
this print for content only—size & color not accurate spine = 0.998" 528 page count

Books for professionals by professionals®

Author of

Developer’s Guide
to ASP.NET 2.0

Webmaster of

www.dotnetbips.com

www.binaryintellect.net

US $49.99

Shelve in
Programming/.Net

User level:
Intermediate–Advanced

Joshi
.NET 2.0 XM

L

The EXPERT’s VOIce® in .Net

Pro
.NET 2.0
XML

 CYAN
  MAGENTA

 YELLO W
  BLACK
 PAN TONE 123 C

Bipin Joshi

Companion
eBook Available

THE APRESS ROADMAP

Pro ASP.NET 2.0 in
C# 2005, Special Edition

Pro C# with the .NET 3.0
Extensions, Special Edition

Expert C# 2005 Business
Objects, Second Edition

Pro .NET 2.0 XML

Beginning C# 2005
Databases

Illustrated C# 2005

Foundations of LINQ in C#

Expert Service-Oriented
Architecture in C# 2005,

Second Edition

www.apress.com
Microsoft.apress.com

SOURCE CODE ONLINE

Companion eBook

See last page for details

on $10 eBook version

ISBN-13: 978-1-59059-825-2
ISBN-10: 1-59059-825-3

9 781590 598252

54999

Master the .NET Framework’s XML features
to build powerful, data-driven applications

Pro .NET 2.0 XML
Dear Reader,

Modern software systems are becoming more and more distributed and involve
heterogeneous platforms. As an industry standard, XML plays a vital role in
such systems because it can represent your data in a platform-neutral way. The
data can then be exchanged across application layers and transformed with the
help of XSLT to suit your requirements. It’s no wonder that Microsoft’s .NET
Framework 2.0 provides strong support for XML and its allied technologies. If
you aim to master the array of XML features provided by the .NET Framework,
this is the book for you.

This book details all the major XML features in .NET. Being a developer and
trainer, I have selected topics that suit the requirements of real-world projects:

•	 Reading and writing XML documents with the XML Document Object Model
•	 Reading and writing XML documents with XmlReader and XmlWriter
•	 ADO.NET integration and the XML features of SQL Server 2005
•	 XML serialization
•	 Web services and WCF

This will give you a solid foundation for harnessing the power of XML in
your .NET applications. Moreover, you will have the skills to select and apply
the appropriate XML technologies in your projects and to develop cross-platform,
distributed, XML-driven applications more effectively than ever before.

Bipin Joshi
BinaryIntellect® Consulting
Microsoft MVP | Member of ASPInsiders

Pro

www.allitebooks.com

http://www.allitebooks.org

Pro .NET 2.0 XML

■ ■ ■

Bipin Joshi

8253.book Page i Wednesday, March 21, 2007 5:32 PM

www.allitebooks.com

http://www.allitebooks.org

Pro .NET 2.0 XML

Copyright © 2007 by Bipin Joshi

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-825-2

ISBN-10 (pbk): 1-59059-825-3

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editors: Ewan Buckingham and Matthew Moodie
Technical Reviewer: Fabio Claudio Ferracchiati
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,

Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Jeff Pepper, Paul Sarknas,
Dominic Shakeshaft, Jim Sumser, Matt Wade

Project Manager: Laura Esterman
Copy Edit Manager: Nicole Flores
Copy Editor: Sharon Wilkey
Assistant Production Director: Kari Brooks-Copony
Production Editor: Ellie Fountain
Compositor: Pat Christenson
Proofreader: April Eddy
Indexer: Brenda Miller
Artist: Kinetic Publishing Services, LLC
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code/
Download section.

8253.book Page ii Wednesday, March 21, 2007 5:32 PM

www.allitebooks.com

http://www.allitebooks.org

This work is dedicated to Lord Shiva,
who, I believe, resides in each one of us as

pure consciousness

8253.book Page iii Wednesday, March 21, 2007 5:32 PM

www.allitebooks.com

http://www.allitebooks.org

8253.book Page iv Wednesday, March 21, 2007 5:32 PM

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author .xvii

About the Technical Reviewer . xix

Acknowledgments . xxi

Introduction . xxiii

■CHAPTER 1 Introducing XML and the .NET Framework . 1

■CHAPTER 2 Manipulating XML Documents by Using the Document
Object Model . 31

■CHAPTER 3 Reading and Writing XML Documents . 65

■CHAPTER 4 Accessing XML Documents by Using the XPath Data Model 95

■CHAPTER 5 Validating XML Documents . 123

■CHAPTER 6 Transforming XML with XSLT . 165

■CHAPTER 7 XML in ADO.NET . 193

■CHAPTER 8 XML Serialization . 237

■CHAPTER 9 XML Web Services . 271

■CHAPTER 10 XML in SQL Server 2005 . 303

■CHAPTER 11 Use of XML in the .NET Framework . 343

■CHAPTER 12 Creating Services by Using Windows Communication
Foundation . 413

■APPENDIX A Creating Custom XmlReader and XmlWriter Classes 433

■APPENDIX B Case Study: A Web Service–Driven Shopping Cart 457

■APPENDIX C Resources . 479

■INDEX . 481

8253.book Page v Wednesday, March 21, 2007 5:32 PM

www.allitebooks.com

http://www.allitebooks.org

8253.book Page vi Wednesday, March 21, 2007 5:32 PM

www.allitebooks.com

http://www.allitebooks.org

Contents

vii

About the Author . xvii

About the Technical Reviewer. xix

Acknowledgments. xxi

Introduction . xxiii

■CHAPTER 1 Introducing XML and the .NET Framework. 1

What Is XML? . 1

Benefits of XML. 2

XML Is an Industry Standard . 2

XML Is Self-Describing. 2

XML Is Extensible . 3

XML Can Be Processed Easily. 3

XML Can Be Used to Easily Exchange Data . 3

XML Can Be Used to Easily Share Data. 3

XML Can Be Used to Create Specialized Vocabularies 3

XML-Driven Applications . 3

Rules of XML Grammar . 5

XML Markup Is Case Sensitive . 7

The XML Document Must Have One and Only One
Root Element . 7

The Start Tag Must Have an End Tag . 7

The Start and End Tags Must Be Properly Nested. 7

The Attribute Values Must Be Enclosed in Quotes. 8

DTDs and XML Schemas. 8

Parsing XML Documents . 8

XSLT . 10

XPath. 10

The .NET Framework . 11

8253.book Page vii Wednesday, March 21, 2007 5:32 PM

www.allitebooks.com

http://www.allitebooks.org

viii ■C O N T E N T S

.NET and XML . 12

Assemblies and Namespaces . 13

The XML Parsing Model in the .NET Framework 14

.NET Configuration Files. 14

ADO.NET . 17

ASP.NET Server Controls . 17

XML Serialization. 18

Remoting . 19

Web Services . 19

XML Documentation . 20

SQL Server XML Features . 21

Working with Visual Studio . 21

Creating Windows Applications . 22

Creating Class Libraries . 26

Summary . 29

■CHAPTER 2 Manipulating XML Documents by Using the
Document Object Model . 31

Using the DOM Parser . 31

Knowing When to Use DOM . 34

A Sample XML Document . 34

Opening an Existing XML Document for Parsing. 35

Navigating Through an XML Document . 37

Looking for Specific Elements and Nodes . 39

Retrieving Specific Elements by Using the
GetElementByTagName() Method . 40

Retrieving Specific Elements by Using the
GetElementById() Method . 41

Selecting Specific Nodes by Using the SelectNodes() Method 45

Selecting a Single Specific Node by Using the
SelectSingleNode() Method . 47

Modifying XML Documents . 48

Navigating Between Various Nodes . 49

Modifying Existing Content . 51

Deleting Existing Content. 52

Adding New Content . 53

Using Helper Methods . 55

8253.book Page viii Wednesday, March 21, 2007 5:32 PM

www.allitebooks.com

http://www.allitebooks.org

■C O N T E N T S ix

Dealing with White Space . 56

Dealing with Namespaces. 59

Understanding Events of the XmlDocument Class 61

Summary . 64

■CHAPTER 3 Reading and Writing XML Documents . 65

What Are XML Readers and Writers? . 65

When to Use Readers and Writers . 66

Reader Classes . 66

The XmlTextReader Class . 66

The XmlValidatingReader Class . 66

The XmlNodeReader Class . 67

Reading Documents by Using XmlTextReader. 67

Opening XML Documents . 67

Reading Attributes, Elements, and Values . 69

Improving Performance by Using Name Tables. 72

Dealing with Namespaces . 73

Moving Between Elements . 73

The ReadSubTree() Method. 73

The ReadToDescendant() Method . 74

The ReadToFollowing() Method . 74

The ReadToNextSibling() Method . 75

The Skip() Method. 75

Moving Between Attributes . 76

Reading Content . 77

The ReadInnerXml() Method . 77

The ReadOuterXml() Method . 78

The ReadString() Method . 78

Writing XML Documents . 78

Exporting Columns As Elements. 82

Exporting Columns As Attributes . 83

Specifying Character Encoding. 83

Formatting the Output . 84

Including Namespace Support . 87

Dealing with Nontextual Data . 89

Serializing Data . 90

Unserializing Data . 91

Summary . 93

8253.book Page ix Wednesday, March 21, 2007 5:32 PM

www.allitebooks.com

http://www.allitebooks.org

x ■C O N T E N T S

■CHAPTER 4 Accessing XML Documents by Using the
XPath Data Model. 95

Overview of XPath . 95

Location Path . 96

Axis . 96

Node Tests . 97

Predicates. 97

Putting It All Together . 97

XPath Functions. 98

The XPath Data Model . 99

Creating XPathNavigator . 99

Navigating an XML Document by Using XPathNavigator 101

Selecting Nodes. 104

Navigating Between Attributes . 108

Retrieving Inner and Outer XML . 109

Getting an XmlReader from XPathNavigator. 111

Getting an XmlWriter from XPathNavigator. 114

Editing XML Documents with the XPathNavigator Class 116

Summary . 122

■CHAPTER 5 Validating XML Documents . 123

Providing Structure for XML Documents . 123

Document Type Definitions (DTDs) . 124

XML Data Reduced Schemas (XDR Schemas) 124

XML Schema Definition Language Schemas (XSD Schemas) 124

Creating Structure for an XML Document . 124

The Structure of Employees.xml. 125

Creating the DTD. 125

Creating the XSD Schema . 127

Creating Schemas by Using the Schema Object Model (SOM) 142

The Core SOM Classes. 142

Creating an XSD Schema by Using the SOM 144

8253.book Page x Wednesday, March 21, 2007 5:32 PM

■C O N T E N T S xi

Validating XML Documents Against DTDs and XSD Schemas 152

Inline DTD . 153

External DTD . 153

Inline Schema . 154

External Schema . 154

Using the XmlReader Class to Validate XML Documents 156

Using XmlDocument to Validate XML Documents Being
 Loaded . 159

Using XPath Navigator to Validate XML Documents 162

Summary . 162

■CHAPTER 6 Transforming XML with XSLT . 165

Overview of XSLT . 165

Applying Templates by Using <xsl:apply-templates> 169

Branching by Using <xsl:if> . 171

Branching by Using <xsl:choose> and <xsl:when>. 173

Transforming Elements and Attributes . 175

The XslCompiledTransform Class . 178

Performing Transformations by Using XslCompiledTransform . . . 179

Passing Arguments to a Transformation. 182

Using Script Blocks in an XSLT Style Sheet 186

Using Extension Objects. 190

Summary . 191

■CHAPTER 7 XML in ADO.NET . 193

Overview of ADO.NET Architecture . 193

Connected Data Access . 193

Disconnected Data Access . 194

ADO.NET Data Providers . 195

Basic ADO.NET Classes . 197

XML and Connected Data Access . 198

Using the ExecuteXmlReader() Method . 198

8253.book Page xi Wednesday, March 21, 2007 5:32 PM

xii ■C O N T E N T S

XML and Disconnected Data Access. 201

Understanding DataSet . 201

Understanding DataAdapter . 203

Working with DataSet and DataAdapter . 205

Saving DataSet Contents As XML. 212

Reading XML Data into DataSet . 218

Generating Menus Dynamically Based On an XML File 221

Reading Only the Schema Information . 224

Creating a Typed DataSet . 226

Using Visual Studio to Create a Typed DataSet 227

Using the xsd.exe Tool to Create a Typed DataSet 231

The XmlDataDocument Class . 232

Using the XmlDataDocument Class . 232

Converting Between DataRow and XmlElement 234

Summary . 236

■CHAPTER 8 XML Serialization . 237

Understanding the Flavors of Serialization . 238

Classes Involved in the Serialization Process. 238

Serializing and Deserializing Objects by Using XML Format 239

Handling Events Raised During Deserialization 243

Serializing and Deserializing Complex Types 245

Serialization and Inheritance . 254

Customizing the Serialized XML . 257

Serializing Data in SOAP Format . 263

Customizing SOAP Serialization . 267

Summary . 270

■CHAPTER 9 XML Web Services . 271

What Are Web Services? . 271

Creating and Consuming Web Services . 272

Creating a Web Service . 273

Creating a Proxy for a Web Service . 285

Creating a Form That Consumes a Web Method 287

Calling a Web Method Asynchronously . 289

Understanding SOAP . 291

Using SOAP Headers. 292

8253.book Page xii Wednesday, March 21, 2007 5:32 PM

■C O N T E N T S xiii

Understanding the WSDL Document . 297

The Messages . 300

The Type Definitions . 300

The Port Types. 301

The Binding . 301

The Service . 301

A Summary of WSDL . 301

Summary . 302

■CHAPTER 10 XML in SQL Server 2005 . 303

Using XML Extensions to the SELECT Statement 303

The FOR XML Clause . 303

Using OPENXML . 313

Using SQLXML Features . 315

The SQLXML Managed Classes . 316

The XML Data Type . 331

Creating a Table with an XML Column . 332

Inserting, Modifying, and Deleting XML Data 332

Methods of the XML Data Type. 334

XML Data Modification Language (XML DML) 336

XQuery Support in the XML Data Type . 337

Native Web Services . 337

Creating a Stored Procedure . 338

Creating an HTTP Endpoint . 338

Creating a Proxy for the Endpoint. 340

Consuming the Native Web Service . 341

Summary . 342

■CHAPTER 11 Use of XML in the .NET Framework . 343

Understanding Remoting. 343

Remoting Architecture . 344

Object Activation . 345

Channels and Formatters. 345

Flavors of Marshalling . 346

Remoting Assemblies and Namespaces . 346

Creating a Remoting-Enabled Application . 347

8253.book Page xiii Wednesday, March 21, 2007 5:32 PM

xiv ■C O N T E N T S

Using XML in ASP.NET. 356

Web Form Code Models . 357

XML and ASP.NET . 357

The XML Data Source Control . 367

Working with Site Maps. 375

Using a SiteMapPath Control. 378

Using a SiteMapDataSource Control . 379

Using the XML Control . 379

Using the .NET Framework Configuration System 382

Structure of the web.config File . 383

Inheritance and web.config . 384

Common Configuration Tasks. 384

The ASP.NET Provider Model . 388

Displaying Custom Error Pages . 401

Documenting XML Code . 404

Creating a Class Library . 404

Generating Documentation . 408

Summary . 412

■CHAPTER 12 Creating Services by Using Windows Communication
Foundation . 413

Understanding WCF Vocabulary . 414

Creating and Consuming a WCF Service . 415

Creating the Service . 415

Hosting the Service. 421

Consuming the Service . 424

Testing the Host and Client . 426

Hosting a WCF Service in IIS . 428

Understanding the Role of XML in WCF Services 430

Using the XmlFormatter and XmlSerializer Classes 431

Using XmlSerializer Instead of XmlFormatter 431

Summary . 431

■APPENDIX A Creating Custom XmlReader and XmlWriter Classes 433

Creating a Custom Implementation of XmlReader 433

Inheriting from XmlReader. 434

Creating a TableReader Class . 435

Using the TableReader Class . 444

8253.book Page xiv Wednesday, March 21, 2007 5:32 PM

■C O N T E N T S xv

Creating a Custom XmlWriter . 446

Inheriting from XmlWriter. 447

Consuming the RssWriter Class . 455

Summary . 456

■APPENDIX B Case Study: A Web Service–Driven Shopping Cart 457

Creating the Database . 457

Creating the Web Service . 459

Creating the SqlHelper Class. 459

Specifying the Connection String in web.config 461

Creating the Web Methods . 462

Creating the Shopping Cart. 467

Adding the Web Reference . 467

Displaying the Product Catalog. 468

Creating the Shopping Cart Page . 471

Testing the Website . 476

■APPENDIX C Resources . 479

■INDEX . 481

8253.book Page xv Wednesday, March 21, 2007 5:32 PM

8253.book Page xvi Wednesday, March 21, 2007 5:32 PM

xvii

About the Author

■BIPIN JOSHII is a trainer and consultant by profession and runs his own
firm, BinaryIntellect Consulting. Bipin has been programming since
1995 and has worked with .NET ever since its beta release. Founder
and web master of two community websites—DotNetBips.com and
BinaryIntellect.net—he also contributes to printed magazines and
other websites. He is the author or coauthor of half a dozen books,
including his Developer’s Guide to ASP.NET 2.0. Bipin is a Microsoft
MVP and a member of ASPInsiders. His deep interest in yoga

prompted him to start YogaVision.in, a website dedicated to yoga and spirituality. Having
adopted a yoga way of life, he remains absorbed in practicing and studying yoga when not
engaged with computers. His blog at bipinjoshi.com is his place to jot down thoughts about
technology and life. He can also be reached there.

8253.book Page xvii Wednesday, March 21, 2007 5:32 PM

8253.book Page xviii Wednesday, March 21, 2007 5:32 PM

xix

About the Technical Reviewer

■FABIO CLAUDIO FERRACCHIATI is a senior developer for Brain Force (http://www.brainforce.com).
A prolific writer on leading-edge technologies, he has contributed to more than a dozen books
on .NET, C#, Visual Basic, and ASP.NET. His most recent books are LINQ for Visual C# 2005
and LINQ for VB 2005. He’s a .NET MCSD and lives in Milan, Italy. He can be reached at
http://www.ferracchiati.com.

8253.book Page xix Wednesday, March 21, 2007 5:32 PM

www.allitebooks.com

http://www.allitebooks.org

8253.book Page xx Wednesday, March 21, 2007 5:32 PM

xxi

Acknowledgments

Though my name alone appears as the author, many have contributed directly or indirectly to
this book. When I got a nod from Apress to begin this book, I was a bit worried because I had
only five months in hand and there were many activities going on at my end, including training
programs, writing for my websites, and development work. Today I feel satisfied to see the task
accomplished on time.

First of all, I must express my feeling of devotion toward Lord Shiva. His yogic teachings
have made me understand the real meaning of life. Without His blessings, this would not have
been possible. I am also thankful to my parents and brother for their help and support in my
activities at all levels.

Writing a book is about teamwork. Input from the technical reviewer, Fabio Claudio
Ferracchiati, was very useful in rendering the book accurate. The whole team at Apress was very
helpful. Ewan Buckingham provided very good coordination and input at the conceptualiza-
tion and initial stage. Matthew Moodie kept an eagle’s eye on the language consistency and
overall format. Laura Esterman was always there to ensure that everything went as per the
schedule. Thank you, team, for playing your part so wonderfully.

Finally, thanks to Sona (my dog). Each time I show her my book, she feels so proud! Thank
you, Sona, for providing fun at the end of tiring work schedules.

8253.book Page xxi Wednesday, March 21, 2007 5:32 PM

8253.book Page xxii Wednesday, March 21, 2007 5:32 PM

xxiii

Introduction

The Internet has brought a huge difference in the way we develop and use software applica-
tions. Applications are becoming more and more distributed, connecting heterogeneous
systems. With such a radical change, the role of XML is highly significant. XML has already
established itself as a standard way of data encoding and transfer. No wonder that Microsoft’s
.NET Framework provides such a strong support for XML. Data access, raw parsing, configura-
tion, code documentation, and web services are some of the examples where .NET harnesses
the power and flexibility of XML.

The .NET Framework comes with a plethora of classes that allow you to work with XML
data. This book demystifies XML and allied technologies. Reading and writing XML data, using
DOM, ADO.NET integration with XML, SQL Server XML features, applying XSLT style sheets,
SOAP, web services, and configuration systems are some of the topics that this book explores in
detail. Real-world examples scattered throughout the book will help you understand the prac-
tical use of the topic under consideration. The book will also act as a handy reference when
developers go on the job.

Who Is This Book For?
This book is for developers who are familiar with the .NET Framework and want to dive
deep into the XML features of .NET. This book will not teach you XML manipulation using
non-Microsoft tools. All the examples in this book are presented in C#, and hence working
knowledge of C# is also assumed. In some chapters, familiarity with ADO.NET and SQL Server
is necessary, though I have provided a brief overview along with the respective topics.

Software Required
I have used Visual Studio 2005 as the IDE for developing various applications. However, for most
of the examples you can use Visual C# Express Edition. In some samples you also need Visual Web
Developer Express Edition, SQL Server 2005, and the Sandcastle help file generation tool.

Structure of the Book
The book is divided into twelve chapters and three appendixes. Chapters 1 to 4 talk about navi-
gating, reading, and writing XML documents by using classes from the System.Xml namespace.
In these chapters, you will learn to use classes such as XmlDocument, XmlReader, XmlWriter, and
XPathNavigator.

8253.book Page xxiii Wednesday, March 21, 2007 5:32 PM

xxiv ■I N T R O D U C T I O N

Manipulating XML data is just one part of the story. Often you need to validate and trans-
form it so that it becomes acceptable to your system. Chapters 5 and 6 deal with the issues of
validating XML documents and applying XSLT transformations to them, respectively.

The .NET Framework itself uses XML in many places. This is often under the hood, but for
any XML developer it is essential to know where this occurs. To that end, Chapters 7 to 9 cover
topics such as ADO.NET integration with XML, XML serialization, and XML web services.

Microsoft has not limited the use of XML only to areas such as ADO.NET and web services.
SQL Server 2005 incorporates many XML-related enhancements. These features are discussed in
Chapter 10. Though this topic isn’t strictly one of the XML features of .NET, many developers will
find it useful. This is because many real-world projects developed by using the .NET Framework
make use of SQL Server 2005 as a data store. Chapter 11 covers many other areas where the .NET
Framework uses XML. Some of them include configuration files, ASP.NET server controls, and
C# XML comments.

In the .NET Framework 3.0, Microsoft added a new component-development frame-
work called Windows Communication Foundation (WCF). WCF allows you to develop
service-oriented applications by using a unified programming model. It also uses XML
heavily as a format of communication. Thus it is worthwhile to peek into this new framework,
and Chapter 12 does exactly that.

Finally, the three appendixes supplement what you learned throughout the book by
providing real-world case studies and resources.

Downloading the Source Code
The complete source of the book is available for download at the book’s companion website.
Just visit http://www.apress.com and download the zip file containing the code from the Source
Code/Download area.

Contacting the Author
You can reach me via the DotNetBips.com discussion forums (http://www.dotnetbips.com/
forums) or via my blog at http://www.bipinjoshi.com.

8253.book Page xxiv Wednesday, March 21, 2007 5:32 PM

1

■ ■ ■

C H A P T E R 1

Introducing XML and
the .NET Framework

XML has emerged as a de facto standard for data representation and transportation. No won-
der that Microsoft has embraced it fully in their .NET Framework. This chapter provides an
overview of what XML is and how it is related to the .NET Framework. Many of the topics dis-
cussed in this chapter might be already familiar to you. Nevertheless, I will cover them briefly
here so as to form a common platform for further chapters. Specifically you will learn about the
following:

• Features and benefits of XML

• Rules of XML grammar

• Brief introduction to allied technologies such as DTD, XML schemas, parsers, XSLT,
and XPath

• Overview of the .NET Framework

• Use of XML in the .NET Framework

• Introduction to Visual Studio

If you find the concepts already familiar, you may want to skip ahead to Chapter 2.

What Is XML?
XML stands for Extensible Markup Language and is a markup language used to describe data. It
offers a standardized way to represent textual data. Often the XML data is also referred to as an
XML document. The XML data doesn’t perform anything on its own; to process that data, you
need to use a piece of software called a parser. Unlike Hypertext Markup Language (HTML),
which focuses on how to present data, XML focuses on how to represent data. XML consists of
user-defined tags, which means you are free to define and use your own tags in the XML docu-
ment. XML was approved as a recommendation by the World Wide Web Consortium (W3C) in
February 1998. Naturally this very fact contributed a lot to such a wide acceptance and support
of XML in the software industry.

8253.book Page 1 Wednesday, February 21, 2007 9:09 PM

2 C H A P T E R 1 ■ I N T R O D U C I N G X M L A N D T H E . N E T F R A M E W O R K

Now that you have brief idea about XML, let’s see a simple XML document, as illustrated
in Listing 1-1.

Listing 1-1. A Simple XML Document

<?xml version="1.0"?>
<customers>
 <customer ID="C001">
 <name>Acme Inc.</name>
 <phone>12345</phone>
 </customer>
 <customer ID="C002">
 <name>Star Wars Inc.</name>
 <phone>23456</phone>
 </customer>
</customers>

There are many rules that govern the creation of such XML documents. But we will save
them for later discussion.

Benefits of XML
Why did XML become so popular? Well, this question has many answers and I will present
some of the important ones in this section.

XML Is an Industry Standard
As you learned previously, XML is a W3C recommendation. This means it is an industry stan-
dard governed by a vendor-independent body. History shows that vendor-specific proprietary
standards don’t get massive acceptance in the software industry. This nonacceptance affects
overall cross-platform data sharing and integration. Being an industry standard has helped
XML gain huge acceptance.

XML Is Self-Describing
XML documents are self-describing. Because of markup tags, they are more readable than, say,
comma-separated values (CSV) files.

8253.book Page 2 Wednesday, February 21, 2007 9:09 PM

C H A P T E R 1 ■ I N T R O D U C I N G X M L A N D T H E . N E T F R A M E W O R K 3

XML Is Extensible
Markup languages such as HTML have a fixed set of tags and attributes. You cannot add your
own tags in such markup languages. XML, on the other hand, allows you to define your own
markup tags.

XML Can Be Processed Easily
Traditionally, the CSV format was a common way to represent and transport data. However, to
process such data, you need to know the exact location of the commas (,) or any other delim-
iter used. This makes reading and writing the document difficult. The problem becomes severe
when you are dealing with a number of altogether different and unknown CSV files.

As I said earlier, XML documents can be processed by a piece of software called a parser.
Because XML documents use markup tags, a parser can read them easily. Parsers are discussed
in more detail later in this chapter.

XML Can Be Used to Easily Exchange Data
Integrating cross-platform and cross-vendor applications is always difficult and challenging.
Exchanging data in heterogeneous systems is a key problem in such applications. Using XML
as a data-exchange format makes your life easy. XML is an industry standard, so it has massive
support and almost all vendors support it in one way or another.

XML Can Be Used to Easily Share Data
The fact that XML is nothing but textual data ensures that it can be shared among heteroge-
neous systems. For example, how can a Visual Basic 6 (VB6) application running on a Windows
machine talk with a Java application running on a Unix box? XML is the answer.

XML Can Be Used to Create Specialized Vocabularies
As you already know, XML is an extensible standard. By using XML as a base, you can create
your own vocabularies. Wireless Application Protocol (WAP), Wireless Markup Language
(WML), and Simple Object Access Protocol (SOAP) are some examples of specialized XML
vocabularies.

XML-Driven Applications
Now that you know the features and benefits of XML, let’s see what all these benefits mean to
modern software systems.

8253.book Page 3 Wednesday, February 21, 2007 9:09 PM

4 C H A P T E R 1 ■ I N T R O D U C I N G X M L A N D T H E . N E T F R A M E W O R K

Figure 1-1 shows a traditional web-based application. The application consists of Active
Server Pages (ASP) scripts hosted on a web server. The client in the form of a web browser
requests various web pages. Upon receiving the requests, the web server processes them and
sends the response in the form of HTML content. This architecture sounds good at first glance,
but suffers from several shortcomings:

• It considers only web browsers as clients.

• The response from the web server is always in HTML. That means a desktop-based
application may not render this response at all.

• The data and presentation logic are tightly coupled together. If we want to change the
presentation of the same data, we need to make considerable changes.

• Tomorrow if some other application wants to consume the same data, it cannot be
shared easily.

Figure 1-1. Classic architecture for developing applications

Now let’s see how XML can come to the rescue in such situations.
Have a look at Figure 1-2. Here there are multiple types of clients. One is a web browser

and the other is a desktop application. Both send a request to the server in the form of XML
data. The server processes the request and sends the data in XML format. The web browser
applies a style sheet (discussed later) to the XML data to render it as HTML content. The desk-
top application, on the other hand, parses the data by using an XML parser (discussed later)

8253.book Page 4 Wednesday, February 21, 2007 9:09 PM

C H A P T E R 1 ■ I N T R O D U C I N G X M L A N D T H E . N E T F R A M E W O R K 5

and displays it in a grid. Much more flexible than the previous architecture, isn’t it? The advan-
tages of the new architecture are as follows:

• The application has multiple types of clients. It is not tied only to web browsers.

• There is loose coupling between the client and the processing logic.

• New types of clients can be added at any time without changing the processing logic on
the server.

• The data and the presentation logic are neatly separated from each other. Web clients
have one set of presentation logic, whereas desktop applications have their own presen-
tation logic.

• Data sharing becomes easy because the outputted data is in XML format.

Figure 1-2. XML-driven architecture

Rules of XML Grammar
In the “What is XML?” section, you saw one example of an XML document. However, I didn’t
talk about any of the rules that you need to follow while creating it. It’s time now to discuss
those rules of XML grammar. If you have worked with HTML, you will find that the rules of XML
grammar are more strict than the HTML ones. However, this strictness is not a bad thing,
because these rules help ensure that there are no errors while we parse, render, or exchange
data.

8253.book Page 5 Wednesday, February 21, 2007 9:09 PM

www.allitebooks.com

http://www.allitebooks.org

6 C H A P T E R 1 ■ I N T R O D U C I N G X M L A N D T H E . N E T F R A M E W O R K

Before I present the rules in detail, you need to familiarize yourself with the various parts
of an XML document. Observe Figure 1-3 carefully.

Figure 1-3. Parts of a typical XML document

Line 1 is called a processing instruction. A processing instruction is intended to supply
some information to the application that is processing the XML document. Processing instruc-
tions are enclosed in a pair of <? and ?>. The xml processing instruction in Figure 1-3 has two
attributes: version and encoding. The current W3C recommendations for XML hold version 1.0
and hence the version attribute must be set to 1.0.

Line 2 represents a comment. A comment can appear anywhere in an XML document after
the xml processing instruction and can span multiple lines.

Line 3 contains what is called the document element of the XML document. An XML docu-
ment has one and only one document element. XML documents are like an inverted tree, and
the document element is positioned at the root. Hence the document element is also called a
root element. Each element (whether it is the document element or otherwise) consists of a
start tag and end tag. The start tag is <customers>, and the end tag is </customers>.

It is worthwhile to point out the difference between three terms: element, node, and tag.
When you say element, you are essentially talking about the start tag and the end tag of that ele-
ment together. When you say tag, you are talking about either the start tag or end tag of the
element, depending on the context. When you say node, you are referring to an element and all
its inner content, including child elements and text.

8253.book Page 6 Wednesday, February 21, 2007 9:09 PM

C H A P T E R 1 ■ I N T R O D U C I N G X M L A N D T H E . N E T F R A M E W O R K 7

Inside the <customers> element, you have two <customer> nodes. The <customer> element
has one attribute called ID. The attribute value is enclosed in double quotes. The <customer>
element has three child elements: <name>, <phone>, and <comments>. The text values inside ele-
ments such as <name> and <phone> are often called text nodes. Sometimes the text content that
you want to put inside a node may contain special characters such as < and >. To represent
such content, you use a character data (CDATA) section. Whatever you put inside the CDATA sec-
tion is treated as a literal string. The <comments> tag shown in Figure 1-3 illustrates the use of a
CDATA section.

Now that you have this background, you’re ready to look at the basic rules of XML gram-
mar. Any XML document that conforms to the rules mentioned next is called a well-formed
document.

XML Markup Is Case Sensitive
Just like some programming languages, such as C#, XML markup is also case sensitive. That
means <customer>, <Customer>, and <CUSTOMER> all are treated as different tags.

The XML Document Must Have One and Only One Root Element
An XML document must have one and only one root element. In the preceding example, the
<customers> element is the root element. Note that it is mandatory for XML documents to have
a root element.

The Start Tag Must Have an End Tag
Every start tag must have a corresponding end tag. In HTML, this rule is not strictly followed—
for example, tags such as
 (line break), <hr> (horizontal rule), and (image) are often
used with no end tag at all. In XML, that would be not be well formed. The end tag for elements
that do not contain any child elements or text can be written by using shorter notation. For
example, assuming that the <customer> tag doesn’t contain any child elements, you could have
written it as <customer ID="C001"/>.

The Start and End Tags Must Be Properly Nested
In HTML, this rule about nesting tags properly is not followed strictly. For example, the follow-
ing markup shows up in the browser correctly:

<I>Hello World</I>

This, however, is illegal in XML. The nesting of start and end tags must be proper. The cor-
rect representation of the preceding markup in XML would be as follows:

<I>Hello World</I>

8253.book Page 7 Wednesday, February 21, 2007 9:09 PM

8 C H A P T E R 1 ■ I N T R O D U C I N G X M L A N D T H E . N E T F R A M E W O R K

The Attribute Values Must Be Enclosed in Quotes
In HTML, you may or may not enclose the attribute values. For example, the following is valid
markup in HTML:

However, this is illegal in XML. All the attribute values must be enclosed in quotes. Thus
the accepted XML representation of the preceding markup would be as follows:

DTDs and XML Schemas
Creating well-formed XML documents is one part of the story. The other part is whether
these documents adhere to an agreed structure, or schema. That is where Document Type
Definitions (DTDs) and XML schemas come into the picture.

DTDs and XML schemas allow you to convey the structure of your XML document to oth-
ers. For example, if I tell you to create an XML file, what structure will you follow? What is the
guarantee that the structure that you create is the one that I have in mind? The problem is
solved if I give you a DTD or schema for the document. Then you have the exact idea as to how
the document should look and what its elements, attributes, and nesting are.

The XML documents that conform to some DTD or XML schema are called valid docu-
ments. Note that an XML document can be well formed, but it may not be valid if it doesn’t
have an associated DTD or schema.

DTDs are an older way to validate XML documents. Nowadays XML schemas are more
commonly used to validate XML documents because of the advantages they offer. You will
learn about the advantages of schemas over DTDs in Chapter 5. Throughout our discussion,
when I talk about validating XML documents, I will be referring to XML schemas.

Parsing XML Documents
XML data by itself cannot do anything; you need to process that data to do something mean-
ingful. As I have said, the software that processes XML documents is called a parser (or XML
processor). XML parsers allow you read, write, and manipulate XML documents. XML parsers
can be classified in two categories depending on how they process XML documents:

• DOM-based parsers (DOM stands for Document Object Model)

• SAX-based parsers (SAX stands for Simple API for XML)

DOM-based parsers are based on the W3C’s Document Object Model recommendations
and are possibly the most common and popular. They look at your XML document as an
inverted tree structure. Thus our XML document shown in Figure 1-3 will be looked at by a
DOM parser, as shown in Figure 1-4.

8253.book Page 8 Wednesday, February 21, 2007 9:09 PM

C H A P T E R 1 ■ I N T R O D U C I N G X M L A N D T H E . N E T F R A M E W O R K 9

Figure 1-4. The DOM representation of an XML document

DOM-based parsers are read-write parsers, which means you can read as well as write to
the XML document. They allow random access to any particular node of the XML document
and as such they need to load the entire XML document in memory. This also implies that the
memory footprint of DOM-based parsers is large. DOM-based parsers are also called tree-
based parsers for obvious reasons.

■Note Microsoft’s DOM-based parser implementation is nothing but a COM component popularly known
as Microsoft XML Core Services (MSXML).

SAX-based parsers do not read the entire XML document into memory at once. They
essentially scan the document sequentially from top to bottom. When they encounter various
parts of the document, they raise events, and you can handle these events to read the docu-
ment. SAX parsers are read-only parsers, which means you cannot use them to modify an XML
document. They are useful when you want to read huge XML documents and loading such
documents into memory is not advisable. These types of parsers are also called event-based
parsers.

■Note MSXML includes a component that provides a SAX implementation of the parser.

Parsers can also be classified as validating and nonvalidating. Validating parsers can vali-
date an XML document against a DTD or schema as they parse the document. On the other
hand, nonvalidating parsers lack this ability.

8253.book Page 9 Wednesday, February 21, 2007 9:09 PM

10 C H A P T E R 1 ■ I N T R O D U C I N G X M L A N D T H E . N E T F R A M E W O R K

XSLT
XML solves the problem of data representation and exchange. However, often we need to con-
vert this XML data into a format understood by the target application. For example, if your
target client application is a web browser, the XML data must be converted to HTML before
display in the browser.

Another example is that of business-to-business (B2B) applications. Let’s say that applica-
tion A captures order data from the end user and represents it in some XML format. This data
then needs to be sent to application B that belongs to some other business. It is quite possible
that the XML format as generated by application A is different from that required by applica-
tion B. In such cases, you need to convert the source XML data to a format acceptable to the
target system. In short, in real-world scenarios you need to transform XML data from one form
to another.

That is where XSLT comes in handy. XSLT stands for Extensible Stylesheet Language
Transformations and allows you to transform XML documents from one form into another.
Figure 1-5 shows how this transformation happens.

Figure 1-5. XML transformation

XPath
Searching for and locating certain elements within an XML document is a fairly common task.
XPath is an expression language that allows you to navigate through elements and attributes in
an XML document. XPath consists of various XPath expressions and functions that you can use

8253.book Page 10 Wednesday, February 21, 2007 9:09 PM

C H A P T E R 1 ■ I N T R O D U C I N G X M L A N D T H E . N E T F R A M E W O R K 11

to look for and select elements and attributes matching certain patterns. XPath is also a W3C
recommendation. Figure 1-6 shows an example of how XPath works.

Figure 1-6. Using XPath to select nodes

The .NET Framework
Microsoft’s .NET Framework is a platform for building Windows- and web-based applications,
components, and services by using a variety of programming languages. Figure 1-7 shows the
stack of the .NET Framework.

Figure 1-7. Stack of the .NET Framework

At the bottom level you have the operating system. As far as commercial application devel-
opment using the .NET Framework is concerned, your operating system will be one of the
various flavors of Windows (including Windows 2000, Windows 2003, Windows XP, or Win-
dows Vista).

On top of the operating system, you have the common language runtime (CLR) layer. The
CLR is the heart of the .NET Framework. It provides the executing environment to all the .NET

8253.book Page 11 Wednesday, February 21, 2007 9:09 PM

12 C H A P T E R 1 ■ I N T R O D U C I N G X M L A N D T H E . N E T F R A M E W O R K

applications, so in order to run any .NET applications you must have the CLR installed. The
CLR does many things for your application, including memory management, thread manage-
ment, and security checking.

On top of the CLR, a huge collection of classes called the Base Class Library gets installed.
The Base Class Library provides classes to perform almost everything that you need in your
application. It includes classes for file input/output (IO), database access, XML manipulation,
web programming, socket programming, and many more things. If you are developing a useful
application in .NET, the chances are that you will use one or another of the classes in the Base
Class Library and hence your applications are shown sitting on top of it.

These applications can be developed using a variety of programming languages. Out of the
box, the .NET Framework provides five programming languages: Visual Basic .NET, Visual C#,
Managed C++, JScript .NET, and Visual J#. There are many other third-party compilers that you
can use to develop .NET applications.

As a matter of fact, you can develop any .NET application by using Notepad and command-
line compilers. However, most of the real-world applications call for a short development time,
so that is where an integrated development environment (IDE) such as Visual Studio 2005 can be
very helpful. It makes you much more productive than the Notepad approach. Features such as
drag and drop, powerful debugging, and IntelliSense make application development much sim-
pler and faster.

.NET and XML
The .NET Framework Base Class Library provides a rich set of classes that allows you to work
with XML data. The relationship between the .NET Framework and XML doesn’t end here.
There are a host of other features that make use of XML. These features include the following:

• .NET configuration files

• ADO.NET

• ASP.NET server controls

• XML serialization

• Remoting

• Web services

• XML documentation

• SQL Server XML features

• XML parsing

• XML transformation

In this section, you will take a brief look at each of these features.

8253.book Page 12 Wednesday, February 21, 2007 9:09 PM

C H A P T E R 1 ■ I N T R O D U C I N G X M L A N D T H E . N E T F R A M E W O R K 13

Assemblies and Namespaces
The core XML-related classes from the Base Class Library are physically found in an assembly
called System.Xml.dll. This assembly contains several namespaces that encapsulate various
XML-related classes. In the following text, you will take a brief look at some of the important
namespaces.

System.Xml Namespace

The System.Xml namespace is one of the most important namespaces. It provides classes for
reading and writing XML documents. Classes such as XmlDocument represent the .NET Frame-
work’s DOM-based parser, whereas classes such as XmlTextReader and XmlTextWriter allow
you to quickly read and write XML documents. This namespace also contains classes that
represent various parts of an XML document. These classes include XmlNode, XmlElement,
XmlAttribute, and XmlText. We will be using many of these classes throughout the book.

System.Xml.Schema Namespace

The System.Xml.Schema namespace contains various classes that allow you to work with
schemas. The entire Schema Object Model (SOM) of .NET is defined by the classes from this
namespace. These classes include XmlSchema, XmlSchemaElement, XmlSchemaComplexType, and
many others.

System.Xml.XPath Namespace

The System.Xml.XPath namespace provides classes and enumerations for finding and selecting
a subset of the XML document. These classes provide a cursor-oriented model for navigating
and editing through the selection. The classes include XPathDocument, XPathExpression,
XPathNavigator, XPathNodeIterator, and more.

System.Xml.Xsl Namespace

The System.Xml.Xsl namespace provides support for XSLT transformations. By using the
classes from this namespace, you can transform XML data from one form to another.
The classes provided by this namespace include XslCompiledTransform, XslTransform,
XsltSettings, and so on.

System.Xml.Serialization Namespace

The System.Xml.Serialization namespace provides classes and attributes that are used to
serialize and deserialize objects to and from XML format. These classes are extensively used in
web services infrastructures. The main class provided by this namespace is XmlSerializer.
Some commonly used attributes classes such as XmlAttributeAttribute, XmlRootAttribute,
XmlTextAttribute, and many others are also provided by this namespace.

8253.book Page 13 Wednesday, February 21, 2007 9:09 PM

14 C H A P T E R 1 ■ I N T R O D U C I N G X M L A N D T H E . N E T F R A M E W O R K

The XML Parsing Model in the .NET Framework
The previous sections discussed two types of parsers: DOM- or tree-based parsers, and SAX- or
event-based parsers. It would be reasonable for you to expect that the .NET Framework sup-
ports parsing models for both types of parsers. Though you won’t be disappointed at their
offering, there are some differences that you must know.

In the .NET Framework you can categorize the XML parsers into two flavors:

• Parsers based on DOM

• Parsers based on the reader model

The first thing that may strike you is the lack of a SAX-based parser. But don’t worry, the
new reader-based parsers provide similar functionality in a more efficient way. You can think
of reader-based parsers as an alternative to traditional SAX-based parsers.

The DOM-based parser of the .NET Framework is represented chiefly by a class called
XmlDocument. By using this parser, you can load, read, and modify XML documents just as you
would with any other DOM-based parser (such as MSXML, for example).

The reader-based parsers use a cursor-oriented approach to scan the XML document. The
main classes that are at the heart of these parsers are XmlReader and XmlWriter. These two
classes are abstract classes, and other classes (such as XmlTextReader and XmlTextWriter)
inherit from them. You can also create your own readers and writers if you so wish.

Thus to summarize, the .NET Framework supports DOM parsing and provides an alter-
nate and more efficient way to carry out SAX-based parsing. I will be discussing these parsers
thoroughly in subsequent chapters.

.NET Configuration Files
Almost all real-world applications require configuration, which includes things such as data-
base connection strings, file system paths, security schemes, and role-based security settings.
Prior to the introduction of the .NET Framework, developers often used .INI files or the Win-
dows registry to store such configuration settings. Unfortunately, the simple task of storing
configuration settings used to be cumbersome in popular tools such as Visual Basic 6. For
example, VB6 doesn’t have a native mechanism to read and write to .INI files. Developers often
used Windows application programming interfaces (APIs) to accomplish this. VB6 does have
some features to work with the Windows registry, but they are too limited for most scenarios.
Moreover, storing data in the Windows registry always came with its own risks. In such cases,
developers tend to rely on a custom solution. The impact was obvious: no standardization,
more coding time, more efforts, and repeated coding for the same task.

8253.book Page 14 Wednesday, February 21, 2007 9:09 PM

C H A P T E R 1 ■ I N T R O D U C I N G X M L A N D T H E . N E T F R A M E W O R K 15

Thankfully, the .NET Framework takes a streamlined and standardized approach to con-
figuring the applications. It relies on XML-based files for storing configuration information.
That means developers no longer need to write custom logic to read and write .INI files or even
the Windows registry. Some of the advantages of using XML files instead of classic approaches
are as follows:

• Because XML files are more readable, the configuration data can be stored in a neat and
structured way.

• To read the configuration information, the .NET Framework provides built-in classes.
That means you need not write any custom code to access the configuration data.

• Storing the configuration information in XML files makes it possible to deploy it easily
along with the application. In the past, Windows registry-based configuration posed
various deployment issues.

• There are no dangers in manipulating the XML configuration files for your applica-
tion. In the past, tampering with the Windows registry involved risks and created
unwanted results.

• .NET Framework configuration files are not limited to using the predefined XML tags.
You can extend the configuration files to add custom sections.

• Sometimes the configuration information includes some confidential data. .NET
Framework configuration files can be encrypted easily, giving more security to your
configuration data. The encryption feature is a built-in part of the framework needing
no custom coding from the developer’s end.

The overall configuration files of the .NET Framework are of three types:

• Application configuration files

• Machine configuration files

• Security configuration files

Application configuration files store configuration information applicable to a single
application. For Windows Forms and console-based applications, the name of the configura-
tion file takes the following form:

<exe name>.exe.config

That means that if you are developing a Windows application called HelloWorld.exe, its
configuration file name must be HelloWorld.exe.config. The markup from Listing 1-2 shows
sample configuration information for a Windows Forms–based application.

8253.book Page 15 Wednesday, February 21, 2007 9:09 PM

www.allitebooks.com

http://www.allitebooks.org

16 C H A P T E R 1 ■ I N T R O D U C I N G X M L A N D T H E . N E T F R A M E W O R K

Listing 1-2. XML Markup from an Application Configuration File

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <appSettings>
 <add key="defaultemail"
 value="someone@somedomain.com"/>
 </appSettings>
</configuration>

On the other hand, a configuration file for a web application is called web.config. The
markup from Listing 1-3 shows a sample web.config file.

Listing 1-3. XML Markup from a web.config File

<?xml version="1.0"?>
 <configuration>
 <connectionStrings>
 <add name="connstr"
 connectionString="Data Source=.\SQLEXPRESS;
 Integrated Security=True;
 AttachDbFilename=|DataDirectory|AspNetDb.mdf"
 providerName="System.Data.SqlClient"/>
 </connectionStrings>
 <system.web>
 <compilation debug="true"/>
 <authentication mode="Forms">
 <forms name="login" loginUrl="login.aspx">
 </forms>
 </authentication>
 <authorization>
 <deny users="?"/>
 </authorization>
 <membership defaultProvider="AspNetSqlProvider">
 <providers>
 <add
 name="AspNetSqlProvider"
 type="System.Web.Security.SqlMembershipProvider"
 connectionStringName="connstr"
 passwordFormat="Clear"
 enablePasswordRetrieval="true"
 requiresQuestionAndAnswer="true"
 maxInvalidPasswordAttempts="3">
 </add>
 </providers>
 </membership>
 </system.web>
</configuration>

8253.book Page 16 Wednesday, February 21, 2007 9:09 PM

C H A P T E R 1 ■ I N T R O D U C I N G X M L A N D T H E . N E T F R A M E W O R K 17

When you install the .NET Framework on a machine, a file named machine.config gets cre-
ated in the installation folder of the .NET Framework. This file is the master configuration file and
contains configuration settings that are applied to all the .NET applications running on that
machine. The settings from machine.config can be overridden by using the application configu-
ration file. Because the settings from machine.config are applied to all the .NET applications, it
is recommended that you alter this file with caution. Generally, only server administrators and
web-hosting providers modify this file.

The .NET Framework offers a secure environment for executing applications. It needs to
check whether an assembly is trustworthy before any code in the assembly is invoked. To test
the trustworthiness of an assembly, the framework checks the permission granted to it. Per-
missions granted to an assembly can be configured by using the security configuration files.
This is called Code Access Security.

ADO.NET
For most business applications, data access is where the rubber meets the road. In .NET,
ADO.NET is the technology for handling database access. Though ADO.NET sounds like it
is the next version of classic ADO, it is, in fact, a complete rewrite for the .NET Framework.

ADO.NET gives a lot of emphasis to disconnected data access, though connected data
access is also possible. A class called DataSet forms the cornerstone of the overall disconnected
data architecture of ADO.NET. A DataSet class can be easily serialized as an XML document
and hence it is ideal for data interchange, cross-system communications, and the like. A class
called XmlDataDocument allows you to work with relational or XML data by using a DOM-based
style. It can give a DataSet to you, which you can use further for data binding and related tasks.
Another class called SqlCommand allows you to read data stored in Microsoft SQL Server and
return it as an XmlReader. I am going to cover XML-related features of ADO.NET in detail in sub-
sequent chapters.

ASP.NET Server Controls
You learned that the ASP.NET configuration file (web.config) is an XML file. The use of XML
in ASP.NET doesn’t end there. ASP.NET uses a special XML vocabulary to represent its server
controls, which are programmable controls that can be accessed from server-side code. Con-
sider the markup shown in bold in Listing 1-4.

Listing 1-4. Server Control Markup

<%@ Page Language="C#" %>
<script runat="server">
protected void Button1_Click(object sender, EventArgs e)
{
Label2.Text = TextBox1.Text;
}
</script>

8253.book Page 17 Wednesday, February 21, 2007 9:09 PM

18 C H A P T E R 1 ■ I N T R O D U C I N G X M L A N D T H E . N E T F R A M E W O R K

<html xmlns="http://www.w3.org/1999/xhtml" >
<body>
<form id="form1" runat="server">
<asp:Label ID="Label1" runat="server" Text="Enter some text :"></asp:Label>
<asp:TextBox ID="TextBox1" runat="server"></asp:TextBox>
<asp:Button ID="Button1" runat="server" Text="Submit" OnClick="Button1_Click" />
<asp:Label ID="Label2" runat="server"></asp:Label>
</form>
</body>
</html>

The preceding fragment shows the markup of a few ASP.NET server controls. As you can
see, a Label control is represented by the <asp:Label> markup tag. Similarly, a Button control
is represented by the <asp:Button> markup tag. This is a special vocabulary of XML and follows
all the rules of XML grammar.

XML Serialization
Modern applications seldom run on a single machine. They are distributed and span two or
more machines. Figure 1-8 shows a simple distributed application spanning three machines.

Figure 1-8. A simple distributed application

Here the database and data-access components are located on a separate server. Simi-
larly, business logic components are located on their own server, and the client applications
access these components through a network. Imagine that the client wants some data from

8253.book Page 18 Wednesday, February 21, 2007 9:09 PM

b3e8e2f741da817d3e2521aed5ddc5df

C H A P T E R 1 ■ I N T R O D U C I N G X M L A N D T H E . N E T F R A M E W O R K 19

the database to display to the end user. The data is pulled out from the database from data-
access components. But how will it reach the client? That is where serialization comes into
the picture.

Serialization is a process in which data is written to some medium. In the preceding exam-
ple, the medium is a network—but it can be a file or any other stream also. The data-access
components will serialize the requested data so that it can reach the client application. The cli-
ent application then deserializes it—that is, it reads from the medium and reconstructs the
data in an object or any other data structure. In the case of XML serialization, this data is
serialized in the XML format. XML serialization is used extensively by web services. The
XmlSerializer class provides a programmatic way to serialize and deserialize your objects.

Remoting
In the previous example, we simply assumed that components residing on different machines
talk with each other. But how? Remoting is the answer. .NET remoting provides an infrastruc-
ture for building distributed applications. Though remoting can be used over the Internet,
more commonly it is used when the network involved is a local area network (LAN). For
Internet-driven communication, web services are more appropriate (see the next section).

You can think of remoting as a replacement for Distributed Component Object Model
(DCOM) under .NET. It is clear that remote components must serialize and deserialize data
being requested by the client applications. This serialization can be in binary format or in XML
format. Moreover, the remoting configuration can be carried by using XML-based configura-
tion files.

Web Services
With the evolution of the Internet, distributed applications are spanning different geographi-
cal locations. You may have one server residing in the United States with clients talking to it
from India. It is quite possible that the clients and server are running two entirely different
platforms (Windows and Unix, for example). In such cases it is necessary that a standard mode
of communication be established between the server and clients so that communication can
take place over the Internet. That is where web services come into the picture.

Formally speaking, web services are a programmable set of APIs that you can call over a
network by using industry-standard protocols: HTTP, XML, and an XML-based protocol called
SOAP (as noted earlier in this chapter, SOAP stands for Simple Object Access Protocol). You can
think of a web service as a web-callable component.

Because a web service is supposed to serve cross-platform environments, it relies heavily
on XML. HTTP, XML, and SOAP form the pillars of web services architecture. Web services are
industry standards and just like XML they are standardized by the W3C and hence have mas-
sive industry support.

Have a look at Figure 1-8 again. Assume that the three machines involved are connected
via the Internet and not a LAN. The components will now be replaced with web services and
they will perform the same job as the components did previously. In such cases, the client
will call a web service residing on the business logic server, which in turn calls a web service
residing on the database server. The requested data is sent back to the client in XML format.
It doesn’t matter whether the client is a VB6 application, a VB.NET application, or a Java
application. Powerful, isn’t it? You will explore web services thoroughly in later chapters.

8253.book Page 19 Wednesday, February 21, 2007 9:09 PM

20 C H A P T E R 1 ■ I N T R O D U C I N G X M L A N D T H E . N E T F R A M E W O R K

XML Documentation
Everybody knows the importance of well-documented code. However, this important task is
often not given proper attention. One of the reasons is that comments left by the developer are
not properly captured while creating program documentation or help files. C# as well as Visual
Basic .NET supports a special commenting syntax that is based on XML. These XML comments
can be converted into HTML documentation later. Just to give you a feel for how it works, see
the C# code shown in Listing 1-5.

Listing 1-5. XML Commenting Syntax

/// <summary>
/// This is the starting point.
/// </summary>
/// <param name="args">
/// This parameter receives command line arguments.
/// </param>
static void Main(string[] args)
{
}

As you can see, the XML commenting syntax uses three slashes (///). The tags such as
<summary> and <parameter> are built-in tags, and I will cover them in detail in subsequent chap-
ters. To generate XML documentation out of this code, you need to choose project settings, as
shown in Figure 1-9.

