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Chapter 1
Introduction

Sherali Zeadally and Mohamad Badra

1.1 Overview

Over the last decade, we have witnessed a growing interest and increasing
investments in technologies, applications, and system communications around the
world. Almost every component in our entourage is being completely networked.
With so much sensitive data being generated in the digital world, security and
privacy continue to be seen as impediments refraining users from widely using
these recent technologies and applications. While privacy is relatively easy to
manage within simple client/server architecture, it becomes a significant challenge
to ensure privacy in the era of Big Data, cloud computing, and smart applications.

Privacy in a Digital, Networked World—Technologies, Implications and
Solutions presents state-of-the-art research results from recognized experts on
technical, legal, and ethical privacy issues in various technological areas and
emerging paradigms. We expect this book to be a valuable, authoritative reference
for students, educators, faculty members, researchers, and engineers currently
working or interested in the area of privacy spanning various areas including smart
cities, smart grids, Big Data, databases, social networks, healthcare, and so on.

S. Zeadally (&)
University of Kentucky, Lexington, USA
e-mail: szeadally@uky.edu

M. Badra
Zayed University, Dubai, United Arab Emirates
e-mail: mohamad.badra@zu.ac.ae

© Springer International Publishing Switzerland 2015
S. Zeadally and M. Badra (eds.), Privacy in a Digital, Networked World,
Computer Communications and Networks,
DOI 10.1007/978-3-319-08470-1_1
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1.2 Database Privacy

Chapter 2 on database privacy presents several privacy techniques (such as statis-
tical disclosure control (SDC) methods, anonymization methods, or sanitization
methods) that can be applied to databases. The authors present an overview of the
issues in database privacy, a survey of the best-known SDC methods, a discussion
on the related data privacy/utility trade-offs and a description of privacy models
proposed by the computer science community in recent years. Some relevant
freeware packages are also identified. A priori and a posteriori approaches to dis-
closure control in database privacy sanitization have been reviewed. This chapter
looks at sanitization methods, which are common to both approaches, through the
discussions on tabular data, queryable databases, and microdata, with a special
focus on the latter. Finally, research challenges and opportunities have been
identified in the area of statistical disclosure control.

1.3 Privacy and Big Data

Chapter 3 presents a brief review of Big Data technologies, describes the benefits,
and outlines how Big Data has come to harm privacy in subtle new forms. The
chapter investigates privacy issues that have come up due to technological
advancements leading to mostly huge amounts of personal data being stored and
communicated. The chapter then reviews the legal and technological issues and
describes some possible solutions. It further discusses many open research prob-
lems and challenges related to privacy and Big Data. Moreover, this chapter also
covers technology, law, and ethics aspects of Big Data analytics from a
non-technical perspective.

1.4 Privacy in Crowdsourced Platforms

An overview of privacy in crowdsourcing platforms is given in Chap. 4, with a
focus on platforms (such as the Amazon Mechanical Turk (AMT) platform) that
specifically deal with the collection and aggregation of information. This chapter
emphasizes the privacy risks in online systems and discusses how these risks apply
to crowdsourcing platforms, focusing on the potential for exposing Personally
Identifiable Information (PII). These risks are illustrated with an example of a real
world attack conducted through a series of survey tasks in AMT. In addition, the
chapter provides an overview of solutions that can provide privacy protection in
online services in general, and identifies those that could also be applied to
crowdsourcing platforms. Furthermore, the chapter includes a specific proposal for
a privacy-preserving crowdsourcing platform that relies on obfuscation, and
describes the design choices surrounding obfuscation techniques, privacy levels,

2 S. Zeadally and M. Badra

http://dx.doi.org/10.1007/978-3-319-08470-1_2
http://dx.doi.org/10.1007/978-3-319-08470-1_3
http://dx.doi.org/10.1007/978-3-319-08470-1_4


privacy loss quantification, privacy depletion, cost settings, and utility estimation of
workers in crowdsourcing platforms. The chapter describes the implementation
details for a prototype of the system and summarizes the challenges that still need to
be addressed to enhance the privacy of workers in crowdsourcing platforms.

1.5 Privacy in Healthcare

Privacy of healthcare records has been a major concern for a very long time now.
Various legislations have been put in place to ensure the privacy of patients. Chapter
5 discusses a few electronic healthcare systems that can be classified into a variety of
systems with their own features and faults. The chapter also presents several privacy
concerns related to the storage and transmission of health information, the use of
mobile devices and social media, and the use of cloud storage systems in healthcare.
Moreover, the chapter discusses the privacy challenges that exist in all of the
electronic health systems and solutions to address these challenges in those systems.
Finally, the chapter highlights future privacy challenges and opportunities related to
the development and deployment of electronic health systems.

1.6 Privacy in Peer-to-Peer Networks

Peer-to-peer (P2P) networks are designed to take advantage of dispersed network
resources and enable participants to act as servers or clients; their main charac-
teristics include the direct sharing of resources among users, their self-organization,
stability, and autonomy. As with other systems, privacy is a major concern in P2P
networks. Chapter 6 on privacy in P2P networks starts with an introduction to P2P
networks, their classification, and their characteristics. After presenting a brief
overview of P2P networks, the chapter identifies and analyzes the existing privacy
issues when using P2P networks and the current privacy solutions that can be used.
These solutions include anonymous systems, routing modifications, protection of
contents when stored and during transmission, private and split credentials, hidden
services, and application configuration and hardening. The chapter further explores
the challenges that must be addressed in the future. It also discusses future research
directions.

1.7 Privacy in the Cloud

Cloud computing technologies are being deployed and used by many businesses,
governments, and organizations and are becoming increasingly popular as they
offer access to a wide range of infrastructure resources, very convenient

1 Introduction 3
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pay-as-you-go service, and low cost computing and storage. However, the advan-
tages of clouds come with increased security and privacy risks. Chapter 7 discusses
the need for privacy protection and the confidentiality of data and applications
outsourced to the cloud. The authors present an overview of multi-tenancy and
other inherent properties of the cloud computing model, as well as the novel attack
surfaces and threats to cloud users’ privacy. The chapter also discusses existing
approaches for protecting privacy, and analyzes the pros and cons of these solu-
tions. Finally, it outlines a list of open problems and issues which need to be further
investigated and addressed by researchers in the future.

1.8 Privacy in Vehicular Ad Hoc Networks

Chapter 8 discusses various privacy issues in vehicular ad hoc networks
(VANETs). The chapter starts by presenting VANET as a new and promising
technology that can enhance road safety and provide the foundation for many
possible added value applications and services. The chapter then investigates the
various security and privacy concerns associated with this technology. The authors
present several approaches aimed at protecting user and vehicle privacy in VANET
communications and also include a discussion of current solutions and their limi-
tations. Finally, the chapter discusses a broad range of critical security and privacy
challenges currently present in VANETs which should be investigated in future
research works.

1.9 Privacy Law and Regulation

Chapter 9 deals with the regulation of personal information disclosure and the
privacy of individuals. It provides an overview of the laws and regulations used to
regulate privacy in the digital age. This chapter examines the current state of US
laws that have a direct or indirect impact on the privacy of individuals. The authors
of this chapter consider government surveillance and both the laws that allow it and
those aimed at placing restraints on law enforcement activities. This is followed by
an analysis of privacy regulation in the European Union. The chapter concludes by
examining opportunities for change with respect to privacy laws and regulations.

1.10 Privacy in Mobile Devices

The ubiquitous use of mobile devices for personal communications, and subse-
quently for almost all types of data transactions, has introduced the next level of
privacy problems. Chapter 10 includes a review of on-going efforts aimed at
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retaining the privacy of users constantly interacting with mobile devices for most of
their daily activities. It presents an overview of mobile devices and their related
technologies. It also highlights the privacy issues associated with the use of a
mobile device and discusses the type of personal data that may be collected by a
mobile application and the methods by which this data may leak to third parties that
are not directly authorized by the user. The chapter discusses the solutions that can
be deployed to mitigate mobile device privacy concerns. Finally, the chapter ends
with a discussion on the challenges we currently face in making a mobile device a
more privacy-aware sensitive platform.

1.11 Privacy with Biometrics

Chapter 11 discusses the topic of privacy in biometric systems. Biometrics can be a
very effective tool to keep us safe and secure, prevent individuals from applying for
multiple passports or diving licenses, and keep the bad guys out or under control.
However, the fact that we are surrounded by so many biometric sensors does limit
our privacy in one way or another. This chapter is mainly concerned with privacy
issues and solutions surrounding the use of biometrics for recognizing individuals.
It provides an adequate background on biometrics and discusses several privacy
concerns and solutions about biometrics. The chapter ends with a discussion of
some of the outstanding challenges and opportunities in the area of privacy with
biometrics.

1.12 Privacy in Social Networks

Social networks such as Facebook and LinkedIn have gained a lot of popularity in
recent years. These networks use a large amount of data that are highly valuable for
different purposes. Hence, social networks become a potential vector for attackers
to exploit. Chapter 12 focuses on the security attacks and countermeasures used by
social networks. Privacy issues and solutions in social networks are discussed and
the chapter ends with an outline of some of the privacy challenges in the social
networks.

1.13 The Right to Privacy in the Age of Digital Technology

Chapter 13 reviews some of the privacy issues that have arisen as a result of the
emergence and proliferation of digital information networks. It presents a brief
overview of the threats posed to personal privacy, especially for vulnerable groups
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such as the consumer or users of social media to better understand the nature and
scope of the challenges presented by evolving information technologies such as
social networking platforms. The author then analyzes several theories of privacy
and justifications for privacy, the right to privacy, and how to protect this right. The
chapter concludes by describing both the law and technological tools to secure the
privacy rights.

1.14 How to Explore Consumers’ Privacy Choices
with Behavioral Economics

Chapter 14 describes the tools and the evidence to better understand consumers’
privacy behaviors. The tools discussed will be useful to researchers, practitioners,
and policy makers in the area of consumer privacy. The author presents interesting
results about surveying/testing privacy-related behavior of individuals during
electronic communications with a particular focus on e-services. The chapter also
outlines the principles of conducting empirical research on consumers’ privacy
consumption behaviors. Explanation is given as to why experiments rather than
surveys or hypothetical choices are needed for delivering valid insights to decision
makers. After reviewing the existing empirical evidence about the importance that
consumers attach to their privacy, the chapter explains the methodological
requirements of valid privacy experiments and offers practical advice for con-
ducting privacy choice experiments. This chapter provides a good insight into
privacy-enhancing solutions and policies that meet consumers’ needs.

1.15 Techniques, Taxonomy, and Challenges of Privacy
Protection in Smart Grid

The deployment of Smart Grid technologies has also raised considerable concerns
in data privacy issues of Smart Grid users. Privacy concerns in the Smart Grid
environment are mostly related to the collection and use of energy consumption
data of Smart Grid users. In this context, Chapter 15 discusses various Smart Grid
privacy issues and presents Smart Grid privacy protection architectures and
approaches. The authors provide a unique taxonomy of the different privacy pro-
tection mechanisms that have been recently proposed in the literature. Various
strengths and weaknesses of these privacy solutions are also identified. Finally, the
chapter discusses some outstanding challenges that need to be addressed to provide
robust and scalable privacy protection solutions to Smart Grid users.

6 S. Zeadally and M. Badra
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1.16 Location-Based Privacy, Protection, Safety,
and Security

One of the major benefits of location-based services (LBS) is their ability to
maintain safety and security. But LBS can also result in risks such as the use of
LBS for cyber stalking others. To establish the need for LBS regulation, we need to
understand that there will always be a trade-off between LBS’s benefits and the
risks associated with their implementation and adoption. Chapter 16 examines
privacy and security issues with respect to LBS and recognizes the need for
technological solutions, in addition to commitments and adequate assessments/
considerations at the social and regulatory levels. The authors discuss various
solutions that have been recently proposed in the area of location-based privacy and
identify the various strengths and weaknesses of these solutions. The chapter
concludes with a list of interesting challenges relevant to privacy in LBS and the
need for further investigation on issues associated with mobility and location
technologies.

We hope you will enjoy reading this book as much as we did!
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Chapter 2
Database Privacy

Josep Domingo-Ferrer, David Sánchez and Sara Hajian

2.1 Introduction

There is a growing social and economic demand for open data to improve planning,
scientific research, market research, and so on. In particular, the public sector is
under pressure to release as much information as it can in the name of transparency.
Organizations releasing data include national statistical institutes, healthcare
authorities (epidemiology), or even private organizations (e.g., consumer surveys).

When published data refer to individual respondents, care must be taken that the
privacy of the latter is not violated. It should be de facto impossible to relate the
published data to specific individuals. Indeed, supplying data to national statistical
institutes is compulsory in most countries but, in return, those institutes commit to
preserving the privacy of respondents. Hence, rather than publishing exactly
accurate information for each individual, the aim should be to provide useful sta-
tistical information, that is, to preserve as much as possible in the released data the
statistical properties of the original data. This is why privacy-preserving databases
on individuals are called statistical databases.

Statistical databases come in three main formats:

1. Tabular data. That is, tables with counts or magnitudes, which are the classical
output of official statistics.

J. Domingo-Ferrer (&) � D. Sánchez � S. Hajian
Department of Computer Engineering and Mathematics, Universitat Rovira i Virgili,
UNESCO Chair in Data Privacy, Av. Països Catalans 26, 43007 Tarragona,
Catalonia, Spain
e-mail: josep.domingo@urv.cat

D. Sánchez
e-mail: david.sanchez@urv.cat

S. Hajian
e-mail: sara.hajian@urv.cat

© Springer International Publishing Switzerland 2015
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2. Queryable databases. That is, on-line databases to which the user can submit
statistical queries (sums, averages, etc.).

3. Microdata. That is, files where each record contains information on an indi-
vidual (a citizen or a company).

Inference control in statistical databases, also known as Statistical Disclosure
Control (SDC), Statistical Disclosure Limitation (SDL), database anonymization or
database sanitization, is a discipline that seeks to protect data in statistical dat-
abases so that they can be published without revealing confidential information that
can be linked to specific individuals among those to whom the data correspond.
SDC is applied to protect respondent privacy in areas such as official statistics,
health statistics, e-commerce (sharing of consumer data), etc. Since data protection
ultimately means data modification, the challenge for SDC is to achieve protection
with minimum loss of the accuracy sought by database users.

In [16], a distinction is made between SDC and other technologies for database
privacy, like privacy-preserving data mining (PPDM) or private information
retrieval (PIR): what makes the difference between those technologies is whose
privacy they seek. While SDC is aimed at respondent privacy, the primary goal of
PPDM is to protect owner privacy when several database owners wish to co-operate
in joint analyses across their databases without giving away their original data to
each other. On its side, the primary goal of PIR is user privacy, that is, to allow the
user of a database to retrieve some information item without the database exactly
knowing which item was recovered.

The literature on SDC started in the 1970s, with the seminal contribution by
Dalenius [12] in the statistical community and the works by Schlörer and Denning
[14, 62] in the database community. The 1980s saw moderate activity in this field.
An excellent survey of the state of the art at the end of the 1980s is [1]. In the
1990s, there was renewed interest in the statistical community and the discipline
was further developed under the names of statistical disclosure control in Europe
and statistical disclosure limitation in America. Towards the turn of the century,
with the flourish of data mining, there was renewed activity in the database com-
munity, where the field was called data anonymization or data sanitization and was
often confused with privacy-preserving data mining. Subsequent evolution has
resulted in at least three clearly differentiated subdisciplines:

• Tabular data protection. The goal here is to publish static aggregate infor-
mation, that is, tables, in such a way that no confidential information on specific
individuals among those to whom the table refers can be inferred. See [72] for a
conceptual survey.

• Queryable databases. The aggregate information obtained by a user as a result
of successive queries should not allow him or her to infer information on
specific individuals. Since the late 1970s, this has been known to be a difficult
problem, subject to the tracker attack [14, 63]. SDC strategies here include
perturbation, query restriction, and camouflage (providing interval answers
rather than exact answers).

10 J. Domingo-Ferrer et al.



• Microdata protection. It is only recently that data collectors (statistical agen-
cies and the like) have been persuaded to publish microdata. Therefore, mi-
crodata protection is the youngest subdiscipline and is experiencing continuous
evolution in the last years. Its purpose is to mask the original microdata so that
the masked microdata are still analytically useful but cannot be linked to the
original respondents.

The rest of this chapter is organized as follows. Section 2.2 introduces the basic
concepts used throughout the chapter. In Sect. 2.3, we detail algorithms and
mechanisms for sanitizing (i.e., anonymizing) the records in a database. These
algorithms seek to output a sanitized version of data that satisfies a privacy definition
(prevents disclosure risks) and has high utility. Section 2.4 is devoted to ways of
measuring disclosure risk and the utility of sanitized data while the formal definitions
of privacy models are presented in Sect. 2.5. Section 2.6 explores outstanding
challenges that must be addressed in the future and opportunities for new research
directions. The final section concludes the chapter and lists relevant software.

2.2 Background

In this section, we introduce some basic definitions and concepts that are used
throughout this chapter related to data formats (Sect. 2.1) and sanitization of each
format (Sect. 2.2).

2.2.1 Formal Definition of Data Formats

A microdata file X with s respondents and t attributes is an s� t matrix where Xij is
the value of attribute j for respondent i. Attributes can be numerical (e.g., age,
salary) or categorical (e.g., gender, job). The attributes in a microdata set can be
classified in four categories that are not necessarily disjoint:

• Identifiers. These are attributes that unambiguously identify the respondent.
Examples are the passport number, social security number, name-surname, and
so on.

• Quasi-identifiers or key attributes. These are attributes that identify the
respondent with some degree of ambiguity. (Nonetheless, a combination of key
attributes may provide unambiguous identification.) Examples are address,
gender, age, telephone number, and so on.

• Confidential (a.k.a. sensitive) attributes. These are attributes which contain
sensitive information on the respondent. Examples are salary, religion, political
affiliation, health condition, and so on.

• Non-confidential (a.k.a. non-sensitive) attributes. Other attributes which
contain non-sensitive information on the respondent.
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From microdata, tabular data can be generated by crossing one or more cate-
gorical attributes. Formally, a table is a function

T : DðXi1Þ � DðXi2Þ � � � � � DðXilÞ ! R or N

where l� t is the number of crossed categorical attributes and DðXijÞ is the domain
where attribute Xij takes its values.

There are two kinds of tables: frequency tables that display the count of
respondents at the crossing of the categorical attributes (in N) and magnitude tables
that display information on a numerical attribute at the crossing of the categorical
attributes (in R). For example, given some census microdata containing attributes
“Job” and “Town”, one can generate a frequency table displaying the count of
respondents doing each job type in each town. If the census microdata also contain
the “Salary” attribute, one can generate a magnitude table displaying the average
salary for each job type in each town. The number n of cells in a table is normally
much less than the number s of respondent records in a microdata file. However,
tables must satisfy several linear constraints: marginal row and column totals.
Additionally, a set of tables is called linked if they share some of the crossed
categorical attributes: for example “Job” � “Town” is linked to “Job” � “Gender”.

2.2.2 Basic Sanitization Concepts

We will review sanitization/anonymization concepts used for each data format:
tabular data, queryable databases, and microdata.

2.2.2.1 Sanitization of Tabular Data

In spite of tables displaying aggregate information, there is risk of disclosure in
tabular data release. Several attacks are conceivable:

• External attack. For example, let a frequency table “Job” � “Town” be
released where there is a single respondent for job Ji and town Tj. Then if a
magnitude table is released with the average salary for each job type and each
town, the exact salary of the only respondent with job Ji working in town Tj is
publicly disclosed.

• Internal attack. Even if there are two respondents for job Ji and town Tj, the
salary of each of them is disclosed to each other.

• Dominance attack. If one (or a few) respondents dominate in the contribution
to a cell of a magnitude table, the dominant respondent(s) can upper-bound the
contributions of the rest (e.g., if the table displays the total salary for each job
type and town and one individual contributes 90 % of that salary, the dominant
respondent knows that his or her colleagues in the town are not doing very well).
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Sanitization methods for tables fall into two classes: non-perturbative and per-
turbative. Non-perturbative methods do not modify the values in the tables; the best
known method in this class is cell suppression (CS). Perturbative methods output a
table with some modified values; well-known methods in this class include con-
trolled rounding (CR) and the recent controlled tabular adjustment (CTA).

2.2.2.2 Sanitization of Queryable Databases

In SDC of queryable databases, there are three main approaches to protect a con-
fidential vector of numerical data from disclosure through answers to user queries:

• Data perturbation. Perturbing the data is a simple and effective approach
whenever the users do not require deterministically correct answers to queries
that are functions of the confidential vector. Perturbation can be applied to the
records on which queries are computed (input perturbation) or to the query result
after computing it on the original data (output perturbation). Perturbation
methods can be found in [24, 55, 71].

• Query restriction. This is the right approach if the user does require deter-
ministically correct answers and these answers have to be exact (i.e., a number).
Since exact answers to queries provide the user with very powerful information,
it may become necessary to refuse to answer certain queries at some stage to
avoid disclosure of a confidential datum. There are several criteria to decide
whether a query can be answered; one of them is query set size control, that is,
to refuse answers to queries which affect a set of records which is too small. An
example of the query restriction approach can be found in [11].

• Camouflage. If deterministically correct non-exact answers (i.e., small interval
answers) suffice, confidentiality via camouflage (CVC, [30]) is a good option.
With this approach, unlimited answers to any conceivable query types are
allowed. The idea of CVC is to “camouflage” the confidential vector a by
making it part of the relative interior of a compact set P of vectors. Then each
query q ¼ f ðaÞ is answered with an inverval ½q�; qþ� containing ½f�; fþ�, where
f� and fþ are, respectively, the minimum and the maximum of f over P.

2.2.2.3 Sanitization of Microdata

Microdata protection methods can generate the protected microdata set X0 either by
masking original data, i.e., generating X0 a modified version of the original mi-
crodata set X0, or by generating synthetic data X0 that preserve some statistical
properties of the original data X.

Masking methods can in turn be divided in two categories depending on their
effect on the original data [72]:

2 Database Privacy 13



• Perturbative. The microdata set is distorted before publication. In this way,
unique combinations of scores in the original data set may disappear and new
unique combinations may appear in the perturbed data set; such confusion is
beneficial for preserving statistical confidentiality. The perturbation method
used should be such that statistics computed on the perturbed data set do not
differ significantly from the statistics that would be obtained on the original data
set. Noise addition, microaggregation, data/rank swapping, microdata round-
ing, resampling and PRAM are examples of perturbative masking methods (see
the next Section and [42] for details).

• Non-perturbative. Non-perturbative methods do not alter data; rather, they
produce partial suppressions or reductions of detail in the original data set.
Sampling, global recoding, top and bottom coding, and local suppression are
examples of non-perturbative masking methods.

2.3 Database Sanitization Methods

Data publishing organizations usually face a fundamental trade-off between privacy
and utility.

The two extreme policies are the following:

• To release no data in order to maintain total privacy.
• To release original data without any modification to maximize data utility,

without regard to privacy protection.

In this section, we detail methods based on the concepts introduced in Sect. 2.2
that offer good trade-offs between the two above extreme policies. We focus on
microdata sanitization methods, because microdata are the most detailed type of
data. In fact, based on protected microdata, one can also obtain protected tables and
protected query answers: just build tables and compute query answers based on the
protected microdata records.

Each sanitization method consists of an algorithm instantiating in a specific way
a generic sanitization mechanism. We first discuss methods based on deterministic
sanitization mechanisms, and then methods based on randomized sanitization
mechanisms.

2.3.1 Deterministic Sanitization Mechanisms

2.3.1.1 Microaggregation

Microaggregation is a family of SDC techniques for continous microdata. The
rationale behind microaggregation is that confidentiality rules in use allow publi-
cation of microdata sets if records correspond to groups of k or more individuals,
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where no individual dominates (i.e., contributes too much to) the group and k is a
threshold value. Strict application of such confidentiality rules leads to replacing
individual values with values computed on small aggregates (microaggregates)
prior to publication. This is the basic principle of microaggregation.

To obtain microaggregates in a microdata set with n records, these are combined
to form g groups of size at least k. For each attribute, the average value over each
group is computed and is used to replace each of the original averaged values.
Groups are formed using a criterion of maximal similarity. Once the procedure has
been completed, the resulting (modified) records can be published.

The optimal k-partition (from the information loss point of view) is defined to be
the one that maximizes within-group homogeneity; the higher the within-group
homogeneity, the lower the information loss, since microaggregation replaces
values in a group by the group centroid. The sum of squares criterion is common to
measure homogeneity in clustering. The within-groups sum of squares SSE is
defined as

SSE ¼
Xg

i¼1

Xni

j¼1

ðxij � �xiÞ0ðxij � �xiÞ

where xij indicates the microaggregated version of the attribute value. The lower
SSE, the higher the within group homogeneity. Thus, in terms of sums of squares,
the optimal k-partition is the one that minimizes SSE.

Given a microdata set consisting of p attributes, these can be microaggregated
together or partitioned into several groups of attributes. Also the way to form
groups may vary. Several taxonomies are possible to classify the microaggregation
algorithms in the literature: (i) fixed group size [13, 21, 40] vs variable group size
[19, 44]; (ii) exact optimal (only for the univariate case, [37]) vs heuristic micro-
aggregation (the rest of the microaggregation literature); (iii) categorical [21] vs
continuous (the rest of references cited in this paragraph).

To illustrate, we next give a heuristic algorithm called MDAV (Maximum
Distance to Average Vector [18, 21]) for multivariate fixed group size microag-
gregation on unprojected continuous data. We designed and implemented MDAV
for the l-Argus package [40]. In the algorithm below we assume n� k.

1. Compute the average record �x of all records in the data set. Consider the most
distant record xr to the average record �x (using the squared Euclidean distance).

2. Find the most distant record xs from the record xr considered in the previous
step.

3. Form two groups around xr and xs, respectively. One group contains xr and the
k � 1 records closest to xr. The other group contains xs and the k � 1 records
closest to xs.

4. If there are at least 3k records which do not belong to any of the two groups
formed in Step 3, go to Step 1 taking as new data set the previous data set minus
the groups formed in the last instance of Step 3.
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5. If there are between 3k � 1 and 2k records which do not belong to any of the
two groups formed in Step 3: (a) compute the average record �x of the remaining
records; (b) find the most distant record xr from �x; (c) form a group containing xr
and the k � 1 records closest to xr; (d) form another group containing the rest of
records. Exit the algorithm.

6. If there are less than 2k records which do not belong to the groups formed in
Step 3, form a new group with those records and exit the Algorithm.

The above algorithm can be applied independently to each group of attributes
resulting from partitioning the set of attributes in the data set.

2.3.1.2 Bucketization

Like microaggregation, bucketization (also known as Anatomy, [75]) partitions the
input data into non-overlapping buckets. However, rather than summarizing records
in each bucket into one average record, the bucketization approach simply breaks
the connection between quasi-identifier and confidential attributes. The bucketiza-
tion mechanism produces a sanitized data set by first partitioning the original data
set into non-overlapping groups (or buckets) and then, for each group, releasing its
projection on the quasi-identifier attributes and also its projection on the confi-
dential attributes. The idea is that, after bucketization, the confidential attribute
values of an individual are indistinguishable from those of any other individual in
the same bucket.

2.3.1.3 Data Swapping and Rank Swapping

Data swapping was originally presented as a perturbative SDC method for dat-
abases containing only categorical attributes. The basic idea behind the method is to
transform a database by exchanging values of confidential attributes among indi-
vidual records. Records are exchanged in such a way that low-order frequency
counts or marginals are maintained.

Even though the original procedure was not very used in practice, its basic idea
had a clear influence in subsequent methods. A variant of data swapping for mi-
crodata is rank swapping, which will be described next in some detail. Although
originally described only for ordinal attributes [32], rank swapping can also be used
for any numerical attribute. First, values of an attribute Xi are ranked in ascending
order, then each ranked value of Xi is swapped with another ranked value randomly
chosen within a restricted range (e.g., the rank of two swapped values cannot differ
by more than p% of the total number of records, where p is an input parameter).
This algorithm is independently used on each original attribute in the original data
set. It is reasonable to expect that multivariate statistics computed from data
swapped with this algorithm will be less distorted than those computed after an
unconstrained swap.
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2.3.1.4 Global Recoding

This is a non-perturbative masking method, also known sometimes as generaliza-
tion. For a categorical attribute Xi, several categories are combined to form new
(less specific) categories, thus resulting in a new X 0

i with jDðX 0
iÞj\jDðXiÞj where

j � j is the cardinality operator. For a continuous attribute, global recoding means
replacing Xi by another attribute X 0

i which is a discretized version of Xi. In other
words, a potentially infinite range DðXiÞ is mapped onto a finite range DðX 0

iÞ. This
is the technique used in the l-Argus SDC package [40]. This technique is more
appropriate for categorical microdata, where it helps disguise records with strange
combinations of categorical attributes. Global recoding is used heavily by statistical
offices.

Example. If there is a record with “Marital status = Widow/er” and “Age = 17”,
global recoding could be applied to “Marital status” to create a broader category
“Widow/er or divorced”, so that the probability of the above record being unique
would diminish.

Global recoding can also be used on a continuous attribute, but the inherent
discretization leads very often to an unaffordable loss of information. Also, arith-
metical operations that were straightforward on the original Xi are no longer easy or
intuitive on the discretized X 0

i .

2.3.1.5 Top and Bottom Coding

Top and bottom coding are special cases of global recoding which can be used on
attributes that can be ranked, that is, continuous or categorical ordinal. The idea is
that top values (those above a certain threshold) are lumped together to form a new
category. The same is done for bottom values (those below a certain threshold). See
[40].

2.3.1.6 Local Suppression

This is a non-perturbative masking method in which certain values of individual
attributes are suppressed with the aim of increasing the set of records agreeing on a
combination of key values. Ways to combine local suppression and global recoding
are implemented in the l-Argus SDC package [40].

If a continuous attribute Xi is part of a set of key attributes, then each combi-
nation of key values is probably unique. Since it does not make sense to system-
atically suppress the values of Xi, we conclude that local suppression is rather
oriented to categorical attributes.
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2.3.2 Randomized Sanitization Mechanisms

2.3.2.1 Additive Noise

Additive noise is a family of perturbative masking methods. The noise addition
algorithms in the literature are:

• Masking by uncorrelated noise addition. The vector of observations xj for the
j-th attribute of the original data set Xj is replaced by a vector

zj ¼ xj þ ej

where ej is a vector of normally distributed errors drawn from a random variable
ej �Nð0; r2ejÞ, such that Covðet; elÞ ¼ 0 for all t 6¼ l. This does neither preserve

variances nor correlations.
• Masking by correlated noise addition. Correlated noise addition also pre-

serves means and additionally allows preservation of correlation coefficients.
The difference with the previous method is that the covariance matrix of the
errors is now proportional to the covariance matrix of the original data, i.e.,
e�Nð0;ReÞ, where Re ¼ aR with R being the covariance matrix of the original
data.

• Masking by noise addition and linear transformation. In [43], a method is
proposed that ensures by additional transformations that the sample covariance
matrix of the masked attributes is an unbiased estimator for the covariance
matrix of the original attributes.

• Masking by noise addition and nonlinear transformation. Combining simple
additive noise and nonlinear transformation has also been proposed, in such a
way that application to discrete attributes is possible and univariate distributions
are preserved. Unfortunately, the application of this method is very
time-consuming and requires expert knowledge on the data set and the algo-
rithm. See [42] for more details.

2.3.2.2 PRAM

The Post-RAndomization Method (PRAM, [31]) is a probabilistic, perturbative
method for disclosure protection of categorical attributes in microdata files. In the
masked file, the scores on some categorical attributes for certain records in the
original file are changed to a different score according to a prescribed probability
mechanism, namely a Markov matrix called the PRAM matrix. The Markov
approach makes PRAM very general, because it encompasses noise addition, data
suppression, and data recoding. Since the PRAM matrix must contain a row for
each possible value of each attribute to be protected, PRAM cannot be used for
continuous data.
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2.3.2.3 Sampling

This is a non-perturbative masking method. Instead of publishing the original mi-
crodata file, what is published is a sample S of the original set of records [72].
Sampling methods are suitable for categorical microdata, but for continuous mi-
crodata they should probably be combined with other masking methods. The reason
is that sampling alone leaves a continuous attribute Xi unperturbed for all records in
S. Thus, if attribute Xi is present in an external administrative public file, unique
matches with the published sample are very likely: indeed, given a continuous
attribute Xi and two respondents o1 and o2, it is highly unlikely that Xi will take the
same value for both o1 and o2 unless o1 ¼ o2 (this is true even if Xi has been
truncated to represent it digitally). If, for a continuous identifying attribute, the
score of a respondent is only approximately known by an attacker, it might still
make sense to use sampling methods to protect that attribute. However, assump-
tions on restricted attacker resources are perilous and may prove definitely too
optimistic if good quality external administrative files are at hand.

2.3.2.4 Synthetic Microdata Generation

Publication of synthetic, that is, simulated data was proposed long ago as a way to
guard against statistical disclosure. The idea is to randomly generate data with the
constraint that certain statistics or internal relationships of the original data set
should be preserved. More than 20 years ago, Rubin suggested in [57] to create an
entirely synthetic data set based on the original survey data and multiple imputation.
A simulation study of this approach was given in [56].

Synthetic data are appealing in that, at a first glance, they seem to circumvent the
re-identification problem: since published records are invented and do not derive
from any original record, it might be concluded that no individual can complain of
having been re-identified. At a closer look this advantage is less clear. If, by chance,
a published synthetic record matches a particular citizen’s non-confidential attri-
butes (age, marital status, place of residence, etc.) and confidential attributes (salary,
mortgage, etc.), re-identification using the non-confidential attributes is easy and
that citizen may feel that his or her confidential attributes have been unduly
revealed. In that case, the citizen is unlikely to be happy with or even understand
the explanation that the record was synthetically generated.

On the other hand, limited data utility is another problem of synthetic data. Only
the statistical properties explicitly captured by the model used by the data protector
are preserved. A logical question at this point is: why not directly publish the
statistics one wants to preserve rather than release a synthetic microdata set? One
possible justification for synthetic microdata would be if valid analyses could be
obtained on a number of subdomains, that is, similar results were obtained in a
number of subsets of the original data set and the corresponding subsets of the
synthetic data set. Partially synthetic or hybrid microdata are more likely to succeed
in staying useful for subdomain analysis. However, when using partially synthetic
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or hybrid microdata, we lose the attractive feature of purely synthetic data that the
number of records in the protected (synthetic) data set is independent from the
number of records in the original data set.

2.4 Evaluation

Evaluation of sanitization methods must be carried out in terms of data utility and
disclosure risk.

2.4.1 Measuring Data Utility

Defining what a generic utility loss measure is can be a tricky issue [39]. Roughly
speaking, such a definition should capture the amount of information loss for a
reasonable range of data uses. We will attempt a definition on the data with
maximum granularity, that is, microdata. Similar definitions apply to rounded
tabular data; for tables with cell suppressions, utility is normally measured as the
reciprocal of the number of suppressed cells or their pooled magnitude. As to
queryable databases, they can be logically viewed as tables as far as data utility is
concerned: a denied query answer is equivalent to a cell suppression and a per-
turbed answer is equivalent to a perturbed cell. We will say there is little infor-
mation loss if the protected data set is analytically valid and interesting according to
the following definitions by [73]:

• A protected microdata set is analytically valid if it approximately preserves the
following with respect to the original data (some conditions apply only to
continuous attributes):

1. Means and covariances on a small set of subdomains (subsets of records
and/or attributes).

2. Marginal values for a few tabulations of the data.
3. At least one distributional characteristic.

• A microdata set is analytically interesting if a significant number of attributes
(say half a dozen) on important subdomains are provided that can be validly
analyzed.

More precise conditions of analytical validity and analytical interest cannot be
stated without taking specific data uses into account. As imprecise as they may be,
the above definitions suggest some possible measures:

• Compare raw records in the original and the protected data set. The more similar
the SDC method to the identity function, the less the impact (but the higher the
disclosure risk!). This requires pairing records in the original data set and
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records in the protected data set. For masking methods, each record in the
protected data set is naturally paired to the record in the original data set it
originates from. For synthetic protected data sets, pairing is less obvious.

• Compare some statistics computed on the original and the protected data sets.
The above definitions list some statistics which should be preserved as much as
possible by an SDC method.

A strict evaluation of information loss must be based on the data uses to be
supported by the protected data. The greater the differences between the results
obtained on original and protected data for those uses, the higher the loss of
information. However, very often microdata protection cannot be performed in a
data use specific manner, for the following reasons:

• Potential data uses are very diverse and it may be even hard to identify them all
at the moment of data release by the data protector.

• Even if all data uses could be identified, releasing several versions of the same
original data set so that the i-th version has an information loss optimized for the
i-th data use may result in unexpected disclosure.

Since that data often must be protected with no specific data use in mind, generic
information loss measures are desirable to guide the data protector in assessing how
much harm is being inflicted to the data by a particular SDC technique.

Information loss measures for numerical data. Assume a microdata set with n
individuals (records) I1; I2; . . .; In, and p continuous attributes Z1; Z2; . . .; Zp. Let X
be the matrix representing the original microdata set (rows are records and columns
are attributes). Let X 0 be the matrix representing the protected microdata set. The
following tools are useful to characterize the information contained in the data set:

• Covariance matrices V (on X) and V 0 (on X 0).
• Correlation matrices R and R0.
• Correlation matrices RF and RF0 between the p attributes and the p factors

PC1; . . .;PCp obtained through principal components analysis.
• Communality between each of the p attributes and the first principal component

PC1 (or other principal components PCi‘s). Communality is the percent of each
attribute that is explained by PC1 (or PCi). Let C be the vector of communalities
for X and C0 the corresponding vector for X 0.

• Factor score coefficient matrices F and F0. Matrix F contains the factors that
should multiply each attribute in X to obtain its projection on each principal
component. F0 is the corresponding matrix for X 0.

There does not seem to be a single quantitative measure which completely
reflects those structural differences. Therefore, we proposed in [20, 66] to measure
information loss through the discrepancies between matrices X, V , R, RF, C, and F
obtained on the original data and the corresponding X 0, V 0, R0, RF0, C0, and F0

obtained on the protected data set. In particular, discrepancy between correlations is
related to the information loss for data uses such as regressions and cross tabula-
tions. Matrix discrepancy can be measured in at least three ways:
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• Mean square error. Sum of squared componentwise differences between pairs
of matrices, divided by the number of cells in either matrix.

• Mean absolute error. Sum of absolute componentwise differences between
pairs of matrices, divided by the number of cells in either matrix.

• Mean variation. Sum of absolute percent variation of components in the matrix
computed on protected data with respect to components in the matrix computed
on original data, divided by the number of cells in either matrix. This approach
has the advantage of not being affected by scale changes of attributes.

Information loss measures for categorical data. These have been usually based
on direct comparison of categorical values, comparison of contingency tables, or on
Shannon’s entropy [20]. More recently, the importance of the semantics underlying
categorical data for data utility has been realized [51]. As a result,
semantically-grounded information loss measures have been proposed both to
measure the practical utility and guide the sanitization algorithms [23]. Since this is
an ongoing research line, it is further discussed in Sect. 2.6 on Challenges and
Opportunities.

Bounded information loss measures. The information loss measures discussed
above are unbounded, that is, they do not take values in a predefined interval. On
the other hand, as discussed in Sect. 2.4.2, disclosure risk measures are naturally
bounded (the risk of disclosure is naturally bounded between 0 and 1). Defining
bounded information loss measures may be convenient to enable the data protector
to trade off information loss against disclosure risk. In [52], probabilistic infor-
mation loss measures bounded between 0 and 1 are proposed for continuous data.

2.4.2 Measuring Disclosure Risk

In the context of statistical disclosure control, disclosure risk can be defined as the
risk that a user or an intruder can use the protected data set X0 to derive confidential
information on an individual among those in the original data set X [15]. Disclosure
risk can be regarded from two different perspectives:

1. Attribute disclosure. This approach to disclosure is defined as follows.
Disclosure takes place when an attribute of an individual can be determined
more accurately with access to the released statistic than it is possible without
access to that statistic.

2. Identity disclosure. Attribute disclosure does not imply a disclosure of the
identity of any individual. Identity disclosure takes place when a record in the
protected data set can be linked with a respondent’s identity. Two main
approaches are usually employed for measuring identity disclosure risk:
uniqueness and re-identification.
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2:1. Uniqueness. Roughly. speaking, the risk of identity disclosure is measured
as the probability that rare combinations of attribute values in the released
protected data are indeed rare in the original population the data come from.
This approach is used typically with non-perturbative statistical disclosure
control methods and, more specifically, sampling. The reason that unique-
ness is not used with perturbative methods is that, when protected attribute
values are perturbed versions of original attribute values, it makes no sense
to investigate the probability that a rare combination of protected values is
rare in the original data set, because that combination is most probably not
found in the original data set.

2:2. Record linkage. This is an empirical approach to evaluate the risk of dis-
closure. In this case, record linkage software is constructed to estimate the
number of re-identifications that might be obtained by a specialized intruder.
Re-identification through record linkage provides a more unified approach
than uniqueness methods because the former can be applied to any kind of
masking and not just to non-perturbative masking. Moreover, record linkage
can also be applied to synthetic data.

In the specific setting of tabular data protection, Bayesian methods for disclosure
risk assessment have been proposed [15].

2.4.3 Trading off Information Loss and Disclosure Risk

The mission of SDC to modify data in such a way that sufficient protection is
provided at minimum information loss suggests that a good sanitization method is
one achieving a good trade-off between disclosure risk and information loss.
Several approaches have been proposed to handle this trade-off. We discuss SDC
scores, R-U maps and k-anonymity.

2.4.3.1 Score Construction

Following this idea, [20] proposed a score for method performance rating based on
the average of information loss and disclosure risk measures. For each method M
and parameterization P, the following score is computed:

ScoreðX;X0Þ ¼ ILðX;X0Þ þ DRðX;X0Þ
2

where IL is an information loss measure, DR is a disclosure risk measure and X0 is
the protected data set obtained after applying method M with parameterization P to
an original data set X. In [20] IL and DR were computed using a weighted com-
bination of several information loss and disclosure risk measures. With the resulting
score, a ranking of masking methods (and their parameterizations) was obtained.
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Using a score permits regarding the selection of a masking method and its
parameters as an optimization problem. A masking method can be applied to the
original data file and then a post-masking optimization procedure can be applied to
decrease the score obtained. On the negative side, no specific score weighting can
do justice to all methods. Thus, when ranking methods, the values of all measures
of information loss and disclosure risk should be supplied along with the overall
score.

2.4.3.2 R-U Maps

A tool which may be enlightening when trying to construct a score or, more
generally, optimize the trade-off between information loss and disclosure risk is a
graphical representation of pairs of measures (disclosure risk, information loss) or
their equivalents (disclosure risk, data utility). Such maps are called R-U confi-
dentiality maps [26].

Here, R stands for disclosure risk and U for data utility. In its most basic form, an
R-U confidentiality map is the set of paired values ðR;UÞ of disclosure risk and data
utility that correspond to various strategies for data release (e.g., variations on a
parameter). Such ðR;UÞ pairs are typically plotted in a two-dimensional graph, so
that the user can easily grasp the influence of a particular method and/or parameter
choice.

2.5 Privacy Models

The computer science community has also contributed to sanitization for disclosure
control under the names Privacy Preserving Data Publishing (PPDP) [2, 3, 9] and
Privacy Preserving Data Mining (PPDM) [28, 29]. The former focuses on
privacy-preserving publication of microdata, whereas the latter focuses on bringing
privacy protection to traditional data mining tasks (for example, data classification
or clustering).

There is a substantial difference between the sanitization approaches by the
statistical and the computer science communities:

• A posteriori disclosure risk control. The statistical community is mainly
concerned with analytical validity, so it first applies a sanitization method that
incurs tolerable information loss and then measures the disclosure risk that
publishing the sanitized data would incur (a posteriori control). If the extant
disclosure risk is too high, then sanitization is re-applied to the original data with
higher information loss. The process is iterated until tolerable disclosure risk is
obtained.
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• A priori disclosure risk control. In the computer science community, the pri-
mary focus in on disclosure risk. A privacy model is used to select the tolerable
disclosure risk level from the outset (a priori control). Then a sanitization
method is applied which guarantees by design that the selected disclosure risk
level is not exceeded. The incurred information loss is measured after saniti-
zation has been completed.

We next review the two main privacy models used in the literature.

2.5.1 k-Anonymity

A common approach to prevent disclosure via record linkage attacks is to hide each
individual record within a group. This is the approach that k-anonymity [58, 59, 68]
takes:

Definition 1. (k-Anonymity) A data set is said to satisfy k-anonymity for an
integer k[ 1 if, for each combination of values of quasi-identifier attributes, at least
k records exist in the data set sharing that combination.

To achieve k-anonymity, identifying attributes are removed and quasi-identifiers
are masked so that they become indistinguishable within each group of k records.
Confidential attributes remain in clear form so that they preserve their analytical
utility. In this way, an intruder with access to an external non-anonymous data set
that contains the quasi-identifiers in the related data set will be unable to perform an
exact re-identification.

Table 2.1 shows a sample medical data set containing one identifying attribute
(SS number), three quasi-identifier attributes (age, zip code and nationality) and one

Table 2.1 Sample input data set

Identifier Quasi-identifiers Confidential

SS number Age Zip code Nationality Condition

1 1234-12-1234 25 23053 Russian Heart disease

2 2345-23-2345 26 23068 Catalan Heart disease

3 3456-34-3456 21 23068 French Viral infection

4 4567-45-4567 27 23053 Italian Viral infection

5 5678-56-5678 49 44853 Indian AIDS

6 6789-67-6789 43 44853 Chinese Heart disease

7 7890-78-7890 47 44850 Japanese Viral infection

8 8901-89-8901 49 44850 Indian Viral infection

9 9012-90-9012 32 33153 Spanish AIDS

10 0123-12-0123 38 33153 French AIDS

11 4321-43-4321 34 33168 Greek AIDS

12 5432-54-5432 35 33168 French AIDS
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confidential attribute (condition). Table 2.2 shows a possible sanitized version of
the data set after 4-anonymization.

The sanitization method originally proposed to generate a k-anonymous data set
was based on generalization and suppression [60].

Generalization reduces the granularity of the information contained in the
quasi-identifier attributes, thereby increasing the chance of several records sharing
the values of the attributes. A generalization hierarchy should be defined for each
attribute. On the other hand, suppression removes records from the original data set
that present outlying values. Suppression is usually performed prior to general-
ization to reduce the amount of generalization required to generate the k-anony-
mous data set.

An important goal of k-anonymity sanitization proposals is to obtain a protected
data set where the information loss is as small as possible. Optimal k-anonymity
was shown to be NP-hard in [53]. To render k-anonymity practical, a large number
of heuristic generalization algorithms have been proposed [4, 7, 46, 47, 59] that
reduce the search space or look for sub-optimal solutions.

A different approach towards k-anonymity is based on the microaggregation
method discussed in Sect. 2.3.1.1. k-Anonymity via microaggregation was intro-
duced in [21]. First, records are clustered so that each cluster contains at least k
records and then these records are replaced by a representative value from the
cluster to which they belong (typically the centroid record), thus producing a k-
anonymous data set. Different heuristics and comparison functions have been
proposed to group similar records together, so that the information loss resulting
from the replacement by the representative record can be minimized (see [22, 45]).

Despite being one of the most commonly used privacy models, k-anonymity
suffers from certain limitations. The most common criticism refers to the lack of

Table 2.2 4-anonymous output

Identifier Quasi-identifiers Confidential

SS number Age Zip code Nationality Condition

1 * [20–30) 230** European Heart disease

2 * [20–30) 230** European Heart disease

3 * [20–30) 230** European Viral infection

4 * [20–30) 230** European Viral infection

5 * [40–50) 448** Asian AIDS

6 * [40–50) 448** Asian Heart disease

7 * [40–50) 448** Asian Viral infection

8 * [40–50) 448** Asian Viral infection

9 * [30–40) 331** European AIDS

10 * [30–40) 331** European AIDS

11 * [30–40) 331** European AIDS

12 * [30–40) 331** European AIDS
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protection against attribute disclosure [17, 48, 49, 74]: if all the individuals within a
group of k-indistinguishable records share the same value for a confidential attri-
bute, then the intruder will learn that value for all the members of the group without
requiring an unequivocal re-identification.

For example, take the 4-anonymized output from Table 2. The last group of four
records sharing a combination of quasi-identifier attribute values also shares the
confidential attribute value condition (AIDS). In this case, if the intruder can
establish that her target respondent’s record is within that group (because it is the
only group with compatible age, zipcode and nationality), the intruder learns that
the target respondent suffers from AIDS without requiring an unequivocal
re-identification.

To tackle this problem, some refinements to the basic k-anonymity model have
been proposed. First l-diversity [49] requires the presence of l different
well-represented values for the confidential attribute in every group of records
sharing the same quasi-identifier attribute values. The stricter t-closeness [48]
defines a tighter requirement, stating that the distribution of the confidential attri-
butes within any group of records sharing the same quasi-identifier values should be
close to (at distance no more than t from) the distribution of the confidential
attributes in the whole data set.

2.5.2 e-Differential Privacy

Disclosure limitation via k-anonymity is based on guessing the information that is
available to potential intruders, that is, which attributes in the data set should be
considered as quasi-identifiers. As long as this guessing is accurate, the disclosure
limitation method accomplishes its duty, but a privacy breach may happen if more
information is available to intruders.

A different approach to anonymization is e-differential privacy [27]. This
approach was designed for sanitization in queryable databases and it makes no
assumptions on the intruder’s knowledge. The goal is to transform the answers to
queries so that the effect of the presence or absence of any single individual record
on the returned answers is minimized.

To achieve this goal, the influence of each individual on the query answer needs
to be limited. More concretely, the model imposes that the presence or absence of
any single individual changes the query answer by at most a factor depending on e.
The smaller e, the more difficult it is for an intruder to use the query answer to infer
the contribution of any specific individual. A formal definition of the e-differential
privacy model follows:

Definition 2.(e-Differential privacy) A randomized function j gives e-differential
privacy if, for all data sets X1, X2 such that one can be obtained from the other by
modifying a single record, and all S 	 RangeðjÞ, it holds
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PðjðX1Þ 2 SÞ� expðeÞ � PðjðX2Þ 2 SÞ: ð1Þ

Differential privacy was introduced as an interactive mechanism, where the data
set is held by a trusted party that provides masked answers to queries made by data
users. To do so, the trusted party computes the real response f ðXÞ to the user query
f (e.g., the average of an attribute value, the number of records with a specific
attribute value, etc.), perturbs the result and sends the output to the user. The usual
way to compute the perturbed result is to add a random amount of noise, say YðXÞ,
to the answer f ðXÞ that depends on the e and the variability of the query response;
thus the perturbed response can be obtained as jðXÞ ¼ f ðXÞ þ YðXÞ.

To generate YðXÞ according to e-differential privacy, a common choice is to use
a Laplace distribution with zero mean and Dðf Þ=e scale parameter, where:

• e is the differential privacy parameter;
• Dðf Þ is the L1-sensitivity of f , that is, the maximum variation of the query

function between neighbor data sets, that is, sets differing in at most one record.

Specifically, the density function of the Laplace noise is

pðxÞ ¼ e
2Dðf Þ e

�jxje=Dðf Þ:

Notice that, for fixed e, the higher the sensitivity Dðf Þ of the query function f , the
more Laplace noise is added: indeed, satisfying the e-differential privacy definition
(Definition 5.2) requires more noise when the query function f can vary strongly
between neighbor data sets. Also, for fixed Dðf Þ, the smaller e, the more Laplace
noise is added: when e is very small, Definition 5.2 almost requires that the
probabilities on both sides of Eq. (1) be equal, which requires the randomized
function jð�Þ ¼ f ð�Þ þ Yð�Þ to yield very similar results for all pairs of neighbor
data sets; adding a lot of noise is a way to achieve this. In the interactive setting,
however, the type and number of queries that can be performed over the data are
limited, in order to avoid an attacker to reconstruct the original data by performing
consecutive queries.

Differential privacy was also extended for the non-interactive setting, that is, for
sanitization of microdata sets [8, 10, 25, 38]. Even though a non-interactive data
release can be used to answer an arbitrarily large number of queries, in all these
proposals, this is obtained at the cost of offering utility guarantees only for a
restricted class of queries [8], typically count queries. This contrasts with the
general-purpose utility-preserving data release offered by the k-anonymity model.

In fact, it must be said that, while e-differential privacy offers very high dis-
closure protection, it causes a huge information loss unless e is quite high. But
taking a high e somehow seems to contradict the basic requirement of the model,
namely that the influence of any single record on the returned output must be small.
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2.6 Research Challenges and Opportunities

Most privacy-preserving methods have been designed to deal with numerical
attributes. Numbers are easy to treat because arithmetical functions can be applied
on them to perform the comparison and transformation operations required for data
anonymization. However, categorical attributes (such as diagnoses, preferences,
etc.), which take values from a finite set of categories and for which arithmetical
operations do not make sense, are very common in available data sets.

Applying existing data anonymization methods to categorical attributes is not
straightforward:

• Several anonymization techniques replace each categorical attribute by as many
binary 0–1 attributes as the number of possible attribute categories; such is the
case of multiply-imputed synthetic data [57] and data shuffling [54]. This
approach soon yields unmanageable data sets.

• PRAM [31] is an anonymization technique designed for nominal attributes. It
certainly does not need binary attributes, but it requires as a control parameter a
Markov transition matrix, whose size grows quadratically in the number of
nominal categories.

• In [70] and [21], extensions of microaggregation algorithms for categorical
attributes were proposed: the former paper addressed only categorical ordinal
attributes and proposed the median as an aggregation operator; the latter paper
also considered categorical attributes using the equality/inequality predicate and
proposed the modal value as an aggregation operator for them. However, the
modal value is a very coarse aggregation operator which may not even be
uniquely defined, especially over a small group of values.

In summary, the above-mentioned methods incur a high complexity for anon-
ymizing categorical data or they are coarse and cause substantial information loss.
This is because they treat categorical data as flat categorical values, for which the
only possible operator is the binary comparison for equality [21]. This simplistic
approach omits data semantics. Overlooking semantics decreases the utility of the
anonymized data set since it fails to preserve the meaning of the original data.
Semantically-grounded analyses would be desirable to better preserve data utility.

Since categorical attributes are usually words or noun phrases referring to
concepts (e.g., disease names) which capture their semantics, and semantics is a
human-inherited feature, a semantic analysis requires a human-tailored knowledge
base that captures and structures the conceptualization of nominal attributes. For
this purpose, structured thesauri, taxonomies, or ontologies [33] can be used.

Recently, some ongoing works have been proposed exploiting available
knowledge bases to anonymize categorical data sets. In [23] a knowledge-based
numerical mapping for categorical attributes that captures and quantifies their
underlying semantics is presented. By means of this mapping, the authors show that
it is possible to compute semantically and mathematically coherent mean, variance
and covariance functions for nominal data, which can be used to compare and
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manage categorical data sets in existing anonymization methods. In [51], the notion
of semantic similarity [61], that is, the semantic resemblance between categorical
attribute values, is extensively exploited to define comparison, aggregation and
sorting operators. Those are then used to create semantically-grounded versions of
existing anonymization methods based on recoding, microaggregation and resam-
pling. In [6], similar principles are applied to anonymize multi-valued categorical
attributes (i.e., set-valued data like query-logs) by defining a set of aggregation
functions that allows comparing multi-valued attributes with different cardinalities.
Most of the above semantic methods have been applied to microaggregation
algorithms. Future lines of research may apply semantic technologies to other
anonymity mechanisms such as those based on noise addition.

Regarding privacy models, it is not uncommon in the data anonymization lit-
erature to oppose the “old” k-anonymity model to the “new” differential privacy
model, which offers more robust privacy guarantees. However, compared to the
general-purpose data publication offered by k-anonymity, which makes no
assumptions on the uses of published data, e-differential privacy offers quite limited
utility. Combining the strengths of k-anonymity (flexible utility) and e-differential
privacy (strong privacy) remains a challenge.

The usual approach to release differentially private microdata sets is based on
histogram queries [76, 77]; that is, on approximating the data distribution by par-
titioning the data domain and counting the number of records in each partition set.
To prevent the counts from leaking too much information they are computed in a
differentially private manner. Apart from the counts, partitioning can also reveal
information. One way to prevent partitioning from leaking information consists in
using a predefined partition that is independent of the actual data under consider-
ation (e.g., by using a grid [50]). The accuracy of the approximation obtained via
histogram queries depends on the number of records contained in each of the
histogram bins: the more records, the less relative error. For data sets with sparsely
populated regions, using a predefined partition may be problematic.

In a recent approach [67] the authors show that a synergy between k-anonymity
and e-differential privacy can be found in order to achieve more accurate and
general-purpose e-differential privacy. Specifically, they show that the amount of
noise required to fulfill e-differential privacy can be greatly reduced if the query is
run on a k-anonymous version of the data set obtained through microaggregation of
all attributes (instead of running it on the raw input data). The rationale is that the
microaggregation performed to achieve k-anonymity helps reduce the sensitivity of
the input versus modifications of individual records; hence, it helps reduce the
amount of noise to be added to achieve e-differential privacy.

In any case, there is still room for improvement because, as it has been
empirically shown in [67], the practical utility of general-purpose differentially
private data sets is still significantly lower than the one of k-anonymous data sets.

On the legal side, parallel to the development of privacy legislation,
anti-discrimination legislation has undergone a remarkable expansion, and in some
countries it now prohibits discrimination against protected groups on the grounds of
race, color, religion, nationality, sex, marital status, age, and pregnancy, and in a
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number of settings, like credit and insurance, personnel selection and wages, and
access to public services. On the technology side, efforts at fighting discrimination
have led to developing anti-discrimination techniques in data mining. Some pro-
posals are oriented to the discovery and measurement of discrimination, while
others aim at discrimination-protected data mining (DPDM), that is, at data mining
which does not become itself a source of discrimination, due to automated decision
making based on discriminatory models extracted from inherently biased data sets.

Another challenge in this area is the relationship between PPDM and DPDM. Is
it sufficient to guarantee data privacy while allowing automated discovery of dis-
criminatory profiles/models? In [34–36], the authors argue that the answer is no. If
there is a chance to create a trustworthy technology for knowledge discovery and
deployment, it is with a holistic approach which faces both privacy and discrimi-
nation threats (risks).

2.7 Conclusions and Relevant Software

In this chapter, we have reviewed a priori and a posteriori approaches to disclosure
control in database privacy sanitization. The a posteriori approach is adopted in the
statistical community, which prioritizes publishing analytically valid data and, once
the sanitized data have been obtained, measures disclosure risk. The a priori
approach is followed in the computer science community, which focuses on
selecting the maximum tolerable disclosure risk from the outset via a privacy
model; after data are protected according to the privacy model, their extant utility is
evaluated.

Common to both approaches is the use of sanitization methods, which we have
also reviewed for tabular data, queryable databases and microdata, with a special
focus on the latter. Finally, we have identified research challenges and opportunities
in the area of statistical disclosure control.

Freeware packages that implement the sanitization methods and the risk esti-
mation needed by the a posteriori approach include the following:

• The Argus software: s-Argus for tabular data [41] and l-Argus for microdata,
see [40].

• The sdc software: sdcTable [65] for tabular data and sdcMicro for microdata
[64, 69].

Regarding the a priori approach, a software package that implements k-anonymity,
l-diversity and t-closeness is ARX [5].
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Chapter 3
Privacy and Big Data

Masood Mortazavi and Khaled Salah

I’ve not been an eavesdropper.
Papyrus of Ani (1250 BCE).

3.1 Introduction

In order to better understand how the “Big Data” phenomena affects our private
lives and social personality, we need to gain a better grasp of the concepts involved.
Legalism and technological positivism misapprehend either the radical changes in
privacy-violating systems or the historical context of rules of civility or both. As a
result, legislatures extend and apply bandages to the cracks in existing privacy laws
in a confused frenzy [1] and technological naïveté entraps our minds in
non-solutions that confuse the scope of the privacy-related issues with access
control in inter-personal data exchanges [2, 3].

Communications technologies and Big Data analysis have facilitated the intru-
sion of privacy by devising and strengthening audio-visual surveillance and “da-
taveilance” [4]. Governments have used these technologies for continuous and
massive collection and collation of data from our private spaces. Big Data phe-
nomena are a constellation of data storage and processing extensions to modern
communications technologies that have given rise to further, new modes of privacy
intrusions that were not anticipated when much more primitive communications
and eavesdropping technologies gave rise to the existing privacy laws [1]. Not only
do we need new laws that can anticipate technological changes in their formulation
but we also need new technologies to counter various forms of privacy intrusions.
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This chapter will first present a brief review of Big Data technologies, describe
its benefits, and outline how it has come to harm privacy in subtle new forms. Next,
it will review the legal and technological issues and describe some possible solu-
tions. It will conclude by suggesting and anticipating some future development.

3.2 Big Data

“Big Data” has come to refer to a constellation of phenomena having to do with the
production, consumption, amassing, and analysis of large data sets produced by a
vast variety of sources in a very large number of formats, in unprecedented volumes
and data flow velocities. Figure below shows the main functions and entities par-
ticipating in a typical Big Data application. The phrase “Big Data” has been
mentioned in formal literature since the 1990s and the associated techniques were
first utilized in scientific applications such as CERN’s large Hadron collider, Search
for Extra-Terrestrial Intelligence (SETI), and genome projects [4]. Later, these
techniques found applications in computational social sciences, whether it is movie
recommendation systems, consumer marketing, advertising, or data mining on
social networks. So, while volume, variety, and velocity are the three “V”‘s that
have been commonly associated with the Big Data phenomena [5], we believe a
fourth “V,” i.e. value, should also be understood in the context of Big Data, and is
perhaps, the easiest to miss.

Big Data information pipeline: modeling and targeting “prosumers” behavior
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3.2.1 Benefits and Limitations

In any early example of what we may call “indirect” Big Data, Ancient Babylonians
had no doctors and crowd-sourced medicine. “When a man is ill, they lay him in the
public square, and passers-by come up to him, and if they [or someone they knew]
ever had his disease … they give him advice’’ [6]. So, it is not surprising that of the
most recent benefits cited for Big Data, one can refer to several examples from the
medical field: research through Big Data analytics (including analytics on web
search queries) led to the discovery that the combined use of Paxil and Parvachol
would lead to increased blood glucose to diabetic levels. Dr. David Graham studied
medical records of some 1.5 million of Kaiser Permanent’s 6 million patients
(California residents). This study led to the conclusion that over the previous five
years, Vioxx had caused 88,000–139,000 heart attacks 30–40 % of which were fatal
[7]. It is worth noting that Graham had to go to the Government Accounting Office
as a whistleblower because his FDA superiors prevented him from publishing his
findings. Graham’s study saved thousands of lives. Analytics on Twitter, it has been
claimed, detected the spread of cholera epidemic in Haiti faster than conventional
methods did later.

Google Flu Trends (GFT), which estimates flu trends based on analytics on web
search, location, and other data [8], is frequently cited as another benefit of Big
Data [9]. More detailed recent studies pointed to “substantial errors” in GFT esti-
mates of influenza timing and intensity. GFT over-estimated the threat in the 2012–
2013 season and badly under-estimated it during the 2009 pandemic. This analysis
also shows that the error in GFT (when compared to ground facts given in the
official US sentinel for excess in flu percentages) grows as we reduce the scope of
the data from the entire United States to its Atlantic Coast and finally to New York
City [10]. This should be a warning against over-estimating the power of Big Data
to actually predict anything although it might still be good enough to provide
insights.

One can imagine even more interesting applications with the proliferation of
mobile medical devices working independently or through tight integration with
smart phones. With such tools, it will be possible to prevent and contain epidemics
and catastrophic and costly health issues of the sort Graham discovered [7]. Recent
industry analysis shows that Big Data applications in health-care are fast accelerating
and it is estimated that Big Data can save $300–$400 billion in US health care costs
alone [11]. Much of this saving will be due to deployment of smart devices on the
periphery of health networks for sensing, notification, and control. However, this
McKinsey & Company study seems to overestimate the power of Big Data to be able
to discover what the population needs for “right living,” “right care,” “right pro-
vider,” “right value,” and “right innovation.” The concept of “right” is never defined.

Sensor and mobile collection of data have been cited to lead to better inventory
and traffic management, dynamic pricing, drought and migration prediction, crime
wave prediction, monitoring education to discover effective techniques, and a slew
of other benefits. Smart power grids, self-organizing networks of sensors, devices,
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and people will lead Big Data and information and communications technology
advances [12]. Perhaps, the most interesting application of Big Data will be in
social networking of users enabled by modern information and communications
technologies (ICT), including ad hoc social networking. The theory of emergent
and self-organizing social institutions as expounded in the works of Nobel Laureate
Eleanor Ostrom [13] is finding direct application to ICT-enabled social networks.
More transparent use of Big Data knowledge commons, at the periphery of net-
works, can raise ICT users’ collective awareness towards economic use of common
resources [12].

There are other, somewhat dangerous “benefits” that have given rise to serious
privacy and civil rights concerns. Here, we will only name one: “Predictive
Policing.” (For a more detailed critique of these dubious “benefits,” refer to
Crawford [14].) “Predictive Policing” gets us very close to the realm of Kafka’s
Trial (“Der Process”) because it can easily lead to unclear accusations, unknown
accusers, inversion of onus of proof, and denial of due process [4, 14].

Indeed, massive businesses operate and are founded on the premise of extracting
value from data that flows in large volumes in a variety of formats at high velocities.
In fact, in order to extract value from masses of largely undifferentiated data, we
need specialized tools for pre-processing, filtering, and clustering.

3.2.2 Curse of Dimensionality

When discussing Big Data analytics, it is worth noting the curse of dimensionality.
In high-dimensional analysis or complex modeling techniques where a large
number of adjustment parameters are used, statistical learning theory has pointed
out the curse of dimensionality [15]. Most statistical learning techniques refer to a
set of sample data to produce a model and subsequently test the model with test
data. It turns out that sample density is proportional to N1=n, where N represents the
sample size and n represents the number of dimensions involved. If for a statistical
analysis or statistical learning of a single-dimensional model, 100 “learning” data
points can provide adequate accuracy, as much as 10010 data points would be
required for a similar accuracy in learning a 10-dimensional model. One possible
explanation for growing inaccuracy of an increasingly complex model is always the
inclusion of additional dimensions of analysis in the more complex model. This
may have some relevance to the earlier noted study of GFT [10].

3.2.3 Scale and Technology

Big Data phenomena has always been associated with massive scale and daunting
complexity. The spread of the Web and Internet services gave rise to companies such
as Yahoo, Google, (modern) Apple, Amazon, YouTube, Twitter, and Facebook.
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These Big Data companies extract value from the large datasets under their control for
the purposes of service definition and refinements, trend analysis, product discovery,
marketing and advertising, in all their varieties.

Big Data companies have had to develop special tools for transporting, pro-
cessing, storing, and analyzing the “Data.” The general techniques used in the
classical data management systems have proven to be inadequate at best. Physical
constraints of data centers have led to other technological innovations. For example,
Yahoo was one of the earliest companies that ran into the Big Data problems. It has
some of the most interesting early architectures as well as more recent develop-
ments, including many of the early NoSQL databases [16] and more recently
PNUTS or Sherpa [17]. To create a platform that was suitable for massive data
centers and web-scale applications, Google created a rather complete framework for
web-scale big data processing. GFS [18] handled the requirements of a large-scale,
highly available file storage. Chubby [19] provided for a distributed lock manager
for purposes of coordinating and managing clusters. MapReduce [20] provided a
base programming model. Pregel [21], a graph processing system complemented
MapReduce. Megastore [22] provided for the web-scale serving of data to a variety
of applications, with ease, and Dremel [23] extended the platform to the Structured
Query Language (SQL), which is generally used in traditional databases and with
which data programmers and scientists are quite familiar.

Web companies have freely published and released open-source code of high
quality and value. The Apache Hadoop family of open-source projects are a
powerful analytics platform with some important recent advances [24]. The Hadoop
platform has found great currency including support from Amazon Web Services
[25], and Google Cloud Platform [26], and in its upper tiers, Hadoop has found a
formidable competition in the Berkeley AmpLab’s Data Analytics Stack (BDAS)
[27]. Open-source publication of software and availability of AWS-like services
have been a bonanza for smaller companies in the field of distributed computing
and Big Data.

Through a combination of machine learning, distributed computing, and highly
optimized nodes, services are created on the data fabrics in massive data centers.
Some of these companies have created virtual services for Big Data analytics where
data scientists can load and query large data volumes (e.g., Google’s Big Query).

To support Big Data businesses, new distributed file systems have been created
to handle unavoidable and noticeably frequent failures of storage media at
large-scale data centers. Resilient distributed systems such as MapReduce have
been created to support multi-tenant data processing and data analytics through a
simple processing paradigm. Massive indexing systems have been constructed over
time to minimize the user-experienced latencies and to maximize relevant results in
web search queries. Non-SQL databases have been revived over the last few dec-
ades in order to address the problems related to transaction processing at the
web-scale. Column stores have been created to address analytics at high throughput
and to take advantage of new computer architecture in order to break the memory
barrier. Relational models, which seem to be fundamental to applications of logic in
data exploration, have been brought to bear on Big Data through a re-purposing,
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retooling, and extension of the existing SQL-based distributed query processing
strategies.

User experience and massive data processing systems are the two poles that
define the business of web-scale companies.

Notwithstanding the intended or unintended allowance for governmental data
leaching and intrusions or the limited collaborations with social and data scientists,
Big Data or web-scale companies have generally gone to pains to ensure security
mechanisms to protect the bulk of their internal and transactional data streams. Not
doing so would be costly and will have deep impact on existing business models.

Both “Big Data” and “cloud computing” are euphemisms used to refer to the
computing, storage and search models that re-emerged from the ashes of “personal
computing” and which rearranged the assignment of data storage and computing
tasks on the network. Cloud computing is that very aspect of Big Data which
introduces privacy concerns. It is contemporaneous with the rise of the Web and the
data center as a computer [28].

In cloud computing users utilize the “cloud provider’s” computing, storage, and
networking infrastructure primarily due to the offered resource elasticity [29, 30].
Infrastructure as a service is complemented with software as a service where the
provider offers specific applications both of the desktop variety (e.g., Google Apps,
Microsoft Office Live) and of the non-desktop variety (e.g., Facebook, Twitter).

The conveniences of cloud computing has come with a cost: loss of effective
control over users’ data. Business and legal requirements force providers to have
policies and safeguards to protect users’ data. However, these protections are
generally inadequate, can hardly be a guarantee against provider equivocation, and
have led to privacy concerns and ensuing research and innovation [31]. On the other
hand, Big Data analytics has given rise to a slew of new applications and services.
However, provision of data to unauthorized users (in secret or through open
transactions) can lead to unexpected results, privacy violations and the consequent
chilling of users’ liberties, not to mention direct and physical harm, and
mis-classification. We say more regarding these problems later in this chapter.

3.3 Privacy Issues

Earlier research indicates a plethora of the privacy issues that Big Data analytics
and storage needs to address.

Users have an inadequate understanding of how privacy violations impact
individuals as well as social behavior [1, 32–34]. There is a lack of transparency
regarding privacy policies or predictive analytics applied to users [14, 35]. There is
a lack of data due process of law [14]. There can be unplanned disclosures of data
[31]. False data or false analytics results may be shared (often automatically) across
data centers, making it difficult for users to make amends through a data due
process [32]. It is possible to predict private traits, originally meant to be private,
using Big Data analytics [36]. There is a mismatch of provider’s claimed policies
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and the actual controls made available to users [2] and providers often have an
economic incentive to equivocate [31]. There is an economic incentive to disclose
users’ data [31] and there exists a similar policing incentive to use advanced sur-
veillance techniques to gather continuous data including all digital impressions
[32]. There are technical limitations to some of the most advanced techniques
devised to allow analytics on private data [37]. Centralization of information tilts
the gain–loss trade-off in favor of potential attackers and intruders [31, 32]. There
currently exist information privacy laws that are entirely out of pace with current
technology and which no longer conform to the spirit of original laws (e.g., the 4th
Amendment of the US Constitution) in preventing breaches of privacy and civility
[1, 32]. Government investigative agencies have a tendency to violate reasonable
expectation of privacy if there are no barriers to unfettered intrusion, and Big Data
brings a new level of scale and capability not foreseen by earlier laws [1, 32].

3.4 Ethics and Law

Privacy has a tangible and physical as well as a more intangible informational
aspect. From “womb” to “tomb,” we need private spaces within which our per-
sonality and social relationships develop and find definition. The Arabic word
meaning one’s private surroundings (Hareem) relates to the word meaning womb or
one’s private relations (Reham). As such, the significance of privacy and its moral
dimension was recognized far earlier than the US Constitution and its Amendment.
Ancient Egyptians had 42 negative confessions to the god of the dead, Osiris. The
17th of these confessions reads: “I’ve not been an eavesdropper” [38]. Besides the
ancient Egyptian, Chinese, Greek, and Persian beliefs, all later Abrahamic religions
also condoned violation of privacy and personal integrity [39]. More recent
socio-legal and philosophical accounts view privacy as arising from the exercise of
demeanor and deference [40]. They suggest that violation of privacy not only harms
individual integrity but also degrades social health and cohesion. Privacy as the
underpinning of many rules of civility and social norms is intrinsically valuable
[33]. Modern legal scholars, inspired by the 4th Amendment to the US Constitution,
have advanced the philosophical account of privacy based on the notion that the
proper development of social personality and identity as well as citizenship depend,
critically, on the protection of privacy including one’s digital and informational
effects [32].

Big Data deployments greatly enhanced the risks of privacy violations but more
subtly. Even before 9/11, the US’ Patriot Act, or the Edward Snowden revelation
brought Big Data’s privacy harms into full public view, there was gathering con-
cern regarding violations that large databases of mostly private information made
possible [1, 35]. Although, in the US, leading scholars have continuously
re-evaluated and reassessed philosophical and socio-legal foundations of data pri-
vacy, 2013 saw an amazing increase in scholarly publications and open conferences
regarding Big Data’s privacy harms.

3 Privacy and Big Data 43



When considering privacy within modern communications systems, the following
taxonomy has been proposed [41]:

• Information collection. Information collection refers to surveillance and
interrogation.

• Information processing. Processing refers to aggregation, identification, inse-
curity (loss of identity to theft), secondary use, and exclusion (through erro-
neous “facts” or analytics).

• Information dissemination. Dissemination refers to breaches of confidentiality,
disclosure, exposure, increased accessibility (for the users or by the potential
intruders), blackmail (by powerful institutions or individuals), appropriation,
and distortion.

• Intrusion and decisional interference. Invasion of privacy has two essential
components: intrusion and decisional interference. The latter aspect is perhaps
the most difficult to grasp, and we will discuss it further in what follows.

Some technologists have pointed out a distinction between the scientists’ use of
Big Data, which focuses primarily on generalization, and the business and gov-
ernmental use of Big Data, which focuses primarily on particularization [4]. To
refer to this particularization, legal scholars have used the acronym PII, personal
information identification [14]. We can identify two general classes of problems,
one more insidious than the other: the “Orwellian Problems,” which arise from data
collection and surveillance, and the “Kafkaesque Problems,” which arise from
non-transparent decision making beyond one’s control and in the absence of any
due processi [2].

Given this analysis, researchers, including leading privacy researchers from
technology firms and academic centers, have an array of proposals and systems for
the following [1, 9, 14, 32]:

1. Accounting and auditing for Big Data analysis and decision making.
2. Transparency and procedural data due process for all involved including the

“prosumers” of Big Data. 1

3. As part of 1 and 2, technologies, processes, and policies that make it possible for
users to challenge classifications and automated decisions prior to their making
or implementation.

4. New derived interpretations of original privacy laws that intended to protect
privacy as a rule of civility.

Proposal 4 above seeks to address the new power differentials caused by tech-
nological advances that have removed physical barriers to privacy intrusion by
governments either directly or indirectly through powerful third party Big Data
service providers.

1The invented word “prosumer” has recently been used in industry circles to highlight that the
consumers of Big Data services are also the original producers of the Big Data digital repositories.
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The issues are complex and subtle but it is clear that we will either be moving
towards systems that reflect social norms and rules of civility or to a “Big Brother”
environment that chills behavior and destroys independent thought and action.

However, when it comes to automated decision making, false data, false algo-
rithmic classifications, and subsequently, false automated decisions can lead to all
sorts of problems. For example, “predictive policing” lauded and used by some
precincts can seriously harm citizens’ rights and can also lead to vicious cycles of
violence. Some “credit rating” techniques can cause behavior by other shoppers in a
location to lead to a lower credit rating of another shopper in the same location—in
other words, a case of guilt-by-association. A popular example of analytics intru-
sion in private life is Target’s pregnancy prediction. It led to a teenager’s parents
find out about their daughter’s pregnancy through product marketing material sent
to their home by Target [42].

An ACLU researcher in privacy and technology has identified several problems
that arise with the advent of Big Data [34]:

1. It incentivizes the broader and deeper collection of data and the longer retention
of the collected data.

2. It is easier to identify private personal information when combined with
information from others.

3. Most people are unaware how much information is being collected about them.
4. It can tilt the playing field toward big institutions and away from the individual

due to the ensuing information asymmetries, which economists and social sci-
entists take to be a cause for much opportunism. (The Target story is a good
example of this potential problem as is the NSA/Snowden affair.)

5. It can accentuate power differential among individuals by amplifying existing
advantage and disadvantage. Those who are better educated or richer get
improved treatment while others get poorer treatment by service providers,
leading to a vicious oppressive cycle that stifles general social growth and
advancement.

6. In the absence of due process, automatic decision making based on algorithmic
data mining can lead to capricious classification and economic
guilt-by-association.

7. Citizens can be tagged and suffer consequences due to governmental use in
administrative automation.

8. Over time, there can be a chilling effect on independent thought and action. This
“chilling,” where agents’ behaviors are automatically shaped, is probably the
gravest harm of all to society at large, its well-being, and proper development.

It is highly unlikely that we can rely, purely, on legal and market-based
approaches to resolve the risks posed to users’ privacy [31].

Users’ generally lack enough information about providers’ privacy policies and
practices to allow them to measure the price and cost of one provider as opposed to
another. With the ability to price having suffered, pure reliance on the current
market’s forces to drive to better privacy policies becomes impractical [43].
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Legal approaches have suffered in the past because of difficulties to measure harm
and economic damage [1].

As such, many computer scientists have called for a complete redesigning of
cloud services and for a fresh look at various techniques to protect privacy.

3.5 Privacy Protection and Big Data

Big Data analytics applies statistical learning on what one might say is mostly
private data “prosumers” produce, and uses this learning for purposes of prediction.
As some have observed, therefore, there are “natural tensions between learning and
privacy that arise whenever a learner must aggregate data across multiple indi-
viduals” [44].

There exist a variety of technical measures to protect privacy but not all have the
same level of effectiveness or address the same set of problems. Here, we will
present a larger list and will then address a subset in some greater detail: f �-branch
consistency, sampling (e.g., polls), aggregation, suppression, data swapping,
obfuscation, data synthesis, multi-party computation, simple anonymization, k-
anonymization, l-diversity, and differential privacy. Anonymization allows scien-
tific generalization (through Big Data value extraction) to proceed but is intended to
make particularization difficult.

Technical measures can be categorized according to their emphasis (see the
Table 3.1): (1) intentional limitations, (2) transformations (with intention to pre-
serve statistics), (3) ownership controls and rights, and (4) process-based safe-
guards. Techniques such as polling and aggregation (used traditional census)
intentionally limit the scope of learning to anonymous polls or aggregate values.
Transformation techniques include suppression, swapping, randomization, synthe-
sis, k-anonymity, and differential privacy. Techniques that emphasize preservation
of data ownership and expand the domain of privacy include, among other tech-
niques, multi-party secure computation (useful for financial aggregate metric cal-
culation without revealing individual bank assets) and f �-consistency (which
reduces the task of the provider to that of consistent ordering of encrypted changes
to documents). More recently, with revelations of the US government’s mass
intrusion into data privacy, methods that emphasize process have found some
renewed currency: audit logs, and accountability systems.

3.5.1 Anonymization

One of the most common methods of protecting privacy in analytics is the anon-
ymization of personal records by which the subject identity of the data records are
removed, concealed, or hidden. Such an action can be taken by either the users or
providers of data. Users may perform anonymization before doing analytics on the
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big datasets. Providers may perform anonymization before storing the datasets
which then can be used, sold, or shared by others. Sometimes, health data providers
in the US and UK provide only limited anonymity by removing direct identification
such as personal details which include names or home address, but leaving out other
indirect identification such as personal details which include age, gender, or town.
The providers may aggregate and classify datasets by age group before the health
records are published, shared, rented, sold, or traded [45].

The common basic techniques for anonymization is to combine one or more of
the following techniques:

• Removal or omission of personal details such names, DOB, age, gender, marital
status, and address.

Table 3.1 Categories of privacy-preserving techniques

Category Example
techniques

Description

(1) Intentional
limitations

Analytics intentionally limited

• polls,

• aggregation (as
used in census),

• etc.

(2) Perturbations or
transformations

Transformations selected to preserve as much of
the statistics as possible

• suppression,

• swapping,

• randomization,

• synthesis,

• k-anonymity

• differential
privacy,

• etc.

(3) Ownership
guarantees

Strict ownership and control by prosumers of data

• multi-party
secure
computation,

• f �-consistency
• enterprise
security

• etc.

(4) Process
guarantees

Reliance on voluntary or regulatory safeguards
honored by service providers and data
“custodians”

• audit logs,

• accountability
systems,

• etc.
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• Pseudonymization which is the process of amending the data records by sub-
stitution some code numbers (possibly by the use of encryption or hashing) for
personal details.

• Grouping, aggregation, or classification of datasets by age, gender, marital
status, postcode, and town.

The removal or omission of direct identification is often considered adequate to
prevent identifiability. In [46], the author proposed guidelines to ensure patient
privacy when sharing health research datasets. The guidelines recommend deleting
direct identifiers including names, email addresses, IP addresses, biometric infor-
mation, and medical device identifiers. For the remaining indirect identifiers such as
age or gender, the guidelines recommend independent review if more than three
indirect identifiers exist in the data sets. The author considers more than three
indirect identifiers present sufficient risk of identification.

According to [47], pseudonymization is the process of disguising identifiers to
facilitate the collection of key information on the same individual without revealing
his or her identity. Two types exist for this purpose [45]: reversible pseudonymi-
zation and irreversible pseudonymization. In reversible pseudonymization, direct
identifiers such as names are replaced with encrypted code numbers usually by
applying symmetric or asymmetric encryption with an encryption key that enables
obtaining the plaintext identifier from the encrypted code and vice versa. This is
particularly needed for research, statistics, auditing, and pharmaceutical trials.
However, irreversible pseudonymization works only in one direction where it takes
the plaintext identifier and generates a fixed size encrypted or ciphered code
number. The original plaintext identifier can not be obtained from the generated
ciphered code number.

3.5.2 Re-Identification Attacks

A major concern to anonymization or de-identification is re-identification attacks in
which correlations among various datasets are conducted in order to lead a unique
finger print of a single individual. When performing automated data mining tech-
niques on combined and linkable large datasets from multiple sources, individuals
can be identifiable. That is, by linking different types of datasets, the uniqueness of
each record is increased, up to a point that a link back to an individual’s identity is
accurately established [48]. It is worth noting that re-identification is an intentional
and not accidental act with the end purpose of identifying individuals and revealing
personal details. A number of studies had been published on re-identification.
Computer scientist Latanya Sweeney demonstrated in her Ph.D. thesis at MIT that
69 % of the names of publicly available records for voter registration in Cambridge,
Massachusetts, can be identified using birth date and the ZIP postal code [49]. With
birth date and ZIP code, 97 % of the voter names can be identified. She was able to
also identify the name of Governor William Weld in an anonymized medical
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dataset [50]. As shown in the figure on re-identification, medical data with anon-
ymized names and addresses can be linked and matched with voter lists containing
names and addresses. Matched records with overlapping zip, birth date and sex can
be shortlisted to identify names and addresses of medical records with high degree
of certainty.

Another example about re-identification was carried out by Arvind Narayanan
and Vitaly Shmatikov [51]. The authors had developed a robust algorithm to
identify several Netflix subscribers by linking and matching the anonymized data
on movie ratings of 500,000 Netflix subscribers. Netflix (the world’s largest online
DVD rental service) had published this dataset to support the Netflix Prize data
mining contest. The authors in [51] had demonstrated in their study that an attacker
who knows a slight background knowledge about a particular subscriber can easily
identify with high probability the subscriber’s record if it is present in the dataset,
or, at the very least, may be able to identify a small set of records which include the
subscriber’s record. The attacker’s background knowledge need not be precise, e.g.,
the dates may only be known to the adversary with a 14-day error, the ratings may
be known only approximately, and some of the ratings and dates may even be
completely wrong.

However, the most popular re-identification breach occurred in 2006 [48] with
America Online (AOL) releasing 20 million user search queries over a three-month
period with the purpose of facilitating research in the area of information retrieval.
Prior to releasing the dataset, AOL had anonymized all queries containing personal
and sensitive information such as social security and credit card numbers.
Anonymization was done by replacing user identifiers with random numbers [52].
However, within two hours after the release, two reporters from the New York
Times were able to reveal the identity of user No. 4417749 based on just her search
history. The user was identified as “Thelma Arnold.” Consequently, this breach had
resulted in firing several AOL high ranking employees. This incident had prevented
many search engine companies from releasing their search logs, and also many
researchers are reluctant to use the released AOL queries to conduct retrieval
research [48].

Re-identification by linking and matching lists [50].
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The author in [48] has classified the re-identification attacks into three types:
(1) correlation attacks, (2) arbitrary attacks, and (3) targeted identification attacks.

1. Correlation attacks. This attack involves linking a dataset to other sources in
order to create more fine-grained and unique database entries. The example
given in [48] links pseudonymized customer data of pharmacies to equivalently
pseudonymized data of medications obtained from a hospital. It may lead to
more fine-grained data per entry. That is, if one database lists user IDs with
visited pharmacies, and the other lists the same user IDs with medication pre-
scriptions, then it is possible to correlate and deduce relationships to show the
hospital patients who bought medications from what pharmacy. In general, a
correlation attack may consists in linking additional datasets from different
sources to yield a finer-grained database such that there is either at least one
entry that is unique in its combination of data fields, or no two entries in the
database would have all data fields identical.

2. Arbitrary attacks. This re-identification attack attempts to link with high
probability at least one entry in an aggregated dataset to the identity of a par-
ticular individual. The AOL breach is a good example which illustrates that the
anonymized dataset when analyzed in correlation with other datasets can
potentially identify individuals by name. This type of attack may not be able to
find an entry in the correlated dataset that can clearly be linked with sufficient
probability to an individual identity.

3. Target identification attacks. Unlike target identification attacks, this approach
involves an intentional attack and more threatening to individual’s privacy. The
attack targets a specific person and succeeds only if it can link with high
probability some entries in the database to the individual’s identity. Using this
attack, an employer with a priori of personal details about the prospect or current
employees can search various pharmacy customer datasets for occurrences of its
employees. An insurance company can use the same technique to search for
prior existing conditions in the history of prospective applicants. Other exam-
ples of people who may carry out an attack may include a nosy neighbor or
relative who can learn sensitive information about someone they knew partic-
ipated in a survey or administrative database. A journalist might try to identify
politicians or celebrities. Marketers or creditors might mine large databases to
identify good, or poor, potential customers. And, disgruntled hackers might try
to discredit organizations by identifying individuals in public datasets.

