application in
order to give you a head start with the application development for PrimeFaces. This
chapter will provide you with a brief introduction to its features and its role in web
applications, with a step-by-step setup and configuration. Most importantly, it will
give you an insight into how Ajaxified components change the old development trend.
We will also learn how to make application development easier with code completion,
IDE support, and the code generator tool used for creating the CRUD web application.
The specific topics that will be covered in this chapter are as follows:

• An introduction to PrimeFaces, its features, and its role in customized
application development

• PrimeFaces setup and configuration for development
• How to quickly develop a project: a "Hello World" application, in this case
• How to change the old trend of development using Ajaxified components
• How to use code completion, NetBeans bundles PrimeFaces, and the code

generator tool

Creating a "Hello World" Application

[8]

An introduction to JavaServer Faces and
PrimeFaces
JavaServer Faces (JSF) is a component-based MVC framework used for building
rich User Interface (UI) Java web applications. JSF is a powerful framework with
a six-phase lifecycle, and it will automate the common web application tasks such
as decoding the user input, processing the input validations and conversions, and
rendering or updating the output in the form of generated HTML. Page authors
can easily build a customized UI by just dragging-and-dropping the reusable
components on the page that provide a rich look and feel to modern UI applications.
JSF has built-in support for input conversions and validations, and Ajax support for
the components.

Going by the growing popularity of JSF technology, many open source and
proprietary UI component frameworks were created to have user interfaces with
a fancier look and feel. These component suites were created by introducing their
own new components and extending the standard JSF components with additional
features. Among all these component suites, PrimeFaces is the best and most popular
component suite considering its features, quick releases with more new components
and bug fixes, ease of development, extensive documentation, and support from its
community.

PrimeFaces is a leading, lightweight, open source user interface component library
for JSF-based web applications. In the JSF world, it is miles ahead of the other
existing component sets because of the many features it has at its disposal:

• Over 100 sets of components
• Built-in Ajax-supported components
• Ease of development, as there are no configurations required
• A single jar install without the need for any mandatory third-party libraries
• More than 30 predefined themes and custom themes by using the

ThemeRoller support
• Multibrowser support

It is so well designed that it is important to consider its importance when developing
web applications. Page authors and application developers can easily develop
web pages by simply dragging-and-dropping the components of the webpage and
then adding the required features in a step-by-step fashion: customizing the CSS
style classes, extending the component widgets, and rendering according to the
custom requirements.

Chapter 1

[9]

Setting up and configuring PrimeFaces
PrimeFaces is a lightweight single library with minimal external libraries. The only
external libraries required are those with component-specific features. Apart from
these component-specific features, projects only require JSF runtime implementations
such as Oracle Mojarra or Apache MyFaces.

The setup and configuration for Maven and non-Maven users is explained in the
following two sections.

Setting up and configuring using Maven
In this section, we will define the various Maven configuration steps required to run
a PrimeFaces-based application. Perform the following steps:

1. Configure the PrimeFaces library dependency or Maven coordinates in your
project pom.xml file as shown here:
 <dependency>
 <groupId>org.primefaces</groupId>
 <artifactId>primefaces</artifactId>
 <version>5.0</version>
 </dependency>

2. Add the PrimeFaces repository to the repositories list of your project
pom.xml file as follows:
 <repository>
 <id>prime-repo</id>
 <name>Prime Repo</name>
 <url>http://repository.primefaces.org</url>
 </repository>

Note that this step is not required for releases after PrimeFaces 4.0.
The team started adding its library in the Maven central repository.

3. Configure either of the JSF runtime implementations, Oracle Mojarra or
Apache MyFaces. Choose either of the following two blocks of code:

 ° This is the runtime implementation for Oracle Mojarra:
<dependency>
 <groupId>com.sun.faces</groupId>
 <artifactId>jsf-impl</artifactId>
 <version>2.2.6</version>6
</dependency>

Creating a "Hello World" Application

[10]

 ° This is the runtime implementation for Apache MyFaces:

<dependency>
 <groupId>org.apache.myfaces.core</groupId>
 <artifactId>myfaces-impl</artifactId>
 <version>2.2</version>
</dependency>

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you.

Depending on the component-specific features, you can use the following mandatory
and optional dependencies. Here is a list of dependencies categorized into
mandatory and optional. The following are the mandatory dependencies:

Dependencies Version Description
JSF runtime 2.0, 2.1, and 2.2 Oracle's Mojarra or Apache MyFaces

implementation
PrimeFaces 5.0 The PrimeFaces UI component library

The following are the optional dependencies:

Dependencies Version Description
iText 2.7 To use the DataExporter component for PDF

format
POI 3.7 To use the DataExporter component for Excel

format
Rome 1.0 To use the Feed reader component
commons-fileupload 1.3 To use the fileupload component (when web

server / application server doesn't support
servlet 3.0)

commons-io 2.2 To use the fileupload component

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Chapter 1

[11]

Setting up and configuring for non-Maven
(or Ant) users
In this section, we will define the various non-Maven (or Ant) configurations
required to run a PrimeFaces-based application. Perform the following steps:

1. Download the PrimeFaces library from the official download section of
PrimeFaces at http://www.primefaces.org/downloads.html.

2. Following this, add the PrimeFaces JAR library to the classpath.
3. You should then download either the JSF library runtimes from Oracle's

Mojarra or those from Apache MyFaces from their official sites and add them
to the classpath. You can access the JSF library at Oracle by going to https://
javaserverfaces.java.net/2.2/download.html or alternatively access it at
Apache by going to http://myfaces.apache.org/download.html.

4. After this, you should download the component-specific third-party libraries
from their official site and add them to the classpath.

Application-level configuration
As you know, PrimeFaces is a JSF-based component suite. Therefore, the first
thing you have to do is configure the JSF Faces Servlet in your project deployment
descriptor file (web.xml). The following is a mandatory configuration for any
JSF-based application:

<servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
</servlet>
<servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>/faces/*</url-pattern>
</servlet-mapping>
<servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>*.jsf</url-pattern>
</servlet-mapping>

http://www.primefaces.org/downloads.html
https://javaserverfaces.java.net/2.2/download.html
https://javaserverfaces.java.net/2.2/download.html
http://myfaces.apache.org/download.html

Creating a "Hello World" Application

[12]

<servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>*.faces</url-pattern>
</servlet-mapping>
<servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>*.xhtml</url-pattern>
</servlet-mapping>

It is not mandatory to use all of the JSF extensions or servlet mappings.
Any of the preceding servlet mappings is enough to configure Faces
Servlet to your project.

There are other configurations that can be made to your project. These are shown in
the following table:

Context parameter name Default value Description
THEME Aristo Used to apply a specific theme to your

application. All theme names are valid
values.

SUBMIT Full Enables the Ajax submit mode. The valid
values are full and partial.

DIR Ltr Defines the component content orientation.
The valid values are ltr and rtl.

RESET_VALUES False When this is enabled, any Ajax-updated
inputs are reset first. The valid values are
true and false.

SECRET PrimeFaces Defines the secret key to encrypt-decrypt
the value of the expressions that are exposed
in rendering StreamedContents.

CLIENT_SIDE_
VALIDATION

False Controls client-side validations to the form
components.

UPLOADER Auto Defines the fileuploader mode. The
valid values are auto, native, and
commons.

Chapter 1

[13]

As an example, the following code snippet configures a theme with context-param:

<context-param>
 <param-name>primefaces.THEME</param-name>
 <param-value>delta</param-value>
</context-param>

Checking the JSF runtime compatibility
PrimeFaces 5.0 supports all the JSF runtime versions: 2.0, 2.1, and 2.2 at the same
time using feature detection without having to compile a dependency to any
specific version. In other words, some of the features that are available are based
on the runtime version used. The newly released JSF 2.2 version supports more
popular HTML5.

The runtime detection policy for PrimeFaces is quite useful for the newly added
features in JSF library. The JSF 2.2 passthrough attribute's feature is a good example
of the runtime detection policy. That is, the passthrough attribute only gets rendered
if the runtime is JSF 2.2.

An introduction to the autofocus and pattern HTML5 attributes' integration with
PrimeFaces can be seen in the following example:

<!DOCTYPE html>
<html xmlns="http://www.w3c.org/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:p="http://primefaces.org/ui"
xmlns:pt="http://xmlns.jcp.org/jsf/passthrough">
 <h:head>
 </h:head>
 <h:body>
 <h:form>
 <p:inputText value="#{bean.value}" pt:autofocus="autofocus"
 pt:pattern= "[A-Za-z]"/>
 </h:form>
 </h:body>
</html>

Creating a "Hello World" Application

[14]

Developing your first PrimeFaces
application
In the previous section, you have learned how to set up and configure PrimeFaces for
JSF-based web applications. To start using its components in your web project, you
have to add the following namespace at the top of the namespace section:

xmlns:p="http://primefaces.org/ui"

Once you have successfully completed the setup and configuration for PrimeFaces,
you will be shown how to develop a simple "Hello World" application by simply
following these steps:

1. The first step is to create a simple helloworld.xhml page. This will display
the "Hello World" message from the PrimeFaces Panel component. You will
be able to display this message using the following section of code:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:p="http://primefaces.org/ui">
<f:view contentType="text/html" >
 <h:head>
 <title>Primefaces Hello World page</title>
 </h:head>
 <h:body>
 <h:form>
 <p:panel header="Hello" footer="Blueprints world"
 style="width:300px;margin-left:40%;margin-top:15%">
 Welcome to Primefaces
 </p:panel>
 </h:form>
 </h:body>
</f:view>
</html>

2. Following this, package the application somewhere in the target directory (by
default) and then run the application with the help of the following Maven
commands:
mvn clean package

mvn jetty:run

or:
mvn tomcat:run

Chapter 1

[15]

3. After this, go to the browser address bar and access the "Hello World"
application by navigating to http://localhost:8080/chapter01/views/
helloworld.jsf.

4. You should now be able to see the Hello World message with the help of the
panel component in the web page. This can be seen in the following screenshot:

Change the old trend of development
with Ajaxified components
One of the design goals of the PrimeFaces component suite is to simplify the web
development by using Ajaxified components. The Partial Processing and Partial Page
Rendering features play a major role in creating a powerful AJAX framework.

Learning Partial Processing
PrimeFaces provides the Partial Processing feature in order to execute the JSF
lifecycle phases required for the specified components with the help of a process
attribute. Here, you can only process the required components instead of the entire
web page, which are called lightweight requests. This occurs quite commonly, such as
when creating the PrimeFaces web pages. This is done with the help of registration
form fields, which include a certain group of validation results that validate the
different components depending on the executed action. However, you can avoid
unnecessary validations for other components and prevent validation errors on the
submission of the form. The process attribute is not only used to process the specific
components but also to process the specific regions with the help of the @this,
@form, @parent, @none, and @all expressions. You can also combine the components
with these simple expressions at the same time using a comma separator (,).

www.allitebooks.com

http://www.allitebooks.org

Creating a "Hello World" Application

[16]

The most common scenario is the dependent drop-down input values along with
the other required components of the same page. This feature can be explained with
an example.

In the case of submitting the order details, you can see one or more dependent
relationships. In this example, a list of products depends on the selected category
and the list of orders depends on the selected product. Firstly, you have to select
the category and then based on this category, select the product. After choosing the
product, you then select one order from the list of populated orders. You should
also assume that this registration form contains other required form fields such as
a calendar and the inputText components. The preceding use case scenario is
represented in the following code snippet:

<h:outputText value="Category: " />
<p:selectOneMenu id="categories" value="#{ppController.category}">
<f:selectItems value="#{ppController.categories}" />
<p:ajax listener="#{ppController.updateProducts}" event="change"
 update="products" process="@this"/>
</p:selectOneMenu>

<h:outputText value="Product: " />
<p:selectOneMenu id="products" value="#{ppController.product}">
<f:selectItems value="#{ppController.products}" />
<p:ajax listener="#{ppController.updateOrders}" event="change"
 update="orders" process="@this"/>
</p:selectOneMenu>

<h:outputText value="Order: " />
<p:selectOneMenu id="orders" value="#{ppController.order}">
<f:selectItems value="#{ppController.orders}" />
</p:selectOneMenu>

<h:outputText value="Number of Orders: " />
<p:inputText value="#{ppController.ordersCount}" id="ordercount" />
 required="true" />

<h:outputText value="Date of Order: " />
<p:calendar value="#{ppController.selectdate}" id="selectdate" />
 required="true" />

You can clearly see that without using the Partial Processing feature, validation
errors might occur on the number of orders of the input field and the date of the
order calendar components.

Chapter 1

[17]

Partial Page Rendering
PrimeFaces provides the Partial Page Rendering (PPR) feature to update certain
specified components instead of the whole page with the help of the update
attribute. You will be able to see the updated output without refreshing the page.
The update attribute accepts both components and simple expressions such as @this,
@form, @parent, @none, and @all. As before, you can use the comma-separated list
of components and expressions at the same time to update the value.

The following code updates the welcome message from one container to
another container:

<h:form id="loginform">
 <h:outputText value="Enter username"/>
 <p:inputText value="#{pprController.username}"
 action="#{pprController.updateOutput}" value="Update" >
 <p:ajax event="change" update=":welcomeform:message" />
 </p:inputText>
</h:form>
<h:form id="welcomeform">
 <h:outputText id="message" value="#{pprController.message}"/>
</h:form>
public String updateOutput() {
 message = "Hello!!! welcome to PrimeFaces BluePrints";
 return null;
}

Remember that you have to include the full absolute client path when the target
component resides in a different container.

Partial submit
Even though the Partial Processing feature creates lightweight requests, the entire
form's data is sent to the server during the Ajax post requests, just like any other
non-Ajax request. The JSF core implementation, with PrimeFaces, serializes all of the
form fields instead of the partially-processed components. This becomes a drawback
for the larger views, which contain a large number of components.

The Partial submit feature can be used to reduce the network traffic for larger views;
this posts only the partially-processed form data to the server. Before introducing the
Partial submit feature, all of the form data was sent to the server, but this meant that
any information of the unprocessed components was ignored on the server-side.

Creating a "Hello World" Application

[18]

By default, the Partial submit feature is disabled, but you can enable it to make it
global using the following configuration:

<context-param>
 <param-name>primefaces.SUBMIT</param-name>
 <param-value>partial</param-value>
</context-param>

The command action components such as commandButton and commandLink, and
ajaxbehavior components such as p:ajax equipped with the partialsubmit
property which overrides the global configuration for each component base:

<p:commandButton value="Submit" partialSubmit="true" />
<p:commandLink partialSubmit="true" />
<p:ajax partialSubmit="true" />

PrimeFaces polling
PrimeFaces introduced one more Ajax component that makes periodical Ajax
requests to the servers. This component is quite useful when you need to populate
server information on the frontend at regular intervals, and the most common
example is updating the server time at regular intervals for the frontend web pages.
The following code snippet shows how to update the system time at a regular
period of time:

<h:form id="form">
 <p:poll interval="2" listener="#{pollingController.updateTime}"
 update="servertime" />
 <h:outputText id="servertime"
 value="#{pollingController.systemTime}" />
</h:form>

The poll component behavior is handled with the help of the interval, autoStart,
and stop attributes along with the client-side API functions.

PrimeFaces code completion, NetBeans
bundles PrimeFaces, and the code
generation tool
You can use any of your favorite Integrated Development Environment (IDE)
tools for the development of web pages. Popular IDEs such as Eclipse and NetBeans
support code completion for quick UI development.

Chapter 1

[19]

Eclipse code completion
Firstly, you need to have the JSF facet enabled in order to work with IDE code
completion. The following steps will need to be performed in order for the
PrimeFaces code completion to be used with the Eclipse IDE:

1. The first thing you need to do is enable the JSF facet by checking the
JavaServer Faces facet under Project Facets.

2. Go to Properties | Project | Facets and select the JavaServer Faces checkbox.
This can be seen in the following screenshot:

Creating a "Hello World" Application

[20]

3. If the wizard tells you that further configurations are required, then you
have to download or manage the JSF libraries in order to support the code
completion feature.

4. Otherwise, the final step in order for the code completion to work with JSF
and PrimeFaces tags is just using Ctrl + spacebar on your keyboard. What
you should now see is presented in the following screenshot:

Chapter 1

[21]

NetBeans code completion
NetBeans versions 6.9 and above support the PrimeFaces code completion
feature without requiring any configuration. The following screenshot represents
all the available properties of the accordionPanel component using the code
completion feature:

NetBeans bundles PrimeFaces
NetBeans versions 7.0 and above provide built-in support for the PrimeFaces
component suite. When creating a new project, you have to select the JSF framework
from the list of all Frameworks and then select the PrimeFaces component suite from
the Components tab, as shown in the following screenshot:

Creating a "Hello World" Application

[22]

The code generation tool
The NetBeans IDE provides a developer-friendly environment for Java developers,
especially for JSF development, which has many cool features. This tool is a forked
version of the JSF pages from the entity class wizard, but the difference is that it
creates PrimeFaces pages with a page layout, menus, and dialog boxes. You can
easily generate the entire CRUD web application just by selecting the entity classes.

Remember that NetBeans 8.0 provides the code generation tool within the IDE itself.
It is not necessary to install the plugin in this version.

You should follow these steps in order to work with the PrimeFaces code
generation tool:

1. Firstly, download the latest version of the nbpfcrudgen-x.x-y.y.yimpl.
zip plugin file and unzip the package that contains the .nbm file. You can
access this by visiting http://sourceforge.net/projects/nbpfcrudgen/
files/.

2. Then launch your latest NetBeans IDE and install any updates by navigating
to Help | CheckUpdates from the menu.

3. Following this step, go to Tools | Plugins. Click on the Downloaded tab and
then click on the Add Plugins button.

4. Browse to the location where you downloaded the NBM file and select the
file that makes the module appear in the list of downloaded modules.

5. Click on the Install button. The NetBeans IDE Installer will now display the
summary of the modules that are ready to be installed. Click on Next and
accept the license agreement.

At the time of this writing, there were no licenses attached to the
module, but the tool is released under both CDDL and GPL licenses.

6. At the time of writing this, the tool is not signed and NetBeans warns
you about the security. Click on the Continue button to proceed with the
installation steps. If you are not ready to use the unsigned code, then click on
the Cancel button as you can choose to wait for a signed, updated version.

7. NetBeans will complete the installation process. If the IDE version
doesn't match the module implementation, then the installation process
will be aborted.

8. Finally, the module is installed and it will display the module name under
the Installation tab as PrimeFaces CRUD generator.

http://sourceforge.net/projects/nbpfcrudgen/files/
http://sourceforge.net/projects/nbpfcrudgen/files/

Chapter 1

[23]

Generating a CRUD application
The following steps are used to create any PrimeFaces project in the NetBeans IDE:

1. If you are using the latest version of NetBeans, then please make sure you
add the latest version of PrimeFaces instead of an older, bundled version.
You can add the latest version of PrimeFaces (PrimeFaces 5.0 at the time of
writing this) by navigating to Tools | Ant | Libraries.

2. Navigate to File | New | Project. Choose the Java Web option from
Categories and the Web application option from Projects.

3. Then create a new project, name it, and choose the project location.
4. After this, configure the server settings that require J2EE version

and frameworks.
5. Finally, you should choose the Component tab to select the latest

PrimeFaces version and click on Finish to create the project.

Adding entities and generating PrimeFaces pages
In this section, we will provide a step-by-step approach to generate the PrimeFaces
pages from the added entities:

1. Navigate to File | New File from the menu. Choose the Persistence
option from Categories and the Entity Classes from Database option
from File Types.

2. Then you can configure the database tables, entity classes, and mapping
options to generate the corresponding entities for the database.

3. Following this, navigate to File | New File from the menu. Choose the
PrimeFaces CRUD Generator option from Categories and the PrimeFaces
Pages from Entity Classes option from File Types.

4. Finally, you can configure it to generate the PrimeFaces pages and class files.
Click on Finish to complete the code generation process.

If you have followed all the preceding steps correctly, then you are ready to run the
application with a built-in Glassfish server. Click on the Run button in order to check
the generated pages. You can have a look at some sample pages generated using the
code generation tool in the following subsections.

Creating a "Hello World" Application

[24]

Display page layout, dataTable list, and menu features
You can see that the page layout, dataTable list, and menu features are created
by default:

Chapter 1

[25]

The dataTable create operation using the dialog component
You can create the dataTable record from the dialog component by providing the
details as follows. This is shown in the following screenshot:

www.allitebooks.com

http://www.allitebooks.org

Creating a "Hello World" Application

[26]

The dataTable update operation using the dialog
component
You can update the dataTable record details using the dialog component as follows:

The dataTable read or view operation using the dialog
component
You can view a particular dataTable record's details using the dialog component
as follows:

Chapter 1

[27]

Summary
In this chapter, you have been introduced to the PrimeFaces component suite, its
features, and its role in developing custom applications. You have also learned about
the setup and configuration for the PrimeFaces library by creating a simple "Hello
World" application by using the panel components, changing the old development
trend with Ajaxified components, using the PrimeFaces code completion technique,
making use of NetBeans support, and using the code generator tool.

In the next chapter, you will be shown the form components of the PrimeFaces
library along with how to create a customized web application that allows you to
make an employee registration form.

Creating an Employee
Registration Application

This chapter teaches you how to create a simple employee registration application.
The PrimeFaces library provides you with a huge variety of form components to
develop registration form-based applications effectively. An important goal of this
project is to demonstrate the basic input components that you can enter directly
into text boxes, the select components that allow you to choose the right value from
all possible options, and many other advanced components, including the editor
components. To explain all these components, you will be developing an employee
registration application where a jobseeker registers themselves so that they can apply
to the jobs in the job portal, while the admin controls and configures the application
details. The jobseeker can also view the job details and change the password when
required. The specific topics that will be covered are as follows:

• A brief introduction to the employee registration application, use cases, and
the architectural design

• The project creation and application screen implementation using
form components

• Understanding how to build your own employee registration project and
exploring its components

Creating an Employee Registration Application

[30]

Introduction to the employee registration
project
Form filling tasks are common in any online web application where a web user
enters the required new entry details or modifies the existing details. In the real
world, the data entered in applications will be stored in the database, meaning
that you can read or write the data any time. These form filling activities are quite
common, especially with registration forms. Typical examples include registrations
for online tickets, hotel bookings, college seats, births and marriages, vehicle
ownership, employees, and many others.

The employee registration application
In this section, you will see how to create an employee registration application using
the PrimeFaces library. An employee registration application is a single form or a
collection of forms where an individual seeks employment. The applicant must fill
out all the required details such as personal information, skills, and salary. Based on
the details provided, the employer can offer employment to the applicant.

You will make use of the form elements to create the user friendly interactive
components in order to give your application a fancy look and feel. The library
provides a huge set of more controlled form components that include input, select,
and advanced. Based on the ease of use and functional requirements, you can start
with any component and apply it in this application.

Before you implement the various form components using the PrimeFaces library,
you should take a brief look at the project requirements and architectural designs in
the following sections.

Application use cases
The purpose of this application is to provide employment to the applicant who is
able to view all of the jobs posted by an employer and apply for those that interest
him or her. A first-time visitor to the job site might need to register before they can
log in to the application and seek employment. The jobseeker has to provide all
the required details, such as personal information, which includes address details,
education details, and professional experience, as well as information about relevant
skills to complete the registration process.

Chapter 2

[31]

Once registered, an applicant is ready to log in to the application. Please note that the
change password functionality allows you to change your password from the first-
time generated password. Apart from a jobseeker, an administrator can also log in
to the application in order to change the application configuration details as well as
view all of the registered employees.

The UML use case diagram
The following use case diagram is used to represent the various functionalities
occurring in the entire application process. These functionalities, such as the
registration, change password functionality, login, viewing the list of jobs, modifying
the application configurations, and viewing the list of registered employees, are treated
as individual use cases, which is exactly how they will be adopted in this application.

The two roles that perform these functionalities in this application are the
jobseeker/applicant and the administrator. Based on the login user, these
roles will have unique functionalities.

The architectural design
The architecture of this application can be presented as follows:

• The presentation layer will be composed of standard JSF and PrimeFaces
components.

• The Facelets or XHTML is used as the view technology in order to render the
UI components.

• You will use PrimeFaces's built-in sunny theme to skin or style the web
pages. (Please refer to Chapter 10, Creating a Healthcare Products Application,
for a detailed themes configuration.)

Creating an Employee Registration Application

[32]

• The managed beans will be used to hold session tracking and events
handling as well as to execute the business logic. These managed
beans interact between XHTML/Facelets and the POJO class with the
@ManagedBean annotation.

• The data access layer is used to interact with the MySQL database using
Datasource and plain JDBC concepts.

• The Apache Maven build tool will be used to build the project and for
dependency management.

The following architecture diagram represents the three major layers of the web
application and their interaction with the MySQL database. The flow from the
presentation layer to the other layer components and database is represented by
straight lines:

Creating a project and implementing the
application screens
This section will show you how to implement an employee registration application
using the PrimeFaces form components. The first step to is to start the project by
creating the template structure using standard JSF Facelets and then to apply all
the possible form components for the creation of the login screen, the change of
password functionality, and the registration and application configuration screens.
We can also use a few of the supported components to complete the fully fledged
registration application.

Chapter 2

[33]

Before the actual implementation, you should create the project structure with all the
folder structures.

Remember to run all the SQL commands of mysqlquery.txt (which
exist under the query folder) before proceeding with the front end
application design.

The project structure
The structure of the application should consider presentation, business, and data
access as the layers in order to make a proper web application. After you have properly
implemented these sections, the project structure in the navigator view of the Eclipse
IDE should look as shown in the following screenshot (remember that the project
structure will vary a little bit based on the other popular IDEs used, such as NetBeans):

Creating an Employee Registration Application

[34]

After this, you should make sure that you have configured all of them using the
step-by-step configurations detailed in Chapter 1, Creating a "Hello World" Application.

Understanding the application template
design
You are going to use single main templates formed with the combination of
three smaller template files. The masterTemplate.xhtml file uses Facelets'
ui:insert,ui:include tags for the header, content, and footer sections, as shown
in the following code (please refer to the source code for the complete runnable file):

<div id="header">
<ui:insert name="header">
 <ui:includesrc="/templates/common/header.xhtml" />
</ui:insert>
</div>
<div id="content">
<ui:insert name="content">
 <ui:includesrc="/templates/common/content.xhtml" />
</ui:insert>
</div>
<div id="footer">
<ui:insert name="footer">
 <ui:includesrc="/templates/common/footer.xhtml" />
</ui:insert>
</div>

The header section deals with the website logo, advertisements, and logout
functionalities. On the other hand, the footer section deals with the application
information through the command links. Finally, the content section or template
is just provided for the default content.

Implementing the application screens using
the form components
Throughout the application, all of the major UI components are created by the
form components. This basically means that they are categorized into the input
and select components.

Chapter 2

[35]

Creating the login screen using the input
components
Here, you will create the login screen where either the applicant or administrator can
log on to the application. Before navigating to the other screens of this application,
you will first have to validate whether the login user has been authenticated or not.
Also, you should make sure that the user authentication is related to the roles of
the applicant or administrator. This page also provides the registration and change
password links to proceed with the new employee registration as well as replace the
old password with a new one.

You can create the login form containing the username and password fields with the
help of the inputText and keyboard components of PrimeFaces, as shown in the
following code:

<h:form id="loginform">
 <p:panel style="width:30%;height:30%;margin-left:35%">
 <p:messages id="login"></p:messages>
 <h:panelGrid columns="3" cellpadding="5">
 <h:outputLabel for="username" value="Username:" />
 <p:inputText value="#{loginController.username}" id="username"
 required="true" requiredMessage="Username cannot be empty"
 validatorMessage="The length of the username should be between
 3 and 8 chapters"
 label="username">
 <f:validateLength minimum="3" maximum="8" />
 </p:inputText>
 <p:watermark for="username" value="Enter username" />

 <h:outputLabel for="password" value="Password:" />
 <p:keyboard value="#{loginController.password}" id="password"
 required="true" requiredMessage="Password cannot be empty"
 password="true" />
 <p:watermark for="password" value="Enter password" />

 <h:outputText></h:outputText>
 <p:commandButton id="loginButton" value="#{msg['login.login']}"
 update="login" style="float:right"
 action="#{loginController.validateUser}" ajax="false" />
 <f:facet name="footer">
 <h:panelGrid columns="3" style="margin-left:30%">
 <p:outputPanel id="register">
 <p:commandLink value="#{msg['login.register']}" ajax="false"
 immediate="true"
 action="registrationform?faces-redirect=true"></p:commandLink>

www.allitebooks.com

http://www.allitebooks.org

Creating an Employee Registration Application

[36]

 </p:outputPanel>
 <p:spacer width="10" />
 <p:commandLink value="#{msg['login.changpasswd']}"
 onclick="PF('$changepwd').show();"></p:commandLink>
 </h:panelGrid>
 </f:facet>
 </h:panelGrid>
 </p:panel>
</h:form>

In the preceding code snippet, you wrapped the form components with the
panelGrid and panel components. The username field is created by the inputText
component that has the attached JSF validator and secured password entry with the
help of the keyboard component. Both the username and password fields have been
attached with a placeholder text known as the watermark component to provide the
notification messages. You can also add the validations to this login form by using
the p:messages component, which displays all the messages at the top of the panel.
The customized messages will be displayed with the help of the requiredMessage
and validatorMessage properties when the user doesn't enter the input or when
length validation fails.

After adding the input components, you can see the login command button that is
used to navigate either the jobs list page or the admin page based on the user roles.
Below this button, you can see the register and change password links to work with
the new applicant's registration and change password functionality.

The backing managed bean is defined with the username and passwords fields along
with the validateUser() method. This method validates both the jobseeker and
admin roles' authentication by accessing the data access layer, as follows:

public String validateUser() throws SQLException {
 FacesMessagemsg = null;
 booleanisValidUser = false;
 if (username.equalsIgnoreCase("admin")
 &&password.equalsIgnoreCase("admin")) {
 return "/views/admin?faces-redirect=true";
 }
 LoginDAOdao = new LoginDAO();
 isValidUser = dao.validateUser(username, password);

 if (isValidUser) {
 return "/views/jobposts?faces-redirect=true";

Chapter 2

[37]

 } else {
 msg = new FacesMessage(FacesMessage.SEVERITY_WARN, "Login Error",
 "Invalid credentials");
 FacesContext.getCurrentInstance().addMessage(null, msg);
 return null;
 }
}

You should now configure the MySQL Datasource details, such as the Datasource
name, URL, user, and password information for the Jetty web server, as shown in
the following code:

<Configure class="org.eclipse.jetty.webapp.WebAppContext">
<New id="DSTest" class="org.eclipse.jetty.plus.jndi.Resource">
<Arg>jdbc/blueprintsdb</Arg>
<Arg>
<New class="com.mysql.jdbc.jdbc2.optional.
MysqlConnectionPoolDataSource">
<Set name="Url">jdbc:mysql://localhost:3306/blueprintsdb</Set>
<Set name="User">root</Set>
<Set name="Password">mysql</Set>
</New>
</Arg>
</New>
</Configure>

In the data access layer (in this case, LoginDAO.java), you can access the Datasource
and establish the DB connection as follows:

Private DataSource ds;
Connection con;
Public LoginDAO() throws SQLException {
try {
 Context ctx = new InitialContext();
 ds = (DataSource) ctx.lookup("java:comp/env/jdbc/blueprintsdb");
 if (ds == null){
 throw new SQLException("Can't get data source");
 }
 // get database connection
 con = ds.getConnection();
 if (con == null){
 throw new SQLException("Can't get database connection");

Creating an Employee Registration Application

[38]

 } catch (NamingException e) {
 e.printStackTrace();
 }
 }
}

To validate the user, you just need to make a MySQL query with the username and
password details provided. If the count variable is greater than one, then it means
that the logged in user is valid. The variable does this by returning a true Boolean
value. Otherwise, the application can't be accessed as it returns a false Boolean
value. The following code snippet validates the user with the given username and
password credentials:

public boolean validateUser(String userid, String password) {
 try {
 // Check whether the logged jobseeker is valid user or not
 PreparedStatement ps = con.prepareStatement
 ("select * FROM blueprintsdb.employee WHERE
 userid='" + userid + "' and password='" + password + "'");
 ResultSet resultSet = ps.executeQuery();
 if (resultSet.next()) {
 return true;
 } else {
 return false;
 }

 } catch (SQLException e) {
 e.printStackTrace();

 } catch (Exception e) {
 e.printStackTrace();

 }
 return false;
}

You should now find the login screen with the required functionalities, as shown in
the following screenshot:

Chapter 2

[39]

The library also provides validation messages through the p:messages and
p:message components. The p:messages component is used to group all the
messages at the top, whereas the p:message component has been attached to each
form component in order to display the message next to the component, as shown in
the following screenshot:

The preceding screenshot generates the validation or required messages for
the username and password fields at the top of panelGrid with the help of the
p:messages component.

Creating an Employee Registration Application

[40]

Exploring the employee registration form
A new visitor to the website must register before they can log in to the application.
They will need to enter their personal details as well as their professional
background and education. Before submitting their registration details, they will also
have to confirm these and edit them if required. The entire registration process can
be developed by using the PrimeFaces form components in a step-by-step procedure.

The personal details that are displayed in this entire registration process include
the userid, first and last names, date of birth, gender, and marital status fields in
a panel container with the appropriate styles. The input and select components,
such as inputText, calendar, selectOneRadio, selectManyButton, and
selectOneCheckbox, are used for these details' fields as shown in the following code:

<p:panel header="Personal Details">
 <h:messageserrorClass="error" />
 <h:panelGrid columns="2" columnClasses="label,
 value" styleClass="grid">
 <p:outputLabel for="userid" value="UserID: " />
 <p:inputText id="userid" required="true"
 requiredMessage="UserID shouldn't be empty"
 value="#{registrationController.employee.userid}" />
 value="#{registrationController.employee.userid}" />

 <p:outputLabel for="firstname" value="Firstname: " />
 <p:inputText id="firstname" required="true"
 requiredMessage="Firstname shouldn't be empty"
 value="#{registrationController.employee.firstname}" />

 <h:outputText value="Lastname:" />
 <p:inputText label="Lastname"
 value="#{registrationController.employee.lastname}" />

 < p:outputLabel for="dob"value="Date of birth: " />
 <p:calendar id="dob" value="#{registrationController.employee.dob}"
 required="true" pattern="dd/MM/yyyy" effect="slideDown"
 navigator="true" showButtonPanel="true"yearRange="c-50:c+50" />

 <h:outputText value="Gender: " />
 <p:selectOneRadio id="gender"
 value="#{registrationController.employee.gender}">
 <f:selectItemitemLabel="Male" itemValue="M" />
 <f:selectItemitemLabel="Female" itemValue="F" />
 </p:selectOneRadio>

Chapter 2

[41]

 <h:outputText value="Marital Status: " />
 <p:selectOneButton
 value="#{registrationController.employee.maritalStatus}">
 <f:selectItemitemLabel="Single" itemValue=" Single" />
 <f:selectItemitemLabel="Married" itemValue="Married" />
 <f:selectItemitemLabel="Divorced" itemValue="Divorced" />
 </p:selectOneButton>
 <h:outputText value="Skip to last step: " />
 <p:selectBooleanCheckbox value="#{registrationController.skip}" />
 </h:panelGrid>
</p:panel>

From the preceding code section, the default pop-up calendar component is
used as the select component with more user controls such as the navigator,
showButtonPanel, and yearRange properties, all the way up to the date of birth
field. On the other hand, the selectOneRadio, selectBooleanCheckbox, and
selectManyButton components are used to select a single option in a variety of
different approaches.

By following these steps, you should end up with a web page as shown in the
following screenshot:

After you click on the Next button, you will be navigated to the address details.

Creating an Employee Registration Application

[42]

The Address tab covers details of the address, phone, postal code, and e-mail fields
with the help of the inputText area as well as the selectOneMenu, inputMask, and
inputText components, as shown in the following code:

<p:panel header="Address Details">
<p:growl id="error" showDetail="true"/>
<h:panelGrid columns="3" columnClasses="label, value,label">
 <h:outputText value="Address: " />
 <p:inputTextarea id="textarea"
 value="#{registrationController.employee.address}" rows="5"
 cols="30" counter="counter" maxlength="150"
 validatorMessage="Length should not be less than 5 characters"
 counterTemplate="{0} more characters remaining.">
 <f:validateLength minimum="5" />
 <p:clientValidator />
 </p:inputTextarea>
 <p:message for="textarea" />
 <h:outputText></h:outputText>
 <h:outputText id="counter"></h:outputText>
 <h:outputText></h:outputText>

 <h:outputText value="Country: " />
 <p:selectOneMenu value="#{registrationController.employee.country}"
 effect="fold"
 var="countryvar" editable="true"
 valueChangeListener="#{registrationController.handleCountryChange}">
 <f:selectItemitemLabel="Select One" itemValue="" />
 <f:selectItems value="#{registrationController.countries}" />
 <p:ajax event="change" update="city" />
 </p:selectOneMenu>
 <h:outputText></h:outputText>

 <h:outputText value="City: " />
 <p:selectOneMenu id="city"
 value="#{registrationController.employee.city}"
 effect="fold" editable="true">
 <f:selectItemitemLabel="Select One" itemValue="" />
 <f:selectItems value="#{registrationController.cities}" />
 </p:selectOneMenu>
 <h:outputText></h:outputText>

 <h:outputText value="Phone: " />
 <p:inputMask value="#{registrationController.employee.phone}"
 mask="(999) 999-9999? x99999" />
 <h:outputText></h:outputText>

Chapter 2

[43]

 <h:outputText value="Postal Code: " />
 <p:inputMask
 value="#{registrationController.employee.postalCode}"
 mask="999-99-9999" />
 <h:outputText></h:outputText>

 <h:outputText value="Email: " />
 <p:inputText id="email"
 value="#{registrationController.employee.email}">
 <f:validator validatorId="custom.emailValidator" />
 </p:inputText>
 <h:outputText></h:outputText>

 <h:outputText value="Skip to last step: " />
 <p:selectBooleanCheckbox value="#{registrationController.skip}" />
 <h:outputText></h:outputText>
</h:panelGrid>
</p:panel>

From the preceding section of code, the inputText area is used to represent
the address field with the user defined rows, columns, and a JSF validator; the
dependent selectOneMenu components between the country and city fields are used
to select one option. On the other hand, the inputMask components are used to enter
input data in a customized pattern in the postal code and phone number fields.

By adding all the address fields, you should end up with a web page like the one
shown in the following screenshot:

Creating an Employee Registration Application

[44]

After completing the address details, click on Next to navigate to the
education details.

The Client Side Validation framework in form
validations
The PrimeFaces library introduced a more advanced Client Side Validation (CSV)
framework to JSF applications via a smooth integration of CSV on JSF's lifecycle. You
can enable the CSV framework in your application in the following ways:

• The first method is to configure the global parameter in a web.xml file. By
default, this parameter is disabled. The configuration to enable the CSV
framework in the web application is given as follows:
<context-param>
 <param-name>primefaces.CLIENT_SIDE_VALIDATION</param-name>
 <param-value>true</param-value>
</context-param>

• Another method is via the page level configuration where validateClient
is set to a true value. This property can be applied on the commandButton
and commandLink components. For example:

<p:commandButton value="Save" ajax="false" icon="ui-icon-
 check" validateClient="true"/>

With the help of the p:clientValidator CSV component, you can validate the
address field without triggering the commandButton or commandLink components.
In comparison, the custom JSF validator is applied to the e-mail field in order
to accept the value in a suggested pattern. The custom e-mail validator, called
JSFEmailValidator.java, is available in the GitHub source code, if you require
more details.

To generate messages on the client side, you will have to validate the entered value
with the given e-mail pattern in JavaScript, as follows:

PrimeFaces.validator['custom.emailValidator'] = {

pattern : /\S+@\S+/,

validate : function(element, value) {
 //use element.data() to access validation metadata,
 //in this case there is none.
 if (!this.pattern.test(value)) {
 throw {
 summary : 'Validation Error',

Chapter 2

[45]

 detail : value + ' is not a valid email.'
 }
 }
 }

You have to add the preceding script to the <script type="text/javascript">
script tag.

The Address Details tab with the CSV validations will now look like the
following screenshot:

By entering the lowest number of characters in the address field value, the blur event
fires the validation next to the address component along with the message display
for PrimeFaces' growl component. In comparison, an improper e-mail ID will result
in a validation message with the help of the growl component.

The Education tab that covers details such as your university name, qualifications,
or most recent degree grade can be created using the inputText,selectManyButton
and slider components as follows:

<p:panel header="Education">
<h:messageserrorClass="error" />
<h:panelGrid columns="2" cellspacing="10" columnClasses="label,
 value">
 <p:outputLabel for="university" value="University: " />
 <p:inputText id=" university" required="true"
 requiredMessage="University cannot be empty"
 value="#{registrationController.employee.university}" />

www.allitebooks.com

http://www.allitebooks.org

Creating an Employee Registration Application

[46]

 <h:outputText value="Qualification: " />
 <p:selectManyButton
 value="#{registrationController.employee.qualification}">
 <f:selectItemitemLabel="BTech" itemValue="1" />
 <f:selectItemitemLabel="MTech" itemValue="2" />
 <f:selectItemitemLabel="MS" itemValue="3" />
 </p:selectManyButton>

 <h:outputText id="output" value="Last degree percentage
 %#{registrationController.employee.percentage}" />
 <p:slider for="txt2" display="output" style="width:200px"
 displayTemplate="Last degree percentage %{value}" />
 <h:inputHidden id="txt2"
 value="#{registrationController.employee.percentage}" />
 <h:outputText></h:outputText>
 <h:outputText value="Skip to last step: " />
 <p:selectBooleanCheckbox value="#{registrationController.skip}" />
</h:panelGrid>
</p:panel>

From the preceding code, selectManyButton is used to select multiple options
from all the available options such as the BTech, MTech, and MS values. However,
the slider component can be used to select your last year degree percentage by just
sliding the button.

By adding the latest degree details, you should end up with a web page like the one
shown in the following screenshot:

Chapter 2

[47]

After you have entered the education details, click on Next and you will be
navigated to the Profession details tab.