Figure 1-9. Configuring a project for XML documentation

8253.book Page 20 Wednesday, February 21, 2007 9:09 PM

C H A P T E R 1 ■ I N T R O D U C I N G X M L A N D T H E . N E T F R A M E W O R K 21

Notice the check box titled XML Documentation File. After you select this check box and
specify the output path, the compiler generates an XML file, as shown in Listing 1-6.

Listing 1-6. Resultant XML Comments

<?xml version="1.0"?>
<doc>
 <assembly>
 <name>Parts of XML</name>
 </assembly>
 <members>
 <member name="M:Parts_of_XML.Program.Main(System.String[])">
 <summary>
 This is the starting point.
 </summary>
 <param name="args">
 This parameter receives command line arguments.
 </param>
 </member>
 </members>
</doc>

You can now apply an Extensible Stylesheet Language (XSL) style sheet to the preceding
XML file to get HTML documentation out of it.

SQL Server XML Features
SQL Server 2005 is one of the most powerful database engines used today. Moreover, it is from
the creators of the .NET Framework. Naturally, you can expect good XML support in the
product.

SQL Server 2005 provides some extensions to the SELECT statement, such as FOR XML, AUTO,
EXPLICIT, PATH, and RAW, that return the requested data in XML form. The XML data returned by
these queries can be retrieved by using the ExecuteXmlReader() method of the SqlCommand
object. Further, Microsoft has released a set of managed classes called SQLXML that facilitate
reading, processing, and updating data to and from SQL Server 2005 databases in XML format.
Finally, SQL Server 2005 provides a new data type called xml to the standard data types. I will
cover these features at length in Chapter 10.

Working with Visual Studio
Throughout the remainder of the book, you will be using Microsoft Visual Studio 2005 for
developing various applications. Hence it is worthwhile to quickly illustrate how Visual Studio
can be used to develop Windows and web applications. Note that this section is not intended
to give you a detailed understanding of Visual Studio. I will restrict our discussions to the fea-
tures that you need later in this book.

8253.book Page 21 Wednesday, February 21, 2007 9:09 PM

22 C H A P T E R 1 ■ I N T R O D U C I N G X M L A N D T H E . N E T F R A M E W O R K

■Note Though the examples in this book are developed by using Visual Studio 2005, for most of the
Windows Forms examples you can also use Visual C# Express Edition. Similarly, for examples related to web-
sites and web services, you can use Visual Web Developer (VWD). Visual C# Express Edition and Visual Web
Developer can be downloaded from Microsoft’s website free of charge.

Creating Windows Applications
In this section, you will learn how to create a Windows Forms–based application by using
Visual Studio. To create a Windows Forms–based application, you need to create a project of
type Windows Application. To begin creating such a project, click File ➤ New Project from the
main menu. This opens the New Project dialog box, as shown in Figure 1-10.

Figure 1-10. Creating a Windows application in Visual Studio

8253.book Page 22 Wednesday, February 21, 2007 9:09 PM

C H A P T E R 1 ■ I N T R O D U C I N G X M L A N D T H E . N E T F R A M E W O R K 23

In the Project Types section, select Visual C#. This will display all the project templates
applicable to the C# language. Now choose Windows Application from the templates. Name
the project HelloWindowsWorld. Also, choose an appropriate location from your disk to
store the project files. If you wish, you can also specify a solution name for the Visual Studio
solution file. Finally, click the OK button to create the project.

Your Visual Studio IDE should resemble Figure 1-11.

Figure 1-11. A newly created Windows application in the Visual Studio IDE

The project contains a single Windows form. You can drag and drop controls from the
toolbox onto the form and handle their events. Just to illustrate how this is done, drag and drop
a Button control on the form. Open the properties windows by using the View menu and set its
Text property to Click Me. Your form should now look similar to Figure 1-12.

8253.book Page 23 Wednesday, February 21, 2007 9:09 PM

24 C H A P T E R 1 ■ I N T R O D U C I N G X M L A N D T H E . N E T F R A M E W O R K

Figure 1-12. Windows form with Button control

Double-click the Click Me button so as to go in its Click event handler. Key in the code
shown in Listing 1-7.

Listing 1-7. Click Event Handler of the Button Control

private void button1_Click(object sender, EventArgs e)
{
 MessageBox.Show("Hello from Windows Forms");
}

The code shows the Click event handler of the Button control. Notice the signature of the
event handler carefully. Throughout the .NET Framework, Microsoft has maintained a uniform
signature for event handlers. The first parameter of the event handler gives you the reference
of the control (or object in general) that raised the event. The second parameter (often referred
to as event arguments) supplies more information about the event, if any. The second parame-
ter can be either an instance of the EventArgs class directly or of any other class inheriting from
the EventArgs class.

8253.book Page 24 Wednesday, February 21, 2007 9:09 PM

C H A P T E R 1 ■ I N T R O D U C I N G X M L A N D T H E . N E T F R A M E W O R K 25

■Note You might be wondering why the sender parameter is needed. In the .NET Framework, one method
can act as an event handler for multiple controls. For example, you can handle the Click event of two Button
controls by writing just one event handler function. In such cases, the sender parameter can be used to iden-
tify the control that raised the event.

When you double-click on a control, Visual Studio automatically takes you to its default
event handler. However, you can wire various events and their handlers manually by using
properties windows. Figure 1-13 shows how this is done.

Figure 1-13. Wiring events and their handlers manually

Inside the event handler we have used the MessageBox class to display a message box. The
Show() method of the MessageBox class has many overloads. We have used the one that accepts
a message to be displayed to the user.

Now use the Build menu to compile the application. Compiling the application will create
an .EXE-based (executable) .NET assembly. Though you can run the .EXE directly, you may
prefer to run the application via the Visual Studio IDE so that you can debug it if required. To
run the application, choose Debug ➤ Start Debugging from the menu. Figure 1-14 shows a
sample run of the application.

8253.book Page 25 Wednesday, February 21, 2007 9:09 PM

www.allitebooks.com

http://www.allitebooks.org

26 C H A P T E R 1 ■ I N T R O D U C I N G X M L A N D T H E . N E T F R A M E W O R K

Figure 1-14. Sample run of the application

Creating Class Libraries
A project of type Windows Application outputs an .EXE assembly. Generally, such applications
present some type of user interface to the user. However, at times you need to code function-
ality and create a component. Such components reside as dynamic link libraries (.DLL files)
and generally do not include any presentation logic. To create dynamic link libraries by using
Visual Studio, you need to create a project of type Class Library.

To learn how to create and consume class libraries, you will create a Class Library project.
The resultant assembly will be consumed by the Windows application that you developed in
the preceding section.

Again choose File ➤ New Project from the menu to open the New Project dialog box, as
shown in Figure 1-15.

This time select the Class Library project template and name it HelloWorldLib. At the bot-
tom of the dialog box, there is a combo box that allows you to add the new solution to the existing
solution. Ensure that you choose Add to Solution in this combo box. Finally click the OK button.
Your Visual Studio IDE should now resemble Figure 1-16.

8253.book Page 26 Wednesday, February 21, 2007 9:09 PM

C H A P T E R 1 ■ I N T R O D U C I N G X M L A N D T H E . N E T F R A M E W O R K 27

Figure 1-15. Adding a Class Library project

Figure 1-16. The Visual Studio IDE after adding the Class Library project

8253.book Page 27 Wednesday, February 21, 2007 9:09 PM

28 C H A P T E R 1 ■ I N T R O D U C I N G X M L A N D T H E . N E T F R A M E W O R K

By default the class library contains one class. You can of course add more classes at a later
stage if required. Now add a method named HelloWorld() in the class library. The method is
shown in Listing 1-8.

Listing 1-8. HelloWorld() Method

public string HelloWorld()
{
 return "Hello from Windows Forms";
}

The method simply returns a string to the caller. Now compile the class library as outlined
before. Our class library is now ready to be consumed in another application.

Choose Projects ➤ Add Reference from the menu to open the Add Reference dialog box
(see Figure 1-17).

Figure 1-17. Adding a reference through the Add Reference dialog box

This dialog box contains several tabs. The .NET and COM tabs are used to add a reference
to built-in .NET Framework assemblies and COM components, respectively. The Projects tab
is used to add a reference to another project from the same solution. Finally, the Browse tab
can be used to add a reference to assemblies located somewhere on your machine. In our
example, you need to add a reference to the HelloWorldLib assembly from the Projects tab.

Now change the code of the Windows application, as shown in Listing 1-9.

8253.book Page 28 Wednesday, February 21, 2007 9:09 PM

C H A P T E R 1 ■ I N T R O D U C I N G X M L A N D T H E . N E T F R A M E W O R K 29

Listing 1-9. Modified Code of the Windows Application

using System;
using System.Windows.Forms;
using HelloWorldLib;

namespace HelloWindowsWorld
{
 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 }

 private void button1_Click(object sender, EventArgs e)
 {
 Class1 obj = new Class1();
 MessageBox.Show(obj.HelloWorld());
 }
 }
}

Notice the code marked in bold. The code imports the HelloWorldLib namespace
with the help of a using statement. In the Click event handler, an object of Class1 from the
HelloWorldLib project is created. HelloWorld() is then called on the instance and supplied
to the Show() method of the MessageBox class.

If you run the application after modifying the code as shown in Listing 1-9, you should get
the same result as before.

■Note You will learn more about website and web service types of projects in Chapters 9 and 11.

Summary
XML is a de facto standard for representing, exchanging, and transporting data across heter-
ogonous systems. All the members of the XML family of technologies (XML, XML Schema,
XPath, XSL, and XSLT) are industry standards and hence enjoy massive support from all the
leading vendors. Developing cross-platform applications becomes easy with the help of such
standards.

8253.book Page 29 Wednesday, February 21, 2007 9:09 PM

30 C H A P T E R 1 ■ I N T R O D U C I N G X M L A N D T H E . N E T F R A M E W O R K

Microsoft has harnessed the full potential of XML while developing the .NET Framework.
The System.Xml namespaces and several sub-namespaces provide dozens of classes that allow
you to read, write, and modify XML documents. The configuration files of .NET applications
exclusively make use of XML markup. Distributed technologies such as remoting and web ser-
vices also use XML heavily. The C# and VB.NET languages support XML commenting, which
you can use to generate XML documentation for your applications. The .NET Framework also
allows you to leverage XML-related features of SQL Server 2005 by exposing managed compo-
nents such as SQLXML.

8253.book Page 30 Wednesday, February 21, 2007 9:09 PM

31

■ ■ ■

C H A P T E R 2

Manipulating XML Documents
by Using the Document
Object Model

Chapter 1 discussed two flavors of parsers—tree-based parsers and event-based parsers. You
also learned that the Document Object Model (DOM) is a set of APIs for manipulating XML
documents. This chapter covers the following topics:

• System.Xml namespace classes related to DOM

• Knowing when to use DOM

• Reading an XML document by using DOM

• Writing XML documents by using DOM

• Creating a customized DOM-based parser by extending what is offered by .NET

Using the DOM Parser
The System.Xml namespace provides a set of classes that together allow DOM manipulation of an
XML document. At the heart of DOM manipulation in .NET lies a class called XmlDocument. This
class is the DOM parser of the .NET Framework. Just like any other DOM parser, XmlDocument
looks at your XML file as a tree. It loads the XML document and builds its tree representation
(consisting of elements, attributes, comments, and so on) in memory.

8253.book Page 31 Wednesday, February 21, 2007 9:09 PM

32 C H A P T E R 2 ■ M A N I P U L A T I N G X M L D O C U M E N T S B Y U S I N G T H E D O C U M E N T O B J E C T M O D E L

For example, consider Listing 2-1.

Listing 2-1. Parts of a Typical XML Document

<?xml version="1.0"?>
<customers>
 <customer CustomerID="C001">
 <name>Acme Inc.</name>
 <phone>12345</phone>
 <comments>Regular customer since 1995</comments>
 </customer>
 <customer CustomerID="C002">
 <name>Star Wars Inc.</name>
 <phone>23456</phone>
 <comments>A small but healthy company.</comments>
 </customer>
</customers>

The preceding XML document consists of the parts listed in Table 2-1.

Table 2-1. Parts of the XML Document

In addition to what is shown in the preceding table, the <name>, <phone>, and <comment>
elements contain text values that are called text nodes.

The preceding document is loaded in memory by the DOM parser as a tree and resembles
Figure 2-1.

Part Name Type of Part

<?xml ...?> Processing instruction

customers Document element or root node

customer Element

CustomerID Attribute of the <customer> element

name Child element of the <customer> element

phone Child element of the <customer> element

comments Child element of the <customer> element

8253.book Page 32 Wednesday, February 21, 2007 9:09 PM

C H A P T E R 2 ■ M A N I P U L A T I N G X M L D O C U M E N T S B Y U S I N G T H E D O C U M E N T O B J E C T M O D E L 33

Figure 2-1. Tree representation of an XML document

Each part of the preceding diagram is actually a node. In .NET a node is represented by
an abstract class called XmlNode. Even text values and attributes are nodes. They are of course
handled differently from the other nodes.

Each of the parts mentioned in Table 2-1 is represented by a class, each of which is
described in Table 2-2.

Table 2-2. XML DOM Classes

All of the classes in Table 2-2 inherit directly or indirectly from an abstract base class
XmlNode. While using the XmlDocument class, you will often use one or another of the classes
from Table 2-2.

Part of XML Document Class Representing the Part

Document element XmlElement

Processing instructions XmlProcessingInstruction

Element XmlElement

Attribute XmlAttribute

Text values XmlText

Nodes XmlNode

8253.book Page 33 Wednesday, February 21, 2007 9:09 PM

34 C H A P T E R 2 ■ M A N I P U L A T I N G X M L D O C U M E N T S B Y U S I N G T H E D O C U M E N T O B J E C T M O D E L

Knowing When to Use DOM
Before you go ahead and use DOM for accessing your XML documents, you should understand
the areas to which DOM is best suited and areas where its use should be avoided.

The decision of whether to use DOM is governed by the following core factors:

Read/write access: DOM allows you to read and write the XML document. But do you really
need to change the underlying document?

Memory footprint: DOM loads the entire document in memory. Naturally the memory
footprint of DOM is larger. Are your documents large, say over 100MB?

Type of access: DOM allows you to access any node randomly. This is possible because the
entire document tree is available in memory. Do you need such access? Or is sequential
access sufficient?

Answers to the preceding questions will help you to decide whether to use DOM. To sum-
marize, DOM is best suited in the following scenarios:

• You want to modify the XML documents, that is, read-only access is not sufficient.

• You want to access various nodes randomly, that is, sequential access is not sufficient.

• You want to process documents that are small in size.

• The memory footprint is not a constraint.

A Sample XML Document
Throughout this chapter, we will be using an XML document that resides on the disk as a file
named Employees.xml. The Employees.xml file is shown in Listing 2-2.

Listing 2-2. A Sample XML Document

<?xml version="1.0" encoding="utf-8" ?>
<!-- This is list of employees -->
<employees>
 <employee employeeid="1">
 <firstname>Nancy</firstname>
 <lastname>Davolio</lastname>
 <homephone>(206) 555-9857</homephone>
 <notes>
 <![CDATA[includes a BA in psychology from Colorado State University in
 1970. She also completed "The Art of the Cold Call." Nancy is a member of
 Toastmasters International.]]>
 </notes>
 </employee>

8253.book Page 34 Wednesday, February 21, 2007 9:09 PM

C H A P T E R 2 ■ M A N I P U L A T I N G X M L D O C U M E N T S B Y U S I N G T H E D O C U M E N T O B J E C T M O D E L 35

 <employee employeeid="2">
 <firstname>Andrew</firstname>
 <lastname>Fuller</lastname>
 <homephone>(206) 555-9482</homephone>
 <notes>
 <![CDATA[Andrew received his BTS commercial in 1974 and a Ph.D. in
 international marketing from the University of Dallas in 1981. He is fluent
 in French and Italian and reads German. He joined the company as a sales
 representative, was promoted to sales manager in January 1992 and to vice
 president of sales in March 1993. Andrew is a member of the Sales
 Management Roundtable, the Seattle Chamber of Commerce, and the Pacific
 Rim Importers Association.]]>
 </notes>
 </employee>
 <employee employeeid="3">
 <firstname>Janet</firstname>
 <lastname>Leverling</lastname>
 <homephone>(206) 555-3412</homephone>
 <notes>
 <![CDATA[Janet has a BS degree in chemistry from Boston College (1984).
 She has also completed a certificate program in food retailing management.
 Janet was hired as a sales associate in 1991 and promoted to sales
 representative in February 1992.]]>
 </notes>
 </employee>
</employees>

This XML document represents a list of employees. The <employees> element forms the
document element and contains three <employee> child elements. The <employee> element has
an attribute called employeeid and four sub-elements: <firstname>, <lastname>, <homephone>,
and <notes>. The <notes> element contains descriptive data that is stored as CDATA.

To create an XML file, you can enlist the help of the Visual Studio IDE, which enables you
to quickly create XML documents by auto-completing end tags, putting attributes in quotes,
and showing errors related to the document not being well formed. Because we will be using
this file often, I recommend that you create it and keep it in a handy location on your hard disk.

Opening an Existing XML Document for Parsing
To open an existing XML document, you need to use the XmlDocument class. The XmlDocument
class allows you to open XML documents in three common ways:

• You can specify the path to, or URL of, the XML file.

• You can use a stream object such as FileStream that contains the XML data.

• You can hold a string in memory that contains the XML data.

8253.book Page 35 Wednesday, February 21, 2007 9:09 PM

www.allitebooks.com

http://www.allitebooks.org

36 C H A P T E R 2 ■ M A N I P U L A T I N G X M L D O C U M E N T S B Y U S I N G T H E D O C U M E N T O B J E C T M O D E L

To see how each of the preceding approaches can be used, you need to develop a Windows
application as shown in Figure 2-2.

Figure 2-2. Opening an XML document

The application consists of three radio buttons for selecting the place from where the XML
document is to be loaded. There is a text box for entering the file path, URL, or XML string.
Finally, there is a button titled Open Document that opens the XML file depending on the
selection and shows a message box with a success message.

Listing 2-3 shows the Click event handler of the button.

Listing 2-3. Opening an XML Document

private void button1_Click(object sender, EventArgs e)
{
try
{
 XmlDocument doc = new XmlDocument();
 if (radioButton1.Checked)
 {
 doc.Load(textBox1.Text);
 }
 if (radioButton2.Checked)
 {
 FileStream stream = new FileStream(textBox1.Text, FileMode.Open);
 doc.Load(stream);
 stream.Close();
 }
 if (radioButton3.Checked)

8253.book Page 36 Wednesday, February 21, 2007 9:09 PM

C H A P T E R 2 ■ M A N I P U L A T I N G X M L D O C U M E N T S B Y U S I N G T H E D O C U M E N T O B J E C T M O D E L 37

 {
 doc.LoadXml(textBox1.Text);
 }
 MessageBox.Show("XML Document Opened Successfully!");
}
catch(Exception ex)
{
MessageBox.Show(ex.Message);
}
}

The code creates an instance of the XmlDocument class. The XmlDocument class has two
important methods: Load() and LoadXml(). The former method can take a file system path,
URL, or stream object pointing to the XML document that you want to open. The latter method
accepts a string containing the XML data to be loaded. Depending on the selection made by the
user, either Load() or LoadXml() is called. Note that depending on the selection, your text box
should contain a URL, a file system path, or raw XML data.

■Note You must import the System.IO and System.Xml namespaces to successfully compile the code
shown in Listing 2-3. This applies to most of the examples illustrated in this chapter.

You can run the application and supply the path of the Employees.xml file that we created
earlier.

Navigating Through an XML Document
An XML document consists of one or more nodes, and nodes can be nested inside other nodes.
Such nested nodes are called child nodes.

The XmlNode class has a collection called ChildNodes that contains a list of child nodes of the
node under consideration. Note that most of the other DOM-related classes are inherited directly
or indirectly from the XmlNode class and hence the ChildNodes collection is also available to them.
Further, the XmlNode class has properties such as ParentNode, FirstChild, LastChild, NextSibling,
and PreviousSibling that allow you to navigate to the corresponding node. Thus the ParentNode
property will allow you to access the parent node of the current node, and the NextSibling property
will allow you to access the next node at the same level as that of the current node.

To see how many of these properties can be used, we will develop a Windows application.
The application navigates through the Employees.xml file and displays a TreeView control with
various nodes nested as per the document structure.

The application is shown in Figure 2-3.

8253.book Page 37 Wednesday, February 21, 2007 9:09 PM

38 C H A P T E R 2 ■ M A N I P U L A T I N G X M L D O C U M E N T S B Y U S I N G T H E D O C U M E N T O B J E C T M O D E L

Figure 2-3. Navigating through an XML document by using DOM

The application consists of a TreeView control and a button titled Load Tree. After you
click the button, the application loads the Employees.xml file by using the XmlDocument class. It
then iterates through all the child nodes and reads the values of the attributes and nodes. The
XML nodes are then added to the TreeView as TreeNodes.

Listing 2-4 shows the Click event handler of the Load Tree button.

Listing 2-4. Loading the Tree

private void button1_Click(object sender, EventArgs e)
{
 XmlDocument doc = new XmlDocument();
 doc.Load(Application.StartupPath + "/employees.xml");
 TreeNode root = new TreeNode(doc.DocumentElement.Name);
 treeView1.Nodes.Add(root);
 foreach (XmlNode node in doc.DocumentElement.ChildNodes)
 {
 TreeNode employee = new TreeNode("Employee ID :" +
 node.Attributes["employeeid"].Value);
 root.Nodes.Add(employee);
 if (node.HasChildNodes)
 {
 foreach (XmlNode childnode in node.ChildNodes)

8253.book Page 38 Wednesday, February 21, 2007 9:09 PM

C H A P T E R 2 ■ M A N I P U L A T I N G X M L D O C U M E N T S B Y U S I N G T H E D O C U M E N T O B J E C T M O D E L 39

 {
 TreeNode n2 = new TreeNode(childnode.Name + " : "+ childnode.InnerText);
 employee.Nodes.Add(n2);
 }
 }
 }
}

The code creates an instance of the XmlDocument class and loads the Employees.xml file by
using its Load() method. Then the code adds the root node of the TreeView. The XML docu-
ment root node is <employees> and can be accessed by using the DocumentElement property of
the XmlDocument class. The DocumentElement property is of type XmlElement. It has a property
called Name that returns the name of the element (employees, in our case).

The <employees> node contains three <employee> child nodes, which can be accessed by
using the ChildNodes property of the DocumentElement. A foreach loop then iterates through
them. With each iteration, a new TreeNode is added to the TreeView with the employee ID as
the text. To access the employeeid attribute, we use the Attributes collection of the XmlNode
class. You can specify either an attribute’s index or name to retrieve its value.

The code then checks whether the <employee> nodes have further child nodes by using
a Boolean property of the XmlNode class called HasChildNodes. If this property returns true,
another foreach loop iterates through the child nodes of the <employee> node. With each itera-
tion, a new TreeNode is added with text equal to the name of the child node and its value. To
retrieve the data inside nodes such as <firstname>, <lastname>, and so on, the code uses the
InnerText() method of the XmlNode class. The InnerText() method returns concatenated val-
ues of the node and all its child nodes.

Looking for Specific Elements and Nodes
Often we are not interested in the entire XML document loaded in memory but a part of it. This
requires us to search for a specific element or node for further processing. There are several
methods used to search the XML document:

• Retrieving specific elements by using the GetElementByTagName() method

• Retrieving specific elements by using the GetElementById() method

• Selecting specific nodes by using the SelectNodes() method

• Selecting a single specific node by using the SelectSingleNode() method

8253.book Page 39 Wednesday, February 21, 2007 9:09 PM

40 C H A P T E R 2 ■ M A N I P U L A T I N G X M L D O C U M E N T S B Y U S I N G T H E D O C U M E N T O B J E C T M O D E L

Retrieving Specific Elements by Using the
GetElementByTagName() Method
The GetElementsByTagName() method of the XmlDocument class accepts the name of the tag
(excluding < and >) and returns all the nodes matching that tag name. The matching nodes are
returned as an XmlNodeList. The XmlNodeList class represents a collection of XmlNode objects.

To see GetElementsByTagName() in action, we need to develop a Windows application as
shown in Figure 2-4.

Figure 2-4. Using the GetElementsByTagName() method

The application consists of a text box to enter the tag name to look for. After you click the
Search button, the matching tags are displayed in the list box. Selecting a tag from the list box
displays its contents in a read-only text box.

The code that makes the preceding form work is given in Listing 2-5.

Listing 2-5. Using the GetElementsByTagName() Method

XmlNodeList list = null;

private void button1_Click(object sender, EventArgs e)
{
 XmlDocument doc = new XmlDocument();
 doc.Load(Application.StartupPath + "/employees.xml");
 list = doc.GetElementsByTagName(textBox1.Text);
 listBox1.Items.Clear();
 foreach (XmlNode node in list)
 {
 listBox1.Items.Add(node.Name);
 }
}

8253.book Page 40 Wednesday, February 21, 2007 9:09 PM

C H A P T E R 2 ■ M A N I P U L A T I N G X M L D O C U M E N T S B Y U S I N G T H E D O C U M E N T O B J E C T M O D E L 41

private void listBox1_SelectedIndexChanged(object sender, EventArgs e)
{
 textBox2.Text = list[listBox1.SelectedIndex].InnerXml;
}

The code declares a variable of type XmlNodeList at the form level. This variable needs to
be declared at the form level because we need to access it in two event handlers.

In the Click event handler of the Search button, an XmlDocument instance is created.
The Employees.xml file is loaded into it by using its Load() method. The code then calls the
GetElementByTagName() method of the XmlDocument object, which accepts the tag name to look
for. In our application, the tag is specified in textBox1. As mentioned earlier, the return value of
the GetElementByTagName() method is of type XmlNodeList. The XmlNodeList class stores the
collection of XmlNode objects. The code then iterates through the returned XmlNodeList and
adds each node name into the list box.

The user can select any of the nodes displayed in the list box. In order to show the contents
of the selected node, the code handles the SelectedIndexChanged event of the list box. Inside
the SelectedIndexChanged event handler, the selected node is retrieved from the XmlNodeList
we stored previously. The contents of the selected node are displayed by using the InnerXml
property of the XmlNode class, which returns all the XML content that is inside the node under
consideration.

To see how the application works, run it from the Visual Studio IDE. Enter firstname in the
search text box and click the Search button. The list box should display three firstname entries.
This is expected because our XML document contains three <employee> nodes, each having a
<firstname> child element of its own. Click on any of the firstname entries from the list box.
The text box beside the list box should show the value of the firstname node.

Retrieving Specific Elements by Using
the GetElementById() Method
Often our XML elements have an attribute that is unique for each instance of that element in
the XML document. We may want to look for a specific element based on this attribute value.
This process is analogous to looking for a record in a database based on its primary key. The
difference, however, is that the XmlDocument class does not know automatically that a specific
attribute is acting as a primary key for that element. Formally such an attribute is called the ID
of that element.

To convey this information, you must use a DTD or schema. Both of these techniques can
mark an attribute as the ID of the element, and the XmlDocument class can then understand
them as IDs. After you have a DTD or schema attached to your XML document, you can call the
GetElementById() method of the XmlDocument class. The GetElementById() method accepts the
ID of the element to search for and returns that element as an instance of the XmlElement class.
You can then access the sub-elements or text inside this element.

To illustrate the use of the GetElementById() method, we will build an application as
shown in Figure 2-5.

8253.book Page 41 Wednesday, February 21, 2007 9:09 PM

42 C H A P T E R 2 ■ M A N I P U L A T I N G X M L D O C U M E N T S B Y U S I N G T H E D O C U M E N T O B J E C T M O D E L

Figure 2-5. Using the GetElementByID() method

The application consists of a combo box showing a list of employee IDs. After you select an
ID and click the Show Details button, the details such as firstname, lastname, homephone, and
notes are displayed below.

Before you proceed with the application development, you must modify the Employees.xml
file as shown in Listing 2-6.

Listing 2-6. XML File with DTD

<?xml version="1.0" encoding="utf-8" standalone="yes" ?>
<!-- This is list of employees -->
<!DOCTYPE employees [
 <!ELEMENT employees ANY>
 <!ELEMENT employee ANY>
 <!ELEMENT firstname ANY>
 <!ELEMENT lastname ANY>
 <!ELEMENT homephone ANY>
 <!ELEMENT notes ANY>
 <!ATTLIST employee employeeid ID #REQUIRED>
]>

8253.book Page 42 Wednesday, February 21, 2007 9:09 PM

C H A P T E R 2 ■ M A N I P U L A T I N G X M L D O C U M E N T S B Y U S I N G T H E D O C U M E N T O B J E C T M O D E L 43

<employees>
 <employee employeeid="1">
 <firstname>Nancy</firstname>
 <lastname>Davolio</lastname>
 <homephone>(206) 555-9857</homephone>
 <notes>
 <![CDATA[includes a BA in psychology from Colorado State University in
 1970. She also completed "The Art of the Cold Call." Nancy is a member of
 Toastmasters International.]]>
 </notes>
 </employee>
 <employee employeeid="2">
 <firstname>Andrew</firstname>
 <lastname>Fuller</lastname>
 <homephone>(206) 555-9482</homephone>
 <notes>
 <![CDATA[Andrew received his BTS commercial in 1974 and a Ph.D.
 in international marketing from the University of Dallas in 1981.
 He is fluent in French and Italian and reads German. He joined the company
 as a sales representative, was promoted to sales manager in January 1992
 and to vice president of sales in March 1993. Andrew is a member of the
 Sales Management Roundtable, the Seattle Chamber of Commerce,
 and the Pacific Rim Importers Association.]]>
 </notes>
 </employee>
 <employee employeeid="3">
 <firstname>Janet</firstname>
 <lastname>Leverling</lastname>
 <homephone>(206) 555-3412</homephone>
 <notes>
 <![CDATA[Janet has a BS degree in chemistry from Boston College (1984).
 She has also completed a certificate program in food retailing management.
 Janet was hired as a sales associate in 1991 and promoted to sales
 representative in February 1992.]]>
 </notes>
 </employee>
</employees>

8253.book Page 43 Wednesday, February 21, 2007 9:09 PM

44 C H A P T E R 2 ■ M A N I P U L A T I N G X M L D O C U M E N T S B Y U S I N G T H E D O C U M E N T O B J E C T M O D E L

The document looks almost identical to the original. However, an important piece is
added at the top (see the markup shown in bold). We have added a DTD for our document. I
will not go into the details of the DTD here, but suffice it to say that the ATTLIST section defines
an attribute called employeeid for the <employee> element. More important, the employeeid
attribute is marked as the ID and is also a REQUIRED attribute. This is how the XmlDocument class
knows which attribute of an element is acting as an ID.

If you look at the source code of the application, you will see a form-level variable of type
XmlDocument called doc:

XmlDocument doc = new XmlDocument();

The Load event handler of the form bears the code shown in Listing 2-7.

Listing 2-7. Populating the Combo Box

private void Form1_Load(object sender, EventArgs e)
{
 doc.Load(Application.StartupPath + "/employees.xml");
 foreach (XmlNode node in doc.DocumentElement.ChildNodes)
 {
 string employeeid = node.Attributes["employeeid"].Value;
 comboBox1.Items.Add(employeeid);
 }
}

The code loads the new Employees.xml file in the XmlDocument instance we created earlier
by using its Load() method. A foreach loop then iterates over all the <employee> nodes. With
each iteration, the employeeid attribute of the <employee> node is retrieved by using the
Attributes collection of the XmlNode class. The attribute value is added to the combo box.

When the user selects a particular ID, the details of that employee are displayed. This is
accomplished in the Click event handler of the Show Details button. The code inside the Click
event handler is shown in Listing 2-8.

Listing 2-8. Calling the GetElementById() Method

private void button1_Click(object sender, EventArgs e)
{
 XmlElement ele= doc.GetElementById(comboBox1.SelectedItem.ToString());
 label6.Text = ele.ChildNodes[0].InnerText;
 label7.Text = ele.ChildNodes[1].InnerText;
 label8.Text = ele.ChildNodes[2].InnerText;
 label9.Text = ele.ChildNodes[3].InnerText;
}

8253.book Page 44 Wednesday, February 21, 2007 9:09 PM

C H A P T E R 2 ■ M A N I P U L A T I N G X M L D O C U M E N T S B Y U S I N G T H E D O C U M E N T O B J E C T M O D E L 45

The code calls the GetElementById() method of the XmlDocument class and passes the
employee ID to look for. The GetElementById() method returns the matching element as an
object of type XmlElement. Because the XmlElement class inherits from the XmlNode class, the
ChildNodes collection is available to the XmlElement class also. To retrieve the values of the
<firstname>, <lastname>, <homephone>, and <notes> nodes, the ChildNodes collection is
accessed by using the index of the corresponding element. Finally, the InnerText property
of each XmlNode gives the text inside the appropriate node.

Selecting Specific Nodes by Using the SelectNodes() Method
In complex cases, you may want to search for a node matching a pattern. This is accomplished
with the help of XPath. Though XPath is not the subject of this chapter, I will give you a glimpse
of how it can be used. I will explain XPath fully in Chapter 4.

The XmlDocument class has a method called SelectNodes() that accepts the XPath criteria
for filtering the available nodes. It returns an XmlNodeList containing the matching nodes.

To see how the SelectNodes() method works, we need to develop a Windows application
as shown in Figure 2-6.

Figure 2-6. Using the SelectNodes() method

The application consists of a text box for entering the first name or last name of an
employee. The radio buttons allow you to choose whether to look for matching first names
or last names. Upon clicking the Search button, the SelectNodes() method is called. The
returned <employee> nodes are collected in an XmlNodeList. The combo box displays the list
of matching employee IDs. You can select an employee ID and click the Show Details button
to display the employee details.

8253.book Page 45 Wednesday, February 21, 2007 9:09 PM

www.allitebooks.com

http://www.allitebooks.org

46 C H A P T E R 2 ■ M A N I P U L A T I N G X M L D O C U M E N T S B Y U S I N G T H E D O C U M E N T O B J E C T M O D E L

If you look at the source code of the application, you will find a declaration of a variable of
type XmlNodeList at the form level:

XmlNodeList list = null;

We declare the variable at the form level because it is used in multiple event-handler
functions.

The Click event handler of the Search button is shown in Listing 2-9.

Listing 2-9. Using the SelectNodes() Method

private void button1_Click(object sender, EventArgs e)
{
 XmlDocument doc = new XmlDocument();
 doc.Load(Application.StartupPath + "/employees.xml");
 if (radioButton1.Checked)
 {
 list = doc.SelectNodes(string.Format
 ("//employee[./firstname/text()='{0}']",textBox1.Text));
 }
 else
 {
 list = doc.SelectNodes(string.Format
 ("//employee[./lastname/text()='{0}']",textBox1.Text));
 }
 foreach (XmlNode node in list)
 {
 comboBox1.Items.Add(node.Attributes["employeeid"].Value);
 }
}

The preceding code first creates an instance of the XmlDocument class. It then loads the
Employees.xml file by using the Load() method. Further, it checks the radio buttons to find out
whether to search on the basis of first name or last name. We want to search <employee> nodes
whose <firstname> or <lastname> matches the value entered in the text box. This is accom-
plished by calling the SelectNodes() method of the XmlDocument class. The SelectNodes()
method takes the XPath string and returns an XmlNodeList containing the matching nodes.
Look at the XPath syntax carefully. Because we want to select <employee> nodes, we specify
//employee. But we are not interested in selecting all the <employee> nodes, so we place the fil-
tering criterion in a pair of square brackets ([]). To represent the text value of the <firstname>
and <lastname> nodes, we use the text() XPath function.

The code then iterates through the XmlNodeList and adds employee IDs to a combo box.
The values of the employeeid attributes are retrieved by using the Attributes collection of the
XmlNode class.

The user will select the employee ID whose details they want to see and will click the
Show Details button. Listing 2-10 shows the code from the Click event handler of the Show
Details button.

8253.book Page 46 Wednesday, February 21, 2007 9:09 PM

C H A P T E R 2 ■ M A N I P U L A T I N G X M L D O C U M E N T S B Y U S I N G T H E D O C U M E N T O B J E C T M O D E L 47

Listing 2-10. Displaying Employee Details

private void button2_Click(object sender, EventArgs e)
{
 label8.Text = list[comboBox1.SelectedIndex].ChildNodes[0].InnerText;
 label9.Text = list[comboBox1.SelectedIndex].ChildNodes[1].InnerText;
 label10.Text = list[comboBox1.SelectedIndex].ChildNodes[2].InnerText;
 label11.Text = list[comboBox1.SelectedIndex].ChildNodes[3].InnerText;
}

The code simply retrieves the desired XmlNode from the XmlNodeList. The child nodes of the
node are accessed by using the ChildNodes collection. The InnerText property of the XmlNode
class returns the text from each child node.

Selecting a Single Specific Node by Using
the SelectSingleNode() Method
The SelectSingleNode() is very similar to the SelectNodes() method that we just learned, with
one difference. Instead of returning a list of XmlNode objects in the form of an XmlNodeList, it
simply returns the first matching XmlNode.

To test this method, you can modify the previous example as shown in Listing 2-11.

Listing 2-11. Using the SelectSingleNode() Method

XmlNode node = null;

private void button1_Click(object sender, EventArgs e)
{
 XmlDocument doc = new XmlDocument();
 doc.Load(Application.StartupPath + "/employees.xml");
 if (radioButton1.Checked)
 {
 node = doc.SelectSingleNode("//employee[./firstname/text()='" +
 textBox1.Text + "']");
 }
 else
 {
 node = doc.SelectSingleNode("//employee[./lastname/text()='" +
 textBox1.Text + "']");
 }
 if (node != null)
 {
 comboBox1.Items.Add(node.Attributes["employeeid"].Value);
 }
}

8253.book Page 47 Wednesday, February 21, 2007 9:09 PM

48 C H A P T E R 2 ■ M A N I P U L A T I N G X M L D O C U M E N T S B Y U S I N G T H E D O C U M E N T O B J E C T M O D E L

private void button2_Click(object sender, EventArgs e)
{
 label8.Text = node.ChildNodes[0].InnerText;
 label9.Text = node.ChildNodes[1].InnerText;
 label10.Text = node.ChildNodes[2].InnerText;
 label11.Text = node.ChildNodes[3].InnerText;
}

The code now declares a variable of type XmlNode at the form level. The Click event handler
of the Search button calls the SelectSingleNode() method, which accepts the same XPath
expression as in the previous example. This method returns the first matching node instead of
an XmlNodeList, though our search criteria may not necessarily return any matching node.
Therefore, the code accesses the XmlNode variable only if it is not null. In the Click event of the
Show Details button, the XmlNode variable node is used to retrieve employee details.

Modifying XML Documents
Up until this point, we have seen how to read XML documents; how to navigate through them;
and how to search them on the basis of tag names, IDs, and XPath expressions. But what about
modifying them? That’s the topic of this section.

Often business requirements call for modification of the underlying XML document. This
modification can be an addition, a deletion, or a modification of nodes or attributes. As you
saw previously, DOM is a read-write parser. That means DOM APIs also allow you to modify
the document.

To illustrate the use of several System.Xml classes for modifying XML documents, we are
going to develop a Windows application as shown in Figure 2-7.

Figure 2-7. Data entry screen for the Employees.xml file

8253.book Page 48 Wednesday, February 21, 2007 9:09 PM

C H A P T E R 2 ■ M A N I P U L A T I N G X M L D O C U M E N T S B Y U S I N G T H E D O C U M E N T O B J E C T M O D E L 49

The application represents a complete data entry screen for the Employees.xml file. The
application allows us to do the following tasks:

• Navigate among the available employees with the help of VCR buttons. (The buttons
used to navigate to the previous, next, first, and last records are often called VCR
buttons.)

• Add a new employee.

• Modify the details of a particular employee. The employee ID attribute acts like a pri-
mary key for our XML document and hence it cannot be changed.

• Delete an existing employee.

If you look at the source code of the preceding application, you will see two form-level
variables as shown here:

XmlDocument doc = new XmlDocument();
int CurrentNodeIndex = 0;

The XmlDocument instance is used throughout the application. The integer variable
CurrentNodeIndex is used to keep track of the current employee record that is being displayed
(it is mainly used by the navigational buttons).

The Load event handler of the form is shown in Listing 2-12.

Listing 2-12. Filling Controls

private void Form1_Load(object sender, EventArgs e)
{
 doc.Load(Application.StartupPath + "/employees.xml");
 foreach (XmlNode node in doc.DocumentElement.ChildNodes)
 {
 comboBox1.Items.Add(node.Attributes["employeeid"].Value);
 }
 FillControls();
}

The preceding code loads the Employees.xml file by using the Load() method. It then
iterates through all the <employee> nodes and fills the combo box with employee IDs. The
employeeid attribute is retrieved by using the Attributes collection of the XmlNode class. Finally,
the code calls a helper method called FillControls(). This method simply displays first name,
last name, home phone, and notes from the current <employee> node in various text boxes. We
will be looking at the FillControls() method shortly.

Navigating Between Various Nodes
The application allows you to navigate between various <employee> nodes with the help of VCR
navigation buttons. Listing 2-13 shows how the navigation buttons work.

8253.book Page 49 Wednesday, February 21, 2007 9:09 PM

50 C H A P T E R 2 ■ M A N I P U L A T I N G X M L D O C U M E N T S B Y U S I N G T H E D O C U M E N T O B J E C T M O D E L

Listing 2-13. Working of Navigation Buttons

//go to first record
private void button4_Click(object sender, EventArgs e)
{
 CurrentNodeIndex = 0;
 FillControls();
}

//go to previous record
private void button5_Click(object sender, EventArgs e)
{
 CurrentNodeIndex--;
 if (CurrentNodeIndex < 0)
 {
 CurrentNodeIndex = 0;
 }
 FillControls();
}

//go to next record
private void button6_Click(object sender, EventArgs e)
{
 CurrentNodeIndex++;
 if (CurrentNodeIndex >= doc.DocumentElement.ChildNodes.Count)
 {
 CurrentNodeIndex = doc.DocumentElement.ChildNodes.Count-1;
 }
 FillControls();
}

//go to last record
private void button7_Click(object sender, EventArgs e)
{
 CurrentNodeIndex = doc.DocumentElement.ChildNodes.Count - 1;
 FillControls();
}

In the Click event of the First Record (<<) button, the code sets the CurrentNodeIndex vari-
able to 0 and calls the FillControls() method. The FillControls() method then populates
various controls based on the value of the CurrentNodeIndex variable.

The Click event handler of the Previous Record (<) button decrements the CurrentNodeIndex
variable. If the value becomes less than 0, the event handler sets it to 0. The FillControls() method
is then called.

8253.book Page 50 Wednesday, February 21, 2007 9:09 PM

C H A P T E R 2 ■ M A N I P U L A T I N G X M L D O C U M E N T S B Y U S I N G T H E D O C U M E N T O B J E C T M O D E L 51

In the Click event handler of the Next Record (>) button, the code increments the
CurrentNodeIndex variable. If the value goes beyond the total number of <employee> nodes,
the event handler sets a new value of the total number of employee nodes minus 1. This is nec-
essary because just like any other collection in .NET, the ChildNodes collection is zero based.

Finally, the Click event handler of the Last Record (>>) button sets the CurrentNodeIndex
variable to the total number of employee nodes minus 1.

Now that you know how the navigation system of the application works, let’s move on to
the more interesting part—modifying, deleting, and adding XML content.

Modifying Existing Content
To modify an <employee> node, we first need to retrieve it from the list of <employee> nodes. The
employee ID of the employee will be taken from the combo box. To retrieve the <employee>
node, we can use the SelectNodes() or SelectSingleNode() method. In our example, because
there can be only one <employee> node matching the given employee ID, SelectSingleNode()
is a better choice. After a reference to the <employee> node is retrieved, we can change its child
nodes. The complete code implementing this logic is given in Listing 2-14.

Listing 2-14. Modifying Existing Content

private void button2_Click(object sender, EventArgs e)
{
 XmlNode node=doc.SelectSingleNode("//employee[@employeeid='" +
 comboBox1.SelectedItem + "']");
 if (node != null)
 {
 node.ChildNodes[0].InnerText = textBox1.Text;
 node.ChildNodes[1].InnerText = textBox2.Text;
 node.ChildNodes[2].InnerText = textBox3.Text;
 XmlCDataSection notes = doc.CreateCDataSection(textBox4.Text);
 node.ChildNodes[3].ReplaceChild(notes, node.ChildNodes[3].ChildNodes[0]);
 }
 doc.Save(Application.StartupPath + "/employees.xml");
}

First, the code retrieves the <employee> node matching the selected employee ID by
using the SelectSingleNode() method. Carefully note the XPath expression that is used.
In XPath expressions, attributes are prefixed with the @ symbol. Thus @employeeid refers
to the employeeid attribute of the <employee> node. The SelectSingleNode() method returns
the selected node in the form of an XmlNode object. Before we proceed and change its con-
tents, we need to ensure that the SelectSingleNode() has returned a node. This is done by
checking whether the node returned is null or otherwise.

8253.book Page 51 Wednesday, February 21, 2007 9:09 PM

52 C H A P T E R 2 ■ M A N I P U L A T I N G X M L D O C U M E N T S B Y U S I N G T H E D O C U M E N T O B J E C T M O D E L

The XmlNode returned from the SelectSingleNode() method will be an <employee> node.
That means it will have four child nodes: <firstname>, <lastname>, <homephone>, and <notes>.
The InnerText property of these four child nodes is nothing but the text values of the corre-
sponding node. Inside the if condition, the code sets the InnerText property of all four child
nodes to the values from respective text boxes. There is one interesting thing to note here. The
<notes> element contains free text that can feature special markup symbols such as <, >, and ".
If we simply assign the InnerText property of the <notes> node to the new value, it can create
problems when accessing the document later.

Remember that we have written the contents of the <notes> node as a CDATA section to
avoid just such a problem, so we must write the new data as a CDATA section as well. The CDATA
section is represented by a class called XmlCDataSection. The CreateCDataSection() method of
the XmlDocument class creates a new CDATA section with the supplied text (the entire text sup-
plied is placed within <![CDATA[...]]>). To change the content of an existing CDATA section,
the code calls the ReplaceChild() method of the XmlNode class. The ReplaceChild() method
accepts the new node and the old node as parameters. The old node is then replaced with the
new node.

After you make any changes to an XML document, the entire document must be saved to
disk in order to persist the changes. This is accomplished by using the Save() method of the
XmlDocument class. The Save() method accepts the target path where you would like to save the
file. In our example, because we want to overwrite the existing Employees.xml file with the
modified version, we supply the same path as that of the original file.

Deleting Existing Content
Deleting an <employee> node requires finding it from the list of available employees based on
the employee ID and then removing it from the document. The code that implements the
delete feature is given in Listing 2-15.

Listing 2-15. Deleting a Node

private void button3_Click(object sender, EventArgs e)
{
 XmlNode node = doc.SelectSingleNode("//employee[@employeeid='" +
 comboBox1.SelectedItem + "']");
 if (node != null)
 {
 doc.DocumentElement.RemoveChild(node);
 }
 doc.Save(Application.StartupPath + "/employees.xml");
 UpdateLabel();
}

8253.book Page 52 Wednesday, February 21, 2007 9:09 PM

C H A P T E R 2 ■ M A N I P U L A T I N G X M L D O C U M E N T S B Y U S I N G T H E D O C U M E N T O B J E C T M O D E L 53

The code retrieves the node that we wish to delete by using the SelectSingleNode() method.
To delete a node from the ChildNodes collection, the XmlNode class provides a method called
RemoveChild(). The RemoveChild() method accepts a reference to the XmlNode that is to be
removed from the ChildNodes collection. In our case, we wish to remove the entire <employee>
node, which is a child node of the <employees> root element. Hence the code calls the
RemoveChild() method on the DocumentElement, that is, the root node of the document.

After the node is deleted, the file is saved to disk by using the Save() method of the
XmlDocument class. The UpdateLabel() helper method simply updates the current record
number displayed on the status label.

Adding New Content
The code that adds a new employee is a bit lengthier than our previous examples. It is more
interesting too. You will now learn how to create XML document contents from the ground up.
Creating elements, attributes, text nodes, and CDATA sections will all be demystified in this
section.

First of all, let’s count the elements, attributes, and nodes that we need to create in order
to add a new employee to our XML document. Here is a list of nodes that we need to add:

• An <employee> element

• A <firstname> element

• A <lastname> element

• A <homephone> element

• A <notes> element

• An employeeid attribute for the <employee> element

• A text node for the <firstname> value

• A text node for the <lastname> value

• A text node for the <homephone> value

• A CDATA section for the <notes> value

Note one important thing: the text that appears as the value of the <firstname>,
<lastname>, <homephone>, and <notes> elements is also treated as a node.

The complete code that implements an employee addition is shown in Listing 2-16.

8253.book Page 53 Wednesday, February 21, 2007 9:09 PM

54 C H A P T E R 2 ■ M A N I P U L A T I N G X M L D O C U M E N T S B Y U S I N G T H E D O C U M E N T O B J E C T M O D E L

Listing 2-16. Adding a New Node

private void button1_Click(object sender, EventArgs e)
{
 XmlElement employee = doc.CreateElement("employee");
 XmlElement firstname = doc.CreateElement("firstname");
 XmlElement lastname = doc.CreateElement("lastname");
 XmlElement homephone = doc.CreateElement("homephone");
 XmlElement notes = doc.CreateElement("notes");

 XmlAttribute employeeid = doc.CreateAttribute("employeeid");
 employeeid.Value = comboBox1.Text;

 XmlText firstnametext = doc.CreateTextNode(textBox1.Text);
 XmlText lastnametext = doc.CreateTextNode(textBox2.Text);
 XmlText homephonetext = doc.CreateTextNode(textBox3.Text);
 XmlCDataSection notestext = doc.CreateCDataSection(textBox4.Text);

 employee.Attributes.Append(employeeid);
 employee.AppendChild(firstname);
 employee.AppendChild(lastname);
 employee.AppendChild(homephone);
 employee.AppendChild(notes);

 firstname.AppendChild(firstnametext);
 lastname.AppendChild(lastnametext);
 homephone.AppendChild(homephonetext);
 notes.AppendChild(notestext);

 doc.DocumentElement.AppendChild(employee);
 doc.Save(Application.StartupPath + "/employees.xml");

 UpdateLabel();
}

The code creates five elements by using the CreateElement() method of the XmlDocument
class. These five elements are <employee>, <firstname>, <lastname>, <homephone>, and <notes>.
The CreateElement() method accepts the tag name of the element and returns an object of
type XmlElement. Note that XmlElement inherits from the XmlNode class.

An attribute is represented by the XmlAttribute class and is created by using the
CreateAttribute() method of the XmlDocument class. The CreateAttribute() method accepts
the attribute name as a parameter, in this case employeeid. The value of the attribute can be
assigned by setting the Value property of the XmlAttribute class.

The code proceeds to create three text nodes that represent the values of the <firstname>,
<lastname>, and <homephone> elements, respectively. Text nodes are represented by a class
called XmlText. To create these text nodes, the code uses the CreateTextNode() method of
the XmlDocument class. The CreateTextNode() method accepts the value of the text node as a
parameter.

8253.book Page 54 Wednesday, February 21, 2007 9:09 PM

C H A P T E R 2 ■ M A N I P U L A T I N G X M L D O C U M E N T S B Y U S I N G T H E D O C U M E N T O B J E C T M O D E L 55

As I said earlier, the <notes> element contains character data (CDATA), and a CDATA section is
represented by a class called XmlCDataSection. As we did before, we create the CDATA section by
using the CreateCDataSection() method of the XmlDocument class.

This completes the element, attribute, and node creation. The code then proceeds to nest
various elements as per the required XML structure.

All the attributes of an XmlNode are stored in its Attributes collection. To add the
employeeid attribute to the <employee> element, the Append() method of Attributes collec-
tion is used. The Append() method accepts an instance of the XmlAttribute class.

The AppendChild() method of the XmlNode class accepts another XmlNode and makes it a
child of the node on which AppendChild() has been called. The code calls the AppendChild()
method on the <employee> element and adds all the remaining four elements as its children.

Next, the code adds all the text nodes and CDATA section to their respective parents by using
the same AppendChild() method.

Finally, the entire <employee> node is appended to the DocumentElement, that is, the
<employees> root node. Because we have added a brand new node to the document, the Save()
method is needed to save the changed document to disk.

Using Helper Methods
In the preceding code, we frequently used two helper methods: FillControls() and UpdateLabel().
These methods are shown in Listing 2-17.

Listing 2-17. Helper Methods Used in the Application

private void FillControls()
{
 XmlNode node = doc.DocumentElement.ChildNodes[CurrentNodeIndex];
 comboBox1.Text = node.Attributes["employeeid"].Value;
 textBox1.Text = node.ChildNodes[0].InnerText;
 textBox2.Text = node.ChildNodes[1].InnerText;
 textBox3.Text = node.ChildNodes[2].InnerText;
 textBox4.Text = node.ChildNodes[3].InnerText;
 UpdateLabel();
}

private void UpdateLabel()
{
 label6.Text = "Employee " + (CurrentNodeIndex + 1) + " of " +
 doc.DocumentElement.ChildNodes.Count;
}

The FillControls() method retrieves a reference to the <employee> node to be displayed.
The index for this node is indicated by the CurrentNodeIndex variable. The employeeid is
retrieved from the Attributes collection of the node and displayed in the combo box. Other
text boxes are populated with the InnerText of <firstname>, <lastname>, <homephone>, and
<notes>, respectively.

The UpdateLabel() method simply sets the Text property of the navigation status label to
the current employee index.

8253.book Page 55 Wednesday, February 21, 2007 9:09 PM

56 C H A P T E R 2 ■ M A N I P U L A T I N G X M L D O C U M E N T S B Y U S I N G T H E D O C U M E N T O B J E C T M O D E L

Dealing with White Space
You have learned how to read and write XML documents by using XmlDocument and associated
classes. During various operations, we hardly bothered with white space. White space includes
characters such as space, tab, carriage return, and so on. By default when you load the docu-
ment (either via the Load() method or the LoadXml() method) or save the document (by using
the Save() method), the XmlDocument class will ignore white space. You can toggle this behavior
by using a Boolean property called PreserveWhitespace. Setting this property to true will pre-
serve the white space, whereas setting it to false will ignore it.

To see what difference the PreserveWhitespace property makes, let’s create a simple appli-
cation as shown in Figure 2-8.

Figure 2-8. Importance of the PreserveWhiteSpace property

The application consists of a check box that allows you to toggle whether to preserve white
space. When you click the Load Document button, it simply loads the Employees.xml file by
using the Load() method and displays the entire content in a message box.

The code inside the Click event handler of the Load Document button is given in Listing 2-18.