3.5.3 Protection Against Re-identification

Some of the early efforts to thwart re-identification attacks were focused on
ensuring that no individual’s record is unique in a given dataset. This motivated a
popular notion of privacy called K-Anonymity [51, 53, 54] by which the dataset is
released such that no individual’s record is distinguishable from at least K � 1 other
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records. K-anonymity does provide a level of protection against correlation and
arbitrary attacks. However, for target identification attacks in which an adversary
has prior knowledge or background about an individual, K-anonymity may not
provide a suitable level of protection. For example, if a hospital releases a dataset
with K-anonymous records about patients who either have diabetes or cancer, and
adversary knows that patient X is in this dataset but does not have cancer, then an
adversary would be certain that patient X has diabetes.

L-diversity is an enhanced version of K-anonymity to mainly address
K-anonymity shortcoming [55] of not being able to protect against target identifi-
cation attacks. L-diversity requires that each group of individuals who are indis-
tinguishable by means of quasi-identifiers (such as age, gender, town, postcode,
etc.) not share the same value for the sensitive attribute (such as illness or medi-
cation), but rather has L distinct well represented values. The authors in [56] have
described adequately a critique of k-anonymity and some of its enhanced versions
like p-sensitive, l-diversity, and t-closeness.

The current state of the art anonymity technique and protection against
re-identification attacks is called differential privacy [57]. It eliminates most of the
notable shortcomings in K-anonymity, L-diversity, and their extensions. In [58],
differential privacy was explained using an opt-in/opt-out example in which an
individual can have a say to opt-in or opt-out when releasing the dataset to the
public. An individual can opt-out to have their privacy protected, or opt-in and hope
that an informed attacker will not be able to infer sensitive information using the
released dataset. Then, the release mechanism satisfies a particular e-differential
privacy if for every pair of inputs D1 and D2 that differ in one individual’s record,
and for every data release M, the probability that the mechanism outputs M with
input D1 should be close and within some exp(e) of the probability that the
mechanism outputs M with input D2. This way the data release is insensitive to an
individual’s presence (opt-in) or absence (opt-out) in the data.

We next summarize the popular types of privacy protection methods which can
be utilized. Our summary is based on the work reported in [58]. The protection
methods include Data Aggregation, Suppression, Swapping, Randomization, and
Synthesis.

1. Data aggregation. With aggregation, privacy is protected by aggregating
individual records within a report-based and summarized format before release.
Aggregation reduces disclosure risks by turning records at risk into less-risky
records. Aggregation is similar to K-anonymity in many ways. However,
aggregation makes analysis at finer levels difficult, and it also may create
problems of ecological inferences whereby relations deduced by aggregation are
not seen without aggregation.

2. Data suppression. In suppression, not all the data values are released. Some
values are removed, withheld, or disclosed. Typically, data agencies remove
sensitive values from the released dataset. They may select to suppress entire
variables or just at-risk data values. However, suppression may lead to inac-
curate data mining and analysis as important data values are suppressed and
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missing. For example, if large income values in the dataset are removed and
small incomes are left out, income distribution analysis of the released data will
be inaccurate and skewed to low incomes.

3. Data swapping. In swapping, data values of selected records are swapped to
hide the true owner of the records, thereby making the matching inaccurate.
Agencies may choose to select to have high rate of data swapping in which a
large percentage of records are selected for swapping, or low rate in which only
a small percentage of records are selected for swapping. Swapping at high rate
destroys relationships involving the swapped and unswapped variables. Because
of this, it is generally perceived that swapping usually involves a small fraction
of data records.

4. Data randomization. This technique involves adding noise of randomly gen-
erated numerical values to data variables to distort the values of sensitive
variables and make it difficult to deduce accurate matching. This technique is
also similar to barnadization that involves randomly adding or subtracting 1
from data variables [45]. The level of privacy protection depends on the nature
of the noise distribution. Greater protection is achieved when using a noise
distribution with large variance. However, large-variance noise distribution may
introduce measurement errors and inaccurate regression coefficients. It was
found that long-tailed distribution like Pareto and Laplace may provide stronger
protection [58].

5. Data synthesis. With synthetic data, the values of sensitive variables are
replaced with synthetic values generated by simulation. In a way, the synthetic
values are basically a random value generated by a probability distribution
function simulator. These distributions are selected to reproduce as many of the
relationships in the original data as possible. Sometimes, the synthetic values are
the representation of values after transforming them into a different space, e.g.,
Fourier.

3.6 Challenges

In general, as human beings we will most probably aspire to live freely and will
inadvertently, consciously or subconsciously fight the chilling impact of any
oppressive automated decision making based on Big Data analytics used by sys-
tems and institutions. This kind of conflict can give rise to “an arms race” between
the individual and institutions that rely on Big Data analytics either for general-
izations or particularizations. If we are cognizant of the problem, we should be able
to devise tools and technologies for privacy protection and transparent engagement
of users with Big Data systems.

It is a fact that many individuals, researchers, data service and communications
operators, and technology providers are thinking about these problems, and the
subtleties are bound to continue that process of exploration until we have a new
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system of laws, practices and technologies that prevent us from destroying rules of
civility while allowing the benefits of cloud computing and Big Data to flow to
enrich our individual but also social life and personality.

The privacy of personal data still poses many open research problems and
challenges which remain to be investigated. The research thus far has focused on
data records with the assumptions that the records are unique and independent. In
reality, records in social networks can be related and linked. In social networks, data
records are often linked to other people whereby different types of entities and
relations do exist. Protection against privacy in such linked records becomes
challenging as information about one individual record can be leaked though other
linked records to that individual record. Another challenging research problem is
the sequential releases of the same dataset over time. The privacy can be jeopar-
dized as attackers might be able to infer and deduce additional information from the
subsequent releases that could not be inferred from one single release. A third
challenge is related to devising sound mechanisms and solutions to maximize the
utility of the data while guaranteeing the maximum privacy and protection. This
may involve developing mathematical formulas and models that can be used to
understand the trade-off between privacy and utility.
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Chapter 4
Privacy in Crowdsourced Platforms

Thivya Kandappu, Arik Friedman, Vijay Sivaraman
and Roksana Boreli

4.1 Introduction

Crowdsourcing has emerged, in recent years, as a means of outsourcing various
tasks to groups of individuals that are recruited online. As defined in [23]:

Crowdsourcing is the act of taking a job traditionally performed by a designated agent
(usually an employee) and outsourcing it to an undefined, generally large group of people in
the form of an open call.

Crowdsourcing is increasingly used in a large number of application areas, from
user opinion surveys and other information collection (including, e.g., testing of
new designs) to contribution of content, for example, photos or other media, and
even funding of new ventures via crowdfunding. A list of crowdsourcing compa-
nies and their classification includes over 20 task categories and around 170
companies that provide crowdsourcing activities.1 These services have been used
widely—both academic and market researchers have been increasingly relying on
crowdsourcing platforms for conducting surveys, to gain new insights about cus-
tomers and populations.
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In this chapter, we focus on a narrower set of platforms that deal with collection
and aggregation of information, like the Amazon Mechanical Turk2

(AMT) platform that enables completion of human intelligence tasks or the Google
Consumer Surveys platform3 that enables large-scale market surveys.

In the vast majority of platforms, workers provide the information in a
quasi-anonymous way, as there is no direct relationship between the requester (the
company that requires completion of specific tasks) and the workers. Although the
majority of such platforms use a payment (or micropayment) system, all direct
interactions with the requesters are done thorough pseudonyms (worker IDs).
Nevertheless, the release of personal information and opinions, albeit in small
increments, can over time be accumulated (by the requesters or by the platform) to
identify and profile individuals. This gradual loss in privacy may be undesirable for
many workers, and even harmful (in social, financial, or legal ways) for some.
Furthermore, the threat comes not only from requesters, but also from the platform
itself, which can exploit the profiling for its own ends, or cede the information
gained about the workers to another entity for monetary gain.

In this chapter we concentrate on the privacy issues of workers in crowdsourcing
platforms. After a short overview of crowdsourcing platforms in Sect. 4.2, we start
in Sect. 4.3 with a brief review of privacy risks in online systems. We then discuss
how these risks apply to crowdsourcing platforms, focusing on the potential for
personally identifying information (PII) exposure. These risks are illustrated
through an example of a real world attack, conducted through a series of survey
tasks in AMT. Following this, we present in Sect. 4.4 an overview of solutions that
enhance privacy in online services in general, and which could also be applicable to
crowdsourcing platforms.

In Sect. 4.5 we focus on a specific proposal for a privacy-preserving crowd-
sourcing platform [27] that relies on obfuscation, and describe the design choices
surrounding obfuscation techniques, worker privacy levels, privacy loss quantifi-
cation, worker privacy depletion, cost settings, and worker utility estimation. We
also present the implementation details for a prototype of the system. We sum-
marize in Sect. 4.6 the challenges that still need to be addressed to enhance worker
privacy in crowdsourcing platforms and conclude the chapter in Sect. 4.7.

4.2 Crowdsourcing Platforms

Crowdsourcing platforms are leveraged to obtain feedback on goods and services,
and to collect content or ideas, by soliciting contributions from an online com-
munity, rather than from more traditional sources like company employees or
suppliers. A classification of crowdsourcing was presented in [47], distinguishing

2https://www.mturk.com/mturk/welcome.
3http://www.google.com/insights/consumersurveys/home.
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between integrative crowdsourcing, where clients seeks to build databases or
information bases (like data collection or translation of simple texts) and selective
crowdsourcing, where a problem may be solved by relying on competencies of the
crowd-based contributors.

Platforms like AMT, Crowdflower,4 and oDesk5 are used to crowdsource from
online workers tasks like deciphering images, ranking websites, and answering
surveys. AMT, launched in 2005, is extensively used by researchers in experi-
mental psychology to conduct low-cost large-scale behavioral studies by obtaining
opinion survey data from paid volunteer populations. Today AMT engages over
500,000 workers from 190 countries.6 The Google Consumer Surveys platform
utilizes a “surveywall” approach, where access to premium content is gated and
enabled for users upon completion of survey questions. The Consumer Surveys
platform customers include over 130 publishers (online newspapers and magazines)
only in the US based market.7 Crowdsourcing has also gained popularity in the
research community. As of March 2014, Google Scholar counts more than 10,000
academic publications that involve crowdsourced experiments via AMT.

Given that mobile devices have become an integral part of people’s daily lives,
mobile crowdsourcing has also gained high popularity, especially in the area of
environmental monitoring. For example, mCrowd [56] is an iPhone-based mobile
crowdsourcing platform that enables mobile workers to contribute to
geolocation-aware image collection, road traffic monitoring, and so on, which
exploit the sensors available on iPhones. Txteagle [14] is a mobile crowdsourcing
marketplace used in Kenya and Rwanda for translations, polls, and transcriptions.
Waze8 is a mapping app that relies on users’ contributions to provide real-time
traffic information. It has 15 million active users who upload their live driving data
by default, so others can benefit by seeing the speed at which the contributors are
moving. OpenSignal9 allows its users to map cellular coverage, find Wi-Fi hotspots,
test and improve their mobile reception, and obtain faster data rates. OpenSignal
has been downloaded 3.7 million times and has about 700,000 active users (at the
time of writing).

A crowdsourcing system typically comprises the following actors: workers
(users, or contributors), who are the individuals forming the crowd that provides the
data, or accomplishes selected tasks; requesters, who are the companies or indi-
viduals that need a set of tasks to be completed; and the crowdsourcing platform,
which manages the crowdsourcing process, including matching workers to
requesters and handling worker compensation.

4https://crowdflower.com/.
5https://www.odesk.com/.
6https://www.requester.mturk.com/tour, accessed March 27, 2014.
7http://www.forbes.com/sites/stevecooper/2013/03/29/qa-with-paul-mcdonald-co-creator-of-
google-consumer-surveys/.
8https://www.waze.com/.
9http://opensignal.com/.
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4.3 Privacy Issues in Online Services

In recent years, a number of real-world attacks have shown the importance of taking
privacy into consideration when contributing data in online services. In this section,
we discuss the main risks to worker privacy in online services and then focus on
specific risks in crowdsourcing services, with a detailed description of an example
attack.

We note that privacy issues may exist not only for the workers, but also for the
requesters. For example, a company that requires a set of tasks to be accomplished
by the crowd, may wish to keep such tasks, or the content of the data it shares,
private. This problem can be encountered, for example, in services related to image
classification and text translation [53]. However, as the vast majority of studies and
real-world breach examples address worker privacy, in this chapter we conse-
quently focus on worker privacy issues.

4.3.1 Risks of Re-Identification

Privacy risks related to public release of anonymized data sets have been demon-
strated by a number of real-world events. As a prominent example, in 2006, AOL10

released a 2 GB file containing 21 million web search queries from 650,000 users,
conducted over a period of three months [4]. The consequences of the data release
were devastating from the privacy perspective. AOL took down the data within
days of publication due to public outcry, but the data has already been downloaded,
reposted,11 and made searchable by a number of sites. In a matter of days, the
identity of user 4417749 had been unmasked by New York Times reporters [1].
Besides harm to the users whose names and social security numbers were pub-
lished,12 the AOL search log release may have had other harmful consequences the
extent of which is difficult to assess, such as: loss of user trust in AOL, as well as,
possibly, in other search engines; increased anxiety regarding the privacy of online
activities for users; and hesitation of other companies to share their data to enable
broader innovation [21]. Following the release of this private data set, the CTO of
AOL resigned, two employees were dismissed [24], and a class action lawsuit was
filed.

Similarly, in 2006, DVD rental company Netflix announced a contest with a $1
million prize for the best movie recommendation algorithm, and made an anony-
mized dataset of user ratings available to all interested participants [5]. The Netflix
prize data release included over 100 million ratings given by over 480,000 users to
17,700 movies. Despite the anonymization of the dataset, Narayanan and

10http://www.aol.com/.
11See, for example, http://www.gregsadetsky.com/aol-data/.
12http://superjiju.wordpress.com/2009/01/18/aol-search-query-database/.
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Shmatikov [39] have shown how to de-anonymize several users in the published
dataset by cross-correlating anonymized Netflix ratings with non-anonymous movie
ratings on the Internet Movie Database (IMDb) website. While the ratings of
movies users made on IMDb did not pose privacy risks, as they were made public
deliberately by the users, the re-identification of these users in the Netflix dataset
exposed also their private ratings on Netflix. The study demonstrated how little
auxiliary information is needed for reliable cross-correlation: for example, with
eight known movie ratings, 99 % of the records could be uniquely identified; two
ratings and their dates are sufficient for re-identification of 68 % of the records.

Overall, prior research, including [39], has shown analytically that even a rel-
atively small amount of background information about an individual can facilitate a
fairly reliable de-identification of that individual, in a seemingly well-anonymized
dataset.

4.3.2 Risks of Profiling and Data Misuse

The growing amount of information collected about individuals is increasingly
utilized for profiling and subsequent targeting of users. For example, the popular
loyalty and rewards cards enable retailers to collect details of users’ consumption
patterns, track their shopping habits, and mine the data to determine users’ interests
and needs. Australian retailer Woolworths recently stated in an industry publication
that it has managed to “overlay” its insurance company’s car crash database and its
Everyday Rewards statistics, to reveal which consumers were best to target for
insurance purchases [54]. Woolworths also shares its anonymous data with
Quantium, a company that sells this data to its clients for direct marketing [54].

As a specific example of customer data use, it was shown in [22] how Target can
successfully predict whether a female customer is expecting a child. Target assigns
every customer a Guest ID number, tied to her credit card, name, or email address,
and becomes a depository for her history of purchases and any demographic
information collected from her, or bought from other sources. Using this data,
Target assigns a score to every female customer to indicate the likelihood that she
may be pregnant. More importantly, it can also estimate the due date, so that
coupons can be timed to very specific stages of a customer’s pregnancy.

In a second example, the US based political media firm, Engage,13 is able to
predict who users will vote for, how likely users are to go to the polls, and the
potential for them to change their vote. They have reported, during the previous US
elections, that if users use Spotify to listen to music, Tumblr to consume content, or
Buzzfeed to keep up on the latest in social media, there is a high likelihood that they
will vote for President Obama. On the other hand, if they buy things on eBay, play

13http://enga.ge/.
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FarmVille, or search the Web with Bing, they are more likely to favor Mitt
Romney.

Finally, a team of British researchers have developed an algorithm that uses
tracking data from people’s phones to predict where they will be in 24 h [40], with
an average error of just 20 meters. The researchers combined tracking data from
individual participants’ phones with similar data from their friends, that is, other
people in their contact list.

While these examples represent a small fraction of the ways in which companies
are using data to predict user behavior, the proliferation of personal data is likely to
drive a rapid increase in the business of prediction. As more of user movements,
browsing patterns, purchase history, and social media interactions become recor-
ded, more companies will find ways to use this data to profile users and exploit this
knowledge for profit. These capabilities incentivize a multi-billion dollar industry of
data brokers to collect and sell personal user data, with little or no transparency, and
often without the knowledge and consent of the individuals to whom the data
pertains [43].

4.3.3 Privacy Issues in Crowdsourcing Platforms

The examples outlined in the previous sections relate to online services in general.
In this section, we consider specific risks in crowdsourcing platforms and provide
an example of how a requester can attain knowledge about the personal details of
workers in an anonymous crowdsourcing system.

4.3.3.1 The Lack of Worker Anonymity Guarantees

In a technical report, Lease et al. [32] have identified a direct loss of worker
anonymity on AMT. In AMT, requesters and workers are identified with a
14-character alphanumeric string. However, Lease et al. have observed that the
same string that identifies a worker in AMT is also the unique identifier of that
account across all Amazon services. Therefore, any public information associated
with an Amazon account, such as name and picture on the public Amazon profile,
product reviews and ratings, or a wish list, will be easily accessible via that
account’s Web URL.14 The use of the same account to access both AMT and other
Amazon services allows workers to use the proceeds for their AMT work towards
purchases on Amazon’s website. Moreover, Lease et al. pointed out that the term
“anonymous” has never been used on AMT’s website and policies, and while these
policies express Amazon’s concern for workers’ privacy, they do not state explicit
guarantees of worker anonymity. However, it is unclear whether workers are aware

14www.amazon.com/gp/pdp/profile/<WorkerID>.
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of the tight connection between their alphanumeric identifier on AMT and their
public information on other Amazon services. In fact, a thread on Turker Nation (a
forum dedicated to AMT discussions), predating Lease et al.’s work, reflects the
surprise of workers who learned about this relation.15

4.3.3.2 De-Anonymization and Privacy Loss via Inference Attacks

Lease et al. [32] suggested that having worker IDs that are not linked to other
(Amazon) services may mitigate the current direct anonymity loss issue for
workers. However, such measures may not be sufficient to eliminate all threats to
worker anonymity and privacy. Kandappu et al. [26] have shown how privacy risks
like those explored in Sect. 4.3.1, could easily apply to existing crowdsourcing
platforms to de-anonymize workers and obtain sensitive private information, in a
short time period and at very low cost, by correlating responses across multiple
surveys.

The inference attack in [26] comprised of launching a series of survey tasks in
AMT (through the third-party aggregator CrowdFlower16). The first survey queried
workers for their opinions on astrology services, and in the process obtained their
star-sign and day/month of birth. The second survey purportedly conducted market
research of online match-making services, and thereby obtained the workers’
gender and year of birth. With the third survey, on mobile phone coverage, the
researchers obtained workers’ zip code information.

The surveys were designed with sufficient redundancy to help identify and filter
out workers who gave random responses. Further, these surveys were posted
independently over several days, and workers were unlikely to have known that
they were conducted by the same entity. The researchers used the unique IDs
(constant across all surveys) to link workers who took all the three surveys above
and to obtain a combination of their personal details, that is, their date of birth,
gender, and zip code. We note that previous studies [20, 51] have shown the
effectiveness of using these attributes in re-identification of individuals.

A fourth survey was then launched, asking workers about their smoking habits
and coughing frequency. Overall, of the 400 unique workers who took the surveys,
72 could be linked from the first three surveys, and the respiratory health (and
likelihood of tuberculosis) for 18 of these individuals could be inferred from the
fourth survey using their unique ID, resulting in a potentially serious breach of
privacy. This experiment took only a few days and cost less than $30; one can only
imagine what the scale of privacy loss could be, were this experiment to be con-
ducted by entities with larger resources.

Finally, the above experiment was followed up with another survey, where
workers were asked if they would participate in a survey, if they knew they could be

15http://turkernation.com/archive/index.php/t-6065.html.
16https://crowdflower.com/.
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de-anonymized and profiled. Out of 100 workers who took this survey, 73
(including 15 of the 18 workers above, whose respiratory health could potentially
be made public) responded that they were not aware that they could be profiled, and
indicated that they would not have participated otherwise. These experiments
illustrate that workers can be profiled easily and at low cost, despite their disap-
proval of such practices.

The release of personal facts and opinions, albeit in small increments, can over
time be accumulated (by the requesters or by the platform) to profile individuals
(e.g., the work carried out in [30] shows that a wide variety of people’s attributes
can be accurately inferred using their Facebook likes). This gradual loss of privacy
may be undesirable for workers, and even harmful (in social, financial, or legal
ways) for some. Furthermore, the threat comes not only from requesters, but also
from the platform itself, which can exploit the profiling for its own ends, or cede it
to another entity for gain.

We note that AMT’s policies17 explicitly forbid using the platform to collect
personally identifiable information, or requiring workers to disclose their identity,
directly or indirectly. However, partial information (e.g., gender or age), which is
not sufficient for identifying an individual on its own, may be legitimately acquired
for the purpose of a specific survey. Despite the policy restrictions, it may be
difficult to track and enforce limitations on subsequent combining and (mis)use of
this information.

4.4 Overview of Existing Solutions

We now present an overview of recent technological advances in defining and
protecting individuals’ privacy and data confidentiality (visibility of the data values
used for aggregation) in data publishing and aggregation. We note that in crowd-
sourcing, as in most services that rely on users’ data, there is a need to balance the
privacy of individual participants with the greater good for which the aggregate data
can be used.

4.4.1 Anonymization

Early research works on data anonymization proposed sanitizing user data by
masking or removing PII such as name and address, and quasi-identifiers such as
gender and zip code. k-anonymity [46, 52] takes a “blend into the crowd” approach
to privacy, and requires that every combination of quasi-identifiers appears in at
least k data instances. This is achieved by generalization of such identifiers, for

17https://www.mturk.com/mturk/help?helpPage=policies, accessed March 27, 2014.
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example, by limiting the zip code to four or fewer, rather than five, recorded digits.
Further refinements of k-anonymity include l-diversity [37], t-closeness [33], and
other variants, which introduce additional restrictions on the released data values. It
was demonstrated, however, that such intuitive anonymization techniques are not
effective in protecting user privacy, as individual users can be re-identified via the
use of background information [10, 39, 44, 51], as shown by the AOL and Netflix
data release examples from Sect. 4.3.1. To date, safe release of anonymized data for
analysis purposes is still an open research problem. In addition, using such tech-
niques in crowdsourcing scenarios may not be practical, as users need to be
identifiable so that they can be compensated for contributing their data.

4.4.2 Data Obfuscation

Data obfuscation techniques protect user privacy by perturbing the data contributed
by individuals.

4.4.2.1 Randomized Response

A traditional method to obfuscate data is by randomization—this can be done by
adding noise sampled from a selected distribution, by multiplying with noise or by
projecting the data, to alter the individual values of the records. This method relies
on the ability to recover the probability distribution of the aggregate (non-noisy)
data, which can subsequently be used for data analysis. The earliest work on
randomization was presented in [34, 55], where it was used to eliminate the
untruthful answer bias. A generic approach proposed in [2, 3] is to add random
distortion values drawn independently from a known distribution, for example, the
uniform distribution. A number of improvements to this technique were subse-
quently proposed [15, 16].

We note that randomization methods apply noise to the records in a data-
independent way, thereby this technique can be utilized at the source of data
collection. Thus, perturbation of the records does not require a trusted server.
However, it was shown that an adversary may analyze the data and filter out some
of the noise, effectively reducing the bounds of uncertainty introduced by the noise
and compromising the privacy guarantees [29].

4.4.2.2 Differential Privacy

Differential privacy [13] is a privacy model based on the principle that the output of
a computation should not allow inference about any record in the input, irrespective
of an adversary’s computational power or the available background knowledge.
This guarantee is obtained by constraining the effect that any single record could
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have on the outcome of the computation. Consequently, the promise of differential
privacy is that the probability of a “bad” outcome resulting from a computation on
the data will be almost unaffected by the specific value of any particular record in
the dataset. Yet in aggregate, these records would still provide useful information.
Formally, a mechanism K provides e; dð Þ-differential privacy [12] (or simply e-
differential privacy for d ¼ 0) if for any two datasets A and B differing in a single
record, and for all outcomes S:

Pr½KðAÞ 2 S� � expðeÞ � Pr½KðBÞ 2 S� þ d: ð4:1Þ

The parameter e controls the level of privacy, where smaller values of e provide
stricter bounds on the influence of any particular input record on the outcome, and
therefore provide better privacy—adding or removing any particular record would
hardly change the probability of obtaining a given outcome, so the outcome would
not reveal much about any underlying record. The parameter d allows the condition
in Eq. (4.1) to be relaxed for unlikely events, allowing e-differential privacy to be
breached in some rare cases. One of the prevalent methods to achieve differential
privacy is by adding noise to the outcome of a computation. The noise is calibrated
according to the influence that any record may have on this outcome such that
Eq. 4.1 holds, as further described in Sect. 4.5.2.2. Differential privacy maintains
composability, that is, if two computations maintain ðe1; d1Þ and ðe2; d2Þ differential
privacy respectively, then executing both would amount to ðe1 þ e2; d1 þ d2Þ dif-
ferential privacy.

The practical implications of differentially private analysis were studied in many
application domains, including network trace analysis [38], intelligent transporta-
tion systems [28], collaborative security mechanisms [42], and distributed stream
monitoring [17]. Most applicable to the crowdsourcing scenarios are the distributed
differential privacy mechanisms [12, 41], that provide strong privacy guarantees in
distributed settings. Rastogi and Nath in [41] designed a two-round protocol based
on the threshold homomorphic cryptosystem, and Shi et al. in [48] applied cryp-
tographic techniques to allow an untrusted aggregator to compute sums without
learning anything about the user inputs. Both designs presented in [41, 48] achieve
distributed differential privacy while reducing the computational load per user.
These systems leverage cryptographic techniques to generate differentially private
noise in a distributed manner, but unfortunately do not scale well. In Sect. 4.5 we
describe in greater detail a system that relies on differential privacy to track privacy
loss in a crowdsourcing scenario.

4.4.3 Cryptographic Mechanisms

Cryptographic mechanisms are commonly used in conjunction with obfuscation to
achieve both data confidentiality and privacy [41, 48]. Chen et al. [8] proposed a
system that performs statistical queries over private client data (distributed on local
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databases, e.g., on client devices), where the analyst communicates with clients via
an honest-but-curious proxy. On first connection, a proxy assigns a unique ID to a
client. Answers are provided as binary values corresponding to a set of buckets, that
is, the potential values that a query may result in. Each binary value is encrypted
using the Goldwasser-Micali (GM) cryptosystem [19], a probabilistic public-key
cryptosystem that ensures each encrypted value is represented by a different
cyphertext. The analyst combines the decrypted client answers (that are also
obfuscated using a differentially private mechanism) to produce the result. The
authors extended these concepts in [7] to propose the SplitX system. This again
includes an analyst, a set of clients who locally store their data and a set of
intermediate entities: an aggregator and two mixes. However, SplitX uses a simple
XOR-based crypto-mechanism and a series of split messages (each message is split
into two, which are sent in parallel to any of the two intermediate nodes). This
provides the additional properties of anonymity and unlinkability and enables
considerably improved system performance.

A different approach to enabling confidentiality is to apply a secret sharing
cryptographic mechanism to the distributed private data, and perform Secure
Multi-Party Computation (MPC). However, this approach is only resilient to a
specific proportion of honest-but-curious attackers who collude to learn the private
data and/or the result of aggregation. MPC has been applied to crowdsourcing
platforms using the Sharemind implementation, as described in [6].

4.4.4 Compensating Users for Privacy Loss

Rather than limiting privacy loss when collecting and using personal information,
an alternative approach is to accept this loss and compensate the users accordingly,
so that they are incentivized to share information. Laudon [31] proposed a market
for personal data, which relies on individual ownership of this information. In fact,
several start-ups, such as Reputation.com [50], Handshake [36], and Datacoup [49],
are endeavoring to make such markets a reality.

Further to this, Ghosh and Roth [18] initiated a study of markets for private data,
where the privacy of users, as measured by differential privacy, is the sold com-
modity. Specifically, they consider a setting where the data is binary, and the
aggregator wishes to estimate the sum of bits. They proposed the FairQuery
mechanism, which achieves the optimal accuracy given a budget B, among the set
of all truthful, individually rational envy-free fixed purchase mechanisms. Dandekar
et al. [11] generalized these results to linear predictors (with inputs in R

n), and
observed that while these settings are similar to the knapsack auction mechanism,
they also pose the challenge that privacy costs exhibit externalities. That is, the
privacy cost of an individual depends also on which other individuals are being
compensated.

One of the challenges highlighted by Gosh and Roth [18] is that the data col-
lector will only get the information of individuals who value their privacy at a lower
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cost than that offered by the buyer. This introduces a selection bias, which could
lead to inaccurate results. Another challenge is that an individual’s cost for privacy
may be correlated to private information, and therefore might be itself private
information. In fact, they showed that, in general, it is not possible for any indi-
vidually rational direct revelation mechanism to compensate individuals for their
privacy loss due to unknown correlations between their cost functions and their
private data. Ligett and Roth [35] proposed to circumvent this impossibility result
by considering a “take-it-or-leave-it” framework, where a surveyor randomly
samples members of the underlying population, and offers them the same price in
return for participating in the survey. These offers are repeated with fresh popu-
lation samples and with increasing prices, until a sufficient rate of participation is
obtained. This model captures that individuals may also experience a cost when
information about their cost function (i.e., the cost they associate with privacy loss)
is revealed. The model also captures that individuals can suffer negative utility even
when they choose not to participate in surveys, as this choice may be correlated
with their private information.

All the aforementioned works [11, 18, 35] assumed that users cannot lie about
their private information, but can lie about their costs. The truthful mechanisms
ensure that individuals do not mis-report their cost functions in an attempt to
maximize their payment. In contrast, Chen et al. [9] did not assume that players
provide truthful answers. Instead, they considered settings where users may choose
to lie, but also have a direct interest in the outcome of the mechanisms. They
explicitly modeled privacy in the participants’ utility functions, and designed
truthful mechanisms with respect to it. The mechanisms leverage the users’ interest
in the outcome, such that the payoff overcomes the users’ value for privacy.
Essentially, the privacy parameter should only be set to be small enough such that
the privacy costs are outweighted by the participants’ preferences for outcomes.

Finally, Riederer et al. [45] introduced a mechanism of transactional privacy,
which enables end-users to sell or lease portions of their personal information (on a
strictly opt-in basis) in exchange for monetary compensation. This compensation is
determined in an auction, where data aggregators place bids based on their valu-
ation of the user’s information. The users can then decide what and how much
information will be disclosed to the aggregators, and the data can be sold multiple
times.

4.5 Loki: Privacy Preserving Crowdsourcing Platform

In Sect. 4.4 we surveyed general techniques for protecting user privacy in data
analysis, which are also applicable to crowdsourcing platforms. In this section we
consider in depth “Loki,” a system proposed by Kandappu et al. [26, 27], which
focuses on facilitating the crowdsourcing applications in a privacy preserving way.
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4.5.1 Architecture and Entities

The proposed system (Fig. 4.1) comprises three entities: requesters, workers, and
the broker platform.

Requesters acquire data from workers using a set of questions in a survey form
(the work largely focuses on ratings-based questions and multiple-choice questions).
The requester pays the broker to run the survey, specifying an upper bound on total
cost. The requester aims for high accuracy (utility) in the aggregated response for
any survey, so that it closely represents the feedback of the entire population.

Workers respond to questions in the surveys, using a supplied application
(app) installed on their personal device (smart phone/tablet). The app allows
workers to obfuscate their responses at source. The workers’ monetary compen-
sation may in general depend on their choice of privacy level—higher privacy
levels entail higher obfuscation and hence lower payment. Loki does not deal with
intentional lying (or cheating) by workers to get higher compensation; however,
lying may make the worker a worse predictor of the population average, reducing
the chances that the algorithm (described in Sect. 4.5.3.4) will select this worker for
subsequent surveys, thereby offsetting the monetary gains from cheating.

The broker provides a platform for launching surveys. It receives payment from
requesters, and passes it on to workers (less a commission). The broker has a dual

Fig. 4.1 Loki: System components and the basic protocol
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objective: to provide accurate population estimates to requesters, and to extend the
lifetime of workers in the system. The broker keeps track of workers’ performance
(i.e., how good a predictor of population behavior each worker has been in the past)
and privacy (cumulative depletion of a privacy “budget” due to participation in
surveys), so it can balance the trade-off within the cost budget.

4.5.2 Design Choices

4.5.2.1 Obfuscation and Worker Privacy Levels

In Loki, the worker client locally obfuscates the answer before reporting it to the
broker. For ratings-based questions, Gaussian noise Nð0; c2Þ is locally added to the
worker response. Gaussian distribution was chosen over uniform as it has
unbounded range, and hence does not compromise worker privacy in boundary
cases. It was preferred over Laplace noise since it is additive, that is, the sum of
Gaussian noise terms is still Gaussian. Further, note that the mean of the noise is
chosen to be zero for convenience, so as not to introduce any bias one way or the
other. The standard deviation c is adjusted based on the worker’s privacy chosen
privacy level. For multiple-choice questions, Loki relies on the randomized
response technique [55], whereby the worker’s true selection is preserved with
probability 1� p, and with probability p p\0:5ð Þ the response is changed uni-
formly randomly to one of the other choices. Again, the value of p is dictated by the
worker’s chosen privacy level, described next.

For the sake of simplicity, Loki uses a set of four privacy levels: none, low,
medium, and high. The chosen privacy level determines the amplitude of the noise
that is added to obfuscate the true worker response. The higher the privacy level, the
larger the obfuscation parameter (c or p above).

Example 1 Consider a 5-point Likert scale commonly used in psychology studies,
with the possible response values including: 1 (strongly disagree), 2 (disagree), 3
(neutral), 4 (agree), and 5 (strongly agree). A reasonable selection of obfuscation
parameter might be: c ¼ 0 for no privacy, c ¼ 3 for low privacy, c ¼ 6 for medium
privacy, and c ¼ 12 for high privacy (note that the reported responses will con-
sequently be real-valued rather than integers). For a multiple choice question with
five options, a reasonable selection of obfuscation parameter might be: p ¼ 0 for no
privacy, p ¼ 0:1 for low privacy, p ¼ 0:3 for medium privacy, and p ¼ 0:4 for high
privacy.

In general, the worker can set the desired level of privacy for each conducted
survey. For simplicity, we assume that the worker’s choice is consistent across
surveys (i.e., the worker tends to choose the same level of privacy for each survey),
but our selection algorithm (described in Sect. 4.5.3) can be easily modified to adapt
based on different user choices.
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4.5.2.2 Quantification and Tracking of Privacy Loss

Loki quantifies the privacy loss for a worker who answers a particular survey at a
particular privacy level, so it can be accumulated and tracked across multiple
surveys. For this purpose, Loki relies on differential privacy, where the differential
privacy constraint is applied to each survey answer. That is, the parameters e and d
capture how easy or difficult it is to infer the original user response given the noisy
survey response. For rating-based questions, the privacy guarantees of Gaussian
noise Nð0; c2Þ can be mapped to e; dð Þ-differential privacy measures through the
relation [12]:

ec2

2R2 þ lnðec2Þ� ln
1
d
; ð4:2Þ

where R is the range of the user’s possible answers. To illustrate by an example:

Example 2 Following from the previous example, the 5-point Likert scale based
ratings with privacy levels {no, low, medium, high} respectively used
c ¼ f0; 3; 6; 12g. Since R ¼ 4, and fixing d ¼ 0:01, the privacy settings correspond
to differential privacy guarantees of e ¼ f1; 3:42; 0:85; 0:21g respectively.

For multiple choice questions (with n options) obfuscated using the randomized
response technique, the mapping from the probability measure p to e; dð Þ can be
derived from (4.1) as:

e� lnð1� p� dÞ � lnðpÞ þ lnðn� 1Þ: ð4:3Þ

Example 3 Following from the previous example of a multiple choice question
with five options, the privacy settings {no, low, medium, high} respectively used
p ¼ f0; 0:1; 0:3; 0:4g. Fixing d ¼ 0:01, the privacy settings correspond to differ-
ential privacy guarantees of e ¼ f1; 3:57; 2:22; 1:77g respectively.

The differential privacy metrics are composable (i.e., additive), and the worker’s
privacy loss over successive surveys can therefore easily be upper bounded by
accumulating these metrics over the worker’s lifetime. These upper bounds capture
the relative privacy loss for each of the workers, which the broker can rely on to
ensure a fair distribution of the privacy loss across workers. In the rest of this
chapter, we will fix the value of d at 0:01, and use e for comparing privacy loss
across workers. Further, for cases where workers choose privacy level “none,” e is
set to 0 (rather than the theoretically correct value of 1), since the workers are
explicitly indicating that they do not value privacy for that survey, and the effect of
this survey on their cumulative privacy loss should not be accounted for.
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4.5.2.3 Cost Settings

A worker i, who contributes data in response to a survey questionnaire, receives a
compensation ci. Workers who choose a higher privacy level (and consequently add
more noise to their responses) may receive lower compensation than those who
choose a lower level of privacy.

Example 4 Following from the previous example that uses a 5-point Likert scale,
the privacy levels none, low, medium, and high could correspond to worker pay-
ments ci of $0.8, $0.4, $0.2, and $0.1 respectively. The unit of cost is arbitrary and
can be scaled appropriate to the complexity or value of the survey.

4.5.2.4 Worker History and Utility

Despite noise addition by workers to obfuscate individual answers, some charac-
teristics of worker behavior can be discerned by the broker over time. As an
example, noise added by a worker to n successive ratings-based questions, each
with iid noise Nð0; c2Þ, can be averaged by the broker to estimate the worker’s
mean noise Nð0; c2=nÞ that has lower variance. This fact can be leveraged by the
broker to estimate metrics such as the “error” of the worker’s ratings, that is, to
determine on average how close the worker’s ratings in the past have been to the
population averages. This in turn indicates how representative this worker is of the
general population, and helps the broker estimate the “value” of the worker towards
obtaining an accurate population estimate. In Sect. 4.5.3, this notion of worker
“value” is leveraged to select workers for each survey, in a balanced way.

4.5.3 Privacy-Preserving User Selection Mechanism

This section describes a practical method for the broker to select workers to participate
in each survey so as to balance cost, accuracy, and privacy. We outline the approach
for ratings-based questions (continuous-valued); the analysis for multiple-choice
questions (discrete-valued) is presented in the authors’ full version [25].

4.5.3.1 Quantifying Estimation Error

The broker is tasked with estimating the population average of a statistic (e.g., movie
rating, product popularity, disease prevalence). Due to the cost constraint set by the
requester, the broker can query only a subset of workers S from the universal set of
workers U, and this selection is based on accuracy, cost, and privacy depletion.

Denote by xi 2 R the input of worker i 2 U. The desired population average h is
given by h ¼ P

U
xi=jUj. The broker estimates this statistic by sampling a subset of
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workers S. Further, each worker i sends obfuscated input x̂i ¼ xi þ ni to the broker,
whereby the true input xi is combined with noise ni taken from Nð0; c2i Þ, where ci
depends on the worker’s chosen privacy level. The broker’s estimate ĥ of the
population average is then given by

ĥ ¼
X
S

x̂i=jSj ¼
X
S

ðxi þ niÞ=jSj: ð4:4Þ

The mean squared error in the estimator is given by:

RMSE2 ¼ ðĥ� hÞ2 ¼
P
S
ni

jSj þ
P
S
xi

jSj � h

0
@

1
A

2
4

3
5
2

: ð4:5Þ

When selecting S, the broker therefore accounts for two influencing factors: the
level of privacy required by each worker, which determines the error due to
privacy-related noise (first term above), and the expected sampling error (second
term above).

The “value” of a worker depends on how accurately the worker’s responses
reflect those of the population at large. To quantify this, consider the worker error,
i.e., the difference Di between the worker’s response and the true population
average, given by Di ¼ xi � h. Treating the worker error Di as a random variable,
we can estimate its mean li and variance r2i from the history of prior responses
Hi ¼ fx̂ijg of the worker using:

li ¼ E½Di� ¼
X

j:xij2Hi

ðxij � hjÞ=jHij; ð4:6Þ

r2i ¼ Var½Di� ¼
X

j:xij2Hi

ðxij � hj � liÞ2=jHij; ð4:7Þ

where hj denotes the true population average in a past survey question qj. New
workers can be assigned a default value of worker error.

Similarly, we can define the value of a group of workers S. The average rating by
the group is defined as xS ¼

P
S xi=jSj. Denoting by DS the group error, which

quantifies the difference between this group’s average rating and the population
average, we have DS ¼ xS � h. The mean and variance of the group error can be
deduced from the prior history HS ¼ fx̂Sjg of this group using:

lS ¼ E½DS� ¼
X

j:xSj2HS

ðxSj � hjÞ=jHSj; ð4:8Þ

r2S ¼ Var½DS� ¼
X

j:xSj2HS

ðxSj � hj � lSÞ2=jHSj: ð4:9Þ
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The estimation of the worker and group errors above assumes perfect knowledge
of the true worker responses xi and the population averages hj. In reality the broker
only has the noisy worker/group responses (x̂i or x̂S), as well as noisy population
estimate ĥj for prior survey questions. The mean lSð Þ and variance r2S

� �
of the true

group error can be approximated with the mean l̂Sð Þ and variance r̂2S
� �

of the
computed errors, using the fact that the noise is independent of worker responses
and has zero mean:

l̂S � lS; ð4:10Þ

r̂2S � r2S þ
P
S
c2i

jSj2 þ
P
U
c2i

jUj2 : ð4:11Þ

The expectation of the error in Eq. (4.5) is then derived as:

EðRMSE2Þ ¼E

P
S
ni

jSj

0
@

1
A

2
2
64

3
75þ E xS � hð Þ2

h i
¼

¼
P
S
c2i

jSj2 þ r2S þ l2S � l̂2S þ r̂2S �
P
U
c2i

jUj2 :

ð4:12Þ

4.5.3.2 Balancing Cost and Accuracy in a Single Survey

As described in Sect. 4.5.2.3, each worker chooses a privacy setting, which incurs a
privacy cost ðei; diÞ. The privacy protection is obtained by adding noise with var-
iance c2i . The privacy setting is also associated with monetary compensation ci.
Given the worker choices, the broker proceeds to select a group of workers to be
included in the survey, based on two constraints:

Monetary cost constraint. A requester sets an overall cost C for a survey. The
broker selects nj workers who picked the j-th privacy setting associated with cost cj.
To stay within the overall cost bound, the broker ensures

P
j
njcj �C.

Privacy constraint. For each worker, the cumulative privacy loss throughout the
system lifetime is capped at ðemax; dmaxÞ. Each worker i in survey j incurs a known
privacy cost ðeij; dijÞ. The accumulated privacy loss for worker i is therefore
ðPj eij;

P
j dijÞ where the summation is over all the past surveys taken by this

worker. The residual privacy budget for the worker is consequently ðRðeÞ
i ;RðdÞ

i Þ,
where RðeÞ

i ¼ emax �
P

j eij and R
ðdÞ
i ¼ dmax �

P
j dij. To guarantee that the worker’s

cumulative privacy loss stays within the lifetime privacy budget, the broker must

ensure that for the new survey, ei �RðeÞ
i and di �RðdÞ

i .
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For a new survey, we can therefore pose the selection of a set S of workers to
survey as an optimization problem:

arg min
S	U

RMSE

s:t:
P
j
njcj �C and 8i 2 S : ei �RðeÞ

i ^ di �RðdÞ
i ;

ð4:13Þ

where the RMS error is obtained from Eq. (4.12). For the special case when a
worker chooses a “no privacy” setting, which in theory translates to an uncon-
strained loss in privacy e ! 1ð Þ, we make the practical choice of using e ¼ 0,
d ¼ 0, reflecting that the worker is not concerned about the privacy implications in
this case.

Note that the upper bounds emax and dmax are used to capture the relative privacy
loss for each of the workers, which the broker relies on to ensure a fair distribution
of the privacy loss across workers. Workers whose privacy budget is exhausted can
be given a new identity which is unlinked to the previous one, and a new privacy
budget, allowing them participation in future surveys. Another possible option is to
increase all the workers’ privacy budgets once a significant portion of the workers
deplete their budget. Regardless of the broker’s policy, workers can always choose
to quit the system when they deem their cumulative privacy loss too high.

4.5.3.3 Balancing Cost, Accuracy, and Privacy Fairness Across
Multiple Surveys

When considering a series of surveys, additional factors may influence the broker’s
choices, beyond the cost and privacy constraints. In particular, Quality of Service
(QoS) across surveys aims to keep an (ideally) constant RMS error over successive
surveys that can be maintained and guaranteed to the requesters, while fairness aims
to balance the residual level of privacy across workers, since privacy can be seen as
a non-renewable resource, which should be equally depleted across workers. QoS
considerations may motivate the broker to select for a survey workers with low
error, but this may deplete such workers’ privacy budget rapidly. Consequently,
those workers may be excluded from participation in subsequent surveys, resulting
in deterioration of QoS over time.

To control the influence of QoS and fairness considerations, a “fairness
parameter” a 2 ½0; 1� is set by the broker. The monetary and privacy cost of worker
i are then combined into an overall cost Fi, given by:

Fi ¼ ð1� aÞ ci
C
þ a �max

ei

RðeÞ
i

;
di

RðdÞ
i

" #
: ð4:14Þ

The first term considers the monetary cost of the worker for this survey, as a
fraction of the budget available for the survey. The second term considers the
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privacy depleted by this worker’s participation in the survey, as a fraction of the
worker’s residual privacy budget. When a ! 0, monetary cost is of primary
concern and fairness in privacy depletion is ignored. Conversely, when a ! 1,
monetary cost is ignored and workers with a low residual privacy budget are
assigned high cost, disfavoring them for selection so as to maintain fairness in
privacy depletion. The next section presents the selection algorithm that uses this
combined cost metric.

4.5.3.4 Algorithm for Worker Selection

For a new survey, Algorithm 4.1 is executed to select the set of workers who yield
the best accuracy within the given cost constraint, while also maintaining fairness in
privacy depletion among workers. The initial construction of this set assumes that
(a) all selected workers will actually take the survey, and (b) Loki can correctly
predict the privacy level choice of each worker according to their past history. In
reality, these assumptions may not hold, but the algorithm can be easily modified to
refine the set based on actual worker feedback.

Evaluating all possible subsets S	U of workers to determine the optimum would
be intractable. Instead, Loki uses a greedy heuristic approach, by which the broker
constructs the set S incrementally, each time adding the worker who would be most
cost effective, while taking into account the QoS and fairness considerations. Given
a set of workers S	U, Eq. (4.12) evaluates the expected error RMSEðSÞ of the set,
based on past performance. Adding the worker i to the set would result in the set
S[fig, for which the expected error RMSEðS[figÞ can be evaluated as well. The
difference DRMSEðS; iÞ ¼ RMSEðSÞ � RMSEðS[figÞ encapsulates the reduction in
error by inclusion of the worker i in the set. We can then compute bi, the
improvement in RMS error per unit of cost, for the worker i:

biðSÞ ¼
DRMSEðS; iÞ

Fi
; ð4:15Þ

where the worker cost Fi is given by Eq. (4.14) and includes both monetary and
privacy costs. The broker bootstraps the algorithm by choosing the worker with the
highest accuracy gain per unit of cost. Then in the greedy selection process, the
broker picks the worker with the highest bi at each step. By starting with an empty
set of workers, and iteratively adding workers one by one, the broker can construct
the target set S, until the monetary cost limit C is reached. Note that workers who
have depleted their lifetime privacy budget are not eligible for selection. Algorithm
5.3.4 has complexity OðKN2Þ, where K is the number of items that constitute prior
history and N is the number of workers.
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Algorithm 4.1 Greedy Worker Selection Mechanism
1: Input:U : a set of workers, each with cost cu; C: overall cost bound.
2: Output: S ⊆U : a set of survey participants.
3: S ← .0/
4: P ← {i ∈U : ci ≤C∧ εi ≤ R(ε)

i ∧δi ≤ R(δ )
i }. candidate workers within budget

5: while P= /0 do
6: u ← arg max

i∈P
βi(S).

7: S ← S∪{u}.
8: P ← P\{u}.
9: C ←C− cu. remaining budget
10: P ← {i ∈ P : ci ≤C}.
11: end while
12: return S.

4.5.4 Evaluation

To study the trade-offs between cost, utility, and fairness, and the long-term system
performance, the algorithm was evaluated using the Netflix dataset,18 a large dataset
of movie ratings, as a survey answer set [27]. The dataset contains over 100 million
movie ratings (on a 5-point scale) from 480; 000 anonymized Netflix customers
over 17; 000 movie titles, collected between October 1998 and December 2005.
The movies released in 2004 (1,436 in number) were used as historical information,
and the objective was to estimate the population-wide average rating of movies
released in 2005 within a specified cost budget C.

The experiments assumed a simple model of privacy choice, in which each
worker was permanently assigned into one of four privacy bins {none, low, med-
ium, high} at random, with probabilities 13.8, 24.4, 38.9, and 22.9 % respectively.
The probabilities were derived from the experimental study with real users,
described in Sect. 4.5.4.1. While this experimental setup is different from the one
discussed in Sect. 4.5.4.1, this allows us to evaluate performance on the basis of a
privacy preference breakdown observed in real-world settings. In general, different
settings can induce different preference distributions. The bins were associated with
zero-mean Gaussian noise with standard deviations c ¼ 0; 3; 6; 12 respectively
(corresponding to e ¼ 0, e ¼ 3:42, e ¼ 0:85, and e ¼ 0:21), and respective pay-
ments of $0.8, $0.4, $0.2, and $0.1 for each worker. Noise sampled from Nð0; c2Þ
was added to each of the workers’ movie ratings.

Within these settings, Loki’s selection mechanism was evaluated for different
values of the fairness control parameter a. Figure 4.2(a) shows the estimation error
EðRMSEÞ for varying values of the available budget C and for various selection

18http://www.netflixprize.com/.
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policies. For different a values, both the true error (i.e., difference between the
estimate and the ground truth available in the dataset), depicted with solid lines, as
well as the corresponding estimated error (computed using Eq. 4.12), depicted with
dashed lines, are shown in Fig. 4.2(a). The estimated error closely reflects the true
error, and is hence of sufficient accuracy to be useful in the selection decision. The
figure shows also two baseline selection strategies: random selection, in which a
random set of workers is selected subject to the cost constraint, and a “best pre-
dictors” selection, in which the subset of the population that has the highest his-
torical accuracy (i.e., is most representative of the population) is selected subject to
the cost constraint. As can be expected, random selection of workers resulted in the
lowest accuracy (users who are “bad predictors” or who provide very noisy answers
to protect their privacy are just as likely to be chosen as more “valuable” users), and
the selection of “best predictors” consistently yielded near-perfect estimates, even
by surveying as low as 37 % of the population. Setting a ¼ 0 yields accuracy
identical to the “best predictors” selection algorithm, but as a progressively
increases, the error increases.

The loss in accuracy is compensated for in privacy fairness. To evaluate the
performance in a series of surveys, the selection algorithm was applied, sequen-
tially, to a set of 500 movies released in 2005, again using the movies from 2004 as
prior history. Figure 4.2 shows the privacy depletion, for various a settings. When a

(a)

(b)

Fig. 4.2 Impact of the
selection policy on
(a) accuracy versus cost in a
single survey, and (b) the
estimation error over multiple
surveys
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is low, the error is initially low, but rises rapidly with successive movies. This
happens because the best performing workers are selected for the initial movies
(yielding low error), but deplete their privacy rapidly. Conversely, a choice of high
a results in fairer depletion of privacy, prolonging the lifetime of workers in the
system and giving more consistent quality of estimates over time. In the long run,
the broker therefore has an incentive to choose a larger a setting to ensure fairness
and consistency in the quality of the results. Note that the algorithm allows this
parameter to be chosen by the surveyor on a per-survey basis.

4.5.4.1 Prototype Implementation

Loki was also implemented as a prototype to evaluate the system with real users, in
an experiment involving 131 volunteers [27].

The prototype19 consists of a front-end application for workers to participate in
surveys (screenshots of the iPhone app are shown in Fig. 4.3), and a back-end
database/server that stores worker data and communicates with the app. Gaussian
noise is generated locally by the app using the Box-Muller method, and obfuscated
responses are uploaded to the server. The no, low, medium, and high privacy
settings correspond to c ¼ 0; 3; 6; and 12 and e ¼ 0; 3:42; 0:85 and 0:21 respec-
tively. The server was built using the Django (Python) Web Framework and uses a
MySQL database to store worker details and surveys.

The system was trialed with 131 volunteers, all 3rd and 4th year undergraduate
students studying Electrical Engineering at UNSW. Of the 131 students who took a
lecturer assessment survey, 18 (13.7 %) chose no privacy, 32 (24.4 %) chose low
privacy, 51 (38.9 %) chose medium privacy, and 30 (22.9 %) chose high privacy.
Medium was chosen by most since users perceived it as a “safer” option than any of
the extreme values.

The accuracy of the responses was validated by comparing them to the
university-run rating mechanism, and by comparing the ratings across the privacy
bins in the system. In general, the standard deviation of the mean lecturer rating
falls with the square root of the number of samples constituting the mean. The
evaluation showed that even with a relatively small sample size of 131 participants,
the error in estimates was still reasonably small.

4.6 Challenges and Opportunities

Crowdsourcing is an emerging and promising model for information gathering and
problem solving that is already transforming industry and scientific practices,
allowing researchers access to human resources in a scope that was not possible

19Available at https://itunes.apple.com/au/app/loki/id767077965?mt=8.
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before. Unfortunately, while the opportunities of crowdsourcing are still being
explored, little attention has been given to the privacy implications that crowd-
sourcing platforms may impose for their workers. The topic of privacy in online
systems has earned much research attention in recent years, but the study of privacy
in the context of crowdsourcing systems is still in its infancy. We outline below
some of the challenges that are yet to be addressed in this area.

Understanding privacy risks in crowdsourcing platforms. The research
community has come a long way in the last few years in understanding the
implications of the “Big Data” revolution on users’ privacy in online services, and
the power of data mining tools to uncover information in ways that may break
users’ expectations of privacy. Crowdsourcing platforms, which provide the ability
to solicit information from a large community of workers, are not devoid of these
risks, yet only little work has been conducted to understand how such risks apply to
crowdsourcing. Exploration of existing crowdsourcing platforms and the privacy
risks involved in using them would be vital for educating both workers and
requesters on these risks and for designing proper privacy-enhancing mechanisms
in crowdsourcing platforms.

Understanding the role of anonymity in crowdsourcing platforms. Among
the privacy risks involved in the use of crowdsourcing platforms, anonymity plays a
unique role. On one hand, some instances of crowdsourcing, like academic studies
that are vetted by Institutional Review Boards, include an integral requirement to
minimize the privacy risks that the human subjects are exposed to, including
safeguarding their anonymity. On the other hand, establishing a link between virtual

Fig. 4.3 Screenshots of iPhone app showing (a) list of surveys and privacy levels available to the
workers, (b) the questions and ratings entered by the worker, and (c) the worker responses
uploaded after noise addition
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worker accounts and real people could play a vital role in establishing the reliability
of the gathered information and in mitigating worker fraud. Finding the right bal-
ance between these conflicting goals is one of the challenges that existing crowd-
sourcing platforms will need to face as this area keeps evolving. This conflict also
presents an opportunity for specialized crowdsourcing services that emphasize one
aspect over another, depending on the specific subject area, for example, crowd-
sourcing services that impose harsh restrictions to guarantee worker anonymity in
(highly sensitive) human studies, versus services that forgo worker privacy to
provide better matching between requesters and skilled workers.

Designing privacy-preserving crowdsourcing mechanisms. Participation in
surveys and disclosure of information in crowdsourcing platforms exposes workers
to risks of privacy loss, and these risks increase as workers participate in an
increasing number of surveys and give away more information over time. While
any particular piece of information may seem insignificant, the aggregated data,
linked to the same worker, may be collected over time and may reveal significant
amounts of information about the worker. While regulations and legally-binding
terms of use may be sufficient to prevent privacy-invading data misuse by honest
parties, they may not be effective in preventing privacy loss in the face of data theft
or human error. Therefore, proposing and evaluating mechanisms for enhancing
privacy in crowdsourcing applications is vital for protecting worker privacy in such
platforms, or at least for educating workers and giving them more control over the
rate of privacy loss. Such research could draw from existing works on
privacy-preserving computations, and adapt them to the distributed nature of
crowdsourcing applications.

Worker compensation for privacy loss. Existing crowdsourcing platforms tend
to ignore the impact of privacy concerns on worker participation, and set a fixed
price per task. This policy may consequently drive away workers who value their
privacy above the suggested compensation, and introduce a bias towards workers
who place a lower value on their privacy. Compensating workers for their privacy
loss may somewhat mitigate this problem, but it introduces many other challenges:
the workers’ privacy choices may become a source of privacy leak even before
participation in the survey; workers may not be truthful about their privacy costs and
may provide false answers in surveys, to protect their privacy while maximizing
compensation; and participation in multiple surveys over time may call for different
mechanisms than those studied so far in single-query settings. While several works
have started investigating such problems, many of these questions are still open.

4.7 Conclusion

We provided in this chapter an overview of the state-of-the-art of privacy in
crowdsourcing platforms, including existing frameworks that can be leveraged to
enhance user privacy in these platforms, and the challenges that are yet to be
addressed. The research community has made great strides in recent years
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developing new semantic definitions of privacy, given various realistic character-
izations of adversarial knowledge and reasoning. However, while research and
technology play a critical role in privacy protection for personal data, they do not
solve the problem in its entirety. In the future, technological advances must dovetail
with public policy, government regulations, and developing social norms. Many
challenges still remain, and we believe that this will be an active and important
research area for many years to come.
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Chapter 5
Privacy in Healthcare

Drew Williams, Ivor Addo, Golam Mushih Tanimul Ahsan,
Farzana Rahman, Chandana Tamma and Sheikh Iqbal Ahamed

5.1 Introduction

Upholding a promise of patient privacy has long been a standard for healthcare
providers. The Hippocratic Oath, devised by the ancient Greeks, requires takers to
vow to keep patient information private. The World Medical Association’s
Declaration of Geneva also asks physicians to promise not to divulge secrets told to
them, even after a patient’s death [1]. Even in the gravest emergency, protecting
patient privacy remains a high priority: the Principles of Ethics for Emergency
Physicians asks doctors to disclose confidential information only with the patient’s
consent, or due to an overriding duty, such as that to obey the law [1].
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However, advancements in technology have only complicated the process of
keeping up these promises. In the 19th century, we were able to send data from
electrocardiographs over telephone wires. By the 1960s, consultations using current
communications technology could be facilitated between hospitals and psychiatric
institutes using then-current telecommunications technology. By the 1970s, the
term “Telemedicine” was coined, defined by the World Health Organization
(WHO) as “The delivery of health care services, where distance is a critical factor,
by all health care professionals using information and communication technologies
for the exchange of valid information for diagnosis, treatment and preventions of
disease and injuries, research and evaluation, and for the continuing education of
health care providers, all in the interests of advancing the health of individuals and
their communities” [2]. In more recent years, the advent of the computer brought
with it the ability to store healthcare information in an electronic format, adding to
the number of ways doctors and patients can access healthcare information. In
response to this, the Health Insurance Portability and Accountability Act (HIPAA)
of 1996 was passed, regulating access to health information and medical records of
individuals in order to ensure their privacy [3]. However, new technologies such as
cloud computing and mobile health mean that privacy requirements for healthcare
related applications will only continue to evolve. After all, the use of personal
computer and mobile devices is still growing. In 2011, 75.6 % of households in the
United States reported owning at least one computer and 71.7 % reported using
the Internet [4]. Current smart phone service subscriptions are set to outnumber the
number of people that exist in the world [5]. This changing device scene, among
other emerging technologies, has led to a huge number of concerns regarding
patient privacy in healthcare.

As an example of how advances in technology can affect our efforts to protect
patient privacy, take a theoretical application designed to capture information about
a patient’s mood and activity levels. The application can gather data related to a
patient’s everyday habits via phone sensors over the course of a day, tracking how
much exercise they get and their travel habits. The application can then ask the
patient how they felt that day, logging the results each evening. From here, the
application might transmit the data to a cloud storage, where healthcare providers
can access that data. By charting the data received, doctors can find trends in
activity and mood over weeks of logs, which can determine the impact of treat-
ments the patient might be undergoing.

This is useful and convenient for doctor and patient. However, an application
such as this has many user privacy considerations to take into account. For one,
application developers must ensure secure transmission of patient data to the cloud.
Both in the cloud and on the phone, one must make certain health data is also stored
in a secure fashion. There is also the problem of device theft, often solved by
implementing a device lock. If a malicious party steals an unlocked phone, it might
compromise data stored on the device. Finally, if the website is accessible by
doctors through a web application, the design of this application must also ensure
that the data remains private and inaccessible by outsiders. It is easy to see that
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privacy in healthcare is a challenging and complicated subject. Despite the positive
impact of transitioning to electronic healthcare systems, securing these systems
against privacy leaks is a complex task, and deserves careful thought.

In this chapter, we consider a number of the existing electronic healthcare
systems in the field—from personal health records (PHRs) to the use of
radio-frequency identification (RFID) chips in storing patient data. We also con-
sider technology not directly related to healthcare but used in healthcare systems,
such as cloud computing and mobile computing. We then discuss the privacy
implications of these different systems and technologies. After all, each comes with
its own unique privacy challenges. Finally, we look at methods of protecting the
privacy of the information contained by these systems, followed by case studies of
privacy protection for a few examples of up and coming technology as well. In
doing this, we present both a summary of privacy challenges in a healthcare
environment, and methods of ameliorating healthcare systems.

The remainder of this chapter is set out as follows. In Sect. 5.2, we provide some
background regarding different systems actively used in healthcare. Section 5.3
discusses different privacy challenges of each of these systems. In Sect. 5.4 we go
into potential solutions for protecting patient privacy. Section 5.5 gives particular
case studies related to up and coming technology in healthcare, and finally,
Sect. 5.6 concludes the chapter.

5.2 Background

The Occupational Safety and Health Administration of the United States defines
healthcare as the “provision of health services to individuals [indirectly or
directly],” and acknowledges that it can occur in hospitals, clinics, dental offices,
nursing homes, emergency rooms, and other such locations [6]. As in most other
areas of work, there has been a persistent demand to switch from paper docu-
mentation to electronic records for a number of reasons: health provider accuracy,
the use of data mining in healthcare, and instantaneous record access from different
parts of the world. Unfortunately, this transition from paper to electronic patient
records has been progressing with caution, due to the aforementioned privacy
considerations inherent with healthcare data. There have already been some cases of
compromised private electronic health data [7]. However, in spite of this fact that
the advancement of the electronic world into healthcare is plagued with privacy
woes, it also offers superlative benefits, thus making the problem of ensuring patient
data privacy a hot topic in the computing world.

Before one looks into the particular privacy problems that healthcare is
encountering, it would be good to discuss different sorts of healthcare systems.
Some of the more prominent systems in electronic healthcare are briefly discussed
in the following subsections.
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5.2.1 Management of Patient Data

For a long time, paper records were used to keep track of patient medical history.
Transmission of medical records often involved faxing or mailing record copies
manually. Recently, there has been a push towards using electronic means for
managing patient data. Electronic medical records (EMRs) and electronic health
records (EHRs) are two of the more prevalent outcomes of this push. EMRS contain
the history of a patient’s data, replacing the outdated paper charts of old [8].
Although these data are only gathered from a singular practice, the records include a
wealth of information about that practice, such as quality of care and notes regarding
how a patient measures up to particular parameters (such as an ideal blood pressure).
However, these data are not easily shared outside of a single practice.

EHRs, on the other hand, are designed to contain a patient’s medical history that
can be shared outside of a practice, including information about all medical prac-
titioners that have been involved in caring for a particular patient [9]. By bringing
together medical information about a particular patient in one place, EHRs can
assist doctors to access helpful information from other doctors in an instant, such as
emergency medical situations that a patient’s primary care physician was not
involved in. This can be very useful in diagnosis and treatment of a patient in a
timely fashion.

Electronic prescription (e-prescription) systems do not deal with the wealth of
information that EHRs and EMRs do, but they are no less useful. They allow
doctors to enter information about a user’s prescriptions into a computing device,
and send this information to a pharmacy that can prepare the order for pickup by the
patient [9]. It has been suggested that these systems will have a positive impact on
the process of prescription and dispensation, improving a variety of aspects of the
process; including safety, quality, efficiency, and cost-effectiveness [10]. Data
gathered in e-prescription systems might also be more easily added to the patient’s
electronic health record, if it exists.

E-prescriptions, EMRs, and EHRs are all designed with clinicians in mind.
However, patient-managed PHRs are also an option for the user wishing to keep
track of their health records themselves. PHRs are records of medical information,
such as allergies and immunizations, which a patient edits and adds to themselves.
These can be tethered to a portal managed by hospitals, or stored on a user’s own
computer [9].

However, it should be noted that these systems are not the only paperless
methods doctors can use to keep track of patient data. A variety of up-and-coming
systems are in the works that would further enhance the privacy of medical records.
RFID chips would end the need for patients with chronic illnesses to wear bracelets
identifying their condition. Implantation of the tiny chip could allow doctors to scan
for the chip in an emergency situation, access the chip’s data and access an EHR
with the patient’s background and history included in it. There are also systems that
use the data gathered by patient data management systems such as barcode tracking
systems, clinical decision support systems, and enhanced reporting [11].
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5.2.2 Telemedicine

Electronic healthcare systems do not just manage the collection of patient data for
physicians, they can assist a physician in gathering said data too. As mentioned
earlier in the chapter, telemedicine involves using information and communication
technology to deliver healthcare services across great distances [2]. In telemedicine,
a variety of technologies are used in treating, diagnosing, or otherwise providing
assistance to patients requiring medical care. In the past, radios or telephones were
used in telemedicine to transmit medical details: for example, a patient living in a
rural area could call a doctor and discuss their symptoms rather than making a long
trip to visit a surgery. However, telemedicine now also involves web-based
applications such as email and videoconferencing—patients can communicate
concerns in real time with a doctor via video. In some cases, doctors can even
diagnose a patient over video, sending along a prescription for the patient following
the meeting. As telemedicine can allow for the remote diagnosis, management, and
monitoring of patients, low-income countries and regions with limited resources are
poised to benefit greatly from the expansion of telemedicine [2].

5.2.3 Managing Health Knowledge

As shown already, we can use different systems to gather a great deal of knowledge
from a particular patient and store it. However, we also have the opportunity to
gather a lot of information in general about healthcare, and keep it in a single place
for easy access. This is something that can benefit both practitioner and patient.

Health knowledge management deals with the organization of healthcare
knowledge in order to use it for clinical decision making. Formally defined, it can
be characterized as the systematic creation, modeling, sharing, operationalization,
and translation of healthcare knowledge to improve the quality of patient care [12].
This healthcare knowledge can be specific to a hospital or city (i.e., operations
knowledge) or more related to patient care, and can come from a wide variety of
sources. Use of health knowledge management systems can assist clinicians in
improving hospital workflows, patient care, and making decisions both related to
operations and next procedures. Having this knowledge in one place can also
potentially assist in training new physicians.

While health knowledge management systems are practitioner oriented, the field
of consumer health informatics is targeted at involving the patient as well. In 2009,
Or and Karsh defined Consumer Health Informatics Technologies, or CHITs, as
“computer-based systems that are designed to facilitate information access and
exchange, enhance decision making, provide social and emotional support, and help
behavior changes that promote health and well being” [13].These systems help
inspire patients to take charge of their own medical records, and communicate with
practitioners regarding their care, combining access to patient records with a
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method of electronic communication with their care provider. The majority of
CHITs involve health-related websites for patient use, but crossovers with other
areas of healthcare, including telemedicine, are common as well.

However, while CHITs involve patient–doctor communication, cybermedicine
involves applying Internet and global networking technologies to the area of
medicine in a global exchange of open, non-clinical information, mostly from
patient-to-patient [14]. In doing this, patients can discuss symptoms and solutions
that they have encountered, thus improving their understanding of what physicians
can offer them. In this way, patients and doctors can work together to find the best
solution for an ailment. As access to the Internet evolves and becomes more
widespread, cybermedicine is expected to in turn have an increased impact.

5.2.4 Mobile Computing and Healthcare

mHealth refers to the idea of mobile healthcare, where mobile devices and com-
puters are involved in patient care and monitoring. Unlike telemedicine, mHealth
can carry on without a physician’s direct involvement, as apps can collect data from
a user’s habits for an extended period of time. This allows for a user to be moni-
tored without needing to stay in a hospital.

Various types of mobile technologies can be utilized for mHealth interventions.
A few examples are low-end cell phones, smart phones, laptops, tablets,
mobile-enabled diagnostic identification and monitoring devices, and devices with
mobile alert systems. There are also a variety of small, wire-free devices such as
pedometers that interface with web applications and sleep monitoring systems.
Mobile devices in particular offer promise for extending healthcare opportunities
across a wide variety of people. It is estimated that there are currently more wireless
devices than there are people in the United States. In addition to monitoring patients
and providing on-demand information for physicians, applications in mHealth can
also replace equipment previously thought to be large or cumbersome using the
sensors inherent in the mobile devices by interfacing with existing equipment such
that results of measurements may be instantly recorded and analyzed electronically
[15].

5.2.5 Technology Used in Healthcare

Finally, we can use a number of systems in healthcare that were not developed with
healthcare use specifically in mind. For example, the use of systems designed to
manage “Big Data” allows for detailed analytics about a person based on infor-
mation from a variety of data sources. This could assist doctors in predicting disease
or recognizing a patient who was managing a chronic illness incorrectly [16]. Data
about a patient from their last doctors’ visit could be combined with data from
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mobile applications and social networking websites to provide a more complete
diagnosis system for a person.

Cloud computing is another popular technology, often combined with mobile
healthcare. Cloud computing involves the storage of information in an off-site data
center, and the on-demand availability of that information to a variety of connected
users and devices. From this description alone, it is easy to see how it could greatly
benefit the medical community. For example, the on-demand availability of patient
records anywhere in the United States would be incredibly useful in times of
emergency. mHealth can use cloud storage for saving the data gathered by mobile
devices; however, major concerns exist regarding user trust in cloud computing.
Providers often cannot ensure the control of security and privacy related to user
data, and individual cloud providers offer different rules related to client auditing
procedure (and even the ability of the client to audit its own data) [17]. A variety of
security problems also exist in cloud computing that could result in privacy brea-
ches for the user. For this reason, along with the legal liability that legislation such
as HIPAA imparts on a provider, cloud storage implementation in healthcare is still
quite challenging.

5.3 Privacy Concerns in Modern Healthcare

Several systems involved with electronic healthcare have been discussed in
Sect. 5.2, and we can now narrow our focus to privacy concerns. This section will
focus on the storage and transmission of health information, use of mobile devices
and social media in healthcare, and the use of cloud storage—all prominent privacy
problems. Details of the particular privacy concerns for each of these areas will be
addressed in the following subsections.

5.3.1 Storage of Electronic Healthcare Records

As already mentioned, an EHR is a collection of patients’ information. Like with
any other data storage, the storage of EHR has some privacy concerns as well.
There is always a worry about breach of the data. There have been several incidents
reported of hackers getting access to sensitive data. Such incidents can have some
extreme repercussions as hacked information can lead to identity theft. It can even
destroy a person socially and economically as well. For all these reasons, a very
high quality security measure is needed to overcome the threat of potential loss of
data.

The Health Resources and Services Administration (HRSA) has discussed the
privacy and security risks in electronic health records [18]. HRSA identified three
types of risks: (1) risk of inappropriate access, (2) risk of record tampering, and
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(3) risk of record loss due to natural catastrophes. Among these risks, the first two
are directly related to privacy issues and therefore will be discussed further.

Inappropriate access can be of two types. First, a user without the necessary
authority or authentication might get access to data due to some flaw in the system
or by using some kind of illegal measure like hacking, for example. Secondly, a
user with appropriate access can violate the rules by using the authorized data in an
inappropriate way, that is, by sharing the data with someone without the authen-
tication or authority. These types of violations affect a user’s privacy. On the other
hand, if the data is tampered with, it not only violates the patient’s privacy, but can
also lead to fatal consequences for that patient.

Data integrity can be compromised if the architecture of the system is not also
well designed. Malwares and different bots can attack the server, which can corrupt
the information and also jeopardize the privacy of the patients.

Rahim et al. conducted a study in 2013 about the privacy concerns in EHR to
review recent studies about the issue and to find the factors that influence the
privacy concerns [19]. The study identified these following nine factors that affect
patient data privacy concerns: (1) trust (may result from high-quality care),
(2) demographic information (age group, employment status, etc.), (3) information
dissemination (how data is processed, who has access), (4) computer literacy (how
EHR system works, experience in IT), (5) sensitive data, (6) consent, (7) potential
of privacy breach (ensure privacy of EHR), (8) legal and policy (design policies and
privacy protection tools), (9) and training (how to manage and protect privacy).

5.3.2 End-to-End Communications in Healthcare

HRSA discussed three major ways for patients to access their medical records.
These are the patient portals, partnering with a PHR provider, and giving electronic
records directly to patients [18].

A patient portal is used by the patient to input data into the system. With the help
of this portal, a patient can input and change his or her personal information, check
status of the medication or the test reports, and so on. A patient would use different
authentication methods to log into the system. However, if there is an access
violation, the patient’s information will no longer remain secure. The risk with PHR
providers is that they can use the patient’s data for their own purposes. Again, while
transmitting the data to a PHR, the data can be intercepted and used for malpractice.
A detailed discussion on how to ensure privacy in such cases is presented later in
the chapter.

Similar cases of authentication and security violation may also occur while
transmitting data between different healthcare providers. In any kind of commu-
nication, one must always ensure that the person accessing the information has the
necessary authorization for it and the communication is occurring on a secure
connection with encryption. These are the key components of a system and if they
are compromised, the privacy of the patients will also be compromised.
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5.3.3 mHealth Systems

In this subsection, a brief discussion of the privacy challenges in mHealth systems
is presented.

5.3.3.1 Privacy Challenges in Cell Phone-Based mHealth Systems

Mobile health (mHealth) has become important in the field of healthcare infor-
mation technology, as patients have already begun to use mobile phones and var-
ious medical sensors to record their daily activities and vital signs. Since such
medical data are collected by sensors, transferred by a mobile phone application,
and processed in a third-party server to provide a healthcare service, patients may
wish to control data collection and distribution to protect their data and share only
when the need arises.

To ensure this, patients must be able to grant or deny access to their data on the
storage unit (cell phones or PHRs). Patients have certain legal rights to their
health-data privacy, to protect their sensitive data, and to ensure that they are shared
only where needed. Patients will not adopt mHealth technology unless they have
confidence in the technology’s infrastructure for supporting their privacy. On the
other hand, patients will not trust, or use, the technology if the privacy support
system is too complex. Therefore, it is essential to develop a user-friendly and
efficient interface that can tackle all of the above challenges and ensure that privacy
management is effortless.

We must note that once users share their health data with a third-party appli-
cation, they typically have no control over retention periods for the data or asso-
ciated metadata that will be maintained in perpetuity by the third party. The content
produced by users may be revealed to both intended and unintended audiences.
Therefore, in such a situation health data may be unintentionally exposed to various
data recipients without users’ knowledge. The accumulated health data existing in
an application server can then be misused. Some mHealth applications are com-
mercial companies that have a business model based on harvesting health data for
business and proprietary purposes. They may release health data to different data
recipients, including doctors, pharmaceutical and medical device companies,
researchers, and non-profit organizations for their own personal gain. Aggregated
health data is very valuable to commercial companies, such as drug and medical
device manufacturers. Innovative data mining and health informatics technologies
can link data produced from a variety of different sources to produce useful per-
sonal data aggregates or digital dossiers which can lead to privacy violation of the
personnel. Last, but certainly not least, is another obvious issue in mHealth sys-
tems: the scale of the security risk.
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5.3.3.2 Privacy Challenges in RFID Based mHealth Systems

With the deployment and use of RFID technology in the healthcare domain, there
are increasing privacy concerns regarding the technical designs of RFID based
mHealth systems.

There are different kinds of RFID applications used in mHealth systems.
Usually, RFID-based sensing activities related to healthcare can be divided in two
types:

• Direct sensing activity. These activities refer to various RFID-based identifi-
cation and monitoring systems. Some of the most promising RFID-based direct
sensing activity that are already being successfully tested (or deployed) in a
number of hospitals are hospital personnel [20], patient and newborn identifi-
cation and monitoring [20], patient drug usage monitoring [20], surgical
instrument tracking and locating [20], and blood bag tracking [20].

• Indirect inferred activity. These activities basically refer to those systems that
use direct sensing activity data to infer important information. For example,
detecting pharmaceutical counterfeit, avoiding theft of medical equipment, the
tagging of meal plateau to ensure that patients get proper diet according to their
treatment, allergies, and tastes, and so on.

RFID-based mHealth systems have received considerable attention within the
field of healthcare since early 2007. The technology’s promise to efficiently track
hospital supplies, medical equipment, medications, and patients is an attractive
proposition to the healthcare industry. However, the prospect of wide-spread use of
RFID in the healthcare area has also triggered discussions regarding privacy, par-
ticularly because RFID data in transit may easily be intercepted. Some major
research challenges related to the development and deployment of RFID based
healthcare are as follows:

• RFID tags can be read at a small distance, through materials or clothes. So, the
owner of a tag can never be sure when it is being scanned. If the communication
between tags and readers is performed in a wireless channel, adversary may try
to infer personal information to track people remotely.

• Deployed ubiquitous healthcare systems may have both access permission and
privacy invasion problems for the patient’s individual medical data that may be
overheard by unauthorized persons trying to access the system stealthily.

• The information sensed using RFID systems may need to be shared with various
authorities to access healthcare services. The ID of the tag along with its EMR,
collected over a period of time, may expose the user’s private information.

The potential benefits of RFID technology-based mHealth services have been
accompanied by threats of privacy violations [21]. These threats pertain to the
potential risks of unauthorized data access, misuse of patient data, and the capa-
bilities of permanently saving and linking information about individuals through
temporal and spatial extension of data collection activities. For example, RFID tags
can be read by an unauthorized reader without the user’s knowledge since these
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tags can be read by a radio frequency signal. While RFID technology can improve
the overall quality of various mHealth systems, the benefits must be carefully
balanced with the prevention measures towards privacy and security threats. The
use of RFID also introduces a new set of risks. These are security risks associated
with the possible failure of the RFID system under various security attacks, that is,
tracking, eavesdropping, denial of service, and attacks.

5.3.3.3 Privacy Challenges in Social Networking-Based mHealth
Systems

Social networking and care coordination technologies allow community patients to
connect, share knowledge, and provide support to other patients and their care
providers. These social networks utilize a variety of means to facilitate communi-
cation among patients including discussion groups, chat, messaging, email, video,
and file-sharing. While currently mostly web-based, these social networking and
care coordination systems are becoming ever more accessible on mobile devices.
For example, care coordination technologies utilize SMS (short message service)
text or email messaging systems for health status monitoring, medical appointments
reminders, chronic disease management, and health surveys. However, all of these
services are highly prone to identity leakage of the users, thereby introducing
challenges in maintaining user privacy.

From the perspective of social networks, privacy not only encompasses the
protection of personal information, which users publish on their profiles, presum-
ably accessible by their contacts only. Privacy is a fundamental human right and
personal sensitive information is a key component of one’s privacy. Privacy sen-
sitive information includes personally identifiable information; that is, any infor-
mation that could be used to identify or locate an individual, for example, name or
address, or information that can be correlated with other information to identify an
individual, for example, credit card number, zip code, and so on. It also includes
sensitive information related to religion, race, health, sex, union membership, or
other information that is considered private. This information additonally includes
any kind of medical condition or medical diagnosis information. This type of
detailed person specific data embedded in healthcare data stored and processed in a
third-party application server presents a need for inclusion of highly effective
information security measures so that sensitive information about individuals may
not be easily revealed by analyzing the shared data. Research shows that patients
could be simply identified by using identifiers or specific combined information
(such as age, address, sex) in a certain healthcare dataset. Therefore, to provide
better privacy facilities to cell phone-based mHealth service users, one needs to
ensure that sensitive private information is not revealed to any third-party
applications.

As part of integrity, the user’s identity and data must be protected against
unauthorized modification, tampering, and access. In addition to conventional
modification detection and message authentication, integrity in the context of
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mobile application has to be extended. Parties in a social network structure are not
arbitrary devices, but real, unambiguously identifiable persons. The creation of
bogus accounts, cloned accounts, or other types of impersonation is easy to achieve
in any social network. Identity checks do not necessarily have to be performed by a
centralized service. However, all identification services have to be trusted by all
participants involved.

Since some social networks are used as professional tools to aid their members’
business or careers, data published by users has to be continuously available. In a
social network, this availability specifically has to include robustness against cen-
sorship, and the seizure or hijacking of names and other key words. Aside from data
access, availability has to be ensured along with message exchange among
members.

5.3.4 Cloud-Based Healthcare Systems

The National Institute of Standards and Technology [22] defines “cloud computing”
as “a model for enabling ubiquitous, convenient, on-demand network access to a
shared pool of configurable computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and released with min-
imal management effort or service provider interaction. Some of the key charac-
teristics of cloud computing include massive scale, homogeneity, resilient
computing, low cost software, virtualization, geographic distribution, service ori-
entation, advanced security features [and] resource pooling” [23]. There is often a
misconception among certain circles that cloud computing is simply a fad for the
traditional datacenter hosting platform. This definition clarifies the distinction
between the two digital hosting platforms. In terms of terminology, the cloud
service vendor (e.g., Microsoft, Google, Amazon) is often referred to as a “cloud
provider.” The party that makes use of the services exposed by the cloud provider is
often referred to as a “cloud consumer.”

Undoubtedly, cloud computing presents exciting benefits for hosting digital
solutions across various industries, including the ever so risk-averse healthcare
industry. One of the main benefits of cloud-based applications includes the inherent
cost savings associated with a typical pay-as-you-go public cloud model.
Nonetheless, high performance, high-scalability, and high availability options
offered by cloud providers or vendors make it more attractive for healthcare systems
to consider this platform for hosting and processing digital content. While this
attractive platform can be harnessed for incalculable benefits in the healthcare
industry, there are a number of privacy issues that are unearthed by this new
prodigy. Cloud infrastructure might be used for storing EHRs or for supporting a
healthcare information systems solution. One notable healthcare solution hosted on
cloud infrastructure in the United States is the Healthcare.gov web site. This
web-based healthcare application is hosted on Verizon’s Terremark Cloud [24].
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Privacy remains a major inhibitor to the adoption of cloud solutions especially in
geographic regions that enforce data protection legislation. In the United States,
HIPAA compliance remains a major concern for adopting cloud solutions in
healthcare circles. End-users often have qualms about having their data stored on a
shared infrastructure solution. Beyond the innate shared model in public clouds,
high availability and disaster recovery qualities of cloud computing often neces-
sitate cross-datacenter replication of data by cloud vendors in an effort to provide
the redundancy and scalability quality attributes, all of which remains a promise of
the cloud. Because of the global nature of public cloud solutions, there is a potential
for non-compliance against a host of country-specific regulations that may not be
applicable beyond the boundaries of a given country [25]. Cross datacenter cloud
solutions might employ the replication of data across country boundaries. From a
regulatory standpoint, the compliance requirements for one country might differ
from that of another country. This creates privacy and security concerns pertaining
to loss of control, data integrity, data confidentiality, and the susceptibility of one’s
PII getting into the hands of governmental institutions based on the country in
question’s regulatory policies.

Susceptibilities in cloud computing are often related to cloud multi-tenancy,
elasticity, information availability, secure information management, cloud secure
federation, and information integrity and privacy [26]. Interestingly, privacy issues
in cloud-based healthcare systems might take different forms depending on the
cloud deployment and service models. Three notable cloud service delivery models
[26, 27] include:

• Infrastructure as a Service (IaaS). In this model, the cloud provider offers
storage and computing power on-demand. The consumer does not manage or
control the underlying virtual machines (VMs) or infrastructure, but has control
of the operating system, firewall settings, and the load-balancing components.
The cloud consumer has to handle security and privacy concerns at both the
application and operating-system level.

• Platform as a Service (PaaS). For this delivery model, the cloud provider
provides a set of services and application protocol interfaces (APIs) for devel-
opers to host web sites and services without having to deal with the scalability
issues of the application as the application usage grows. The cloud consumer
will have minimal control over the security practices used at the operating
system-level.

• Software-as-a-Service (SaaS). In this scenario, the cloud provider exposes
specific applications like Salesforce.com to consumers for use with a
multi-tenancy approach that might use a subscription-based pay-per-use model.
The cloud consumer will have even less control over the privacy and security
implementation in the cloud-hosted solution.

Conversely, some of the cloud deployment models in use today include [28, 27]:

• Public cloud. The cloud is made available to the general public and it is owned
by an organization that sells cloud services.
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• Private cloud. It is usually operated or leased by a single organization and it is
operated solely for that organization.

• Community cloud. It can be shared by multiple organizations and supports a
specific community with shared concerns (e.g., security requirements, privacy
compliance considerations, etc.).

• Hybrid cloud. A private cloud that can extend to use resources in public or
community clouds even though both entities will remain unique.

• Virtual private cloud (VPC). A combination of cloud computing resources
with virtual private network (VPN) infrastructure to give users some form of
abstraction of a private group of resources that are securely connected to the
private or internal network.

It follows that the privacy concerns in each type of cloud delivery or cloud service
model might be quite diverse.

5.4 Ensuring Privacy in Modern Healthcare

Despite the challenges mentioned, there are a number of approaches that can be
used to improve patient privacy and ensure that medical information is only seen by
a patient and those authorized by the patient. No one method can ensure total
patient privacy. However, if care is taken in information storage and transmission
and proper precautions are taken to guard against device theft and loss of data from
the cloud, we can reduce the threat of the privacy challenges outlined in Chap. 7.
The following are some methods that can be used to help ensure patient privacy.

5.4.1 Improving Privacy in Medical Information Storage

The Office of Civil Rights of The U.S. Department of Health & Human Services
ensures the privacy of health information by enforcing the Privacy and Security
Rules. It teaches health service workers about the privacy rights and confidentiality
laws. It also investigates if there are any violations by any entities and takes
measures. The rules are called HIPAA Privacy and Security Rules. HIPAA rules
give the patients authority to define which data will be collected/used and how and
who has access to that data.