The Profession tab covers details such as professional experience, current company
name, current and expected packages, and joining date using the inputText, spinner,
autocomplete, and calendar components, as shown in the following code:

<p:panel header="Profession">
 <h:messageserrorClass="error" />
 <h:panelGrid columns="2" columnClasses="label, value">
 <p:outputLabel for="profession"value="Profession: " />
 <p:inputText id="profession" required="true"
 requiredMessage="Profession can't be empty"
 value="#{registrationController.employee.profession}" />

 <p:outputLabel for="experience" value="Experience: " />
 <p:spinner id="experience" required="true"
 requiredMessage="Experience can't be empty"
 min="2" value="#{registrationController.employee.experience}" />

 <h:outputText value="Company: " />
 <p:autoComplete id="acMinLength" minQueryLength="3"
 value="#{registrationController.employee.company}" effect="fade"
 completeMethod="#{registrationController.complete}" />

 <p:outputLabel for="current" value="Current Package: " />
 <p:spinner id="current" required="true"
 requiredMessage="Current package can't be
 empty"prefix="$" min="3"
 value="#{registrationController.employee.currentPack}" />

 <p:outputLabel for="expected" value="Expected Package: *" />
 <p:spinner id="expected" required="true"
 requiredMessage="Expected package can't be empty"prefix="$" min="3"
 max="20" value="#{registrationController.employee.expectedPack}" />

 <p:outputLabel for="jod" value="Joined Date: *" />
 <p:calendar id="jod"
 value="#{registrationController.employee.joinedDate}"
 required="true" requiredMessage="Joined date can't be empty"
 showOn="button" mode="popup" pattern="dd/MM/yyyy" />

 <h:outputText value="Skip to last step: " />
 <p:selectBooleanCheckbox value="#{registrationController.skip}" />
 </h:panelGrid>
</p:panel>

Creating an Employee Registration Application

[48]

From the preceding code, the autoComplete component is used to select the
company name with the autocompletion feature. On the other hand, the spinner
component is used to select the experience, current package, and expected package
details by incrementing or decrementing one step at a time.

By adding the profession details, you should end up with a web page like the one
shown in the following screenshot:

After completing the Profession details, click on the Next button and you will be
navigated to the Skills tab.

The Skills tab will cover details such as frameworks, databases, servers,
and IDE expertise using the selectCheckboxMenu, selectManyCheckbox,
multiSelectListbox, and selectOneListbox components as shown in the
following code:

<p:panel header="Skills">
 <h:messageserrorClass="error" />
 <h:panelGrid columns="2" columnClasses="label, value">
 <p:outputLabel id="frameworks" value="Frameworks: " />
 <p:selectCheckboxMenu id="frameworks"
 value="#{registrationController.employee.selectedFrameworks}"
 label="Frameworks" filter="true" filterMatchMode="startsWith">
 <f:selectItems value="#{registrationController.allFrameworks}" />
 </p:selectCheckboxMenu>

 <h:outputText value="Databases: " />
 <p:selectManyCheckbox id="database"
 value="#{registrationController.employee.selectedDBs}">

Chapter 2

[49]

 <f:selectItems value="#{registrationController.allDBs}" />
 </p:selectManyCheckbox>

 <h:outputText value="Server Expertise:" />
 <p:multiSelectListbox id="servers"
 value="#{registrationController.employee.selectedServer}">
 <f:selectItems value="#{registrationController.allServers}" />
 </p:multiSelectListbox>

 <h:outputText value="IDE Expertise: " />
 <p:selectOneListbox
 value="#{registrationController.employee.selectedIDE}"
 <f:selectItems value="#{registrationController.allIDEs}" />
 </p:selectOneListbox>

 <h:outputText value="Skip to last step: " />
 <p:selectBooleanCheckbox value="#{registrationController.skip}" />
</h:panelGrid>
</p:panel>

From the preceding code, selectCheckboxMenu and selectManyCheckbox are used to
select multiple options from all the available options, while multiSelectListbox and
selectOneListbox are used to select single input values with different approaches.

By adding the previously mentioned skills, you should end up with a web page like
the one shown in the following screenshot:

Creating an Employee Registration Application

[50]

After filling in all the skill details and clicking on the Next button, navigate to the
Confirmation tab.

The Confirmation tab will prompt you before submitting or saving the registration
details. Here, you can change your personal and address detail, instead of repeating
the same steps. You can enable the edit mode of the registration fields by wrapping
the inplace components as shown in the following code:

<p:panel header="Confirmation">
<h:panelGrid id="confirmation" columns="6">
<h:outputText value="Firstname: " />
<p:inplace id="firstnameinplace" editor="true">
<p:inputText value="#{registrationController.employee.firstname}" />
</p:inplace>

<h:outputText value="Lastname: " />
<p:inplace id="lastnameinplace" editor="true">
 <p:inputText value="#{registrationController.employee.lastname}" />
</p:inplace>

<h:outputText value="DOB: " />
<p:inplace id="dobinplace" editor="true">
 <p:calendar pattern="dd/MM/yyyy"
 value="#{registrationController.employee.dob}" />
</p:inplace>

<h:outputText value="Country: " />
<p:inplace id="countryinplace" editor="true">
 <p:inputText value="#{registrationController.employee.country}" />
</p:inplace>

<h:outputText value="City: " />
<p:inplace id="cityinplace" editor="true">
 <p:inputText value="#{registrationController.employee.city}" />
</p:inplace>

<h:outputText value="Postal Code: " />
<p:inplace id="postalinplace" editor="true">
 <p:inputText value="#{registrationController.employee.postalCode}"
 />
</p:inplace>

<h:outputText value="Email: " />
<p:inplace id="emailinplace" editor="true">

Chapter 2

[51]

 <p:inputText value="#{registrationController.employee.email}" />
</p:inplace>

<h:outputText value="Phone " />
<p:inplace id="phoneinplace" editor="true">
 <p:inputText value="#{registrationController.employee.phone}" />
</p:inplace>
</h:panelGrid>
<p:commandButton value="Submit" update="growl"
 actionListener="#{registrationController.saveEmployee}" />
</p:panel>

From the preceding code, you can edit the important registration field values
before you submit the registration by wrapping the form components using the
inplace component.

By following the previously mentioned steps, you should end up with a web page
like the one shown in the following screenshot:

The preceding screenshot shows you the Confirmation tab before the registration has
been submitted. You can change the field values where required.

In the data access layer (represented by EmployeeDAO.java), you can save the newly
registered jobseeker details. Based on the Boolean flag value, a success or failure
message will appear in the employee registration web page. The following code
snippet is used to save newly registered jobseeker details:

Public boolean saveEmployee(Employee employee,StringuniqueID) throws
Exception{
 try{
 String pattern = "yyyy-MM-dd";

Creating an Employee Registration Application

[52]

 SimpleDateFormat formatter = new SimpleDateFormat(pattern);
 // Register employee
 PreparedStatement ps = con.prepareStatement("INSERT INTO
 blueprintsdb.employee (userid,firstname,lastname,dob,gender,
 maritalstatus,address,country,city,phone,postalcode,email,
 university,qualification,percentage,profession,experience,
 company,currentpack,expectedpack,joineddate,frameworks,dbs,
 servers,ides,password)VALUES('"+employee.getUserid()+"','"
 +employee.getFirstname()+"','"+employee.getLastname()+"','"
 +formatter.format(employee.getDob())+"','"
 +employee.getGender()+"','"+employee.getMaritalStatus()
 +"','"+employee.getAddress()+"','"
 +employee.getCountry()+"','"+employee.getCity()+"','"
 +employee.getPhone()+"','"+employee.getPostalCode()+"','"
 +employee.getEmail()+"','"+employee.getUniversity()+"','"
 +employee.getQualification()+"','"+employee.getPercentage()
 +"','"+employee.getProfession()+"',"
 +employee.getExperience()+",'"+employee.getCompany()
 +"',"+employee.getCurrentPack()+","+employee.getExpectedPack()
 +",'"+formatter.format(employee.getJoinedDate())+"','"
 +employee.getSelectedFrameworks()+"','"
 +employee.getSelectedDBs()+"','"+employee.getSelectedServer()
 +"','"+employee.getSelectedIDE()+"','"+uniqueID+"')");

 int count=ps.executeUpdate();
 if(count>0){
 return true;
 }

 }
 catch(SQLException e){
 e.printStackTrace();

 }catch(Exception e){
 e.printStackTrace();

 }
 return false;
}

Here, you can clearly see that a prepared statement allows you to insert all the
registration fields in the MySQL database.

Chapter 2

[53]

After you click on the Submit button, you should end up with a web page like the
one shown in the following screenshot:

Also, you might receive either a success or a failure message, as shown in the
preceding screenshot.

Exploring the change password functionality
A jobseeker will use the change password functionality to change a previously
generated password with their own. This password can be changed any time
and as often as they like.

In this section, you can use the input and password components with the required
validations. The new password and confirm password fields are linked and are
matched via the match attribute. The dialog component with the change password
functionality is displayed as follows by simply clicking on the Change Password link:

<p:dialog id="changepwd" header="Change Password"
widgetVar="$changepwd" modal="true" resizable="false">
<h:form id="changepwdform">
 <p:messages id="changepass"/>
 <h:panelGrid columns="3" cellpadding="5">
 <h:outputLabel for="userid" value="Username:" />
 <p:inputText value="#{loginController.username}" id="userid"
 required="true" requiredMessage="Username cannot be empty"
 validatorMessage="The length of the username should
 exist between 3 and 8 chapters" label="username">
 <f:validateLength minimum="3" maximum="8" />
 </p:inputText>
 <p:watermark for="userid" value="Enter username" />

Creating an Employee Registration Application

[54]

 <h:outputLabel for="oldpassword" value="Old password:" />
 <p:password value="#{loginController.password}" id="oldpassword"
 required="true" requiredMessage="Password cannot be empty"
 label="password" />
 <p:watermark for="oldpassword" value="Enter old password" />

 <h:outputLabel for="newpassword" value="New password:" />
 <p:password value="#{loginController.newpassword}"
 match="confirmpassword" id="newpassword"
 required="true" requiredMessage="New password cannot be empty"
 label="newpassword" />
 <p:watermark for="newpassword" value="Enter new password" />

 <h:outputLabel for="confirmpassword" value="Confirm password:" />
 <p:password value="#{loginController.newpassword}"
 id="confirmpassword" required="true"
 requiredMessage="Confirm password cannot be empty"
 label="confirmpassword" />
 <p:watermark for="confirmpassword" value="Enter confirm password" />

 <f:facet name="footer">
 <p:commandButton id="changepassword" value="Submit"
 update="changepass"
 actionListener="#{loginController.changepassword}" />
 </f:facet>
 </h:panelGrid>
</h:form>
</p:dialog>

In the data access layer (represented by LoginDAO.java), you have to make
a MySQL query to update the old password with a new one when the given
credentials already exist in the database. Refer to the following code for it:

publicbooleanchangePassword(String userid,
String oldpassword,String newpassword) {
try {
 // Change password functionality
PreparedStatement ps = con
 .prepareStatement("UPDATE blueprintsdb.employee SET
password='"+ newpassword+ "' WHERE userid='"
+ userid + "' and password='" + oldpassword + "'");
 int count = ps.executeUpdate();
 return (count > 0);

 }

Chapter 2

[55]

 catch (SQLException e) {
 e.printStackTrace();
 }
 catch (Exception e) {
 e.printStackTrace();
 }
return false;
}

The Change Password screen will now appear as shown in the following screenshot:

After providing the jobseeker login details along with the new password, the
old password will be updated with the new one. On submitting the request to
change the password, the change password status will be updated with a success
or failure message.

Tracking the list of job posts
In this section, you can view the list of jobs posted by an employer. They will post
details such as the company name, technology domain, necessary experience, job
position, and location. If the profile matches yours, then you can apply for these jobs.

www.allitebooks.com

http://www.allitebooks.org

Creating an Employee Registration Application

[56]

You can see how the usage of dataTable acts as a supported component to populate
the list of all jobs, as shown in the following screenshot:

From the list of all the jobs posted by employers, you can apply for the jobs that
match your requirements.

Managing the application through an admin role
The administrator is responsible for controlling and managing the entire registration
application, while the admin can change the application configurations and view the
list of registered employees.

The application configurations, such as the AboutUs and ContactUs sections, can
be viewed and modified by the admin using the editor component. By toggling
between the Edit or Save button, you can enable or disable the changes.

By following these actions, you should end up with a web page like the one shown in
the following screenshot:

Chapter 2

[57]

The administrator can also view the list of registered employees through dataTable
or a helper component as shown in the following screenshot:

The administrator can also view and analyze employee traffic from time to time.

Working with the employee registration
project code
If you wish to work on the sample code, all you need to do is download it from the
git repository at https://github.com/sudheerj/primefaces-blueprints, where
you can use your preferred IDE. From there, you can start playing with the code.
You can run it by using the mvn jetty:run command in the Maven console and
then navigate your browser to http://localhost:8080/web using the registered
employee credentials while using admin/admin as the administrator credentials to
log in to the application.

Summary
In this chapter, you learned how to develop your own employee registration
application. The topics covered in this chapter showed you how to create your own
login and registration screens, how to change the password, and how to create the
jobs list page of the admin screens with the help of a variety of input, select, and
advanced editor components from the PrimeFaces library.

In the next chapter, you will learn the procedure to create your own real-time
business model called a restaurant application, which will also show you how the
layout and grouping components of PrimeFaces work.

https://github.com/sudheerj/primefaces-blueprints

Creating a Simple Restaurant
Point of Sale Application

In this chapter, you will learn how to create a simple restaurant Point of Sale (POS)
application. An important goal of this chapter is to also demonstrate the PrimeFaces
layout component, the grouping component, and some additional supporting
JSF components used in this application. To understand these components, we'll
look at a real-world restaurant business model (POS), which is commonly used in
restaurants to take orders and control general activities within the restaurant. This
chapter will also demonstrate the restaurant's menu card module, which allows the
ordering of menu items. You will be provided with a high-level architecture and
screen mocks of the menu card system to make the explanation simpler and easier.

A quick start
If you remember, in Chapter 1, Creating a "Hello World" Application, we learned about
the procedure to create a JSF 2 Project with PrimeFaces enabled. The same procedure
can be used to start with this application.

Creating a Simple Restaurant Point of Sale Application

[60]

In this section, you will get things started quickly by introducing the sample web
project that will be implemented using PrimeFaces. Imagine this: your client has
a great idea for a web application. They want to build a website called Restaurant
POS that aims to change their paper menu card to a digital online menu. The user
can explore the available restaurant menu items within their category of choice and
order them online. The user can also save their favorite menu item in a favorites list,
potentially allowing them to order the menu item with a single click. This project
will give you the opportunity to use the full spectrum of the PrimeFaces layout and
grouping component as well as the templating feature from JSF Facelets. The internal
employees of the restaurant will use this POS application. Most of the restaurants
will use different layouts, with a different look and feel, depending on the season (as
a way of increasing the mental productivity of their employees).

The advantage of using PrimeFaces here is that it allows you to enable a rich UI.
PrimeFaces provides you with over a hundred components that are ready to use
in some simple steps. Also, it is a lightweight framework compared to other available
frameworks.

However, the first step is to review a user case, the project requirements,
architecture, and design before you can implement JSF pages in this application.

Application use cases
The restaurant's internal user will log in to the system; once done, the menu card
system will appear and will be ready to take orders. This system will have a list of
categories on the left-hand side, where each category will have a list of menu items.
The customers will be invited to take their seats; the waiter will then approach the
table and collect their orders manually. They will then use the digital menu card
system to enter their respective orders by first selecting a category and then selecting
the desired food item from the available menu. The user (waiter) can also add as
many menu items as they would like to in order to serve multiple customers. The
order will then be printed via the kitchen printer for the chef to prepare the food. The
food will be ready to be served once the chef completes processing the order.

The architectural design
The architecture of this application can be presented as follows:

• The presentation layer will be composed of PrimeFaces components
• The XHTML files are used as the view technology to render the UI

components
• You will use the theme that comes with PrimeFaces

Chapter 3

[61]

• You will use the JSF 2 project to demonstrate the layout components
• The Support-Pac module project contains all the models used in this project;

this enables the reusability of those models for various projects
• The managed beans will be used to hold session tracking and transactions
• Maven's pom file will be used to build and provide a dependency resolution

The application architecture diagram
This simple architecture diagram shows you the full stack of technology and how it
is inter-related:

The CDI architecture

The preceding diagram describes the high-level architecture used in this sample
web application. The presentation tier will be implemented using a mixture of JSF
2 and PrimeFaces components. The application tier will be based on JSF 2's Facelet
APIs and will make use of the Java Facelet application; also, JPA can be used to
communicate with the database. The application will then be deployed as a WAR file
in the Tomcat server.

For convenience, this project will use the jetty Maven plugin to run the
application. You can use the following Maven command to run the
application:
mvn jetty:run

If you prefer to run the application from IDE, you can install Maven
plugin, for example, m2e for Eclipse,

Creating a Simple Restaurant Point of Sale Application

[62]

The entity diagram
The following is what you will see in the entity diagram of the model used in the
POS menu card:

• The category entity has a unique ID, with the parent ID set as 0 by default.
If the parent ID has not been set to 0, then it will be one of the available
category IDs. This means that we can refer the unique ID to the same column
with different values on our own.

• The enabled flag indicates whether to display the category or not.
• The image path holds the location of the image icon in order to show

the category.

An entity diagram

Implementing the application
This section will show you how to implement the restaurant menu card system and
its requirements using the PrimeFaces components. The JSF Facelet provides some
tags that will help you to make the web application's layout dynamic, using the
view and composition tags called template tags. It also has many supporting tags
associated with templating, a detailed explanation of which will be shown in the
following subsections.

Chapter 3

[63]

Template tags
Templating is an important concept in the web technology; it is used to make the
application dynamic in nature. It is also helpful to maintain and reuse the code along
with reducing code complexity.

When describing templating within Facelets, we have two roles: defining the
template and using the template client. The following diagram will show you how
the template is defined and included:

Any document can act as a template, but what makes a document a template? It
just simply uses one or more <ui:insert/> tags to inject content from another
Facelet page. The other half of the equation is the template's client. This includes the
documents that use the <ui:composition/>, <ui:define>, or <ui:decorate/> tags.

The UI composition tag
The UI composition tag is a templating tag provided by JSF Facelets that wraps the
content to be included in another Facelet page. The idea behind ui:composition is
that a UI component tree can be defined in multiple Facelet pages and executed in
a part or whole. The content outside the UI composition tag will be ignored by the
Facelets' view handler. Any content inside the UI composition tag will apply the
specified template when another Facelet's page includes the page that contains this
UI composition tag.

Creating a Simple Restaurant Point of Sale Application

[64]

If the template attribute is specified with a template page URL, the JSF page that
contains the composition tag will display the content with the help of associated
template. If the composition tag contains ui:define tags, the content of these tags
will be inserted into the template where the matching ui:insert tags can be found.
The template page can use a nameless ui:insert tag to insert all of the content
within the composition tag.

Using the JSF Facelet tags in an XHTML file allows you to design a single screen
layout that must be used consistently throughout the application. Furthermore,
you must consistently specify the placeholders to render the actual content at the
appropriate place from various pages. Note that JSF 2.2 strictly uses the XHTML
standard to define the tags in the XHTML file.

The following code snippet is what you will use in your sample, which demonstrates
how you can create your default template:

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:p="http://primefaces.org/ui">
<h:head>
<f:facet name="first">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<meta http-equiv="pragma" content="no-cache"/>
<meta http-equiv="cache-control" content="no-cache"/>
<meta http-equiv="expires" content="0"/>
</f:facet>
<h:outputStylesheet library="css" name="styles.css"/>
 <ui:insert name="headPan"/>
</h:head>
<h:body>
<p:layoutfullPage="true">
<p:ajax event="resize"/>
<p:layoutUnit position="north">
 <p:panel header="PrimeFaces">
 </p:panel>
</p:layoutUnit>
<p:layoutUnit position="west" collapsible="true" gutter="1">
 <ui:insert name="leftPan"/>
</p:layoutUnit>

Chapter 3

[65]

<p:layoutUnit position="center">
 <ui:insert name="bodyContent"/>
</p:layoutUnit>
<p:layoutUnit position="east" collapsible="true" gutter="1">
 <ui:insert name="rightPan"/>
</p:layoutUnit>
</p:layout>

</h:body>
</f:view>
</html>

The associated filename within the template directory is
default_template.xhtml.

This code snippet can show you how to design the template file with placeholders.
Pay attention to the ui:insert tag; it is used in the template file in order to place the
placeholder for its content.

Have a look at how you can define the placeholders using the ui:composition and
ui:define tags in the following code:

<ui:composition template="/templates/default_template.xhtml">
<ui:define name="headPan">
<!-- Test contents Comment Head-->
</ui:define>

<ui:define name="leftPan">
 <ui:includesrc="pages/categories.xhtml"/>
</ui:define>

<ui:define name="bodyContent">
 ….
</ui:define>
<ui:define name="rightPan">
 …
</ui:define>
…
</ui:composition>

Creating a Simple Restaurant Point of Sale Application

[66]

As previously discussed, the ui:composition tag is specified with the template
attribute. It is set to your default template file, default_template.xhtml. Your
template file has four ui:insert placeholders with the names headPan, leftPan,
bodyContent, and rightPan. In your main page, you will define each name and its
content. Facelet's view resolver will substitute the content at runtime. Notice that the
content of leftPan is defined in a separate file, including the ui:include tag in the
leftPan content, such that you can reuse and maintain the same code anywhere in
the application.

An advantage of using the include-file approach is that developers only
need to focus on looking at a particular part of the code.

The layout component
The layout component is based on a border layout model that consists of five
different layout units (or regions): top (north), left (west), center, right (east),
and bottom (south). The main purpose of the layout component is that it is used to
arrange the UI elements in the desired order using the layout units.

Layout has two different modes: you can either use it for a full-page layout or for a
specific region in your page. This setting is controlled with the fullPage attribute,
which is set to false by default. The regions in a layout component are defined
by layoutUnits. The following code is for a simple full-page layout with all the
possible units. Note that you can place any of the content in each layout unit. The
following code snippet is used to render the layout component in full page with all
the regions:

<h:form>
<p:layout fullPage="true">
<p:layoutUnit position="north" size="50">
<h:outputText value="Banner or Header content." />
</p:layoutUnit>
 <p:layoutUnit position="south" size="100">
<h:outputText value="Footer content." />
</p:layoutUnit>
 <p:layoutUnit position="west" size="300">
<h:outputText value="Navigation content" />
</p:layoutUnit>
 <p:layoutUnit position="east" size="200">
<h:outputText value="Advertisement Content" />
</p:layoutUnit>
 <p:layoutUnit position="center">

Chapter 3

[67]

<h:outputText value="Actual Workspace Content" />
</p:layoutUnit>
</p:layout>
</h:form>

The following image depicts the output of the preceidng code:

The border of a full-page layout

Forms in a full-page layout
When working with forms and a full-page layout, you will have a problem while
using a form that contains layoutunit. This is because the generated form may not
be the same. Therefore, the following code snippet is invalid:

<p:layout fullPage="true">
<h:form>
 <p:layoutUnit position="west" size="100">
 <h:outputText value="Left Pane" />
 </p:layoutUnit>
 <p:layoutUnit position="center">
 <h:outputText value="Right Pane" />
 </p:layoutUnit>
</h:form>
</p:layout>

Each layout unit must have its own form instead.

You should avoid trying to update the layout units because of the
same reason. You should update its content instead.

Implementation
First, you should take a look at how the layout components in the region that
contains Layoutunits are designed in the default_template.xhtml file.

Creating a Simple Restaurant Point of Sale Application

[68]

The layout component is designed as a full page with a true value; this enables
the content to span the fullscreen mode. You have designed each region using
LayoutUnits with a ui:insert tag, where the insert tag is used as a template to
make a placeholder for its contents. Apart from the center layout unit, other layout
units can have their dimensions defined via the size option used to specify the
initial size. If we don't specify the dimension, it will be defined during the runtime
based on the content's size. The center region occupies the remaining available space.
If you try to specify the size of other regions to fit the fullscreen mode, the center
region will always be present.

A possible error
The center region is mandatory when using the layout component. If you miss the
center region layout, you will encounter the following error while starting up the
application. This error will not be there in the server log:

A screenshot displaying the error message

Events and methods in the layout component
The layout component supports three events called close, resize, and toggle. It also
supports three JavaScript APIs called toggle, show, and hide. In this restaurant
application, you will use the Ajax tag in order to capture the specified event. For
example, resize event is triggered whenever the layout unit size changes

Using the ui:define tag, you can define the appropriate content. Each region is
identified with the specified name attribute, with the content inside the define tag
placed in the appropriate placeholder.

Chapter 3

[69]

You have another good feature: the layout component has the ability to control the
component using JavaScript. The default_template.xhtml file you are provided
with has an option through which you can toggle between the center panel and the
fullscreen mode upon pressing the button.

The icon to toggle to fullscreen mode

When the user clicks on the Toggle Full Screen button, the screen toggles to the
fullscreen mode by closing all the side and top panels. The following is the JavaScript
code that helps you do this:

<h:outputScript>
var hiddenFlag = false;
function hideShow() {hiddenFlag;;
var varswitherId = $("#switherId");
if (hiddenFlag) {
 layoutit.hide('north');
 layoutit.hide('west');
 layoutit.hide('east');
 layoutit.hide('south');
 switherId.attr("title", "Restore Window");
} else {
 layoutit.show('north');
 layoutit.show('west');
 layoutit.show('east');
 layoutit.show('south');
 switherId.attr("title","Maximize Window");
}
}
</h:outputScript>

In the preceding code snippet, layoutit is the name that is assigned for the
layout component, and the widgetVar attribute is used to specify a name for the
component. This helps to refer to the name outside the JSF context. That is how you
can get a reference for the layoutit name in JavaScript. This code snippet contains
the JavaScript API calls to show and hide the regions. Since the center region
automatically occupies the remaining available space, you just need to toggle the
other regions north, south, east, and west; then, the center region will immediately
resize to the remaining available space.

Creating a Simple Restaurant Point of Sale Application

[70]

You will be using a p:commandLink tag inside the center region with the ID as
switherId. The JavaScript API will be called from the click event of switcherId.
The JavaScript methods show and hide accept only one name parameter that is
automatically assigned by the PrimeFaces engine, namely, north, south, east, or west,
while rendering the layout and its regions.

Ajax's behavior events
The layout provides custom Ajax behavior events for each change that takes place
in the layout's state. In this application, you will use the Ajax tag to catch the resize
event. The following table shows

Event Fired

toggle When a unit is expanded or
collapsed

close When a unit is closed
resize When a unit is resized

The grouping components
The grouping components are used to arrange the items in a grid fashion.
PrimeFaces includes a wide range of components in order to support grouping UI
elements: a data grid, panel grid, row, column, dataTable, dataList, and many more.
In this chapter, you will use the panelGrid component, the dataGrid component,
the column tag, and a row tag.

The panelGrid component
PrimeFaces' panelGrid is an extension of the standard JSF's core panelGrid
component with additional features such as theming and column span and row span.

You will now see how to arrange the login page's content using the
panelGrid component:

<h:form id="login" prependId="false">
<p:growl id="msg" rendered="#{param.error}">
<h:outputText value="#{userController.loginStatus}"/>
</p:growl>
<p:dialog header="User Login"
id="dialog"
modal="true"
closable="false"
position="center"
widgetVar="modalLogin"

Chapter 3

[71]

showEffect="slide"
draggable="false"
resizable="false"
visible="true">
<p:panelGrid id="loginBox" columns="2" cellpadding="3"
style="margin: 0 auto; border: 0px;
padding-top: 20px;">
<h:outputLabel for="j_username" value="Username "/>
<h:outputLabel for="j_password" value="Password "/>
 <p:keyboard id="j_username" required="true"
widgetVar="usernameKeyBoard"
value="#{userController.userName}"
onfocus="$('#keypad-div').css('z-index', 9999);"/>
<p:keyboard id="j_password" required="true"
password="true" value="#{userController.password}"
onblur="$('#keypad-div').css('z-index', 9999);"/>
<p:commandButton id="loginBtn" value="Login"
ajax="false" action="#{userController.loginMeIn()}"/>
<p:defaultCommand target="loginBtn"/>
</p:panelGrid>
</p:dialog>
</h:form>

In the preceding snippet of the login page, you used the dialog panel to show
the login box on top of everything, forcing the user to log in. Also, you used the
panelGrid component with its basic usage to align the username and password
fields, with the buttons in a table row fashion. You can now see how the screen and
generated code look after the page is rendered:

Creating a Simple Restaurant Point of Sale Application

[72]

This following HTML code is generated at runtime by a JSF page resolver when you
view the source of the preceding login screen:

<table id="loginBox" cellpadding="3" style="margin: 0 auto; border:
0px; padding-top: 20px;">
<tbody>
<tr>
<td><label for="j_username">Username </label></td>
<td><label for="j_password">Password </label></td>
</tr>
<tr>
<td><input id="j_username" name="j_username" type="text"
onfocus="$('#keypad-div').css('z-index', 9999);" class="ui-
inputfieldui-keyboard-input ui-widget ui-state-default ui-corner-all
hasKeypad" role="textbox" aria-disabled="false" aria-readonly="false"
aria-multiline="false"></td>
<td><input id="j_password" name="j_password" type="password"
onblur="$('#keypad-div').css('z-index', 9999);" class="ui-
inputfieldui-keyboard-input ui-widget ui-state-default ui-corner-all
hasKeypad" role="textbox" aria-disabled="false" aria-readonly="false"
aria-multiline="false"></td>
</tr>
<tr>
<td><button id="loginBtn" name="loginBtn" class="ui-button ui-widget
ui-state-default ui-corner-all ui-button-text-only" type="submit"
role="button" aria-disabled="false"><span class="ui-button-text ui-
c">Login</button></td>
<td></td>
</tr>
</tbody>
</table>

The generated output code of the basic PrimeFaces panelGrid component is actually
nothing but a normal HTML table tag with <tr><td>, where the Columns attribute
of panelGrid is the one that decides the number of columns that should appear in
the table.

The additional feature of the panelGrid component is the row span and the column
span. In order to achieve the HTML row and column span using the panelGrid
component, take a look at the following sample snippet that demonstrates this:

<p:panelGrid>
<p:row>
<p:columnrowspan="3">1R1C</p:column>
<p:columncolspan="4">1R2C</p:column>
</p:row>

Chapter 3

[73]

<p:row>
<p:columncolspan="2">CCC</p:column>
<p:columncolspan="2">DDD</p:column>
</p:row>
<p:row>
<p:column>EEE</p:column>
<p:column>FFF</p:column>
<p:column>GGG</p:column>
<p:column>HHH</p:column>
</p:row>
</p:panelGrid>

The output for the preceding code snippet produces the HTML table as show in the
following screenshot:

The advantage of using this component is that the PrimeFaces view resolver will
never allow the developer to miss the columns, and it also acts as a guide to define
the table's format.

Supporting tags in the login screen
You will be using two extra components, dialog and keyboard, from PrimeFaces in
order to satisfy user-specific needs.

A requirement of the login page is that it needs a virtual keyboard as an input source,
the reason for this being that the application could then be used in touch screens.

The dialog tag is used to render the login form because it has a nice functionality to
render it all over the application with an overlay, and it will always be displayed in
the center screen. In order to achieve this feature, you may need to write more code
without this dialog component. It becomes challenging when you use the keyboard
component on the dialog component. In general the PrimeFaces dialog component
will always render on top of other components with an overlay to block all the other
components. The keyboard component will be rendered below the dialog component
and it becomes inaccessible. In order to overcome this situation, you can use a CSS
trick to change the z-index CSS property of the keyboard component shown at the
top of the dialog component.

Creating a Simple Restaurant Point of Sale Application

[74]

Here is the snippet that does the job for us:

<p:keyboard id="j_username" required="true" widgetVar="usernameKeyBo
ard"value="#{userController.userName}"onfocus="$('#keypad-div').css(
'z-index', 9999);"/>
<p:keyboard id="j_password" required="true" password="true"
value="#{userController.password}"onblur="$('#keypad-div').css(
'z-index', 9999);"/>

If you look at the preceding snippet, you can see that both the keyboard components
have the onblur event set to some CSS fix. This will just update the z-index for that
component whenever it gets activated or focused.

The dataGrid component
The dataGrid component does a similar job as that of panelGrid apart from the fact
that dataGrid displays a collection of data in a grid layout. You can use a column
specification by using a column attribute. On top of this, the dataGrid component
supports good pagination. This means that you can just set the rows and define the
columns with pagination enabled, not to mention there are many other advantages
available in panelGrid.

Please refer to the list of attributes and their usage that is listed for the dataGrid
component. In the PrimeFaces user guide, you will get information on how you used
the dataGrid component in the example.

The dataGrid component's attributes
The following code snippet is used in your center form to render the menu items. You
will be using a dataGrid component to render the menu items in the center container.

<h:form id="centerForm">
<p:panel header="Menu Card" style="width: 99%; border: none;"
id="menuItemContiner">
<p:dataGrid value="#{menuItemController.menuItems}" var="menus"
style="border: none;" columns="4" >
<p:panelstyleClass="order-box">
<p:panelGrid columns="1" columnClasses="aligns">
<p:columnGroup>
<h:outputText value="#{menus.id}"/>
<h:outputText value="#{menus.name}"/>
<h:outputText value="#{menus.categoryId}"/>
</p:columnGroup>
<p:columnGroup>

Chapter 3

[75]

<p:commandButton value="Favorite"
update=":leftPanForm:accord:favorites"
actionListener="#{menuItemController.addToFavorite(menus.id)}"/>
<p:commandButton value="Add" update=":rightPanForm"
actionListener="#{menuItemController.addLineItem(menus.id, menus.
displayName, menus.price)}"/>
<p:spacer/>
</p:columnGroup>
</p:panelGrid>
</p:panel>
</p:dataGrid>
</p:panel>
</h:form>

As you can see from the preceding snippet, you have used the dataGrid and
panelGrid components together. This is a unique situation where you will
need to combine both. This is explained better in the following screenshot:

A screenshot of the menu item view

In the preceding screenshot, you should notice that each menu item has five
attributes. The dataGrid component is meant to iterate the collection object, and
the panelGrid component is used to group the five object elements by specifying
the columns attribute as 3. Note that by default, the panelGrid and dataGrid
components use three columns. In this case, you will have specified the dataGrid
component's columns attribute to 4.

Creating a Simple Restaurant Point of Sale Application

[76]

The dataTable component and its usage
In this restaurant application, you are using the dataTable component to render
the ticket in a tabular fashion. You may be asking yourself why we are using the
dataTable component instead of dataGrid. The dataTable component renders the
collection of data in a tabular format without any extra work. The column groupings
show the total number of fields as well. You can still use the dataGrid component
in its place, but you will need to add in some extra lines to achieve this functionality.
From a developer's point of view, however, you would need to reduce the line of
code for better maintenance and to leverage the use of PrimeFaces' components. The
rowIndexVar attribute is used as a row number in the first column, and it is used as
X+1 because the index starts from zero. The following is the code snippet used to
achieve this:

<h:form id="rightPanForm">
 <p:dataTable value="#{menuItemController.lineItems}" var="cats"
style="border: none;" rowIndexVar="x">
 <p:column>
 #{x+1}
 </p:column>
 <p:column>
#{cats.displayName}
</p:column>
<p:column>
#{cats.quantity}
</p:column>
<p:column>
#{cats.price}
</p:column>
<p:columnGroup type="footer">
<p:row>
<p:columncolspan="3" footerText="Totals:"
style="text-align:right" />
<p:columnfooterText="#{menuItemController.lineTotal}$" />
</p:row>
</p:columnGroup>
</p:dataTable>
</h:form>

Chapter 3

[77]

The following is a screenshot of an open ticket:

The accordion component and its usage
The accordion component is used in this application to separate the left panel in
order to show the categories and favorite items. Based on the client requirement the
left panel should have either one of category list or favorite list in order to display
more items in the panel. This will benefit the user during the ordering phase by easy
navigation to more items. The favorite list is used to collect the frequently ordered
menu items from the menu item list to reduce the number of clicks. The user can add
their favorite item to the list and populate the center panel with these favorites. The
menu item can be from any category. The following screenshot shows the left panel
with the category and favorites list:

Creating a Simple Restaurant Point of Sale Application

[78]

Integrating the restaurant's menu card model
This section explains the business model of the restaurant's menu card system and
ordering. The following screenshot shows the full menu card system:

As you can see, the full restaurant menu card system is shown with an ordering
platform. On the left-hand side, there are the Categories and Favorite menus. The
center contains the menu items for the selected category, so if they choose from the
favorites list, it will also display the same center panel. Finally, on the right panel, there
is a ticket where you can add any number of menu items and check for payment.

Looking back at the left panel, the accordionPanel component is used because the
advantage of this component is that you can render many tab-styled areas to show
the elements. In this case, you are using both the category and favorite lists. Have a
look at the code in detail:

<h:form id="leftPanForm">
<p:accordionPanel id="accord">
<p:tab title="Categories">
<p:dataGrid value="#{menuItemController.categories}" var="cats"
style="border: none;">
<p:commandLink style="a:link { text-decoration:none; }"
update=":centerForm:menuItemContiner"
actionListener="#{menuItemController.findAllMenuItemsForCategory(cats.
id)}">
<p:panel>
<h:outputText value="#{cats.id}"/>

Chapter 3

[79]

<h:outputText value="#{cats.name}"/>
</p:panel>
</p:commandLink>
</p:dataGrid>
</p:tab>
<p:tab>
<f:facet name="title">
<h:panelGrid columns="2" width="100%">
<h:outputText value="Favorite Items"/>
<p:commandButton icon="ui-icon-extlink" iconPos="center"
update=":centerForm:menuItemContiner"
actionListener="#{menuItemController.loadFavorites}"
style="float: right;"/>
</h:panelGrid>
</f:facet>
<p:outputPanel id="favorites">
<p:dataGrid value="#{menuItemController.favoriteItems}" var="mens"
id="favoriteFormContiner">
<p:panel>
<h:outputText value="#{mens.id}"/>

<h:outputText value="#{mens.name}"/>
</p:panel>
</p:dataGrid>
</p:outputPanel>
</p:tab>
</p:accordionPanel>
</h:form>

From the preceding code, you can see how the left panel is designed using the
accordion component. The important part to note here is how the click event is
integrated. When the user clicks on the category, the center panel gets updated
with the appropriate content. The next section will explain this procedure.

Updating the component on a click
When the user selects a category, the appropriate menu items are populated in the
center panel. In the preceding code snippet, you will notice that the commandLink and
commandButton components are specified with the action listener set to a method.
This means that each time the user clicks on the component, the listener method will
be executed, and based on the method parameter, the menu items will be populated
in the member variable on the controller. You will also notice that the update attribute
of the commandLink and commandButton components are specified to target the DOM
element's ID. Also, you specified the center panel ID with a full path reference.

Creating a Simple Restaurant Point of Sale Application

[80]

Whenever the event is triggered, the listener method populates the menu item list with
the appropriate menu items for the specified category. Upon its completion, the target
component will get updated, and it will be refreshed with the latest data from the
populated list. This renders the screen with updated values. Because all of these things
are happening via AJAX requests, the user may not realize the update is happening.

Similarly, you will perform the same kind of update in the ticket items, favorites, and
other things. PrimeFaces helped this page to behave as an AJAX-interactive page.

A problem encountered during implementation
The important part of this process is to understand how to specify the target DOM
element's ID. If you are not specifying an ID for the PrimeFaces components, then the
PrimeFaces view resolver will assign a dynamic ID for each component. It is difficult
to take the reference of a particular target DOM element. In order to get the correct DOM
element ID, please perform the following steps:

1. Firstly, you need to specify the target element with a meaningful name in the
ID attribute. In this case, you can use menuItemContainer.

2. After this, specify a meaningful name in the ID attribute of the target
elements that enclose the Form tag. In this case, you can use centerForm.

3. Following this, you should use the browser's debugging facilities to
inspect the element in order to find the exact name, which is generated
at runtime for our desired target. In this case, it is generated as
centerForm:menuItemContainer. The following screenshot shows
exactly what to expect:

4. Finally, you can specify the same ID by suffixing : with the generated ID. In
this case, this is :centerForm:menuItemContainer.

The following is another example to make it clear how to get the DOM element ID
to be used as an update target. Looking at the following screenshot of the Chrome
inspect element, you can see leftPanForm:accord:favorites. For div to be used
as a target, have a look at the following screenshot to see how you can achieve this
by just specifying the right name in the JSF's page:

Chapter 3

[81]

The following code is used to render a command button with a specified target
component name to update:

<p:commandButton value="Favorite" update=":leftPanForm:accord:favorit
es" actionListener="#{menuItemController.addToFavorite(menus.id)}"/>

In the preceding snippet, note how the update target name is used in the command
button. Now you know how to achieve this using the Chrome inspect element.
For more information on the Chrome inspect element, visit https://developer.
chrome.com/devtools/docs/shortcuts. Here, the following XHTML code shows
the hierarchy of how the components are defined:

<h:form id="leftPanForm">
<p:accordionPanel id="accord">
<p:tab title="Categories">
<p:dataGrid …..
 <p:outputPanel id="favorites">

You can find the preceding code snippet in the categories.xhtml file.

If you specify the wrong DOM ID, which is not present on this page, then you will
receive an error saying that the DOM element is missing for the given ID. Otherwise,
you won't receive any indication of an error.

The naming format is formName:parentcomponentID:componentId.

The preceding naming format should help you understand how to define the
component for reference. The categories.xhtml file is a single file that is
included on the left-hand side category that contains an h:form tag with the
leftPanForm ID; the form contains an accordion panel with the accord ID. Inside
this accordion panel, we have two tabs: one for category and another for the favorite
list with the ID as favorites. In order to specify this as a target, you have to use
leftForm:accord:favorites.

https://developer.chrome.com/devtools/docs/shortcuts
https://developer.chrome.com/devtools/docs/shortcuts

Creating a Simple Restaurant Point of Sale Application

[82]

Similarly, you need to be careful about the action listener. You may have already
specified the right method with the right parameter, but one thing to remember is
when you click on the button or link, it will process the request as an HTTP GET
method. Therefore, the bean has to be view scoped in order to retain the previously
populated values. The following code snippet is used in our menu page, this is how
you populate the menu items on each click of category:

<p:commandLink style="a:link { text-decoration:none; }"update=":center
Form:menuItemContiner" actionListener="#{menuItemController.findAllMen
uItemsForCategory(cats.id)}">

public void findAllMenuItemsForCategory(intcategoryId) {
 Random rand = new Random(50);
 //instead we can populate from Database.
menuItems = new ArrayList<>();
for (inti = 0; i< 15; i++) {
menuItems.add(new MenuItem(i, "Name" + i, "Name" + i+"_"+categoryId,
rand.nextInt(20), true, categoryId));
 }
 }

When an action listener is specified for a command link or a command
button, the specified method will be processed when the button is clicked.
In your restaurant application, whenever the category is clicked, the method
findAllMenuItemsForCategory will be processed; this contains the logic to retrieve
the menu items for the specific category ID.

You will be using the same kind of process method to populate and update the
components in this application, which as a reminder are the favorites list, the
center menu card, and the ticket panel. You can use either the commandLink or
commandButton components to perform this action.

Controllers in use
Your restaurant application has two different controllers (or managed beans):
UserController.java and MenuItemController.java. They are explained here:

• UserController is used to track the user profile that is defined as the
session-scoped bean in order to hold the session that contains the login
credentials for validation.