Listing 2-18. Loading a Document

private void button1_Click(object sender, EventArgs e)
{
 XmlDocument doc = new XmlDocument();
 doc.PreserveWhitespace = checkBox1.Checked;
 doc.Load(Application.StartupPath + @"\employees.xml");
 MessageBox.Show(doc.InnerXml);
}

The code creates an instance of the XmlDocument class and sets its PreserveWhitespace
property to the property selected via the check box. That means if the user selects the check
box, true will be assigned; otherwise, false will be assigned. Then the Employees.xml file is
loaded by using the Load() method. The complete content of the file is retrieved by using the
InnerXml property of the XmlDocument instance and displayed in a message box.

Figure 2-9 shows the message box that is displayed when you deselect the check box. In
contrast, Figure 2-10 shows the message box when the check box is selected.

8253.book Page 56 Wednesday, February 21, 2007 9:09 PM

C H A P T E R 2 ■ M A N I P U L A T I N G X M L D O C U M E N T S B Y U S I N G T H E D O C U M E N T O B J E C T M O D E L 57

Figure 2-9. Output with the PreserveWhitespace property set to false

Figure 2-10. Output with the PreserveWhitespace property set to true

You can see the difference: the second message box shows that the white space is
preserved.

8253.book Page 57 Wednesday, February 21, 2007 9:09 PM

58 C H A P T E R 2 ■ M A N I P U L A T I N G X M L D O C U M E N T S B Y U S I N G T H E D O C U M E N T O B J E C T M O D E L

Does the PreserveWhitespace property affect your parsing logic? The answer to this ques-
tion is yes. To illustrate the effect of this property on the parsing of the document, let’s modify
the preceding application as shown in Listing 2-19.

Listing 2-19. Effect of the PreserveWhitespace Property

private void button1_Click(object sender, EventArgs e)
{
 XmlDocument doc = new XmlDocument();
 doc.PreserveWhitespace = checkBox1.Checked;
 doc.Load(Application.StartupPath + @"\employees.xml");
 MessageBox.Show("Employee node contains " +
 doc.DocumentElement.ChildNodes.Count + " child nodes");
}

The preceding code is almost identical to the previous example, but this time the message box
shows the total number of child nodes of the document element, that is, the root node <employees>.
See Figures 2-11 and 2-12 for the resulting message boxes with the PreserveWhitespace property set
to false and true, respectively.

Figure 2-11. Result when the PreserveWhitespace property is false

Figure 2-12. Result when the PreserveWhitespace property is true

Surprised? We have three <employee> elements in our document. That means the
<employees> node has three child nodes. The message box from Figure 2-11 is consistent
with this fact. However, when you set the PreserveWhitespace property to true, the message
box shows that the <employees> element has seven child nodes. Preserving white space added
four child nodes to the <employees> element. These extra nodes are of type XmlWhiteSpace.
If you are accessing various nodes by their indexes, toggling white space can cause your

8253.book Page 58 Wednesday, February 21, 2007 9:09 PM

C H A P T E R 2 ■ M A N I P U L A T I N G X M L D O C U M E N T S B Y U S I N G T H E D O C U M E N T O B J E C T M O D E L 59

logic to fail. There is one more class related to white space: XmlSignificantWhitespace.
The XmlSignificantWhitespace class represents white space between markup in a mixed
content node.

It is important to understand the difference between XmlWhiteSpace and
XmlSignificantWhitespace. Consider the markup shown in Listing 2-20.

Listing 2-20. Understanding the Difference Between the XmlWhiteSpace and
XmlSignificantWhiteSpace Classes

<?xml version="1.0" ?>
<root>
 <fullname>Nancy Davolio</fullname>
 <address>
 23143 Sagebrush
 Novi,
 MI 48375
 USA
 </address>
</root>

In the markup shown in Listing 2-20, there are several white spaces. First, there are white
spaces between tags such as <root>, <fullname>, and <address>. Remember that in XML, car-
riage returns and line feeds are also considered white spaces. These white spaces between
various elements are used mainly to improve readability of the document and are represented
by the XmlWhiteSpace class. Second, there are white spaces embedded within the content of the
<address> node. For example, there is a carriage return and line feed after the text Novi as well
as MI 48375. These white spaces are represented by the XmlSignificantWhiteSpace class.

Dealing with Namespaces
The concept of XML namespaces is analogous to .NET namespaces. XML namespaces allow
you to identify elements as part of a single group (a namespace) by uniquely qualifying ele-
ment and attribute names used in an XML document. Each namespace is identified by a
Uniform Resource Identifier (URI). This allows developers to combine information from differ-
ent data structures in a single XML document without causing ambiguity and confusion
among element names.

For example, assume that you have two XML fragments, one related to employees and
another related to customers. Further assume that both fragments contain a tag called <name>.
The problem is that when you mix them together, you have ambiguity for the <name> tag. XML
namespaces come in handy in such situations.

8253.book Page 59 Wednesday, February 21, 2007 9:09 PM

60 C H A P T E R 2 ■ M A N I P U L A T I N G X M L D O C U M E N T S B Y U S I N G T H E D O C U M E N T O B J E C T M O D E L

To see how .NET provides support for XML namespaces, we will modify Employees.xml as
shown in Listing 2-21.

Listing 2-21. XML Document with Namespaces

<?xml version="1.0" encoding="utf-8" ?>
<!-- This is list of employees -->
<emp:employees xmlns:emp="http://www.somedomain.com">
 <emp:employee employeeid="1">
 <emp:firstname>Nancy</emp:firstname>
 <emp:lastname>Davolio</emp:lastname>
 <emp:homephone>(206) 555-9857</emp:homephone>
 <emp:notes>
 <![CDATA[includes a BA in psychology from Colorado State University in
 1970. She also completed "The Art of the Cold Call." Nancy is a member of
 Toastmasters International.]]>
 </emp:notes>
 </emp:employee>
 <emp:employee employeeid="2">
 <emp:firstname>Andrew</emp:firstname>
 <emp:lastname>Fuller</emp:lastname>
 <emp:homephone>(206) 555-9482</emp:homephone>
 <emp:notes>
 <![CDATA[Andrew received his BTS commercial in 1974 and a Ph.D.
 in international marketing from the University of Dallas in 1981. He is
 fluent in French and Italian and reads German. He joined the company as
 a sales representative, was promoted to sales manager in January 1992 and
 to vice president of sales in March 1993. Andrew is a member of the Sales
 Management Roundtable, the Seattle Chamber of Commerce, and the
 Pacific Rim Importers Association.]]>
 </emp:notes>
 </emp:employee>
 <emp:employee employeeid="3">
 <emp:firstname>Janet</emp:firstname>
 <emp:lastname>Leverling</emp:lastname>
 <emp:homephone>(206) 555-3412</emp:homephone>
 <emp:notes>
 <![CDATA[Janet has a BS degree in chemistry from Boston College (1984).
 She has also completed a certificate program in food retailing management.
 Janet was hired as a sales associate in 1991 and promoted to sales
 representative in February 1992.]]>
 </emp:notes>
 </emp:employee>
</emp:employees>

8253.book Page 60 Wednesday, February 21, 2007 9:09 PM

C H A P T E R 2 ■ M A N I P U L A T I N G X M L D O C U M E N T S B Y U S I N G T H E D O C U M E N T O B J E C T M O D E L 61

It’s the same document, but we have added a namespace to it. Look at the markup shown
in bold. In the root element <employees>, we specified an XML namespace called emp with a URI
http://www.somedomain.com. Though it is a common practice to use URLs as namespace URIs,
any unique string would work. Note how all the tag names are prefixed with emp. You can access
namespace details by using three properties of the XmlNode class: NamespaceURI, Prefix, and
LocalName.

To illustrate how these properties are used, we will develop an application as shown in
Figure 2-13.

Figure 2-13. Retrieving namespace details

The application loads our new version of Employees.xml and extracts the NamespaceURI,
Prefix, and LocalName properties of the document element. The namespace details are shown
in labels. Listing 2-22 shows the Click event handler of the Load Document button.

Listing 2-22. Retrieving Namespace Details

private void button1_Click(object sender, EventArgs e)
{
 XmlDocument doc = new XmlDocument();
 doc.Load(Application.StartupPath + @"\employees.xml");
 label4.Text = doc.DocumentElement.NamespaceURI;
 label5.Text = doc.DocumentElement.Prefix;
 label6.Text = doc.DocumentElement.LocalName;
}

The code loads the Employees.xml file by using the Load() method. It then simply retrieves
the value of the NamespaceURI, Prefix, and LocalName properties. One thing to note is that these
three properties are read-only properties. If you want to write these details, you must supply
them while creating attributes, elements, and nodes from the XmlDocument class. Methods of
the XmlDocument class such as CreateElement() and CreateAttribute() have appropriate over-
loads that allow you to specify namespace details.

Understanding Events of the XmlDocument Class
Whenever you modify an XML document, the XmlDocument class raises several events. These
events follow a pre and post pattern. Pre-events are raised prior to the actual operation,

8253.book Page 61 Wednesday, February 21, 2007 9:09 PM

62 C H A P T E R 2 ■ M A N I P U L A T I N G X M L D O C U M E N T S B Y U S I N G T H E D O C U M E N T O B J E C T M O D E L

whereas post-events are raised after the operation is over. These events are summarized in
Table 2-3.

Table 2-3. Events of the XmlDocument Class

Each of the events specified in the preceding table receives an event argument parameter
of type XmlNodeChangedEventArgs. The XmlNodeChangedEventArgs class provides several proper-
ties. Some of them are listed in Table 2-4.

Table 2-4. Properties of the XmlNodeChangedEventArgs Class

To see some of these events in action, we will modify the same employee data-entry appli-
cation that we developed previously.

Event Name Description

NodeChanging This event is raised when the value of a node belonging to this document is
about to be changed.

NodeChanged This event is raised when the value of a node belonging to this document has
been changed.

NodeRemoving This event is raised when a node belonging to this document is about to be
removed from the document.

NodeRemoved This event is raised when a node belonging to this document has been
removed from its parent.

NodeInserting This event is raised when a node belonging to this document is about to be
inserted into another node.

NodeInserted This event is raised when a node belonging to this document has been inserted
into another node.

Property Description

Action Supplies information about the action that is causing the node to change. This
property is an enumeration of type XmlNodeChangedAction. Possible values include
Change, Remove, and Insert.

OldParent Returns the parent XmlNode of the node being changed prior to the operation.

NewParent Returns the parent XmlNode of the node being changed after the operation.

OldValue Returns the value of the node prior to the operation.

NewValue Returns the value of the node after the operation is complete.

Node Returns an XmlNode object representing the node being affected.

8253.book Page 62 Wednesday, February 21, 2007 9:09 PM

C H A P T E R 2 ■ M A N I P U L A T I N G X M L D O C U M E N T S B Y U S I N G T H E D O C U M E N T O B J E C T M O D E L 63

Modify the Form_Load event handler as shown in Listing 2-23.

Listing 2-23. Attaching Event Handlers

private void Form1_Load(object sender, EventArgs e)
{
 doc.Load(Application.StartupPath + "/employees.xml");

 doc.NodeChanged += new XmlNodeChangedEventHandler(doc_NodeChanged);
 doc.NodeInserted += new XmlNodeChangedEventHandler(doc_NodeInserted);
 doc.NodeRemoved += new XmlNodeChangedEventHandler(doc_NodeRemoved);

 foreach (XmlNode node in doc.DocumentElement.ChildNodes)
 {
 comboBox1.Items.Add(node.Attributes["employeeid"].Value);
 }
 FillControls();
}

Note the lines marked in bold. The code attaches event handlers to NodeChanged,
NodeRemoved, and NodeInserted events, respectively. These events are of delegate type
XmlNodeChangedEventHandler.

The code in Listing 2-24 shows these event handlers.

Listing 2-24. Handling Events of the XmlDocument Class

void doc_NodeRemoved(object sender, XmlNodeChangedEventArgs e)
{
 MessageBox.Show("Node " + e.Node.Name + " removed successfully!");
}

void doc_NodeInserted(object sender, XmlNodeChangedEventArgs e)
{
 MessageBox.Show("Node " + e.Node.Name + " added successfully!");
}

void doc_NodeChanged(object sender, XmlNodeChangedEventArgs e)
{
 MessageBox.Show("Node " + e.Node.Name + " changed successfully!");
}

8253.book Page 63 Wednesday, February 21, 2007 9:09 PM

64 C H A P T E R 2 ■ M A N I P U L A T I N G X M L D O C U M E N T S B Y U S I N G T H E D O C U M E N T O B J E C T M O D E L

The code in each event handler simply displays the node being affected in a message box.
To test these events, you need to run the application and try updating, deleting, and adding
new employees. You will find that with every such operation, the NodeChanging, NodeRemoving,
and NodeInserting events are raised. Figure 2-14 shows a sample run of the application.

Figure 2-14. Handling events of the XmlDocument class

Summary
This chapter presented a detailed examination of the XMLDocument class—the .NET DOM
parser. You worked with several other classes including XmlNode, XmlElement, XmlAttribute,
and XmlText. You learned how to load XML documents, how to navigate through them, how to
read the content, and finally how to modify them. You also learned how white space and
namespaces can be dealt with. Finally, you handled various events of XmlDocument that are
raised when you change the document in some way.

You can build on what you have learned so far. For example, you can create your own cus-
tom extensions of XmlDocument and other classes by inheriting from them. Though the need to
do so is rare, this task can be accomplished by inheriting from these classes and adding extra
properties and methods.

8253.book Page 64 Wednesday, February 21, 2007 9:09 PM

65

■ ■ ■

C H A P T E R 3

Reading and Writing XML
Documents

Chapter 2 gave you a detailed understanding of the .NET Framework’s DOM parser, that is,
the XmlDocument class. You also learned when to use DOM parsers. In this chapter, you are
going to learn about XML reader and writer classes. The topics discussed include the following:

• Using reader and writer classes

• Knowing when to use these classes instead of DOM

• Reading XML documents by using the XmlTextReader class

• Writing XML documents by using the XmlTextWriter class

• Working with a subset of XML documents and reader and writer classes

What Are XML Readers and Writers?
DOM-based parsers are best suited to modifying XML documents that are small. However,
with huge XML documents, DOM access can pose problems in terms of memory footprint and
performance. In such cases, an alternative must be adopted so that we can read and write XML
documents without these limitations. Traditionally, event-based parsers based on the SAX
specifications were used to deal with such scenarios. The .NET answer, however, is a bit
different.

The .NET Framework provides a class called XmlReader that provides read-only access to
XML documents in a forward-only fashion. Though SAX and XmlReader sound similar, they
behave differently. Any SAX-based parser essentially raises events as various parts of the XML
document are encountered. Thus it works on a push model. On the other hand, the XmlReader
class allows you to iterate through the document and access the required content rather than
raising events. Thus it uses a pull model. As you will see later, this pull model is more flexible
from a development point of view. The XmlReader class does not load the entire document in
memory, resulting in a small memory footprint. Because it is read-only, it is faster too.

Just as XmlReader allows you to read XML documents, a class called XmlWriter allows you
to write XML documents. Like XmlReader, XmlWriter also uses a forward-only model. However,
it offers write-only functionality.

8253ch03.fm Page 65 Friday, March 23, 2007 10:10 AM

66 C H A P T E R 3 ■ R E A D I N G A N D W R I T I N G X M L D O C U M E N T S

The XmlReader and XmlWriter classes are abstract classes. That means you will not be able
to instantiate and use them directly in your code. Fortunately, the System.Xml namespace
contains two ready-to-use classes that inherit from these base classes. Those classes are
XmlTextReader and XmlTextWriter. The former inherits from XmlReader, whereas the latter
inherits from XmlWriter.

When to Use Readers and Writers
In the previous section, you learned that DOM parsers are a poor choice when working with
huge XML documents. In general, you can say that XmlReader is better suited when

• You need to only read the document.

• The document is huge.

• You need to keep the memory footprint small.

• You want to work with many XML documents that are a reasonable size.

• You do not want to access various parts of the document randomly.

Similarly, XmlWriter is better suited when

• You want to only write content.

• You want to keep the memory footprint small.

• You are writing huge XML documents and looking for better performance.

Reader Classes
As you’ve seen, the XmlReader is an abstract class. That means you cannot instantiate it directly
in your applications; you must inherit from it to make any use of it. Fortunately, the .NET
Framework provides three implementations of the XmlReader class. These implementations
are discussed briefly in this section.

The XmlTextReader Class
The XmlTextReader class can be used to parse XML documents. This class has very fast parsing
abilities. It checks that the underlying documents are well formed but does not validate them
against a DTD or schema.

The XmlValidatingReader Class
The XmlValidatingReader class can validate an XML document against a DTD or XML schema.

8253ch03.fm Page 66 Friday, March 23, 2007 10:10 AM

C H A P T E R 3 ■ R E A D I N G A N D W R I T I N G X M L D O C U M E N T S 67

The XmlNodeReader Class
The XmlNodeReader class allows you to read XML data from the DOM tree. The constructor of
XmlNodeReader takes a parameter of type XmlNode. This XmlNode can be obtained as a result of
an XPath query or directly from a DOM document. In terms of properties and methods, the
XmlNodeReader class closely resembles the XmlTextReader class.

Reading Documents by Using XmlTextReader
In this section, you will learn the following:

• How to open XML documents by using the XmlTextReader class

• How to read and access the content

• How to deal with white space

• How to work with name tables

• How to deal with namespaces

Let’s begin by opening XML documents. Throughout our examples, we will be using the
same Employees.xml file that we used earlier in the book.

Opening XML Documents
To illustrate how XML documents can be opened, we will develop a Windows application as
shown in Figure 3-1.

Figure 3-1. Reading XML documents by using XmlTextReader

8253ch03.fm Page 67 Friday, March 23, 2007 10:10 AM

68 C H A P T E R 3 ■ R E A D I N G A N D W R I T I N G X M L D O C U M E N T S

The application allows you to choose the location from where the document is to be
opened. The possible locations are URL, stream, or string. Depending on the choice, you need
to enter the URL, filename, or XML string in the text box and click the Open Document button.
Clicking the Open Document button opens the document and displays a success message box.

The XmlReader class can read an XML document from either a URL or a stream. The
stream can by any kind of stream, such as a FileStream or MemoryStream. The XmlReader class
cannot read XML strings directly. First, you need to read the string into a MemoryStream and
then feed this MemoryStream to the XmlReader class. The code from Listing 3-1 shows these
three techniques.

Listing 3-1. Loading an XML Document in XmlTextReader

private void button1_Click(object sender, EventArgs e)
{
 XmlTextReader reader;

 if (radioButton1.Checked)
 {
 reader = new XmlTextReader(textBox1.Text);
 }

 if (radioButton2.Checked)
 {
 FileStream stream=File.OpenRead(textBox1.Text);
 reader = new XmlTextReader(stream);
 //some processing code
 stream.Close();
 reader.Close();
 }

 if (radioButton3.Checked)
 {
 MemoryStream ms=new MemoryStream();
 byte[] data=ASCIIEncoding.ASCII.GetBytes(textBox1.Text);
 ms.Write(data,0,data.Length);
 reader = new XmlTextReader(ms);
 //some processing code
 ms.Close();
 reader.Close();
 }

 MessageBox.Show("XML Document Opened Successfully!");
}

8253ch03.fm Page 68 Friday, March 23, 2007 10:10 AM

C H A P T E R 3 ■ R E A D I N G A N D W R I T I N G X M L D O C U M E N T S 69

■Note Make sure to import the System.Xml and System.IO namespaces before writing the preceding
code. The XmlTextReader class resides in the System.Xml namespace, and the MemoryStream class
resides in the System.IO namespace.

The code declares a variable of type XmlTextReader. It then checks to see which radio
button has been selected. If the user wants to use a URL, a new instance of XmlTextReader is
created by passing the URL in the constructor.

If the user decides to read the file from disk, it is first read into a stream. This is done
by using the OpenRead() method of the File class. The OpenRead() method opens the specified
file in read-only mode. The resulting FileStream is then passed in the constructor of the
XmlTextReader class.

You cannot directly pass an XML string to the XmlTextReader class. Hence the third condi-
tion reads the string into MemoryStream. Note the use of the GetBytes() method to convert a
string into a byte array. The resulting byte array is written to the MemoryStream object. Finally,
this MemoryStream instance is supplied to the constructor of the XmlTextReader class.

Reading Attributes, Elements, and Values
In this section, we are going to develop a Windows application that will display a tree of various
elements and their values. In the process, you will learn how to read attributes, elements, and
text nodes from an XML document by using the XmlTextReader class.

The application is shown in Figure 3-2.

Figure 3-2. Reading an XML document by using XmlTextReader

8253ch03.fm Page 69 Friday, March 23, 2007 10:10 AM

70 C H A P T E R 3 ■ R E A D I N G A N D W R I T I N G X M L D O C U M E N T S

The application consists of a TreeView control and a Button control. Clicking the Load
Tree button displays the entire tree of nodes in the tree view as shown.

The core logic goes in the Click event handler of the Load Tree button and is shown in
Listing 3-2.

Listing 3-2. Loading the Tree

private void button1_Click(object sender, EventArgs e)
{
 XmlTextReader reader =
 new XmlTextReader(Application.StartupPath + @"\employees.xml");
 reader.WhitespaceHandling = WhitespaceHandling.None;
 TreeNode employeenode=null;
 TreeNode rootnode = null;

 while (reader.Read())
 {
 if (reader.NodeType == XmlNodeType.Element)
 {
 if (reader.Name == "employees")
 {
 rootnode = treeView1.Nodes.Add("Employees");
 }

 if (reader.Name == "employee")
 {
 string employeeid = reader.GetAttribute("employeeid");
 employeenode = new TreeNode("Employee ID :" + employeeid);
 rootnode.Nodes.Add(employeenode);
 }

 if (reader.Name == "firstname")
 {
 string firstname = reader.ReadElementString();
 TreeNode node = new TreeNode(firstname);
 employeenode.Nodes.Add(node);
 }

8253ch03.fm Page 70 Friday, March 23, 2007 10:10 AM

C H A P T E R 3 ■ R E A D I N G A N D W R I T I N G X M L D O C U M E N T S 71

 if (reader.Name == "lastname")
 {
 reader.Read();
 string lastname = reader.Value;
 TreeNode node = new TreeNode(lastname);
 employeenode.Nodes.Add(node);
 }

 if (reader.Name == "homephone")
 {
 string homephone = reader.ReadElementString();
 TreeNode node = new TreeNode(homephone);
 employeenode.Nodes.Add(node);
 }

 if (reader.Name == "notes")
 {
 string notes = reader.ReadElementString();
 TreeNode node = new TreeNode(notes);
 employeenode.Nodes.Add(node);
 }
 }
 reader.Close();
}

The code creates an instance of the XmlTextReader class by passing the path of the XML
file. The WhitespaceHandling property of XmlTextReader governs the behavior of the reader
while reading white space. This property is an enumeration of type WhitespaceHandling and
has three possible values: All, None, or Significant. We set WhitespaceHandling to ignore any
white space. This will simplify our coding.

A while loop repeatedly calls the Read() method of XmlTextReader. The Read() method
reads the next node from the file and returns true if the next node can be read successfully;
otherwise, it returns false.

Inside the while loop, the code retrieves the type of node by using the NodeType property
of the XmlTextReader class. The NodeType property is an enumeration of type XmlNodeType and
can have values such as Attribute, CDATA, Comment, Element, EndElement, Text, Whitespace,
SignificantWhitespace, and so on. Note that the start and end elements are represented sep-
arately. This is because while scanning the document the XmlTextReader class reads start
elements (for example, <employee>) and end elements (for example, </employee>) separately.
In our example, we are interested only in start elements and therefore the if condition
checks only for a node type of Element.

8253ch03.fm Page 71 Friday, March 23, 2007 10:10 AM

72 C H A P T E R 3 ■ R E A D I N G A N D W R I T I N G X M L D O C U M E N T S

The code then checks the name of each element. This is done by checking the Name prop-
erty of the XmlTextReader class and executing code depending on the element name:

• If the element name is employees, the code adds the root node of the TreeView control.

• If the element name is employee, the code retrieves the employeeid attribute. To retrieve
attribute values, XmlTextReader provides a method called GetAttribute(), which accepts
the name of the attribute whose value is to be retrieved and returns the value as a string.
A tree node is then added for this employee.

• If the element name is firstname, the text value inside it needs to be retrieved. This is
done with the help of the ReadElementString() method, which returns the text content
within the current element. For us it will return the first name of the employee.

• The next if condition contains a variation on reading element values. It also illustrates
the cursor-oriented model of XmlTextReader. When this if condition is triggered, the
XmlTextReader is pointing to the <lastname> element. When we call the Read() method
again, the cursor moves to the text node inside the <lastname> element. The Value prop-
erty of XmlTextReader then returns the value of the text node.

• The values of the homephone and notes elements are read along the same lines.

Finally, the XmlTextReader is closed by using its Close() method.

Improving Performance by Using Name Tables
Whenever XmlTextReader parses any XML file, it creates a list of element names found in that
document. This list is called a name table. Imagine that you are parsing dozens of separate files
that have the same structure as that of Employees.xml. That means the XmlTextReader class
needs to generate the same name table again and again. You can improve the efficiency of this
process by supplying a ready-made name table, represented by the XmlNameTable class, for
further parsing. The XmlNameTable class is an abstract class, but the .NET Framework provides
a class called NameTable that inherits from it. You can therefore use this NameTable class in
your code.

The code fragment in Listing 3-3 will make the use of name tables clear.

Listing 3-3. Using Name Tables

NameTable table = new NameTable();
XmlTextReader reader1 =
 new XmlTextReader(Application.StartupPath + @"\employees1.xml",table);
XmlTextReader reader2 =
 new XmlTextReader(Application.StartupPath + @"\employees2.xml",table);
XmlTextReader reader3 =
 new XmlTextReader(Application.StartupPath + @"\employees3.xml",table);
//process further

8253ch03.fm Page 72 Friday, March 23, 2007 10:10 AM

C H A P T E R 3 ■ R E A D I N G A N D W R I T I N G X M L D O C U M E N T S 73

The code creates a new instance of the NameTable class, which will naturally be empty.
Then an instance of XmlTextReader is created. This time the constructor takes two parameters:
a filename and a NameTable. When you read the XML document for the first time, that is, using
reader1, the supplied NameTable instance is populated. That means we have a NameTable ready
for use. The same NameTable is supplied as a parameter to reader2 and reader3; they will in turn
use this ready-made NameTable, thus improving the efficiency of the code.

Dealing with Namespaces
The XmlTextReader class has the same three XML namespace-related properties as the XmlNode
class. The properties are NamespaceURI, Prefix, and LocalName. Their meaning is the same as
already discussed in Chapter 2.

Moving Between Elements
In the previous example, you learned how to navigate through and read an XML document by
using XmlTextReader. There are some additional methods of XmlTextReader that allow you to
move between elements and read the content. This section presents these methods.

The ReadSubTree() Method
The ReadSubTree() method reads subnodes of the current node and returns the subtree as
another XmlReader instance. This method is useful when you are parsing huge documents but
want to work with a small section at a time. Figure 3-3 shows pictorially how this method works.

Figure 3-3. Using the ReadSubTree() method

8253ch03.fm Page 73 Friday, March 23, 2007 10:10 AM

74 C H A P T E R 3 ■ R E A D I N G A N D W R I T I N G X M L D O C U M E N T S

From the figure you can see that if you call ReadSubTree() when your XmlTextReader is on an
<employee> node of the document, the ReadSubTree() method returns another XmlReader con-
taining that <employee> node and all its child nodes (that is, the subtree of the <employee> node).

The ReadToDescendant() Method
The ReadToDescendant() method advances the XmlTextReader to the next occurrence of the
specified child node. This method comes in handy when you want to jump to a specific node
rather than sequentially moving there. Figure 3-4 shows how this method works.

Figure 3-4. Using the ReadToDescendant() method

As shown in Figure 3-4, if you call the ReadToDescendant() method when you are on an
<employee> node and specify notes as the target element, your reader jumps to the next <notes>
element.

The ReadToFollowing() Method
The ReadToFollowing() method is very similar to the ReadToDescendant() method, with one
difference. The ReadToDescendant() method can jump to the specified element only if it is a
descendant of the current node, whereas the ReadToFollowing() method jumps to the first
occurrence of the specified element, be it a descendant or not.

8253ch03.fm Page 74 Friday, March 23, 2007 10:10 AM

C H A P T E R 3 ■ R E A D I N G A N D W R I T I N G X M L D O C U M E N T S 75

■Note Notice the difference between the ReadToDescendant() and ReadToFollowing() methods.
Assuming that you are on the <firstname> node of the second employee and wish to jump to the <notes>
node of the same employee, you would use the ReadToDescendant() method. On the other hand, if you
are on the <firstname> node of the second employee and wish to jump to the next occurrence of the
<firstname> node, you would use the ReadToFollowing() method.

The ReadToNextSibling() Method
The ReadToNextSibling() method moves the reader from the current element to the next ele-
ment at the same level. Figure 3-5 shows how this method works.

Figure 3-5. Using the ReadToNextSibling() method

As you can see in Figure 3-5, if you call ReadToNextSibling() when the reader is on the
second <employee> node, the reader will jump to the third <employee> node because they are
sibling nodes.

The Skip() Method
The Skip() method skips the child elements and jumps directly to the next element. Skip()
comes in handy when you want to bypass child nodes depending on a certain condition.
Figure 3-6 shows how this method works.

8253ch03.fm Page 75 Friday, March 23, 2007 10:10 AM

76 C H A P T E R 3 ■ R E A D I N G A N D W R I T I N G X M L D O C U M E N T S

Figure 3-6. Using the Skip() method

Note the difference between the ReadToNextSibling() method and the Skip() method.
The former advances the reader to the next sibling element, whereas the latter advances
the reader to the next possible element (not necessarily a sibling node) after bypassing the
child nodes.

Moving Between Attributes
The XmlTextReader class also provides four methods for moving between attributes. These
methods, which are useful only for element nodes, are as follows:

• The MoveToAttribute() method accepts the index or name of the attribute to navigate to
and moves the reader to the attribute.

• The MoveToFirstAttribute() method takes the reader to the first attribute of the current
element.

• The MoveToNextAttribute() method moves the reader to the next attribute of the current
element.

• The MoveToElement() method moves the reader back to the element node whose
attributes were just read.

Figure 3-7 shows how all these methods work.

8253ch03.fm Page 76 Friday, March 23, 2007 10:10 AM

C H A P T E R 3 ■ R E A D I N G A N D W R I T I N G X M L D O C U M E N T S 77

Figure 3-7. Moving between attributes

As you can see in Figure 3-7, if you call MoveToAttribute() by passing firstname as the
parameter, the reader moves to the firstname attribute. When you are on the lastname attribute,
calling MoveToFirst() will take the reader to the id attribute. Calling MoveToNextAttribute()
when the reader is on the id attribute will advance the reader to the firstname attribute. Finally,
calling MoveToElement() from any attribute will take the reader back to the <employee> element.

Reading Content
In our previous example, we used the Value property and the ReadElementString() method
to read content from an element. In this section, you are going to see a few more ways to read
the content.

The ReadInnerXml() Method
The ReadInnerXml() method reads all the XML content inside the current node and returns it as
a string. The returned string does not contain the current node markup. For example, if you call
ReadInnerXml() when your reader is on the first <employee> element, the method will return the
markup as shown in Listing 3-4.

Listing 3-4. Result of the ReadInnerXml() Method

<firstname>Nancy</firstname>
<lastname>Davolio</lastname>
<homephone>(206) 555-9857</homephone>
<notes>
<![CDATA[includes a BA in psychology from Colorado State University in 1970. She
also completed "The Art of the Cold Call." Nancy is a member of Toastmasters
International.]]>
</notes>

8253ch03.fm Page 77 Friday, March 23, 2007 10:10 AM

78 C H A P T E R 3 ■ R E A D I N G A N D W R I T I N G X M L D O C U M E N T S

The ReadOuterXml() Method
The ReadOuterXml() method is similar to the ReadInnerXml() method, but the difference is that
it also includes the markup of the current element. For example, if you call ReadOuterXml()
while the reader is on the first <employee> element, ReadOuterXml() will return the markup as
shown in Listing 3-5.

Listing 3-5. Result of the ReadOuterXml() Method

<employee employeeid="1">
 <firstname>Nancy</firstname>
 <lastname>Davolio</lastname>
 <homephone>(206) 555-9857</homephone>
 <notes>
<![CDATA[includes a BA in psychology from Colorado State University in 1970. She
also completed "The Art of the Cold Call." Nancy is a member of Toastmasters
International.]]>
 </notes>
</employee>

The ReadString() Method
The ReadString() method reads the contents of an element or a text node as a string. It simply
returns all the text from the element until any markup is encountered. For example, look at the
XML markup shown here:

<node1>
 <node2>
 Hello World <node3>This is some text</node3>
 </node2>
</node1>

If you call ReadString() when the reader is on <node2>, ReadString() will return Hello
World and not the remaining markup from <node3>.

Writing XML Documents
In the previous sections, you learned how XmlTextReader can be used to read XML documents
in a serialized fashion. Reading XML documents is just half of the story; often you need to write
XML documents also.

The counterpart of XmlTextReader is another class called XmlTextWriter. The
XmlTextWriter class allows you to quickly serialize XML documents to a file or any stream.
The XmlTextWriter class inherits from an abstract class: XmlWriter. In this section, you will
learn how this class can be used to write XML documents.

8253ch03.fm Page 78 Friday, March 23, 2007 10:10 AM

C H A P T E R 3 ■ R E A D I N G A N D W R I T I N G X M L D O C U M E N T S 79

To see the XmlTextWriter class in action, you will build a Windows application as shown in
Figure 3-8.

Figure 3-8. Using the XmlTextWriter class

The application allows you to export data from any table of SQL Server into an XML file. As
shown in Figure 3-8, the application accepts a database connection string, a table name to
export, and the destination XML filename where the data is to be exported. The two radio but-
tons allow you to select whether all the columns are to be exported as elements or attributes in
the resultant document. Clicking the Export Data button exports the data to the specified file.

The code needs to import the following namespaces:

using System.Data.SqlClient;
using System.Xml;

The System.Data.SqlClient namespace represents the SQL Server Data Provider of the
.NET Framework and supplies classes related to data access such as SqlConnection and
SqlCommand.

The Click event handler of the Export Data button contains the code shown in Listing 3-6.

Listing 3-6. Exporting Data

private void button1_Click(object sender, EventArgs e)
{
 SqlConnection cnn=null;
 SqlCommand cmd=null;
 SqlDataReader reader=null;
 XmlTextWriter writer=null;
 try

8253ch03.fm Page 79 Friday, March 23, 2007 10:10 AM

80 C H A P T E R 3 ■ R E A D I N G A N D W R I T I N G X M L D O C U M E N T S

 {
 cnn = new SqlConnection(textBox1.Text);
 cmd = new SqlCommand();
 cmd.Connection = cnn;
 cmd.CommandText = "select * from " + textBox2.Text;
 cnn.Open();
 reader = cmd.ExecuteReader();
 writer = new XmlTextWriter(textBox3.Text, null);
 writer.WriteStartDocument();
 writer.WriteComment("File exported on " + DateTime.Now);
 writer.WriteStartElement("table");
 while (reader.Read())
 {
 if (radioButton1.Checked)
 {
 writer.WriteStartElement("row");
 for (int i = 0; i < reader.FieldCount; i++)
 {
 writer.WriteStartElement(reader.GetName(i));
 writer.WriteString(reader.GetValue(i).ToString());
 writer.WriteEndElement();
 }
 writer.WriteEndElement();
 }
 else
 {
 writer.WriteStartElement("row");
 for (int i = 0; i < reader.FieldCount; i++)
 {
 writer.WriteAttributeString(reader.GetName(i),
 reader.GetValue(i).ToString());
 }
 writer.WriteEndElement();
 }
 }
 writer.WriteEndElement();
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
 finally

8253ch03.fm Page 80 Friday, March 23, 2007 10:10 AM

C H A P T E R 3 ■ R E A D I N G A N D W R I T I N G X M L D O C U M E N T S 81

 {
 writer.Close();
 reader.Close();
 cnn.Close();
 }

}

The code creates an instance of the SqlConnection class by passing a database connection
string as the parameter. The SqlConnection class represents a database connection. In order to
execute queries against a database, a SqlCommand object is created. The Connection property of
SqlCommand represents the SqlConnection object through which the queries are to be executed.
The CommandText property indicates the SQL query that is to be executed. In our example, we
need to create a SELECT query by concatenating the name of the table as entered by the user.

The code then opens the connection with the help of the Open() method of SqlConnection.
The ExecuteReader() method fires the SELECT statement as indicated by the CommandText prop-
erty and returns a SqlDataReader object. The SqlDataReader object is like a read-only and
forward-only cursor and allows you to iterate through the result set.

The code then proceeds to create an instance of the XmlTextWriter class, which can write
directly to a disk file or to any stream. In our example, we write the data directly to the specified
disk file. The second parameter of the constructor is the encoding of the data to be written. If
this parameter is null, the XmlTextWriter writes the data as UTF-8 (Unicode Transformation
Format, 8-bit encoding form) and omits the encoding attribute from the XML processing
instruction. After the XmlTextWriter instance is ready, the actual writing process begins.

When the user selects to export all the columns as XML elements, the resultant document
will bear the structure shown in Figure 3-9.

Figure 3-9. Columns exported as elements

8253ch03.fm Page 81 Friday, March 23, 2007 10:10 AM

82 C H A P T E R 3 ■ R E A D I N G A N D W R I T I N G X M L D O C U M E N T S

The root element is <table>, which contains one or more <row> elements. Each <row> ele-
ment further contains child elements, depending on the number of columns in the table. The
child elements assume the same name as the database column name.

Similarly, when the user opts to export all the columns as attributes, the resultant docu-
ment will bear the structure shown in Figure 3-10.

Figure 3-10. Columns exported as attributes

The root element is <table> again, which will contain one or more <row> elements. Each
<row> element will have one or more attributes representing the column values. The attribute
name will be the same as the column name.

All XML documents need to have the XML processing instruction at the top. To include
this processing instruction, we call the WriteStartDocument() method. Then the code writes
a comment specifying the date and time at which the file is exported. The WriteComment()
method accepts the comment string and writes it into the document. The root element <table>
is then written to the document by using the WriteStartElement() method, which accepts the
name of the element to be written and writes it to the file. Note that you need not specify the
< and > characters while specifying the element name. Thus, when you pass table as the
parameter to the WriteStartElement() method, it writes <table> into the file.

The code now starts iterating through the available records. The Read() method of the
SqlDataReader class advances the record pointer to the next row and reads values from that
row. It returns true if the record can be read successfully; otherwise, it returns false.

Exporting Columns As Elements
If the columns are to be exported as elements (that is, the first radio button is selected), the
<row> element will not have any attributes. A for loop iterates through all the columns of the
current row. The FieldCount property of the SqlDataReader class returns the total number of
columns in the result set. With each iteration of the for loop, a new element is created by using

8253ch03.fm Page 82 Friday, March 23, 2007 10:10 AM

C H A P T E R 3 ■ R E A D I N G A N D W R I T I N G X M L D O C U M E N T S 83

the WriteStartElement() method. This time the WriteStartElement() method accepts the col-
umn name returned by the GetName() method of the SqlDataReader class, which accepts the
column index and returns the column name.

To write the actual value of the column, the WriteString() method is called. This method
accepts the string to be written, which in our example is retrieved by using the GetValue()
method of SqlDataReader. The GetValue() method accepts a column index and returns the
contents as an object. The code then calls the ToString() method on the returned object to get
its string representation.

After the element value is written, the code calls the WriteEndElement() method of
XmlTextWriter to write the innermost end element to the file. The WriteEndElement() method
correctly writes the end element depending on the nesting of the document.

When you run the application and export your table, your output should resemble
Figure 3-9.

Exporting Columns As Attributes
If the column values are to be written as attributes instead of elements, a similar process is fol-
lowed. This time, however, the code uses the WriteAttributeString() method of XmlTextWriter
to write the attributes. The WriteAttributeString() method accepts two parameters: the name
of the attribute and the value of the attribute.

After writing all the end elements, the code closes the XmlTextWriter by calling its Close()
method. Similarly, SqlDataReader and SqlConnection are also closed.

When you run the application and export your table, your output should resemble
Figure 3-10.

Specifying Character Encoding
In the previous example, we constructed the XmlTextWriter class by providing a filename and
the character encoding. In this case, the encoding parameter was null, but there are four
possible encoding options in the .NET Framework. They are available as properties of the
Encoding class, which resides in the System.Text namespace. Each of these properties is shown
in Table 3-1.

Table 3-1. Properties of the Encoding Class

Property Class Name Description

Encoding.ASCII ASCIIEncoding Represents ASCII encoding. This encoding encodes
Unicode characters as single 7-bit ASCII characters.

Encoding.Unicode UnicodeEncoding Represents Unicode encoding. This scheme encodes
Unicode characters as 2 bytes.

Encoding.UTF7 UTF7Encoding Represents UTF-7 encoding. The characters are stored
in 7-bit format.

Encoding.UTF8 UTF8Encoding Represents UTF-8 encoding. The characters are stored
in 8-bit format. This is the default scheme.

8253ch03.fm Page 83 Friday, March 23, 2007 10:10 AM

84 C H A P T E R 3 ■ R E A D I N G A N D W R I T I N G X M L D O C U M E N T S

Formatting the Output
If you open the XML document that we created in our previous example in Notepad, it will look
like Figure 3-11.

Figure 3-11. XML document without any formatting

What’s the problem? Well, there is no problem as far as the document being well formed.
It does follow all the rules of XML grammar. However, the document lacks proper formatting.
Such documents are difficult for the human eye to read. Fortunately, the XmlTextWriter class
provides several formatting options that help you create well-formatted documents.

To see how these formatting options work, you need to modify the previous application as
shown in Figure 3-12.

Figure 3-12. Formatting the XML document

8253ch03.fm Page 84 Friday, March 23, 2007 10:10 AM

C H A P T E R 3 ■ R E A D I N G A N D W R I T I N G X M L D O C U M E N T S 85

The application has a check box that toggles whether the document will be formatted. You
can specify the indention as well as the indent character (space or tab).

The code in the Click event handler of the Export Data button needs to be modified as
shown in Listing 3-7.

Listing 3-7. Formatting XML Document While Writing

private void button1_Click(object sender, EventArgs e)
{
 SqlConnection cnn = new SqlConnection(textBox1.Text);
 SqlCommand cmd = new SqlCommand();
 cmd.Connection = cnn;
 cmd.CommandText = "SELECT * FROM " + textBox2.Text;
 cnn.Open();
 SqlDataReader reader = cmd.ExecuteReader();
 XmlTextWriter writer = new XmlTextWriter(textBox3.Text, null);

 if(checkBox1.Checked)
 {
 writer.Formatting = Formatting.Indented;
 writer.Indentation = int.Parse(textBox4.Text);
 writer.IndentChar = (radioButton3.Checked ? ' ' : '\t');
 }

 writer.WriteStartDocument();
 writer.WriteComment("File exported on " + DateTime.Now);
 writer.WriteStartElement("table");

 while (reader.Read())
 {
 if (radioButton1.Checked)
 {
 writer.WriteStartElement("row");
 for (int i = 0; i < reader.FieldCount; i++)
 {
 writer.WriteStartElement(reader.GetName(i));
 writer.WriteString(reader.GetValue(i).ToString());
 writer.WriteEndElement();
 }
 writer.WriteEndElement();
 }
 else
 {
 writer.WriteStartElement("row");
 for (int i = 0; i < reader.FieldCount; i++)

8253ch03.fm Page 85 Friday, March 23, 2007 10:10 AM

86 C H A P T E R 3 ■ R E A D I N G A N D W R I T I N G X M L D O C U M E N T S

 {
 writer.WriteAttributeString(reader.GetName(i),
 reader.GetValue(i).ToString());
 }
 writer.WriteEndElement();
 }
 }
 writer.WriteEndElement();
 writer.Close();
 reader.Close();
 cnn.Close();
}

Note the code marked in bold. The Formatting property of XmlTextWriter governs whether
the document will be formatted. The Formatting property is an enumeration of type Formatting
and contains two possible values: None and Indented. The Indentation property of XmlTextWriter
specifies the number of indent characters to be written in the document. This property is useful
only if Formatting is set to Indented. The IndentChar property holds the character to be used for
indentation. Though you can specify any valid character for IndentChar, space and tab are com-
monly used.

If you export the Customers table after making the preceding modifications, the resultant
document should resemble Figure 3-13.

Figure 3-13. Well-formatted XML document

Much better than the previous one, isn’t it?
Though not covered by our application, you can also set the QuoteChar property to decide

which character to use for enclosing attribute values. The default value for QuoteChar is the
double-quote character.

8253ch03.fm Page 86 Friday, March 23, 2007 10:10 AM

C H A P T E R 3 ■ R E A D I N G A N D W R I T I N G X M L D O C U M E N T S 87

Including Namespace Support
Recall from Chapter 2 and earlier discussion in this chapter that XML namespaces provide a
method for uniquely qualifying element and attribute names used in an XML document by asso-
ciating them with a namespace. When you create XML documents by using XmlTextWriter, you
may need to include namespace support for the resultant document. That is what you are going
to see in this section.

Various methods of XmlTextWriter, such as WriteStartElement(), provide overloads that
can be used to specify namespace and prefix information. To see how these overloads can be
used, you need to modify the previous application as shown in Figure 3-14.

Figure 3-14. Namespace support in XmlTextWriter

As you can see in Figure 3-14, there are text boxes for accepting the namespace URI and
prefix from the user. The modified code that adds namespace support is shown in Listing 3-8.

Listing 3-8. Namespace Support in XmlTextWriter

private void button1_Click(object sender, EventArgs e)
{
 SqlConnection cnn = new SqlConnection(textBox1.Text);
 SqlCommand cmd = new SqlCommand();
 cmd.Connection = cnn;
 cmd.CommandText = "SELECT * FROM " + textBox2.Text;
 cnn.Open();
 SqlDataReader reader = cmd.ExecuteReader();

8253ch03.fm Page 87 Friday, March 23, 2007 10:10 AM

88 C H A P T E R 3 ■ R E A D I N G A N D W R I T I N G X M L D O C U M E N T S

 XmlTextWriter writer = new XmlTextWriter(textBox3.Text, null);
 writer.WriteStartDocument();
 writer.WriteComment("File exported on " + DateTime.Now);
 writer.WriteStartElement(textBox5.Text, "table", textBox4.Text);

 while (reader.Read())
 {
 if (radioButton1.Checked)
 {
 writer.WriteStartElement(textBox5.Text, "row", textBox4.Text);
 for (int i = 0; i < reader.FieldCount; i++)
 {
 writer.WriteStartElement(textBox5.Text, reader.GetName(i),
 textBox4.Text);
 writer.WriteString(reader.GetValue(i).ToString());
 writer.WriteEndElement();
 }
 writer.WriteEndElement();
 }
 else
 {
 writer.WriteStartElement(textBox5.Text, "row", textBox4.Text);
 for (int i = 0; i < reader.FieldCount; i++)
 {
 writer.WriteAttributeString(textBox5.Text, reader.GetName(i),
 textBox4.Text,
 reader.GetValue(i).ToString());
 }
 writer.WriteEndElement();
 }
 }
 writer.WriteEndElement();
 writer.Close();
 reader.Close();
 cnn.Close();
}

8253ch03.fm Page 88 Friday, March 23, 2007 10:10 AM

C H A P T E R 3 ■ R E A D I N G A N D W R I T I N G X M L D O C U M E N T S 89

Notice the lines marked in bold. The WriteStartElement() and WriteAttributeString()
methods have an overload that accepts a prefix and namespace URI. If you create XML docu-
ments by using these overloads, your document should resemble Figure 3-15.

Figure 3-15. XML document with namespaces and prefix added

Notice how the namespace has been added to the <table> element. Also notice how each
element now bears the prefix.

Dealing with Nontextual Data
Up until now, we have been using XmlReader and XmlWriter to read textual data. However,
at times you may need to deal with nontextual data as well. For example, you may want to
serialize image files or binary files as XML data in order to pass it over the Internet in a firewall-
friendly way. Thankfully, both XmlTextReader and XmlTextWriter provide ways to handle such
situations.

To help you understand how XmlTextReader and XmlTextWriter can be used to work with
nontextual data, we will develop an application as shown in Figure 3-16.

8253ch03.fm Page 89 Friday, March 23, 2007 10:10 AM

90 C H A P T E R 3 ■ R E A D I N G A N D W R I T I N G X M L D O C U M E N T S

Figure 3-16. Dealing with nontextual data

The application allows you to read any image file and serialize it as an XML document. You
can specify the source image filename and the destination XML filename in the text boxes.
After you save the image as an XML document, you can validate whether the serialized image
is correct by loading it in a picture box.

Serializing Data
Listing 3-9 shows the Click event handler of the Save Image as XML button.

Listing 3-9. Writing Base64 Data

private void button1_Click(object sender, EventArgs e)
{
 XmlTextWriter writer = new XmlTextWriter(textBox2.Text, null);
 FileStream fs = File.OpenRead(textBox1.Text);
 byte[] data = new byte[fs.Length];
 fs.Position = 0;
 fs.Read(data, 0, data.Length);
 fs.Close();
 writer.WriteStartDocument();
 writer.WriteStartElement("imagefile");
 writer.WriteAttributeString("filename", textBox1.Text);
 writer.WriteAttributeString("size", data.Length.ToString());
 writer.WriteBase64(data,0,data.Length);
 writer.WriteEndElement();
 writer.Close();
}

8253ch03.fm Page 90 Friday, March 23, 2007 10:10 AM

C H A P T E R 3 ■ R E A D I N G A N D W R I T I N G X M L D O C U M E N T S 91

The code creates an XmlTextWriter object by passing the path of the destination XML file
to the constructor. Then a FileStream is created for reading data from the image file. The con-
tents of the file are read by using the Read() method of the FileStream class, which accepts
three parameters: the byte array to read the data into, the start index in the byte array from
where the writing should start, and the length of data to read. The XmlTextWriter then starts
writing the document. It first writes the XML processing instruction and the <imagefile> ele-
ment. The <imagefile> element has two attributes: filename and size. The filename attribute
stores the complete path of the image file that is being serialized as XML. The size attribute
contains the size of the source image file.

Image files contain nontextual data. You have a couple of options when you want to
serialize nontextual data into XML files. You can use either hexadecimal encoding or Base64
encoding for the serialization. In our example, we use Base64 encoding. To write data into
Base64 format, the XmlTextWriter class provides a method called WriteBase64(), which
accepts three parameters: a byte array that contains the nontextual data, the index of the byte
array from which the writing should start, and the length of data to write. The WriteBase64()
method writes the supplied byte array as a Base64 string inside the destination XML element.
Figure 3-17 shows how the XML file looks after serializing an image file.

Figure 3-17. Image file serialized in Base64 format

Now that you know how to write nontextual data by using XmlTextWriter, you’re ready to
see how to use XmlTextReader to read the document back.

Unserializing Data
The Click event handler of the Validate Document button contains the code shown in
Listing 3-10.

8253ch03.fm Page 91 Friday, March 23, 2007 10:10 AM

92 C H A P T E R 3 ■ R E A D I N G A N D W R I T I N G X M L D O C U M E N T S

Listing 3-10. Reading Base64 Data

private void button2_Click(object sender, EventArgs e)
{
 XmlTextReader reader = new XmlTextReader(textBox2.Text);
 reader.WhitespaceHandling = WhitespaceHandling.None;

 while (reader.Read())
 {
 if (reader.NodeType == XmlNodeType.Element)
 {
 if (reader.Name == "imagefile")
 {
 int length = int.Parse(reader.GetAttribute("size"));
 string filename = reader.GetAttribute("filename");
 byte[] data = new byte[length];
 string str = reader.ReadElementString();
 byte[] imagedata = Convert.FromBase64String(str);
 MemoryStream ms = new MemoryStream();
 ms.Write(imagedata, 0, imagedata.Length);
 Image image = Image.FromStream(ms);
 pictureBox1.Image = image;
 ms.Close();
 }
 }
 }
}

The code creates an instance of the XmlTextReader class by passing the XML document we
just created. It then starts reading the document. If the element name is imagefile, the code
reads the two attributes filename and size. Based on the value of the size attribute, a byte
array is created with that much capacity. The contents of the <imagefile> element are read by
using the ReadElementString() method.

■Note The XmlTextReader class also provides a method called ReadContentAsBase64() that does the
same job. The ReadContentAsBase64() method takes three parameters: a byte array into which the content
is to be read, the index of the byte array from where writing should start, and the length of data to read.

The returned string will be in Base64 format and needs to be converted back into a byte
array. This is done with the help of the FromBase64String() method of the Convert class, which
accepts the Base64-encoded string and returns an equivalent byte array. The byte array returned
from FromBase64String() is written to a MemoryStream object; the MemoryStream is then converted
into an Image object. This is accomplished by using the FromStream() static method of the Image
class, which returns an instance of the Image class constructed from the supplied stream. Finally,
the Image instance is assigned to the Image property of the picture box control.

8253ch03.fm Page 92 Friday, March 23, 2007 10:10 AM

C H A P T E R 3 ■ R E A D I N G A N D W R I T I N G X M L D O C U M E N T S 93

Summary
This chapter covered two important classes: XmlTextReader and XmlTextWriter. They are
implementations of the abstract base classes XmlReader and XmlWriter, respectively. The
XmlTextReader class represents a read-only parser that can parse XML documents very quickly.
Because it does not load the entire XML document in memory, its memory footprint is small. It
provides a cursor-oriented model to read the XML documents. The XmlTextWriter class allows
you to quickly create XML documents and serialize nontextual data in hexadecimal or Base64
format. You can also create your own custom readers and writers by inheriting from the
XmlReader and XmlWriter abstract classes.

8253ch03.fm Page 93 Friday, March 23, 2007 10:10 AM

8253ch03.fm Page 94 Friday, March 23, 2007 10:10 AM

95

■ ■ ■

C H A P T E R 4

Accessing XML Documents by
Using the XPath Data Model

In Chapters 2 and 3, you learned how to read and write XML documents by using the
XmlDocument, XmlReader, and XmlWriter classes. These classes allow you to access the under-
lying documents, but by themselves they hardly provide a way to query and retrieve the data.
That is why we need something that allows us to navigate, query, and retrieve data from XML
documents easily and efficiently. The XPath standard is designed to do just that.

The .NET Framework namespace System.Xml.XPath provides a complete set of classes that
allow you to query and retrieve data from an XML document by using the XPath data model.
Recollect that in Chapter 2 we used the SelectNodes() and SelectSingleNode() methods that
use XPath expressions. In this chapter, I will discuss XPath at length. Specifically, you will learn
about the following:

• The location path, axis, and node tests

• The XPath built-in functions

• How to use the XPathNavigator class along with XPath

• How to read and write XML data by using the XPathNavigator class

Overview of XPath
XPath provides a way to query and select a part of an XML document. To work with XPath
expressions, you must understand some of the basic terminology. Specifically, you must be
comfortable with the following terms:

• Location path

• Axis

• Node tests

• Predicates

8253ch04.fm Page 95 Tuesday, February 20, 2007 6:10 PM

96 C H A P T E R 4 ■ A C C E S S I N G X M L D O C U M E N T S B Y U S I N G T H E X P A T H D A T A M O D E L

Location Path
We are all familiar with the Windows file system. In the file system, each file has a path and we
denote that path by using a specific notation. Similarly, various parts of an XML document,
such as elements and attributes, also have a location. The location is indicated by a specific
XPath syntax called the location path, which allows you to select a set of nodes from an XML
document. A location path consists of an axis, a node test, and predicates.