Sufficient measures need to be taken into consideration while ensuring patient
privacy. There must be policies and guidelines in place regarding privacy measures
in health records. Different stakeholders should be trained. Access to the system
should be monitored with different levels of access controls. For correct identifi-
cation, secure passwords and other verification techniques should be implemented.
Accessibility can also be controlled in workstations using a server. The server
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should have all the necessary access information on all the devices connected to it.
A very important measure is to use encryption while storing the data.

A well-defined access control is highly critical in order to implement a secure
storage system. Only the people with sufficient authorization level should secure
access to the information. Another very important measure is to have encryption
present in the system. The stored data needs to be encrypted and the key to the
encryption and decryption should only be available to the appropriate individuals.
Other entities should not have access to the encryption keys. In addition, there
should be a saved list of entities that had access to a particular patient’s information.
The list should also have the information of any changes that any particular entity
has made [29].

In addition to the previous security measures, the locality of the server is
important as well. For example, if stored in a local physical location, the data are
more prone to physical harms, that is, fire hazards, theft, and so on. To ensure
integrity of the data different techniques of data backup can be established. The
security of the location should be increased with access by authorization: otherwise
the information will be prone to attackers. Using cloud servers is an alternative for
storing data in a physical location. To secure the integrity and security of data, we
need a server that is HIPAA compliant.

5.4.2 Improving Privacy in Medical Information
Transmission

A discussion on different privacy concerns while storing information was presented
in Sect. 5.4.2. This section discusses some security measures to ensure data privacy
during transmission.

Like before, the most important and common method for privacy protection in
transmission is also to use encryption. All communication should occur in an
encrypted format on a secure connection. The patients should also have their login
authorizations using secure passwords, pin codes, facial recognition, location-based
authentication, or some multi-factor authentication. Patients should have assigned
accounts for their activities. The software should be designed in a modular way so
that different portions are secured under separate firewalls. For example, the system
can consist of one or more databases, web-services, user-end applications, websites,
and so on. These entities should be using their own authentication and firewalls to
ensure data privacy. They can also exist in different physical or cloud locations.
There should also be a damage control mechanism, so that a sudden security breach
can be stopped instantaneously.

For PHR providers, it should be ensured that the system is HIPAA compliant.
The provider should check for the integrity of the information and also be
responsible for any violation of the data in their end. Encryption of the data is also
very helpful on this end.
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5.4.3 Improving Privacy in mHealth Systems

The mHealth-based application is currently one of the hottest topics in information
technology. To maintain data privacy in an mHealth application it is essential for
users to encrypt their sensitive private data before storing and processing them into
the cloud or any other platform. Yet, there exist some shortcomings in the situation
of traditional encryption. For example, when a secret key owner wants to look for
some data that are stored in the cloud storage, the owner needs to download and
decrypt all the data to perform any type of searching or processing with that
information. If the amount of encrypted data is huge or the client is a mobile user,
then this will be very inefficient and not feasible in some situations. Otherwise the
user must send their key to the server, which performs the decryption and search
procedures. In this section, a brief description of some existing methodologies that
guarantee privacy is presented.

5.4.3.1 Encryption Methods

RuWei et al. [30] provide a privacy-preserving cloud storage framework supporting
ciphertext retrieval. This framework is used to solve security and privacy problems
while operating on encrypted data, to reduce the data owner’s workload on man-
agement of data, and to support data sharing. Interaction protocol, key derivation
algorithm, combination of symmetric and asymmetric encryption, and Bloom Filter
are all used here [31]. The framework can operate on encrypted data, reduce data
owner’s workload on managing the data and storage space, and reduce commu-
nication, computation, and storage overhead. It can manage numerous keys, and is
efficient, safe, and economic. However, it supports only owner-write-user-read and
lacks in technique that support ciphertext-based computing. The main problem in
using such an encryption based technique is that it limits the data usage, and adds
an additional burden. Access control mechanisms are available to overcome the
burden of the above overheads.

5.4.3.2 Access Control Mechanisms

Access control mechanisms that provide privacy protection have been discussed in
articles presented in [32, 33]. A privacy preserving, access authenticated, access
control scheme for securing data in clouds that verifies the authenticity of the user
without knowing the user’s identity before storing information has been proposed
in [32]. Here only valid users are able to decrypt the stored information. This
prevents reply attack, as well as achieving authenticity and privacy. It is decen-
tralized and robust, which allows multiple read and write, distributed access control,
and the protection of user identity. In [22], Fan et al. proposed that the access policy
for each record stored in the cloud should be known, and should be based on
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assumption that the cloud administrator is honest. However, it does not support
complex access control.

5.4.3.3 Remote Data Checking Using Provable Data Possession

Ateniese et al. introduce a model for provable data possession, which can be used
for remote data checking in [34]. By having a sampling of a random set of blocks
from the server, this model produces probabilistic proofs of possession, which will
significantly reduce I/O costs. In order to minimize network communication, the
challenge–response protocol transmits a small and constant amount of data. The
model incorporates some mechanisms for mitigating arbitrary amounts of data
corruption, and it is robust. It offers two efficient secure PDP schemes, and the
overhead at the server is low. To add robustness to any remote data checking
scheme based on spot checking, it proposes a generic transformation.

5.4.3.4 Privacy Preserving Data Integrity Checking

A privacy preserving remote data integrity checking protocol with data dynamics
and public verifiability [35] make use of a remote data integrity checking protocol.
The protocol provides public verifiability without the help of a third-party auditor. It
doesn’t leak any privacy information to the third party, which provides good per-
formance without the support of that trusted third party and provides a method for
independent arbitration of data retention contracts. But it adds unnecessary com-
putation and communication cost.

5.4.3.5 Case Study: Improving Privacy in an mHealth System
for Smoking Cessation

An mHealth system that was developed at Marquette University for smoking
cessation among Native Americans is discussed in this section. In this system, the
participants were enrolled via levels of surveys, and often sent motivational text
messages to stop smoking. The following steps were taken to ensure patient privacy
in the system.

The system has different levels of authentication for different roles. The partici-
pants, survey takers, and administrators can all log into the system, and are given a
different view of the information according to their role. The system uses a HIPAA
compliant server which has several components, such as database, web services, and
so on. The server is surrounded with multiple levels of firewalls, and the commu-
nications from different workstations are limited to specific machines only.

The system ensures anonymity of the users and no personal details are stored in
the database. All the participants are identified with a user ID. The text-messaging
server that sends text messages to individual participants does not have local
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information about those participants. At a given time, the system does not hold the
history of the previous communications. So, the behavior of the participants will be
private in the main server.

5.4.4 Improving Privacy in Cloud-Based Healthcare
Systems

It goes without saying that complete privacy or security protection is not achiev-
able. However, this does not mean that privacy and security issues in healthcare
cannot be significantly addressed. Therefore, solutions for minimizing an
end-user’s exposure to gaps in privacy protection might include policies, standards,
guidelines, frameworks, awareness activities, and more. This chapter seeks to offer
guidelines and best practices for minimizing the privacy vulnerabilities in
cloud-based healthcare systems.

In the quest for privacy protection in cloud-hosted healthcare systems, it is
imperative that the cloud customer perform a thorough trade-off analysis between
the cost savings and privacy protection in using a public cloud solution. While the
public cloud model is the most popular deployment model, a community cloud
model that caters specifically to the privacy and security needs of healthcare
solutions will offer more privacy protection options. Private clouds do not typically
involve a shared physical infrastructure across multiple organizations, and there-
fore, offer a better option for insulating end-users from the privacy issues that are
prevalent in a public cloud hosting model. However, a private cloud is likely to cost
more than a public cloud because cloud cost saving draws heavily on the concept of
economies of scale. Cloud consumers might also balance cost with security and
privacy by leveraging public cloud resources to create their own secure private
cloud, which is often referred to as a virtual private cloud (VPC) [22].

In some instances, a public cloud provider might offer HIPAA compliance.
Microsoft Azure public cloud, for example, offers HIPAA compliance, though it is
limited to some specific Azure cloud services. However, even in this setting, the
cloud consumer has as much of a shared responsibility as the cloud provider to
safeguard user data, and protect the privacy of patient information (often called
protected health information or PHI). The cloud consumer has the principal
responsibility for applying best practices for protecting private end-user data, while
the cloud provider simply offers features to help enable consumer security and
privacy compliance. In spite of this, the cloud provider might offer a Business
Associate Agreement (BAA) to its consumers at a premium cost for the HIPAA
compliance coverage. Penalties for violation of HIPAA Security Rules were
strengthened through provisions in The Health Information Technology for
Economic and Clinical Health (HITECH) Act in 2009 [36].

A more generic solution for improving data security and privacy in digital
healthcare circles involves the encryption of electronic PHI (ePHI). ePHI data
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in-transit or at-rest must be encrypted to maximize the data protection scheme. In a
cloud application, an abstraction layer of protection can be used to encrypt highly
sensitive PHI information.

Considering the various cloud service models represented in Fig. 5.1, a cloud
consumer might opt to use a Platform as a Service (PaaS) solution to minimize his
or her responsibilities for ensuring privacy protection. A cloud consumer who opts
to use an Infrastructure as a Service (IaaS) solution will need to take on more
responsibility for end-user privacy, and security protection. In an IaaS model, the
cloud consumer is responsible for installing the appropriate antivirus software, and
software patches necessary to keep the application in compliance.

Other common approaches to addressing privacy concerns might include the use
of regulatory frameworks, and the provision of redress within cloud environments,
privacy enhancing techniques, anonymization, and more [37].

5.5 Future Challenges and Opportunities

There are more than a few opportunities for improving privacy in existing digital
healthcare systems. Conversely, there are several forthcoming technologies that will
see interesting applications in electronic healthcare (eHealth) applications soon. As
some of these emerging technologies make their way into mainstream technology
circles, the most critical deterrent to their adoption in healthcare systems will

Fig. 5.1 Cloud service models

5 Privacy in Healthcare 103



remain privacy and security concerns. In this section, some of the emerging tech-
nology applications in healthcare will be discussed along with how privacy-
enhancing solutions might enable their seamless adoption in the healthcare industry.
Two case studies featuring a futuristic persuasive technology intervention that
draws on Human Robot Interaction (HRI) and the Internet of Things (IoT) concept
to encourage behavior change in humans, as well as a ubiquitous health intervention
for autistic children, is also presented.

5.5.1 Ubiquitous Health Systems

Privacy concerns are usually high among end-users of eCommerce and online
social networking (OSN) web sites. However, it is even more pronounced when it
comes to adopting pervasive solutions. Pervasive or ubiquitous systems represent a
paradigm where everyday household objects like a refrigerator, a smart TV, an
eyewear device (e.g., Google Glass), and the likes of such are enabled with com-
puting power. Ubiquitous health monitoring systems are expected to only continue
to grow [38].

Ubiquitous systems, by definition, are known to unobtrusively and intelligently
collect large streams of data about our past, current, and future activities, in a bid to
improve their ability to serve our needs [37]. However, this surreptitious approach
to data collection might sometimes conflict with an end-user’s privacy preferences.
In most cases, concerns regarding user privacy also lead to reservations to adopting
new technologies. While the Google Glass wearable computing solution is likely to
have indescribable benefits in healthcare applications, privacy concerns regarding
this wearable devices are likely to limit the adoption curve of this, otherwise
innovative, invention.

5.5.1.1 Case Study: uHealth Intervention for Autistic Children

To unveil some of the challenges in ubiquitous health (uHealth) interventions, we
consider an interesting uHealth application that might make use of a Microsoft
Kinect for Windows sensor, with the goal of monitoring and interacting with
autistic children. In most cases, young children suffering from autism can benefit
from playing games that utilize a natural user interface as a form of intervention
aimed at fostering facial expression learning. In this scenario, the Kinect Sensor acts
as a natural user interface (NUI) for this gameplay healthcare intervention.
However, the sensor collects information about the user’s interaction with the
game, and stores it in a cloud environment for further processing and analysis to
determine the child’s progress in the intervention program. A logical view of the
interaction scenario is depicted in Fig. 5.2.
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Key Privacy Challenges
Some of the notable challenges that are inherent in this scenario include:

• Parental consent. In a setting where information about the children interacting
in the smart environment is collected, parental consent will be critical. The
Kinect-based game software vendor will need to implement some form of
account verification and validation process to ensure that parents of the autistic
participants have a certain level of trust and comfort with the approach, and
consent to the use of this solution.

• Child data usage. The child’s data as well as system-level data collected by the
software should not be capable of being easily used to identify the participant.

• Time to live for software dumps. In addition, there should be a time to live
(TTL) set to ensure that system-level data collected through the software is
destroyed immediately after it has outlived its usefulness.

• Opt out. Parents may prefer to have an option to opt out of the program at any
given point in time, with the expectation that the data that was previously
collected about the child will be consequently destroyed.

• Hardware vendor issues. A standard protocol that is adhered to by all sensors
and devices in the multimodal environment will be ideal.

• Regulatory compliance. In a uHealth environment, HIPAA compliance is a
standard of interest, particularly in the United States.

5.5.2 The Internet of Things and Healthcare

The IoT can be described as a fusion of various heterogeneous digital devices,
sensors, people, and services working collectively to solve a problem across

Fig. 5.2 Logical view of scenario interaction
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technology boundaries, with the ability to seamlessly interact and share data about
themselves and their environment. With this phenomenon in mind, there are several
opportunities for implementing healthcare interventions that can draw out the
promise of the paradigm. Yet, sharing data across devices and technology bound-
aries raises multiple security and privacy concerns.

Without a doubt, privacy is one of the most critical issues inherent in IoT
applications today. In a typical IoT application, one or more web services or
application programming interfaces (APIs) might be used. The IoT system might
interact with its own cloud-hosted service layer, as well as external services or
APIs. The IoT application user interface itself might have its own privacy and
security concerns. In addition, the third party external services used in the solution
might need to be governed to ensure that they protect the end-user’s privacy and
security preferences. For example, if the IoT application interacts with the
Facebook Social Graph API, the end-user might have specific privacy preferences
set on Facebook (an OSN) that will need to be preserved and protected in the IoT
system.

5.5.2.1 A Case Study: An Internet of Things Healthcare Intervention
Through Human Robot Interaction and Ubiquitous
Computing

Addo et al. [39] described a futuristic health and wellness behavior change inter-
vention for childhood obesity where a humanoid robot is employed to work col-
lectively with a smart TV, smart refrigerator, a wearable activity monitoring
wristband, and a smart phone device of choice. The IoT-based persuasive system
interacts with the human subject (a child) throughout the day. The robot has routine
dialogue with the child subject aimed at motivating him or her toward behavior
change for weight loss and increased physical activity. The wearable wristband is
used for recording the subject’s physical activity throughout the day, and storing it
to a cloud-hosted central database. The humanoid robot is able to tap into the
collective intelligence gleaned by sensors in the smart phone and the wearable
wristband to draw insightful conclusions about how the child can refine his or her
behavior to meet the target physical activity goals.

A smart refrigerator tracks and records the subject’s food selection choices. The
child is able to interact with the smart TV to participate in a social virtual com-
munity where other like-minded children interact together to support each other on
their competitive health and wellness goals. The smart TV features an application
that affords the participating children interactive gameplay through a Kinect sensor
device in a bid to motivate indoor physical activity as well. The smart TV game also
has access to the child’s profile and outdoor physical activity. Collectively, these
devices interact together and share data solely for the purpose of supporting the
participating child in his or her quest for weight loss. Figure 5.3 illustrates this
scenario [39].
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In this scenario several technology boundaries are crossed as multiple devices
collaborate to share data across the environment. There are privacy concerns across
the IoT system. Having a consistent privacy standard or policy that can be enforced
across platforms and devices will prove to be very useful in this case. The cloud
privacy guidelines presented in Sect. 5.4, are also likely to play a significant role in
making the adoption of this type of IoT-based healthcare intervention solution
viable.

5.6 Conclusions

Modern technology has provided a number of improvements to the existing
healthcare field. Storage of patient documents can now be done cleanly and quickly,
without the disorganization that can accompany paper records. These records can be
transmitted across continents in the blink of an eye. Mobile healthcare technologies
allow monitoring and management of health without requiring that patients be
stationed in a hospital, and the use of cloud storage ensures that data can be shared
and stored from multiple sources in one place. However, these systems have also
brought great challenges to those who seek to ensure privacy across healthcare

Fig. 5.3 HRI and IoT for childhood obesity intervention [39]
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systems. Existing solutions cannot each guarantee privacy across these systems, but
combined, they can greatly improve it.

In addition to this, emerging technologies such as the IoT and ubiquitous
computing stand to greatly improve patient monitoring and the data that can be
collected regarding various diseases and healthcare procedures. New methods of
privacy protection will benefit practitioners and patients alike, especially as these
and other new technologies grow in use. Although the future of healthcare tech-
nology and corresponding privacy protection approaches is rapidly changing, one
thing is for certain: these technologies are greatly beneficial worldwide, allowing
individuals to choose from a variety of prompt healthcare options tailored to their
needs.
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Chapter 6
Privacy in Peer-to-Peer Networks

Diego Suárez Touceda, José María Sierra Cámara
and Jesús Téllez Isaac

6.1 Introduction

In the client-server connectivity model participants’ roles are clearly defined and are
not interchangeable: one or more servers offer a range of services used by a group
of clients. Although this model is a valid solution in most scenarios, there are
environments in which the model is not feasible for technical, financial, social, or
security reasons [1].

Conversely, P2P networks are designed to take advantage of dispersed network
resources and enable participants to act as servers or clients (without the need for a
fixed role); their main characteristics being the direct sharing of resources among
users, their self-organization, stability, and autonomy. Based on this connectivity
model, a multitude of applications have emerged, such as distributed computing
systems Seti@home [2] or Genome@home [3], distributed database systems such
as PIER [4] or Piazza [5], content distribution applications including Napster [6],
Gnutella [7], or BitTorrent [8], and communications systems such as P2PSIP [9] or
Skype [10].
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However, despite their assets, P2P networks offer little privacy protection. Data,
that can be sensitive, is no longer stored in trusted servers but in peers (potentially
untrusted), and can be openly accessed and used (e.g., for advertising, users pro-
filing and impersonation, etc.) [11]. Also, user accesses and publishing are no
longer done through large companies, such as Google or Facebook, that have
privacy policies protecting the users personal information from being public. These
accesses are done through less-trustworthy entities that can disclose the users
personal information or track its behavior [12]. Several P2P applications propose
mechanisms to ensure privacy such as OceanStore [13] or Past [14]. However, these
solutions remain insufficient. Managing privacy is not possible in current P2P
networks without adding new privacy functionalities [11].

Therefore, users need to be concerned about privacy in P2P networks. They
should know how to properly configure and use the software to restrict the infor-
mation being shared. It is very common for a user to share the entire hard drive,
including sensitive information, without knowing it. Hence, users have to be sure
that they are not sharing personal information which could be exploited by mali-
cious users [15].

With this problem in mind, in this chapter we analyze the existing privacy issues
in P2P networks and the solutions that can be used to prevent them, aiming to help
the reader to better understand privacy in P2P networks and applications.

The rest of the chapter is structured as follows. An overview of P2P networks is
given in Sect. 6.2. Section 6.3 analyzes the privacy issues of P2P networks. The
existing solutions that can be used to improve privacy in P2P networks are pre-
sented in Sect. 6.4. Section 6.5 discusses how the described solutions can be used to
mitigate the existing issues and explore the challenges that must be addressed in the
future. Finally, Sect. 6.6 outlines the conclusions of the contents presented in this
chapter.

6.2 Background

In this section, we present some basic knowledge on P2P including its definition,
classification, the layer architecture, and the applications.

6.2.1 P2P Definition

A review of the literature reveals that, due to the considerable number of different
definitions of “peer-to-peer”, there is no accurate definition of P2P today, mainly
distinguished by the “broadness” they attach to the term. Many definitions are
proposed trying to capture the main features of P2P systems. Some typical defi-
nitions include the following:

112 D.S. Touceda et al.



• A system to be P2P if the elements that form the system share their resources in order to
provide the service the system has been designed to provide. The elements in the system
both provide services to other elements and request services from other elements [16].

• Peer-to-peer systems are distributed systems consisting of interconnected nodes able to
self-organize into network topologies with the purpose of sharing resources such as
content, CPU cycles, storage and bandwidth, capable of adapting to failures and
accommodating transient populations of nodes while maintaining acceptable connec-
tivity and performance, without requiring the intermediation or support of a global
centralized server or authority [17].

• A distributed network architecture may be called a Peer-to-Peer (P-to-P, P2P, …)
network, if the participants share a part of their own hardware resources (processing
power, storage capacity, network link capacity, printers,…). These shared resources are
necessary to provide the Service and content offered by the network (e.g. file sharing or
shared workspaces for collaboration). They are accessible by other peers directly,
without passing intermediary entities. The participants of such a network are thus
resource (Service and content) providers as well as resource (Service and content)
requestors (Servent-concept) [18].

According to the above definitions, the following characteristics of P2P systems
can be identified [19]:

• Shared resources. Peers in P2P systems are designed for sharing resources, by
direct exchange, with each other in order to provide the services or content
offered.

• Self-organized. Peers in P2P systems are self-organized into network topolo-
gies, respecting the autonomy of peers.

• Dual role. Peers in P2P systems act both as clients (requesting resources from
others) and servers (providing resources to others) at the same time.

• Stability. P2P systems have the ability to adapt to peer failures (fault-tolerance)
and to accommodate a large number of participating peers (scalability).

• Autonomy. Each peer maintains and controls, without the support of a central
server or authority, its own content and resources.

Due to the absence of a centralized server, a P2P network is designed around the
concept of each peer being client and server simultaneously. This model of network
layout differs from the client-server model, which has a centralized server
responsible for controlling the access of shared resources within the network, giving
the clients limited privileges. Therefore, the P2P architecture is considered opposite
of the client-server model.

Although the P2P model is perceived as an advantage, it introduces many
management and security issues since there is no control over the content being
shared within the network. Hence, the participating peers become prone to various
threats and security violations [20]. Figure 6.1 illustrates the client-server archi-
tecture whilst Fig. 6.2 shows the P2P architecture.

6 Privacy in Peer-to-Peer Networks 113



Fig. 6.1 Client-server architecture

Fig. 6.2 P2P architecture
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6.2.2 P2P Systems

A P2P system consists of three layers: underlying network, overlay network, and
application. Figure 6.3 illustrates the model of a P2P system in a layered archi-
tecture [19].

• Underlying network is the communication network to which peers connect for
routing packets.

• Overlay network is the network of peers that relies on the underlying network
for routing packets to each other. It is responsible for providing P2P services for
P2P applications built on top of it, performing many operations such as storing
and retrieving data, management of nodes, management of resources, man-
agement of security, and so on.

• The Application-level layer is concerned with the content and service provided
to users by P2P applications (such as P2P file-sharing applications, P2P instant
messaging applications, P2P video streaming applications, and so on) using the
P2P services provided by the overlay network.

In the following sections, we discuss the overlay network layer and the appli-
cation layer of P2P systems.

6.2.3 P2P Overlays

In the last decade, several P2P overlay networks have emerged with diverse net-
work structures, topologies, routing algorithms, and so on. Based on the network
structure, P2P overlays can be classified in several types (see Fig. 6.4) that will be
briefly discussed below.

Fig. 6.3 Layer architecture
of P2P systems
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6.2.4 Unstructured P2P Networks

In this category, peers are organized by the P2P overlay network into a random
graph (in a flat or hierarchical manner), which means that it is not possible to
establish a correlation among a peer and the content handled by it; owing to the
arbitrary creation of the links between nodes. Therefore, in order to query content
stored by overlay peers, an unstructured P2P network has to use flooding, random
walks, or expanding-ring time to live (TTL) search, and so on on the graph. When a
peer is visited, it will evaluate the query locally on its own content, and will support
complex queries.

For the purpose of routing, a peer builds and maintains a local routing table
(which contains some neighbor peers) by periodically checking the aliveness of
these neighbors to remove the unavailable ones and to update them with new ones
available. The maximum number of neighbors that a peer has is limited in an
overlay to ensure the scalability.

Due to the absence of constraints about the topology of unstructured P2P overlay
networks, these systems are easy to build and maintain [21]. Moreover, they sup-
port complex queries in an easy way, and they are highly robust against high rates
of peers frequently joining and leaving the network (Churn) [19]. However, a
limitation of unstructured P2P overlays is their scalability because the usage of
flooding algorithms by peers produces a high network traffic [22, 23]. Also, because
queries for content are not widely replicated and must be sent to a large fraction of
peers, unstructured P2P overlays become inefficient [24].

Examples of unstructured P2P overlay networks are the following: Freenet [25]
Gnutella [26, 27], FastTrack [28] /KaZaA [29], Overnet [30]/eDonkey2000 [31],
and BitTorrent [32].

Fig. 6.4 Summary of overlay networks
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6.2.5 Structured P2P Networks

In this category, in contrast to unstructured P2P networks, structured P2P overlay
networks provide a geometric topology that is tightly controlled and where contents
are placed in specific locations and not in random peers.

A Distributed Hash Table (DHT) is implemented on most of the structured
overlays based on an abstract key space. A unique key is assigned to each peer or
data item which is taken from the key space using consistent hashing. To store a
value in a node, a DHT must determine the node that has the minimal distance
among the value’s key and the node’s identifier [19].

Two operations are provided by a DHT: a store operation (put(key,value)) and a
retrieval operation (value = get(key)). The DHT will route the requested operation
for a given key to the node responsible for the key. Each node maintains, for routing
purposes, overlay links to a number of other nodes. Also, the IP address, the node’s
identifier, and other information of each of these nodes is stored in their routing
tables. Using these routing tables, nodes forward the requests that receive to their
closer link to the destination until these requests finally reach the destination node.

Structured P2P overlay networks provide a cooperative, stable, and robust
mechanism for storing and retrieving content when their algorithms are executed
correctly. Nevertheless, this class of systems does not support complex queries in
its simple form, hence it is necessary to store a copy or a pointer to each data object
(or value) at the peer responsible for the data object’s key. Also, most of them
deploy very minimalist security mechanisms that make them an attractive target for
attackers [19, 24, 33].

Examples of structured P2P overlay networks are the following: Content
Addressable Network (CAN) [34], Tapestry [35], Chord [36], Pastry [37], Viceroy
[38], and Kademlia [39].

6.2.6 Hybrid P2P Networks

Hybrid P2P systems combine unstructured and structured topologies in their hier-
archy with the intention of exploiting the advantages of kind of networks. These
systems employ structured overlay topologies at their upper level whilst unstruc-
tured overlay topologies are used at their lower level, or vice versa.

6.2.7 Hierarchical Overlays

A hierarchical overlay is an overlay architecture that uses multiple overlays to
organize its peers in a nested fashion (which are interconnected in a tree).
Therefore, a message can be sent to a peer in a different overlay by forwarding the
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message to the nearest common parent overlay in the hierarchy with the destination
peer. Examples of hierarchical overlays include: Cyclon [40], Hieras [41], Canon
[42], and TOPLUS [43].

Hierarchical overlays can increase overall performance in P2P systems that
exhibit locality in their operations.

6.2.8 P2P Applications

Nowadays, P2P systems have become one of the most common technologies used
in the Internet. Although until 1999 the most common paradigm in the Internet was
the client-server model, the emergence of Napster [44] (a P2P file-sharing appli-
cation used to share music) has attracted attention and pushed P2P systems to
become one of the most used (and controversial) technologies [45].

The P2P architecture has been widely used worldwide because of the following
advantages [46]:

• Scalability. In P2P networks users contribute with resources, meaning that
while the number of users increases, the ability of the network will also increase
due to the additional resources brought by the new users.

• Resilience. P2P architecture prevents the single point of failure (inherent to
client-server systems), hence, increasing the robustness and reliability of the
system.

• Cost-efficiency. The installation and management cost are reduced in P2P
networks by incorporating the resources of the users and not using dedicated
servers.

Despite of the above advantages, P2P networks also have their limitations. One
example are the new security threats that can emerge due to the direct exchange of
resources among end-users without the participation of a secure server. Besides
their most famous application, file-sharing, P2P systems have also been used for a
variety of different application categories, including the following [17]:

• Communication and collaboration. Systems in this category provide the
necessary infrastructure to allow the direct communication and collaboration
between peer computers. Examples include instant messaging applications such
as Aol, Yahoo, and MSN.

• Distributed computation. The goal of this category of systems is to take
advantage of the available computer processing power (CPU cycles) of the peers
of the network by decomposing a computer-intensive task into small work units
which should be distributed among them. Every peer computer executes its
corresponding work unit once it has been received before returning the results.
Examples include projects such as Seti@home [47] and Genome@home [48].

• Internet service support: Many different applications have emerged based on
P2P infrastructures to support a variety of Internet services, such as P2P
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multicast systems [49], Internet indirection infrastructures [36], and security
applications, providing protection [50].

• Content distribution. In this category fall most of the current P2P systems that
range from relatively simple direct file-sharing applications, to more sophisti-
cated systems which create a distributed storage medium for securely and effi-
ciently publishing, organizing, indexing, searching, updating, and retrieving
data. Within the P2P content distribution domain, applications can be grouped
as follows:

• P2P file-sharing: P2P is one of the most successful architectures for
file-sharing, both using structured and unstructured overlays. In this kind of
networks, information about shared files (frequently stored locally at the
owners machines) can be delivered to some specific peers or saved in a
central server. In order to download a file, a peer has to perform the fol-
lowing steps: searching and downloading. In the first step, a query is sent by
the initiating peer to the network. Once received, this query is replied by the
peers that keep files that match the search with the information about these
files. However, there are also alternatives to this searching mechanism. For
example, in BitTorrent [32] (a P2P system that uses a central location to
manage users’ downloads), contents are located using special types of files
called â€œtorrent files” (usually publicly accessible in web servers) which
contain information about the content file, its length, name, hashing infor-
mation, and the URL of a tracker (responsible for maintaining track of all the
peers storing, both partially and completely, the content file) [19, 24, 32]. In
the second step (downloading), the initiator peer reach directly the peers
where the file is stored in order to complete the exchange of the file.
In Fig. 6.5, the architecture and operation of BitTorrent are illustrated. A peer
P1 which host a file and acts as the seed, is responsible for the following

Fig. 6.5 BitTorrent architecture and operation
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steps: upload the “torrent file” to a web server and register it to the tracker.
The peer P2 could download the file by sending a Get message to the tracker
whoever replies with a list of the peers that are hosting this file (P1, P2 and
P3 in this case). Once the list is received by P2, it contacts peers P1, P3 and
P4 to retrieve pieces of the file. Since P3 or P4 do not have the file com-
pletely, it can also retrieve the missing pieces from P2 (the ones P2 has
retrieved from P1 and that P3 or P4 do not have) [19].

• P2P streaming: This category of P2P systems have been deployed recently
to provide live and on-demand video streaming services on Internet at low
cost. P2P streaming solutions create an overlay network topology for
delivering content formed by the users of the network. These users can
download or upload video assets, thus becoming active participants in the
streaming process. rStream [51] is an example of this kind of application.

• Video-on-Demand (VoD): This is a technology that ensures the availability
of a whole video at the time of the transfer. Since no content is
generated/updated while data is transferred and rendered, users should be
able to watch any point of the video at any time. In a P2P-based VoD
(P2P-VoD) application, the entire stored media file needs to be retrieved at a
rate that allows the recovered pieces of the file to be played in sequential
order at the media playback rate. Therefore, if the retrieval rate is sufficient,
the playback phase extends beyond the transfer phase. Examples include
SplitStream [52] and pcVOD [53].

• Live streaming: In P2P live streaming applications, a root server generates
video content in real time while peers connect to it as clients forming a tree.
Content dissemination is acted upon by other peers (clients). The video
playback is synchronized among all peers unlike peers in a VoD-like net-
work, where each peer may be positioned in a different part of the video [45].
Anysee is an example of this kind of application [54].

• P2PTV: In a typical architecture of P2PTV, there are trackers that contains
the information of the peers which distribute a specific channel. Therefore, to
view a channel, a peer needs to query the tracker that is distributing the
channel; to finally contact the peers of the trackers directly to receive the
video stream from them. In these systems, each user is able to download a
video stream and simultaneously upload it to other users in order to con-
tribute to the overall available bandwidth. [19]. Examples of P2PTV appli-
cation are Zattoo [55] and PPLive [56].

• Other content distribution systems: There are other content distribution
applications developed using P2P technologies such as systems for
pre-recorded TV program distribution (such as BBC-iplayer [57]), game
updates, and so on [19].
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6.3 Privacy Issues in P2P Networks

As noted in [58], the term privacy is an umbrella term, referring to a wide and
disparate group of related things. The use of such a broad term is helpful in some
contexts yet quite unhelpful in others. One of these contexts is security. In order to
analyze the existing privacy issues in P2P Networks, we need to be more specific
and not talk about privacy in general, but about specific users private attributes that
may be under threat.

6.3.1 Privacy of User Identity

In order to connect to a P2P network users need to reveal some information about
themselves (at least to the peers they are directly connected to), such as their IP
address and port number. Also, if some kind of enrollment mechanism is in place,
users may have to provide more information to satisfy the enrollment policy, for
example, an ID, password, and so on. In some cases, a centralized mechanism, such
as the offline certification authority (CA) used in RELOAD [9], can be used to
control the enrollment to the network. In this way, users credentials are stored in a
trusted third party (TTP) that can protect the privacy of the users attributes.
However, to join the network, some information (credentials) must still be revealed
to other peers (that may be malicious) to prove that the user is an authorized
member of the network. Furthermore, when a user requests access to a resource
stored in another peer it may need to reveal some information about itself to satisfy
the resource access control policy. And, in the same way, the resource provider may
need to reveal some information too, for example, for proving it is a valid content
provider, to provide access to the resource.

Therefore, as privacy issues related to the users identity, we identify:

• Internet service provider (ISP) identification of peers through relating an IP
address and port with the users subscription data.

• TTP identification of peers using the provided users attributes requested during
the enrollment process.

• Directly connected peers identification of users through their IP address and port
and (when used) the credentials needed to prove membership to the network.

• Resource owner identification of users through the credentials needed to satisfy
the resources access control policy.

• User identification of resources providers through the credentials used while
providing access.

The first two cases are common to most of the Internet applications: users have
to reveal some private attributes to both their ISP, to contract a line to access the
Internet, and to their service providers server (mail account, cloud storage, etc.), to
be able to access their services. However, the last three threats are new. The first of
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these three cases appears due to the fact that in P2P networks users are directly
connected to other (usually unknown) peers of the networks that may be malicious.
The second and the third appear because users no longer access resources stored in
a trusted server but in (usually unknown) peers that, again, may be malicious.

6.3.2 Privacy of User Location

As presented already, peers of a P2P network know the IP address and port of the
peers they are directly connected to. Also, some applications need to make public
these attributes of a user to all the participants of the network in order to allow them
to communicate with each other. For example, in P2PSIP applications users IDs and
locations (IP addresses and port numbers) are published in a DHT formed by all the
peers of the network. This information can be used by other users of the network
that wish to communicate with them to start VoIP phone calls or to send chat
messages. However, as noted in [59], since this location information is stored in the
DHT, the user cannot know which peers have requested it. Therefore, it is possible
for malicious peers to lookup the user regularly and to map its IP addresses to
geographic locations without the user being aware of it. This information can be
used by those with malicious intent to make profiles of the users location. The same
happens with other similar applications, such as Skype, as commented in [12].

Summarizing, the main location privacy issue for a P2P user is other peers
having access to its location and being able to make a profile about its mobility.

6.3.3 Privacy of the User Access

In Sect. 6.3.1 we have already talked about the privacy of users identity when
requesting access to a resource. Another related but different privacy issue appears
during this access: the peer responsible for a resource also can monitor the accesses
of the users of the network to it. In the same way, as noted in [15], the searched
keywords and the downloaded files can be gathered. This information in con-
junction with the users IP addresses can be used to create a database about the users
accesses. One example of an application suffering this threat is P2PSIP. In response
to this concern, the research [60] states that the P2P routing protocol opens the
possibility for P2P users to record the activities of other users in the network. On
the one hand, all the communications of a user are done through the fingers in its
routing table that can monitor its activities. On the other hand, the peer responsible
for storing a resource can monitor all the accesses over the resource it controls.

So, basically, the main threats here are users being monitored in the system by
other peers; both when accessing and looking for a resource. This is also known as
sender anonymity.
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6.3.4 Privacy of User Publishing

Another privacy issue appears for a user publishing a resource: the party accessing
or looking for a resource also learns which resources the user has published. This
could be used, for example, for censorship governments to make a search for
forbidden contents and ban or even prosecute the users of the network providing
them. This is also known as recipient anonymity.

6.3.5 Privacy of Contents

In general, before reaching their final destination, Internet communications traverse
several systems that may spy or even modify the exchanged data. This is even more
notorious in P2P networks, where users rely on other peers to access the systems
resources, providing the possibility for an intermediate peer to monitor the contents
of a users communication.

Also, unlike the client-server model where data is centrally stored, in P2P
contents are spread among all the peers of the network; being each peer responsible
for a specific part of it. These contents can be public information, available for other
users of the network, or non-public data, only available for the users private access.
Due to the fact that the peer responsible for storing these contents may be mali-
cious, a security mechanism should be implemented in order to prevent the storing
peer or an attacker from accessing this data without authorization [60].

6.3.6 Application Misconfiguration and Misuse

In P2P networks computers act simultaneously as clients and servers. However, as
noted in [15], to properly configure a server is not an easy task that typical
end-users can do. To configure a secure Internet server requires professional
experience. Therefore, despite configuring and using P2P software being easy,
using it in a controlled way is much more complicated. As an example, in [61] a
study about Kazaa usability is presented showing that it is very common for users to
share private data: emails, text documents, configuration files, or even the whole
disk without being aware of it. Since a user would not do this on purpose, it seems
clear that we are facing an application misconfiguration problem.

Application misconfiguration therefore clearly represents another threat to pri-
vacy that should be taken into account.
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6.3.7 Spyware and Malware

Spyware and Malware are further privacy threats for P2P applications. Spyware
spies on the user by collecting information about its activities without the user’s
knowledge. For its part, malware goes a step further performing more harmful
activities such as collecting more sensible information (credit card numbers,
passwords, etc.) or giving remote control to an attacker over the users device.

Several P2P applications are bundled with spyware that gather and send infor-
mation about the users activities to a third party. In turn, that third party uses the
gathered data to gain information about their potential customers [15]. However, it
is hard to check the spying activities and information leaked by these applications
because most of them are closed-source. One example of such an application that
includes spyware is Kazaa.

Other related threats to users privacy are the programs downloaded from P2P
networks. Since the sources in a P2P network may not be trustworthy, these pro-
grams can contain spyware or malware that compromise the privacy of the user.

6.4 Solutions for Privacy Issues in P2P Networks

Most communications over the Internet lack privacy protection: the messages are
not encrypted nor are the sender and the receivers identities protected. It is really
difficult to achieve full protection against privacy threats on the Internet, either P2P
based or not, just as normal people do not have the necessary means to be fully
protected against professional thieves in the physical world [62]. However, average
protection for the vast majority of scenarios is definitely possible. In the rest of this
section, we analyze different solutions that could help a user to achieve a desirable
level of privacy.

6.4.1 Anonymous Systems

Anonymity can enable censorship resistance and freedom of behavior without fear
of persecution. Anonymity is mostly used to hide user identity. If anonymous
communication channels are used, a channel listener is not able to understand the
messages sent on the channel or who has sent them [11]. Since one of the first
papers on anonymity was published [63] by D. Chaum in 1981 outlining an
electronic mail system to hide who a participant communicates with through the use
of mixes (nodes hiding the correspondences between their input and output mes-
sages in a cryptographically strong way), several protocols and applications to
protect anonymity have emerged [60]. However, most of them follow a similar
process: with the idea of preserving the privacy of the identity of the sender and the
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receiver of a message, as described in [64]: â€œWhen a sender Alice sends a
message to a receiver Bob via a message router Rob, she first encrypts the message
under Bob’s public key and then encrypts the results together with Bob’s name
under Rob’s public key. She then sends this final encryption to Rob who decrypts it,
sees another encryption plus Bob’s name and thus forwards this encryption to Bob.
Upon receiving it, Bob decrypts and then can read the message from Alice. Thus,
from the communication packets sent between Alice, Rob, and Bob one can only
tell that Alice sent some message to Rob and that Rob sent some message to Bob”.

Using this initial concept, several different approaches appear to improve ano-
nymity: cache and mix messages before they are sent, use several routers in a row to
increase the probability that at least one of them keeps the relation between the
input and the output node secret, or randomly choose at each routing hop whether
the message is sent to the final destination or to another intermediate routing
hop. Examples of protocols to do so are Mix-networks, Mix-cascades, and Onion
Routing.

What follows is a brief overview of the more relevant anonymous systems,
focusing on those specifically designed for P2P networks:

• Tarzan [65] is an anonymous P2P network. A peer that wants to send a message
through the network, instead of sending it directly, creates an encrypted tunnel
to another peer and asks that peer to forward the message in its behalf. This
process is repeated several times, creating an onion encrypted connection, that
relays the message through a succession of intermediate peers.

• MorphMix [66] is very similar to Tarzan. The main difference between them is
how the route a communication follows through the network is chosen. In
Tarzan, the route is chosen by the source, while in MorphMix the intermediate
nodes determine the next step.

• SwarmScreen [67] is a privacy preserving layer for P2P applications that tries to
obfuscate the user’s network behavior. Since a users behavior can be deduced
by his or her interests, SwarmScreen connects the user to other users outside of
their community of interest (by adding some percentage of extra random con-
nections that are indistinguishable from the real ones), which can disguise the
users interests and thus their behavior.

• Pr2-P2PSIP [59] has been created with the idea of providing P2PSIP user
registration and session establishment, while preserving the privacy of the
network participants. It is based on a central authentication server (AS). After
the user authenticates with the AS, the AS provides the user with a certificate
that binds the identity of the user with its public key. Besides its identity, each
user has two pseudonyms fi and si (temporal identities that cannot be linked with
the identity of the user). These pseudonyms allow the user to participate in two
different overlays: one used to store the users contact information and another
for forwarding messages.

All of the summarized systems have their advantages and drawbacks (this dis-
cussion is beyond the scope of this chapter). However, all of them have two main
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characteristics in common: they improve the anonymity of the user, but at a high
performance cost.

6.4.2 Routing Modifications

Using an anonymous system, such as the ones presented in Sect. 6.4.1, may have an
appreciable impact on the systems performance. In some cases, when performance
is a key factor, another mechanism, such as routing modifications, can be used in
order to improve the users privacy while maintaining a good performance. Router
modifications can be carried out in two different ways: varying the routing algo-
rithm and obfuscating routing headers. Both mechanisms help to improve a users
privacy, mainly in structured P2P networks where routing is more deterministic and
can reveal more information about the users behavior. The rest of this section is
based on the authors previous research presented in [60].

6.4.2.1 Routing Variations

The study [68] analyzes the anonymity of the Chord protocol and concludes that the
implemented recursive routing algorithm provides a high degree of sender ano-
nymity against passive observers.

The proposal described in [69] goes a bit further and compares the anonymity of
different alternatives with the original recursive routing algorithm:

• Random recursive routing. In this variation, peers forward the message at
random to whatever finger is closer to the destination, instead of routing mes-
sages to the finger closest to its destination. Random recursive routing improves
anonymity, but unfortunately it also increases the path length.

• Weighted random routing. Instead of picking the next forwarding hop at
random from the closer fingers, fingers are weighted and picked with different
probabilities: for example 1/2 for the closest, 1/4 for the second closest, and so
on. In comparison to the random one, it reduces the average path length while
maintaining a degree of anonymity that is nearly as good.

• Indirect routing. In this routing algorithm, when a peer wants to send a mes-
sage, instead of routing it directly to its destination, it chooses at random an
intermediary peer in the network to route the message on its behalf. Also, the
query to the intermediary is secured using an m-of-n secret sharing scheme, that
is, the message is split into n shares sent using independent routes and at least
m shares (of n sent) need to be captured in order to reconstruct the message. This
way, it is very difficult for an attacker to know the true destination of the query.
Indirect routing improves the anonymity of the sender but it also increases the
number of messages needed to route a query and its latency. A similar routing
alternative is used in the AP3 system [70].
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6.4.2.2 Headers Obfuscation

Besides the routing algorithm used, it could be also helpful, in order to improve
users privacy, not to use header fields that may reveal information about the route
followed by a message:

• Avoid setting fixed default values for TTL counters. Alternative methods, such
as those implemented in Freenet [71], may be used.

• Methods such as the forwarding tables in AP3 [70] or the Truncated Via-Lists in
RELOAD [9] should be used to obfuscate the information needed to route back
the response of a query.

6.4.3 Protection of Contents in Transit

The most widely accepted measure to obfuscate the content of a message is
encryption. However, as the authors presented in previous work [60], the special
properties of routing in P2P networks suggest a clarification of how this mechanism
should be implemented. In typical Internet routing, security is normally ensured
end-to-end, that is, the sender encrypts and signs the message and delivers it to the
recipient using some specific protocol for this task, such as TLS [72], DTLS [73], or
IPsec [74]. Unfortunately, this approach is not valid in P2P networks, because the
intermediate hops need access to some information of the message in order to route
it properly. Therefore, the routing protocol needs to implement two features: it must
separate the routing information (needed for the intermediate nodes to route the
message) from the content of the message per se (that must be only accessed by the
addressee). Also, it must permit use of both hop-by-hop and end-to-end security.
First the sender encrypts and signs the content of the message with the public key of
the ultimate receiver and the sender’s private key respectively (end-to-end security
at the application layer), then the sender appends to it the routing information and
encrypts and signs the whole message for the first hop using TLS, DTLS, or IPsec
(hop-by-hop security at the network/transport layer). This way, every hop can check
and modify the routing information of the query in order to properly route it, but
only the receiver can see its content. An example of a P2P protocol implementing
both features is RELOAD [9].

6.4.4 Protection of Contents at Rest

Following the security analysis conducted in [60], there are mainly three mecha-
nisms to protect the privacy of contents at rest in P2P networks: local control,
cryptography, and dedicated security services.
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6.4.4.1 Local Control

In this mechanism the node responsible for the resource is in charge of its access
control and, therefore, of its privacy protection. Local control can be implemented
in different ways. In the RELOAD protocol [9], for example, each resource iden-
tifier may contain multiple kinds of data identified by a Kind-ID. The definition of
each data kind specifies rules for determining which certificates can access each
Resource-ID and Kind-ID pair, controlling the data access. Another possibility is to
use an access control list (ACL) to determine the privileges of each user over an
object like in OceanStore [13] or Fairsite [75].

The main drawback of this approach is that, if the node responsible for the
resource is malicious, it can access the resources content or allow unauthorized
users to access it.

6.4.4.2 Cryptography

The more effective way to prevent malicious users from accessing the private data
of other users within the network is to use cryptography. If a user wants to store a
private resource for personal use, symmetric cryptography, such as the AES
algorithm [76], could be used to encrypt the data before storing them in the net-
work. On the other hand, if the private resource is intended to be accessed by other
users, such as a voice-mail, it may be encrypted using the public key of the reci-
pient, as described in [77]. If the publisher wants the resource to be accessible by a
group of users, three possibilities arise: (1) to extend the scenario of a single
recipient by storing one copy of the resource for each recipient encrypted with his
or her corresponding public key; (2) to encrypt the symmetric key using the public
key of all authorized readers and store the encrypted keys with the resource [75], or
(3) to store only one copy of the resource encrypted with a symmetric key and send
a private message to each recipient with the location of the resource in the network
and the key needed to access it [13].

6.4.4.3 Dedicated Security Servers

Another solution is to add dedicated security servers to the architecture. The users
rely on these servers for storing their private resources. Unfortunately, as noted in
[78], these servers reduce the advantage of the P2P architecture by introducing an
extra cost in its development, and issues such as load balancing and capacity
problems.
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6.4.5 Private and Split Credentials

Only a small number of elementary tasks can be carried out completely in an
anonymous way. Usually, the user has to perform some kind of authentication,
therefore revealing some private information [64]. As stated in [79], in P2P
applications with anonymous authentication, if the privacy of peers is increased, the
difficulties of ensuring authenticity and security are increased too. There is a clear
trade-off between authentication and anonymity that is to be catered by P2P
application developers.

A way to protect users access is to give users fake identities. Fake identities can
be ensured by smartcard techniques where the real identity of the user is only
known by the authority which distributes the smartcards. In this case, the authority
must be considered as a TTP [11]. For example, in Past [14], smartcards are used to
allow users to obtain necessary credentials to access resources in an anonymous
fashion. However, the use of trusted party for authentication can be risky. Thus,
there is a trade-off between accountability and trusted party for authentication.
Users have to be able to manage their identities in order to reduce to the minimum
the information about them disclosed during their operations in the network.

Private credentials [80] provide the same functionalities and security guarantees
as the classical X.509 certificates, but give the user the possibility of controlling and
separating its different identities. They are based on a very similar approach to the
X.509 certificates, but with two particular features:

• Single secret key, many public keys (cryptographic pseudonyms). Users can
create several public keys related to their secret key, instead of having only one
public key for each private key. Also, it is not possible to link these public keys
to each other, being unfeasible to know if they are held by several different users
or by the same user.

• Transformable. Credentials are linked to the users secret key not to their public
key. In this way, a credential related to one public key of the user can be
transformed into a credential related to another and different users public key.
Furthermore, the new created credential may only include a chosen subset of the
attributes includes in the original credential.

Private credentials “provide the same level of security (as classical certificates),
but additionally guarantee privacy during the process”, as stated in [62].

Another certificate variation that can be used together with private credentials is
split certification, as presented in the authors previous work [81]. Split certification
separates the identity of the user from the identity of the device the user is operating
from. This way, overlay maintenance and routing communications are performed
between nodes without the unnecessary knowledge of which users are connected to
them. Likewise, user operations are not linked to its devices, so users perform actions
in the networkwithout having to explicitly announce the node they are operating from.
Combining split certification with private credentials can reduce the users provided
information when fulfilling an access control policy necessary to access a resource.

6 Privacy in Peer-to-Peer Networks 129



6.4.6 Hidden Services

We have already introduced (Sect. 6.4.2.1) the possibility of using an intermediate
peer to route messages on a users behalf in order to protect the senders anonymity.
A similar approach for P2P data sharing, presented in [82], uses buddies (com-
munity members the user has established trust relationships with) as “proxies”
during data requesting. The mechanism used to hide the identity of the requester is,
rather than sending the request by itself, the requester asks one or several of its
buddies to look up the data on its behalf. This process can be improved by having
the supplier respond to a request via its own buddies; protecting, therefore, not only
the identity of the requester but also the identity of the supplier.

In this vein, but using a more sophisticated and privacy preserving approach, are
the hidden services used in Tor [83]. Location hidden services allow a user to offer
a service without revealing its IP address. Using Tor “rendezvous points”, other
users can connect to these hidden services, each without knowing the other’s
identity. The steps to do so are:

1. The provider picks some introduction points (peers acting as intermediates) and
builds circuits (hop-by-hop encrypted random path) to them.

2. The provider publishes the service using a hidden service descriptor (including a
summary of each introduction point) in a distributed hash Table

3. The requester learns about the service from its hidden service descriptor and sets
up a circuit with a rendezvous point (peer acting as intermediate for the
requester).

4. The requester sends a message to one of the introduction points requesting
access to the service and including its rendezvous point.

5. Finally, the provider creates a circuit to the requesters rendezvous point and
provides the service.

6.4.7 Application Configuration

The default configuration of a P2P application should be as strict as possible, so that
the user willing to share a file had configured the application for doing so.
Unfortunately, as noted in [15], this is not desirable for P2P developers. They fear
that only a few users will change the configuration to allow sharing, if the default
settings of the application are no sharing, therefore, reducing the interesting content
available in the P2P network and forcing the users to use a different application with
more content.

With this in mind, one of the most simple and useful solutions a user can
implement in order to protect its privacy is to properly configuring a P2P appli-
cation to only share the information the user wants before starting to use it.
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6.4.8 Application Hardening

Users should use trusted applications, either open-source where the code can be
checked for malicious behavior or, at least, downloaded from trusted sources, to
prevent spyware or malware being installed on its computer. Also, P2P applications
need to have some privileges in order to be able to carry out their activities [84]:
network access, write and read permissions over the hard disk, and so on, that can
be used maliciously to disclose private information or install malware on the users
machine. To remedy this, [85] recommends to run the P2P application in a sandbox
that isolates the portion of the hard disk the application has access to and restricts
the operations it can perform. In the same way, the integrity and behavior of the
whole users devices system should be checked using anti-virus and anti-malware
solutions.

6.5 Recommendations, Challenges, and Opportunities

In Sect. 6.3 we presented P2P privacy issues and in Sect. 6.4 we discussed P2P
privacy solutions. It is time now to see how the described solutions can be used to
mitigate the existing issues and explore the challenges that must be addressed in the
future, along with opportunities for new research directions. Table 6.1 presents a
summary of the recommendations described during the rest of this section to protect
privacy in P2P networks.

6.5.1 User Identity

As we have described already, there are five main issues related to the user identity
privacy in P2P networks, two of them being common to any Internet-based system
and the three others being unique to P2P networks due to the special conditions they
present.

For the first issue, related to the ISP identification of peers, two possible solu-
tions arise. The first one is to accept that in order to contract an Internet line the user
should give some private information to the Internet provider and trust that it will
not release it to third parties compromising the users privacy. When this solution is
not acceptable, a second option is to use a public Internet access point, such as the
free wireless access point provided in some public places like coffee shops, train
stations, or airports.

For the second issue, related to the P2P application providers TTP identification
of peers, three possible solutions arise. The first one is, again, to trust that the
provider will not release the users identity information to other third parties. The
second one, when possible (users are not requested to give personal identifiable
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information such as an account or credit card number but less identifiable infor-
mation such as an e-mail that can be from an open provider), is to connect to the
application using a pseudonym that cannot be related to the users real identity.
Finally, the third solution is to only use P2P applications that accept anonymous
users and that do not need the user to follow an enrollment process.

For the third issue, related to the directly connected peers identification of users,
two possibilities arise. The first one is to trust that the Internet provider will not
reveal to the other peers which user is behind the visible IP address used. The
second is, again, to use public Internet access points so that the IP address can not
be related to the users identity. Also, in both cases, when some kind of credential is
needed in order to prove membership of the network, private and split credentials
should be used.

For the fourth and fifth issues, related to the mutual identification of the
resources requester and provider, the best solution is to use private and split cre-
dentials in order to hide their real identities.

Table 6.1 P2P Privacy issues and possible solutions

P2P Privacy Issues and solutions

Privacy issues Solutions

User identity Trust internet provider

Use public access point

Trust P2P application provider

Use pseudonymous

Use anonymous access applications

Private and split credentials

User location Privacy of user identity solutions

Anonymous systems

Hidden services

User access Anonymous systems

Routing modifications

Protection of contents in transit

Privacy of user identity solutions

Private and split credentials

User publishing Anonymous systems

Hidden services

Privacy of user identity solutions

Protection of content at rest

Contents Protection of contents in transit

Protection of contents at rest

Application misconfiguration and misuse Application configuration

Spyware and malware Application hardening
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6.5.2 User Location

It is impossible for a peer to hide its IP address, and therefore its location, from the
peers it is directly connected to. It is, however, possible for a user to hide its
location if the peers the user is directly connected to do not know the identity of the
user behind the peer it is using. In order to do so, the user has to use one of the
solutions presented in the previous point to hide its identity. But, what happens
when the user necessarily has to make some attributes public (like an ID and IP
address in P2PSIP) to allow the other users of the system to communicate with it. In
this case, the best option for the user seems to be accessing the applications through
an anonymous system and using a hidden service to hide its real location from the
users trying to contact them. Unfortunately, the hops introduced in this commu-
nication may not be viable for a real-time communication such as P2PSIP needs.
The challenge here would be to find a system that could hide the location of the user
while providing it with viable connection for real-time communication. One pos-
sible approach would be to hide the real location of the user (through a hidden
service) until it accepts the communication with the calling user and, once accepted,
to reveal its real location to establish a direct communication valid for real-time
applications. This would not hide the location of the user from an accepted caller
but, at least, it would prevent a malicious user from building a profile of the user
location without the user realizing it; since the real location of the user is not
released until the call is accepted. However, this is still an open area of research.

6.5.3 User Access

The best way to keep private the resources accessed by a user is to use an anon-
ymous system. This would prevent the peers directly connected to the user from
knowing which resources the user requests and, also, it would prevent those
responsible for a specific resource from knowing the origin of a request.
Unfortunately, in some cases this solution may not be available or perhaps too
costly. In such cases, a less secure option, but one that can provide some level of
privacy, is to combine routing modifications with protection of the contents in
transit. Another possible option is not trying to hide the access itself but the identity
of the user that is behind. In this case, the user should use the solutions already
described to retain the privacy of the user identity. In any case, if the access to the
resource is protected by an access control policy the user should use private and
split credentials in order keep the privacy of its access.
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6.5.4 User Publishing

Protection against content censorship mechanism is best achieved using an anon-
ymous system and publishing resources under a hidden service. Obtaining this
protection when this solution is not possible is an ongoing problem. One possibility
is to publish the content anonymously and hide the identity of the publisher using
one of the solutions already described in order to protect the user identity privacy.
Another possibility would be to try to implement the proxy solution, described in
Sect. 6.4.6, for content distribution. One final option would be to use cryptography
to protect the content of the resource at rest. Nevertheless, the last presented
solution would only hide the contents of the publishing user from non authorized
users. Furthermore, if one of the authorized users disclosed the content, it would be
possible to prove that the user published it if the encryption for the disclosed
content matched the published one.

6.5.5 Contents

In order to protect the privacy of content, both solutions for the protection of
content in transit and at rest should be used. For the case of protection at rest,
cryptography is the recommend solution, because it not only prevents an unau-
thorized user from seeing content, but it also prevents a malicious container from
disclosing users private information stored in the P2P network.

6.5.6 Application Misconfiguration and Misuse

So far, we have seen how to protect the privacy of different users’ attributes: its
identity, location, accessed information, published resources, and private stored
information. However, all these mechanisms are useless if the application used by
the user to access the P2P network is not well configured and is sharing its personal
private information. It is, therefore, crucial to do a proper and secure configuration
of the application used before accessing a P2P network.

6.5.7 Spyware and Malware

Similarly to application misconfiguration and misuse, having spyware or malware
that leaks the user’s personal information can render all the privacy protecting
mechanisms described before useless. So, it is very important to check that the user
device is clean of spyware and malware using an application hardening solution
before accessing a P2P network in order to protect the users privacy.
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6.6 Conclusions

As we have seen, there are several privacy issues that must be taken into account
when using P2P applications: privacy of user’s identity, location, access, and
publishing; privacy of contents; application misconfiguration and misuse; and
spyware and malware. Also, several solutions exist that can be used to try to
address these issues: anonymous systems, routing modifications, protection of
contents in transit and at rest, private and split credentials, hidden services, and
application configuration and hardening.

However, the choice of the one to be used in each case is a complicated task.
Some solutions may be effective to protect the privacy of some attributes but inef-
fective in protecting others. Furthermore, implementing some of them (e.g., using an
anonymous system) while neglecting others (e.g., application misconfiguration
sharing documents with personal identifiable information) may render useless the
solutions in place. It is, therefore, of great importance to have a holistic view of the
existing issues and solutions in order to protect privacy in P2P networks.
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Chapter 7
Privacy in the Cloud

Ragib Hasan and Shams Zawoad

7.1 Introduction

Cloud computing is becoming popular among business and information technology
(IT) organizations as it offers infinite infrastructure resources, very convenient
pay-as-you-go services, and low cost computing. Small and medium scale indus-
tries find cloud computing highly cost effective as it replaces the need for expensive
physical and administrative infrastructures, and offers the flexible pay-as-you-go
structure for payment. An organization could save 37 % cost if they would migrate
their IT infrastructures from an outsourced data center to the Amazon’s Cloud [1].
The rapid adoption of cloud computing has effectively increased the current market
value of clouds and it will continue to grow in the future. According to a report
from Market Research Media, the global cloud computing market is expected to
grow at a 30 % compound annual growth rate (CAGR) reaching $270 billion in
2020 [2]. As reported by Gartner Inc., the strong growth of cloud computing will
bring $148.8 billion revenue by 2014 [3]. Cloud computing is getting popular not
only in the private industry, but also in the government sector [4].

However, the privacy and trustworthiness of cloud infrastructures have
become a rising concern as today’s cloud infrastructures often suffer from
security issues [5–9]. Cloud infrastructures use the multi-tenant usage model and
virtualization to ensure better utilization of resources. Conversely, these funda-
mental characteristics of cloud infrastructures make it difficult to ensure confi-
dentiality and privacy of users in the cloud. According to the International Data
Corporation (IDC) IT cloud services user survey, 74 % of IT executives and
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CIOs referred to security as the main reason preventing their migration to the
cloud services model [10]. Some real attacks on cloud computing platforms
strengthen the security concern. For example, a botnet attack on Amazon’s cloud
infrastructure was reported in 2009 [11].

A typical information exchange in the cloud occurs when a user shares
information with a cloud provider. When users send data to clouds for compu-
tation or store confidential files, they are unaware of the underlying technology of
the cloud. Cloud infrastructures appear as a black-box to end-users. Without the
knowledge of physical location of the server or of how the processing of personal
data is configured, end-users use cloud computing for storing email, photographs,
business documents, medical records, appointment calendar, address book, and
many other purposes. The sensitive data stored in cloud infrastructures can reveal
users’ biographical, biological, historical, locational, relational, computational,
and other information, which can reveal their identity. Data in clouds are easier to
manipulate, but also easier to lose control of, and this is where the privacy issue
arises.

In general, privacy is considered to be a fundamental human right that refers to
end-users’ control over the collection, use, and disclosure of their personal data
by others [12], or more generally we can say that privacy is lost when personal
data become public [13]. At consumer level, privacy is defined as the protection
and appropriate use of the personal information of customers to meet their
expectations about its usage. For business organizations, privacy refers to the
application of laws, policies, standards, and processes by which personally
identifiable information (PII) of individuals is managed. The aforementioned
definitions of privacy suggest that users can lose privacy when they outsource
data and computation to the cloud. Cloud service providers (CSP) can sell con-
fidential data without users’ consent and can use users’ personal information for
junk advertisement, or a malicious tenant virtual machine (VM) inside the cloud
can steal data of other tenants. Hence, the usage of today’s cloud computing relies
on trusting the cloud providers.

In light of the above, it is important to examine and understand the critical
privacy issues in cloud computing. The goal of this chapter is to motivate
researchers about the various privacy threats in cloud computing, and provide them
with a guideline towards solving the privacy challenges. In this chapter, we will
discuss the major privacy issues related to cloud computing, and present existing
state-of-the-art privacy, and provide an overview of future research opportunities
that we need to explore before cloud computing can become mainstream.

7.1.1 Organization

The rest of this chapter is organized as follows. In Sect. 7.2, we present background
information about various cloud models. In Sect. 7.3, we introduce the main issues
that make ensuring privacy in the cloud paradigm challenging. Section 7.4 discusses
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existing solution approaches and analyzes the pros and cons of existing solutions.
Next, in Sect. 7.5, we present a list of open problems, which provides the readers
with a list of potential research questions that remain unsolved. Finally, we sum-
marize the chapter and conclude in Sect. 7.6.

7.2 Background

To better understand the privacy challenges in cloud computing, we need to look
into the unique operational and architectural models of cloud computing. In this
section, we discuss the definition of cloud computing and various service models
used in this computing paradigm.

7.2.1 Cloud Computing

Though cloud computing is a relatively new business model for outsourced
services, the technology behind cloud computing is not entirely new. Over the
last 40 years, we observed the development of virtualization, data outsourcing,
and remote computation. The overarching concept of delivering computing
resources through a global network is rooted in the 1960s. From the early
2000s, cloud computing has been providing a streamlined way of provisioning
and delivering such services to customers. In this regard, cloud computing is
best described as a business paradigm or computing model rather than any
specific technology.

The US National Institute for Standards and Technology (NIST) has defined
cloud computing as a computing model that provides a convenient way of
on-demand network access to a shared pool of configurable computing resources,
such as networks, servers, storage, applications, and services [14]. These computing
resources can be rapidly provisioned and released with minimal management effort
or service provider interaction. The Open Cloud Manifesto Consortium defines
cloud computing as the ability to control the computing resources dynamically in a
cost-efficient way and the ability of the end-user, organization, and IT staff to utilize
the most of that resources without managing the underlying complexity of the
technology [15].

According to the above definitions, a key characteristic of cloud computing is
that, a cloud is by nature a shared resource. Therefore, the same physical
hardware, such as storage device and memory, can be shared by multiple users.
Another important characteristic of cloud computing is the rapid elasticity,
which provides users with the facility of on-demand scaling up or down of
computing resources. Cloud providers control and optimize the use of computing
resources through automated resource allocation, load balancing, and metering
tools.
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7.2.2 Classification According to Service Model

Cloud computing can be divided into three main categories depending on the nature
of services provided by CSPs: Software as a Service (SaaS), Platform as a Service
(PaaS), and Infrastructure as a Service (IaaS) [14]. Figure 7.1 illustrates the three
service models in cloud computing architecture.

• Software as a Service (SaaS). In the SaaS model, customers access software
applications hosted on a cloud infrastructure. This approach is different from
traditional software package distribution to individuals or organizations.
Customers can access services, offered by CSPs from any Internet connected
devices through web browsers or mobile applications; there is no need for
software distribution. Usually, there is a monthly subscription fee to use the
services provided by the SaaS application. This fee can sometimes vary
according to the number of users of an organization. In this model, customers do
not have any control over the network, servers, operating systems, storage, or
even the application, except some access control management for multi-user

Fig. 7.1 Three service models of cloud computing [68]
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applications. Hence, service providers are completely responsible for protecting
the privacy and confidentiality of consumers’ data. Some of the examples of
SaaS are: Salesforce [16], Google Drive [17], and Google Calendar [18].

• Platform as a Service (PaaS). In the PaaS model, customers can build their
own applications on top of a configurable software platform deployed in a
cloud. Generally, customers pay according to the bandwidth usage and database
usage. Using PaaS, a customer can deploy his own SaaS cloud and provide
services to end-users. Customers do not manage or control the underlying cloud
infrastructures including network, servers, operating systems, or storage, but
have control over the deployed applications and some application hosting
environment configurations. Hence, there lies a big responsibility for the cus-
tomers to use best practices and privacy-friendly tools. However, customers can
only use the application development environments, which are supported by the
PaaS cloud provider. Therefore, customers have to trust that the platform is not
compromised. Two examples of PaaS are: Google App Engine (GAE) [19] and
Windows Azure [20].

• Infrastructure as a Service (IaaS). In the IaaS model, customers can rent
processing power and storage to launch their own virtual machines and/or
outsource data to a cloud. Using this model, customers can remove the costly
process of maintaining their own data center. One of the most important features
of IaaS is that customers can scale up or down the computing or storage
resources according to their requirements. In this model, customers enjoy more
flexibility than other cloud models in terms of configuring, running, and man-
aging their own applications and software stack. Customers have full control
over operating systems, storage, deployed applications, and possibly limited
control of selecting networking components, such as, host firewalls. Therefore,
customers have big responsibility to ensure privacy and to comply with some
regulations, such as geographic restriction of data. Cloud service providers are
responsible for securing the data centers, network, and systems. Two examples
of IaaS are: Amazon EC2 [21] and Windows Azure VM [20]. EC2 and
Azure VM provide users with access to VMs running on providers’ servers.
Customers can install any operating system, run any application, and deploy a
SaaS cloud in the virtual machines rented from cloud providers.

7.2.2.1 Other Service Models

Motahari-Nezhad et al. proposed a more specific service model, which is Database
as a Service (DaaS) [22]. This is a special type of storage service provided by cloud
service providers. Most of the providers offer customers data storage in a key-value
pair, rather than using a traditional relational database. Moreover, data of multiple
users can be co-located in a shared physical table. Two of the examples of DaaS
are: Amazon SimpleDB [23] and Google Bigtable [24]. The query language to
store, retrieve, and manipulate the data depends on the implementation of a
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database system. There is a monthly fee depending on the incoming and outgoing
volume of data and machine utilization. Hardware as a Service (HaaS) is another
cloud service model, where the cloud provides access to dedicated firmware via the
Internet, for example, XEN and VMWare [25]. Several other services are also
proposed, for example, Security as a Service [26], and Logging as a Service [27].

7.2.3 Classification According to the Deployment Model

According to the deployment model, cloud computing can be categorized into four
categories: private cloud, public cloud, community cloud, and hybrid cloud [28].
Figure 7.2 shows four different deployment models of cloud computing—private,
community, public, and hybrid cloud.

• Private cloud In the private cloud model, the cloud infrastructure is fully
operated by the owner organization. It is the internal data center of a business
organization. Usually, the infrastructure is located at the organizations’ premise.
Private clouds can be found in large companies and for research purposes.

• Community cloud If several organizations with common concerns (e.g., mis-
sion, security requirements, policy, and compliance considerations) share cloud
infrastructures, then this model is referred to as the community cloud. It is
somewhat similar to a private cloud, but the infrastructure and computational

Private Cloud 
On Premise Infrastructure Hybrid Cloud 

Public Cloud 
CSP Infrastructure Community Cloud 

Fig. 7.2 Three different cloud deployment models
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resources are shared between two or more organizations. Resource sharing can
be done by communicating between different clouds, where each belongs to
different organizations, or by building a common cloud infrastructure that can be
used by different organizations in a shared manner.

• Public cloud In the public cloud model, cloud providers own and operate the
cloud infrastructure to deliver cloud services to consumers and, by definition,
this model is external to the consumers’ organizations. All the examples given in
the service-based cloud categorization are public clouds.

• Hybrid cloud As the name suggests, the hybrid cloud infrastructure is a com-
position of two or more clouds (private, community, or public; e.g., cloud bursting
for load-balancing between clouds). A hybrid cloud architecture requires both
on-premises resources and off-site (remote) server-based cloud infrastructures.

7.3 Privacy Issues

Researchers have studied privacy issues in distributed computing systems for a long
time. However, there are several factors that make privacy in the cloud different
from traditional distributed systems. We point out those factors to properly address
the open problems of privacy in clouds; it is vital to understand what makes the
cloud privacy different from traditional distributed systems.Section2
ID="Sec9">Multi-tenancy

One of the most critical issues that makes preserving privacy in cloud computing
different from other distributed computing systems is the idea of multi-tenancy.
Though there are some exceptions, such as OVH who provides dedicated cloud
services [29], usually, the cloud infrastructure is based on the idea of multi-tenancy.
Rather than using physical separation of resources as a control, cloud computing
places greater dependence on logical separation at multiple layers of the application
stack [28]. This means that, at any given time, multiple users will be sharing the
same physical hardware and resources of a cloud infrastructure, where generally,
the users have no relation between each other. However, this fundamental property
of cloud computing has been manipulated by many attackers to attack the privacy
of cloud users. Attackers can exploit multi-tenancy in several ways. Without vio-
lating any laws or bypassing any security measures, attackers can use the
multi-tenancy feature to get inside a cloud infrastructure legitimately. Once inside
the cloud infrastructure, attackers can then start gathering information about the
cloud. Next, the attacker can gather information about other users who are sharing
resources with the attacker. Finally, co-residency also exposes cloud users to active
internal attacks launched by co-resident attackers.

Example: An example of the co-resident attack was presented by Ristenpart
et al. in [30]. Here, the authors first reverse-engineered the internal IP address
allocation map of Amazon EC2 to identify the location of a particular VM in the
cloud. Then, they presented a network-based scheme to identify the co-resident.
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Using the map and the co-residence checking technique, they showed how an
attacker can achieve the co-residency with a targeted VM. After placing the VM in
the same physical infrastructure, where a target-VM is located, attackers can launch
some CPU cache-based side channel attacks, which can leak important information
about the target-instance (e.g., password, number of visitors, etc.). A follow up
work shows that the attackers can actually steal encryption keys using the side
channel attack [31].

7.3.1 Trust Asymmetry

Preserving privacy in public clouds is more difficult than in other distributed sys-
tems because of the asymmetric trust relationship between cloud service providers
and cloud users. Today’s cloud computing models are designed to hide most of the
inner workings of the cloud from users. Cloud infrastructures are like big black
boxes and do not allow users to look into the inner structure or operation of the
cloud. From the cloud provider’s point of view, this is designed to protect the cloud
infrastructure as well as the privacy of the users. However, the black-box nature of
clouds prevents users from getting information beyond whatever is provided by the
cloud service provider. In some cases, users can find it difficult to effectively check
the data handling practices of the cloud provider and thus to be sure that the data is
handled in a lawful way [32]. Users do not usually have control over the operation
of their virtual machines or applications running on the cloud through the limited
interface provided by the cloud service provider. In cloud computing, the control
over data varies in different service models. Figure 7.3 shows the limited amount of
control that customers have in different layers for the three service models—IaaS,
PaaS, and SaaS. In IaaS, users have more control than in SaaS or PaaS. The lower
level of control has made the privacy preservation in SaaS and PaaS more

Fig. 7.3 Customers’ control over different layers in different service model [64]
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challenging than in IaaS. As a result, cloud users have to trust the cloud provider
completely regarding the privacy and confidentiality of their data.

Example: Suppose a business organization, BO.CoLtd. uses a SaaS-based
business management application to manage its business. The SaaS application
needs to store all the business related information of BO.CoLtd. including infor-
mation about the customers. Information about the customers should not be dis-
closed as it can violate customers’ privacy. BO.CoLtd completely relies on the
reputation and trustworthiness of the service provider to keep its customers’ con-
fidential information in the cloud storage. However, the cloud provider can sell the
customers’ information to other business organizations without the consent of BO.
CoLtd., which definitely violates the privacy of the customers.

7.3.2 Legal Issues

A universal principle for the protection of personal data and privacy is the Madrid
Resolution [33]. This resolution was approved in Madrid in 2009 by data protection
authorities from 50 countries. It states the urgent need to protect privacy in the
Internet world with no borders and presents a joint proposal for the establishment of
international standards on privacy and data protection. The purpose of the Madrid
Resolution was to define a set of principles and rights, which can guarantee the
effectiveness and internationally uniform protection of privacy in respect of pro-
cessing of personal data. Moreover, the Madrid Resolution encourages the imple-
mentation of proactive measures through privacy enhancing technologies (PETs),
which can ensure better compliance with applicable privacy protection laws relating
to the processing of personal data. Implementing PETs in cloud computing can
reduce the risk of violating privacy principles and legislation, minimize the amount
of data held about individuals, and allow individuals to take control of information
about themselves at all times. However, standardization of PETs in cloud com-
puting is challenging as we need to mitigate cloud-specific concerns on a
case-by-case basis and in relation to the nature of the cloud services.

For business related data, disclosing the personal information of customers or
employees, or electronic medical records (EMR) of patients to a cloud provider is
often unrestricted by different regulation policies. The Privacy Act of 1974 imposes
standards for the collection, maintenance, use, and disclosure of personal infor-
mation [34]. If there is no contractual agreement between federal agency and the
cloud service provider, storing personal information in clouds may violate the
Privacy Act of 1974. The Gramm-Leach-Bliley Act does not allow financial
institutions to disclose a consumer’s personal financial information to a CSP [35].

According to the Health Insurance Portability and Accountability Act (HIPAA)
[36], EMRs are private and confidential to a patient. HIPAA provides compre-
hensive policies to regulate the use and disclosure of individually identifiable health
information by covered entities. By covered entities, HIPAA principally refers to
healthcare and health plans providers. Using clouds for medical purposes may
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violate the HIPAA policies, as in this case, hospitals are giving the responsibility of
storing or processing confidential EMRs to a cloud provider, which is not a covered
entity.

The location of a cloud provider’s data center may have a significant impact on
the law that applies to data privacy. Data centers of cloud providers can be dis-
tributed worldwide and the same data can be stored in multiple locations at the same
time. However, the privacy preservation or information sharing laws are not in
harmony throughout the world, they may not even be the same in different states
within one country. It may happen that a user is accessing the cloud computing
service from one jurisdiction, whereas the data he or she is accessing reside in a
different jurisdiction. Differences in laws between the two locations can affect the
privacy preserving procedures of CSP. Because of the importance of location,
the Privacy Level Agreement (PLA) guideline for cloud services operated in the
European Union suggests that the locations of all data centers where personal data
may be processed, stored, mirrored, backed-up, and recovered are specified [37].

Example: Let us assume that a hospital provides facilities to its patients for
doctor appointments, accessing their health information, prescriptions management,
bill payment to health insurance providers, and other services from a web-based
application. If the hospital deploys the application in a privately owned infra-
structure, then this will not violate the policies of HIPAA as the information is
circulated among all the covered entities. However, to minimize the cost of
maintaining a privately owned infrastructure, the hospital decided to move the
application to a public cloud. Using a cloud for this application will violate the
HIPAA policies since medical records are now stored or circulated through a
third-party entity—the cloud service provider, which is not considered as a covered
entity according to HIPAA.

Another example can be tax return preparation services through online facilities
[34]. Generally customers of tax preparers enjoy some regulatory privacy protec-
tions. These customer protections in turn limit the ability of a tax preparer to deploy
the online service in a cloud. It is difficult to see how an online tax preparation
service, deployed in a cloud, can comply with the IRS rules and still disclose tax
return information to the cloud provider. A tax preparer can not use a foreign cloud
provider without taxpayer consent, moreover, disclosure of a Social Security
Number (SSN) will be impossible.

7.3.3 Insider Threats

While designing the security of distributed systems, security experts mostly con-
sider the threats from external attackers. Hence, significant efforts have been made
by the experts to keep the malicious attackers outside the system perimeter.
Unfortunately, in cloud paradigm, the attackers can legitimately be inside the
system. Though the security experts are familiar with the concept of insider attacks,
a malicious insider in a cloud might have access to a massive amount of information
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and on a much greater scale. The insider attackers only need to pay for the use of
cloud resources. In most clouds, anyone possessing a valid credit card is given
access to the cloud. Using this, attackers can get inside a cloud without actually
violating any law or even the cloud provider’s usage policy. Privacy threats to user
data and applications in the cloud have been increased due to this insider access to
cloud infrastructures. The global nature of cloud computing means that attackers
from all over the world can target a victim just by accessing the cloud. Because of
the shared resources in cloud computing, often there is the risk of collateral damage
when other users sharing the same resources with a victim and may also face the
effects of an attack.

Example: An example of an insider attack would be a curious employee of a
cloud provider monitoring the network traffic flow by using a network monitoring
tool from a cloud host machine. In this way, the employee can gather confidential
information about cloud users, such as the websites that a user is interested in
visiting often, or login credentials of a user for a website, which is not using the
secured socket layer for communication. In [38], the authors provided some sce-
narios of insider attacks, such as cloning VMs, copying files from a cloud storage,
and data redirection to an external nation state or criminal organization.

7.3.4 Data Outsourcing

Data outsourcing is a major usage of today’s cloud computing. Managing very
large-scale datasets, commonly referred to as “Big Data” is beyond the capacity of
most local data storage systems. Therefore, people use clouds to store their Big
Data. Another reason for using clouds is to ensure the reliability and survivability of
data stored in an off-site cloud. However, in present times, cloud service providers
do not provide any technical assurance for ensuring the privacy and integrity of
outsourced data. As cloud providers do not allow users to examine or observe their
inner workings, users have no idea where and how their data are being stored, and
whether the integrity of the data is preserved.

For very large-scale datasets, often clients or one-time users of such data sets do
not have the capability to download the data to their own systems and perform
computation on that data. A very common technique is to divide the system into
data providers (which has the data objects), computation providers (which provides
the code), and a computational platform (such as a MapReduce framework where
the code will be run on the data). But for datasets containing personal details, a big
challenge is to prevent unauthorized leaks of private information. MapReduce is
being used intensively for data mining applications on large-scale datasets.
However, a malicious mapper node has access to the granular data and it can leak
this data to violate the privacy of users.

Example: Let us assume that a researcher wants to perform an analysis on
the medical records of 1 million patients of a hospital. The hospital cannot release
the data to the researcher as patients’ privacy depends on the medical records,
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but the hospital can make the data accessible to a trusted third-party computational
platform, where the code supplied by the researcher (computation provider) is run
on the data, with the results being sent back to the researcher. However, this model
suffers from a vulnerability—if the researcher is malicious, he or she can write code
that will leak private information from the medical records directly through the
result data or via indirect means.

7.3.5 Access Control

Absence of proper access control mechanism in clouds can violate users’ pri-
vacy because it will allow unauthorized users to access huge amount of sensitive
information, stored in clouds. For medical and business records, a proper access
control mechanism is mandatory so that only the designated persons can access
their required information. Moreover, different kinds of data are stored in dif-
ferent layers of clouds, which need to be accessible to different stakeholders of
the system, such as, users, system administrators, forensic investigators, and
developers. System administrators need relevant information to troubleshoot the
system. Developers need the required logs to fix bugs of an application.
Forensic investigators need evidence that can help in their investigation. Hence,
there should be a proper access control mechanism, so that everybody can get
what they need exactly—nothing more, nothing less, and obviously, in a secure
way.

Additionally, access control in online social networking is crucial, where users
store personal information, such as photographs and videos. This information is
stored in the cloud platform and it is very important that only the authorized users
are given access to that information, because users often share the information with
selected other users within their network. Without strong access control mecha-
nisms, people outside the user’s network or with whom the user is not interested in
sharing his or her personal information can view and sell or distribute the confi-
dential information. Access control is also necessary when documents are stored in
clouds, for example, in Dropbox, and users want to share the documents with
certain individuals.

Example: Suppose a business organization uses a cloud-based storage service to
share and collaborate with the business documents between its employees. In the
organization, not all employees have the privilege of accessing confidential docu-
ments. If the access control of the cloud storage system is not secured, attackers can
exploit a vulnerability in the access control mechanism of the storage system to get
unauthorized access. Thus, a dishonest employee of the organization can steal some
confidential documents and sell those to a competitor organization.
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7.3.6 Secure Identity

Accessing cloud-based services, such as sending emails, sharing documents and
photographs, buying goods, and playing games require identity information to be
given by users to cloud service providers. A typical Internet user has to provide
some personal information to dozens of different websites and has left behind
personally identifiable information everywhere he or she has been. Designing a
privacy-aware identity system for cloud infrastructures is more challenging than for
traditional distributed systems. In [12], several properties have been mentioned that
are required for a privacy-aware identity service in clouds, such as: device inde-
pendency, enabling single sign-on to thousands of different online services,
allowing pseudonyms and multiple discrete but valid identities to protect user
privacy, interoperability, transparency, and auditability.

Example: In [12], the authors presented several case studies, where we require a
secure identity management system to protect the privacy of cloud users. People
need privacy protected credentials in their online activities, such as blogs, collab-
orative wikis, social networks, and so on. Users have to expose personal infor-
mation in online dating sites, hence users require strong assurances that their
information will be treated with respect and will be used only for the agreed-upon
purposes. Our cell phone preserves huge amounts of personal information, how-
ever, we frequently use cell phones for location-based services or as electronic
wallets for payments. With electronic wallets, it is possible that the cellular network
provider will know when, where, and how we are spending money. Additionally,
by tracking others’ electronic wallets, they could know who we are with.

7.3.7 Need for Accountability

Information accountability can ensure whether the data manipulation comply with
the privacy rules and regulations of an organization. Hence, privacy risk in cloud
computing can be reduced if cloud providers use a combination of privacy policies
and contractual terms to create accountability for transparent data handling. While
encryption can ensure confidentiality of outsourced data, ensuring accountability is
difficult. Most likely, the clients do not have a copy of data, so comparing the stored
version to the local copy is not a realistic assumption. A naive solution is to
download the data completely to determine whether it was stored without any
tampering. The naive solution might be suitable for small data, but for larger
datasets this will not be feasible for the network bandwidth costs, and computing
resources, available to clients. To resolve these challenges, researchers introduce
the notion of public auditability, where cloud users can rely on an external entity—a
trusted third-party auditor (TPA) to verify the integrity of the cloud content and to
make sure that CSPs are abided by the privacy policies. Due to the limitation of
computing resource and capability of users, they can assign a TPA to check the
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integrity of outsourced data when needed. However, introducing TPA brings new
challenges in the verification phase. Introducing TPA in the loop brings new threats
on the users’ privacy. While verifying the data integrity, TPA can leak users’
sensitive data.

Example: Provable Data Possession (PDP) first introduced public verifiability
[39]. The proposed scheme splits large data into small chunks of data blocks and
randomly verifies the blocks to prove data integrity. To verify the data stored in the
cloud, users need to periodically send challenges to the cloud provider for a small
and random set of blocks. After receiving a challenge request, the cloud provider
needs to compute the response by reading the actual file blocks. PDP ensures that if
the server has the actual file blocks, only then it will be able to respond correctly to
the challenge. However, PDP requires the linear combination of sampled blocks
exposed to external auditor, which may leak users’ data to a TPA [40].

7.3.8 Cloud Forensics

Besides being used by legitimate users, clouds can be misused for malicious pur-
poses. For example, an attacker can rent thousands of machines in a cloud for a
relatively cheap price, and then send spam or host temporary phishing sites, or
simply create a botnet to launch denial of service attacks. In [41], Chen et al.
discussed the threat of using clouds for running brute force, spam, or botnets.
Another malicious usage of clouds is password cracking. There are commercial
password cracking services, such as WPACracker.com, which utilizes the com-
putation power of cloud computing to crack WPA passwords in less than 20 min
using a rainbow table approach.

To investigate these types of criminal activities involving clouds, we need to
execute digital forensics procedures inside clouds, which is referred to as cloud
forensics. Cloud forensics is the application of digital forensic principles and
procedures in a cloud computing environment. Traditional digital forensics strate-
gies and practices often fail when a suspect uses cloud computing to launch an
attack. As an example, a suspect using a traditional file storage to store incrimi-
nating documents, would be easy to convict and prosecute—the law enforcement
investigators can make an image of the suspect’s hard drives and run forensic
analysis tools there, which does not violate the privacy of any other persons.
However, when the suspect stores the files in a cloud, many complications can
occur. As resources are shared in clouds, gathering evidence from cloud infra-
structures can violate the privacy of many other users, who are not related with the
crime.

Example: Suppose a suspected terrorist stored attack plans or instructions for
building a bomb in a cloud storage. Since the suspect did not have any files stored
locally, seizing and imaging his drives did not reveal any information other than the
suspect’s use of the cloud storage service. The law enforcement agency issued a
subpoena to the cloud provider and seized the storage devices from the data center
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of the cloud provider. However, this brings the privacy of other honest users into
question, because many other unrelated people would have their confidential data
stored in the same drives as the suspected user. Therefore, seizure or imaging of
such drives will compromise the privacy of many users of the cloud.

7.4 Current Solutions

This section provides existing solution approaches, which can ensure privacy of
cloud users from different perspectives.

7.4.1 Protection Against Exploiting Co-tenancy

The attacks from co-tenants described in [30] can be prevented by obfuscating the IP
address allocation scheme in Amazon AWS, because attackers can exploit this
knowledge to place their VM with targeted VMs. However, obfuscation cannot
resolve the key features of the attack on co-resident users. Solution approaches sug-
gested in [30] include using specially designed caches that will prevent cache-based
side channels and cache wiping schemes. Unfortunately, the specialized nature of the
cache hardware is not cost efficient to integrate with the existing cloud infrastructures.

7.4.2 Secure Architecture for the Cloud

One of the ways to ensure privacy is providing more control to users over their data.
Therefore, we need to design cloud computing architectures that are transparent and
provide clients with some accountability and control over privacy. To resolve this
issue, researchers have proposed architectures that provide privacy guarantees to the
users. There have been proposals in which part of the security decision and capa-
bilities are extended to the client’s domain [42]. In this approach, a virtual man-
agement infrastructure is used to control the cloud operations, and the clients are
allowed to have control over their own applications and virtual machines.