• MenuItemController has all the functionalities related to the menu card
system. This can be used by the view scope because this expires for every view.

UserController makes use of the session scope because it has to retain the value for
the entire session. With MenuItemController in the view scope, this will retain the
value for the whole request.

Chapter 3

[83]

The following are the methods used to handle the transaction of the menu
card system:

• public void init(): The init method is used to initialize the bean
with necessary information. In your case, this method is called only once
whenever the bean is initialized. The annotation, @PostConstruct, will
enable this feature for this method. In this application, you will use this
method to populate the category types. In real time, you can call DAO
instead of hardcoded values.

• private void populateCategory(): This method is responsible for
populating the category list.

• public void findAllMenuItemsForCategory(intcategoryId): This
method will be executed when the user clicks on this category, and it is
called with the category ID as the parameter. This method is also responsible
for populating the menu items associated with the category ID.

• public void addLineItem(int id, String displayName, double
price): This method is responsible for adding the selected menu item to the
ticket, and this can be executed from any of the menu items.

• public void loadFavorites(): This method is executed when the user
wishes to load all of their favorite items in the display of the center panel.
The button near the favorite panel at the top is responsible for this event.

• private void updateTotal(): This private method is used to update
the total whenever the user adds a new item to the ticket.

• public void addToFavorite(int id): This is another method that can
be executed from all the menu items using the favorite link. This will add
the selected menu item to the favorites list to make it available for easy
navigation.

The following is the transaction variable that holds the values during runtime:

private Category category;
privateMenuItemmenuItem;
private double lineTotal = 0.0;
private List<Category> categories = new ArrayList<>();
private List<MenuItem>menuItems = new ArrayList<>();
private List<LineItem>lineItems = new ArrayList<>();
private List<MenuItem>favoriteItems = new ArrayList<>();

Creating a Simple Restaurant Point of Sale Application

[84]

The preceding transaction variables are used to hold the runtime values respectively
during the process of ordering. The associated getter and setter methods are also
defined in the same bean controller. These variables are used in the JSF page to get
the data from the controller. The menuItems variable is used in the center panel's
dataGrid component as a collection. The Lineitem collection variable is used in the
right panel ticket's dataTable.

CSS and styling
The presentation of code can be a work of art, attracting the customer in many
ways. Before you even buy a product, the first thing to consider is the appearance
or the look and feel. CSS plays a vital role in how you feel as a customer when you
come across a product in the web application industry. To overcome this situation,
PrimeFaces has a readymade solution that contains many themes. Even though
you have access to PrimeFaces' own themes, there may be some situations where
the user might have some specific requirements regarding the appearance. If this is
the case, you may need to override PrimeFaces' CSS to fulfill this requirement. The
following CSS code snippet is applied for each panelGrid component created using
PrimeFaces. (This is not relevant to the implementation). This code has to replaced
with user specific CSS:

.ui-panelgrid td {
 border-width: 1px;
 border-style: solid;
 border-color: inherit;
 padding: 4px 10px;
}

The preceding code can be overridden by using user-specific styles that are defined
in the styles.css file:

.aligns {
 margin: auto 0px;
 width: 100%;
 height: 100%;
 padding: 10px 10px !important;
}

In the preceding sample snippet, you are overriding the padding values, which is
currently in the default PrimeFaces' theme. The styles.css file has class aligns. In this
case, you are just using !important, which is the CSS property that needs to override
the PrimeFaces theme. There are also many more ways to do this using CSS tricks.

Chapter 3

[85]

There are many way to do this kind of fix, another one common practice is as
follows:

• Find the default PrimeFaces theme CSS class name
• Write one user defined class name as a parent class
• Add the default class name as child and define new override CSS
• Use the user defined class for your component that you like to override

This following CSS snippet will override the default.

.user-define-grid .ui-panelgrid td {
 border: none;
 padding: 0;
}

In the preceding CSS snippet you have created user-define-grid as parent, and
ui-panelgrid is defined as child. You just need to add a space between two class
names, the second one will become child.

Working with sample code
If you wish to work on the sample code, all you need to do is just download it from
the Git repository at https://github.com/sudheerj/primefaces-blueprints
and use your preferred IDE. From there, you can start playing with the code. You
can run the code using the mvn jetty:run command in the Maven console and then
navigate to http://localhost:8080/web, using admin/admin as the credentials to
log into the application.

Summary
This chapter showed you to how to develop your own restaurant business
model application. Please note that in this chapter, the examples used were for
demonstration purposes only, and the business may vary from restaurant to
restaurant. The topics covered were the Facelet-templating features and the layout
tag and its usage with the use of the default template file. You learned how to group
elements in UI using the PrimeFaces' grouping components, which include accordion,
panelGrid, dataGrid, dataTable, column, columnGroup, and row components.

The next chapter will provide you with a procedure to create another real-time
business model called an employee registration application, which aims to explain
the Input component of PrimeFaces.

https://github.com/sudheerj/primefaces-blueprints
http://localhost:8080/web

Global Mutual Funds
Tracking

This chapter teaches you how to create a simple online application to track mutual
funds over a particular period. The PrimeFaces library provides you with the
most-used data container components that have a very large and complex feature
set, which you can use to hold big data sets. An important goal of this chapter is
to also demonstrate the features of PrimeFaces' dataTable, dataList, and dataGrid
components. To explain these components, you will be using the global mutual
funds tracking application where either the service center user, dealer, advisor, or
investor logs in to the application depending on their role to view specific related
information. The topics that will be covered are as follows:

• A brief introduction to global mutual funds tracking application, including
use cases and the architectural design

• Project creation and the implementation of the application screens using data
container components

• Working with the global mutual funds tracking project code

Global Mutual Funds Tracking

[88]

An introduction to the global mutual
funds tracking project
A mutual fund represents a professionally managed investment scheme that pools
money from different investors to purchase various securities. Sometimes, we
call them registered investment companies (or investment companies) that are
controlled under securities and exchange commissions. These investment companies
need to maintain a mutual funds application to display the various levels of user
information and to perform their activities or operations. For example, the mutual
fund organization will store the fund manager's information, service center, dealers,
advisors, representatives, and their account values information, among other data, in
a hierarchical order.

The global mutual funds tracking application
In this section, we will show you how to create an online global funds tracking
application using the PrimeFaces library. The mutual funds tracking application is
used to track the service center, dealer, advisor, as well as the representatives and
their account details over the long run. Different levels of mutual fund users can log
on to this application to view their data and perform their regular tasks.

Before you implement the various data container components using the PrimeFaces
library, you should take a brief look at the project requirements and architectural
designs explained in the following subsections.

Application use cases
The purpose of this application is to track global mutual funds information easily
from the big data sets. At first, the mutual fund user needs to log in to the application
in order to view the different landing pages based on the user roles, as follows:

• Service center user: This role can be used to view the service center
information

• Dealer user: This role can be used to check the dealer information
• Advisor user: This role can be used to view the advisor information
• Investor role: This role can be used to access the accounts details for different

types of accounts

The mutual funds information can also be viewed in a hierarchical manner from
the top-to-bottom levels (service center to dealer, dealer to advisor, and advisor to
accounts summary) of different user roles in the organization.

Chapter 4

[89]

Sketching the UML use case diagram
The following use case diagram is used to represent the various functionalities that
occur in the application with the help of actors and their roles. These functionalities,
such as logging on to the application using service center, dealer, advisor, and
investor roles; viewing the service center information using a multifeatured data
table format; viewing the dealer's information using combined dataTable and
dataList formats; viewing the advisor's information using the dataGrid format; and
viewing the investors accounts information using the lazy data table are treated as
individual use cases, which is exactly how they will be adopted in this application:

There are four actors who perform these functionalities in this application. They are
the ServiceCenter user, Dealer, Advisor, and Investor.

The architectural design
The architecture of this application can be presented as follows:

• The presentation layer will be composed of standard JSF and PrimeFaces
components

• XHTML or Facelets are used as the view technology in order to render the
UI components

• You will use the PrimeFaces built-in start theme to skin or style the web pages

Global Mutual Funds Tracking

[90]

• The managed beans will be used to hold the session information and event
handling as well as executing the business logic

• The data access layer is used to interact with the MySQL database using the
JPA (specification) hibernate (ORM Tool) framework

• The Apache Maven build tool will be used to build the project and for
dependency management

The following architecture diagram represents the three major layers of the web
application and their interaction with the MySQL database. The flow from the
presentation layer to the other layer components and database is represented by
straight lines:

Here, hibernate is an ORM that implements the JPA standard used between the
DAO layer and the MySQL database.

Chapter 4

[91]

Creating a project and implementing the
application screens
This section will show you how to implement the global mutual funds tracking
application using the PrimeFaces data iteration components. The first step to is to start
the project by creating the template structure using standard JSF Facelets. Then, you
need to apply the multifeatured dataTable component for the creation of the service
center information; enhanced dataTable filtering, which contains a dataList inside the
expanded row, to represent additional dealer information; advisor information in a
data grid format; and at the end, to apply RTL-supported lazy loading of the account
summary information for a very large amount of data. We can also use the
few supported components to complete the full-fledged reporting application.

Before the actual implementation, you should first create the project structure with
the complete folder structure.

The project structure
The structure of the application should consider the MVC design pattern (which is
used to separate the presentation, business, and data access layers) in order to make
a proper web application. After you have properly implemented these sections,
the Eclipse IDE project structure in the navigator view should look as shown in the
following screenshot:

Global Mutual Funds Tracking

[92]

Next, you need to make sure that you have configured the entire web project using the
step-by-step configurations detailed in Chapter 1, Creating a "Hello World" Application.

Understanding the application template
design
You are going to use a single main template formed by the combination of three
smaller template files. The masterTemplate.xhtml file uses Facelets' ui:insert
and ui:include tags for the header, content, and footer sections, as shown in the
following code snippet:

<div id="header">
 <ui:insert name="header">
 <ui:include src="/templates/common/header.xhtml" />
 </ui:insert>
</div>
<div id="content">
 <ui:insert name="content">
 <ui:include src="/templates/common/content.xhtml" />
 </ui:insert>
</div>
<div id="footer">
 <ui:insert name="footer">
 <ui:include src="/templates/common/footer.xhtml" />
 </ui:insert>
</div>

The header section deals with the website logo, advertisements, and logout
functionalities. On the other hand, the footer section deals with the application
information through the command links. Finally, the content section or template
is just provided for default content.

Database configurations
The hibernate ORM is used to map between Java entities and RDBMS. The hibernate
application can be created in two ways, as follows:

• XML configurations
• Annotations

Chapter 4

[93]

We will use the XML configurations mechanism. In this approach, we have to
configure the hibernate MySQL dialect and other configuration details in the
hibernate configuration file, whereas the entity mapping information for each screen
needs to be added to its respective hibernate mapping file. Please take a look at the
hibernate configuration code in the blueprint's GitHub repository for reference.

Remember to run all the SQL commands of mysqlquery.txt
(which exist under query folder) before proceeding with the front end
application design.

Implementing the application screens using
data iteration components
Before we use the actual data iteration components, we will take a look at the login
screen development.

Implementing the login screen
Here, you will be able to create a login screen where the mutual fund user can log on
to the application. The mutual fund user needs to select the role first when logging in
to the application. Before navigating to the other screens of this application, the login
screen needs to validate whether the login user has been authenticated or not based
on the role mentioned.

You can create the login form containing the user role, username, and password
fields with the help of the PrimeFaces select, input, and keyboard components, as
shown in the following code snippet:

<h:form id="loginform">
<p:panel style="width:30%;height:30%;margin-left:35%">
 <p:messages id="login"></p:messages>
 <h:panelGrid columns="3" cellpadding="5">
 <h:outputText value="LoginUser:"></h:outputText>
 <p:selectOneMenu value="#{loginController.userrole}"
 label="LoginUser:">
 <f:selectItem itemLabel="Service Center" itemValue="S" />
 <f:selectItem itemLabel="Dealer" itemValue="D" />
 <f:selectItem itemLabel="Advisor" itemValue="A" />
 <f:selectItem itemLabel="Investor" itemValue="I" />
 </p:selectOneMenu>
 <h:outputText/>

 <h:outputLabel for="username" value="Username:" />

Global Mutual Funds Tracking

[94]

 <p:inputText value="#{loginController.username}" id="username"
 required="true" requiredMessage="Username cannot be empty"
 label="username">
 </p:inputText>
 <p:watermark for="username" value="Enter username" />

 <h:outputLabel for="password" value="Password:" />
 <p:keyboard value="#{loginController.password}" id="password"
 required="true" requiredMessage="Password cannot be empty"
 password="true" />
 <p:watermark for="password" value="Enter password" />

 <h:outputText></h:outputText>
 <p:commandButton id="loginButton" value="Login" update="login"
 style="float:right"
 action="#{loginController.validateUser}" ajax="false" />
 <h:outputText/>
 </h:panelGrid>
</p:panel>
</h:form>

In the preceding code, after the user role, username, and password fields, you can
see the login command button that is used to navigate mutual funds screens. The
backing managed bean is defined with the user role, username, and passwords
fields, along with the validateUser() method. This method validates the different
types of user authentication by accessing the data access layer as follows:

public String validateUser() throws SQLException {
 FacesMessage msg = null;
 boolean isValidUser = false;
 LoginDAO dao = new LoginDAO();
 isValidUser = dao.validateUser(username, password,userrole);

 ExternalContext externalContext = FacesContext.
 getCurrentInstance().getExternalContext();
 Map<String, Object> sessionMap = externalContext.getSessionMap();

 if (isValidUser) {
 if(userrole.equalsIgnoreCase("S")){
 return "/views/servicecenterinfo?faces-redirect=true";
 }
 else if(userrole.equalsIgnoreCase("D")){
 sessionMap.put("dealertinnumber", username);
 return "/views/dealerinfo?faces-redirect=true";
 }

Chapter 4

[95]

 else if(userrole.equalsIgnoreCase("A")){
 sessionMap.put("advisornumber", username);
 return "/views/advisorinfo?faces-redirect=true";
 }
 else {
 return "/views/accountsinfo?faces-redirect=true";
 }

 } else {
 msg = new FacesMessage(FacesMessage.SEVERITY_WARN,
 "Login Error","Invalid credentials");
 FacesContext.getCurrentInstance().addMessage(null, msg);
 return null;
 }
}

In the data access layer (in this case, loginDAO.java), you need to create the
hibernate session factory as shown in the following code snippet. It creates
SessionFactory from the hibernate.cfg.xml file, which is located under
the resources folder:

private SessionFactory sessionFactory;
private SessionFactory configureSessionFactory() throws
HibernateException {
 Configuration configuration = new Configuration();
 configuration.configure();
 StandardServiceRegistryBuilder
 builder = new StandardServiceRegistryBuilder()
 .applySettings(configuration.getProperties());
 SessionFactory sessionfactory = configuration.
 buildSessionFactory(builder.build());
 return sessionfactory;
}

To validate the user, you just need to make a MySQL-HQL query with the provided
username and password details. Based on the role and login credentials, the service
center and account summary screens will be authenticated by a true value being
returned directly for a valid user role. For the other roles (the dealer and advisor
roles), if the count variable is greater than one, then it represents that the logged
in user is valid; it does this by returning a true Boolean value. Otherwise, the
application can't be accessed as it returns a false Boolean value. The following
code snippet validates the logged user in the data access layer as follows:

public boolean validateUser(String userid, String password, String
userrole) {
 try {

Global Mutual Funds Tracking

[96]

 sessionFactory = configureSessionFactory();
 Session session = sessionFactory.openSession();
 session.beginTransaction();
 String query = null;
 if (userrole.equalsIgnoreCase("S") &&
 userid.equalsIgnoreCase("servicecenter")
 &&password.equalsIgnoreCase("servicecenter")) {
 return true;
 }
 else if (userrole.equalsIgnoreCase("I") &&
 userid.equalsIgnoreCase("investor")
 &&password.equalsIgnoreCase("investor")) {
 return true;
 }
 else if (userrole.equalsIgnoreCase("D")) {
 query = "from Dealer where dealernumber='" + userid + "'
 and dealernumber='" + password + "' ";;
 }
 else if (userrole.equalsIgnoreCase("A")) {
 query = "from Advisor where advisornumber='" + userid + "'
 and advisornumber='" + password + "' ";;
 }
 else {
 return false;
 }
 Query queryObj = session.createQuery(query);
 List<Object> list = queryObj.list();
 int count = 0;
 if (list != null) {
 count = list.size();
 }
 session.getTransaction().commit();
 if (count > 0) {
 return true;
 } else {
 return false;
 }
 } catch (Exception e) {
 return false; }

}

Chapter 4

[97]

You should now find the login screen, with the preceding required functionalities, as
shown in the following screenshot:

For the preceding login form, you will find that the non-empty and length
validations have been applied.

Login credentials
The application has been provided with four different levels of login credentials
based on user roles. They are as follows:

• Service center and investor user roles: The service center and investor
users can log in with the servicecenter/servicecenter and investor/
investor credentials, respectively.

• Dealer user roles: A particular dealer who is logging in to this application
(using the dealer number as the username and password) will be
authenticated from the list of dealers available in the dealer information. For
example, if 111 is a dealer number, then the credentials to authenticate the
dealer role are as follows:

 ° Username: 111
 ° Password: 111

Global Mutual Funds Tracking

[98]

• Advisor user roles: A particular advisor who is logging in to this application
(using the advisor number as the username and password) will be
authenticated from the list of advisors available in the advisor information.
For example, if 1111 is a advisor number, then the credentials to authenticate
the advisor role are as follows:

 ° Username: 1111
 ° Password: 1111

Exploring the mutual funds screens
The mutual funds screens contain a huge set of data in the form of data tables,
data lists, and data grids with their useful features. The features available on these
data containers display the information as per the user requirements. The mutual
fund user can find the commonly used sorting, filtering, and pagination features
in the data container components. Apart from these regular features, there will be
component-specific features as well.

Implementing the service center information screen
The service center screen holds the list of dealers, along with the important required
details of each dealer. You can find the list of dealers in a table format with the most-
used sorting, filtering, and pagination features. The authenticated service center user
can also select a particular dealer and navigate to view the dealer's information, view
and edit the dealer's profile, and delete the dealer from the list of available dealers.

The service center table contains the dealer's TIN/CST number, dealer name, dealer
branch name, date of registration, PAN number, status, number of advisors with the
sorting, filtering, pagination, context menu, multisorting, draggable columns, and
draggable rows features.

The draggable columns and draggable rows features are provided by setting the
draggableRows="true" and draggableColumns="true" properties, respectively, as
shown in the following code snippet:

<p:dataTable id="servicecenterinfo" widgetVar="$servicecenterinfo"
 var="dealer" value="#{serviceCenterController.servicecenterInfo}"
 paginator="true" rows="10"
 paginatorTemplate="{CurrentPageReport} {FirstPageLink}
 {PreviousPageLink} {PageLinks} {NextPageLink} {LastPageLink}
 {RowsPerPageDropdown}"
 rowsPerPageTemplate="5,10,15" draggableColumns="true"
 draggableRows="true" rowKey="#{dealer.dealertinnumber}"

Chapter 4

[99]

 paginatorPosition="bottom" sortMode="multiple"
 selection="#{serviceCenterController.dealerobj}"
 selectionMode="single">
 <f:facet name="header">
 Service Center Information-List of Dealers
 </f:facet>

 <p:ajax event="rowReorder"
 listener="#{serviceCenterController.onRowReorder}"
 update=":servicecenterform:messages" />

 <p:column sortBy="#{dealer.dealertinnumber}"
 filterBy="#{dealer.dealertinnumber}" id="dealertinnumber">
 <f:facet name="header">
 <h:outputText value="Dealer TIN/CST Number" />
 </f:facet>
 <h:outputText value="#{dealer.dealertinnumber}" />
 </p:column>

 <p:column sortBy="#{dealer.dealerfirstname}
 #{dealer.dealerlastname}"
 filterBy="#{dealer.dealerfirstname}
 #{dealer.dealerlastname}" id="dealername">
 <f:facet name="header">
 <h:outputText value="Dealer Name" />
 </f:facet>
 <h:outputText value="#{dealer.dealerfirstname}
 #{dealer.dealerlastname}" />
 </p:column>

 <p:column sortBy="#{dealer.branchname}"
 filterBy="#{dealer.branchname}" id="branchname">
 <f:facet name="header">
 <h:outputText value="Dealer Branch name" />
 </f:facet>
 <h:outputText value="#{dealer.branchname}" />
 </p:column>

 <p:column sortBy="#{dealer.dor}">
 <f:facet name="header">
 <h:outputText value="Date of registration" />
 </f:facet>
 <h:outputText value="#{dealer.dor}" />
 </p:column>

Global Mutual Funds Tracking

[100]

 <p:column sortBy="#{dealer.pan}">
 <f:facet name="header">
 <h:outputText value="PAN Number" />
 </f:facet>
 <h:outputText value="#{dealer.pan}" />
 </p:column>

 <p:column sortBy="#{dealer.status}">
 <f:facet name="header">
 <h:outputText value="Status" />
 </f:facet>
 <h:outputText value="#{dealer.status}" />
 <f:facet name="footer">
 <h:outputText value="Total Advisors:" />
 </f:facet>
 </p:column>

 <p:column sortBy="#{dealer.noofadvisors}">
 <f:facet name="header">
 <h:outputText value="Number of Advisors" />
 </f:facet>
 <h:outputText value="#{dealer.noofadvisors}" />
 <f:facet name="footer">
 <h:outputText
 value="#{serviceCenterController.advisorsCount}" />
 </f:facet>
 </p:column>

</p:dataTable>

In the preceding code, the multisorting feature is enabled by setting the sortMode
property as multiple (that is, sortMode="multiple").

The ServiceCenterController managed bean holds the list as a backing bean
by accessing ServiceCenterDAO and calculates the total advisor count under the
service center.

Remember that from Java EE 7 (or JSF 2.2 release) onwards, managed beans
have been deprecated and you need to use CDI instead. For example, the
@Named annotation is recommended over the @ManagedBean annotation.

Chapter 4

[101]

The following code snippet represents the backing bean for the service center
screen as follows:

@ManagedBean
@ViewScoped
public class ServiceCenterController implements Serializable{

 private static final long serialVersionUID = 1L;
 private List<Dealer> servicecenterInfo=new ArrayList<Dealer>();
 private Dealer dealerobj=new Dealer();
 ServiceCenterDAO dao = new ServiceCenterDAO();
 private int advisorsCount=0;

 @PostConstruct
 public void init() {

 servicecenterInfo=dao.getAllDealers();
 advisorsCountCalc();
 }

}

ServiceCenterDAO retrieves all the dealers listed under the service center user
as follows:

public List<Dealer> getAllDealers() {
 sessionFactory = configureSessionFactory();
 Session session = sessionFactory.openSession();
 session.beginTransaction();
 Query queryResult = session.createQuery("from Dealer");
 List<Dealer> allDealers = queryResult.list();
 session.getTransaction().commit();
 return allDealers;
}

Global Mutual Funds Tracking

[102]

The following screenshot shows how the service center screen will look with the list
of dealers' information displayed:

The contextMenu component references the target data table using the for attribute,
and a dialog will pop up once you right-click on a particular dealer. The menuItems
child component of contextMenu is used to navigate the list of advisors page, view
the dealer's profile, and delete a particular dealer, as follows:

<p:contextMenu for="servicecenterinfo">
 <p:menuitem value="View Advisors List"
 action="#{serviceCenterController.storeSelectedDealer}"
 ajax="false" icon="ui-icon-search" />
 <p:menuitem value="Dealer Profile" update=":dealerprofileform"
 oncomplete="PF('$dealerprofile').show()" icon="ui-icon-close" />
 <p:menuitem value="Delete Dealer"
 icon="ui-icon-close" update="servicecenterinfo"
 actionListener="#{serviceCenterController.deleteDealer}" />
</p:contextMenu>

The dealer's profile will be displayed in a pop-up dialog by just clicking on the view
dealer profile link under contextMenu. The dealer's profile data can be edited and
saved at any time by the service center user. The following code snippet represents
dealer profile details in a dialog pop up as follows:

<p:dialog id="dealerprofile" header="Dealer Profile"
 widgetVar="$dealerprofile" modal="true" resizable="false">
 <h:form id="dealerprofileform">

Chapter 4

[103]

 <p:messages id="messages"></p:messages>
 <h:panelGrid columns="3" cellpadding="5">
 <h:outputLabel for="firstname" value="Firstname:" />
 <p:inputText
 value="#{serviceCenterController.dealerobj.dealerfirstname}"
 id="firstname" required="true"
 requiredMessage="Firstname cannot be empty" label="username">
 </p:inputText>
 <p:watermark for="firstname" value="Enter firstname" />

 <h:outputLabel for="lastname" value="Lastname:" />
 <p:inputText
 value="#{serviceCenterController.dealerobj.dealerlastname}"
 id="lastname" required="true"
 requiredMessage="Firstname cannot be empty" label="username">
 </p:inputText>
 <p:watermark for="lastname" value="Enter lastname" />

 <h:outputLabel for="address1" value="Address1:" />
 <p:inputText
 value="#{serviceCenterController.dealerobj.address1}"
 id="address1" required="true"
 requiredMessage="Address cannot be empty" label="Address">
 </p:inputText>
 <p:watermark for="address1" value="Enter address" />

 <h:outputLabel for="address2" value="Address2:" />
 <p:inputText
 value="#{serviceCenterController.dealerobj.address2}"
 id="address2" label="Address"/>
 <p:watermark for="address2" value="Enter address" />

 <h:outputLabel for="country" value="Country:" />
 <p:inputText
 value="#{serviceCenterController.dealerobj.country}"
 id="country" label="country" />
 <p:watermark for="country" value="Enter Country" />

 <h:outputLabel for="city" value="City:" />
 <p:inputText
 value="#{serviceCenterController.dealerobj.city}"
 id="city" label="City" />
 <p:watermark for="city" value="Enter City" />

Global Mutual Funds Tracking

[104]

 <h:outputLabel for="contactnumber" value="Contact Number:" />
 <p:inputText
 value="#{serviceCenterController.dealerobj.contactnumber}"
 id="contactnumber" label="Contact Number" />
 <p:watermark for="contactnumber" value="Enter Contact number" />
 <h:outputLabel for="postalcode" value="Postal Code:" />
 <p:inputText
 value="#{serviceCenterController.dealerobj.postalcode}"
 id="postalcode" label="Postal Code" />
 <p:watermark for="postalcode" value="Enter Postal Code" />

 <f:facet name="footer">
 <p:commandButton id="update" value="Save"
 update=":servicecenterform"
 actionListener="#{serviceCenterController.updateDealerProfile}" />
 </f:facet>
 </h:panelGrid>
 </h:form>
</p:dialog>

ServiceCenterDAO updates the dealer's profile information as follows:

public void updateDealerProfile(Dealer serviceCenterObj){
 sessionFactory = configureSessionFactory();
 Session session = sessionFactory.openSession();
 session.beginTransaction();
 session.update(serviceCenterObj);
 session.getTransaction().commit();
}

When you click on any particular dealer, the dealer profile dialog with edit mode
will pop up as follows:

Chapter 4

[105]

On the other hand, a particular dealer under the service center can be deleted by
accessing the service center's data access layer, as shown in the following code snippet:

public List<Dealer> deleteDealer(Dealer object) {
 sessionFactory = configureSessionFactory();
 Session session = sessionFactory.openSession();
 session.beginTransaction();
 session.delete(object);
 Query queryResult = session.createQuery("from Dealer");
 List<Dealer> allDealers = queryResult.list();
 session.getTransaction().commit();
 return allDealers;
}

Apart from these specific features, you can also find the regular sorting, filtering, and
pagination dataTable features.

Implementing the dealer information screen
The dealer screen holds the list of advisors with the basic information about the
advisors displayed. You can find the list of advisors in a table format, with the
additional information hidden by default. Clicking on the row toggler on the
left-hand side displays the progress status details with the progress percentage for
each year in a list format.

The dealers' information can be viewed either by navigating from the selected dealer
in the service center screen or by directly logging in through the advisor role.

The advanced customized filtering features have recently been added in the
PrimeFaces 5.0 release. The facet filter, new filter match modes, and custom filtering
will be covered under this enhanced filtering.

The dealer table contains a dealer number, advisor name, advisor number,
management company, branch, year of registration, status, and revenue using the row
expansion feature, dataList component, and advanced customized filtering features.

The dealer information screen displays the list of advisors data using the dataTable
expanded row and paginated dataList features. To enable the row expansion
feature, the rowToggler component (p:rowToggler) should be placed under the
column component. The dataList component under the rowExpansion component
(p:rowExpansion) will be toggled (expanded/collapsed) based on the toggle icon
action in each row.

Global Mutual Funds Tracking

[106]

The following code snippet represents the dealers' information screen with the list of
advisors available:

<p:dataTable id="dealerinfo" widgetVar="$dealerinfo" var="advisor"
 value="#{dealerController.dealerInfo}" paginator="true" rows="10"
 paginatorTemplate="{CurrentPageReport} {FirstPageLink}
 {PreviousPageLink} {PageLinks} {NextPageLink} {LastPageLink}
 {RowsPerPageDropdown}"
 rowsPerPageTemplate="5,10,15" paginatorPosition="bottom"
 rowKey="#{advisor.advisornumber}"
 selection="#{dealerController.advisorobj}" selectionMode="single">

 <f:facet name="header">
 Dealer Information-List of Advisors
 </f:facet>
 <p:column style="width:2%">
 <p:rowToggler />
 </p:column>
 <p:column id="dealernumber" sortBy="#{advisor.dealernumber}"
 filterBy="#{advisor.dealernumber}" >
 <f:facet name="header">
 <h:outputText value="Dealer Number" />
 </f:facet>
 <h:outputText value="#{advisor.dealernumber}" />
 </p:column>

 <p:column id="advisorname" sortBy="#{advisor.advisorname}"
 filterBy="#{advisor.advisorname}" >
 <f:facet name="header">
 <h:outputText value="Advisor Name" />
 </f:facet>
 <h:outputText value="#{advisor.advisorname}" />
 </p:column>

 <p:column id="advisornumber" sortBy="#{advisor.advisornumber}"
 filterBy="#{advisor.advisornumber}" >
 <f:facet name="header">
 <h:outputText value="Advisor Number" />
 </f:facet>
 <h:outputText value="#{advisor.advisornumber}" />
 </p:column>
 <p:column id="managementcompany"
 filterBy="#{advisor.managementcompany}" filterMatchMode="exact"

Chapter 4

[107]

 headerText="Management Company" >
 <f:facet name="filter">
 <p:selectOneMenu onchange="PF('$dealerinfo').filter()">
 <f:selectItems value="#{dealerController.managementcompanies}" />
 </p:selectOneMenu>
 </f:facet>
 <h:outputText value="#{advisor.managementcompany}" />
 </p:column>
 <p:column id="branch" filterBy="#{advisor.branch}"
 headerText="Branch" filterMatchMode="in">
 <f:facet name="filter">
 <p:selectCheckboxMenu label="Branches"
 onchange="PF('$dealerinfo').filter()"
 panelStyle="width:150px" scrollHeight="150">
 <f:selectItems value="#{dealerController.branches}" />
 </p:selectCheckboxMenu>
 </f:facet>
 <h:outputText value="#{advisor.branch}" />
 </p:column>
 <p:column id="year" filterBy="#{advisor.year}"
 filterMatchMode="lte" headerText="Year of registration">
 <f:facet name="filter">
 <p:spinner onchange="PF('$dealerinfo').filter()" min="2000"
 max="2010" size="5">
 <f:converter converterId="javax.faces.Integer" />
 </p:spinner>
 </f:facet>
 <h:outputText value="#{advisor.year}" />
 </p:column>

 <p:column id="status" filterBy="#{advisor.status}"
 headerText="Status" filterMatchMode="equals" width="290">
 <f:facet name="filter">
 <p:selectOneButton onchange="PF('$dealerinfo').filter()" >
 <f:converter converterId="javax.faces.Boolean" />
 <f:selectItem itemLabel="All" itemValue="" />
 <f:selectItem itemLabel="ACTIVE" itemValue="true" />
 <f:selectItem itemLabel="CLOSED" itemValue="false" />
 </p:selectOneButton>
 </f:facet>
 <h:outputText value="#{advisor.status? 'ACTIVE':'CLOSED'}" />
 </p:column>

Global Mutual Funds Tracking

[108]

 <p:column id="revenue" sortBy="#{advisor.revenue}"
 filterBy="#{advisor.revenue}"
 filterFunction="#{dealerController.filterByRevenue}">
 <f:facet name="header">
 <h:outputText value="Revenue" />
 </f:facet>
 <h:outputText value="#{advisor.revenue}">
 <f:convertNumber currencySymbol="$" type="currency" />
 </h:outputText>
 </p:column>

 <p:rowExpansion>
 <p:dataList value="#{advisor.progressStatus}" var="progress"
 paginator="true" rows="5"
 paginatorTemplate="{PreviousPageLink} {CurrentPageReport}
 {NextPageLink} {RowsPerPageDropdown}"
 rowsPerPageTemplate="5,10,15" type="none">
 <f:facet name="header">
 Progress Status
 </f:facet>
 Year:#{progress.year},Profit percentage:
 #{progress.percentage}%

 </p:dataList>
 </p:rowExpansion>

</p:dataTable>

The DealerController managed bean holds the advisors list by retrieving the data
from the dealer's data access layer as follows:

@ManagedBean
@ViewScoped
public class DealerController implements Serializable{

 private static final long serialVersionUID = 1L;
 private List<Advisor> dealerInfo=new ArrayList<Advisor>();
 private SelectItem[] managementcompanies;
 private String[] branches;
 private Advisor advisorobj=new Advisor();
 DealerDAO dao = new DealerDAO();

 @PostConstruct
 public void init() {
 dealerInfo=dao.getAllAdvisors();

Chapter 4

[109]

 createFilterCompanies();
 createFilterBranches();
 }

}

DealerDAO retrieves the list of details of the advisors either by logging in with a
particular dealer or by selecting the dealer in the service center screen as follows:

public List<Advisor> getAllAdvisors() {
 sessionFactory = configureSessionFactory();
 Session session = sessionFactory.openSession();
 session.beginTransaction();
 Query queryResult=null;
 if(dealerNumber!=""){
 queryResult = session.createQuery("from Advisor where
 dealernumber = :dealerNum");
 queryResult.setParameter("dealerNum", dealerNumber);
 }else{
 queryResult = session.createQuery("from Advisor");
 }
 List<Advisor> allDealers = queryResult.list();
 for(Advisor dealerobj:allDealers){
 List<ProgressStatus> progressStatus=generateProgressStatus();
 dealerobj.setProgressStatus(progressStatus);
 }
 session.getTransaction().commit();
 return allDealers;
}

Now, the dealer's screen with the list of advisors will be displayed with additional
progress status information, as follows:

Global Mutual Funds Tracking

[110]

The enhanced dataTable filtering has been introduced with the filter facet, new
filter match modes, and custom filtering as the major features. These features can be
described as follows:

• The filter facet supports customized UI components, Ajax updates to filters,
and objects instead of simple strings as filter values

• In addition to the existing options of the filterMatchMode attribute, new
options/modes such as lt, lte, gt, gte, equals, and in are added

• Similar to the sortFunction property of the sorting implementation, the
new filterFunction refers to a method that takes three parameters and the
expected result is a Boolean that decides whether the value matches the filter

The dealers' information will be displayed after filtering with the various UI
components as follows:

Implementing the advisor information screen
The advisor screen holds the list of representatives, with basic details on each
representative. The list of representatives is represented in the form of grids/cells.
Each cell contains representative details, additional details, and a way to navigate
to the account information of a particular representative.

The advisor table contains the representative name, representative logo, advisor
name, advisor number, and date of registration using the dataGrid component.

Chapter 4

[111]

The dataGrid component holds the list of representatives in the grid format with the
representative details. Clicking on the additional details pop up with representative
information and on the account summary link navigates you to the account
summary screen. The following code snippet represents advisor information with
the list of available representatives in a table format:

<p:dataGrid id="advisorinfo" var="representative" columns="3"
 rows="9" value="#{advisorController.advisorInfo}" paginator="true"
 paginatorTemplate="{CurrentPageReport} {FirstPageLink}
 {PreviousPageLink} {PageLinks} {NextPageLink} {LastPageLink}
 {RowsPerPageDropdown}"
 rowsPerPageTemplate="4,6,9">
 <f:facet name="header">
 Advisor Information-List of Representatives
 </f:facet>

 <p:panel header="#{representative.repname}"
 style="text-align:center">
 <h:panelGrid columns="1" style="width:100%">
 <p:graphicImage
 value="/resources/images/reps/#{representative.repname}.png" />
 <h:outputText value="#{representative.repnumber}" />
 <h:outputText value="#{representative.advisornumber}" />
 <h:outputText value="#{representative.dor}" />

 <p:commandLink oncomplete="PF('$repInfo').show()"
 title="View Detail" update=":repDetails">
 <f:setPropertyActionListener
 target="#{advisorController.representativeobj}"
 value="#{representative}" />
 <h:outputText styleClass="ui-icon ui-icon-search"
 style="margin:0 auto;" />
 </p:commandLink>
 <p:commandLink value="View Account Summary"
 action="#{advisorController.navigateAccountSummary}"
 ajax="false"
 title="Navigate Account Summary page" />
 </h:panelGrid>
 </p:panel>
</p:dataGrid>

Global Mutual Funds Tracking

[112]

The AdvisorController managed bean holds the list of representatives as a backing
bean, as follows:

@ManagedBean
@ViewScoped
public class AdvisorController implements Serializable{

 private static final long serialVersionUID = 1L;
 private List<Representative>
 advisorInfo=new ArrayList<Representative>();
 Representative repobj=new Representative();
 AdvisorDAO dao = new AdvisorDAO();

 @PostConstruct
 public void init() {

 advisorInfo=dao.getAllRepresentatives();
 }

}

AdvisorDAO is used to retrieve all the information from the list of representatives in
the form of grids/cells as follows:

public List<Representative> getAllRepresentatives() {
 sessionFactory = configureSessionFactory();
 Session session = sessionFactory.openSession();
 session.beginTransaction();
 Query queryResult=null;
 if(advisorNumber!=""){
 queryResult = session.createQuery("from Representative where
 advisornumber = :advisorNum");
 queryResult.setParameter("advisorNum", advisorNumber);
 }else{
 queryResult = session.createQuery("from Representative");
 }
 List<Representative> allAdvisors = queryResult.list();
 session.getTransaction().commit();
 return allAdvisors;
}

Chapter 4

[113]

Now, the advisor screen displays the list of representatives in the grid format and
additional details in a pop up as follows:

The number of rows in the dataGrid component are controlled/modified by using
the RowsPerPageDropdown template.

Implementing the account summary information screen
The account summary screen holds the list of accounts with the mandatory details
on each account. The list of accounts is retrieved from the database on demand
lazily when there exist a large amount of data. Each basic operation such as sorting,
filtering, and pagination makes the DB call to retrieve the requested data. The table
header is grouped using the columnGroup and row components/tags, whereas the
RTL support is provided with the help of the selectBooleanButton component/
tag in the header.

The account summary table contains the investor name, account number, account
holder name, UK balance, and US balances in a table format using the lazy-loading
implementation.

The account summary table displays the list of account details referring the lazy data
model named lazyAccSummaryDataModel, as follows:

<p:dataTable id="accountsummary" var="account"
 value="#{accountSummaryController.lazyAccSummaryDataModel}"
 paginator="true" rows="5" paginatorPosition="bottom" lazy="true"
 paginatorTemplate="{CurrentPageReport} {FirstPageLink}
 {PreviousPageLink} {PageLinks} {NextPageLink} {LastPageLink}
 {RowsPerPageDropdown}"
 rowsPerPageTemplate="5,10,15" rowKey="#{account.id}"
 filterEvent="enter"

Global Mutual Funds Tracking

[114]

 selection="#{accountSummaryController.accountobj}"
 selectionMode="single"
 dir="#{accountSummaryController.directionSupport}">
 <f:facet name="header">
 <p:outputLabel for="direction"
 value="Do you want RTL Support?"/>
 <p:selectBooleanButton id="direction"
 value="#{accountSummaryController.direction}"
 onLabel="Yes" offLabel="No" onIcon="ui-icon-check"
 offIcon="ui-icon-close" >
 <p:ajax update="accountsummary"
 listener="#{accountSummaryController.addRTLsupport}" />
 </p:selectBooleanButton>
 </f:facet>
 <p:columnGroup type="header">
 <p:row>
 <p:column colspan="6" headerText="Account Summary" />
 </p:row>
 <p:row>
 <p:column rowspan="2" headerText="InvestorName" />
 <p:column colspan="3" headerText="Account Details" />
 <p:column colspan="2" headerText="Market Value" />
 </p:row>
 <p:row>
 <p:column headerText="Account Number" />
 <p:column headerText="Account Type" />
 <p:column headerText="Accountholder Name" />
 <p:column headerText="Balance(US)" />
 <p:column headerText="Balance(UK)" />
 </p:row>
 </p:columnGroup>
 <p:ajax event="rowSelect"
 oncomplete="PF('$accountdetails').show()"
 update=":accountdetails" />
 <p:column sortBy="investorName" filterBy="investorName"
 filterMatchMode="exact" id="investorName">
 <h:outputText value="#{account.investorName}" />
 </p:column>

 <p:column sortBy="accountNumber" filterBy="accountNumber"
 filterMatchMode="exact" id="accountNumber">
 <h:outputText value="#{account.accountNumber}" />
 </p:column>

Chapter 4

[115]

 <p:column sortBy="accountType" id="accountType">
 <h:outputText value="#{account.accountType}" />
 </p:column>

 <p:column sortBy="registeredAccholderName"
 id="registeredAccholderName">
 <h:outputText value="#{account.registeredAccholderName}" />
 </p:column>

 <p:column sortBy="balanceUS" id="balanceUS">
 <h:outputText value="#{account.balanceUS}" />
 </p:column>

 <p:column sortBy="balanceUK" id="balanceUK">
 <h:outputText value="#{account.balanceUK}" />
 </p:column>
</p:dataTable>

In the preceding code, you can find the rowSpan and colSpan properties applied to
the column tags that are placed under the row tags. The list of row tags is grouped
under the columngGroup component with the header type.