Axis
When dealing with file system paths, we normally start with the drive letter. Thus the drive
letter forms the basis for locating the file. A similar role is played by the axis for XML docu-
ments. The axis partitions the XML document based on the current node, so by using an axis
you specify the starting point to apply node tests and predicates. The available axes are listed
in Table 4-1.

Table 4-1. XPath Axes

Axis Description

Self Represents the current node (often the context node)

Child Represents the children of the context node

Parent Represents the parent of the context node

Attribute Represent attributes of the context node

Descendent Represents all the child nodes of the context node

Ancestor Represents parent, grandparent, and so on until the document root

Following Represents all the nodes that come after the context node

Following-sibling Represents the sibling nodes following the context node

Preceding Represents all the nodes that come before the context node

Preceding-sibling Represents the preceding sibling of the context node

8253ch04.fm Page 96 Tuesday, February 20, 2007 6:10 PM

C H A P T E R 4 ■ A C C E S S I N G X M L D O C U M E N T S B Y U S I N G T H E X P A T H D A T A M O D E L 97

Node Tests
Node tests allow you to test elements and node types for a certain condition and return the
selected elements or nodes. You can use the asterisk (*) character to indicate all the nodes.
Some of the commonly used node tests are as follows:

• Testing elements with the same name as the supplied element name

• Testing all the nodes of a specific axis

• Testing all the text elements of a specific axis

• Testing all the comments of a specific axis

• Testing all the processing instructions of a specific axis

Predicates
Predicates are Boolean expressions that are used to further filter the nodes selected by the axis
and node test. The XPath specifications provide a good number of functions that you can use
to form predicates. The return values of these functions can be compared or checked with the
help of familiar operators, such as =, !=, <, >, <=, >=, and so on.

Putting It All Together
Now that you know the meaning of the XPath terms, let’s see what a location path looks like.
The general syntax of a location path is given here:

Axis::node-test[predicate]

The axis is separated from the rest of the path by the :: operator. The node test typically
contains a series of nodes, that is, a path. Finally, the predicate is specified in a set of square
brackets. Here is an example of a location path:

following::employee[@employeeid='2']

The preceding location path points to the employee node following the current node
whose employeeid attribute is 2.

8253ch04.fm Page 97 Tuesday, February 20, 2007 6:10 PM

98 C H A P T E R 4 ■ A C C E S S I N G X M L D O C U M E N T S B Y U S I N G T H E X P A T H D A T A M O D E L

Here are the XPath expressions that we used in Chapter 2:

//employee[./firstname/text()='some_text']
//employee[@employeeid='1']

In both cases, the axis is the root node as indicated by //. The node test consists of a single
node (employee). The predicate for the first expression tests whether the text value of the
firstname node of the current employee node matches some specific text. The predicate for the
second expression checks whether the employeeid attribute (the attribute axis can be abbrevi-
ated as @) of the current employee node is 1.

XPath Functions
The XPath specification provides several built-in functions. These functions can be grouped in
the following way:

• Functions that work on a set of nodes

• Functions that return a Boolean value

• Functions that work on strings

• Functions that work on numbers

These functions are listed in Tables 4-2 through 4-5.

Table 4-2. Functions That Work on a Set of Nodes

Table 4-3. Functions That Return Boolean Values

Function Name Description

last() Returns the number of nodes in the current node set

position() Returns the index of the context node in the current node set

count() Returns the total number of nodes in the given node set

id() Returns a node set containing nodes with an ID attribute matching the
specified value

name() Returns the fully qualified name of the specified node

text() Returns the text of the specified node

local-name() Returns the local name of the node

namespace-uri() Returns the namespace of the node

Function Name Description

not() Returns true if the supplied value is false; otherwise, returns false

true() Returns true

false() Returns false

8253ch04.fm Page 98 Tuesday, February 20, 2007 6:10 PM

C H A P T E R 4 ■ A C C E S S I N G X M L D O C U M E N T S B Y U S I N G T H E X P A T H D A T A M O D E L 99

Table 4-4. Functions That Work on Strings

Table 4-5. Functions That Work on Numbers

Now that you have a good understanding of XPath, location paths, and XPath functions,
let’s delve further into the .NET Framework’s XPath data model.

The XPath Data Model
The XPath data model of the .NET Framework relies on a class called XPathNavigator residing
in the System.Xml.XPath namespace. The XPathNavigator class is an abstract class and provides
a cursor-based navigation model for the underlying XML data. It also allows you to edit XML
documents. You can obtain an XPathNavigator instance from any class that implements the
IXPathNavigable interface. The classes that already implement this interface are XmlDocument
and XPathDocument.

You have already worked with the XmlDocument class and hence it needs no explanation.
The XPathDocument class, which resides in the System.Xml.XPath namespace, provides a
read-only representation of an XML document by using the XPath data model. It loads the
document in memory and naturally provides fast access to various parts of the document.

The XPathNavigator instance returned from XmlDocument is editable, whereas that
returned by XPathDocument is read-only.

Creating XPathNavigator
You can obtain an instance of XPathNavigator from either XmlDocument or XPathDocument.
Both of these classes implement the IXPathNavigable interface and provide a method called
CreateNavigator() that creates and returns an object of type XPathNavigator.

Function Name Description

concat() Returns a concatenated string

starts-with() Returns true if the string starts with the specified letters

contains() Returns true if the string contains the specified string

substring() Returns part of the specified string

string-length() Returns the number of characters in the string

translate() Replaces characters from a string with the specified characters

Function Name Description

number() Converts the specified string to its equivalent number

sum() Returns the sum of numbers

floor() Returns a number rounded down to the next integer

ceiling() Returns a number rounded up to the next integer

round() Returns a number rounded to the nearest integer

8253ch04.fm Page 99 Tuesday, February 20, 2007 6:10 PM

100 C H A P T E R 4 ■ A C C E S S I N G X M L D O C U M E N T S B Y U S I N G T H E X P A T H D A T A M O D E L

To see how these classes can be used, you need to develop a Windows application as
shown in Figure 4-1.

Figure 4-1. Creating XPathNavigator

The application consists of two radio buttons that allow you to select whether to use
XmlDocument or XPathDocument for creating your XPathNavigator. When you click the Create
button, the XPathNavigator instance is created depending on the selected radio button. Note
that you need to import the System.Xml and System.Xml.XPath namespaces before you write
any code. Listing 4-1 shows the code from the Click event handler of the Create button.

Listing 4-1. Creating XPathNavigator

private void button1_Click(object sender, EventArgs e)
{
 XPathNavigator navigator = null;
 if (radioButton1.Checked)
 {
 XmlDocument doc = new XmlDocument();
 doc.Load(Application.StartupPath + @"/employees.xml");
 navigator = doc.CreateNavigator();
 }
 else
 {
 XPathDocument doc =
 new XPathDocument(Application.StartupPath + @"/employees.xml");
 navigator = doc.CreateNavigator();
 }
 MessageBox.Show("Navigator created successfully!");
}

8253ch04.fm Page 100 Tuesday, February 20, 2007 6:10 PM

C H A P T E R 4 ■ A C C E S S I N G X M L D O C U M E N T S B Y U S I N G T H E X P A T H D A T A M O D E L 101

The code begins by declaring a variable of type XPathNavigator at the top of the event han-
dler. It then checks which radio button is selected. If the XPathNavigator is to be created from
XmlDocument, it creates an instance of the XmlDocument class. It then loads the Employees.xml file
with the help of the Load() method of XmlDocument. The XmlDocument class has a method called
CreateNavigator() that creates and returns an instance of the XPathNavigator class.

If the navigator is to be created from XPathDocument, the code creates an instance of the
XPathDocument class. There are several overloads on the constructor of this class; our code uses
the one that accepts the path to the XML file. The CreateNavigator() method of XPathDocument
creates and returns an instance of XPathNavigator. Finally, a message box is displayed just to
report the success of the operation.

Navigating an XML Document by Using XPathNavigator
In the previous section, you learned to create XPathNavigator from XmlDocument and
XPathDocument. In this section, you will see how to use XPathNavigator and access various
attributes and elements.

To work through this section, you need to create a Windows application as shown in
Figure 4-2.

Figure 4-2. Navigating through XPathNavigator

The application consists of a TreeView and a button. After you click the Load Tree button,
the TreeView is populated with employee information from the Employees.xml file. The Click
event handler of the Load Tree button contains the code shown in Listing 4-2.

8253ch04.fm Page 101 Tuesday, February 20, 2007 6:10 PM

102 C H A P T E R 4 ■ A C C E S S I N G X M L D O C U M E N T S B Y U S I N G T H E X P A T H D A T A M O D E L

Listing 4-2. Navigating by Using XPathNavigator

private void button1_Click(object sender, EventArgs e)
{
 XPathDocument doc =
 new XPathDocument(Application.StartupPath + @"\employees.xml");
 XPathNavigator navigator = doc.CreateNavigator();
 navigator.MoveToRoot();
 navigator.MoveToFirstChild();

 TreeNode root = treeView1.Nodes.Add("Employees");

 while (navigator.MoveToNext())
 {
 if (navigator.HasChildren)
 {
 navigator.MoveToFirstChild();
 do
 {
 string id = navigator.GetAttribute("employeeid", "");
 TreeNode empnode = new TreeNode("Employee ID :" + id);
 root.Nodes.Add(empnode);
 navigator.MoveToFirstChild();

 do
 {
 string name = navigator.Name;
 TreeNode node = new TreeNode(name + " : " + navigator.Value);
 empnode.Nodes.Add(node);
 } while (navigator.MoveToNext());

 navigator.MoveToParent();
 }
 while (navigator.MoveToNext());
 }
 }
}

8253ch04.fm Page 102 Tuesday, February 20, 2007 6:10 PM

C H A P T E R 4 ■ A C C E S S I N G X M L D O C U M E N T S B Y U S I N G T H E X P A T H D A T A M O D E L 103

The code begins by creating an instance of the XPathDocument class by passing the path of the
XML file to its constructor. It then creates an XPathNavigator by calling the CreateNavigator()
method of the XPathDocument class. We need to iterate through the document from the root and
hence we call the MoveToRoot() method of XPathNavigator. This method moves the cursor of the
XPathNavigator to the root of the document. Note that here the root of the document is the node
that contains the entire tree of nodes. Because we want to start the iteration from the <employees>
node, we call the MoveToFirstChild() method. Calling this method will place the navigator cursor
at the <employees> node. A root node of the TreeView is then added.

Next there are three loops. The outermost loop iterates through all the child nodes of
the root node. In our case, this loop will be executed just once, because there is only one
<employees> node. The second loop iterates through all the <employee> nodes, whereas
the innermost loop iterates through the child nodes of the <employee> node, that is, the
<firstname>, <lastname>, <homephone>, and <notes> nodes.

The outermost loop uses the MoveToNext() method of the XPathNavigator class to advance
the cursor onto the next node. It then decides whether there are any <employee> nodes using the
HasChildren property. The HasChildren property returns true if there are child nodes to the cur-
rent node; otherwise, it returns false. If there are <employee> nodes, the cursor is moved to the
first <employee> node by calling the MoveToFirstChild() method, which moves the navigator
cursor to the first child node.

Now the code starts iterating through all the <employee> nodes. With each iteration, the
value of the employee attribute is retrieved by using the GetAttribute() method. This method
accepts two parameters: the name of the attribute to retrieve and the attribute namespace.
Because our document does not contain any namespaces, an empty string is passed as the sec-
ond parameter. A TreeView node is added for that employee ID. The cursor is then moved to
the first child node of the <employee> node by using the MoveToFirstChild() method we dis-
cussed earlier. After this call, the cursor will be on the <firstname> node.

Now the innermost loop starts. With each iteration, the name of the node is retrieved by
using the Name property, and the value of the node is retrieved by using the Value property. The
same process is carried out for all the child nodes, that is, <firstname>, <lastname>, <homephone>,
and <notes>.

After the innermost loop is finished, the navigator cursor is moved back to the parent
<employee> node. This is done with the help of the MoveToParent() method, which moves the
cursor pointer to the parent node of the current node. The same process is repeated for the
remaining <employee> nodes.

8253ch04.fm Page 103 Tuesday, February 20, 2007 6:10 PM

104 C H A P T E R 4 ■ A C C E S S I N G X M L D O C U M E N T S B Y U S I N G T H E X P A T H D A T A M O D E L

Selecting Nodes
This chapter began with a brief overview of XPath and its vocabulary, including terms such as
axis, node test, predicate, and function. You might be wondering where they come into the pic-
ture. It’s time now to see those features in action.

To test various XPath expressions, we will create a simple application that looks like the
one shown in Figure 4-3.

Figure 4-3. Executing XPath expressions

The application consists of a text box positioned at the top to enter XPath expressions.
After you click the Execute button, the given expression is executed and its results are displayed
in another text box at the bottom. The label at the bottom displays the total number of rows
returned by the expression. Listing 4-3 shows the Click event handler of the Execute button.

Listing 4-3. Using the Select() Method

private void button1_Click(object sender, EventArgs e)
{
 XPathDocument doc =
 new XPathDocument(Application.StartupPath + @"\employees.xml");
 XPathNavigator navigator = doc.CreateNavigator();
 XPathNodeIterator iterator = navigator.Select(textBox1.Text);
 try
 {
 label3.Text = "The expressions returned " + iterator.Count + " nodes";
 if (iterator.Count > 0)
 {
 while (iterator.MoveNext())

8253ch04.fm Page 104 Tuesday, February 20, 2007 6:10 PM

C H A P T E R 4 ■ A C C E S S I N G X M L D O C U M E N T S B Y U S I N G T H E X P A T H D A T A M O D E L 105

 {
 textBox2.Text = iterator.Current.OuterXml;
 }
 }
 else
 {
 textBox2.Text = "No results";
 }
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
}

The code creates an instance of XPathDocument by passing the path of the Employees.xml file.
Then an XPathNavigator is obtained by using the CreateNavigator() method of XPathDocument.
The code then calls the Select() method of XPathNavigator, which accepts an XPath expression
and returns an instance of XPathNodeIterator.

The XPathNodeIterator class allows you to iterate through the returned nodes and has a
number of properties and methods to assist you. To start with, the Count property tells you how
many nodes were selected by the Select() method. After you are satisfied that there were some
results, you can iterate through the selected nodes by using the MoveNext() method. On each
node, you then use the Current property to give you a reference to the XPathNavigator that
is positioned at the current node. You can then call any of the methods and properties of
XPathNavigator.

In our example, we simply display the OuterXml property of the underlying XPathNavigator in
a text box. Though not used in our example, the CurrentPosition property of XPathNodeIterator
returns the current index of the node being accessed.

Now let’s try some XPath expressions by using our application. Some XPath expressions
relevant to our XML document (Employees.xml) are given in Table 4-6.

Table 4-6. Examples of XPath Expressions

Purpose Expression

To select an employee whose employee
ID is 1

employees/employee[@employeeid=1]

To select the employee whose first name
is Andrew

employees/employee[firstname/text()='Andrew']

To select the last employee from the
document

employees/employee[last()]

To select the employee whose index is 2 employees/employee[position()=2]

To select an employee whose name
contains Nancy

employees/employee[contains(firstname,'Nancy')]

To select the name of the first employee employees/employee/firstname[text()]

8253ch04.fm Page 105 Tuesday, February 20, 2007 6:10 PM

106 C H A P T E R 4 ■ A C C E S S I N G X M L D O C U M E N T S B Y U S I N G T H E X P A T H D A T A M O D E L

Selecting Single Nodes

The Select() method returns all the nodes that are obtained after evaluating the XPath expres-
sion. There is a method called SelectSingleNode() that executes the supplied XPath expression
and returns an XPathNavigator object (and not an XPathNodeIterator) that contains the first
matching node for the specified expression. You can then use the XPathNavigator object to
navigate through the nodes. SelectSingleNode() comes in handy when you know that your
XPath expression is going to return just one node. For example, in our document we can use
SelectSingleNode() to extract an employee matching a specific employee ID.

To illustrate the use of SelectSingleNode(), you need to develop an application as shown
in Figure 4-4.

Figure 4-4. Using the SelectSingleNode() method

The application contains a text box to accept an employee ID and nine labels. Clicking
the Show button displays details of an employee, and because the employee ID is unique in
Employees.xml, we can safely use SelectSingleNode() here. Listing 4-4 shows the relevant code.

Listing 4-4. Calling the SelectSingleNode() Method

private void button1_Click(object sender, EventArgs e)
{
 XPathDocument doc =
 new XPathDocument(Application.StartupPath + @"\employees.xml");
 XPathNavigator navigator = doc.CreateNavigator();
 XPathNavigator result =
 navigator.SelectSingleNode(@"employees/employee[@employeeid=" +
 textBox1.Text + "]");
 result.MoveToFirstChild();

8253ch04.fm Page 106 Tuesday, February 20, 2007 6:10 PM

C H A P T E R 4 ■ A C C E S S I N G X M L D O C U M E N T S B Y U S I N G T H E X P A T H D A T A M O D E L 107

 do
 {
 switch (result.Name)
 {
 case "firstname":
 label6.Text=result.Value;
 break;
 case "lastname":
 label7.Text=result.Value;
 break;
 case "homephone":
 label8.Text=result.Value;
 break;
 case "notes":
 label9.Text=result.Value;
 break;
 }
 }
 while (result.MoveToNext());
}

The code obtains an XPathNavigator object from an XPathDocument class. To retrieve the
<employee> node with the specified employee ID, we use SelectSingleNode(), by supplying the
appropriate XPath expression. It in turn returns another XPathNavigator object containing the
returned node.

The code then iterates through all the child nodes (<firstname>, <lastname>, <homephone>,
and <notes>) of the returned <employee> node. With each iteration, the corresponding values
are extracted by using the Value property of XPathNavigator.

Selecting Children, Ancestors, and Descendants

In addition to Select() and SelectSingleNode(), you can also use three specialized methods:

• The SelectChildren() method accepts the name of the child node and returns an
XPathNodeIterator containing all the child nodes of the current node matching the
supplied name.

• The SelectAncestors() method accepts the name of the ancestor nodes to select and
returns an XPathNodeIterator containing all the ancestor nodes of the current node.

• The SelectDescendants() method accepts a node name and returns an XPathNodeIterator
containing all the descendant nodes of the current node matching the supplied name.

These methods are optimized for performance and hence are faster than the equivalent
XPath expressions.

8253ch04.fm Page 107 Tuesday, February 20, 2007 6:10 PM

108 C H A P T E R 4 ■ A C C E S S I N G X M L D O C U M E N T S B Y U S I N G T H E X P A T H D A T A M O D E L

Compiling XPath Expressions

If you are using the same XPath expression again and again, you can improve the performance
of your code by using the Compile() method of the XPathNavigator class. This method accepts
an XPath expression as a string, compiles it, and returns an instance of the XPathExpression
class. This instance can then be supplied to the Select() and SelectSingleNode() methods.

To see the Compile() method in action, you need to modify the example that we developed
for selecting nodes (see the “Selecting Nodes” section). The modified code is given in Listing 4-5.

Listing 4-5. Using XPathExpression and the Compile() Method

private void button1_Click(object sender, EventArgs e)
{
 XPathDocument doc =
 new XPathDocument(Application.StartupPath + @"\employees.xml");
 XPathNavigator navigator = doc.CreateNavigator();
 XPathExpression expression = navigator.Compile(textBox1.Text);
 XPathNodeIterator iterator = navigator.Select(expression);
 try
 {
 ...

Note the lines marked in bold. The code creates an instance of the XPathExpression class by
calling the Compile() method of XPathNavigator. This XPathExpression instance is then passed to
the Select() method. The rest of the code of the application remains unchanged. You can pass the
same XPathExpression instance to any number of Select() or SelectSingleNode() calls.

Navigating Between Attributes
Previously we accessed the attribute value by using the GetAttribute() method of
the XPathNavigator class. However, there is an alternate technique that allows you
to move through the available attributes by using three methods of XPathNavigator:
MoveToAttribute(), MoveToFirstAttribute(), and MoveToNextAttribute(). These methods
allow you to move to a specific attribute, the first attribute, and the next attribute,
respectively.

The previous example can be modified as shown in Listing 4-6.

Listing 4-6. Accessing Attributes by Using the MoveTo . . . Methods

navigator.MoveToAttribute("employeeid", "");
string id = navigator.Value;
navigator.MoveToParent();

As you can see, the code now calls the MoveToAttribute() method instead of GetAttribute().
The MoveToAttribute() method takes the same two parameters as GetAttribute(), that is, the
name of the attribute and the attribute namespace. To access the attribute’s value this time, we
use the Value property of XPathNavigator. Because the cursor has been moved to the employeeid
attribute, the Value property returns its value. Before continuing, the cursor is positioned back to
the <employee> node by calling the MoveToParent() method.

8253ch04.fm Page 108 Tuesday, February 20, 2007 6:10 PM

C H A P T E R 4 ■ A C C E S S I N G X M L D O C U M E N T S B Y U S I N G T H E X P A T H D A T A M O D E L 109

Retrieving Inner and Outer XML
In the previous sections, we used the Value property of XPathNavigator to access the text of var-
ious attributes and nodes. There are two more properties—InnerXml and OuterXml—that
return the contents of the XPathNavigator as a string. The InnerXml property returns the com-
plete markup of all the child nodes (excluding any markup of the current node), whereas the
OuterXml property returns the complete markup of the node and all the child nodes.

To see how these properties are used, you need to develop an application as shown in
Figure 4-5.

Figure 4-5. Inner and outer XML

The application contains two radio buttons to indicate inner or outer XML options. The
Read button reads the Employees.xml file and displays the content as per the selection made.
Listing 4-7 shows the Click event handler of the Read button containing the relevant code.

Listing 4-7. Using InnerXml and OuterXml Propertiess

private void button1_Click(object sender, EventArgs e)
{
 XPathDocument doc=new XPathDocument(Application.StartupPath + @"\employees.xml");
 XPathNavigator navigator = doc.CreateNavigator();
 navigator.MoveToRoot();
 navigator.MoveToFirstChild();

 while (navigator.MoveToNext())
 {
 if (radioButton1.Checked)
 {
 MessageBox.Show(navigator.InnerXml);
 }
 else
 {
 MessageBox.Show(navigator.OuterXml);
 }
 }
}

8253ch04.fm Page 109 Tuesday, February 20, 2007 6:10 PM

110 C H A P T E R 4 ■ A C C E S S I N G X M L D O C U M E N T S B Y U S I N G T H E X P A T H D A T A M O D E L

The code creates an instance of XPathDocument as before. The XPathNavigator is then
obtained by using the CreateNavigator() method of the XPathDocument class. As you learned in
the previous examples, the cursor is positioned at the <employees> node. Finally, the entire
content of the <employees> node is retrieved by using the InnerXml and OuterXml properties of
the XPathNavigator class. The resultant message boxes for InnerXml and OuterXml are shown in
Figures 4-6 and 4-7.

Figure 4-6. Output of the InnerXml property

8253ch04.fm Page 110 Tuesday, February 20, 2007 6:10 PM

C H A P T E R 4 ■ A C C E S S I N G X M L D O C U M E N T S B Y U S I N G T H E X P A T H D A T A M O D E L 111

Figure 4-7. Output of the OuterXml property

Note how OuterXml returns markup of the <employees> node, whereas InnerXml doesn’t.

Getting an XmlReader from XPathNavigator
Though XPathNavigator allows you to read the XML document, at times you may want to pass
a set of nodes from XPathNavigator to an XmlReader. The XmlReader can then read the returned
nodes further. This is accomplished by using the ReadSubTree() method of XPathNavigator.

8253ch04.fm Page 111 Tuesday, February 20, 2007 6:10 PM

112 C H A P T E R 4 ■ A C C E S S I N G X M L D O C U M E N T S B Y U S I N G T H E X P A T H D A T A M O D E L

To demonstrate how an XmlReader can be obtained from an XPathNavigator, you need to
build a Windows application as shown in Figure 4-8.

Figure 4-8. Obtaining XmlReader from XPathNavigator

The application consists of a text box for entering the employee ID, a button, and nine
labels. Upon clicking the Show button, the form displays the employee details on the form.

Listing 4-8 shows the Click event handler of the Show button.

Listing 4-8. Calling the ReadSubtree() Method

private void button1_Click(object sender, EventArgs e)
{
 XPathDocument doc=new XPathDocument(Application.StartupPath + @"\employees.xml");
 XPathNavigator navigator = doc.CreateNavigator();
 navigator.MoveToRoot();
 navigator.MoveToFirstChild();

 while (navigator.MoveToNext())
 {
 navigator.MoveToFirstChild();

 do
 {
 string id = navigator.GetAttribute("employeeid", "");
 if (id == textBox1.Text)
 {
 XmlReader reader=navigator.ReadSubtree();
 DisplayDetails(reader);
 }
 }
 while (navigator.MoveToNext());
 }
}

8253ch04.fm Page 112 Tuesday, February 20, 2007 6:10 PM

C H A P T E R 4 ■ A C C E S S I N G X M L D O C U M E N T S B Y U S I N G T H E X P A T H D A T A M O D E L 113

The code begins by creating an instance of XPathDocument. An XPathNavigator is then
obtained by calling CreateNavigator(). Then the code iterates through the document. The
navigation logic should be familiar to you because we used it in previous examples. With each
iteration, the employeeid attribute is checked against the value supplied from the text box. If
they match, the ReadSubtree() method of XPathNavigator is called. In this case, this returns an
instance of XmlReader that contains one <employee> node and all its child nodes. The returned
XmlReader is passed to a helper function called DisplayDetails(), shown in Listing 4-9.

Listing 4-9. DisplayDetails() Helper Function

private void DisplayDetails(XmlReader reader)
{
 while (reader.Read())
 {
 if (reader.NodeType == XmlNodeType.Element)
 {
 switch (reader.Name)
 {
 case "firstname":
 label6.Text = reader.ReadString();
 break;
 case "lastname":
 label7.Text = reader.ReadString();
 break;
 case "homephone":
 label8.Text = reader.ReadString();
 break;
 case "notes":
 label9.Text = reader.ReadString();
 break;
 }
 }
 }
 reader.Close();
}

The DisplayDetails() function iterates through the supplied XmlReader object calling its
Read() method. With each iteration, the values of the <firstname>, <lastname>, <homephone>,
and <notes> nodes are retrieved by using the ReadString() method of the XmlReader class and
assigned to the labels. Finally, the reader is closed by calling its Close() method.

■Note The position of XPathNavigator remains unaffected even after calling the ReadSubtree() method.

8253ch04.fm Page 113 Tuesday, February 20, 2007 6:10 PM

114 C H A P T E R 4 ■ A C C E S S I N G X M L D O C U M E N T S B Y U S I N G T H E X P A T H D A T A M O D E L

Getting an XmlWriter from XPathNavigator
Just as you can create an XmlReader from XPathNavigator, you can also create an XmlWriter
from it. This is useful in situations where you want to write selected nodes from XPathNavigator
to a file or stream. XPathNavigator provides a method called WriteSubtree() that accepts an
XmlWriter and writes the current node to it.

To illustrate the use of this technique, you need to develop an application as shown in
Figure 4-9.

Figure 4-9. Obtaining an XmlWriter from XPathNavigator

The application consists of two text boxes: one to accept the employee ID to be extracted,
and the other to specify a file path where the extracted employee details are stored.

Listing 4-10 shows the Click event handler of the Write button.

Listing 4-10. Calling the WriteSubtree() Method

private void button1_Click(object sender, EventArgs e)
{
 XPathDocument doc =
 new XPathDocument(Application.StartupPath + @"\employees.xml");
 XPathNavigator navigator = doc.CreateNavigator();
 navigator.MoveToRoot();
 navigator.MoveToFirstChild();

 while (navigator.MoveToNext())
 {
 navigator.MoveToFirstChild();

 do
 {
 string id = navigator.GetAttribute("employeeid", "");
 if (id == textBox1.Text)

8253ch04.fm Page 114 Tuesday, February 20, 2007 6:10 PM

C H A P T E R 4 ■ A C C E S S I N G X M L D O C U M E N T S B Y U S I N G T H E X P A T H D A T A M O D E L 115

 {
 XmlTextWriter writer = new XmlTextWriter(textBox2.Text, null);
 navigator.WriteSubtree(writer);
 writer.Close();
 if (MessageBox.Show("Do you want to see the file?",
 "Question",
 MessageBoxButtons.YesNo) == DialogResult.Yes)
 {
 System.Diagnostics.Process.Start(textBox2.Text);
 }
 }
 }
 while (navigator.MoveToNext());
 }
}

The code creates an instance of XPathDocument and XPathNavigator as before. It then
starts navigating the document and finds the matching <employee> node. After the matching
employee is found, the code creates an instance of XmlTextWriter (recollect that XmlTextWriter
inherits from the XmlWriter abstract class), supplying the file path entered in the text box to the
constructor. Though our example writes the data to a disk file, any writable stream can be used.

To write the matching employee to XmlTextWriter, the code calls the WriteSubtree()
method of XPathNavigator. The WriteSubtree() method accepts any class derived from the
XmlWriter base class and writes the contents of the current node to it. In our example, it will be
the <employee> node and its child nodes. After the writing is over, the XmlTextWriter is closed
by calling its Close() method. The code then asks the user whether they want to open the
resultant file, as shown in Figure 4-10.

Figure 4-10. Prompting the user to open the resultant file

If the user clicks Yes, the resultant XML file is opened in the browser. Note the use of the
Process class from the System.Diagnostics namespace. The Start() method of this class
accepts a filename and opens it in its associated application. Figure 4-11 shows a sample out-
put document with the <employee> subtree extracted.

8253ch04.fm Page 115 Tuesday, February 20, 2007 6:10 PM

116 C H A P T E R 4 ■ A C C E S S I N G X M L D O C U M E N T S B Y U S I N G T H E X P A T H D A T A M O D E L

Figure 4-11. Resultant XML document

Editing XML Documents with the XPathNavigator Class
Up until now, we have used XPathNavigator to navigate and read values from the underlying
XML document. However, it is possible to modify the underlying document also, though the
XPathNavigator must be obtained from the XmlDocument class to do so. XPathNavigator
instances obtained from XPathDocument are read-only and hence cannot be used for editing.
You can check whether an instance of XPathNavigator is editable by using its CanEdit property,
which returns true if the instance is editable, and false otherwise.

To see how an XML document can be modified with the help of XPathNavigator, you need
to develop an application as shown in Figure 4-12.

Figure 4-12. Modifying an XML document by using XPathNavigator

The application consists of text boxes to supply values for employee ID, first name, last
name, home phone, and notes. There are four buttons for adding a new employee, modifying
an existing employee, deleting an existing employee, and saving the changed document,

8253ch04.fm Page 116 Tuesday, February 20, 2007 6:10 PM

C H A P T E R 4 ■ A C C E S S I N G X M L D O C U M E N T S B Y U S I N G T H E X P A T H D A T A M O D E L 117

respectively. When you enter an employee ID and click the Show button, the details of that
employee are displayed in the remaining text boxes. You can change the details as per your
requirements and click the Add, Update, or Delete buttons to add, update, or delete an
employee, respectively. To save the modified document, you need to click the Save button.

In the source code of the application, you will find two form variables declared as shown
Listing 4-11.

Listing 4-11. Declaring XmlDocument and XPathNavigator

XmlDocument doc = new XmlDocument();
XPathNavigator navigator = null;

The Employees.xml file is loaded into this XmlDocument, and an XPathNavigator is obtained
from it. This code goes in the Load event of the form and is shown in Listing 4-12.

Listing 4-12. Creating XPathNavigator

private void Form1_Load(object sender, EventArgs e)
{
 doc.Load(Application.StartupPath + @"\employees.xml");
 navigator = doc.CreateNavigator();
}

When the user enters an employee ID and clicks the Show button, the details of that
employee need to be displayed in the remaining text boxes. The Click event handler of the
Show button does this job, as shown in Listing 4-13.

Listing 4-13. Retrieving Details of an Employee

private void button1_Click(object sender, EventArgs e)
{
 navigator.MoveToRoot();
 navigator.MoveToFirstChild();

 while (navigator.MoveToNext())
 {
 navigator.MoveToFirstChild();

 do
 {
 string id = navigator.GetAttribute("employeeid", "");
 if (id == textBox1.Text)
 {
 navigator.MoveToFirstChild();

8253ch04.fm Page 117 Tuesday, February 20, 2007 6:10 PM

118 C H A P T E R 4 ■ A C C E S S I N G X M L D O C U M E N T S B Y U S I N G T H E X P A T H D A T A M O D E L

 do
 {
 switch (navigator.Name)
 {
 case "firstname":
 textBox2.Text = navigator.Value;
 break;
 case "lastname":
 textBox3.Text = navigator.Value;
 break;
 case "homephone":
 textBox4.Text = navigator.Value;
 break;
 case "notes":
 textBox5.Text = navigator.Value;
 break;
 }
 }
 while (navigator.MoveToNext());

 navigator.MoveToParent();
 }
 }
 while (navigator.MoveToNext());
 }
}

The code should be familiar to you, because we used something similar in previous exam-
ples. The code loops through all the <employee> nodes and finds the one that matches the
supplied employee ID. The values of various child nodes such as <firstname>, <lastname>,
<homephone>, and <notes> are displayed in the respective text boxes by using the Value property
of XPathNavigator.

Adding Nodes

To add new nodes to the document, the XPathNavigator class provides a method called
AppendChild(). The AppendChild() method returns an instance of XmlWriter, and by using
this XmlWriter you can write additional nodes to the document. The newly written nodes are
added as child nodes of the current node. Listing 4-14 shows how this is accomplished.

8253ch04.fm Page 118 Tuesday, February 20, 2007 6:10 PM

C H A P T E R 4 ■ A C C E S S I N G X M L D O C U M E N T S B Y U S I N G T H E X P A T H D A T A M O D E L 119

Listing 4-14. Appending New Nodes

private void button2_Click(object sender, EventArgs e)
{
 navigator.MoveToRoot();
 navigator.MoveToFirstChild();

 while (navigator.MoveToNext())
 {
 XmlWriter writer = navigator.AppendChild();
 writer.WriteStartElement("employee");
 writer.WriteAttributeString("employeeid", textBox1.Text);
 writer.WriteElementString("firstname", textBox2.Text);
 writer.WriteElementString("lastname", textBox3.Text);
 writer.WriteElementString("homephone", textBox4.Text);
 writer.WriteElementString("notes", textBox5.Text);
 writer.WriteEndElement();
 writer.Close();
 }
}

The code first navigates to the <employees> node. This is where we want to add a new
<employee> child node. Then it calls the AppendChild() method of the XPathNavigator. The
returned XmlWriter is used to add a new <employee> node with an employeeid attribute.
The child nodes of the <employee> node (<firstname>, <lastname>, <homephone>, and <notes>)
are also added. The methods such as WriteStartElement()and WriteEndElement() should
already be familiar to you from Chapter 3.

■Note There are a few other overloads of the AppendChild() method. For example, one overloaded
method accepts the complete XML markup fragment for the new node and appends it to the current node.
However, the one that we used is more flexible.

Modifying Nodes

To modify contents of any of the nodes, the XPathNavigator class provides a method called
SetValue(), which accepts the new value and assigns it to the current node. Listing 4-15 shows
how this method can be used.

8253ch04.fm Page 119 Tuesday, February 20, 2007 6:10 PM

120 C H A P T E R 4 ■ A C C E S S I N G X M L D O C U M E N T S B Y U S I N G T H E X P A T H D A T A M O D E L

Listing 4-15. Modifying Content

private void button3_Click(object sender, EventArgs e)
{
 navigator.MoveToRoot();
 navigator.MoveToFirstChild();

 while (navigator.MoveToNext())
 {
 navigator.MoveToFirstChild();

 do
 {
 string id = navigator.GetAttribute("employeeid", "");
 if (id == textBox1.Text)
 {
 navigator.MoveToFirstChild();

 do
 {
 switch (navigator.Name)
 {
 case "firstname":
 navigator.SetValue(textBox2.Text);
 break;
 case "lastname":
 navigator.SetValue(textBox3.Text);
 break;
 case "homephone":
 navigator.SetValue(textBox4.Text);
 break;
 case "notes":
 navigator.SetValue(textBox5.Text);
 break;
 }
 }
 while (navigator.MoveToNext());

 navigator.MoveToParent();
 }
 }
 while (navigator.MoveToNext());
 }
}

8253ch04.fm Page 120 Tuesday, February 20, 2007 6:10 PM

C H A P T E R 4 ■ A C C E S S I N G X M L D O C U M E N T S B Y U S I N G T H E X P A T H D A T A M O D E L 121

As before, the code finds out the <employee> node that is to be updated. The switch state-
ment checks the Name property of XPathNavigator for the required node names (firstname,
lastname, homephone, and notes). Inside each case, the SetValue() method is called on the nav-
igator by passing the new value from the appropriate text box.

Deleting Nodes

Deleting a node is fairly simple. The DeleteSelf() method of XPathNavigator deletes the cur-
rent node. After the node is successfully deleted, the cursor is moved to the parent node of the
deleted node. Listing 4-16 shows the usage of DeleteSelf().

Listing 4-16. Deleting a Node

private void button4_Click(object sender, EventArgs e)
{
 navigator.MoveToRoot();
 navigator.MoveToFirstChild();

 while (navigator.MoveToNext())
 {
 navigator.MoveToFirstChild();

 do
 {
 string id = navigator.GetAttribute("employeeid", "");
 if (id == textBox1.Text)
 {
 navigator.DeleteSelf();
 }
 }
 while (navigator.MoveToNext());
 }
}

As in the previous case, the code looks for a specific <employee> node. After it finds the
node, it calls the DeleteSelf() method on the navigator.

Saving Changes

It is important to remember that while making any modifications via XPathNavigator, the
changes are not saved automatically to disk. The changes affect only the DOM tree loaded in
memory, so you need to save the underlying document by calling the Save() method of the
XmlDocument class. This is illustrated in Listing 4-17.

8253ch04.fm Page 121 Tuesday, February 20, 2007 6:10 PM

122 C H A P T E R 4 ■ A C C E S S I N G X M L D O C U M E N T S B Y U S I N G T H E X P A T H D A T A M O D E L

Listing 4-17. Saving the Document

private void button5_Click(object sender, EventArgs e)
{
 doc.Save(Application.StartupPath + @"\employees.xml");
}

Summary
In this chapter, you learned what XPath is and how to use XPath expressions in the .NET
Framework. We covered in detail the XPathNavigator class, which represents the XPath data
model of the .NET Framework. The XPathNavigator class can be constructed from either of the
XPathDocument or XmlDocument classes. The XPathNavigator returned from XPathDocument is
read-only, whereas that returned from XmlDocument is editable. You also learned how to select
nodes from the XML document by using XPath expressions in string form as well as in com-
piled form.

8253ch04.fm Page 122 Tuesday, February 20, 2007 6:10 PM

123

■ ■ ■

C H A P T E R 5

Validating XML Documents

In Chapters 2, 3, and 4, you learned how to read and write XML documents, though we always
assumed that the XML structure (tag names, attribute names, nesting, and so on) contained in
the source XML document was correct. However, in many real-world cases this assumption
may not be true. For example, a purchase order application might be accepting orders from
various customers in XML format. What is the guarantee that each submitted order adheres to
the agreed-upon XML structure? What if somebody deviates from the agreed-upon structure?
This is where XML schemas come into the picture.

XML schemas describe the structure of an XML document; to use an analogy, they serve the
same purpose as database schemas. With the help of schemas, you can do two important things:

• You can create XML documents based on the schema.

• You can validate XML documents against the schema.

In this chapter, you are going to learn about the following:

• Various ways to define the structure of an XML document

• What XML schemas are

• How to create schemas

• How to validate XML documents against schemas

• How to create schemas programmatically by using the Schema Object Model (SOM)

Providing Structure for XML Documents
As mentioned previously, XML schemas define the structure of XML documents. In other
words, they provide a template for creating and validating XML documents. However, a
schema is not the only way to provide structure for an XML document. The .NET Framework
supports three ways of defining XML structure:

• Document Type Definitions (DTDs)

• XML Data Reduced schemas (XDR schemas)

• XML Schema Definition Language schemas (XSD schemas)

8253ch05.fm Page 123 Friday, February 23, 2007 12:40 PM

124 C H A P T E R 5 ■ V A L I D A T I N G X M L D O C U M E N T S

Document Type Definitions (DTDs)
DTDs are an older way of representing XML structure but they are still in use. They are a W3C
standard, and a considerable number of XML documents depend on them for validation. A
DTD defines the overall structure of an XML document in terms of acceptable tag names,
acceptable attribute names, and so on. An XML document author uses the DTD while creating
a document. The same DTD can be used while validating the document also. Though DTDs are
one of the common ways to define XML structure, they suffer from many disadvantages:

• They use non-XML syntax.

• They are difficult to create as well as to understand.

• You need to specifically learn the DTD syntax.

• They are not extensible.

• They do not support data types.

• They do not support namespaces.

XML Data Reduced Schemas (XDR Schemas)
While the XSD Schema proposal was under consideration, Microsoft went ahead and created
its implementation, called the XML Data Reduced, or XDR, Schema specification. The XDR
Schema specification closely matches the XSD Schema specification. For the sake of backward
compatibility, Microsoft retained support for XDR schemas in the .NET Framework. If you are
creating a new schema for your XML documents, you should use the XSD Schema specification
instead of XDR.

XML Schema Definition Language Schemas (XSD Schemas)
XSD schemas represent the most recent effort to provide standardization for defining XML
structures. The XSD Schema specification is a W3C recommendation. One of the key benefits
of XSD schemas is that they support data types. They are XML documents themselves and
overcome most of the limitations of DTDs. If you are building new schemas for your XML doc-
uments, you should create them by using XSD instead of the DTD or XDR standards.

Creating Structure for an XML Document
Now that you know the possible ways to define XML structure, let’s put each of the ways to use.
In this section, you will create a formal structure for the same Employees.xml document by
using the DTD and XSD standards. Because XDR and XSD are closely matching standards and
XSD supersedes XDR, I will not cover XDR here.

8253ch05.fm Page 124 Friday, February 23, 2007 12:40 PM

C H A P T E R 5 ■ V A L I D A T I N G X M L D O C U M E N T S 125

The Structure of Employees.xml
You already know how our Employees.xml file looks. Our aim is to define the structure of the
document by using the DTD and XSD standards so that you can validate the document later.
The structure of Employees.xml is as follows:

• The root element must be <employees>.

• The root element can contain zero or more <employee> elements.

• The <employee> element must have an attribute called employeeid.

• The <employee> element must contain <firstname>, <lastname>, <homephone>, and
<notes> sub-elements.

• The <firstname>, <lastname>, and <homephone> elements contain plain-text values.

• The <notes> element contains character data (CDATA).

• The <firstname>, <lastname>, <homephone>, and <notes> sub-elements must appear in
the same order.

Keeping the preceding requirements in mind, let’s create the DTD first followed by the
XSD schema.

Creating the DTD
In this section, you will learn how to create a DTD for representing the structure of the
Employees.xml file. Listing 5-1 shows the complete DTD for the document.

Listing 5-1. DTD for Employees.xml

<!ELEMENT employees (employee*)>
<!ELEMENT employee (firstname,lastname,homephone,notes)>
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT lastname (#PCDATA)>
<!ELEMENT homephone (#PCDATA)>
<!ELEMENT notes (#PCDATA)>
<!ATTLIST employee employeeid CDATA #REQUIRED>

The DTD defines the root element of the XML document to be <employees>. This is done
by using the <!ELEMENT> declaration, which specifies the name of the element (employees in our
case) and content that can go inside it. In our case, the <employees> element can take zero or
more <employee> elements and not any other element or text. This constraint is enforced by
placing the acceptable element names (employee in our case) in the brackets. The asterisk (*)
indicates that zero or more <employee> elements can be placed inside an <employees> element.
Similar to *, you can also use the plus sign (+) and question mark (?). The + operator indicates
that you can have one or more occurrences of the element, whereas ? indicates that the ele-
ment is optional.

8253ch05.fm Page 125 Friday, February 23, 2007 12:40 PM

126 C H A P T E R 5 ■ V A L I D A T I N G X M L D O C U M E N T S

Next we define the <employee> element by using the same <!ELEMENT> declaration. Because
the <employee> element must contain <firstname>, <lastname>, <homephone>, and <notes> sub-
elements, they are specified as a comma-separated list. A comma-separated list of elements
must appear in the order specified. If you want to allow the elements to appear in any order,
you can use the pipe (|) character instead of the comma.

The document then defines each of the sub-elements of the <employee> element. To
indicate that the elements contain plain-character data and no other sub-elements, we use
#PCDATA, which stands for plain-character data. Thus the DTD enforces that the <firstname>,
<lastname>, <homephone>, and <notes> elements can contain only plain-character data and no
markup or sub-elements. If our elements contained character data and sub-elements, we
could have used ANY instead of #PCDATA. On the same lines, if our elements are empty (that is,
they contain neither character data nor sub-elements), we could have used EMPTY.

Finally, the DTD defines the employeeid attribute for the <employee> element by using the
<!ATTLIST> declaration. The <!ATTLIST> declaration takes the element whose attributes are
being defined, followed by a list of attributes. The CDATA in the markup indicates that the
attribute value contains character data. You can mark the attribute as a unique identifier by
specifying its type as ID. The #REQUIRED in the declaration indicates that this attribute is man-
datory and must be provided in the document.

■Note Recollect that in Chapter 2 we used the GetElementById() method of the XmlDocument class.
This method requires that the element to search should have an attribute of type ID.

To create the DTD, you can use the Visual Studio IDE: add a new text file, but name
it Employees.dtd, key in the entire markup shown in Listing 5-1, and save the file. Open
Employees.xml in the Visual Studio IDE and add a DOCTYPE declaration to it at the top, as shown
in Listing 5-2.

Listing 5-2. Attaching the DTD to an XML Document

<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE employees SYSTEM "employees.dtd">
<employees>
 <employee employeeid="1">
 <firstname>Nancy</firstname>
 ...

As you can see, at the top of the XML file we have put the <!DOCTYPE> declaration. The
<!DOCTYPE> declaration is used to attach a DTD to an XML file. The <!DOCTYPE> declaration is
immediately followed by <employees>—the root element of the document. The SYSTEM declara-
tion specifies the URL of the DTD file that is providing structure to this XML document. In our
case, it is employees.dtd.

You might be wondering why we created the DTD in Visual Studio. Apart from providing
some IntelliSense, it is not helping much, is it? But wait a moment before you conclude any-
thing, because it has something more to offer. Now add a new XML file in your project and add
the <!DOCTYPE> declaration to it as shown in Listing 5-2. When you start creating the document,

8253ch05.fm Page 126 Friday, February 23, 2007 12:40 PM

C H A P T E R 5 ■ V A L I D A T I N G X M L D O C U M E N T S 127

you will observe that the IDE shows various elements and attributes in IntelliSense. Figure 5-1
shows how this IntelliSense looks.

Figure 5-1. Visual Studio IntelliSense for DTDs

The IDE also validates your document as you key in. It displays error messages if you enter
markup or attributes that violate the DTD rules.

Creating the XSD Schema
In this section, you will learn how to create XSD schemas in various ways, including the
following:

• Creating the XSD schema manually

• Creating the XSD schema by using the Visual Studio XML Designer

• Creating the XSD schema from a database table

• Creating the XSD schema by using the xsd.exe command-line tool (often called the XML
Schema Definition tool)

An XSD schema is typically stored in a file with the extension .xsd. A schema consists of
various parts, some of which are listed in Table 5-1.

Table 5-1. Parts of an XSD Schema

One of the key advantages of XSD schemas over DTDs is that they support data types.
These data types have been mapped with the .NET Framework’s data types; thus XSD data

Part Name Description

Element Represents a single element.

Attribute Represents a single attribute of an element.

Attribute group Represents a group of attributes that can be used further in a complex type.

Simple type A simple type consists of only text values and no sub-elements—for example,
string, numbers, date, and so on. Elements as well as attributes can be of the
simple type.

Complex type A complex type consists of one or more simple types. Only elements can be of
the complex type.

8253ch05.fm Page 127 Friday, February 23, 2007 12:40 PM

128 C H A P T E R 5 ■ V A L I D A T I N G X M L D O C U M E N T S

types can be represented by their equivalent data types in .NET. Table 5-2 lists some of the
common XSD data types and their .NET counterparts.

Table 5-2. XSD Data Types

Now that you have a brief idea about XSD schemas, their parts, and data types, we will pro-
ceed to create XSD schemas by using the various ways described.

Creating an XSD Schema Manually

To create any XSD schema, you first need to think about the simple types, complex types,
elements, and attributes going into it. Let’s do this exercise for the Employees.xml file.

We will create three simple types for Employees.xml:

NameSimpleType: This simple type represents names used in our XML document (first
name and last name). It puts restrictions on the names: the minimum length must be
three and the maximum length must be less than 255.

PhoneSimpleType: This simple type represents phone numbers (the <homephone> element of
our XML document). It restricts the phone numbers to no more than 20 characters.

NotesSimpleType: This simple type represents notes (the <notes> element of our docu-
ment). It restricts the notes entered to no greater than 500 characters in length.

These three simple types will make a complex type called EmployeeType. The EmployeeType
complex type consists of the following:

• An element called <firstname>, which is of simple type NameSimpleType

• An element called <lastname>, which is of simple type NameSimpleType

• An element called <homephone>, which is of simple type PhoneSimpleType

• An element called <notes>, which is of simple type NotesSimpleType

• A required attribute called employeeid, which is of type int

XSD Data Type .NET Data Type Description

Boolean System.Boolean Represents Boolean values (true or false)

Byte System.SByte Represents an 8-bit signed integer (byte)

dateTime System.DateTime Represents the date and time

decimal System.Decimal Represents a decimal number

Double System.Double Represents a double precision number

Float System.Single Represents a single precision floating number

Int System.Int32 Represents a 4-byte signed integer

Long System.Int64 Represents an 8-byte signed integer

String System.String Represents string data

8253ch05.fm Page 128 Friday, February 23, 2007 12:40 PM

C H A P T E R 5 ■ V A L I D A T I N G X M L D O C U M E N T S 129

Finally, we will have an element called <employees> that will contain zero or more
sub-elements named <employee>. The <employee> sub-elements will be of complex type
EmployeeType.

Listing 5-3 shows the complete XSD schema containing all the preceding types, elements,
and attributes.

Listing 5-3. XSD Schema for Employees.xml

<?xml version="1.0" encoding="utf-8"?>
<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="employees">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="employee" type="EmployeeType" minOccurs="0"
 maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="EmployeeType">
 <xs:all>
 <xs:element name="firstname" type="NameSimpleType" />
 <xs:element name="notes" type="NotesSimpleType" />
 <xs:element name="lastname" type="NameSimpleType" />
 <xs:element name="homephone" type="PhoneSimpleType" />
 </xs:all>
 <xs:attribute name="employeeid" type="xs:int" use="required" />
 </xs:complexType>
 <xs:simpleType name="NameSimpleType">
 <xs:restriction base="xs:string">
 <xs:minLength value="3" />
 <xs:maxLength value="255" />
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="PhoneSimpleType">
 <xs:restriction base="xs:string">
 <xs:maxLength value="20" />
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="NotesSimpleType">
 <xs:restriction base="xs:string">
 <xs:maxLength value="500" />
 </xs:restriction>
 </xs:simpleType>
</xs:schema>

The schema declaration starts with the <schema> tag. The XML namespace
http://www.w3.org/2001/XMLSchema is required and indicates that this is an XSD

8253ch05.fm Page 129 Friday, February 23, 2007 12:40 PM

130 C H A P T E R 5 ■ V A L I D A T I N G X M L D O C U M E N T S

schema. The xmlns attribute specifies that the namespace prefix for all the tags of this schema
will be xs.

Then the schema declares the <employees> element by using the <element> tag. The
<employees> element contains sub-elements named <employee>, which are of complex type
EmployeeType. The complex type is indicated by the <complexType> element. There can be zero
or more occurrences of <employee> sub-elements as defined by the minOccurs and maxOccurs
attributes, respectively. Note the use of the unbounded keyword to indicate that any number of
the element can exist.

Next the schema defines a complex type called EmployeeType by using the <complexType>
element. The name attribute of <complexType> indicates the name of the complex type being
defined. The EmployeeType complex type consists of four sub-elements and one attribute. The
elements are declared by using the <element> tag and its two attributes, name and type. The name
attribute specifies the name of the element, whereas the type attribute indicates the data type
of the element.

The attributes are declared by using the <attribute> tag. The name attribute of the
<attribute> element specifies the name of the attribute, and the type attribute indicates
the data type of the attribute. In our case, the employeeid attribute is of type int and is required,
as indicated by the use attribute.

Then the schema defines the NameSimpleType simple type by using the <simpleType> ele-
ment. Because we want the data type of NameSimpleType to be string, we indicated this in the
<restriction> element. The minimum and maximum length of the element is decided by the
minLength and maxLength attributes, respectively. In our case, the names must be more than 3
characters in length and should not exceed 255 characters.

The PhoneSimpleType simple type is defined next. It is a string not exceeding 20 characters.
Finally, the NotesSimpleType simple type is defined. It is also a string, but it must not

exceed 500 characters.
That’s it! After you key in the preceding markup in a plain-text editor, you can save the file

as Employees.xsd. You will learn about attaching an XSD schema to an XML document in later
sections.

Creating the XSD Schema in Visual Studio Designer

Creating an XSD schema in Visual Studio is easy because the IDE provides visual tools to create
elements, simple types, and complex types. To create a new XSD schema, you need to add one to
your project by using the Add New Item dialog box. Name the new schema file Employees.xsd.
Figure 5-2 shows the Add New Item dialog box with the relevant selection.

8253ch05.fm Page 130 Friday, February 23, 2007 12:40 PM

C H A P T E R 5 ■ V A L I D A T I N G X M L D O C U M E N T S 131

Figure 5-2. Adding a new XSD schema to your project

After you have added an XML schema, you will be presented with a canvas on which you
can visually design the schema. The toolbox of Visual Studio will now show a node titled XML
Schema, as shown in Figure 5-3.

Figure 5-3. The XML Schema toolbox of Visual Studio

8253ch05.fm Page 131 Friday, February 23, 2007 12:40 PM

132 C H A P T E R 5 ■ V A L I D A T I N G X M L D O C U M E N T S

As you can see in Figure 5-3, many of the schema parts that we discussed previously (sim-
ple type, complex type, element, attribute, and so on) are available in the toolbox.

To begin creating the schema, drag and drop three simpleTypes to the designer and set
their properties as shown in Figure 5-4.