Santos et al. designed a secure cloud infrastructure by leveraging trusted plat-
form module or TPM chips to build a chain of trust [43]. They proposed a trusted
cloud computing platform (TCCP), which can ensure that the VM is running inside
a secured perimeter and protect the VM state against inspection or modification
when it is in transit on the network. Two modules comprise the system: a trusted
virtual machine monitor (TVMM), and a trusted coordinator (TC), which is hosted
by a trusted third party. In the node management step, a mutual trust is established
between nodes and the TC. Then before launching a VM or live VM migration,
trust is established between a VM and a node through the cloud manager (CM).
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There are several other research approaches for securing cloud architectures [44].
For example, Zhang et al. proposed hardening the hypervisor to enforce security
[45]. Excalibur [46] is another system that uses remote attestations and leverages
TPMs to ensure security of the cloud architecture.

By using hardware tokens, which are assumed to be trusted, cloud providers can
provide users with the functionality of performing arbitrary confidential and veri-
fiable computation in clouds. Function computation will be performed inside those
tokens, where data are stored in encrypted form outside the tokens and decryption
keys are stored in the tamper-proof tokens. Secure coprocessor is an example of
such hardware token, which is a tamper-proof programmable device and can be
attached to the cloud provider’s computer to perform sensitive operations [47].
However, users need to trust the hardware token’s manufacturer to keep the data
shielded from cloud providers. Hence, cloud providers need to support hardware
tokens from trusted third-party manufacturers or introduce the functionality of
attaching tokens in their infrastructure, which are provided by users.

7.4.3 Confidentiality of Data

Many users need to store sensitive data items in cloud infrastructures. For example,
healthcare and business data need extra protection mandated by many government
regulations. However, storing sensitive and confidential data in untrusted
third-party cloud providers exposes the data to malicious employees of cloud
providers or malicious external attackers, who have compromised the cloud. The
very basic approach to ensure data confidentiality is to encrypt data before sending
them to a cloud. Unfortunately, encryption comes at a cost—searching and sorting
encrypted data is expensive and reduces performance. A potential solution is to use
homomorphic encryption for computation on encrypted data in a cloud [48, 49].

The fully homomorphic encryption scheme proposed in [48], allows one to
compute arbitrary functions over encrypted data without the decryption key. A pure
homomorphic encryption scheme enables private queries to a search engine, that is,
the user submits an encrypted query and the search engine computes an encrypted
answer without knowing the query in the plain-text format. It also enables searching
on encrypted data. Therefore, homomorphic encryption will not allow a cloud
provider to read the data while performing computations on the data. A cloud
provider only receives ciphertext of the data and performs computations on the
ciphertext without knowing what data it has operated on and returns the encoded
value of the result to users. Only the user can decode the encrypted result. However,
pure homomorphic encryption schemes are very inefficient due to high latency.

Sadeghi et al. propose a homomorphic encryption scheme to minimize the
latency where the time between submitting a query and receiving response should
be as small as possible [49]. The proposed solution combines the trusted hardware
token with the secure function evaluation scheme to compute any functions on
encrypted data without leaking any confidential information.
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7.4.4 Privacy in Outsourced Computation

We need to perform outsourced computation using clouds while guaranteeing user
privacy [50]. For outsourced computation using clouds, a developer can write
malicious code to leak confidential data. To prevent such privacy violations,
researchers have proposed techniques that use the notion of differential privacy
(DP). A system is differentially private if every output is produced with similar
probability whether any given input is included or not. The Airavat framework [50]
modifies the MapReduce framework to incorporate DP, thereby preventing the
leakage of private information. The system allows computation with sensitive data,
for example, patient’s medical record, shopping transactions, and so on in an un-
trusted cloud environment. There are three entities involved in the system: (1) the
data provider, who stores data in the cloud with certain privacy parameters, (2) the
computation provider, who writes data mining algorithm and can be malicious, and
(3) the Airavat framework, which runs the computation and preserves the privacy of
the data provider. The Airavat is comprised of modified MapReduce frameworks,
DFS, JVM, and SELinux. The key idea is to confine the mappers to protect the
privacy of data providers. It combines the mandatory access control (MAC) and
DP. By using MAC, it prevents leaks through system resources and DP prevents
leaks through the output of the computation. To achieve the DP, the system adds
noise with the input to conceal the effect of an input on the output. The amount of
noise depends on the sensitivity of the input, that is, how much a single input
influences the output. However, the current state-of-the-art in this area is very
inefficient in terms of performance, often causing more than 30% in overheads for
privacy protection.

Sedic is another scheme that provides a privacy-aware computing facility for
large-scale datasets in the hybrid cloud environment [51]. The system utilizes the
special features of MapReduce to automatically split and schedule a data-intensive
computing job across the public and private cloud according to the security levels of
the data. The proposed system manages the MapReduce tasks in such a way that it
outsources as much workload to the public cloud as possible, given sensitive data
always stay on the private cloud. To preserve the data privacy, only the private
nodes should be responsible for reduction tasks. Sedic accomplishes this goal by
automatically transforming the reduction structure of a submitted job from the
public cloud before sending the result back to the private cloud for final reduction.

7.4.5 Access Control Mechanisms

A strong access control mechanism is necessary to ensure data privacy. Access
control mechanisms can be broadly classified into three categories: identity based
access control (IBAC), role based access Control (RBAC), and attribute based
access control (ABAC). However, IBAC is not feasible in clouds because the
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number of users in the cloud environment is too large to keep them in the access
control list (ACL) that contains the identity of authorized users. In RBAC, roles are
mapped to access permissions and users are mapped to appropriate roles. Therefore,
in RBAC, data access policy is applied to a group of users rather than each indi-
vidual person. Users are classified into different groups based on their individual
roles and only the user, who has the sufficient role can access data. The roles and
corresponding access policies are defined by the system administrator. In ABAC,
users are tagged with certain attributes, and the data has attached access policies.
Only the user with a valid set of attributes that satisfy the access policies, can access
the data.

In [52], a role-based encryption (RBE) scheme is integrated with RBAC to
ensure the privacy of the data, stored in a public cloud. In the RBE system, the
owner of the data encrypts the data in such a way that only the users, who have
appropriate roles according to a RBAC policy, can decrypt and view the data.
Therefore, even though the cloud provider stores data, it will not be able to see the
content of the data if the provider is not given the appropriate role. Based on the
RBE scheme, a hybrid cloud storage architecture (composition of public and private
cloud) is proposed. The hybrid architecture allows an organization to store the
encrypted data in a public cloud, while maintaining the sensitive information, such
as role hierarchy and user membership information in a private cloud.

Most of the existing works on ABAC-based access control mechanisms [53–55]
use a cryptographic primitive—Attribute Based Encryption (ABE) [56].
Using ABE, the records are encrypted under some access policies and stored in a
cloud. Users are given sets of attributes and corresponding keys. It is only when the
users have a matching set of attributes that they can decrypt the information stored
in the cloud. There are two classes of ABEs: Key-policy ABE (KP-ABE) [57] and
Ciphertext-policy ABE (CP-ABE) [58].

HABE is an another access control mechanism for clouds, which is based on
CP-ABE and hierarchical identity-based encryption. The proposed system provides
high performance, fine-grained control policy, scalability, and full delegation of
access controls [54]. In [55], a scheme for attribute revocation in an untrusted cloud
environment has been presented, which can be applicable for both CP-ABE and
KP-ABE. In the aforementioned works, the key distribution center (KDC) has been
considered as a single, centralized entity, which is a single point of failure.
Moreover, maintaining a centralized KDC is difficult in the cloud environment
because of the large number of users that are supported in clouds. An access control
scheme, which is based on decentralized KDC has been presented in [53]. This
scheme facilitates cloud providers to have many KDCs in different locations. The
scheme can also protect replay attacks, where a user can replace fresh data with the
data from a previous write, even if the data no longer has a valid claim policy.

Sticky policy is another access control mechanism that can help to ensure
accountable management and disclosure of confidential data in the cloud [59, 60].
This approach utilizes cryptographic mechanisms to strongly attach data access
policies and conditions with the data. Sticky policies are passed between organi-
zations to capture constraints about data access policy. The receiving parties must
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meet the attached conditions to access and use the associated personal data. In this
way, users can be provided with fine-grained control over access and usage of their
data within the cloud.

7.4.6 Privacy-Aware Identity Management

One of the major technologies that can enhance the privacy of cloud users is the
anonymous credential system. Anonymous credential systems allow a user to
obtain a credential from one organization and then later prove possession of this
credential to another organization without revealing any other personal information.
In this way, users do not need to provide their personal information on every new
website that requires a login. Anonymous credential systems also allow selective
disclosure of personal information by permitting the user to reveal some credential
attributes or prove that they satisfy some properties, such as zip code, while hiding
all the other credential attribute information. Idemix is an anonymous credentials
management system, developed by IBM [61], based on group signatures. U-Prove
is another system proposed by Microsoft, which is based on blind signatures and
the work of Stefan Brands [62]. Using such services, cloud users can anonymously
access various cloud services while revealing to the service provider only what is
strictly needed to check his or her rights.

In order to facilitate privacy-aware identity service a free digital identity tech-
nology, OpenID was developed by an open community [63]. OpenID simplifies the
online user experience by reducing the complexity of managing usernames and
passwords for each website that the users need to sign in to. It also provides users with
greater control over the personal information that they are required to share with
websites when they log in. OpenID enables individuals to convert one of their already
existing digital identifiers, such as their personal blog’sURL, into anOpenID account,
which can then be used as a log-in at any website supporting OpenID [12].

7.4.7 Privacy Preserving Evidence Collection

Forensics investigators should not violate the privacy of honest users, while collecting
evidence from the cloud environment to prosecute a criminal case involving clouds.
Analyzing various logs, such as process logs and network logs, plays a vital role in
determining the guilt or innocence of a suspect. At the same time, logs can reveal
confidential information about users’ activity. To resolve this problem, SecLaaS
stores virtual machines’ logs and provides access to forensic investigators while
ensuring the confidentiality of the cloud users [64]. For each running VM inside a
cloud host, SecLaaS first extracts various kinds of logs from the host machine, then
stores the data in a persistent log database. While storing the log data in a persistent
storage, SecLaaS proposes to encrypt the sensitive information, for example, user ID,
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destination IP address for network logs, by using a common public key of all the
investigation agencies. This will protect log information from malicious cloud
employeeswho have access to the persistent storage. After saving a log entry in the log
database, the system stores the proof of a log entry in a proof database. The proof of the
logs, proposed here is generated using accumulator function, which ensures that
adversaries cannot recover any log from the proof of logs.

Proof of past data possession (PPDP) is another scheme to provide evidence to
forensics investigators while preserving users’ privacy [65]. This is a continuous
synchronization policy to prevent the loss of evidence after terminating the VMs
running inside clouds. PPDP preserves the proof of data possession but without
preserving the data itself. The proposed system preserves the proof of data pos-
session using Bloom Filter [66]. Because of the one-way hash functions used in
Bloom filter, it is not possible for an adversary to know about the data or to change
history of data from the PPDP.

7.4.8 Privacy-Aware Public Verifiability

As we discussed in Sect. 7.3, introducing public verifiability by third-party auditor
(TPA) can bring new threats to users’ privacy. We need to make sure that intro-
ducing TPA should not bring new vulnerabilities in users’ privacy.

Shah et al. proposed a solution that allows auditors to verify the integrity of
outsourced data, while preserving users’ privacy [67]. The proposed system
encrypts data to hide it from the TPA, and stores both the encrypted data and key in
the cloud storage. To check data integrity, the system uses a challenge-response
protocol in which the cloud storage server can respond correctly only if both the
encrypted data and keys are preserved without any alteration. Privacy is preserved
by sending a number of pre-computed symmetric-keyed hashes over the encrypted
data to the TPA. The auditor verifies both the integrity of the data file and the
server’s possession of a previously committed decryption key. However, this
scheme only works for encrypted files, which may introduce burden to users when
the keyed hashes are used up. Another method for a privacy-preserving TPA-based
auditing system has been proposed in [40]. Similar to the previous approaches of
auditability, the proposed system utilizes the public key-based homomorphic
authenticator. However, by integrating the homomorphic authenticator with random
masking, the system ensures that TPA cannot learn about the data content stored in
the cloud server during the auditing process.

7.5 Challenges and Opportunities

Many open problems remain in the area cloud privacy. In this section, we discuss a
few of these problems and the associated challenges.
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7.5.1 Detachment from Reality

One of the major limitations of existing research on cloud privacy is the failure to
look at reality. Many of the schemes that can ensure privacy in the cloud impose
unrealistic overheads. In practice, users are not interested in using a system that has
such an amount of overhead. Another issue facing current research efforts is the
failure to consider economy. Many privacy schemes would cause significant
changes to existing cloud infrastructures, which are not economically feasible.
Finally, numerous attacks are based on flawed or impractical threat models and
simply do not make any economic sense. For example, in most cases, a
multi-billion dollar cloud service provider has little incentive to act dishonestly, but
many solutions are designed with a cloud provider as the main adversary.
Designing a realistic and practical threat model for privacy in cloud computing is
vital for creating solutions to real-life problems.

7.5.2 Regulatory Compliance

We have observed a significant amount of research works, which have been con-
ducted on many areas of cloud security involving data confidentiality, integrity, and
privacy. However, very little research has been done in the area of regulatory
compliance [6]. As we discussed previously, sensitive data such as patient medical
records and business information are highly regulated through government regu-
lations worldwide. For example, in the United States, the Sarbanes-Oxley Act
regulates the confidentiality of financial data, whereas the HIPAA regulates the
confidentiality of patients’ medical information. Such regulations require strict
integrity and confidentiality guarantees for sensitive information. Though there
have been extensive research efforts for compliance with these regulations in local
storage systems, it is not very clear whether any cloud-based system actually does
comply with the regulations, given the fundamental nature and architecture of
clouds. The proposed solutions, which ensure accountability and confidentiality in
clouds, do not consider the regulatory policies while designing the solutions.
Hence, there is a research opportunity for security experts to design a privacy
preserving regulatory compliant cloud.

7.5.3 Legal Issues

Another major challenge of ensuring privacy in clouds is related to the jurisdiction
of data, because in many cases, clouds span the whole world. For example,
Amazon’s clouds are located in North and South Americas, Europe, and Asia. It is
not very clear whether a client’s data should comply with the European Union
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privacy regulations if the subject is based in the United States, but those data are
replicated in one of Amazon’s data centers located in Europe. The existing Service
Level Agreements (SLAs) between cloud providers and consumers do not clarify
this issue. There is a need for global unity to overcome the challenges of the
multi-jurisdictional issue.

7.6 Conclusion

Cloud computing has major implications for the privacy of personal information as
well as for the confidentiality of business and governmental information. Cloud
computing represents the massive changes occurring in our data processing and
computational infrastructures. With their significant benefits in terms of greater
flexibility, performance, and scalability, clouds are here to stay. However, as many
of our everyday computing services have been moved to the cloud, we do need to
ensure that the data and computation will be remain confidential and trustworthy.
The global dimension of cloud computing requires appropriate methodologies and
technical solutions to enable different stakeholders in clouds to assess privacy risks
and establish adequate protection levels.

In this chapter, we have outlined the major research questions and challenges in
cloud privacy to identify privacy and confidentiality issues that may be of interest or
concern to cloud computing participants. The fundamental natures of clouds
introduce new privacy challenges. Today’s clouds are not secure, accountable, or
trustworthy. Many open problems need to be resolved before major users will adopt
cloud computing for sensitive data and computations. For wider adoption of cloud
computing in critical areas, such as business and healthcare, it is vital to solve these
problems. Solving the privacy issues will bring more cloud consumers, which in
turn will lower costs and have a broader impact on our society as a whole.
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Chapter 8
Privacy in Vehicular Ad Hoc Networks

Jetzabel M. Serna-Olvera, Roberto A. Morales Pacheco,
Javier Parra-Arnau, David Rebollo-Monedero and Jordi Forné

8.1 Introduction

Road traffic injuries are currently the ninth leading cause of death in the world,
killing nearly 1.3 million people annually. Unless effective actions are taken, road
accidents are predicted to become the fifth leading cause of death by 2030 [1].
Intelligent transportation systems (ITS) [2] aim to provide innovative services that
will potentially benefit traffic management. As the technical basis of ITS, Vehicular
Ad hoc NETworks (VANETs) offer the possibility of significant improvements, and
enable a wide range of safety and infotainment applications.
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VANETs consist of communication vehicles equipped with on-board units
(OBUs), and are able to communicate to the infrastructure, represented by road side
units (RSUs). VANETs are intended not only to drastically reduce the number of
road fatalities, but will also be capable of providing value added services in order to
enhance drivers’ comfort. Thus, in VANETs, the information exchanged plays an
important role. In particular, for safety-related applications, where exchanged
information is considered critical. If such information was manipulated by an
attacker, this might endanger drivers’ lives. Consequently, implementing security
measures is of the utmost importance for VANETs to become a reality.

To be able to prevent a wide range of security attacks and establish secure
communication channels, the adoption of public key infrastructure
(PKI) technology has been considered [2]. Nevertheless, the sole use of PKI is
insufficient to protect user privacy in vehicular networks.

Nowadays, people are increasingly concerned about their privacy. For the suc-
cessful deployment of VANETs technology, communications within these net-
works should avoid any leakage of personal, sensitive data. Among the potential
privacy risks of such networks are the linkage of an individual to an identifier,
tracking a specific node, and profiling user behavior on the basis of location data.
Especially in ad hoc networks, users may be reticent to place their trust in inter-
mediaries such as anonymizing proxies [3] and mix networks [4, 5].
Privacy-enhancing technologies relying on user collaboration avoid the need for
these trusted third parties (TTPs). On the other hand, it is fundamental that the
anonymity-enforcing mechanisms implemented are aware of their impact on net-
work performance that translates into quality of user experience.

This chapter is organized as follows. Section 8.2 introduces the main charac-
teristics of VANETs. Fundamental privacy issues and requirements to be addressed
for the successful deployment of VANETs are presented in Sect. 8.3. Section 8.4
gives an overview of promising approaches aimed at protecting users and vehicles
privacy in VANETs’ communications. Section 8.5 highlights that, despite the
various promising privacy approaches, there remain important challenges that
should be analyzed in future research. Finally, the main conclusions derived from
this research are pointed out in Sect. 8.6.

8.2 VANETs

VANETs are a subgroup, and one of the most relevant representations of Mobile
Ad hoc NETworks (MANETs). VANETs consist of two types of nodes: mobile and
fixed nodes. The former are represented by vehicles and are equipped with OBUs.
These vehicles communicate with the latter nodes, which constitute the VANET
infrastructure and are represented mainly by RSUs located along the roads.
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8.2.1 Communication Model

In the coming years it is envisioned that 40 % of all vehicular components will be
equipped with processing, recording, and communication features [6]. This will
make them capable of processing and storing a great amount of information
(Fig. 8.1).

The communication between mobile nodes and fixed nodes is commonly clas-
sified as vehicle-to-vehicle (v2v) and vehicle-to-infrastructure (v2i) (Fig. 8.2).
According to the dedicated short range communications (DSRC) standard [7],
VANETs will be capable of communicating at data rates from 6 to 27 Mbps, and at
a maximum transmission range of 1,000 m, thus, enabling nodes to exchange all
kinds of application-related information.

Fig. 8.1 Smart vehicle

Fig. 8.2 Vehicle-to-vehicle and vehicle-to-infrastructure communication
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8.2.2 Projects and Organizations

At present, the networking community is putting significant effort into investigating
inter-vehicle communications (IVC). The areas of current research range from the
low layer protocols design, to the implementation of a wide range of applications
and mechanisms for the effective deployment of VANETs. The development of
these vehicular communication systems is driven by a number of national and
international activities [8]. Examples include the Car-to-Car Communication
Consortium (C2C-CC) [9] and the Cooperative Vehicles and Infrastructure Systems
(CVIS) [10] sponsored by the European Union. Several research projects have been
also developed in Europe during the last years. These projects include: SEVECOM
[11], focused on providing a full definition and implementation of security
requirements for vehicular communications; EVITA [12], aimed at designing
security relevant components in order to protect sensitive data from being com-
promised in vehicular communications; PRESERVE [13], focused on providing the
basis for the secure and privacy aware deployment of vehicular communications;
and, among others, PRECIOSA [14], focused on privacy protection technologies
for vehicular safety applications. Two important initiatives from the United States
are the California Partners of Advanced Transit and Highways [15] and the Vehicle
Safety Consortium (VSC) [16]. These organizations focus on building high per-
formance architectures and extracting application specific functionality to be inte-
grated into VANET systems (i.e., application specific packet routing).

8.2.3 VANETs’ Features

As a subgroup of MANETs, VANETs share similar characteristics with other ad
hoc networks [17]. These latter networks, however, have some distinctive features
that can positively influence the deployment of several applications, and represent
an interesting challenge that must be carefully considered when designing any
architectural solution. In the following, these particularities will be briefly
described.

• Dynamic topology. Compared to conventional MANETs, nodes in VANETs
could be easily distinguished by their variable and high speeds, together with the
different trajectories that nodes are able to follow; communication links among
them can only be established in a temporary fashion, resulting in continuous
topology changes, that is, the longer that vehicles are within communication
range (e.g., vehicles following similar trajectories), the longer a particular
topology is maintained.

• Mobility models. Despite the high mobility that is inherent to a VANET sys-
tem, nodes’ mobility is bounded in speed and space. The speed of vehicles is
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usually constrained by (1) traffic lights, (2) routes intersections, (3) the speed of
other vehicles, and (4) speed limits set in urban traffic areas (e.g., residential,
educational, etc.). Meanwhile, the space is bounded due to the fact that vehicles
travel along pre-established trajectories (roads).

• Geolocalization capabilities. Vehicles integrated with positioning devices such
as Global Positioning System (GPS) receivers, along with other communication
capabilities, enable a potential range of location-based applications.

• Low latency requirements. Due to the dynamicity of the environment, and the
delay constraints introduced by safety applications, the information exchanged
among vehicles in VANETs is extremely time-sensitive (e.g., warn vehicles of
road conditions).

• Energy supply. In VANETs, resource constraints could be neglected, as a
running vehicle is able to provide sufficient battery power and, consequently, it
may have more computational power resources. This feature is quite an
important advantage for certain computational intensive tasks related to security
(i.e., cryptography).

• Communication scenarios. Communication in VANETs might be strongly
dependent on the scenario [18]. Current research identifies two main scenarios:
(1) highways, where vehicles travel at different speeds and unidirectional
movement patterns can be observed and (2) urban scenarios, where environ-
mental elements play a fundamental role, making v2v communications more
complex.

The most challenging features inherent to a VANET system include the dynamic
topology and the mobility models (vehicles moving at a variable and high speed
and following different trajectories). On the other hand, thanks to the vehicle’s
geo-localization functionality and its “infinite” energy supply, VANETs are an
enabler for a wide set of potential applications (further discussed in Sect. 8.2.4).

8.2.4 Applications

In VANET v2v and v2i communications, communicating nodes consist of vehicles
equipped with OBUs communicating and fixed communication units along the road
(either vehicles or RSUs). VANETs’ communications are aimed at exchanging
information about traffic issues, road conditions, and added value information.
Thus, they allow the deployment of a wide range of applications. Potential appli-
cations for VANETs can be classified based on the scenario, the security objectives,
and the target itself. However, for simplicity, in this chapter a common classifi-
cation proposed by the authors in [19, 20], has been adopted:

• Warning refers to applications aimed to detect risky situations, such as, the
propagation of alerts in case of accidents. Vehicles exchanging messages to
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inform each other about special events and dangers on the road, for example,
alarm signals from emergency vehicles in action. This is done by sending
current position, time, destination, and other related information, in order for
other vehicles to understand that they could or must clear the way for the
emergency vehicle.

• Traffic management is a safety-related application where messages are primarily
exchanged to inform about traffic congestion and road conditions in a given
region with the main purpose of optimizing traffic. Clearly, this may enhance
road safety at the same time, preventing potential accidents due to congestion.

• Added value applies to applications aimed at providing a wide range of services,
such as, payment services, location-based services (e.g., finding the closest
hotel, restaurant, etc.), and infotainment (e.g., Internet access to offer e-mail,
web browsing, video streaming, etc.).

As can be inferred by the aforementioned applications, VANETs will be capable
of offering a wide range of valuable services. However, along with the rise of
VANETs, some security issues have also emerged and will be discussed in
Sect. 8.2.5.

8.2.5 Security Issues

Similar to other conventional MANETs, VANETs can also be vulnerable to a set of
security attacks, which have been analyzed to a certain extent by [6, 20–22]. In the
following subsections, security attacks, attackers, and their corresponding security
requirements in VANETs [23] are described.

8.2.5.1 Types of Attacks

• Identification and authentication. An active, rational, and insider attacker
pretending to be one or multiple different entities could achieve an imperson-
ation attack by claiming to be an authorized entity such as an emergency vehicle
and propagate wrong information in the network, for example, sending false
information to alter traffic flow, slowing it down, or getting a vehicle-free road.
Similarly, a vehicle could pretend to be multiple entities reporting a false bot-
tleneck to achieve the same purpose. Finally, simple use of fictitious identities
could lead to evasion of responsibility and legal obligation in case of an
accident.

• Confidentiality. An attacker represented by a vehicle or by a false RSU could
get illegal access to confidential information, or a passive attacker might
eavesdrop on the communication and gather information on services requested
by a vehicle.
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• Non-repudiation. Achieved mainly by rational attackers colluding to share the
same credentials.

• Availability. Denial of service attacks are commonly carried out by active
malicious attackers willing to bring down the network. These attacks include
channel jamming and aggressive injection of dummy messages.

• Data trust. Sending inaccurate data (malicious data attack) affects message
reliability. This type of attack is usually performed by rational active attackers.

8.2.5.2 Types of Attackers

Attackers can be classified according to a wide range of aspects, including location,
motivation, power, capabilities, and so on. Identifying a type of attacker facilitates
considerably the study of their capacities, possible attacks, and, consequently, the
damage that could be caused. The authors in [24] presented a general classification:

• Insider is an authenticated member of the network
• Outsider is considered by the other members of the network as an intruder.
• Malicious is an attacker that seeks no personal benefits from the attacks and

aims to harm.
• Rational seeks personal profit and hence is more predictable.
• Active can generate packets or signals.
• Passive is content with eavesdropping on the wireless channel.

8.2.5.3 Security Requirements

The successful deployment and public acceptance of vehicular-network technolo-
gies will only become a reality if security systems can prevent any generic attack.
On vehicular networks, the system should use a secure and trusted communication
infrastructure able to satisfy the following set of requirements [8, 24, 25]:

• Authentication. The authentication of the sender’s messages is needed to keep
outsiders from injecting messages as well as misbehaving insiders.

• Integrity. All messages should be protected to prevent attackers from altering
them, or, in the worst-case scenario, to detect its modification.

• Confidentiality. There are applications that require that only the sender and the
intended receiver can access the content of a message.

• Access control. Vehicles and applications need fine-grained access rights.
Sensitive information stored in vehicles should only be available to authorized
parties.

• Availability. Transmitted messages must reach all necessary recipients despite
the VANET’s status.
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• Non-repudiation. A vehicle sending a message should not be able to deny its
transmission. In particular, in cases of liability or node’s misbehavior, the
system should be able to prosecute misuse.

In summary, since, in VANETs, access is granted by default, to be able to
prevent any generic attack, the system should rely on a secure and trusted com-
munication infrastructure. Such infrastructure must be able to satisfy the set of
security requirements just introduced. An important challenge is to find the proper
techniques, and architectural solutions capable of enforcing security, but, without
disregarding the privacy requirements that are inherent to VANETs’ users and
applications. The importance of privacy implications, and the privacy requirements
in VANETs, will be further discussed in Sect. 8.3.

8.3 Privacy in VANETs

A general and basic principle in VANETs and any communication network is that
the information going through those networks should only be disclosed to autho-
rized parties. The nature of vehicular networks facilitates the collection of a range of
private data, especially location data, which may compromise user privacy [26].
Once privacy is lost it is very difficult to re-establish that state of personal rights and
the trust that people had placed on this technology [25]. On one hand, strong
security mechanisms are needed to protect applications and users from potential
security attackers. On the other hand, the protection of user’s private information
(not limited to identity) should also be guaranteed. It is also worth mentioning that
privacy protection is made mandatory by laws in many developed countries.
A discussion of specific issues related to identity and privacy enhancing technol-
ogies for vehicular communications can be found in [26, 27]. Next, we classify
privacy in VANETs according to different perspectives.

8.3.1 Identity Privacy

Identity privacy in VANETs refers to linking an identifier to a user/vehicle (ID
disclosure). An attacker overhearing the communications, will be able to distinguish
which identifier belongs to which vehicle, and consequently to which driver.
Linking an ID to a user will afterwards allow an attacker to blackmail a driver if
collected data contains compromising information. This attack could be achieved
by an attacker RSU or a vehicle on a parking lot passively overhearing the
communications.
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8.3.2 Location Privacy

According to [28], location privacy refers to “the ability to prevent others from
learning one’s current or past location.” In a VANET scenario, this includes current
and past positions, speeds, and traveling routes, leading to the automatic monitoring
of trajectories. An attacker able to identify vehicles’ mobility patterns could also
identify working and home addresses as well as points of interest (POIs).

8.3.3 Data Privacy

VANETs are expected to be able to store a lot of information including personal
data; drivers should then be able to keep and control their personal and vehicle
related information (e.g., license plate and driver’s identifiable information). Such
information should only be disclosed in cases of liability and to authorized parties.

Data privacy can also be considered by means of user/vehicle activities,
including services being requested, which ultimately leads to user profiling. The
frequent exchange of messages containing sensitive data [29], such as online
activity, trip details, vehicle identification, and e-payment information among others
pose serious privacy concerns, as attackers can potentially overhear messages and
misuse the information they contain.

8.3.4 Privacy Requirements

The privacy of drivers should be protected, it should not be possible to automati-
cally obtain private information about drivers or vehicle’s behavior and activities,
linking the activities (services requested and location) to and identifier and an
identifier to a person. Thus, any privacy solution should consider the following
requirements.

• Anonymity. In order to prevent the big brother scenario, linking an identifier to
a user/vehicle should be avoided by providing anonymous communication.
Anonymous communication is usually linked to the use of pseudonyms.
Communicating nodes exchange messages using pseudo-identifiers instead of
real identifiers (as shown in Fig. 8.3). Even though, from the driver’s point of
view, achieving perfect anonymity would be preferred. However, there are
different cases where the system should be able to establish driver’s liability.
Therefore, a privacy requirement in VANETs would be conditional anonymity,
meaning that the identity of a driver could only be disclosed by liability
authorized parties.
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• Unlinkability. Another basic privacy requirement is that two different messages
sent by the same vehicle cannot be linked. In other words, an observer should
not be able to distinguish whether two different messages were originated by a
same vehicle (as shown in Fig. 8.4). Similarly, the observer should not be able
to link such messages to the vehicle and so to its driver. Note that this
requirement is not fully compliant to the security requirements needed to pre-
vent a sybil attack, where a single vehicle (malicious OBU) might impersonate
multiple vehicles.

John Peter Anna

? ? ?

Fig. 8.3 Anonymous
communications through
pseudonymity in VANETs

? ? ?Fig. 8.4 Unlinkability in
VANETs communications
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8.4 Privacy Approaches

The importance of privacy preservation in VANETs, related to the public accep-
tance of VANET’s technology, has been highlighted by different authors in [26,
30]. Specifically, the authors of [26, 30] have presented an extensive study on the
privacy risks posed by vehicular networks. In particular, it has been stressed that the
sole use of PKI schemes is not enough to preserve user privacy. The fundamental
reason is that digital certificates include information regarding the node’s identity.

An alternative approach is to hide the ID of the sending vehicles in order to
prevent eavesdroppers from linking a message to an identifier. However, most of
the potential applications require unique identifiers. Thus, different approaches
based on the use of pseudonyms have been proposed. This section first investigates
this particular approach and afterwards examines group-signature schemes,
identity-based cryptographic methods, approaches based on user collaboration, and
data-perturbative mechanisms.

8.4.1 Pseudonymity

Pseudonyms [31] are identifiers used by subjects to avoid the use of real infor-
mation (e.g., no information about the vehicle of the driver such as name, driver
license, or vehicle identification numbers (VINs), it simply identifies the vehicular
node.

In VANETs, pseudonymity has been proposed to achieve privacy through
anonymity, and it refers to the use of digital pseudonyms as IDs, assuming that each
pseudonym refers to exactly one holder.

As aforementioned, communications in a VANET provide information about
location and each message has a timestamp associated. An attacker overhearing the
communications for long periods will be able to automatically collect the
exchanged messages and correlate pseudonyms with the corresponding locations
and timestamps. Having collected this information will enable the attacker to relate
pseudonyms to specific vehicles or individuals by identifying mobility patterns and
learn about working addresses or POIs. To address this issue, current
state-of-the-art solutions have proposed the use of multiple pseudonyms and the
corresponding algorithms to change them, in particular addressing a vehicle’s
location privacy.

Location privacy in pervasive environments was first introduced by [28]. The
cited work defined the concept of mix-zones for a group of users connected in a
spatial region. The authors assumed that, within this region, users will change to a
new and unused pseudonym. In [26], the authors have explored the concept of
short-term certificates by proposing a centrally assigned pseudonym system. They
proposed a system where the nodes of the VANET changed their pseudonyms in a
certain region (mix-zone) pointed out by the system. Such a region is defined when
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a large number of vehicles are within communication range. The main drawback of
this approach is that it requires a large number of vehicles changing pseudonyms
within the specified region.

Contrary to the centralized concept, in [32] the authors propose self-assigned
digital pseudonyms. They suggest the use of the following measures while
changing them: (1) synchronization of pseudonym change, (2) introduction of gaps
(silent periods) and (3) the mix-zone concept, that is changing pseudonyms when
several nodes are near (i.e., within the region or communication range). A similar
approach has also been considered in [30]. Here, the authors combine the concept
of mix-contexts with the change of pseudonyms, and find the appropriate context to
replace them. In particular, they propose to protect the use of centralized mapping
by means of laws and techniques such as a distributed mapping. Authors of
CARAVAN project [33], also introduced a random silent period in order to hamper
the linkability between pseudonyms. An improvement of mix-contexts has been
proposed by the authors in [34], considering anonymity over randomly changing
pseudonyms in certain intervals.

In [35], the authors proposed a system to balance auditability and privacy in
VANETs based on symmetric cryptographic primitives and two different types of
pseudonyms (short and long term). A study of practicability in pseudonymity
deployment and implementation is done in [36]. The cited work concludes that
potential solutions could be based on a hybrid approach, basically represented as
the combination of the existing pseudonymity algorithms. Finally, [37] proposed a
synchronous pseudonym change algorithm, this approach takes into account
vehicular status information and, according to the authors, it is more effective than
those based on the mix-zones concept.

8.4.2 Group Signature

The idea of group signatures emerged as an alternative to traditional PKI approa-
ches, firstly to reduce the number of exchanged keys in VANETs, and secondly to
provide anonymization.

In a basic group signature scheme [38] participants are identified as follows:

• Group leader. A trusted entity (vehicle or RSU) responsible for managing the
group, that is, initializing and handling joins and leaves (revocations). In cases
of liability, the group leader is also responsible for de-anonymizing a signature.

• Group members. Vehicle representing current set of authorized signers. Each
vehicle has a unique private key allowing it to sign on behalf of the group and a
group public key.

In [39] the authors proposed a solution based on group signature, which enabled
vehicle OBUs to generate and certify their own pseudonyms. The group leader is
the entity responsible for setting the group parameters, changing group public keys,
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and revoking anonymity in cases of liability. Generally, the group leader could be
represented by a vehicle and not necessarily by a trusted third party.

Yet, a number of group signature schemes varying in assumptions, complexity,
and features have been proposed. Authors in [40] introduced a group signature
approach that also implemented role based access control (RBAC). In this
approach, vehicles were able to sign messages on behalf of the group and, therefore,
achieve conditional anonymity. Similar to [39], anonymization could only be
reversed by the group leader.

Although an interesting proposal, the group establishment is still an open
challenge. If it is handled in a static way, vehicles need to be pre-loaded with the
corresponding group keys. Thus, for vehicles traveling to different domains (geo-
graphical regions), they must have in advance the keys of all the groups belonging
to those regions, which in practice is unfeasible.

A similar concept was presented in [41], where the authors introduced a
group-based approach in which vehicles owned group signing keys issued by a
“trusted” group leader. Note that the election of group leader will sometimes
encounter difficulties since a trusted entity cannot be found among communicating
nodes.

A hybrid approach has been presented in [42], as an alternative to the afore-
mentioned proposals. This proposal consists of a combination of group-based and
identity-based signatures. The former has been proposed for authentication among
private vehicles and the latter for public vehicles and RSUs.

To overcome the trust issues that originated due to the group leader being a
regular vehicle, in [43] the authors present a new group-based certificate solution.
The main difference among other group-based solutions is that group certificates are
issued by the RSUs (assumed to be trusted by following a top authority approach).
However, note that RSUs are also considered vulnerable to different security attacks
and, therefore, can not be completely trusted.

Nevertheless, the main drawbacks of group-based approaches include: (1) vehi-
cles must trust a group leader that is responsible for issuing the corresponding
signing keys, (2) due to the speed and trajectories of vehicles, group members
should be considered volatile rather than permanent and, therefore, using a regular
vehicle as a group leader might compromise the communications availability, and
finally, (3) a large number of members in a group could increase the computational
complexity, the total number of exchanged messages, and thus severely impact the
overall system performance.

8.4.3 Identity-Based Cryptography

Non-PKI approaches have mostly focused on identity-based cryptography (IBC).
The concept of IBC was introduced by [44] to ease the deployment of the PKI by
simplifying the management of a large number of public keys. However, IBC is
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based on an underlying public key cryptosystem and the issuance and utilization
processes are very similar to those used in a traditional PKI domain.

In IBC systems the public key of an entity is derive from its identity information,
avoiding the use of certificates for public key verification as in traditional PKI
systems. For signature verification the identifier of the sender is needed.

In VANETs, this idea was first adopted by [41], which proposed IBC together
with group-based signatures (as discussed earlier). In this line, other approaches
such as [45, 46] aimed at enhancing privacy protection and improving computation
and communication efficiency.

8.4.4 User Collaboration

In this subsection we examine those approaches where users collaborate to enhance
their privacy.

An archetypical example of user collaboration is the Crowds protocol [47]. In
the Crowds protocol, a group of users collaborate to submit their messages to a web
server, from whose standpoint they wish to remain completely anonymous. In
simple terms, the protocol works as follows. When sending a message, a user flips a
biased coin to decide whether to submit it directly to the recipient or to send it to
another user, who will then repeat the randomized decision.

Crowds provides anonymity from the perspective of not only the final recipient,
but also the intermediate nodes. Consequently, trust assumptions are essentially
limited to fulfillment of the protocol. The original proposal suggests adding an
initial forwarding step, which substantially increases the uncertainty of the first
sender from the point of view of the final receiver, at the cost of an additional
hop. As in most anonymous communication systems, Crowds enhances user ano-
nymity but at the expense of traffic overhead and delay.

Closely inspired by Crowds, [48] proposes a protocol that enables users to report
traffic violations anonymously in VANETs. This protocol differs from the original
Crowds in that, first, it does take into account transmission losses, and, secondly, it
is specifically conceived for multi-hop vehicular networks, rather than for wired
networks. Experimental results show the effectiveness of this probabilistic protocol
in terms of anonymity, when users are disposed to sacrifice quality of service.

Another protocol for privacy enhancement, also relying on user collaboration
and message forwarding, is [49]. The objective is to hide the relationship between
user identities and query contents even from the intended recipient, an information
provider. The main difference with respect to the Crowds protocol is that instead of
resorting to probabilistic routing with uncertain path length, it proposes adding a
few forged queries.

In location-based services, users submit queries along with the location to which
these queries refer. An example would be the query “Where is the nearest car
parking?”, together with the geographic coordinates of the user’s current location.
In this scenario, [50] proposes a P2P spatial cloaking algorithm whereby users send
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their queries to an untrusted LBS provider without disclosing their precise location.
The authors propose using the k-anonymity requirement [51, 52], a popular privacy
criterion from the field of statistical disclosure control [53]. Accordingly, when a
user wishes to submit a query to the provider, first they must find a group of k � 1
neighboring peers willing to collaborate. Once the group is formed, the originator of
the query computes a geographical region including all users belonging to the
group. After that, the user in question selects uniformly at random one of the
members of the group. Ultimately, the originator sends both the query and the
coordinates of that region to the selected user, which in turn is responsible for
forwarding this information to the LBS provider on their behalf.

8.4.5 Data Perturbation

An approach to hinder an attacker in its efforts to compromise users’ privacy
consists in perturbing the information disclosed when communicating with the
networking infrastructure or neighboring vehicles. The submission of false data,
together with the user’s genuine data, is an example of a data-perturbative mech-
anism. In these mechanisms, the perturbation takes place on the user’s vehicle. This
implies that users need not trust any external entity such as the communications
infrastructure or RSUs. Data-perturbative techniques, however, come at the cost of
system functionality and data utility, which poses a trade-off between these aspects
and privacy protection.

An interesting approach to provide a distorted version of a user’s profile of
interests is query forgery. The underlying idea boils down to accompanying original
queries or query keywords with bogus ones. By adopting this data-perturbative
strategy, users prevent privacy attackers from profiling them accurately based on
their queries. This is without having to trust neither the service provider nor the
network operator, but clearly at the cost of traffic overhead. In other words, inherent
to query forgery is the existence of a trade-off between privacy and additional
traffic. Precisely, [54] studies how to optimize the introduction of forged queries in
the setting of information retrieval.

Alternative solutions relying on the principle of query forgery are [55–60],
which propose a system for private web browsing called PRAW. The purpose of
this system is to preserve the privacy of a group of users sharing an access point to
the Web while surfing the Internet. In order to enhance user privacy, the authors
propose hiding the actual user profile by generating fake transactions, that is,
accesses to a web page to hinder eavesdroppers in their efforts to profile the
group. The PRAW system assumes that users are identified, that is, they are logged
into a web site. However, the generation of false transactions prevents privacy
attackers from the exact inference of user profiles.

Certainly, data perturbation may also be carried out by means of suppression.
That is, users may be reluctant to disclose certain sensitive information such as
location data and, consequently, they may wish not to send those data to the
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infrastructure or their neighboring peers. This suppression strategy has been
investigated in the context of semantic web applications [61] and collaborative
tagging systems [62]. Also, it has been studied in combination with the submission
of false information for privacy enhancement in recommendation systems [63].

8.5 Challenges and Opportunities

Vehicular communications are aimed at reducing the number of traffic accidents by
providing early emergency warnings. As long as the exchanged messages are
trustworthy, they can greatly improve the overall road safety. A compromised
VANET may disrupt the whole technology’s applicability causing life-threatening
situations (i.e., false warnings that could result in road accidents). Thus, any
VANET solution must be designed to ensure that the transmission comes from a
trusted source and has not been tampered with since it was transmitted.
Furthermore, vehicular communications should not become a weak link in terms of
privacy. Compromising the driver’s privacy will limit the user acceptance of this
technology.

In VANET’s, many research efforts have introduced anonymity through the use
of pseudonyms in order to protect privacy of vehicles and users. However, the use
of a single pseudonym might lead an attacker to link users and vehicles’ actions to a
pseudonym, and a pseudonym to an ID. Consequently, most of the research pro-
posals have focused on algorithms for pseudonym change.

Changing pseudonyms more frequently may provide a higher degree of privacy.
However, the higher the frequency of pseudonym change, the larger the cost that
the pseudonym-changing mechanism induces on the VANET. Just the management
of cryptographic materials represents a real challenge, that is, the generation,
delivery, storage, and verification of a wide number of keys and certificates related
to the pseudonyms (private keys in the case of IBC solutions).

Certificate revocation has also been identified as one of these important issues
for pseudonym implementations. Apart from the large number of certificates to be
issued for a single vehicle, the need for “fresh” revocation information requires
implementing additional mechanisms.

In summary, most of the proposed solutions are ineffective. Changing pseud-
onyms in a more efficient form is still needed. In addition, other privacy-related
issues that pseudonym-based approaches do not address must be taken into
consideration.

Pseudonym-based implementations cannot prevent the automatic collection of
information, allowing an attacker to keep track of vehicles between pseudonym
changes. As it has been extensively discussed in [64, 65], statistical models of the
traffic in a given geographical area allow the tracking of vehicles despite frequent
pseudonym changing and despite the potentially limited observational capabilities
of an attacker. An example that illustrates why pseudonyms are insufficient to
guarantee both anonymity and privacy is described next. Suppose that an observer
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has access to certain behavioral patterns of online activity associated with a
vehicle/user, who occasionally discloses information that can be link to their ID,
possibly during interactions not involving sensitive data, or in cases were there
aren’t many vehicles exchanging messages within the area. The same user/vehicle
could attempt to hide under a different pseudonym ID� to exchange confidential
information. Nevertheless, if the user exhibited similar behavioral patterns, the
unlinkability between ID and ID� could be compromised through these similar
patterns. In this case, any past profiling inferences carried out for the pseudonym
ID� would be linked to the actual user ID.

One promising approach is based on group signature; however, the efficiency of
those signature schemes must be increased substantially before they can be
deployed in practice. The dynamic management of groups in terms of trust and
communication overhead remains an important challenge for these solutions.

In Sect. 8.4 we examined a broad range of privacy-enhancing technologies.
Despite the great variety of approaches available in the literature, the fact is that
their use is far from being widespread. One of the reasons is that there is certain
ambiguity about these technologies and their effectiveness in terms of privacy
protection. As we mentioned in that section, privacy-enhancing technologies nor-
mally come at the cost of system functionality and utility, and therefore it is
challenging to evaluate whether the privacy gained outweighs the costs in utility.
As a result, measuring the privacy level offered by a technology is fundamental to
determine its overall benefit, to compare its effectiveness with other technologies,
and eventually to optimize it in terms of the privacy utility trade-off posed.

Motivated by this, a great research effort has been devoted to the investigation of
privacy metrics. However, most of these metrics are specific to concrete systems and
adversary models, and often are not appropriately justified or fail to justify the choice.
Some recent works in this regard have started to investigate quantifiable measures of
privacy. For example, [66] provides a unified perspective of privacy metrics, drawing
upon the principles of information theory and Bayesian estimation. One of the main
contributions of this work is a framework where privacy is measured as an attacker’s
estimation error. Further, in the context of personalized information systems, [67]
investigates Jaynes’ rationale behind entropy-maximization methods to justify the
Kullback-Leibler divergence and Shannon’s entropy as metrics of profile privacy.
The cited works represent helpful, illustrative steps towards the systematic modeling
of privacy-preserving information systems, but the study of quantifiable measures of
privacy is certainly an open problem.

8.6 Conclusions

Vehicular systems are currently an emerging and promising technology that may
bring substantial benefits to road-safety applications. Communication standards
such as DSRC broadcast users’ private data in order to generate early emergency
warnings. While this may contribute to overall road safety, vehicular networks
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prompt serious security and privacy concerns. The main objectives of this chapter
have been to analyze the security and privacy risks arising from vehicular com-
munications and to examine the most popular solutions in this field.

In this work, we have seen that many of the privacy issues are essentially
addressed by resorting to pseudonym-based approaches. We have also shown,
however, that the use of pseudonyms are insufficient to guarantee both anonymity
and privacy. Because of the common belief that pseudonyms are important for
VANETs’ overall security, and are quite beneficial for protecting users’ identity, a
privacy compliant solution should be fully compatible with pseudonymity. Apart
from pseudonyms, we have also explored other alternatives relying on
group-signature schemes, identity-based cryptography, approaches based on user
collaboration, and data-perturbative technologies.

While anonymity is primarily guaranteed with pseudonyms, very little attention
has been devoted to other sensitive data going through vehicular communications.
The passive collection of VANETs’ communication information, especially
regarding vehicles’ activities, can lead to user profiling and ultimately to
re-identification. As previously discussed, pseudonym-based approaches cannot
prevent an attacker from collecting behavioral patterns, which can be obtained by
observing the services that are being requested or by analyzing the contents of
vehicle’s queries.

Among the challenges that we have mentioned in this chapter, we consider it
essential to quantify the level of privacy and security provided by the current
solutions. Measuring the level of privacy and security offered is the only way to
evaluate and compare the effectiveness of two or more technologies, and this will
undoubtedly pave the way for the adoption of vehicular technologies.
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Chapter 9
Privacy Law and Regulation:
Technologies, Implications, and Solutions

Jasmine McNealy and Angelyn Flowers

9.1 Introduction

The early 21st century could easily be deemed the era of data collection and
vulnerability. Governments collect rapidly increasing amounts of information, from
voter registrations to driver license records to death certificates. Private corpora-
tions, too, compile databases of consumer information for marketing and adver-
tising purposes. Of great assistance in the amassing of personal data, in both the
public and private sectors, are new technologies able to track, retrieve, and decipher
much of the information that individuals provide or leave behind while using
networked services. Suffice it to say, on the Internet now, not only does everyone
know that you are a dog, they may know your breed, where you were born, and the
street where your dog house is located.

Of course some of the information collected could be considered benign, and
many people subscribe to the “nothing-to-hide” perspective. This attitude asserts
that the members of society should and would not care about the collection of their
private information if they have nothing to hide. That is, if you are doing nothing
wrong, privacy will not be a consideration. Professor Daniel Solove has identified
the fallacies in this argument. The argument fails in that it reduces privacy to the
hiding of things or information when privacy should be understood as “a plurality
of related problems” [1]. Further, the argument deems the harms from possible
privacy invasions as significant only if the outcome is tangible or sensationalistic.
This ignores the harms that aggregated minor intrusions may cause [1].
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The failures of the nothing-to-hide argument may be best illustrated by detailing
one of the major privacy outrages from the last few years. In 2013 Edward
Snowden, an employee of defense contractor Booz Allen Hamilton, disclosed many
top-secret documents to the public. The documents detailed a disturbing web of
surveillance activities by government actors, particularly the National Security
Agency (NSA), assisted by private communications providers [2, 3]. Of particular
concern was the collection of metadata, or “data about data,” as it is sometimes
called. The NSA programs involved the collection of information about telephone
calls, but not the contents of the calls, as well as collection of Internet data [2]. Far
from benign, aggregated metadata enables the construction of inferences about
private activities including medical issues, financial health, and intimate relations
[2]. More importantly, the revelation of the surveillance programs demonstrated the
global impact of one country’s approach to privacy. Not only were US citizens
targeted, but also the communications of citizens and political leaders in other
countries, causing tension between the United States and other countries, as well as
calls for inquiries and assurances about NSA activities [2].

Some of the strongest criticisms of US surveillance activities came from Brazil,
which in 2014 passed the Marco Civil da Internet. The new law establishes rules
with respect to many Internet-related issues. Of significance for the purposes of this
chapter is its implementation of standards related to privacy and data retention. The
law limits the amount of metadata that organizations can collect on Brazilian
Internet users. As a whole, the law creates a framework for data protection similar
to that of the European Union (discussed in Sect. 9.5) [4].

If nothing else, the Snowden anecdote demonstrates the immense range and
complexities of government surveillance and information collection. Although US
President Barack Obama has somewhat addressed the public and political concerns
in connection to NSA activities, and privacy advocates and lawmakers are
attempting to make changes by updating the various laws that allow law enforce-
ment to access private information, what exists now in the United States is a
hodgepodge of laws and regulations that affect personal information privacy either
directly or indirectly. This chapter provides an overview of laws and regulations
used to regulate privacy in the digital age, focusing on US law and how it interacts
with other global privacy regulations.

First, this chapter considers the causes of increased data collection in this era.
Following this, we examine the current state of law in the United States, including
those laws directly and indirectly addressing privacy. Section 9.4 considers gov-
ernment surveillance and both the laws that allow it and those aimed at placing
restraints on law enforcement activities. This is followed by an analysis of privacy
regulation in the European Union. This chapter concludes with an examination of
the opportunities for change with respect to privacy law and regulation.
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9.2 Catalysts for Change

The late 20th century saw the rise in surveillance, sousveillance, and various
privacy-limiting technologies. Yet even before the advent of these new technolo-
gies, both public and private organizations were collecting information about
individuals in society. Governments have reason to collect some important private
information. Censuses, for example, allow for a reasonable estimation of the
population, as well as providing demographic information about the individuals
within that population. These population counts also provide information integral to
the administration of government.

Other forms of government information collection serve similar purposes. Driver
license records provide the holder with a form of identification, while providing the
state with a log of the holder’s address, moving violations, and identifying char-
acteristics. Birth, death, and marriage certificates similarly provide the state with
records of human relationships and interactions that allow for the efficient admin-
istration of privileges, benefits, and mandates required under state law. Much of the
information provided to, or collected by, the state has moved from paper copies to
digital databases. On the federal level, the growth in government data collection
mirrors the increase in government agencies and the growth in bureaucracy [5].
Government databases on both the state and federal levels provide ready fodder for
private corporate databases used for advertising and marketing purposes.

By far the most significant cause of the increased collection of personal infor-
mation is the war on terrorism. After the events of September 11, 2001, the US
government and governments around the world expanded domestic and foreign
surveillance and data collection activities. In the United States, prior to 9/11, there
was a conscious effort to limit the amount of government use and collection of
private information [6]. The barriers erected to prevent government sharing and
possible abuse of private information were relaxed to allow collection of domestic
and foreign intelligence thought to be useful in combating and preventing terrorism.
Some of the anti-terrorism measures have come in the form of new laws that
directly or indirectly affect personal privacy.

Anti-terrorism regulations have and continue to raise privacy concerns around
the globe. As recent as July 2014 the United Kingdom passed the Data Retention
and Investigatory Powers Act (Drip), which requires telecommunication providers
to retain customer metadata for 12 months and to allow law enforcement and
government agencies access to the information [7]. The law was met with criticism
and concerns about the availability of personal data as well as claims that the
government may have circumvented the democratic process by rapidly passing the
law [8]. Of particular concern is that the law appears to conflict with privacy
principles in both the European Convention on Human Rights and the European
Charter of Fundamental Rights [8]. The passage of Drip and subsequent objections
demonstrate continued tension between government regulations and legal principles
with respect to privacy.
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9.3 Current US Law

Privacy principles in the United States have their foundations in constitutional and
common law, statutes, and the law of equity. In the United States the Constitution is
the supreme law of the land. Under the system of federalism, each state or com-
monwealth has its own constitution as well. The federal Constitution provides,
however, the foundation for the rights and privileges of individuals within the
United States with respect to both state and federal governments. State constitutions
may offer more rights or added protection, but may not encroach upon the rights of
its citizens.

It is important to note that the word “privacy” is found nowhere within the
Constitution. In fact, it was not until the 1965 case of Griswold v. Connecticut that
the US Supreme Court ruled that individuals have a constitutional right to privacy
that could be found in the “penumbras” of the guarantees enumerated within the
Bill of Rights. Griswold was a case that involved the question of the legality of a
Connecticut state law the criminalized contraceptive services for married couples.
Writing for the majority, Justice William O. Douglas found that, although not
specifically stated, the constitutional right to privacy could be formed from the
“emanations” from the First, Third, Fourth, Fifth, and Ninth Amendments [9].

Within the First Amendment is found the right of association, that is, the right to
freely meet and to have privacy in associations. The Third Amendment creates a
zone of privacy in its prohibition against the government forcing the quartering of
soldiers in any house during peacetime without the consent of the owner. The
Fourth Amendment grants the “right of the people to be secure in their persons,
houses, papers, and effects, against unreasonable searches and seizures.” The
Self-Incrimination Clause of the Fifth Amendment prohibits the government from
forcing an individual to surrender, either the person or information, to his or her
detriment. Finally, the Ninth Amendment states, “The enumeration in the
Constitution, of certain rights, shall not be construed to deny or disparage others
retained by the people” [10]. It should be noted that the US Supreme Court has
ruled that most of the above named amendments, and some of those not mentioned,
apply to the actions of state governments, as well, through the Incorporation
Doctrine of the Fourteenth Amendment [11].

9.3.1 Laws Directly Affecting Privacy Rights

Of the aforementioned constitutional guarantees, perhaps, most connected to the
right to privacy is the Fourth Amendment. It provides:

The right of the people to be secure in their persons, houses, papers, and effects, against
unreasonable searches and seizures, shall not be violated, and no warrants shall issue, but
upon probable cause, supported by oath or affirmation, and particularly describing the place
to be searched, and the persons or things to be seized [12].
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The amendment has been used to “to protect personal privacy and dignity
against unwarranted intrusion by the State” [13]. Early on the US Supreme Court
interpreted the Fourth Amendment as invalidating laws and activities that invaded
an individual’s privacy with respect to the contents of domestic mail [14] and
papers and other documents [15, 16]. These rulings have been restricted in the years
since they were first announced.

The true nature of the Fourth Amendment controls the ability of government to
conduct searches and seizures of objects. A seizure occurs when there is the
physical taking of an object or an arrest [17]. Searches evoking the Fourth
Amendment come in many different varieties including, dog sniffs outside of the
home [18], examination of garbage within the curtilage of a home or building [19],
as well as thermal imaging of a home [20]. Important for digital or electronic
privacy are the cases that considered the constitutionality of electronic surveillance
devices, discussed in Sect. 9.4.

Heretofore, the discussion has focused on constitutional privacy principles. It is
important to note, however, that privacy protection has a basis in common law as
well. In the United States, common law privacy has its foundations in an 1890
Harvard Law Review article by Samuel Warren and Louis Brandeis [21]. In it the
two noted jurists argued that advances in new technology, at that time the handheld,
instantaneous or “snap” camera, were allowing the press to invade the private lives
of individuals [22]. The threat to privacy, therefore, required a legal solution.

Seventy years after Warren and Brandeis’ article asserting the need for privacy,
Professor William Prosser identified four separate actions that make up the tort of
invasion of privacy:

1. Intrusion upon seclusion.
2. Public disclosure of private facts.
3. False light.
4. Appropriation [23].

The common law privacy tort most similar to the Fourth Amendment is intru-
sion. Intrusion, as defined by the Restatement (Second) of Torts, is the physical or
other interference with the seclusion of another individual [24]. The intrusion must
be highly offensive to a reasonable person to be actionable. As with the Fourth
Amendment, this tort considers reasonableness with respect to what society is
prepared to consider reasonable [25].

Intrusion is a claim about the behavior exhibited while gathering information,
and whether an individual has a reasonable expectation in the sphere of privacy they
claim was invaded. Similarly, the tort of public disclosure of private facts considers
whether an individual has a reasonable expectation in the privacy of information
that was disclosed. The courts have overwhelmingly ruled that once information is
made public, a plaintiff no longer has a reasonable expectation of privacy in that
information.
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9.3.2 The Evolution of US Statutory Privacy Law

Most states have codified the torts of intrusion, public disclosure of private facts,
and the other two privacy claims enumerated by Prosser. And, although there is no
federal statute recognizing Prosser’s privacy torts, a significant number of federal
laws exist with direct and indirect implications for individual privacy. The under-
pinning for many of these laws was the 1973 Code of Fair Information Practices
published by the US Department of Health, Education, and Welfare (HEW) [26].
The report established major principles enumerating the rights of individuals and
the responsibility of government agencies with respect to private information:

• There must be no personal data record-keeping systems whose very existence is
secret.

• There must be a way for an individual to find out what information about them
is in a record and how it is used.

• There must be a way for an individual to prevent information about him or her
obtained for one purpose from being used or made available for other purposes
without their consent.

• There must be a way for an individual to correct or amend a record of identi-
fiable information about him or her.

• Any organization creating, maintaining, using, or disseminating records of
identifiable personal data must ensure the reliability of the data for their intended
use and must take reasonable precautions to prevent misuse of the data [27].

Congress incorporated many of these principles into the laws directly and
indirectly affecting privacy both during this era and after.

One of the first federal laws passed with privacy implications was the Wiretap
Act, also called Title III. Passed in 1968, the Wiretap Act codified Fourth
Amendment protections with respect to electronic surveillance by law enforcement
[28]. The law applies to the use of electronic listening and recording devices and
technologies. Congress amended the Wiretap Act 1984 with the passage of the
Electronic Communications Privacy Act (ECPA). The ECPA extended some of the
Wiretap Act’s protections to, at the time, new communications technology such as
email. The law also addresses law enforcement surveillance and acquisition of
stored communications, under the Stored Communications Act [28, 29]. The third
section of the ECPA regulates law enforcement use of technologies that record the
number and delivery information for electronic communications [28, 30].

Congress passed the Fair Credit Reporting Act (FCRA) in 1970. The FCRA
regulates consumer-reporting agencies, and provides citizens with rights with
respect to how information is shared and collected [31]. Congress amended FCRA
in 2003 with the Fair and Accurate Credit Transactions Act, which adds protections
against identity theft. Although FCRA regulates private agency collection and
sharing of consumer information, thereby offering a measure of privacy protection,
the Bank Secrecy Act passed the same year requires banks to maintain records of
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consumers’ financial transactions. These records are used to assist the government
in criminal investigations [32].

Four years later, Congress passed the Privacy Act of 1974. The Privacy Act
endows individuals with rights concerning the personal information about them
stored by the federal government [33]. One of the most significant rights provided
under the Privacy Act is that of the individual to inspect their personal records, and
to have any inaccurate information corrected [33]. The same year brought the
passage of the Family Educational Rights and Privacy Act (FERPA), also called
the Buckley Amendment after its sponsor Rep. James L. Buckley. FERPA regulates
the disclosure of personal information in the possession of a school [34].

Later laws reflected the major concerns of that specific era particularly with
respect to new technology. Therefore, the expansion of media systems and com-
puting in the 1980s brought the passage of laws with respect to those new systems
with privacy implications. Along with the passage of the ECPA in 1986, Congress
passed the Cable Communications Policy Act in 1984, mandating that cable
companies protect the privacy of the consumer records [35]. The 1988 Computer
Matching and Privacy Protection Act regulates government automated file com-
parison in investigations [36]. That same year, the Video Privacy Protection Act
was passed to protect the privacy of videotape rental information [37].

The unifying theme of the laws passed in the 1990s was that of consumer
protection. Therefore, Congress passed the Telephone Consumer Protection Act of
1991, allowing civil remedies against telemarketers [38], as well as the Driver’s
Privacy Protection Act of 1994, restricting the disclosure or sale of motor vehicle
records [39], and the Identity Theft and Assumption Deterrence Act of 1998,
criminalizing identity fraud [40]. This era also brought the passage of three
important privacy-protecting laws. First is the 1996 passage of the Health Insurance
Portability and Accountability Act (HIPAA). The law was supposed to make it
easier for workers changing jobs to not be excluded from their new health plans
because of pre-existing conditions [17]. This required the use of uniform transaction
codes and the sharing of data by healthcare providers. The US Department of
Health and Human Services promulgated rules to govern the privacy of medical
records [17].

The second significant legislative enactment of the 1990s was the Children’s
Online Privacy Protection Act (COPPA) of 1998. COPPA restricts the collection
and use of the personal information of children under the age of 13 by Internet
service providers [41].

The Gramm-Leach-Bliley Act of 1999 is the third noteworthy piece of legisla-
tion enacted by Congress in the 1990s. The law requires financial institutions to
provide consumers with privacy notices. Consumers must also be allowed to opt out
of the disclosure of their personal information to other companies [42].

The 2000s saw the rise in anti-terrorism legislation following the attacks on the
Pentagon and the World Trade Center on September 11, 2001. One of the most
comprehensive laws enacted was the USA Patriot Act, which amended the ECPA,
allowing for easier law enforcement acquisition of voicemail [28]. The Patriot Act
also allows for the use of pen registers for the collection of metadata associated
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with electronic communications [28]. The Patriot Act is used in conjunction with
ECPA and laws like the Communications Assistance for Law Enforcement Act
(CALEA) to allow government and law enforcement access to electronic com-
munications to facilitate anti-terrorism measures. CALEA, passed in 1994,
requires that telecommunication service providers allow law enforcement wiretap
access to their systems [43].

9.4 Government Surveillance

It is axiomatic that when the framers of the US Constitution wrote the Bill of
Rights, electronic surveillance did not exist. Therefore, the Constitution provides no
exact guidance on the legality of government use of advances in technology to
invade privacy. The first case to examine electronic surveillance was Olmstead v.
United States, in which the US Supreme Court had to decide whether law
enforcement violated the Fourth Amendment when evidence against a bootlegging
conspiracy was obtained from listening devices placed in telephone lines. The
Court found that the telephone wires, though connected to the home or business,
were not a part of the home and, therefore, were not within the protection of the
Fourth Amendment [44].

Though the majority opinion in Olmstead found no constitutional violations
from the law enforcement activities, Justice Louis Brandeis’ dissent is of particular
importance. In it the Justice asserts that the general language of the Constitution,
and in particular the Fourth Amendment, should not be interpreted in such a way
that would limit the ability to consider the changes in the world. The government
could develop more ways and new means of invading privacy and the Court’s
interpretation of that Fourth Amendment had to expand to deal with the new
technology. This would necessitate that the Court’s decisions with respect to Fourth
Amendment search cases go beyond the consideration of whether there was actual
physical intrusion or trespass into an individual’s home or office. The Court’s
opinion in Katz v. United States took a step in this direction. But, as in Olmstead, it
is not the majority’s opinion that offers the most important guidance about law
enforcement activities and privacy.

The Katz case considered the constitutionality of FBI agents’ use of an electronic
listening device to monitor the phone calls of an alleged gambler. The agents
attached the device to the outside of the phone booth Charlie Katz used, and used
the recordings to convict him of multiple counts of violating federal laws by
transmitting wagering information by telephone. In an express rejection of the
Olmstead requirement of physical trespass by law enforcement, the US Supreme
Court found that the Fourth Amendment “protects people, not places” [45]. This
meant that the information or activities that a person sought to keep private could be
constitutionally protected. This did not mean, however, that the Fourth Amendment
created a constitutional right to privacy.
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It is Justice Harlan’s concurring opinion in Katz that has become of paramount
importance in understanding privacy in nearly all contexts. The Justice recognized
two requirements that result from the past precedents that considered privacy with
respect to people. First, the person claiming an invasion of privacy has to have
“exhibited an actual (subjective) expectation of privacy.” Second, to be perceived
as legitimate, that expectation has to be such that society is prepared to recognize it
as “reasonable” [46]. With respect to the actual facts of Katz, Justice Harlan agreed
that society recognized the expectation of privacy in the conversation using the
services of a phone booth.

Important to note, however, are the limitations placed on the reasonable
expectation of privacy. That is, the courts in the United States, have carved out
exceptions to the reasonable expectations test that have major implications for
privacy with respect to new forms of technology. The “third-party doctrine,” the
principle that an individual may no longer claim privacy over information provided
to a third party, is one of the most significant of these exceptions. The majority
opinion in Smith v. Maryland is from whence this principle comes. The Smith case
examined whether the use of a pen register—technology that monitors the numbers
dialed by a specific telephone when installed at the telephone provider—without a
warrant, violated the Fourth Amendment guarantee against unreasonable searches
[47]. The US Supreme Court expressed doubt as to whether there is an expectation
of privacy in the numbers that people dial. According to the Court, people who use
telephones know that they are, in essence, giving the phone number that they are
dialing to the telephone company. Further, telephone companies commonly use pen
register-like technologies to record phone numbers, and to check for illegitimate
uses. The Court also rejected the idea that society would recognize the expectation
of privacy in the telephone numbers dialed as reasonable, because the individual
voluntarily exposes information to another party. Once given to another party, the
originator of the information has no control over it.

The Katz reasonable expectation recently came under scrutiny with respect to
new surveillance technology in the form of Global Positioning System (GPS). In
US v. Jones, the US Supreme Court held that the law enforcement’s placing of a
GPS tracking device on a drug-trafficking suspect’s vehicle constituted a search
within the scope of the Fourth Amendment [48]. But, instead of using the Katz
reasonable expectation of privacy test, the Court ruled that the government violated
the Fourth Amendment because it had physically occupied the suspect’s private
property by attaching the GPS to his SUV [48]. In her concurring opinion, Justice
Sotomayor wrote that in the future the Court would have to address the government
use of new technologies that facilitate surveillance and what this means for privacy
[49]. In his separate concurrence, Justice Alito wrote that society had an expectation
that the government would not record every move made by its citizens [50].
According to Professor Christopher Slobogin, both concurring opinions expressed
endorsement of what is called the “mosaic theory” of the Fourth Amendment [51].
The mosaic theory expresses the view that the aggregated information from certain
kinds of government surveillance is a violation of constitutional privacy [51]. Of
course this is not law, but there has been a call for mosaic theory to be codified [51].
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9.5 European Privacy

The European approach to privacy stands in stark contrast to that of the United
States. This contrast is illustrated in Table 9.1, which provides a brief comparison of
underlying tenets of US approaches to privacy protection compared with their
European counterparts.

This difference is a dichotomy in how privacy rights are viewed in the United
States and in Europe. The privacy framework for the US approach is based on a
negative right requiring the government to refrain from identified privacy violating
activities. The European approach, on the other hand, places an affirmative duty on
government to safeguard individual privacy [52]. As previously described in this
chapter, there is no expressly stated right of privacy in the US Constitution. Instead
it is derived from the penumbras of other Constitutional rights that are expressly
stated. In Europe, privacy was expressly declared to be a human right and funda-
mental freedom in 1950 in the Convention for the Protection of Human Rights and
Fundamental Freedoms adopted by 47 European nation-states. Article 8 of the
European Convention on Human Rights (ECHR), titled “Right to respect for private
and family life,” provides that:

1. Everyone has the right to respect for his private and family life, his home and his
correspondence.

2. There shall be no interference by a public authority with the exercise of this right
except as such as in accordance with the law and is necessary in a democratic
society in the interests of national security, public safety or the economic
well-being of the country, for the prevention of disorder of crime, for the pro-
tection of health or morals, or for the protection of the rights and freedoms of
others [53].

Fifty years later in 2000, with the promulgation of the Charter of Fundamental
Rights, the European Union consolidated then existing rights that had previously
been guaranteed by separate charters, treaties, or case law; as well as incorporated
new rights emerging in the modern era [54]. The Charter of Fundamental Rights
became legally binding on EU institutions and its member nation-states in 2009.

Table 9.1 Comparison of selected US–EU privacy principles

United States Europe

Privacy is not expressly mentioned in the
Constitution

Privacy right is guaranteed in the European
Declaration of Human Rights and the
European Union (EU) Charter of
Fundamental Freedoms

The individual relinquishes control of
personal information voluntarily given to
third parties

The individual retains ownership of personal
information

Individual privacy is protected from the
government

Individual privacy is protected by
government from the private sector
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Among the new fundamental rights codified was a right to data protection. Article
8, titled “Protection of personal data,” mandates that:

1. Everyone has the right to the protection of personal data concerning him or her.
2. Such data must be processed fairly for specified purposes and on the basis of the

consent of the person concerned or some other legitimate basis laid down by
law. Everyone has the right of access to data which has been collected con-
cerning him or her, and the right to have it rectified.

3. Compliance with these rules shall be subject to control by an independent
authority [55].

Article 8 of the EU Charter for Fundamental Freedoms reinforced the long-
standing push in the EU for protection of personal data. Digital privacy has been a
concern of the European Union almost since its formal inception in 1993. The EU
Data Protection Directive (Directive 95/46/EC) was adopted in 1995. It was
intended to set limits on the permissible collection and use of personal data of EU
residents while simultaneously facilitating the free movement of that personnel data
within the European Union [56]. The personal data of EU residents is protected
even when they are using services and products of non-EU companies [57]. The
Data Protection Directive required that each member state establish its own inde-
pendent national body to ensure that this data was protected. As a result of the
release of information on PRISM, the NSA project that included spying on
European Diplomats among others, Europeans are also concerned about protecting
their data from the US Government. This has led to increased calls for the estab-
lishment of European-based cloud services, relieving the need for EU members to
rely on US cloud companies [58].

The guidelines established pursuant to the Data Protection Directive relate to the:
quality, legitimacy, excluded categories, disclosure of information regarding the
collector or controller of the information, individual’s right of access to the infor-
mation, right to object, specified exceptions and restrictions, confidentiality, and
notification requirements when personal data is collected. For example, among the
key requirements of the Data Protection Directive is a prohibition on processing
personal demographic-type data related to items such as racial or ethnic origin,
religious or philosophical beliefs, health, and sex life except within certain delin-
eated instances [56]. Individuals also have a right to object on legitimate grounds to
having data processed about them [56].

To consolidate enforcement and implementing regulations, in 2012, the
European Union began work on a consolidated comprehensive reform of the 1995
Data Privacy Directive designed to strengthen online privacy rights as well as boost
Europe’s digital economy [59]. The General Data Protection Regulation (GDPR)
was adopted in March 2014 by the European Parliament and sent to the Council of
Ministers, the next stage in the reform process [60]. A brief summary of new and
enhanced protections to be provided by the GDPR is presented in Table 9.2.

The most striking distinction between the United States and the European Union
is a difference in the perceived need for privacy protections. Europeans appear to be
more concerned about privacy encroachments by the private sector or corporations,
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while Americans seem more concerned with the likelihood of government
encroachments [61, 62].

Reminiscent of the adoption of the Patriot ACT in the United States following
the September 11, 2001 events, the European Union a few short years later also
confronted a situation where goals of personal privacy and national security
appeared to collide. In the aftermath of the Madrid train bombings in 2004 and the
London bombings in 2005, the European Union attempted to address the conflicting
nature of a strong right to privacy with the need of law enforcement to conduct
criminal investigations. The EU Data Retention Directive (DPD) of 2006 identified
a category of data, referred to as “covered data,” that it was permissible to retain for
a period of 6–24 months [63].

Citing the demonstrated importance of traffic and location data in the investi-
gation, detection, and prosecution of criminal offenses, the DRD required member
states to retain data that was necessary to identify the following [69]:

1. Source of a communication.
2. Destination of a communication.
3. Duration of a communication.
4. Type of communication.
5. Users’ communication equipment or purported equipment.
6. Location of the mobile communications equipment.

While data about a specific communication is to be retained, the DRD specifi-
cally directs that no data about the content of that communication is to be retained
[69]. Covered data is to be retained by the operator and provided only to the
designated national authority [69].

In April 2014, however, the European Court of Justice (ECJ) declared the Data
Retention Directive inconsistent with the EU Charter of Fundamental Rights
asserting that it violated two basic rights, the right for private life and protection of
personal data [64]. In its decision, the ECJ did recognize the legitimate law
enforcement and anti-terrorism purposes for data retention, but determined that the
DRD violated considerations of proportionality. Following the adoption of the
DRD by the European Union,member states promulgated their own laws, regula-
tions, and administrative provisions necessary for compliance with the DRD [69].

Table 9.2 GDPR selected individual empowerment provisions [64]

A Right to be Forgotten In the absence of legitimate reasons for retention
individual data must be deleted at the individual’s
request

A Right to Data Portability Individuals can transfer their data among service
providers

Consent requires an express
affirmation

When consent it required it must be expressly stated,
not inferred by a failure to say no

Privacy by design and default for all
products and services

Default settings must be privacy friendly
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The subsequent decision of the ECJ left those member state directives in place but
subject to judicial review. States responded to this challenge in different ways. For
instance, the United Kingdom, after initially continuing to utilize the regulations it
had developed for the DRD, in July 2014 passed the Drip Bill. As noted in
Sect. 9.2, the passage of Drip proved controversial, and failed to abate the
continuing tension between government regulations and legal principles in regards
to privacy [70].

9.6 Challenges and Opportunities

Each time a bonus or savings card is used by someone in a grocery store, the
individual’s purchases are recorded. Targeted advertising appears on a computer
monitor based on the tracking of the websites visited by the user or by their online
purchases. “Do Not Track” prohibitions are the primary efforts used to protect
individual privacy by restricting advertisers from tracking online behavior. But their
activation often requires that the user take several affirmative steps.

Consider those insidious mechanisms such as the GPS locator on cell phones
and the app that directs those phones to locate “friends” in the same geographic
space. But what if the individual doesn’t want to be located? Data mining of
customer information is a lucrative enterprise. It has been estimated that in 2012 the
value of the online data market was $62 billion [65]. This has led to complaints by
US companies about the limitations placed by EU states on their ability to gather
customers’ personal information when doing business in the European Union, and it
has been a continuing source of tensions between US companies and the European
Union [61].

Traditional adherence in US privacy law to notions of the separate nature of
government and the private sector is inconsistent with the operations of today’s
digital environment. Most users of many popular apps, for example, are unaware of
the extent to which those apps “leak” personal information, which is then available
for capture by government agencies, criminal enterprises, or other data mining
companies [66]. An overarching challenge is to determine the appropriate levels of
privacy protection that should be applicable.

The challenges and opportunities presented by the need to effectively shape
personal privacy laws and regulations that meet the needs of the 21st century are
myriad. The issues highlighted when comparing the two opposing approaches of
the United States and the European Union raise several questions for consideration.
For instance:

• What do we actually want to regulate to protect individual privacy—the gov-
ernment, the private sector, or both?

• How do we ensure that users are actually fully informed of the personal
information that will be collected in a manner that is comprehensible to the user
and offers them a viable choice?
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• What is the feasibility of providing services in a way that is minimally intrusive
on individual privacy by minimizing the personal information collected and the
length of time it is held?

More importantly, it may be that the greatest challenge is recognizing that the
nature of the questions makes a statement about the values that a society deems
important with regard to personal privacy. The opportunity is in determining what
those values should be.

As such, it may be instructive to look again at the guidelines aimed at
strengthening privacy or information in the past. The five principles form the 1973
Code of Fair Information Practices noted in Sect. 9.3.2, for example, could prove,
and has been, useful for constructing policy related to individual rights with respect
to control over information [26]. An examination of these five principles, as well as
the laws, policies, and court opinions detailed above, reveals the key themes of
information access and control with respect to individual privacy.

The theme of access encompasses both the right of citizens to know that gov-
ernment collection of information exists, as well as the right to know what personal
information is being collected. Government agencies, then, would be required to
inform citizens about ongoing surveillance activities. This, of course, would not
necessarily mean that specific individuals would be informed that they were being
investigated. The citizenship, as a whole, should be informed, however, of ongoing
government data collection, and what this may mean for their activities, digital or
otherwise. In this way, there may not be a need for a repeat of the Edward Snowden
saga.

Control of collected information would allow citizens the ability to correct the
information collected. It also may include the right to force the deletion of infor-
mation stored in government, or private, databases. This may be the most important
and yet controversial principle to implement. By definition, this kind of right, as
conceptualized in the right to be forgotten mentioned above, provides individuals
with control over information in another’s possession. This control would allow a
person to force the erasure of that information.

In considering the ways to implement the principles of access and control, it may
also be instructive to consider the privacy laws and policy frameworks from other
parts of the globe. Japan, for instance, regulates the use of personal information
contained in certain business databases, requiring data subjects to be provided with
notice about the purpose of the use of their data [67]. The law also requires that
businesses obtain consent from the data subject for any uses outside of the stated
purpose, and before allowing third-party access to personal data [67].

Of particular note is that of Privacy by Design (PbD), a framework developed by
Ann Cavoukian, the former information and privacy commissioner of Ontario,
Canada. PbD is based on seven principles that incorporate both consumer control
and access to information. The principles are:

1. Proactive not reactive (measures).
2. Privacy as the default.
3. Privacy embedded into design.
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4. Full functionality.
5. End-to-end security.
6. Visibility and transparency.
7. Respect for user privacy [68].

Although the PbD framework appears to focus on business or organizations, the
foundational principles evoking, again, the values of control, access, and, addi-
tionally, transparency would be beneficial for integration into government activities
evoking personal privacy.

9.7 Conclusion

Privacy law is made up of a hodgepodge of statutory, constitutional, and common
law ideas and principles that are adapting to developments in new technology. The
United States has a long history of evolving its Constitutional interpretation and its
laws to meet changing conditions. But technological changes are increasing rapidly.
To keep pace, regulators must find ways to accelerate the amendments to laws
implicating both government and private access and use of personal information.

The US approach to privacy is noticeably different from the EU model. The
former has its basis in prohibitions against government activity, which have been
applied to privacy, while the later focuses on privacy and data protection as express
rights that protect the individual from corporate data-gathering efforts. To be
effective, privacy laws and regulations must grow in tandem with the technology
that is being regulated. Approaches to privacy that exclude information voluntarily
disclosed to third parties from protection may be outdated in a world where digital
technology is so intertwined in our lives that ordinary activities of daily living are
predicated on some type of voluntary disclosure to access an essential service. It
may be inevitable that as technology expands so too does its insidious creep into the
private spaces of our lives. But there has to be an approach to maintaining some
semblance of personal privacy without opting out of the benefits of the digital
world.
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Chapter 10
Privacy in Mobile Devices

Rinku Dewri and Ramakrishna Thurimella

10.1 Introduction

Personal computing has entered a new era with the wide adoption of mobile
devices. Affordability of devices, reduction of implementation costs, and the pos-
sibility of novel business paradigms have driven the public acceptance of mobile
technology at a scale much larger than desktop computing. The world’s population
is now close to having at least one mobile device per individual. Current generation
mobile devices offer high-end computing platforms, connectivity to the Internet,
and a range of applications, including but not limited to, local search, social net-
working, content sharing, entertainment, navigation, office suites, and games.

Consequently, this proliferation has also put the fundamental right to privacy of
an individual at risk. Privacy is loosely defined as a “personally” assessed
restriction on when and to whom an individual’s data is deemed appropriate for
disclosure. As user activities on a mobile device grow, so does the extent of
personal information left behind in the device, and the inferences one can derive
about the lifestyle, choices, and preferences of the user. Catering to privacy
becomes difficult when the available data start to channel out to entities that are
outside the trust boundaries of the user.

In the early days, privacy of mobile technology subscribers was regulated by
federal legislations such as the Electronic Communications Privacy Act in the
United States and the Data Protection Directive within the European Union.
Network operators are bounded in terms of what data can be retained and how it can
be used. The data itself involved records of calls and text messages. The same
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standards also applied when communication modes moved from the telephone
network to the Internet. However, the rise of the Internet significantly increased the
type and amount of data flowing through an internet service provider. Ideally, any
user data flowing through the service providers are open to viewing, given that most
is unencrypted. This is already concerning from a privacy standpoint; the only
consolation is that the number of internet service providers are limited, and they can
be monitored for illicit activities.

The use of mobile devices for personal communications, and subsequently for
almost all types of data transactions, introduced the next level of privacy problems.
Unfortunately, the adoption outpaced the law makers. Businesses and freelance
developers flooded the market with applications never thought possible, and started
engaging in massive data collection efforts about what users do on the mobile
Internet, what they prefer, and what their tendencies are. The sheer number of
service providers exploded, and innovative techniques came into light to use per-
sonal data collected at different sites to enhance the services. Data collection
became more of a regular business practice. Explicit monitoring of what a provider
is doing with the users data is no longer possible. Fair information practice prin-
ciples had to be ruled out instead. These principles asked for a more transparent
system where user consent should be obtained prior to data collection, and
appropriate notices are given to the user about what is collected, how it will be put
to use, who are the potential recipients, the method of collection, and how the data
will be retained. The enforcement of these principles is mostly self-regulatory. This
evolution of how personal data is handled has raised the question about who owns
such data, and whether the individual is really in control any more.

The industry often does not view personal data collection as privacy breaching,
as long as it is collected and used in a way such that the user cannot be identified
from the data. This probably created the most common phrase one can read in a
privacy policy—“data is collected and shared in an anonymized form.” Perhaps this
well-popularized practice prompted people to share more! The past decade saw a
significant number of demonstrations to prove the loophole in this privacy blanket.
Large fractions of the population can be identified by a combination of their gender,
date of birth, and place of stay [15]. People may enter locations, interests, affilia-
tions, in search queries, which make them unique in an anonymized web search
database [3]. Knowing the ratings assigned to eight movies is sufficient to identify
an individual, even when there is a two week error in obtaining the dates of the
ratings [29]. Half of the individuals in the US population can be uniquely deter-
mined if their home and work locations are known at the level of a census block
[16]. In GPS logs, people can be identified based on the last destination of the day
and the most populated cluster of points [21, 25]. Individuals can also be identified
by their social network structure [30], or their family tree [27].

New forms of inference possibilities are identified on a regular basis. This led to
a significant push in educating the population about privacy in an electronic society,
generating guidelines for the common application developer to be privacy sensitive,
and a whole line of work in privacy-preserving design of application architectures.
This chapter is a short review of the attempts that are under to retain the privacy of
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users constantly interacting with mobile devices for most daily activities. Given its
breadth, we are not including the legal framework for privacy protection in this
review. We begin with a background in mobile devices and their associated tech-
nologies in Sect. 10.2. In Sect. 10.3, we highlight the privacy issues surrounding the
use of a mobile device. Section 10.4 discusses the solutions put forth to mitigate the
emerging privacy concerns. We end the chapter in Sects. 10.5 and 10.6 with a
discussion on the challenges we are faced with in making a mobile device a more
privacy sensitive platform, and the opportunities they provide us.

10.2 Background

Mobile devices have been defined in multiple ways since their inception. The most
basic of these is that of a small, handheld device capable of receiving and trans-
mitting voice calls over a long range wireless medium. These basic wireless
communication systems became well-known as “walkie-talkies,” once more and
more capabilities became a standard in generic mobile devices. Features such as the
ability to perform rudimentary computing, user interactions through a display and a
keyboard, and execute common business and entertainment applications, are
extensions of what the device can do, but soon became synonymous with what a
mobile device means. However, the features that are typical in current generation
devices will change and be extended, thereby leaving us little room to succinctly lay
down the defining characteristics of a mobile device.

10.2.1 Mobile Devices

Mobile device characteristics are constantly changing. Features become obsolete
even before a large fraction of the population gets a chance to use them. Therefore,
for the purpose of this chapter, we simply adopt characteristic hardware and soft-
ware features that dominate the current mobile device market. These features have
been outlined by National Institute of Standards and Technology of the United
States Department of Commerce [36].

A mobile device is defined as a collection of the following hardware and soft-
ware characteristics.

• A small form factor device with a display and a real/virtual keyboard.
• A microprocessor that executes instructions on data stored in memory, and has

lower power requirements than a typical desktop processor.
• Access to a Wi-Fi and/or cellular network that provides connection to larger

network infrastructures such as the Internet and the telephone network; modern
device capabilities often include personal network interfaces such as Bluetooth
and NFC (near-field communication), as well as interfaces to access satellite
navigation systems such as the GPS.
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• A local non-removable data storage medium, often in the form of EEPROM
(electrically erasable programmable read-only memory) flash memory.

• An operating system similar to that of a desktop/laptop environment, however
with a comparatively lower resource requirement.

• A system to deliver, manage and execute applications.

A cellular network is composed of roughly hexagonal cells, each covering a small
area, a low power transceiver and a base station in each cell, and an underlying
telephone network between the base stations. Each cell can serve a fixed number of
users depending on the available number of channels. A control center, called the
Mobile Telephone Switching Office (MTSO), keeps track of the cell where a user is
located, and aids the transfer of a call from one cell’s base station to that of another.
The same mechanism helps connect a mobile device to other network infrastruc-
tures such as the Internet. Depending on the size of the cell and the number of base
stations serving it, radio signal strengths can be weak or strong. Digital commu-
nication technology have made it possible to serve more users in a cell, have more
reliable communication, higher data transmission rates, broader bandwidth, and
provide more secure communication channels.