The accountSummary managed bean holds the lazy data model by overriding the
load method of the lazyDataModel implementation. The basic dataTable operations
such as sorting, filtering, and pagination result in a call to the load method. The
following code snippet represents the account summary screen's backing bean with
lazy loading implementation:

@ManagedBean
@ViewScoped
public class AccountSummaryController implements Serializable {

 private static final long serialVersionUID = 1L;
 private List<AccountSummary>
 accountsInfo = new ArrayList<AccountSummary>();
 private AccountSummary accountobj = new AccountSummary();
 AccountsDAO dao = new AccountsDAO();
 private LazyDataModel<AccountSummary> lazyAccSummaryDataModel;
 private Boolean direction = false;
 private String directionSupport = "ltr";

 @PostConstruct
 public void init() {

Global Mutual Funds Tracking

[116]

 lazyAccSummaryDataModel = new LazyDataModel<AccountSummary>() {
 @Override
 public List<AccountSummary> load(int first, int pageSize,
 String sortField, SortOrder sortOrder,Map<String,
 Object> filters) {

 String sortOrderValue = null;
 if (sortField == null) {
 sortField = "investorName";
 }
 if (sortOrder.ASCENDING.equals("A")) {
 sortOrderValue = "ASC";
 } else if (sortOrder.DESCENDING.equals("D")) {
 sortOrderValue = "DSC";
 } else {
 sortOrderValue = "default";
 }

 accountsInfo = dao.getAllAccounts(first, pageSize,
 sortField,sortOrderValue, filters);
 this.setRowCount(20);
 return accountsInfo;
 }
 };
}
....
}

AccountsDAO filters the total accounts list by passing the sorting, filtering, and
pagination fields in a query format, as follows:

public List<AccountSummary> getAllAccounts(int first,int
pageSize,String sortField,String sortOrder,Map<String,Object> filters)
{
 sessionFactory = configureSessionFactory();
 Session session = sessionFactory.openSession();
 session.beginTransaction();

 String investorname=null;
 String accountnumber=null;
 for(Iterator<String> it = filters.keySet().iterator();
 it.hasNext();) {
 String filterProperty = it.next();

Chapter 4

[117]

 if(filterProperty.equalsIgnoreCase("investorName")){
 investorname = (String)filters.get(filterProperty);
 }
 if(filterProperty.equalsIgnoreCase("accountNumber")){
 accountnumber = (String)filters.get(filterProperty);
 }
 }
 String query=null;
 int end=0;
 if(sortOrder.equalsIgnoreCase("default")){
 end=20;
 sortOrder="ASC";
 }
 if(filters.isEmpty()){
 end=first+pageSize;}
 else{
 end=20;
 }

 if(investorname!=null && accountnumber!=null){
 query="from AccountSummary WHERE (id BETWEEN "+(first+1)+"
 AND "+end+") AND ((investorName="+investorname+") AND
 (accountNumber="+accountnumber+")) ORDER BY
 "+sortField+" "+sortOrder;
 } else if(investorname!=null) {
 query="from AccountSummary WHERE (id BETWEEN "+(first+1)+" AND
 "+end+") AND (investorName="+investorname+") ORDER BY
 "+sortField+" "+sortOrder;
 } else if(accountnumber!=null) {
 query="from AccountSummary WHERE (id BETWEEN "+(first+1)+" AND
 "+end+") AND (accountNumber="+accountnumber+") ORDER BY
 "+sortField+" "+sortOrder;
 } else{
 query="from AccountSummary WHERE (id BETWEEN "+(first+1)+" AND
 "+end+") ORDER BY "+sortField+" "+sortOrder;
 }
 Query queryResult = session.createQuery(query);
 List<AccountSummary> allAccounts = queryResult.list();
 session.getTransaction().commit();
 return allAccounts;

}

Global Mutual Funds Tracking

[118]

Now the account summary screen displays all the accounts either by directly logging
in the investor or navigating from the advisor information screen as follows:

The RTL support in the Account Summary screen is enabled by turning the Boolean
button from No to Yes. The RTL support is provided by setting the dir dataTable
attribute to rtl (dir="rtl"). The supported values of the dir attribute are rtl and
ltr. By default, its value is ltr.

The account summary screen with RTL support will be as follows:

You can also configure RTL support at the application level using contextParam
as follows:

<context-param>
 <param-name>primefaces.DIR</param-name>
 <param-value>RTL</param-value>
</context-param>

By default, the dataTable supports the ltr direction.

Chapter 4

[119]

Working with the project code of the
global mutual funds tracking application
If you wish to work on the sample code, all you need to do is download it from the
Git repository at https://github.com/sudheerj/primefaces-blueprints, where
you can use your preferred IDE. From there, you can start playing with the code.
You can run it by using the mvn jetty:run command in the Maven console, and
navigate your browser to http://localhost:8080/web, using either the service
center, dealer, advisor, or investor credentials based on the user role type when
logging in to the application.

Summary
In this chapter, you learned how to develop a global mutual funds tracking
application. The topics covered in this chapter showed you how to create
service center, dealer, advisor, and account summary screens with data iteration
components such as dataTable, dataList, and dataGrid to hold the big data sets with
all the available features in order to achieve the necessary functional requirements.

In the next chapter, you will learn to create an investor information analysis and
reporting application, which will also show you how the export and chart export
components of PrimeFaces work.

https://github.com/sudheerj/primefaces-blueprints
http://localhost:8080/web

Investor Information Analysis
and Reporting

This chapter teaches you how to create a simple investor information analysis
and reporting application using PrimeFaces components. The PrimeFaces
library provides a huge set of components to analyze and track big data sets
for the reporting type of applications. It is difficult to analyze and track bulky
information available in table format and when you are always required to log in
to the application in order to check the information from time-to-time. Reporting
components such as dataExporter are introduced to export the data in popular
file formats and in various types of charts, displayed for analyzing big data. The
client-side API is also available to download the same charts in image formats. Now
the data can be stored, and we will be able to check the information in offline mode
as well. The specific topics that will be covered are as follows:

• A brief introduction to the investor information analysis application, use
cases, and architectural design

• The project creation and application screen implementation using export and
chart components

• How to obtain the source code and work on the project

Investor Information Analysis and Reporting

[122]

Understanding the investor information
analysis and reporting project
The analysis and reporting applications are commonly used in the business and
financial sectors to track large amounts of information quickly. The various types
of charts such as pie charts, bar charts, line charts, and others can be used to
compare and distinguish different categories of information. On the other hand,
the dataExporter reporting component is used to export the bulky information to
various popular file formats (PDF, Excel, XML, and CSV) in order to track and share
the information in offline mode easily. Typical examples of analyzing and reporting
applications include growth statistics and analysis of census information, employee
performance tracking, business projects' gains and losses, share market analysis,
investor information tracking, and many others.

About the application
In this section, you will see how to create an investor information analysis and
reporting application using the PrimeFaces library. This application is used to
analyze and track the following details over a particular period of time:

• Investor accounts
• Investments
• Transactions

Each investor can see their account's information just by logging in to the application.
There will be multiple investments under each account, and there will be multiple
transactions for each investment as well. The investment and transaction information
will be available under the Investment Summary and Transaction Summary
sections, respectively. As an investor, you can export the information in PDF, Excel,
CSV, and XML formats. An investor can analyze the information with the help of
charts and can download the charts when necessary.

Chapter 5

[123]

You will make use of the export components to export the data in your favorite file
formats and use the interactive chart components to give a fancy look and feel to
your data. Based on the ease of use and functional requirements, you can select any
of the export formats and chart components to apply them in this application.

Before you implement the various analysis and reporting components using the
PrimeFaces library, you should take a brief look at the project requirements and
architectural designs in the following sections.

Application use cases
The purpose of this application is to track and analyze investor information easily
from big data sets. First, the investor needs to log in to the application to check their
accounts' details for the different types of accounts. The investor is also allowed
to view the optional accounts' information through the checkboxes menu. All the
accounts' tabular data can be exported to PDF, Excel, CSV, or XML formats, with
customizations such as adding a logo and disclaimer information. You can select pie
charts or bar charts to analyze the market values for multiple account types.

After this, the investor can select any particular account to view all the investments
under that account. The investments data can be exported by choosing the optional
columns from the checkbox menu. Here, the fund investments and their market
values are interpreted through a line chart, and this chart can be downloaded as an
image as well.

Finally, the investor can also view all the transactions by selecting a particular fund
investment in the investment summary. The investor has the option to export data
from either a particular page or all the pages. All the transaction payment types and
their net amounts are interpreted through a donut chart and it can be downloaded as
an image.

Investor Information Analysis and Reporting

[124]

The UML use case diagram
The following use case diagram is used to represent the various functionalities
occurring in the entire application process. These functionalities, such as logging in
to the application, viewing the investor's accounts information, exporting customized
accounts data, analyzing the various account types and their balances using charts,
viewing the account's investments information, exporting the investment data, the line
chart interpretation on fund investments and market values, viewing the investments'
transaction information, exporting the transactions data, and analyzing the various
transaction payment types and their market values, are treated as individual use cases,
which is exactly how they will be adopted in this application:

A diagram illustrating the responsibilities of the investor in the investor information analysis
and reporting application

The only role that performs all these functionalities in this application is the Investor.

The architectural design
The architecture of this application can be presented as follows:

• The presentation layer will be composed of standard JSF and PrimeFaces
components

• XHTML or Facelets are used as the view technology in order to render the
UI components

Chapter 5

[125]

• You will use PrimeFaces' built-in ui-lightness theme to skin or style the
web pages

• The managed beans will be used to hold session information and event
handling as well as to execute the business logic

• The data access layer is used to interact with the MySQL database using
the hibernate framework

• The Apache Maven build tool will be used to build the project and for
dependency management

The following architectural diagram represents the three major layers of the web
application and their interaction with the MySQL database. The flow from the
presentation layer to the other layer components and database is represented by
straight lines.

A diagram illustrating the connection between the three different layers

Here, hibernate is used as a JPA implementation to communicate between the DAO
layer and the MySQL database.

Investor Information Analysis and Reporting

[126]

Creating the project and implementing
the application screens
This section will show you how to implement an investor information analysis and
reporting application using PrimeFaces' export and chart components. The first step is
to start the project by creating the template structure using standard JSF Facelets. Then,
you need to apply dataTable components for the creation of the account summary,
investment summary, and transaction summary screens. Later, you will find the
functionalities such as export tables for all the three screens, apply different types of
charts in all the screens, and export these charts as images. We can also use the few
supported components to complete the full-fledged reporting application.

Before the actual implementation, prepare your project structure with a proper
folder structure.

The project structure
For the structure of the application, you should consider presentation, business,
and data access layers in order to make a proper web application. After you have
properly implemented these sections, the project structure in the navigator view
should look as shown in the following screenshot:

Chapter 5

[127]

Next, you need to make sure that you have configured them all using the
step-by-step configurations detailed in Chapter 1, Creating a "Hello World" Application.

The application template design
You are going to use a single main template formed by the combination of three
smaller template files. The masterTemplate.xhtml file uses Facelets' ui:insert
and ui:include tags for the header, content, and footer sections, as shown in the
following code snippet:

<div id="header">
 <ui:insert name="header">
 <ui:include src="/templates/common/header.xhtml" />
 </ui:insert>
</div>
<div id="content">
 <ui:insert name="content">
 <ui:include src="/templates/common/content.xhtml" />
 </ui:insert>
</div>
<div id="footer">
 <ui:insert name="footer">
 <ui:include src="/templates/common/footer.xhtml" />
 </ui:insert>
</div>

The header section deals with the website logo, advertisements, and logout
functionalities. On the other hand, the footer section deals with the application
information through the command links. Finally, the content section or template is
just provided for the default content.

Database configurations
The JPA provider or implementation called hibernate is used to map between
Java entities and RDBMS. The hibernate application can be created in the following
two ways:

• Using XML configurations
• Using annotations

Investor Information Analysis and Reporting

[128]

We will use the XML configuration mechanism. In this approach, we have to
configure the hibernate MySQL dialect details in the hibernate configuration file,
whereas the entity mapping information by screen level. Please take a look at the
hibernate configuration code in the blueprint's GitHub repository for reference.

Remember to run all the SQL commands of mysqlquery.txt file (which
exist under query folder of the project) before proceeding with the front
end application design.

Implementing application screens using
analysis and reporting components
Before we use the actual analysis and reporting components, we will take a
look at the login screen development and the dataTables implementation for
the summary screens.

Implementing the login screen
Here, we will create a login screen where the investor can log in to the application.
Before navigating to the other screens of this application, you will have to validate
whether the login user has been authenticated or not. Step-by-step instructions to
create the login screen are provided as follows:

1. You can create the login form containing the username and password fields
with the help of the PrimeFaces input and password components, as shown
in the following code:
<h:form id="loginform">
 <p:panel style="width:30%;height:30%;margin-left:35%">
 <p:messages id="login"></p:messages>
 <h:panelGrid columns="3" cellpadding="5">
 <h:outputLabel for="username" value="Username:" />
 <p:inputText value="#{loginController.username}"
 id="username"
 required="true" requiredMessage="Username cannot be empty"
 validatorMessage="The length of the username
 should not be less than 4 chapters"
 label="username">
 <f:validateLength minimum="4"/>
 </p:inputText>
 <p:watermark for="username" value="Enter username" />
 <h:outputLabel for="password" value="Password:" />

Chapter 5

[129]

 <p:password value="#{loginController.password}"
 id="password"
 required="true" requiredMessage="Password cannot be empty"/>
 <p:watermark for="password" value="Enter password" />
 <h:outputText/>
 <p:commandButton id="loginButton" value="Login"
 update="login" style="float:right"
 action="{loginController.validateUser}"
 ajax="false" />
 </h:panelGrid>
 </p:panel>
</h:form>

In the preceding code, after the username and password fields, you can see the
login command button that is used to navigate the account summary page.

2. The backing managed bean is defined with the username and password
fields, along with the validateUser() method. This method validates the
investor authentication by accessing the data access layer, as follows:
public String validateUser() throws SQLException {
 FacesMessage msg = null;
 boolean isValidUser = false;
 LoginDAO dao = new LoginDAO();
 isValidUser = dao.validateUser(username, password);
 if (isValidUser) {
 return "/views/accountsummary?faces-redirect=true";
 } else {
 msg = new FacesMessage(FacesMessage.SEVERITY_WARN,
 "Login Error",
 "Invalid credentials");
 FacesContext.getCurrentInstance().addMessage(null, msg);
 return null;
 }
}

3. In the data access layer (in this case, loginDAO.java), you need to create the
hibernate session factory as follows:
private SessionFactory sessionFactory;
private SessionFactory configureSessionFactory()
 throws HibernateException {
 Configuration configuration = new Configuration();
 configuration.configure();

Investor Information Analysis and Reporting

[130]

 StandardServiceRegistryBuilder builder =
 new StandardServiceRegistryBuilder().applySettings
 (configuration.getProperties());
 SessionFactory sessionfactory =
 configuration.buildSessionFactory(builder.build());
 return sessionfactory;
}

4. To validate the user, you just need to make a MySQL-HQL query with the
provided username and password details. If the count variable is greater
than one, then it represents that the logged in user is valid; it does this by
returning a true Boolean value. Otherwise, the application can't be accessed
as it returns a false Boolean value. The following code snippet is used to
validate the logged user in the data access layer:
public boolean validateUser(String userid, String password) {
 try {
 sessionFactory = configureSessionFactory();
 Session session = sessionFactory.openSession();
 session.beginTransaction();
 String query = "from InvestorsList where username='"
 + userid + "' and password='" + password + "'";
 Query queryobj = session.createQuery(query);
 List<InvestorsList> list=queryobj.list();
 int count=0;
 if(list!=null){
 count= list.size();
 }
 session.getTransaction().commit();
 if (count > 0) {
 return true;
 } else {
 return false;
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 return false;
}

Chapter 5

[131]

5. You should now find the login screen, with the preceding required
functionalities, as shown in the following screenshot:

For the preceding login form, you will find that the nonempty and length validations
have been applied.

The login credentials
The application has been provided with 10 login credentials, starting from investor01
to investor10 with the same username and password values. So, the credentials
should be any one of these 10 values; otherwise, the application will display an
invalid validation message.

For example, the first investor needs to login as investor01/investor01.

Exploring the summary tables
Before you use the export and chart components, you can find the account summary,
investment summary, and transaction summary tables to hold the bulky data sets.
The same data of the summary tables can be used to report and analyze the data in a
simpler way.

Investor Information Analysis and Reporting

[132]

Implementing the account summary table
The account summary table contains the investor name, account holder name, account
number, account type, status, registration date, open date, end date, joint account, US
balance, and UK balance amount fields. The table also has the optional fields such as
registration date, open date, and end date using the column toggle feature. The step-
by-step procedure to implement the account summary table is as follows:

1. The account summary table is defined with all the required fields using the
column toggle feature as follows:
<p:dataTable id="accountsummary" var="account" value="#{accountSum
maryController.accountsInfo}"
 paginator="true" rows="5" paginatorPosition="bottom"
 paginatorTemplate="{CurrentPageReport} {FirstPageLink}
 {PreviousPageLink} {PageLinks} {NextPageLink} {LastPageLink}
 {RowsPerPageDropdown}"
 rowsPerPageTemplate="5,10,15" rowKey="#{account.id}"
 selection="#{accountSummaryController.accountobj}"
 selectionMode="single">
 <f:facet name="header">
 Account Summary
 <p:commandButton id="toggler" type="button"
 value="Columns" style="float:right"
 icon="ui-icon-calculator" />
 <p:columnToggler datasource="accountsummary"
 trigger="toggler" />
 <div style="clear: both" />
 </f:facet>
 <p:column sortBy="investorName" filterBy="investorName"
 toggleable="false" id="investorName">
 <f:facet name="header">
 <h:outputText value="Investor Name" />
 </f:facet>
 <h:outputText value="#{account.investorName}" />
 </p:column>
 <p:column sortBy="registeredAccholderName"
 filterBy="registeredAccholderName" toggleable="false"
 id="registeredAccholderName">
 <f:facet name="header">
 <h:outputText value="Accountholder Name" />
 </f:facet>
 <h:outputText
 value="#{account.registeredAccholderName}" />

Chapter 5

[133]

 </p:column>
 <p:column sortBy="accountNumber" filterBy="accountNumber"
 toggleable="false" id="accountNumber">
 <f:facet name="header">
 <h:outputText value="Account Number" />
 </f:facet>
 <h:outputText value="#{account.accountNumber}" />
 </p:column>
 <p:column sortBy="accountType" filterBy="accountType"
 toggleable="false" id="accountType">
 <f:facet name="header">
 <h:outputText value="Account Type" />
 </f:facet>
 <h:outputText value="#{account.accountType}" />
 </p:column>
 <p:column sortBy="status" filterBy="status" id="status"
 toggleable="false">
 <f:facet name="header">
 <h:outputText value="Status" />
 </f:facet>
 <h:outputText value="#{account.status}" />
 </p:column>
 <p:column sortBy="registrationDate" id="registrationDate">
 <f:facet name="header">
 <h:outputText value="Registration Date" />
 </f:facet>
 <h:outputText value="#{account.registrationDate}" />
 </p:column>
 <p:column sortBy="openDate" id="openDate">
 <f:facet name="header">
 <h:outputText value="Open Date" />
 </f:facet>
 <h:outputText value="#{account.openDate}" />
 </p:column>
 <p:column sortBy="closeDate" id="closeDate">
 <f:facet name="header">
 <h:outputText value="Close Date" />
 </f:facet>
 <h:outputText value="#{account.closeDate}" />
 </p:column>
 <p:column sortBy="jointAccount" id="jointAccount">
 <f:facet name="header">

Investor Information Analysis and Reporting

[134]

 <h:outputText value="Joint Account" />
 </f:facet>
 <h:outputText value="#{account.jointAccount}" />
 </p:column>
 <p:column sortBy="balanceUS" id="balanceUS" toggleable="false">
 <f:facet name="header">
 <h:outputText value="Balance US" />
 </f:facet>
 <h:outputText value="#{account.balanceUS}" />
 </p:column>
 <p:column sortBy="Balance UK" id="balanceUK"
 toggleable="false">
 <f:facet name="header">
 <h:outputText value="balanceUK" />
 </f:facet>
 <h:outputText value="#{account.balanceUK}" />
 </p:column>
</p:dataTable>

2. The backing bean is defined with the account summary fields, getters, setters,
accounts list, and the PostConstruct call to retrieve the account summary
information from the data access layer. The investor can also navigate to
the investment summary by selecting a particular account and storing the
account in the session to retrieve the data. Based on the stored account
number, the investments will be retrieved from the database as follows:
@ManagedBean
@ViewScoped
public class AccountSummaryController implements Serializable{
 // Account summary fields
 // Getters and setters
private List<AccountSummary>
accountsInfo=new ArrayList<AccountSummary>();
AccountSummaryDAO dao = new AccountSummaryDAO();
private AccountSummary accountObj=new AccountSummary();
 @PostConstruct
 public void init() {
 accountsInfo=dao.getAllAccounts();
 createPieModel();
 createCategoryModel();
 }
public String storeSelectedAccount(){
 ExternalContext externalContext =
 FacesContext.getCurrentInstance().getExternalContext();

Chapter 5

[135]

 Map<String, Object> sessionMap =
 externalContext.getSessionMap();
 sessionMap.put("accountNumber", accountObj.getAccountNumber());
 return "investmentsummary.xhtml?faces-redirect=true";
 }

}

3. The getAllAccounts() method of AccountSummaryDAO is used to retrieve
all the accounts under a particular investor as follows:
public List<AccountSummary> getAllAccounts() {
 sessionFactory = configureSessionFactory();
 Session session = sessionFactory.openSession();
 session.beginTransaction();
 Query queryResult = session.createQuery("from AccountSummary");
 List<AccountSummary> allAccounts = queryResult.list();
 session.getTransaction().commit();
 return allAccounts;
}

4. Now, the account summary information is displayed in the table format after
the investor logs in, as follows:

5. Right-click on each record popup with the investment summary navigation
link to display the investments under that account.

Investor Information Analysis and Reporting

[136]

The investment summary table implementation
The investment summary table contains the fund name, investment number,
investment manager, marketing company, average unit price, market value1, market
value2, market value3, market value4, and market value5 fields. The step-by-step
procedure to create the investment summary table is as follows:

1. The investment summary table is defined with all the required fields
as follows:
<p:dataTable id="investmentsummary" var="investment"
 value="#{investmentSummaryController.investmentsInfo}"
 paginator="true" rows="5"
 paginatorTemplate="{CurrentPageReport} {FirstPageLink}
 {PreviousPageLink} {PageLinks} {NextPageLink}
 {LastPageLink} {RowsPerPageDropdown}"
 rowsPerPageTemplate="5,10,15" rowKey="#{investment.id}"
 selection="#{investmentSummaryController.investmentobj}"
 selectionMode="single">
 <f:facet name="header">
 Investment Summary
 </f:facet>
 <p:column sortBy="fundname" filterBy="fundname" id="fundname">
 <f:facet name="header">
 <h:outputText value="Fund Name" />
 </f:facet>
 <h:outputText value="#{investment.fundname}" />
 </p:column>
 <p:column sortBy="investmentNumber" filterBy="investmentNumber"
 id="investmentNumber">
 <f:facet name="header">
 <h:outputText value="Investment Number" />
 </f:facet>
 <h:outputText value="#{investment.investmentNumber}" />
 </p:column>
 <p:column sortBy="investmentManager"
 filterBy="investmentManager"
 id="investmentManager"
 exportable="#{investmentSummaryController.
 exportInvestmentManager}">
 <f:facet name="header">
 <h:outputText value="Investment Manager" />
 </f:facet>
 <h:outputText value="#{investment.investmentManager}"
/>

Chapter 5

[137]

 </p:column>
 <p:column sortBy="marketingCompany" filterBy="marketingCompany"
 id="marketingCompany"
 exportable="#{investmentSummaryController.
 exportMarketingCompany}">
 <f:facet name="header">
 <h:outputText value="Marketing Company" />
 </f:facet>
 <h:outputText value="#{investment.marketingCompany}" />
 </p:column>
 <p:column sortBy="avgUnitPrice" filterBy="avgUnitPrice"
 id="avgUnitPrice"
 exportable="#{investmentSummaryController.
 exportAvgUnitPrice}">
 <f:facet name="header">
 <h:outputText value="Average UnitPrice" />
 </f:facet>
 <h:outputText value="#{investment.avgUnitPrice}" />
 </p:column>
 <p:column sortBy="marketValue1" id="marketValue1">
 <f:facet name="header">
 <h:outputText value="Market Value(1st Time Period)" />
 </f:facet>
 <h:outputText value="#{investment.marketValue1}" />
 </p:column>
 <p:column sortBy="marketValue2" id="marketValue2">
 <f:facet name="header">
 <h:outputText value="Market Value(2nd Time Period)" />
 </f:facet>
 <h:outputText value="#{investment.marketValue2}" />
 </p:column>
 <p:column sortBy="marketValue3" id="marketValue3">
 <f:facet name="header">
 <h:outputText value="Market Value(3rd Time Period)" />
 </f:facet>
 <h:outputText value="#{investment.marketValue3}" />
 </p:column>
 <p:column sortBy="marketValue4" id="marketValue4">
 <f:facet name="header">
 <h:outputText value="Market Value(4th Time Period)" />
 </f:facet>

Investor Information Analysis and Reporting

[138]

 <h:outputText value="#{investment.marketValue4}" />
 </p:column>
 <p:column sortBy="marketValue5" id="marketValue5">
 <f:facet name="header">
 <h:outputText value="Market Value(5th Time Period)" />
 </f:facet>
 <h:outputText value="#{investment.marketValue5}" />
 </p:column>
</p:dataTable>

2. The backing bean is defined with the investment summary fields, getters,
setters, investment list, and the PostConstruct call to retrieve the
investment summary information from the data access layer. The investor
can also navigate to the transaction summary by selecting a particular
investor and storing the investment number in the session to retrieve the
data. The following code snippet represents the investment summary
screen's backing bean:
@ManagedBean
@ViewScoped
public class InvestmentSummaryController implements Serializable{
 //Investment summary fields
 //Getters and Setters
 private List<InvestmentSummary>
 investmentsInfo=new ArrayList<InvestmentSummary>();
 private InvestmentSummary
 investmentobj=new InvestmentSummary();
 InvestmentSummaryDAO dao = new InvestmentSummaryDAO();

 @PostConstruct
 public void init() {
 investmentsInfo=dao.getAllInvestments();
 createLinearModel();
 exportColumns();
 }
 public String storeSelectedInvestornum(){
 ExternalContext externalContext =
 FacesContext.getCurrentInstance().getExternalContext();
 Map<String, Object> sessionMap =
 externalContext.getSessionMap();
 sessionMap.put("investmentNumber",
 investmentobj.getInvestmentNumber());
 return "transactionsummary.xhtml?faces-redirect=true";
 }

}

Chapter 5

[139]

3. The getAllInvestments() method of InvestmentSummaryDAO is used
to retrieve all the investments under a particular investor. If the investor
selects any particular account, then the investments under that account get
displayed; if the investor selects the Investment Summary link in the menu
bar, then all the investments get displayed. The following code snippet is
used to retrieve all the investments in the data access layer:
public List<InvestmentSummary> getAllInvestments() {
 sessionFactory = configureSessionFactory();
 Session session = sessionFactory.openSession();
 session.beginTransaction();
 Query queryResult=null;
 if(accountNumber!=""){
 queryResult = session.createQuery("from InvestmentSummary
 where accountNumber = :accNum");
 queryResult.setParameter("accNum", accountNumber);
 }else{
 queryResult = session.createQuery
 ("from InvestmentSummary");
 }
 List<InvestmentSummary> allInvestments = queryResult.list();
 session.getTransaction().commit();
 return allInvestments;
}

4. Now the investment summary information is displayed in the table format
when the investor navigates from the account summary, as follows:

5. Right-click on each record pop up with the transaction summary navigation
link to display the transactions under that investment.

Investor Information Analysis and Reporting

[140]

The transaction summary table implementation
The transaction summary table contains the transaction ID, transaction type,
transaction date, payment type, status, unit price of a transaction, transaction
units, gross amount, deductions, and net amount fields.

The step-by-step procedure to implement the transaction summary table is as follows:

1. The transaction summary table can be created with all the required fields as
follows:
<p:dataTable id="transactionsummary" var="transaction"
 value="#{transactionSummaryController.transactionsInfo}"
 paginator="true" rows="5"
 paginatorTemplate="{CurrentPageReport} {FirstPageLink}
 {PreviousPageLink} {PageLinks} {NextPageLink} {LastPageLink}
 {RowsPerPageDropdown}"
 rowsPerPageTemplate="5,10,15">
 <f:facet name="header">
 Transaction Summary
 </f:facet>
 <p:column sortBy="transactionid" filterBy="transactionid"
 id="transactionid">
 <f:facet name="header">
 <h:outputText value="TransactionID" />
 </f:facet>
 <h:outputText value="#{transaction.transactionid}" />
 </p:column>
 <p:column sortBy="transactiontype" filterBy="transactiontype"
 id="transactiontype">
 <f:facet name="header">
 <h:outputText value="Transaction Type" />
 </f:facet>
 <h:outputText value="#{transaction.transactiontype}" />
 </p:column>
 <p:column sortBy="transactiondate" filterBy="transactiondate"
 id="transactiondate">
 <f:facet name="header">
 <h:outputText value="Transaction Date" />
 </f:facet>
 <h:outputText value="#{transaction.transactiondate}" />
 </p:column>
 <p:column sortBy="paymenttype" filterBy="paymenttype"
 id="paymenttype">

Chapter 5

[141]

 <f:facet name="header">
 <h:outputText value="Payment Type" />
 </f:facet>
 <h:outputText value="#{transaction.paymenttype}" />
 </p:column>
 <p:column sortBy="status" filterBy="status" id="status">
 <f:facet name="header">
 <h:outputText value="Status" />
 </f:facet>
 <h:outputText value="#{transaction.status}" />
 </p:column>
 <p:column sortBy="transactionunitprice"
 id="transactionunitprice">
 <f:facet name="header">
 <h:outputText value="Transaction Unitprice" />
 </f:facet>
 <h:outputText
 value="#{transaction.transactionunitprice}" />
 </p:column>
 <p:column sortBy="transactionunits" id="transactionunits">
 <f:facet name="header">
 <h:outputText value="Transaction Units" />
 </f:facet>
 <h:outputText value="#{transaction.transactionunits}" />
 </p:column>
 <p:column sortBy="grossamount" id="grossamount">
 <f:facet name="header">
 <h:outputText value="Grossamount" />
 </f:facet>
 <h:outputText value="#{transaction.grossamount}" />
 </p:column>
 <p:column sortBy="deductions" id="deductions">
 <f:facet name="header">
 <h:outputText value="Deductions" />
 </f:facet>
 <h:outputText value="#{transaction.deductions}" />
 </p:column>
 <p:column sortBy="netamount" id="netamount">
 <f:facet name="header">
 <h:outputText value="Net Amount" />
 </f:facet>

Investor Information Analysis and Reporting

[142]

 <h:outputText value="#{transaction.netamount}" />
 </p:column>
</p:dataTable>

2. The backing bean is defined with the transaction summary fields, getters,
setters, transactions list, and the PostConstruct call to retrieve the
transaction summary information from the data access layer. The following
code snippet represents the transaction summary screen's backing bean:
@ManagedBean
@ViewScoped
public class TransactionSummaryController implements Serializable
{
 // Transaction Summary fields
 // Getters and Setters
 private List<TransactionSummary>
 transactionsInfo = new ArrayList<TransactionSummary>();
 TransactionSummaryDAO dao = new TransactionSummaryDAO();
 @PostConstruct
 public void init() {
 transactionsInfo = dao.getAllTransactions();
 createDonutModel();
 }
 ...
 }

3. The getAllTransactions() method of TransactionSummaryDAO is used to
retrieve all the transactions under a particular investor. If the investor selects
any particular investment, then the transactions under that investment get
displayed; if the investor selects the Transaction Summary link in the menu
bar at the top, then all the transactions get displayed. The following code
snippet is used to retrieve all the transactions in the data access layer:
public List<TransactionSummary> getAllTransactions() {
 sessionFactory = configureSessionFactory();
 Session session = sessionFactory.openSession();
 session.beginTransaction();
 Query queryResult=null;
 if(investmentNumber!=""){
 queryResult = session.createQuery("from TransactionSummary
 where investmentNumber = :invNum");
 queryResult.setParameter("invNum", investmentNumber);
 }else{
 queryResult = session.createQuery
 ("from TransactionSummary");
 }

Chapter 5

[143]

 List<TransactionSummary> allTransactions = queryResult.list();
 session.getTransaction().commit();
 return allTransactions;
}

4. Now the transaction summary information is displayed in the table format
when the investor navigates from the investment summary, as follows:

Along with the filtering and sorting options, you can find the pagination on
both the top and bottom sections of the summary screen.

Implementing the export functionality in summary
screens
The export functionality is used to export the bulky data sets to the summary
screens. The dataExporter component from PrimeFaces is used to export the
dataTable information. The data can be exported to any one of the popular formats
(PDF, Excel, CSV, and XML) based on the investor's selection.

The PDF export requires iText-2.1.7.jar, whereas the Excel export requires
poi-3.7.jar as the mandatory libraries. Please refer to the first chapter optional
dependencies section for more details.

Investor Information Analysis and Reporting

[144]

Exporting the account summary data
The account summary information is exported to multiple file formats (PDF, Excel,
CSV, and XML) using the p:dataExporter component, targeting the account
summary component ID. The PDF and Excel formats support customizations
through the preProcessor and postProcessor method expressions. The application
logo and screen titles are exported in the header section using preProcessor,
whereas the application disclaimer is exported in the footer section with the help
of postProcessor. The following code represents the export section of account
summary screen:

<p:panel header="Export Accounts Data">
 <h:commandLink>
 <p:graphicImage value="/images/excel.png" />
 <p:dataExporter type="xls" target="accountsummary"
 postProcessor="#{accountSummaryController.postProcessXLS}"
 fileName="AccountSummary" />
 </h:commandLink>
 <h:commandLink>
 <p:graphicImage value="/images/pdf.png" />
 <p:dataExporter type="pdf" target="accountsummary"
 preProcessor="#{accountSummaryController.preProcessPDF}"
 postProcessor="#{accountSummaryController.postProcessPDF}"
 fileName="AccountSummary" />
 </h:commandLink>
 <h:commandLink>
 <p:graphicImage value="/images/csv.png" />
 <p:dataExporter type="csv" target="accountsummary"
 fileName="AccountSummary" />
 </h:commandLink>
 <h:commandLink>
 <p:graphicImage value="/images/xml.png" />
 <p:dataExporter type="xml" target="accountsummary"
 fileName="AccountSummary" />
 </h:commandLink>
</p:panel>

The managed bean is defined with the preProcessor and postProcessor methods
to customize the PDF document with the logo and disclaimer sections, whereas the
Excel document is customized with the disclaimer section using the postProcessor
attribute. The following code represents the export PDF's preProcessor section:

public void preProcessPDF(Object document) throws IOException,
 BadElementException, DocumentException {
 Document pdf = (Document) document;

Chapter 5

[145]

 pdf.setPageSize(PageSize.A3);
 pdf.open();
 ServletContext servletContext = (ServletContext)
 FacesContext.getCurrentInstance().getExternalContext().
 getContext();
 String logo = servletContext.getRealPath("") + File.separator
 +"resources" + File.separator + "images" + File.separator +"logo"
 + File.separator + "logo.png";
 Image image=Image.getInstance(logo);
 image.scaleAbsolute(100f, 50f);
 pdf.add(image);
 // add a couple of blank lines
 pdf.add(Chunk.NEWLINE);
 pdf.add(Chunk.NEWLINE);
 Font fontbold = FontFactory.getFont("Times-Roman", 16, Font.BOLD);
 fontbold.setColor(55, 55, 55);;
 pdf.add(new Paragraph("Account Summary",fontbold));
 // add a couple of blank lines
 pdf.add(Chunk.NEWLINE);
 pdf.add(Chunk.NEWLINE);
}
public void postProcessPDF(Object document) throws IOException,
BadElementException, DocumentException {
 Document pdf = (Document) document;
 pdf.add(Chunk.NEWLINE);
 Font fontbold = FontFactory.getFont("Times-Roman", 14, Font.BOLD);
 pdf.add(new Paragraph("Disclaimer",fontbold));
 pdf.add(Chunk.NEWLINE);
 pdf.add(new Paragraph("The information contained in this website
 is for information purposes only, and does not constitute, nor
 is it intended to constitute, the provision of financial
 product advice."));
 pdf.add(new Paragraph("This website is intended to track the
 investor account summary information,investments and transaction
 in a particular period of time. "));
}
public void postProcessXLS(Object document) {
 HSSFWorkbook wb = (HSSFWorkbook) document;
 HSSFSheet sheet = wb.getSheetAt(0);
 HSSFRow header = sheet.getRow(0);
 HSSFCellStyle cellStyle = wb.createCellStyle();
 cellStyle.setFillForegroundColor(HSSFColor.GREEN.index);
 cellStyle.setFillPattern(HSSFCellStyle.SOLID_FOREGROUND);

Investor Information Analysis and Reporting

[146]

 for(int i=0; i < header.getPhysicalNumberOfCells();i++) {
 HSSFCell cell = header.getCell(i);
 cell.setCellStyle(cellStyle);
 }
 Row row=sheet.createRow((short)sheet.getLastRowNum()+3);
 Cell cellDisclaimer = row.createCell(0);
 HSSFFont customFont= wb.createFont();
 customFont.setFontHeightInPoints((short)10);
 customFont.setFontName("Arial");
 customFont.setColor(IndexedColors.BLACK.getIndex());
 customFont.setBoldweight(HSSFFont.BOLDWEIGHT_BOLD);
 customFont.setItalic(true);

 cellDisclaimer.setCellValue("Disclaimer");
 HSSFCellStyle cellStyleDisclaimer = wb.createCellStyle();
 cellStyleDisclaimer.setFont(customFont);
 cellDisclaimer.setCellStyle(cellStyleDisclaimer);

 Row row1=sheet.createRow(sheet.getLastRowNum()+2);
 Cell cellDisclaimerContent1 = row1.createCell(0);
 cellDisclaimerContent1.setCellValue("The information contained
 in this website is for information purposes only, and does not
 constitute, nor is it intended to constitute, the provision of
 financial product advice.");
 Row row2=sheet.createRow(sheet.getLastRowNum()+1);
 Cell cellDisclaimerContent2 = row2.createCell(0);
 cellDisclaimerContent2.setCellValue("This website is intended
 to track the investor account summary information,investments and
 transaction in a partcular period of time. ");
}

Now the generated customized output is represented in the form of Excel and PDF
formats in a step-by-step manner as follows:

1. The exported Excel document with a customized disclaimer using
postProcessor is shown in the following screenshot:

Chapter 5

[147]

2. The exported PDF document with the customized logo and disclaimer using
preProcessor and postProcessor is shown as follows:

Investor Information Analysis and Reporting

[148]

3. In the following screenshot, we applied postProcessor to add the
disclaimer just after the account summary dataTable:

Remember, both CSV and XML documents don't support the
preProcessor and postProcessor expressions.

4. The exported CSV document with the account summary information is
shown in the following screenshot:

Chapter 5

[149]

5. The exported XML document with the account summary information will
look as shown in the following screenshot:

In the preceding XML format, each record is displayed as one node in the document.
The record's information will be displayed in the tree nodes format.

Exporting the investment summary data
The investment summary information is exported to multiple file formats (PDF,
Excel, CSV, and XML) where some optional columns are omitted by setting
exportable="false" on p:column. Here, the p:dataExporter component targets
the investment summary component ID. The following code represents the export
section of the investment summary screen:

<p:panel header="Export Investment Summary">
 <p:selectCheckboxMenu
 value="#{investmentSummaryController.selectedColumns}"
 label="Export columns" panelStyle="width:220px">
 <f:selectItems value="#{investmentSummaryController.allcolumns}" />
 <p:ajax event="change"
 listener="#{investmentSummaryController.changeOptions}"
 update="investmentsummary"/>
 </p:selectCheckboxMenu>

 <p:separator style="margin-bottom:10px" />
 <h:commandLink>

Investor Information Analysis and Reporting

[150]

 <p:graphicImage value="/images/excel.png" />
 <p:dataExporter type="xls" target="investmentsummary"
 postProcessor="#{investmentSummaryController.postProcessXLS}"
 fileName="InvestmentSummary" />
 </h:commandLink>
 <h:commandLink>
 <p:graphicImage value="/images/pdf.png" />
 <p:dataExporter type="pdf" target="investmentsummary"
 preProcessor="#{investmentSummaryController.preProcessPDF}"
 postProcessor="#{investmentSummaryController.postProcessPDF}"
 fileName="InvestmentSummary" />
 </h:commandLink>
 <h:commandLink>
 <p:graphicImage value="/images/csv.png" />
 <p:dataExporter type="csv" target="investmentsummary"
 fileName="InvestmentSummary" />
 </h:commandLink>
 <h:commandLink>
 <p:graphicImage value="/images/xml.png" />
 <p:dataExporter type="xml" target="investmentsummary"
 fileName="InvestmentSummary" />
 </h:commandLink>
</p:panel>

The export column's selection in the investment summary page is shown in the
following screenshot:

In the preceding investment summary screen, we need to select/unselect whether
the optional columns are to be exported or not.

Chapter 5

[151]

Exporting the transaction summary data
The transaction summary information is exported to multiple file formats (PDF,
Excel, CSV, and XML) where the investor can select either the current page or all
the pages' data to be exported. The pageOnly="true" setting on p:dataExporter
enables the current page export. Here, the p:dataExporter component targets
the transaction summary component ID. The following code represents the export
section of the transaction summary screen:

<p:panel header="Export Transactions Information">
 <h:panelGrid columns="2" style="margin-bottom:10px"
 cellpadding="5">
 <h:outputLabel value="Export Options: " for="options" />
 <p:selectOneRadio id="options"
 value="#{transactionSummaryController.optionValue}"
 label="Export Options:">
 <f:selectItem itemLabel="Export All" itemValue="1" />
 <f:selectItem itemLabel="Export PageOnly" itemValue="2" />
 <p:ajax event="change" update="exportOptions"
 listener="#{transactionSummaryController.changeExportOption}" />
 </p:selectOneRadio>
 </h:panelGrid>
 <p:separator></p:separator>
 <p:outputPanel id="exportOptions">
 <h:commandLink>
 <p:graphicImage value="/images/excel.png" />
 <p:dataExporter type="xls" target="transactionsummary"
 postProcessor="#{transactionSummaryController.postProcessXLS}"
 fileName="TransactionSummary"
 pageOnly="#{transactionSummaryController.pageOnly}" />
 </h:commandLink>
 <h:commandLink>
 <p:graphicImage value="/images/pdf.png" />
 <p:dataExporter type="pdf" target="transactionsummary"
 preProcessor="#{transactionSummaryController.preProcessPDF}"
 postProcessor="#{transactionSummaryController.postProcessPDF}"
 pageOnly="#{transactionSummaryController.pageOnly}"
 fileName="TransactionSummary" />
 </h:commandLink>
 <h:commandLink>
 <p:graphicImage value="/images/csv.png" />
 <p:dataExporter type="csv" target="transactionsummary"

Investor Information Analysis and Reporting

[152]

 fileName="TransactionSummary"
 pageOnly="#{transactionSummaryController.pageOnly}" />
 </h:commandLink>
 <h:commandLink>
 <p:graphicImage value="/images/xml.png" />
 <p:dataExporter type="xml" target="transactionsummary"
 fileName="TransactionSummary"
 pageOnly="#{transactionSummaryController.pageOnly}" />
 </h:commandLink>
 </p:outputPanel>
</p:panel>

The investor can select either the current page or all the pages in the transaction
summary, as shown in the following screenshot:

In the preceding transaction summary screen, the investor needs to select either
the Export All or Export PageOnly option using radio buttons. Apart from the
PageOnly options, dataExporter can also export the selected records using the
selectionOnly="true" setting.