Figure 5-4. Creating simple types in Visual Studio

For each simple type, you need to specify its name and data type. You can then right-click
on the individual simple type and choose Add ➤ New Facet. For NameSimpleType the facets are
minLength and maxLength and have values of 3 and 255, respectively. The PhoneSimpleType sim-
ple type contains just one facet, maxLength, which is set to 20. Finally, NotesSimpleType contains
the maxLength facet maxLength, which is set to 500. You can also open the properties window by
selecting each simple type and set the values there.

Now drag and drop a complexType onto the designer. You need to design it as shown in
Figure 5-5.

Figure 5-5. Creating a complex type in Visual Studio

Enter EmployeeType as the name for the complex type. Using the properties window, set the
Order property of the EmployeeType element to All. This indicates that the sub-elements can
appear in any order. Right-click on the EmployeeType complex type and add four new elements.
Name the newly added elements firstname, lastname, homephone, and notes, respectively. Set the
type of firstname and lastname to NameSimpleType, and homephone to PhoneSimpleType. Similarly,
set the type of notes to NotesSimpleType. Now add a new attribute and name it employeeid.
Specify its data type as int. Using the properties window, set its use property to required. This
completes the EmployeeType complex type.

Now drag and drop an element on to the designer and name it employees. Using the
shortcut menu, add a new element to it. Select the type of the element as EmployeeType. The
employees element should now resemble Figure 5-6.

8253ch05.fm Page 132 Friday, February 23, 2007 12:40 PM

C H A P T E R 5 ■ V A L I D A T I N G X M L D O C U M E N T S 133

Figure 5-6. Creating the <employee> element in Visual Studio

This completes the creation of Employees.xsd. The completed schema is shown in
Figure 5-7.

Figure 5-7. The completed Employees.xsd in Visual Studio

If you wish to see the generated schema markup, right-click on the schema designer and
select View Code. You should see something similar to that shown in Figure 5-8.

Figure 5-8. Viewing the generated source

8253ch05.fm Page 133 Friday, February 23, 2007 12:40 PM

134 C H A P T E R 5 ■ V A L I D A T I N G X M L D O C U M E N T S

Compare the source to what we created in the previous example. You will find that it
matches. Thus Visual Studio can effectively reduce the efforts needed to create a schema by
offering a visual and friendly environment. This is a compelling factor for using it instead of
manually creating the schema.

Creating the Schema from a Database Table

In many situations, the data contained in an XML document goes in and out of a database
table. In such cases, the schema of your XML document can be derived from the underlying
database table structure. You can of course create the schema manually as described previ-
ously, but there is a yet another way.

Visual Studio has a built-in tool called Server Explorer that allows you to connect with the
databases and manipulate database objects such as tables and stored procedures. Figure 5-9
shows the Server Explorer with the famous Northwind database opened.

■Note You can open Server Explorer by choosing View ➤ Server Explorer from the Visual Studio menu. The
Server Explorer window has a Data Connections node that lists previously added database connections. To
add a new connection, you need to right-click the Data Connections node and choose the Add Connection
option. The Add Connection dialog box opens, allowing you to specify connection string parameters.

Figure 5-9. Server Explorer of Visual Studio

8253ch05.fm Page 134 Friday, February 23, 2007 12:40 PM

C H A P T E R 5 ■ V A L I D A T I N G X M L D O C U M E N T S 135

As you can see in Figure 5-9, Server Explorer has displayed a list of all the tables, such as
Employees and Customers. Now suppose that you want to represent data from the Employees
table as an XML file. It would be helpful in such a case if you could create an XSD schema that
maps closely to the underlying table structure. This way, synchronizing the XML file with the
database at a later stage will be easy.

To see how an XSD schema can be created from a database table, add a new XML schema
to your project. Then open Server Explorer and locate the desired table. If Server Explorer is not
opened by default, you can open it by choosing View ➤ Server Explorer from the menu. Finally,
drag and drop the table from Server Explorer onto the XML schema. That’s it! The Visual Studio
IDE is clever enough to create an equivalent XML schema. Figure 5-10 shows an XML schema
generated by dragging and dropping the Employees table of the Northwind database onto the
schema designer.

Figure 5-10. XML schema generated from a database table

As you can see in Figure 5-10, the designer has created an element called <Employees> that
has sub-elements matching the columns in the database table. There is also another element
called <Document> that has a single element called <Employees>, which is of type <Employees> as
defined in this schema. If you right-click on the schema designer and select the View Code
menu option, you should see markup as shown in Listing 5-4.

Listing 5-4. The Auto-generated Schema Markup

<?xml version="1.0" encoding="utf-8"?>
<xs:schema id="XMLSchema1" targetNamespace="http://tempuri.org/XMLSchema1.xsd"
elementFormDefault="qualified" xmlns="http://tempuri.org/XMLSchema1.xsd"
xmlns:mstns="http://tempuri.org/XMLSchema1.xsd"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">
 <xs:element name="Document">
 <xs:complexType>

8253ch05.fm Page 135 Friday, February 23, 2007 12:40 PM

136 C H A P T E R 5 ■ V A L I D A T I N G X M L D O C U M E N T S

 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="Employees">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="EmployeeID" type="xs:int" />
 <xs:element name="LastName" type="xs:string" />
 <xs:element name="FirstName" type="xs:string" />
 <xs:element name="Title" type="xs:string" minOccurs="0" />
 <xs:element name="TitleOfCourtesy" type="xs:string" minOccurs="0" />
 <xs:element name="BirthDate" type="xs:dateTime" minOccurs="0" />
 <xs:element name="HireDate" type="xs:dateTime" minOccurs="0" />
 <xs:element name="Address" type="xs:string" minOccurs="0" />
 <xs:element name="City" type="xs:string" minOccurs="0" />
 <xs:element name="Region" type="xs:string" minOccurs="0" />
 <xs:element name="PostalCode" type="xs:string" minOccurs="0" />
 <xs:element name="Country" type="xs:string" minOccurs="0" />
 <xs:element name="HomePhone" type="xs:string" minOccurs="0" />
 <xs:element name="Extension" type="xs:string" minOccurs="0" />
 <xs:element name="Photo" type="xs:base64Binary" minOccurs="0" />
 <xs:element name="Notes" type="xs:string" minOccurs="0" />
 <xs:element name="ReportsTo" type="xs:int" minOccurs="0" />
 <xs:element name="PhotoPath" type="xs:string" minOccurs="0" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:choice>
 </xs:complexType>
 <xs:unique name="DocumentKey1">
 <xs:selector xpath=".//mstns:Employees" />
 <xs:field xpath="mstns:EmployeeID" />
 </xs:unique>
 </xs:element>
</xs:schema>

There are a few things that you may find worth noting. The root element is <Document>.
Within the <Document> element, you can have an <Employees> element, which takes its name
from the database table name. The SQL Server data types are mapped to the equivalent XSD
data types. Thus the <EmployeeID> element has a data type of int, whereas the <BirthDate> ele-
ment has a data type of dateTime. The EmployeeID column is a primary key column in the table
and it has been added as a primary key in the resultant schema also. (Notice the key icon in the
designer or the <unique> tag at the bottom in the markup.)

8253ch05.fm Page 136 Friday, February 23, 2007 12:40 PM

C H A P T E R 5 ■ V A L I D A T I N G X M L D O C U M E N T S 137

Though the schema is readily created for us, there are some limitations. First of all, the
auto-generated schema does not create any simple types. Thus constraints such as minimum
length and maximum length cannot be effectively enforced. Also, all the table columns appear
as elements, which might be undesirable. For example, you may need the employee ID as an
attribute rather than an element. You can of course modify the auto-generated schema to suit
your needs.

■Note You can also generate XML schemas from views and stored procedures. In any case, the procedure
remains the same. All you need to do is drag and drop the object onto the schema designer.

Creating the Schema by Using the XML Schema Definition Tool

The schema designer and Server Explorer together allow you to create a schema for a database
table. Along the same lines, the XML Schema Definition tool allows you to create XSD schemas
from the following:

• An existing XML document

• An existing XDR schema

• Types defined in an assembly (.EXE or .DLL)

The XML Schema Definition tool is provided as xsd.exe and can be invoked from the
Visual Studio command prompt. In the following sections, you will learn how to use this tool
to create schemas from XML documents and assemblies.

Creating the Schema from an XML Document

Let’s assume that you have the Employees.xml file with you and wish to create an XSD schema
for it by using the xsd.exe command-line tool. To do so, first open the Visual Studio command
prompt from the Visual Studio program group. Then enter the following command at the com-
mand prompt:

xsd.exe "C:\Bipin\Pro XML\Employees.xml" /outputdir:"C:\Bipin\Pro XML"

The first parameter is the path and filename of the XML file for which the schema is to be
generated. The /outputdir switch specifies the folder where the resultant schema file should
be created.

After you invoke the command, you will find an .XSD file in the specified folder. By default
the name of the schema file is the same as the XML filename. Listing 5-5 shows the schema
generated by the tool.

8253ch05.fm Page 137 Friday, February 23, 2007 12:40 PM

138 C H A P T E R 5 ■ V A L I D A T I N G X M L D O C U M E N T S

Listing 5-5. Schema Generated by the xsd.exe Tool

<?xml version="1.0" encoding="utf-8"?>
<xs:schema id="employees" xmlns="" xmlns:xs="http://www.w3.org/2001/XMLSchema" ➥

xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">
 <xs:element name="employees" msdata:IsDataSet="true" ➥

msdata:UseCurrentLocale="true">
 <xs:complexType>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="employee">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="firstname" type="xs:string" minOccurs="0" ➥

msdata:Ordinal="0" />
 <xs:element name="lastname" type="xs:string" minOccurs="0" ➥

msdata:Ordinal="1" />
 <xs:element name="homephone" type="xs:string" minOccurs="0" ➥

msdata:Ordinal="2" />
 <xs:element name="notes" type="xs:string" minOccurs="0" ➥

msdata:Ordinal="3" />
 </xs:sequence>
 <xs:attribute name="employeeid" type="xs:string" />
 </xs:complexType>
 </xs:element>
 </xs:choice>
 </xs:complexType>
 </xs:element>
</xs:schema>

As you can see, the resultant schema defines a root element called <employees>. The
<employees> element can have zero or more occurrences of the <employee> element.
The <employee> element is defined as a complex type and contains four sub-elements:
<firstname>, <lastname>, <homephone>, and <notes>. The schema also states that the elements
must occur in the same sequence (as indicated by the <sequence> tag). The employeeid
attribute is also defined. You can customize the generated schema to suit your needs.

■Note You can also invoke the xsd.exe tool at a standard command prompt. However, you need to specify
the complete path of the xsd.exe tool while invoking it. Alternatively, you can first navigate to the installation
folder of .NET where the tool is located and then invoke it. You can even add it to the PATH variable.

8253ch05.fm Page 138 Friday, February 23, 2007 12:40 PM

C H A P T E R 5 ■ V A L I D A T I N G X M L D O C U M E N T S 139

Creating the Schema from an Assembly

You might be wondering why we’d need to create a schema from an assembly. This facility,
however, comes in handy during XML serialization, during which you often serialize your
classes on the wire by using XML format. Thus the XSD schema extracted from the assembly
represents the structure of this serialized XML data.

■Note You will learn more about XML serialization in Chapter 8.

To see how the xsd.exe tool can generate a schema from an assembly, we will create a class
library project. The class library will have a single class called Employee. The source code of the
Employee class is shown in Listing 5-6.

Listing 5-6. The Employee Class

namespace ClassLibrary1
{
 public class Employee
 {
 private int intEmployeeID;
 private string strFirstName;
 private string strLastName;
 private string strHomePhone;
 private string strNotes;

 public int EmployeeID
 {
 get
 {
 return intEmployeeID;
 }
 set
 {
 intEmployeeID = value;
 }
 }

8253ch05.fm Page 139 Friday, February 23, 2007 12:40 PM

140 C H A P T E R 5 ■ V A L I D A T I N G X M L D O C U M E N T S

 public string FirstName
 {
 get
 {
 return strFirstName;
 }
 set
 {
 strFirstName = value;
 }
 }

 public string LastName
 {
 get
 {
 return strLastName;
 }
 set
 {
 strLastName = value;
 }
 }

 public string HomePhone
 {
 get
 {
 return strHomePhone;
 }
 set
 {
 strHomePhone = value;
 }
 }

 public string Notes
 {
 get

8253ch05.fm Page 140 Friday, February 23, 2007 12:40 PM

C H A P T E R 5 ■ V A L I D A T I N G X M L D O C U M E N T S 141

 {
 return strNotes;
 }
 set
 {
 strNotes = value;
 }
 }
 }
}

The class declares five member variables to store the employee ID, first name, last name,
home phone, and notes, respectively. The class also contains five public properties—EmployeeID,
FirstName, LastName, HomePhone, and Notes—that read and write values to the respective private
variables.

After you create the class, make sure to compile it so that its assembly will be called
ClassLibrary1.dll. Now invoke the xsd.exe tool as shown here:

xsd.exe "C:\Bipin\Pro XML\ClassLibrary1\bin\Debug\classlibrary1.dll"
/outputdir:"C:\Bipin\Pro XML"

The first parameter to xsd.exe specifies the path and filename of the assembly, whereas the
/outputdir switch specifies the target folder where the schema should be created. Listing 5-7
shows the schema that is based on our Employee class.

Listing 5-7. Schema Generated for the Employees Class

<?xml version="1.0" encoding="utf-8"?>
<xs:schema elementFormDefault="qualified" ➥

xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="Employee" nillable="true" type="Employee" />
 <xs:complexType name="Employee">
 <xs:sequence>
 <xs:element minOccurs="1" maxOccurs="1" name="EmployeeID" type="xs:int" />
 <xs:element minOccurs="0" maxOccurs="1" name="FirstName" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="LastName" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="HomePhone" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="Notes" type="xs:string" />
 </xs:sequence>
 </xs:complexType>
</xs:schema>

8253ch05.fm Page 141 Friday, February 23, 2007 12:40 PM

142 C H A P T E R 5 ■ V A L I D A T I N G X M L D O C U M E N T S

As you can see in Listing 5-7, the schema defines an element named <Employee> that is of
complex type Employee. The complex type Employee contains five sub-elements: <EmployeeID>,
<FirstName>, <LastName>, <HomePhone>, and <Notes>. As you must have guessed, the names of
these elements are extracted from the names of the class properties. These elements must
occur in sequence, as indicated by the <sequence> tag. As in the previous case, you can custom-
ize this schema to suit your needs.

■Note When you use the preceding command, the tool generates a schema for all the classes in the
assembly. You can specify only certain classes by using the /type switch.

Creating Schemas by Using the Schema Object
Model (SOM)
Up until now, we have created schemas by using a variety of techniques, all of which were
design-time techniques. That means we ourselves created the schemas by using a text editor,
Visual Studio, or the xsd.exe tool. However, there is more to the show than this. The .NET
Framework also allows you to create schemas programmatically.

You can load existing schemas or create a new one from the ground up. You can then
manipulate the schema by adding or removing various parts such as elements, attributes,
simple types, and complex types. After you manipulate the schema as per your requirements,
you can then compile it. Compiling a schema ensures that there are no errors in the schema
structure.

To perform schema manipulation, the .NET Framework provides a set of classes called the
Schema Object Model, or SOM for short. The SOM classes reside in the System.Xml.Schema
namespace. The SOM is for schemas what DOM is for XML documents: the SOM classes repre-
sent various parts of a schema. For example, to represent a simple type, the SOM provides a
class called XmlSchemaSimpleType, and to represent an element, the SOM provides a class called
XmlSchemaElement. There are many other classes that represent attributes, facets, groups, com-
plex types, and so on.

In the following section, you will learn about some of the core SOM classes. Note that the
SOM is very extensive and I will not be discussing every available class here.

The Core SOM Classes
Figure 5-11 shows the object hierarchy of the core SOM classes. As you can see, all the SOM
classes inherit from an abstract base class called XmlSchemaObject. This class provides common
base functionality to all the child classes.

8253ch05.fm Page 142 Friday, February 23, 2007 12:40 PM

C H A P T E R 5 ■ V A L I D A T I N G X M L D O C U M E N T S 143

The XmlSchemaAnnotated class represents a base class for any element that can contain
annotation elements. Classes such as XmlSchema, XmlSchemaType, XmlSchemaAttribute,
XmlSchemaParticle, and XmlSchemaFacet inherit from the XmlSchemaAnnotated class.

■Note You can use annotation elements to provide information about the XML schema. Annotations can
appear anywhere in a schema to explain any element, attribute, or type definition.

The XmlSchema class represents an in-memory representation of an XSD schema. This class
allows you to read, write, and compile XSD schemas.

The XmlSchemaType represents a type in an XSD schema and acts as a base class for all
simple and complex types. The XmlSchemaSimpleType and XmlSchemaComplexType classes inherit
from this class and allow you to define new simple and complex types, respectively.

The XmlSchemaAttribute represents an attribute of an element. Finally, the XmlSchemaParticle
class provides base functionality to all particle types such as XmlSchemaElement.

Figure 5-11. The SOM object hierarchy

8253ch05.fm Page 143 Friday, February 23, 2007 12:40 PM

144 C H A P T E R 5 ■ V A L I D A T I N G X M L D O C U M E N T S

Creating an XSD Schema by Using the SOM
Now that you know what the SOM is, let’s put it to use to create a schema for our Employees.xml
file. The schema will have three simple types:

Simple type for name: This simple type represents names used in our XML document (first
name and last name). It restricts the name length; the minimum length is 3, and the max-
imum length is less than 255.

Simple type for phone: This simple type represents phone numbers (the <homephone> ele-
ment of our XML document). It enforces a restriction requiring phone numbers to be no
longer than 20 characters.

Simple type for notes: This simple type represents notes (the <notes> element of our docu-
ment). It enforces a restriction requiring the notes entered to be no longer than 500
characters.

These three simple types will make a complex type that represents an employee. The com-
plex type consists of the following:

• An element called <firstname>, which is a name simple type

• An element called <lastname>, which is a name simple type

• An element called <homephone>, which is a phone simple type

• An element called <notes>, which is a notes simple type

• A required attribute called employeeid, which is of type int

Finally, we will have an element called <employees> that will contain zero or more sub-
elements named <employee>. The <employee> sub-elements will be of the complex type I just
mentioned.

To create the schema by using the SOM, you need to create a Windows application as
shown in Figure 5-12.

Figure 5-12. Application for creating a schema by using the SOM

8253ch05.fm Page 144 Friday, February 23, 2007 12:40 PM

C H A P T E R 5 ■ V A L I D A T I N G X M L D O C U M E N T S 145

The application consists of a text box wherein you can specify the full path and name
of the destination schema file. Clicking the Create Schema button generates, compiles, and
saves the schema to the specified location.

The Click event handler of the Create Schema button is shown in Listing 5-8.

Listing 5-8. Creating a Schema by Using the SOM

private void button1_Click(object sender, EventArgs e)
{
 XmlSchema schema = new XmlSchema();

 //define NameSimpleType
 XmlSchemaSimpleType nametype = new XmlSchemaSimpleType();
 XmlSchemaSimpleTypeRestriction nameRes = new XmlSchemaSimpleTypeRestriction();
 nameRes.BaseTypeName =
 new XmlQualifiedName("string", "http://www.w3.org/2001/XMLSchema");
 XmlSchemaMinLengthFacet nameFacet1 = new XmlSchemaMinLengthFacet();
 nameFacet1.Value = "3";
 XmlSchemaMaxLengthFacet nameFacet2 = new XmlSchemaMaxLengthFacet();
 nameFacet2.Value = "255";
 nameRes.Facets.Add(nameFacet1);
 nameRes.Facets.Add(nameFacet2);
 nametype.Content = nameRes;

 //define PhoneSimpleType
 XmlSchemaSimpleType phonetype = new XmlSchemaSimpleType();
 XmlSchemaSimpleTypeRestriction phoneRes = new XmlSchemaSimpleTypeRestriction();
 phoneRes.BaseTypeName =
 new XmlQualifiedName("string", "http://www.w3.org/2001/XMLSchema");
 XmlSchemaMaxLengthFacet phoneFacet1 = new XmlSchemaMaxLengthFacet();
 phoneFacet1.Value = "20";
 phoneRes.Facets.Add(phoneFacet1);
 phonetype.Content = phoneRes;

 //define NotesSimpleType
 XmlSchemaSimpleType notestype = new XmlSchemaSimpleType();
 XmlSchemaSimpleTypeRestriction notesRes = new XmlSchemaSimpleTypeRestriction();
 notesRes.BaseTypeName =
 new XmlQualifiedName("string", "http://www.w3.org/2001/XMLSchema");
 XmlSchemaMaxLengthFacet notesFacet1 = new XmlSchemaMaxLengthFacet();
 notesFacet1.Value = "500";
 notesRes.Facets.Add(notesFacet1);
 notestype.Content = notesRes;

8253ch05.fm Page 145 Friday, February 23, 2007 12:40 PM

146 C H A P T E R 5 ■ V A L I D A T I N G X M L D O C U M E N T S

 //define EmployeeType complex type
 XmlSchemaComplexType employeetype = new XmlSchemaComplexType();
 XmlSchemaSequence sequence = new XmlSchemaSequence();
 XmlSchemaElement firstname = new XmlSchemaElement();
 firstname.Name = "firstname";
 firstname.SchemaType = nametype;
 XmlSchemaElement lastname = new XmlSchemaElement();
 lastname.Name = "lastname";
 lastname.SchemaType = nametype;
 XmlSchemaElement homephone = new XmlSchemaElement();
 homephone.Name = "homephone";
 homephone.SchemaType = phonetype;
 XmlSchemaElement notes = new XmlSchemaElement();
 notes.Name = "notes";
 notes.SchemaType = notestype;

 sequence.Items.Add(firstname);
 sequence.Items.Add(lastname);
 sequence.Items.Add(homephone);
 sequence.Items.Add(notes);
 employeetype.Particle = sequence;

 //define employeeid attribute
 XmlSchemaAttribute employeeid = new XmlSchemaAttribute();
 employeeid.Name = "employeeid";
 employeeid.SchemaTypeName =
 new XmlQualifiedName("int", "http://www.w3.org/2001/XMLSchema");
 employeeid.Use = XmlSchemaUse.Required;
 employeetype.Attributes.Add(employeeid);

 //define top complex type
 XmlSchemaComplexType complextype = new XmlSchemaComplexType();
 XmlSchemaSequence sq = new XmlSchemaSequence();
 XmlSchemaElement employee = new XmlSchemaElement();
 employee.Name = "employee";
 employee.SchemaType = employeetype;
 employee.MinOccurs = 0;
 employee.MaxOccursString = "unbounded";
 sq.Items.Add(employee);
 complextype.Particle = sq;

 //define <employees> element
 XmlSchemaElement employees = new XmlSchemaElement();
 employees.Name = "employees";
 employees.SchemaType = complextype;

8253ch05.fm Page 146 Friday, February 23, 2007 12:40 PM

C H A P T E R 5 ■ V A L I D A T I N G X M L D O C U M E N T S 147

 schema.Items.Add(employees);
 //compile the schema
 XmlSchemaSet set = new XmlSchemaSet();
 set.Add(schema);
 set.Compile();
 //save the schema
 XmlTextWriter writer = new XmlTextWriter(textBox1.Text,null);
 schema.Write(writer);
 writer.Close();
 MessageBox.Show("Schema Created Successfully!");
}

The code is a bit lengthy and hence we will dissect it in pieces.

Creating the Schema

An in-memory schema is represented by the XmlSchema class. The code declares an instance of
XmlSchema at the top:

XmlSchema schema = new XmlSchema();

Creating a Simple Type for Names

The schema needs to define a simple type for names. This is defined next:

XmlSchemaSimpleType nametype = new XmlSchemaSimpleType();
XmlSchemaSimpleTypeRestriction nameRes = new XmlSchemaSimpleTypeRestriction();
nameRes.BaseTypeName =
 new XmlQualifiedName("string", "http://www.w3.org/2001/XMLSchema");
XmlSchemaMinLengthFacet nameFacet1 = new XmlSchemaMinLengthFacet();
nameFacet1.Value = "3";
XmlSchemaMaxLengthFacet nameFacet2 = new XmlSchemaMaxLengthFacet();
nameFacet2.Value = "255";
nameRes.Facets.Add(nameFacet1);
nameRes.Facets.Add(nameFacet2);
nametype.Content = nameRes;

A simple type is represented by the XmlSchemaSimpleType class. The simple type for names
has certain restrictions:

• The data type must be a string.

• The minimum length must be 3.

• The maximum length must not exceed 255.

To represent these restrictions, an instance of the XmlSchemaSimpleTypeRestriction class is
created. The XmlSchemaSimpleTypeRestriction class’s BaseTypeName property, which is of type
XmlQualifiedName, specifies the base data type used by this restriction. The XmlQualifiedName
class can be used to represent built-in XSD data types such as string and int. In our example, we

8253ch05.fm Page 147 Friday, February 23, 2007 12:40 PM

148 C H A P T E R 5 ■ V A L I D A T I N G X M L D O C U M E N T S

need string and hence we pass it as the first parameter of the constructor. The second parameter
indicates the namespace to which the data type belongs. The minimum and maximum length
restrictions can be enforced by facet classes.

The two facet classes we need are XmlSchemaMinLengthFacet and XmlSchemaMaxLengthFacet.
These facet classes inherit from the XmlSchemaFacet base class and represent the minimum
length and maximum length of the simple type, respectively, indicated by the Value property of
each class. The facets are then added to the XmlSchemaSimpleTypeRestriction instance by using
its Add() method. Finally, the Content property of the XmlSchemaSimpleType object is set to the
restriction we created.

Creating a Simple Type for Phone Numbers

Creating a simple type for phone numbers follows the same procedure as discussed earlier.
However, the restriction requirements are slightly different. The relevant code is shown here:

XmlSchemaSimpleType phonetype = new XmlSchemaSimpleType();
XmlSchemaSimpleTypeRestriction phoneRes = new XmlSchemaSimpleTypeRestriction();
phoneRes.BaseTypeName =
 new XmlQualifiedName("string", "http://www.w3.org/2001/XMLSchema");
XmlSchemaMaxLengthFacet phoneFacet1 = new XmlSchemaMaxLengthFacet();
phoneFacet1.Value = "20";
phoneRes.Facets.Add(phoneFacet1);
phonetype.Content = phoneRes;

As before, instances of XmlSchemaSimpleType and XmlSchemaSimpleTypeRestriction are
created. This time we need only one facet for specifying the maximum length of the phone
number. Thus the code declares an instance of the XmlSchemaMaxLengthFacet class and sets its
Value property to 20. As before, the facet is added to the restriction, and the Content property of
the XmlSchemaSimpleType instance is set to the phone number restriction.

Creating a Simple Type for Notes

Creating a simple type for notes is the same as I discussed earlier. The only change is in the
maximum length value. The relevant code is shown here:

XmlSchemaMaxLengthFacet notesFacet1 = new XmlSchemaMaxLengthFacet();
notesFacet1.Value = "500";

8253ch05.fm Page 148 Friday, February 23, 2007 12:40 PM

C H A P T E R 5 ■ V A L I D A T I N G X M L D O C U M E N T S 149

Creating a Complex Type That Represents an Employee

A complex type is represented by the XmlSchemaComplexType class. In our example, the four
sub-elements (<firstname>, <lastname>, <homephone>, and <notes>) must appear in the same
sequence, which is defined by the XmlSchemaSequence class. The code that defines the complex
type is shown here:

XmlSchemaComplexType employeetype = new XmlSchemaComplexType();
XmlSchemaSequence sequence = new XmlSchemaSequence();
XmlSchemaElement firstname = new XmlSchemaElement();
firstname.Name = "firstname";
firstname.SchemaType = nametype;
XmlSchemaElement lastname = new XmlSchemaElement();
lastname.Name = "lastname";
lastname.SchemaType = nametype;
XmlSchemaElement homephone = new XmlSchemaElement();
homephone.Name = "homephone";
homephone.SchemaType = phonetype;
XmlSchemaElement notes = new XmlSchemaElement();
notes.Name = "notes";
notes.SchemaType = notestype;

sequence.Items.Add(firstname);
sequence.Items.Add(lastname);
sequence.Items.Add(homephone);
sequence.Items.Add(notes);
employeetype.Particle = sequence;

//define employeeid attribute
XmlSchemaAttribute employeeid = new XmlSchemaAttribute();
employeeid.Name = "employeeid";
employeeid.SchemaTypeName =
 new XmlQualifiedName("int", "http://www.w3.org/2001/XMLSchema");
employeeid.Use = XmlSchemaUse.Required;
employeetype.Attributes.Add(employeeid);

8253ch05.fm Page 149 Friday, February 23, 2007 12:40 PM

150 C H A P T E R 5 ■ V A L I D A T I N G X M L D O C U M E N T S

This section of the code starts by declaring instances of the XmlSchemaComplexType and
XmlSchemaSequence classes. Next we need four elements. Each is defined by an XmlSchemaElement
class and should assume one of the simple types defined earlier. The Name property of the
XmlSchemaElement class specifies the name of the element; the SchemaType property specifies the
data type of the element and can be set to a simple type or a complex type. After all four elements
are defined, they are added to the XmlSchemaSequence object by using its Add() method.

After the sequence instance is ready, you need to set the Particle property of the
XmlSchemaComplexType object to it. The Particle property specifies the compositor type of the
complex type, and an attribute of a complex type is represented by the XmlSchemaAttribute class.
The Name property of XmlSchemaAttribute specifies the name of the attribute. The data type of the
attribute is specified by using the SchemaTypeName property, which is of type XmlQualifiedName. In
our case, the employeeid attribute is an integer and hence the XmlQualifiedName uses int as the
data type. The Use property of the XmlSchemaAttribute class indicates how the attribute is used in
the XML document. This property is an enumeration of type XmlSchemaUse. In our case, the
employeeid attribute is mandatory and hence we set the Use property to Required.

Creating a Top-Level Complex Type

The root element of our XML document needs to have zero or more instances of the <employee>
element, which is of the complex type we defined in the previous section. To represent the
<employee> element, we define it as another complex type, as shown here:

XmlSchemaComplexType complextype = new XmlSchemaComplexType();
XmlSchemaSequence sq = new XmlSchemaSequence();
XmlSchemaElement employee = new XmlSchemaElement();
employee.Name = "employee";
employee.SchemaType = employeetype;
employee.MinOccurs = 0;
employee.MaxOccursString = "unbounded";
sq.Items.Add(employee);
complextype.Particle = sq;

The code creates an instance of the XmlSchemaComplexType and XmlSchemaSequence classes
as before. This time it creates a single XmlSchemaElement to represent an <employee> element.
This element is of type employeetype (the complex type we defined in the previous section).
The MinOccurs property of the XmlSchemaElement class indicates the minimum number of times
the element must appear in the document. Along the same lines, the MaxOccursString property
indicates the maximum permissible instances of the element. Note that this property accepts
numbers as a string. If there is no restriction on the number, you can set it to unbounded. After
the element is created, it is added to the sequence, and the sequence is assigned to the
Particle property of the XmlSchemaComplexType class.

8253ch05.fm Page 150 Friday, February 23, 2007 12:40 PM

C H A P T E R 5 ■ V A L I D A T I N G X M L D O C U M E N T S 151

Creating the Root Element

The schema needs to have the <employees> root element that can contain one or more
<employee> elements. The root element is defined as follows:

//define <employees> element
XmlSchemaElement employees = new XmlSchemaElement();
employees.Name = "employees";
employees.SchemaType = complextype;

As before, an instance of XmlSchemaElement is created. Its Name property is set to employees, and
its SchemaType property is set to the top-level complex type we created in the previous section.

Compiling the Schema

Now we have completed all the simple types, complex types, and attributes. We can now add
the root element to the schema. This is done by using the Add() method of the Items collection
of the XmlSchema class:

schema.Items.Add(employees);

After the schema is ready, you can compile it. Compiling the schema ensures that the
schema is syntactically correct and well formed. The XmlSchemaSet class represents a set of
schemas and allows you to compile them. The relevant code is given here:

//compile the schema
try
{
 XmlSchemaSet set = new XmlSchemaSet();
 set.Add(schema);
 set.Compile();
}
catch (Exception ex)
{
 MessageBox.Show("Schema compilation failed");
 return;
}

The Add() method of the XmlSchemaSet class accepts the XmlSchema objects that are to be
added to the schema set. The Compile() method of the XmlSchemaSet class compiles all the
schemas in the given set.

8253ch05.fm Page 151 Friday, February 23, 2007 12:40 PM

152 C H A P T E R 5 ■ V A L I D A T I N G X M L D O C U M E N T S

Saving the Schema

Now that we have created and compiled the schema, it is ready to be written to disk:

XmlTextWriter writer = new XmlTextWriter(textBox1.Text,null);
schema.Write(writer);
writer.Close();

The Write() method of the XmlSchema class writes the schema to a stream and has many
overloads. We used one that accepts an XmlWriter pointing to the desired file. After the writing
operation is over, the XmlWriter is closed.

That’s it! You just created a complete schema using the SOM. You can run the application
and see how the schema is generated. Figure 5-13 shows the resultant schema.

Figure 5-13. Schema generated by using the SOM

Validating XML Documents Against DTDs
and XSD Schemas
Up until this point, you have learned what DTDs and XSD schemas are. You’ve also learned
how to create DTDs and XSD schemas. Now it’s time to learn how to validate XML documents
against DTDs and XSD schemas.

8253ch05.fm Page 152 Friday, February 23, 2007 12:40 PM

C H A P T E R 5 ■ V A L I D A T I N G X M L D O C U M E N T S 153

Before you can validate an XML document, you must attach a DTD or schema to it. The
DTD or schema can be attached via two techniques:

In-line DTD or schema: In this technique, the DTD or schema is specified at the top of the
XML document.

External DTD or schema: In this technique, the DTD or schema resides in its own file—that
is, it is external to the XML document. The DTD or schema is then attached to the XML
document.

Inline DTD
To specify a DTD in inline fashion, you need to add a <!DOCTYPE> declaration at the top of the
XML document. Listing 5-9 shows how this is done for Employees.xml.

Listing 5-9. Inline DTD

<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE employees [
<!ELEMENT employees (employee*)>
<!ELEMENT employee (firstname,lastname,homephone,notes)>
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT lastname (#PCDATA)>
<!ELEMENT homephone (#PCDATA)>
<!ELEMENT notes (#PCDATA)>
<!ATTLIST employee employeeid CDATA #REQUIRED>
]>

<employees>
 <employee employeeid="1">
 <firstname>Nancy</firstname>
 <lastname>Davolio</lastname>
...

Notice the markup in bold: it is the same DTD that we created previously. However, this
time it is placed inline with the XML document inside the <!DOCTYPE> declaration. Note that the
<!DOCTYPE> declaration must precede the root element of the XML markup. Using inline DTDs
comes in handy when your XML documents are small and you don’t want to maintain separate
DTD files.

External DTD
External DTDs are stored in separate files, usually with the .dtd extension. The DTD is then
linked to the XML document by using a <!DOCTYPE> declaration. Listing 5-10 shows how this
is done.

8253ch05.fm Page 153 Friday, February 23, 2007 12:40 PM

154 C H A P T E R 5 ■ V A L I D A T I N G X M L D O C U M E N T S

Listing 5-10. External DTD

<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE employees SYSTEM "employees.dtd">
<employees>
 <employee employeeid="1">
 <firstname>Nancy</firstname>
 <lastname>Davolio</lastname>
...

When attaching an external DTD, the <!DOCTYPE> declaration is immediately followed by
the name of the root element of the XML document (employees in our case). The SYSTEM decla-
ration is followed by the URL of the DTD file. In the preceding example, it is assumed that the
DTD resides in a file named employees.dtd.

Inline Schema
A schema can be specified inline by embedding it within the XML markup itself. As shown
in Listing 5-11, the complete schema (starting from <xs:schema> to <xs:/schema>) is placed
immediately inside the root element <employees>. The schema must be placed here because
an XML document cannot have two root elements.

Listing 5-11. Inline Schema

<?xml version="1.0" encoding="utf-8" ?>
<employees>
 <xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="employees">
 <xs:complexType>
...

Though the XML editor of Visual Studio supports inline schemas, as a programming rec-
ommendation you should avoid using them. W3C recommendations allow inline schemas but
they are not a mandatory feature. That means all vendors may not provide support for them.
Further, because they are included within the XML document, they consume more network
bandwidth because they must be transferred across the wire every time.

External Schema
External schemas reside in a physical file, usually with the .xsd extension. To attach an external
schema to an XML document, you need to modify the root element of the XML document as
shown in Listing 5-12.

8253ch05.fm Page 154 Friday, February 23, 2007 12:40 PM

C H A P T E R 5 ■ V A L I D A T I N G X M L D O C U M E N T S 155

Listing 5-12. External Schema

<?xml version="1.0" encoding="utf-8" ?>
<employees xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="employees.xsd">
 <employee employeeid="1">
 <firstname>Nancy</firstname>
 <lastname>Davolio</lastname>
...

As you can see, the <employees> root element now has an xmlns:xsi attribute that specifies
the W3C namespace for XML documents, which are referred to as XML schema instances. The
xsi:noNamespaceSchemaLocation attribute specifies the URL of the schema file (employees.xsd
in our case).

In the preceding example, our XML document doesn’t use a namespace. If it did, we would
have to make two changes to our schema and XML documents:

• Add the targetNamespace attribute to the schema declaration.

• Use the xsi:schemaLocation attribute instead of the xsi:noNamespaceSchemaLocation
attribute.

Listing 5-13 shows the modified schema, and Listing 5-14 shows the modified XML
document.

Listing 5-13. Schema with Target Namespace

<xs:schema
 attributeFormDefault="qualified"
 elementFormDefault="qualified"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="myns"
 xmlns="myns">
...

As you can see, the schema now has a targetNamespace attribute that specifies the target
namespace as myns. The XML document must use this namespace, as illustrated in Listing 5-14.

Listing 5-14. XML Document with Namespace

<myns:employees
 xmlns:myns="myns"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="myns employeesns.xsd">
<myns:employee myns:employeeid="1">
<myns:firstname>Nancy</myns:firstname>
...

8253ch05.fm Page 155 Friday, February 23, 2007 12:40 PM

156 C H A P T E R 5 ■ V A L I D A T I N G X M L D O C U M E N T S

Note the markup in bold. The root element now declares a namespace called myns, and
instead of xsi:noNamespaceSchemaLocation it now uses an xsi:schemaLocation attribute.
Observe carefully how the attribute value is specified: it must contain the namespace name,
a space, and then the URL of the XSD file.

Using the XmlReader Class to Validate XML Documents
The XmlReader class provides you with a way to validate XML documents by using its Create()
method, which accepts the URL of the XML document and an instance of the XmlReaderSettings
class. The XmlReaderSettings class configures the XmlReader class and can be used to indicate
your intention of validating XML documents. You can also wire up an event handler to receive
notification about validation errors. The XmlReader instance returned by the Create() method
can be used to read the XML document in the same way as you learned in Chapter 3.

To illustrate how to use XmlReader to validate XML documents, you will develop an appli-
cation as shown in Figure 5-14.

Figure 5-14. Application for validating an XML document by using the XmlReader class

The application consists of two text boxes for accepting the XML document filename and
the DTD or schema filename, respectively. The radio buttons indicate whether you are validat-
ing against a DTD or schema. Clicking the Validate button validates the document. Any errors
encountered during the validation process are indicated via a message box. Listing 5-15 shows
the complete code of the application.

8253ch05.fm Page 156 Friday, February 23, 2007 12:40 PM

C H A P T E R 5 ■ V A L I D A T I N G X M L D O C U M E N T S 157

Listing 5-15. Validating an XML Document by Using XmlReader

private void button1_Click(object sender, EventArgs e)
{
 XmlReaderSettings settings = new XmlReaderSettings();

 if(radioButton1.Checked)
 {
 settings.ProhibitDtd = false;
 settings.ValidationType = ValidationType.DTD;
 }
 else
 {
 settings.Schemas.Add("", textBox2.Text);
 settings.ValidationType=ValidationType.Schema;
 }

 settings.ValidationEventHandler += new ValidationEventHandler(OnValidationError);
 XmlReader reader = XmlReader.Create(textBox1.Text, settings);

 while (reader.Read())
 {
 //you can put code here
 //that reads and processes
 //the document
 }

 reader.Close();
 MessageBox.Show("Validation over");
}

If the XML document is to be validated against a DTD (as indicated by the radio buttons),
the ProhibitDtd property of the XmlReaderSettings class is set to false. The ProhibitDtd prop-
erty decides whether validation against a DTD is allowed. By default this property is true. If the
document is to be validated against an XSD schema, the schema is added to the Schemas collec-
tion, which can accept an in-memory schema in the form of an XmlSchema class or a file path.
The Add() method of the schemas collection used by our code accepts the target namespace
and schema file path.

8253ch05.fm Page 157 Friday, February 23, 2007 12:40 PM

158 C H A P T E R 5 ■ V A L I D A T I N G X M L D O C U M E N T S

The ValidationType property indicates whether the XmlReader should perform validation
and whether to use a DTD or a schema. The ValidationType property is an enumeration of type
ValidationType and has five possible values, as listed in Table 5-3.

Table 5-3. Possible Values of ValidationType

To trap the validation errors, the XmlReaderSettings class raises a ValidationEventHandler
event. This event is raised only when the ValidationType property is other than None. The sig-
nature of the event-handler function (OnValidationError()in our example) must match the
one shown here:

void OnValidationError(object sender, ValidationEventArgs e)
{
 MessageBox.Show(e.Message);
}

The event handler receives a ValidationEventArgs object as an event argument, which
allows you to examine the underlying exception. You can get the descriptive error message by
using the Message property as we do in our example. In this case, we simply display a message
box with the validation error message.

The code from Listing 5-15 then creates an instance of the XmlReader class by calling its
Create() static method. The URL of the XML document and the instance of XmlReaderSettings
are the arguments. A while loop then reads the XML document. If any validation error is
detected during this reading operation, the ValidationEventHandler event is raised. We could
have placed code to read the element and attribute values inside the while loop if required
(refer to Chapter 3 for information about reading XML documents by using the XmlReader
class). Finally, the reader is closed.

To test the preceding code, you need to run the application and supply the full path and
filenames of an XML document and a DTD or schema. You can use the same Employees.xml file
that we have used throughout this chapter. We also created a DTD and an XSD schema for
Employees.xml previously. After you click the Validate button, the XmlReader will attempt to val-
idate the XML document and notify you of any validation errors. Figure 5-15 shows a message
box generated after deliberately removing the required attribute employeeid.

Value Description

None No validation will be performed. This is the default.

Auto Automatically decides whether to validate against a DTD or schema by observing the
XML document.

DTD Validation will be performed against a DTD.

Schema Validation will be performed against an XSD schema.

XDR Validation will be performed against an XDR schema.

8253ch05.fm Page 158 Friday, February 23, 2007 12:40 PM

C H A P T E R 5 ■ V A L I D A T I N G X M L D O C U M E N T S 159

Figure 5-15. Detecting a validation error

Using XmlDocument to Validate XML Documents Being Loaded
You are not limited to the XmlReader approach to validate your XML documents; you can also
use XmlDocument to validate them. This is useful when you are modifying documents and want
to ensure that the new data is consistent with the underlying schema or DTD. The XmlDocument
class allows you to validate XML documents in two ways:

• You can validate the document while it is being loaded by the XmlDocument class.

• You can validate the document explicitly when you perform any modification on it such
as adding or removing nodes.

In the following example, you will learn how both of the preceding approaches can be
used. We will modify the same example that we developed in the “Modifying XML Documents”
section of Chapter 2. Figure 5-16 shows the user interface of the application.

Figure 5-16. Application for validating XML documents by using XmlDocument

Because we have already dissected the complete code in Chapter 2, I will not discuss it
again here. I will discuss only the modifications that are necessary to validate XML documents.

8253ch05.fm Page 159 Friday, February 23, 2007 12:40 PM

160 C H A P T E R 5 ■ V A L I D A T I N G X M L D O C U M E N T S

Previously in this section it was mentioned that XmlDocument allows you to validate XML
documents when they are being loaded. This is accomplished by passing a validating reader to
the Load() method of the XmlDocument class. Listing 5-16 shows the modified version of the
Form_Load event handler.

Listing 5-16. Validating an XML Document When It Is Being Loaded

private void Form1_Load(object sender, EventArgs e)
{
 XmlReaderSettings settings = new XmlReaderSettings();
 settings.ValidationType = ValidationType.Schema;
 settings.Schemas.Add("", Application.StartupPath + @"\employees.xsd");
 settings.ValidationEventHandler += new
 ValidationEventHandler(OnValidationError);
 XmlReader reader =
 XmlReader.Create(Application.StartupPath + @"\employees.xml", settings);
 doc.Load(reader);
 reader.Close();

 foreach (XmlNode node in doc.DocumentElement.ChildNodes)
 {
 comboBox1.Items.Add(node.Attributes["employeeid"].Value);
 }
 FillControls();
}

Notice the code marked in bold. This code should be familiar to you because we discussed
it in the earlier sections of this chapter: it essentially creates an XmlReaderSettings object and
configures it to validate Employees.xml against Employees.xsd.

The ValidationEventHandler event is handled by the OnValidationError() method. The
XmlReaderSettings object is then passed to the Create() method of the XmlReader class to get
an XmlReader object. The Load() method of XmlDocument accepts the newly created XmlReader
object as a parameter, internally iterates through the XmlReader, and validation takes place. If
there are any validation errors, the OnValidationError() method gets called.

Now comes the tricky part. The XmlDocument class allows you to modify the document.
Thus a document can be valid when loaded but can become invalid after modification. For
example, as per our schema, the telephone number cannot be greater than 20 characters.
The user of the form can, however, ignore this restriction and the loaded document can now
have invalid data. This makes it necessary to revalidate the changes made to the document.
Fortunately, the XmlDocument class provides a method called Validate() that does the job.
Listing 5-17 shows the use of Validate() during the update operation.

8253ch05.fm Page 160 Friday, February 23, 2007 12:40 PM

C H A P T E R 5 ■ V A L I D A T I N G X M L D O C U M E N T S 161

Listing 5-17. Validating a Node Explicitly

private void button2_Click(object sender, EventArgs e)
{
 XmlNode node =
 doc.SelectSingleNode("//employee[@employeeid='" +
 comboBox1.SelectedItem + "']");
 if (node != null)
 {
 node.ChildNodes[0].InnerText = textBox1.Text;
 node.ChildNodes[1].InnerText = textBox2.Text;
 node.ChildNodes[2].InnerText = textBox3.Text;
 XmlCDataSection notes = doc.CreateCDataSection(textBox4.Text);
 node.ChildNodes[3].ReplaceChild(notes, node.ChildNodes[3].ChildNodes[0]);
 }

 doc.Validate(OnValidationError,node);

 if (!isError)
 {
 doc.Save(Application.StartupPath + "/employees.xml");
 }
}

Note the code marked in bold. The Validate() method of XmlDocument can validate the entire
document or just a node against a previously specified schema or DTD. The Validate() method
accepts two parameters: the name of a function that matches the ValidationEventHandler delegate
signature, and the XmlNode to validate. There is one more overload of Validate() that takes just a
function matching the ValidationEventHandler delegate signature and validates the entire docu-
ment. The OnValidationError function is shown in Listing 5-18.

Listing 5-18. The OnValidationError Function

void OnValidationError(object sender, ValidationEventArgs e)
{
 MessageBox.Show(e.Message);
 isError = true;
}

The function simply shows the error message in a message box and sets a class-level
Boolean variable—isError—to true. This variable is checked to decide whether to save the
document. To test the application, modify the phone number of any employee to more than 20
characters and click the Update button. You should see a message box similar to Figure 5-17.

8253ch05.fm Page 161 Friday, February 23, 2007 12:40 PM

162 C H A P T E R 5 ■ V A L I D A T I N G X M L D O C U M E N T S

Figure 5-17. Validation error during saving changes

Using XPath Navigator to Validate XML Documents
You might be using XPathNavigator to read XML documents and may wish to perform valida-
tion on those documents. Recollect from Chapter 4 that XPathNavigator can be obtained by
using the XmlDocument or XPathDocument classes. The XPathNavigator obtained by using
XmlDocument is editable, whereas that obtained by using XPathDocument is read-only. The
XPathNavigator class by itself does not allow you to validate data, but you can use the underly-
ing XmlDocument or XPathDocument classes to perform the validation.

We have already seen the validation performed by using XmlDocument, but just like
XmlDocument, the XPathDocument class allows you to validate XML documents against a
schema or DTD during loading. In this case, the constructor of XPathDocument can accept a
validating XmlReader to perform the validation. Because the XPathNavigator obtained by
using XPathDocument is read-only, there is no way to revalidate the XML document after it has
been loaded. Listing 5-19 shows how the XPathNavigator obtained by using XPathDocument
can perform the validation.

Listing 5-19. Validating by Using XPathNavigator

XmlReaderSettings settings = new XmlReaderSettings();
settings.ValidationType = ValidationType.Schema;
settings.Schemas.Add("", "C:\Bipin\employees.xsd");
settings.ValidationEventHandler += new ValidationEventHandler(OnValidationError);
XmlReader reader = XmlReader.Create("C:\Bipin\employees.xml", settings);
XPathDocument doc = new XPathDocument(reader);
XPathNavigator navigator = doc.CreateNavigator();

The code creates an XmlReaderSettings object as before and adds a schema to use for
validation. The Create() method of XmlReader accepts this XmlReaderSettings object and
returns an XmlReader instance. The XmlReader instance is then supplied to the constructor of
the XPathDocument class. The CreateNavigator() method of XPathDocument finally creates the
XPathNavigator that can be used to navigate through the XML document.

Summary
This chapter introduced you to DTDs and schemas. You learned how to create a DTD and a
schema. You also learned to use Visual Studio tools for creating XSD schemas. The .NET
Framework’s Schema Object Model (SOM) is an extensive collection of objects that allows you

8253ch05.fm Page 162 Friday, February 23, 2007 12:40 PM

C H A P T E R 5 ■ V A L I D A T I N G X M L D O C U M E N T S 163

to create XSD schemas programmatically. You learned some of the important and commonly
used classes from the SOM hierarchy.

Creating a schema or DTD is just half of the story. The other half involves actually validat-
ing your XML documents against the specified schema or DTD. To validate an XML document
against a schema or DTD, you can use several approaches—that is, with the XmlReader,
XmlDocument, and XPathNavigator classes. All the approaches essentially rely on two classes:
XmlReaderSettings and XmlReader. The former class configures the XmlReader to perform vali-
dation. It also attaches an event handler for handling validation events. The latter actually
reads the document and notifies you of validation errors.

8253ch05.fm Page 163 Friday, February 23, 2007 12:40 PM

8253ch05.fm Page 164 Friday, February 23, 2007 12:40 PM

165

■ ■ ■

C H A P T E R 6

Transforming XML with XSLT

In the previous chapters, we dealt with XML documents and their manipulation. Our interaction
with XML documents was limited to reading, writing, querying, and validating them with the
help of .NET Framework classes. No doubt these operations are widely needed in real-world XML
applications. However, often you also need to transform XML data from one representation to
another. For example, you may need to convert XML data into HTML so that it can be displayed
in the browser. So, how do we accomplish such a transformation? This is where Extensible
Stylesheet Language Transformations (XSLT) comes into the picture.

This chapter covers details of XSLT processing via .NET Framework classes. Specifically,
you will learn the following:

• What XSLT is

• The XslCompiledTransform class that is the .NET Framework’s XSLT processor

• How to transform XML documents by using XslCompiledTransform

• How to use XSLT extension objects

• How to pass parameters to XSLT style sheets

• How to emit script in XSLT style sheets

Overview of XSLT
XML markup often needs to be transformed before it can be put to any use. To cater to this
requirement, the W3C introduced Extensible Stylesheet Language (XSL)—a standard for repre-
senting style sheets for XML documents. XSL was intended to act along the same lines as
Cascading Style Sheets (CSS), which are used to style HTML pages. However, over a period of
time the W3C realized the complexity involved in transforming XML documents, and the over-
all XSL standards were separated into XSLT, XPath, and XSL-FO. Out of these three main
subdivisions, XSLT is intended for transforming XML documents.

■Note The XPath standard allows you to query and navigate XML documents. Chapter 4 covered XPath.
XSL Formatting Objects (XSL-FO) is intended to format XML documents. XSL-FO is beyond the scope of
this book.

8253.book Page 165 Monday, February 26, 2007 7:53 PM

166 C H A P T E R 6 ■ T R A N S F O R M I N G X M L W I T H X S L T

XSLT consists of elements and functions that together allow you to transform XML
documents. To understand how XSLT elements and functions are used, you will use a simple
example.

Suppose that you have an XML document as shown in Listing 6-1. As you can see, it is the
same Employees.xml file that we have been using for all of our examples.

Listing 6-1. Sample XML Document (Employees.xml)

<?xml version="1.0" encoding="utf-8" ?>
<!-- This is list of employees -->
<employees>
 <employee employeeid="1">
 <firstname>Nancy</firstname>
 <lastname>Davolio</lastname>
 <homephone>(206) 555-9857</homephone>
 <notes>
<![CDATA[includes a BA in psychology from Colorado State University in 1970.
She also completed "The Art of the Cold Call." Nancy is a member of Toastmasters
International.]]>
 </notes>
 </employee>
 <employee employeeid="2">
 <firstname>Andrew</firstname>
 <lastname>Fuller</lastname>
 <homephone>(206) 555-9482</homephone>
 <notes>
<![CDATA[Andrew received his BTS commercial in 1974 and a Ph.D. in international
marketing from the University of Dallas in 1981. He is fluent in French and Italian
and reads German. He joined the company as a sales representative, was promoted
 to sales manager in January 1992 and to vice president of sales in March 1993.
Andrew is a member of the Sales Management Roundtable, the Seattle Chamber of
Commerce, and the Pacific Rim Importers Association.]]>
 </notes>
 </employee>
 <employee employeeid="3">
 <firstname>Janet</firstname>
 <lastname>Leverling</lastname>
 <homephone>(206) 555-3412</homephone>
 <notes>
<![CDATA[Janet has a BS degree in chemistry from Boston College (1984).
She has also completed a certificate program in food retailing management.
Janet was hired as a sales associate in 1991 and promoted to sales representative
 in February 1992.]]>
 </notes>
 </employee>
</employees>

8253.book Page 166 Monday, February 26, 2007 7:53 PM

C H A P T E R 6 ■ T R A N S F O R M I N G X M L W I T H X S L T 167

Now further assume that you wish to display this XML file in a web browser, as shown in
Figure 6-1.

Figure 6-1. XML document converted to an HTML table

This means you wish to convert XML markup into HTML markup (XHTML, to be more
specific). This transformation is achieved by XSLT. Let’s see how.

Listing 6-2 shows Employees.xslt—an XSLT style sheet that will be applied to Employees.xml.