10.2.2 Device Types

Mobile devices started off as two-way communication devices. Compared to the
bulky DynaTAC from Motorola in 1983, modern mobile devices weigh just over
100 grams, and are constantly being enhanced for portability. Early generation
devices consisted of a basic dial-pad and LED display. As mobile devices became
popular amongst the masses, major players like Nokia, Sony Ericsson and Motorola
flooded the market with newer, smaller, and lighter versions of their devices.
Nonetheless, for almost a decade, mobile devices were nothing but an embedded
system designed for a very specific task, voice and text communication. With
reductions in the cost of microprocessor technology, the modern notion of a
smartphone was introduced by IBM in 1994, with capabilities such as fax and
email, and employing x86-compatible microprocessors. Since then, the hardware in
mobile devices have seen an exponential growth, and vendors frequently provide
upgrades to the state-of-the-art computing power and possibilities of a mobile
device. Current mobile devices boast of quad-core giga-hertz level microprocessors
comparable to desktop systems 5 years ago, embedded graphics processors,
high-definition touch screen displays, multi-sensor interfaces, extended battery life,
and all of these wrapped in the thinnest and lightest possible casings.

The software applications available in a mobile device have seen equally
impressive advances. Popularly known as a “personal digital assistant” (PDA),
mobile devices stopped being simple voice communication devices and started
offering other capabilities such as text messaging, email composition, personal
information management, and audio/video playback and recording. Palm’s
Palm OS, Nokia’s Symbian OS, and Microsoft’s Windows CE were some of the
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forerunners in converting the mobile communication device to today’s smartphone.
These systems ported the notion of operating systems prevalent in desktop/laptop
environments to the mobile environment, which were later replaced by more
dominant players such as the Apple iOS and Google Android. Software applica-
tions that can run within these mobile operating systems are as diverse as office
productivity suites, entertainment applications to watch streaming content, local
search using GPS information, road navigation, networking with like-interest
individuals, sharing content, playing games, and almost any other typical com-
puting need we can satisfy using a desktop system. The combination of fast pro-
cessor technology, wide adoption of mobile devices, and the surrounding business
possibilities, have made it possible to develop an engaging computing device that
has reached more individuals that any other technology.

10.2.3 Software Frameworks for Controlled Data Access

The complexity of the software system within a mobile device has seen tremendous
growth in a short span of time. As our dependence on these systems grow, so does
the necessity to carefully protect the personal data gathered during execution of the
system. Almost all major mobile operating system vendors today realize this
requirement, and employ one or more techniques to prevent software applications
from arbitrarily accessing each others data and resources. Further, obtaining explicit
user consent is crucial before any application is granted access to potentially private
data.

10.2.3.1 Android

The Android platform is based on the Linux kernel, which is fundamentally based
on separation of resources and data between different users. This user-based per-
missions model is also key to “sandboxing” an application’s resources from that of
others. Each application in Android is executed as if it is run by a different user.
Since the user-based permission model, in the default form, does not allow inter-
action between processes originating from different users, an attempt by an appli-
cation to read data belonging to another application will be prevented by the
Android kernel. Applications under this model also have limited access to the
operating system; in fact, operating system libraries, runtime environments, and
application managers are also sandboxed in Android.

Every Android application has an associated manifest file
(AndoridManifest:xml). An application developer uses the manifest file to inform
Android about important application components, dependent libraries, and per-
missions required by the application to function, among others. As with any XML
document, the manifest file is a collection of elements. For example, by using the
uses� configuration element, an application can state its requirement for a certain
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type of keyboard, navigation device, or touch screen. An application can request for
permissions such as access to the Internet, read location data, clear caches, read
contacts data, send SMS, update security settings, and others, through the
uses� permission element. Each permission has an associated protection level,
and the Android system seeks user confirmation for higher-risk ones, during
installation. Permissions given to installed applications can also be viewed by
accessing the application’s information in the system settings. However, the recent
versions of Android are closed to any user manipulation of permissions already
granted during installation. Also, all permissions requested by an application must
be granted by the user for Android to install and execute the application.

10.2.3.2 iOS

The Apple iOS system provides application sandboxing by placing each application
in its own home directory, and then allowing the application to read and write to
files and subdirectories only under the home directory. Several key directories such
as Documents , Library and tmp are created by the installer, and these standard
directories form the view of the file system for the application. The iOS system uses
access control lists (ACLs) to provide such a contained view to the applications.

Unlike in Android, permissions in the iOS system are granted as they are
requested by the application. However, the set of features that require explicit user
consent is limited to location services, contacts data, calendars, reminders, photos,
bluetooth sharing and microphone. For these features, iOS provides a relatively
straightforward control to enable and disable an application’s access to the feature.

10.2.3.3 Windows Phone

Windows Phone applications run in a strictly isolated environment, with a struc-
tured method to communicate with other features. Data storage is also isolated for
the applications. The executing environment also provides a minimal set of capa-
bilities to the application. Similar to an Android manifest file, Windows Phone
applications have a package manifest file containing details about the capabilities
that the application requires to function. Software capabilities can include access to
contacts data, to the camera, to location services, and to Wallet payment instru-
ments, among others. Users are notified about the requested software capabilities
during installation of the application from the Windows Phone Store.

10.3 Privacy Issues

Privacy, by definition, is a subjective matter. A technology that can potentially
encroach on the privacy of individuals is often deployed with the argument that
individual consumers have the option of rejecting the technology if they decide. It
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should be noted that the privacy issues surrounding a particular technology is not
common knowledge, and without a detailed understanding, they can easily pass as
minimal disclosures one must make for the technology to work. This specially
holds true in software systems where interconnected components can transfer data
between each other using highly technical methods, and vulnerabilities can help
adversaries to evade securities protecting the data. Nonetheless, it is true that pri-
vacy is important only to the extent that an individual wishes to keep the right to
control one’s information. A 2013 consumer mobile data privacy study reveals that,
while 76 % of users believe that they are ultimately responsible for their privacy,
only 35 % read the privacy policy [38]. It is worth noting that less than 20 % of
users are willing to share information such as date of birth, web surfing behavior,
precise location, phone number, home address, photos/videos and list of contacts.
Ironically, the most popular mobile applications constantly collect such forms of
information.

In the following sections, we will elaborate upon the type of (personal) data that
may be collected by a mobile application, and the methods by which this data may
leak to third-parties. We will not attempt to highlight a certain form of data col-
lection as a privacy issue, but will leave the inference of such a conclusion to the
subjective discretion of the individual.

10.3.1 Private Surveillance

Public surveillance, specially using CCTV cameras, has always created privacy
uproars in democratic societies. Such systems have been argued to be susceptible to
abuse, and instruments for discrimination. Nonetheless, from a national security
standpoint, they serve as a valuable tool to monitor high-traffic public places.
Moreover, since only publicly visible activities are monitored in public surveil-
lance, the threat to privacy is often viewed as minimal. On the other hand, constant
surveillance of the private life of individuals is strongly opposed, and has till now
been regulated by legislations. An enormous amount of resources will also be
required to manually monitor the daily activities of even a small fraction of the
population. Notably, the cost of privately surveilling large sections of the popula-
tion has drastically come down due to the growing attachment between technology
and the society.

Our daily activities in the physical world are getting more and more integrated
with the digital world. We are constantly leaving a trail of digital breadcrumbs
throughout the day, which if brought together, can produce a picture of our
activities (public and private) with an alarmingly high accuracy. Further, the trails
can be constructed on demand, for any period of time one seeks, and at a fraction of
the cost of manual surveillance.

Let us explore what information may be left behind by an average
technology-savvy individual on a typical day. We refer to this individual as Bob.
All tracking activities stated here are very real, as has been evidenced in
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publications in academic journals, trade publications, news articles, and business
privacy policies. From the smartphone in his pocket and the computer on his desk,
to his job, to the purchases he makes and the food he eats, just about everything
Bob does leaves some sort of digital trace behind. Bob’s smartphone is monitoring
his location at all times in order to improve the quality of his services. This data can
potentially be shared with a wide variety of applications, websites, and advertisers.
Like many people, Bob uses an online email provider, such as Gmail or Yahoo!
Mail. All emails he sends and receives are stored by the email providers, along with
other information such as the search queries he makes on his mail. As Bob drives to
work, his car’s GPS constantly triangulates his location. This data may be trans-
mitted to a central host to allow the GPS to give directions. Bob also uses an
electronic pass to make going through toll booths easier on him. However, geo-
location data on these passes is read all through cities in order to assess traffic
congestions. Speed cameras along his way also read his license plate, irrespective of
whether he was speeding or not.

Like many modern professionals, Bob uses LinkedIn to make connections in the
business world. It is likely that a quick perusal of his profile will reveal his entire
work history, the people he works with and has worked with, his educational
background, and more. Almost everything that Bob does at work is tracked,
whether that be for tax purposes, payroll processing, to protect the company from
illegal activities performed with company equipment, or simply to monitor behavior
and assess the performance of employees. All Internet traffic is scanned, key strokes
and mouse clicks are logged, calls are tapped, and email conversations are moni-
tored by management and IT departments. Bob’s employer is immune to privacy
lawsuits in this regard, as long as it can be established that such monitoring is for
the interest of the underlying business.

When it is time for lunch, Bob uses Grubhub, an online platform that lets him
order food from any restaurant in the area. Such portals can indefinitely store almost
every piece of information that passes through their system, including name,
delivery address, phone number, food habits, and payment information. The
information may not be disclosed to marketers and third-parties, but at the same
time, is not proactively deleted. A restaurant’s digital security may also not be a
high priority. Physical eateries also record all reservations, orders, billing, and
customer mannerisms and preferences. With the objective to enhance customer
experience, this data can be quite comprehensive and accessible to most employees
of the restaurant.

On his way back home, Bob stops by a store to replenish his supplies. His
retailer membership card allows him to get discounts and coupons. The same card
also lets the retailer profile Bob, his buying habits, and tendencies. The retailer can
also track Bob inside the store through his smartphone, and later send out special
coupons for items that Bob spend time looking but did not buy. Once back at home,
Bob spends some time on the Internet. Most sites he visits use some form of user
tracking, often in the form of beacons, cookies and browser fingerprinting. Bob’s
expenditure habits, on the Internet or in physical stores, are all well summarized in
his credit report. Other businesses can also look at this data with little forewarning.
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After a tiring day, Bob decides to play a few rounds of Madden on his XBox.
Data on practically everything Bob does on the XBox Live service is collected,
including the games he plays, the music and videos he purchases and
listens/watches, and even samples of his voice if he uses the voice recognition
service. Usage data is also collected when Bob interacts with other services such as
iTunes, Amazon MP3, Spotify and the likes. Right before ending the day, Bob
reads a book on his Kindle, which can monitor his reading habits, type of books he
likes, and even offer special deals. Throughout the day, Bob also did some vol-
untary data sharing through status changes, comments, and posts in online social
networks.

Clearly, an average individual is unlikely to be aware of all small data bits that is
being tracked. A single technology, such as the mobile device, is also not
responsible for making this possible; although, much of this has become possible
due to the advances in one or another form of mobile technology, and the increasing
usage of mobile devices. A full assimilation of the collected information is perhaps
not feasible for a single commercial entity, but the push in Big Data mining
activities do leave the possibility open.

10.3.2 Data Collection

Mobile devices have changed how people access information on the Internet.
Typical desktop usages are interactions that a user initiates to find the desired
information, often well in advance. With the vast proliferation of mobile devices,
information access has become more reactive, where a user performs an action at
the time when it is needed. Therefore, locality and usability of the served infor-
mation has become an important feature of mobile applications. This also implies
that many applications require metadata about the user in order to serve information
that is relevant in the current context of the user. A mobile device being a personal
companion, obtaining data corresponding to the specific user in question is also not
difficult. This driving force has resulted in massive data collection exercises about
users, and seems to have blurred the line between what is necessary for the
application and what is simply extraneous.

10.3.2.1 Implicit Collection

Most of the basic voice and messaging features available in a mobile device are
exclusive to mobile devices. It is only when a device is used to exchange infor-
mation with an application server on the Internet, a mobile device’s functionality is
more like a portable computer. For a mobile device to be able to provide call,
text/picture messaging, and Internet services, certain features such as call details,
cell tower in use, text message details, and IP session and destination information
are visible to the mobile carrier. Such data has huge marketing value. Since the
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phone number is a pseudo-identifier of the person/family, call records can reveal
who we call, who calls us, as well as the locations from where the calls are made or
received. They can also reveal the identities of our friends, the doctor we visit often,
our vacation plans, the financial institutions we deal with, and even our favorite
handyman. In the United States, voice, messaging and IP data can be retained from
3 days to 7 years depending on the carrier and type of information [39]. Long-term
retention of such rich data poses one of the most severe threats to privacy.

10.3.2.2 Pertinent Collection

Mobile operating systems make it possible for an application to access software,
hardware and user-specific features for proper functioning. For example, a typical
social networking application in Android can specify the following elements in its
manifest file.

Once granted, the permissions enable the application to access the GPS module,
location approximated based on the radio signal strength, the Internet, the camera,
the user’s profile stored in the device, and record audio. This data is also pertinent
in the context of the application, without which the full potential of the application
cannot be realized. However, once an application receives access to the requested
data, the operating system loses control of how the data is used, and does not
prevent the application from storing it or forwarding it to its servers.

When reviewing the pertinence of a data request, a question that we often fail to
ask is whether the granularity of the requested information is critical for the
application to offer its services. We exemplify this observation using the GPS
access permission that a location-based application is likely to request. At first
glance, it is unlikely that a location-based application can function without
accessing the location feature. However, will the information generated by the
application change substantially if accurate location data is not provided? For
example, a weather application can retain its accuracy even by using an area code.
For a non-trivial example, consider a local search application that helps the user find
points of interest in the vicinity of the user’s location. Although location is an
important component in obtaining relevant results, local search services utilize a
number of other factors (popularity, cost, references, etc.) to determine relevant
results. Search results are also unlikely to change instantly due to movement of the
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user. Even in dense cities such as Los Angeles and New York, search results for the
ten nearest Starbucks locations can stay invariant for areas as large as 87 km2. [6].

Similar to the implicit data collected by network carriers, application specific
data collected by application providers also have huge marketing value. Unlike the
case of call records, whose sharing is heavily governed by federal legislations, data
collected by application providers is very likely to be used for business gain.
Potential (mis)uses of the data is invisible to the user, thereby opening up privacy
concerns.

10.3.2.3 Extraneous Collection

Extraneous data collection refers to the activity where an application accesses
information in the device that cannot be rationally attributed to the functioning of
the application. A flashlight application accessing the user location, the contact list,
the calendar, or media files is an example of extraneous collection. Clearly, the
motivation here is not service quality, but creating a rich database of user data.
While in some mobile operating systems, requests for such access can be denied at
the time of access and still keep the application running, in others, the application
must be granted all requested permissions prior to its execution. The latter design
forces the user to comply with extraneous data collection requests, effectively
foregoing privacy expectations.

Another potential issue arises when permission requests are added during the
upgrade of an application. Early versions of an application are restricted to pertinent
data collection; however, extraneous permissions may be added as upgrades are
released. A user may be tempted to permit the extraneous collection simply to avoid
the hassle of learning a new application. Such practices can lead to a user weighing
down on privacy over time. Extraneous data collection can be performed by the
mobile operating system vendors as well.

10.3.2.4 Web Tracking

In addition to data collection through mobile applications, user behavior tracking on
the mobile web is an increasingly growing trend. Behavior tracking in the con-
ventional Web is a well-known phenomena [24]. As web services grow in diversity,
and vendors start offering entire product suites, the ability to monitor user viewing
habits across the range of services is unquestionably an advantage. Various forms
of web technologies are used for this purpose. The most common of these are
cookies, which are small pieces of text data stored in the user device by a browser at
the request of the web server. The data stored in a cookie can be a simple identifier
(such as an IP address) of the user, along with details on the actions performed by
the user at the web site. When the user visits the web site, or a companion site, at a
later time, all previously created cookies can be retrieved from the user device and
prior actions of the user can be extracted from them. Cookies can be disabled and
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deleted by the browser upon request by the user. An alternative is to use a web
beacon, which can be a tiny (1 pixel by 1 pixel) image placed on web sites across
different services. When a user visits the different web sites, the browser will
request this particular image, and pass along metadata about the user as part of the
request. Although not as flexible as cookies, web beacons can be used to track a
user’s browsing activity page by page, site by site.

All of the user-tracking technologies in the conventional Web can also be
applied in the mobile Web. The mobile ecosystem is host to a number of appli-
cations that engage in data collection, often much personal than that is currently
possible through a web page. When such data also become available to vendors of
the web services, supposedly anonymous activities on the web can be linked with
user profiles (and identities). A mobile browser can itself have access to multiple
sensor data from the device (not possible in the conventional setting), including
location, camera, microphone, and personal data such as calendars and contact lists.
Efforts are ongoing (see Mozilla WebAPI1) to design Web APIs that allow web
applications to access device hardware and other data stored in the device at a much
granular level.

10.3.3 Data Leaks

Users of mobile devices are often made aware of the type of personal data collected
by an application. The sandboxed model of data access in mobile operating systems
makes it difficult for an application to bypass a user-consent dialog when accessing
data that is deemed sensitive by the system designers. However, the data, once
collected by an application, may be shared with (or leaked to) parties that are not
directly authorized by the user.

10.3.3.1 Business Policy

The most common form of data leak is in fact a totally legal, user-authorized form of
data sharing. A careful scrutiny of an application’s privacy policy can reveal that the
data collected from the device is not only used to improve the services of the appli-
cation, but can also be shared with entities that support the execution of the different
services pertaining to the application. For example, a section of the Facebook data use
policy reads as follows.

We give your information to the people and companies that help us provide, understand and
improve the services we offer. For example, we may use outside vendors to help host our
website, serve photos and videos, process payments, analyze data, conduct and publish
research, measure the effectiveness of ads, or provide search results. In some cases we provide
the service jointly with another company, such as the Facebook Marketplace. In all of these

1https://developer.mozilla.org/en-US/docs/WebAPI.
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cases our partners must agree to only use your information consistent with the agreement we
enter into with them, as well as this Data Use Policy.

Any user using an application agrees to its terms and conditions, in other words,
grants permission to the application provider to share the collected data. In 2010,
the Wall Street Journal published an article on the data being collected by some of
the most popular applications and games in the iOS and Android platforms, and the
subsequent automatic sharing of the data with other vendors [37]. The study used a
man-in-the-middle attack2 to observe which applications collected features such as
username, password, contacts, age, gender, location, phone ID and phone number
of the user, and to which other vendors this data is sent. A standard issue here is that
details on the identity of the third-party service providers are often missing in the
policy declaration. Hence, it is difficult to evaluate if the security infrastructure of a
third-party provider is as good as that of the trusted application provider. It is
argued that the anonymity of individuals is retained by sanitizing the shared data of
personal identifiers such as names and addresses. However, quasi-identifiers such as
age, gender and zip code are often sufficient to identify a person by
cross-referencing with other databases [3, 15, 29, 30]. In addition, given that a
mobile application can be developed and deployed by any developer, most of them
do not have a privacy policy.

10.3.3.2 Permission Leaks

A second potential for data leak can originate from the functional design of the
software application. An ill-designed application that has permission to access
personal data content may erroneously leak the data to other applications. For
example, an Android application can use the services of a map application to
display the current location of the user. The application can request the service with
two simple lines of code.

Intent intent ¼ new IntentðIntent:ACTION VIEW;

Uri:parseðgeo : 0; 0?q ¼ 34:99;�106:61ðCurrent LocationÞÞÞ;
startActivityðintentÞ;

While potentially harmless, this action can lead to a permissions leak, if the user
only trusted this application with the precise location co-ordinates. The mobile
operating system will not intervene in this case, since the map application is not
attempting to obtain the data from the system. Mobile applications also implement
handlers for many of the services they may provide to other applications. For
example, an application with access to the contacts data in the device can serve it to

2An attack where an eavesdropper intercepts messages between two parties, and relays them either
after simple observation or after modification, without detection by either party.
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other applications. This can be a legitimate and useful action, but handlers that
serve requests to such permission-protected data may have been left open for access
by any application. Ideally, any interface that provides access to
permission-protected data should be subjected to the same permissions as that of the
data. In our example, if the user’s permission is required to access the contacts list,
then permissions should be set in the manifest file to protect access to any public
method that accesses the contacts data.

10.3.3.3 Leaks via Embedded Content

Mobile applications can embed content of different types in their user interface.
A free version of an application, for example, may embed advertisements from
mobile marketers, or a mobile web page can be composed of elements collected
from multiple sources. Consider a user interacting with an online shopping appli-
cation. The user shares some personal information such as age, gender, and loca-
tion, with the application in order to customize the search results. The shopping
application returns useful results to the user, along with a pertinent advertisement
from an ad-network. This observation is also typical in web browsing sessions.
The HTML pages returned by such web servers often include embedded requests
that encourage the browser to ask for advertisements and images from third parties.

Many of the current web-based applications expose web APIs that allow any
other application to request content in the form of formatted objects by using
standard HTTP protocols. Web APIs also make it easy for the calling application to
pass parameter values to the web application. For example, once connected with the
googleapis:com server, an application can request the translation of the word
“Hello” to Spanish using the following request.

GET =language=translate=v2?q ¼ Hello&target ¼ spanish HTTP=1:1

A mobile application can use the web APIs exposed by an ad-network to retrieve
advertisements (or other content) and in that process, leak private information, if
user-specific data is included as parameter values in the request. When an online
shopping application generates a request such as

GET =adj=. . .product; age ¼ 30; gnd ¼ 1; zip ¼ 12345;. . . HTTP=1:1;

it leaks demographic information about the user to the ad-network, and poten-
tially in unencrypted form. Request parameters can also include device identifiers,
account preferences, and other forms of user data generated as part of the inter-
action process. While a single occurrence of such leaks is probably not concerning,
if a single entity provides such services to a large and diverse set of applications,
then tracking a user’s activities across different types of applications becomes
possible.
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10.3.4 Data Interception

Signal interception, or eavesdropping in popular terms, is a threat to any form of
private data exchange, and has raised concerns in technologies such as phone calls,
text messaging, and emails. All data originating from a mobile device finally has to
travel to the base station, from the base station to the MTSO, from one MTSO to
another, and then from an MTSO to the public telephone network or the Internet
infrastructure. All points in the flow are vulnerable to a man-in-the-middle attack,
where an entity can intercept the signal, analyze it, block it, and in some cases
modify it.

The 3G security specification (3GPP TS 33.102 V12.0.0 2014-03) requires that
the mobile network and the device compare their ciphering capabilities to establish
an encryption algorithm for use during communications. The specification gives the
option to agree on unencrypted communications if the device and network agrees
so. Because of the requirement to be backward compatible with the GSM security
architecture (still predominantly in use), the ability to use unencrypted communi-
cations is still retained. With capabilities available for the network to choose an
encryption algorithm, an adversary can set up a false base station in a localized area
and force communications to be unencrypted. The false station can also continue to
provide connections to the actual network by forwarding incoming content through
a valid channel that it has established with a real base station. As a result, the
adversary is able to observe all data originating from any device connected to the
false base station. Also, since a mobile device automatically drops to a 2G network
when a 3G network is unavailable, possibilities exist to force devices to use the 2G
network by jamming the 3G frequencies. It does take considerable expertise to set
up such a system; however, not outside the reach of law enforcement organizations
and individuals with the required skills.

The most vulnerable portion in the communication path is when the data reaches
the core network of the provider after the radio-based network. The internal
infrastructure of telecommunication networks is often not encrypted. Starting from
the cell base station site, to the telephone switching network, data flows through
physical mediums such as wires, switches, servers and other mediums. Any raw
data (basic voice/messaging and unencrypted application content) traveling through
these nodes is susceptible to passive monitoring by an employee, a hacker who has
compromised an intermediate server, or an agency who is lawfully allowed to
intercept user communications.

10.4 Privacy Solutions

Multiple solutions to the potential privacy breaches that can emanate from data
collection and tracking methods have been proposed. We will explore them under
three headings (a) developer guidelines: best practices that an application developer
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should follow to respect and protect the user’s personal data (b) user options: the tools
available and proposed to enable self-regulation and (c) application architectures:
novel technical solutions to execute common types of mobile applications, yet
without requiring personal data disclosures. Solutions discussed under developer
guidelines correspond to some of the issues mentioned in Sect. 10.3.2, and those
under user options correspond to the issues in Sects. 10.3.3 and 10.3.4. The efficacy of
all these techniques remains to be tested. Potential privacy issues in mobile devices
are identified on a regular basis; although, solutions for their resolution are designed
and enforced at a much slower pace. Given this widening gap, it is worth pondering
whether personal privacy is indeed on its way to becoming a “thing of the past.”

10.4.1 Developer Guidelines

Developers of mobile applications are the first party responsible for protection of
user data. Every mobile operating system provides security features to restrict
access to personal data, but their proper use can only be guaranteed by the
developers. As such, vendors that provide the application development frameworks,
such as Google3 and Apple,4 have guidelines for building trustworthy applications.

A privacy-sensitive application is transparent about the type of data collected
from the device and how it is subsequently used. A clearly written privacy policy
can go a long way in earning the trust of users, and getting the requisite access to
make the application function. It has also become important to educate users why a
certain piece of data is important for the application. Extraneous data collection
should be avoided as they do not serve any useful purpose for the user. Collection
of identifiers such as IP addresses and unique device identifiers also put the user at
privacy risks. Similarly, if third-party sharing will be performed, a clear explanation
should be provided about what will be shared, why is it necessary, and who it will
be shared with. More details are better, but in a concise manner.

Whenever possible, applications should be developed assuming limited access to
user data. Therefore, developers should include alternative control paths for cases
when a user is not willing to share a certain piece of data. This enables the user to
assess if the limited functionality of the application is still acceptable, and also
enhances the user’s trust in the application. Requesting access to sensitive data at
the time when it is required also helps the user to understand the context in which it
will be applied. On the other hand, asking for a set of permissions prior to usage
only raises suspicion. It is common in open-source environments to reuse code
written by other developers; it is critical to understand if the borrowed code follows
the data access rules set forth by the developer.

3http://android-developers.blogspot.com/2010/08/best-practices-for-handling-android.html.
4https://developer.apple.com/library/ios/documentation/iphone/conceptual/iphoneosprogramming
guide/AppDesignBasics/AppDesignBasics.html.
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As far as possible, data logging and data storage on offsite servers should be
avoided. Storage of data opens up possibilities for misuse later, some of which may
directly impact the privacy expectations of the user. If data storage is crucial for the
application, developers should determine the largest possible granularity of the
information that the application requires–GPS location or postal code, phone
number or area code, user details or username–and employ encryption techniques to
ensure that the information is not visible on its route to the server.

Privacy oversight bodies also suggest that mobile application platforms (oper-
ating systems) should set requirements for developers to follow before their
applications can be approved for distribution [10]. For example, dialog boxes used
to obtain access permissions can be designed to obtain a one-time or a persistent
consent. Platforms should also provide an informative dashboard where users can
review existing permissions, logs of when applications accessed their data, and
modify/revoke permissions if necessary. There should also be ample notification
given to the user when personal data is being accessed, preferably through the use
of icons in familiar locations of the user interface. Custom-built firmwares such as
the TaintDroid [9] do make such notifications possible. However, these tools are
mostly research prototypes, difficult to install for a novice user, and are not
maintained by the mobile operating system vendors. As such, their availability and
adoption in the long run are questionable.

10.4.2 User Options

User controls are available in most mobile platforms to help regulate what an
application can learn about the user from the device. A platform such as Android
requires a user to provide explicit permission to access all requested features before
an application can be installed, while platforms such as the iOS ask for the per-
mission when the application tries to access the sensitive data. The two models are
different in terms of when they engage the user to make a decision, one giving the
option to the user to review all information that the application will attempt to
access, and the other allowing the user to potentially understand how the infor-
mation will be used. Despite the differences, it must be noted that the user only
controls access to data features that the platform designers have marked as sensi-
tive. An application may be collecting other forms of personal data that do not
require user permission. Some applications may assume that the user is always
willing to share such data (default opt-in), while others assume that permissions are
required for all kinds of access (default opt-out).

Besides the ability to review permissions during installation or just-in-time, users
also have the option of changing permissions in certain platforms. The iOS platform
provides a privacy dashboard that allows the user to enable or disable permissions
of an application for features such as location, contacts, calendars, and microphone.
Other systems may only allow viewing of permissions, with little or no option for
the user to revoke single permissions. It is important for users to explore what
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privacy options are provided within the application itself. For example, a social
networking application can provide controls to choose what category of other users
(no one, friends, friends of friends, or everyone) can view the text, pictures, and
videos posted by the user; a local search application can provide the option to use
location approximations instead of precise GPS coordinates; in general, an appli-
cation may require the user to tune the preferences so that it can perform within the
privacy expectations of the user. By doing so, users may also be able to turn off
extraneous data collection activities of the application, especially in platforms that
do not allow permission modification. Research proposals also exist that analyze
the application ecosystem in a mobile device to determine if permission leakage is
possible during the execution of an application. Proof-of-concept tools such as the
SCanDroid [13] can statically analyze if it is safe for an application to run with
certain permissions, provided that data may flow in or out of other applications with
different permission levels.

In order to prevent third-party tracking, a user may choose to disable cookies and
scripts, or use the private browsing modes now provided in many browsers.
However, disabling of cookies may also disable the functionality expected from
certain web interactions, for example an online shopping experience. Technologies
such as opt-out cookies and AdChoices notifications can help the user to proac-
tively request a third-party to refrain from tracking, or reactively become aware of
how a third-party may be tracking the user.

Opt-out cookies are similar to regular cookies, but they are placed by the user to
be read by tracking websites. Trackers that honor such cookies always attempt to
read opt-out cookies before storing and serving content corresponding to the users
personal data. However, opt-out cookies have to be periodically renewed by the
user, and may get removed while deleting other cookies. If an ad-network is instead
enrolled in the AdChoices program, the user can learn more about the provider of
an advertisement and also install opt-out cookies from provided links. Under such a
program, the displayed ads embed a small text and graphical icon, clicking on
which reveals details and opt-out links for the ad’s source. Blocking tools are also
available that consult public lists of third-party networks, and block content orig-
inating or addressed to such sites. Browser extensions are the most popular methods
of executing such blocking tools.

Mobile operating systems have started deploying a unique user-specific identifier
called an “advertising ID.” An application can use it as a pseudonym for the user,
although it is not as strongly tied to the user as a device identifier, and can be reset
or disabled by the user. Both iOS and Android systems provide this feature so that
developers can monetize their applications, and users have the control to protect
their privacy by periodically breaking, or opting out of, tracking attempts carried by
the application and associated third-parties. The World Wide Consortium (W3C) is
also standardizing Do Not Track, which is a method that can be used by users to
signal web sites about their tracking preferences. A simple implementation is by
using an extra element in the HTTP header that browsers send while requesting web
pages. For example, the presence of the header DNT : 1 can tell the web site that
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the user does not want to be tracked. However, it cannot be guaranteed that the web
site will honor the request.

Protection against eavesdropping is possible using encrypted communications at
various points of the communication channel. Users can choose to install
end-to-end encryption solutions to prevent eavesdropping on their communications.
Applications such as Cellcrypt can encrypt voice communications and text mes-
sages between two parties running the application. Such applications do not use the
typical channels used during voice calls, but instead use the data channel to send
communications as encrypted data, and then decrypt them at the other end.
Therefore, depending on the data coverage, calls may be noisy. Incorporation of
encryption technologies within the mobile network itself can free this dependence
on data coverage, and provide protection against outsiders in basic services such
voice calls and text messaging. Similarly, although proposals based on
mix-networks and pseudonyms are available to hide the cell of a mobile device
from the carrier [11, 23], they lack any real world deployment.

10.4.3 Application Architectures

Privacy solutions discussed so far rely on the adoption of best practices by the
developer, and on the user being responsible about evaluating and regulating access
to private data. A third method is to employ technical solutions such that private
data is not directly available to an application, albeit the application can still provide
the services. As such, methods in these categories are crafted to take advantage of
an application’s specific data requirements, and do not necessarily generalize to
other applications. We will consider five prominent application types in this dis-
cussion, namely local search, friend finder, online social networking, navigation
and web browsing. The solutions presented require significant modifications to
existing application architectures; this can be one of the reasons why their adoption
in practice is slow or non-existent.

10.4.3.1 Local Search

In a mobile local search application, the user specifies a search term signifying the
type of objects (e.g. cafe, pizza, gas station, etc.) of interest, and the application,
with access to the location of the user, retrieves the top few objects that match the
user’s query. The selection of these top objects is based on multiple factors. For
example, selection of result objects in the Google Places [32] application is driven
by two factors, namely the distance of the objects from the user’s location and their
prominence. The prominence of a POI is derived from multiple subfactors such as
reference counts, highest score of objects that refer to this object, number of user
reviews, and the extent of services offered, among others. The private data to be
protected here is the location of the user.
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An extensively explored method is to use the services of a trusted third party. In
such a method, it is assumed that the users trust a third party with their location
data, which in turn communicates with the application provider to retrieve results
on behalf of the user. Since the trusted party will have access to the locations of
different users, it can issue local search requests by specifying a region, instead of
precise GPS coordinates. The region can be formed such that, at any given point in
time, it includes multiple users [14, 18]. Such a “cloaking” region can also be
formed to satisfy other properties: the number of still-object counts must also be
above a user-specified threshold [2], the query terms corresponding to users in a
region should be diverse [5], or the profile of users in a region should not be similar
[35]. It is usually difficult to determine who the trusted party should be, and also
introduces a single point of failure in the system. A compromise of the trusted party
can compromise the location data of multiple users. Most of these techniques apply
in the context of local search. Technical solutions for private local search assume
that distance is the only factor used to determine the relevance of objects; unfor-
tunately, it is only one of many factors, because of which the solutions are not
easily applicable in a real application. A few recent proposals have appeared where
it is treated more practically, but demands more exploration [7].

10.4.3.2 Friend Finder

Friend finder applications notify users when their friends (users included so in the
application) are in close proximity. Applications such as Foursquare, Facebook’s
Nearby Friend, Find My Friends!, and other social networking applications provide
such a feature. Finding nearby friends privately is referred to as “private proximity
testing” in the literature, where the objective is to determine if two users are
geographically close to each other without revealing the location of either user to
the other. Such a problem can be reduced to a “private equality testing” problem
where the task is to determine if two values are equal, and no user will know the
value supplied by the other, unless they are equal. To perform such a reduction, the
geographic area is divided into three overlapping hexagonal grids, and the size of
cells in a grid is set subjective to a distance threshold [31]. Using a few encrypted
data exchanges, a private equality testing protocol will allow two users to determine
if they are in the same cell. The three grids help the users determine proximity even
if they are on different, but nearby, cells.

An alternative to using location in proximity detection is to use transient signals
from the environment. Referred to as “location tags,” these signals can be derived
from electromagnetic technologies such as Bluetooth, WiFi, GPS, and GSM, and
are collectively specific to a certain area [33]. A location tag can be viewed as a
vector of these signals, e.g. WiFi SSIDs visible to the device. An application can
compute the number of elements common in the location tags of two users, and
signal proximity when the number exceeds a certain threshold. To prevent inference
of the location of the user from the tag itself, “private set intersection” protocols can
be used [20, 22].
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10.4.3.3 Online Social Networking

Users of online social networking applications entrust the application with their
personal preferences and posts, and not simply the data that can be gleaned from the
device. The tools provided by the applications to control who can view the vol-
untarily shared content is often limited. In addition, their sharing with unknown
third-party affiliates is concerning. The use of public key cryptography to protect
the data is not scalable. Since users may want to share different content with
different users, they will be required to keep multiple copies of the encrypted
content, will be unable to easily share content with a group of users, or must have
already exchanged cryptographic keys prior to sharing. A solution to this problem is
to encrypt the content with respect to an “access structure” [1]. An access structure
is simply a logical expression of attributes that define a certain group of users, e.g.
ðneighbor OR football fanÞ. Any user with access to a decryption key with respect
to this structure, and has the attributes that satisfy the logical expression, can then
view the content. This form of encryption is known as attribute-based encryption
[17]. The encrypted content resides with an untrusted third-party. Removal of a user
from a group will require that other users of the group are given new secret keys.

The privacy issues surrounding online social networking applications are pri-
marily due to the centralized collection of user data. Decentralized architectures can
diffuse such concerns. In a trivial implementation, the user’s device can be the data
storage location, and other users can view shared data by querying the device.
Clearly, this method can have availability issues. As an extension, the data can be
replicated across other locations, either in encrypted or in clear form. These loca-
tions are chosen based on a trust index assigned by a user to other users [4]. The
solution does involve a third-party who can help manage pseudo-identifiers for the
users, and connect and find them.

10.4.3.4 Navigation

Phone-based navigation has gained wide popularity in mobile devices with the
introduction of GPS capabilities and the Internet in the devices. Services such as
Google Maps, and applications such as Waze are typical examples. The ability to
use real time traffic information in route determination has significant advantages.
Privacy issues emanate because the routing service must know the origin and
destination to compute the best route, as well as know intermediate locations to
dynamically update the route. In essence, the routing service can track the places
visited by the user. Privacy preserving navigation is a relatively new area of
research, and techniques are rare.

Assuming that the user’s device has the capability to store the topology of the
road network (in the form of a graph), the route can be computed directly on the
device. However, dynamic information such as traffic congestions, road construc-
tions, and accidents cannot be stored on the device. The problem then is to compute
the shortest route between the origin and destination nodes in the graph, using cost
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information from the service provider. However, the origin and destination nodes
cannot be revealed to the service provider. The service provider can compute the
shortest path for all pairs of possible origin and destination nodes, and store this
data as a four column database–start node, end node, intermediate node, and a bit
signifying if the intermediate node is in the shortest path from the start to the end
node [40]. Private information retrieval methods will then allow the user to query
the service provider if a certain neighboring node is in the shortest path. Such
retrieval methods provide querying mechanisms such that the service provider will
be oblivious to the row of data returned to the user [26]. Variants of the method
include designing the database so that the user can privately retrieve the next hop
with a lesser number of queries.

10.4.3.5 Web Browsing

Web-based services are becoming multi-party businesses, with advertisers, ana-
lytics services, social integration services, content providers, front-end services, and
hosting platforms working together to create the ultimate customer experience [28].
Of course, data sharing can happen uncontrollably in such a model. Earlier, we
discussed what options a user has to control this sharing. Several technical solutions
have also been proposed to design third-party services that can benefit the user
while preserving privacy. However, the coverage is mostly limited to online
advertising.

Services such as online advertisement can be made private by employing
anonymizing proxies [19]. The approach requires users to subscribe to advertise-
ment networks via a proxy server. The proxy server collects non-sensitive broad
demographics data from the users, assigns each user a unique identifier, and
retrieves relevant ads from the advertisement network. The unique identifier can be
used to track user activities. The proposal is similar to the concept of using
advertising IDs in iOS and Android. The use of an anonymizing network such as
TOR [8] is suitable in this context. User profiles are also created on the mobile
device so that the ads retrieved from the proxy server can be further filtered in the
device. Such profiles can also be released directly to the advertiser with permission
from the user [12]. This model is similar to how browsers request permission to
release the location (IP address) of the user when requested by a web site.

Ad auctions is another business paradigm that can be affected by Do Not Track
compliant applications. In an ad auction, advertisers submit ads to an advertising
network along with bids for their ad to be displayed to the user. The ad dealer
(advertising network) attempts to serve ads (to users) that have higher bids on them,
as well as a higher chance of being clicked. Calculation of the click chance requires
information about the web page being browsed by the user, ad keywords, user
search terms, and other characteristics describing the user’s actions. If applications
refrain from sharing such information with the advertisement network, ad auctions
cannot be performed. More specifically, the ranking of ads is not possible for the ad
network. However, assuming that the rank of an ad is a product of the bid and a
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score derived from user profile information, the ranking can still be performed
through the exchange of a few encrypted messages [34]. Opportunities exist for the
ranking to be done in the device, at the ad network site, or at a third party site.

The architectures discussed here are representative solutions for the application
types. Readers should use the citations provided to explore more related proposals.

10.5 Challenges and Opportunities

It has become clear through the above discussions that the usage of mobile devices
can potentially put a user at privacy risk. There have also been extensive attempts to
mitigate this risk. Nonetheless, privacy worries continue to grow in the mobile
arena, and technology and law has not been able to control the growth in collection
of private data. We highlight below some of the challenges that lie ahead of us, and
the opportunities they provide for new research directions.

Opinions on privacy. Enforcing any solution to a privacy problem in a mass
scale is a challenge. There is hardly any consensus on whether a technology is
privacy breaching or not. Businesses see value in the collection of user data as it
allows them to create services highly customized to the requirements of the user.
The individual users are divided in opinion–some do not mind sharing their
information, while others are skeptical about sharing even broad demographics.
Given this broad set of perspectives, neither a purely restrictive nor a discretionary
solution will be adopted in practice.

Disclosure with consent. It is understood that data leakage is a concern.
However, no simple solution exists to curb the leakage. Privacy policies tend to
throw a big net to cover almost any form of data, although much of it may not be
necessary or is not collected from the user. However, it is equally important to
understand that an application that seeks consent for every small piece of data it
records will undoubtedly create usability issues, and will not be accepted by users.
Current methods to engage the user in the permission process are limited to a select
few types of data. The question remains open as to when and how often the user
should be asked for permission to access personal data.

Granularity in disclosures. Current mobile systems have adopted a binary
method of controlling disclosure of information. An option is available either to
disclose information in the least granular form, or not disclose at all. Similarly,
applications are developed to operate with the most precise version of a piece of
data, or not use it at all. This binary design forces the user to choose between using
an application as it is or disregarding it. There exists opportunities to design
fine-grained controls for data disclosures, and applications that can gracefully
degrade in services based on a chosen disclosure level.

Mobile hardware. Research on privacy-preserving architectures for modern
mobile applications started a decade ago. Many of these architectures try to pre-
serve privacy by significantly augmenting the server-side functionalities, or
engaging an intermediate party to perform computationally expensive operations.
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The motivation for doing so is justified, given that mobile devices have only
recently become powerful enough to be considered full fledged computing plat-
forms. The state-of-the-art in the processing capabilities of mobile devices was
around 400 MHz in 2007 (e.g. the 32-bit RISC ARM in the first iPhone), which has
grown exponentially to support multicore systems with clock speeds of up to
2.5 GHz in 2014 (e.g. the Snapdragon 801 on the HTC OnePlus One). These
advances in the computing power of mobile devices are yet to be availed in novel
privacy preserving architectures. They may also prove to improve the performance
of otherwise slow methods. Engaging the mobile device also allows for a more
scalable architecture, since the computations will be highly distributed.

Using existing infrastructures. A number of technical solutions do exist to
execute some of the prominent type of mobile applications and services in a privacy
preserving manner. However, they involve complex architectures and data
exchanges that are not typical in existing implementations. Heavy investments have
already been made to deploy these implementations, and large user databases have
already been created through such implementations. It is therefore unlikely that
existing infrastructures will be discarded in favor of user privacy.
Privacy-preserving solutions will have better chances of adoption if they can be
executed using already existing server-side components. It is also important that
solutions stay close to real world design trends and assumptions. For example,
while local search trends continue to rise, the wide array of location privacy
solutions seem unusable since most of them solve a nearest-neighbor problem,
instead of a top-neighbor problem. Similarly, many solutions are based on using
encryption to privately match two individuals in an online social network; albeit the
sophisticated key management components necessary to achieve it in practice are
missing in existing applications.

Providing data transparency. Application developers often do not implement
each and every component in their design. In open-source environments, it is
common for a developer to borrow code written by other developers. Many vendors
also supply software development kits (SDK) that provide core libraries, debuggers,
emulators, and sample code in order to make app-development easier. APIs are also
available to interface one application with another. However, any code that exe-
cutes as part of an application also inherits the access permissions granted to the
application. Therefore, even if the developer’s code is not actively collecting any
data, the developer cannot assure that the library/API calls in the application are
also not performing it. This prevents the application from being transparent about
its data collection attempts.

Eco-system diversity. Current applications let users perform more than just a
single task. For example, a news application pulls articles of interest from different
sources. It also allows the user to share an article via one of many social networking
platforms. It displays advertisements for trade magazines and periodicals based on
the articles often explored by the user. It can help a group of readers in a locality to
get together in person to discuss a story they all have been following closely. In
other words, a news reader application also has components like a social net-
working application and a local search application, and is also an advertising
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platform. Given this diversity, will it be possible to enforce a privacy method that
can cater to the requirements of all components? The technical solutions we dis-
cussed are in fact very specific to an application type! It is also unknown if different
privacy solutions can work in conjunction to provide the necessary guarantees from
all components of the application.

Privacy from carriers. Network operators routinely collect metadata on the
traffic flowing through their networks. Ensuring the privacy of data collected at
these operators is a difficult task, partly because the data must be visible to the
carrier in order to route traffic, and partly because “lawful interception” rules
require the operators to leave avenues open for interception. Interception technol-
ogy has also become commonplace. Encrypted communications ought to be a
standard in such environments, but lacks adoption in majority of applications.

Mobile privacy interface. Privacy disclosures often take the form of lengthy
documents. Application vendors have shown effort in making them understandable
by minimizing the amount of legal terminology. While this is certainly encouraging
in desktop systems, it is not sufficient in a mobile interface. Mobile devices are not
suitable for extensive reading, and the privacy policy should not become a long
reading exercise for the user. Innovative designs are necessary to compress the most
important parts of a mobile application’s privacy policy, and present it using
visualizations, instead of text. Standardizations for the format of a privacy policy
are also required to facilitate fair comparisons. Besides the presentation of a privacy
policy, interfaces are also required for users to review permissions, data access logs,
and take actions accordingly.

Quasi-identifiers. Data collected from a user’s mobile device do not pose a
privacy threat to the user if it cannot be associated back to the user. The association
is trivial if the collected data has personally identifiable information with unique
identifiers (e.g. device ID). It is argued that without such unique identifiers the
association is not possible, and hence privacy guarantees can be provided for any
application that does not collect personally identifiable information. Such a per-
spective is flawed, since non-identifying information can sometimes uniquely
identify an individual, especially when they are used in combination. This has been
demonstrated many times, over different forms of data. Unfortunately, no technique
exists to determine if a certain type of data can be used as a quasi-identifier, and if
so, what contribution will it play in the identification. The challenge is in knowing
how much sharing a user can do before becoming identifiable by the shared data.

Privacy by design. Mobile applications are developed by a wide spectrum of
developers, ranging from novice programmers to dedicated teams of professional
software developers. Most applications are designed with the objective of gener-
ating revenue, either directly from the user, or indirectly through advertisements or
data sharing. Privacy is not an active part of the design of the application, and is
added as a supplement at the end of the design cycle. This makes it difficult to
restructure the data and control flow in the application once a privacy threat is
identified. Privacy efforts in the application development cycle ought to be more
proactive and user-centric. An application should have privacy settings enabled by
default, and should attempt to accommodate all privacy expectations of the user. In
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fact, privacy should be a core functionality in the application, and be embedded in
the design from the very beginning. However, application development can be
prolonged if such requirements are to be met. An application developer may also
not have the training necessary to accomplish such extensive design objectives.

10.6 Conclusion

Mobile devices will dominate the personal computing arena in the years to come.
For businesses, this platform provides a rich environment to learn more about the
user’s intentions, likes, and dislikes, and use it to create custom experiences for
every user. Mobile applications engage in the collection of varied types of user data,
such as demographics, location, and behavior, and have been found to share it with
multiple third-party service providers. This opens up a number of privacy concerns
since users are no longer able to control who sees their data, and how it is used.
Solutions based on best practice guidelines, public awareness, and novel
privacy-preserving algorithms have been proposed to cater to such concerns.
Unfortunately, their adoption has been slow, leaving behind a number of challenges
to address. An effective solution will require application providers to consider
privacy during design, users to be aware of available privacy options, and
researchers to involve the existing infrastructure as much as possible in novel
proposals.
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Chapter 11
Privacy in Biometric Systems

Hisham Al-Assam, Torben Kuseler, Sabah Jassim
and Sherali Zeadally

11.1 Introduction

Biometrics are physiological and/or behavioral characteristics of a person that have
been used to provide an automatic proof of identity in a growing list of applications
including crime and terrorism fighting, forensics, access and border control,
securing e-/m-commerce transactions, and service entitlements. In recent years, a
great deal of research into a variety of new and traditional biometrics has widened
the scope of investigations beyond improving accuracy into mechanisms that deal
with serious concerns raised about the potential misuse of collected biometric data.
Despite the long list of biometrics’ benefits, privacy concerns have become widely
shared due to the fact that every time the biometric of a person is checked, a trace is
left that could reveal personal and confidential information. In fact, biometric-based
recognition has an inherent privacy problem as it relies on capturing, analyzing, and
storing personal data about us as individuals. For example, biometric systems deal
with data related to the way we look (face, iris), the way we walk (gait), the way we
talk (speaker recognition), the way we write (handwriting), the way we type on a
keyboard (keystroke), the way we read (eye movement), and many more. Privacy
has become a serious concern for the public as biometric systems are increasingly
deployed in many applications ranging from accessing our account on a smart
phone or computer to border control and national biometric cards on a very large
scale. For example, the Unique Identification Authority of India (UIDAI) has issued
56 million biometric cards as of January 2014 [1], where each biometric card holds
templates of the ten fingers, the two irises, and the face. An essential factor behind
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the growing popularity of biometrics in recent years is the fact that biometric
sensors have become a lot cheaper as well as easier to install and handle. CCTV
cameras are installed nearly everywhere and almost all smart phones are equipped
with a camera, microphone, fingerprint scanner, and probably very soon an iris
scanner.

Biometrics can be a very effective tool to keep us safe and secure, prevent
individuals from applying for multiple passports or driving licenses, and keep the
bad guys out or under control. However, the fact that we are surrounded by so many
biometric sensors does limit our privacy in one way or another. The price we might
have to pay for using many biometrics-reliant applications such as access control to
a building, authorizing payments in supermarkets, and public transports is the loss
of privacy as a result of being tracked in almost all of our daily life activities.
Furthermore, recent research into biometrics shows that more and more personal
information can be revealed from biometric data such as gender, age, ethnicity, and
even some critical health problems such as diabetes, vision problems, Alzheimer’s
disease, and so on. Such confidential information might be used, for example, to
discriminate between individuals when it comes to insurance, jobs, border entry
enforcement, and so on.

This chapter is mainly concerned with privacy issues and solutions surrounding
the use of biometrics as a means of recognizing individuals. As biometric security
and biometric privacy are strongly related, it is useful to highlight the difference
between these two topics first. Biometric security is concerned with protecting
biometric data against theft for impersonation of the owner of the biometric data.
Biometric privacy is concerned with preventing misuse of the biometric system for
purposes of tracing and gaining information that may result in the person’s loss of
civil rights, discrimination against the person, victimization, and/or even denial of
access to services.

The rest of this chapter is organized as follows: Sect. 11.2 provides essential
background information on biometrics, while Sect. 11.3 discusses several privacy
concerns about biometrics. In Sect. 11.4 privacy solutions proposed to address these
concerns are explained. Outstanding challenges and opportunities for future
research directions are discussed in Sect. 11.5.

11.2 Background on Biometrics

A reliable identity management system is a key component to preventing identity
theft and satisfies the increased security requirements in a wide range of applica-
tions ranging from controlling international border crossings to accessing remotely
stored personal information and assets. Establishing the identity of a person is a key
task in any such identity management system. Typically, there are three ways to
establish the identity of an individual, each of which has its own advantages and
limitations [2]:
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• Knowledge-based authentication or “something you know” that typically
relies on a memorized password or PIN (personal identification number).
A random and long password offers a strong security mechanism for user
authentication. However, in practice, humans have difficulties in memorizing
complex passwords, and passwords that they can easily remember are often
short and, therefore, simple to guess or determined by a brute-force/dictionary
attack.

• Object-based authentication or “something you have,” which relies on the
physical possession of an object, such as a token. The main drawback of a
physical token is that, when lost or stolen, an impostor can gain unauthorized
access.

• Identity-based authentication or “something you are,” that is, biometrics.
Biometric-based authentication offers an advantage over other authentication
factors in that a legitimate user does not need to remember or carry anything.
Furthermore, biometric-based authentication is known to be more reliable than
traditional authentication due to the fact that it is directly linked with the identity
of individuals. However, there exist several challenges, as we explain later in
this chapter, which make biometric systems far from perfect. For example,
unlike other credentials such as PINs, passwords, or smart cards, once biometric
related information is compromised, it is impossible to make this information
private again.

Biometric systems aim to identify or verify individuals’ identity based on
physical characteristics (e.g., face, iris, fingerprint, DNA, or hand geometry), and/or
behavioral characteristics (e.g., speech, gait, or signature). A typical biometric
system has two stages, enrolment and recognition. Figure 11.1 illustrates the pro-
cess of the biometric enrolment stage (the face image was used from the Extended
Yale Face Database B [3]), in which a user starts by presenting their biometric data
to a biometric sensor (usually in a controlled environment). If the quality of the
captured biometric sample is found to be adequate, the enrolment process proceeds
to a pre-processing procedure to prepare the sample for the next step. A feature
extraction technique is then used to extract a digital discriminating feature vector of
the individual, called biometric template (BT), which will then be stored (often also
called “enrolled”) alongside the individual’s identifier (ID) in a database.

Fig. 11.1 A typical enrolment stage of a biometric system

11 Privacy in Biometric Systems 237



At the recognition stage, biometric systems can function in two modes
depending on the application context, namely authentication or identification mode.

11.2.1 Biometric-Based Authentication

Biometric-based authentication (also known as verification) is a one-to-one com-
parison of a freshly captured biometric sample(s), known as query, against an
enrolled BT as illustrated in Fig. 11.2. In this mode, a user claims an identity and
the biometric system aims to verify the authenticity of the claimed identity (e.g., the
system answers the question: “Are you who you say you are?”). For example,
authentication might be used when a user wants to access his or her bank account or
computer. The matching process uses a distance or similarity function to calculate a
score indicating the similarity between the stored BT and the fresh feature vector
extracted from the query sample. If the matching score is high enough, that is, close
enough to the enrolled template, the biometric system grants access to the user.
Otherwise the requested access is rejected. The term “high enough” is determined
by the administrator depending on the level of tolerance necessary for the specific
application. This allows the system administrator to adjust the rates of false
acceptance (i.e., wrongly accepted imposters as genuine users) and false rejection
(i.e., wrongly rejected genuine users) to the desired levels. Typically, there is a
trade-off between the false acceptance rate (FAR) and the false rejection rate (FRR),
in which the reduction of one rate causes an increase in the other. Most biometric
systems are configured to be highly secure by maintaining a very low (e.g., 1 in
10,000) FAR and an acceptable FRR. In an access control system, for example, it
will generally be less problematic to have a false rejection by asking the genuine
user to re-scan their biometric, rather than a false acceptance in which an unau-
thorized individual will be granted access.

Fig. 11.2 Typical biometric system in authentication mode
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11.2.2 Biometric-Based Identification

Biometric-based identification is a one-to-many comparison of the query against all
templates in the database as illustrated in Fig. 11.3. In this mode, a biometric system
aims to identify an individual by searching the set of available identities or the
system returns “Not enrolled” if the matching module of the biometric system
cannot find the identity. Identification functionality can be further classified into
positive and negative identification. In positive identification, an individual attempts
to positively identify themselves to the system without explicitly claiming an
identity (i.e., the system answers the question: “Are you someone who is known to
the system?”). Positive identification might be deployed, for example, to grant
access to resources such as buildings or computers where the system knows the set
of enrolled users. In contrast, in negative identification (also known as screening),
an individual attempts to conceal their true identity and the system aims to answer
the question: “Are you who you say you are not?” Screening might be used by
national border agencies to check if a passenger’s identity is on a watch-list or by
authorities to prevent issuing multiple national ID cards, passports, or driving
licenses to a single individual.

Biometric systems such as face recognition can be deployed in identification and
authentication modes, depending on the application. For example, face-based
authentication can be used to provide access control (i.e., letting the genuine person
in), while face-based identification can also be applied as a “watch–list” system to
find some particular individuals in a crowd, that is, keeping the targeted people out.

11.2.3 Challenges in Biometric Systems

Over the years, a large number of biometric modalities (also called biometric traits)
together with a variety of feature extraction and matching schemes have been
investigated. The suitability of any biometric modality for an application depends
on several factors such as universality, uniqueness, invariance over time, measur-
ability, usability, and cost [4]. The challenges in biometric research activities have
expanded recently to include the maintenance of privacy and security of biometric
systems beside the traditional work to improve accuracy, scalability, and usability.

Fig. 11.3 Typical biometric system in identification mode
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In other words, the challenge in biometrics is to design a system that is highly
accurate, easily scalable to large datasets, convenient to use, and secure at the same
time. In what follows, several challenges of biometric systems are briefly explained,
leaving further detailed discussions on biometric privacy concerns to Sect. 11.3.

11.2.3.1 Biometric Accuracy

An ideal biometric system should have perfect accuracy, that is, it always recog-
nizes genuine users and rejects imposters correctly. However, in practice, a bio-
metric system can make four types of errors:

1. False non-match rate (FNMR), also known as false rejection rate (FRR), occurs
when two samples, for example, collected at different times, of the same bio-
metric modality of an individual are not recognized as a match.

2. False match rate (FMR), also known as false acceptance rate (FAR), occurs
when two samples from different individuals are incorrectly recognized as a
match.

3. Failure to enroll rate (FTER), occurs when an individual is unable to present
the required biometric modalities (e.g., because of a finger or hand cut), is
unable to interact correctly with the sensor, or the captured biometric samples
quality is very poor.

4. Failure to capture rate (FTCR), occurs when a biometric sample provided by an
individual during the recognition stage cannot be acquired or processed reliably.

In practice, these biometric errors can occur due to the following factors [5]:

• Noisy sensor data. Defective or improperly maintained sensors can lead to the
capture of low quality and noisy biometric samples, which results in a signifi-
cant reduction in the recognition accuracy by increasing the FRR of the bio-
metric system.

• Non-universality. A biometric modality can be considered universal when
every individual in a target population is able to present the biometric modality
for recognition. Although universality is an essential requirement, not all bio-
metric modalities are perfectly universal. The National Institute of Standards and
Technology (NIST) has reported that it is not possible to obtain good quality
fingerprint images from 2 % of the population, for example, people with
hand-related disabilities, manual workers with many cuts and bruises on their
fingertips, and people with very oily or dry fingers [6]. Non-universality leads to
higher FTER and FTCR in a biometric system.

• Inter-class similarity. This term is used to refer to similarity of biometric
samples from different individuals. It is strongly linked with the uniqueness of
biometric features and is indicative of discriminative ability of the biometric
modality (i.e., the greater the inter-class similarity the higher the FMRs).

• Intra-class variation. Typically, two biometric samples of the same individual
are always different, which results in FNM errors explained earlier. These
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intra-class variations may be due to improper interaction of the user with the
sensor (e.g., changes in rotations or poses), changes in environmental conditions
such as lighting conditions and inherent changes in the biometric modality such
appearance changes due to ageing or facial hair.

• Biometric scalability. Ideally, the number of enrolled individuals should have
no significant effect on the performance of the biometric systems in terms of
both accuracy and speed. When a biometric system is set up to function in the
authentication mode, scalability is not a problem because each authentication
attempt involves one-to-one matching, that is, matching the query with the
stored template of an individual. However, the number of enrolled individuals
has crucial impact on the performance of biometric systems in the identification
mode, where one-to-many matching is required to have a biometric sample
identified. For example, if the size of a database is a million, and each matching
requires 1 m, then the time required to identify one individual would be more
than 16 min. Therefore, biometric identification systems that operate on
large-scale databases involve some kind of filtering or indexing based on
extrinsic (e.g., gender, ethnicity, age, etc.) or intrinsic (e.g., fingerprint pattern
class) factors to prune the search procedure [7].

11.2.3.2 Security and Privacy of Biometric Systems

Public acceptance of biometric systems has a crucial impact on their success due to
potential or perception of misuse of the collected biometric data. The growing
deployment of biometric systems as a proof of identity tool for access control to
physical facilities, entitlement to services, and in the fight against crime and ter-
rorism has become a necessity in modern days, but it is also becoming a source of
privacy and security concerns. Traditionally, the focus of biometrics research has
been on accuracy, speed, cost, and robustness challenges, but gradually the scope
widened to security and privacy issues of biometric systems. Questions such as:
“What if my biometric data has been stolen or misused?” have recently attracted
attention not only to reassure users about privacy intrusion but also to prevent
misuse of stolen data.

Although a biometric-based authentication system is known to be more reliable
than traditional authentication schemes, the system is subject to failure due to
intrinsic factors mentioned earlier or adversary attacks. The security of biometric
systems can be undermined in various ways. For example, a biometric template can
be replaced by an impostor’s template in a system database or be stolen and
replayed [8]. As a result, the impostor can gain unauthorized access to whatever the
owner has authorized access to. Moreover, it has been shown that it is possible to
create a physical spoof starting from biometric templates [5]. For example, a “hill
climbing attack” on a biometric system can be used to generate a good approxi-
mation of the target template in a finite number of iterations [9]. It is also possible to
reconstruct fingerprint images from standard templates, which might then fool the

11 Privacy in Biometric Systems 241



fingerprint recognition system [10]. Furthermore, certain biometric data is not secret
and can be easily acquired without the knowledge of the user. Individuals usually
unintentionally leave (poor-quality) fingerprints everywhere such as on a glass, or a
hidden camera can capture an image of a face or iris [11]. In fact, the level of
secrecy and privacy varies greatly among different biometric modalities (e.g., the
covert acquisition of face images or voice samples is much easier compared to
collecting retina or palm vein samples). The effect of all these attacks on the
security and acceptability of biometrics are not difficult to imagine and their con-
sequences are far from limited to individuals. However, the related privacy con-
cerns of such attacks and misuses of a system by insiders and/or secondary users are
far from obvious. Section 11.3 discusses these biometric privacy concerns in more
detail.

11.2.4 Multi-Modal and Multi-factor Biometric Recognition

Multi-modal and/or multi-factor biometric solutions have been proposed to over-
come most of the aforementioned challenges that could degrade the performance of
a biometric system. Multi-modal systems rely on combining two or more biometric
modalities to establish the identity of an individual. For example, face, voice, and
signature were combined together in the EU-funded SecurePhone FP6 Project [12]
to provide a strong mean of authentication for mobile devices. Multi-modal bio-
metrics have been deployed in a wide range of applications such as border entry and
exit, access control, law enforcement, and network security. It has been demon-
strated that using a combination of biometric modalities can significantly improve
recognition accuracy by reducing FNMR and FMR. In addition, such an approach
provides a secondary means of recognition if biometric samples of sufficient quality
cannot be acquired from a particular individual. On the other hand, multi-factor
biometric systems typically combine biometric data with knowledge-based and/or
object-based authentication factors to produce a single representation of individuals.
Multi-factor recognition can be very effective to improve recognition accuracy and
is at the same time very easy to implement. For example, face biometric recognition
can be combined with a four-digit PIN to significantly lower false acceptance rates.
More details on exploiting multi-factor recognition as a means for generating
cancellable or revocable templates to improve the privacy of biometric systems will
be presented in Sect. 11.4.

11.3 Privacy Concerns with Biometrics

The growing number of applications that use biometrics coupled with the increased
capabilities of biometric sensors in terms of resolution, accuracy, and capturing
biometric data unobtrusively, introduces new challenging problems for maintaining
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privacy. In the past, fingerprints were only used to identify potential suspects at
crime scenes, that is, the number of collected, analyzed, and stored fingerprints was
relatively small. Nowadays, thousands of applications and devices use fingerprints
to identify legitimate users. For example, Apple’s latest iPhone generation, the
iPhone 5 s, features “Touch ID,” a fingerprint identity sensor that allows iPhone
users to use their fingerprint instead of a PIN code to unlock their iPhones. Another
smart phone example is the “Vital Signs Camera—Philips” app [13], already
downloaded by hundreds of thousands of users. This app allows you to “Measure
your heart rate and breathing rate from a distance, simply by using the camera of
your iPad or iPhone!” Although the accuracy of the taken measurements might not
be as good as measurements from dedicated heart rate monitors, these apps enable
nearly everybody to easily and extensively collect sensitive biomedical data of any
person in their proximity.

Improved sensor technology has also had an impact on maintaining and
undermining privacy, in particular for biometric sensors that can work and collect
data remotely (i.e., from a distance) without the individual’s consent. Today, many
of us (i.e., everybody living in an urban area) are monitored regularly. In 2011, it
was estimated that on average a citizen of London in the United Kingdom, is caught
approximately 100 times per day on a CCTV camera. This number is expected to
increase due to continued reduction in the cost of CCTV camera production,
installation, maintenance, and automatic data analyses.

The ease with which biometric data can be collected, processed, and stored has
led to a large and fast growing number of huge biometric datasets on local (e.g.,
individual companies), national (e.g., US Visitor and Immigrant Status Indicator
Technology (US-VISIT)) and international (e.g., European fingerprint database
(EURODAC)) levels. This ever-increasing amount of information available about a
human person was firstly named by Irma van der Ploeg as the “informatization of
the body” [2]. This growing digitization of the human body away from its natural,
very diverse form of physical existence into standardized digital code and infor-
mation “may eventually affect embodiment and [human] identity as such” and
finally offend human dignity [3]. Undoubtedly, recent advances in surveillance and
sensors technologies will rapidly accelerate the speed by which this fully digitized
and “informatized” body will become reality. It is questionable if fair information
principles, and here in particular, the principle of proportionality stating “that
identification systems should only be implemented if the benefits are worth the
social costs, including the invasion of privacy, loss of autonomy, social discrimi-
nation, or imposition of conformity”, are always respected [4]. It is more likely that
technology advances will increase the risk of misuse of the available information as
a result of unethical and/or illegal practices, if the users’ sensitive data and privacy
is not adequately protected.

However, it is important to note that it is the utilization of the biometric system
that determines the impact on privacy, not the biometric modality itself [5]. For
example, a company could legitimately use a face image recognition system to
restrict access to sensitive and private company data. Also, face images from a
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CCTV camera could be used to identify potential suspects at a crime scene. It is
worth noting that the same biometric modality (face) is used in different applica-
tions; once to protect privacy, and once to infringe it.

The privacy concerns about biometrics emerge from four main biometric data
misuses that are described below. It is important to highlight that the threat to
privacy can either arise from the inside or from the outside of the involved systems
and organizations. A threat coming from the inside can be, for example, a person
(e.g., a system administrator), who works for one of the involved organizations.
These people are often called secondary users. A threat from the outside can be, for
example, an attacker, who has no further relation to the involved organizations or
individuals and tries to attack the systems just for his or her benefit (e.g., to sell the
stolen or collected private information).

11.3.1 Unnecessary and Unauthorized Collection

To preserve the individual’s privacy as much as possible, the amount of data
collected should be always minimized. Biometric systems should only be used in
scenarios where the system or organization security will benefit from the installa-
tion. For example, if access to a specific area in a company does not need to be
protected, no fingerprint or face recognition system should be installed at the entry
points to that area. However, additional systems of that kind are often installed by
companies, just to monitor and record employees’ behavior. This is a typical
example of a privacy threat coming from the inside.

Unauthorized and concealed collection of biometric data (e.g., via hidden
cameras) is another privacy risk and often performed from the outside. As men-
tioned before, cameras are now widely used to monitor our everyday life. Very
often, people benefit from this monitoring, for example, traffic jams or
over-crowded underground stations can be easily and quickly detected and such
information can be passed on to the other passengers to avoid these situations.
However, this extensive data collection and analysis can also lead to privacy
concerns. In 2012, politicians in Argentina announced that they will create a new
centralized biometric database containing face images of Argentina’s citizens. This
announcement immediately raised resistance and critics pointed out that this new
system could discourage political engagement and protests, because the database
could also be used to help identify undesired demonstrators and suppress political
activities. Another example of a biometric related privacy concern occurs in night
clubs and bars in cities like Chicago and San Francisco in the United States. These
bars use their security cameras now together with face detection software to
broadcast real-time information on the number of male and female visitors in the
club, together with their average age groups. This information can then be used by
others to decide which bar to visit.
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11.3.2 Unauthorized Use and Application
of Cross-Matching

A further privacy concern arises from the fact that an individual’s biometric data
collected for different purposes and unrelated applications can be cross-referenced
by comparing stored biometric templates. This allows, for example, the linking of
bank datasets and financial records to medical related datasets, if both involved
organizations (i.e., banks and medical agencies) hold the same biometric record or
template of that individual. The actual sharing could either happen if an insider of
one organization illegitimately shares the sensitive data with the other organization
for his or her own financial benefits [14], or if both organizations agree to share the
data within a strategic relationship benefitting both of them [15]. An example of a
negative consequence of this type of information or application cross-matching and
data sharing could be that a mortgage application of an individual is declined. The
mortgage issuing bank has automatic access to the person’s financial status via its
own user records. If this bank has now also access to the applicant’s medical
records, a combined assessment could indicate that the mortgage risk is too high
and the application is declined. Instead, an assessment of the financial status only
could lead to an acceptance of the mortgage application.

11.3.3 Function or Purpose Creep

Function or purpose creep occurs when the biometric information collected by an
application for one specific purpose (e.g., to give access to certain material or
places) is also used in a completely different application scenario without the user’s
consent. One famous example of a large scale biometric function creep is the
European Dactyloscopy (EURODAC) fingerprint database for identifying asylum
seekers [16]. The original purpose of this database was to “help the effective
application of the Dublin convention on handling claims for asylum.” However,
soon after the database was established, access to the data was also granted to other
police and law enforcement agencies. This function creep then finally led to an
official statement of the European Data Protection Supervisor (EDPS) saying
that [17]:

Just because the data has already been collected, it should not be used for another purpose
which may have a far-reaching negative impact on the lives of individuals. To intrude upon
the privacy of individuals and risk stigmatizing them requires strong justification and the
Commission has simply not provided sufficient reason why asylum seekers should be
singled out for such treatment.

Similar concerns were also raised in the United States where innocent UScitizens
were imprisoned by mistake because of a large scale fingerprint sharing program
called Secure Communities. This program administered by the Federal Bureau for
Investigation (FBI) and the Department of Homeland Security wrongly identified
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James Makowski as an illegal immigrant and he was placed in a maximum security
prison for two months before the authorities realized their error and released him.

11.3.4 Disclosure of Medical Related Information

Biometric sensors may intentionally or unintentionally collect additional informa-
tion (i.e., information beyond the data required to perform the intended task of
biometric-based user identification and authentication, which may then reveal
highly sensitive and personal information about the observed individuals). This
contradicts the right of “informational privacy” that is, beside the physical and
decisional privacy, one of the three elements of privacy every human should have
[18]. “Informational privacy” refers here to the freedom of a person to decide who
has access and is allowed to collect, process, and store personal information about
him or her. One example where this right can be easily broken is biometrics based
on motor skills. Data collected via a distant video camera for gait recognition, may
also reveal physical handicaps of that individual. This surplus of collected data
could then be used to discriminate or intimidate that person. This situation becomes
even more of a problem when these actions are happening silently from a distance
without the individual being aware of the ongoing process, or openly applied to
vulnerable groups such as immigrants as well as the general public in the form of a
biometric border [19].

The possible consequence that an individual will be discriminated against
because of sensitive information revealed about him or her immediately raised the
question within the research community of whether “privacy” really is at the center
of the problem or if the “discrimination” following an information disclosure is the
real problem [20]. People are not put at risk just because their ethical background,
age, gender, or sexual orientation was revealed from the collected biometric data.
The discrimination and the social actions against them based on the data expose
them to real risks. However, addressing this general problem of mankind on the
social and psychological level is extremely difficult. Researchers working in the
field of biometrics continue to focus mainly on how to enhance the individual’s
biometric data privacy in the first place.

To protect the individual’s privacy as much as possible, the following principles
should be followed in order to address and minimize the above mentioned three
privacy problems [21]:

• Identity privacy. Binding of the stored biometric data and the individual’s
additional identity information such as age, gender, and so on, should be mini-
mized and protected. A close, unprotected link between the biometric data and the
other stored identity information allows cross-referencing this information with
data from other sources to generate, for example, more detailed user profiles.

• Irreversibility and unlinkability. Collected biometric data should be converted
into a different, application specific, and non-reversible form before it is stored
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in the database. This prevents application cross-matching and the use of bio-
metric data outside its intended original application.

The following sections highlight examples of biometric modalities used today
and what kind of potentially discriminating and privacy effecting—additional
information can be extracted from the collected biometric sensor data. It is
important to mention that the biometrics modalities and their corresponding bio-
metrics sensors vary in terms of their actual usage in today’s available applications,
complexity of the involved biometric sensors, amount of additional information that
can be revealed from the collected data, and the risk to which they expose the
individual’s privacy.

11.3.5 Fingerprints

One of the most widely used biometric modalities is the fingerprint. Fingerprint
sensors are, for example, integrated in laptops to allow or deny access to the
computer and used to identify individuals at border control or within company
premises. Beside their original aim to reliably identify an individual in the afore-
mentioned scenarios, research has showed that fingerprints or images of an entire
finger can be used to reveal further information about the person (e.g., medical
disorders like Down’s or Turner syndromes).

Research further identified a correlation between fingerprints and the sexual
orientation, that is, homosexuality [22]. These research results are highly contro-
versial within the academic research community because they were identified as
being far from conclusive [23] and human fingers are formed during prenatal
development, which can be seen well before sexual orientations are developed.
However, its publication in a well-known neuroscience journal clearly attracted
attention within the general public [24] and may have persuaded the public to
prejudge people.

11.3.6 Handwriting and Voice/Speech

The handwriting style and voice/speech are further biometric modalities that can be
used to identify individuals as, for example, used in the “SecurePhone” project to
sign contracts on smart phones. However, research showed that degradations in
handwriting skills and changes in the writing style can also be a sign of Alzheimer’s
disease [25]. It was shown in particular that writing of cursive letters are chal-
lenging for people suffering from Alzheimer’s disease and that changes and
anomalies in how they write cursive letters can be identified by a biometric system.
This is in particular applicable to human signatures, which normally contain several
cursive letters and paths. Similar findings were published on the detection of
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Parkinson’s disease [26]. The study showed that two simple writing tasks can
differentiate healthy individuals from individuals suffering from Parkinson’s dis-
ease. Signs of Parkinson’s disease can also be detected by visible speech impair-
ments [27] identified, for example, through regular voice/speech-based recognition,
which has become increasingly popular. Technologies such as Apple’s Siri are used
now by millions of people on their iPhones and iPads [28] and could easily analyze
and detect speech changes during normal operation.

However, not only medical disorders such as Alzheimer’s and Parkinson’s
diseases can be identified by analyses of an individual’s handwriting [29]. Research
results have also suggested that more common and wide-spread social and health
problems such as misuse of alcohol [30] or marijuana [31] can be detected via
handwriting analyses too. This information about an individual can then, for
example, be very interesting to an employer during a job interview or to monitor
existing employees and their performance.

11.3.7 Retinal Vascular and Vein Pattern

Currently biometric modalities such as retinal or vein images are not widely used
because these modalities are seen as more intrusive compared to fingerprints or
handwriting. A retinal scanner illuminates the blood vessels in the eye using
infrared light and then captures the reflected light for processing. This is seen as a
potentially dangerous procedure to the eye and the eyesight by many people [32].
However, because of their high accuracy and advances in the scanner technology
[33], it can be assumed that they will become more acceptable and popular in the
near future. Nonetheless, today, available retinal scanners are already able to reveal
medical conditions a person might have if the retinal image is examined by an
automatic detection algorithm such as Automated Detection of Diabetic
Retinopathy (ADDR) [34] or a human expert. Beside the given example of ADDR
as one possible health condition revealed via retina scans, more than 100 genes
have already been identified as contributing to human hereditary retinal degener-
ations [35]. This knowledge imposes a great privacy risk, as individuals might be
rejected for certain jobs or have to pay higher health insurance premiums if the
genes that are responsible for the retinal degeneration are also known to be con-
tributing to other medical conditions. One such example is the USH2A gene, which
is known to cause retinitis pigmentosa (a degenerative eye disease that causes
severe vision impairment and often blindness), but also contributes to the
Usher-Syndrome (genetic disorder resulting in hearing loss). This cross-reference
could easily be made and negative implications could arise for the individual,
regardless of whether this individual really develops a medical condition such as the
Usher-Syndrome in his or her life or not.

Similar to the technology used to capture retinal pattern are vein pattern sensors.
A Near-Infrared (NIR) sensor illuminates the region of interest (e.g., palm) and the
reflected signals are then used to capture an image of the vein pattern structure.
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An example of a commercial solution is the BASEmetric™ Finger vein authenti-
cation (VeinID) device, used in several hospitals in Ohio, United States, to help
with returning patient identification. However, researchers showed that the captured
vein structure can also reveal sensitive information about possible health conditions
(e.g., palm veins can reveal the Hypothenar Hammer Syndrome (HHS) [36]). HHS
is caused by repetitive use of the hand “as a hammer,” as, for example, in contact
sports such as boxing or fighting. This knowledge could persuade people to pre-
judge individuals as aggressive or violent if the privacy of this information is not
adequately protected and becomes public.

The examples discussed in this section clearly show the importance of privacy
within the biometric area and that sensitive and personal biometric data needs to be
protected so that it cannot be used outside its original collected and designed
purpose. Section 11.4 introduces several privacy-aware biometric solutions to
address the aforementioned concerns.

11.4 Privacy-Aware Biometric Solutions

Over the last few years, several privacy-aware biometric solutions have been
investigated to overcome some of the privacy concerns presented in Sect. 11.3. As
stated earlier, a biometric template is a sensitive representation of its owner that can
be exploited in different ways to compromise user privacy. This section reviews
several privacy-aware template processing schemes and highlights their pros and
cons. It also presents other effective solutions such as match-on-card and
privacy-preserving multi-factor biometric for local and remote authentication.

Privacy-aware template processing schemes mostly transform biometric template
feature vectors into other private (i.e., personalized) vectors and secure domains.
Such transformations preserve the anonymity of their owners while maintaining the
capability of distinguishing them from other individuals. Such processes protect
privacy at the design stage rather than being an aftermath action adopted as an
add-on service at later stages. Although privacy-aware template processing schemes
have continued to mature in academia over the last decade, they have not yet been
widely adopted by commercial and governmental organizations either due to the
extra cost needed to incorporate these schemes or simply because user privacy is
not a priority yet for such organizations. However, with increased public awareness
of biometric privacy and security issues, biometric experts are expecting a growing
deployment of such schemes in the near future.

An ideal privacy-aware biometric template processing scheme must satisfy four
properties [8]:

1 Diversity: templates cannot be used for cross-matching across different dat-
abases in which users can be tracked without their permissions.

2 Revocability: templates can be revoked and new ones can be issued whenever
needed.
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3 Security: it is computationally infeasible to reconstruct the original template
from the transformed one.

4 Performance: recognition accuracy must not degrade significantly when the
protection scheme is applied.

The concepts of revocability or cancellability of biometric templates and private
biometric cryptosystems have been developed as measures to improve user’s pri-
vacy in biometric systems [37]. Revocability means that biometric templates are no
longer fixed over time and could be revoked in the same way as lost or stolen credit
cards are. The main approaches for privacy-aware revocable biometric templates
are based on the use of a non-invertible (or infeasible to invert) secret personalized
transformation of the biometric feature vectors. Private biometric cryptosystems
work by generating anonymous biometric keys and hashes that can be used as a
proof of identity. The main approaches are based on user-linked helper data (e.g., a
secure sketch) extracted from the biometric feature vector. Existing helper schemes
and secure sketches use a combination of quantization and error-correcting codes.
The created or extracted helper data should not reveal much information about the
biometric template itself or form a fresh biometric sample.

It can be argued that each of the above privacy-aware template schemes has its
own advantages and limitations in terms of the level of privacy provided, com-
putational cost, storage requirements, applicability to different kinds of biometric
representations, and ability to handle inter-class variations in biometric data (i.e.,
maintaining the accuracy [5]). Therefore, the requirement of each system should be
analyzed before recommending the right solution.

11.4.1 Parameterized Feature Transformations

The basic idea behind parameterized feature transformation is to use a function ϝ to
transform the original biometric template to a private and secure domain. The
function ϝ typically depends on a parameter or a key called a transformation key
(TK). This TK is applied at the enrolment stage to transform the original template and
generate a cancellable version of it. At the matching stage and for each recognition
attempt, the same TK is applied on the freshly captured biometric samples to guar-
antee that the matching process takes place in a private and secure domain. Following
this approach, revocation of a template simply requires a change of the TK.

Depending on the characteristics of ϝ, feature transformations can be further
categorized into salting and non-invertible transforms. In salting, ϝ is invertible, that
is, if the TK and the cancellable template are known, the original template or a good
approximation of it should be recovered. However, it is assumed to be computa-
tionally infeasible to reconstruct the original template using the transformed tem-
plate even if the TK is known in the non-invertible transform.

The TK can be user- or system-based depending on the usage scenarios and/or
application, which enables privacy-aware feature transformations to be deployed in
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both authentication and identification mode. The following subsections describe
two examples of feature transformations, namely random projections and
secret-based shuffling, followed by an illustration to demonstrate how feature
transformation can be used in authentication and identification modes.

11.4.1.1 Feature Transformation Using Random Orthonormal
Projections

Several proposed schemes to produce cancellable biometrics involve the use of
RandomOrthonormal Projections (ROPs) to map biometric features onto private and
personalized domains. ROP is a technique that uses random orthonormal matrices to
project data points into other spaces where the distances among the data points before
and after the transformation are preserved. The distance-preserving feature has made
ROPs ideal for biometric systems to improve privacy and security whilst maintaining
an acceptable level of accuracy. ROP has been proposed as a secure transform for
biometric templates and it was used to meet the revocability property [38] and as a
standalone template protection scheme in a salting approach to generate a cancellable
template for fingerprint [39] and face image data [40, 41]. However, a quantization
step might be added to make the transform more difficult to invert [42]. ROP has also
been used as a building block for generating a private biometric-based key from
biometric data [43, 44] to be used as a cancellable template in the recognition process
as explained in Sect. 11.4.2. ROP-based transformations used to generate
privacy-aware templates are typically created as follows:

1. Generate m pseudo random vectors or real values based on a secret key.
2. Apply Gram-Schmidt orthogonalization on the generated random vectors to

produce an orthonormal matrix. A matrix A is called an orthonormal matrix if it
is orthogonal and each column or row vector has a unit norm, equivalently
AAt = I, where At is the transpose of A and I is the identity matrix of the same
size as A.

3. Transform the original template feature x to a secure domain using matrix
product: y = Ax.

An efficient method of generating orthonormal matrices [45] exploits the fact
that small size orthonormal matrices can be generated without a need for the
Gram-Schmidt procedure, which is ill-conditioned for high dimensional spaces. Let
x be the feature vector of size n, A be an n × n orthonormal random matrix, b a
random vector of size n, and P a permutation matrix of size n. Then the
transformation

Y ¼ P Axþ bð Þ ð11:1Þ

defines a distance preserving mapping of the space of n-dimensional vector space
Rn that enhances privacy while preserving the intra-class variation (i.e., while
maintaining the same level of recognition accuracy) [45].
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11.4.1.2 Feature Transformation Using Secret-Based Shuffling

Another example of a privacy-aware feature transformation is secret-based shuffling
to create revocable versions of iris templates [46]. A shuffling key of size k gen-
erated from a secret (e.g., password, PIN, or a random key) is used to shuffle an iris
code that is divided into k blocks. As illustrated in Fig. 11.4, if a bit in the key is 1,
the corresponding iris code block is moved to the beginning; otherwise it is moved
to the end.

11.4.1.3 User-Based Feature Transformations for Privacy-Aware
Authentication

User-based feature transformations (UBFTs) are typically multi-factor biometric
recognition schemes that rely on applying user-based transformation keys on bio-
metric features. These multi-factor biometric authentication schemes have been
proposed to enhance privacy and/or accuracy of biometric systems. Figure 11.5
illustrates the general operations of a multi-factor UBFT approach during enrolment
and authentication stages. Typically, UBFTs employ transformation keys generated
from passwords or PINs, or the keys are retrieved from a token. If a user is
subscribed to x different systems, there will be x different cancellable versions of
their biometric template by changing the user-based and/or system-based secret.
Arguably, this privacy-preserving approach improves authentication anonymity and
makes it infeasible to track users across different systems or databases.

11.4.1.4 Parameterized Feature Transformations for Privacy-Aware
Identification

Clearly the above UBFTs cannot be applied in a biometric identification mode
where the system, for example, is supposed to identify individuals on the watch-list

Random Shuffling Key

0 1 1 0 1 0 0

Biometric Template

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7

Block 2 Block 3 Block 5 Block 1 Block 4 Block 6 Block 7

Fig. 11.4 Simple secret-based shuffling for iris codes [46]
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without expecting them to declare their identity or presenting any additional
information. Therefore, the transformation key in this scenario should be solely a
system-based transformation. Figure 11.6 shows how a parameterized feature
transformation can be used in privacy-preserving identification mode. It can be
argued that such transformations can provide a good level of anonymity if the
transformation is selected sensibly.

Fig. 11.5 General operations of a multi-factor biometric authentication system based on UBFTs
approach during enrolment and authentication stages

Fig. 11.6 Parameterized feature transformations for privacy-aware identification
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11.4.2 Private Biometric Cryptosystems

Private biometric cryptosystems have been developed to provide stronger security
mechanisms and to create revocable representations of individuals by combining
biometrics with cryptography. Biometric cryptosystems, also known as private
biometrics or biometric encryption, use privacy by design to directly address the
privacy and security concerns associated with biometric systems. Typical biometric
cryptosystems employ additional authentication factor(s) such as a password, PIN,
or token to improve the privacy of a standalone biometric system by generating
revocable biometric keys that are not permanently linked with the user’s identity. In
general, there are three approaches to implement biometrics cryptosystems: (1) key
release, (2), key generation, and (3) key binding.

In key release schemes, both the cryptographic key and the biometric data are
stored as two separate entities and the key is released only when the user is bio-
metrically authenticated. This method is straightforward and easy to implement, but
has two major drawbacks [47]:

1 Biometric templates are not secure.
2 The biometric matcher can be overridden.

In key generation schemes, a cryptographic key is directly derived from the
biometric data without storing it anywhere. Such methods suffer from unacceptably
high FRR [11].

In key binding schemes, the biometric template and the key are coupled to form a
biometric lock [48] in a way that makes it computationally infeasible to retrieve the
key without previous knowledge of the user’s biometric data. While biometric data
are fuzzy due to intra-class variations, cryptographic keys have to be repeatable
every time. To bridge this gap, key-binding schemes typically rely on error cor-
rection techniques such as error correcting codes (ECC). The ECC algorithm is
typically selected after analyzing error patterns of inter-class and intra-class vari-
ations of biometric samples. In other words, the selected ECC should tolerate
(correct) up to a fixed number of bits (the so called threshold of the system). In key
binding schemes, a cryptographic key is randomly generated during the enrolment
stage but independent of the biometric template(s) and can be changed whenever
needed. The Fuzzy Commitment scheme [48] is one of the earliest methods of
binding biometrics and user keys. To commit (bind) a binary key K, a codeword C
is generated based on K using a predefined error correcting code. The ultimate
commitment will be ðhðKÞ;BLÞ; where BL ¼ B�C is the biometric lock, B is a
binary biometric template, and h is a cryptographic hash function. To remove a
commitment, an individual has to provide a fresh biometric sample B’ to be XORed
with BL, which results in a codeword C’. If B’ is close enough to B, decoding C’
should yield the same key K where h(K) can be used to verify that the right key is
released.