Export tips and tricks
We provided a few export recommendations or the tips and tricks section to
optimize the behavior of the export functionality as follows:

• Always use JSF's h:outputText component to hold and export the data
because inline expressions cannot be exported

• Use header and footer facets to export because headerText and footerText
won't be supported yet

Chapter 5

[153]

• Components other than h:outputText and graphicImage inside the
dataTable component will be ignored during the export

• All the dataTable features are not yet supported by the dataExporter
component

Implementing the charts functionality in summary
screens
Charts are very useful components for analyzing and tracking different types of
information. Comparing the different categories of data is not easy with huge data
represented in a tabular form. The PrimeFaces library created various types of charts
based on the jqPlot JavaScript library. The summary screen's data can be tracked
using various types of available charts. The investor also has the option to download
the charts as images.

From the PrimeFaces 5.0 release onwards, the charts API is enhanced with a
model-driven API that has additional features such as multi axis, date axis, and
custom axis support.

The account summary data analysis using pie and
bar charts
The market value of the amounts in different currencies under each account type can
be tracked by either using pie charts or bar charts based on the selection type. The
first pie chart is used to track the US market values, whereas the second pie chart is
used to track the UK market values. A single bar chart will be used to analyze both
the market values.

The p:chart component is used for all the types of charts, and the type attribute is
used to identify the chart type.

The account summary contains the pie and bar charts (based on user selection) based
on the account type and balances as shown in the following code snippet. Here, the
possible values of the type attribute are pie and bar:

<h:panelGrid columns="3">
 <h:panelGrid columns="2" style="margin-left:150px"
 rendered="#{accountSummaryController.pieChartFlag}">
 <p:chart type="pie" id="pieUS" widgetVar="$pieUS"
 model="#{accountSummaryController.pieModelUS}" style="width:400px;
 height:300px" />
 <p:chart type="pie" id="pieUK" widgetVar="$pieUK"
 model="#{accountSummaryController.pieModelUK}" style="width:400px;
 height:300px" />

Investor Information Analysis and Reporting

[154]

 </h:panelGrid>
 <h:panelGrid columns="2" style="margin-left:150px"
 rendered="#{!accountSummaryController.pieChartFlag}">
 <p:chart type="bar" id="barChart" widgetVar="$barChart"
 model="#{accountSummaryController.categoryModel}"
 style="width:400px;height:300px" />
 <p:spacer width="400" height="300"></p:spacer>
 </h:panelGrid>
 <p:spacer width="50"></p:spacer>
 <p:outputPanel style="margin-top: -100px">
 <h:outputText value="Select chart type " />
 <p:selectOneMenu value="#{accountSummaryController.type}">
 <p:ajax event="change"
 listener="#{accountSummaryController.changeOption}"
 update="accsummarycharts"></p:ajax>
 <f:selectItem itemLabel="Pie Chart" itemValue="1" />
 <f:selectItem itemLabel="Bar Chart" itemValue="2" />
 </p:selectOneMenu>
 </p:outputPanel>
</h:panelGrid>

The managed bean needs to be defined with the pie chart and bar chart models. The
model API allows the chart options such as title, legend position, showDataLabels,
fill, and sliceMargin in these models, instead of using tag attributes. The following
code snippet is used to create the pie and bar chart models:

private PieChartModel pieModelUS;
private PieChartModel pieModelUK;
private BarChartModel categoryModel;

private void createPieModel() {
 pieModelUS = new PieChartModel();
 pieModelUK = new PieChartModel();

 for(AccountSummary obj:accountsInfo){
 pieModelUS.set(obj.getAccountType(),
 new Double(obj.getBalanceUS()));
 pieModelUK.set(obj.getAccountType(),
 new Double(obj.getBalanceUK()));
 }

 pieModelUS.setTitle("USD Marketvalue");
 pieModelUS.setLegendPosition("w");
 pieModelUS.setShowDataLabels(true);

Chapter 5

[155]

 pieModelUK.setTitle("UK Marketvalue");
 pieModelUK.setLegendPosition("e");
 pieModelUK.setFill(false);
 pieModelUK.setShowDataLabels(true);
 pieModelUK.setSliceMargin(5);
}

private void createCategoryModel() {
 categoryModel = new BarChartModel();
 ChartSeries balanceUS = new ChartSeries();
 ChartSeries balanceUK = new ChartSeries();

 for(AccountSummary obj:accountsInfo){
 balanceUS.set(obj.getAccountType(),
 new Double(obj.getBalanceUS()));
 balanceUK.set(obj.getAccountType(),
 new Double(obj.getBalanceUK()));
 }
 balanceUS.setLabel("US_Balance");
 balanceUK.setLabel("UK_Balance");
 categoryModel.addSeries(balanceUS);
 categoryModel.addSeries(balanceUK);
 categoryModel.setTitle("Marketvalue");
 categoryModel.setLegendPosition("w");
 categoryModel.setShowPointLabels(true);
}

Now the pie charts of the account summary screen are rendered as follows:

Investor Information Analysis and Reporting

[156]

After selecting the bar chart option from the drop-down menu on the right-hand
side, we get a bar chart as shown in the following screenshot:

All the charts are provided with an additional option named the extender client-side
function to export the chart with low-level jQplot options. The following line chart
example uses the extender option to increase the shadow depth:

<p:chart type="line" model="#{bean.model}" extender="ext" />

function ext() {
//this refers to chart widget instance
//this.cfg refers to chart options
this.cfg.seriesDefaults = {
shadowDepth: 5
};
}

Please take a look at the following link to get all the jQplot options: http://www.
jqplot.com/docs/files/jqPlotOptions-txt.html.

The investor can also export the canvas-based charts in the image format using the
client-side API. The exportAsImage() function is used on a chart widget, which will
return a base64 png encoded string. The encoded string is converted to a decoded
string using the Apache commons codec library. Finally, the decoded byte stream is
created as a PNG file.

The fileDownload component of PrimeFaces is used to download the PNG images
created in the application context.

http://www.jqplot.com/docs/files/jqPlotOptions-txt.html
http://www.jqplot.com/docs/files/jqPlotOptions-txt.html

Chapter 5

[157]

The account summary view should be defined with three command buttons
(corresponding to each chart) to invoke the client-side script using their on-click client-
side JS callbacks. The fileDownload components are defined as the children of the
three command buttons to download the chart images. Remember that we also need
to define the hidden input fields to store the encoded Base64 codes derived from the
client-side script. The following code represents the various charts export section:

<p:outputPanel rendered="#{accountSummaryController.pieChartFlag}">
 <p:commandButton value="ExportUSreport " icon="ui-icon-extlink"
 ajax="false" onclick="exportPieChart()"
 actionListener="#{accountSummaryController.piechartUSBase64Str}">
 <p:fileDownload value="#{accountSummaryController.file1}" />
 </p:commandButton>
 <p:commandButton value="ExportUKreport " icon="ui-icon-extlink"
 ajax="false" onclick="exportPieChart()"
 actionListener="#{accountSummaryController.piechartUKBase64Str}">
 <p:fileDownload value="#{accountSummaryController.file2}" />
 </p:commandButton>
</p:outputPanel>
<p:outputPanel rendered="#{!accountSummaryController.pieChartFlag}">
 <p:commandButton value="ExportBarChart" icon="ui-icon-extlink"
 ajax="false" onclick="exportBarChart()"
 actionListener="#{accountSummaryController.barchartBase64Str}">
 <p:fileDownload value="#{accountSummaryController.file3}" />
 </p:commandButton>
</p:outputPanel>
// InputHidden fields to store the Base64 encoded strings
<h:inputHidden id="pie1" value="#{accountSummaryController.
base64Str1}" />
<h:inputHidden id="pie2" value="#{accountSummaryController.
base64Str2}" />
<h:inputHidden id="bar" value="#{accountSummaryController.base64Str3}"
/>

The client-side script returns the Base64 encoded strings and stores them in the
hidden input fields to create images as follows:

<script>
 function exportPieChart() {
 // exportAsImage() will return a base64 png encoded string
 var img1 = PF('$pieUS').exportAsImage();
 var img2 = PF('$pieUK').exportAsImage();
 document.getElementById('accountform:pie1').value = img1.src;
 document.getElementById('accountform:pie2').value = img2.src;
 }

Investor Information Analysis and Reporting

[158]

 function exportBarChart() {
 // exportAsImage() will return a base64 png encoded string
 var img1 = PF('$barChart').exportAsImage();
 document.getElementById('accountform:bar').value = img1.src;
 }
</script>

In the actionListener methods of the managed bean, we will define inputStreams,
referring to the empty image files that are located in the project filesystem. After this,
the encoded strings from the client-side are converted to decoded byte strings. Finally,
the decoded byte strings are rendered as PNG files in the managed bean, as follows:

public void piechartUSBase64Str(){
 InputStream stream1 = servletContext.getResourceAsStream
 ("/images/pie1.png");
 file1 = new DefaultStreamedContent(stream1, "image/png",
 "US_Piechart.png");
 if(base64Str1.split(",").length > 1){
 String encoded = base64Str1.split(",")[1];
 byte[] decoded = Base64.decodeBase64(encoded);
 // Write to a .png file
 try {
 RenderedImage renderedImage =
 ImageIO.read(new ByteArrayInputStream(decoded));
 ImageIO.write(renderedImage, "png",
 new File(servletContext.getRealPath("images/pie1.png")));
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}
public void piechartUKBase64Str(){
 InputStream stream2 = servletContext.getResourceAsStream
 ("/images/pie2.png");
 file2 = new DefaultStreamedContent(stream2, "image/png",
 "Uk_Piechart.png");
 if(base64Str2.split(",").length > 1){
 String encoded = base64Str2.split(",")[1];
 byte[] decoded = Base64.decodeBase64(encoded);
 // Write to a .png file
 try {
 RenderedImage renderedImage =
 ImageIO.read(new ByteArrayInputStream(decoded));
 ImageIO.write(renderedImage, "png",
 new File(servletContext.getRealPath("images/pie2.png")));
 } catch (IOException e) {

Chapter 5

[159]

 e.printStackTrace();
 }
 }
}

public void barchartBase64Str(){
 InputStream stream2 =
 servletContext.getResourceAsStream("/images/bar.png");
 file3 = new DefaultStreamedContent(stream2,
 "image/png", "BarChart.png");
 if(base64Str3.split(",").length > 1){
 String encoded = base64Str3.split(",")[1];
 byte[] decoded = Base64.decodeBase64(encoded);
 // Write to a .png file
 try {
 RenderedImage renderedImage =
 ImageIO.read(new ByteArrayInputStream(decoded));
 ImageIO.write(renderedImage, "png",
 new File(servletContext.getRealPath("images/bar.png")));
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

In total, we have created three actionListener methods in the managed bean that
correspond to each chart in the frontend side.

Now when you click on the export charts button, the images will be downloaded
as follows:

The chart images can be exported to different file formats based on necessity.

Investor Information Analysis and Reporting

[160]

The investment summary data analysis using line charts
Each investment fund name with market values at different periods of time can
be interpreted as a line chart in the investment summary screen. The p:chart
component with type="line" can be used to create a line chart, and each line in the
chart is treated as a separate line chart series. The line chart can be created and can be
made interactive with the animation and zoom facilities.

The investment summary contains the line chart based on the fund name and
different market values as follows:

<p:chart type="line" id="linechart" widgetVar="$linechart"
 model="#{investmentSummaryController.lineModel}"
style="height:300px" />

The managed bean holds lineModel with custom options such as animation,
zooming, legend position, title, and showing point labels. Here, the market values of
the same fund are summed up as a single fund to compare it with other funds values
as follows:

private CartesianChartModel lineModel;
private void createLinearModel() {
 lineModel = new CategoryChartModel();

 for(InvestmentSummary obj:investmentsInfo){
 if((chartMap.keySet()).contains(obj.getFundname())){
 chartMap.get(obj.getFundname()).setMarketValue1
 (chartMap.get(obj.getFundname()).getMarketValue1()
 +obj.getMarketValue1()); ;
 chartMap.get(obj.getFundname()).setMarketValue2
 (chartMap.get(obj.getFundname()).getMarketValue2()
 +obj.getMarketValue2()); ;
 chartMap.get(obj.getFundname()).setMarketValue3
 (chartMap.get(obj.getFundname()).getMarketValue3()
 +obj.getMarketValue3()); ;
 chartMap.get(obj.getFundname()).setMarketValue4
 (chartMap.get(obj.getFundname()).getMarketValue4()
 +obj.getMarketValue4()); ;
 chartMap.get(obj.getFundname()).setMarketValue5
 (chartMap.get(obj.getFundname()).getMarketValue5()
 +obj.getMarketValue5()); ;
 } else {
 chartMap.put(obj.getFundname(), obj);
 }
 }
 for (String key : chartMap.keySet()) {
 InvestmentSummary obj = chartMap.get(key);
 LineChartSeries series = new LineChartSeries();

Chapter 5

[161]

 series.setLabel(obj.getFundname());

 series.set("MarketValue1", obj.getMarketValue1());
 series.set("MarketValue2", obj.getMarketValue2());
 series.set("MarketValue3", obj.getMarketValue3());
 series.set("MarketValue4", obj.getMarketValue4());
 series.set("MarketValue5", obj.getMarketValue5());

 lineModel.addSeries(series);
 }
 lineModel.setAnimate(true);
 lineModel.setZoom(true);
 lineModel.setLegendPosition("e");
 lineModel.setTitle("Linear Chart");
 lineModel.setShowPointLabels(true);
}

The line chart will be displayed under the investment summary screen as follows:

The export chart feature is also available in this investment summary, similar to the
account summary screen.

The transaction summary data analysis using donut charts
Each transaction's payment type and its total net amount can be interpreted with
the donut chart in the transaction summary screen. The p:chart component with
type="donut" can be used to create a donut chart, and the data is represented in the
form of multiple rings.

The transaction summary screen's donut chart is created based on the payment types
and their net amount values as follows:

<p:outputPanel style="margin-left:30%">
 <p:chart type="donut" id="chart"
 model="#{transactionSummaryController.donutModel}"
 style="width:400px;height:300px" widgetVar="$chart" />
</p:outputPanel>

Investor Information Analysis and Reporting

[162]

The managed bean holds donutModel with custom options such as title, legend
position, slice margin, show data labels, data format, and shadow, as follows:

private DonutChartModel donutModel;
private void createDonutModel() {
 donutModel = new DonutChartModel();
 Map<String, Number> circle1 = new LinkedHashMap<String, Number>();
 Map<String, Number> circle2 = new LinkedHashMap<String, Number>();
 Map<String, Number> circle3 = new LinkedHashMap<String, Number>();
 Map<String, Number> circle4 = new LinkedHashMap<String, Number>();
 for (TransactionSummary obj : transactionsInfo) {
 if (obj.getTransactiontype().equalsIgnoreCase("Sell")) {
 circle1.put(obj.getPaymenttype(),
 new Integer(obj.getNetamount()));
 }
 if (obj.getTransactiontype().equalsIgnoreCase("BUY")) {
 circle2.put(obj.getPaymenttype(),
 new Integer(obj.getNetamount()));
 }
 if (obj.getTransactiontype().equalsIgnoreCase("TransferIn")) {
 circle3.put(obj.getPaymenttype(),
 new Integer(obj.getNetamount()));
 }
 if (obj.getTransactiontype().equalsIgnoreCase("TransferOut")) {
 circle4.put(obj.getPaymenttype(),
 new Integer(obj.getNetamount()));
 }

 }
 donutModel.addCircle(circle1);
 donutModel.addCircle(circle2);
 donutModel.addCircle(circle3);
 donutModel.addCircle(circle4);

 donutModel.setTitle("Transaction Summary");
 donutModel.setLegendPosition("e");
 donutModel.setSliceMargin(5);
 donutModel.setShowDataLabels(true);
 donutModel.setDataFormat("percent");
 donutModel.setShadow(false);
}

Chapter 5

[163]

Now the donut chart of the transaction summary will be rendered as follows:

The export chart feature is also available in this transaction summary, similar to the
account summary screen.

Working with investor information
analysis and reporting the application
project code
If you wish to work on the sample code, all you need to do is download it from the
Git repository at https://github.com/sudheerj/primefaces-blueprints where
you can use your preferred IDE. From there, you can start playing with the code.
You can run it by using the mvn jetty:run command in the Maven console and
then navigate your browser to http://localhost:8080/web, using the investor
credentials to log in to the application.

Summary
In this chapter, you learned how to develop an investor information analysis and
reporting application. The topics covered in this chapter are how to create summary
screens, how to export big data sets with possible features, how to interpret and
analyze the summary data using charts, and how to export the charts as image files.

In the next chapter, you will learn the procedure to create an online shopping
cart application, which will also show you how the major menu variations and the
drag-and-drop components of PrimeFaces work.

https://github.com/sudheerj/primefaces-blueprints

Creating a Simple Online
Shopping Cart Application

This chapter explains the step-by-step procedure to design and develop an online
shopping cart application. The highlight of this chapter is dealing with the menu
component and the drag-and-drop component from PrimeFaces. During the
development, you will learn how to use the menu and drag-and-drop components
and their variations.

Understanding the application
Online shopping applications changed the way that it was before in shopping
trends. Online shopping or e-shopping is a form of electronic commerce that allows
consumers to directly buy goods or services from a seller's shop over the Internet
using a web browser. Today's digital era makes this process very simple, such that
most of the retail companies have their own online shopping systems to increase
their sales; for example, amazon.com, buy.com, and ebay.com are some of the
giants in market sales. You only need to look at Amazon, eBay, and buy to see how
successful online shopping can be.

Let's see how you can design and develop your own online shopping application.
Imagine that your client, a retail company, has provided you with the requirements
in order to build their online shopping application.

amazon.com
buy.com
ebay.com

Creating a Simple Online Shopping Cart Application

[166]

The application use case
Our client is an electronic products retail company that serves throughout North
Texas, aiming to establish their business online using a product showcase website
in order to increase their business nationwide. They are in need of a website to
list their products and services, which will eventually sell their products, while
monitoring their financial status through a single system called Next Generation
Ordering System (NGOS). This system has two different parts: the storefront and
the administration:

• Storefront: This is the area of the web store that is accessed publicly, or
in other words, it is a digital shop or an e-store. Based on the information
saved in the store's database, the e-store will dynamically populate the
product catalogs and categories in the appropriate pages. The store owners
are responsible for changing the store-wide products and categories via the
store's administration.

• Administration: This is the area of the web store that is accessed by
the merchant in order to manage the online shop. The number of store
management features depend on the sophistication of the shopping cart
software, but in general, a store manager is able to add and edit products
as well as control the settings for categories, discounts, shipping, and
payments. It is also possible to control the order management features. The
administration area can be of either of the following types:

 ° Web-based, such that it is accessed through a web browser
 ° Desktop-based, such that a desktop application runs on the user's

computer and then transfers changes to the storefront component

Functional requirements
The shopping cart application needs to fulfill the following criteria:

• NGOS is designed to be used by two different types of users. The first type
is an internal user who will perform the order processing as well as add and
update their products. The other type is the customer who intends to buy or
browse products online through the shopping cart system using their credit
card or any other available source for payment.

• It needs to display all the products grouped by category.
• It needs a product showcase that will be present to show the products and

their related description.
• It needs an integrated shopping cart that will allow the purchase of the

product through the system using a payment gateway.

Chapter 6

[167]

• It needs to have a dashboard to show all the activities of the online shop.
• Finally, it needs to have a platform to add, update, and delete products and

categories with restricted user access.

The architecture
You will be using the same architecture as discussed in the previous chapters. For the
sake of continuity, the architecture of this project should be as follows:

• The JSF web application
• PrimeFaces as the view component (XHTML)
• A managed bean as the controller
• Hibernate as the persistence layer
• MySQL as the database

The following diagram shows you the entire application's workflow:

The preceding flow diagram shows you how a user can purchase their desired
product online through the website. First, the user needs to select their favorite
browser, navigate to the NGOS web application, and select the category from
the available category list. Then, they need to select the desired product from the
product catalog page and click on the add to cart button (alternatively, they can also
drag-and-drop the product to the cart). Once the shopping is completed, the user
can check out by selecting a checkout option on the cart page. They would select an
available and convenient payment option before paying the correct amount. This
would conclude with a confirmation page saying that the payment was successful.

Creating a Simple Online Shopping Cart Application

[168]

The ER diagram
The following ER diagram shows the entities required in this project, such that
products can be stored and information can be organized for processing:

The entity diagram that represents the ORDERS, Discount, Product, and Category tables

The Category table is used to add various categories to categorize the available
products in a grouped fashion. The Product table holds all the information related
to the product. Finally, the ORDERS table will hold all the information related to
an order. In particular, the orderDetails field in the ORDERS table is used to store
all the information related to a particular order, such as the selected products and
payment details. The shipping address and related information are stored in the
ORDERS table itself.

The implementation
In this section, you will learn how to implement the preceding requirements in the
JSF 2 web application project using PrimeFaces.

Chapter 6

[169]

Every shopping cart application consists of the storefront and the administration
(also known as the back office). These two areas are intended to perform certain
operations in a store in order to sell products. To summarize this, a visitor can
browse through the available products, which are added through the back office.
Only an internal store user or store admin can access the back office.

The persistence layer
You will be using hibernate as the persistent layer. Here, you will see how the
persistent layer is configured and coded in this shopping cart application. The
following is the code snippet to configure hibernate:

<hibernate-configuration>
 <session-factory>
 <property name="hibernate.bytecode.use_reflection_optimizer">
false
 </property>
 <property name="hibernate.connection.driver_class">
com.mysql.jdbc.Driver
 </property>
 <property name="hibernate.connection.url">
jdbc:mysql://localhost:3306/pocketdb?createDatabaseIfNotExist=true
 </property>
 <property name="hibernate.connection.username">root</property>
 <property name="hibernate.connection.password">root</property>
 <property name="hibernate.dialect">
org.hibernate.dialect.MySQLDialect
 </property>
 <property name="hibernate.connection.autocommit">true</property>
 <property name="hibernate.show_sql">true</property>
 <property name="hibernate.format_sql">true</property>
 <property name="hibernate.hbm2ddl.auto">create-drop</property>
 <property name="hibernate.hbm2ddl.import_files">
classpath:import.sql
 </property>
 <property name="hibernate.current_session_context_class">
org.hibernate.context.internal.ThreadLocalSessionContext
</property>
 <mapping class="com.packtpub.pf.blueprint.persistence.entity.
Category"/>
<mapping class="com.packtpub.pf.blueprint.persistence.entity.
Discount"/>
 <mapping class="com.packtpub.pf.blueprint.persistence.entity.
Product"/>
 <mapping class="com.packtpub.pf.blueprint.persistence.entity.
Order"/>

Creating a Simple Online Shopping Cart Application

[170]

 </session-factory>
</hibernate-configuration>

You can also find the same code in the hibernate.cfg.xml file under
the Project_home/src/main/resources/hibernate.cfg.xml
resource directory.

The HibernateUtil.java file is used to hold the connection factory that enables on-
demand connections to the specified database. This utility reads the configuration from
the hibernate.cfg.xml file and opens the hibernate session factory. The advantage of
hibernate is that it is a container that handles connection pools, transactions, security,
and so on. Hibernate also has a lot of other advantages over ordinary JDBC, such
as writing complicated SQL queries, handling transactions, and many more. In this
chapter, you will be using annotation-driven hibernate entity mapping.

public class HibernateUtil {
 private static final SessionFactory sessionFactory
 = buildSessionFactory();
 private static SessionFactory buildSessionFactory()
 throws HibernateException {
 Configuration configuration = new Configuration()
 .configure();
 // configures settings from hibernate.cfg.xml
 StandardServiceRegistryBuilder serviceRegistryBuilder
 = new StandardServiceRegistryBuilder();
 // If you miss the below line then it will
 //complain about a missing dialect setting
 serviceRegistryBuilder.applySettings(
 configuration.getProperties());
 ServiceRegistry serviceRegistry = serviceRegistryBuilder.
 build();
 return configuration.buildSessionFactory(serviceRegistry);
 }

 public static SessionFactory getSessionFactory() {
 return sessionFactory;
 }

 public static void shutdown() {
 // Close caches and connection pools
 getSessionFactory().close();
 }
}

Chapter 6

[171]

The administration / back office module
Let's see how you can design and develop the back office module, where we will
focus on its functionalities first so that you can understand the process easily.

The presentation layer
You have two different template files: one for the storefront and the other for the
back office. The admin template is designed to support the required layout for the
back office. The back office should have a common navigation menu for all the
different pages. The body content is defined in each of the pages of the administrator
module. You will be using the layout and layoutunit components to implement
the layout design requirement. The following code snippet is used in the application
in order to design the layout:

<p:layout>
 <p:layoutUnit position="center">
 <div id="menubar">
 <ui:insert name="menubars">
 <h:form>
 <p:menubar>
 <p:menuitem value="Dashboard"
 url="/pages/storeadmin.jsf" icon="ui-icon-home"/>
 <p:submenu label="Store Management">
 <p:menuitem value="Products"
 url="/pages/products.jsf"/>
 <p:menuitem value="Category"
 url="/pages/categories.jsf"/>
 <p:menuitem value="Discount"
 url="/pages/discounts.jsf"/>
 </p:submenu>
 <p:submenu label="Order Management">
 <p:menuitem value="Process Order"/>
 </p:submenu>
 <p:menuitem value="Logout"/>
 </p:menubar>
 </h:form>
 </ui:insert>
 </div>
 <p:panel style="min-height: 200px;">
 <ui:insert name="bodyContent"/>
 </p:panel>
</p:layoutUnit>
</p:layout>

Creating a Simple Online Shopping Cart Application

[172]

The objective of the back office module is to manipulate the products' catalog and
make it available for public viewing the back office. The application will land on a
dashboard page that shows all the recent orders and their status. The administrator can
process the order by changing the appropriate order status directly in the table view.
You will be using PrimeFaces's inline edit functionality of the dataTable component.
This is where the user clicks on the appropriate order status, and the list will be
populated as a drop-down menu. In the drop-down menu, the user can select from the
available status types. The following screenshot shows you how it is designed:

When the user clicks on the order status in the data table, the field is made editable.
The following screenshot shows that the field is actually editable. You can clearly
see the drop-down menu in Order Status, so you can select an available status type.
Similarly, more information is available by clicking on the down arrow near the
Order Id field. In order to achieve this functional requirement, you will be using the
dataTable component of PrimeFaces.

Chapter 6

[173]

The menubar component
PrimeFaces provides a good feature called menubar. This component is used
to render the menu in a horizontal style navigation for your application. This
shopping cart application will contain a list of menu navigations, as depicted in
the following screenshot:

You can clearly see the administrator module with the Store Management and
Order Management options. Under Store Management, we have three different
options: Products, Categories, and Discounts. These serve as page navigators in
this application. We will make use of this menu navigation to perform tasks such
as Product Management, Category Management, and Discounts Management,
where each page will perform the CRUD operations for the appropriate selected
menu option.

Store management
Let's see how the product management page looks, and how it is implemented
using PrimeFaces's rich set of components. The following screenshot shows you the
product management page:

Creating a Simple Online Shopping Cart Application

[174]

Adding new products
Users can perform three operations here: add, edit, and delete. All of these are
available on one single screen. When you click on the Add New Product button on
the top-left hand side, a pop-up dialog appears, as seen in the following screenshot.
You will be using PrimeFaces's dialog component. In this screen, the user will have
to fill in all the necessary information for the product:

Once the user clicks on the Submit button, the information is saved in the
database which is then populated dynamically in the storefront, as shown in the
following screenshot. Similarly, the user can edit or delete the product using the
appropriate button.

Chapter 6

[175]

Similarly, when the user clicks on the edit icon, a menu pops up to show the product
information to be edited. After the user clicks on the Submit button, this information
will be updated in the database. You can delete the product by clicking on the minus
button for the product.

The category page
Similar to the product manipulation page, you have the category page, which allows
the user to perform the CRUD operations on the category table. The following
screenshot shows how the category page looks as a shopping cart application:

Creating a Simple Online Shopping Cart Application

[176]

Similarly, you will find that the discount management page uses the same design
pattern. Discounts are added; so, during the checkout, the code is validated against
the database value and gives the user an appropriate discount value. The following
screenshot shows the discount page in the edit mode:

The flow diagram
The flow diagram summarizes the interactions between the presentation layer, the
managed bean, the service layer, and the database; all of these use the hibernate
persistence mechanism.

Chapter 6

[177]

Let's see how the presentation layer interacts with the controller and the service layers:

<p:dataTable value="#{productController.categories}" var="cat"
id="cateTable">
 <p:column headerText="Category Id">

The preceding code snippet can be found in the pages/categories.xhtml file.
The productController.categories method in ProductController.
java is executed each time this page loads. There is another method called
populateCategory that creates sample categories and products in a database and
populates them as an application startup. Since this class is defined as a session
scope, this category information will always reside in the memory until the
application is destroyed or stopped.

The storefront
The storefront is responsible for showcasing all the products with help of the
template. Customers visit the site, navigate to their favorite category, and add the
product to the shopping cart. They can even drag the product and drop it in the
shopping cart.

A representation of the storefront is shown in the following screenshot:

As you can see from the preceding screenshot, the left panel shows the categories,
the right panel shows the products, and the shopping cart is at the bottom. The
leftPan component is used to render all the categories, such that when a user clicks
on a category, the center part of the screen is populated with the available products
of the appropriate category. They can then select a product and drag-and-drop it in
the cart.

Implementing the cart mechanism
You will see an explanation for each and every component of our shopping cart
application in the following sections.

Creating a Simple Online Shopping Cart Application

[178]

The drag-and-drop component
In this application, you will learn how to make a component draggable and learn
some basic features of the draggable component. The following code snippet can be
found in the welcome.jsf file, which uses the draggable tag inside the column tag.
This means that each column tag inside the dataGrid component will behave as a
draggable component, making the products draggable.

In order to implement the drag-and-drop functionality, you need to understand the
following two draggable concepts:

• Draggable components can be created. In order to do this, you will need
to specify which container is going to act as a draggable container. Any
component can be enhanced with a draggable behavior. To enable the
draggable behavior on any PrimeFaces component, you will need a
component called draggable. The following code snippet shows the way
to enable draggable behavior to a particular component. In this code, the
draggable behavior is enabled for the panel component with the pnl ID:
<p:dataGrid id="availableProducts" var="item"
 value="#{storeController.products}" columns="3">
 <p:column>
 <p:panel id="pnl" header="#{item.name}"
 style="text-align:center">
 <h:panelGrid columns="1" style="width:100%">
 #{item.price}
 </h:panelGrid>
 <p:commandButton value="Add to Cart"
 update=":centerForm:dropArea"
 action="#{storeController.addToCart(item)}"/>
 </p:panel>
 <p:draggable for="pnl" revert="true"
 handle=".ui-panel-titlebar" stack=".ui-panel"/>
 </p:column>
</p:dataGrid>

• A component can be made draggable by using p:draggable. The
component ID must match the for attribute of the p:draggable component.
If the for attribute is omitted, the parent component will be selected as a
draggable target. You can see that the draggable tag is inside the column tag
in this application.

Chapter 6

[179]

Droppable components have a special integration with the data iteration components;
such PrimeFaces components are dataTable, dataGrid, dataList, Carousel,
Galleria, Ring, and Sheet. Any component can be enhanced with a droppable
behavior. Droppable components are the targets for the draggable panel, as we
defined earlier. To enable the droppable functionality on any PrimeFaces component,
we always need a component called droppable. The component tag, p:droppable,
defines a data source option as an ID of the data iteration component that needs to be
connected to droppable. The following code shows how it is used in this application:

<p:fieldset id="selectedProducts" style="margin-top:20px">
 <p:outputPanel id="dropArea">
……
 </p:outputPanel>
</p:fieldset>
<p:droppable for="selectedProducts" tolerance="touch"
 activeStyleClass="ui-state-highlight"
 datasource="availableProducts" onDrop="handleDrop"
 <p:ajax listener="#{storeController.onProdDrop}"
 update="dropArea :centerForm:availableProducts"/>
</p:droppable>

In the preceding code snippet, we introduced a dataGrid component containing
all our listed products, using the Grouping component as availableProducts.
These availableProducts components were then made draggable in order to drop
them onto selectedProducts. The dataGrid component will act as a data source
for the droppable selectedProducts component. Inside the draggable tag, there
is a p:ajax tag that handles the target operation to be performed when the item is
dropped in the target container. In the following screenshot, you can see the first
item SmSng-Kybd is in drag state:

Creating a Simple Online Shopping Cart Application

[180]

In the preceding screenshot, note that when you drag an item, the shopping cart will
be highlighted and directs the user to drop the item inside this component. Once you
drop the product, an Ajax call is fired to update the target component as well as
add the particular item to another array called the selected array. Similarly, you can
use the Add to Cart button for the same purpose. It automatically calls the method
and updates the selected product list as well as updates the total number of products
based on the selection.

Here, you can see how the code interacts while dropping the product in the cart:

public void onProdDrop(DragDropEvent ddEvent) {
 Product p = ((Product) ddEvent.getData());
 addItemNow(p);
 }
private void addItemNow(Product p){
 cartProducts.add(p);
 productTotal += p.getPrice();
 _log.info("Product Name: "+p.getName() +" is added
Successfully, Total is: "+ productTotal);
 }

The checkout cart
Once the customer has selected products, the next step is to allow them to purchase
these from the cart. The following screenshot shows the appearance of the checkout
functionality using the PrimeFaces wizard component:

Chapter 6

[181]

The Checkout button is enabled when the products are added to the cart. The
customer can then click on the Checkout button and enter their information in the
wizard format; finally, they will land on the confirmation screen and can submit
their order. The order details will be added to the database, and the administrator
can then process the order from the opened order list. The following code is used to
implement the wizard component, which is used to collect information from the user
in a sequential format:

<h:form>
<p:wizard>
 <p:tab id="personal" title="Personal">
 // …. Personal information
 </p:tab>
 <p:tab id="address" title="Address">
// …. Address information
 </p:tab>
 <p:tab id="contact" title="Contact">
 // …. Contact information
 </p:tab>
 <p:tab id="confirm" title="Confirmation">
 // …. Confirmation Screen
 </p:tab>
</p:wizard>
</h:form>

The wizard component makes a workflow by creating multiple steps out of a single
page form. The process in the checkout page is implemented in four steps using
the wizard component, namely the user information, address information, contact
information, and finally, a summary page with a submit button. In the case of a
validation error, the current step is processed partially and the user is prompted
to correct the errors. The next step is displayed only when the current step passes
validations. The wizard flow is sequential by default, and this can be managed by
using the optional Ajax flow listeners, the outcome of which will be displayed in the
next step.

When the user clicks on the Submit button, the Checkout method is executed in the
managed bean. Then, the collected information will be added in the order table to
the database.

Creating a Simple Online Shopping Cart Application

[182]

Code walk-through
The following screenshot shows a list of the files that are used in the NGOS
application, followed by a detailed explanation:

From the file structure, you will notice that there are three controllers. Each controller
is working for a separate purpose:

• ProductController.java is used to perform operations related to the back
office process

• StoreController.java is used to handle operations related to the storefront
• UserController.java serves as a user management process, which holds

the session information of the user-related process

The preceding three controllers are session scopes.

Now, the next major part is the entity. You have three different tables, where each table
is associated and mapped to one entity. You can see that it is fully coded using the
hibernate3 annotation. The advantage is that it is easy to control, and it automatically
creates the Data Definition Language (DDL) on demand in the database.

Chapter 6

[183]

The ProductService.java class is the middle business layer, enabling the bridge
between the persistent layer and the presentation layer.

The HibernateUtil.java class is used to perform all sorts of hibernate operations
and also holds the hibernate session factory.

Working with the sample code
If you wish to work on the sample code, all you need to do is just clone it from the
Git repository at https://github.com/sudheerj/primefaces-blueprints where
you can use your preferred IDE. Please refer to Chapter 1, Creating a "Hello World"
Application, for prerequisites to run the application. Change the MySQL user ID and
password and then you can start playing with the code. You can run the code for this
chapter by using the mvn jetty:run command under the chapter06 folder in the
Maven console and then navigate to http://localhost:8080/web. You should use
admin/admin as the user credentials. You can use the following URL to work on the
back office process as well as on all kinds of administrator processes, such as adding
products, editing categories, and much more: http://localhost:8080/web/pages/
storeadmin.jsf.

Summary
In this chapter, you have learned how to develop your own shopping cart
application and the major functionality of a retail business. You also learned the
usage of the menu component, the drag-and-drop component, the dataTable inline
edit, and the wizard component provided by the PrimeFaces library.

In the next chapter, you will learn how to create your own online video portal
application used by a dance company for their customers to share their videos. From
this application, you will learn how to leverage the use of the media components
from PrimeFaces.

https://github.com/sudheerj/primefaces-blueprints

Creating an Online Video
Portal Application

In the previous chapter, you learned about an online shopping cart application,
where you learned major menu variations and the drag-and-drop components of
PrimeFaces. This chapter will walk you through the design and development process
of an online video portal application. It will also explain some of the advanced
PrimeFaces components that are used to handle media files. With this chapter, you
will get a good grip on the components of PrimeFaces, such as multimedia, maps,
and schedule components. This chapter guides you through the process of creating
an online video portal application. This application can be used in the entertainment
world, such as nightlife, special events, and dance concerts; and to book events that
occur seasonally, such as special events in the summer or winter. Customers can pick
the event that interests them and book it accordingly.

A quick overview
In this chapter, you will design and develop an application for a dance studio that
is spread across the country in different locations. This application aims to share the
users' thoughts, videos, and events globally. The customers from various locations
are virtually connected with the help of this portal. The main intention of building
this app is to market their business throughout the world in order to attract more
viewers and eventually increase their customers by establishing new locations.

Portal users will be able to share their videos and comment on other videos. The
videos will be tagged with keywords such that the users will later be able to search
throughout the database. This portal includes two sections: one section is for the
content editors, and the other is for the content viewers. The content editors are
responsible for the approval process. Any authenticated user can post their videos
and make them public; they can also edit their videos temporarily.

Creating an Online Video Portal Application

[186]

Understanding our requirements
The dance studio company provided the following requirements, which lists their
need to develop a website and make their business available worldwide. This
chapter follows the international corporate standard in order to help the reader
understand the requirement structure and its standards. The resolution field in the
following table will be filled on the go:

Functional
requirement ID

Description Resolution Status:
Accept/
Denied

FRQ-1 Design and develop a video portal for the
dance studio

Accept

FRQ-1.1 Video blogging and forum Accept

FRQ-1.1.1 Anyone can submit their videos, subject
to approval

Accept

FRQ-1.1.2 The logged-in user can comment their
suggestions

Accept

FRQ-1.1.3 Public can view all the comments Accept

FRQ-1.1.4 If a user is not logged in, the system
needs to prompt them to log in before
posting the videos

Accept

FRQ-1.1.5 The comments section should have the
name, date, and time fields along with
the comments

Accept

FRQ-1.1.6 A video can be deleted and edited by the
owner

Accept

FRQ-1.1.7 A logged-in user will have a dashboard
link, which populates all the information
related to the current user, and the user
can perform all the operations

Accept

FRQ-1.2 User profile management Accept

FRQ-1.2.1 Need the user profile registration page,
which needs to have an option to capture
the picture of the user

Accept

FRQ-1.2.2 Need to have a captcha in order to avoid
nonhuman operations

Accept

FRQ-1.3 A video scheduler or an event scheduler Accept

Chapter 7

[187]

Functional
requirement ID

Description Resolution Status:
Accept/
Denied

FRQ-1.3.1 Users can schedule their own events in
the site to be displayed publically

Accept

FRQ-1.3.2 Any user can view the events; this
scheduler should can just be viewed

Accept

FRQ-1.4 The location map Accept

FRQ-1.4.1 The location map allows the company to
show all their locations on Google Map

Accept

FRQ-1.4.2 Shows the head office's location as the
center when the user navigates to the
location page

FRQ-1.5 The video gallery Accept

FRQ-1.5.1 The video gallery to display all the
available videos for various sources, such
as YouTube, mp4 files, and wma files

Accept

The system architecture
You will be using the MySQL database server as your backend for this application.
This project is built on the JSF 2 web application. In this chapter, you will be learning
a new framework called Project Lombok, which helps you to reduce boilerplate
coding. You can get more information at www.projectlombok.org. Project Lombok
will automatically create all the getter and setter methods for you when you follow
the instructions; all you need to do is just define the @Data annotation for your Plain
Old Java Object (POJO) class. In order to make this framework work, you will have
to install the Project Lombok plugin; it supports both Eclipse and Intellij. Follow the
instructions provided at the Project Lombok website.

Implementations
Now, you will learn how to implement the given requirements using the PrimeFaces
framework. In this section, you will learn more about the design implementation.
Based on the requirements, you will have to design and develop the blocks one by
one; this will cover the complete life cycle of the design and implementation phase.

www.projectlombok.org

Creating an Online Video Portal Application

[188]

The ER diagram
In this section, you will learn how to design the required database tables and their
relationships. In order to design the ER diagram, you can use MySQL Workbench;
you will have the option to perform forward engineering and reverse engineering.
You can get more information on MySQL Workbench at http://www.mysql.com/
products/workbench/. The following diagram shows the design diagram of the
database tables and their relationships:

The preceding diagram depicts the database design, which describes the relational
schema between all the tables associated with this application. You can see that the
Movie table holds all the information related to the movie, the Comment table holds
all the comments that the users commented on the movies, and the Tags table holds
all the tags that are associated with the movie. These tags are provided when the
user adds a movie; this tag has a many-to-many relationship and that is the reason of
the MOVIE_TAGS table's existence. As you know, the User table will hold the user
profiles with the login credentials. Both the Location table and the MovieSchedule
table are used to store the location information and event information, respectively.
In the following sections, you will learn more about the usage of these tables.

http://www.mysql.com/products/workbench/
http://www.mysql.com/products/workbench/

Chapter 7

[189]

Working on the application persistence layer
Like previous chapters, you will be using hibernate as the persistence layer. In
this application, you will be using only one service class as a Data Access Object
(DAO), which will define all the required methods to pull and push data from and
to the database.