Listing 6-2. XSLT for Transforming Employees.xml into an HTML Table

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="/">
 <html>
 <body>
 <h1>Employee Listing</h1>
 <table border="1">
 <tr>
 <th>Employee ID</th>
 <th>First Name</th>
 <th>Last Name</th>
 <th>Home Phone</th>
 <th>Notes</th>
 </tr>

8253.book Page 167 Monday, February 26, 2007 7:53 PM

168 C H A P T E R 6 ■ T R A N S F O R M I N G X M L W I T H X S L T

 <xsl:for-each select="employees/employee">
 <tr>
 <td>
 <xsl:value-of select="@employeeid"/>
 </td>
 <td>
 <xsl:value-of select="firstname"/>
 </td>
 <td>
 <xsl:value-of select="lastname"/>
 </td>
 <td>
 <xsl:value-of select="homephone"/>
 </td>
 <td>
 <xsl:value-of select="notes"/>
 </td>
 </tr>
 </xsl:for-each>
 </table>
 </body>
 </html>
 </xsl:template>
</xsl:stylesheet>

An XSLT file is an XML document in itself as indicated by the XML processing instruction
at the top. The root element of any XSLT style sheet must be <xsl:stylesheet>. An XSLT style
sheet consists of one or more templates, which are marked with the <xsl:template> element.
Each template works on one or more elements from the XML file as indicated by the match
attribute. The forward slash (/) indicates the root element. The match attribute can take any
valid XPath expression.

Inside the outermost <xsl:template> element, the markup outputs an HTML table with four
columns: employee ID, first name, last name, and notes. We wish to pick up every <employee> ele-
ment from the document and extract its attribute and sub-element values. The <xsl:for-each>
element works like a for each loop in any programming language and selects a node set based
on the criteria specified in the select attribute. In our example, because we wish to work with
<employee> elements, the select attribute is set to employees/employee. The select attribute of
<xsl:for-each> can take any valid XPath expression.

Inside the <xsl:for-each> construct, the values of attributes and elements are retrieved by
using the <xsl:value-of> element. The select attribute of <xsl:value-of> must be any valid
XPath expression that returns the value to be outputted. Note the use of @employeeid to retrieve
the value of the employeeid attribute. Thus the employeeid attribute and the values of the four
sub-elements (<firstname>, <lastname>, <homephone>, and <notes>) are outputted in the cells of
the HTML table.

The same process is repeated for all the employees in the Employees.xml file.

8253.book Page 168 Monday, February 26, 2007 7:53 PM

C H A P T E R 6 ■ T R A N S F O R M I N G X M L W I T H X S L T 169

Now that you are familiar with the XSLT style sheet, it’s time to attach the style sheet to the
XML document. To do so, you must add the markup shown in Listing 6-3 to the Employees.xml file.

Listing 6-3. Attaching an XSLT Style Sheet to an XML Document

<?xml version="1.0" encoding="utf-8" ?>
<?xml-stylesheet type="text/xsl" href="Employees.xslt"?>
<!-- This is list of employees -->
<employees>
 <employee employeeid="1">
 <firstname>Nancy</firstname>
...

Notice the use of the <?xml-stylesheet?> processing instruction. This processing instruc-
tion indicates that the type of style sheet being applied is XSL, and it is located at the URL
specified by the href attribute. After you attach the style sheet to the XML document, you can
view the XML file in the browser and you should see output similar to Figure 6-1.

In the following sections, you will learn a few more constructs of XSLT.

Applying Templates by Using <xsl:apply-templates>
The <xsl:apply-templates> element applies templates to the elements specified by its select
attribute. To illustrate the use of <xsl:apply-templates>, we will create an XSLT style sheet that
renders the XML markup from Employees.xml, as shown in Figure 6-2.

Figure 6-2. Rendering Employees.xml by applying templates

8253.book Page 169 Monday, February 26, 2007 7:53 PM

170 C H A P T E R 6 ■ T R A N S F O R M I N G X M L W I T H X S L T

The corresponding style sheet is shown in Listing 6-4.

Listing 6-4. Using <xsl:apply-templates>

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="/">
 <html>
 <body>
 <h1>Employee Listing</h1>
 <xsl:apply-templates/>
 </body>
 </html>
 </xsl:template>

 <xsl:template match="employee">
 <div>
 <h3>Employee ID :
 <xsl:value-of select="@employeeid"/>
 </h3>
 <xsl:apply-templates select="firstname"/>
 <xsl:apply-templates select="lastname"/>
 <xsl:apply-templates select="homephone"/>
 <xsl:apply-templates select="notes"/>
 </div>
 </xsl:template>

 <xsl:template match="firstname">
 First Name :<xsl:value-of select="."/>

 </xsl:template>

 <xsl:template match="lastname">
 Last Name :
 <xsl:value-of select="."/>

 </xsl:template>

 <xsl:template match="homephone">
 Home Phone :
 <xsl:value-of select="."/>

 </xsl:template>

8253.book Page 170 Monday, February 26, 2007 7:53 PM

C H A P T E R 6 ■ T R A N S F O R M I N G X M L W I T H X S L T 171

 <xsl:template match="notes">
 Remarks :
 <xsl:value-of select="."/>

 </xsl:template>

</xsl:stylesheet>

This time the topmost <xsl:template> element includes an <xsl:apply-templates>
element. If the <xsl:apply-templates> element is used without the select attribute,
<xsl:apply-templates> applies matching templates to all sub-elements. Then the XSLT
declares five templates for the <employee>, <firstname>, <lastname>, <homephone>, and <notes>
elements, respectively. The template for the <employee> element actually decides the order in
which the remaining templates will be applied. This is done by specifying the select attribute
in the <xsl:apply-templates> element. The select attribute can contain any valid XPath
expression.

Branching by Using <xsl:if>
The XSLT standard provides the <xsl:if> element that is equivalent to the if statement pro-
vided by many programming languages. Suppose that you wish to display details only where
the first name is Nancy. You can achieve this by using <xsl:if> as shown in Listing 6-5.

Listing 6-5. Using <xsl:if>

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="/">
 <html>
 <body>
 <h1>Employee Listing</h1>
 <table border="1">
 <tr>
 <th>Employee ID</th>
 <th>First Name</th>
 <th>Last Name</th>
 <th>Home Phone</th>
 <th>Notes</th>
 </tr>
 <xsl:for-each select="employees/employee">
 <xsl:if test="firstname[text()='Nancy']">
 <tr>
 <td>
 <xsl:value-of select="@employeeid"/>
 </td>

8253.book Page 171 Monday, February 26, 2007 7:53 PM

172 C H A P T E R 6 ■ T R A N S F O R M I N G X M L W I T H X S L T

 <td>
 <xsl:value-of select="firstname"/>
 </td>
 <td>
 <xsl:value-of select="lastname"/>
 </td>
 <td>
 <xsl:value-of select="homephone"/>
 </td>
 <td>
 <xsl:value-of select="notes"/>
 </td>
 </tr>
 </xsl:if>
 </xsl:for-each>
 </table>
 </body>
 </html>
 </xsl:template>
</xsl:stylesheet>

This is the same style sheet that we used in our first example, but this time it includes the
<xsl:if> construct. The test attribute of <xsl:if> tests for a specific condition. The condition
in our example checks whether the value of the <firstname> element (text()) is Nancy. If it is
Nancy, the details are outputted in the resultant HTML table. Figure 6-3 shows a sample view of
the Employees.xml file after applying the preceding style sheet.

Figure 6-3. Output after using <xsl:if>

8253.book Page 172 Monday, February 26, 2007 7:53 PM

C H A P T E R 6 ■ T R A N S F O R M I N G X M L W I T H X S L T 173

Branching by Using <xsl:choose> and <xsl:when>
The <xsl:choose> and <xsl:when> elements are equivalent to the switch statement used by
programming languages. Using our example file, suppose that you wish to display an addi-
tional column called Qualification in the resultant HTML table. You wish to search the notes
about an employee for certain qualifications and accordingly want to display them in this
additional column. Listing 6-6 shows the style sheet that accomplishes this task.

Listing 6-6. Using <xsl:choose> and <xsl:when>

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="/">
 <html>
 <body>
 <h1>Employee Listing</h1>
 <table border="1">
 <tr>
 <th>Employee ID</th>
 <th>First Name</th>
 <th>Last Name</th>
 <th>Home Phone</th>
 <th>Notes</th>
 <th>Qualification</th>
 </tr>
 <xsl:for-each select="employees/employee">
 <tr>
 <td>
 <xsl:value-of select="@employeeid"/>
 </td>
 <td>
 <xsl:value-of select="firstname"/>
 </td>
 <td>
 <xsl:value-of select="lastname"/>
 </td>
 <td>
 <xsl:value-of select="homephone"/>
 </td>
 <td>
 <xsl:value-of select="notes"/>
 </td>

8253.book Page 173 Monday, February 26, 2007 7:53 PM

174 C H A P T E R 6 ■ T R A N S F O R M I N G X M L W I T H X S L T

 <td>
 <xsl:choose>
 <xsl:when test="notes[contains(.,'BA')]">
 BA (Arts)
 </xsl:when>
 <xsl:when test="notes[contains(.,'BS')]">
 BS (Science)
 </xsl:when>
 <xsl:when test="notes[contains(.,'BTS')]">
 BTS (Other)
 </xsl:when>
 <xsl:otherwise>
 Unknown
 </xsl:otherwise>
 </xsl:choose>
 </td>
 </tr>
 </xsl:for-each>
 </table>
 </body>
 </html>
 </xsl:template>
</xsl:stylesheet>

Notice the markup in bold. The <xsl:choose> element starts the switch statement. Each
individual <xsl:when> element tests a specific condition. In our example, we check whether
the <notes> element contains BA, BS, or BTS, and accordingly emit the qualification of the
employee. If the test fails, the markup from <xsl:otherwise> is emitted. Figure 6-4 shows the
table with the Qualification column added.

8253.book Page 174 Monday, February 26, 2007 7:53 PM

C H A P T E R 6 ■ T R A N S F O R M I N G X M L W I T H X S L T 175

Figure 6-4. Qualification column added by using <xsl:choose> and <xsl:when>

Transforming Elements and Attributes
Up until now, we have transformed XML data into HTML. However, often you may need to
transform XML data into another XML representation. For example, a B2B application might
be receiving orders electronically in XML format. While receiving such orders, you must ensure
that the source XML markup and expected XML markup match. If they do not match, you can
apply XSLT transformations to generate the desired markup.

To illustrate how XSLT transformations can convert one XML representation into another,
we will transform Employees.xml into another XML representation, as shown in Listing 6-7.

8253.book Page 175 Monday, February 26, 2007 7:53 PM

176 C H A P T E R 6 ■ T R A N S F O R M I N G X M L W I T H X S L T

Listing 6-7. Required XML Markup from Employees.xml

<?xml version="1.0" encoding="utf-8"?>
<EMPLOYEES>
 <E1 EMPCODE="1">
 <FNAME>Nancy</FNAME>
 <LNAME>Davolio</LNAME>
 <PHONE>(206) 555-9857</PHONE>
 <REMARKS>
 includes a BA in psychology from Colorado State University in 1970.
She also completed "The Art of the Cold Call." Nancy is a member of
Toastmasters International.
 </REMARKS>
 </E1>
 <E2 EMPCODE="2">
 <FNAME>Andrew</FNAME>
 <LNAME>Fuller</LNAME>
 <PHONE>(206) 555-9482</PHONE>
 <REMARKS>
 Andrew received his BTS commercial in 1974 and a Ph.D. in international
marketing from the University of Dallas in 1981. He is fluent in French and
Italian and reads German. He joined the company as a sales representative,
was promoted to sales manager in January 1992 and to vice president of sales
 in March 1993. Andrew is a member of the Sales Management Roundtable,
the Seattle Chamber of Commerce, and the Pacific Rim Importers Association.
 </REMARKS>
 </E2>
 <E3 EMPCODE="3">
 <FNAME>Janet</FNAME>
 <LNAME>Leverling</LNAME>
 <PHONE>(206) 555-3412</PHONE>
 <REMARKS>
 Janet has a BS degree in chemistry from Boston College (1984).
She has also completed a certificate program in food retailing management.
Janet was hired as a sales associate in 1991 and promoted to sales representative
 in February 1992.
 </REMARKS>
 </E3>
</EMPLOYEES>

8253.book Page 176 Monday, February 26, 2007 7:53 PM

C H A P T E R 6 ■ T R A N S F O R M I N G X M L W I T H X S L T 177

Notice the several changes made to the XML markup:

• The root node is now <EMPLOYEES> and not <employees>.

• Each <employee> element is replaced with an element of the form E<employeeid>—that
is, <E1>, <E2>, and <E3>. That means the element name consists of a constant part (E) fol-
lowed by the employee ID.

• The employeeid attribute has now become the EMPCODE attribute.

• The <firstname>, <lastname>, <homephone>, and <notes> elements have now become
<FNAME>, <LNAME>, <PHONE>, and <REMARKS>, respectively.

The XSLT style sheet that brings about this transformation is shown in Listing 6-8.

Listing 6-8. Transforming Employees.xml

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="/">
 <EMPLOYEES>
 <xsl:apply-templates/>
 </EMPLOYEES>
 </xsl:template>

 <xsl:template match="employee">
 <xsl:element name="E{@employeeid}">
 <xsl:attribute name="EMPCODE">
 <xsl:value-of select="@employeeid"/>
 </xsl:attribute>
 <xsl:apply-templates select="firstname"/>
 <xsl:apply-templates select="lastname"/>
 <xsl:apply-templates select="homephone"/>
 <xsl:apply-templates select="notes"/>
 </xsl:element>
 </xsl:template>

 <xsl:template match="firstname">
 <FNAME>
 <xsl:value-of select="."/>
 </FNAME>
 </xsl:template>

8253.book Page 177 Monday, February 26, 2007 7:53 PM

178 C H A P T E R 6 ■ T R A N S F O R M I N G X M L W I T H X S L T

 <xsl:template match="lastname">
 <LNAME>
 <xsl:value-of select="."/>
 </LNAME>
 </xsl:template>

 <xsl:template match="homephone">
 <PHONE>
 <xsl:value-of select="."/>
 </PHONE>
 </xsl:template>

 <xsl:template match="notes">
 <REMARKS>
 <xsl:value-of select="."/>
 </REMARKS>
 </xsl:template>
</xsl:stylesheet>

Notice the code marked in bold. The topmost <xsl:template> element now contains the
<EMPLOYEES> element. The template that matches the <employee> element does an interesting
job: the <xsl:element> element is used to define new elements in the resultant output. You
might be wondering why we need this element; after all, you can directly specify new element
names (as we do for <FNAME>, <LNAME>, <PHONE>, and <REMARKS> later on). Note that we need to
create an element name that is E followed by the employee ID. Something like this can be
accomplished only by using the <xsl:element> element. Observe carefully how the element
name has been formed by specifying the dynamic part (employee ID) in curly brackets. Next,
the <xsl:attribute> element defines the EMPCODE attribute. The templates for <firstname>,
<lastname>, <homephone>, and <notes> are then applied. In each of these templates, the new
markup tag is emitted along with the value of the element.

If you open this file in a web browser, you may not see the desired markup because the out-
put is not HTML this time. The Visual Studio IDE provides an easy way to see the resultant
output. Open the XML document (Employees.xml) in the IDE, and apply the latest style sheet to it
by using the xml-stylesheet processing instruction. Then choose XML ➤ Show XSLT Output
from the menu. Visual Studio will apply the style sheet to the XML document and display the
resultant output.

The XslCompiledTransform Class
Up until now, we have attached XSLT style sheets to XML documents at design time. However,
in many real-world cases you may need to apply them programmatically. For example, you
might be generating the XML data at run time and wish to transform it by using XSLT. The
XslCompiledTransform class is intended for just such a situation. The XslCompiledTransform
class resides in the System.Xml.Xsl namespace and represents the .NET Framework’s XSLT
processor. It compiles the XSLT style sheets and performs XSLT transformations.

8253.book Page 178 Monday, February 26, 2007 7:53 PM

C H A P T E R 6 ■ T R A N S F O R M I N G X M L W I T H X S L T 179

The XslCompiledTransform class can accept XML data to transform it in several forms. Sim-
ilarly, the output generated by XslCompiledTransform can be in various forms. To be specific,
the source of transformation can be as follows:

• An object that implements IXPathNavigator (for example, XmlNode or XPathDocument)

• An XmlReader

• A URL or path of the XML file

The output of the transformation can be in the form of the following:

• An XmlWriter class

• A physical disk file

• A stream (for example, MemoryStream or FileStream)

• A class inheriting from the TextWriter abstract class (for example, StringWriter or
StreamWriter)

Performing Transformations by Using XslCompiledTransform
In this section, you will learn to use the XslCompiledTransform class. You will develop an appli-
cation as shown in Figure 6-5.

Figure 6-5. Application to apply XSLT transformations

As shown in Figure 6-5, the application consists of three text boxes to accept the source
XML filename, the XSLT style sheet filename, and the destination filename, respectively. Click-
ing the Transform button performs the transformation, and the output of the transformation is
stored in a file specified by the destination file text box. You can also open the destination file
after a successful transformation by selecting the check box. Listing 6-9 shows the Click event
handler of the Transform button.

8253.book Page 179 Monday, February 26, 2007 7:53 PM

180 C H A P T E R 6 ■ T R A N S F O R M I N G X M L W I T H X S L T

Listing 6-9. Using the XslCompiledTransform Class

private void button1_Click(object sender, EventArgs e)
{
 if(Path.GetExtension(textBox3.Text)!=".htm" &&
 Path.GetExtension(textBox3.Text)!=".html")
 {
 MessageBox.Show("File extention must be .htm or .html");
 return;
 }
 XslCompiledTransform xslt = new XslCompiledTransform();
 xslt.Load(textBox2.Text);
 xslt.Transform(textBox1.Text, textBox3.Text);
 if (checkBox1.Checked)
 {
 System.Diagnostics.Process.Start(textBox3.Text);
 }
}

Make sure to import the System.Xml.Xsl namespace because the XslCompiledTransform
class resides in it. Notice the code marked in bold. To start with, the code creates an instance
of the XslCompiledTransform class. The Load() method of XslCompiledTransform accepts the
path of the XSLT style sheet to be applied and loads it for transformation. However, it is
the Transform() method that actually performs the transformation by applying the style
sheet loaded by using the Load() method. There are several overloads of the Transform()
method: the one that we have used accepts two string parameters. The first parameter is the
path of the source XML document, and the second parameter is the path of the destination
document. After the transformation, the resultant output is saved in the file specified by the
second parameter of the Transform() method. Finally, the file is opened with the associated
application by using the Start() method of the Process class.

To test the application, you can use the Employees.xml and Employees.xslt files (see
Listing 6-2) that we used earlier in this chapter. Note that Employees.xml no longer needs to
have the xml-stylesheet processing instruction. When you supply all the filenames and click
the Transform button, you should see the Employees.html file generated in the specified folder.
The Employees.html file will have HTML markup as shown in Listing 6-10.

8253.book Page 180 Monday, February 26, 2007 7:53 PM

C H A P T E R 6 ■ T R A N S F O R M I N G X M L W I T H X S L T 181

Listing 6-10. Output After Applying the Style Sheet

<html>
 <body>
 <h1>Employee Listing</h1>
 <table border="1">
 <tr>
 <th>Employee ID</th>
 <th>First Name</th>
 <th>Last Name</th>
 <th>Home Phone</th>
 <th>Notes</th>
 </tr>
 <tr>
 <td>1</td>
 <td>Nancy</td>
 <td>Davolio</td>
 <td>(206) 555-9857</td>
 <td>
 includes a BA in psychology from Colorado State University in 1970.
 She also completed "The Art of the Cold Call." Nancy is a member
 of Toastmasters International.
 </td>
 </tr>
 <tr>
 <td>2</td>
 <td>Andrew</td>
 <td>Fuller</td>
 <td>(206) 555-9482</td>
 <td>
 Andrew received his BTS commercial in 1974 and a Ph.D. in international
 marketing from the University of Dallas in 1981. He is fluent in French
 and Italian and reads German. He joined the company as a sales
 representative, was promoted to sales manager in January 1992 and to vice
 president of sales in March 1993. Andrew is a member of the Sales
 Management Roundtable, the Seattle Chamber of Commerce, and the Pacific
 Rim Importers Association.
 </td>
 </tr>

8253.book Page 181 Monday, February 26, 2007 7:53 PM

182 C H A P T E R 6 ■ T R A N S F O R M I N G X M L W I T H X S L T

 <tr>
 <td>3</td>
 <td>Janet</td>
 <td>Leverling</td>
 <td>(206) 555-3412</td>
 <td>
 Janet has a BS degree in chemistry from Boston College (1984).
 She has also completed a certificate program in food retailing management.
 Janet was hired as a sales associate in 1991 and promoted to sales
 representative in February 1992.
 </td>
 </tr>
 </table>
 </body>
</html>

As you can see, the source XML markup is transformed into HTML markup as specified in
the style sheet.

■Note In our example, we converted XML markup into HTML markup. However, you can easily use the
XslCompiledTransform class to transform source XML into another XML representation.

Passing Arguments to a Transformation
In Listing 6-5, you created a style sheet that transforms details of a single employee, Nancy, by
using the <xsl:if> element. The problem with our XSLT is that we hard-coded the name Nancy
in the style sheet. In real-world cases, this name will probably come from a user interface ele-
ment. Thus it becomes necessary that the employee’s first name be accepted as a parameter in
the XSLT rather than a fixed value.

Fortunately, XSLT allows you to declare parameters in your style sheet. These parameters
can then be supplied at run time from your application. A collection of these parameters is
represented by the XsltArgumentList class, and you can add individual parameters to this col-
lection. To illustrate the use of XsltArgumentList, we will develop an application as shown in
Figure 6-6.

8253.book Page 182 Monday, February 26, 2007 7:53 PM

C H A P T E R 6 ■ T R A N S F O R M I N G X M L W I T H X S L T 183

Figure 6-6. Application for passing parameters to the XSLT style sheet

The application consists of a single text box for accepting the first name of the employee.
Clicking the Transform button applies the style sheet and stores the resultant output in an
HTML file. Our XML file remains the same (Employees.xml). However, you need to modify the
style sheet from Listing 6-5 as shown in Listing 6-11.

Listing 6-11. XSLT Style Sheet with Parameter

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:param name="firstname"/>
 <xsl:template match="/">
 <html>
 <body>
 <h1>Employee Listing</h1>
 <table border="1">
 <tr>
 <th>Employee ID</th>
 <th>First Name</th>
 <th>Last Name</th>
 <th>Home Phone</th>
 <th>Notes</th>
 </tr>
 <xsl:for-each select="employees/employee">
 <xsl:if test="firstname[text()=$firstname]">
 <tr>
 <td>
 <xsl:value-of select="@employeeid"/>
 </td>

8253.book Page 183 Monday, February 26, 2007 7:53 PM

184 C H A P T E R 6 ■ T R A N S F O R M I N G X M L W I T H X S L T

 <td>
 <xsl:value-of select="firstname"/>
 </td>
 <td>
 <xsl:value-of select="lastname"/>
 </td>
 <td>
 <xsl:value-of select="homephone"/>
 </td>
 <td>
 <xsl:value-of select="notes"/>
 </td>
 </tr>
 </xsl:if>
 </xsl:for-each>
 </table>
 </body>
 </html>
 </xsl:template>
</xsl:stylesheet>

Notice the style sheet markup displayed in bold. At the top of the style sheet, we have
declared a parameter by using the <xsl:param> element. The name attribute of the <xsl:param>
element indicates the name of the parameter (firstname in our example). To use this parame-
ter further in the XSLT, you prefix it with the dollar ($) symbol. Notice the firstname parameter
of the <xsl:if> element. Listing 6-12 shows the code that passes this parameter value at the
time of actual transformation.

Listing 6-12. Using the XsltArgumentList Class to Pass XSLT Parameters

private void button1_Click(object sender, EventArgs e)
{
 string sourcefile=Application.StartupPath + @"\employees.xml";
 string xsltfile=Application.StartupPath + @"\employees.xslt";
 string destinationfile=Application.StartupPath + @"\employees.html";

 FileStream stream = new FileStream(destinationfile, FileMode.Create);

 XslCompiledTransform xslt = new XslCompiledTransform();
 xslt.Load(xsltfile);
 XsltArgumentList arguments = new XsltArgumentList();
 arguments.AddParam("firstname", "", textBox1.Text);
 xslt.Transform(sourcefile, arguments, stream);
 stream.Close();
 if (checkBox1.Checked)

8253.book Page 184 Monday, February 26, 2007 7:53 PM

C H A P T E R 6 ■ T R A N S F O R M I N G X M L W I T H X S L T 185

 {
 System.Diagnostics.Process.Start(destinationfile);
 }
}

The code declares three string variables to store the paths of the source XML file, the XSLT
style sheet file, and the destination HTML file, respectively. Then the code creates a FileStream
object for writing to the destination HTML file. This FileStream object will be passed to the
Transform() method later.

A new instance of the XslCompiledTransform class is then created and the Load() method
loads the XSLT style sheet. Then comes the important part. The code creates an instance of the
XsltArgumentList class and adds a parameter to it by using its AddParam() method, which takes
three parameters: the name of the parameter, the namespace if any, and the parameter value. Then
the Transform() method of XslCompiledTransform is called by passing the XsltArgumentList object
that we just created. This time we pass the source filename, the parameter list, and a stream to
which the resultant output will be written. In our case, this stream points to the Employees.html file.
After the transformation is over, the stream is closed and the newly generated HTML file is shown
to the user.

If you run the application and supply Nancy as the parameter value, the resultant HTML
file will look like Listing 6-13.

Listing 6-13. Output After Passing the Parameter

<html>
 <body>
 <h1>Employee Listing</h1>
 <table border="1">
 <tr>
 <th>Employee ID</th>
 <th>First Name</th>
 <th>Last Name</th>
 <th>Home Phone</th>
 <th>Notes</th>
 </tr>
 <tr>
 <td>1</td>
 <td>Nancy</td>
 <td>Davolio</td>
 <td>(206) 555-9857</td>
 <td>
 includes a BA in psychology from Colorado State University in 1970.
 She also completed "The Art of the Cold Call." Nancy is a member of
 Toastmasters International.
 </td>
 </tr>
 </table>
 </body>
</html>

8253.book Page 185 Monday, February 26, 2007 7:53 PM

186 C H A P T E R 6 ■ T R A N S F O R M I N G X M L W I T H X S L T

As you can see, only one record is transformed, indicating that the output was indeed fil-
tered based on the parameter value.

Using Script Blocks in an XSLT Style Sheet
Though XSLT offers a few programming constructions and built-in functions, it is not a fully
fledged programming language in itself. Sometimes you may need to perform an operation
that is beyond the capabilities of XSLT. For example, you may want to connect with a SQL
Server database and fetch some data that is used further by the style sheet or you may need to
perform disk IO. To cater to such needs, XslCompiledTransform allows you to embed scripts
within your XSLT style sheets. After the style sheet is loaded, the embedded code is compiled
into Microsoft Intermediate Language (MSIL) and executed at run time.

Our Employees.xml file stores a subset of information from the Employees table of the
Northwind database; it represents only four fields of the actual table: firstname, lastname,
homephone, and notes. Let’s assume that for some reason you also need the extract the date
of birth of each employee at run time. That means we need to write some ADO.NET code to
retrieve the BirthDate column value from the database table. We will do this by embedding a
script block in the style sheet. Listing 6-14 shows the complete style sheet.

Listing 6-14. Embedded Script Blocks in the XSLT Style Sheet

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:msxsl="urn:schemas-microsoft-com:xslt"
xmlns:myscripts="urn:myscripts">
<msxsl:script language="C#" implements-prefix="myscripts">
 <msxsl:assembly name="System.Data" />
 <msxsl:using namespace="System.Data" />
 <msxsl:using namespace="System.Data.SqlClient" />
 <![CDATA[
 public string GetBirthDate(int employeeid)
 {
 SqlConnection cnn = new SqlConnection(@"data source=.\sqlexpress;initial ➥

catalog=northwind;integrated security=true");
 SqlCommand cmd = new SqlCommand();
 cmd.Connection = cnn;
 cmd.CommandText = "SELECT birthdate FROM employees WHERE employeeid=@id";
 SqlParameter pDOB = new SqlParameter("@id",employeeid);
 cmd.Parameters.Add(pDOB);
 cnn.Open();
 object obj = cmd.ExecuteScalar();
 cnn.Close();
 DateTime dob = DateTime.Parse(obj.ToString());
 return dob.ToString("MM/dd/yyyy");
 }
]]>
</msxsl:script>

8253.book Page 186 Monday, February 26, 2007 7:53 PM

C H A P T E R 6 ■ T R A N S F O R M I N G X M L W I T H X S L T 187

<xsl:template match="/">
 <html>
 <body>
 <h1>Employee Listing</h1>
 <table border="1">
 <tr>
 <th>Employee ID</th>
 <th>First Name</th>
 <th>Last Name</th>
 <th>Home Phone</th>
 <th>Birth Date</th>
 <th>Notes</th>
 </tr>
 <xsl:for-each select="employees/employee">
 <tr>
 <td>
 <xsl:value-of select="@employeeid"/>
 </td>
 <td>
 <xsl:value-of select="firstname"/>
 </td>
 <td>
 <xsl:value-of select="lastname"/>
 </td>
 <td>
 <xsl:value-of select="homephone"/>
 </td>
 <td>
 <xsl:value-of select="myscripts:GetBirthDate(@employeeid)"/>
 </td>
 <td>
 <xsl:value-of select="notes"/>
 </td>
 </tr>
 </xsl:for-each>
 </table>
 </body>
 </html>
 </xsl:template>
</xsl:stylesheet>

Notice the markup in bold. The <xsl:stylesheet> element now has two more attributes.
The xmlns:msxsl attribute defines the msxml prefix for the urn:schemas-microsoft-com:xslt
namespace. Similarly, the xmlns:myscripts attribute defines a myscripts prefix.

The <msxml:script> block defines one or more functions that are used in the style sheet.
The language attribute of the script block indicates the coding language (C# in our example).
Your code may need to add a reference to external assemblies, which is done by using the
<msxsl:assembly> element. The name attribute of this tag specifies the name of the assembly

8253.book Page 187 Monday, February 26, 2007 7:53 PM

188 C H A P T E R 6 ■ T R A N S F O R M I N G X M L W I T H X S L T

excluding the extension. Similarly, the <msxml:using> tag specifies the namespaces to be
imported.

The actual function is placed in a CDATA section. In our example, we defined a func-
tion called GetBirthDate() that accepts the ID of the employee whose date of birth is to be
retrieved and returns the birth date in MM/dd/yyyy format. The code of the function con-
nects with the Northwind database, fires a SELECT query against the employees table, and
retrieves the birth date.

■Note Make sure to change the database connection string to suit your development environment.

The GetBirthDate() function is called later in the style sheet by using the
namespaceprefix:function_name(parameter list) syntax. The GetBirthDate() function
expects the employee ID, which is passed by using the employeeid attribute (@employeeid)
as a parameter.

To test our new style sheet, we will develop an application as shown in Figure 6-7.

Figure 6-7. Application for testing our embedded function

The application user interface is the same as I discussed earlier (see Figure 6-5). However, the
code inside the Transform button is slightly different. Listing 6-15 highlights these differences.

8253.book Page 188 Monday, February 26, 2007 7:53 PM

C H A P T E R 6 ■ T R A N S F O R M I N G X M L W I T H X S L T 189

Listing 6-15. Enabling Scripting

private void button1_Click(object sender, EventArgs e)
{
 XsltSettings settings = new XsltSettings();
 settings.EnableScript = true;
 XslCompiledTransform xslt = new XslCompiledTransform();
 xslt.Load(textBox2.Text,settings,null);
 xslt.Transform(textBox1.Text, textBox3.Text);
 if (checkBox1.Checked)
 {
 System.Diagnostics.Process.Start(textBox3.Text);
 }
}

The XsltSettings class specifies the features to support during the transformation. The
EnableScript property indicates whether to enable embedded script blocks. The Load()
method of the XslCompiledTransform class accepts the XsltSettings object as one of its param-
eters. If you run the application and specify the three paths, you will get output as shown in
Figure 6-8.

Figure 6-8. Output with the Birth Date column added

8253.book Page 189 Monday, February 26, 2007 7:53 PM

190 C H A P T E R 6 ■ T R A N S F O R M I N G X M L W I T H X S L T

Using Extension Objects
Embedding scripts in the style sheet does indeed provide a handy way to perform operations
that are beyond the capabilities of XSLT. However, it doesn’t provide a good mechanism for
reusing your code. What if you wish to use the same function elsewhere in the application or in
other style sheets? This is where extension objects come into the picture. Simply put, extension
objects are objects external to the style sheet that provide some functionality to the style sheet.
Extension objects promote greater code reuse and are more flexible and maintainable than
embedded script blocks.

To illustrate the use of extension objects, we will modify our previous example. First, we
will put the GetBirthDate() function in a separate class called Employee rather than embedding
it in the style sheet. The newly created Employee class should look similar to Listing 6-16.

Listing 6-16. Placing the GetBirthDate() Function in a Class

class Employee
{
 public string GetBirthDate(int employeeid)
 {
 SqlConnection cnn = new SqlConnection(@"data source=.\sqlexpress;initial ➥

catalog=northwind;integrated security=true");
 SqlCommand cmd = new SqlCommand();
 cmd.Connection = cnn;
 cmd.CommandText = "SELECT birthdate FROM employees WHERE employeeid=@id";
 SqlParameter pDOB = new SqlParameter("@id", employeeid);
 cmd.Parameters.Add(pDOB);
 cnn.Open();
 object obj = cmd.ExecuteScalar();
 cnn.Close();
 DateTime dob = DateTime.Parse(obj.ToString());
 return dob.ToString("MM/dd/yyyy");
 }
}

The function by itself is the same that we used before but it has been encapsulated in the
Employee class. Next you need to modify the Click event handler of the Transform button to
resemble Listing 6-17.

8253.book Page 190 Monday, February 26, 2007 7:53 PM

C H A P T E R 6 ■ T R A N S F O R M I N G X M L W I T H X S L T 191

Listing 6-17. Using Extension Objects

private void button1_Click(object sender, EventArgs e)
{
 XsltSettings settings = new XsltSettings();
 settings.EnableScript = true;
 XslCompiledTransform xslt = new XslCompiledTransform();
 xslt.Load(textBox2.Text,settings,null);

 XsltArgumentList arguments = new XsltArgumentList();
 Employee employee = new Employee();
 arguments.AddExtensionObject("urn:myscripts", employee);

 FileStream stream = new FileStream(textBox3.Text, FileMode.Create);
 xslt.Transform(textBox1.Text, arguments,stream);
 stream.Close();
 if (checkBox1.Checked)
 {
 System.Diagnostics.Process.Start(textBox3.Text);
 }
}

Notice the code marked in bold. After loading the style sheet by using the Load() method as
before, it creates an instance of the XsltArgumentList class, which we used when passing param-
eters to the style sheet. This time, however, the code uses the AddExtensionObject() method of
the XsltArgumentList class. This method accepts the namespace URI and an instance of the
extension object. In our case, the Employee class instance acts as an extension object. While call-
ing the Transform() method of XslCompiledTransform, the XsltArgumentList object is passed to
it. If you run the application now, you should get a result identical to the previous example.

Summary
This chapter gave you a detailed understanding of XSLT processing in .NET. By using XSLT style
sheets, XML data can be transformed from one form to another. The XslCompiledTransform class
represents the .NET Framework’s XSLT processor. It allows you to load the style sheets and apply
them to source XML. You can also pass parameters while transformation is being carried out, by
using the XsltArgumentList class. The XslCompiledTransform class also allows you to embed
script blocks. A better way to use your code is to create extension objects, which are more flexible
and maintainable than embedded script blocks.

8253.book Page 191 Monday, February 26, 2007 7:53 PM

8253.book Page 192 Monday, February 26, 2007 7:53 PM

193

■ ■ ■

C H A P T E R 7

XML in ADO.NET

ADO.NET is a technology for accessing and manipulating databases. Disconnected data
access and XML integration are the key features of ADO.NET. In this chapter, you are going to
see how ADO.NET has harnessed the power of XML in data representation. Specifically, this
chapter covers the following:

• An overview of XML integration in ADO.NET

• Working with SqlDataReader and XML

• DataSet architecture and disconnected data access

• XML integration in DataSet

• The XmlDataDocument class

Overview of ADO.NET Architecture
ADO.NET provides two ways of working with your data:

• Connected data access

• Disconnected data access

Connected Data Access
In connected data access, you establish a connection with the database. Then, as long as you are
working with the data, you maintain this live connection. The following are the steps that you
typically take when using connected data access:

1. Establish a connection with the database.

2. Fetch a set of records in a cursor.

3. Work with the fetched data (perform read, modify, and delete operations or even
calculations).

4. Update the database, if there are any changes.

5. Close the database connection.

8253ch07.fm Page 193 Friday, March 23, 2007 10:57 AM

194 C H A P T E R 7 ■ X M L I N A D O . N E T

The advantage of this model is that you can see changes in the database in real time.
However, this approach is not recommended for scalable applications because it can hamper
the overall performance and scalability of the system. Also, even though ADO.NET provides
cursor-oriented connected data access, it is strictly read-only and forward-only. This incurs
fewer overheads and improves performance as compared to updatable cursors.

You will typically use connected data access in the following situations:

• You are developing applications that are online all the time. For example, in a ticket res-
ervation application it is necessary that you work with the latest data from the database.
In such cases, connected data access becomes necessary.

• You want to avoid the overhead of using offline data. When you use queries directly
against a database, naturally they bypass any of the intermediate layers that are involved
in disconnected data-access techniques. For example, suppose that you wish to display a
simple employee listing to the end user. This task does not involve any processing as such.
Using connected data access in such cases will of course give the best performance.

• You need a cursor model for some reason.

The Connection, Command, and DataReader classes are used for such connected data access.
You will learn about these classes in later sections.

Disconnected Data Access
Many modern systems need to be distributed and scalable. Consider an example of a distributed
application that performs some database-intensive tasks. A typical programming approach is to
open a live connection with the database and maintain it as long as the database-related tasks are
in progress. This is fine if the number of users is small, but as the user base grows, the available
database connections become precious. In such heavily loaded systems, a live connection
approach is not recommended. The alternative is to have offline or disconnected access to the
data. Disconnected data access involves the following steps:

1. Establish a connection with the database.

2. Fetch the data that you require and store it in some offline medium.

3. Close the database connection.

4. Work with the fetched data (perform read, modify, and delete operations or even
calculations).

5. Again, open a database connection if you wish to update the changes made to the data
back to the database.

6. Update the database, if there are any changes.

7. Close the database connection.

8253ch07.fm Page 194 Friday, March 23, 2007 10:57 AM

C H A P T E R 7 ■ X M L I N A D O . N E T 195

As you can see, the database connection is opened only when required. You will typically
use disconnected data access in the following situations:

• Your application data can be updated in batches.

• Your application does not need up-to-the minute data from the database.

• You want to pass data across multiple layers of your system.

• You want to pass data from your application to another application.

• Your application data is generated programmatically and is not coming from any
data source.

This disconnected data access is provided by a DataAdapter and a DataSet class. You will
learn more about these classes in upcoming sections.

ADO.NET Data Providers
To communicate with the data source, you need some kind of layer that will facilitate this com-
munication for you. In the early days, Open Database Connectivity (ODBC) drivers provided
such a layer. With the introduction of Object Linking and Embedding Database (OLEDB), OLEDB
providers did the same job. Now, with ADO.NET it is data providers that do it for you by provid-
ing managed access to the underlying data source. The data source can be a relational database
management system (RDBMS) such as SQL Server or it can be some nonrelational entity such as
XML documents.

Four data providers are available out of the box with ADO.NET:

• SQL Server data provider

• OLEDB data provider

• Oracle data provider

• ODBC data provider

You can also build your own data provider.
Each ADO.NET data provider implements a certain set of interfaces. This makes the over-

all object model look almost the same, irrespective of the data provider used. The following
sections will give you a brief introduction to the various data providers available.

SQL Server Data Provider

The SQL Server data provider is specifically designed for SQL Server 7 and later versions. It is
optimized for SQL Server and uses SQL Server’s native data format—tabular data stream (TDS)
for communication. As this data provider talks with SQL Server via its native format, there are
none of the overheads associated with the OLEDB layer.

8253ch07.fm Page 195 Friday, March 23, 2007 10:57 AM

196 C H A P T E R 7 ■ X M L I N A D O . N E T

OLEDB Data Provider

As the name suggests, the OLEDB data provider is used to communicate with any OLEDB-
compliant databases such as SQL Server and Oracle. The OLEDB data provider is actually a
wrapper over the corresponding OLEDB service provider and thus introduces a small perfor-
mance overhead. If your database is OLEDB compliant but does not have its own ADO.NET
data provider, this is the data provider for you.

Oracle Data Provider

Microsoft has developed a data provider for Oracle databases.

ODBC Data Provider

If you are working with an RDBMS that does not have an OLEDB provider or ADO.NET data
provider (say, dBASE), this is the data provider available to you.

The Assemblies and Namespaces Involved

Now that you have a brief idea about ADO.NET data providers, let’s see the related namespaces.
We will focus our attention on only the SQL Server data provider and the OLEDB data provider
because they are very commonly used in many business applications. All the data-access classes
of these two providers reside in the assembly System.Data.dll. There are five major namespaces
pertaining to the preceding data providers:

• The System.Data namespace provides classes and interfaces that are common to all data
providers. For example, the DataSet class is the same irrespective of whether it is popu-
lated with data from SQL Server or another OLEDB database. This namespace also
contains interfaces that are implemented by all the data providers.

• The System.Data.Common namespace contains classes shared by all the .NET data
providers.

• The System.Data.OleDb namespace contains all the classes pertaining to the OLEDB
data provider. For example, there are classes such as OleDbConnection, OleDbCommand,
and OleDbParameter.

• The System.Data.SqlClient namespace contains all the classes related to the SQL Server
data provider. For example, there are classes such as SqlConnection, SqlCommand, and
SqlParameter. As you will see, the OleDb and SqlClient namespaces contain closely
matching classes.

• The System.Data.SqlTypes namespace provides classes for native data types within SQL
Server. For example, the SqlInt32 class represents the SQL Server integer data type.
These classes help in preventing loss of precision while converting decimal or numeric
data types. They also help in optimizing type conversion between .NET data types and
SQL Server data types.

8253ch07.fm Page 196 Friday, March 23, 2007 10:57 AM

C H A P T E R 7 ■ X M L I N A D O . N E T 197

Basic ADO.NET Classes
Now it’s time to become familiar with the common classes that play a vital role in database
access. This section will give you a basic introduction to the classes so that you can perform
common data-access tasks. Note that in the following section when I specify Connection, it is
shorthand for the SqlConnection and OleDbConnection classes. The same convention applies to
other classes as well.

Connection (SqlConnection and OleDbConnection)

As the name suggests, the Connection classes represent a connection with a database. The use
of the ADO.NET Connection object is similar to its ADO counterpart. For example, in order to
establish a connection with a SQL Server database, you will need to specify the connection
string and then call the Open() method of the SqlConnection object. Note that after you finish
working with the Connection object, you should explicitly close it by using the Close() method.
Otherwise, the object will maintain a live connection with the database.

Command (SqlCommand and OleDbCommand)

ADO.NET Command objects are similar to ADO Command objects in that they are used to execute
SQL queries and stored procedures. You specify the SQL query or stored procedure name by
using the CommandText property. You can also specify the type of command (SQL statement or
stored procedure) by using the CommandType property. If your query has some parameters, you
can add them to the Parameters collection. Before executing the command, you should set its
Connection property to an open connection object. Command objects can return only read-only
and forward-only result sets in the form of a DataReader.

Parameter (SqlParameter and OleDbParameter)

Often your queries and stored procedures are parameterized. Using parameters allows you to
pass external values to your queries and also avoids the risk of SQL injection attack. Parameters
are also better in terms of performance because they avoid frequent parsing of queries. The
Parameter class represents a parameter of your query or stored procedure.

DataReader (SqlDataReader and OleDbDataReader)

As I have mentioned, the Command object can return only read-only and forward-only cursors.
The results are collected in an object called the DataReader, which is a firehose cursor that pro-
vides an optimized way to loop through your results.

■Note Read-only and forward-only cursors are often called fire-hose cursors. They are one of the most
efficient ways of transferring data from the server to the client.

8253ch07.fm Page 197 Friday, March 23, 2007 10:57 AM

198 C H A P T E R 7 ■ X M L I N A D O . N E T

To loop through the results, you can use its Read() method that advances the record
pointer to the next row.

Note that DataReader does not have MoveXxxx()-style methods as ADO has. This helps to
avoid the common programming mistake of forgetting to call MoveNext() in Do...While loops.
Also, note that for DataReader only one row remains in memory at a time, so DataReader can
improve the performance and memory footprint of your application significantly as compared
to traditional dynamic cursors.

DataAdapter (SqlDataAdapter and OleDbDataAdapter)

In the section about disconnected data access, you learned that ADO.NET offers a way to work
with disconnected data via the DataSet class. The DataSet needs to be populated from the data
residing in the data source. Similarly, after you are finished with the data modifications, the data
needs to be updated in the underlying data source, and the DataAdapter class is designed just for
that. Note that the DataSet class is the same for any kind of data provider (SQL or OLEDB), but
DataAdapter has separate implementations (SqlDataAdapter and OleDbDataAdapter). This is
because, unlike DataSet, which is totally unaware of the underlying data source, DataAdapter
needs to communicate with the underlying data source.

DataSet

The DataSet object is at the heart of ADO.NET disconnected architecture. DataSet is somewhat
analogous to the Recordset object of ADO, but, unlike Recordset, DataSet always works in a dis-
connected fashion. Also, DataSet can have more than one set of data.

A DataSet is represented as an XML document over the network, which makes it a great
choice for passing data from one component layer to another. It can also be used to integrate
heterogeneous systems.

A DataSet can be considered an in-memory representation of a database. Just as a data-
base consists of one or more tables, a DataSet consists of one or more DataTable objects. Each
DataTable is a set of DataRow objects. Just like a database, DataTable objects can have relations
and constraints. Also, they need not always be populated from the database but can be created
and populated programmatically also.

XML and Connected Data Access
In the preceding sections, you saw that the SqlCommand object is used to execute SQL com-
mands and stored procedures against a database. To execute SELECT queries and retrieve the
results as XML data, you need to use the ExecuteXmlReader() method of the SqlCommand object.
This method executes the SELECT query or stored procedure and returns the results in the form
of an XmlReader object. You can then navigate through and access values from the XmlReader,
as you learned in Chapter 3.

Using the ExecuteXmlReader() Method
When you use the ExecuteXmlReader() method of SqlCommand, the SELECT query must have the
FOR XML clause specified in it. You will learn about the FOR XML clause in detail in Chapter 10. For

8253ch07.fm Page 198 Friday, March 23, 2007 10:57 AM

C H A P T E R 7 ■ X M L I N A D O . N E T 199

now it is sufficient to know that this clause ensures that an XML representation of the result set
is returned and it must be present.

To see how ExecuteXmlReader() works, you will develop an application as shown in
Figure 7-1.

Figure 7-1. Application for retrieving SQL Server data in XML format

As you can see, the application consists of a text box for entering SELECT queries. The
Execute button allows you to execute the query. The XML results returned from the query are
displayed in a browser window.

Before you write the code for the Click event handler of the Execute button, make sure to
including the namespaces as shown in Listing 7-1.

Listing 7-1. Importing Relevant Namespaces

using System.Data;
using System.Data.SqlClient;
using System.Xml;
using System.IO;
using System.Diagnostics;

The Click event handler of the Execute button contains the code shown in Listing 7-2.

Listing 7-2. Using the ExecuteXmlReader() Method

private void button1_Click(object sender, EventArgs e)
{
 SqlConnection cnn = new SqlConnection(@"data source=.\sqlexpress;initial ➥

catalog=northwind;integrated security=true");

 SqlCommand cmd = new SqlCommand();
 cmd.Connection = cnn;
 cmd.CommandType = CommandType.Text;
 cmd.CommandText = textBox1.Text + " FOR XML AUTO";
 cnn.Open();

8253ch07.fm Page 199 Friday, March 23, 2007 10:57 AM

200 C H A P T E R 7 ■ X M L I N A D O . N E T

 XmlReader reader=cmd.ExecuteXmlReader();
 StreamWriter writer= File.CreateText(Application.StartupPath + @"\temp.xml");
 writer.Write("<root>");

 while (reader.Read())
 {
 writer.Write(reader.ReadOuterXml());
 }

 writer.Write("</root>");
 writer.Close();
 reader.Close();
 cnn.Close();
 Process.Start(Application.StartupPath + @"\temp.xml");
}

The code creates an instance of the SqlConnection class by passing the database connec-
tion string in the constructor.

■Note Throughout this chapter, it is assumed that you have SQL Server 2005 Express Edition installed on
your machine. It is also assumed that you have the Northwind database installed. If you are using some other
version of SQL Server, you need to change the database connection string accordingly. Also, note that SQL
Server 2005 Express Edition does not include the Northwind database by default. You can, however, down-
load the necessary scripts from Microsoft’s website.

Then the code creates a SqlCommand object and sets three important properties: Connection,
CommandType, and CommandText. The Connection property specifies the SqlConnection instance
that is to be used for firing queries. The CommandType property is an enumeration of type
CommandType and indicates the type of command being executed. In our example, it is a plain SQL
statement and hence set to CommandType.Text. The CommandText property specifies the SQL query
or name of the stored procedure to be executed. In our example, the query is being supplied via
the text box. While assigning the CommandText property, the FOR XML AUTO clause is appended to the
original query. This clause indicates that the results are returned as a sequence of elements,
where the element name is the same as the table name, attribute names are the same as column
names, and attribute values are the same as column values. The connection is then established
by using the Open() method of the SqlConnection class.

The query is executed against the database by using the ExecuteXmlReader() method, which,
as you saw, returns an instance of XmlReader that points to the result set. In our example, the code
creates a physical disk file named temp.xml, iterates through the XmlReader by using its Read()
method, and writes the XML data to the file. Notice the use of the ReadOuterXml() method to
retrieve the XML data. Also, note that the XML data returned by ExecuteXmlReader() is in the
form of elements and doesn’t have a root node as such, so the code adds a <root> element to
enclose all the returned data.

8253ch07.fm Page 200 Friday, March 23, 2007 10:57 AM

C H A P T E R 7 ■ X M L I N A D O . N E T 201

After the writing of XML data is done, the StreamWriter, XmlReader, and SqlConnection are
closed by using the Close() method of the respective classes. The Process class (residing in the
System.Diagnostics namespace) opens the temp.xml file in a new browser window.

If you run the application and supply a SELECT query, you should see the output shown in
Figure 7-2.

Figure 7-2. XML data returned by the ExecuteXmlReader() method

Figure 7-2 shows the output for the following query:

SELECT firstname, lastname FROM employees

As you can see, the element name is the same as the table name, and columns appear as
attributes.

XML and Disconnected Data Access
In the preceding section, you learned the connected way of working by using ADO.NET and
XmlReader. However, for building scalable applications, connected data access poses problems
of its own. In such circumstances, disconnected data access is strongly preferred. In fact, dis-
connected data access is the core feature of ADO.NET.

Two classes—DataSet and SqlDataAdapter—together provide a way to work with database
data in disconnected mode. The DataSet object is a totally disconnected one and can even be
created manually. The SqlDataAdapter class fills the DataSet with data from a database and
later propagates the changes made to the DataSet back to the database. In the next sections,
you will learn the architecture of DataSet and DataAdapter, and how to work with them.

Understanding DataSet
DataSet is an object for storing results of your queries offline for further processing and can
be viewed as an in-memory representation of a database. DataSet consists of one or more
DataTable objects, which in turn consist of a collection of DataRow objects. Figure 7-3 gives you
a complete picture of the internals of DataSet.

8253ch07.fm Page 201 Friday, March 23, 2007 10:57 AM

202 C H A P T E R 7 ■ X M L I N A D O . N E T

Figure 7-3. DataSet architecture

As you can see, DataSet has two primary collections:

• The Tables collection is exposed by the Tables property and consists of a
DataTableCollection object that can have zero or more DataTable objects.
Each DataTable represents a set of data from the underlying data source.

• The Relations collection is exposed as the Relations property and consists of a
DataRelationCollection object. The DataRelationCollection object in turn contains
zero or more DataRelation objects. Each DataRelation object represents the parent-
child relationship between two DataTable objects.

8253ch07.fm Page 202 Friday, March 23, 2007 10:57 AM

C H A P T E R 7 ■ X M L I N A D O . N E T 203

As stated earlier, DataTable is a set of data and consists of rows and columns. The
DataTable class has the following three important collections:

• The Columns collection is exposed as the Columns property and is an instance of
the DataColumnCollection class. It contains zero or more DataColumn objects. Each
DataColumn object represents a column or field of the DataTable, just like a database
column. These columns define the structure of a DataTable.

• The Rows collection is exposed as the Rows property and is an instance of the
DataRowCollection class. It contains zero or more DataRow objects. Each DataRow is
similar to a database record and contains the actual data of the DataTable.

• Just like a database table, a DataTable can also have constraints, such as unique key
constraints and foreign key constraints. The Constraints collection is exposed as the
Constraints property and is an instance of the ConstraintCollection class. It can con-
tain zero or more instances of the UniqueConstraint or ForeignKeyConstraint classes.

In addition to the preceding classes, there is a special object called DataView that is based
on a DataTable. As the name suggests, DataView is used to present different views of data by
sorting and filtering data from the DataTable. Note that DataView does not have independent
existence and is always based on a DataTable.

Generally, you will populate your DataSet with the data from a data source such as SQL
Server. However, DataSet is fully disconnected. Most of the objects of DataSet explained earlier
can be created independently without any interaction with any data source. This means you
can programmatically create your DataSet without even connecting with any data source. For
example, you may wish to import a comma-separated list of string data into a database table.
In such cases, you can create DataSet and DataTable objects programmatically and populate
the data. Later you can save this data to a database table.

Understanding DataAdapter
DataAdapter is a bridge between the underlying data source and the DataSet. DataAdapter
comes into the picture when you want to perform any of the following:

• Populate the DataSet from database data

• Update the data source after modifying the DataSet by adding, deleting, or updating
DataRow objects

8253ch07.fm Page 203 Friday, March 23, 2007 10:57 AM

204 C H A P T E R 7 ■ X M L I N A D O . N E T

Before seeing an example of how to populate a DataSet and update the data source, you
need to understand the architecture of DataAdapter. Take a look at Figure 7-4.

Figure 7-4. DataAdapter architecture

As shown in Figure 7-4, DataAdapter uses four Command objects for executing SELECT,
INSERT, UPDATE, and DELETE queries. Each command is represented by the SelectCommand,
InsertCommand, UpdateCommand, and DeleteCommand properties of the DataAdapter, respectively.
Note that these Command objects are the same as you saw in connected data access. However,
each one is assigned a specific task of selecting, inserting, updating, and deleting records from
the data source. As with standard Command objects, the CommandText property of these command
objects can be any valid SQL query or stored procedure.

DataAdapter provides the Fill() method that uses the Command object specified by the
SelectCommand property and populates the DataSet. If you change the DataSet populated by the
preceding method and want to propagate the changes back to the underlying data source, you
need to set other properties (InsertCommand, UpdateCommand, and so forth) of valid Command
instances. DataAdapter provides another method called Update() that uses the Command objects
specified by the InsertCommand, UpdateCommand, and DeleteCommand properties and takes the
changes from a DataSet back to the underlying data source.