Figure 11.7 depicts a generalized version of such a system [11]. At the enrolment
stage, biometric samples are captured and input into a feature extraction procedure
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that outputs biometric template(s). Thereafter, a user-based transformation (e.g.,
personalized and private random orthonormal projection) is applied to transform the
extracted biometric template into a private domain. Finally, a binary representation
of the biometric sample is produced to be bound to the cryptographic key. To allow
for the intra-class variations, error correcting techniques should be used whereby
intra-class variations between biometrics samples at the enrolment and key retrieval
stages can be considered as noise. The adopted error correction techniques should
be capable of correcting up to a specific number of bits, which depends on the
intended key size, biometric template size, and the amount of tolerated distortion in
the biometric data to accommodate adequate variation in user samples.

The encoded cryptographic key is XORed with the binary representation of
biometric data to yield the biometric lock or helper data. The key is then discarded
and the biometric lock and the hash of the key are stored. At the authentication
stage (key retrieval stage), the binary representation is calculated using a fresh
biometric sample in the same way as described above and then XORed with the
biometric lock. Next, the adopted error correcting technique in the decoding mode
is used. The correction succeeds and the original cryptographic key is reproduced if
the difference between the reference biometric sample(s) and the fresh biometric
sample is within the predefined threshold (i.e., the fresh biometric sample belongs
to the same individual). The predefined threshold is determined in the same way as
before when defining a biometric authentication threshold through a training pro-
tocol that is application dependent, where appropriate tolerance of error rates is
chosen in terms of FAR and FRR.

Private biometric cryptosystems can theoretically be extended to function under
the identification mode in the same way as illustrated in Fig. 11.6. However,
incorporating error-correcting techniques makes any identification process very
slow. To improve the efficiency, a hybrid privacy-aware watch-list face recognition
system [49] can be used, which was successfully deployed for Ontario Lottery and
Gaming Corporation Self-Exclusion Program. The system is hybrid in nature

Fig. 11.7 General private biometric cryptosystem (key-binding scheme)
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because it combines a commercial face recognition module with a private biometric
cryptosystem component. To improve the privacy, the system uses two databases;
one contains biometric templates of the commercial face recognition along with
biometric locks, while the other contains personal and private information about
individuals. A biometric cryptosystem is used to conceal the relationship between a
self-excluded person’s face template and his or her other personal information. The
commercial face recognition is used first to check whether a freshly captured
biometric sample matches any biometric template on the watch-list. If it does, the
biometric cryptosystem uses the corresponding biometric lock to release a key that
will identify the record of personal information in the second database. The tem-
plates and biometric lock use different biometric feature vectors to prevent inter-
operability between the two modules.

11.5 Challenges and Solutions—Current Trends

Security measures and technologies involve the collection of information about
various people including their biometric data. This raises serious questions as to
whether, and to what extent, the privacy of the biometric data owner (i.e., the
individual) has been breached. A moderate level of invasion into an individual’s
privacy is sometimes considered to be an acceptable cost of enhanced personal
safety and society security. However, the acceptable level of privacy invasion is not
yet clearly defined in the trade-off between security and privacy. International
efforts have been made to come up with a common understanding of the security–
privacy trade-off at both state and citizen level to suggest best practices and
guidelines to policymakers. For example, the SurPRISE (Surveillance, Privacy, and
Security) project [50] is a three-year project (2012–2015) funded by the European
Union under the Seventh Framework Programme (FP7) for Research and
Technology Development. It aims to examine the trade-off between security and
individual privacy and addresses questions such as: “Does more security justify less
privacy?” and “What is the balance between these two?” It consults with citizens
from several EU member and associated states on the question of the security–
privacy trade-off as they evaluate different security technologies and measures.

The IRISS (Increasing Resilience in Surveillance Societies) project [51] (EU,
FP7, 2012–2015) aims to investigate the development and deployment of surveil-
lance technologies and their impact on citizens’ privacy and democratic rights.
Another example is the TURBINE (TrUsted Revocable Biometric IdeNtitiEs)
project [52] (EU, FP7, 2007–2013), which investigates effective solutions on how
to enable an individual to revoke an identity for a given application and create
different “pseudo-identities” for different applications. The project suggested best
practices for privacy-preserving biometric data processing. Another example is the
3DFace project [53] (EU, FP6, 2006–2009), in which the objective was to develop
a prototype of an automated border control biometric system incorporating
privacy-enhancing technology based on two- and three-dimensional face images.
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Match-on-card technologies and other user-side matching devices are examples
of solutions that have been proposed as effective privacy-preserving biometric
solutions, because storage and matching of biometric samples are all done under the
user’s full control. However, more research needs to be carried out to come up with
practical solutions on how to extend such technologies to be suitable for both
identification and authentication modes. Other future research directions could
investigate the feasibility of implementing privacy-preserving solutions at the
hardware level. For example, is it possible to design a biometric sensor (e.g.,
camera, iris scanner, fingerprint scanner) to capture biometric data that serves the
purpose of biometric recognition without revealing any extra piece of information
to the outside?

11.5.1 Privacy-Aware Remote Biometric Recognition
for Cloud Services

The increasing trend of many business organizations, government agencies, and
customers to shift their services and data onto the cloud necessitates the need for
secure and privacy-aware remote authentication schemes that are capable of pre-
serving anonymity and are immune against fraud and identity theft at the same time
[54]. However, the open nature of unattended remote authentication makes the
privacy and security of biometric systems important issues. Hybrid challenge and
response schemes that combine feature transformation and a private biometric
cryptosystem can be used, for example, as a privacy-aware remote biometric
authentication for cloud services [55]. Face modality was chosen for the imple-
mentation due to camera availability on almost all mobile devices and laptops.

Fig. 11.8 Enrolment stage of the privacy-aware authentication scheme for cloud service
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Fig. 11.9 Authentication stage of the privacy-aware authentication scheme for cloud service
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At the enrolment stage, and to address some privacy concerns highlighted earlier,
only a cancellable version of the user’s biometric features XAC and a hash of a PIN
used to generate ROP are stored in the cloud authenticator’s database as illustrated
in Fig. 11.8.

As a case study, a user can use a smart phone or tablet PC that has a camera to
capture face images along with a four-digit PIN to generate a user-based trans-
formation key to be used for ROP. It is worth highlighting the fact that combining
biometrics with the other authentication factors in this scheme enhances privacy
while intra-class variations of biometric samples are preserved (i.e., it does not
compromise accuracy) [55].

At the authentication stage and after extracting the biometric feature vector and
applying ROP, the resulting cancellable feature vector XC is combined with a
one-time authenticator random challenge vector V by simple addition to produce a
one-time privacy-aware cancellable feature vector XO, which will be permutated
based on a permutation key generated from the PIN as illustrated in Fig. 11.9. As
mentioned earlier, due to the differences between the user’s captured biometric
sample and the enrolled biometric sample(s) stored by the authenticator, ECCs can
be used to eliminate the effect of this noise. In this case study, a Reed-Solomon
(RS) ECC is chosen to correct up to 30 % of the biometric feature vectors. This
30 % threshold is determined in a similar manner to define biometric authentication
thresholds (i.e., a training protocol is used to determine appropriate tolerance error
rates in terms of FAR and FRR). At the cloud authenticator side, if the correction
succeeds, the process generates a key K’ that matches the key bound to the user.
This can only happen if the difference between the reference biometric sample(s)
and the fresh biometric sample is within the predefined threshold (i.e., the fresh
biometric sample belongs to the same individual).

11.6 Conclusion

The fact that biometric systems by their very nature collect more information than
just the individual’s fingerprints, retinal patterns, or other biometric data has pre-
cipitated an urgent need for new legislation to enforce privacy-preserving measures
on biometric data collection, processing, and template storage. At a basic level,
most biometric systems will record when and where a person is at the time of a
scan, not to mention all the additional privacy concerns we have discussed earlier.
Although data privacy and data protection acts exist in almost all countries, those
related to biometric privacy and security are not mature enough yet, as they are still
at very early stages.

The problem of privacy of biometric systems cannot be attributed solely to
technology. No matter how secure the technology is, biometric systems insiders and
secondary users, as well as third parties such as insurance companies, employers,
and financial organizations, can become a source of attack or privacy concern. In
other words, the problem is the combination of people and technology. Hence,
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technological solutions need to be complemented by a legal framework while
educational-based and ethical-based tools are required to improve privacy for all
of us.
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Chapter 12
Privacy in Social Networks

Traian Marius Truta, Michail Tsikerdekis and Sherali Zeadally

12.1 Introduction

12.1.1 A Brief History

The worldwide Web has radically changed the way we communicate and interact
with each other and how we manage our privacy. A good example of this is the
ability to take photos that automatically include geographical information (often
referred to as geotagging) and share them with a circle of friends. Traditional photos
did not contain any geographical information and so questions that usually followed
went along the lines of “where was this taken?” Such sentences are becoming
obsolete and this is just one of the myriads of changes in our 21st-century digital
lives. Of course change may not always be for the better. In the past decade we have
seen cases where social media made news as the dangers of exposing one’s private
life where made apparent. Employees have been stalked online by employers [62]
and teenagers have been deceived by predators [6]. It seems that we are not yet fully
familiar with this new world that came into our lives, or are we familiar?

Long before the advent of the Web, in the early 1990 s there was a world of
social media used in organizations to enhance collaboration [31, 32]. The moti-
vation behind social media at that time stemmed from the need to collectively create
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and disseminate information and while early computer interfaces provided limited
richness in people’s communication, they were still effective enough to be adopted
by organizations at the time. Bulletin board systems have been around since 1978
and have been used by people to make announcements, inform friends about
meetings, and share other information through postings [65].

12.1.2 From Web 1.0 to Web 2.0

The revolutionary moment in history came with the advent of the Web or Web 1.0
in 1993 when it was released to the world [42]. While early web interface (e.g.,
gopher) provided the ability to view and edit pages (as it was the need of the early
physicists at CERN (The European Organization for Nuclear Research) who needed
to update and exchange results among them), it was, however, static and featured
(technically) non-editable pages to individuals other than the owner of a server
hosting those files. In fact, the Web remained this way for a while with people in
1999 describing web pages as “static screenfuls” [21]. There were various limita-
tions as to the interactions provided by that early Web and so people who sought
interactivity and exchange of content used software tools such as Internet Relay
Chats (IRC) and MUD games [58]. Another prominent feature of Web 1.0 was the
clear distinction between the user and the webmaster (the owner of a website).
One-way communication between who contributes the content and to whom it is
being delivered could clearly be identified. All of this was bound to change the
moment new technologies allowed for an advanced level of interactivity online.
Adoption of new technologies seems to be dependent on the age with the younger
population being more receptive to new technologies [57]. During the period 1995–
2000, we saw an under-representation for the older age groups [48] and the
adoption of new technologies was becoming more ubiquitous. Bernal [5] has been
one of the few people to articulate the shift between Web 1.0 and 2.0. He argued
that while the focus of Web 1.0 was on delivering products, the focus for Web 2.0
has been toward the delivery of services and increasing interactivity among users.
Bidirectional interaction was quickly achieved by combining and ensuring com-
patibility among multiple technologies along with expanding the processing and
scalability capabilities of databases and web programming languages. Additional
service-oriented architectures helped to promote these services further. There was
tremendous potential for many user-driven businesses to thrive under a Web 2.0
model [70] but many have also advised caution and suggested that this change may
not ensure commercial success for all businesses [38]. Today, many enterprises are
enjoying the benefits of Web 2.0 technologies with the majority of top executives
favoring such strategies [60]. Web 2.0 technologies provide flexible design and rich
and responsive user interfaces. They allow for collaborative creation of content,
developing new application and services that communicate across different plat-
forms, and establishing social networks of people with common interests, as well as
supporting collaboration and collective intelligence [60]. It is worth pointing out
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that people were collaborating online and forming communities well before Web
2.0 [39]. Howard [39] argued that the creation of online communities and collab-
oration could also happen with software (desktop applications or video games) that
is not Web based. Gradually, a trend started appearing for Internet software that was
providing more social tools to users. This is not surprising if one considers that
users value personal interaction with the software as well as social interaction with
other people [16]. The freedom provided by interactive social tools that allowed not
only for two-way communication between users but also user contributions to
content enabled Internet users to explore social interactions like never before.
Networked communications have evolved to accommodate the needs of humans as
social beings [40]. The idea of social media came to life.

12.2 Social Media

Social media and Web 2.0 are not the same. Social media refer to Internet-based
applications that build on the foundations of Web 2.0 and allow for the creation and
exchange of user-generated content [43]. Under the large umbrella of social media
one can find applications which include, blogs, collaborative project (e.g.,
Wikipedia), social networking sites (e.g., Facebook), content communities (e.g.,
YouTube), virtual social worlds (e.g., Second Life), virtual game worlds
(e.g., World of Warcraft), and micro-blogging (e.g., Twitter) [43, 44]. Social
networks have had a great impact on our society and they are the most represen-
tative type of social media for their use of Web 2.0 technologies.

12.2.1 Social Networks

Social networks have gained a lot of interest and popularity over the last decade.
Kaplan and Haenlein [43] defined them as applications that enable users to create
personal profiles, invite friends to connect with them, and to have access to other
people’s profiles. These profiles can include various types of information such as
photos, video, audio files, and even blogs. The basic ingredients of a social network
are to allow for the construction of public or semi-public profile, to articulate a list
of users that individuals share a connection with, and to view and share that list with
others within a system [10]. There is also a distinction between a social network site
and a social networking site. According to Boyd and Ellison [10], networking
implies relationship initiation often between strangers. However, lines have been
blurred with today’s social networking services offering both networking with
existing relationships as well as initiating new with strangers. Henceforth, we
assume that by social networks we mean applications both for network as well as
networking in terms of the goals of a social media service.
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12.2.2 Social Networking Sites

The first social networking site according to many was SixDegrees.com and was
launched in 1997 [10]. It was the first website to combine features that allowed
profile creation, forming friend lists, and sharing those lists with others. The website
managed to attract 3.5 million users until it finally closed down in 2000 after being
bought off for $125 million [51]. Subsequently, several other services such as
LiveJournal.com started offering social networking features [10], but it was really
later on in 2003 when modern social networking sites were launched with the
primary goal of providing a digital representation of user networks, initiating and
managing relationships.

12.2.2.1 LinkedIn

Linkedin.com was launched in 2003 with the intent to connect professionals with
their networks. In January 2009 the network had 32 million members and in March
2011 it had 100 million members.1 At the time of writing, the website has 225
million users.2 LinkedIn allows individuals to create professional networks, to view
how they are linked with other members, and view what their degree of separation
is (how many connections apart they have) from a target member [49]. This means
that an individual’s social network becomes tangible. As such, social capital has
ceased to be an abstract concept but has become a visible structure that an indi-
vidual can keep expanding and restructure.

12.2.2.2 Friendster

Another website that was launched in 2002 did not share the same success that
LinkedIn did. Friendster is recognized as one of the best examples of early popular
social networks [10]. The website started off as a dating website but encouraged
users to join even if they were not looking for dates [8]. The idea behind Friendster
was that friends of friends are good candidates for dates. The decision was made to
arbitrarily allow people to connect with others as far as four degrees (connections
between individuals) away in their network. Any individuals beyond four degrees
from an individual could not be reached; a choice that is restrictive for a community
according to the theory of six degrees of separation [75]. The website was launched
in 2002 and by mid-August it had 1.5 million registered users [8]. Boyd [9] was one
of the first researchers to study the popular website and suggested that the human–
computer interaction community should consider the evolution of social community

1http://techcrunch.com/2013/01/09/linkedin-hits-200-million-users-worldwide-adding-new-users-
at-rate-of-two-per-second/.
2http://www.linkedin.com/about-us.
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along with the underlying technology. Her arguments made an accurate prediction
of the technical and social difficulties that the website later experienced. Servers
frequently failed because they could not sustain the increased traffic as premature
web software of the time was not designed to handle the amount of interactive
actions of millions of users. In turn, users became frustrated, leading to some of
them switching their email addresses to Friendster’s email service. Additional social
issues (such as the influx of new users who were unfamiliar with community norms)
also led to the decline of Friendster’s online community. The balance of current
social groups was shaken due to the influx of new users and users who wanted to
connect with others beyond the four-degree limit [8]. The so-called fakester account
was an early version of developing pages of special interests so that people can find
others with common interests (e.g., fans of Star Wars movies). Many of these
accounts had thousands of friends, which created computational loads for the
ill-equipped servers at the time. The decision was made by Friendster to delete all of
these accounts to resolve website issues. This resulted in a rejection of the website
in the United States by early adopters due to several issues such as social collisions
(e.g., employers being able to monitor their employees’ work activities) and a loss
of trust between users and the site as a result of the deletion of these accounts [25].
Many of these actions violated the hierarchy of needs for online users, which
arguably if used could have put user needs first [50]. The website has made a
comeback in recent years and in October 2008, according to a press release, it
reached 85 million members worldwide.3

12.2.2.3 Myspace

Friendster was followed by Myspace, another popular social networking site that
was launched in August 2003. Myspace grew rapidly as Friendster’s popularity
declined, because some of their adopters saw it as a safe haven to express their
interests (something that was limited in Friendster due to its four-degree policy)
[10]. Significant attention was given to bands and music, which helped to increase
the number of users. Myspace expanded its features based on user demand and
allowed for page personalization (e.g., adding HTML to alter the layout), which
boosted its popularity further. Myspace also focused on developing policies to
allow teenagers to join the service, which further increased its user base. At its peak,
in 2008, the website had 75.9 million users4 before the service started declining
because of safety issues that plagued the service [10]. In June 2011, the service was
down to 33 million users although after a recent redesign it has been picking up
traffic once again.

3http://web.archive.org/web/20100522004359/ http://www.friendster.com/info/presscenter.php?
A=pr48.
4http://mediadecoder.blogs.nytimes.com/2012/02/12/myspace-to-announce-one-million-new-
users/?_r=0.
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12.2.2.4 Facebook

One social networking service that perhaps gained from all the predecessor social
networks that rose and fell was Facebook. It is the most popular social networking
site currently and the longest to maintain such a title. The service has experienced a
skyrocketing growth by designing its website to provide the best features by
addressing several of the deficiencies of previous social networking services.
Launched in 2004, Facebook has seen a dramatic increase of its user base world-
wide (Fig. 12.1). In September 2013, the website had 1.19 billion users monthly
with average daily unique users at 727 million.5 Approximately 80 % of its daily
user base is outside of the United States and Canada, with some countries reaching
high penetration levels among their Internet users (higher than 90 %).6

12.2.2.5 Mobile Social Networking

Social network usage has increased by 64 % since 2005 [11]. Currently, Facebook
and Twitter (a micro-blogging service) have reached 82 % of the world’s Internet
users [69]. In the last few recent years a dramatic shift has been observed in people
accessing the Internet via mobile devices leading to the emergence of mobile social
networking. Mobile social networking implies social networking services, which
include social structures with entities (individuals or organizations) connected
through various types of interdependency (e.g., common interest, friendship, etc.),
that are used by individuals through their mobile devices [41]. Jabeur et al. [41]
attribute the rise in popularity in the enabling of new ways for social interaction and
collaboration by taking advantage of location-based services and data-sharing
services (e.g., photos) provided by mobile devices in an immediate way. Mobile
social networking services can be divided into two types, those with native support
only for mobile devices (e.g., Instagram) and those offering mobile as well as web
access to their services (e.g., Facebook).
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Fig. 12.1 Approximate growth of monthly users in millions for Facebook. Source https://
newsroom.fb.com/

5http://newsroom.fb.com/Key-Facts.
6http://www.internetworldstats.com/facebook.htm.
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Historically, early mobile social networking has been observed since 1999 [52].
These applications came usually pre-installed in mobile devices and some followed
a subscription-based model. They are similar to primitive versions of early social
networks with the ability to broadcast messages to many people at once, but focus
less on profile creation and management. During the early 2000s, a transition was
observed with the release of early wireless application protocols (WAP) third
generation (3G) technologies when applications started being released with social
networking features incorporated in them. These were still developed and main-
tained by the manufacturer, or in close association with the manufacturer or carrier
of mobile services. By the late 2000s, applications developed by third parties (e.g.,
independent developers) were able to be installed in mobile devices, which radi-
cally altered the range of applications available for consumers.

One of the most popular examples of early native mobile social networking
applications was Instagram, which was launched in October 2010. The application
provided a photo and video sharing social networking service to mobile users in
collaboration with other social networking services (through websites and mobile
portals). The service was released for free through Apple’s App Store and Google
Play, which helped to increase its popularity. By April 2012 it had 100 million
active users7 when it was sold to Facebook for $1 billion.8 Figure 12.2 depicts the
growth of the service.

Many social networking sites also expanded their access to mobile devices.
Facebook started offering mobile access to iPhone users in August 2007 and almost
a year later it reached 1.5 million regular users. In 2008, a Facebook mobile
application was offered to iPhone users. As of December 2013, 945 million users
access Facebook monthly through mobile devices (approximately 77 % of its total
monthly users).9

The increase in usage of mobile social networks has led to the emergence of
geosocial networking. This is social networking that includes geographic services
and features such as geocoding and geotagging, which alter the social dynamics of a
mobile social networking service (e.g., recommendation systems that can help with
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Fig. 12.2 Growth of active members in millions for Instagram. Source http://instagram.com/press/

7http://instagram.com/press/.
8http://abcnews.go.com/blogs/technology/2012/04/facebook-buys-instagram-for-1-billion/.
9https://newsroom.fb.com/key-Facts.
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attendance at events in close proximity based on past movement patterns and
location history) [64]. For web-based social networks, a user’s location is attached
to content using their internet protocol (IP) address (which is tracked to an
approximate position at city or area level) or wireless hotspot trilateration (which
uses multiple wireless hotspots to determine the relative location of a user). For
mobile social networks, cell phone tracking and Global Positioning System (GPS)-
enabled services can be used to attach geographical information to content.

12.2.3 Impact of Social Networking on Society

The success of social networking sites can be attributed to their ability to satisfy
social needs (e.g., the need to communicate with others and be a part of a social
group) that online users have. Social networking sites have become an extension of
an individual’s real life, containing a detailed documentation of a person’s social
network along with aspects such as their experiences, thoughts, beliefs, and pref-
erences. Social networking sites are helpful for people with low self-esteem and low
life satisfaction and provide a tremendous advantage for managing social capital
[25]. Social capital, defined loosely as the value of social relations that helps
provide benefits to individuals or groups [17], became the term to define the
well-being of groups and society. As the number of social networking users
increases, a higher number of online relationships are expected to form, and, as a
result, people connected to others are likely to receive more positive feedback from
these relationships [76]. Positive feedback received by users’ social networks
enhances their social self-esteem as well as their well-being. People using social
networking sites tend to have more virtual friends than real-life friends [78].
Corporations also exploit the benefits of using social networks for supporting brand
promotion and marketing campaigns [12, 17]. Social networks can also be profit-
able business models [59].

Social networks have also been affected by various issues. One example is the
differential adoption due to the digital inequality [35]. This digital divide has eco-
nomic, sociological, and political drivers that affect not just the adoption of social
networking sites but also the adoption of the Internet [30]. For users who end up
using social networks, one of the most popular issues relates to privacy [3, 53, 68].

12.3 Privacy Issues in Social Networks

As discussed in the introduction to this chapter, there are a large number of privacy
concerns in the field of social networks. These concerns have greatly increased in
the past years due to the advent of online social networks. Facebook, LinkedIn, and
Twitter are already well-known social networks that have a large audience in all age
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groups. Recently more trendy social sites such as Pinterest, Instagram, Vine,
Tumblr, WhatsApp, and Snapchat are being preferred by the younger audience
[63]. The amount of data that those social sites gather from their users is continually
increasing and these data are very valuable for marketing, research, and various
other purposes. At the same time, the data usually contain a significant amount of
sensitive information, which should be protected against unauthorized disclosure. It
is safe to say that any collection and storage of individual data regardless of intent,
can lead to privacy implications that would not have existed otherwise [66]. One
example of such a situation was in 2006 when, to stimulate research on real Internet
data, AOL made available over 20 million search queries from over 650,000 users.
Although the data was de-identified (in a poor way), individuals that conducted
specific searches were identified in the data. The main reason why this was possible
was that many users searched for their city, neighborhood, and even their first
and/or last name. The New York Times published a story about one such
re-identified individual, Thelma Arnold, from Liburn, Georgia in the United States,
who was discovered through her queries terms [2]. Luckily, no significant harm was
reported for any individual from the released data. However, the researcher
responsible for de-anonymizing and releasing the data was dismissed and the AOL
chief technology officer resigned.

For social network data, privacy can be seen from different angles. Imagine an
online social network site (such as Facebook, Orkut, etc.). These sites gather data
from a large number of users, and that data is published to other users based on
privacy controls of the user that owns the data. For instance, Facebook has a series
of privacy settings that allows a user to choose what to share and with whom. These
controls go beyond these basic features, and a user can create various levels of
friends, review any information that others post about them before it is posted, and
so on. What is important to note at this point is that this view of privacy is
user-centric or local. This type of privacy is commonly called social privacy [66].
A second view of privacy is when we look at the whole social network data. Any
social network site will gather data and use this data for other purposes as specified
in their data use policy. For instance, Facebook has a very detailed data use policy
in which they describe how they use the information received from their users. Of
particular interest for privacy is how this information is shared to other parties
(companies):

“Your trust is important to us, which is why we don’t share information we
receive about you with others unless we have:

• received your permission;
• given you notice, such as by telling you about it in this policy; or
• removed your name and any other personally identifying information from it.”

[26]

As stated above, the social network data is de-anonymized prior to being shared
to other companies. However, as seen from the AOL case, the de-anonymization
process may not be fully successful and the privacy of certain individuals may still
be at risk. This view of privacy is network-centric or global and it is commonly
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called institutional privacy [66]. The institutional privacy can also be seen from two
distinct angles. First, the social network site, as the data collector (many times this
is referred to in the literature as data owner, we chose to use this term since in many
data use policies, such as Facebook’s, the data owner is considered the user that
provided the data), has unlimited access to all collected data, thus, protecting pri-
vacy from the data collector is an Herculean task. In general this situation is not
considered a privacy concern because the data collector is trusted with the data
directly by the user. The user has the option of not participating in that social
network site and he or she remains unknown to the data collector. This is more
difficult than it appears because in many cases the data is not voluntarily provided to
a data collector. An example of such a situation is the data collection practices of
NSA as revealed by the whistle-blower, Edward Snowden [24]. This type of pri-
vacy, when the social network data collector is not trusted or the data is gathered
without the knowledge of the user, is known as surveillance privacy [66]. The
second view of institutional privacy is when the social network data is shared by a
trusted data collector to third parties. Due in major part to AOL anonymization
failure, there are no recent attempts to publically provide anonymized data to
researchers; however, this sharing of collected data happens when there is a sig-
nificant benefit for the social network site. The data is anonymized (this is most
likely specified in the data use policy, for instance, Facebook will anonymize their
data before sharing it with others) and shared with companies that are in general
trusted by the original data collector. However, the anonymization process must
aim to protect the individual data from disclosure in case attempts to
re-identification occur. In the context of social network data, we call this type of
privacy network privacy. A variant to this scenario is when the data is not shared
with other parties, but the data collector shares the result of various queries with
third parties. While this approach seems to better protect the individual’s privacy it
still may lead to privacy breaches and it requires the data collector to be able to
process the queries requested by other parties, anonymize the query result, and
provide these results to requestors. We include this scenario in the context of
network privacy. Figure 12.3 illustrates these privacy types.

We will present briefly the main privacy concerns related to each type of social
network privacy (see Table 12.1 for a summary). A solution for each such problem

Social Network 
Privacy

Social Privacy

local  / user-centric

Institutional Privacy

global / network-centric

Surveillance Privacy

not-trusted data collector / 
not-authorized collection 

Network Privacy

anonymized data / query 
results

Fig. 12.3 Social network privacy types
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is presented in the next section. For social privacy, the main concern is whether or
not the user understands the privacy risks he or she is taking when sharing infor-
mation on a social network (user awareness). As recent as 2012, approximately 8 %
of US Facebook users had never heard about Facebook privacy tools. What is more
alarming is that even people that are aware of privacy risks do not take appropriate
steps to protect their privacy. For instance 28 % of US Facebook users share their
wall posts to a wider audience then their friends [18]. The positive news is that
users have become more aware of their privacy. In a study that used public profiles
from New York City, 52.6 % of the users hid their friends list from their public
profile as of June 2011, whereas in March 2010, only a little bit more than a year
earlier, 17.2 % of the users hid their friends list [19]. Related to the user awareness
with respect to privacy, difficulty in setting privacy controls makes the users prone
to giving up in selecting an appropriate privacy policy (privacy controls com-
plexity). For example, Facebook privacy controls are spread in at least six different
tabs: Privacy, Timeline and Tagging, Blocking, Followers, Apps, and Ads. An
example of such a tab is shown in Fig. 12.4. To add to this complexity, the privacy
controls are not easily accessible from the data use policy, and when there expla-
nation is not clear or even provided [27].

Moreover, privacy controls may change and this can contribute to reducing the
privacy (privacy controls changes). Again, we use Facebook as an example. As
recent as late 2012, Facebook made significant changes to their privacy controls and
policies. While these changes simplified the privacy control and policies, they
create some additional privacy concerns. For instance, Facebook decided to remove
the privacy setting that let users hide their Timeline from people who search for it
[34]. In addition, some privacy shortcuts were disabled and made available only
from the main privacy page. An example of such a privacy shortcut is the pop-up on
the top of the News Feed that answered questions such as “Who can see my stuff?”
[34]. Also, the data use policy does not offer direct links to privacy controls. To add
to that, the Facebook privacy policy changed to allow more sharing of data to
third-party companies. The new policy states:

You give us permission to use your name, and profile picture, content, and information in
connection with commercial, sponsored, or related content (such as a brand you like) served
or enhanced by us.

Table 12.1 Social network
privacy concerns

Social Privacy User awareness
Privacy controls complexity
Privacy controls changes
Privacy controls conflicts

Surveillance
Privacy

Not-trusted social network provider
Data collected without user
permission
No oblivion

Network Privacy Data collected for profit
Lack of proper anonymization
Increase sharing of collected data
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While the old policy was more user-friendly:

You can use your privacy settings to limit how your name and profile picture may be
associated with commercial, sponsored, or related content (such as a brand you like) served
or enhanced by us. [27].

This new policy is more related to network privacy and it shows that some of the
privacy concerns are applicable to more than one privacy type.

In some cases, the privacy controls may have conflicts and, when two controls
specify the privacy setting for the same data item, it is difficult to know which
privacy control takes precedence (privacy controls conflicts). Privacy policy con-
flicts exist in many common social networks such as Facebook, MySpace, Orkut,
Twitter, and Google + [79]. For example, in Facebook, a user may choose to have
his or her friends’ list private. However, if some of that user’s friends keep their
corresponding friends list public, some friendship relations can be inferred by an
authorized user. This type of conflict is common to other privacy settings as
well [79].

With respect to surveillance privacy, an important concern is that the initially
trusted social network becomes non-trusted (not trusted social network provider).
Also, there are organizations that have the capability of collecting data without user
approval and can use this data for their own purposes (data collected without user
permission). In addition to these concerns, the fact that any published data may stay
published or stored forever may increase the possibility of surveillance and con-
stitute an important privacy concern. It is very difficult to enforce the right to be
forgotten, also known as oblivion, on social networks (no oblivion). Different
countries have opposing views with respect to oblivion and their regulations are
contradictory to each other. For instance, in France, the law recognizes the right of

Fig. 12.4 Facebook privacy control—privacy tab
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oblivion, a convicted criminal can object to the publication of his criminal record
after he or she has satisfied their punishment. In the United States, publication of
criminal records is protected by the First Amendment.

Network privacy concerns are less known to the general user of a social network
than the social and surveillance privacy concerns, but they are very important in any
discussion of social network privacy. The main reason a social network site gathers
user data is to be able to monetize that data. Gathering more personal data, which can
be successfully analyzed, mined, and consequently used for target advertisement, is
the main goal of a social network company. This ever increasing amount of personal
data creates more and more potential privacy violations (data collected for profit). In
the past few years, Facebook users disclosed less information publically, which
shows increase in user awareness of social privacy concerns. However, during the
same time, the average Facebook user seems willing to disclose more and more
information privately to his or her friends. This contributes to more data collected by
Facebook and third party apps, and this data can be used for advertisement or other
purposes directly by the data collectors [73]. The collected data are usually released
to other companies in an anonymized form; however, since the anonymization
methods are not public, it is not clear if the anonymized data are able to avoid
re-identification of individuals (lack of proper anonymization). For instance,
Facebook can share user data if they “remove your name and any other personally
identifying information from it.” Currently, more and more companies are special-
ized in Big Data and data analytics. Developing efficient methods to analyze large
amount of data will contribute to a need for social network data. A social network site
will benefit from selling their anonymized data to such data analytics companies and
potential privacy violations will increase (increase sharing of collected data).

The above classification is not completely disjointed; some of the privacy
concerns are true for more than one privacy type. For instance, user awareness is
also important for surveillance privacy and network privacy, and no oblivion pri-
vacy concerns exist in network privacy as well.

Section 12.4 will provide existing privacy solutions to the above concerns with a
focus on technical solutions.

12.4 Privacy Solutions for Social Networks

Since there are many privacy concerns regarding social network data, there is not an
easy solution to these problems. Moreover, to protect privacy of individuals the
privacy solutions must be supported and provided by legislators, social network
sites (social network service providers), and social networks users [67]. All these
three entities have the ability to enhance the privacy protection for each type of
entity. Figure 12.5 captures this interaction. Social network privacy is divided
between social privacy, surveillance privacy, and network privacy (institutional
privacy is not shown). The legislators, social network sites, and their users can
provide privacy solutions for each type of privacy.
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For social privacy, the legislators can require that social network sites have a
privacy policy and a set of privacy controls that is appropriate for the type of data
the site collects. The legislators can also require that the social network sites have a
good education system of their users and the privacy implications of their data are
disseminated to all their users. The social network sites also provide important
solutions for social privacy concerns. Privacy friendly default settings, easy to use
privacy controls that change infrequently or not at all, allowing creation of pseu-
donymous profiles as an option, and avoiding privacy conflicts are some of the
solutions a social network site can employ to protect the privacy of their users. Last
but not least, the users must be educated about the privacy implication of sharing
their data. In the context of social privacy, the users should make sure who their
friends are, and they should use appropriate privacy controls for the data they share.
It is important to respect the privacy of others as well, and to also guard the privacy
of one’s children [67].

We provide an example regarding privacy policy conflict and we discuss how
this problem can be solved.

In Fig. 12.6, the Celebrity user chose to make her list of friends private. Some of
her friends (Friend 1 and Friend 2 are depicted) chose to make their list of friends

Legislators

Users

SN Sites

Social Network Privacy

Social Privacy

Surveillance
Privacy

Network
Privacy

Fig. 12.5 Social networks privacy—a common effort

Celebrity
List of friends private

Friend 1

List of friends public

Friend 2

List of friends public

Friend 1 – Celebrity

Friend 2 – Celebrity

Are PUBLIC 

Fig. 12.6 Allow-take-precedence privacy policy
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public. Due to their choice, the corresponding friendship relationships are public
and this violates the choice of the Celebrity user. This privacy policy conflict,
known as allow-take-precedence policy, is widely used in existing social networks
such as Facebook and Orkut [79]. Solutions proposed for this privacy violation
include [79]:

• Redesign of privacy policy. This is extremely difficult if the users can choose
their own privacy policies. While it is easy to employ, it will set standard
privacy policy for all users that can be viewed as either too restrictive or too
permissive.

• Deny-take-precedence policy. The social network site may deny the Friend 1
and Friend 2 users the ability to publish their friendship relation with Celebrity
user due to Celebrity user settings. This approach is known as
deny-takes-precedence. Since it is based on both users’ preferences, it requires
more processing from the social network site software and it is not currently
employed. This approach will give preference to privacy when there is a privacy
policies conflict between users.

• Avoid using bi-directional friendship relations. This is possible in social
networks that allow relations of type followers and following. In this case each
user may choose their own preference for their corresponding lists. Still an
adversary may infer entries of a private list from public lists of the victim’s
friends (followers or followings), and these solutions still have the original
problem although in a limited scope.

• Privacy policy negotiations. In this scenario, privacy policies are dynamically
updated based on given requirements of utility and privacy. Such policy
negotiations are still in an early development stage and it is not clear how well
they can satisfy all users. As an example, in a game theoretic approach used for
those negotiations, users cannot protect their information if others sharing the
information request to make it available [72].

For surveillance privacy, the most obvious solution is to avoid posting any
sensitive information on online social networks. While this is an easy solution, it is
difficult to enforce considering how pervasive the social networks are today. In this
type of privacy, the social network site is not trusted and thus the private infor-
mation should not be provided in clear form. The basic solution for enforcing this is
the usage of cryptographic methods. There are several applications that use
encryption to protect users’ information on the social network sites. Some of them
are listed below:

• FlyByNight. This application is implemented for Facebook and encrypts the
user data before being stored on Facebook. Unfortunately, FlyByNight relies on
Facebook servers for key management, so it fails to protect against the sur-
veillance of the social network provider [55].

• NOYB (none of your business). NOYB is also used on Facebook and it uses
encryption to protect personal details of users. It protects against the surveillance
of the social network provider (Facebook in this case) but it is applicable only to
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specific attribute data from the user profiles and it does not allow encryption of
free text [29].

• FaceCloack. This application is a Firefox browser extension that uses a sym-
metric key to encrypt user personal information in Facebook. This method
requires the use of dedicated FaceCloack servers that store part of the user
profile in an encrypted form [56].

• Scramble! This application is designed as independent from a specific social
network platform. The content is also encrypted prior to being shared in the
OSN, and only friends can decrypt it [4].

Other solutions regarding surveillance privacy include implementation of a
social network site as a distributed site, use of fake traffic to obscure user activity,
and use of anonymous communication network such as Tor [20].

The main solution for network privacy is network anonymization. To define a
network anonymization model it is important to understand what constitutes a
privacy violation for a social network. A privacy violation (or breach) occurs when
sensitive information about an individual is disclosed by an adversary. In the
context of social networks the most common types of privacy violations are:
identity disclosure, attribute disclosure, and link disclosure [80].

Identity disclosure refers to the correct re-identification of a node (such as a
person or an institution) in an anonymized social network when the adversary uses
the anonymized network and other available information about individuals from the
network.

Attribute disclosure refers to an adversary finding out something new about the
target individual, but in this case the adversary may not know which node in the
network the individual represents.

Link disclosure occurs when an adversary discloses the existence of a sensitive
relationship between two individuals from the social network. This type of dis-
closure assumes that some relationships are sensitive and their privacy must be
protected.

In order to anonymize a social network it is also important to understand what
types of data are sensitive and what types of data might be known from other
sources. These assumptions lead to various social networks models. We present
below an example of such a model.

We model a social network as a simple undirected graph G ¼ ðN ; EÞ, where N
is the set of nodes and E�ðN �NÞ is the set of edges. Each node represents an
individual entity. Each edge represents a relationship between two entities.

The set of nodes, N , is described by a set of attributes that are classified into the
following three categories: identifier attributes such as Name and SSN that can be
used to identify an entity, quasi-identifier attributes such as zip code and sex that
may be known by an adversary, and sensitive attributes such as diagnosis and
income that are assumed to be unknown to an adversary.

For simplicity, only binary relationships are allowed in our model. Moreover, all
relationships are of the same type and, as a result, they are represented via unlabeled
undirected edges. Also, this type of relationship is considered to be of the same
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nature as all the other “traditional” quasi-identifier attributes. In other words, the
graph structure may be known to an intruder and used by matching it with known
external structural information; therefore, serving in privacy attacks that might lead
to identity and/or attribute disclosure. In this model, link disclosures are not a
privacy concern. An example of a social network is shown in Fig. 12.7. Age and zip
are quasi-identifier attributes and disease is a sensitive attribute. The identifier
attributes are not shown.

In addition to the privacy concerns that must be understand and captured in an
anonymized network, of similar importance is the utility of the data. The anony-
mized network, while protecting the individual’s privacy must also preserve much
information to maximize the utility of the social network. Since it is difficult to
know how the network is used, defining utility is not a trivial problem. Early work
in social network anonymization uses the total number of edge additions and
deletions to measure the utility loss [54]. Newer approaches focus on preserving the
topological features of a network such as centrality measures, degree distributions,
and clustering coefficients [1].

We present next some of the most common social network anonymization
approaches.

The main two approaches to anonymize social networks are categorized as
follows [80]:

• Edge modification. These techniques propose edge deletion and additions to
help in anonymizing the network. The network structure will be altered by these
changes, and the goal is to minimize the number of edge modifications while the
privacy requirements are met and the data utility is maximized. The most used
anonymization approaches in this category are: k-degree anonymity [54], k-
neighborhood anonymity [81], and k-automorphism [82]. These approaches will

Node Age Zip Disease

X 1 25 41076 diabetes

X 2 25 41075 cancer

X 3 27 41076 flu

X 4 35 41099 cancer

X 5 38 48201 cancer

X 6 36 41075 flu

X 7 30 41099 flu

X 8 28 41099 diabetes

X 9 33 41075 diabetes

X 7

X 3

X 2X 1

X 5

X 6

X 9X 8

X 4

Fig. 12.7 A social network example
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be briefly introduced in this section. The above models focus on avoiding node
re-identification. Other approaches such as k-isomorphism [15] and l-opacity
[61] focus on preventing link disclosure, in which the adversary learn about a
sensitive relationship between individuals.

• Clustering or network generalization. This technique proposes publication of
aggregate information about the network structure. In this way attacks based on
network structure are made very ineffective; however, the utility of the network
may be too low. We will present the k-anonymous clustered social network [13,
74] in this section.

Two other approaches are as follows:

• Randomization. This is a special case of anonymization via edge modifications.
The graph structure is modified by deleting and adding edges at random such
that the total number of edges is unchanged. Unfortunately, this approach is
altering significantly the utility of the data [36].

• Differential privacy. In this approach individual nodes are protected under the
definition of differential privacy [23]. Usually in this approach the network is
not anonymized and it is kept by the data owner, only releases of network
measures such as degree distribution are allowed [37]. This constraint makes the
differential privacy approach less flexible than the other anonymization
approaches mentioned above. However, very recent developments allow
non-interactive network data publication while differential privacy property is
satisfied [14]. A high-level discussion about differential privacy in social net-
work data is included in this section.

The K-degree anonymity model assumes that the degree sequence of nodes in a
social network is potentially available to an adversary and the anonymization aims
to create groups of nodes with similar degree values. A network G ¼ ðN ; EÞ is k-
degree anonymous if for every node X 2 N there exist at least k – 1 other nodes
that have the same degree as X. Liu and Terzi proposed an algorithm that creates a
k-degree anonymous network and minimizes the number of edge deletions and
additions [54]. In Fig. 12.8 we illustrate an example of a three-degree anonymous
network. Notice that three new edges were added to the network (shown in bold)
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X 2X 1

X 5
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X 9
X 8
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X 7

X 3

X 2X 1

X 5

X 6

X 9X 8

X 4

Fig. 12.8 A social network and a corresponding three-degree anonymous network
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and one was deleted (dashed). In this example nodes X1, X3, and X4 have the degree
4, and all other nodes have the degree 2.

The k-neighborhood anonymity model assumes that adversary knows the
immediate subgraph of the target node. The immediate subgraph contains all
neighbors and relationships between neighbors. A node X is k-neighborhood
anonymous if there exist at least k-1 other nodes such that the subgraph constructed
by the immediate neighbors of each such node is isomorphic (has the same
structure) to the subgraph constructed by the neighbors of X. By immediate
neighbors we mean the nodes that are directly connected to the starting node.
A graph satisfies k-neighborhood anonymity if all the nodes are k-neighborhood
anonymous. There are heuristic algorithms that construct k-neighborhood anony-
mous networks. Such algorithms start by identifying all different neighborhoods
and then it creates groups of identical neighborhoods of size k using edge additions
and deletions [81]. In Fig. 12.9 we show a three-neighborhood anonymous net-
work. Notice that three new edges were added to the network (shown in bold) and
two were deleted (dashed). In this example nodes X3, X4, and X7 have isomorphic
immediate neighborhoods. All the remaining six nodes have also isomorphic
neighborhoods.

K-automorphism anonymity assumes that the adversary can know any subgraph
around a certain node. A network is k-automorphic if the view of the network from
any node is identical with the view of the network from at least k-1 other nodes. The
complete mathematical definition for k-automorphism and a heuristic algorithm is
presented in [82]. Note that in Fig. 12.9, the anonymous network is also k-
automorphic.

Based on the above definitions, it is easy to notice that any k-automorphic
network is also k-neighborhood anonymous network, and any k-neighborhood
anonymous network is also k-degree anonymous network.

A k-anonymous clustered social network uses a different approach. Based on a
grouping strategy that tries to maximize an objective function, the nodes from a
network are partitioned into pair-wise disjoint clusters. These clusters will then be
generalized to super-nodes, which may be connected by super-edges. The goal of
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Fig. 12.9 A social network and a corresponding three-neighborhood anonymous network (which
is also three-automorphic network)

12 Privacy in Social Networks 281



this process is to make any two nodes coming from the same cluster indistin-
guishable based on their relationships. To achieve this objective, Campan and Truta
developed intra-cluster and inter-cluster edge generalization techniques that were
used for generating super-nodes and super-edges, and so generalizing the social
network structure [13]. To satisfy the k-anonymous clustered model—derived from
the well-known k-anonymity property for microdata—each cluster must have at
least k nodes. The algorithm used in the anonymization process, called the
SaNGreeA (Social Network Greedy Anonymization) algorithm, performs a greedy
clustering processing of an initial social network in order to generate a k-anony-
mous clustered social network. In this algorithm the nodes that are more similar in
terms of their neighborhood structure are clustered together using a greedy
approach. To do so, a measure that quantifies the extent to which the neighborhoods
of two nodes are similar to each other is used. Full descriptions of this measure and
of the SaNGreeA algorithm are presented in [13]. Improving the SaNGreeA
algorithm, Tassa and Cohen introduced a more efficient algorithm, namely
sequential clustering algorithm, for creating k-anonymous clustered social network.
Details about this new algorithm and a complete comparison in terms of both
efficiency and utility with SaNGreeA can be found in [74]. Figure 12.10 shows two
three-anonymous clustered networks.

Differential privacy in social networks is a new research direction that extends the
differential privacy for tabular data to networks. Differential privacy is based on a
mathematical guarantee of privacy which states that anything that is learnable from a
table T can also be learned from a table T’which differs by only one record from table
T [23]. Such a table T’ is called a neighboring table for T. In case of networks, the
notion of vicinity or neighboring can be defined in terms of both edges and nodes.
Based on this, two models were created, edge differential privacy [33, 45, 46] that
defines neighboring networks that differ by at most one edge, and nodes differential
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Fig. 12.10 A social network and two corresponding three-anonymous clustered social networks
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privacy [7, 47] in which neighboring networks differ by one vertex and its corre-
sponding edges. Until 2014, all of this work was based on an interactive setting,
which means that a trusted curator that has access to the original network will receive
queries from non-trusted users and will apply a differentially private algorithm to
provide the answer to users. Each user will have a privacy budget that can be
exhausted if too many queries are sent to the curator. Recently, one practical solution
for non-interactive network data publication was introduced in [14]. This solution,
called density-based exploration and reconstruction (DER) creates a sanitized net-
work Gs from the original network G that satisfies ε-differential privacy for the
privacy budget ε. In addition to differential privacy requirements, this models aims to
provide privacy guarantee even for correlated data (the original differential privacy
model assumes independent data) if the amount of correlation can be measured. Full
details regarding this approach can be found in [14].

12.5 Challenges and Opportunities in Social Networks
Privacy

As already presented in the previous sections, there is not a universal solution to
social network privacy, and there are many reasons for this.

While in other domains such as healthcare or financial sectors there are privacy
regulations that define an expectation of privacy, in the social networks privacy is
not as well defined, being interpreted differently by various users and social net-
work sites owners. Common interpretations of privacy in social networks as well as
regulations that protect individual’s privacy in this context are major challenges
that need to be addressed in the future. There are users that do not expect privacy
for any data they post on their social network; users that for minor financial benefits
will voluntarily give up their private information; as well as users that are very
privacy aware. To create a common view of privacy is a challenging task that needs
to be solved from a sociological perspective. Related challenges include users’
awareness of privacy issues and difficulty to create useful privacy legislation in an
online medium where users “voluntarily” provide sensitive information.

To that end, privacy in social networks requires a clear and near universal defi-
nition that can be updated through time. We need a standard model (perhaps similar
to the Open System Interconnection (OSI) Reference model) for privacy in social
networks. This model will address questions regarding the minimum acceptable
requirements for a social network to be considered safe. This will be in terms of
privacy dealing with each layer that contains or transports private information. It will
require research into what today’s social media consumers want as well as legislative
aspects associated with privacy. Research should also address which predefined
relationships for users of social networks bearing various privacy settings (e.g., just
like those currently in existence on Facebook) should be encouraged to exist in social
networking services by default. In addition, another important research issue is:
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should users have the power of customize relationships associations and their
respective privacy settings and what is the degree of effectiveness for doing so? The
literature indicates that people have a tendency to share private information even
when they express privacy concerns [71]. Research needs to address whether
user-based privacy customization is effective at protecting individual privacy.

There are also many technical challenges in social network privacy that provide
opportunity for future research.

Balancing privacy and data utility remains an important challenge in this field.
While much work has been done with respect to this problem, we still do not know
how to share private data while protecting privacy and ensuring sufficient data
utility in the shared data. The trade-off between utility and privacy was introduced
in the form of the R–U confidentiality map [22]. Such a map is a set of values, R
and U, of disclosure risk and data utility that correspond to various strategies for
releasing the data. An example of such a map is shown in Fig. 12.11. Most of the
work to release anonymized social networks is based on maximizing data utility
while maintaining the disclosure risk under a given threshold. This technique, also
known as privacy-based approach, corresponds to the RU map shown in Fig. 12.11.

Social network anonymization still provides an imperfect solution. The avail-
ability of data from various sources makes anonymization more and more chal-
lenging. Finding more secure anonymization approaches while preserving data
utility remains a challenge in data privacy. The new paradigm of differential dis-
closure is promising but it requires better solutions that preserve network data utility
to a satisfactory level. New solutions are needed for releasing data that are both
confidential and preserve data utility.

Social networks are dynamic and protecting the individuals in this context is
very challenging. Existing methods do not perform well with multiple releases of
the data, because the data evolves in time and releasing just one version of the data
is not acceptable in many practical problems. While there is some preliminary work
in this area [77] more research is needed.

The advent of Big Data represents a privacy challenge as well. Businesses are
able to use Big Data to learn more about their employees, increase productivity, and
reduce cost. However, in these processes, the privacy of individuals is at high risk
due to the high level of monitoring. Balancing how to use Big Data while pre-
serving the privacy of individuals is a difficult problem that requires future research.
Related to Big Data, the increasing use of technology generates more individual
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Fig. 12.11 An R–U confidentiality map
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data. For instance, the use of wearable devices such as heart rate monitors or
exercise devices and online activity (social networks, online searches, blogs) creates
a continuous flux of data. To add to that, advances in Big Data analytics and other
fields will likely reveal new trends and patterns about individuals. For instance, the
likelihood of specific diseases such as Alzheimer may be computed in the near
future based on genetic screening and other factors. Such developments will also
create more privacy challenges.

The richness of information embedded in social networks creates major privacy
challenges. A social network contains a variety of data in addition to its network
structure. For instance geolocation data can be included as part of the profile,
multimedia files may also contain sensitive information that is hard to detect
without human intervention. How to protect individuals’ privacy in this environ-
ment is extremely challenging and future research needs to address this problem.

An important opportunity that exists in this area is the creation of privacy
software tools. We envision two types of software tools that have the potential to
increase the awareness of privacy issues and to make privacy more user’s friendly.
In the first category of such tools, the social network users should automatically set
their privacy preferences in a variety of social network sites. These tools have the
potential to improve the social privacy component illustrated in Fig. 12.3. A second
category of tools, used by social network owners, will aim to create anonymized
social networks based on specified parameters. While prototypes of such tools exist
for specific anonymization models, there are no tools that allow selection of the
desired anonymity model and that are easy to use. Creating such privacy software
tools will contribute to automating institutional privacy and in particular the net-
work privacy component (see Fig. 12.3).

Finally, privacy needs to be connected with deception literature and deception
detection and prevention research. Protecting one’s privacy involves safeguarding
software as much as safeguarding people from people. Social engineering has
become prevalent through social networking sites [28], so privacy should not be
examined disconnected from deception. Deception detection algorithms can con-
tribute to helpingmaintain one’s privacy by eliminating the potential for identity theft
and consequences arising from that theft. Educating developers and designers as well
as users about privacy also means educating them about deception. These two terms
are linked. It is as necessary that we explore new research directions as that we update
technical procedures that govern the development of social networking services.
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Chapter 13
The Right to Privacy in the Age of Digital
Technology

Richard Spinello

13.1 Introduction

Computer technology has created enormous new opportunities for both suppliers
and consumers of information. Every organization has at its disposal vast com-
puterized resources for processing its many functional activities. Thanks to the
revolutionary technology of digitization, information has become more permanent,
mobile, and pliable. Pieces of information can be easily aggregated or recombined
to create revealing profiles. At the same time, monitoring technologies and the
Internet’s open architecture allow for the careful tracking of a person’s movements
both in cyberspace and in the physical world. Technologies like mobile telephony
also provide ample opportunities for such surveillance.

Digital networked technology, therefore, is systematically diminishing our actual
privacy and lowering our expectations for the level of privacy to which we feel
entitled. Public controversies sometimes slow down this irrevocable trend to make
every person as transparent as possible, but strong privacy rights seem increasingly
incompatible with these technologies. The threat to informational privacy, which
involves a person’s control over the flow of his or her personal information, is
particularly pronounced [26].1

In certain situations, governments have pushed back with some alacrity to
protect the privacy rights of their citizens. The European Union has been especially
proactive in protecting personal information. It has recently focused attention on the
activities and policies of search engines such as Google. It now requires the US
company to remove the links to news articles or other documents associated with an
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individual’s name if that individual so requests. Europeans claim that the “right to
be forgotten” is an essential aspect of the right to privacy. Hence every individual
should be allowed to insist upon the removal from the Internet of old or irrelevant
information, especially if that information is incriminating in some way. Google has
complied with this demand, and it now offers a web page where Europeans can
request the search engine to remove undesirable links tied to their name [45].

As the Google case illustrates, the ethical issues involving privacy rights and
information use are complex and intricate. This is partly because the value of
privacy itself is contested and the concept of privacy still remains vague and
mercurial. Should privacy be interpreted so broadly that it must include even this
“right to forget”? If so, how do we determine the legitimate scope of such a right?
Where do we draw the line in limiting a search engine’s capabilities to make
information more accessible?

A second problem arises because privacy is often confused with other rights
such as freedom or self-determination, that is, the right to make decisions about
one’s life. Legal arguments that defend assisted suicide have been linked with
privacy, referring to “ownership” over one’s body and the liberty to determine the
time and manner of one’s death. As a result, definitions of privacy lack precision,
and they are often conflated with normative justifications for a right to privacy.
Therefore, before we set out to analyze privacy, we must precisely clarify the
meaning of privacy, with special attention given to informational privacy, which is
the primary axis of our discussion. Failure to understand the essential nature of
privacy will interfere with any coherent ethical or policy analysis. Once we have set
forth a workable definition of privacy, we can transition to a normative analysis.
That analysis must come to terms with several questions of paramount importance.
Is privacy an intrinsic human good or is it an instrumental one? Second, is the
rights-based approach still a sound way of thinking about informational privacy,
and is it a viable avenue for making prudent policy decisions? Or is privacy more
constructively interpreted as a social value to be measured by its contribution to
social welfare? If we conclude that privacy is a valid claim-right, how can that right
be adequately secured? Should all countries adopt a regime of information law and
policy that is similar to the EU model? That model relies on comprehensive reg-
ulations that safeguard personal privacy even in the vast realm of networked space.
Or can privacy be protected through self-regulation and better technology design?
Should the onus be on the state or the individual? Finally, we must consider the
challenges ahead such as how to balance strong privacy rights with the need for
information accessibility and the preservation of the Internet’s open access
structure.

Before we begin the task of conceptualizing privacy, however, it is instructive to
review some important background on privacy problems created by digital infor-
mation networks. Hence, we first turn to a brief overview of the threats posed to
personal privacy, especially for vulnerable groups such as the consumer or users of
social media. This discussion will help us to appreciate the nature and scope of the
challenges posed by evolving information technologies such as social networking
platforms.
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13.2 Technology-Based Privacy Controversies

In past centuries, the primary threat to personal privacy was thought to originate
from the state. As a consequence of the state’s Orwellian tendencies, the US
Constitution includes the Fourth Amendment, which protects citizens from unrea-
sonable search and seizure by government authorities. In the 19th century US
citizens were worried that the postal system, the national census, and even the
nation’s telegraphic network would somehow compromise their personal privacy.
People were also troubled that photography would invade their personal space. The
telephone caused even more concerns that were exacerbated in the troublesome
Olmstead [36] case where the Supreme Court ruled that wiretapping or listening to
conversations (without a warrant) was neither a search nor a seizure and so it did
not violate the Fourth Amendment.2

None of these technologies, however, have posed the same sweeping threats as
networked digital technology. Thanks in part to the rapid proliferation of computers
and digital networks, arguably the new privacy adversary is the bureaucratic
organization, whether it be in the private or public sector. Solove has argued that we
need a new metaphor for capturing the current threat to privacy. He proposes that
we turn to Kafka’s novel, The Trial, a book which showcases the anonymous
oppression of the legal system. According to Solove [51], “the growing use and
dissemination of personal information creates a Kafkaesque world of bureaucracy,
where we are increasingly powerless and vulnerable, where personal information is
not only outside our control but also subjected to a bureaucratic process that is itself
not adequately controlled.”

Privacy is especially challenging for consumers who must provide certain data
such as credit card information almost every time they make a purchase. Purchasing
data is also typically collected at the point of sale. In addition, every move a
consumer makes online leaves behind a digital imprint that can be captured, stored
“forever” in a database, and easily recombined with other revealing data. The
collection and assembly of all this information into comprehensive databases
enables the creation of “digital dossiers,” which include an expanding sequence of
records on almost every facet of a person’s life [51].

Perhaps the most subtle but ominous threat comes from the common process of
data aggregation whereby information is collected from different sources and
recombined into a single record. For example, information collected by a financial
“supermarket” that sells banking or insurance products could be combined with
information about spending habits, online purchases, or charitable contributions.
The non-transparent aggregation from eclectic data sources by data brokers such as
ChoicePoint and Acxiom poses a particularly severe problem for consumers who
appreciate their privacy rights. Acxiom’s enormous Infobase includes demographic

2In 1967 the Supreme Court reversed its decision on wiretapping in Katz v. United States [27]. See
also [49].
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and purchasing data that covers 115 million households and serves as an invaluable
tool for direct marketing.

Consumers have a hard time evaluating the sensitivity of data they reveal
because they cannot anticipate its future utilization nor how that data will be linked
to other pieces of information in a completely different context. It might be that a
discrete unit of information, such as a list of books and music purchased on
amazon.com, is innocuous in itself but incriminating when combined with other
data. As Nissenbaum [35] points out, it is an erroneous assumption that “an
aggregate of information does not violate privacy if its parts, taken individually, do
not.”

As a result of collection, processing, and aggregation techniques, companies can
engage in an unprecedented level of data profiling. This process is defined as “the
collating of data about individuals in databases which can be used to identify,
segregate, categorize and generally make decisions about individuals known to the
decision maker only through their computerized profile” [3]. These profiles come in
many different shapes and configurations. Some data brokers, for example, spe-
cialize in profiling financially at-risk consumers by gathering data from social
media and other sources. This information is then sold to certain financial com-
panies that target these individuals with products that often have punitively high
interest rates. This information is collected and disseminated without a consumer’s
knowledge or consent [2].

Profiles of online activities have also multiplied exponentially. Consider what
happens when consumers shop or browse online. Electronic commerce transactions
often leave behind a revealing trail of personally identifiable information, including
a consumer’s name, address, e-mail address, and phone number. One way in which
web site vendors can track the browsing activities of their customers is through the
use of cookies, small data files that are written and stored on the user’s hard disk
drive by a web site such as amazon.com when the user visits that site with a
browser. They contain information such as passwords, lists of pages within the web
site that have been visited, and the dates when those pages were last examined.
These cookies enable the monitoring of a user’s movements when he or she visits
the amazon web site. The cookie can reveal whether the user browses through
history books or is more attracted to romantic novels. Amazon can use this infor-
mation to send targeted ads or promotional emails.

Tracking tools are not confined to cookies. Marketers also rely on beacons, small
pieces of software code installed on a user’s hard drive (without their knowledge)
that can track a web surfer’s location and online activities. Both beacons and
third-party cookies (installed by online ad agencies like DoubleClick) can track
users from site to site. This enables the company that installed these devices to build
a database of that user’s online activities. Not only can this information be sold to
advertisers, it can also be sold on a data exchange to data brokers that have the
option of combining it with offline data.

Cookies and beacons, however, have a serious liability: they do not work with
mobile devices and smart phones which are often used for online browsing. As a
result, these technologies are being replaced by the assignment of unique ID
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numbers to each user that will do the tracking. Google, for example, might assign
an ID number to a user and then track his or her activities across Gmail, their
Android phone and its apps, and the Chrome browser on that user’s PC. These
unique ID numbers have the potential to monitor and record the user’s movements
on both his or her smart phone and PC. The end result is a more accurate and richer
profile for advertisers [7].

Why do companies commit resources to all of this data collection, aggregation,
and profiling? The principal objective is targeted marketing and advertising. Most
corporations are convinced that the more detailed information they acquire about
the consumer, the more ability they will have to tailor their marketing efforts and
generate higher revenues. Targeted campaigns minimize risk and increase the
likelihood of a positive reaction. It makes more sense to send someone ads for toys
if he or she has recently made a purchase of toys on amazon.com or toysrus.com.
Hence, it is probably safe to assume that this mature conviction about the predictive
power of information has become a fixture of modern marketing techniques.
According to Cohen [5], the “colonization of private spaces” by cookies, beacons,
and other technologies is a foreseeable result of the “market-driven search for more
and better information.”

But where is the harm in this insatiable quest for consumer data? Why should
consumers be so concerned about this loss of control over the information they
provide online if the result is merely more targeted advertising? One problem is that
this all goes on in a non-transparent way, without the consumer’s knowledge or
consent. As we have noted, financially troubled consumers can be surreptitiously
profiled without any ability to correct or dispute the data collected about their financial
affairs. Another concern is that these profiles create the potential for being “misdefined
and judged out of context in a world with short attention spans” [46]. If someone
judges John by the books he reads, his professional interests, and his civic associations
they could easily come to the wrong conclusion about his political preferences.

A third problem stems from the fact that this collected data is subject to security
breaches that have become all too common in recent years. In 2014, two large
retailers, Target Corp. and Neiman Marcus, revealed that their computer systems
were severely compromised. Those systems failed to block a powerful computer
virus that allowed hackers to pilfer the credit card information of their customers.
When this type of information falls into malicious hands, consumers are subject to
financial harm.

In addition to consumers, users of social networks like Facebook are also at risk.
Facebook often knows the most intimate details of a person’s life. Social media
users derive many benefits and pleasures from sharing personal information within
their network of “friends” and associates. However, sometimes that information is
shared too widely when users inadvertently make some Facebook settings public. In
addition, there are obvious temptations for a company like Facebook to exploit
information amassed about their users for the purposes of social research.

Facebook has had to contend with many privacy challenges in its brief history.
In 2009, for example, Facebook suddenly modified its privacy settings. A person’s
“friends” could no longer be kept concealed from the public or from each other.
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As a result, information that was once private such as one’s profile picture, name,
gender, address, professional networks, and so forth, became publicly available by
default. According to MacKinnon [28], these changes were motivated by the
company’s need to monetize this “free” service, and were consistent with
Zuckerberg’s “strong personal conviction that people everywhere should be open
about their lives and actions.” Zuckerberg, among others, has clearly sought to
lower privacy expectations. Facebook’s decision to make previously confidential
information “publicly available,” was reversed thanks to public protest, and users
now have the capability to control access to most of their personal information.

It is understandable that Facebook and other social networking platforms want to
share some of this information with trusted advertisers for targeted ads, since this is
the way the company generates revenue. But this must be done in a way that
curtails the secondary use of this information or the aggregation of these data with
information collected elsewhere. Otherwise, a social media user’s privacy becomes
easily jeopardized [4].

It should be evident from this brief discussion that the protection of privacy rights
has become a daunting challenge when information can be so easily collected,
processed, and disseminated. It can also amount to a great expense for governments
that enforce privacy laws and corporations who must comply with those laws. Are
the benefits worth these expanding costs? Is privacy still a value worth protecting?
Before we address these questions we must provide a workable definition of privacy.

13.3 Common Theories of Privacy

Most consumers intuitively know that their privacy rights have been violated when
companies obtain their personal information and use it without their permission.
They are justifiably unsettled when web sites spy with impunity on their private
lives. Nevertheless, they find it difficult to render a formal definition of privacy.
Even philosophers and privacy theorists have struggled to define privacy with any
real precision. According to Westin [56], “few values so fundamental to society as
privacy have been left so undefined in social theory. . . .” This is because privacy
itself is an ambiguous and fuzzy concept. We all have a strong sense that privacy is
valuable and desirable. But our notions of privacy tend to be vague and our con-
ception of what separates the “private” from “public” space tends to be amorphous.

Hence we must develop a cogent theory of privacy that will include and highlight
a reasonable definition of privacy. We assume that privacy is a unitary concept that
can be adequately differentiated from related concepts such as self-determination or
property rights. Once we have a more precise idea of privacy we can objectively
assess its normative value. Before we plunge into this theoretical reflection, how-
ever, it is instructive to review different conceptions of privacy and to point out their
strengths and shortcomings. This cursory overview will also allow us to appreciate
how the concept of privacy has evolved. To some extent all of these theories overlap
but each one has a distinct nuance and accent.
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One of the first and most widely cited theories of privacy was articulated by US
Supreme Justices Warren and Brandeis [58]: “Recent inventions and business
methods call attention to the next step which must be taken for the protection of the
person and for securing the individual. . . . the right ‘to be let alone’” (my
emphasis). The notion of privacy as the fundamental “right to be let alone” reso-
nated with many in the legal community, who saw the need to protect “private life,”
which includes things that “all men alike are entitled to keep from popular curi-
osity” [58]. Preserving this right, they argue, is especially critical in the face of
encroaching new technologies (such as photography). The prescient Warren and
Brandeis article, written in 1890, not only gave us a suggestive concept of privacy,
but it also anticipated the link between the potential erosion of privacy and tech-
nological advancements.

This right to privacy, the right to prevent people from invading a person’s private
space, was cited and reaffirmed in many legal cases subsequent to the Warren and
Brandeis article such as Pavesich v. N.E. Insurance Co. [38], which recognized a
right to privacy in the common law that was “derived from natural law.” However,
in the infamous Olmstead case, the Court seemed to regress from its support of
privacy rights when it ruled that wiretapping was not a violation of the Fourth
Amendment. Brandeis dissented, however, arguing that this right to be let alone was
“the most comprehensive of rights and the right most valued by civilized men” [36].

The Warren and Brandeis conception of privacy puts an emphasis on physical
privacy or privacy as non-intrusion into a person’s private physical space. Privacy is
seen as necessary to block access to a person or to his or her physical possessions.
This form of privacy is sometimes referred to as “accessibility privacy” because of
its focus on the prevention of gaining access to another individual [6]. Privacy
defined simply as the right to be let alone, however, is too broad and imprecise.
Accordingly, it fails to provide adequate guidance for policymakers since there are
clearly occasions when people cannot be left alone. There are times where the state
must interfere in the lives of its citizens, but this theory does not specify valid
exceptions to the right to be let alone nor does it provide any guidelines for
determining what those exceptions might be.

Privacy has also been construed as secrecy. According to this simple model,
privacy is violated when information that was previously concealed is disclosed
[50]. Privacy is associated with the concealment of information or the right of an
individual to conceal facts about himself or herself. According to proponents of this
theory such as Posner [39], when people say they want privacy what they really
want is “more power to conceal information about themselves that others might use
to their disadvantage.” This definition has some parallels in legal reasoning. In
Whalen v. Roe [57] the Supreme Court stipulated that the right to privacy included
“an individual interest in avoiding disclosure of personal matters” and “an interest
in independence in making certain kinds of important decisions.”3 But this theory

3See also [50].
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of privacy as secrecy is obviously unnuanced and it too needs more specification.
How do we distinguish what sort of information people have the right to conceal?

A third theory conceptualizes privacy as a form of seclusion or inaccessibility. It
includes the requirement of secrecy but is more comprehensive. Legal scholar, Ruth
Gavison [20], defines privacy as the limitation of others’ access to an individual
with three irreducible elements: secrecy, anonymity, and solitude. Anonymity refers
to the protection from undesired attention; solitude is the lack of physical proximity
to others; and secrecy (or confidentiality) involves limiting the dissemination of
knowledge about oneself. For Gavison, this inaccessibility is the common feature of
all definitions of privacy. With Gavison’s theory, the notion of privacy expands to
emphasize more strongly psychological privacy, such as the ability to keep one’s
thoughts and feelings concealed from the prying eyes of others.

Despite its subtleties, Gavison’s theory too has conspicuous shortcomings
because it fails to adequately delineate morally justified conditions for the claim of
limited access. The right to anonymity, secrecy, and solitude must be subject to
certain limits for anyone who participates in civil society. Nonetheless, Gavison has
laid the groundwork for a more refined understanding of what the right to privacy
should entail.

A fourth theory sees privacy as control over one’s personal information.
According to Charles Fried [17], “privacy is not simply an absence of information
in the minds of others, rather it is the control we have over information about
ourselves.” Similarly, Miller [32] argues that the right to privacy is constituted by
“the individual’s ability to control the circulation of information relating to him.”
Thus, one has privacy if one has some type of control over one’s personal infor-
mation or at least control over technologies that potentially threaten one’s privacy.
For example, thanks to the protest over cookies, web browsers were re-designed to
give users more control over this intrusive technology.

The privacy through secrecy theory proposed that privacy must include sup-
pression of certain information. The control theory follows this path as it continues
to shift the focus away from physical privacy or non-intrusion to informational
privacy, an obvious concern of this networked digital era. Whereas physical privacy
is characterized by “seclusion and solitude,” informational privacy is characterized
by confidentiality, data protection, and control over one’s personal information
[34]. Floridi [19] defines this type of privacy as “freedom from epistemic inter-
ference” that is achieved by possession of the ability to control the facts about one’s
life or personal activities that are presently unknown to others. Since informational
privacy is most at risk due to digital electronic technologies, it currently receives the
lion’s share of theoretical reflection and it is the primary focus of our analysis.

Unlike other frameworks, the control theory has the advantage of avoiding any
confusion of privacy with related ideas such as self-determination. Also, as Tavani
[54] points out, another benefit of this theory is its recognition of the roles that
choice and discretion play in privacy protection. The notion of control, however, is
still ambiguous because it is usually understood too broadly. Also it fails to answer
an important question: how much control does one need over information in order
to ensure privacy? It is virtually impossible to have absolute control, so the degree

298 R. Spinello



of control, usually left unspecified, is of considerable importance. Moreover, loss of
control does not necessarily imply that there has been any infringement of privacy
rights. It’s very unlikely that I will be able to control all the ways in which an
insurance company uses information about my various insurance policies. But if
that information is not unnecessarily shared outside the company and if it is not
being improperly used within the company, it is hard to argue that my privacy rights
have been infringed.

Given the liabilities and limits of these notions of privacy, it should be apparent
that a more synthetic approach is called for. All of these theories are suggestive, but
none of them seems quite comprehensive or flexible enough. With this in mind we
turn to a more nuanced way of framing the definition of privacy.

13.4 The Restricted Access-Limited Control Model

The extensive theoretical reflections of Tavani and Moor [55] on privacy build on
the foundation provided by the theories we have explained.4 They describe infor-
mational privacy in terms of “restricted access/limited control.” The Tavani and
Moor approach to privacy has the distinct advantage of distinguishing between the
concept or definition of privacy as “restricted access” and the management of
privacy as “limited control.”

This theory prudently recognizes the critical importance of establishing a zone or
sphere of privacy that restricts others from access to our personal affairs and
information. It concedes, of course, that our information has to sometimes be shared
with others so that the proper use of information must fall somewhere between total
privacy (or secrecy) and complete disclosure.5 The “restricted access” paradigm
suggests the ability to shield personal data from some parties while sharing it with
others. Thus, according to this perspective, an individual has privacy “in a situation
with regard to others if and only if in that situation the individual is normatively
protected from intrusion, interference, and information access by others” [33].
According to this definition, a “situation” can be a relationship, an activity of some
sort, or any “state of affairs” where restricted access is reasonably expected. What
constitutes a situation is left deliberately vague and open-ended so that it can
encompass a broad range of contexts.

Moor also makes a critical distinction between situations that are naturally pri-
vate (living on a secluded island or hiking in the mountains) versus normatively
controlled private situations such as the doctor–patient relationship. In a situation
where one is naturally protected from access by others, one has natural privacy or

4I have discussed this theory elsewhere (see [52]) and drawn from that material in this chapter. For
a lucid and extended account of the Tavani and Moor model see [33, 55].
5Sometimes there are moral requirements for the sharing of information, so this zone is not beyond
the rightful claims of other people.
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natural secrecy. Normatively private situations can include a specific location (such
as a person’s home), an activity (casting a vote), or a relationship where information
is exchanged between two parties (such as details of one’s medical history) [55]. In
a normatively private situation, norms such as laws or policies (based on ethical
principles) are developed to create a protective zone of privacy because the situation
requires such protection. Even a promise to protect someone’s privacy or preserve
confidentiality creates such a normatively private situation that binds the person
who has made such a promise.

Natural privacy or secrecy can be lost. But when this occurs one’s privacy rights
have not been infringed. This is due to the absence of norms providing a privilege
to or a right to a zone of privacy. Thus, if I am conversing with a close friend in a
secluded place and someone accidentally discovers us and disrupts our conversa-
tion, we have undoubtedly lost our precious privacy. However, such an event does
not warrant the claim that our privacy rights have been violated in any conceivable
way.

As an illustration of this theory, consider a normatively private situation such as
the relationship between a psychiatrist and his or her patient. A patient in this
situation has every right to expect that his or her confidentiality will not be brea-
ched. This patient has privacy only if there is a condition of restricted access such
that the patient’s medical records are accessible only to his or her doctor, the mental
health professionals who assist practitioner, and perhaps the patient’s insurance
company. The patient must be protected so that only the right people have access to
his or her relevant information on an as-needed basis [33]. There will be privacy if a
protective zone is created through norms, such as laws or ethical standards, which
restrict the “wrong” people from accessing this delicate information.

The capacity to exercise “limited control” is also essential for protecting privacy.
Individuals need as much control as realistically possible over their personal data in
order to help ensure the reality of restricted access. That control will be exercised by
mechanisms such as informed consent, which allows a user to opt-into the sec-
ondary use of the personal information he or she has provided to an organization for
a specific purpose. It will also allow users to have some say over how and when
their information is shared with third parties. Let’s say that the psychiatrist wants to
share his or her patient’s information with their regular physician because the
psychiatrist believes that this would be in the patient’s best interests. The patient
should have the right to control the flow of information in this situation by being
informed and given the opportunity to override this decision. People also need to be
able to dispute and correct inaccuracies in order to ensure the integrity of their data.

Arguably, the restricted access/limited control theory is the most feasible and
practical one for understanding the nature of informational privacy. It captures the
key idea that I cannot have privacy without some measure of control and without
restrictions on information flows about myself when such restrictions are ethically
warranted by a particular situation. By taking into account situations that deserve
normative protection, this theory also gives emphasis to the neglected dimension of
context. According to this paradigm, privacy can be best defined as a condition of
limited accessibility. Invasions of privacy make an individual’s information more
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accessible than it should be. Since limits to accessibility of information are con-
tingent upon the moral agent’s situation, this theory avoids the problems associated
with other privacy theories that are overly broad such as those that interpret privacy
simply as secrecy or the right to be let alone.

13.5 Normative Justifications for Privacy

We now understand that informational privacy, the main axis of our discussion, can
be most accurately described or conceptualized in terms of “restricted access” and
“limited control.” This theory strongly conveys the need for privacy but we must go
farther and offer a justification of that need from a purely ethical perspective.

While almost everyone agrees that privacy is important, there is far less consensus
onwhether to interpret privacy as an individual right or as a social value thatmakes the
scope of privacy rights contingent on their contribution to society. Schwartz [47]
argues for the latter view and claims that we should regard privacy as a constitutional
value “that helps to form the society in which we live and to shape our individual
identities.” Along the same lines, Merton [31] contends that while privacy may be a
“personal predilection,” it shouldonlybe justifiedas “a requirementof social systems.”

Correlative with this view is the argument that “normative individualism” or the
traditional interpretation of privacy (and other rights) as belonging to the individual
is simply outmoded. Just how are privacy rights “attached” to an individual?
According to this line of reasoning, the narrow conception of privacy as a personal
right provides an insufficient framework for formulating public policy. Critics of the
classical notion of individual human rights argue that a rights-based approach is too
dogmatic, inflexible, and individualistic [16].

Accordingly, some privacy scholars including Regan [42] and Solove [50]
believe that far more attention must be focused on the social importance of privacy
rather than an individual right to privacy. Privacy is primarily justified as a way of
protecting those valuable activities that society deems worthy of protection. Privacy
is a public value, and privacy rights are to be enforced only because of their value to
the community. Thus, privacy rules or regulations should protect the individual
only when it is in society’s best interests to do so. As Solove [50] explains,
“individual liberties should be justified in terms of their social contribution.”

But who determines what’s in the best interests of society or the community, and
which personal activities deserve the legal protection provided by the state? The
theories of Regan and Solove seem to give precedence to the collective welfare
rather than the objective needs of the individual person. Many theories that stress
this social nature of privacy are flawed by their inattention to the person and what is
owed to that person in justice. In our view, privacy rules (or rights) should be
justified not by social welfare concerns or by their larger value to the community,
but by a consideration of their contribution to a person’s well-being. The right to
privacy, like all rights, is about fairness. This right, properly specified, supersedes
competing concerns (including those about its “social contribution”) because its
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infringement involves the damaging or impeding of goods essential for a person’s
flourishing. Thus, as we will demonstrate, we can best defend this individual right
by proceeding from an understanding of the basic human goods that are constitutive
aspects of personal well-being [12].

Many people refer to privacy as a “value,” but it is more precise to describe
privacy as a good. The term “good,” when applied to human actions and principles,
is understood as an object of interest or something wanted. Practical reason seeks
satisfactory ways of acquiring this object or thing wanted [14]. As Aquinas [1] has
explained, therefore, good has “the intelligibility (ratio) of an end,” worthy of our
pursuit. Privacy is certainly an end or objective that rational persons desire and
pursue for the sake of their basic welfare. Privacy’s benefits and intelligible
desirability are the ultimate roots of its normativity.

But what kind of “good” is privacy? Some philosophers and computer ethicists
have declared that privacy is a fundamental and intrinsic good, or they have
advanced the equivalent thesis that privacy has intrinsic value. The argument has
also been made that privacy has intrinsic value because it is linked so closely to our
autonomy. According to Innes [25], for example, “privacy is intrinsically valuable
because it acknowledges our respect for persons as autonomous beings….” Floridi
[18], who claims that “a person . . . is, after all, a packet of information,” would also
assign privacy intrinsic worth because any invasion of privacy is equivalent to a
direct invasion of our personhood.6

In contrast to this viewpoint, it is more plausible to maintain that privacy is an
instrumental good. To demonstrate the validity of this line of reasoning we need to
present a viable theory of the good. This discussion will allow us to discern how the
particular good of privacy should be properly categorized. Even many deontolog-
ical ethical theories that emphasize duties or contract rights concede the need for
some notion of the good. There are many “thin” theories of the good, found in the
works of philosophers such as John Rawls. The list of primary goods proposed by
Rawls [40] includes “rights and liberties, opportunities and powers, income and
wealth . . . and, above all, self- respect.” However, Rawls conflates intrinsic goods
with instrumental ones and does not offer a complete list of those basic goods that
determine the opportunities for human flourishing.

Conversely, a more robust and viable theory of the good is elaborated in the new
natural law framework, which takes its inspiration from the philosophy of Aquinas.
The new natural law, which brackets the metaphysical suppositions of Thomistic
philosophy, articulates a “thicker” conception of the good, which will give us a
more complete understanding of the personal human goods that constitute our
well-being and contribute to our flourishing. While people can desire many goods,
some goods are more fundamental than others. These “basic human goods” are
basic not because we need them to survive but because we cannot flourish as human

6Floridi has developed an ontological theory of informational privacy; a consideration of this
unorthodox theory is beyond the scope of our analysis, but let it suffice to say that it shifts the
focus of attention from the physical person to his or her digital personae, which Floridi describes as
information entities. For a concise overview of his arguments see [18].
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beings without them. Hence these irreducible goods, which are intrinsic aspects of
human well-being and fulfillment, are the primary ends or reasons for action and the
ultimate source of normativity. Our knowledge of these goods is self-evident,
arrived at in non-inferential acts of understanding, in which we grasp a possible end
as beneficial and worthwhile for its own sake [22].

What then are these basic human goods? Finnis [15] and George [21] both argue
convincingly for the following list of basic irreducible human goods that are
choice-worthy as ends-in-themselves: bodily life (and “component aspects of its
fullness: health, vigor, and safety”); knowledge and aesthetic appreciation; religion
or harmony with God; friendship or harmony between persons; marriage; skillful
performance in work and play; and practical reasonableness, the good of harmony
between one’s judgments and behavior (authenticity) and between one’s judgments
and inner feelings (integrity). These goods “outline the worthwhile self” that a
person constructs by his or her free choices [14].

If a good is not sought as an end in itself, it is not intrinsic to human fulfillment
and, therefore, it cannot qualify as a basic human good. Instead, it must be classified
as an instrumental good. Many material goods are quite important, but they are not
basic for fulfillment. Life is more important than physical property. Even freedom
or autonomy cannot be classified as a basic human good, because it is not an end in
itself. Freedom is an extremely important good, but it’s an instrumental one, since
individuals are not ultimately fulfilled or perfected by freedom. Rather, they want
freedom to pursue other goods such as knowledge of truth, relationships with
friends of their choosing, or the worship of God in the way they deem proper.

Similarly, privacy cannot be considered as a basic good, since it is not intrin-
sically valuable, and it does not directly contribute to human flourishing. Privacy is
not a basic good for two reasons. First, there is a strong cultural dimension to
privacy. Privacy expectations can vary considerably from one culture to the next.
People in simpler cultures, for example, might thrive and flourish in a milieu of
almost complete transparency. Second, privacy is not intrinsic to the human person
because it is always desired for the sake of some other good, that is, as an
instrumental means to some further end such as health or friendship. Privacy is only
intelligibly choice-worthy when seen in the light of these more fundamental goods.

Consider some of the reasons why a person demands or seeks privacy. One
reason we require privacy is to ensure that certain personal relationships will
adequately conserve a proper level of intimacy. According to Rachels [41], “there is
a close connection between our ability to control who has access to us and to
information about us, and our ability to create and maintain different sorts of social
relationships with people.” The intrinsic goods in jeopardy by the erosion of pri-
vacy are friendship and marriage. But privacy allows us to participate in these
goods without self-consciousness and without the inhibition that comes from
worrying about the prying eyes of a neighbor or some “peeping Tom.”

People also desire privacy in order to maintain their security and safety, which is
a “component aspect” of the fundamental good of life (and health). In the infor-
mation age, informational privacy is absolutely essential for our security. As we
pointed out, without privacy (understood as the condition of restricted access), we
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might be subject to identity theft or the pilfering of our credit card data. Or we
might be judged out of context and presumed guilty even though our activities are
purely innocent. In extreme cases, a person’s life could be at stake, as illustrated in
Remsburg v. Docusearch [44] where a data broker was hired by a stalker so that he
could locate and murder a woman who was the target of his perverted obsessions.

We also require privacy for the sake of other instrumental goods such as
autonomy. It is often difficult to properly exercise one’s freedom without some
degree of privacy. If someone openly monitors my actions or tracks my informa-
tion, then he or she can force me to alter my activities or practices. For example, if a
person knows that his or her employer is constantly watching them or monitoring
their conversations, that individual is apt to be extremely cautious in his or her
assertions so that they conform to the employer’s expectations. According to Zuboff
[59], it is not unusual to uncover reduced spontaneity and a high level of “antici-
patory conformity” among those who are aware that they are being observed or
having their information tracked through surveillance mechanisms.

Therefore, according to this analysis, we have sensible but ulterior reasons for
seeking out privacy. We seek privacy as a means to other ends. Privacy’s status as
an instrumental good, however, does not diminish its importance. As we have
intimated, the value of privacy assumes particular salience in a networked digital
world so saturated with monitoring and data collection technologies. As Moor [33]
points out, “in a highly computerized culture . . . it is almost inevitable that privacy
will emerge as the expression of the core value, security.”

What follows from this assessment? First, by conceiving privacy as a personal
but instrumental good we dissipate some of the persistent confusion about privacy’s
ethical status. Vague language about privacy as a “social value” is not particularly
illuminating. It is more helpful, however, to rely on basic human goods as the
starting point of ethical reflection. This allows us to discern that privacy is an object
of human desire, a good, that fosters human well-being, albeit indirectly. Also,
because goods such as privacy and liberty are instrumental, we must resist ten-
dencies to absolutize them and give them higher priority than intrinsic goods such
as life and health. For example, Etzioni [9] makes the case that policymakers should
not hide behind the cloak of privacy and prohibit HIV testing of infants, given the
health issues at stake along with the benefits of early treatment.

Second, since privacy supports intrinsic objective goods that are constitutive
aspects of human well-being, it is rightly interpreted as a critically important
instrumental good that provides a foundation for moral judgments, especially
judgments regarding justice and human rights [21].

13.6 The Right to Privacy

We have conceptualized privacy as an instrumental good that rational human beings
strive for in order to participate properly in intrinsic human goods that contribute to
their perfection and well-being. But we need to take this analysis a step further and
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consider whether people have a moral entitlement to pursue this good. Every moral
entitlement or right implies a duty on the part of others to avoid depriving someone
of this right and in some contexts to protect this right from deprivation [48].

Privacy’s importance as a means to the end of human flourishing signals the
validity of the rights-based approach with its emphasis on justice. Treating privacy
as an inalienable right subject to limitations rather than a mere “interest” or social
value highlights its proper worth and conveys the gravity of what’s at stake when
someone’s privacy is breached in a situation where normative protection is called
for. Moreover, our previous analysis strongly supports the notion that the right to
privacy can be derived from its status as an instrumental good. As McCloskey [30]
has pointed out, “any right to privacy will be a derivative one from other rights and
other goods.”