The following code snippet is used to pull the list of available locations from the
database. Each of the methods in this class will be encapsulated with a hibernate
transaction in order to avoid data losses:

public List<Location> getAllLocations(){
 org.hibernate.Transaction tx = getSession().
beginTransaction();
 List list = getSession().createCriteria(Location.class).
list();
 tx.commit();
 getSession().close();
 _log.info("Listed Successfully....");
 return list;
 }

The first line of this method starts the transaction-aware hibernate session. The
hibernate util class holds the current session by using the connection parameters
provided in the hibernate configuration file. Once the transaction is enabled, you
can perform all the DB operations. Hibernate provides a lot of ready-made utilities
that help you to perform the Data Manipulation Language (DML) operations in an
efficient way. Once the DML operations are done, it is better to close the connection
and the session in order to release the allocated resources.

Possible errors in hibernate DML
When you perform the DML operations, you sometimes see an error that is related
to the hibernate session. One of the reasons for this error is because the hibernate
session is always closed after the execution of each DML, and when you perform
the lazy fetch, the operation will fail as the current session is already closed. To
overcome this situation, you should always query the lazy load separately with a
new transaction. That is, you can query the relational associates separately when you
require it.

Creating an Online Video Portal Application

[190]

Working on the presentation layer
Now it is time to explain the UI functionality of the dance company's web
application. As mentioned previously, this application is intended to demonstrate
some of the advanced components of PrimeFaces, such as the media, schedule, and
map, and also covers some additional supporting components.

The home page
On the home page, you will see all the videos in the order of their published dates.
When the user selects any one of the videos, it will take him or her to the showroom
where it uses the appropriate video player and will give them the option to play the
video. The following screenshot shows the home page of this application:

The following screenshot shows you the showroom page with a video playing
option. This screen will have a back button that will allow you to choose another
video. And, if the user is logged in, then the commenting option is enabled;
otherwise, the commenting option will be disabled. The comment section will
list all the comments associated with that particular video.

Chapter 7

[191]

You will use the PrimeFaces toolbar component for the menu navigation. The
buttons present in this toolbar appear conditionally. That is, since the public user
does not have the permission to perform certain operations, those are enabled only
when the user is logged in.

The home page also has a good feature called ring. This PrimeFaces ring component
will display the movie titles and their images in a ring fashion, and the user can click
and enjoy the animation. The following screenshot shows the ring component at the
bottom of the page:

When the user selects any of the images in the ring, the image will slide to the center
of the ring and get highlighted. This feature is there to impart a rich UI experience.

Creating an Online Video Portal Application

[192]

Code walk-through – the home page
In the following code snippet, you can see how to get the list of movies and render
them with the help of CSS in the presentation layer. You will be iterating the list
using the ui:repeat tab from Facelets, as follows:

<h:form id="centerForm">
<p:panelGrid columns="1" style="width: 100%;">
<p:panel style="text-align: center; border: none;">
<ui:repeat value="#{movieController.movies}" var="movs">
<p:commandLink style="a:link { text-decoration:none; }"
 actionListener="#{movieControll
er.setSelectedMovie(movs)}"
 action="showcase.jsf?faces-
redirect=true">

<div id="col1" class="twoCols">
<h2>#{movs.title}</h2>
<hr/>
<h2>Alphabetic List</h2>

<p style="text-align: center;">
<p:graphicImage library="images" name="#{movs.image}"
 style="width: 90%;"/>
Euler angels
</p>
<hr/>
<h2>Description</h2>

<div id="tip">
<p>#{movs.description}</p>
</div>
</div>
</p:commandLink>
</ui:repeat>
</p:panel>
<p:panel style=" text-align: center; border: none;">
<p:ring id="custom" value="#{movieController.movies}"
 var="favs" styleClass="li
{height:200px;}">
<p:graphicImage library="images" name="#{favs.image}"
 width="130px"/>
</p:ring>
</p:panel>
</p:panelGrid>
</h:form>

Chapter 7

[193]

The preceding code snippet is used in the welcome.xhtml file. The main aim of this
is to render all the available videos in the order in which they were created. You
can also see that the ring component will show only the videos that are marked
as favorites. Here, you have the panelGrid component that holds two panel
components. One panel has the repeat tag that iterates the video list generated from
the DB and renders them as boxes. These boxes are aligned, and CSS is added to
improve the look and feel. The other panel holds the ring component.

Enabling registration and login
Every portal usually requires user registration; similarly, this application has a user
registration page. When the user clicks on the Login button at the top-right corner of
the toolbar, a new screen appears where the user can provide their credentials and
log in to the system. New users can click on the Register button and register for a
new user profile.

Users are requested to perform the desired operation by selecting the appropriate
button. The following screenshot shows the available Login option:

Creating an Online Video Portal Application

[194]

The user can enter their credentials using the keyboard, or they also have the option
to use the onscreen keyboard that is provided by PrimeFaces. The Register button
takes the user to the user registration page, where the user needs to provide all the
information as expected. The user can also capture their photos using the online
photo capture option, as shown in the following screenshot:

The User Registration page contains basic information. The user needs to provide
full information, and using the photoCam component, the user can take a picture
directly using their web camera. Also, note that the captcha component is used
in this registration. Captcha is used in many public websites in order to avoid
nonhuman entries.

Each and every day, automated machines crawl through websites in
order to make search engines work better. These crawlers often visit
public webpages and read each and every possibility, and if applicable,
they also submit pages. Google, Yahoo, and many other search engines
perform these kind of tasks every now and then. If we don't use the
captcha mechanism, our database will be full of junk information.

Chapter 7

[195]

Code walk-through – the user registration page
On the user registration page, the photoCam component and the captcha component
can be highlighted as follows:

<p:dialog id="picFrame" header="Take Picture" widgetVar="picFrame"
closeOnEscape="true" appendTo="@(body)" draggable="false"
position="center" resizable="false">
<p:photoCam widgetVar="pc" listener="#{userController.oncapture}"
update="ppict"/>
<p:commandButton type="button" value="Capture" onclick="PF('pc').
capture()" oncomplete="PF('pc').capture()" onsuccess="PF('picFrame').
close();"/>
</p:dialog>

The preceding code snippet is used to show or hide the photoCam component. Note
that the photoCam component is added inside the dialog component; when the user
clicks on the TakePicture button, the dialog will be displayed and the photoCam
component will be enabled. The photoCam component will always prompt the user
to allow or deny access to the camera. Due to security and privacy reasons, HTML5
added this functionality such that the user can either allow or deny access. The
following screenshot shows how the privacy prompt looks:

Creating an Online Video Portal Application

[196]

The following code has the logic to store the captured image in the filesystem:

public void oncapture(CaptureEvent captureEvent) {
 String photo = getRandomImageName();
 this.user.setAvatar(photo);
 byte[] data = captureEvent.getData();
 ServletContext servletContext = (ServletContext) FacesContext.
getCurrentInstance().getExternalContext().getContext();
 String newFileName = servletContext.getRealPath("") + File.
separator + "photocam" + File.separator + photo + ".png";

 FileImageOutputStream imageOutput;
 try {
 imageOutput = new FileImageOutputStream(new
File(newFileName));
 imageOutput.write(data, 0, data.length);
 imageOutput.close();
 } catch (Exception e) {
 throw new FacesException("Error in writing captured
image.");
 }
 }

You will be setting the filepath in the user object, and the update attribute will
update the graphic image component and display the captured image. The following
screenshot shows you how the screen will look after an image is captured:

Chapter 7

[197]

The photoCam component requires the Flash player.

Once the user registers with the website, he or she can use the same credentials to log
in to the system and perform the operations allowed to the logged-in users.

The user dashboard page
The user dashboard is the place where the user will land when they log in to the
system. Here, the user can add, edit, or delete videos. All the available videos are
displayed in the user dashboard using PrimeFaces' dataTable component. This
media component can have file formats such as YouTube URL, wma files, mp4 files,
and many more. In the following example, you will get information on how to use
the YouTube URL:

Creating an Online Video Portal Application

[198]

The preceding screenshot shows the user dashboard view. Here, we have listed
all the available videos in a data table. The user can click on the Add New button
at the top and at the bottom to add new videos. There is also an edit icon and a
delete icon to perform the respective operations. When the user clicks on the edit
icon, the dialog component immediately pops up, which is populated with all the
information related to the appropriate video. The user can edit the information and
click on the Submit button, as shown in the following screenshot:

The preceding screenshot shows you the edit video option. PrimeFaces has provided
two interesting components in this edit screen. One of these is the rating component;
that is, the user can input their rating by selecting the exact number of stars from the
display, which is automatically converted to the appropriate integer value that can
be stored in the database. The second is the drop-down component; the highlight
of this component is that you can directly use the enum data type in the drop-down
list without converting the Java enum object to a list of strings. The following snippet
shows the usage of both the components:

<p:rating value="#{movieController.movie.rating}"/>
<h:selectOneMenu value="#{movieController.movie.movieType}" >
<f:selectItems value="#{movieController.getMovieTypes()}" />
</h:selectOneMenu>

Chapter 7

[199]

The preceding snippet has both the rating component and the drop-down
component. The rating component is directly bound to an integer Java data type,
and the selectItems tag is directly bound to the movie type enum object.

Scheduling the application components
In this section, you will learn how to use the PrimeFaces scheduler component. In the
dance company's video portal application, the business requirement says that each
registered user can share their events and schedules with all the other virtual users;
the schedule component is one of the useful components provided by PrimeFaces.
The schedule component provides an Outlook Calendar, iCal, like the JSF component
to manage events. The following screenshot shows you how to use the schedule
component in this application:

Logged-in users are allowed to edit any events from the display by double-clicking
on the event directly, or they can add new events by double-clicking on the desired
date as well. When the user double-clicks on the desired date, a pop up appears, and
the user is requested to enter the event information. The pop-up panel will have the
following information: title, start date, and end date. If the event is an all-day event,
the user can also select the All Day option.

Creating an Online Video Portal Application

[200]

Code walk-through – the schedule page
The scheduler component in this application is implemented using the following
code snippet:

<p:schedule id="schedule" value="#{scheduleController.eventModel}"
 widgetVar="myschedule"
 rendered="#{userController.loggedIn}">

<p:ajax event="dateSelect" listener="#{scheduleController.
onDateSelect}" update="eventDetails"
 oncomplete="PF('eventDialog').show()"/>
<p:ajax event="eventSelect" listener="#{scheduleController.
onEventSelect}" update="eventDetails"
 oncomplete="PF('eventDialog').show()"/>
<p:ajax event="eventMove" listener="#{scheduleController.onEventMove}"
update="messages"/>
<p:ajax event="eventResize" listener="#{scheduleController.
onEventResize}" update="messages"/>
</p:schedule>
<p:schedule id="readSchedule" value="#{scheduleController.
eventModel}"rendered="#{ not userController.loggedIn}"/>

In the preceding code snippet, two different scheduler components were used to
display the calendar. Based on the user permissions, one of them is displayed and is
for authenticated users who can add or edit events, and the other one is for public
users with only the view option.

The scheduler component supports the following events: dateSelect, eventSelect,
eventMove, viewChange, and eventResize. As the names state, these events are
triggered when the user performs such operations on the component. These events
are bound to the controller method to process the specific tasks. The following code
snippet will show you how the Ajax events are bound with the component to listen:

<p:ajax event="dateSelect" listener="#{scheduleController.
onDateSelect}" update="eventDetails"
 oncomplete="PF('eventDialog').show()"/>
 <p:ajax event="eventSelect"
listener="#{scheduleController.onEventSelect}" update="eventDetails"
 oncomplete="PF('eventDialog').show()"/>
 <p:ajax event="eventMove"
listener="#{scheduleController.onEventMove}" update="messages"/>
 <p:ajax event="eventResize"
listener="#{scheduleController.onEventResize}" update="messages"/>

Chapter 7

[201]

The scheduler component needs to be backed by an org.PrimeFaces.model.
ScheduleModel instance; a schedule model consists of the org.PrimeFaces.model.
ScheduleEvent instance. PrimeFaces provided DefaultScheduleEvent, which is
the default implementation of the ScheduleEvent interface. The properties required
to create a new event are the title, start date, and end date. Other properties are
optional, such as allDay and the default values. The following code snippet will
show you how to use defaultScheduleEvent:

public void createSamples() {
 eventModel = new DefaultScheduleModel();
 MovieSchedule ms = new MovieSchedule("New Movie at legassy",
today1Pm(), today6Pm(), false, user.getUsername());
 ds.addOrUpdateEntity(ms);
 ms = new MovieSchedule("Champions League Match",
previousDay8Pm(), previousDay11Pm(), false, user.getUsername());
 ds.addOrUpdateEntity(ms);
 ms = new MovieSchedule("Birthday Party", today1Pm(),
today6Pm(), false, user.getUsername());
 ds.addOrUpdateEntity(ms);
 ms = new MovieSchedule("Breakfast at Tiffanys", nextDay9Am(),
nextDay11Am(), false, user.getUsername());
 ds.addOrUpdateEntity(ms);
 ms = new MovieSchedule("Plant the new garden stuff",
theDayAfter3Pm(), fourDaysLater3pm(), false, user.getUsername());
 ds.addOrUpdateEntity(ms);
 List<MovieSchedule> msL = ds.getAllEvents();
 for(MovieSchedule e : msL){
 eventModel.addEvent(e.toScheduleEvent());
 }
 }

Take a look at the preceding code; you will be creating a MovieSchedule entity
object and adding it to the database. At the end of the method, you will populate the
list from the database and update eventModel; thus, you can utilize the API from
PrimeFaces to populate the scheduler components.

Creating an Online Video Portal Application

[202]

Implementing the location page
As mentioned at the beginning of this chapter, the client is a dance studio company
that is spread across the country in various locations. In this application, the location
page will show the users how to easily explore the company's various locations
by picking the Google map view. The user can also calculate the nearest location
from the map. PrimeFaces provides a gmap component that helps to achieve this
requirement. The gmap component is a map component integrated with the Google
Maps API v3. The following screenshot shows the location page in which all the
company locations are plotted in Google Maps:

When the user clicks on the location marker, the pop up shows the information
related to that location.

Integration
For integration, the first thing to do is to place the required JavaScript from the
Google Maps API that the gmap component belongs to, usually v1.3. The ideal
location to include the JavaScript API is at the head section of your page. This is a
third-party JavaScript library provided by Google Inc.

Chapter 7

[203]

The following snippet will do the rest of the job for your application in order to
implement the gmap component:

<script src="http://maps.google.com/maps/api/js?sensor=true|false"
 type="text/javascript"></script>

As the Google Maps API states, the mandatory sensor parameter is used to specify
whether your application requires a sensor such as a GPS locator. Based on this
parameter, your application uses the current location and enables or disables
the GPS. If the GPS is on, the user will be asked whether they want to allow this
application to use Geo Location or not. Four options are required to place a gmap
component on a page; these are center, zoom, type, and style:

• Center: The center of the map is represented in the latitude and longitude
format

• Zoom: This represents the zoom level of the map
• Type: This shows the type of the map—valid values are hybrid, satellite,

roadmap, and terrain
• Style: This represents the dimensions of the map

In order to make the gmap marker center to the current location, add the following
snippet at the head of the page and also make sure to specify sensor = true in the
JavaScript API parameter:

<script type="text/javascript">
$(function () {
navigator.geolocation.getCurrentPosition(
function (position) {
var map = PF('gmap').getMap(),
latlng = new google.maps.LatLng(
position.coords.latitude,
position.coords.longitude);
map.setCenter(latlng);
var marker = new google.maps.Marker({
position: latlng});
marker.setMap(map);
},
function (error) {alert(error.message); });
);
});
</script>

Creating an Online Video Portal Application

[204]

When you specify sensor = true, the application enables the GPS and the API
will provide the current location coordinates. The preceding method is executed
when the page is loaded and then sets the current location coordinates to the gmap
component. Thus, the gmap component will be at the center of the current location.
You can also manually specify the current coordinates to set them to a specific
location. If the preceding method already exists, it will overwrite the current position
to the current Geo Location at runtime.

The MapModel class and the Marker class are very important classes in gmap in order
to set the proper value to the gmap component.

MapModel
The gmap component is backed by an org.PrimeFaces.model.map.MapModel
instance. PrimeFaces provides org.PrimeFaces.model.map.DefaultMapModel as
the default implementation. The API documents of all gmap related model classes
are available at the end of the gmap section and also in Javadocs of PrimeFaces. This
MapModel object will hold all the location coordinates. Here, you can see that the
LocationMap property is an instance of ModelMap, and we will set all the available
location information that we get from the database:

private void populateLocationCoordinates(){
 List<Location> locations = ds.getAllLocations();
 if(locations == null) {
 return;
 }
 centerMap = "";
 locationMap = new DefaultMapModel();
 location = null;

 log.info("Too Many Map Locations: "+locations.size());

 for(Location loc: locations){
 LatLng ll = new LatLng(loc.getLatitude(), loc.
getLongitude());
 locationMap.addOverlay(new Marker(ll, loc.getStreet1(),
loc.getFranchiseeNo()));
 }
 }

Take a look at the preceding snippet; this method is responsible for populating all
the location information and setting it to the locationMap property. We get all the
location information from the DB using the ds.getAllLocations() method, iterate
it, and populate the ModelMap object, which is referenced in the gmap component of
the XHTML page.

Chapter 7

[205]

Markers
A marker is represented by org.PrimeFaces.model.map.Marker. This marker will
hold the location coordinates and the extra information, such as the address. The
Marker class has a data property, which is of the Java.lang.Object type. You can
carry any information with this data property; for example, you can hold an image
URL, a full HTML snippet, and so on.

LatLng
You will be using the LatLng object from the PrimeFaces API to hold the latitude
and longitude, and this object is set in the Marker object. You can refer to the same
information from the GUI using the following code snippet:

<h:form styleClass="form-inline" prependId="false">
<p:gmap center="32.658669, -97.134435" zoom="13" type="ROADMAP"
id="gmap"
 mapTypeControl="false" navigationControl="false"
 widgetVar="gmap" model="#{locationController.
locationMap}"
 style="width:100%; height:600px;"
streetView="true">
<p:ajax event="overlaySelect" listener="#{locationController.
onMarkerSelect}"/>

<p:gmapInfoWindow>
<p:outputPanel id="col1" class="twoCols" style="text-align:center;disp
lay:block;margin:auto:">
<p>#{locationController.marker.title}</p>
<hr/>
<p>#{locationController.marker.data.toString()}</p>
<hr/>
<h4>#{locationController.marker.latlng.lat}, #{locationController.
marker.latlng.lng}</h4>
</p:outputPanel>
</p:gmapInfoWindow>
</p:gmap>
</h:form>

Take a look at the code implementation in the GUI; you will have to provide all four
parameters to initialize the gmap component. The marker has a title field that holds
the title information for the given location.

Creating an Online Video Portal Application

[206]

In the following screenshot, you can see the table that is used to store the location's
information:

Working with the sample code
If you wish to work on the sample code, all you need to do is just clone it from the
GitHub repository at https://github.com/sudheerj/PrimeFaces-blueprints,
where you can use your preferred IDE. From there, change the MySQL user ID and
password, and then you can start playing with the code. You can run the Chapter07
code by using the mvn jetty:run command under the chapter07 folder in the
Maven console and then navigate to http://localhost:8080/web. You can use
admin/admin as the user credentials, or you can create your own profile and use the
user ID and password as credentials. For your convenience, here you can see some
sample videos that will be created each time you run the application.

Summary
In this chapter, you learned how to develop an online video portal application. This
application can be used by many different small-scale businesses, such as a dance
studio, music company, and many more. As intended, you learned the advanced
PrimeFaces components such as the media component, the gmap component, the
scheduler component, the ring component, and some of the supporting components.

In the next chapter, you will learn another real-time business application that is used
for an online printing station. It enables you to have a high-quality printer, which
you can use from anywhere in the world at an affordable price, without owning the
costly printer hardware.

https://github.com/sudheerj/PrimeFaces-blueprints

Creating an Online Printing
Station Application

In the previous chapter, you learned about the video portal application. You are
now familiar with media tags and you also know how to handle media files. It is
wonderful how PrimeFaces includes these tags to support the media files.

In this chapter, you will learn how to develop a real-time business application called
an online printing station application. The highlight of this chapter is that you will
be learning how easy it is to upload and download a file using PrimeFaces's variety
components. You will also learn some of the new tags that have just been launched
in PrimeFaces v5.0.

Understanding the need of this
application
Everyone knows how today's world has changed with regards to technology.
Leveraging the advanced use of modern technology is a good thing. Assume that
you will be needing a printer at your place for all your printing needs, but for more
advanced quality and features, you may end up paying more to buy a printer for
your advanced printing usage. This usage might be for a day or for a week; just for
a day or a week of usage, you will buy a costly printer, print as per your needs, and
then keep it idle for years. Thus, you will be loosing your hard-earned money.

Creating an Online Printing Station Application

[208]

This client printing company is planning to launch a printing station in each town.
The main aim of this printing station is to establish a chain of stores that maintain
a wide variety of printers. These printers can be used for the public on demand, as
a paid service for their printing needs. You will design and develop an application,
which provides a platform to request and track the user printing needs. The printing
company will use your application to connect, track, and schedule users' printing jobs.
This application also enables you to share a single printer with other users on demand.

This application will allow its users to select a desired location and then help them
to fine-tune the printing options before the actual printing is done. The print order
will then be processed immediately and the user can collect the printed copies at
the selected drive-through counter. Using this application, one can also send prints
remotely to any person any where, and the person from another location can collect
them when they're ready at the drive-through counter.

Requirement analysis
The printing company requires an online web application that can manage the
entire process of tracking, ordering, and processing the user print jobs in a secure
and faster way. This application will be capable of handling users' files without
giving permissions to read or write the file to some anonymous users. The following
specification requirements help you to understand the overall business process of the
online printing station.

In this phase, many scheduled meetings will be held in order to draft the
requirements. The meeting participants are the people involved in the business, such
as team members including the business analyst, system designer, and team lead.

Functional requirements
The following are the functional requirements of this application:

• You need an online system to track and process the overall activity of the
printing station.

• You need to have a platform where the user can see all the available services
and their benefits.

• You need a fully-integrated system to handle more than 1,000 print jobs per
minute from various locations.

Chapter 8

[209]

• You need an option for the user to select their own location for their
convenience to collect the finished jobs. You also need the administrator
rights to add a new location.

• You need one user to act as an administrator who needs the permission to
add the location and to display all the open jobs and their progress.

The architecture
In this chapter, you will be working on the same architecture that you've seen in
the previous chapters. On top of that, you will also be using many advanced
PrimeFaces components. Again, here you will be using MySQL as the database.
As mentioned earlier, you will be using Project Lombok to reduce the effort to
create boilerplate codes.

Fulfilling our application requirements
using PrimeFaces
Now, let's see how to implement the requirements using the PrimeFaces
components. In this section, you will learn everything about how to use the
PrimeFaces components for the specified requirements. You will also learn about
each component and its implementation one by one with a detailed description.

The ER diagram
First, you will have to understand the database design. Every project will start
with the DB design. In order to design the DB, there are plenty of tools available.
Designing a DB is not an easy task, since it involves all the business requirements
and RDBMS concepts. The major parts in designing a DB are normalization,
de-normalization, identity key, surrogate key, and so on. For more information,
you can search on Google for RDBMS concepts.

Creating an Online Printing Station Application

[210]

The following diagram depicts the database design that is used in this project:

The preceding diagram depicts the database design. You will be using three main
tables as described here. The Customer table holds all the customer details and
their login credentials. In the Location table, you will see all the available locations;
information about these locations will be displayed in the location map for easy
navigation. The next table is the PrintJobs table; this is the real transaction table that
holds the order details of the print jobs. Here is the use case of the entire project:
customers register their basic information, chose the desired location, and then they
place the print job order; while ordering, they upload the files to be printed and
specify their comments.

Implementing our landing page
The landing page of this printing press application has company advertisements.
When you run the sample application and navigate to the application root, you
will land on the index.xhtml page, which showcases the company's products and
attractive ads. The user can navigate to various options related to print jobs.

Chapter 8

[211]

The following screenshot shows the landing page of this application:

In this page, you will use the chart component, the content flow component, and
the scroll panel component. This page is designed to attract the end user to buy their
(the company's) products, listed service, and also educate the user on the different
available services.

The TagCloud component
A tag cloud (word cloud or weighted list in visual design) is a visual representation
of text data, typically used to depict keyword metadata (tags) on websites, or to
visualize free form text. Tags are usually single words, and the importance of each
tag is shown with font size or color. This format is useful to quickly perceive the
most prominent terms and locate a term alphabetically to determine its relative
prominence. When used as website navigation aids, the terms are hyperlinked
to items associated with the tag. In those days, generating a tag cloud was a big
headache for developers. The tag cloud component in PrimeFaces is used to show
text visualization in different sizes to attract users. This will showcase the different
tag text related to the content of the website.

Creating an Online Printing Station Application

[212]

In order to display TagCloud in the GUI page, you need to collect all the tags in
the TagCloudModel object. The TagCloudModel object has a method to add tags.
You will have to add each tag using the addTag method. PrimeFaces provides a
DefaultTagCloudItem object implementation, which accepts three parameters: text,
URL, and the strength. The text field is the display text that is used to render. The
URL parameter enables the text as a hyperlink, and the strength parameter is an
integer that defines the size of the keyword. You can specify any number, and
based on the specified number, it will assign the font size.

Code walk-through
The following snippet can be found in the GenericController. This snippet is
responsible for populating all the tag clouds:

Private TagCloudModel model = new DefaultTagCloudModel();
model.addTag(new DefaultTagCloudItem("Book Printing", 1));
 model.addTag(new DefaultTagCloudItem("Print Now",
 "location.jsf?faces-redirect=true", 3));
 model.addTag(new DefaultTagCloudItem("Ink Jet ", 2));
 model.addTag(new DefaultTagCloudItem("Dot Matrix",
 "location.jsf?faces-redirect=true", 5));
 model.addTag(new DefaultTagCloudItem("NextGen Printing",
 4));
 model.addTag(new DefaultTagCloudItem("Printing Orders",
 "location.jsf?faces-redirect=true", 2));
 model.addTag(new DefaultTagCloudItem("Laser Print", 5));
 model.addTag(new DefaultTagCloudItem("Flex Printing",
 3));
 model.addTag(new DefaultTagCloudItem("Vinyl Printing",
 "location.jsf?faces-redirect=true", 4));
 model.addTag(new DefaultTagCloudItem("Request Print",
 "location.jsf?faces-redirect=true", 1));

In the preceding snippet, the TagCloudModel object is initialized with
DefaultTagCloudModel, and in the consecutive lines, you will be adding the
DefaultTagCloudItme object to the model object. Finally, you will just bind the
model object to the tag cloud component in the GUI page, as seen in the following
code snippet:

<p:tagCloud model="#{genericController.model}">
<p:ajax event="select" update="msg" listener="#{genericController.
onSelect}"/>
</p:tagCloud>

Chapter 8

[213]

You can find the preceding GUI code snippet in the index.xhtml file. You are using
PrimeFaces's tagCloud component, and the model attribute is bound to the generic
controller model object. You also have an interaction option, such as when and what
the user performs on the tagCloud component. For example, if the user clicks on
any of the tagCloud text, the listener method is immediately triggered, which
performs the specified operation. This might be useful when you want to track the
user operations.

The scrollPanel component
PrimeFaces provides more interesting components; one of the components that you
will use in this project is the scrollPanel component. This component is used to
limit the usage of the available page space. The scrollPanel component is used to
display the overflowed content with theme-aware scroll bars instead of the native
browsers scroll bars.

The scrollPanel component is used as a container component. That is, you can
use the scrollPanel component to hold other components. This acts as a panel
component in which you need to set the width and height. By default, scrollPanel
displays theme-aware scrollbars, and setting the mode option to the native browser
displays scroll bars. This setting allows the scrollPanel component to display
the scroll bar the same as the browser window. In this project, the user had a
requirement that there had to be one landing page that should not have any window
scroll, and simultaneously, the terms and conditions had to be displayed to be
scrolled separately inside the same page.

More usage for this component can found at http://www.primefaces.org/
showcase/ui/panel/scrollPanel.xhtml.

Code walk-through
The section overviews how to implement the scrollPanel component, and you will
also get an idea on how PrimeFaces supports the designing of a web page in a tight
space crunch:

<p:scrollPanel mode="native" style="width:250px;height:200px">
. . . .
</p:scrollPanel>

The preceding snippet can be found in the index.xhtml file as mentioned above.
The content inside these tags, which is beyond the size of the component, is viewable
only on user scroll. This aims to utilize limited space to show more content.

http://www.primefaces.org/showcase/ui/panel/scrollPanel.xhtml
http://www.primefaces.org/showcase/ui/panel/scrollPanel.xhtml

Creating an Online Printing Station Application

[214]

The chart component
PrimeFaces provides the chart component that helps you to render the numeric
value in a graphical representation. In this sample project, our user's requirement is
to display how many users are visiting the site as a meter gauge, which allows the
visitors to understand how many visitors are visiting the page every day. In order
to achieve this, you will be using the chart component from PrimeFaces. The chart
component allows you to render different types of charts such as the bar chart, the line
chart, and so on. Similarly, the meter gauge chart component can be used to display
the data in a meter gauge format. The following URL has more use cases for this
component: http://www.primefaces.org/showcase/ui/chart/metergauge.xhtml.
The following screenshot shows how the visitor gauge is displayed on the page:

Let's see how to implement this in our page.

Code walk-through
In this section, you will get an idea about how the meter gauge chart is coded in our
application. You can find the following code snippet in index.xhtml:

<p:chart type="metergauge"
model="#{genericController.meterGaugeModel}"style="width:250;height:2
50px"/>

In the chart component, you will specify the type attribute as metergauge, which
enables the chart to be displayed as a meter gauge. The model attribute is bound
to a meter gauge model from genericController.

http://www.primefaces.org/showcase/ui/chart/metergauge.xhtml

Chapter 8

[215]

The following code snippet is used to populate the metergauge chart from the
backing bean:

Private MeterGaugeChartModel initMeterGaugeModel() {
 List<Number> intervals = new ArrayList<Number>(){{
add(20);
add(50);
add(120);
add(220);
 }};

return new MeterGaugeChartModel(140, intervals);
 }

private void createMeterGaugeModels() {
meterGaugeModel = initMeterGaugeModel();
meterGaugeModel.setTitle("Visitor Chart");
meterGaugeModel.setGaugeLabel("Visitors/h");
meterGaugeModel.setGaugeLabelPosition("bottom");
meterGaugeModel.setShowTickLabels(false);
meterGaugeModel.setLabelHeightAdjust(110);
meterGaugeModel.setIntervalOuterRadius(130);
 }

MeterGaugeChart can be customized using various options. You can specify your set
of colors, enable and disable legends, and so on. If you would like to set your own
colors, you can change the seriesColors attribute with a list of comma-separated
color strings such as seriesColors="66cc66, 93b75f, E7E658, cc6666".

The contentFlow component
The contentFlow component allows the user to display the contents with good
animations. PrimeFaces has many components that allow the user to build a good
animation in a matter of minutes, leveraging the use of the cross-browser support.
This contentFlow component was introduced in PrimeFaces 5.0.

The contentFlow component requires content as children that can either be defined
dynamically using iteration or one by one. Each item must have the contentStyle
class applied as well. This component is used to create a gallery with sliding
animations. In dynamic content, the picture URL is populated as a collection
object, bound to its value attribute, and iterated as children.

Creating an Online Printing Station Application

[216]

Code walk-through
In this section, you will learn how to code the contentFlow component to render the
sliding animated gallery:

<p:contentFlow value="#{genericController.images}" var="image"
style="width: 815px;">
<p:graphicImage library="images" name="#{image}"
styleClass="content"/>
</p:contentFlow>

The preceding code is used to render the contentFlow component, and the value
attribute is bound to a list of image array. This will display the animated gallery as
shown in the following screenshot:

The preceding screenshot shows what the content flow looks like and how the
images are displayed with sliding animation.

Supporting components
In this chapter's example, you will use more common additional components such
as the panelGrid and growl components.

The growl component is used in the same way as the message component. This
component provides an overlay instead of showing the message inline. You can see
an example at the following URL: http://www.primefaces.org/showcase/ui/
message/growl.xhtml.

The login page
The login page provides a platform to authenticate the user, or the user can
create a new user profile in the application. Based on the privilege granted, the
user is able to perform the operation. An administrator and a customer are the two
different categories. In this application, use admin@admin.com/admin to get the
administrator privilege.

http://www.primefaces.org/showcase/ui/message/growl.xhtml
http://www.primefaces.org/showcase/ui/message/growl.xhtml

Chapter 8

[217]

Administrators can perform the following operations:

• Edit and add content to the website
• Add a new location in the location page
• View the print order in the admin dashboard

If you use the normal customer/user credentials, you will have the permission to add
print orders. The dashboard page is used to see all their order history and related
information. The following screenshot shows the login page for this application:

The user can also register their basic information by clicking on the Register button.
The next section shows you how to design the registration page in order to get the
basic information from the customer:

<div id="content" title="User Login">
<h:form id="login" prependId="false">
<p:dialog header="User Login"
id="dialog"
modal="true"
closable="false"
position="center"
widgetVar="modalLogin"
showEffect="slide"
draggable="false"
resizable="false"
visible="true">
<h:panelGrid id="loginBox" columns="2" cellpadding="3"
style="margin: 0 auto; border: 0px; padding-top: 20px;">
<h:outputLabel for="j_username" value="Username "/>
<h:outputLabel for="j_password" value="Password "/>

Creating an Online Printing Station Application

[218]

<p:keyboard id="j_username" required="true"
widgetVar="usernameKeyBoard"
value="#{customerController.useremail}"
onfocus="$('#keypad-div').css('z-index', 9999);"/>
<p:keyboard id="j_password" required="true" password="true"
value="#{customerController.password}"
onblur="$('#keypad-div').css('z-index', 9999);"/>
<p:commandButton id="loginBtn" value="Login" ajax="false"
action="#{customerController.loginMeIn()}"/>
<p:message for="loginBtn"/>

<p:commandButton value="Register" action="/userRegistration.jsf?faces-
redirect=true"
actionListener="#{customerController.prepareAddNewUser}"/>
<p:commandButton value="Cancel" action="/welcome.jsf?faces-
redirect=true"/>
<p:defaultCommand target="loginBtn"/>
</h:panelGrid>
</p:dialog>
</h:form>
</div>

The registration page
Customer registration is a common page that you can see in every web application.
Some corporations use other sources to collect information such as SSO, account
management, CRM portal, and so on. The following screenshot shows how this
application designed the customer registration page:

Chapter 8

[219]

The preceding screenshot shows the customer registration page for the application.
The first name, last name, and e-mail address fields use the common PrimeFaces
input text field. The password field uses PrimeFaces's inputSecret component. This
hides the characters from the users. The phone field uses PrimeFaces's inputMask
component. This component has a special usage when you need to get information
from the user, that is, you can specify the format in which you want the information
from the user. In this registration page, the phone number is formatted as (000)
123-1234. PrimeFaces supports more different formatting options for the input
components, namely the SSN number, product code, zip code, and also the ability to
specify user-defined format using regex. You can see more patterns at http://www.
primefaces.org/showcase/ui/input/inputMask.xhtml.

Code walk-through
In this section, you will learn how to code the user registration page:

<h:form styleClass="form-inline" prependId="false" id="thisform">
<p:fieldset rendered="#{not customerController.loggedIn}"
style="margin: 0 auto; text-align: center;
text-align: -webkit-center;">
<p:panelGrid columns="2">
<p:outputLabel for="txtFname" value="FirstName"/>
<p:inputText id="txtFname"
value="#{customerController.newCustomer.firstName}"/>

<p:outputLabel for="txtLname" value="LastName"/>
<p:inputText id="txtLname"
value="#{customerController.newCustomer.lastName}"/>

<p:outputLabel for="txtemail" value="Email"/>
<p:inputText id="txtemail"
value="#{customerController.newCustomer.email}"/>

<p:outputLabel for="txtpasswd" value="Password"/>
<h:inputSecret id="txtpasswd"
value="#{customerController.newCustomer.password}"/>

<p:outputLabel for="txtPhoneNumber" value="Phone Number"/>
<p:inputMask id="txtPhoneNumber"
value="#{customerController.newCustomer.phoneNumber}"
mask="(999) 999-9999"/>

</p:panelGrid>
<p:commandButton value="Submit" ajax="false" update="thisform"
action="#{customerController.saveCustomerInfo}"/>
</p:fieldset>
</h:form>

http://www.primefaces.org/showcase/ui/input/inputMask.xhtml
http://www.primefaces.org/showcase/ui/input/inputMask.xhtml

Creating an Online Printing Station Application

[220]

The user dashboard page
Dashboards often provide at-a-glance views of the key performance indicators (KPIs)
relevant to a particular objective or a business process. As mentioned, this page serves
as the main page for user activities in this application. The two different types of
users, admin and customer, can perform different operations that they are allowed by
the system. You will be using PrimeFaces's dashboard component, which helps you
to show the print jobs in the widget windows. It is a single dashboard that will have
all their active jobs as dashlets, and the users can perform their desired tasks.

The dashboard component and its implementation
The dashboard component in PrimeFaces provides a portal kind of layout with
drag-and-drop based reorder capabilities. These kinds of applications are called
dashboard applications. Normally, the dashboard will have more than one dashlet.
In this application, each print job will be displayed as a dashlet.

The dashboard component will always bind to a backing bean by a dashboard
model, which is provided by the PrimeFaces API. The DashboardModel class
has a mandatory field called the widget ID; this is set and assigned to the panel
component's ID. The same widget ID is assigned to the panel component, and
the panels will displayed as dashlets.

Code walk-through
In this section, you will learn the implementation of the dashboard component, and
get a detailed explanation of how to create the dashlet model in the backing bean as
well as how to code it in the GUI. You will also get a tip on generating the dashboard
widget dynamically:

public void populatePrintJobList(){
System.out.println("Populating List ");
if(customer.getEmail().equals("admin@admin.com")){
jobList = ds.getJobsBySubmittedStatus();
}else{
jobList = ds.getJobsByCustomerId(customer);
 }
model = new DefaultDashboardModel();

if(jobList != null && !jobList.isEmpty()){

for(inti=0;i<jobList.size();i++) {
DashboardColumn column = new DefaultDashboardColumn();
for(int j=0;j<4;j++) {
if(i<jobList.size()) {

Chapter 8

[221]

column.addWidget(jobList.get(i).getJobRefId());
i++;
 }
 }
model.addColumn(column);
 }
 }

 }

The dashboard model is used to define the number of columns and to populate the
widgets to be placed in each column using the addWidget method. You can get the
preceding code from the DashboardController.java file. This code snippet is
responsible for populating all the available print jobs as dashlets. Here, the first thing
you need to do is to specify the number of columns and then add an equal number
of dashlets to each column.

The first iteration is to just loop through all the available print jobs, and the second
iteration is to iterate the total number of columns. In each iteration, you will have
to add the job as a widget to the column. Finally, the column is then added to the
dashboard model.

Another thing that you can note in the preceding code is how we populate the
print jobs based on the user type. If the current user is an administrator, then it will
populate all the available jobs in the descending order of dates, and if the current
user is a customer, then it will populate only the jobs for the current user.

The following code is used in the GUI to render the dashboard dynamically:

<p:dashboard id="board" model="#{dashboardController.model}" >
<p:ajax event="reorder" listener="#{dashboardController.
handleReorder}"/>

<c:forEach items="#{dashboardController.jobList}" var="job">
<p:panel id="#{job.jobRefId}" header="#{job.jobName}" style="width:
250px; height: 150px;">
<h:outputText value="#{job.createDate}" />
</p:panel>
</c:forEach>
</p:dashboard>

You can see the preceding code snippet in the dashboard.xhtml file. The
dashboard tag will have the model attribute, which is bound to the backing bean's
dashboardModel attribute. The model can be generated using the preceding backing
bean snippet.

Creating an Online Printing Station Application

[222]

In this sample, you will be using the forEach tag instead of the repeat tag because
the panel component is not allowed inside the repeat tag. When you attempt to use
the panel component inside the repeat tag, you will get the following error screen.
The reason for error is not relevant to what is shown in the error message:

The state of the dashboard is always stateful. Whenever a widget is reordered, the
dashboard model will be updated automatically by capturing the current position
and persisting the user changes, so, you can easily create a stateful dashboard with
the use of this dashboard component. reorder is the one and only Ajax behavior that
is supported by the dashboard component. This event is fired when the dashboard
panels are reordered. The listener method will be invoked when the user rearranges
the dashlet. This method will have the org.primefaces.event parameter.
DashboardReorderEvent holds information about the model that is rearranged.

If a widget is reordered in the same column, senderColumnIndex will be always
null. This field is populated only when a widget is transferred from one column to
another. Also, when the listener is invoked, the dashboard model will automatically
update the position of the column.

Chapter 8

[223]

In general, the dashlets presented in the dashboard can be closable, togglable, and
can have an options menu as well. The dashboard doesn't implement these by itself,
as these features are already provided by the panel component. By enabling the
togglable and closable properties, we can use this option. Ultimately, the dashlets get
toggled inside the dashboard. If you'd like to disable the reordering feature, you can
set the disabled option to true.

Placing the print job order
The main purpose of this application is to provide a platform to upload the user files
and to order prints at the chosen location. The logged-in customers will choose the
nearest location from the location map, enter the information, and submit the order.
Finally, they can upload their files and submit them for printing. Once the printing is
done, the customer can drive to the location and collect the prints.

The following screenshot shows you how the order is implemented, with the file
upload page:

An authenticated customer can select the desired location by clicking on the marker
from the location map and can place their order by clicking on the Order Now
button that appears in the pop-up box.

Creating an Online Printing Station Application

[224]

When the customer clicks on the Order Now button, the order page prompts
for the print order details (which has many options to identify the print order),
special instructions if any, number of prints, page range, and so on. The following
screenshot is used to collect information about the customer's print details:

The Enter Job Name field is used for customer identification. The customer can
easily remember the name that they have provided. The description can be anything
that may be an instruction. In the Number of Copies field, you will be using the
number slider. You can either enter the number, or you can slide the slider and
increase the value. The slider can be used in different ways.