8253ch07.fm Page 204 Friday, March 23, 2007 10:57 AM

C H A P T E R 7 ■ X M L I N A D O . N E T 205

Working with DataSet and DataAdapter
To understand how DataSet and DataAdapter can be used to manipulate data, you will create
an application as shown in Figure 7-5.

Figure 7-5. Application to illustrate DataSet functionality

The application is a typical data-entry screen. The combo box shows a list of all employee
IDs. After you select an employee ID, the details of that employee (first name, last name, home
phone, and notes) are displayed in the text boxes. The Insert, Update, and Delete buttons
perform the respective operations. All the operations—INSERT, UPDATE, and DELETE—are per-
formed on the DataSet and not against the actual database table. After all the operations are
completed, you can click the Save button to make all the changes in the actual database. The
application uses the Employees table of the famous Northwind database.

Now let’s dissect the application step by step and see how DataSet and DataAdapter have
been put to use.

Filling a DataSet

If you see the source code of the preceding application, you will find a few variables declared at
the form level. The declaration is shown in Listing 7-3.

Listing 7-3. Form-Level Variables

string strConn = @"data source=.\sqlexpress;initial catalog=northwind; ➥

integrated security=true";
DataSet ds = new DataSet();
SqlDataAdapter da = new SqlDataAdapter();
SqlConnection cnn;

8253ch07.fm Page 205 Friday, March 23, 2007 10:57 AM

206 C H A P T E R 7 ■ X M L I N A D O . N E T

The strConn string variable stores the database connection string, which uses a local
installation of SQL Server Express as indicated by the data source attribute. Then variables of
type DataSet, SqlDataAdapter, and SqlConnection are declared. You must ensure that you have
imported the System.Data and System.Data.SqlClient namespaces before you declare these
variables.

The Form_Load event handler of the form contains the code shown in Listing 7-4.

Listing 7-4. Filling a DataSet

private void Form1_Load(object sender, EventArgs e)
{
 cnn = new SqlConnection(strConn);
 SqlCommand cmdEmployees = new SqlCommand();
 cmdEmployees.CommandText = "SELECT * FROM employees";
 cmdEmployees.Connection = cnn;
 da.SelectCommand = cmdEmployees;
 da.Fill(ds, "Employees");
 FillEmployees();
}

The code creates a SqlCommand object and sets its CommandText property to fetch all the
records from the Employees table. The Connection property is set to the SqlConnection object
created earlier. The SqlCommand object just created is assigned to the SelectCommand property of
the SqlDataAdapter instance. The SelectCommand property determines the records to be popu-
lated in the DataSet later.

Next, the Fill() method of the SqlDataAdapter is called. It takes two parameters: the
DataSet to be filled and the name of the resultant DataTable. Notice that the code neither opens
the connection nor closes it. This is so because the SqlDataAdapter class does that internally for
us. Finally, a helper method, FillEmployees(), is called and fills the combo box with the list of
employee IDs. The FillEmployees() method is discussed later.

■Note The SqlDataAdapter class closes the connection automatically for us only if opened by
SqlDataAdapter itself. If the connection is opened prior to calling the Fill() method, SqlDataAdapter
will not close it automatically.

Accessing Data from DataSet

When you select an employee ID from the combo box, the employee details should be dis-
played in the other text boxes. The relevant code is written in the SelectedIndexChanged event
of the combo box and is shown in Listing 7-5.

8253ch07.fm Page 206 Friday, March 23, 2007 10:57 AM

C H A P T E R 7 ■ X M L I N A D O . N E T 207

Listing 7-5. Accessing Data from a DataSet

private void comboBox1_SelectedIndexChanged(object sender, EventArgs e)
{
 string id = comboBox1.SelectedItem.ToString();
 DataRow[] rows = ds.Tables["Employees"].Select("EmployeeID=" + id);
 textBox1.Text = rows[0]["firstname"].ToString();
 textBox2.Text = rows[0]["lastname"].ToString();
 textBox3.Text = rows[0]["homephone"].ToString();
 textBox4.Text = rows[0]["notes"].ToString();
}

The code first stores the selected employee ID in a string variable. To find the corresponding
employee record from the DataSet, we use the Select() method of DataTable, which accepts the
selection criteria and returns an array of DataRow objects matching those criteria. In our example,
we need to select the employee whose EmployeeID column value matches the one selected in the
combo box. EmployeeID is the primary column for the Employees table and hence we know that it
will return only one DataRow. The DataRow can be accessed by using typical array notation. Notice
how the column names are used to access the individual column values. Instead of column names,
you could have used column indexes. The various column values are displayed in the respective
text boxes.

Adding New Rows

After you enter details of a new employee to be added and click the Insert button, a new row is
added to the underlying DataTable. The code that makes it possible is shown in Listing 7-6.

Listing 7-6. Adding a New DataRow

private void button2_Click(object sender, EventArgs e)
{
 DataRow row = ds.Tables["Employees"].NewRow();
 row["employeeid"] = comboBox1.Text;
 row["firstname"] = textBox1.Text;
 row["lastname"] = textBox2.Text;
 row["homephone"] = textBox3.Text;
 row["notes"] = textBox4.Text;
 ds.Tables["Employees"].Rows.Add(row);
 FillEmployees();
}

The code creates a new DataRow by calling the NewRow() method on the Employees
DataTable. The NewRow() method creates a new stand-alone row in memory, matching the
schema of the underlying DataTable. Then various column values of the DataRow are assigned.
The newly created row is not yet part of the DataTable, so to add it to the DataTable, the Add()
method of the Rows collection is called. Finally, the combo box is repopulated so as to display
the newly added employee ID.

8253ch07.fm Page 207 Friday, March 23, 2007 10:57 AM

208 C H A P T E R 7 ■ X M L I N A D O . N E T

Updating an Existing Row

To update an existing row, you must find it first and then update the column values. To find
a specific row, you can use the same Select() method that we used earlier. This is shown in
Listing 7-7.

Listing 7-7. Updating a DataRow

private void button1_Click(object sender, EventArgs e)
{
 if (comboBox1.SelectedItem == null)
 {
 MessageBox.Show("Please select Employee ID!");
 return;
 } string id = comboBox1.SelectedItem.ToString();
 DataRow[] rows = ds.Tables["Employees"].Select("EmployeeID=" + id);
 rows[0].BeginEdit();
 rows[0]["firstname"] = textBox1.Text;
 rows[0]["lastname"] = textBox2.Text;
 rows[0]["homephone"] = textBox3.Text;
 rows[0]["notes"] = textBox4.Text;
 rows[0].EndEdit();
}

The code selects the employee record that is to be updated by using the Select() method
of the DataTable. The BeginEdit() method of the DataRow class takes the row in edit mode. The
column values are then assigned. Finally, the EndEdit() method of the DataRow class is called.
This saves the changes to the underlying DataTable.

Deleting a Row

To delete a row, you must locate it first and then call the Delete() method on it. This is illus-
trated in Listing 7-8.

Listing 7-8. Deleting a DataRow

private void button3_Click(object sender, EventArgs e)
{
 if (comboBox1.SelectedItem == null)
 {
 MessageBox.Show("Please select Employee ID!");
 return;
 }
 string id = comboBox1.SelectedItem.ToString();
 DataRow[] rows = ds.Tables["Employees"].Select("EmployeeID=" + id);
 rows[0].Delete();
 FillEmployees();
}

8253ch07.fm Page 208 Friday, March 23, 2007 10:57 AM

C H A P T E R 7 ■ X M L I N A D O . N E T 209

The code retrieves the row to be deleted by using the Select() method of the DataTable
class. The Delete() method of the DataRow class marks the underlying row for deletion. Finally,
the combo box is repopulated so that the deleted employee ID doesn’t show up.

Using DataRow States

In the preceding sections, you inserted, updated, and deleted DataRow objects from a DataTable.
Whenever you perform any of these operations (insert, update, or delete) on a DataRow, its
RowState property is affected automatically. The RowState property is an enumeration of type
DataRowState and indicates the state of the DataRow. Table 7-1 shows various possible values of
the DataRowState enumeration.

Table 7-1. DataRowState Enumeration

The RowState property is used by the helper function FillEmployees() as shown in
Listing 7-9.

Listing 7-9. Using the RowState Property

private void FillEmployees()
{
 comboBox1.Items.Clear();
 foreach (DataRow row in ds.Tables["Employees"].Rows)
 {
 if (row.RowState != DataRowState.Deleted)
 {
 comboBox1.Items.Add(row["EmployeeID"].ToString());
 }
 }
}

The FillEmployees() method simply iterates through each DataRow from the Employees
DataTable and adds the EmployeeID to the combo box. Notice the code marked in bold. Before
adding any value in the combo box, the code checks whether the RowState of the row is
Deleted. Only those rows whose RowState is not Deleted are added to the combo box.

RowState Setting Description

Unchanged The row is unchanged since it was placed in the DataSet.

Added The row is newly added to the DataTable.

Modified The row is changed.

Deleted The row is deleted from the DataTable.

Detached The row is created but not yet attached to the DataTable.

8253ch07.fm Page 209 Friday, March 23, 2007 10:57 AM

210 C H A P T E R 7 ■ X M L I N A D O . N E T

Saving the Changes to the Database

Up until now, all the changes that we made are saved in the DataSet only; they are yet to be
committed back to the database. You can test this by making some changes to the records and
then closing the application without clicking the Save button. You will observe that the
changes are lost. The Click event handler of the Save button contains code that propagates
changes from the DataSet back to the database. Listing 7-10 shows this code.

Listing 7-10. Saving the DataSet Changes to the Database

private void button4_Click(object sender, EventArgs e)
{
 SqlCommand cmdInsert = new SqlCommand();
 SqlCommand cmdUpdate = new SqlCommand();
 SqlCommand cmdDelete = new SqlCommand();
 cmdInsert.Connection = cnn;
 cmdUpdate.Connection = cnn;
 cmdDelete.Connection = cnn;
 cmdInsert.CommandText =
 "INSERT INTO employees(firstname,lastname,homephone,notes)
 VALUES(@fname,@lname,@phone,@notes)";
 cmdUpdate.CommandText =
 "UPDATE employees SET firstname=@fname,lastname=@lname,homephone=@phone
 WHERE employeeid=@empid";
 cmdDelete.CommandText = "DELETE FROM employees WHERE employeeid=@empid";

 SqlParameter[] pInsert = new SqlParameter[4];
 pInsert[0] = new SqlParameter("@fname", SqlDbType.VarChar);
 pInsert[0].SourceColumn = "firstname";
 pInsert[1] = new SqlParameter("@lname", SqlDbType.VarChar);
 pInsert[1].SourceColumn = "lastname";
 pInsert[2] = new SqlParameter("@phone", SqlDbType.VarChar);
 pInsert[2].SourceColumn = "homephone";
 pInsert[3] = new SqlParameter("@notes", SqlDbType.VarChar);
 pInsert[3].SourceColumn = "notes";
 foreach (SqlParameter p in pInsert)
 {
 cmdInsert.Parameters.Add(p);
 }

8253ch07.fm Page 210 Friday, March 23, 2007 10:57 AM

C H A P T E R 7 ■ X M L I N A D O . N E T 211

 SqlParameter[] pUpdate = new SqlParameter[5];
 pUpdate[0] = new SqlParameter("@fname", SqlDbType.VarChar);
 pUpdate[0].SourceColumn = "firstname";
 pUpdate[1] = new SqlParameter("@lname", SqlDbType.VarChar);
 pUpdate[1].SourceColumn = "lastname";
 pUpdate[2] = new SqlParameter("@phone", SqlDbType.VarChar);
 pUpdate[2].SourceColumn = "homephone";
 pUpdate[3] = new SqlParameter("@notes", SqlDbType.VarChar);
 pUpdate[3].SourceColumn = "notes";
 pUpdate[4] = new SqlParameter("@empid", SqlDbType.VarChar);
 pUpdate[4].SourceColumn = "employeeid";
 foreach (SqlParameter p in pUpdate)
 {
 cmdUpdate.Parameters.Add(p);
 }

 SqlParameter[] pDelete = new SqlParameter[1];
 pDelete[0] = new SqlParameter("@empid", SqlDbType.VarChar);
 pDelete[0].SourceColumn = "employeeid";
 foreach (SqlParameter p in pDelete)
 {
 cmdDelete.Parameters.Add(p);
 }

 da.InsertCommand = cmdInsert;
 da.UpdateCommand = cmdUpdate;
 da.DeleteCommand = cmdDelete;
 da.Update(ds,"Employees");
 ds.AcceptChanges();
}

The code creates three SqlCommand objects for INSERT, UPDATE, and DELETE operations, respec-
tively. The Connection property of these SqlCommand objects is set to the same SqlConnection
object that we declared at the top initially. The CommandText property of each SqlCommand is set to
the corresponding SQL statement. Note the use of the @ character to represent parameters. For
each of these parameter placeholders, a SqlParameter object needs to be created. This is done by
declaring three arrays of the SqlParameter class: pInsert, pUpdate, and pDelete.

8253ch07.fm Page 211 Friday, March 23, 2007 10:57 AM

212 C H A P T E R 7 ■ X M L I N A D O . N E T

Then each array element is instantiated as a SqlParameter object by passing the parameter
name and parameter data type in the constructor of the SqlParameter class. The SourceColumn
property of SqlParameter specifies the name of the DataColumn that will be supplying the value for
the parameter. All the parameters from the corresponding arrays are added to the Parameters
collection of the respective SqlCommand object. These three SqlCommand objects are assigned to the
InsertCommand, UpdateCommand, and DeleteCommand properties of the SqlDataAdapter instance that
we declared at the top.

The Update() method of the SqlDataAdapter class is then called and takes all the changes—
inserts, updates, and deletes—from the DataSet back to the database. The Update() method
takes two parameters: the DataSet to be updated, and the name of the DataTable from the
DataSet that is to be updated. After the changes are saved to the underlying database, the
RowState properties of all the DataRow objects must become Unchanged. This is done by calling
the AcceptChanges() method of the DataSet class.

That’s it! You can now run the application and test it for the expected functionality.

Saving DataSet Contents As XML
One of the powerful features of the DataSet class is that you can serialize it in XML format,
which means that relational data can be saved in XML format. This feature comes in handy
while working in offline mode and transporting data to heterogeneous systems.

The WriteXml() method of the DataSet class writes the contents of the DataSet to a stream
or physical file in XML format. Optionally, you can also add schema information. To illustrate
the use of WriteXml(), you need to create an application as shown in Figure 7-6.

Figure 7-6. Application that writes DataSet contents as an XML file

The application consists of a text box for specifying the path of the output XML file. The first
two radio buttons specify whether schema information is to be included. The last radio button
specifies whether you wish to write the original as well as current values to the file. If you select
this radio button, the DiffGram of the original and current values is written in the file.

8253ch07.fm Page 212 Friday, March 23, 2007 10:57 AM

C H A P T E R 7 ■ X M L I N A D O . N E T 213

■Note DiffGram is a special XML format that stores original as well as current row values. SQL Server 2000
introduced capabilities to update the database via UpdateGrams. DiffGram is a subset of UpdateGram and can
be used to update a SQL Server database over the Web.

If selected, the check box opens the saved XML file in a browser. The Save button actually
writes the DataSet to the specified file. The Click event handler of the Save button contains the
code shown in Listing 7-11.

Listing 7-11. Using the WriteXml() Method

private void button1_Click(object sender, EventArgs e)
{
 DataSet ds = new DataSet();
 SqlDataAdapter da =
 new SqlDataAdapter("SELECT employeeid,firstname,lastname,homephone,notes
 FROM employees",
 @"data source=.\sqlexpress;initial catalog=northwind;
 integrated security=true");
 da.Fill(ds, "employees");
 if (radioButton1.Checked)
 {
 ds.WriteXml(textBox1.Text, XmlWriteMode.IgnoreSchema);
 }
 if (radioButton2.Checked)
 {
 ds.WriteXml(textBox1.Text, XmlWriteMode.WriteSchema);
 }
 if (radioButton3.Checked)
 {
 foreach (DataRow row in ds.Tables[0].Rows)
 {
 row.SetModified();
 }
 ds.WriteXml(textBox1.Text, XmlWriteMode.DiffGram);
 }
 if (checkBox1.Checked)
 {
 Process.Start(textBox1.Text);
 }
}

8253ch07.fm Page 213 Friday, March 23, 2007 10:57 AM

214 C H A P T E R 7 ■ X M L I N A D O . N E T

The code creates a new DataSet and a SqlDataAdapter. One of the overloads of the
SqlDataAdapter constructors accepts the SELECT query and database connection string, and
it is this overload that we use. The DataSet is then filled by using the Fill() method of the
DataAdapter. The name of the DataTable is specified as employees.

Then a series of if conditions check the status of the radio buttons. In each of the if con-
ditions, the WriteXml() method of the DataSet class is called, which writes the contents of the
DataSet to the specified stream or disk file. Notice that although each of the if conditions calls
WriteXml(), the second parameter—XmlWriteMode—is different in each case.

The XmlWriteMode enumeration governs two things. First, it specifies whether schema
information is to be written along with the XML contents. Second, it decides whether the out-
put XML data will contain just the current values or both the original and current values. As you
saw in the preceding example, the latter format is called DiffGram. The three possible values of
the XmlWriteMode enumeration are shown in Table 7-2.

Table 7-2. XmlWriteMode Values

Notice the if condition for radioButton3. Because we have not made any changes to the
DataSet as such, the code deliberately marks each row as modified. This is done by using
the SetModified() method of the DataRow class. This way, we will be able to see how the
DiffGram format stores old and new values. Finally, the saved XML file is opened in a browser
by using the Start() method of the Process class. Figure 7-7 shows a sample run of the appli-
cation without saving any schema information. Similarly, Figures 7-8 and 7-9 show the output
XML file with schema information and DiffGram, respectively.

Notice how the schema information is emitted in Figure 7-8. Also, examine Figure 7-9
carefully. This XML output is in DiffGram format. See how the <diffgr:before> section stores
the original values of the DataRows, whereas the current values are displayed at the top.

Value Description

IgnoreSchema Writes the contents of the DataSet as XML data. No XSD schema information
is written.

WriteSchema Writes the contents of the DataSet as XML data. Also, writes XSD schema
information along with the data.

DiffGram Writes the contents of the DataSet as DiffGram XML markup. The DiffGram
stores the current as well as original column values.

8253ch07.fm Page 214 Friday, March 23, 2007 10:57 AM

C H A P T E R 7 ■ X M L I N A D O . N E T 215

Figure 7-7. Writing DataSet as XML without schema information

Figure 7-8. Writing DataSet as XML with schema information

8253ch07.fm Page 215 Friday, March 23, 2007 10:57 AM

216 C H A P T E R 7 ■ X M L I N A D O . N E T

Figure 7-9. Writing DataSet as XML in DiffGram format

Saving Only the Schema

The WriteXml() method writes data and optionally XSD schema information. What if you need
to extract only the schema information and not the data itself? The WriteXmlSchema() method
does that job by writing only the schema of the DataSet and not the data. To illustrate the use
of WriteXmlSchema(), you can modify the preceding application to include an additional radio
button. The new interface of the application is shown in Figure 7-10.

Figure 7-10. Application for illustrating the WriteXmlSchema() method

8253ch07.fm Page 216 Friday, March 23, 2007 10:57 AM

C H A P T E R 7 ■ X M L I N A D O . N E T 217

If you select the newly added radio button titled Save Schema, only the schema of the
DataSet will be saved. Listing 7-12 shows the modified version of the code.

Listing 7-12. Using the WriteXmlSchema() Method

private void button1_Click(object sender, EventArgs e)
{
 DataSet ds = new DataSet();
 SqlDataAdapter da =
 new SqlDataAdapter("SELECT employeeid,firstname,lastname,homephone,notes
 FROM employees",
 @"data source=.\sqlexpress;initial catalog=northwind;
 integrated security=true");
 da.Fill(ds, "employees");
 if (radioButton1.Checked)
 {
 ds.WriteXml(textBox1.Text, XmlWriteMode.IgnoreSchema);
 }
 if (radioButton2.Checked)
 {
 ds.WriteXml(textBox1.Text, XmlWriteMode.WriteSchema);
 }
 if (radioButton3.Checked)
 {
 foreach (DataRow row in ds.Tables[0].Rows)
 {
 row.SetModified();
 }
 ds.WriteXml(textBox1.Text, XmlWriteMode.DiffGram);
 }
 if (radioButton4.Checked)
 {
 ds.WriteXmlSchema(textBox1.Text);
 }
 if (checkBox1.Checked)
 {
 Process.Start(textBox1.Text);
 }
}

Notice the code marked in bold. The code calls the WriteXmlSchema() method by passing
the file in which the schema information will be stored. You will observe that the schema
obtained by this method is the same as that obtained by the WriteXml() method with
XmlWriteMode.WriteSchema. However, no data is written to the file.

8253ch07.fm Page 217 Friday, March 23, 2007 10:57 AM

218 C H A P T E R 7 ■ X M L I N A D O . N E T

Extracting DataSet Contents As an XML String

The WriteXml()and WriteXmlSchema() methods write XML data and schema to a stream or file,
respectively. Sometimes you may wish to get the XML data and schema as a string rather than
writing to a file. This is accomplished with two methods:

• The GetXml() method returns just the contents of the DataSet in XML format as a string.
No schema information is returned.

• Similarly, the GetXmlSchema()method returns the XSD schema information of the
DataSet as a string. Because these methods return strings, they incur more overhead
than corresponding WriteXxx() methods.

Reading XML Data into DataSet
In the preceding sections, you learned to serialize DataSet contents as XML data. There might be
cases when you would like to do the opposite—that is, you may need to read XML data into a
DataSet and process it further. The ReadXml() method of the DataSet class is the counterpart of the
WriteXml() method that we discussed already and allows you to read XML data into a DataSet.

■Note In the following examples, you will frequently need XML files containing a schema and data. It is
recommended that you run the preceding example (Figure 7-10) and save the resultant XML files on your disk
for later use.

To illustrate the use of ReadXml(), you need to develop an application as shown in
Figure 7-11.

Figure 7-11. Application that reads XML data into a DataSet

8253ch07.fm Page 218 Friday, March 23, 2007 10:57 AM

C H A P T E R 7 ■ X M L I N A D O . N E T 219

The application consists of a text box for accepting the source XML file path. There is an
array of radio buttons that govern how the XML document will be read by the DataSet. The
Read button triggers the read operation. Listing 7-13 shows the complete code that reads the
XML data into a DataSet.

Listing 7-13. Using the ReadXml() Method

private void button1_Click(object sender, EventArgs e)
{
 DataSet ds = new DataSet();
 XmlReadMode mode=XmlReadMode.Auto;
 if (radioButton1.Checked)
 {
 mode = XmlReadMode.Auto;
 }
 if (radioButton2.Checked)
 {
 mode = XmlReadMode.DiffGram;
 }
 if (radioButton3.Checked)
 {
 mode = XmlReadMode.Fragment;
 }
 if (radioButton4.Checked)
 {
 mode = XmlReadMode.IgnoreSchema;
 }
 if (radioButton5.Checked)
 {
 mode = XmlReadMode.InferSchema;
 }
 if (radioButton6.Checked)
 {
 mode = XmlReadMode.ReadSchema;
 }
 ds.ReadXml(textBox1.Text, mode);
 MessageBox.Show("XML file read successfully!");
}

The code creates a new DataSet object. It then declares a variable of enumeration type
XmlReadMode. This enumeration plays an important role in deciding how the XML data will be
loaded into the DataSet. You can see all the possible values of the XmlReadMode enumeration in
Table 7-3. Then a series of if conditions check the status of the various radio buttons and set the
value of the XmlReadMode variable. Finally, the ReadXml() method of the DataSet class is called.

8253ch07.fm Page 219 Friday, March 23, 2007 10:57 AM

220 C H A P T E R 7 ■ X M L I N A D O . N E T

The ReadXml() method has several overloads. The one that we use accepts the name of the
XML file to read and the XmlReadMode value. After ReadXml() has finished, the DataSet has pop-
ulated DataTable objects depending on the source XML document. For example, if you use the
EmployeesTable.xml file that we created previously, your DataSet will contain one DataTable
called employees.

Table 7-3. XmlReadMode Values

The XmlReadMode options need more explanation because there are a number of possibili-
ties during the read operation. These options are discussed next.

Using the Automatic Read Operation

The Auto option of the XmlReadMode enumeration uses the most appropriate mechanism while
loading the XML data. If the data is a DiffGram, it sets XmlReadMode to DiffGram. If the DataSet
already has a schema or the XML document contains an inline schema, it sets XmlReadMode to
ReadSchema. Finally, if the DataSet does not already have a schema and the XML document does
not contain an inline schema, it sets XmlReadMode to InferSchema.

Reading DiffGrams

The DiffGram option of the XmlReadMode enumeration is exclusively used with DiffGrams. Gen-
erally, these DiffGrams will be generated by using the WriteXml() method of DataSet. The
schema of the DataSet and the DiffGram must match in order to successfully read the data.
Because the DiffGram stores the original and current values of DataRows, the changes are
applied after the DiffGram is loaded in the DataSet.

Reading XML Fragments

In the earlier sections of this chapter, you learned that SQL Server provides an extension to the
normal SELECT statement in the form of the FOR XML clause. You also saw how the FOR XML clause
returns XML data in the form of fragments. If you wish to load these XML fragments into a
DataSet, you must set XmlReadMode to Fragment.

Value Description

Auto Is the default value and uses the most appropriate read mode from the
remaining values

DiffGram Loads a DiffGram and applies the changes

Fragment Loads XML fragments such as the ones created when using the FOR XML clause

IgnoreSchema Ignores the inline schema present in the source XML document

InferSchema Infers the schema from the data present and loads the data into the DataSet

ReadSchema Reads the inline schema present in the XML document

8253ch07.fm Page 220 Friday, March 23, 2007 10:57 AM

C H A P T E R 7 ■ X M L I N A D O . N E T 221

Ignoring Schema Information

The XML document that you wish to load into a DataSet might contain schema information
embedded in it. If you wish to ignore this schema, you must use the IgnoreSchema option of the
XmlReadMode enumeration. If the DataSet already has a schema and the XML data being loaded
doesn’t match this schema, the data is discarded.

Inferring Schema Information

The InferSchema option of XmlReadMode ignores schema information from the source XML
data if present and loads the data into a DataSet. If the DataSet already has its schema, that is
extended to accommodate the new data. However, if there is any mismatch between the
existing schema and the newly inferred schema, an exception is raised.

Reading Schema Information

The ReadSchema option of XmlReadMode reads the inline schema from the source XML document and
loads the schema as well as the data into the DataSet. If the DataSet already contains a schema, it is
extended as per the new schema. However, any mismatch between the existing schema and the
new schema causes an exception to be thrown.

Generating Menus Dynamically Based On an XML File
The ReadXml() method performs many operations behind the scenes to make our lives easier.
To get a taste of what it does, you will develop a Windows application that dynamically adds
menu items. The application will look like Figure 7-12.

Figure 7-12. Form showing dynamically loaded menu items

8253ch07.fm Page 221 Friday, March 23, 2007 10:57 AM

222 C H A P T E R 7 ■ X M L I N A D O . N E T

The form consists of a single MenuStrip control. The menu items are stored in an XML file
as shown in Listing 7-14. Save this file as menus.xml in your application’s Bin\Debug folder.

Listing 7-14. XML File Representing the Menu Structure

<?xml version="1.0" encoding="utf-8" ?>
<menus>
 <topmenu text="File">
 <submenu>New</submenu>
 <submenu>Open</submenu>
 <submenu>Close</submenu>
 </topmenu>
 <topmenu text="Edit">
 <submenu>Cut</submenu>
 <submenu>Copy</submenu>
 <submenu>Paste</submenu>
 </topmenu>
 <topmenu text="Help">
 <submenu>Help</submenu>
 <submenu>Search</submenu>
 <submenu>About</submenu>
 </topmenu>
</menus>

The root element of the XML file is <menus>. Inside there can be zero or more <topmenu>
items, which represent the top-level menu items. The text attribute of <topmenu> indicates the
text of that menu. The <topmenu> element can contain zero or more <submenu> elements, which
indicate submenus of the top-level menus. The text of the submenus is specified in the
<submenu> element’s value.

Let’s see how this file can be loaded in a DataSet and how the data can be accessed.
Listing 7-15 shows the Load event handler of the form with the required code.

8253ch07.fm Page 222 Friday, March 23, 2007 10:57 AM

C H A P T E R 7 ■ X M L I N A D O . N E T 223

Listing 7-15. Adding Menu Items Dynamically

private void Form1_Load(object sender, EventArgs e)
{
 DataSet ds = new DataSet();
 ds.ReadXml(Application.StartupPath + @"\menus.xml");

 foreach (DataRow topmenu in ds.Tables[0].Rows)
 {
 ToolStripMenuItem item = new ToolStripMenuItem(topmenu["text"].ToString());
 menuStrip1.Items.Add(item);
 DataRow[] submenus= topmenu.GetChildRows(ds.Relations[0]);
 foreach (DataRow submenu in submenus)
 {
 item.DropDownItems.Add(submenu[0].ToString());
 }
 }
}

The code creates a new DataSet and reads the menus.xml file that we created earlier. While
reading this file, the DataSet does some interesting things:

1. It observes the nesting of the XML data in the file and creates two DataTable objects.
The first DataTable stores all the top menus, and the second DataTable stores all the
submenus.

2. It creates DataRow objects in the top-menu DataTable and adds a DataColumn to them.
The value contained in these columns is the value of the text attribute of the <topmenu>
element.

3. It does a similar thing for the submenus DataTable, but loads the element values of the
<submenu> items in the column.

4. It sets a DataRelation between the two tables by automatically adding an integer col-
umn to both of these DataTable objects.

8253ch07.fm Page 223 Friday, March 23, 2007 10:57 AM

224 C H A P T E R 7 ■ X M L I N A D O . N E T

The code then iterates through all the rows from the first DataTable (the DataTable storing the
top menus) and adds ToolStripMenuItem objects to the MenuStrip. The GetChildRows() method is
called on each DataRow of the top-menu DataTable. This method accepts a DataRelation object and
returns all the DataRow objects from the child table matching that relationship. In our case, the sub-
menu DataTable is the child DataTable. The return value of GetChildRows() is an array of DataRow
objects. The second foreach loop iterates through all the elements of this array and adds sub-items
to the DropDownItems collection of the ToolStripMenuItem class.

If you run the application, you should see something similar to Figure 7-12.

Reading Only the Schema Information
The ReadXml()method allows you to read data and optionally schema information. However, at
times you may need to extract just the schema information from the XML file and not the data.
The DataSet class provides two methods that allow you to extract schema information from the
source XML. They are ReadXmlSchema() and InferXmlSchema().

ReadXmlSchema() accepts the XML with an inline schema and reads just the schema part of
it. The schema is then loaded into the DataSet. What if your XML document doesn’t contain
an inline schema? That is where the InferXmlSchema() method comes into the picture. The
InferXmlSchema() method observes the XML markup supplied and then creates a matching
schema automatically. The schema is then loaded into the DataSet.

To illustrate the use of both of these methods, you need to develop an application as
shown in Figure 7-13.

Figure 7-13. Application that reads schema

8253ch07.fm Page 224 Friday, March 23, 2007 10:57 AM

C H A P T E R 7 ■ X M L I N A D O . N E T 225

The application consists of a text box for specifying the source XML file. The two radio buttons
enable you to decide whether ReadXmlSchema() or InferXmlSchema() is to be called. The code for the
Read button reads the schema into a DataSet and displays it in a message box. The code that reads
the schema is shown in Listing 7-16.

Listing 7-16. Using the ReadXmlSchema() and InferXmlSchema() Methods

private void button1_Click(object sender, EventArgs e)
{
 DataSet ds = new DataSet();
 if (radioButton1.Checked)
 {
 ds.ReadXmlSchema(textBox1.Text);
 }
 if (radioButton2.Checked)
 {
 ds.InferXmlSchema(textBox1.Text,null);
 }
 MessageBox.Show(ds.GetXmlSchema());
}

The code creates a new DataSet object. Depending on the radio button selected, the code
calls either ReadXmlSchema() or InferXmlSchema(). ReadXmlSchema() accepts the source XML
document as a parameter and loads the inline schema from the document into the DataSet. No
data is loaded.

The InferXmlSchema() method accepts the source XML document and an array of name-
spaces (null in our example) and infers the schema from the data. Again, no data is loaded. The
loaded schema is shown in a message box by calling the GetXmlSchema() method of the DataSet.
Figure 7-14 shows the schema loaded by using ReadXmlSchema(), whereas Figure 7-15 shows the
schema loaded by using InferXmlSchema().

8253ch07.fm Page 225 Friday, March 23, 2007 10:57 AM

226 C H A P T E R 7 ■ X M L I N A D O . N E T

Figure 7-14. Schema extracted by using the ReadXmlSchema() method

Figure 7-15. Schema extracted by using the InferXmlSchema() method

As you can see, the schema loaded by both methods is identical in our example.

Creating a Typed DataSet
While discussing DataSet and DataAdapter, we developed an application that allowed us to
perform inserts, updates, and deletes on a DataSet and then save those changes back to the
database (see Figure 7-6). In that application, we frequently used collections such as Tables
and Rows. We also needed to remember column names while accessing their values from a
DataRow. Don’t you think it is a bit tedious to access data in this fashion? To make things clearer,
have a look at Listings 7-17 and 7-18.

8253ch07.fm Page 226 Friday, March 23, 2007 10:57 AM

C H A P T E R 7 ■ X M L I N A D O . N E T 227

Listing 7-17. Inserting a DataRow by Using an Untyped DataSet

private void button2_Click(object sender, EventArgs e)
{
 DataRow row = ds.Tables["Employees"].NewRow();
 row["employeeid"] = comboBox1.Text;
 row["firstname"] = textBox1.Text;
 row["lastname"] = textBox2.Text;
 row["homephone"] = textBox3.Text;
 row["notes"] = textBox4.Text;
 ds.Tables["Employees"].Rows.Add(row);
 FillEmployees();
}

Listing 7-18. Inserting a DataRow by Using a Typed DataSet

private void button2_Click(object sender, EventArgs e)
{
 EmployeesDataSet.EmployeesRow row = ds.Employees.NewEmployeesRow();
 row.EmployeeID = int.Parse(comboBox1.Text);
 row.FirstName = textBox1.Text;
 row.LastName = textBox2.Text;
 row.HomePhone = textBox3.Text;
 row.Notes = textBox4.Text;
 ds.Employees.AddEmployeesRow(row);
 FillEmployees();
}

Both of these listings represent code that inserts a new DataRow into a DataTable. Compare
the listings carefully. In Listing 7-17, we access the Employees DataTable and its columns by
specifying them in double quotes. That means you need to remember these names when you
are coding. However, Listing 7-18 looks different. You will notice that it uses the Employees
property to create a new row. Further, it uses column names such as FirstName and LastName as
if they are properties. Obviously, the second version is far easier to code and is much neater,
which demonstrates what typed DataSets are about.

A typed DataSet is nothing but a class that internally derives from DataSet as a base class.
It extends this base class further and adds certain properties and methods that make the devel-
oper’s life easy. When using a typed DataSet, you can access DataTable and DataColumn objects
by using strongly typed names instead of the collection syntax. A typed DataSet has an XSD
schema attached to it that defines the DataTable and DataColumn objects of the DataSet.

Using Visual Studio to Create a Typed DataSet
Now that you know what a typed DataSet is, let’s create one for our Employees table. To do so,
you first need to add a typed DataSet to your project. Figure 7-16 shows the Add New Item dia-
log box of Visual Studio, through which you can add a new typed DataSet.

8253ch07.fm Page 227 Friday, March 23, 2007 10:57 AM

228 C H A P T E R 7 ■ X M L I N A D O . N E T

Figure 7-16. Adding a new typed DataSet to your project

After you are on the DataSet designer, you can see the DataSet toolbox, as shown in
Figure 7-17.

Figure 7-17. The DataSet toolbox

As you can see, the toolbox has items such as DataTable and Relation that you can drag and
drop on the DataSet designer. For our example, you need to drag and drop a DataTable on the
DataSet designer and set its Name property to Employees. To add columns to the DataTable, you
can right-click on it and add the required number of columns. The name and data type of each
column can then be set via the properties window. After designing the Employees DataTable, it
should look like Figure 7-18.

8253ch07.fm Page 228 Friday, March 23, 2007 10:57 AM

C H A P T E R 7 ■ X M L I N A D O . N E T 229

Figure 7-18. The Employees DataTable in the DataSet designer

As you are designing the DataSet in the designer, Visual Studio creates a class that inherits
from DataSet as the base class and adds certain properties and methods to it. You can see it in
the Solution Explorer.

Next, you need to design the main form of your application as shown in Figure 7-19.

Figure 7-19. Application that consumes a typed DataSet

The application behaves exactly the same as the one shown in Figure 7-6 earlier, but this
time it uses our typed DataSet. Listing 7-19 shows the variable declarations at the form level.

8253ch07.fm Page 229 Friday, March 23, 2007 10:57 AM

230 C H A P T E R 7 ■ X M L I N A D O . N E T

Listing 7-19. Declaring a Typed DataSet Variable

private string strConn = @"data source=.\sqlexpress;
initial catalog=northwind;integrated security=true";
EmployeesDataSet ds = new EmployeesDataSet();
SqlDataAdapter da = new SqlDataAdapter();
SqlConnection cnn;

Notice the line marked in bold. The code declares a variable of our typed DataSet, which
bears the same name as the DataSet XSD schema file. This typed DataSet is filled in the Load
event of the form. The code in the Load event remains the same as before but for the sake of
completeness is given in Listing 7-20.

Listing 7-20. Filling a Typed DataSet

private void Form1_Load(object sender, EventArgs e)
{
 cnn = new SqlConnection(strConn);
 SqlCommand cmdEmployees = new SqlCommand();
 cmdEmployees.CommandText = "SELECT * FROM employees";
 cmdEmployees.Connection = cnn;
 da.SelectCommand = cmdEmployees;
 da.Fill(ds, "Employees");
 FillEmployees();
}

The code uses a SqlDataAdapter and calls its Fill() method to populate the typed DataSet.
One thing to note here is that the name of the DataTable specified in the Fill() method must
match the name of the DataTable that you created in the typed DataSet. Listing 7-21 shows the
modified version of the code responsible for inserting, updating, and deleting DataRow objects.

Listing 7-21. Inserting, Updating, and Deleting Data from a Typed DataSet

private void button2_Click(object sender, EventArgs e)
{
 EmployeesDataSet.EmployeesRow row = ds.Employees.NewEmployeesRow();
 row.EmployeeID = int.Parse(comboBox1.Text);
 row.FirstName = textBox1.Text;
 row.LastName = textBox2.Text;
 row.HomePhone = textBox3.Text;
 row.Notes = textBox4.Text;
 ds.Employees.AddEmployeesRow(row);
 FillEmployees();
}

8253ch07.fm Page 230 Friday, March 23, 2007 10:57 AM

C H A P T E R 7 ■ X M L I N A D O . N E T 231

private void button1_Click(object sender, EventArgs e)
{
 string id = comboBox1.SelectedItem.ToString();
 EmployeesDataSet.EmployeesRow[] rows =
 (EmployeesDataSet.EmployeesRow[])ds.Employees.Select("EmployeeID=" + id);
 rows[0].BeginEdit();
 rows[0].FirstName = textBox1.Text;
 rows[0].LastName = textBox2.Text;
 rows[0].HomePhone = textBox3.Text;
 rows[0].Notes = textBox4.Text;
 rows[0].EndEdit();
}

private void button3_Click(object sender, EventArgs e)
{
 string id = comboBox1.SelectedItem.ToString();
 EmployeesDataSet.EmployeesRow[] rows =
 (EmployeesDataSet.EmployeesRow[])ds.Employees.Select("EmployeeID=" + id);
 rows[0].Delete();
 FillEmployees();
}

Notice the changes made to the original code. In the Click event handler of the Insert button,
the new DataRow is created by calling NewEmployeesRow(). The typed DataSet automatically show the
available DataTable objects as properties, and each DataTable provides the NewEmployeesRow()
method to create a new row. The newly created row is of type EmployeesRow, which is a nested class
generated by Visual Studio in the EmployeesDataSet class. EmployeesRow exposes each column of the
row as a property, and these properties can then be assigned new values. The newly created row is
then added to the Employees DataTable by using its AddEmployeesRow() method. There are similar
modifications in the Click event handlers of the Update and Delete buttons.

Using the xsd.exe Tool to Create a Typed DataSet
Though Visual Studio provides a visual way to create typed DataSets, the .NET Framework also
provides a command-line tool called xsd.exe that can generate typed DataSets for you. The
tool accepts an XSD schema and outputs the typed DataSet class. Though we will not discuss
the xsd.exe tool at great length, here is a sample use of it:

xsd.exe /d /l:CS Employees.xsd /n:MyTypedDataSets

The /d switch indicates that the tool should generate a typed DataSet. The /l switch specifies
the language used to create the output typed DataSet class. In our example, we specify the lan-
guage as C# (CS). Finally the /n switch specifies the namespace in which the typed DataSet class
will be placed. The output of the preceding command will be a class file named Employees.cs.
You can compile this class file separately or along with your other classes.

8253ch07.fm Page 231 Friday, March 23, 2007 10:57 AM

232 C H A P T E R 7 ■ X M L I N A D O . N E T

The XmlDataDocument Class
There is no doubt that the DataSet class provides rich XML functionality, but what if you need
to do the following in your application?

• Sort, filter, and bind the data effectively in your application

• Apply XSLT transformations and run XPath expressions

• Work with your XML data in a relational manner, still keeping its hierarchical nature intact

All the preceding requirements call for a technique that will bridge the relational model of
DataSet and the hierarchical model of XmlDocument, and the XmlDataDocument provides just such
a bridge. It allows you to synchronize data from a DataSet and an XML document, and inherits
from XmlDocument as the base class. Naturally, it provides all the functionality of DOM.

An XmlDataDocument class can be constructed in two ways depending on your requirement:

• From a DataSet

• From an XML document

Using the XmlDataDocument Class
To see how the XmlDataDocument class can be used, let’s consider the following scenario:
assume that you wish to develop a data-entry screen for the same Employees.xml file that we
used earlier. The data-entry screen should be grid based and should allow the user to export
the data as an HTML file. The HTML file can then be published in a web application.

The preceding scenario calls for a DataSet to bind with the grid and it also calls for XSLT
processing so that the data can be exported to HTML. In such cases, XmlDataDocument provides
an effective solution. Let’s see how.

You need to develop a Windows application as shown in Figure 7-20.

Figure 7-20. Application for illustrating the use of XmlDataDocument

8253ch07.fm Page 232 Friday, March 23, 2007 10:57 AM

C H A P T E R 7 ■ X M L I N A D O . N E T 233

The application consists of a DataGridView control that displays the data from the
Employees.xml file. You can modify the data and click the Export as HTML Page button to
save the data as an HTML file. The Load event of the form is shown in Listing 7-22.

Listing 7-22. Creating an XmlDataDocument from an XML File

XmlDataDocument doc = null;
private void Form1_Load(object sender, EventArgs e)
{
 DataSet ds = new DataSet();
 ds.ReadXml(Application.StartupPath + @"\employees.xml");
 doc = new XmlDataDocument(ds);
 dataGridView1.DataSource = ds.Tables[0];
}

The code declares a class-level variable of type XmlDataDocument. The Load event of the form
creates an instance of DataSet and reads the Employees.xml file into it by using ReadXml(). Then a
new instance of XmlDataDocument is created by passing the DataSet we just created to its construc-
tor. Thus our example constructs an XmlDataDocument by using a DataSet. The DataTable from the
DataSet is then assigned as the DataSource of the DataGridView control. This way, the data from
Employees.xml is available for editing. The Click event of the Export as HTML Page button is
shown in Listing 7-23.

Listing 7-23. Applying XSLT Transformations on XmlDataDocument

private void button1_Click(object sender, EventArgs e)
{
 XslCompiledTransform xslt = new XslCompiledTransform();
 xslt.Load(Application.StartupPath + @"\employees.xslt");
 XmlTextWriter writer =
 new XmlTextWriter(Application.StartupPath + @"\employees.html", null);
 xslt.Transform(doc, writer);
 writer.Close();
}

The code creates an instance of the XslCompiledTransform class, and the XSLT style sheet
is loaded by using its Load() method. Then an instance of XmlTextWriter is created to write
the transformed data into an HTML file (Employees.html). The Transform() method of
XslCompiledTransform is then called, and the XmlDataDocument and XmlTextWriter objects
are passed to it as parameters. The Transform() method accesses the XML data from the
XmlDataDocument class, applies the style sheet to it, and writes the transformed data by using
XmlTextWriter.

8253ch07.fm Page 233 Friday, March 23, 2007 10:57 AM

234 C H A P T E R 7 ■ X M L I N A D O . N E T

■Note In the preceding example, we use the same XML file and XSLT style sheet that we developed in
Chapter 6. See Listing 6-2 for the complete markup of Employees.xslt. Also, make sure that you copy these
files to the Bin\Debug folder of your project before you run the application.

In the preceding example, we created an XmlDataDocument by using a DataSet, but you can
also create an XmlDataDocument by using an XML document. In the latter case, you can use the
Load() method of XmlDataDocument. This method works the same way as with the XmlDocument
class (see Chapter 2). You can then use the loaded XML data in a relational manner with the
help of the DataSet property of the XmlDataDocument class.

Converting Between DataRow and XmlElement
Sometimes you may need to access the XML element belonging to a DataRow from the DataSet.
This can be achieved by using the GetElementFromRow() method of XmlDataDocument. This
method accepts a reference to a DataRow instance from the DataSet and returns an XmlElement
corresponding to that row. The working of the GetElementFromRow() method will be clear when
you develop the application shown in Figure 7-21.

Figure 7-21. Application using the GetElementFromRow() method

The application consists of a DataGridView control. The Employees.xml file is read into a
DataSet, and the DataSet is bound to the grid. After you click the Get Element From Row but-
ton, a message box displays the XML markup of the corresponding element (Figure 7-22).

8253ch07.fm Page 234 Friday, March 23, 2007 10:57 AM

C H A P T E R 7 ■ X M L I N A D O . N E T 235

Figure 7-22. The XmlElement retrieved by using the GetElementFromRow() method

The Load event of the form is shown in Listing 7-24.

Listing 7-24. Creating XmlDataDocument

XmlDataDocument doc = null;

private void Form1_Load(object sender, EventArgs e)
{
 DataSet ds = new DataSet();
 ds.ReadXml(Application.StartupPath + @"\employees.xml");
 doc = new XmlDataDocument(ds);
 dataGridView1.DataSource = ds.Tables[0];
}

The code should be familiar to you, because it is the same code from our previous exam-
ple. The code simply creates an instance of XmlDataDocument on the basis of a DataSet. The code
from the Click event handler of the Get Element From Row button is shown in Listing 7-25.

Listing 7-25. Using the GetElementFromRow() Method

private void button1_Click(object sender, EventArgs e)
{
 int index=dataGridView1.CurrentCell.RowIndex;
 XmlElement element = doc.GetElementFromRow(doc.DataSet.Tables[0].Rows[index]);
 MessageBox.Show(element.OuterXml);
}

The code retrieves the current row index of the DataGridView by using the CurrentCell
property of the DataGridView object. Then the GetElementFromRow() method is called by pass-
ing the DataRow reference. Notice how the DataSet is accessed by using the DataSet property of
the XmlDataDocument class. The return value of GetElementFromRow() is an XmlElement object;
the OuterXml property of the XmlElement is then displayed in a message box.

8253ch07.fm Page 235 Friday, March 23, 2007 10:57 AM

236 C H A P T E R 7 ■ X M L I N A D O . N E T

■Note The GetRowFromElement() method is the counterpart of the GetElementFromRow() method.
GetRowFromElement() accepts an XmlElement and returns a DataRow corresponding to the element.

Summary
ADO.NET is a very important part of the overall .NET Framework. Modern data-driven appli-
cations tend to work with relational as well as hierarchical data stores. The ADO.NET object
model, though primarily inclined toward RDBMSs, has tight integration with XML.

This chapter gave you a thorough understanding of the XML features of ADO.NET. You
learned how to work with XML data in connected and disconnected mode. The DataSet class is
the cornerstone of the ADO.NET disconnected model and allows you to read and write XML
data, and to work with schemas. Further, typed DataSets make your development easy by
providing typed DataTable and DataColumn names. The DataSet and the underlying XML docu-
ment class can be used interchangeably. The XmlDataDocument class provides a bridge between
the relational and hierarchical data models involved in such communication.

8253ch07.fm Page 236 Friday, March 23, 2007 10:57 AM

237

■ ■ ■

C H A P T E R 8

XML Serialization

Your .NET applications consist of one or more classes. The objects of these classes are used to
store state information. As long as your objects are available in the memory of your applica-
tion, this state information is readily available. But what if you would like to persist object state
across application shutdowns? At first you may think of saving object state in a database. How-
ever, databases generally store information in relational format, whereas objects often have a
hierarchical structure. Moreover, you would need to create many tables in the database on
your own. Storing object data in a database comes with its own overheads. Wouldn’t it be nice
if the entire object state could be stored to a medium and retrieved later? That is what serializa-
tion offers.

Serialization is a process by which object state is persisted to a medium. The medium
can be a physical disk file, memory, or even a network stream. The serialized objects can be
retrieved later in your application by a process called deserialization. The .NET Framework
provides extensive support for serialization and uses serialization in many places. Remoting
and web services are two main areas where serialization is heavily used. In this chapter, you are
going to learn about the following topics:

• Understanding the flavors of serialization

• Using the XmlSerializer class to serialize object state in XML format

• Customizing the serialization process with the help of certain attributes

• Using the SoapFormatter class to serialize object state in SOAP format

• Customizing the SOAP serialization process with the help of certain attributes

8253.book Page 237 Monday, March 5, 2007 7:40 PM

238 C H A P T E R 8 ■ X M L S E R I A L I Z A T I O N

Understanding the Flavors of Serialization
Serialization can be classified based on the format of serialization or on the depth of serializa-
tion. The three formats in which you can serialize data in the .NET Framework are as follows:

Binary: This format is generally better in terms of performance than the others. However,
in terms of extensibility and cross-application integration, the other formats are better.

XML: Objects serialized in this way are stored as plain XML. If you are talking with multiple
heterogeneous systems, this format will prove useful. For example, your .NET applications
may serialize objects as XML documents, and a Java application may read these serialized
objects by using its standard XML parser and work with the data further.

Simple Object Access Protocol (SOAP): Objects serialized in this way store information as
per the SOAP standards. SOAP is the core pillar for web services.

The other way to classify serialization is based on the depth of serialization. The two fla-
vors based on the depth of serialization are as follows:

Deep serialization: This serializes all the public, protected, and private members of your class.
Even the nested classes and their public, protected, and private members are serialized.

Shallow serialization: This serializes only the public members of your class.

In the .NET Framework, the classes that serialize objects in binary format use deep serial-
ization, whereas the classes that serialize objects in XML format use shallow serialization.

Classes Involved in the Serialization Process
There are three core classes that are used to perform serialization in binary, XML, and SOAP
formats, respectively:

• The BinaryFormatter class serializes objects in binary format. It resides in the
System.Runtime.Serialization.Formatters.Binary namespace.

• The XmlSerializer class serializes objects in XML format. It resides in the
System.Xml.Serialization namespace. The System.Xml.Serialization name-
space physically resides in the System.Xml.dll assembly.

• The SoapFormatter class serializes objects in SOAP format. It resides in the
System.Runtime.Serialization.Formatters.Soap namespace. The System.Runtime.
Serialization.Formatters.Soap namespace physically resides in the System.
Runtime.Serialization.Formatters.Soap.dll assembly.

8253.book Page 238 Monday, March 5, 2007 7:40 PM

C H A P T E R 8 ■ X M L S E R I A L I Z A T I O N 239

Serializing and Deserializing Objects by
Using XML Format
Now that you have a basic understanding of what serialization is, let’s delve straight into XML
serialization. You will be building an application that illustrates the serialization and deserial-
ization process by using the XmlSerializer class. The application user interface is shown in
Figure 8-1.

Figure 8-1. Application for illustrating XML serialization

The application consists of a class called Employee with five public properties: EmployeeID,
FirstName, LastName, HomePhone, and Notes. There are five text boxes that accept values for these
properties. The two buttons, Serialize and Deserialize, do the job of serializing and deserializ-
ing the Employee object, respectively. The check box determines whether the serialized XML
document will be opened in a browser for viewing.

Before you can use the XmlSerializer class, you should create the Employee class as shown
in Listing 8-1.

Listing 8-1. The Employee Class

public class Employee
{
 private int intID;
 private string strFName;
 private string strLName;
 private string strHPhone;
 private string strNotes;

8253.book Page 239 Monday, March 5, 2007 7:40 PM

240 C H A P T E R 8 ■ X M L S E R I A L I Z A T I O N

 public int EmployeeID
 {
 get
 {
 return intID;
 }
 set
 {
 intID = value;
 }
 }

 public string FirstName
 {
 get
 {
 return strFName;
 }
 set
 {
 strFName = value;
 }
 }

 public string LastName
 {
 get
 {
 return strLName;
 }
 set
 {
 strLName = value;
 }
 }

 public string HomePhone
 {
 get
 {
 return strHPhone;
 }
 set

8253.book Page 240 Monday, March 5, 2007 7:40 PM

C H A P T E R 8 ■ X M L S E R I A L I Z A T I O N 241

 {
 strHPhone = value;
 }
 }

 public string Notes
 {
 get
 {
 return strNotes;
 }
 set
 {
 strNotes = value;
 }
 }
 }

The class declares five private variables for storing various pieces of information about an
employee. These five private variables are exposed to the external world via five public proper-
ties (EmployeeID, FirstName, LastName, HomePhone, and Notes).

The Click event handler of the Serialize button contains the code shown in Listing 8-2.

Listing 8-2. Serializing Objects in XML Format

private void button1_Click(object sender, EventArgs e)
{
 Employee emp = new Employee();
 emp.EmployeeID = int.Parse(textBox1.Text);
 emp.FirstName = textBox2.Text;
 emp.LastName = textBox3.Text;
 emp.HomePhone = textBox4.Text;
 emp.Notes = textBox5.Text;
 FileStream stream =
 new FileStream(Application.StartupPath + @"\employee.xml", FileMode.Create);
 XmlSerializer serializer = new XmlSerializer(typeof(Employee));
 serializer.Serialize(stream, emp);
 stream.Close();
 if (checkBox1.Checked)
 {
 Process.Start(Application.StartupPath + @"\employee.xml");
 }
}

8253.book Page 241 Monday, March 5, 2007 7:40 PM

242 C H A P T E R 8 ■ X M L S E R I A L I Z A T I O N

The code creates an instance of the Employee class. It then assigns values from various text
boxes to the corresponding properties of the Employee class. A FileStream is then created for
writing to a physical disk file (Employee.xml). This stream is used while actually serializing the
object. Then the code creates an object of the XmlSerializer class. As mentioned previously,
the XmlSerializer class allows you to serialize data in XML format.