However, a right must not be understood in the Hobbesian sense as a liberty or
as freedom to do something without interference. For Hobbes [23], a right is
“inconsistent” with a duty or obligation, and hence in the state of nature “every man
has a right to everything.” Rather, a right in the strict sense must be regarded as that
which ensures justice in a given situation or relationship between two or more
persons. Rights provide a way of describing “what is just” from a specific per-
spective, that is, “from the viewpoint of the other to whom something is owed or
due, and who would be wronged if denied that something” [15].

As we have intimated, the right to privacy is not justified on the ground that there
is some sort of political or legal consensus that privacy is significant. This right is
more firmly grounded in the fact that privacy is sometimes required as a
pre-condition for the pursuit of intrinsic goods that are constitutive aspects of
human flourishing. Since privacy is necessary to secure the benefits of these goods
we can reason that there should be a right to privacy in order to ensure justice or
fairness. Rights are based on need and since a person needs privacy (or the con-
dition of restricted access) in certain situations, it follows that he or she has a
rightful entitlement to make certain claims if that privacy is denied or threatened
[16]. Recognition of this right to privacy directs us to act in certain ways out of
respect for the welfare of our fellow-human beings who are affected by our actions.

In Hohfeld’s [24] classic framework, privacy would be considered a claim-right
such that one individual (the right-holder) has a claim on another (the duty-bearer).
We can intelligibly postulate such a right where there is a positive or negative
obligation (or requirement) imposed upon X not to interfere with Y’s activity or Y’s
enjoyment of some form of the good. If a certain level of privacy is essential for Y
to participate in certain intrinsic goods such as marriage and friendship, it follows
that privacy is a critical factor for Y’s flourishing and well-being. It also follows
that Y is justly owed such privacy by others because Y would be wronged if denied
it. Y, therefore, has a right to privacy and X has a correlative duty not to deprive Y
of its privacy, lest X interferes with Y’s well-being [15].

Thus, our basic argument is that in the various situations where normative
protection of information is necessary and reasonably expected, a person has the
claim-right to the condition of restricted access to his or her information.
Individuals and organizations have a correlative duty to uphold and protect this
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right in these circumstances by respecting this person’s desire to restrict access to
his or her personal information and by giving that person the means to exercise
limited control over that information.

This right to privacy, however, is not absolute. Those who argue that privacy
should be interpreted as a social value worry about the potential unfairness of a
unilateral claim to a privacy right that may unfairly affect others. But the solution is
to adequately specify the right to privacy rather than eliminate such an individual
right. Privacy rights must be limited by the comparable rights of others along with
morally justified exceptions for the sake of the common good. For example, a
privacy right to one’s medical data could be circumscribed to protect intrinsic goods
such as life and health in the case of a public health emergency. A doctor has every
right to inform the state of his or her patient’s infectious disease in order to protect
the lives of others. However, purely utilitarian reasons do not provide a warrant for
restrictions on privacy. Thus, while it may be necessary under some urgent cir-
cumstances to breach privacy in order to prevent an imminent terrorist attack, a
corporation certainly cannot infringe on privacy rights merely for the sake of more
efficient marketing practices and higher economic returns [13].

13.7 Protecting the Right to Privacy

If privacy is a basic right how can this right be properly secured? Is an expansive
legal framework essential or can users protect their own privacy, at least under
some circumstances? There are many tools available to protect privacy and so
technology or software “code” may appear to be a promising approach. For
example, users have the option of deleting cookies deposited by web sites or
excluding them from their PC’s. However, there is a growing skepticism that code
and industry self-regulation are inadequate to deal with this magnifying problem of
privacy erosion. Evidence of this is the long history of privacy transgressions by
corporations and the most recent behavior of companies like Google and Facebook,
which arguably have engaged in transgressive practices in order to monetize their
user base. Digital information is a prime currency in the new economy and there is
too much market incentive for corporations to commoditize information even when
privacy may be compromised. As a result, strong laws seem necessary in order to
deal with this market failure.

The comprehensive legal approach has been adopted by the European Union,
which preemptively codified strict privacy protections for personal information. The
primacy of a rights-based approach to policy issues is reflected in the jurisprudence
of the European Court of Human Rights. Privacy in most European nations has long
been regarded as a fundamental right that warrants the protection of the legal
system. Europeans have preferred the suggestive term “data protection” instead of
privacy, which is defined as “the right to control one’s own data” [29]. Data
protection laws in countries such as Sweden date back as far as 1973. Sweden’s
Data Protection Act, inspired by the Warren and Brandeis definition of privacy as
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the right to be let alone, was enacted to prevent “undue encroachment on personal
privacy” [37]. It established a Data Inspection Board (DIB) responsible for moni-
toring and licensing those who maintained electronic data files. Most other
European nations soon followed Sweden’s bold precedent. Their stringent laws
have consistently put more emphasis on “informational participation and
self-determination” than the laws of other countries [29].

These heterogeneous statutes were eventually harmonized when the European
Union adopted its elaborate Privacy Directive in 1995. This Directive, which
requires member states to implement legislation incorporating its privacy standards,
is unambiguous in its recognition of informational privacy as a basic right. The
Directive’s primary aim is quite clear: “to protect the fundamental rights and
freedoms of natural persons, and in particular their right to privacy with respect to
the processing of personal data” [10]. The EU model is consistent with our thesis
that privacy is a principal instrumental good and hence a claim-right of some
importance.

The EU Directive requires full data protection for all European citizens and the
equitable treatment of their personal information. According to the Directive, every
individual has the right to notice about the processing of his or her data beyond the
purpose of the original data collection. Users have the right to opt out of data
transfers to third parties for marketing purposes, along with the right to access their
data and correct mistakes. There is also a quality provision requiring that personal
data must be accurate and, where necessary, kept up to date. Finally, there are
tighter restrictions on “sensitive information” such as a person’s health or genetic
data. The guiding principle is that personal data may not be processed without the
user’s consent unless “processing is necessary for the performance of a contract to
which the data subject is party” [10]. The EU directive also mandates tight security
safeguards.

By contrast, the United States has adopted a “market-dominated policy for the
protection of personal information and only accords limited statutory and common
law rights to information privacy” [43]. US policymakers have assigned more
responsibility for privacy protection to the private sector rather than to the gov-
ernment itself. However, some notable privacy statutes have been enacted when
vulnerable or particularly sensitive information is at stake, and the market cannot be
trusted to protect such data. Those laws include the Children’s Online Privacy
Protection Act (COPPA), Health Insurance Portability and Accountability Act
(HIPPA), which protects a patient’s medical data, and the Gramm-Leach-Bliley
Act, which protects financial data. Like their European counterpart, these laws also
require security standards for personal information.

To understand the difference between the European and US approaches to pri-
vacy, consider how they differ in their treatment of the secondary use of information
(using data unrelated to the purpose of its collection). The EU Directive provides
strong regulation of secondary use. Personal data must be collected for a specific
and legitimate purpose and cannot be “further processed in a way incompatible with
[that] purpose” [10]. The United States, on the other hand, has some secondary use
restrictions but does not provide the comprehensive protection of European law. In
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many cases, once a person provides his or her information there are few limits on
how it can be reused [50]. Thus, a court found no problem with American Express
when it sold personal information of its card holders to marketers without the
consent those card holders [8].

In the absence of European-style legislation, the United States gives more weight
to technology and industry self-regulation. Many companies that collect personal
information, such as Google and Facebook, have adopted privacy policies in
response to market pressures. Users are also encouraged to protect themselves by
taking advantage of privacy settings and other technology tools. When companies
step over the line regulatory agencies such as the Federal Trade Commission
(FTC) usually intervene to protect consumers’ interests.

While there is much to be admired with the thick legislative protection offered by
the European approach, there are some drawbacks, such as the financial burdens
that accompany an elaborate regulatory regime. The EU Directive, for example,
requires an expensive bureaucratic infrastructure for its enforcement. In general,
government intervention is not always welfare-enhancing, especially if
self-interested policymakers are captured by industry interests. On the other hand,
given the tepid success of industry self-regulation, many argue with some merit that
the benefits of European style regulations far outweigh the costs.

However, current legal solutions are somewhat constrained because they are
typically predicated on dichotomizing public and private information. In the US
system, for example, some networked spaces such as online medical records are off
limits while others—for example, the user profile on a Facebook page—are legally
unprotected. Hence, it is not unlawful to harvest that data, link it to data captured by
tracking a user’s comings and goings on the Web, and sell the whole package to
data brokers. Social media data and other forms of information in the public sphere
lack normative protection.

This avenue for addressing privacy issues, therefore, often ignores the demands
of “contextual integrity.” Nissenbaum [34] argues that the criteria for what deserves
normative protection must be based not only on the nature of the information in
question but also its context. Thus, the effort to distinguish public from private
information based on that information’s presumed sensitivity has serious liabilities.
First, it is difficult to determine what constitutes “sensitive” information in an age
when information processing systems are so pervasive and possess such potent
aggregative capabilities. Information that is not so revealing in one context may
turn out to expose sensitive aspects about a person’s life when linked to other data
in a different context. In the latter case (but not the former), such data would quite
probably deserve normative protection. Moreover, there is a tendency to presume
that information shared with anyone is “up for grabs,” giving latitude to data
brokers to collect and assemble this information for commercial purposes. But the
recipients of this information matter — it makes a big difference whether you share
information with a neighbor, a group of friends, colleagues at work, or a data broker
who can recombine that data with other information.

Finally, it should be underscored that law alone can never be the complete
solution. Social media users often refuse to take advantage of the technological
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tools and privacy settings that can limit their exposure. However, social networking
sites have not made it particularly easy for users to set the proper boundaries. Easier
to use privacy tools embedded with defaults that protect privacy and more ethically
informed policies could ameliorate this situation. Social networks such as Facebook
need some capability to share certain non-identifiable personal information with
trusted advertisers, but there should be no secondary uses of that information
(beyond those advertisers), nor any sale of information to data brokers for com-
bination with bits of data collected elsewhere [34]. This strict policy would respect
the need for “contextual integrity.” The social networking phenomenon suggests
that self-regulation coupled with the use of responsibly coded privacy tools still has
some role to play in the overall protection of personal privacy [53].

13.8 Challenges

We have argued that privacy is an important right and that no private or public
organization can deprive people of that right either by overriding a valid restriction
on information or by violating the strictures of contextual integrity. That might
happen if a company engages in non-transparent data collection, processing, and
aggregation in order to create a profile that exposes intimate details of someone’s
life. These profiles are mined by government agencies, but far more so by private
entities seeking to exploit the predictive power of information. While laws are
necessary, in some circumstances (such as social media) a partial solution is to let
the user decide the proper access parameters and to give that user the necessary
tools to execute his or her choices.

Protecting privacy in the age of digital information will always be difficult but
several critical challenges stand out. First, how do we properly configure privacy
rights in cyberspace so that this right does not become unnecessarily expansive?
Does privacy include the “right to be forgotten” as recently declared by the
European Court of Justice? If so, how broadly should this principle be applied? The
danger is that if privacy rights are interpreted too broadly the free flow of infor-
mation in cyberspace will be severely encumbered to the detriment of the common
good.

Thus, a formidable challenge for regulators and jurists is how to strike the right
balance between privacy rights and the free flow of information. The right to
privacy must also be delicately balanced with other entitlements such as free
expression. The implementation of this so-called “right to be forgotten” requires the
removal of links to undesirable information, but isn’t this a form of censorship?
Should politicians be able to demand that Google remove links to negative but
honest reviews of their tenure in office? It seems difficult to make a credible case
that privacy rights should be so thick and extensive.

Second, the relentless progression of new technologies such as Google Glass
will constantly menace efforts to preserve personal privacy. Glass is a tiny computer
system worn like ordinary glasses and duplicating the functionality of a smart
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phone. Glass users can take photos, send messages, and search online. If Google
Glass incorporated face recognition technologies it would be possible to quickly
identity someone in the street by taking her photo and comparing it to online
images. This combination of cameras everywhere, even on people’s heads, along
with the algorithms run by social media and other software systems that can process
stored images is quite alarming. Such an encroachment of personal space would
jeopardize anonymity and raise enormous new privacy concerns. Lawmakers must
prudently weigh the benefits of these new technologies with these potentially high
social costs [11].

But perhaps the most significant challenge is how to implement the sensible
ideas of privacy theorists who insist that more attention be paid to the context rather
than the nature of information. As we have discussed, public information about a
person is usually unprotected by privacy norms, but aggregation techniques can
result in profiles that reveal too much about that person and thereby infringe his or
her privacy rights. Is it possible to formulate and mandate “just aggregation”
principles that would preserve the “spatial disconnects” that separate one context
from another? Such principles would surely impose more stringent limits on the
collection, reuse, and transfer of personal information [4].

13.9 Conclusions

The threat to privacy seems exceptional in the age of digital information where vast
amounts of information are collected about individuals and social groups. Some
contend that privacy is an artifact and no longer important. But theoretical reflection
on privacy sheds light on its continued relevance. Privacy has a spectrum of
meanings, and so there are many theories of privacy ranging from the right to be
let alone to secrecy. In our view privacy, particularly informational privacy, is best
conceived in terms of restricted access by others to one’s information and the
exercise limited control over that information. The Tavani and Moor theory’s
emphasis on the need to assess normatively private situations takes into account the
principle of conceptual integrity.

Some argue that privacy is not an individual right but is more productively
construed as a social value. But what’s missing in these novel accounts of privacy is
a reflective awareness of privacy’s role in protecting substantive human goods,
especially in certain information-intensive cultures. Privacy is an important good
(or value), but it cannot plausibly be categorized as an intrinsic good. Rather,
privacy is an instrumental good that is necessary for participation in intrinsic goods
such as friendship, health, and security. Since privacy is such an essential instru-
mental good, the logic of privacy as a rightful entitlement follows. That right is
inalienable but limited by the moral requirements of the common good and the
comparable rights of others.

Privacy rights should be promoted and protected by law, especially when sen-
sitive information such as medical or financial data is at stake. However, more
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attention must also be given to context and to the reuse of “public” information that
is not subject to regulatory controls. There is also a role for technological tools
made available to the user. Giving the user some discretion, aided by education and
proper technological design, will help to balance the preservation of privacy rights
with an open access Internet.
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Chapter 14
How to Explore Consumers’ Privacy
Choices with Behavioral Economics

Sören Preibusch

14.1 Introduction: The Economic Understanding
of Online Privacy Beyond Data Protection

14.1.1 The Convenience of Online Consumption

The Web has enabled consumers to access and share an unprecedented amount of
information, quickly, conveniently, and cheaply. Companies have embraced new
information and communication technologies and moved offline phenomena such
as shopping, entertainment, or social networking into the virtual realm. With the
advent of the Web, services of a new kind have emerged, such as web search or
blogging. In the United Kingdom, digital value creation accounted for 7.2 % of the
gross domestic product in 2010 [1]; the share of the digital economy is predicted to
continue growing rapidly to reach $4.2 trillion in the G-20 nations by 2016 [2].

Retailing is among the industries that have been fundamentally disrupted by the
Internet. For products such as clothing and shoes, Internet sales in the United
Kingdom now account for 11.3 % of total sales, with 17.6 % growth year-on-year
[3]. Average weekly spending online in May 2014 was £727.5 million [3]. In
parallel, the high street is expanding into multi-channel retailing to combine the
benefits of an online and offline presence. Much of the reconfiguration of the value
chain has happened behind the scenes, but there is a tangible impact for consumers
as well. Being greeted by name and receiving personalized product recommenda-
tions used to be a distinction of up-market boutiques. Today, it is the sign of
mass-personalized online shopping, and one of the ways in which a “data culture” is
implemented. Harnessing the power of ubiquitous computing enables organizations
to turn data into fuel for insight [4]. Given that they are a valuable resource that
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touches all aspects of society and shapes new forms of production and consump-
tion, personal data are said to be “the new oil of the Internet and the new currency
of the digital world.” [5].

Consumers enjoy the resulting personalization [6, 7: Sect. 21.3.1]. It reduces the
time and effort they have to spend on finding and judging products. For companies,
personalization is a powerful tool since it allows lock-in and efficient customer
value extraction in fiercely competitive markets. Retailers create and satisfy needs
their customers were not yet aware of. Amazon indicates that around 30 % of all
purchases result from recommendations [8]; 27 % of European consumers indicate
they have bought a product in the past twelve months because it was recommended
by the retailer [9]. In short, data-driven personalization works, and benefits both
consumers and companies.

14.1.2 Monetization of Personal Data and Mainstream
Privacy Concerns

The monetization of personal data as a commodity, through targeted advertising or
otherwise, also allows many expensive services to be offered free of charge [10]. It
is estimated that UK consumers enjoy an annual surplus of £5 billion from free
online content, or twice what they pay to access the Internet [2]. The World
Economic Forum observes that “in practical terms, a person’s data would be
equivalent to their ‘money’” [11], and foresees that consumers could control,
manage, and exchange their data as they do with cash in their bank account. The
European Data Protection Supervisor similarly observes that “personal information
has become a form of currency to pay for so-called ‘free’ online services” [12].
From this follows a close interplay between data protection and consumer protec-
tion, and that privacy cannot be achieved through technical means alone.

Consumers experience invasions of privacy as the flip-side of data-powered
high-value services, including personalization [13]. Their development and ongoing
provision requires far-reaching collection of data and its long-term storage. Until
recently, only a few privacy-aware consumers and data protection advocates were
aware of the broad consent obtained by businesses through their privacy policies.
Post-Snowden, privacy issues are now making headlines in mainstream media [14].

We live in a networked world where ubiquitous Web tracking of consumers and
planet-scale government surveillance of citizens are not capabilities but realities.
The resulting privacy challenges are calling for privacy-enhancing technologies
(PETs), policies, and practices. As outlined above, advances in technical data
protection are only part of the picture. The preferences and the incentives behind the
choices of companies and their customers are equally important. Economics pro-
vide the tools for their study. Privacy failures have been caused at least as often by
bad incentives as by bad system design. Ignoring potential users’ privacy needs
leads to PETs failing in the marketplace despite good engineering [15] (e.g., fully
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anonymous search engines). Economics provide tools and theories to reason about
privacy failures, to suggest remedies, and to positively understand superior privacy
practices as the source of competitive advantage.

14.1.3 Studying the Economics of Privacy

As a discipline, the consumer-centric economics of privacy study the value that
consumers attach to items of personal information. The objects of analysis are
exchanges of personal data. These happen in an environment where data protection
is an unquestioned, constitutional, and human right, that provides minimum pro-
tection guarantees and remedies.

Other disciplines, beyond the scope of this chapter, challenge the assumption of
guaranteed privacy. They discuss the welfare or political economy of information.
Privacy as a right is questioned, by establishing its worth for society, or its impact
on markets’ efficiency. Recently, the blogosphere has restarted the debate under the
concept of “post-privacy” [16].

The economics of privacy recognize that personal data have been commodified
into a tradable asset. This empirical reality is embraced by studies of markets for
personal information and of the behaviors of companies and consumers on such
markets. Like many other markets, the market for personal information is far from
perfect. It is a defining trait of behavioral economics to embrace these imperfections
and make them the object of study: information asymmetries, barriers to entry and
exit, externalities, monopolies, and oligopolies. With a focus on actual behavior
observed in market players, research is descriptive rather that prescriptive.
Experimental designs are inspired by theory, but the evidence need not be ratio-
nalized post hoc.

In the tradition of behavioral economics, consumers’ reactions to systematically
manipulated experiment conditions are observed. The experimental stimulus is an
intervention and allows establishing causal relationships, for instance, between
data-item sensitivity and consumers’ propensity to protect those data. The influence
of confounding factors (e.g., visual web site design, trust in companies and brands)
can be abstracted away when held constant across treatments. These can be studied
through research into human–computer interaction that complements economics
experiments in deriving an overall successful user experience.

14.1.4 Supply and Demand for Privacy

On the supply side of data markets, barriers to entry are mostly immaterial: whereas
up-front investments into data centers become dispensable when the cloud provides
compute/storage infrastructure to new entrants without fixed costs, incumbents
profit from previously collected data records. They can improve their offerings
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through ‘learning by doing,’ leading to economies of skill. The data records
accumulated by a company are an intangible asset [17]. On the demand side, data
subjects are typically unable to observe how their data is used and potentially
shared and misused, creating an information asymmetry to their detriment. At the
same time, poor data portability between alternative services and positive network
effects create switching costs; the resulting lock-in makes contractual hazards more
likely. Start-ups such as Mydex position themselves as intermediaries to profit from
the market frictions by offering personal data vault services. The aim of regulation
and enforcement is to create rules for the market of personal information that
protect the consumer and increase efficiency and social welfare [18]. An example of
such an initiative is the “midata” vision put forward by the UK government:
consumers should be given access and insight into their personal data, including
usage logs, to migrate these to an alternative supplier if desired [19].

14.1.5 Consumers’ Choices for Price–Privacy Trade-Offs

Consumer empowerment relies on their effective ability to transact with a company
that suits their preferences. Potential customers have the choice between alternative
suppliers that compete on price and non-price attributes. This is true for electronic
markets as well as traditional markets. In the grocery store, shoppers not only
consider the price tag for a bag of apples, but also the quality of the produce,
whether it is grown locally, and farmed according to ecological standards. In
electronic retailing, the non-price attributes of a company’s offering include its
privacy practices.

When consumers engage in transactions that involve exchanges of goods or
services, money, and their personal data, they may choose to withhold some of their
details. The resulting decrease in service quality or an increase in price is the cost
they have to bear to maintain their privacy. Behavioral studies allow measuring a
lower bound for the value of privacy by observing consumers’ willingness to pay
for avoiding data collection or other invasions of privacy.

The issue that researchers and practitioners are facing today is the lack of studies
that provide reliable and valid insight into consumers’ privacy concerns and
behaviors. Looking back, this lack can be explained by the relative recency of the
field, even within the study of human–computer interaction. However, looking
forward, the ability of new studies to deliver actionable insights hinges on a
methodological reboot.

14.1.6 Structure of This Chapter

As a solution, this chapter aims at equipping researchers, practitioners, and poli-
cymakers with the tools and the evidence to understand consumers’ privacy
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behaviors. I begin by explaining why experiments rather than surveys or hypo-
thetical choices are needed for delivering valid insights to decision makers. After an
exhaustive review of the existing empirical evidence into the value that consumers
attach to their privacy, I explain the methodological requirements of valid privacy
experiments and offer practical advice for conducting privacy choice experiments.
The research presented in this chapter will help in developing privacy-enhancing
solutions and policies that meet consumers’ needs.

14.2 Surveys Versus Experiments into Privacy Behaviors

14.2.1 Divergence of Privacy Attitudes and Behavior:
A Fresh Look at the Privacy Paradox

When surveyed about data protection issues, consumers repeatedly report high
concerns about their information privacy [20]. In the 2011 Eurobarometer on data
protection, 70 % of respondents, representatively sampled from the EU population
were concerned that their personal data held by companies may be used for a
purpose other than that for which they were collected [13]. At the same time, the
online population increasingly engages in online activities deemed
privacy-threatening, namely online social networking [21]. Concern reported in
surveys is higher than what can be inferred from observed real-life behaviors.

This discrepancy between attitudes and behaviors, called the privacy paradox,
has mainly been described with regards to the interplay between privacy and online
personalization: consumers want to enjoy the benefits from profiling, but they do
not want to be profiled [7]. Disclosure on online social networking sites has also
been described as a privacy paradox [22], although the combined horizontal and
vertical relationships amongst users, and between users and the platform operator
respectively, is harder to interpret.

Establishing the privacy paradox requires observing a divergence of privacy
preferences and behaviors within the same population or between two representa-
tive samples thereof. Experimental studies provide such an opportunity to observe
stated privacy attitudes and actual privacy-related behavior within subjects. In
laboratory experiments, participants who reported high privacy concerns exhibited
behavior that diminished their information privacy [23]. Looking at
information-only transactions (Sect. 14.3.1), a similar discrepancy has been
observed: they actually provided more information than they had previously stated
to be willing to share [24].

However, other experiments do not necessarily support the notion of a paradox:
individuals with stronger privacy concerns were found to place higher values on
privacy in information-only transactions [25]. In a 2013 experiment on privacy in
web search, participants’ stated willingness to pay for privacy-enhancing features
did not explain their behavior, but it also did not contradict their actual choices.
Both variables were recorded as part of the same experiment [26].
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It has also been argued that disclosure seemingly diverging from attitudes may
be explained by strong beliefs in the confidentiality of the disclosed data.
Divergence would originate in experimenter trust, framing effects, or deception
used by the experimenter [27]. It seems that the supposed paradox would be an
artefact, or mode effect, originating in measuring the varying behaviors and atti-
tudes with experimental or survey methodologies respectively. A deeper under-
standing of privacy concerns and behaviors, therefore, requires valid survey
instruments as well as behavioral studies.

14.2.2 When to Use Privacy Surveys and When not to

Even if existing empirical studies do not necessarily support the notion of a privacy
paradox, they also show how behavioral intent or self-professed behavior from a
survey has little predictive power for actual behavior. A recent study commissioned
by Microsoft for Data Privacy Day 2014 serves as an example. The survey spe-
cifically recruited “technology elites,” characterized, for instance, by
self-identifying as influencers on technology and as early adopters of new tech-
nology. Amongst the 1,075 respondents in the United States and in the European
Union, more than three quarters indicated that they read privacy policies before
clicking “accept”; almost a quarter even indicated they read the terms in full [28].
However, web server logs of actual privacy policy visits suggest that this proportion
is lower by several orders of magnitude, even amongst advanced users. Only a
small minority of Web users actually read the privacy policies of sites they interact
with.

The lack of commitment is a major reason why statements about behavior do not
reflect real choices. In the absence of real-world transactions, a survey creates an
artificial context, influenced by mode effects [29]. The incentives for respondents
on how and what to reveal are different from real transactions, typically in a way
that works against truthful revelation. One of the biases in a survey is respondents’
tendency to give socially desirable answers. Furthermore, surveys have a “research
appeal,” which makes respondents disclose more information about themselves
[30]. Yet, neither privacy nor money are ultimately at stake in a survey. In con-
sequence, predictive power and ecological or external validity are largely reduced.

Despite the inability of surveys to be a reliable and valid predictor for consumer
behavior, they do have their rightful place. In the early design stages of an
experiment, low-cost surveys can help identify questions of interest an experiment
should focus on. In the area of privacy economics, for instance, a pilot study could
incorporate a Conjoint Analysis that helps researchers making a more substantiated
decision about price differences in an experiment (Sect. 14.2.3). Once an experi-
ment is about to be deployed, screening questionnaires can help in recruiting
suitable participants, for instance when sampling a population with high privacy
concerns. Survey elements are also crucial in complementing an experiment session
as entry- and exit-questionnaires, and comprehension tests typically before the
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experiment. They deliver insights into the demographics of the sample, their atti-
tudes and personality—in particular when well tested, validated instruments are
used. A recent review of survey instruments to measure privacy concerns provides
guidance on which methodology to use and how to deploy scales for privacy
concern [31].

In summary, we acknowledge that privacy attitudes and privacy behaviors do
not always agree. The methodological consequence is to measure both in their own
right and with their dedicated procedures. Preference should be given to experi-
mental procedures when studying privacy behavior; surveys lend themselves to
assess attitudes. Both approaches must be subjected to the same scrutiny of reli-
ability and validity [31]. In reviewing previous research into the behavioral eco-
nomics of privacy, I therefore proceed by the methodology used, distinguishing
between survey-like approaches (Sect. 14.2.3) and approaches relying on experi-
ments (Sect. 14.3).

14.2.3 The Failure of Hypothetical Privacy Choices

The problems of privacy surveys also apply to survey-like methodologies when
participants make hypothetical choices. Often, these works are erroneously labeled
as experiments. In a typical survey-like procedure, participants are confronted with
scenarios and asked whether they would be concerned about their privacy in such a
scenario.

Sometimes a single scenario is used. For instance, participants are asked to
imagine a university alumni association shares its members’ names, contact, and
other information with a car insurance company for a 30 % discount [32]. Other
single-scenario work claimed to trial membership in an online bookstore, for which
some personal information would be necessary, in exchange for some discount. The
amounts of both varied by treatment [33]. In these two studies, the respondents had
to report how happy, satisfied, or concerned they would be with the deal presented
in the scenario. In a similar vein, participants have been presented with a simulated
online shopping web site and asked whether they would intend to buy from that site
[34]. Although this is a slight improvement, because the participants can experience
the stimulus (i.e., the web site), it still remains a hypothetical choice.

Another strand of hypothetical choice studies presents participants with multiple
scenarios: potential job-seeking university students were given four channels to
advertise their talents and job interests, including three web sites [35]. All varied by
privacy intrusion and chances of success. Participants indicated their preferred
option amongst these four. There is, however, an undeniable framing bias: partic-
ipants are given the impression they are supposed to have different preferences for
different types of data collectors, even if the question of advertising their profes-
sional skills never occurred. The design is as flawed as asking a vegetarian whether
they prefer their steak rare or well done.
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Hypothetical choices are also the standard for studies using conjoint analysis.
Conjoint analysis tries to decompose the joint influence of several factors on a
respondent’s preference for one option. There are several variables (e.g., price),
each with multiple categorical levels (e.g., 1, 2, 5 euro). Several stimuli or scenarios
are created by systematically combining different levels across the attributes. These
can be aspects of privacy intrusion, monetary incentives, or prices. To keep the total
number of stimuli manageable, an orthogonal design is often preferred over a full
factorial design: one does not present all possible combinations of attribute values
to the participants. Instead, multiple attributes are varied at once. Participants then
rank the scenarios in decreasing appeal [36, 37]. Their rankings have no impact on
payoff, but their responses were still interpreted as if they were valid.

An alternative to ranking multiple alternatives is to present scenarios in pairs;
participants indicate the preferred one. When combined with an outside option
(“neither”), the responses can be analyzed with choice-based conjoint analysis.
Binary logistic regression can also be used. In one study, participants indicated the
one preferred out of two web pages, in the absence of an outside option [38]. The
stimulus was only the mock-up of a single page, not a full, interactive web site.
Again, participants’ payoff was independent of their choices.

14.3 Review of Privacy Choice Experiments

In contrast to surveys, choice experiments put participants in a decision-making
context where their preference for one of the alternatives will have an impact on
their lives. In privacy economics, decisions are made as part of a transaction
between a consumer and a company (Fig. 14.1). A typical transactions involves the
flow of money, personal information, and goods or services. Money may flow in
either direction: customers pay a price; companies can offer vouchers. Composite
transactions that include the exchange of money, personal data, and goods are
common in online shopping. Money may be absent for services provided free of
charge (e.g., web search) and goods are not provided when the information receiver
collects data from the consumer in return for data (e.g., prize draws).
Information-only transactions are observed when consumers volunteer data without
compensation, such as in a poll.

Consumer
(customer)

Company
(service 
provider)

money (price)

personal data

goods / services

money (discount, reward) 

Fig. 14.1 Companies and their customers exchange personal information and goods or services
when transacting online
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In replicating composite transactions in a laboratory or in a field study, one can
measure the monetary value that consumers attach to pieces of personal informa-
tion. In this section, I review existing empirical studies, grouped by transaction
type. Given the paucity of true experiments to date, this is an exhaustive review.

14.3.1 Experiments into Information–Money Exchanges

14.3.1.1 Experiment Design Varieties

In information–money exchanges, consumers receive payments in return for dis-
closing personal details. Three varieties of experiments have been conducted
regarding information–money exchanges: incentivized disclosure for an unstated
purpose [39], for actual or decoy research purposes [25, 40], and for a deceitfully
stated and not implemented purpose [41, 42]. Only the most recent research on
information-transactions, which is also the most robust in its design, did not involve
deception, but told the participants up-front that the experiment was studying their
privacy preferences when browsing the Web [43].

14.3.1.2 Measuring Willingness to Pay

Different mechanisms have been used to elicit willingness to pay. A reverse
second-price auction is the most common [39, 41, 43]: participants put in their bids,
stating how much they would want to be paid for releasing a specific item of
personal information. The winner is determined by the lowest bid, and will be paid
the second-lowest bid for disclosing his or her data. Participants have an incentive
to bid their true valuation: winning with a bid below their true valuation will make
them sell at a loss; asking for too much compensation puts them at risk of not being
considered at all. It has also been noted that the auction mechanism is easy to
implement and easy to explain to participants [43]—which are important practical
considerations.

Amongst the auction mechanisms, the recent work into valuing the privacy of
browsing behavior is most interesting and relevant by its design. Recruited though a
survey on a major web portal in Spain, 168 participants installed a browser plugin,
which invited them at intervals to place a bid for selling personal information
relating to the web site they currently viewed [43]. In addition, bids were also
solicited for various items of personal information detached from a browsing
context. The median bid value across data categories was much higher for
context-independent data (€25) than for context-dependent data (€7). A single piece
of data was valued similarly to ten pieces of the same kind. A follow-up ques-
tionnaire further indicated that users approved of exchanging their data in return for
improved service, but refused to have their data monetized by those same providers
[43].
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As an alternative to auctions, fixed amounts of money have been used, followed
by observing whether and how many participants would accept the offer.
Participants are asked whether they would disclose their data for a given com-
pensation, such as $2 (in a field experiment, [40]) or for amounts varying between
$0.25 and $1 (in a laboratory experiment by the same authors, [25]). The spreads
can also be larger, varying between SG$1 and SG$9, equivalent to $0.60 and $5.40
(in a field experiment, [44]). In the latter experiment, participants were invited to a
web form, disguised as a consumer research survey into mobile devices, which
required items of personal information [44]. The number of data items, the com-
pensation for completing the entire form, and the presence of privacy assurance
through a statement or statement plus seal, were manipulated in the different
treatments. Privacy assurances and monetary incentives both had a positive influ-
ence on disclosure [44], although disclosure was already very high without any of
the two.

14.3.1.3 Volunteering of Personal Information

In one of my own studies, we explored the lower bound of what companies would
need to pay their customers to stimulate data disclosure. Deployed as an online
experiment, we recruited 1,500 web users to complete a form asking for ten items of
personal data [30]. Items spanned identity and profile information of varying levels
of sensitivity, such as first name and date of birth, as well as health and spending
habits. The web form was chosen for its role as the primary mechanism to collect
personal data from individuals on the Web. We manipulated the number of man-
datory fields (none vs. two out of ten) and the compensation for participation ($0.25
vs. $0.50) to quantify the extent of over-disclosure, the motives behind it, the
resulting costs and privacy invasion. A fully rational participant, eager to minimize
her exposure and effort, would be expected to leave blank all fields but the man-
datory. Quite the opposite, we observed a high prevalence of deliberate and unpaid
over-disclosure of data. Participants regularly completed more form fields than
required, or provided more details than requested. For instance, when asked when
they had last spent $100, some not only provided the date, but also the purpose of
the expenditure. We saw that more than two thirds of participants volunteered their
date of birth and other personal details; disclosure rates, which were later confirmed
in another study. Through careful experimental design, we verified that participants
understood that additional data disclosure was voluntary, and the information
provided was considered sensitive.

The experiment provides evidence that companies may be able to collect per-
sonal details without compulsion or offering incentives, but instead by leveraging
consumers’ psychological drivers towards completing optional web form fields.
Through two manipulations, we benchmarked the efficiency of compulsion and
incentives against volunteering. First, when two of the ten fields were marked as
mandatory, disclosure rates for the remaining optional fields dropped. A company
that forces its customers to complete certain fields reduces the amount of
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volunteered details. Second, monetary incentives for completing those same fields
yielded positive spillover by increasing revelation ratios for other optional fields.
Both effects are statistically highly significant [30]. The effects suggest that the
transaction is not perceived as a market transaction but instead as a social exchange,
that can be broken (through compulsion) or reinforced (through gifting).

14.3.1.4 Challenges for External Validity

In information–money exchanges, money compensates consumers for their loss of
privacy. As with other setups, it is, therefore, important that participants incur a true
loss of privacy, which is typically achieved through data verification and with the
transaction having an impact beyond the protected realm of the study. However,
some experiments have tried to create personal information artificially in a labo-
ratory context: “the experimental instrument separated subjects from their natural
identities and allowed information and privacy values to emerge endogenously in
the laboratory” [27: 8]. These studies confound personal information with the
economic notion of private information [45]. By design, the information to be
disclosed is no longer personally identifiable. Such studies, therefore, do not
measure an invasion of privacy, but participants’ avoidance of embarrassing or
socially undesirable disclosure.

As a more general critique, the absence of goods or service consumption in pure
information transactions creates an incentive structure which resembles paid sur-
veys. Although it may be interesting to estimate the minimum amount of money
payable to consumers to reveal some personal or demographic information, this
price tag does not implement the purpose-binding of personal information. This is a
systematic flaw: if a purpose is unstated, participants are tempted make up a pur-
pose in their mind in an uncontrolled manner. If instead a purpose is stated, but not
implemented, participants are deceived. Even when researchers truthfully state and
implement data usage, participants trust the researchers and they are biased towards
helping research, resulting in personal data disclosure for low monetary values.

Information-only transactions are not happening at large on the Web today. One
should be cautious not to generalize the results of information-only transactions to
composite transactions. The incentive structures in an online shopping or social
networking context are quite different.

14.3.2 Experiments into Information–Service Exchanges

In the early 2000s, laboratory experiments examined consumers’ willingness to
disclose items of personal information in return for a personalized shopping
experience; in this section, I review two early studies. Personalized shopping is one
scenario where the privacy paradox could be observed (Sect. 14.2.1).
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The common design for information–service exchanges experiments is as fol-
lows: while participants proceed through an online shop, they can unlock person-
alization features by disclosing additional personal information. Importantly,
participants who disclose more do not get higher monetary payoffs, but may enjoy
personalization benefits. Payments are made to the participants, as show-up fees
and subsidies to purchases, but these do not depend on the amount or kind of
personal information revealed. Their aim is to increase overall participation and
purchase ratios. Payments were unconditional [46] or—which is less preferable—
distributed in a lottery amongst all buyers in the experiment [23]. Participants were
also informed that the experiment studies a personalization scheme; this framing
has been criticized for biasing participants towards voluntary disclosure in an
attempt to help research [27].

In the experiment by Spiekermann et al. [23], 171 student participants visited a
web site to shop for digital cameras or winter jackets, choosing from a broad
assortment of 50 and 100 models respectively. While shopping, they could interact
with an “anthropomorphic 3-D shopping bot that assisted participants” through a
sales dialogue involving 56 questions relating to product attributes, usage, but also
personal questions (e.g., “What is your motivation when taking photographs?” or
“How important are trend models to you?”) [23]. Responses to these questions
allegedly served to compile a ranked list of the top ten products. The authors do not
report whether this ranking was truly dependent on participants’ responses.

In a later experiment by Kobsa and Teltzrow [46], 52 student participants could
browse an online book store. A series of 32 questions spread over nine pages would
help them navigate the assortment. Each page displayed a book counter, decreasing
from 1 million to 50 matching books. However, the matching was an illusion,
created by decreasing the counter. The participants ignored the fact that the final
selection was predetermined by the authors based on assumed general appeal, and
independent of participants’ responses [46]. Although all personalization questions
would seem plausible in a book store context, they were far more intrusive than in
the shopping bot study [23]. For instance, participants were asked for political and
religious interests, their preferences for erotic literature and interest in certain
medical subareas [46]. All questions featured a “no answer” option. Interestingly,
the authors implemented an ID check on the buyers: this may have been the first
time truthful revelation of personal data was enforced in a laboratory context.

In another strand of research, observational studies and surveys have tried to
measure social capital returns from disclosing personal data online, in particular on
online social networking sites [47]. It has been argued that participation in a social
networking site would indeed negatively impact on privacy; however, usage would
also result in so strong a gratification for the users to the extent that it warrants
self-disclosure [48]. Participating in a social network despite privacy concerns
would not necessarily be a privacy paradox (Sect. 14.2.1). This stream of work
opens up towards non-economic, but social exchanges.
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14.3.3 Experiments into Information–Money–Goods
Exchanges

The body of research into the value of personal information as part of goods
transactions stands out by its paucity. Compared to the ever growing number of
commercial opinion polls and academic surveys there are surprisingly few exper-
imental studies into privacy economics. A recent literature review [8] only identi-
fied the work by Tsai et al. [49] and my own 2009 DVD experiment [50] as
experimental studies; it also included an information-only experiment [44], which
has already been discussed. Another comprehensive literature review into the
behavioral privacy economics observed that such experimental designs were rare
[51: Sect. 4.2.2]. Their comprehensive enumeration only included the works by
Beresford et al. [52], Tsai et al. [49], Gideon et al. [53], and Jentzsch and Giannetti
[54]. At the time, the latter was still in the design phase; in its current stage, it mixes
the concepts of personal and private information [54]. Concordantly with the cat-
egorization used here, another featured experiment was classified as an
information-only transaction [39].

Besides my own three experiments to date [50, 51, 55], detailed below, it
therefore seems that the body of experimental works to study the privacy economics
of composite transactions is limited to two studies: [49] and [53]. These works have
shared authorship; their designs are similar and they build on one another. Both
studies invited participants to a laboratory, where they shopped online and con-
sidered privacy issues on a competitive market. The experiments feature a field
component in the form of external order fulfillment. The later, more sophisticated
design is described first.

14.3.3.1 Experiment “Vibrators Versus Batteries”

Tsai et al. [49] consider consumers’ trade-offs as they choose between competing
sellers for the same good that differ by price and privacy. The authors have
republished their findings several times. The following analysis is based on their
initial report [49], which also gives the most detailed account of the experiment
procedures.

The goal of the experiment “was to determine whether the prominent display of
privacy information in search engine results causes privacy-concerned users to take
privacy into account when making online purchasing decisions” [49]. The study
was further aimed at determining “whether privacy-concerned users are willing to
pay a premium to make their purchases from the more privacy-friendly merchants”
[49]. As part of the study, 48 participants were invited to a laboratory session,
spread across three treatments, followed by an exit-questionnaire. Participants were
paid a show-up fee of $45.

The distinction between privacy-friendly and privacy-unfriendly was created and
made salient in the laboratory through icon-annotated result listings in a product
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search engine. The privacy rating effectively took four levels, from missing to zero,
two, and four out of four stars. Ratings of one or three stars were not encountered in
the study.

Participants were instructed to perform searches for a series of products; the
search terms were prescribed to match a single item sold by several retailers.
Products included batteries and a vibrator, which can be considered as prototypical
examples of office supplies and sex toys. In a preceding exploratory survey, these
product categories were identified to engender low to medium concerns and high to
medium purchase likelihood respectively.

The product search result was the main stimulus. The appearance of the first four
results was controlled. It is reported that the order of the results was such, that lower
rank was associated with a higher price and a better privacy rating [49: 12, 35]. The
prices in the experiment were not controlled; the original, varying retail prices by
the merchants were used.

The results were the following: guided by the visual four-star privacy rating,
participants were willing to pay a premium of around $0.60 when shopping for
vibrators and batteries respectively. The actual price differences between the dif-
ferent retailers varied. One cannot conclude that consumers paid $0.60 to shop with
a well-rated merchant. In a control treatment, the rating was relabeled as “Handicap
Accessibility” instead of “Privacy Report.” Participants still preferred to pay higher
prices to shop with a four-star merchant, although the difference in average prices
was not significant in this case [49].

Although this study implemented real purchase transactions during which par-
ticipants paid with their own money and released their personal credit card details to
a commercial entity of their choice, they could provide a dummy shipping address
instead of their own postal details. This resulted in a refund of the purchase price by
the experimenters. The authors do not report the proportion of participants who
placed orders with no intention to actually receive and use the purchased product
[49].

The “vibrator vs. batteries” study improved upon an earlier study by Gideon
et al. [53] from the same research group. Both studies used the same
privacy-enhanced product search engine, and participants could choose amongst
competing sellers. In the earlier study, 24 participants were recruited and paid a
show-up fee of $10. Again, products varied by privacy sensitivity, with surge
protectors and condoms as the extremes. Although prices differed amongst sellers,
participants did not need to pay a premium for privacy, because all expenses were
reimbursed by the experimenters. The main conclusion from this study would,
therefore, be that consumers prefer privacy-friendly designs so long as they come
for free.

14.3.3.2 Experiment “Gourmet Food”

In an earlier, unpublished experiment by Preibusch [55]—some material of which is
depicted in Fig. 14.2—72 participants were invited to shop for gourmet food within
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a single online store. Some 330 products were available along with 75 recipes by
famous chefs to ease product selection. Participants were paid a €10 show-up fee
and distributed evenly between two treatments. In one treatment, shoppers could
twice receive an extra €5 for indicating their date of birth and their email address
when making a purchase. Of all participants, 39 % placed an order, 15 of them in
the incentivized treatment, 13 in the non-incentivized treatment. Through the
incentives, the data disclosure ratio for date of birth could be increased from 75 %
to 92 %; and from 81 % to 92 % for email. In the non-incentivized treatment, only
64 % provided their date of birth.

Fig. 14.2 Screenshots from a 2007 laboratory experiment, featuring an online store for gourmet
food that could be browsed by product categories or through recipes by famed chefs
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14.3.3.3 Experiment “DVDs”

In the 2009 DVD study, 225 participants had the choice between two DVD retailers
that offered the same range of films. Thirty bestsellers were preselected and pre-
sented in a color-printed folder, but buyers had access to the entire Amazon product
range through a real-time search API, offering around 100 thousand titles. In fact,
almost half of the buyers (47 %, 35 in 74) made their purchase after having
requested titles not in the original catalogue. We partnered with an existing
bricks-and-mortar retailer of new and used CDs and DVDs [50].

Buyers had the choice between two competing branches, Cologne and Frankfurt.
The order forms listed the movie titles with their prices side-by-side to the personal
details required for the checkout, so that neither the prices nor the privacy aspects
where given priority. Frankfurt was the privacy-invasive retailer, always asking for
income and phone number when Cologne only required favorite color. In one
treatment, prices were the same; in the other treatment, Frankfurt was €1 cheaper.
When prices were the same, buyers seemed to pick an online store at random. They
did not systematically prefer the privacy-friendly branch. When prices differed, very
few were willing to pay an extra euro for not revealing their mobile phone number
and income. However, they were retrospectively less satisfied with the seller’s
privacy practices—as found in the exit-questionnaire [52]. We also saw that the
discount was overriding participants’ privacy preferences: for Frankfurt buyers,
there was a significant negative association between their willingness to provide the
data items required by the privacy-invasive retailer, and their actual data disclosing
behavior.

14.3.3.4 Experiment “Cinema Tickets”

The most thorough experiment into privacy economics to date is the 2012 cinema
ticket study. It builds on the earlier DVD study, described in Sect. 14.3.3.3. The
cinema ticket experiment took into consideration the lessons learnt from the DVD
study. In the face of an overhaul of the EU legislation on data protection, the study
on “monetizing privacy” was commissioned and funded by the European Network
and Information Security Agency (ENISA) and done in collaboration with
researchers at the German Institute for Economic Research. The over-arching
research questions were:

• Do some customers of online services pay for privacy?
• Do some individuals value their privacy enough to pay a mark-up to an online

service provider who protects their information better? [51]

To answer these questions, we created an online shopping experience where
consumers faced a trade-off between privacy and price. Ultimately more than 500
laboratory participants were invited to buy up to two cinema tickets. Purchase ratios
were high (43 %) and most of the buyers bought two tickets. The report published
by ENISA [51] gives the results for the first 443 participants, who purchased a total
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of 344 tickets—here I am reporting the results for loyal buyers, who purchased two
tickets from the same firm. Upon checkout, buyers had a choice between two
different retailers, shown side-by-side (Fig. 14.3). One of them asked for their
mobile phone number in addition to the basic data of name, email, and date of birth.
More than 80 % of buyers chose the privacy-friendly seller when prices were the
same. The privacy-friendly retailer continued to attract a demand when its prices
were higher. Around a third of the loyal buyers paid €1 extra for keeping their
phone number private. These results are statistically highly significant. We also
fielded this experiment nationwide and the results were corroborated, providing
strong evidence that the results from the laboratory do generalize.

The design of the cinema ticket study closely followed the earlier DVD
experiment, with some improvements. Again, a laboratory experiment was

Fig. 14.3 Public-facing web site deployed for the cinema ticket study, featuring the price and
privacy points of two alternative sellers side-by-side
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implemented, but complemented with a hybrid and a field deployment. In the field
experiment, all interactions took place on a public web site. Participants ignored the
fact that they were partaking in an experiment. In the hybrid, participants interacted
with the same public web site, but were explicitly invited to participate, using
university mailing lists. Consequently, the hybrid and the laboratory experiments
build on a student-dominated participant pool, whereas the field experiment sam-
ples from the general online population.

The experiment was framed as a study into how consumers make purchase
decisions. Online sales of cinema tickets was taken as an example; cinema going is a
broad social phenomenon [56], and ticket purchases and the consumption of culture
are widespread activities on the Web [57: Table 10]. The advantages of DVDs,
including low price and homogeneity, also apply to cinema tickets. The main dif-
ference in the experimental setup is a more pronounced privacy gradient. For the
DVD study, data collection did not differ between the retailers in the number of data
items required, and participants needed to inspect the two order forms closely to spot
the difference. In contrast, the cinema ticket sellers differed in the number of data
items collected and, with four versus three items, the variation is relatively high.
Furthermore, the side-by-side display on-screen made comparisons easy.

14.4 How to Run Experiments in Behavioral Privacy
Economics

14.4.1 Measuring Willingness to Pay

Experiments into the behavioral economics of privacy aim to measure the value that
consumers attribute to their privacy or to privacy-enhancing features. Examples of
privacy-enhancing features can be found easily in digital goods and services: a web
browser with enabled tracking protection, a webmail provider that refrains from
scanning messages, or a search engine that offers its users the ability to disable or to
curate their search history. There is a research and business interest in measuring
how much these privacy enhancements appeal to users, in absolute monetary terms
(e.g., for pricing subscriptions) and relative to other features such as search result
quality (e.g., for prioritizing engineering efforts).

Examples of enhanced privacy are often found in the way companies provide
goods and services to their customers. An online retailer may refrain from asking
sensitive personal information, or may not use the order confirmation email address
provided by the customer to send them unsolicited newsletters. Better privacy is
thus operationalized along one of the privacy dimensions of data collection, use,
retention, and sharing. Research and business are interested in two ways in which
consumers articulate their value of privacy. First, would they pay money or give up
other desirable things such as personalization to enjoy more privacy? Second,
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framed inversely, would they give up privacy to receive discounts, higher payoffs,
or to enjoy more functionality and convenience? Whereas the first question
examines a willingness to pay for privacy, the second question looks at the will-
ingness to accept incentives towards increased data disclosure. It has been specu-
lated that the willingness to pay and to accept differ; however, available evidence is
inconclusive [40, 58].

An economic experiment into the value of privacy places consumers into a
decision-making situation where they have to trade off privacy against
money/convenience/functionality. Their choices are observed in a laboratory or
field study. Willingness to pay for privacy is revealed through controlled variation
of the stimulus across treatments, such as the discount an online shop grants the
customer for revealing his or her mobile phone number.

As a discipline, experimental economics have developed principles on how to
conduct such experiments. In some aspects, these differ from other disciplines that
are also looking at decision making, including psychology [59]. First, experiments
in economics are scripted: participants’ progress through the experiment, their
possible choices and payoffs are set forth in a detailed protocol. Second, the payoffs
are variable and depend on the choices participants have made and their perfor-
mance. Third, deception is avoided throughout the experiment [59].

The methodological differences between economists and psychology researchers
can be a practical challenge. The design of an experiment may face opposition
when reviewed by an ethics committee that subscribes to the respectively other
research standard. Especially performance-dependent payoffs may face resistance
amongst psychology scholars.

14.4.2 Essential Stages of the Experiment

14.4.2.1 Sign-up and Participation

An experiment that measures consumers’ value of privacy usually progresses
through several stages, some of which happen before and some after the session
(Fig. 14.4). Potential participants sign up beforehand, at which a screening ques-
tionnaire may be deployed to sample a specific population. At the time of the
session, identity checks are carried out; only registered participants are admitted,
without walk-in participation. Although a single session is attended by multiple
participants, they progress at their own pace and must not communicate with each
other, unless the procedures explicitly foresee teaming.

14.4.2.2 Instructions and Consent

The session starts by explaining the procedures to the participants, the choices they
will have during the session and how their choices will impact their payoffs.
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The instructions, succinct yet complete, are distributed as hard-copies to the par-
ticipants, so that they can refer to them easily later on. Experimenters may also read
them out loud; and arising questions are answered. As an ethical obligation, par-
ticipants are also informed about potential harms and about what will happen with
their data. Participants may still withdraw at this stage without being sanctioned, as
participation is voluntary and requires consent. It is important that participants
understand the procedures, because otherwise the nexus between the stimulus and
their actions is broken.

14.4.2.3 Voluntary Transactions and Data Verification

Voluntary transactions are at the core of the session. They bring a real-world
scenario into the laboratory and at best replicate every aspect of the consumption
scenario. The creation of a realistic environment is resource-intensive; further
details are provided below. The interaction is typically fully computerized although
ancillary non-digital materials may be used. Computer-mediated delivery allows
high levels of instrumentation so that participants’ actions are logged precisely to be
analyzed later on. It also makes data verification possible, which is crucial in
privacy experiments: if participants provide fake data, they can avoid privacy risks
and thereby contravene the experimental protocol. Contact details including mailing
addresses, email addresses, and mobile phone numbers can be verified through
delivery checks, when a sent confirmation code has to be rekeyed into a web site.

Consumption, data sharing and use

Payoff and farewell

Exit-questionnaire

Data verification

Voluntary transactions

Comprehension check

Instructions and consent

Admission and identity check

Sign-up, screening questionnaire
Fig. 14.4 Stages of an
experiment session into the
behavioral economics of
privacy
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Personal details including name, date of birth, and nationality can be verified using
ground truth such as identity cards, leveraging the face-to-face interaction the
laboratory offers. Biometrics can be checked in place, through observation (e.g.,
gender) or by measurement (e.g., body height and weight).

14.4.2.4 Payment Collection

If the transaction involves payment by the participant, such as for an online pur-
chase, payment collection should happen as part of the transaction. This includes
electronic payment, where PayPal can be offered as long as the extra third party
does not subvert the experiment design. Preference should otherwise be given to a
white-label credit card acquirer—however, this leads to substantial overhead.
Offering card payments contributes to a realistic shopping environment and makes
sure that those without cash at hand can engage. Cash payments may be settled as
part of the final payoff.

14.4.3 Creating Real-World Shopping Scenarios

14.4.3.1 Purchase Ratios and Product Selection

True choices require voluntary transactions. This can be challenging when studying
privacy economics in electronic retailing as only buyers contribute observations
into price–privacy trade-offs. Researchers must, therefore, achieve high purchase
ratios to make the most of the recruited sample. At the same time, participants’
decisions to make a purchase should not be systematically associated with their
privacy attitudes or demographics, which can be checked through the
exit-questionnaire. Purchase ratios between 40 % and 60 % can be achieved.
Product selection is key and there are five guiding principles. First, the product
should appeal universally, regardless of age, gender, or education. Second, the
product should be affordable, especially for cash-strapped student samples. Third,
the product should lend itself to impulse purchases, without requiring much thought
or outside information seeking. Fourth, the product must be homogenous: its
quality should be unaffected by whoever sells it. Finally, regulation rules out certain
products: in most countries, age restrictions apply to alcohol, tobacco, or pornog-
raphy; licenses may also be required. Train tickets, although an otherwise suitable
product, may only be sold by authorized persons in the United Kingdom. A fixed
subsidy can be offered to stimulate purchases; but Germany, for instance, forbids
discounts on books. The research design guides whether multiple products or
quantities can be bought or whether unit demand is enforced.
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14.4.3.2 Real and Fulfilled Transactions

The laboratory is the gold standard for human subject experiments: it allows rich
data collection in a controlled environment that rules out confounds beyond the
stimuli of the experiment. All the same, results established in the laboratory are
sometimes criticized for low generalizability beyond this protected realm. In eco-
nomics, behaviors observed in the laboratory have been found repeatedly to be a
good predictor for the outside world, even when student volunteers are recruited
[60]. Having a realistic decision-making environment is key in delivering valid
results that generalize beyond the laboratory.

It is, however, not sufficient for transactions in a laboratory experiment to be
realistic; they need to be real. This mandate follows from the proscription of
deception. Deception pollutes the shared resource of a participant pool by creating
distrust [61]. This ethical argument against deception is complemented by an
argument of scientific validity. Deception has been found to have an impact on
participants’ behavior [62]: their actions become inconsistent, a sign that they stop
taking the experiment seriously. It also has a negative effect on return rates and may
yield self-selection biases. Deception, therefore, is a serious threat to the validity of
the findings.

In an experiment into privacy behaviors, all aspects of the transaction must be
real. Taking the example of online shopping, participants who make a purchase will
have to pay for it with their own money, and they need to be provided with the good
they bought. Researchers must be able to fulfill orders, although this will typically
be easier for products that also improve purchase ratios, as discussed above. The
exchange of personal information must be real and any uses or third-party sharing
that were communicated to the participant have to be executed. For instance, if
allergies are collected to filter products in an online grocer, this functionality must
be implemented. If participants were told that their data would be shared with a
company, this data transfer needs to happen, because a deflected privacy threat also
counts as deception. It is intended that participants’ choices during the experiment
have an impact on their lives after the session [62].

14.4.3.3 Partnering with External Companies

One of the challenges in creating a real transaction is to bring a commercial service
provider or retailer into the laboratory. When studying exchanges of money and
personal data between companies and their data, one cannot achieve valid results
when making participants interact with a trusted institution like a university. In the
instructions, participants must be told truthfully that they transact with an existing
company. Researchers, therefore, have to collaborate with established firms: the
setup of a working relationship with a retailer requires negotiation talent and an
understanding of business requirements. For a company, it is typically a cost to
support a research study. Practical hurdles are the use of branding and the licensing
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of intellectual property such as designs and product images or descriptions. When
granted permission, these elements will be used to re-create a real web shop in the
laboratory (Fig. 14.2).

14.4.4 Maintaining the Institutional Separation Between
University and Corporate Representation
in the Laboratory

Participants must be supported in understanding that an experiment features two
separate institutions, a university by members of which and on the premises of
which the session is administered, and a company that is their transaction partner.
This separation is crucial as participants will react differently to their information
requests. The university benefits from a positive trust bias when collecting and
using personal information that should not spill over to the company, or the validity
of the results would suffer. The two institutions (university versus company) can be
separated by experiment phases (Fig. 14.4). Whilst the company collects personal
details during a voluntary transaction, university researchers ask participants to
complete an exit-questionnaire. Truthful responses in the latter hinge on confi-
dentiality towards the company. For instance, buyers may be asked how they rate
the shopping experience. Without institutional separation, this question would be
subject to a social desirability bias.

The logical separation between the university and the company corresponds to
an administrative separation of the inner and outer phases of the experiment session
(Fig. 14.4). A visual break can help participants: parts of the experiment related to
the university may feature a different visual language, different fonts, or colors, or it
might address the participant differently (e.g., John vs. Mr. Doe, “participant” vs.
“dear customer”).

An exit-questionnaire records socio-demographic key indicators, such as age,
gender, income, and education level. All participants take this questionnaire,
whether or not they decided to transact. It allows controlling for potential decision
drivers such as computer literacy and past experiences with the chosen company or
with cyber-crime. Personality traits such as materialism, reciprocity, risk-aversion,
and indeed privacy concerns are measured using instruments with pre-established
reliability [31].

14.4.5 Deploying the Experiment: The Relative Merits
of the Laboratory, the Field, and Online Platforms

Researchers have the choice between three channels for deploying their experi-
ments: the laboratory, the field, and online platforms (e.g., Amazon Mechanical
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Turk—mTurk). Each of these platforms has their own advantages and disadvan-
tages. Dual deployment or hybrids between the channels promise more robust
findings.

Laboratory sessions are the traditional way of running experiments in behav-
ioral economics. Their main advantage is the full control that researchers have over
the experimental design and the deployment. The lab creates an isolated realm,
which allows controlled manipulation of the stimulus under investigation. Possible
confounds can be minimized or ruled out entirely. The laboratory also features
synchronized face-to-face administration of the experiment, allowing the pairing of
participants without them having to wait for one another. Rich apparatus such as
eye-tracking or biometric sensors can be used. In privacy experiments, tracking the
gaze of participants allows the experimenter to check whether the subjects have
actually read a web site’s privacy policy, seen any available discounts, or all the
potentially sensitive data items requested on the checkout form. Experimenters are
also able to verify personal information on site, for instance, through direct
observation or with an identity check; verifying someone’s name over the Internet
is often prohibitively difficult. The drawback of lab experimentation is their
over-reliance on student participants and on educated subjects from rich Western
societies [63], which may come at the expense of generalizability. Furthermore, it is
difficult to scale laboratory experiments beyond a few hundred participants, as
subject pools deplete.

Field experiments give access to a potentially unlimited population, although
one typically restricts recruiting to a single country for practical reasons, such as
language localization or compliance with national regulation. In a field study,
researchers create a public facing web site or team up with an existing company to
bring the interaction from the laboratory into the wild. Often, it is no longer obvious
that the web site is part of a research study. The main advantage is that the
experiment is no longer pushed onto participants; instead customers come to the
web site self-motivated and task-driven. Pull engagement has the advantage of
capturing the consumers when and how they want to transact online. This brings
new challenges for recruitment: laboratory subject pools may be invited to join the
field study, although it bears the risk of contaminating the natural interaction, which
has otherwise no connection to a university or research institution. To recruit for
field studies, advertising campaigns may be necessary, resulting in recruiting costs
that might be higher than for the laboratory. Logging referrers to the fielded web
site is essential. The main cost driver for field experiments remains the requirement
to create an instrumentation that survives in the wild. There is a higher bar for
design and visual appeal, for security, and any fielded materials face regulatory
exposure, as the web site created for research purposes now enters the competitive
market. A mentality shift is required for researchers, from administering an
experiment session to delivering customer support. Exit-questionnaires and
follow-ups are more difficult to administer in a field study; the diversity of the
sampled population may go unnoticed. Researchers should be prepared that the
field gives noisier data than the laboratory.
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Crowdsourcing platforms have started a new wave of studies with human
participants. They allow researchers to collect data more quickly and cheaply than
through laboratory studies. For many computer scientists, the first experiment with
human participants they ever run will be online. Amazon Mechanical Turk (mTurk)
is the best-known platform, although numerous crowdsourcing platforms are now
available. Started as a labor market for large numbers of small, tedious tasks such as
transcribing business cards, mTurk has been seized by researchers who need to
conduct experiments and deploy surveys. Comprehensive guidance is available to
researchers to on-board with the platform [64]. Cost savings and timely turnaround
are the two main advantages of online experiments. Payments to participants can be
lower by one order of magnitude and experiments can be run around the clock with
minimal supervision. The major difficulty is the introduction of a new sampling bias
towards a population that goes after pennies and is recruited in a task-focused
mind-set. Cheaters and spammers are common on mTurk; many of them have
previously participated in psychology experiments involving deception, so their
behavior may be distorted [61]. Finally, platform operators such as Amazon impose
strict guidelines on what is allowed on the platform. The main hindrance for privacy
researchers is the proscription to collect personal information [65], and the resulting
inability to create a real invasion of privacy. Whilst crowdsourcing lends itself to
many experiment procedures, researchers should refrain from retrofitting their
research question or experiment design. Despite their pragmatic appeal, platforms
such as mTurk are often unable to accommodate for the requirements of research
into privacy economics.

14.5 Conclusions and Future Challenges

14.5.1 Principles for Empirically Studying Privacy
Behaviors

Privacy is top of mind for corporate executives, regulators, and policymakers. Since
the Web has brought mass-personalization to every aspect of online consumption,
privacy advocates have argued how ubiquitous web tracking poses a threat to users’
informational self-determination. Today, we know the reality of planet-scale gov-
ernment surveillance, and Big Data companies demonstrate how personal infor-
mation can be monetized. This revived interest in improving the protection of
consumers’ personal information suffers from a serious knowledge gap into con-
sumers’ privacy concerns and behaviors. When public opinion polls repeatedly
diagnose high levels of privacy concern, it seems paradoxical that consumers keep
enjoying privacy-invasive services. There is surprisingly little knowledge on how
consumers make privacy/price/convenience trade-offs and about the value they
attach to their personal information. Reliable and valid evidence is needed to
develop privacy-enhancing technologies that meet the consumers’ needs.
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Behavioral economics provide the methodological toolkit to explore consumers’
privacy choices.

Well-crafted experiments in the laboratory or in the field put participants in
real-world decision-making scenarios that allow observation of their privacy
choices with predictive power. Applied to the study of privacy in electronic
retailing, for instance, this means offering participants the ability to voluntarily
purchase goods or services; the transaction is fulfilled with exchanges of real
products, money, and personal data. Conversely, the lack of commitment and
incentive-compatibility makes surveys, hypothetical choice scenarios, or studies
involving deception fail to deliver actionable insight.

14.5.2 Future Challenges

In this chapter, I have outlined the principles of conducting empirical research into
consumers’ privacy consumption behaviors. For researchers, practitioners, and
policymakers more challenges lie ahead.

Challenges for researchers include the development of new measurement
instruments for privacy concerns and behaviors. On the one hand, we witness the
emergence of new kinds of personal information, collected through the proliferation
of sensors in mobile devices and public spaces: real-time location data, biometrics
collected from eye-tracking, video surveillance, and health sensors. Big Data is not
just more of the same, but introduces challenges of a new type [66, 67]. On the
other hand, well-conducted experiments are time and resource consuming to a point
where knowledge production has difficulties keeping up. This calls for an experi-
ment infrastructure to conduct empirical studies at a faster pace and with lower
investments, and it also calls for reliable and valid low-cost survey instruments.

Challenges for companies lie in the diversity of consumers’ privacy preferences.
How can a company implement superior privacy practices, when customers are
diverse in how they balance the trade-off between convenience and data minimi-
zation? How can business models succeed beyond the monetization of personal
data when the majority of buyers choose cheap prices over good privacy? Privacy
negotiations allow companies to offer their customers the choice between different
privacy regimes where the current one-size-fits-all approach of inflexible privacy
statements fails [68].

Challenges for regulators include the unification of consumer protection and data
protection. Two different enforcement regimes need to be combined as market
power is redefined in the digital economy. Barriers to entry are no longer capital
investments but access to large quantities of historical data; the demand-side net-
work effects in data-intensive products can quickly turn a successful firm into a
dominant firm. A mark-up on prices is the traditional symptom of monopolies, but
how does market concentration manifest when products and services are offered
free of charge. Ultimately, regulators aim to create an environment where
privacy-friendly products and companies will thrive.
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For companies making sense of big personal data without alienating their cus-
tomers, for regulators upholding privacy norms, and for researchers envisioning
new data protection technologies, it is key to understand consumers’ privacy
concerns and behaviors. In this chapter, I have shown how laboratory experiments
and field studies can observe consumers making real-world privacy choices and
thereby provide decision makers with the reliable and valid empirical evidence they
need.

Acknowldgements Kat Krol (University College London) provided helpful comments on earlier
versions of the chapter.
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Chapter 15
Techniques, Taxonomy, and Challenges
of Privacy Protection in the Smart Grid

Suleyman Uludag, Sherali Zeadally and Mohamad Badra

15.1 Introduction

The scope of the rights of individuals has been constantly evolving. It has long been
established that the full protection of life and property falls within the individual
rights coverage for most cultures throughout the human history. While the early
boundaries of the “right to property” have only incorporated the tangible dimen-
sion, the intangible portion has been expanding [1] rapidly since the industrial
revolution. One important component of the intangible part is defined by the right to
privacy, coined by Warren and Brandeis in 1890 [1].

A strong positive correlation between technological development and privacy
concerns is almost universally agreed [2]. In Warren and Brandeis’ terminology,
“the right to be left alone” has expanded to include other personally associable
phenomena such as audio, photographs, video, data, and more recently biometric
identification and genetic data) rather than mere physical property. Computerization,
automation, transmission, and storage of data, enabled by recent advances in tele-
communications, Internet technologies, and mobile and cloud computing services,
have increased the importance and relevance of the term “privacy”.
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In spite of its wide usage, the term privacy does not have a universally-
agreed-upon definition [3].1 It is quite remarkable that such an important concept
has evaded a formal definition. The concept of privacy has a long history of
discussions of importance, from Greek philosophers including Aristotle (public
sphere of political activity versus private sphere [3]) and Socrates, to Biblical and
Quranic passages [5]. Allen West in his landmark work [2] defines privacy in terms
of self-determination as follows:

Privacy, now, is the claim of individuals, groups, or institutions to determine for themselves
when, how, and to what extent information about them is communicated to others.

Another important document about the principles of privacy protection was
developed in 1981 by the Organization for Economic Co-operation and
Development (OECD) [6]2 and was later updated in 2013 [7]. Yet, even these
guidelines are not observed by many countries. For example, while the European
Union seems to be following them, the United States does not.

Widespread adoption of privacy protection mechanisms depends on the political
will, which seems to be prioritizing other concerns such as public safety, especially
since September 11, 2001. However, the awareness and demand of the public for a
stronger adoption and enforcement of the privacy regulations has been increasing
unabated. Many recent developments and news such as Wikileaks, US NSA leaks by
Edward Snowden, Facebook’s recent disclosure of Emotion Experiment, EU’s recent
ruling on “right to be forgotten,” have been keeping the topic of privacy discussions
current and fresh in the public sphere, thereby increasing demand for more action.

In line with technological developments, the ever-changing field of ubiquitous
applications, and high-level penetration of mobile and other electronic devices, the
potential for privacy violation has been increasing in scope. While there is a per-
ceived clash between the technology and privacy protection, there are also many
efforts to put the use of technology in its defense. One pioneering work that has
spawned quite a lot of attention, interest, and follow-up studies is Chaum’s paper
[8] in 1985 on providing privacy to individuals and organizations bi-directionally in
a secure fashion. He argues for embedding privacy-providing mechanisms in the
design and development of the technology by means of cryptography. Chaum’s
ideas are further developed and formalized under the term of privacy-enhancing
technologies (PET) in 1995 [9] and then in 2003 [10]. PET is defined in [10]:

PET stands for a coherent system of ICT measures that protects privacy by eliminating or
reducing personal data or by preventing unnecessary and/or undesired processing of per-
sonal data, all without losing the functionality of the information system.

Our work in this chapter is line with the notion of PET, which we use to provide
an understanding and awareness of privacy issues, challenges, and threats in the

1Some technology company executives have gone so far to declare privacy irrelevant, dead, or
even defunct. A more elaborate debunking of these myths can be found in [4].
2http://www.oecd.org/internet/ieconomy/oecdguidelinesontheprotectionofprivacyandtransborder
flowsofpersonaldata.htm.
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Smart Grid (SG), the next generation of the traditional Power Grid enhanced with
state-of-the-art computing and communications technologies. Just as is the case
with many engineering and technical decisions, the touted benefits of the SG ini-
tiative comes with many risks and trade-offs. The deployment and adoption of
Smart Grid technologies have opened up several security issues at the levels of the
consumer, the communication, and the energy provider. Security aspects such as
confidentiality, authentication, authorization, integrity, and non-repudiation have
been extensively investigated and various innovative solutions have been proposed
in the literature. There are many publications on SG security, including survey style
articles and books, such as [11–36]. While some of these address privacy, explicitly
or implicitly, there is a need for an up-to-date coverage of SG privacy techniques. In
contrast to most previous works with the SG security focus, our main motivation in
this chapter is to review, classify, discuss, and analyze recent SG privacy solutions
that have been proposed in the literature. In addition, we also provide a compre-
hensive treatment of the approaches, mechanisms, and cryptographic tools used in
the SG to support the use and design of privacy enforcing techniques.

15.1.1 Contributions

In this chapter, we provide a novel taxonomy of privacy provisioning and pro-
tection techniques in the SG. The comprehensive survey, explanations, and dis-
cussions of the various privacy schemes are expected to serve as a good reference
for those interested in working on privacy issues in the SG environment. The rest of
the chapter is organized as follows. Section 15.2 presents a brief SG overview.
Section 15.3 discusses the privacy-related problems within the SG environment and
explains why privacy is crucial in the overall success of the SG paradigm.
Section 15.4 presents a novel taxonomy of recently proposed privacy-preserving
solutions for the SG. Section 15.5 explores outstanding challenges that must be
addressed in the future and opportunities for new research directions. Section 15.6
concludes the chapter.

15.2 Background on Smart Grid

In this section, we present the main features of the traditional Power Grid followed
by the SG vision.

15.2.1 Traditional Power Grid

The current traditional electric Power Grid is considered to be the largest man-made
machine in the world. Its infrastructure and operations have not changed
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significantly over the past century. Its architecture mainly consists of four sections,
as shown in Fig. 15.1: generation,3 transmission, distribution, and consumption.
A high-level structure of its topology and its components are displayed in Fig. 15.2.
The generation of energy is highly centralized and is carried out in bulk mode, such
as nuclear systems, hydroelectric systems, wind farms, and others. The high-voltage

Bulk Generation Transmission Distribution
Customers

Control Operations

Fig. 15.1 Architecture of the traditional electric power grid

Fig. 15.2 A high-level structure of the current power grid

3We use the terms generation and production interchangeably.
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electricity is relayed in the transmission subsystem over long distances. When
handed off to the distribution subsystem, the energy is converted into medium
voltage. Through the distribution subsystem substations, the voltage is reduced to
lower values and then distributed to a variety of end-users, from commercial,
industrial, business, to residential areas. The energy production and distribution
schema are supervised by a centralized control system, known as Supervisory
Control and Data Acquisition (SCADA) systems, in charge of mapping and visu-
alizing any operational activity in the field as well as controlling the storage and
demand of power. In fact, SCADA systems can remotely and locally control the
power transmission and distribution based on the current demand and peak loads
thereby minimizing unnecessary power generation.

15.2.2 The Smart Grid Vision

SG is a term generally used to refer to an enhancement of the traditional Power
Grid, especially, in terms of the computing and communications technologies. SG
can be defined as follows [37, 38]:

The SG can be regarded as an electric system that uses information, two-way, cyber-secure
communication technologies, and computational intelligence in an integrated fashion across
electricity generation, transmission, substations, distribution and consumption to achieve a
system that is clean, safe, secure, reliable, resilient, efficient, and sustainable.

“System of Systems” is a term generally used to qualify the SG in the literature
to emphasize its heterogeneity.

Economic development and its sustainability are closely coupled with the
effective, efficient, and robust use of the energy. The energy sector, and especially
the grid infrastructure, has traditionally focused on the reliable provisioning. Until
recently, communications and flow of information have been considered only with
extraneous significance. Under an aging and ineffective energy distribution system,
unprecedented initiatives have recently been instituted in many countries to
improve the Power Grid with the SG. The key facilitators of the SG are two-way
energy and information flows between the suppliers and consumers. The conven-
tional supply chain of the energy is being expanded to include alternative sources of
energy, such as solar, wind, tidal, biomass, and so on. from a variety of distributed
small and large energy producers. The consumers are becoming more active par-
ticipants by means of such devices as smart meters, smart thermostats, smart
appliances. The grand vision of an autonomic, self-healing SG with a dynamic
demand response model with pricing still has many challenges, not the very least
from the perspective of the networking infrastructure and distributed computing.
Demand Response (DR) is defined by the US Department of Energy as
follows [39]:

Changes in electric usage by end-use customers from their normal consumption patterns in
response to changes in the price of electricity over time, or to incentive payments designed
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to induce lower electricity use at times of high wholesale market prices or when system
reliability is jeopardized.

The sheer size of the contemplated SG of the future is to rival the Internet in the
number of participants. Smarter generation, transmission, distribution, and con-
sumption of electricity are essential to achieve a reliable, clean, safe, resilient,
secure, efficient, and sustainable power system [37].

Some of the noteworthy standardization efforts, high-level conceptual reference
models, and roadmaps for the SG are given by the NIST Framework and Roadmap
for SG Interoperability Standards [40], IEC SG Standardization Roadmap [41],
CEN/CENELEC/ETSI Joint Working Group on Standards for SGs [42], and IEEE
P2030 [43]. A conceptual view of the NIST’s SG reference model is depicted in
Fig. 15.3 with seven domains: customers, markets, service providers, operations,
generation, transmission, and distribution. As compared to Fig. 15.2, the generation
is no longer in bulk; it also includes the distributed and renewable energy sources as
well. It is also worth noting from Fig. 15.3 the bi-directional electricity and
information flows and the integration of the renewables. Another important con-
ceptualization is the addition of third-party services to enhance the energy con-
sumption experience of the end-users by means of open markets. The financial
gears are also in place: global investment on SG had exceeded $15 billion as of
2013, more than a four-fold increase from 2008 levels [44].

Fig. 15.3 NIST’s 7-domain smart grid conceptual model
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The most relevant domain of the NIST Conceptual Model for this chapter is the
Distribution Domain (as depicted in Fig. 15.4), because it is the main physical
interface between the end-user and the SG and it is the center of almost all of the
potential privacy violations. Note that it is also the Distribution Domain that is
responsible for achieving the most widely-cited benefits of the SG which include
control, measurement, sensing, data collection and storage, and optimization of
operations that take place in or for it.

The anticipated benefits [40] of the SG include:

• Increased power reliability and quality.
• Optimized resources to smoothen the power demand to avoid using expensive

peaker capacity.
• Improved resilience to disruption by natural disasters and attacks.
• Automated systems to enable self-healing responses to system disturbances.
• Incorporation of distributed and/or renewable energy sources.
• Reduction of greenhouse emissions.
• Actionable and timely energy usage information to customers.
• Facilitation of plug-in electric vehicles and new energy storage options.
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Fig. 15.4 Distribution domain of NIST’s smart grid conceptual model
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15.2.3 Smart Meters and AMI

In transitioning from the Power Grid to the SG, Automatic Meter Reading
(AMR) has provided a stepping stone functionality. AMR provides automatic
collection of data from the energy metering devices and transmission of them to a
central location for further processing and analysis.

In the SG, AMR is replaced by Advanced Metering Infrastructure (AMI) which
enables bidirectional data transfer between the meter and the grid. The meter that
provides such functionality in the SG is usually referred to as a Smart meter. Smart
meters can read real-time energy consumption information as well as other oper-
ationally needed data, such as voltage values, phase angle and the frequency, and so
on. Smart meters are solid state programmable devices that can perform many
functions allowing users to perform intended tasks by inputting a sequence of
instructions into their processing unit and memory. Among some of the tasks that a
smart meter can do are [45]: time-based pricing, collecting consumption data for
consumer and utility, net metering, loss of power (and restoration) notification,
better access and data to manage energy, decision and selection of rate options,
remote turn on/turn off operations, load limiting for bad pay or demand response
purposes, energy prepayment, power quality monitoring, meter tampering and
energy theft detection, costs reduction in wrong estimations of billings, service and
operational reduction in traditional tasks of metering reading, or communications
with other intelligent devices or appliance devices in the home. Although all these
tasks may not be supported by a particular meter and there might be other tasks that
it can do, the overall idea is that smart meters make it possible to add some kind of
intelligence to the network and individual features of each residential consumer.

There are several technologies and applications that have been integrated to
perform as one in an AMI system [45] including: smart meters, wide-area com-
munications infrastructure, Home (local) Area Networks (HANs), Meter Data
Management Systems (MDMS), and operational gateways working as main col-
lectors. Figure 15.5 shows a model of AMI system as envisioned by NIST from the
perspective of computer networking terminology by means of interconnected nodes
and clouds to emphasize the bidirectional nature of the communication enabled by
AMI.

Another abstraction of the AMI network is presented in Figs. 15.6 and 15.7 that
show the concepts of HAN, Building Area Network (BAN), Industrial Area
Network (IAN), Neighborhood Area Network (NAN), and Field Area Network
(FAN).

There is some notion of hierarchy in AMI when data are collected, processed,
and analyzed to optimize the energy use and bring about the benefits of the SG.
Such a hierarchy of the communications architecture is depicted in Fig. 15.8. Smart
meters span out from feeders, which may also serve as natural data aggregation
points. Feeders are controlled by the distribution substations, which are in turn
connected to the transmission substations. NIST domains interact with this hier-
archy to provide a new level of experience and service as part of the SG.
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Fig. 15.5 Smart grid advanced metering infrastructure reference architecture

HAN - Home Area Network
BAN - Building Are Network
IAN - Industrial Area Network
NAN – Neighborhood Area Network
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Fig. 15.6 Smart grid advanced metering infrastructure
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15.2.4 Microgrids

One of the many new mechanisms of the SG for power delivery is microgrids
[46–48]. As a low voltage distribution network, microgrids4 are autonomous energy

Fig. 15.7 Details of HAN, BAN, and IAN

Feeders

Smart Meters

Distribution Substation and 
Control Center

Transmission Substation

Markets Operations

Fig. 15.8 SG communications architecture

4Microgrids are referred to as Distributed Resource Island Systems in IEEE 1547 terminology.
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management systems under the control of a single administrative authority that is
capable of operating in parallel to or in intentional or accidental islanded mode from
the existing Power Grid. They usually include distributed and renewable energy
sources as well as some level of energy storage subsystems. A representation of a
microgrid model is shown in Fig. 15.9.

15.3 Smart Grid Privacy Issues

Demand Side Management (DSM) is one of the most important components of the
grid of the future [49]. The overarching goal of DSM is to improve the efficiency
and effectiveness through energy consumption scheduling. DSM tries to shift and/or
reduce the load to achieve its objective by reducing the Peak-to-Average Ratio
(PAR), cost, and so on. In [50], energy-cost and PAR minimization are performed
with the help of an energy consumption scheduler and a Linear Programming
(LP) formulation. Joint energy payment and waiting time minimization are studied
in [51]. A game theoretic approach is proposed to maximize the utility function in
[52]. In [53], a consumption scheduling algorithm based on Integer Linear
Programming (ILP) and game theory is applied to minimize load. In contrast to the
current grid, one of the key features of the future grid is to adjust loads dynamically,
turning them on or off as needed. This is called load shedding. In [54], an opti-
mization framework is proposed to find the minimum amount of load to shed while
satisfying load-balancing and shedding constraints. Dynamic load-shedding
schemes have been studied in the presence of large disturbances accounting sys-
tem dynamics [55, 56]. Du and Nelson [57] presents a two-step algorithm for the
optimal load shedding in an intentional island.

to macrogrid

feeders generatorgenerator

Neighborhood 
microgrid

Substation 
microgrid

Fig. 15.9 A microgrid model
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Given the information collected by smart meters in the SG environment, privacy
issues become a vital concern for the success of SG initiatives. In the SG AMI, the
privacy goes beyond anonymity to include undetectability of operational status of
individual residential appliances. It has been well-known for quite a while that it is
trivial to determine sophisticated usage patterns from the smart meter data by using
rather simple statistical methods [58, 59]. Prevention of this kind of violation is the
main aspect of privacy that we are addressing in this chapter.

The privacy-related issue here is that for proper functioning of the AMI system,
very detailed and often precise information about users’ electricity usage is needed.
Hence, while this smart system could offer many great benefits, it takes away a
significant level of privacy a user may like to have. In the rest of this section, we
first elaborate on the general notion of privacy and then delve into some details as to
why we need to address the privacy concerns explicitly and convincingly.

15.3.1 Basic Privacy Concepts

Privacy may be defined as the claim of individuals, groups, or institutions to
determine when, how, and to what extent information about themselves is com-
municated to others [2]. The notion of privacy may vary from person to person, and
from culture to culture. It could also be defined as the right to informational
self-determination, that is, individuals must be able to determine for themselves
when, how, to what extent, and for what purpose information about them is
communicated to others [60]. This term is often related to an entity’s (individual,
group, or institution) identity or anonymity. As human beings, each of us likes to
keep certain information about ourselves confidential while we like to express some
information to draw a distinct line with others or to make a presence in the society
that we live in. Similarly, a group or institution may have some information for
disclosure to the public while sensitive information must be protected from being
disclosed to unwanted parties. The unwanted parties may include individuals who
are not members of the group or institution, other groups or institutions, a person
with short-term membership, or a deliberate intruder (attacker) attempting to
retrieve information illegitimately.

The definition and boundaries of privacy tend to vary among different societies
and cultures and as such, there is no clear list of categories of privacy that can be
applicable for all. However, four major types of privacy are generally recognized:

• Personal privacy. This includes mainly body privacy and territorial privacy.
Body privacy varies among individuals in terms of the types of clothing one
wears to protect the body. Territorial privacy means making a boundary or to
create a barrier between the person and others. This can be implemented by
erecting walls, fences, or screens, by using cathedral glass/partitions, by
maintaining a distance, among other things.
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• Information privacy. This kind of privacy is mainly related to passing of
information over various media and could also be called communications pri-
vacy. Some of the notable information privacies are:

– Internet privacy. The ability to determine the kind of information one reveals
or withholds about oneself over the Internet, who has access to such infor-
mation, and for what purposes one’s information may or may not be used.

– Financial information privacy: information about own bank account, amount
of money, transaction details, debt, and so on.

– Medical privacy: information about a persons health conditions.
– Political privacy: political stance such as who a person may have voted for.
Information privacy also means how someone expresses matters about him- or
herself in any field. People are sometimes willing to give up information about
themselves not because they are ignorant or because they are being tricked by
evil corporations, but because it can sometimes be in their best interests to do so
[61, 62]. Such information can be posted on the Internet or via social networks
or other channels the person is involved with. So, in such a case, a person may
judge the benefit of exposing such information, which he or she may like others
to know but not through him- or herself directly, to be avoiding the account-
ability or responsibility of such apparent “leak” of information.

• Organization privacy. this includes the confidential information about an
organization such as business strategies, loss and profit statistics, current trend in
the market, future products, potential customers, transaction details, and similar
information. An organization may put some information in the public arena for
transparency (which will show the ethical standard of the organization, com-
monly accessible by anybody) and declares certain information as classified,
which is a categorization applied to information that a government or a group
claims as sensitive. Prominent examples of organizational security could be
often associated with trade secrets and national security.

• Spiritual and intellectual privacy. This kind of privacy includes a person’s
spiritual nature, of his or her feelings and intellect. A person may have certain
religious beliefs butmay not like to express these to others. Itmay be because of the
adverse or hostile environment. Also, a highly intelligent person may act as dumb
or may not like to show his or her intelligence in all gatherings. For example, a
person working in a research groupmay restrain from showing all his or her talents
to others so that others may not take his or her ideas away without giving proper
credit, or it may be that the person is selfish or may like not to actually get involved
in intellectual contribution in the group for some personal reasons.

As the meanings of privacy are different in various scenarios, there are other
ways of looking at it. [63, 64] described six types of privacies related to a mans
personality: (1) solitude, (2) isolation, (3) anonymity, (4) reserve, (5) intimacy with
friends, and (vi) intimacy with family. Solitude is the most complete state of privacy
that individuals can achieve. It is a type of privacy in which the individual is alone
and unobserved. Pedersen [63] differentiates between isolation termed as alone and
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away from others and solitude defined as alone by oneself and free from obser-
vation by others. Anonymity is a type of privacy that occurs when it is possible to
move around in public or, for example, browsing through the Internet without being
recognized or being the subject of attention. Reserved behavior includes examples
of low self-disclosure. Finally, any kind of intimacy is a type of privacy that relates
to an individual’s or group’s desire to promote close personal relationships. All of
these personal traits of human beings need to be studied and thoroughly understood
while making any policy related to privacy in any sector, because the same human
beings are the beneficiaries or users of these systems.