The slider component
The slider component is used in many ways. You can get more information on
slider components at http://www.primefaces.org/showcase-labs/ui/slider.
jsf. In the preceding screenshot, the slider component has been used in two
different places.

http://www.primefaces.org/showcase-labs/ui/slider.jsf
http://www.primefaces.org/showcase-labs/ui/slider.jsf

Chapter 8

[225]

Code walk-through
You can get the following code from the joborder.xhtml file:

<p:panel id="jobPanel">
<p:fieldset style="margin: 0 auto; text-align: center;
text-align: -webkit-center;">
<p:panelGrid columns="2">
<p:outputLabel value="Enter Job Name"/>
<p:inputTextvalue="#{fileUploadController.jobs.jobName}"/>
<p:outputLabel value="Enter Job Description"/>
<p:inputTextarea
value="#{fileUploadController.jobs.jobDescription}"/>
<p:outputLabel value="Number of Copies"/>
<h:panelGrid columns="1" style="margin-bottom:10px">
<p:inputText id="txt1" value="#{fileUploadController.jobs.
noOfPrints}"/>
<p:slider for="txt1"/>
</h:panelGrid>
<h:inputHidden id="txtstart" value="#{fileUploadController.jobs.
pageStart}"/>
<h:inputHidden id="txtend" value="#{fileUploadController.jobs.
pageEnd}"/>
<p:outputLabel value="Page Range"/>
<h:selectBooleanCheckbox
value="#{fileUploadController.jobs.pageRange}"/>
<h:panelGrid columns="1" style="margin-bottom:10px">
<h:outputText id="displayRange"value="Between #{fileUploadController.
jobs.pageStart} and #{fileUploadController.jobs.pageEnd}"/>
<p:slider for="txtstart,txtend" display="displayRange"
style="width:400px" range="true"
displayTemplate="Between {min} and {max}"/>
</h:panelGrid>
<p:commandButton action="#{fileUploadController.savePrintJobs}"
update="jobPanel" value="Submit"/>
</p:panelGrid>
</p:fieldset>
</p:panel>

The preceding code snippet is used to render various input components. The slider
component is one of the advanced components used in this page, which provides
a slider that is used to get input from the user without using the keyboard as the
ultimate aim of PrimeFaces is to reduce the use of the keyboard. After filling the
appropriate information, click on the Submit button, which saves the information
to the database and proceeds to the fileUpload component page.

Creating an Online Printing Station Application

[226]

The fileUpload component
PrimeFaces provides the best file upload component in the web industry. Personally,
I've never seen such a component elsewhere. The fileUpload component goes
beyond the browser input type="file" functionality and features an HTML5-
powered rich solution with graceful degradation for legacy browsers. This has a lot
of advantages; usability is the main advantage. You can use the same component for
many functionalities as follows:

• Basic usage by uploading one file at a time
• Can be enabled to upload more than one file from the user
• Can also enable the drag-and-drop support
• Can limit the user to the total upload size
• Can restrict the user to upload specific file formats

The following screenshot is used to get the files from the user using PrimeFaces's
fileUpload component. The main advantage of this component is that the user can
upload more than one file at the time.

Implementation
The fileUpload component needs some special attention with regards to the
configuration since the upload component needs some third-party API such as
the Apache common file upload utility and its associated settings.

The file upload engine on the server side can either be servlet 3.0 or a common file
upload. PrimeFaces selects the most appropriate uploader engine by detection,
and it is possible to force one or the other using an optional configuration context
parameter in the web.xml file as follows:

<context-param>
<param-name>primefaces.UPLOADER</param-name>
<param-value>auto|native|commons</param-value>
</context-param>

You will have to configure three options, namely auto, native, and commons:

• auto: This is the default mode, and PrimeFaces tries to detect the best
method by checking the runtime environment. If the JSF runtime is at least
2.2, the native uploader is selected; otherwise, commons is selected.

• native: The native mode uses servlet 3.x part API to upload the files, and if
the JSF runtime is less than 2.2, then an exception is thrown.

Chapter 8

[227]

• commons: This option chooses the commons file upload regardless of the
environment. The advantage of this option is that it works even in a servlet
2.5 environment.

If you have decided to choose the commons file upload, you need the following filter
configuration in your web deployment descriptor:

<filter>
<filter-name>PrimeFacesFileUpload Filter</filter-name>
<filter-class>
org.primefaces.webapp.filter.FileUploadFilter
</filter-class>
</filter>
<filter-mapping>
<filter-name>PrimeFacesFileUpload Filter</filter-name>
<servlet-name>Faces Servlet</servlet-name>
</filter-mapping>

Note that servlet-name should match the configured name of the JSF servlet, which
is Faces Servlet in this case. Alternatively, you can configure based on the URL
pattern as well.

The file upload component works in two modes, the simple mode and the advanced
mode. In the simple mode, the component is bound to a file object in the backing
bean. This works like a legacy system. The following is the code snippet used for
the simple mode:

<h:form enctype="multipart/form-data">
 <p:fileUpload value="#{fileBean.file}" mode="simple" />
 <p:commandButton value="Submit" ajax="false"/>
</h:form>

In the backing bean, you need to add one property using org.primefaces.model.
UploadedFile. Now you can perform the operation to save the file in the filesystem
on a button submit itself.

The next type is the advanced mode in which you need to specify a handler
method in the fileUploadListener attribute. The fileUploadListener is the
way to access the uploaded files in this mode. When a file is uploaded, the defined
fileUploadListener is processed with FileUploadEvent as the parameter. Now,
let's see how we are performing this in this printing station application:

<h:form id="centerForm" enctype="multipart/form-data">
<h:inputHidden value="#{locationController.location}"/>
<p:fileUploadfileUploadListener="#{fileUploadController.
handleFileUpload}"

Creating an Online Printing Station Application

[228]

 mode="advanced" dragDropSupport="true"
 sizeLimit="100000"
 allowTypes="/(\.|\/)(gif|jpe?g|png)$/" />
</h:form>

When you look at the preceding code, you can see that the form tag is specified
with multipart form-data, since we are handling file operations through the same
form tag. Next, look at the fileUploadListener method that is bound to the
handleFileUpload method in the controller. Let's see how the controller handles
the file upload:

public void handleFileUpload(FileUploadEvent event) {
 //get uploaded file from the event
UploadedFileuploadedFile = (UploadedFile) event.getFile();
 //create an InputStream from the uploaded file
InputStreaminputStr = null;
try {
inputStr = uploadedFile.getInputstream();
 } catch (IOException e) {
 //log error
 }
ServletContextservletContext = (ServletContext)
FacesContext.getCurrentInstance().getExternalContext().getContext();
 String newFileName = servletContext.getRealPath("")
 + File.separator + "photocam" + File.separator
 + uploadedFile.getFileName();
 //create destination File
 File destFile = new File(newFileName);
 //use org.apache.commons.io.FileUtils to copy the File
try {
FileUtils.copyInputStreamToFile(inputStr, destFile);
 } catch (IOException e) {
 //log error
 }
 }

Chapter 8

[229]

The file download component
PrimeFaces provides another useful component used to download a file. This
component makes the file download easier. All we need to do is just bind a
fileUpload object to the component as shown in the following code snippet:

<p:commandButton id="downloadLink" icon="ui-icon-arrowthichk-s"
value="Download" ajax="false"
onclick="PrimeFaces.monitorDownload(start, stop)">
<p:fileDownload value="#{fileUploadController.getFileforJobId
(fileUploadController.jobId)}" />
</p:commandButton>

In the preceding implementation, the value attribute is assigned a method with
the jobId parameter.

Creating an Online Printing Station Application

[230]

Working with the sample code
If you wish to work on the sample code, all you need to do is just clone it from the
GitHub repository at https://github.com/sudheerj/PrimeFaces-blueprints,
where you can use your preferred IDE. From there, change the MySQL user ID and
password and then you can start playing with the code. You can run the code for
this chapter by using the mvn jetty:run command in the chapter08 folder in the
Maven console, and then navigate to http://localhost:8080/web. You can use
admin@admin.com/admin or ram@ram.com/ram as the customer credentials, or you
can create your own profile and use the user ID and password as the credentials.

Summary
In this chapter, you learned how to develop your own online printing station
application. This application may become a big hit in the coming days. You learned
how to implement file upload and file download; you also learned about the
dashboard components from PrimeFaces.

In the next chapter, you will learn how to build another real-time business web
application. You will also learn about the simplified version of social networking.
The highlight of the next chapter is to create a simple chat application and a blog
with the help of the PrimeFaces Push technology.

https://github.com/sudheerj/PrimeFaces-blueprints

Creating an Online
Chat Application

In the previous chapter, you learned about an online printing station application—
you must now be familiar with how to handle files with the help of PrimeFaces'
advanced components. You also found many ways to limit the user from introducing
errors using PrimeFaces' input components.

In this chapter, you will learn about another real-world example; social networking.
You will also learn how to build a chat application easily. We all know how much
social networking contributes to the real world nowadays. This chapter gives the
basic functionalities of social networking and a basic multichannel chat application.
This application is designed and developed using PrimeFaces 5.0 and the PrimePush
technology. On top of that, you will learn about some of the advanced components
from PrimeFaces, namely the inline edit component, sticky, focus, defaultCommand,
dataScroller, editor, and fieldset. Here, some of the components are special-
purpose components.

Creating an Online Chat Application

[232]

The application use case
The aim of this chapter is to design and develop an application that utilizes the
PrimePush technology and some of the advanced components from PrimeFaces.
In this application, you will have a user registration page as the landing page, and
the user can provide their basic information to register their user profile. This page
utilizes various input components and some special-purpose components. Once
registered, the user can use the registered e-mail ID and password to log in to their
blog page, which contains all the user's posts and comments. The page will load the
content in an infinite fashion using the dataScroll component. The logged-in user
can post their comments on any post. The logged-in user can also chat with other
users who are available in the chat room. The user can also select a single user and
send them a private message.

Requirement analysis
This online chat application is similar to the www.tumblr.com application. The
landing page needs to have a user registration; once registered, the users can use
their credentials to log in to the system and view all the comments. They can also
post their comments and create their own posts. The content posts need to be seen in
an infinite scroll fashion. You need to be able to navigate to all the pages.

The users are allowed to get into a chat room and chat with all the available users,
and they can also send private messages to a specific user.

A flow diagram
The following flow diagram depicts the application flow. Any user can register to the
application using the registration page. Only registered users are allowed to post an
article or post comments. They are also allowed to chat in the chat room.

www.tumblr.com

Chapter 9

[233]

The architecture
This application uses the same architecture that you have seen in the previous
chapters. On top of that, you will be using many advanced PrimeFaces components.
Here, you will be using MySQL as the database. Project Lombok is used to reduce
the effort to create boilerplate code. The PrimeFaces Push technology uses the
Atmosphere framework to satisfy the chat application's requirements.

Implementing the requirements
In this section, you will learn more about how to implement the various components
in order to satisfy the user requirements. Each component is carefully crafted in such
a way that it meets the specific needs. Beginning with the ER diagram, you will see
the detailed implementation phase one by one.

The ER diagram
By understanding the database design, you will be able to design the application
faster. Once the DB design is done, you are pretty much done with the full business
requirements.

The following diagram depicts the database design that includes the tables and their
fields used in this project:

Creating an Online Chat Application

[234]

In this application, you will be using four different tables, namely Profile,
UserPost, Comment, and tbl_friends. The Profile table is used to store all the
user profiles. The tbl_friends table is used to store the relationship between two
profiles, which tells us exactly who is whose friend. The UserPost table stores
all the posts with relation to the user profile. The Comment table holds all the user
comments, and it also holds the user profile ID and the post ID in order to maintain
the relationship between all three tables.

Implementing, deploying, and running the
application
Similar to other applications, this application is also developed with an embedded
jetty and tomcat Maven plugin. You can run the application using the mvn
jetty:run command or the mvn tomcat:run command. Once you execute the
Maven command, the application will start running without any errors in the
Maven console, and then you can navigate to the start-up page using http://
localhost:8080/web. You will see the following screen, which provides you with
an option to log in with the user credentials or you can register your own user
profile. In this application, you will use the e-mail ID as the username.

In the preceding screenshot, you will be using various PrimeFaces input components
such as the textbox, calendar, selectOneButton, and editor components. Each
input component has a property called placeholder that tells the user exactly what
the value should be. This is the newest way to put labels near input components. You
can see the detailed description of each component used in this application in the
following sections.

Chapter 9

[235]

The editor component
The editor component is a very useful component, which is an input component
with rich text-editing capabilities. This component has many advantages over the
text area component. You can edit the content directly as you see in the screen; this
concept is called WYSIWYG (what you see what you get). You can style the text
content, embed images in text, and so on. This component has other advantages
as well; we can limit the user input by customizing the toolbar that appears in the
editor component. The following is the screenshot of the editor component that
you used in this application:

The editor component has been used in two pages of our application.

The selectOneButton component
The selectOneButton component is used as an input component. This component
is used in the same way as a combobox. The only difference is that instead of a
list of dropdowns, this component provides a list of buttons. The user can select
only one button at a time. The Gender field, in the following screenshot, uses the
selectOneButton component.

Creating an Online Chat Application

[236]

The password component
PrimeFaces provides an embedded password strength meter along with the
password component, which evaluates the user password input and informs the
user about the strategy of the password so that the user can change the password
accordingly to increase the strength of the password. The following screenshot
gives you a demonstration of the password strength meter. You can experience the
functionality in the home page of the application.

The following code snippet will enable the password strength in PrimeFaces's
password component:

<p:password value="#{userController.user.password}" size="49"
placeholder="Password " feedback="true" autocomplete="false"/>

When you enable the feedback attribute in the password component, PrimeFaces
will automatically add the password strength meter to the password component.

Code walk-through – the landing page before login
On the landing page, you will have two sections of code; one section will only be
displayed when the user is logged in, and the other section will be displayed if no
user is logged in. In order to make the code readable, you can use the UI:Include
tag and separate the code for the logged-in user on a different page.

You can find the following code in the loggedin.xhtml file. This code is included in
the welcome.xhtml file when the user is not logged in.

The following is the code for the welcome.xhtml page:

<p:panel styleClass="base-color-panel no-margin-no-padding"
rendered="#{not userController.loggedIn}">
<h:inputHidden value="#{chatUsers.users}"/>
<ui:include src="loggedin.xhtml"/>
</p:panel>

Chapter 9

[237]

Here is the code for the loggedin.xhtml page:

<h:form id="forFocus" prependId="false">
<p:focus />
<p:fieldset widgetVar="fieldsets" styleClass="center_align no-margin-
no-padding-no-border">
<p:panelGrid columns="1" style="float: right;" styleClass="no-margin-
no-padding-no-border">
<p:outputLabel value="Sign Up" style="font-size: 48px;"/>
<p:outputLabel value="It is always FREEEEE!..." style="text-align:
right; margin-left: 130px;"/>
<h:panelGrid columns="2" columnClasses="no-margin-no-padding-no-
border" cellpadding="0">
<p:inputText id="txtFname" value="#{userController.user.firstName}"
size="23"
 placeholder="First Name"/>
<p:inputText id="txtLname" value="#{userController.user.lastName}"
size="22"
 placeholder="Last Name"/>
</h:panelGrid>
<p:inputText value="#{userController.user.email}" size="49"
 placeholder="Email Id" autocomplete="false"/>
<p:inputText value="#{userController.re_email}" size="49"
 placeholder="Re-Enter Email Id" autocomplete="false"/>
<p:password value="#{userController.user.password}" size="49"
 placeholder="Password " feedback="true" autocomplete="false"/>

<p:calendar value="#{userController.user.dateOfBirth}" size="49"
placeholder="Select your Date Of Birth"/>
<h:panelGrid columns="3">
<p:outputLabel value="Gender" style="padding-right: 90px;"/>
<p:separator/>
<p:selectOneButton value="#{userController.user.gender}" style="float:
right;">
<f:selectItem itemLabel="Male" itemValue="male" />
<f:selectItem itemLabel="Female" itemValue="female" />
</p:selectOneButton>
</h:panelGrid>
<p:outputLabel value="Tell about you"/>
<p:editor id="editor" value="#{userController.user.aboutme}"
width="500" height="150"/>

Creating an Online Chat Application

[238]

<p:scrollPanel mode="native" style="height:100px; width: 500px;">
<p style="padding-left: 10px;"><i>By clicking Sign Up, you agree to
our Terms and that you have read our Data Use Policy, including our
Cookie Use.
</i></p>
</p:scrollPanel>
<p:commandButton id="signup" value="Sign Up" style="height: 70px;
font-size: 32px;"/>
<p:commandButton resetValues="true" value="Reset" update="forFocus"
 action="#{userController.prepareAddNewUser}"/>
<p:defaultCommand target="signup"/></p:panelGrid>
</p:fieldset>
</h:form>

In this section, you will learn about some of the new special-purpose
components—most of the components are already described in the previous
chapters. There are many other utility components that are also used in this page.
Some of the components don't show up on the screen, but they have their own
meaning when used inside the pages. In the following sections, you will see some
of the special-purpose tags.

The focus tag
The focus tag is one of the special-purpose tags; the main aim of the focus tag is to
set focus on the page landing. This is similar to the old JavaScript way of setting the
startup focus on the page load. By default, the focus will find the first enabled and
visible input component on the page and apply focus. The input component can be
any element such as input, text area, and select. On this application landing page,
the e-mail ID field will be focused when this page initially opens up, as it is the first
active input component. The input text with the txtFname ID will receive the focus
when we set the for attribute, pointing to the txtFname field manually. Another
useful feature of the focus component is when validations fail, the first invalid
component will receive a focus. So on our page, if the txtFName field is valid but the
txtLName field has no input, a validation error will be raised for txtLName. In this
case, the focus will be on the txtLName field implicitly.

Note that for this feature to work on Ajax requests, you need to update
the p:focus component as well.

Chapter 9

[239]

The defaultCommand component
Similarly, another special-purpose tag is called the defaultCommand tag. This tag is
used to inform the browser about which command button should be used to submit
the form when the Enter key is pressed. This is a common problem in web apps, not
just specific to JSF. Browsers tend to behave differently as there doesn't seem to be a
standard, and even if a standard exists, IE probably will not care about it. There are
some ugly workarounds, such as placing a hidden button and writing a JavaScript
code for every form in your application. The defaultCommand component solves
this problem by normalizing the command (for example, button or link) to submit
the form tag and requires target option to reference to one of the clickable command,
which may not be browsers default selection. Note that an input must have focus
due to browser nature.

The landing page after login
Once the user has logged in to the portal, the landing page will be displayed with
a list of the posts from various users. The user will have the option to post their
comments and also to post their replies for some other user's post.

The dataScroller component
The dataScroller component displays a collection of data with on-demand
loading using the scrolling feature; this component enables the page to use the scroll
functionality infinitely in fewer lines of code. The following screenshot displays all
the user posts using the dataScroller component:

Creating an Online Chat Application

[240]

When the user submits their post, the information will immediately be populated in
the dataScroller component.

Code walk-through
This code walkthrough will show you the implementation of the dataScroller
component in the chat application:

<p:dataScroller value="#{userController.lazyModel}" var="post"
lazy="true" chunkSize="10" id="datascroll"
styleClass="no-border no-margin-no-padding-no-border">
<div class="panelpost">
"#{post.user.firstName} "#{post.createDate}"
<div class="bubble" style="color: #000;">"#{post.postText}"</div>
<ui:repeat value="#{userController.getAllCommentForPostId(post)}"
var="c">

"#{c.comment}"

<hr/>
</ui:repeat>
<p:inputText value="#{userController.userComment.comment}"/>
<p:commandButton value="Comment" update=":form:datascroll"
actionListener="#{userController.saveUserComment(post)}"/>
</div>
<hr/>
</p:dataScroller>

The dataScroller component and the LazyData loading
The dataScroller component needs to bind with a LazyDataModel class. In the
following snippet, you can see how to populate the LazyDataModel class used for
the UserPost collection:

public void lazyLoad() {
 lazyModel = new LazyDataModel<UserPost>() {
 @Override
 public List<UserPost> load(int first, int pageSize, String
 sortField, SortOrder sortOrder, Map<String, Object> filters)
 {
 String sortOrderValue = null;
 if (sortField == null) {
 sortField = "prodname";
 }

Chapter 9

[241]

 if (sortOrder.ASCENDING.equals("A")) {
 sortOrderValue = "ASC";
 } else if (sortOrder.DESCENDING.equals("D")) {
 sortOrderValue = "DSC";
 } else {
 sortOrderValue = "ASC";
 }
 myPosts = getAllMyPosts();
 //productsInfo = dao.getAllProducts(first, pageSize,
 //sortField, sortOrderValue, filters);
 // rowCount
 int dataSize = myPosts.size();
 this.setRowCount(dataSize);
 // paginate
 if (dataSize > pageSize) {
 try {
 return myPosts.subList(first,first + pageSize);
 } catch (IndexOutOfBoundsException e) {
 return myPosts.subList(first,first
 + (dataSize % pageSize));
 }
 } else {
 return myPosts;
 }
 }
 };
 }

You can find the preceding code snippet in the welcome.xhtml and
UserController.java files. The dataScroller component is bound to the
LazyDataModel class and this implementation enables lazy loading. Based on the
required page size and current page number, you can populate records or you can
also implement the same thing using a database query passing the current page
number and fetch size. The filter object in the lazy data model class will hold all the
parameters required for the pagination.

Supporting components
As in the other chapters, you will be using the more commonly used additional
components such as the panelGrid and growl components in this chapter's example.

The growl component is one of the very frequently used components. This
component is used as an information alert component. Using this component, you
can inform the user about the status and updates. This will show an overlay at the
top of the screen and inform the user in a very descriptive manner.

Creating an Online Chat Application

[242]

The User Profile page
In this application, we have a User Profile page. This page will allow the logged-in
user to edit their information. In this page, you will see a variety of component called
the inline edit component. This component looks nothing at first glance, but when
the user clicks on the value, the inline editor component immediately allows the user
to edit the appropriate information. The following screenshot shows you how the
screen looks before the user clicks on the inline editor component:

When you see this page, it looks simple—with no edit option enabled. When the user
clicks on the value of any component, it immediately enables the edit option. The
following screenshot shows the page after the edit option is enabled:

Chapter 9

[243]

In the next session, you are going to learn about the chat module. This module is the
highlight of this application. Before you get into the chat module, you will have to
understand the Push technology.

The Push technology
The Push technology, or the server Push technology, can be described as a way
of recent Internet-based communication. The communication requests are started
and initiated by the publisher called the central server. This is contrasted with
pull, where the same requests are received by a receiver or a client system. In our
application, one user will initiate the chat and push the message to the server,
and the server will update all the listeners. This concept is a commonly-used
practice that is called publish/subscribe. The same concept already exists in the
server-side technologies using Queue, Topic, and Messaging; that is, one publisher
will publish the communication and the subscribers will listen to the incoming
message and process the request. The same concept is now implemented as a client/
server interaction medium using the Push technology.

There are various technologies that implement the same mechanisms to achieve the
experience of a server push, namely:

• Native Comet (the web server has an API for Comet)
• Native websockets (the web server has an API for websockets)
• Websockets
• Long-polling
• HTTP streaming
• JSONP
• Server-sent events

Every method has its own disadvantages. Websockets is a one of the leading new
frameworks and is gaining popularity in the web market. However, a lot of browsers
do not natively support websocket yet. Atmosphere is one of those frameworks that
provides a wide array of support options for the server and the client side of the
server push mechanism. PrimeFaces 3.4 introduced this Push technology with the
help of the Atmosphere Framework.

Creating an Online Chat Application

[244]

PrimeFaces Push (PFP) is a server push framework built on top of the Atmosphere
Framework. Atmosphere Framework's creator, AsyncIO, is a partner company
of PrimeTek and the developer of PFP. Atmosphere is highly scalable, supports
several containers and browsers, utilizes various transports, such as websockets,
long-polling, streaming, and JSONP. For more information, please visit https://
github.com/Atmosphere/atmosphere. Based on Atmosphere, PrimeFaces provides
easy push mechanisms to web applications. The uses of the push-enabled web
applications include market data distribution (stock tickers), online chat/messaging
systems (web chat), online auctions, online betting and gaming, sport results,
monitoring consoles, and sensor network monitoring.

Implementing the chat module using PrimePush
PrimeFaces Push requires Atmosphere's runtime dependencies to add the
dependency below the Maven dependency in your project's pom.xml file:

<dependency>
<groupId>org.atmosphere</groupId>
<artifactId>atmosphere-runtime</artifactId>
<version>2.1.3</version>
</dependency>

The PrimePush component needs to have its servlet channel registered. These
channels play a major role in PrimeFaces Push. In order to register the servlet
channels, you will have to add the following code snippet to your web.xml file. This
is basically a servlet directing a special request to the Push servlet and enables the
magic of server push:

<servlet>
 <servlet-name>Push Servlet</servlet-name>
 <servlet-class>org.primefaces.push.PushServlet</servlet-class>
 <async-supported>true</async-supported>
</servlet>
 <servlet-mapping>
 <servlet-name>Push Servlet</servlet-name>
<url-pattern>/primepush/*</url-pattern>
</servlet-mapping>

The following screenshot shows you how two different browsers interact with the
use of the chat module:

https://github.com/Atmosphere/atmosphere
https://github.com/Atmosphere/atmosphere

Chapter 9

[245]

Code walk-through
In this section, you will see how to implement the concepts to develop a chat
application using PrimePush.

The following code can be found in the ChatResources.java file. This is the main
file that enables and controls the overall session of the chat application. First, you
will have to specify the path as @PushEndpoint("/{room}/{user}"):

@PushEndpoint("/{room}/{user}")
@Singleton
public class ChatResource {

 private final Logger logger =
 LoggerFactory.getLogger(ChatResource.class);

 @PathParam("room")
 private String room;

 @PathParam("user")
 private String username;

 @Inject
 private ServletContext ctx;

 @OnOpen
 public void onOpen(RemoteEndpoint r, EventBus eventBus) {
 logger.info("OnOpen {}", r);
 eventBus.publish(room + "/*",
 new Message(String.format("%s has entered the room '%s'",
 username, room), true));
 }

Creating an Online Chat Application

[246]

 @OnClose
 public void onClose(RemoteEndpoint r, EventBus eventBus) {
 ChatUsers users= (ChatUsers) ctx.getAttribute("chatUsers");
 users.remove(username);

 eventBus.publish(room + "/*", new Message(String.format
 ("%s has left the room", username), true));
 }

 @OnMessage(decoders = {MessageDecoder.class},
 encoders = {MessageEncoder.class})
 public Message onMessage(Message message) {
 return message;
 }

}

@PushEndPoint is the the easiest way to create a PFP application by using the @
PushEndPoint annotation. This annotation simplifies the process to build an
application using PFP, avoiding the need to interact with Atmosphere's more
sophisticated API. This annotation significantly reduces the amount of code required
to build a powerful real-time application by transparently installing Atmosphere's
components, such as heartbeat, idle connection detections, and disconnect state
recovery. It also allows the use of an external dependency injection framework
such as CDI, Spring, or Guice. This annotation provides one attribute called path
to define the resource path, which is the path to the resource. The default is /; so, if
you have mapped the Push servlet to /*, all the requests will be delivered to your
annotated class. You can also customize the path. The path value will be used to map
an incoming request's URL path to an annotated PushEndpoint class.

The @Singleton annotation is used to forcibly create a single, thread-safe instance
of a PushEndpoint annotated class. For example, if your application has set the @
PushEndpoint class's path attribute with a path, a new instance of the annotated
class will be created by default. However, when it is annotated with @Singleton, a
single class will be created. This annotation implements the singleton pattern.

Besides the preceding two annotations, there are some more annotations that
support the chat application, namely onOpen, onMessage, and onClose; each of these
annotations provides an option to perform a specific task on each event. The OnOpen()
annotation will be invoked when the underlying connection is ready to be used.

Chapter 9

[247]

Here, we perform the write operation:

@OnOpen
public void onOpen(RemoteEndpoint r, EventBus e);

The RemoteEndpoint attribute represents the physical connection and can be used
to write some data back to the browser. The EventBus attribute can be used to fire
messages to one or more RemoteEndpoint attribute using the regex expressions.
EventBus publishes the message to all the channels. The OnMessage() annotation
will be invoked when a message is ready to be delivered, for example, as a result
of an EventBus publish operation or when a browser posts some bytes. The
annotation's attribute encoders and decoders will interpret the message and secure
the message before passing it to the transport layer. The encode and decode logic can
be done as you wish by implementing the appropriate interface, org.primefaces.
push.Encoder or org.primefaces.push.Decoder. The @OnClose() annotation will
be invoked when the client disconnects, for example, when the connection is closed
due to a network outage or when a proxy closes the connection.

The PathParm annotation is used to inject the parameters to the server-side
implementation. The @PathParam annotation is used to automatically parse the path
and assign path tokens to the class variables.

How does this work?
In the chat controller, when the sendPrivate and sendGlobal functions are called
via a send button in the chat page, all the clients (the active browsers) receive
asynchronous updates on the specified channel. This triggers the JavaScript method
to update the messages table:

<p:socket onMessage="handleMessage" channel="/{room}"
autoConnect="false" widgetVar='subscriber'/>

The JSF page responds to a message on the channel/messages. It invokes the
JavaScript function, handleMessage, when an asynchronous server push event
is received:

<p:remoteCommand name="updateList" update="users" process="@this"/>

This makes a JavaScript function available, which calls the chatController
function loadMessages after which it updates the chat transcripts. The
JavaScript function, handleMessage, updates the chat transcript and in effect,
the chatController function.

Creating an Online Chat Application

[248]

Similarly, you can also force the UI to update the contents from the server side by
using the following snippet:

RequestContext requestContext = RequestContext.getCurrentInstance();
requestContext.execute("PF('subscriber').connect('/" + username +
"')");

The private chat option
In this chat application, you will also have the private chat option enabled; this
means that this chat application is a common chat room. If any user wishes to send a
private message to a particular user, they can select them from the list and send the
message privately. The following screenshot will pop up when you click on the user
from the users list:

The following code snippet is used to send private and public messages:

eventBus.publish(CHANNEL + "*", username + ": " + globalMessage);
eventBus.publish(CHANNEL + privateUser, "[PM] " + username + ": " +
privateMessage);

Chapter 9

[249]

The first line of the code is issued to send the user to a public room where they are
visible to all the users in the list. Likewise, in the second line, we also specify the
private username as a parameter to the channel.

Here is a list of the important Java classes and their use in this application:

• ChatController.java: This class is used to track the chat session and to
interconnect all the chat components.

• ChatUsers.java: This class is on the application scope. This class holds all
the users when the user is logged in to the system. The users are registered in
this class as a list of users.

• ChatResource.java: This class is the endpoint, which is responsible for the
Atmosphere integration. You will be using the PrimePush API to integrate
the Atmosphere Framework.

• UserController.java: This class acts as a controller, which is responsible
for all the user transactions such as user registration, validation, and
user login.

• Message.java: This class is a simple POJO used as a transfer object to hold
the user messages.

• MessageDecoder.java: This class is used to implement the custom
decoder logic.

• MessageEncoder.java: This class is used to implement the custom
encoder logic.

Working with the sample code
If you wish to work on the sample code, all you need to do is just clone it from the
GitHub repository at https://github.com/sudheerj/PrimeFaces-blueprints
where you can use your preferred IDE. From there, change the MySQL user ID and
password and then you can start playing with the code. You can run this chapter's
code by using the mvn jetty:run command in the chapter09 folder in the Maven
console, and then navigate your browser to http://localhost:8080/web. You can
use admin@admin.com/admin or ram@ram.com/ram as the user credentials, or you
can create your own profile and use the user ID and password as the credentials.

https://github.com/sudheerj/PrimeFaces-blueprints

Creating an Online Chat Application

[250]

Summary
In this chapter, you learned how to develop your own chat application. You also
learned how to implement PrimePush and some special-purpose components from
PrimeFaces 5.0. You have seen how easy it is to get an application up and running
using PrimeFaces. Make sure to check out the PrimeFaces website for the latest and
greatest components and classes that we explored throughout this walkthrough.

In the next chapter, you will learn how to develop another real-time business
application. The application demonstrates how to showcase healthcare products
using various advanced PrimeFaces components.

Creating a Healthcare
Products Application

In this chapter, we will learn how to create a simple healthcare products
application. To use menu navigations and display the huge amount of data,
you can find megaMenu, dataScroller, tree, and treeTable components used
in this application. Apart from these regular UI components, there are many
utility components that are used to make the daily development tasks easier. The
PrimeFaces library provides you with all the fancy UI widgets with customized
skinning and theming styles that display an awesome theme design on the screen.
PrimeFaces uses a powerful ThemeRoller CSS framework and popular theme
converters that enable us to create our own theme designs within minutes. An
important goal of this project is to demonstrate the data hierarchy and data display
components that can be used to display the huge amount of related information
and common utility components in regular development works as well as apply the
ThemeRoller CSS framework when creating custom PrimeFaces themes. To explain
all these components, we will develop an application in which the user logs in to this
application to view and buy the required healthcare products. The specific topics that
will be covered are as follows:

• A brief introduction to the healthcare products application, use cases, and the
architectural design

• The project creation and application screens' implementation using data
hierarchy, data display, and utility components

• Applying themes in your PrimeFaces applications
• Working with the project code of the healthcare products application

Creating a Healthcare Products Application

[252]

Introducing our healthcare products
application
The healthcare products application (which we will call the HealthKart application)
is used to list out all the various healthcare products for the diagnosis, treatment, and
prevention of diseases and injuries, and to improve body fitness with attractive offers
on various brands. The application needs to be designed so that users can view the
list of all the products available and the list of products under a particular product
category that is selected. Each product should be displayed with the user ratings,
discount, and price value.

We will make use of the data hierarchy and data-display components to hold the
huge data sets, and to display specific selected products and tree-formatted data in
HealthKart and admin screens. The library provides MegaMenu, DataScroller, Tree,
and TreeTable components to achieve these functionalities. Apart from these regular
components, you can also find a few utility components in screens' development. Once
all the screens are developed, we can create our own themes from scratch with the help
of the powerful ThemeRoller CSS framework and Theme Converters.

Before you implement the application screens using the PrimeFaces library, we
will take a brief look at the project's requirements and architectural designs in the
following sections.

Application use cases
The purpose of this application is to list out all the healthcare products and provide
the product feedback, discount, and price details. At first, the shopping cart user
needs to log in to the application to view all the listed products. Based on the user
demand, more products will be fetched from the database by scrolling down each
time. The user also has the ability to view the products under a particular product
category by selecting a particular menu item under the MegaMenu component.

The admin user also has access to view the products' hierarchy and sales details over
a particular period.

The UML use case diagram
The following use case diagram is used to represent the various functionalities
that occur in the entire application process. The functionalities, such as the login
and reset functionalities, which display all the products' data and specific product
category data, products hierarchy, and product sales use cases, will be adopted in
this application.

Chapter 10

[253]

A diagram illustrating the responsibilities of the shopping cart user and admin in the
healthcare products application

The two actors who perform all the functionalities in this application are Shopping
cart user and Admin.

The architectural design
The architecture of this application can be presented as follows:

• The presentation layer will be composed of standard JSF and
PrimeFaces components

• XHTML or Facelets are used as the view technology in order to
render the UI components

• You will use the PrimeFaces built-in home theme to skin or style
the web pages

• The managed beans will be used to hold the session tracking and
event handling as well as execute the business logic

• The data access layer is used to interact with the MySQL database
using the hibernate framework

• The Apache Maven build tool will be used to build the project and
for dependency management

Creating a Healthcare Products Application

[254]

The following architecture diagram represents the three major layers of the web
application and their interaction with the MySQL database. The flow from the
presentation layer to the other layer components and database is represented by
straight lines:

A diagram illustrating the connection between the three different layers

Here, the hibernate JPA implementation is used between the DAO layer and
MySQL database.

Creating a project and implementing the
application screens
This section will show you how to implement the healthcare products application
using the PrimeFaces data display, data hierarchy, and utility components, and
finally it will show you how to apply your own themes in PrimeFaces projects. The
first step is to start the project by creating the template structure using standard
JSF Facelets. Then, you need to create the HealthKart and admin screens using the
MegaMenu, DataScroller, Tree, TreeTable, and utility components.

Chapter 10

[255]

Laying out our application structure
The structure of the application should consist of the presentation, business, and
data access layers in order to create a proper web application. After properly
implementing these sections, the project structure in the navigator view should look
as follows:

After that, you should make sure you have configured them all using the
step-by-step configurations detailed in Chapter 1, Creating a "Hello World" Application.

Designing the application template
You are going to use a single main template formed by the combination of three
smaller template files. The masterTemplate.xhtml file uses the Facelets' ui:insert
and ui:include tags for the header, content, and footer sections, as shown in the
following code snippet:

<div id="header">
 <ui:insert name="header">
 <ui:include src="/templates/common/header.xhtml" />
 </ui:insert>
</div>
<div id="content">
 <ui:insert name="content">
 <ui:include src="/templates/common/content.xhtml" />
 </ui:insert>
</div>

Creating a Healthcare Products Application

[256]

<div id="footer">
 <ui:insert name="footer">
 <ui:include src="/templates/common/footer.xhtml" />
 </ui:insert>
</div>

The header section deals with the website logo, advertisements, and logout
functionalities. On the other hand, the footer section deals with the application
information through the command links. Finally, the content section or template is
provided for default content.

Database configurations
A JPA provider or implementation called hibernate is used to map between
Java entities and RDBMS. The hibernate application can be created in the following
two ways:

• XML configurations
• Annotations

We will use the configuration mechanism of annotations in this application. In
this approach, we have to configure the hibernate MySQL dialect details in the
hibernate configuration file, whereas the mapping information is applied on the
entity itself using annotations. Please take a look at the hibernate configuration and
entity mapping annotations code in the Blueprints GitHub repository for reference
(https://github.com/sudheerj/primefaces-blueprints).

Implementing application screens using
data hierarchy, data display, and utility
components
Before we see the data hierarchy and data display components, we need to
implement the login screen.

Implementing the login screen
The login screen is implemented by creating the username and password fields
that accept the credentials of either the healthcare user or admin role. The page
navigates to either the HealthKart or admin screens based on the user role. If the
user is not authenticated, then the login screen throws an invalid login message.
Apart from the login button, you can also find the reset button that clears the input
fields in the login screen.

https://github.com/sudheerj/primefaces-blueprints

Chapter 10

[257]

The login screen is created with the username, password, and reset input form
components as follows:

<h:panelGrid columns="3" cellpadding="5">
 <h:outputLabel for="username" value="Username:" />
 <p:inputText value="#{loginController.username}" id="username"
 required="true" requiredMessage="Username cannot be empty"
 label="username">
 </p:inputText>
 <p:watermark for="username" value="Enter username" />

 <h:outputLabel for="password" value="Password:" />
 <p:password value="#{loginController.password}" id="password"
 required="true" requiredMessage="Password cannot be empty" />
 <p:watermark for="password" value="Enter password" />

 <h:outputText />
 <p:outputPanel style="margin-left:1%">
 <p:commandButton id="loginButton" value="Login" update="login"
 action="#{loginController.validateUser}" ajax="false" />
 <p:commandButton id="resetButton" value="Reset" update="panel"
 process="@this">
 <p:resetInput target="panel" />
 </p:commandButton>
 </p:outputPanel>
</h:panelGrid>

In the preceding code, the resetInput component uses the panel as the target
element. It will clear all the input fields under this panel. After using the preceding
code snippets, we also used the defaultCommand component that provides the
default action to the login button as follows:

<p:defaultCommand target="loginButton" />

The managed bean of the login screen holds the username and password fields.
It will also contain the method to authenticate either the shopping cart user or
administrator based on the user role, and then navigates to the respective pages. If
the user is not a valid user, then it throws an invalid login message. The following
code snippet is used to validate either HealthKart customers or administrators:

public String validateUser() throws SQLException {
 FacesMessage msg = null;
 boolean isValidUser = false;
 if (username.equalsIgnoreCase("healthcare")

Creating a Healthcare Products Application

[258]

 && password.equalsIgnoreCase("healthcare")) {
 return "/views/HealthKart?faces-redirect=true";
 }
 else if (username.equalsIgnoreCase("admin")
 && password.equalsIgnoreCase("admin")) {
 return "/views/admin?faces-redirect=true";
 }
 else {
 msg = new FacesMessage(FacesMessage.SEVERITY_WARN, "Login Error",
 "Invalid credentials");
 FacesContext.getCurrentInstance().addMessage(null, msg);
 return null;
 }
}

Before logging on to this application, the login screen will be as follows:

Incorrect or unauthorized credentials results in the display of an invalid login
message at the top login header, which stops the navigation to other screens.

Login credentials
The application has been provided with two types of login credentials based on the
user role. The credentials for different user roles are as follows:

• Healthcare user: healthcare/healthcare
• Administrator: admin/admin

Chapter 10

[259]

Implementing the HealthKart screen
A huge amount of data in the HealthKart screen is displayed with the help of data
components such as the dataScroller component. The dataScroller component
loads a huge amount of data on demand using the backing lazy data model. We
can also filter the displayed data based on the product category selection from the
MegaMenu component.

The dataScroller component created with the lazy-loading feature to display the
product details is as follows:

<p:dataScroller id="productsList"
 value="#{HealthKartController.lazyModel}" var="product"
 chunkSize="4" lazy="true">
 <f:facet name="header">
 Products Summary (Scroll Down to Load More Products)
 </f:facet>
 <h:panelGrid style="width:100%" columnClasses="logo,detail">
 <p:graphicImage value="/resources/images/products/
 #{product.prodcat}/#{product.prodimage}.jpg" width="200"
 height="100" style="margin-left:300px" />
 <p:outputPanel style="margin-left:300px">
 <h:panelGrid columns="2">
 <h:outputText value="Product Name:" />
 <h:outputText value="#{product.prodname}"
 style="font-weight: bold" />

 <h:outputText value="Rating:" />
 <h:outputText value="#{product.rating}"
 style="font-weight: bold" />

 <h:outputText value="Discount:" />
 <h:outputText value="#{product.discount}"
 style="font-weight: bold" />

 <h:outputText value="Price:" />
 <h:outputText value="#{product.price}"
 style="font-weight: bold" />
 </h:panelGrid>
 </p:outputPanel>
 </h:panelGrid>
 <p:separator />
</p:dataScroller>

Creating a Healthcare Products Application

[260]

In the preceding code, the lazy-loading feature is enabled by setting lazy=true and
chunkSize with an integer value to fetch the bulky data instantaneously.

To filter the bulky data of the products' information, the MegaMenu component
is created with nested submenus and menu items. The shopping cart user can
select a particular product category from the MegaMenu component. The following
code snippet is used to display the different varieties of healthcare products in a
categorized format:

<p:cache region="testcache" key="megaMenu">
 <p:megaMenu>
 <p:submenu label="Health Devices" icon="ui-icon-document">
 <p:column>
 <p:submenu label="Patient producte">
 <p:menuitem value="Mattress" actionListener=
 "#{HealthKartController.selectCategory('mattress')}"
 update="productsList" />
 <p:menuitem value="Wheel chairs" actionListener=
 "#{HealthKartController.selectCategory('wheelchair')}"
 update="productsList" />
 <p:menuitem value="Walking and Hearing aids" actionListener=
 "#{HealthKartController.selectCategory('walking-hearing')}"
 update="productsList" />
 </p:submenu>
 ...
 </p:column>
 </p:submenu>

 </p:megaMenu>
</p:cache>

In the preceding code, the MegaMenu component is surrounded with a cache
component to reduce the page load time after initial page rendering.