15.3.2 The Need for Privacy in the Smart Grid

In a SG network, key questions regarding setting the policies on user data privacy
are [65]:

• Who owns the data of the customer?
• How is the access to and use of customer data regulated?
• Who guarantees privacy and security of customer data (e.g., against risk of

surveillance or criminal activity)?
• Will sale or transfer of customer data be allowed, and under what terms and to

whose benefit?
• In jurisdictions with retail choice, are measures needed to ensure competing

electricity providers have access to customer data on the same terms as the
incumbent utility?

In fact, rival electricity providers may compete to dominate the market, and their
access to users electricity usage patterns and behavioral information could be very
crucial. The electricity providers or provider agents may use the user data to
determine their business strategies and special packages or offers. In an open market
environment, such data could be partially collected after the offers are made public
and some information is available for all, but if privacy is breached beforehand and
specific user data is available to some parties, then these electricity providers may
have unfair gains. Appropriate privacy policies may restrict, mitigate, or resolve
such use of unfair means in setting business strategies. All these issues explain why
the privacy of data of SG users is a very critical issue both for users and the
electricity providers.

The privacy of SG users is a very important issue. The strong integration of
Information and Communication Technologies (ICTs) for the SGs operation
introduces different types of privacy concerns. Depending on how the consumer (or
user) uses electricity and recharges it, the privacy of the user can be affected by two
usage scenarios namely:

• The user recharges electricity balance via personal interaction (private
mode). For instance, the user goes in person to the electricity providers agent
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and recharges his “smart electricity card” similar to a credit or debit card that can
be reloaded and placed into the electricity meter. The other personal interaction
may happen via the phone or in person by going to the agent and getting a new
recharge or reload number, similar to that used in many places for pre-paid
mobile phone balance or validity extension. The customer can also obtain a
recharging number obtained from a pre-paid card. This method does not reveal
the identity of the person who has purchased the card, which is later used in the
electrical meter to do the reloading task. It is worth pointing out that the
authorization number will need to be validated and authenticated before elec-
tricity consumption. When this number is entered from any home or building
(connected to the SG), it passes through an authentication process during which
information could be stored by the utility company or one of its designated
agents. This information needs privacy protection measures in place.

• The users recharge their electricity balance via the Internet (public mode).
If any website or online system is used and the balances are adjusted via
payment through some bank account or other payment methods, then all the
cybersecurity-related privacy issues must be considered. When a web interface
is used and there is a back-end database, web attacks (such as Structured Query
Language (SQL) injection [66]) could affect the privacy of the user by dis-
closing not-to-be-exposed data from the back-end database. The web-based (i.e.,
online) form to recharge the user’s electricity balance could be made as simple
as requiring a single identification number from the user. The privacy issue in
this process is whether the user wants to be known at the time of recharging a
balance for future electricity usage. In fact, user’s information can be used by
different departments or branches of the electricity provider. The user may
choose who can access the information and who can not. An instance of per-
sonal preference can be the option of receiving company related news, updates,
or offers of newly introduced packages or benefits from the electricity supplier
company to the user’s email address. For managing user’s own preferences,
agent technology [67] could be used, in which each subscriber or user is
assigned an agent representing the user’s interests. Each service can also be
assigned an agent to reap the most benefit. A service agent could negotiate with
subscriber agents about information and authorizations versus the quality of the
offered service.

The level of personal information involved and used will dramatically increase
with the modernization of the grid. Smart meters and smart appliances could lead to
a data explosion of intimate details of daily life. However, at this point, it is quite
unclear as to who will gain access to this information, besides the customer’s utility
provider, and control utilities. With the deployment of the SG, energy measure-
ments can take place at much shorter intervals (unlike at the end of the billing cycle
as in conventional methods).

Currently, there are several types of concerns related to the privacy and security
of data associated with the SG. In this chapter, we focus on the issue of privacy
linked with consumer information. Potential privacy concerns of SG consumers
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include: how the required information is going to be collected, used, and disclosed;
how customer information is expected to be safeguarded and how it may be used
for or against the consumers; how permissions will be granted for the collected data
to be shared with multiple agencies; and the liabilities related to any breaches of
consumer information. It is also worthwhile exploring how the SG will know about
individuals. For example, the energy fluctuation pattern of home appliances is so
unique that it may be possible to infer, for example, the model applied for a user’s
refrigerator. It is also worth noting that many times data that is harmless when
collected in isolation may become a privacy threat when combined with other types
of data, or examined by a third party for a pattern.

Even when the data about electricity consumption is not collected at regular
intervals, information can still be collected at a slower rate through the persistent
monitoring of energy consumption. As a result, private information such as how
many people live in a household, their presence and absence at home, their
schedules for taking showers, watching TV, frequency of microwave use, and their
sleeping patterns can be collected or deduced. For many individuals, the collection
of this type of information represents an invasion of the “sanctity of the home”, and
one may argue that such intimate details of someone’s daily life should not be
accessible. The user’s data could disclose their usage pattern of electric devices, and
very intimate details of household equipment, even their possible locations (e.g. if
the SG concept also is combined with the smart home concept where, when a
person leaves a room the lights and electric equipment are automatically turned on
or off). In such a case, even the movement pattern of the user within his or her own
home could be deduced!

The privacy concerns discussed here are further confirmed by a study called
Privacy Impact Assessment (PIA) [12] conducted in September 2009 by the Privacy
Sub-Group of the Cyber Security Working Group. The report has identified the
following issues and concerns related to consumer-to-utility information exchanges
in the US SG:

• There is no clear understanding of the privacy issues on the SG.
• There are a lack of standards, privacy policies, or procedures by the entities

involved in the SG and the collection of information.
• Definitions of personally identifiable information are inconsistent in the utility

industry.
• Smart meters and distributed energy systems may reveal information about

residential consumers and activities within the house.
• Roaming SG devices (e.g., electrical vehicle recharging at other charging sta-

tions such as a friend’s house) may generate more personal information.
• Even though the National Association of Regulatory Utility Commissioners

adopted the 2000 resolution5 urging the adoption of privacy principles, only a
few state utility level commissions have begun to assess privacy issues asso-
ciated with the SG. This is the case with the state of California through its eight

5http://www.naruc.org/Resolutions/privacy_principles.pdf.

358 S. Uludag et al.

http://www.naruc.org/Resolutions/privacy_principles.pdf


Fair Information Practice (FIP) principles6 such as transparency, right to access
information collected (individual participation), individual access to see and
copy information stored on an individual, limited types of information that may
be collected on an individual (collection limitation), limited internal use of
information about an individual, data quality and integrity, data security,
accountability, and auditing.

15.3.3 Load-Monitoring Techniques

As we mentioned previously, the possibility of learning information about indi-
viduals’ behaviors, personal habits, and lifestyle raises concerns. This becomes an
important issue when this information can be used for other purposes besides
delivering electricity. Electric utilities and other providers may have access to
information about the in-house activities of customers, the times when they are
using various devices and appliances, as well as the type of devices being used. The
initial goal of collecting electricity usage information to generate an electricity
profile has now become a source of behavioral information with an immense
potential. The most serious threats related to the privacy deterioration of SG con-
sumers include: cyber-attack and intrusion, identity theft, tracking and observing
the behavioral patterns of the consumers and the appliances being used, and
real-time spying and surveillance. In intrusive load monitoring (ILM), there is an
individual monitor for each appliance to acquire the aggregate energy consumption
of household electric devices. An alternative technique for deducing the appliance
usage characteristics is called non-intrusive load monitoring (NILM), or
non-intrusive appliance load monitoring (NIALM), where only one individual
monitor is enough to decide the energy usage from the aggregate data. NILM was
first reported in 1992 [68]. Since then, various other techniques have been devel-
oped for NILM that separate individual appliance power consumption levels from
from single, aggregated measurements. Recent surveys about NILM can be found
in [59, 69]. An illustration of the concept is presented in [70], where a behavior
extraction algorithm implemented in Matlab is used. DSM and Demand response
systems provide sufficient power usage information to reveal in-home activities that
might be disturbing for the privacy of the households. It is worth noting that NILM
can be easily implemented using off-the-shelf hardware and software without much
technical expertise.

6Senate Bill 1476 was passed in 2010 to protect the privacy and security of customer data
generated by advanced meters. The California Public Utilities Commission (CPUC) subsequently
issued Decision (D.)11-07-056 on July 28, 2011 to implement SB 1476. See http://www.cpuc.ca.
gov/NR/rdonlyres/D77BA276-E88A-4C82-AFD2-FC3D3C76A9FC/0/TheEvolvingRoleofState
RegulationinCybersecurity9252012FINAL.pdf for more details.
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As a result, privacy concerns, coupled with a degree of security related issues,
may lead to any of the following unintended consequences [31, 71, 72], or some
other vulnerabilities not currently identified:

• Hackers could manipulate power consumption and billing.
• Cyber-terrorists might fake power consumption data on a large scale to attack

the power system.
• Attackers may take control of the smart meters for manipulation at will.
• Direct marketers, criminals, law enforcement agencies may use the energy

consumption data without prior approval or notification.
• Energy consumption patterns of individual appliances can be identified with

high accuracy.

Thus, privacy is the Achilles’ heel for the success of the SG and needs to be
carefully investigated and addressed.

15.4 Privacy Solutions

In this section, we present a novel taxonomy of the privacy techniques proposed for
the SG domain, and we provide a synopsis of each category with references, and
compare and contrast them.

15.4.1 Taxonomy of Privacy Techniques

A comprehensive and novel taxonomy of the SG privacy-protection mechanisms
and approaches is given in Fig. 15.10. We divide the SG approaches into spatial
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and temporal broad categories. The former include those that devise privacy into
the system by means of a physical device or entity while the latter incorporates
privacy into the system by means of logical extensions. We note that the individual
categories identified in Fig. 15.10 do not necessarily indicate an exclusive tech-
nique. In fact, a privacy preservation proposal reported in the literature may, and
usually does, implement a combination of them. The categorization of Fig. 15.10 is
to provide a delineation of identifiably distinguishable techniques to provide a
smoother and clear explanation in what follows. A different approach has been
taken in [73] where privacy preservation techniques are presented with a combi-
nation of methods from parts of Fig. 15.10 on a per paper basis.

Next, we provide a discussion of the spatial and temporal categories along with
their subclasses.

15.4.2 Spatial Privacy Techniques

There are five main categories of spatial privacy-protection mechanisms proposed
in the literature for the SG, as shown in Fig. 15.11, together with the cited
references.

15.4.2.1 Trusted Third Party

A trusted third party (TTP) in cryptography is an independent entity that acts as a
liaison between two or more collaborating organizations; which, in our case, is
between the end-user and the power utility [74–76]. The TTP has to be completely
trusted by all participants with respect to its intentions, technical competence, and
so on, so mutual trust can be achieved. In the literature, TTP is also referred to as
the third party escrow service [75].

In what follows, we elaborate on the approach in [75] as one example in this
category: [75] provides a mechanism for anonymizing high-frequency energy
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measurement data (such as usage patterns of specific electrical appliances) through
the use of a Pseudonymous Identity (PID). The anonymous meter readings are
difficult to associate with a particular smart meter or customer, thus offering a
higher level of privacy to the SG user.

The distinguishing feature of the Escrow smart meter is that it has two separate
IDs, rather than a single ID as is the case with standard smart meters. The two IDs
are the high-frequency ID (HFID) which is anonymous, and the low-requency ID
(LFID) [77], which can be related to a specific customer or smart meter. The main
idea of the scheme is to provide anonymity of the HFID messages. The anonymity
is implemented by not disclosing the HFID to the utility or the smart meter installer.
The HFID is ‘hidden’ inside the smart meter, or hard-coded to be used for all
HFID-related messages. In order for the utility to verify the legitimacy of the HFID,
a third party Escrow mechanism is implemented. The third-party can be the man-
ufacturer of the smart meter itself or some other trusted third-party, which has been
given access to this information. The manufacturer can assign two unique IDs to
each smart meter that is produced, only one of which (LFID) is visible to the utility,
both during the procurement and deployment procedures. Essentially, the manu-
facturer (or the Escrow service) is the only party that is aware (and has a record) of
the connection between a valid HFID or LFID pair. The Escrow is required to
comply with a strong data privacy policy. For example, the Escrow may not be
expected to access, process, or store smart metering data—it will only know about
the relationship between a valid HFID and LFID.

15.4.2.2 Gateway-Based Approaches

In the gateway-based approach, an external entity outside of the customer premises
acts on behalf of the end-users to obfuscate the relationship between the data and
the owner [78–84].

The Smart Energy Gateway (SEG) architecture [83] is deployed at users’ pre-
mises and uses a privacy manager, which is designed as a software component
running on SEG, deployed at users’ premises. The idea behind the architecture is to
provide user-centric privacy, which means that the user could be in control of his or
her own privacy parameters. The proposed privacy manager has the ability to
specify privacy conditions and obligations with respect to the handling of users’
private data, and to rely on SEG security architecture features such as application
isolation, mandatory access control, pseudonymity, and secure storage to reliably
enforce the users’ specified privacy constraints. The main features of the privacy
manager include:

• Customer privacy preference specification and enforcement. The energy
customer would express how personal information disclosed should be handled
and the utility or service provider would express how customer’s information
will be treated. Privacy policies enforcement: each SEG application policy is
bound to a smart software agent and has to be validated against the SEG
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platform integrity policy both during the installation and at runtime. This
ensures that SEG only hosts and runs smart software agents that meet
pre-defined gateway security requirements (e.g., that the former will not access
locally-stored energy usage data collected at this particular premise).

• Secure storage and data masking. The secure storage will guarantee the
confidentiality and accuracy of locally-stored energy usage data. Only trusted
and legitimate applications (e.g., billing provider software agent) can access the
metered data repository.

• Pseudonymity. Enables the customer to use SG resources or related services
without revealing their respective identities but remaining accountable for their
transactions.

• Privacy feedback. Allows the display of feedbacks to the energy customer
regarding the handling of its personally identifiable information.

15.4.2.3 Architectural Schemes

Architectural schemes arrange the topology of the smart meters in order to
implement privacy protection. Two distinct categories are considered:

1. Overlay. Randomly organized smart meters form peer-to-peer groups in [85]
using Chord algorithm [86]. Peer anonymization algorithm together with
in-network aggregation enhance the privacy protection capabilities of the pro-
posed approach.

2. Ring topology. A few proposed approaches [81, 82, 87–92] take advantage of
imposing some form of a ring architecture for the SG meters. For example, a
virtual ring architecture is proposed in [87] to provide a privacy protection
solution using symmetric or asymmetric encryption of customers’ requests
belonging to the same group.

15.4.2.4 Storage-Based Mechanisms

As the name implies, a type of energy storage infrastructure is employed for the
privacy protection in this category [93–97]. For example, the authors in [94, 95]
assume that future smart homes will contain several energy storage and energy
generation devices, and thus electrical power routing will be feasible. More details
of this are given in Sect. 15.4.3.6, under Time series-based privacy.

15.4.2.5 Privacy with Distributed Energy Generation

The main idea behind privacy protection using Distributed Energy Generation
(DEG or a.k.a. Distributed Energy Resources or DER) relies on the intermittent and
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stochastic energy values provided by DEG to mask the actual energy consumption
from the disclosed values assuming that DEG is private to the end-user.

15.4.3 Temporal Privacy Techniques

A second major category of privacy preservation techniques we consider includes
those that implement techniques over time without relying on an external tangible
entity. We describe some of these techniques in this category.

15.4.3.1 Compression-Based Approach

As the name implies, the energy consumption data is transformed using compres-
sion techniques to protect the privacy [98, 99]. Compression alone may not be
strong enough and thus [99] uses it in combination with other techniques.

Li et al. [98] makes use of the technique of compressed sensing from signal
processing to provide privacy protection. Compressed sensing [100–102], also
known as sparse sampling, assumes the smart meter data is sparse with uniform
delay and uses a secret random sequence so that the original data can be recon-
structed at the receiving end.

15.4.3.2 Cryptographic

There are various cryptographic techniques reported in the literature that are used to
provide privacy in the SG as shown in Fig. 15.12. We divide the cryptographic
temporal privacy-protection techniques into seven categories and discuss them here.

Privacy Through Identity-Based Encryption

An identity-based encryption (IdBE) scheme is a public-key cryptosystem where
the key may be selected to be any string, such as email addresses, dates, and so on.
It was first introduced as a problem in [103] with solutions in [103–105]. IdBE may
be used for privacy in the SG as discussed in [106].

Privacy Through Attribute-Based Encryption

In the attribute-based encryption (AbE) [107], ciphertexts are associated with sets of
attributes. Private keys are coupled with access structures to control which
ciphertexts can be used to decrypt them. AMI is an important component of the
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overall DR system, as defined before in Sect. 15.2.2. In [108], the authors propose
to protect multicast communications involving crucial DR messages from the
control center to the smart meters by means of an AbE implementation.

Privacy Through ID Anonymization

Anonymization is a general term that decouples a message from its originator.
Several proposals in the literature take advantage of the anonymization techniques
for the SG privacy [15, 85, 109, 110].

Secure Multiparty Computation

Secure multiparty computation (SMC) has been developed as an alternative to the
TTP approach. SMC is a set of techniques to compute a function collectively with
the assurance that at the end of the multiparty computation, no participant can learn
anything except its own input and the result. Then intended information should be
inferable only from these two pieces of information. Historically, SMC was initi-
ated to address Yao’s Millionaire Problem [111] where two parties can know which
of them is richer without disclosing their actual wealth. Yao’s two-party solution
was extended to multiple parties in [112].

Cryptographic Temporal
Privacy Protection

Identity
based

Encryp.

Attribute-
Based

Encryp.
[108]

ID
Anonymi-

zation
[110, 109, 85]

[172]

Secure
Multiparty

Computation

Secure
Comparison

[91]

Homomorphic
Encryption

[78, 79, 121]
[81, 80, 92]

[76, 118, 108]
[108, 90, 72]

[119, 84, 120] [122] [172] [156]

Secure
Sum

[124, 91]

Secret
Sharing

[84, 122, 119]

Pseudonymity
[75, 127, 128]

[88, 83] [172]
Zero-

Knowledge
Proof

[130] [170]

Blind
Signature
[109] [128]

Fig. 15.12 Cryptographic temporal privacy-protection techniques for the smart grid

15 Techniques, Taxonomy, and Challenges of Privacy Protection … 365



1. Secure comparison. This is an implementation of the Yao’s Millionaire
Problem [111], as described above. [91] used secure comparisons algorithms as
part of the overall SMC approach for smart meter data processing.

2. Homomorphic encryption. One of the most common methods to ensure pri-
vacy in the SG has been the homomorphic encryption technique, which dates
back to the first problem formulation in 1978 [113]. A partial homomorphic
encryption that preserves the structure of multiplication or division, but not both,
has been used until recently. The solution has been elusive until the formulation
of the first fully homomorphic encryption scheme in 2009 [114]. Homomorphic
encryption enables computation on the encrypted data without revealing the
plaintext. Given a homomorphic encryption function EðÞ, and two messages x; y,
the following relationship is guaranteed:

Eðx�yÞ ¼ EðxÞHEðyÞ; ð15:1Þ

without knowing the plaintext x; y, and the private key. Paillier cryptosystem
[115, 116] is an example of an additive homomorphic encryption, where with
respect to Eq. 15.1, � is multiplication and H is addition. In other words, the
sum of plaintext is calculated from multiplication of the ciphertext. Another
commonly used additive homomorphic encryption is the Boneh-Goh-Nissim
(BGN) cryptosystem [117], which is based on Paillier but with bilinear groups.

Implementation of homomorphic encryption techniques for privacy preser-
vation in the Smart grid are given in [72, 76, 78, 79–81, 84, 90, 92, 108, 118–
120, 121, 122]. For example, the authors of [121] propose an Energy Privacy
Preserving Aggregation (EPPA) scheme for secure SG communications. EPPA
uses a multi-dimensional data aggregation approach based on the homomorphic
Paillier cryptosystem [116], which is composed of three algorithms namely, key
generation, encryption, and decryption. The proposed technique is based on
composite residuosity classes, whose computation is believed to be computa-
tionally difficult. It is a probabilistic asymmetric algorithm for public key
cryptography and inherits additive homomorphic properties [113].
Homomorphic encryption allows specific types of computations to be carried
out on ciphertext and obtain an encrypted result. For example, one user could
add two encrypted numbers and then another user could decrypt the result,
without either of them being able to find the value of the individual numbers.
Homomorphic encryption schemes are malleable by design. Another homo-
morphic encryption system for the privacy-preserving data collection and
aggregation is proposed in [84, 122] based on the Lite Cramer-Shoup Scheme
[123].

3. Secure sum. One way to implement the secure sum is by means of Paillier
cryptosystem, as proposed in [91]. Another secure sum technique is used in
[124] based on the algorithm in [125]. The basic idea of this algorithm is shown
in Figs. 15.13, 15.14, 15.15, 15.16, 15.17 and 15.18. Bob, Alice, and Charlie
have their own secrets, as shown in Fig. 15.13, and they would each like to
compute the sum without revealing their own secret values. Any arbitrary
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initiator may start the process. Let Bob initiate it in our example by generating a
random profile, as shown in Fig. 15.14. Bob adds the random secret profile to its
secret profile, shown in Fig. 15.15.
Bob sends its secret plus random secret to Alice. Note that Alice cannot break
up the totals to find out Bob’s secret. Alice adds her own secrets to the values
received from Bob, as shown in Fig. 15.16. Figure 15.17 show that Charlie gets
Alice’s transmission and adds his values. Bob receives the profile from Charlie,

Fig. 15.13 Secrets of Bob, Alice, and Charlie

Fig. 15.14 Bob’s secret random values

Fig. 15.15 Bob’s secret random values added to his own secret

Fig. 15.16 Alice receives Bob’s transmission
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subtracts the random secret only known to him and reaches the sum, without
knowing either Alice’s or Charlie’s values and disseminates it to the others, as
shown in Fig. 15.18.

4. Secret sharing. The basic idea of secret sharing is to break up a messageM into
k parts before transmission in such a division that the original message M can be
assembled together from these n pieces while even access to n� 1 parts will not
be sufficient to infer M. The techniques for such a goal have been introduced by
Shamir in [126]. Secret sharing has been exploited in [84, 122] to develop a
secure and distributed protocol with privacy-preserving aggregation of SG
metering data.

Pseudonymity

Unlike anonymity, where identity is hidden and/or decoupled from the message, in
pseudonymity, fictitious names are used to represent messages. The real identity to

Fig. 15.17 Charlie receives Alice’s transmission

Fig. 15.18 Bob receives Charlie’s transmission and computes the sum
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the fictitious mapping must be kept secret. Examples of this approach are proposed
in [75, 88, 83, 127, 128]. We provide some details of one these here.

The privacy-preserving authentication scheme for an SG network (PASS) [127]
involves the use of a smart appliance (located at customers homes) attached to a
tamper-resistant device for generating pseudo identities and signatures on messages.
A customer is given this device when he or she opens an account or registers a
newly purchased smart appliance. The characteristic features of the PASS archi-
tecture are as follows:

• Message authentication: before a smart appliance transmits a request message to
the control center, it has to include a hash-based message authentication code
(HMAC) signature on the message using the regional system key. This regional
system key is only known by the control center, the substation, and all
tamper-resistant devices within the region. Hence, an outside attacker (who does
not belong to the region or is not a registered smart appliance) does not know
how to generate a valid HMAC signature. Thus, the PASS scheme protects from
outsider attacks.

• Identity privacy: in all request messages sent by a smart appliance, real identities
are used instead of pseudo identities.

• Request message confidentiality: the amount of electricity required by a smart
appliance is encrypted using the public key of the control center. Thus, except
for the control center, no one can decrypt the value representing the electricity
amount. On the other hand, the encryption feature in the PASS architecture
allows a substation to aggregate request messages sent by smart appliances
within its region but the substation does not need to know about those individual
amount values.

Zero-Knowledge Proof

Zero-knowledge proofs are those convincing assertions that yield nothing but their
validity [129]. In other words, one party proves to another without revealing any
information besides a statement of affirmation or decline. The authors of [130] deal
with preserving the privacy of metered data. The authors propose a set of
privacy-preserving protocols amongst a provider, a user agent, and a simple
tamper-evident meter by taking advantage of a zero-knowledge proof. This work
considers a scenario where the privacy of the metered data is preserved by
employing encryption mechanisms along with certification techniques. Within the
boundary of a home environment, plaintext is used, but when sending or com-
municating with entities outside the home boundary, certification, and encryption
techniques are used. The authors argue that their scheme can be applied to all types
of smart metering including electricity, waters and gas metering, and can be
extended for other future smart meter-based systems. The main contribution of this
work can be summarized as follows: the meter produces certified readings of
measurements and transmits them to the user via a secure communication channel.
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For billing, the user combines those readings with a certified tariff policy to produce
a final bill. The bill is then transmitted to the provider alongside a zero-knowledge
proof that ensures the calculation to be correct and leaks no additional information.
A zero-knowledge proof of knowledge [131] is a two-party protocol between a
prover and a verifier. The prover demonstrates to the verifier its knowledge of some
secret input (witness) that fulfills some statements without disclosing this input to
the verifier. The protocol should meet two properties: (1) it should be a proof of
knowledge, which means that a prover without knowledge of the secret input
convinces the verifier with negligible probability, and (2) it should be
zero-knowledge, that is, the verifier learns nothing but the truth of the statement.
The fact that a witness is not distinguishable from active participants is a weaker
property which requires that the proof does not reveal the witness (among all
possible witnesses) used by the prover.

Blind Signature

In [109], the authors consider an SG network as three basic layers: at the highest
layer, there is a control center maintained by the power operator, the second layer
has substations inside the distribution network and each substation is responsible
for the power supply of an area, and the lowest layer has the smart meters which are
placed at the users’ premises as shown in Fig. 15.19.

The proposed anonymous credential architecture [109] preserves users’ privacy
information, including their daily electricity usage pattern from third parties as well
as from the power operator. The scheme is based on blind signatures [132]. Blind
signature is a method that allows the first party (Party 1) to sign a message gen-
erated by a second party (Party 2), without knowing its actual content. When a third
party (Party 3) receives the signed message, it can verify that the message is signed
by Party 1. The anonymous credential scheme uses the blind signature technique to
allow the control center (Party 1) to sign a credential generated by a customer
(Party 2) without knowing its actual content. At a later time, the control center itself

PO

DS DS DS DSDS

SM SM SM SM SM SM

Fig. 15.19 A three-layer smart grid architecture. PO power operator, DS distribution substation,
SM smart meter
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(Party 3) can verify that the credential is indeed signed by Party 1 without knowing
who requested the signature or when the signature was generated. The use of the
blind signature technique in this scheme is as follows: the customers prepare a set of
credentials, each stating the amount of electricity requested, and request the control
center to sign them blindly so that the customer can submit any of these credentials
for the request of electricity. Since Party 1 does not know the actual content of the
message sent by Party 2, the message is verified using a special technique which is
widely adopted in e-cash schemes. Party 2 generates n messages using different
blinding factors. It then blinds the n messages and sends them to Party 1. Next,
Party 1 randomly chooses m messages (m\n) and challenges Party 2 to reveal
them by providing the m blinding factors. If the m blinding factors are correct, Party
1 accepts the signature request and signs the remaining (m� n) messages. The
scheme assumes that any smart meter can communicate with the control center via a
secure communication channel (such as one using the advanced encryption standard
(AES) and third parties cannot read the contents without the key concerned).

When a customer presents a credential anonymously, the control center cannot tell
which customer is making the request, yet it can verify the signature to confirm that it
is from a valid customer (since only valid customers can request blind signatures).
The four phases involved in the Anonymous Credential scheme are as follows:

• Setup phase. The control center assigns a Ron Rivest, Adi Shamir and Leonard
Adleman (RSA) public and private key pair for signing credentials.

• Registration phase. Carried out at the beginning of each month. This phase is
not anonymous. Customers need to be authenticated using their real identities
via an authenticated channel.

• Power requesting phase. Can be executed at any time during the month when
the smart meter of a customer finds that it needs more power to support all the
electric appliances. This phase is anonymous. Customers are validated via
anonymous credentials.

• Reconciliation phase. Carried out at the end of each month. This phase is not
anonymous. The smart meter sends the unused credentials back to the control
center to evaluate the amount of power requested so far.

Another approach based on the fair blind signature [133] method is reported in
[128] for the vehicle-to-grid (V2G) system, involving both charging and dis-
charging of battery vehicles (BVs). Fair blind signature is an extension of the basic
blind signature scheme where misuse of the system against black-mailing and
money laundering is prevented by means of an embedded property to remove
anonymity via a trusted entity. In our case, it is used to ensure proper billing.

15.4.3.3 Priced Oblivious Transfer

Oblivious transfer, introduced in 1981 in [134], is a protocol in which the sender
remains unaware of what has been transmitted out of the potentially transferable
many pieces. Using oblivious transfer protocol, a protocol is developed in [135],
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called priced oblivious transfer, to enable buyers purchase digital goods from ven-
dors without letting the seller learn what, and to the extent possible, when and how
much. Priced Oblivious protocol is used in [136] to propose a privacy preserving
billing protocol which guarantees the power operator gets the correct amount of
money without learning the current energy consumption of each customer.

15.4.3.4 Certified Tariffs

As explained in Sect. 15.4.3.2 (the subsection on Zero-knowledge proof) from
[130], the energy provider cannot gather any fine-grained readings. The provider is
guaranteed that the correct fee is calculated based on the actual readings and
time-of-use tariffs without learning.

15.4.3.5 Sampling Interval

Smart meters in the AMI system provide sampling of measurements and potentially
other useful information and report them back to the power operator or other third
parties. The sampling process is the center of privacy concerns as it transmits
potentially sensitive information. The authors in [137] consider sampling as a design
parameter in the performance of DR schemes to explore some trade-offs between
performance and privacy. An optimization problem is considered to find the right
sampling interval given a set of performance goals and desired privacy level.

15.4.3.6 Perturbation

Another technique for privacy preservation that has gained a considerable attention
is a set of techniques collectively known under the term perturbation. A taxonomy
with the cited work is depicted in Fig. 15.20. A common theme in these techniques
is the transformation of the energy consumption data from what gets disclosed out
of the customer premises. We provide details of this category with its subclasses in
what follows.

Privacy Using Orthogonal Code

The work in [138] analyzes security and privacy in the SG and specifically
emphasizes the privacy aspects. The authors propose a secure and efficient
in-network data aggregation and dispatch scheme for AMI in home area networks
for the SG. In-network aggregation is the process of collecting content from mul-
tiple sources or devices in a network. With this mechanism, the authors propose the
use of Walsh function [139] based on Hadamard code [140] to generate mutual
orthogonal chip codes to be used in the secure in-network data aggregation and
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dispatch scheme. The use of orthogonal code allows multiple users to communicate
simultaneously over a single frequency. This is achieved by the use of spreading
codes whereby a single data bit is “spread” over a longer sequence of transmitted
bits. These codes, also known as chip sequences, must be carefully chosen so that
the data may be correctly “de-spread” at the receiver. Such codes are known as
orthogonal codes. The Hadamard code [140] is an error-correcting code that is
usually used for error detection and correction when transmitting messages over
very noisy or unreliable channels. In their work, the authors apply these techniques
envisioning that the smart meter works as an authentication server that is connected
with multiple smart devices and each smart device contributes to the formation of
confidential data, which can be regenerated at the smart meter. This work describes
the coding techniques and the steps on how the original data readings are spread
and then mixed up with the spreading code of other smart devices. The smart meter
can reconstruct the original reading data from the mixed data using the chip code
established with smart devices during their initialization procedure through mutual
authentications.

Another work that encrypts measured data by orthogonal codes by using Walsh
code is reported in [89], which uses a ring communication architecture.

Time Series-Based Privacy

One way to look at the measurements coming out of the smart meters is a series of
data giving way to a wealth of methods that can be invoked from the field of time
series. We present a survey of some of these methods here.
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Fig. 15.20 Perturbation-based temporal privacy-provisioning techniques for the smart grid
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1. Load signature moderation: Load signature moderation (LSM) [95] scheme
suggests that the home electrical power routing can be used to moderate the
home’s load signature in order to hide appliance usage information. Load sig-
nature is defined as a series of time-stamped average power loads pðtÞ derived
from cumulative energy values eðtÞ metered at interval Dt:

pðtÞ ¼ eðtÞ � eðt � DtÞ
Dt

ð15:2Þ

A home load signature is the sum of all home appliance loads. To perform load
signature moderation, the authors assume that future smart homes will contain a
variety of energy storage and energy generation devices, and thus electrical
power routing will be feasible. Electrical power routing means the selective
control and power mixing of a number of electricity sources to route electricity
to a number of consumers. For instance, a kettle drawing 2 kW of power when
switched on; the power router could be configured so that 1 kW is supplied from
a solar panel, 0.5 kW from a battery, and 0.5 kW from the main electricity
supply. The basic contribution of this approach is that it presents the idea how to
provide sufficient privacy for the user by including privacy mechanisms for the
smart meters which is supposed to record the usage. The authors also propose a
power management model using a rechargeable battery, a power mixing algo-
rithm, and evaluate its protection level by proposing three different privacy
metrics: an information theoretic (relative entropy), a clustering classification,
and a correlation/regression one. We will briefly review these metrics:

• Relative entropy: the relative entropy or Kullback Leibler distance [141] is a
well-known information theoretic quantity which can be used to compare
two sources of information. The distance here is not the mathematical
meaning of distance but rather it quantifies the relation between probability
densities. If p0 and p1 are two probability densities, the Kullback-Leibler
distance is defined to be,

Dðp0jjp1Þ ¼
Z xmax

xmin
p1ðxÞlog p1ðxÞp0ðxÞ dx ð15:3Þ

where p0 and p1 are the probability density functions of p0 and p1,
respectively.
Relative entropy is always positive, and for identical p0 and p1, it is zero.
Hence, the authors in [95] state that the level of privacy protection offered by
a mapping ; can be measured by the relative entropy, D;ðp0jjp1Þ such that
the higher the level of protection offered by ;, the larger the relative entropy.

• Clustering classification: the authors propose using any of the available
clustering classification mechanisms which takes a set of data with a distance
metric and groups them into n clusters that minimize the distance between
points. The distance metric here is the difference between power consumption
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values. They propose to use a simple method of trace analysis that aims to
recover information about device power usage from a small amount of
information sent via the signals.

• Regression analysis: as a third metric, the work described in [132] quantifies
privacy by combining cross correlation and regression procedures, which can
be termed as regression analysis. In statistics, regression analysis includes
many techniques for modeling and analyzing several variables, when the
focus is on the relationship between a dependent variable and one or more
independent variables. A dependent variable is what is measured in an
experiment and what is affected during the experiment. This kind of variable
responds to the independent variable. It is termed so because it depends on the
independent variable. In a scientific experiment, there cannot be a dependent
variable without an independent variable. Just as an example, if someone is
interested to find out how time spent on studying changes “test score”, then it
is understood that the test score does not change the time spent, as that had
happened earlier. In this case, “studying time” is the independent variable and
“test score” is the dependent variable. Based on these foundations and ideas,
the authors in this work apply regression analysis on the received signals to
recover information by comparing them over time.

This work can be extended to include other types of privacy metrics, such as
mutual entropy or equivocation. In addition, smarter battery privacy algorithms
may be designed, which the authors have left as future works.

2. Theory of rate distortion: Rate-distortion theory is a subfield of information
theory that addresses the problems of lossy compression. It analyzes the theo-
retical fundamentals of determining the bit rate to be communicated over a
communications channel in order for the original data to be reconstructed at the
receiver subject to a distortion level.
Information theoretic approaches to SG privacy have been proposed in a few
studies [99, 142, 143] by means of the rate-distortion theory. Rate-distortion
theory has been used to provide SG privacy in a few recent studies [99, 142,
143]. Rajagopalan et al. [99] and Sankar et al. [143] attempt to quantify privacy
in order to gain insight into the tradeoff between sharing information (utility)
and hiding it (privacy). The utility is represented by means of square error
(distortion D)

D ¼ 1
n

Xn

k¼1

E½ðXk � X̂kÞ2� ð15:4Þ

where Xk is the actual measurement, X̂k is the exposed value; while privacy is
represented by information leakage:

L ¼ 1
n
IðYn; X̂nÞ ð15:5Þ
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where Yn represents the inferred data as a random variable correlated with the
measurement variable X. Some examples of interference sequence Yn include
the known appliance signatures that are provided by NILM techniques discussed
earlier in Sect. 15.3.3. The proposed algorithm, interference-aware reverse
waterfilling solution, exposes high power but less private appliance information
and filters out components with lower power to a distortion threshold. However,
this proposal is only limited to a framework proposal and an algorithmic
approach is not detailed enough to implement it.
Another rate-distortion theory based approach is given in [142]. However,
similar to the previous ones, it also suffers from unrealistic assumptions and the
approach is complex. For instance, the assumption about binary input and
output loads are unrealistic.

3. Zero-Sum Errors. The authors of [144] propose a cooperative state vector
estimation technique that preserves the privacy of the personal behavior of the
user. Unlike most other privacy preservation techniques for the SG where
energy consumption information is the focus, the authors here provide privacy
protection for phase angle measurements. Thus, they take advantage of the state
estimation methodology [145]. The key objectives are to ensure mainly two
things: (1) the power measurement is well obfuscated such that users do not
fully disclose their private behavioral information, and (2) the obfuscated data
retains the necessary or basic information such that the state vector (a column
vector whose components are the state variables of the system) can be accurately
estimated from the perturbed data. “Perturbed data” are the original measure-
ment data that are modified to conceal the information and to make it difficult to
infer the original data. Another significant contribution of this work is that the
authors evaluated the performance of the proposed data obfuscation scheme
with 1,349 measurement data sets. For this, they used the data sets as if they are
connected to five different IEEE test systems that are portions of the
Middlewestern US Electric Power Grids. They also evaluated the illegibility to
human inspectors, resilience to automated data mining attackers, and commu-
nication overhead.

Privacy with Probability Distribution Functions

Another method of transforming the exposed measurement data is by means of
adding noise from probability distribution functions.

1. Binomail. Binomial distribution is proposed in [97, 146].
2. Gaussian.

a. Basic: straight Gaussian distribution is used to determine the magnitude of
the noise in [147–150].

b. Offset: [149] proposed a noise canceling mechanism by using a technique
which is based on the Central Limit Theorem. In the offset method, the
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margin caused by noises in previous time slots is compensated to achieve
zero error in billing computation.

3. Laplacian. Laplace distribution is the basis for computing the noise in [151].
Chen et al. [79] employs symmetric geometric distribution, which can be
regarded as a discrete approximation of Laplace distribution. The use of geo-
metric distribution for the noise was pioneered by [152].

Differential Privacy

The notion of differential privacy is coined in [153, 154]. Differential privacy has
emerged from the field of database queries where the goal is to answer queries in an
accurate way while preserving the privacy of individuals. Differential privacy yields
plausible deniability to blur the data hidden behind. It is about an
information-releasing algorithm with a mathematical underlying model. Differential
privacy boils down to distorting the answers to the database queries by means of
adding a predefined noise so that the intended receiver filters it out to reach an
almost accurate answer. As can be seen from the problem definition, this is
applicable to the SG privacy case as well. Differential privacy-based mechanisms
have been proposed in [79, 97, 146, 151].

15.4.3.7 Aggregation

To secure the data-collection task, there are two major approaches: one is to ensure
the protection of the data content directly without regard to the data semantics. The
approach presented in [60] is based on symmetric cryptography to provide data
confidentiality and authentication between sensors and the base station. [155]
describes a protocol for data collector (DC) to collect data from a measurement
device (MD), but direct communication between the DC and the MD is assumed.
Another category for providing security exploits the aggregate statistics of the
sensed data, such as summation, average, minimum, maximum, and so on. These
approaches take advantage of in-network data processing (also referred to as
aggregation) to apply some obfuscating operations on the transmitted data [72, 122,
138, 156–162]. A few common examples in this category include cluster-based
private data aggregation [159] and its integrity enhanced version [160], secret
perturbation [157], k-indistinguishable privacy-preserving data aggregation [158], a
centralized authentication server based in-network aggregation for AMI [138, 161],
homomorphic encryption-based aggregation [72, 78, 80], a secure architecture for
distributed secure hierarchical data collection aggregation of additive data [84,
122], a secure and scalable data collection protocol for smart meter data [163, 164],
multifunctional, privacy-protecting aggregation [79], and a network coding-based
encryption between smart meters and aggregators [162]. Another one is reported in
[121]. Many of the existing data aggregation schemes collect information as
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one-dimensional information. However, smart meter data could be considered as
multi-dimensional in nature, because, these include including various aspects of the
information such as the amount of energy consumed, the time it was consumed, the
purpose of the consumption, and so on. Considering the high data collection fre-
quency, multi-dimensional information and the large number of users, current data
aggregation schemes generate not only huge communication costs but also impose
overwhelming processing load on local gateways. In contrast to traditional
one-dimensional data aggregation methods, Energy Privacy Preserving
Aggregation (EPPA), as discussed earlier in “Secure Multiparty Computation”, is
shown to greatly reduce computational cost and significantly improve communi-
cation efficiency while satisfying the real-time high-frequency data collection
requirements in SG communications. The main drawback of the work is that it is
highly theoretical and it does not really provide enough details on how such an
approach can be deployed in practice.

15.5 Challenges and Opportunities

The preservation of privacy in the SG environment has many fundamental open
challenges that still need to be solved. As our literature survey shows, several
research projects have been investigating privacy-preserving techniques for the SG
environment in the last few years. We found that there is need for privacy to be
comprehensively regulated through legal and regulatory frameworks for enhancing
users’ confidence and for reinforcing individual’s privacy rights. These frameworks
should provide a comprehensive view of both the challenges and limitations related
to personal data protection rights as they pertain to the SG technology.

In recent years, a lot of work has been undertaken on designing
privacy-preserving methods using various technical approaches, which vary
according to the context and the architecture in use. Throughout this chapter,
various SG privacy solutions aimed at preserving smart meters’ privacy have been
discussed. As we have pointed out earlier, most of the recently proposed SG
solutions have limitations and they do not always follow the recommendations
being made by standardizations entities and governmental agencies [40]. Although
it is not mandatory to follow the recommended guidelines made by standardization
bodies, for future interoperability and scalability, SG privacy solutions should
nevertheless take these recommendations into consideration. We discuss here some
of the challenges that still need to be addressed in the future by researchers and
designers working in the area of SG privacy.

• Third party issue
The privacy issues in the SG are particularly magnified by the large-scale
infrastructures, the diversity of communication technologies, the number data
sources, and the high volume of data generated. In the past, most of the SG
services were basically limited to governments or large enterprises, which have
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traditionally built by proprietary and isolated infrastructures (e.g., electrical
power network) to provide services to customers. However, third parties can
actually offer their infrastructures and services with limited control from gov-
ernments and, hence, concerns have arisen about third-party access to the cus-
tomer’s personal information.

• Privacy and authentication
Privacy is often closely linked with authentication. The issue of trade-off
between privacy rights of entities and the need to authenticate them needs to be
explored further. Unfortunately, authentication leads to personal information
becoming available. However, authentication is a very important security ser-
vice that may help to eliminate some of the cyber attack classes such as
man-in-the-middle attacks and false data injection attacks. The latter consists of
forging and manipulating the quantities of energy supply and requests. It is
worth noting that authenticated nodes may also inject false data without being
detected as is the case with recently proposed homomorphic encryption-based
solutions [87, 165].

• Privacy and forensics
Privacy solutions are also closely linked with verifiability requirements [166]
and with tractability as well as forensic techniques. We should formulate threat
models to detect cyber attacks and data leakage scenarios [166] such as infra-
structure attacks and rogue nodes. In particular, a privacy-preserving solution
should provide a well-maintained log that may help in preventing fraud and in
resolving disputes. Traceability and forensic techniques should be taken into
consideration during service design and the development of service architectures
[167]. In the context of the SG and real-time ecosystems, we should not only
cover the effectiveness of privacy-preserving methods, but also have the ability
to monitor and detect anomalies in real-time and analyze the data collected and
aggregated from the different sources. The challenge here is to define an
effective method to identify legitimate traffic, to enable forensic investigation on
subversive and illegal activities, and to mitigate any possible insider attacks
against the infrastructure. In fact, security and forensics techniques are funda-
mental, especially when an adversary tampers with a device from which data are
collected or aggregated or when the same adversary successfully performs
cloning attacks.

Multi-disciplinary research approaches which consider training, legal, and
technological aspects should be developed to address the privacy issues that arise
with the SG environment. Future SG privacy solutions should include the design
and development of architectures that prevent unnecessary linking between the user
identity and the SG services, while guaranteeing traceability and accountability in
the presence of an important set of interconnected engineering resources and nodes.
We argue that a holistic approach is needed to identify and address privacy chal-
lenges throughout the engineering phase of the SG in order to ensure SG solutions
that maintain privacy and are also secure, scalable, and cost-effective.
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15.6 Conclusion

Over the past several years we have witnessed huge investments and interests from
industry and governments in SG technologies. Various stakeholders
(residential/commercial customers, local government, utility operators, etc.) are
expected to reap several benefits associated with the SG including improved energy
efficiency, increased reliability, reduced energy costs, greater flexibility in energy
consumption, better safety and security, and an improved environment (through
renewable, renewable non-variable, non-renewable/non-variable energy sources).
The deployment of SG technologies has also raised considerable concerns in data
privacy issues of SG users, as we have discussed in this chapter. The privacy
concerns are mostly related to the collection and use of energy consumption data. In
this context, we have discussed various SG privacy issues and we have presented
SG privacy architectures and approaches that have been recently proposed in the
literature. A unique taxonomy of the various privacy protection mechanisms pro-
posed in the literature has been developed. We also identified the various strengths
and weaknesses of these privacy solutions. The success of SG technology and its
wide acceptance rely on gaining the trust and confidence of customers, which in
turn depends on assurances regarding the protection of their privacy.
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Chapter 16
Location-Based Privacy, Protection,
Safety, and Security

Roba Abbas, Katina Michael and M.G. Michael

16.1 Introduction

Privacy is often expressed as the most complex issue facing location-based services
(LBS) adoption and usage [44, p. 82, 61, p. 5, 66, pp. 250–254, 69, pp. 414–415].
This is due to numerous factors such as the significance of the term in relation to
human rights [65, p. 9]. According to a report by the Australian Law Reform
Commission (ALRC), “privacy protection generally should take precedence over a
range of other countervailing interests, such as cost and convenience” [3, p. 104].
The intricate nature of privacy is also a result of the challenges associated with
accurately defining the term [13, p. 4, 74, p. 68]. That is, privacy is a difficult
concept to articulate [65, p. 13], as the term is liberally and subjectively applied,
and the boundaries constituting privacy protection are unclear. Additionally, pri-
vacy literature is dense, and contains varying interpretations, theories and dis-
crepancies as to what constitutes privacy. However, as maintained by [65, p. 67],
“[o]ne point on which there seems to be near-unanimous agreement is that privacy
is a messy and complex subject.” Nonetheless, as asserted by [89, p. 196], privacy
is fundamental to the individual due to various factors:

The intensity and complexity of life, attendant upon advancing civilization, have rendered
necessary some retreat from the world, and man, under the refining influence of culture, has
become more sensitive to publicity, so that solitude and privacy have become more
essential to the individual.
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The Oxford English Dictionary definition of security is the “state of being free
from danger or threat.” A designation of security applicable to this research is “a
condition in which harm does not arise, despite the occurrence of threatening
events; and as a set of safeguards designed to achieve that condition” [92, pp. 390–
391]. Security and privacy are often confused in LBS scholarship. Elliot and
Phillips [40, p. 463] warn that “[p]rivacy is not the same as security,” although the
two themes are related [70, p. 14]. Similarly, Clarke [21] states that the term privacy
is often used by information and communication technology professionals to
describe data and data transmission security. The importance of security is sub-
stantiated by the fact that it is considered “a precondition for privacy and ano-
nymity” [93, p. 2], and as such the two themes are intimately connected. In
developing this chapter and surveying security literature relevant to LBS, it became
apparent that existing scholarship is varied, but nonetheless entails exploration of
three key areas. These include: (1) security of data or information, (2) personal
safety and physical security, and (3) security of a nation or homeland/national
security, interrelated categories adapted from [70, p. 12].

This chapter will discuss the interrelated concepts of privacy and security with
reference to LBS, with a specific focus on the notion of location privacy protection.
The latter can be defined as the extent and level of control an individual possesses
over the gathering, use, and dissemination of personal information relevant to their
location [38, p. 1, 39, p. 2, 53, p. 233], whilst managing multiple interests (as
described in Sect. 16.1.1). Location privacy in the context of wireless technologies
and LBS is a significant and complex concept given the dual and opposing uses of a
single LBS solution. That is, an application designed or intended for constructive
uses can simultaneously be employed in contexts that violate the (location) privacy
of an individual. For example, a child or employee monitoring LBS solution may
offer safety and productivity gains (respectively) in one scenario, but when
employed in secondary contexts may be regarded as a privacy-invasive solution.
Regardless of the situation, it is valuable to initially define and examine the sig-
nificance of “privacy” and “privacy protection,” prior to exploring the complexities
involved.

16.1.1 Privacy: A Right or an Interest?

According to Clarke [26, pp. 123–129], the notions of privacy and privacy pro-
tection emerged as important social issues since the 1960s. An enduring definition
of privacy is the “right to be let alone” [89, p. 193]. This definition requires further
consideration as it is quite simplistic in nature and does not encompass diverse
dimensions of privacy. For further reading on the development of privacy and the
varying concepts including that of Warren and Brandeis, see [76]. Numerous
scholars have attempted to provide a more workable definition of privacy than that
offered by Warren and Brandeis.
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For instance, [21] maintains that perceiving privacy simply as a right is prob-
lematic and narrow, and that privacy should rather be viewed as an interest or
collection of interests, which encompasses a number of facets or categories. As
such, privacy is defined as “the interest that individuals have in sustaining a ‘per-
sonal space’, free from interference by other people and organisations” [21, 26]. In
viewing privacy as an interest, the challenge is in balancing multiple interests in the
name of privacy protection. This, as Clarke [21] maintains, includes opposing
interests in the form of one’s own interests, the interests of other people, and/or the
interests of other people, organizations, or society. As such Clarke refers to privacy
protection as “a process of finding appropriate balances between privacy and
multiple competing interests.”

16.1.2 Alternative Perspectives on Privacy

Solove’s [80] taxonomy of privacy offers a unique, legal perspective on privacy by
grouping privacy challenges under the categories of information collection, infor-
mation processing, information dissemination, and invasion. Refer to [80, pp. 483–
558] for an in depth overview of the taxonomy which includes subcategories of the
privacy challenges. Nissenbaum [65, pp. 1–2], on the other hand, maintains that
existing scholarship generally expresses privacy in view of restricting access to, and
maintaining control over, personal information. For example, Quinn [73, p. 213]
insists that the central theme in privacy debates is that of access, including physical
access to an individual, in addition to information access. With respect to LBS and
location privacy, Küpper and Treu [53, pp. 233–234] agree with the latter, distin-
guishing three categories of access: (1) third-party access by intruders and law
enforcement personnel/authorities, (2) unauthorized access by providers within the
supply chain for malicious purposes, and (3) access by other LBS users.
Nissenbaum [65, pp. 1–2] disputes the interpretation focused on access and control,
noting that individuals are not interested in “simply restricting the flow of infor-
mation but ensuring that it flows appropriately.” As such, Nissenbaum offers the
framework of contextual integrity, as a means of determining when certain systems
and practices violate privacy, and transform existing information flows inappro-
priately [65, p. 150]. The framework serves as a possible tool that can assist in
justifying the need for LBS regulation.

A primary contribution from Nissenbaum is her emphasis on the importance of
context in determining the privacy-violating nature of a specific technology-based
system or practice. In addition to an appreciation of context, Nissenbaum recog-
nizes the value of perceiving technology with respect to social, economic, and
political factors and interdependencies. That is, devices and systems should be
considered as socio-technical units [65, pp. 5–6].
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In relation to privacy, and given the importance of socio-technical systems, the
complexities embedded within privacy may, therefore, arise from the fact that the
term can be examined from a number of perspectives. For instance, it can be
understood in terms of its philosophical, psychological, sociological, economical,
and political significance [21, 26]. Alternatively, privacy theory can provide
varying means of interpretation, given that available approaches draw on inspiration
from multiple disciplines such as computer science and engineering, amongst others
[65, p. 67]. It is also common to explore privacy through its complex dimensions.

According to Privacy International, for instance, the term comprises the aspects
of information privacy, bodily privacy, privacy of communications, and territorial
privacy [72]. Similarly, in providing a contemporary definition of privacy, Clarke
[26] uses Maslow’s hierarchy of needs to define the various categories of privacy;
that is, “privacy of the person,” “privacy of personal behavior,” “privacy of per-
sonal communications,” and “privacy of personal data.” Clarke argues that since the
late 1960s the term has been confined, in a legal sense, to the last two categories.
That is, privacy laws have been restricted in their focus in that they are predomi-
nantly based on the OECD fair information principles, and lack coverage of other
significant categories of privacy. Therefore, the label of information privacy, typ-
ically interchangeable with data privacy, is utilized in reference to the combination
of communications and data privacy [21], and is cited by [58, pp. 5–7] as a sig-
nificant challenge in the information age.

16.2 Background

16.2.1 Defining Information Privacy

In Alan Westin’s prominent book Privacy and Freedom, information privacy is
defined as “the right of individuals, groups and institutions to determine for
themselves, when, how and to what extent information about them is communi-
cated to others” [90, p. 7]. Information in this instance is personal information that
can be linked to or identify a particular individual [33, p. 326]. For a summary of
information privacy literature and theoretical frameworks, presented in tabular
form, refer to [8, pp. 15–17].

16.2.2 Information Privacy Through the Privacy Calculus
Perspective

For the purpose of this chapter, it is noteworthy that information privacy can be
studied through differing lenses, one of which is the privacy calculus theoretical
perspective. Xu et al. [95, p. 138] explain that “the calculus perspective of
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information privacy interprets the individual’s privacy interests as an exchange
where individuals disclose their personal information in return for certain benefits.”
It can be regarded a form of “cost–benefit analysis” conducted by the individual,
where privacy is likely to be (somewhat) relinquished if there is a perceived net
benefit resulting from information disclosure [33, p. 327]. This perspective
acknowledges the claim that privacy-related issues and concerns are not constant,
but rather depend on perceptions, motivations, and conditions that are context or
situation dependent [78, p. 353]. A related notion is the personalization–privacy
paradox, which is based on the interplay between an individual’s willingness to
reap the benefits of personalized services at the expense of divulging personal
information, which may potentially threaten or invade their privacy. An article by
Awad and Krishnan [8] examines this paradox, with specific reference to online
customer profiling to deliver personalized services. The authors recommend that
organizations work on increasing the perceived benefit and value of personalized
services to ensure “the potential benefit of the service outweighs the potential risk
of a privacy invasion” [8, p. 26].

In the LBS context, more specifically, Xu et al. [94] build on the privacy
calculus framework to investigate the personalization–privacy paradox as it pertains
to overt and covert personalization in location-aware marketing. The results of the
study suggest that the personalization approaches (overt and covert) impact on the
perceived privacy risks and values. A complete overview of results can be found in
[94, pp. 49–50]. For further information regarding the privacy calculus and the
personalization–privacy paradox in the context of ubiquitous commerce applica-
tions including LBS, refer to [78]. These privacy-related frameworks and the
concepts presented in this section are intended to be introductory in nature, enabling
an appreciation of the varied perspectives on privacy and information privacy, in
addition to the importance of context, rather than providing thoroughness in the
treatment of privacy and information privacy. Such notions are particularly perti-
nent when reflecting on privacy and the role of emerging information and com-
munication technologies (ICTs) in greater detail.

16.2.3 Emerging Technologies, m-Commerce
and the Related Privacy Challenges

It has been suggested that privacy concerns have been amplified (but not driven) by
the emergence and increased use of ICTs, with the driving force being the manner
in which these technologies are implemented by organizations [21, 26]. In the
m-commerce domain, mobile technologies are believed to boost the threat to
consumer privacy. That is, the intensity of marketing activities can potentially be
increased with the availability of timely location details and, more significantly,
tracking information; thus enabling the influencing of consumer behaviors to a
greater extent [25]. The threat, however, is not solely derived from usage by
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organizations. Specifically, the technologies originally introduced for use by gov-
ernment and organizational entities are presently available for consumer adoption
by members of the community. For further elaboration, refer to Abbas et al. [1] and
chapter 8 of Andrejevic [4]. Thus, location (information) privacy protection
emerges as a substantial challenge for the government, business, and consumer
sectors.

16.2.4 Defining Location (Information) Privacy

Location privacy, regarded a subset of information privacy, has been defined and
presented in various ways. Duckham [38, p. 1] believes that location privacy is “the
right of individuals to control the collection, use, and communication of personal
information about their location.” Küpper and Treu [53, p. 233] define location
privacy as “the capability of the target person to exercise control about who may
access her location information in which situation and in which level of detail.”
Both definitions focus on the aspect of control, cited as a focal matter regarding
location privacy [39, p. 2]. With specific reference to LBS, location privacy and
related challenges are considered to be of utmost importance. For example, Perusco
and Michael [70, pp. 414–415], in providing an overview of studies relating to the
social implications of LBS, claim that the principal challenge is privacy.

In [61, p. 5] Michael et al. also state, with respect to GPS tracking, that privacy is
the “greatest concern,” resulting in the authors proposing a number of questions
relating to the type of location information that should be revealed to other parties,
the acceptability of child tracking and employee monitoring, and the requirement
for a warrant in the tracking of criminals and terrorists. Similarly, Bennett and
Crowe [12, pp. 9–32] reveal the privacy threats to various individuals, for instance
those in emergency situations, mobile employees/workers, vulnerable groups (e.g.,
elderly), family members (notably children and teenagers), telematics application
users, rental car clients, recreational users, prisoners, and offenders. In several of
these circumstances, location privacy must often be weighed against other
conflicting interests, an example of which is the emergency management situation.
For instance, Aloudat [2, p. 54] refers to the potential “deadlock” between privacy
and security in the emergency context, noting public concerns associated with the
move towards a “total surveillance society.”

16.2.5 Data or Information Security

It has been suggested that data or information security in the LBS domain involves
prohibiting unauthorized access to location-based information, which is considered
a prerequisite for privacy [88, p. 121]. This form of security is concerned with
“implementing security measures to ensure that collected data is only accessed for
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the agreed-upon purpose” [46, p. 1]. It is not, however, limited to access but is also
related to “unwanted tracking” and the protection of data and information from
manipulation and distortion [10, p. 185]. The techniques and approaches available
to prevent unauthorized access and minimize chances of manipulation include the
use of “spatially aware access control systems” [34, p. 28] and security- and
privacy-preserving functionality [9, p. 568]. The intricacies of these techniques are
beyond the scope of this investigation. Rather, this section is restricted to coverage
of the broad data and information security challenges and the resultant impact on
LBS usage and adoption.

16.2.6 Impact of Data or Information Security on LBS
Market Adoption

It has been suggested that data and information security is a fundamental concern
influencing LBS market adoption. From a legal standpoint, security is an imperative
concept, particularly in cases where location information is linked to an individual
[41, p. 22]. In such situations, safeguarding location data or information has often
been described as a decisive aspect impacting on user acceptance. These claims are
supported in [85, p. 1], noting that user acceptance of location and context-aware
m-business applications are closely linked to security challenges. Hence, from the
perspective of organizations wishing to be “socially-responsive,” Chen et al. [19,
p. 7] advise that security breaches must be avoided in the interest of economic
stability:

Firms must reassure customers about how location data are used…A security lapse, with
accompanying publicity in the media and possible ‘negligence’ lawsuits, may prove
harmful to both sales and the financial stability of the firm.

Achieving satisfactory levels of security in location- and context-aware services,
however, is a tricky task given the general issues associated with the development of
security solutions; inevitable conflicts between protection and functionality;
mobile-specific security challenges; inadequacy of standards to account for complex
security features; and privacy and control-related issues [85, pp. 1–2]. Furthermore,
developing secure LBS involves consideration of multiple factors; specifically those
related to data or information accuracy, loss, abuse, unauthorized access, modifi-
cation, storage, and transfer [83, p. 10]. There is the additional need to consider
security issues from multiple stakeholder perspectives, in order to identify shared
challenges and accurately assess their implications and the manner in which suitable
security features can be integrated into LBS solutions. Numerous m-business
security challenges relevant to LBS from various perspectives are listed in [85]. Data
security challenges relevant to LBS are also discussed in [57, pp. 44–46].
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16.3 Privacy and Security Issues

16.3.1 Access to Location Information Versus Privacy
Protection

The issue of privacy in emergency situations, in particular, is delicate. For instance,
Quinn [73, p. 225] remarks on the benefits of LBS in safety-related situations, with
particular reference to the enhanced 911 Directive in the US, which stipulates that
the location of mobile phones be provided in emergency situations, aiding in
emergency response efforts. The author continues to identify “loss of privacy” as a
consequence of this service, specifically in cases where location details are provided
to third parties [73, p. 226]. Such claims imply that there may be conflicting aims in
developing and utilizing LBS. Duckham [38, p. 1] explains this point, stating that
the major challenge in the LBS realm is managing the competing aims of enabling
improved access to location information versus allowing individuals to maintain a
sufficient amount of control over such information. The latter is achieved through
the deployment of techniques for location privacy protection.

16.3.2 Location Privacy Protection

It is valid at this point to discuss approaches to location privacy protection. Bennett
and Grant [13, p. 7] claim that general approaches to privacy protection in the
digital age may come in varied forms, including, but not limited to,
privacy-enhancing technologies, self-regulation approaches, and advocacy. In terms
of LBS, substantial literature is available proposing techniques for location privacy
protection, at both the theoretical and practical levels. A number of these techniques
are best summarized in [39, p. 13] as “regulation, privacy policies, anonymity, and
obfuscation.” A review of complementary research on the topic of privacy and LBS
indicate that location privacy has predominantly been examined in terms of the
social challenges and trade-offs from theoretical and practical perspectives; the
technological solutions available to maintain location privacy; and the need for
other regulatory response(s) to address location privacy concerns. The respective
streams of literature are now inspected further in this chapter.

16.3.3 Social Challenges and Trade-Offs

In reviewing existing literature, the social implications of LBS with respect to
privacy tend to be centered on the concepts of invasion, trade-off, and interrelat-
edness and complexity. The first refers primarily to the perceived and actual
intrusion or invasion of privacy resulting from LBS development, deployment,
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usage, and other aspects. Alternatively, the trade-off notion signifies the weighing
of privacy interest against other competing factors, notably privacy versus conve-
nience (including personalization) and privacy versus national security. On the
other hand, the factors of interrelatedness and complexity refer to the complicated
relationship between privacy and other ethical dilemmas or themes such as control,
trust, and security.

With respect to the invasion concept, Westin notes that concerns regarding
invasion of privacy were amplified during the 1990s in both the social and political
spheres [91, p. 444]. Concentrating specifically on LBS, [62, p. 6] provides a
summary of the manner in which LBS can be perceived as privacy-invasive,
claiming that GPS tracking activities can threaten or invade the privacy of the
individual. According to the authors, such privacy concerns can be attributed to a
number of issues regarding the process of GPS tracking. These include: (1) ques-
tionable levels of accuracy and reliability of GPS data, (2) potential to falsify the
data post-collection, (3) capacity for behavioral profiling, (4) ability to reveal spatial
information at varying levels of detail depending on the GIS software used, and
(5) potential for tracking efforts to become futile upon extended use as an individual
may become nonchalant about the exercise [62, pp. 4–5]. Other scholars examine
the invasion concept in various contexts. Varied examples include [55] in relation
to mobile advertising, [51] in view of monitoring employee locations, and [79]
regarding privacy invasion and legislation in the United States concerning personal
location information.

Current studies declare that privacy interests must often be weighed against
other, possibly competing, factors, notably the need for convenience and national
security. That is, various strands of LBS literature are fixed on addressing the
trade-off between convenience and privacy protection. For instance, in a field study
of mobile guide services, Kaasinen [50, p. 49] supports the need for resolving such
a trade-off, arguing that “effortless use” often results in lower levels of user control
and, therefore, privacy. Other scholars reflect on the trade-off between privacy and
national security. In an examination of the legal, ethical, social, and technological
issues associated with the widespread use of LBS, Perusco et al. [71] propose the
LBS privacy–security dichotomy. The dichotomy is a means of representing the
relationship between the privacy of the individual and national security concerns at
the broader social level [71, pp. 91–97]. The authors claim that a balance must be
achieved between both factors. They also identify the elements contributing to
privacy risk and security risk, expressing the privacy risks associated with LBS to
be omniscience, exposure, and corruption, claiming that the degree of danger is
reduced with the removal of a specific risk [71, pp. 95–96]. The lingering question
proposed by the authors is “how much privacy are we willing to trade in order to
increase security?” [71, p. 96]. Whether in the interest of convenience or national
security, existing studies focus on the theoretical notion of the privacy calculus.
This refers to a situation in which an individual attempts to balance perceived value
or benefits arising from personalized services against loss of privacy in determining
whether to disclose information (refer to [8, 33, 78, 94, 95]).
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The relationship between privacy and other themes is a common topic of dis-
cussion in existing literature. That is, privacy, control, security, and trust are key
and interrelated themes concerning the social implications of LBS [71, pp. 97–98].
It is, therefore, suggested that privacy and the remaining social considerations be
studied in light of these associations rather than as independent themes or silos of
information. In particular, privacy and control literature are closely correlated, and
as such the fields of surveillance and dataveillance must be flagged as crucial in
discussions surrounding privacy. Additionally, there are studies which suggest that
privacy issues are closely linked to notions of trust and perceived risk in the minds
of users [44, 48, 49], thereby affecting a user’s decision to engage with LBS
providers and technologies. It is commonly acknowledged in LBS privacy literature
that resolutions will seek consensus between issues of privacy, security, control,
risk, and trust—all of which must be technologically supported.

16.3.4 Personal Safety and Physical Security

LBS applications are often justified as valid means of maintaining personal safety,
ensuring physical security and generally avoiding dangerous circumstances,
through solutions that can be utilized for managing emergencies, tracking children,
monitoring individuals suffering from illness or disability, and preserving security
in employment situations. Researchers have noted that safety and security efforts
may be enhanced merely through knowledge of an individual’s whereabouts [71,
p. 94], offering care applications with notable advantages [61, p. 4].

16.3.5 Applications in the Marketplace

Devices and solutions that capitalize on these facilities have thus been developed, and
are now commercially available for public use. They include GPS-enabled wrist-
watches, bracelets, and other wearable items [59, pp. 425–426], in addition to their
supportive applications that enable remote viewing or monitoring of location (and
other) information. Assistive applications are one such example, such as those tech-
nologies and solutions suited to the navigation requirements of vision impaired or
blind individuals [75, p. 104 (example applications are described on pp. 104–105)].

Alternative applications deliver tracking capabilities as their primary function;
an example is the Australian-owned Fleetfinder PT2 Personal Tracker, which is
advertised as a device capable of safeguarding children, teenagers, and the elderly
[64]. These devices and applications promise “live on-demand” tracking and “a
solid sense of reassurance” [15], which may be appealing for parents, carers, and
individuals interested in protecting others. Advertisements and product descriptions
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are often emotionally charged, taking advantage of an individual’s (parent or carer)
desire to maintain the safety and security of loved ones:

Your child going missing is every parent’s worst nightmare. Even if they’ve just wandered
off to another part of the park the fear and panic is instant… [It] will help give you peace of
mind and act as an extra set of eyes to look out for your child. It will also give them a little
more freedom to play and explore safely [56].

16.3.6 Risks Versus Benefits of LBS Security and Safety
Solutions

Despite such promotion and endorsement, numerous studies point to the dangers of
LBS safety and security applications. Since their inception, individuals and users
have voiced privacy concerns, which have been largely disregarded by proponents
of the technology, chiefly vendors, given the (seemingly) voluntary nature of
technology and device usage [6, p. 7]. The argument claiming technology adoption
to be optional thereby placing the onus on the user is certainly weak and flawed,
particularly given situations where an individual is incapable of making an
informed decision regarding monitoring activities, supplementary to covert
deployment options that may render monitoring activities obligatory. The conse-
quences arising from covert monitoring are explored in [59] (refer to pp. 430–432
for implications of covert versus overt tracking of familiy member) and [1]. Covert
and/or mandatory overt monitoring of minors and individuals suffering from illness
is particularly problematic, raising doubt and questions in relation to the necessity
of consent processes in addition to the suitability of tracking and what constitutes
appropriate use.

In [59, p. 426] Mayer claims that there is a fine line between using tracking
technologies, such as GPS, for safety purposes within the family context and
improper use. Child tracking, for instance, has been described as a controversial
area centered on the safety versus trust and privacy debate [77, p. 7]. However, the
argument is not limited to issues of trust and privacy. Patel discusses the dynamics
in the parent–child relationship and conveys a number of critical points in relation
to wearable and embedded tracking technologies. In particular, Patel provides the
legal perspective on child (teenager) monitoring [68, pp. 430–435] and other
emergent issues or risks (notably linked to embedded monitoring solutions), which
may be related to medical complications, psychological repercussions, and unin-
tended or secondary use [68, pp. 444–455]. In Patel’s article, these issues are offset
by an explanation of the manner in which parental fears regarding child safety,
some of which are unfounded, and the role of the media in publicizing cases of this
nature, fuel parents’ need for monitoring teenagers, whereas ultimately the decision
to be monitored (according to the author), particularly using embedded devices,
should ultimately lie with the teenager [68, pp. 437–442].
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16.3.7 Safety of “Vulnerable” Individuals

Similarly, monitoring individuals with an illness or intellectual disability, such as a
person with dementia wandering, raises a unique set of challenges in addition to the
aforementioned concerns associated with consent, psychological issues, and misuse
in the child or teenager tracking scenario. For instance, while dementia wandering
and other similar applications are designed to facilitate the protection and security
of individuals, they can concurrently be unethical in situations where reliability and
responsiveness, amongst other factors, are in question [61, p. 7]. Based on a recent
qualitative, focus group study seeking the attitudes of varied stakeholders in relation
to the use of GPS for individuals with cognitive disabilities [54, p. 360], it was clear
that this is an area fraught with indecisiveness as to the suitability of assistive
technologies [54, p. 358]. The recommendations emerging from [54, pp. 361–364]
indicate the need to “balance” safety with independence and privacy, to ensure that
the individual suffering from dementia is involved in the decision to utilize tracking
technologies, and that a consent process is in place, among other suggestions that
are technical and devices related.

While much can be written about LBS applications in the personal safety and
physical security categories, including their advantages and disadvantages, this
discussion is limited to introductory material. Relevant to this chapter is the por-
trayal of the tensions arising from the use of solutions originally intended for
protection and the resultant consequences, some of which are indeed inadvertent.
That is, while the benefits of LBS are evident in their ability to maintain safety and
security, they can indeed result in risks, such as the use of LBS for cyber stalking
others. In establishing the need for LBS regulation, it is, therefore, necessary to
appreciate that there will always be a struggle between benefits and risks relating to
LBS implementation and adoption.

16.3.8 National Security

Safety and security debates are not restricted to family situations but may also
incorporate, as [59, p. 437] indicates, public safety initiatives and considerations,
amongst others, that can contribute to the decline in privacy. These schemes include
national security, which has been regarded a priority area by various governments
for over a decade. The Australian government affirms that the nation’s security can
be compromised or threatened through various acts of “espionage, foreign inter-
ference, terrorism, politically motivated violence, border violations, cyber attack,
organised crime, natural disasters and biosecurity events” [7]. Accordingly, tech-
nological approaches and solutions have been proposed and implemented to sup-
port national security efforts in Australia, and globally. Positioning technologies,
specifically, have been adopted as part of government defense and security strat-
egies, a detailed examination of which can be found in [60], thus facilitating
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increased surveillance. Surveillance schemes have, therefore, emerged as a result of
the perceived and real threats to national security promoted by governments [92,
p. 389], and according to [63, p. 2] have been legitimized as a means of ensuring
national security, thereby granting governments “extraordinary powers that never
could have been justified previously” [71, p. 94]. In [20, p. 216], Cho maintains that
the fundamental question is “which is the greater sin—to invade privacy or to
maintain surveillance for security purposes?”

16.3.9 Proportionality: National Security Versus Individual
Privacy

The central theme surfacing in relevant LBS scholarship is that of proportionality;
that is, measuring the prospective security benefits against the impending privacy-
and freedom-related concerns. For example, [71, pp. 95–96] proposes the privacy–
security dichotomy, as means of illustrating the need for balance between an
individual’s privacy and a nation’s security, where the privacy and security ele-
ments within the model contain subcomponents that collectively contribute to
amplify risk in a given context. A key point to note in view of this discussion is that
while the implementation of LBS may enhance security levels, this will inevitably
come at the cost of privacy [71, pp. 95–96] and freedom [61, p. 9].

Furthermore, forsaking privacy corresponds to relinquishing personal freedom, a
consequential cost of heightened security in threatening situations. Such circum-
stances weaken the effects of invasive techniques and increase, to some degree,
individuals’ tolerance to them [41, p. 12]. In particular, they “tilt the balance in favor
of sacrificing personal freedom for the sake of public safety and security” [36, p. 50].
For example, Davis and Silver [35] report that the trade-off between civil liberties
and privacy is often correlated with an individual’s sense of threat. In reporting on a
survey of Americans post the events of September 11, 2011, the authors conclude
that civil liberties are often relinquished in favor of security in high-threat circum-
stances [35, p. 35], in that citizens are “willing to tolerate greater limits on civil
liberties” [35, p. 74]. Similarly, in a dissertation centered on the social implications
of auto-ID and LBS technologies, Tootell [86] presents the Privacy, Security, and
Liberty Trichotomy, as a means of understanding the interaction between the three
values [86: chapter 6]. Tootell concludes that a dominant value will always exist that
is unique to each individual [86, pp. 162–163].

Furthermore, researchers such as Gould [45, p. 75] have found that while people
are generally approving of enhanced surveillance, they simultaneously have
uncertainties regarding government monitoring. From a government standpoint,
there is a commonly held and weak view that if an individual has nothing to hide,
then privacy is insignificant, an argument particularly popular in relation to
state-based surveillance [81, p. 746]. However, this perspective has inherent flaws,
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as the right to privacy should not be narrowly perceived in terms of concealment of
what would be considered unfavorable activities, discussed further by [81, pp. 764–
772]. Furthermore, the “civil liberties vs. security trade-off has mainly been framed
as one of protecting individual rights or civil liberties from the government as the
government seeks to defend the country against a largely external enemy”
[35, p. 29].

Wigan and Clarke state, in relation to national security, that “surveillance sys-
tems are being developed without any guiding philosophy that balances human
rights against security concerns, and without standards or guidance in relation to
social impact assessment, and privacy design features” [92, p. 400]. Solove [82,
p. 362] agrees that a balance can be achieved between security and liberty, through
oversight and control processes that restrict prospective uses of personal data. In the
current climate, given the absence of such techniques, fears of an Orwellian society
dominated by intense and excessive forms of surveillance materialize. However,
Clarke [27, p. 39] proposes a set of “counterveillance” principles in response to
extreme forms of surveillance introduced in the name of national security, which
include:

independent evaluation of technology; a moratorium on technology deployments; open
information flows; justification of proposed measures; consultation and participation;
evaluation; design principles; balance; independent controls; nymity and multiple identity;
and rollback.

The absence of such principles creates a situation in which extremism reigns,
producing a flow-on effect with potentially dire consequences in view of privacy,
but also trust and control.

16.4 Solutions

16.4.1 Technological Solutions

In discussing technology and privacy in general, Krumm [52, p. 391] notes that
computation-based mechanisms can be employed both to safeguard and to invade
privacy. It is, therefore, valuable to distinguish between privacy-invasive technol-
ogies (PITs) and privacy-enhancing technologies (PETs). Clarke [23] examines the
conflict between PITs and PETs, which are tools that can be employed to invade
and protect privacy interests respectively. Technologies can invade privacy either
deliberately as part of their primary purpose, or alternatively their invasive nature
may emerge in secondary uses [23, 24, p. 209]. The aspects contributing to the
privacy-invasive nature of location and tracking technologies or transactions
include the awareness level of the individual, whether an individual has a choice,
and the capability of performing an anonymous transaction amongst others [22]. In
relation to LBS, [23] cites person-location and person-tracking systems as potential
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PITs that require the implementation of countermeasures, which to-date have come
in the form of PETs or “counter-PITs.”

Existing studies suggest that the technological solutions (i.e., counter-PITs)
available to address the LBS privacy challenge are chiefly concerned with
degrading the ability to pinpoint location, or alternatively masking the identity of
the user. For example, [62, p. 7] suggests that “[l]evels of privacy can be controlled
by incorporating intelligent systems and customizing the amount of detail in a given
geographic information system”, thus enabling the ethical use of GPS tracking
systems. Similarly, other authors present models that anonymize user identity
through the use of pseudonyms [14], architectures and algorithms that decrease
location resolution [46], and systems that introduce degrees of obfuscation [37].
Notably, scholars such as Duckham [37, p. 7] consider location privacy protection
as involving multiple strategies, citing regulatory techniques and privacy policies as
supplementary strategies to techniques that are more technological in nature, such
as obfuscation.

16.4.2 Need for Additional Regulatory Responses

Clarke and Wigan [31] examine the threats posed by location and tracking tech-
nologies, particularly those relating to privacy, stating that “[t]hose technologies are
now well-established, yet they lack a regulatory framework.” A suitable regulatory
framework for LBS (that addresses privacy amongst other social and ethical
challenges) may be built on numerous approaches, including the technical
approaches described in Sect. 16.4.1. Other approaches are explored by Xu et al.
[95] in their quasi-experimental survey of privacy challenges relevant to push
versus pull LBS. The approaches include compensation (incentives), industry
self-regulation, and government regulation strategies [95, p. 143]. According to Xu
et al., these “intervention strategies,” may have an impact on the privacy calculus in
LBS [95, pp. 136–137]. Notably, their survey of 528 participants found that
self-regulation has a considerable bearing on perceived risk for both push and pull
services, whereas perceived risks for compensation and government regulation
strategies vary depending on types of services. That is, compensation increases
perceived benefit in the push but not the pull model and, similarly, government
regulation reduces perceived privacy risk in the push-based model [95, p. 158].

It should be acknowledged that a preliminary step in seeking a solution to the
privacy dilemma, addressing the identified social concerns, and proposing appro-
priate regulatory responses is to clearly identify and assess the privacy-invasive
elements of LBS in a given context- we have used Australia as an example in this
instance. Possible techniques that can be employed to identify risks and implica-
tions, and consequently possible mitigation strategies, are a Privacy Impact
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Assessment (PIA) or employing other novel models such as the framework of
contextual integrity.

16.4.3 Privacy Impact Assessment (PIA)

A PIA can be defined as “a systematic process that identifies and evaluates, from
the perspectives of all stakeholders, the potential effects on privacy of a project,
initiative or proposed system or scheme, and includes a search for ways to avoid or
mitigate negative privacy impacts” [29, 30]. The PIA tool, originally linked to
technology and impact assessments [28, p. 125], is effectively a “risk management”
technique that involves addressing both positive and negative impacts of a project
or proposal, but with a greater focus on the latter [67, pp. 4–5].

PIAs were established and developed from 1995 to 2005, and possess a number
of distinct qualities, some of which are that a PIA is focused on a particular
initiative, takes a forward-looking and preventative as opposed to retrospective
approach, broadly considers the various aspects of privacy (i.e., privacy of person,
personal behavior, personal communication, and personal data), and is inclusive in
that it accounts for the interests of relevant entities [28, pp. 124–125]. Regarding
the Australian context, the development of PIAs in Australia can be observed in the
work of Clarke [30] who provides an account of PIA maturity pre-2000, post-2000,
and the situation in 2010.

16.4.4 Framework of Contextual Integrity

The framework of contextual integrity, introduced by [65], is an alternative
approach that can be employed to assess whether LBS, as a socio-technical system,
violates privacy and thus contextual integrity. An overview of the framework is
provided in [65, p. 14]:

The central claim is that contextual integrity captures the meaning of privacy in relation to
personal information; predicts people’s reactions to new technologies because it captures
what we care about when we question, protest, and resist them; and finally, offers a way to
carefully evaluate these disruptive technologies. In addition, the framework yields practical,
step-by-step guidelines for evaluating systems in question, which it calls the CI Decision
Heuristic and the Augmented CI Decision Heuristic.

According to Nissenbaum [65], the primary phases within the framework are:
(1) explanation, which entails assessing a new system or practice in view of
“context-relative informational norms” [65, p. 190], (2) evaluation, which involves
“comparing altered flows in relation to those that were previously entrenched” [65,
p. 190], and (3) prescription, a process based on evaluation, whereby if a system or
practice is deemed “morally or politically problematic,” it has grounds for
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resistance, redesign or being discarded [65, p. 191]. Within these phases are distinct
stages: establish the prevailing context, determine key actors, ascertain what attri-
butes are affected, establish changes in principles of transmission, and red flag, if
there are modifications in actors, attributes, or principles of transmission [65,
pp. 149–150].

The framework of contextual integrity and, similarly, PIAs are relevant to this
study, and may be considered as valid tools for assessing the privacy-invasive or
violating nature of LBS and justifying the need for some form of regulation. This is
particularly pertinent as LBS present unique privacy challenges, given their reliance
on knowing the location of the target. That is, the difficulty in maintaining location
privacy is amplified due to the fact that m-commerce services and mobility in
general, by nature, imply knowledge of the user’s location and preferences [40,
p. 463]. Therefore, it is likely that there will always be a trade-off ranging in
severity. Namely, one end of the privacy continuum will demand that stringent
privacy mechanisms be implemented, while the opposing end will support and
justify increased surveillance practices.

16.5 Challenges

16.5.1 Relationship Between Privacy, Security, Control
and Trust

A common thread in discussions relating to privacy and security implications of
LBS throughout this chapter has been the interrelatedness of themes; notably, the
manner in which a particular consideration is often at odds with other concerns. The
trade-off between privacy/freedom and safety/security is a particularly prevalent
exchange that must be considered in the use of many ICTs [36, p. 47]. In the case of
LBS, it has been observed that the need for safety and security conflicts with
privacy concerns, potentially resulting in contradictory outcomes depending on the
nature of implementation. For example, while LBS facilitate security and timely
assistance in emergency situations, they simultaneously have the potential to
threaten privacy based on the ability for LBS to be employed in tracking and
profiling situations [18, p. 105]. According to Casal [18, p. 109], the conflict
between privacy and security, and lack of adequate regulatory frameworks, has a
flow-on effect in that trust in ICTs is diminished. Trust is also affected in the family
context, where tracking or monitoring activities result in lack of privacy between
family members [59, p. 436]. The underlying question, according to Mayer [59,
p. 435] is in relation to the power struggle between those seeking privacy versus
those seeking information:

What will be the impact within families as new technologies shift the balance of power
between those looking for privacy and those seeking surveillance and information?
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Mayer’s [59] question alludes to the relevance of the theme of control, in that
surveillance can be perceived as a form of control and influence. Therefore, it can
be observed that inextricable linkages exist between several themes presented or
alluded to throughout this chapter; notably privacy and security, but also the themes
of control and trust. In summary, privacy protection requires security to be main-
tained, which in turn results in enhanced levels of control, leading to decreased
levels of trust, which is a supplement to privacy [70, pp. 13–14]. The interrelat-
edness of themes is illustrated in Fig. 16.1.

It is thus evident that the idea of balance resurfaces, with the requirement to
weigh multiple and competing themes and interests. This notion is not new with
respect to location monitoring and tracking. For instance, Mayer [59, p. 437] notes,
in the child tracking context, that there is the requirement to resolve numerous
questions and challenges in a legal or regulatory sense, noting that “[t]he key is
balancing one person’s need for privacy with another person’s need to know, but
who will define this balancing point?” Issues of age, consent, and reciprocal
monitoring are also significant. Existing studies on location disclosure amongst
social relations afford the foundations for exploring the social and ethical chal-
lenges for LBS, whilst simultaneously appreciating technical considerations or
factors. Refer to [5, 16, 32, 42, 43, 47, 62, 84, 87].

16.6 Conclusion

This chapter has provided an examination of privacy and security with respect to
location-based services. There is a pressing need to ensure LBS privacy threats are
not dismissed from a regulatory perspective. Doing so will introduce genuine
dangers, such as psychological, social, cultural, scientific, economic, political, and

Fig. 16.1 Relationship between control, trust, privacy, and security, after [70, p. 14]
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democratic harm; dangers associated with profiling; increased visibility; publically
damaging revelations; and oppression [31]. Additionally, the privacy considerations
unique to the “locational or mobile dimension” require educating the general public
regarding disclosure and increased transparency on the part of providers in relation
to collection and use of location information [11, p. 15]. Thus, in response to the
privacy challenges associated with LBS, and based on current scholarship, this
research recognizes the need for technological solutions, in addition to commitment
and adequate assessment or consideration at the social and regulatory levels.
Specifically, the privacy debate involves contemplation of privacy policies and
regulatory frameworks, in addition to technical approaches such as obfuscation and
maintaining anonymity [37, p. 7]. That is, privacy-related technical solutions must
also be allied with supportive public policy and socially acceptable regulatory
structures.

For additional readings relevant to LBS and privacy, which include an adequate list
of general references for further investigation, refer to [17] on privacy challenges
relevant to privacy invasive geo-mash-ups, the inadequacy of information privacy
laws and potential solutions in the form of technological solutions, social standards
and legal frameworks; [12] report submitted to the Office of the Privacy Commissioner
of Canada, focused on mobile surveillance, the privacy dangers, and legal conse-
quences; and [57] report to the Canadian Privacy Commissioner dealing with com-
plementary issues associated with mobility, location technologies, and privacy.

Table 16.1 Summary of solutions and techniques

Solution/Technique Merits Limitations

Technological
mechanisms

• Provide location obfuscation and
anonymity in required situations
• Myriad of solutions available
depending on level of privacy
required
• In-built mechanisms requiring
limited user involvement
• Unlike regulatory solutions,
technological solutions encourage
industry development

• Result in degradation in
location quality/resolution

Regulatory mechanisms • Variety of techniques available,
such as industry self-regulation
and government legislation
• Can offer legal protection to
individuals in defined
situations/scenarios

• Can be limiting in terms
of advancement of LBS
industry

Impact assessments,
contextual frameworks,
and internal policies

• Provide proactive approach in
identifying privacy (and related)
risks
• Used to develop suitable
mitigation strategies
• Preventative and inclusive in
nature

• Tend to be skewed in
focus, focusing primarily
on negative implications
• Can be limiting in terms
of advancement of LBS
industry
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Based on the literature presented throughout this chapter, a valid starting point in
determining the privacy-invasive nature of specific LBS applications is to review
and employ the available solution(s). These solutions or techniques are summarized
in Table 16.1, in terms of the merits and benefits of each approach and the extent to
which they offer means of overcoming or mitigating privacy-related risks. The
selection of a particular technique is dependent on the context or situation in
question. Once the risks are identified it is then possible to develop and select an
appropriate mitigation strategy to reduce or prevent the negative implications of
utilizing certain LBS applications. This chapter is intended to provide a review of
scholarship in relation to LBS privacy and security, and should be used as the basis
for future research into the LBS privacy dilemma, and related regulatory debate.
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