The managed bean should be defined with the lazy data model that retrieves the
data when the page loads or selects a particular product type from the MegaMenu
component. The following code snippet is used to create a lazy model for the large
set of healthcare products:

public void lazyLoad() {
 lazyModel = new LazyDataModel<Product>() {
 @Override
 public List<Product> load(int first,
 int pageSize,String sortField, SortOrder sortOrder,
 Map<String, Object> filters) {

Chapter 10

[261]

 String sortOrderValue = null;
 if (sortField == null) {
 sortField = "prodname";
 }
 if (sortOrder.ASCENDING.equals("A")) {
 sortOrderValue = "ASC";
 } else if (sortOrder.DESCENDING.equals("D")) {
 sortOrderValue = "DSC";
 } else {
 sortOrderValue = "ASC";
 }

 productsInfo = dao.getAllProducts(first,
 pageSize, sortField,sortOrderValue, filters);
 // rowCount
 int dataSize = productsInfo.size();
 this.setRowCount(dataSize);
 // paginate
 if (dataSize > pageSize) {
 try {
 return productsInfo.subList(first,first + pageSize);
 } catch (IndexOutOfBoundsException e) {
 return productsInfo.subList(first,first +
 (dataSize % pageSize));
 }
 } else {
 return productsInfo;
 }
 }
 };
}

Creating a Healthcare Products Application

[262]

After accessing the data access layer, the dataScroller component populates data
of either all the products or of a specific selected product category, as shown in the
following screenshot:

If there is still more data, then scrolling down the page fetches the next chunk of
records from the database.

Implementing the admin screen
In the admin screen, you can find the hierarchy of the products and product sales in
successive tabs of the TabView component. The products hierarchy is represented in
the form of a horizontal tree, whereas the product sales hierarchy is represented in
the tree table format. The PrimeFaces horizontal tree and TreeTable components will
be used to create tree and tree table representations.

A horizontal tree is created to display the data in a linear format as follows:

<p:tree id="productsHierarchy" value="#{adminController.
productHierarchyRoot}" var="node"
 selectionMode="single" orientation="horizontal"
 selection="#{adminController.selectedNode}" dynamic="true">

 <p:treeNode>
 <h:outputText value="#{node}" />
 </p:treeNode>
</p:tree>

The backing managed bean holds the connected nodes from the root to the end
nodes as follows:

public void productTree() {

Chapter 10

[263]

 productHierarchyRoot = new DefaultTreeNode("HealthCare Products",
 null);
 TreeNode node0 = new DefaultTreeNode("Health Devices",
 productHierarchyRoot);
 TreeNode node1 = new DefaultTreeNode("Diabetes Care",
 productHierarchyRoot);
 TreeNode node2 = new DefaultTreeNode("Beauty Care",
 productHierarchyRoot);
 TreeNode node3 = new DefaultTreeNode("Vitamins and Supplements",
 productHierarchyRoot);
 TreeNode node4 = new DefaultTreeNode("Sports and Fitness",
 productHierarchyRoot);

 TreeNode node00 = new DefaultTreeNode("Patient Care", node0);
 TreeNode node01 = new DefaultTreeNode("Monitoring Devices", node0);

}

In the preceding code, each node is instantiated using DefaultTreeNode and assigned
to the TreeNode type. All the nodes are connected in a parent-child relationship.

Now, the horizontal tree displays the products hierarchy in a tree format as follows:

The TreeTable component is created to display the Product sales details in a parent-
child table format. The contextMenu component is integrated with the TreeTable
component to view the additional details of a particular product type as follows:

<p:contextMenu for="productSales">
 <p:menuitem value="View" update="productPanel"
 icon="ui-icon-search" oncomplete="PF('productDialog').show()" />
</p:contextMenu>

Creating a Healthcare Products Application

[264]

<p:treeTable value="#{adminController.productSalesRoot}"
 var="product" id="productSales" selectionMode="single"
 selection="#{adminController.selectedProductNode}">

 <f:facet name="header">
 Right-Click to See Options
 </f:facet>

 <p:column style="width:150px">
 <f:facet name="header">
 Product Type
 </f:facet>
 <h:outputText value="#{product.prodtype}" />
 </p:column>

 <p:column style="width:100px">
 <f:facet name="header">
 Gain/Loss Percentage
 </f:facet>
 <h:outputText value="#{product.gainloss}" />
 </p:column>
</p:treeTable>

The backing managed bean holds the connected nodes from the root to the end
nodes as follows:

public void productSales(){
 productSalesRoot = new DefaultTreeNode("root", null);

 TreeNode node0 = new DefaultTreeNode(new ProductSales
 ("Health Devices", "80k","90k","1billion","2billion","+40%"),
 productSalesRoot);
 TreeNode node1 = new DefaultTreeNode(new ProductSales
 ("Diabetes Care", "60k","80k","1.5billion","2.5billion","+30%"),
 productSalesRoot);
 TreeNode node2 = new DefaultTreeNode(new ProductSales
 ("Beauty Care", "80k","90k","2billion","3billion","+20%"),
 productSalesRoot);
 TreeNode node3 = new DefaultTreeNode(new ProductSales
 ("Vitamins and Supplements", "70k","80k","1billion",
 "3billion","+30%"), productSalesRoot);
 TreeNode node4 = new DefaultTreeNode(new ProductSales
 ("Sports and Fitness", "50k","80k","2billion","3billion","+40%"),
 productSalesRoot);
 TreeNode node00 = new DefaultTreeNode(new ProductSales
 ("Patient Care", "10k","10k","200million","400million","+30%"),
 node0);

Chapter 10

[265]

 TreeNode node01 = new DefaultTreeNode(new ProductSales
 ("Monitoring Devices", "10k","10k","200billion",
 "400million","+50%"), node0);

}

Now, the ProductSales TreeTable displays the product category and the gain/loss
details in table format as follows:

The preceding screenshot shows the additional product details such as the number of
items sold in the previous and current years, the number of sales in the previous and
current years displayed along with product category, and the gain/loss values using
integrated contextMenu.

Implementing the view-expired message using
idleMonitor
If there is no user activity on the application for quite some time, then the web
application needs to notify the user about the inactivity. To make this process easier,
PrimeFaces implemented idleMonitor with a default timeout setting value.

The idleMonitor component is implemented with a timeout value of 20 seconds to
notify the shopping cart user/administrator as follows:

<p:idleMonitor timeout="20000"
onidle="PF('idleDialog').show()" onactive="PF('idleDialog').hide()" />
<p:dialog header="View is Expired!!!" resizable="false"
 widgetVar="idleDialog" modal="true" width="400">
 <h:outputText value="Hello user, are you there?" />
</p:dialog>

Creating a Healthcare Products Application

[266]

The healthcare application notifies the user with the view-expired message as follows:

Once the user performs any activity on the web page, then the view-expired pop-up
message disappears.

Applying themes in your PrimeFaces
applications
PrimeFaces is well integrated with the powerful ThemeRoller CSS framework. You
can use either the predefined themes from PrimeFaces or create new themes from
scratch for the application design. Currently, there are more than 30 predesigned
themes available in the PrimeFaces theme gallery (http://www.primefaces.org/
themes.html).

Applying existing themes
Applying a theme to your PrimeFaces project is quite easy. Each theme is packaged
in a JAR file. First, you have to download the JAR file from the PrimeFaces theme
gallery and then add it to your classpath. After that, you need to define the
primefaces.Theme context parameter in your deployment descriptor (web.xml) file
with the theme name as its value.

You can download it either directly from the theme gallery or from the
PrimeFaces repository.

http://www.primefaces.org/themes.html
http://www.primefaces.org/themes.html

Chapter 10

[267]

For example, the home theme configured on the primefaces.Theme context
in your deployment descriptor file is as follows:

<context-param>
 <param-name>primefaces.THEME</param-name>
 <param-value>home</param-value>
</context-param>

By default, the aristro theme will be applied in the PrimeFaces project.

Creating a new theme from scratch
If you would like to create your own new theme instead of using the predefined
one, then there is a powerful online tool available named ThemeRoller from the
jQueryUI site. The main advantage of this development tool is the speed with which
you get the feedback to the changes made in the design. Any changes that are made
in the theme design are instantaneously reflected in the widgets defined in the same
page. The following figure represents how to create your own themes from the
ThemeRoller framework:

Creating a Healthcare Products Application

[268]

Let's create our own theme in a step-by-step approach for the healthcare
products application.

First, we have to navigate to the ThemeRoller online development screen, which is
available under the jQueryUI site (http://jqueryui.com/themeroller/).

Font settings
This font section is used to set the properties of the font style for our custom theme.
These font settings are applied to all widgets available in the application. Expanding
the Font Settings section displays the three properties of the font style, such as font-
family, weight, and size.

We will define the font properties for our healthcare products application as follows:

• In the font Family field, enter Tahoma, Geneva, sans-serif
• In the Weight field, select bold
• Increase the font size a little from 1.1em to 1.2em

After making these changes, we are able to see some sample widgets on the right-
hand side of ThemeRoller as follows:

http://jqueryui.com/themeroller/

Chapter 10

[269]

Corners
All the jQuery UI widgets have corners, and they are controlled by a single corner
radius property setting. This property is used to define the roundness of the widget.
Rounded corners are much better than straight lines. This property is based on the
CSS3 border-radius property, and it is supported in all the major browsers except
IE8 or earlier.

We will define the corner radius properties for the healthcare products application as
follows:

1. Continuing our theme design, expand the Corners section.
2. Change the value of the Corners field to 10px.

After making these changes, we are able to see some sample widgets on the
right-hand side of ThemeRoller as follows:

Creating a Healthcare Products Application

[270]

Header/Toolbar
Like any web page that has page headers, some of the jQuery widgets also have
headers. These headers will stand out from the rest of the content to gain more
user attention. This section contains two main categories of properties: first, the
background color and texture; and secondly, the border, text, and icon.

We will define the header properties for the healthcare products application
as follows:

1. Continuing our theme design, expand the Header/Toolbar section.
2. In the Background color & texture section, change the background color,

texture, and opacity properties to # e30f0f, dots_small (the generated
name that appears in the tooltip), and 65% respectively.

3. In the border settings, change the Border, Text, and Icon colors to #504646,
#110505, and #130d0d respectively.

After making these changes, we are able to see some sample widgets on the
right-hand side of ThemeRoller as follows:

Chapter 10

[271]

Content
The same properties of the Header/Toolbar section will be available in the Content
section as well; that is, the settings of the Header/Toolbar section are the same as the
Content settings. If the widget has a header, then the Content section is obvious and
these settings are complimentary to each other.

We will define the Content properties for the healthcare products application
as follows:

1. Continuing our theme design, expand the Header/Toolbar section.
2. In the Background color & texture section, change the background

color, texture, and opacity properties to #234378, fine_grain, and
65% respectively.

3. In the border settings, change the Border, Text, and Icon colors to #151515,
#f8f8f8, and #8f8787 respectively.

After making these changes, we are able to see some sample widgets on the right-
hand side of ThemeRoller as follows:

Creating a Healthcare Products Application

[272]

Clickable states – default, hover, and active state
The jQueryUI widgets are always in more than one state. These states play a very
crucial role in the theme design. A widget in one state looks different than the widget
in other states. These states will be changed based on mouse events. For example,
any widget exist in the default state, when you place your mouse over the widget, it
results to the hover state and then clicking on the widget changes to the active state.

We will define the state properties for the healthcare products application as follows:

1. In the Background color & texture section, change their respective
background color, texture, and opacity properties. The default values are
#b0adad, inset_hard, and 65%. The hover values are #fa9595, glass, and
65%. The active values are #fcfafa, highlight_hard, and 65%.

2. In the border settings, change their respective Border, Text, and Icon colors.
The default values are #191616, #373636, and #636060. The hover values are
#3c3636, #130e0e, and #2a2525. The active values are #151111, #130e0e,
and #2b2323.

Chapter 10

[273]

After making these changes, we are able to see some sample widgets on the right-
hand side of ThemeRoller as follows:

Cues – highlight and error
In web applications, it is important to have the ability to notify users about the
events that have taken place. For example, when an order was processed successfully
or when the registration field was entered incorrectly, users are notified of the events
that occurred. Basically, we will categorize these events in two sections:

• Highlight: This is something informational that needs to be brought to the
user's attention

• Error: This is something exceptional that should not have happened

We will define the state properties for the healthcare products application as follows:

1. Expand the Highlight/Error section, and change the background color,
texture, and opacity as follows:

 ° Highlight: #b8a958, inset_soft, and 50%
 ° Error: #5ff97a, inset_hard, and 95%

Creating a Healthcare Products Application

[274]

2. In the border settings, change the Border, Text, and Icon colors as follows:

 ° Highlight: #4a4941, #151111, and #075ddb
 ° Error: #3a2e2e, #bd1616, and #9d0808

After making these changes, we are able to see some sample widgets on the right-
hand side of ThemeRoller as follows:

Overlays and shadows
These are the special theme settings that allow us to specify how overlays that are
used with the dialog widget look and how the widgets that are used with shadows
look. The dialog overlays are defined with the opacity level when the model dialog is
displayed, and shadows are defined when the CSS classes are specified explicitly.

Chapter 10

[275]

We will define the state properties for the healthcare products application as follows:

• Expand both Modal Screen for Overlays and Drop Shadows, and then
change the background color, texture, and opacity as follows:

 ° Overlays: #f55353, dots_small, and 5%
 ° Shadows: #fb5757, fine_grain, and 5%

• Expand both Modal Screen for Overlays and Drop Shadows, and then
change the overlay and shadow opacities and shadow and thickness values
as follows:

 ° Overlay Opacity: 20%
 ° Shadow Opacity: 20%
 ° Shadow: 20px
 ° Top offset: 10px
 ° Left offset: 10px
 ° Corners: 10px

Creating a Healthcare Products Application

[276]

After making these changes, we are able to see some sample widgets on the right-
hand side of ThemeRoller as follows:

Now, we have created the custom jQueryUI theme entirely from the ThemeRoller.
It will generate a long URL based on the theme settings added. You can add/edit
the theme settings any time by saving the theme URL somewhere else, or you can
download the theme by clicking on the download theme button.

However, we need to migrate the theme generated from ThemeRoller to the
PrimeFaces infrastructure. You need to integrate the theme to the particular
application by creating it as JAR and adding it to the classpath. The JAR file
must have the following structure:

- jar
 - META-INF
 - resources
 -primefaces-yourtheme
 - theme.css
 - images

The downloaded theme will have an Images folder and a CSS file. Now, we have to
do two conversions to make it available for the PrimeFaces project:

1. Extract the contents of the package and rename the jquery-ui-{version}.
custom.css file to theme.css.

2. Image references in the theme.css file must be converted to an expression
that the JSF resource loading can understand.

For example, url("images/ui-bg_highlight-hard_100_f9f9f9_1x100.
png"); should be converted to url("#{resource['primefaces-
yourtheme:images/ui-bg_highlight-hard_100_f9f9f9_1x100.
png']}");.

Chapter 10

[277]

Theme Converters
Currently, there are two types of theme converters available for converting
ThemeRoller themes to PrimeFaces themes. They are as follows:

• PrimeFaces Theme Converter
• ThemeRoller to PrimeFaces Themes Converter

PrimeFaces Theme Converter
This is a third-party converter that converts jQuery ThemeRoller themes to
PrimeFaces themes in a simpler way. First, you have to download the converter
from the Softpedia tools website (http://www.softpedia.com/get/Programming/
Other-Programming-Files/Primefaces-theme-converter.shtml). After that,
browse the ThemeRoller zip distribution, add the theme name, and then add the
additional CSS properties (if any) to convert it as a PrimeFaces theme JAR file.

The drawbacks of using the PrimeFaces Theme Converter are as follows:

• Currently, this plugin supports older ThemeRoller versions
• We have to add the ui-inputfied and ui-selectonemenu CSS

properties externally

http://www.softpedia.com/get/Programming/Other-Programming-Files/Primefaces-theme-converter.shtml
http://www.softpedia.com/get/Programming/Other-Programming-Files/Primefaces-theme-converter.shtml

Creating a Healthcare Products Application

[278]

ThemeRoller to PrimeFaces Themes Converter
Creating PrimeFaces themes using this converter is easier than ever. Once you
have downloaded the ThemeRoller zip distribution, just upload the zip file with
the theme name you want and you will get a PrimeFaces theme jar in return. It is
created from osnode (https://themeroller.osnode.com/).

After downloading the blueprints.jar file, you have to configure it for the Maven
local repository and then add the Maven coordinates to the pom.xml file. The
following steps need to be performed to apply the customized user theme:

1. Install the downloaded theme jar file to the local Maven repository (usually,
~/.m2) using the following command:
mvn install:install-file -Dfile=blueprints.jar -DgroupId=com.
packtpub -DartifactId=blueprints -Dversion=1.0-SNAPSHOT
-Dpackaging=jar

The theme is locally installed to ~/.m2/repository/com/packtpub/
blueprints

2. Add a dependency to the project's POM file (pom.xml):

<dependency>
 <groupId>com.packtpub</groupId>
 <artifactId>blueprints</artifactId>
 <version>1.0-SNAPSHOT</version>
</dependency>

Once you restart the application, the login screen's look and feel will have changed
as follows:

https://themeroller.osnode.com/

Chapter 10

[279]

After logging in to the application with the shopping cart user, the HealthKart
screen's styles and skinning will have changed as follows:

After logging in to the application using the admin role, the admin screen's theme
will have changed as follows:

To apply the preceding custom theme design, make sure you add the blueprints
theme dependency in your pom.xml file.

Creating a Healthcare Products Application

[280]

Changing themes on the fly using
ThemeSwitcher
The PrimeFaces library introduced the ThemeSwitcher component to modify theme
changes on the fly without refreshing the page. To notify the theme changes, you can
use the stateful ThemeSwitcher component that uses Ajax behavior. The advanced
ThemeSwitcher component enables custom content such as previewing themes
during the selection of themes.

The ThemeSwitcher component is similar to the basic SelectOneMenu component,
where you can select the themes dynamically. You can apply different themes on the
healthcare products application using the ThemeSwitcher component that resides
(as a dropdown) on the right side.

Working with the project code of the
healthcare products application
If you wish to work on the sample code, all you need to do is download it from the
Git repository at https://github.com/sudheerj/primefaces-blueprints, where
you can use your preferred IDE. From there, you can start playing with the code.
You can run it by using the mvn jetty:run command in the Maven console and
then navigate your browser to http://localhost:8080/web, using the shopping
cart and admin credentials to log in to the application.

https://github.com/sudheerj/primefaces-blueprints
http://localhost:8080/web

Chapter 10

[281]

Summary
In this chapter, you learned how to develop the healthcare products application.
The topics covered in this chapter were: how to create HealthKart and admin
screens using the data display and data hierarchy components such as DataScroller,
MegaMenu, Tree, and TreeTable components; how to apply frequently-used utility
components and create your own themes using the ThemeRoller CSS framework and
Theme Converters; and so on.

After reading this book, you will now be equipped to create rich enterprise
applications using the complete set of PrimeFaces components in a quick span of
time. Based on the project requirements, you can start the project immediately by
using these applications as blueprints.

The next major community release (5.1) is planned to improve the quality and
provide responsive design capabilities to the core components along with fixing
regular issues and developing new components.

We wish you all the best and a good time developing PrimeFaces projects!

Index
Symbols
@OnClose() annotation 247
@PushEndPoint annotation 246
@Singleton annotation 246

A
accordion component

using 77
AccountsDAO 116
accountSummary managed bean 115
actors 89
Admin 253
administrator, employee

registration application 31
admin screen, HealthKart application

implementing 262-265
Advisor 88, 89
AdvisorController managed bean 112
Ajax behavior events 70
Ajaxified components

Partial Page Rendering (PPR) 17
Partial Processing 15, 16
Partial submit 17
poll component 18
using 15

amazon.com 165
Apache Maven build tool 32
Apache MyFaces 9
application components

implementation 202
integration 202
location page 202
scheduling 199

application-level configuration,
PrimeFaces 11-13

application persistence layer
about 189
errors, in hibernate DML 189

architecture, employee registration
application 31, 32

architecture, global mutual funds
tracking application 89, 90

architecture, HealthKart
application 253, 254

architecture, investor information analysis
and reporting application 124, 125

architecture, online chat application 233
architecture, online printing station

application 209
architecture, online shopping

application 167
architecture, Restaurant POS application

about 60
diagrammatic representation 61

aristro theme 267
AsyncIO 244
Atmosphere Framework

about 243
URL 244

autoComplete component 48
availableProducts component 179

B
blueprints theme 279
buy.com 165

[284]

C
captcha 186
Category table 168
CDI 246
central server 243
change password functionality

using 53-55
chart component

URL 214
using 214

ChatController.java class 249
ChatResource.java class 249
ChatUsers.java class 249
checkout cart

implementing, for online shopping
application 180, 181

Chrome inspect element
URL 81

Clickable states, ThemeRoller
active 272, 273
default 272, 273
hover 272, 273

Client Side Validation. See CSV framework
CLIENT_SIDE_ VALIDATION context

parameter 12
client system 243
close event 68
code generation tool

CRUD application, generating 23
entities, adding 23
PrimeFaces pages, generating 23
working with 22

Comment table 188
configuration option, fileUpload component

auto 226
commons 227
native 226

configuration, PrimeFaces
for Maven users 9, 10
for non-Maven users 11

contentFlow component
using 215

contextMenu component 102, 263
controllers

MenuItemController.java 82
UserController.java 82

corner radius property 269
Corners, ThemeRoller

border-radius property 269
corner radius property, defining 269

CRUD application
about 7
generating, in NetBeans 23

CSS
using 84

CSS3 border-radius property 269
CSV framework

enabling 44-53

D
dashboard component

using 220
dashlets 220
Data Access Object (DAO) 189
database, global mutual funds

tracking application
configuring 92

database, HealthKart application
configuring 256

Data Definition Language (DDL) 182
dataGrid component

about 111, 179
columns attribute 74, 75
using 74

Data Manipulation Language (DML) 189
dataScroller component

about 259
binding, with LazyDataModel

class 240, 241
using 239

Datasource 32
dataTable component

using 76
dataTable list, PrimeFaces pages

creating, dialog component used 25
updating, dialog component used 26
viewing, dialog component used 26

Dealer 88, 89
DealerController managed bean 108
defaultCommand component

using 239, 257

[285]

dialog component
used, for creating dataTable list

of PrimeFaces pages 25
used, for updating dataTable list

of PrimeFaces pages 26
used, for viewing dataTable list

of PrimeFaces pages 26
dialog tag 73
DIR context parameter 12
drag-and-drop component

about 165
implementing 178, 179

draggable component 178

E
ebay.com 165
Eclipse

about 18, 187
PrimeFaces code completion, performing

with 19, 20
editor component

using 235
employee registration application

architecture 31, 32
change password functionality 53-55
creating 30
CSV framework, enabling 44-53
form, exploring 40-43
implementing 32
implementing, form components used 34
job posts list, tracking 55, 56
login screen, creating 35-39
managing, through admin 56, 57
project code, working with 57
structure 33
template design 34
UML use case diagram 31
URL, for downloading project code 57
use cases 30

entities
adding 23

entity diagram, Restaurant POS
application 62

ER diagram, online printing
station application

Customer table 210

Location table 210
PrintJobs table 210

ER diagram, online shopping application
Category table 168
ORDERS table 168
Product table 168

ER diagram, online video portal
application 188

errors, in hibernate DML 189
events, layout component

close 68
resize 68
toggle 68

exportAsImage() function 156
extender client-side function 156

F
Facelets 31, 89, 124, 253
favorite list 77
fileDownload component

about 156
using 229

fileUpload component
implementing 226-228
using 226

focus tag
using 238

form components
used, for application screen

implementation 34

G
getAllInvestments() method 139
getAllTransactions() method 142
GitHub repository

URL, for cloning sample code 206
global mutual funds tracking application

about 88
architecture 89, 90
creating 88
database, configuring 92
login credentials 97
login screen, implementing 93-97
mutual funds screens 98
sample code 119
structure, creating 91

[286]

template design 92
UML use case diagram, sketching 89
use cases 88

gmap component, options
center 203
style 203
type 203
zoom 203

grouping components
about 70, 179
column tag 70
dataGrid component 70
panelGrid component 70-73
row tag 70

growl component
URL 216
using 216, 241

Guice 246

H
healthcare products application (HealthKart

application)
about 252
admin screen, implementing 262-265
architecture 253, 254
creating, with PrimeFaces 251
database, configuring 256
HealthKart screen, implementing 259-262
login screen, implementing 256-258
sample code 280
structure, creating 254, 255
template, designing 255, 256
UML use case diagram 252, 253
use cases 252
ViewExpired message implementing,

idleMonitor component used 265, 266
"Hello World" application, PrimeFaces

developing 14, 15
hibernate framework 90, 125, 253
HibernateUtil.java class 183
HibernateUtil.java file 170
home page, online video portal application

about 190, 191
code 192, 193

home theme 253, 266

HTTP streaming 243

I
idleMonitor component

used, for implementing ViewExpired
message 265, 266

implementation phase
about 187
application components, scheduling 199
ER diagram 188
working, on application persistence

layer 189
working, on presentation layer 190

inline edit component
using 242

input components
used, for creating login screen 35-39

inputMask component
about 219
URL 219

inputSecret component 219
Integrated Development Environment(IDE)

about 18
Eclipse 18
NetBeans 18

integration, application component
LatLng 205
MapModel 204
markers 205

Intellij 187
Investor 88, 89
investor information analysis

and reporting application
about 121, 122
architecture 124, 125
database, configuring 127, 128
login credentials 131
login screen, implementing 128-131
overview 122
sample code 163
structure, creating 126, 127
summary screens 143
summary tables 131
template design, creating 127
UML use case diagram 124
use cases 123

[287]

J
JavaScript API, layout component

show 68
toggle 68

JavaServer Faces. See JSF
job posts list

tracking 55, 56
jobseeker/applicant, employee registration

application 31
jQplot options

about 156
URL 156

JSF 8
JSF 2.2 13
JSF library

URL, for downloading 11
JSF runtime

compatibility, checking 13
JSONP 243

K
key performance indicators (KPIs) 220

L
landing page, online chat application

coding, after login 239, 240
coding, before login 236-238
dataScroller component, binding

with LazyDataModel class 240, 241
dataScroller component, using 239
defaultCommand component, using 239
focus tag, using 238

landing page, online printing
station application

chart component, using 214
coding, with chart component 214, 215
coding, with contentFlow component 216
coding, with scrollPanel component 213
coding, with TagCloud component 212
contentFlow component, using 215
growl component, using 216
implementing 210
panelGrid component, using 216
scrollPanel component, using 213
TagCloud component, using 211, 212

layout component
about 66
Ajax behavior events 70
events 68, 69
forms, working with 67
implementation 67, 68
JavaScript API 68
possible error 68

LazyDataModel class
dataScroller component, binding

with 240, 241
leftPan component 177
Lineitem collection variable 84
Location table 188
login credentials, global mutual funds

tracking application
Advisor 98
Dealer 97
Investor 97
Service center user 97

login page, online printing station
application

implementing 216, 217
login screen, employee registration

application
creating, with input components 35-39

login screen, global mutual funds
tracking application

implementing 93-97
login screen, HealthKart application

implementing 256-258
login credentials 258

login screen, investor information analysis
and reporting application

implementing 128-131
login screen, Restaurant POS application

accordion component, using 77
dataGrid component, using 74
dataTable component, using 76
implementing 73, 74

long-polling 243

M
mandatory dependencies

using 10
MegaMenu component 259

[288]

menubar component
used, for creating menu in online

shopping application 173
menu component 165
MenuItemController.java 82
menuItems child component 102
menuItems variable 84
menu, online shopping application

creating, menubar component used 173
store management 173

MessageDecoder.java class 249
MessageEncoder.java class 249
Message.java class 249
MovieSchedule table 188
Movie table 188
MOVIE_TAGS table 188
mutual funds screens

account summary information screen,
implementing 113-118

advisor information screen,
implementing 110-113

dealer information screen,
implementing 105-110

service center information screen,
implementing 98-105

mvn jetty:run command 57, 119, 183, 234
mvn tomcat:run command 234
MySQL database 90, 125, 187, 233, 254
MySQL Workbench

about 188
URL 188

N
native Comet 243
native websockets 243
NetBeans

about 18
CRUD application, generating in 23
PrimeFaces code completion,

performing with 21
PrimeFaces component suite 21

Next Generation Ordering System (NGOS)
about 166
administration 166
storefront 166

O
online chat application

architecture 233
coding, PrimeFaces Push technology

used 245-247
deploying 234
developing, PrimeFaces Push

technology used 232
developing, PrimeFaces used 232
editor component, using 235
ER diagram 233, 234
executing 234
flow diagram 232
implementing 234
implementing, PrimeFaces Push

technology used 244
landing page, coding after login 239, 240
landing page, coding before login 236, 238
password component, using 236
private chat option, enabling 248, 249
requisites 232
requisites, implementing 233
sample code 249
selectOneButton component, using 235
URL, for sample code 249
User Profile page 242, 243
working 247

online printing station application
architecture 209
ER diagram 209, 210
functional requirements 208
landing page, implementing 210
login page, implementing 216, 217
print job order, implementing 223, 224
registration page, implementing 218, 219
requirement analysis 208
requirements implementing,

PrimeFaces used 209
sample code 230
URL, for sample code 230
usage 207, 208
user dashboard page, implementing 220

online shopping application
about 165
architecture 167

[289]

creating menu, menubar component
used 173

ER diagram 168
file structure 182, 183
flow diagram 176
functional requisites 166
implementation 168
persistence layer 169, 170
sample code 183
storefront 177
URL, for sample code 183
use case 166

online video portal application
home page 190, 191
login, enabling 193, 194
overview 185
registration, enabling 193, 194
requisites 186, 187
sample code 206
system architecture 187
user dashboard page 197, 198

OnMessage() annotation 247
optional dependencies

using 10
Oracle Mojarra 9
ordering platform, Restaurant

POS application
component, updating 79
controllers, using 82-84
CSS, using 84
implementing 80, 81

ORDERS table
about 168
orderDetails field 168

osnode
about 278
URL 278

P
panelGrid component

about 70-72
advantage 73
using 216, 241

Partial Page Rendering (PPR) 17
Partial Processing 15, 16
Partial submit 17

password component
using 236

PathParm annotation 247
p:clientValidator CSV component 44
persistence layer, online shopping

application
administration 171, 172
back office module 171, 172
implementing 169, 170
presentation layer 171, 172

Plain Old Java Object (POJO) 187
p:message component 39
p:messages component 36, 39
poll component 18
populateCategory method 177
presentation layer 190
PrimeFaces

about 7, 8, 173
application-level configuration 11-13
configuring, for Maven users 9, 10
configuring, for non-Maven users 11
features 8
HealthKart application, creating 251
"Hello World" application,

developing 14, 15
JSF runtime compatibility, checking 13
URL 11
used, for building Restaurant POS

application 59, 60
used, for developing online chat

application 232
used, for implementing online printing

station application requirements 209
PrimeFaces applications

existing themes, applying to 266, 267
themes, applying to 266

PrimeFaces code completion
code generation tool 22
performing, with Eclipse 19, 20
performing, with NetBeans 21

PrimeFaces CRUD generator 22
PrimeFaces library 29
PrimeFaces pages

dataTable list, creating 25
dataTable list, displaying 24
dataTable list, updating 26
dataTable list, viewing 26

[290]

generating 23
menu features, displaying 24
page layout, displaying 24

PrimeFaces Push technology
used, for coding online chat

application 245-247
used, for developing online chat

application 232
used, for implementing online chat

application 244
PrimeFaces Theme Converter

about 277
drawbacks 277
URL, for downloading 277

PrimeFaces theme gallery
URL 266

PrimeFaces toolbar component 191
print job order, online printing station

application
coding, with slider component used 225
implementing 223, 224
implementing, file download

component used 229
implementing, fileUpload component

used 226
implementing, slider component used 224

private void populateCategory() method 83
private void updateTotal() method 83
ProductController.java 182
ProductService.java class 182
Product table 168
Project Lombok

about 187
URL 187
using 233

public void addLineItem()
method 83

public void addToFavorite()
method 83

public void findAllMenuItemsFor
Category() method 83

public void init() method 83
public void loadFavorites() method 83
publish/subscribe 243
Push technology

about 243, 244
PrimeFaces Push technology, using 244

R
registration page, online printing station

application
coding 219
implementing 218, 219

resetInput component 257
RESET_VALUES context parameter 12
resize event 68
Restaurant Point of Sale application

(Restaurant POS application)
about 59
architecture 60
building, PrimeFaces used 59, 60
entity diagram 62
implementing 62
implementing, template tags used 63
integrating, with ordering platform 78, 79
login screen, implementing 73, 74
sample code 85
use cases 60

rowIndexVar attribute 76
RTL support 113

S
scheduler component

code 200, 201
scrollPanel component

URL 213
using 213

SECRET context parameter 12
selectOneButton component

using 235
server-sent events 243
ServiceCenterController managed bean 100
ServiceCenterDAO 100
Service center user 88, 89
Shopping cart user 253
slider component

URL 224
using 224

spinner component 48
Spring 246
start theme 89
StoreController.java 182

[291]

storefront, online shopping application
about 177
checkout cart, implementing 180, 181
drag-and-drop component,

implementing 178-180
implementing 177

store management, online shopping
application

category page, adding 175, 176
new products, adding 174, 175

SUBMIT context parameter 12
summary screens, investor information

analysis and reporting application
account summary data, analyzing with

bar charts 153-159
account summary data, analyzing with

pie charts 153-159
account summary data,

exporting 144-149
charts, implementing 153
export functionality, implementing 143
investment summary data, analyzing with

line charts 160, 161
investment summary data,

exporting 149, 150
tips and tricks, exporting 152
transaction summary data, analyzing

with donut charts 161-163
transaction summary data,

exporting 151, 152
summary tables, investor information

analysis and reporting application
account summary table,

implementing 132-135
investment summary table,

implementing 136-139
transaction summary table,

implementing 140-143
sunny theme, PrimeFaces library 31
Support-Pac project 61

T
TabView component 262
TagCloud component

using 211, 212
Tags table 188

template design, employee registration
application 34

template tags
grouping components 70
layout component 66
UI composition tag 63-65
used, for implementing Restaurant

POS application 63
templating 63
THEME context parameter 12
theme converters

about 277
PrimeFaces Theme Converter 277
ThemeRoller to PrimeFaces Themes

Converter 277
ThemeRoller

Clickable states 272, 273
Content 271
Corners 269
Drop Shadows 274-276
Font settings 268
Header/Toolbar 270
Highlight/Error 273, 274
Modal Screen for Overlays 274-276
URL 268
used, for creating themes 267, 268

ThemeRoller to PrimeFaces Themes
Converter 277-279

themes
applying, to PrimeFaces applications 266
creating, ThemeRoller used 267, 268
existing themes, applying to PrimeFaces

applications 266
modifying, ThemeSwitcher component

used 280
ThemeSwitcher component

used, for modifying themes 280
toggle event 68

U
ui:composition tag 65
ui:define tag 64
ui:include tag 66
ui:insert tag 64
UI composition tag 63-65
ui-lightness theme 125

[292]

UPLOADER context parameter 12
UserController.java 82, 182, 249
user dashboard page, online printing station

application
coding, with dashboard

component 220-223
implementing 220
implementing, dashboard component

used 220
user dashboard page, online video portal

application 197, 198
user interface (UI) 8
User Profile page, online chat application

creating 242, 243
user registration page, online video portal

application
code 195, 196

users, global mutual funds tracking
application

Advisor 88
Dealer 88
Investor 88
Service center user 88

User table 188

V
validateUser() method 36, 94
ViewExpired message

implementing, idleMonitor component
used 265, 266

W
websockets 243
wizard component 181

X
XHTML 31, 60, 89, 124, 253

Thank you for buying
PrimeFaces Blueprints

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

PrimeFaces Cookbook
ISBN: 978-1-84951-928-1 Paperback: 328 pages

Over 90 practical recipes to learn PrimeFaces – the
rapidly evolving, leading JSF component suite

1. The first PrimeFaces book that concentrates
on practical approaches rather than the
theoretical ones.

2. Readers will gain all the PrimeFaces insights
required to complete their JSF projects
successfully.

3. Written in a clear, comprehensible style
and addresses a wide audience on modern,
trend-setting Java/JEE web development.

Instant PrimeFaces Starter
ISBN: 978-1-84951-990-8 Paperback: 90 pages

Design and develop awesome web user interfaces
for desktop and mobile devices with PrimeFaces and
JSF2 using practical, hands-on examples

1. Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results.

2. Integrate Google Maps in your web application
to show search results with markers and
overlays with the PrimeFaces gmap component.

3. Develop a customizable dashboard for your
users that displays charts with live data, news
feeds, and draggable widgets.

Please check www.PacktPub.com for information on our titles

PrimeFaces Beginner's Guide
ISBN: 978-1-78328-069-8 Paperback: 378 pages

Get your JSF-based projects up and running with this
easy-to-implement guide on PrimeFaces

1. Detailed explanation on how to use basic
PrimeFaces UI components such as form
controls, panels, and layouts.

2. Delve into PrimeFaces advanced UI
components such as dataTables, menus, charts,
file uploading, and themes.

3. Easy to read and learn with its step-by-step
instructions in Time for action and What just
happened sections.

Learning PrimeFaces Extensions
Development
ISBN: 978-1-78398-324-7 Paperback: 192 pages

Develop advanced frontend applications using
PrimeFaces Extensions components and plugins

1. Learn how to utilize the enhanced Extensions'
components in the existing or newly created
PrimeFaces based applications.

2. Explore all the components major features with
lots of example scenarios.

3. Features a systematic approach to teach a wide
range of Extensions component features with
the JobHub web application development.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Creating a "Hello World" Application
	An introduction to JavaServer Faces and PrimeFaces
	Setting up and configuring PrimeFaces
	Setting up and configuring using Maven
	Setting up and confguring for non-Maven
(or Ant) users
	Application-level configuration
	Checking the JSF runtime compatibility

	Developing your first PrimeFaces application
	Change the old trend of development with Ajaxified components
	Learning Partial Processing
	Partial Page Rendering
	Partial submit
	PrimeFaces polling

	PrimeFaces code completion, NetBeans bundles PrimeFaces, and the code generation tool
	Eclipse code completion
	NetBeans code completion
	NetBeans bundles PrimeFaces
	The code generation tool
	Generating a CRUD application
	Adding entities and generating PrimeFaces pages

	Summary

	Chapter 2: Creating an Employee Registration Application
	Introduction to the employee registration project
	The employee registration application
	Application use cases
	The UML use case diagram

	The architectural design

	Creating a project and implementing the application screens
	The project structure
	Understanding the application template design
	Implementing the application screens using the form components
	Creating the login screen using the input components
	Exploring the employee registration form
	The Client Side Validation framework in form validations
	Exploring the change password functionality
	Tracking the list of job posts
	Managing the application through an admin role

	Working with the employee registration project code

	Summary

	Chapter 3: Creating a Simple Restaurant Point of Sale Application
	A quick start
	Application use cases
	The architectural design
	The application architecture diagram
	The entity diagram

	Implementing the application
	Template tags
	The UI composition tag
	The layout component
	The grouping components

	Supporting tags in the login screen
	The dataGrid component
	The dataTable component and its usage
	The accordion component and its usage

	Integrating the restaurant's menu card model
	Updating the component on a click

	Working with sample code

	Summary

	Chapter 4: Global Mutual Funds Tracking
	An introduction to the global mutual funds tracking project
	The global mutual funds tracking application
	Application use cases
	Sketching the UML use case diagram

	The architectural design

	Creating a project and implementing the application screens
	The project structure
	Understanding the application template design
	Database configurations
	Implementing the application screens using data iteration components
	Implementing the login screen
	Login credentials
	Exploring the mutual funds screens

	Working with the project code of the global mutual funds tracking application
	Summary

	Chapter 5: Investor Information Analysis and Reporting
	Understanding the investor information analysis and reporting project
	About the application
	Application use cases
	The UML use case diagram

	The architectural design

	Creating the project and implementing the application screens
	The project structure
	The application template design
	Database configurations
	Implementing application screens using analysis and reporting components
	Implementing the login screen
	The login credentials
	Exploring the summary tables
	Implementing the export functionality in summary screens
	Implementing the charts functionality in summary screens

	Working with investor information analysis and reporting the application project code
	Summary

	Chapter 6: Creating a Simple Online Shopping Cart Application
	Understanding the application
	The application use case
	Functional requirements
	The architecture

	The ER diagram

	The implementation
	The persistence layer
	The administration / back office module

	The menubar component
	Store management
	The category page
	The flow diagram

	The storefront
	Implementing the cart mechanism
	Code walk-through

	Working with the sample code

	Summary

	Chapter 7: Creating an Online Video Portal Application
	A quick overview
	Understanding our requirements
	The system architecture
	Implementations
	The ER diagram
	Working on the application persistence layer
	Possible errors in hibernate DML

	Working on the presentation layer
	The home page
	Enabling registration and login
	The user dashboard page

	Scheduling the application components
	Implementing the location page
	Integration

	Working with the sample code
	Summary

	Chapter 8: Creating an Online Printing Station Application
	Understanding the need of this application
	Requirement analysis
	Functional requirements

	The architecture
	Fulfilling our application requirements using PrimeFaces
	The ER diagram
	Implementing our landing page
	The TagCloud component
	The scrollPanel component
	The chart component
	The contentFlow component
	Supporting components

	The login page
	The registration page
	The user dashboard page

	Placing the print job order
	The slider component
	Code walk-through
	The fileUpload component
	The file download component

	Working with the sample code

	Summary

	Chapter 9: Creating an Online
Chat Application
	The application use case
	Requirement analysis
	A flow diagram

	The architecture
	Implementing the requirements
	The ER diagram
	Implementing, deploying, and running the application
	The editor component
	The selectOneButton component
	The password component
	Code walk-through – the landing page before login
	The landing page after login
	Supporting components
	The User Profile page

	The Push technology
	Implementing the chat module using PrimePush

	Working with the sample code

	Summary

	Chapter 10: Creating a Healthcare Products Application
	Introducing our healthcare products application
	Application use cases
	The UML use case diagram

	The architectural design

	Creating a project and implementing the application screens
	Laying out our application structure
	Designing the application template
	Database configurations
	Implementing application screens using data hierarchy, data display, and utility components
	Implementing the login screen
	Login credentials
	Implementing the HealthKart screen
	Implementing the admin screen
	Implementing the view-expired message using idleMonitor

	Applying themes in your PrimeFaces applications
	Applying existing themes
	Creating a new theme from scratch
	Font settings
	Corners
	Header/Toolbar
	Content
	Clickable states – default, hover, and active state
	Cues – highlight and error
	Overlays and shadows

	Theme Converters
	PrimeFaces Theme Converter
	ThemeRoller to PrimeFaces Themes Converter

	Changing themes on the fly using ThemeSwitcher

	Working with the project code of the healthcare products application
	Summary

	Index