There are several overloads of the XmlSerializer constructor, and the code uses the one
that accepts the type of class whose objects are to be serialized. The type information about the
Employee class is obtained by using the typeof keyword. The Serialize() method of XmlSerializer
serializes an object to a specified stream, TextWriter, or XmlWriter.

Because our example uses a FileStream to serialize the Employee object, after serialization
is complete, the stream is closed. Finally, the serialized data residing in the XML file is dis-
played in a browser by using the Start() method of the Process class.

The Click event handler of the Deserialize button contains the code shown in Listing 8-3.

Listing 8-3. Deserializing by Using the XmlSerializer Class

private void button2_Click(object sender, EventArgs e)
{
 Employee emp;
 FileStream stream =
 new FileStream(Application.StartupPath + @"\employee.xml", FileMode.Open);
 XmlSerializer serializer = new XmlSerializer(typeof(Employee));
 emp=(Employee)serializer.Deserialize(stream);
 stream.Close();
 textBox1.Text = emp.EmployeeID.ToString();
 textBox2.Text = emp.FirstName;
 textBox3.Text = emp.LastName;
 textBox4.Text = emp.HomePhone;
 textBox5.Text = emp.Notes;
}

The code declares a variable of type Employee. Then it creates a FileStream pointing to the
same file that was created during the serialization process. Note that this time the file is opened
in Open mode and not in Create mode. Then an object of XmlSerializer is created as before.
The Deserialize() method of the XmlSerializer class accepts a Stream, a TextReader, or an
XmlReader from which the object is to be read for deserialization. It then returns the deserial-
ized object. The deserialized data is always returned as a generic-type object and needs to be
cast to the Employee type. Then various property values of the deserialized object are assigned
to respective text boxes.

To test the application, you run it, enter some values in the text boxes, and click the
Serialize button. Figure 8-2 shows a sample XML document obtained by running the preceding
application.

8253.book Page 242 Monday, March 5, 2007 7:40 PM

C H A P T E R 8 ■ X M L S E R I A L I Z A T I O N 243

Figure 8-2. Employee object serialized as an XML document

Examine the resultant XML markup carefully. The class name (Employee) has become the
name of the root element. The elements such as <EmployeeID>, <FirstName>, and <LastName>
have the same name as the corresponding properties in the Employee class. Now close the
application and run it again. This time click the Deserialize button. You will find that the text
boxes show the property values that you specified during the last run of the application.

Handling Events Raised During Deserialization
Imagine a case where one application is serializing objects and the other is deserializing them.
What if the serialized objects contain some extra attributes and elements? The application that
is deserializing such objects must have some way to signal this discrepancy. Fortunately, the
XmlSerializer class comes with certain events to handle such situations. These events are
raised during the deserialization process when the structure of the class and the serialized XML
don’t match. Table 8-1 lists these events.

Table 8-1. Events of the XmlSerializer Class

Event Name Description

UnknownAttribute This event is raised when the data being deserialized contains some
unexpected attribute. The event receives an event argument of type
XmlAttributeEventArgs that supplies more information about the event.

UnknownElement This event is raised when the data being deserialized contains some
unexpected element. The event receives an event argument of type
XmlElementEventArgs that supplies more information about the event.

UnknownNode This event is raised when the data being deserialized contains some
unexpected node. The event receives an event argument of type
XmlNodeEventArgs that supplies more information about the event.

UnreferencedObject This event is raised when the data being deserialized contains some
recognized type that is not used or is unreferenced. The event receives an
event argument of type UnreferencedObjectEventArgs that supplies more
information about the event. This event applies only to SOAP-encoded XML.

8253.book Page 243 Monday, March 5, 2007 7:40 PM

244 C H A P T E R 8 ■ X M L S E R I A L I Z A T I O N

To illustrate the use of these events, you need to modify the previous application as shown
in Listing 8-4.

Listing 8-4. Events of the XmlSerializer Class

private void button2_Click(object sender, EventArgs e)
{
 Employee emp;
 FileStream stream =
 new FileStream(Application.StartupPath + @"\employee.xml", FileMode.Open);
 XmlSerializer serializer = new XmlSerializer(typeof(Employee));
 serializer.UnknownAttribute +=
 new XmlAttributeEventHandler(serializer_UnknownAttribute);
 serializer.UnknownElement +=
 new XmlElementEventHandler(serializer_UnknownElement);
 serializer.UnknownNode += new XmlNodeEventHandler(serializer_UnknownNode);
 emp = (Employee)serializer.Deserialize(stream);
 stream.Close();
 textBox1.Text = emp.EmployeeID.ToString();
 textBox2.Text = emp.FirstName;
 textBox3.Text = emp.LastName;
 textBox4.Text = emp.HomePhone;
 textBox5.Text = emp.Notes;
}

void serializer_UnknownNode(object sender, XmlNodeEventArgs e)
{
 MessageBox.Show("Unknown Node " + e.Name + " found at Line " + e.LineNumber);
}
void serializer_UnknownElement(object sender, XmlElementEventArgs e)
{
 MessageBox.Show("Unknown Element " + e.Element.Name + " found at Line " +
 e.LineNumber);
}
void serializer_UnknownAttribute(object sender, XmlAttributeEventArgs e)
{
 MessageBox.Show("Unknown Attribute " + e.Attr.Name + " found at Line " +
 e.LineNumber);
}

8253.book Page 244 Monday, March 5, 2007 7:40 PM

C H A P T E R 8 ■ X M L S E R I A L I Z A T I O N 245

Notice the code marked in bold. After declaring the instance of the XmlSerializer class, it
wires up three event handlers—UnknownAttribute, UnknownElement, and UnknownNode—that
simply display a message box showing the name of the attribute, element, or node and the line
number at which the attribute, element, or node is encountered. Notice how the event argu-
ment parameter is used to extract information about the unexpected content.

To test these events, modify the serialized XML file manually as shown in Listing 8-5.

Listing 8-5. Modifying the Serialized XML Manually

<?xml version="1.0"?>
<Employee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema" EmpCode="E001">
 <EmployeeID>1</EmployeeID>
 <FirstName>Nancy</FirstName>
 <LastName>Davolio</LastName>
 <HomePhone>(206) 555-9857</HomePhone>
 <Notes>includes a BA in psychology from Colorado State University in 1970. She
also completed "The Art of the Cold Call." Nancy is a member of Toastmasters
International.</Notes>
 <OfficePhone>(206) 555-1234</OfficePhone>
</Employee>

Notice the markup in bold. We have added an EmpCode attribute and an <OfficePhone>
element manually to the XML file. Save the file and run the application. This time when you
click the Deserialize button, you will see message boxes informing you of the discrepancies.
Figure 8-3 shows one such message box.

Figure 8-3. Unexpected content encountered during the deserialization process

Serializing and Deserializing Complex Types
In the preceding example, we serialized a simple type; the members of the Employee class were
simple types such as an integer and a string. However, real-world classes are often complex
ones. They may contain members that are class types, enumerated types, or even arrays. The
XmlSerializer class provides support for such complex types, and that is what you are going to
see in the next example.

8253.book Page 245 Monday, March 5, 2007 7:40 PM

246 C H A P T E R 8 ■ X M L S E R I A L I Z A T I O N

The user interface of the application now changes as shown in Figure 8-4.

Figure 8-4. Application for illustrating XML serialization of complex types

The first five text boxes remain the same as in the previous example. However, six text
boxes and one combo box are new. The newly added text boxes capture the email, street, city,
state, country, and postal code information of the employee. The combo box captures the
employee type (permanent or contract).

To store the address information of employees, you need to add a property called Address to
the Employee class. The Address property itself is a class called Address, as shown in Listing 8-6.

Listing 8-6. The Address Class

public class Address
{
 private string strStreet;
 private string strCity;
 private string strState;
 private string strCountry;
 private string strPostalCode;

 public string Street
 {
 get
 {
 return strStreet;
 }
 set
 {
 strStreet = value;
 }
 }

8253.book Page 246 Monday, March 5, 2007 7:40 PM

C H A P T E R 8 ■ X M L S E R I A L I Z A T I O N 247

 public string City
 {
 get
 {
 return strCity;
 }
 set
 {
 strCity = value;
 }
 }

 public string State
 {
 get
 {
 return strState;
 }
 set
 {
 strState = value;
 }
 }

 public string Country
 {
 get
 {
 return strCountry;
 }
 set
 {
 strCountry = value;
 }
 }

 public string PostalCode
 {
 get
 {
 return strPostalCode;
 }
 set

8253.book Page 247 Monday, March 5, 2007 7:40 PM

248 C H A P T E R 8 ■ X M L S E R I A L I Z A T I O N

 {
 strPostalCode = value;
 }
 }
}

This class has five private string variables for storing street address, city, state, country,
and postal code, respectively. These private variables are exposed to the external world by
wrapping them in corresponding public properties.

To store the employee type, you need to add a property called Type to the Employee class.
The Type property will be an enumeration of type EmployeeType, which contains two values:
Permanent and Contract. The EmployeeType enumeration is shown in Listing 8-7.

Listing 8-7. The EmployeeType Enumeration

public enum EmployeeType
{
 Permanent, Contract
}

The email information is stored in a property called Emails. An employee can have more
than one email address and hence this property is of the string array type. Listing 8-8 shows the
modified version of the Employee class.

Listing 8-8. The Employee Class After Adding Address, Type, and Emails Properties

public class Employee
{
 private int intID;
 private string strFName;
 private string strLName;
 private string strHPhone;
 private string strNotes;
 private string[] strEmails;
 private EmployeeType enumType;
 private Address objAddress=new Address();

 public int EmployeeID
 {
 get
 {
 return intID;
 }
 set
 {
 intID = value;
 }
 }

8253.book Page 248 Monday, March 5, 2007 7:40 PM

C H A P T E R 8 ■ X M L S E R I A L I Z A T I O N 249

 public string FirstName
 {
 get
 {
 return strFName;
 }
 set
 {
 strFName = value;
 }
 }

 public string LastName
 {
 get
 {
 return strLName;
 }
 set
 {
 strLName = value;
 }
 }

 public string HomePhone
 {
 get
 {
 return strHPhone;
 }
 set
 {
 strHPhone = value;
 }
 }

 public string Notes
 {
 get
 {
 return strNotes;
 }
 set
 {
 strNotes = value;
 }
 }

8253.book Page 249 Monday, March 5, 2007 7:40 PM

250 C H A P T E R 8 ■ X M L S E R I A L I Z A T I O N

 public Address Address
 {
 get
 {
 return objAddress;
 }
 set
 {
 objAddress = value;
 }
 }

 public EmployeeType Type
 {
 get
 {
 return enumType;
 }
 set
 {
 enumType = value;
 }
 }

 public string[] Emails
 {
 get
 {
 return strEmails;
 }
 set
 {
 strEmails = value;
 }
 }
}

8253.book Page 250 Monday, March 5, 2007 7:40 PM

C H A P T E R 8 ■ X M L S E R I A L I Z A T I O N 251

Notice the property definitions marked in bold. The three public properties Address, Type,
and Emails are of type Address, EmployeeType, and string array, respectively. The code in the
Click event handler of the Serialize button now changes as shown in Listing 8-9.

Listing 8-9. Serializing Complex Types

private void button1_Click(object sender, EventArgs e)
{
 Employee emp = new Employee();
 emp.EmployeeID = int.Parse(textBox1.Text);
 emp.FirstName = textBox2.Text;
 emp.LastName = textBox3.Text;
 emp.HomePhone = textBox4.Text;
 emp.Notes = textBox5.Text;
 emp.Type =
 (comboBox1.SelectedIndex == 0 ? EmployeeType.Permanent :
 EmployeeType.Contract);
 emp.Address.Street = textBox6.Text;
 emp.Address.City = textBox7.Text;
 emp.Address.State = textBox8.Text;
 emp.Address.Country = textBox9.Text;
 emp.Address.PostalCode = textBox10.Text;
 emp.Emails = textBox11.Text.Split(',');
 FileStream stream =
 new FileStream(Application.StartupPath + @"\employee.xml", FileMode.Create);
 XmlSerializer serializer = new XmlSerializer(typeof(Employee));
 serializer.Serialize(stream, emp);
 stream.Close();
 if (checkBox1.Checked)
 {
 Process.Start(Application.StartupPath + @"\employee.xml");
 }
}

8253.book Page 251 Monday, March 5, 2007 7:40 PM

252 C H A P T E R 8 ■ X M L S E R I A L I Z A T I O N

The code is essentially the same as in the preceding examples. However, it sets the newly
added properties to corresponding values from the text boxes and combo box. Notice how the
complex property Address is set. Also, notice how comma-separated emails entered in the
email text box are converted into a string array by using the Split() method. After the Employee
object is serialized by calling Serialize(), the serialized XML document looks like that in
Figure 8-5.

Figure 8-5. Serialized XML for complex types

Examine the serialized XML data carefully. The address is represented by the <Address>
node, the name of which is derived from the Address property of the Employee class. The
<Address> node has five child nodes: <Street>, <City>, <State>, <Country>, and <PostalCode>.
Their names are derived from the respective properties of the Address class.

The <Type> element represents the Type property of the Employee class. The enumeration
value, Permanent, is stored in the XML markup. Finally, the <Emails> node represents the Emails
property, and its child nodes are nothing but individual array elements. Because the emails are
stored in a string array, the individual values are enclosed in <string></string> elements.

Listing 8-10 shows the code in the Click event of the Deserialize button.

8253.book Page 252 Monday, March 5, 2007 7:40 PM

C H A P T E R 8 ■ X M L S E R I A L I Z A T I O N 253

Listing 8-10. Deserializing Complex Types

 private void button2_Click(object sender, EventArgs e)
 {
 Employee emp;
 FileStream stream = new FileStream(Application.StartupPath +
 @"\employee.xml", FileMode.Open);
 XmlSerializer serializer = new XmlSerializer(typeof(Employee));
 emp=(Employee)serializer.Deserialize(stream);
 stream.Close();
 textBox1.Text = emp.EmployeeID.ToString();
 textBox2.Text = emp.FirstName;
 textBox3.Text = emp.LastName;
 textBox4.Text = emp.HomePhone;
 textBox5.Text = emp.Notes;
 comboBox1.SelectedIndex = (emp.Type == EmployeeType.Permanent?0:1);
 textBox6.Text=emp.Address.Street;
 textBox7.Text=emp.Address.City;
 textBox8.Text=emp.Address.State;
 textBox9.Text=emp.Address.Country;
 textBox10.Text=emp.Address.PostalCode;
 textBox11.Text = string.Join(",", emp.Emails);
 stream.Close();
}

The code is very much the same as in previous examples. It deserializes the previously
serialized Employee object by using the XmlSerializer class. The property values are then
assigned to various controls on the form. Notice how the Emails property is converted into a
comma-separated string by using the Join() method of the string class. The following points
are worth noting when serializing complex types:

• To serialize and deserialize enumerated values, the application that serializes the object and
the application that deserializes it must define the same enumeration under consideration.

• While serializing object properties, all the public members of the object are serialized.
The member names are assigned to the child elements in the resultant XML.

• During the deserialization process, XmlSerializer instantiates the main class (Employee)
as well as all the subclasses (Address) and assigns values to the respective properties.

• While serializing arrays, an XML element represents the array. The individual array
elements form the child element of this element. The individual array elements are
enclosed in an element depending on the data type of the array.

• While deserializing, XmlSerializer creates an array with the same number of elements
as the serialized elements. It then assigns the array element values accordingly.

8253.book Page 253 Monday, March 5, 2007 7:40 PM

254 C H A P T E R 8 ■ X M L S E R I A L I Z A T I O N

Serialization and Inheritance
Serialization is not limited to simple and complex types. It is equally applicable to inherited
classes. Assume that you have a class called Manager that inherits from our Employee class. Now
when you serialize Manager, all the public properties of the Employee base class and Manager are
serialized. This is also true in the case of a long chain of inheritance.

To demonstrate how inherited classes are serialized, we need to add a class called Manager
to our application. The Manager class inherits from the Employee class (see Listing 8-1) and
extends it by adding an integer property NoOfSubordinates. The Manager class is shown in
Listing 8-11.

Listing 8-11. The Manager Class

public class Manager:Employee
{
 private int intNoOfSubordinates;

 public int NoOfSubordinates
 {
 get
 {
 return intNoOfSubordinates;
 }
 set
 {
 intNoOfSubordinates = value;
 }
 }
}

The code creates a class named Manager that inherits from the Employee class. It then adds
a private integer variable to store the number of subordinates of a manager. The variable is
exposed to the external world via a public property, NoOfSubordinates. To accommodate the
additional property, the user interface of the application changes as shown in Figure 8-6.

The application is almost the same as in Figure 8-1, but there is an extra text box for
accepting the number of subordinates of the manager. Listing 8-12 shows the Click event
handler of the Serialize button.

8253.book Page 254 Monday, March 5, 2007 7:40 PM

C H A P T E R 8 ■ X M L S E R I A L I Z A T I O N 255

Figure 8-6. Application to demonstrate serialization of inherited classes

Listing 8-12. Serializing the Inherited Manager Class

private void button1_Click(object sender, EventArgs e)
{
 Manager manager = new Manager();
 manager.EmployeeID = int.Parse(textBox1.Text);
 manager.FirstName = textBox2.Text;
 manager.LastName = textBox3.Text;
 manager.HomePhone = textBox4.Text;
 manager.Notes = textBox5.Text;
 manager.NoOfSubordinates = int.Parse(textBox6.Text);
 FileStream stream =
 new FileStream(Application.StartupPath + @"\employee.xml", FileMode.Create);
 XmlSerializer serializer = new XmlSerializer(typeof(Manager));
 serializer.Serialize(stream, manager);
 stream.Close();
 if (checkBox1.Checked)
 {
 Process.Start(Application.StartupPath + @"\employee.xml");
 }
}

8253.book Page 255 Monday, March 5, 2007 7:40 PM

256 C H A P T E R 8 ■ X M L S E R I A L I Z A T I O N

The code is essentially the same as we have been using up until now but it uses the
Manager class instead of the Employee class. An instance of Manager is created, and all its prop-
erties are set. Then an instance of XmlSerializer is created by passing the Type information
of the Manager class. Finally, the Manager instance is serialized by calling the Serialize()
method of XmlSerializer. Figure 8-7 shows the resultant XML output.

Figure 8-7. Serialized XML of the Manager class

Notice how all the public properties from the Employee base class as well as the one from
Manager are serialized. The code to deserialize the Manager class is very similar to the one we
used previously. Listing 8-13 shows this code.

Listing 8-13. Deserializing the Manager Class

private void button2_Click(object sender, EventArgs e)
{
 Manager manager;
 FileStream stream =
 new FileStream(Application.StartupPath + @"\employee.xml", FileMode.Open);
 XmlSerializer serializer = new XmlSerializer(typeof(Manager));
 manager = (Manager)serializer.Deserialize(stream);
 stream.Close();
 textBox1.Text = manager.EmployeeID.ToString();
 textBox2.Text = manager.FirstName;
 textBox3.Text = manager.LastName;
 textBox4.Text = manager.HomePhone;
 textBox5.Text = manager.Notes;
 textBox6.Text = manager.NoOfSubordinates.ToString();
}

The only difference in this code is that it uses Manager in the deserialization process
instead of Employee.

8253.book Page 256 Monday, March 5, 2007 7:40 PM

C H A P T E R 8 ■ X M L S E R I A L I Z A T I O N 257

Customizing the Serialized XML
The XmlSerializer class automatically uses the name of the public members as the names for
the resultant XML elements. This is what is required in many cases. However, sometimes you
may need to customize the serialized XML data to suit your needs. In the previous example
illustrating the serialization of complex types, we got the XML document shown in Listing 8-14.

Listing 8-14. Serialized XML Document Without Any Customization

<?xml version="1.0"?>
<Employee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <EmployeeID>1</EmployeeID>
 <FirstName>Nancy</FirstName>
 <LastName>Davolio</LastName>
 <HomePhone>(206) 555-9857</HomePhone>
 <Notes>includes a BA in psychology from Colorado State University in 1970. She
also completed "The Art of the Cold Call." Nancy is a member of Toastmasters
International.</Notes>
 <Type>Permanent</Type>
 <Emails>
 <string>nancy@somedomain.com</string>
 <string>nancydavolio@somedomain.com</string>
 </Emails>
 <Address>
 <Street>Sagebrush</Street>
 <City>Novi</City>
 <State>MI </State>
 <Country>USA</Country>
 <PostalCode>48375</PostalCode>
 </Address>
</Employee>

However, what if you want the resultant XML structure to resemble Listing 8-15?

Listing 8-15. Serialized XML After Customization

<?xml version="1.0"?>
<MyEmployee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" EmployeeCode="1">
 <FName>Nancy</FName>
 <LName>Davolio</LName>
 <Remarks>
 includes a BA in psychology from Colorado State University in 1970. She also
completed "The Art of the Cold Call." Nancy is a member of Toastmasters
International.
</Remarks>
 <EmployeeType>Permanent Employee</EmployeeType>

8253.book Page 257 Monday, March 5, 2007 7:40 PM

258 C H A P T E R 8 ■ X M L S E R I A L I Z A T I O N

 <EmailAddresses>
 <Email>nancy@somedomain.com</Email>
 <Email>nancydavolio@somedomain.com</Email>
 </EmailAddresses>
 <Address>
 <Street>Sagebrush</Street>
 <City>Novi</City>
 <State>MI</State>
 <Country>USA</Country>
 <PostalCode>48375</PostalCode>
 </Address>
</MyEmployee>

Observe Listing 8-15 carefully. There are some significant changes:

• The root element of the document is <MyEmployee> and not <Employee>.

• The element names are totally different from the public property names.

• The employee ID is stored as the EmployeeCode attribute.

• The EmployeeType enumeration value is different from the actual enumeration item text.

• Email addresses are stored as <Email> elements and not as <string> elements.

• The HomePhone property value is not serialized even if it is a public member of the class.

To achieve such customization, the System.Xml.Serialization namespace provides sev-
eral attributes. You are required to decorate your classes, enumeration, and properties with
these attributes to customize the way they are serialized. Listing 8-16 shows the Employee class
and the EmployeeType enumeration after applying many of these attributes.

Listing 8-16. Customizing Serialization by Using Attributes

[XmlRoot(ElementName="MyEmployee")]
public class Employee
{
 private int intID;
 private string strFName;
 private string strLName;
 private string strHPhone;
 private string strNotes;
 private string[] strEmails;
 private EmployeeType enumType;
 private Address objAddress=new Address();

8253.book Page 258 Monday, March 5, 2007 7:40 PM

C H A P T E R 8 ■ X M L S E R I A L I Z A T I O N 259

 [XmlAttribute(AttributeName="EmployeeCode")]
 public int EmployeeID
 {
 get
 {
 return intID;
 }
 set
 {
 intID = value;
 }
 }

 [XmlElement(ElementName="FName")]
 public string FirstName
 {
 get
 {
 return strFName;
 }
 set
 {
 strFName = value;
 }
 }

 [XmlElement(ElementName = "LName")]
 public string LastName
 {
 get
 {
 return strLName;
 }
 set
 {
 strLName = value;
 }
 }

8253.book Page 259 Monday, March 5, 2007 7:40 PM

260 C H A P T E R 8 ■ X M L S E R I A L I Z A T I O N

 [XmlIgnore]
 public string HomePhone
 {
 get
 {
 return strHPhone;
 }
 set
 {
 strHPhone = value;
 }
 }

 [XmlElement(ElementName="Remarks")]
 public string Notes
 {
 get
 {
 return strNotes;
 }
 set
 {
 strNotes = value;
 }
 }

 [XmlElement(ElementName="EmployeeType")]
 public EmployeeType Type
 {
 get
 {
 return enumType;
 }
 set
 {
 enumType = value;
 }
 }

8253.book Page 260 Monday, March 5, 2007 7:40 PM

C H A P T E R 8 ■ X M L S E R I A L I Z A T I O N 261

 [XmlArray(ElementName="EmailAddresses")]
 [XmlArrayItem(ElementName="Email")]
 public string[] Emails
 {
 get
 {
 return strEmails;
 }
 set
 {
 strEmails = value;
 }
 }

 [XmlElement(IsNullable=true)]
 public Address Address
 {
 get
 {
 return objAddress;
 }
 set
 {
 objAddress = value;
 }
 }
}
public enum EmployeeType
{
 [XmlEnum(Name="Permanent Employee")]
 Permanent,
 [XmlEnum(Name = "Employee on contract")]
 Contract
}

Let’s dissect the preceding listing step by step and see the significance of each attribute used.

8253.book Page 261 Monday, March 5, 2007 7:40 PM

262 C H A P T E R 8 ■ X M L S E R I A L I Z A T I O N

Changing the XML Document Root

By default the XmlSerializer class uses the name of the class as the name of the XML root ele-
ment. To alter this behavior, you can decorate your class with the [XmlRoot] attribute. The
[XmlRoot] attribute has a property called ElementName that indicates the new name of the XML
document root element. The [XmlRoot] attribute must be applied to a class definition and
hence we’ve placed it on top of the Employee class.

Changing the Element Names

By default the XmlSerializer class uses the names of the public members to assign to the output
XML elements. For example, the FirstName property gets serialized as the <FirstName> element.
This default behavior can be altered by using the [XmlElement] attribute. The [XmlElement]
attribute has a property called ElementName that specifies the name of the resulting XML element.
The [XmlElement] attribute is applied to the public member that will be serialized, and thus the
FirstName, LastName, Notes, Type, and Address properties are decorated with the [XmlElement]
attribute.

Serializing Members As Attributes

By default all the public members of your class are serialized as XML elements in the output docu-
ment. The [XmlAttribute] attribute allows you to change this default behavior. The AttributeName
property of the [XmlAttribute] attribute indicates the name that will be given to the resultant XML
attribute. [XmlAttribute] is applied to the public member that you wish to serialize as an attribute.
In our example, we add the [XmlAttribute] attribute to the EmployeeID property.

Ignoring Public Members in the Serialization Process

By default all the public members of a class are serialized, but sometimes this is not what
you want. For example, if you are storing credit card information in a public property, you
may not want to serialize it for obvious security reasons. A public member can be ignored
during the serialization process by decorating it with the [XmlIgnore] attribute. In our exam-
ple, the HomePhone property is marked with this attribute.

Changing Array and Array Element Names

The Employee class has a property called Emails that is of type string array. Under the default
naming scheme, when this property is serialized, an XML node is created with the name
Emails. This node further contains child nodes, each containing the array element value. The
names of the child elements are the same as the data type of the array (<string> in our exam-
ple). You can alter this behavior with the help of the [XmlArray] and [XmlArrayElement]
attributes. The former marks public members that are array types and specifies the XML
element name for the member. The latter attribute governs the name of the XML element

8253.book Page 262 Monday, March 5, 2007 7:40 PM

C H A P T E R 8 ■ X M L S E R I A L I Z A T I O N 263

assigned to the individual array members. In our example, the Emails property will be serial-
ized as <EmailAddresses>, and each array element will be enclosed within an <Email> element.

Ignoring Null Objects in the Serialization Process

The Employee class has an Address property that is an object type. If this property is null,
XmlSerializer still emits an empty XML element for it, but you can use the [XmlElement]
attribute to change this behavior. The IsNullable Boolean property of the [XmlElement]
attribute indicates whether the empty XML element will be emitted when the member is
null. Setting this property to true will not emit the empty XML element if the Address prop-
erty is null.

Changing Enumeration Identifiers

The EmployeeType enumeration has two values: Permanent and Contract. By default when a
member of the EmployeeType type is serialized, the value of these enumeration identifiers is emit-
ted in the serialized XML. The [XmlEnum] attribute specifies the alternate value to serialize instead
of the actual identifier name, and is applied on enumeration identifiers. The Name property of the
[XmlEnum] attribute specifies the text that will be serialized instead of the identifier name.

Serializing Data in SOAP Format
In the beginning of this chapter, you learned that there are three flavors of serialization based
on the format (binary, XML, and SOAP). Serializing objects into binary format is outside the
scope of this book, and you have already learned how to serialize objects in XML format. Now
it’s time to learn how objects can be serialized in SOAP format.

SOAP is an industry standard that forms one of the pillars of web services. Though SOAP is
used extensively along with web services, you can use it as an encoding format for object
serialization.

When you serialize objects by using the XmlSerializer class, you need not do anything
special to the classes themselves. However, when you wish to use SOAP as a serialization for-
mat, you must mark your classes with the [Serializable] attribute. Only then can your classes
be serialized.

The SoapFormatter class takes care of all the intricacies of serializing your objects in SOAP
format. The SoapFormatter class resides in the System.Runtime.Serialization.Formatters.Soap
namespace, which physically resides in the System.Runtime.Serialization.Formatters.Soap.dll
assembly.

Let’s revisit the application that we developed when we began this chapter (see Figure 8-1)
and modify it to use SoapFormatter instead of XmlSerializer. The user interface of the applica-
tion remains unchanged, but the way we serialize and deserialize the objects differs.

First, you need to mark the Employee class with the [Serializable] attribute. The modified
Employee class is shown in Listing 8-17.

8253.book Page 263 Monday, March 5, 2007 7:40 PM

264 C H A P T E R 8 ■ X M L S E R I A L I Z A T I O N

Listing 8-17. Marking a Class with the [Serializable] Attribute

[Serializable]
public class Employee
{
 private int intID;
 private string strFName;
 private string strLName;
 private string strHPhone;
 private string strNotes;

 public int EmployeeID
 {
 get
 {
 return intID;
 }
 set
 {
 intID = value;
 }
 }

 public string FirstName
 {
 get
 {
 return strFName;
 }
 set
 {
 strFName = value;
 }
 }

 public string LastName
 {
 get
 {
 return strLName;
 }
 set
 {
 strLName = value;
 }
 }

8253.book Page 264 Monday, March 5, 2007 7:40 PM

C H A P T E R 8 ■ X M L S E R I A L I Z A T I O N 265

 public string HomePhone
 {
 get
 {
 return strHPhone;
 }
 set
 {
 strHPhone = value;
 }
 }

 public string Notes
 {
 get
 {
 return strNotes;
 }
 set
 {
 strNotes = value;
 }
 }
}

As yAou can see, the [Serializable] attribute is a class-level attribute. Hence it is placed
at the top of the Employee class and marks it as a serializable class. Listing 8-18 shows the Click
event handler of the Serialize button. This time the code uses the SoapFormatter class.

Listing 8-18. Serializing Objects by Using the SoapFormatterClass

private void button1_Click(object sender, EventArgs e)
{
 Employee emp = new Employee();
 emp.EmployeeID = int.Parse(textBox1.Text);
 emp.FirstName = textBox2.Text;
 emp.LastName = textBox3.Text;
 emp.HomePhone = textBox4.Text;
 emp.Notes = textBox5.Text;
 FileStream stream =
 new FileStream(Application.StartupPath + @"\employee.xml", FileMode.Create);

 SoapFormatter formatter = new SoapFormatter();
 formatter.Serialize(stream, emp);

8253.book Page 265 Monday, March 5, 2007 7:40 PM

266 C H A P T E R 8 ■ X M L S E R I A L I Z A T I O N

 stream.Close();
 if (checkBox1.Checked)
 {
 Process.Start(Application.StartupPath + @"\employee.xml");
 }
}

The code creates an instance of the Employee class and sets its properties to the values
entered in the text boxes. A FileStream object is then created and creates a file to which the
serialized data is to be written. Then a SoapFormatter object is created. The Serialize()
method of SoapFormatter accepts two parameters: a stream to which the serialized data is to
be written and the object that is to be serialized. The counterpart of this operation is performed
in the Click event handler of the Deserialize button and is shown in Listing 8-19.

Listing 8-19. Deserialization by Using the SoapFormatter Class

private void button2_Click(object sender, EventArgs e)
{
 Employee emp;
 FileStream stream =
 new FileStream(Application.StartupPath + @"\employee.xml", FileMode.Open);
 SoapFormatter formatter = new SoapFormatter();
 emp=(Employee)formatter.Deserialize(stream);
 textBox1.Text = emp.EmployeeID.ToString();
 textBox2.Text = emp.FirstName;
 textBox3.Text = emp.LastName;
 textBox4.Text = emp.HomePhone;
 textBox5.Text = emp.Notes;
 stream.Close();
}

The code declares a variable of type Employee. It then opens a stream pointing to the same
file to which the object was serialized before. An instance of SoapFormatter is then created. The
Deserialize() method of SoapFormatter reads the stream and deserializes the object. The
return value of Deserialize() is of type object and hence it is type converted to the Employee
class. After the Employee object is retrieved, its property values are assigned to the correspond-
ing text boxes. If you run the application and serialize the Employee object, you should see
output similar to Figure 8-8.

As you can see, the XML output is now in SOAP format. There is also mention of some
namespaces related to SOAP. There is another important difference: the names given to vari-
ous elements containing data correspond to private variable names that hold the actual value
and not the property names. Unlike XML serialization, which is shallow by nature, SOAP
serialization done via the SoapFormatter class is deep serialization. It serializes private, pro-
tected, and public data.

8253.book Page 266 Monday, March 5, 2007 7:40 PM

C H A P T E R 8 ■ X M L S E R I A L I Z A T I O N 267

Figure 8-8. Object serialized in SOAP format

Customizing SOAP Serialization
Just as we customized the serialization process during XML serialization, we can customize the
SAP serialization also. There are two ways to achieve this:

• Implement the ISerializable interface.

• Use certain serialization and deserialization attributes.

The first method has been available since .NET Framework 1.x. The latter method was
introduced in .NET 2.0 and supersedes the first method. In our example, we are going to use
the latter method to customize the serialization process.

We will use the same application that we developed in the previous section while illustrat-
ing the use of the SoapFormatter class. Suppose that you wish to protect the serialized XML data
from casual users. You want to implement Base64 encoding to the data that is being serialized
so that casual readers cannot easily read the contents. That data needs to be encoded in a
Base64 encoding scheme and decoded when deserialized. In such cases, the custom serializa-
tion attributes come in handy. Add two helper functions called Encode() and Decode() to the
preceding application as shown in Listing 8-20.

8253.book Page 267 Monday, March 5, 2007 7:40 PM

268 C H A P T E R 8 ■ X M L S E R I A L I Z A T I O N

Listing 8-20. Encoding and Decoding Data by Using Base64 Encoding

private string Encode(string str)
{
 byte[] data = ASCIIEncoding.ASCII.GetBytes(str);
 return Convert.ToBase64String(data);
}

private string Decode(string str)
{
 byte[] data=Convert.FromBase64String(str);
 return ASCIIEncoding.ASCII.GetString(data);
}

The Encode() function accepts a string that is to be encoded in Base64 format. It then con-
verts the string into a byte array by using the GetBytes() method of the ASCIIEncoding class.
The byte array is then fed to the ToBase64String() method of the Convert class, which returns
a Base64-encoded string representing the supplied array of bytes.

The Decode() function accepts a Base64-encoded string that is to be decoded back to a
plain string representation. It then calls the FromBase64String() method of the Convert class
and passes the supplied Base64 string to it. The FromBase64String() method returns a byte
array representing the decoded version of the supplied string. The byte array is converted to a
string by using the GetString() method of the ASCIIEncoding class.

Now we need to add four methods to our class, as shown in Listing 8-21.

Listing 8-21. Customizing SOAP Serialization and Deserialization

 [OnSerializing]
public void OnSerializing(StreamingContext context)
{
 strFName = Encode(strFName);
 strLName = Encode(strLName);
 strHPhone = Encode(strHPhone);
 strNotes = Encode(strNotes);
}

[OnSerialized]
public void OnSerialized(StreamingContext context)
{
 strFName = Decode(strFName);
 strLName = Decode(strLName);
 strHPhone = Decode(strHPhone);
 strNotes = Decode(strNotes);
}

8253.book Page 268 Monday, March 5, 2007 7:40 PM

C H A P T E R 8 ■ X M L S E R I A L I Z A T I O N 269

[OnDeserializing]
public void OnDeserializing(StreamingContext context)
{
 //no code here
}

[OnDeserialized]
public void OnDeserialized(StreamingContext context)
{
 strFName = Decode(strFName);
 strLName = Decode(strLName);
 strHPhone = Decode(strHPhone);
 strNotes = Decode(strNotes);
}

The four methods are marked with the [OnSerializing], [OnSerialized], [OnDeserializing],
and [OnDeserialized] attributes. These attributes allow you to customize the serialization and
deserialization process by using pre- and post-methods:

• The method marked with [OnSerializing] is automatically called by the serialization
framework before the data is serialized.

• The method marked with [OnSerialized] is called when the serialization is complete.

• Similarly, the methods marked with [OnDeserializing] and [OnDeserialized] are called
before and after the deserialization operation.

All these methods must accept a parameter of type StreamingContext. The StreamingContext
parameter provides additional information about the serialization or deserialization process.

In our example, the OnSerializing() method calls the Encode() helper method that we cre-
ated earlier to encode the variable values into Base64 format. Thus the data being serialized is not
a plain string but a Base64 string. After the serialization is complete, we may still need the same
data in plain-string format. That is why the Decode() method is called in the OnSerialized()
method.

The OnDeserializing() method doesn’t include any code in our example. However, if you
wish to execute some code before deserialization takes place, you can add your custom logic
in this method. After the previously serialized data is deserialized, it should give us the values
in plain-string format and not in Base64 format. Hence the OnDeserialized() method calls
Decode() and converts the Base64 values into plain text. Figure 8-9 shows a sample run of the
application.

8253.book Page 269 Monday, March 5, 2007 7:40 PM

270 C H A P T E R 8 ■ X M L S E R I A L I Z A T I O N

Figure 8-9. Base64-encoded data after serialization

Notice how the entire data is serialized in Base64 format.

Summary
In this chapter, we examined the XML serialization process in detail. The .NET Framework
itself uses serialization in many places including remoting and web services. There are two fla-
vors of serialization: binary serialization and XML serialization. You can serialize object state in
XML format by using the XmlSerializer and SoapFormatter classes. The former serializes data
in plain XML, whereas the latter serializes it in SOAP format. The serialization provided by
XmlSerializer is shallow, whereas that provided by SoapFormatter is deep. The serialization
and deserialization process can be customized with the help of various attributes. XML serial-
ization is extensively used in XML web services. Most of the time the web service framework of
.NET shields you from manual work, but behind the scenes it makes heavy use of XML serial-
ization. You are going to learn about XML web services in the next chapter.

8253.book Page 270 Monday, March 5, 2007 7:40 PM

271

■ ■ ■

C H A P T E R 9

XML Web Services

The idea of distributed application development is not new. Distributed technologies such
as Distributed Component Object Model (DCOM), Remote Method Invocation (RMI), and
Common Object Request Broker Architecture (CORBA) have existed for years. Applications
based on Microsoft platforms commonly use DCOM, whereas Java-based applications use
RMI and CORBA. However, none of these technologies is an unambiguous industry standard.
That is where web services step in. Web services offer an industry standard for developing dis-
tributed and service-oriented applications, which are becoming more and more popular in
modern computing.

The .NET Framework provides a powerful and flexible foundation for building web ser-
vices. Using this foundation, you can quickly develop and consume web services, as we will do
in this chapter. In addition, it will acquaint you with the building blocks of web services. Spe-
cifically, you will learn about the following topics:

• What web services are

• Creating web services by using the .NET Framework

• Consuming web services in your applications

• Understanding protocols involved in the web service infrastructure

• Calling web services asynchronously

What Are Web Services?
The concept of web services can be best understood with the help of components that you
might have built with .NET (or even COM). What is a component? A component is a reusable
piece of software that provides certain functionality to your application. For example, a
component developed for a banking application might be providing services such as loan
calculation, interest calculation, and so forth. If you need the same business logic at any other
place, such a component will be of great use. Components also isolate your business logic from
the rest of the application. Such components do not provide any user interface to your appli-
cation. They simply provide the required services to you.

Generally, components reside on the same machine as your application. What if they are
to be located on a separate server altogether? What if the network involved is not a LAN but the
Internet? What if you wish to host the components on a Unix box and consume them from a
Windows machine? That is where web services come into the picture.

8253.book Page 271 Tuesday, March 6, 2007 8:53 PM

272 C H A P T E R 9 ■ X M L W E B S E R V I C E S

You can think of web services as components that reside on a web server, while applica-
tions consume them over a network. More formally, web services can be defined as a set of
programmable APIs that can be called over a network by using XML, SOAP, and HTTP.

Web services are an industry standard, and no single company owns web services.
Naturally they are being widely accepted among software vendors and developers. The three
standards—XML, SOAP, and HTTP—are the pillars of the web service infrastructure. The fol-
lowing are some points to be remembered about web services:

• Web service standards are platform-independent industry standards.

• Web services do not provide any user interface. They provide only functionality or ser-
vices to your application.

• Web services use XML, SOAP, and HTTP as the communication protocols.

• Web services use the same request-response model as used by web applications.

• All communication between a web service and its consumer happens in a plain-text format.

• Web services can reside on any web server as long as the consumer has network connec-
tivity with that server.

• A web service and its client can be developed by using totally different platforms. For
example, you may develop a web service by using the .NET Framework and consume it
in a Java application.

Creating and Consuming Web Services
Building web services requires three essential steps:

• Creating the web service

• Creating a proxy for the web service

• Creating the client or consumer application of the web service

All the modern software development platforms introduce the concept of a proxy while per-
forming remote communication. A proxy is an entity that stands in for some other entity and
pretends to your client application that the proxy itself is the actual web service. In doing so, the
proxy shields you from low-level network programming details (such as socket programming,
underlying protocols, communication formats, and security). Your client application never talks
with the web service directly. All the communication (request as well as response) is passed
through the proxy.

If the proxy wants to pretend that the proxy itself is the web service, it must look like the
web service. To help the proxy look like the web service, the web service standards provide
a format called Web Services Description Language (WSDL). WSDL is an XML dialect that

8253.book Page 272 Tuesday, March 6, 2007 8:53 PM

C H A P T E R 9 ■ X M L W E B S E R V I C E S 273

describes the web service, listing details such as the functions exposed by the web service, their
parameters, data types, and return values. The proxy constructs itself by using this WSDL doc-
ument of a web service.

The file extension used by .NET web services is .asmx. The web services are developed as
classes and can have code behind them just like ASP.NET web forms.

Creating a Web Service
To create a web service by using Visual Studio, you need to create a new website and choose
ASP.NET Web Service as the project type. Figure 9-1 shows the New Web Site dialog box of
Visual Studio.

Figure 9-1. Creating a new web service

After you create the project, you should see a file called Service.asmx. This file contains the
markup shown in Listing 9-1.

Listing 9-1. @WebService Directive

<%@ WebService Language="C#" CodeBehind="~/App_Code/Service.cs" Class="Service" %>

The @WebService directive specifies that this is a web service. Note that the CodeBehind
attribute points to a file located in the App_Code folder (Service.cs). The Class attribute speci-
fies the class from the CodeBehind file that contains web service functionality. If you open the
Service.cs file, you should see something similar to Listing 9-2.

8253.book Page 273 Tuesday, March 6, 2007 8:53 PM

274 C H A P T E R 9 ■ X M L W E B S E R V I C E S

Listing 9-2. The Web Service Class

[WebService(Namespace = "http://tempuri.org/")]
public class Service : System.Web.Services.WebService
{
 [WebMethod]
 public string HelloWorld()
 {
 return "Hello World";
 }
}

Here we have a class called Service that inherits from the System.Web.Services.WebService
class. Actually, inheriting from the WebService class is not mandatory, but doing so will give you
added facilities such as state maintenance. Inside this class we have a public method called
HelloWorld(). The method by itself does not contain anything special—you must have written
many such methods in your own applications. What makes it special, however, is the WebMethod
attribute, which makes the method web callable—that is, the client application can call this
method over a network. Your class can contain any number of public or private methods.
However, only the methods that are public and decorated with the WebMethod attribute are web
callable.

Notice that the Service class is decorated with the [WebService] attribute. The [WebService]
attribute is used to specify some additional information about the web service such as its
description and namespace. The Namespace property indicates the default XML namespace to
use for the XML web service. The XML namespaces allow you to uniquely identify elements and
attributes from an XML document. Every web service needs to have a unique XML namespace to
identify itself so that client applications can distinguish it from other web services. By default this
namespace is set to http://tempuri.org/ but it is recommended that you change it to some other
URI. For example, you can use the domain name of your company as the namespace. Note that
although many times the XML namespaces are URLs, they need not point to actual resources on
the Web.

Run the application and you should see something similar to Figure 9-2.
You might be wondering why our web service is showing this user interface when we know

that web services do not have a user interface. Actually, this is not a user interface for the web
service. This interface is called a web service help page and allows you to test your web services.
Because web services by themselves do not have a user interface, how will you or your clients
test them to see whether they function correctly? To help you in such cases, ASP.NET generates
these help pages automatically. At the top of the help page you will see a link titled Service
Description. Just click on it and you will be presented with the WSDL of your web service
(Figure 9-3).

8253.book Page 274 Tuesday, March 6, 2007 8:53 PM

C H A P T E R 9 ■ X M L W E B S E R V I C E S 275

Figure 9-2. Web Service help page

Figure 9-3. WSDL of a web service

8253.book Page 275 Tuesday, March 6, 2007 8:53 PM

276 C H A P T E R 9 ■ X M L W E B S E R V I C E S

Have a look in the address bar. Do you see the WSDL in the query string? This is how you can
manually retrieve the WSDL of any ASP.NET web service. Simply attach WSDL at the end of the
web service URL and you get the WSDL. Click the Back button to return to the previous page.
You will notice the list of web methods (operations). Click on the HelloWorld web method. You
will be taken to another help page wherein you can execute this web method (Figure 9-4).

Figure 9-4. Invoking a web method

Before you click the Invoke button, have a look below it. You should see markup as shown
in Listings 9-3 and 9-4.

Listing 9-3. SOAP Request

POST /WebServiceDemos/Service.asmx HTTP/1.1
Host: localhost
Content-Type: text/xml; charset=utf-8
Content-Length: length
SOAPAction: "http://tempuri.org/HelloWorld"

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <HelloWorld xmlns="http://tempuri.org/" />
 </soap:Body>
</soap:Envelope>

8253.book Page 276 Tuesday, March 6, 2007 8:53 PM

C H A P T E R 9 ■ X M L W E B S E R V I C E S 277

Listing 9-4. SOAP Response

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: length

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <HelloWorldResponse xmlns="http://tempuri.org/">
 <HelloWorldResult>string</HelloWorldResult>
 </HelloWorldResponse>
 </soap:Body>
</soap:Envelope>

These two blocks represent the SOAP request being sent to the web service and the SOAP
response being received from the web service. As you can see, the SOAP request and response
consist of a tag called <soap:Envelope>. Inside there is a mandatory tag called <soap:Body>.
The Body tag contains the XML data being passed or returned. There can be an optional tag,
<soap:Header>, inside the <soap:Envelope> tag that can be used to pass arbitrary data to the
web service.

Now click the Invoke button. The help page will execute the web method and open
another window to show the web method response (Figure 9-5).

Figure 9-5. Hello World response

Now, close the browser and return to Visual Studio 2005. Modify the HelloWorld() method
as shown in Listing 9-5.

Listing 9-5. Web Method with a String Parameter

[WebMethod]
public string HelloWorld(string name)
{
 return "Hello " + name;
}

8253.book Page 277 Tuesday, March 6, 2007 8:53 PM

278 C H A P T E R 9 ■ X M L W E B S E R V I C E S

Here we have added one string parameter to the HelloWorld() method. The method now
returns Hello concatenated with the name supplied. Run the web service again. This time you
should see a help page as shown in Figure 9-6 for invoking the web method.

Figure 9-6. Invoking a web method with a string parameter

ASP.NET automatically generates a text box for you to enter the parameter. Of course this
works only for primitive data types such as strings and integers. ASP.NET will not be able to do
so for array, object, or collection parameters.

Creating Overloaded Web Methods

Just as you create an overloaded method for a standard class, you can also create an overloaded
web method. However, this requires a bit of work on your part. If you simply create two web
methods with the same name but different parameters and run the web service, you will
receive an error. To rectify the error, you need to modify the WebMethod attribute of one of the
web methods as shown in Listing 9-6.

Listing 9-6. Overloading Web Methods

[WebMethod]
public string HelloWorld()
{
 return "Hello World";
}

8253.book Page 278 Tuesday, March 6, 2007 8:53 PM

C H A P T E R 9 ■ X M L W E B S E R V I C E S 279

[WebMethod(MessageName="HelloWorldAgain")]
public string HelloWorld(string name)
{
 return "Hello " + name;
}

The code modifies the WebMethod attribute of the second method and sets the MessageName
property to an alternate name (or alias) for that version of the web method. In the XML markup
that is generated internally during the request and response, this alternate name is used
instead of the actual method name. However, as you will see later, the proxy is intelligent
enough to provide overloaded versions of web methods in the client application. Figure 9-7
shows what the overloaded web methods look like in the help page.

Figure 9-7. The web method after setting the MessageName property

Buffering the Web Method Response

You can decide whether the web method should start emitting the response back to the
client immediately or buffer it until the entire serialization is over by using a property called
BufferResponse. Setting this property to true buffers the response until serialization is com-
plete and then sends all the serialized data at once to the client. Setting this property to false
will return the data to the client as it is serialized. The web service’s performance will be better
with BufferResponse set to true because buffering the response reduces the frequent serializa-
tion calls. If your web method is returning only a small amount of data in the response stream,
buffering the response will improve the performance. On the other hand, if your web method
is returning a large amount of data, you may consider turning buffering off so as to avoid large
memory consumption on the server.

Listing 9-7 illustrates the use of this property.

8253.book Page 279 Tuesday, March 6, 2007 8:53 PM

280 C H A P T E R 9 ■ X M L W E B S E R V I C E S

Listing 9-7. Using the BufferResponse Property

[WebMethod(BufferResponse = true)]
public string BufferMyResponse()
{
 return "Hello World";
}

Caching the Output of Web Methods

Caching refers to preserving the output of a web method on the web server in order to improve
the performance. With caching implemented, the web service remembers what response it
gave to method calls, so that when the same method calls are made again, the results are
readily returned without executing the method again and again. This naturally improves the
performance. To implement caching for a web method, you need to set the CacheDuration
property of the WebMethod attribute to the number of seconds for which the return value of the
web method is to be cached. By default the web method response is not cached. Listing 9-8
illustrates the use of this property.

Listing 9-8. Using the CacheDuration Property

[WebMethod(CacheDuration = 30)]
public string CacheMe(string name)
{
 return "Hello " + name;
}

Enabling Session State for Web Methods

The ASP.NET session-management feature allows you to persist user-specific data while users
are using your website. You can also use the Session object in web services. To store data in the
Session object, the web service class must inherit from the System.Web.Services.WebService
base class, and the EnableSession property of the WebMethod attribute must be set to true.
Listing 9-9 shows the use of this property.

Listing 9-9. Using the EnableSession Property

[WebMethod(EnableSession=true)]
public void PutNameInSession(string name)
{
 Session["myname"] = name;
}

[WebMethod(EnableSession = true)]
public string GetNameFromSession()
{
 return Session["myname"].ToString();
}

8253.book Page 280 Tuesday, March 6, 2007 8:53 PM

C H A P T E R 9 ■ X M L W E B S E R V I C E S 281

Each client session is uniquely identified by a cookie issued by the web service. In order for
the web service to maintain session state for a client application, the client must save this
cookie somewhere. Clients can receive the cookie by creating a new instance of a class called
CookieContainer and assigning that to the CookieContainer property of the proxy class before
calling the web method. This technique will be illustrated when we create the client applica-
tion for our web service.

Enabling Transactions for Web Methods

In real-world financial applications, it is often necessary that certain operations be executed as
a single unit or transaction. You can mark your web method to execute in a transaction by
using the TransactionOption property of the WebMethod attribute. This property is an enumera-
tion of type System.EnterpriseServices.TransactionOption. All the possible values of the
TransactionOption enumeration and their effects on the web method are listed in Table 9-1.

Table 9-1. Values of the TransactionOption Enumeration and Their Effects on the Web Method

As you might have guessed, the last two options are most commonly used. If the web
method throws an exception, the transaction is automatically aborted. Otherwise, the transac-
tion is automatically committed. The code in Listing 9-10 illustrates the use of this property.

Listing 9-10. Using the TransactionOption Property

[WebMethod(TransactionOption = TransactionOption.Required)]
public string SomeMethod()
{
 //code here
}

Setting a Description for a Web Method

You can set a description for a web method by using the Description property of the WebMethod
attribute. This description will be displayed on the help page. The code in Listing 9-11 illus-
trates its use.

Value Effect on the Web Method

Disabled When a request is processed, the web service method is executed without a
transaction.

NotSupported When a request is processed, the web service method is executed without a
transaction.

Supported When a request is processed, the web method is executed without a transaction.

Required When a request is processed, a new transaction will be created for the web
service method.

RequiresNew When a request is processed, a new transaction will be created for the web
service method.

8253.book Page 281 Tuesday, March 6, 2007 8:53 PM

282 C H A P T E R 9 ■ X M L W E B S E R V I C E S

Listing 9-11. Using the Description Property

[WebMethod(Description = "This is description for web method")]
public string DescribeMe()
{
 return "Hello World";
}

Returning a DataSet from a Web Method

Up until now, we have simply returned strings from our web methods. You can also return
complex data types such as a DataSet from your web methods. The code in Listing 9-12 illus-
trates how to return a DataSet from a web method.

Listing 9-12. Returning a DataSet from a Web Method

[WebMethod]
public DataSet GetEmployees()
{
 DataSet ds = new DataSet();
 SqlDataAdapter da = new SqlDataAdapter("SELECT * FROM employees", "data ➥

source=.\\sqlexpress;initial catalog=northwind;Integrated Security=True");
 da.Fill(ds, "myemployees");
 return ds;
}

The code creates an instance of DataSet and SqlDataAdapter. The code then calls the
Fill() method of SqlDataAdapter, which accepts two parameters: the DataSet to fill and the
name of the DataTable to be created. The code then returns the DataSet to the caller. If you run
this web method by using the help page, you should see something similar to Figure 9-8.

Figure 9-8. Web method returning a DataSet

8253.book Page 282 Tuesday, March 6, 2007 8:53 PM

C H A P T E R 9 ■ X M L W E B S E R V I C E S 283

As you can see, the entire DataSet is serialized as XML data.

Returning Custom Objects from a Web Method

In the previous examples, you saw how to return primitive data types such as a string and built-
in class types such as DataSet. In this example, you will see how to return custom objects from
a web method. First, you need to create a new class inside the web service project. To do so,
right-click on the App_Code folder and choose Add New Item. From the dialog box that opens,
select Class and call it Employee. Add the property definitions as shown in Listing 9-13 to the
Employee class.

Listing 9-13. Creating the Employee Class

public class Employee
{
 private int intID;
 private string strFName;
 private string strLName;
 private string strHPhone;
 private string strNotes;

 public int EmployeeID
 {
 get
 {
 return intID;
 }
 set
 {
 intID = value;
 }
 }

 public string FirstName
 {
 get
 {
 return strFName;
 }
 set
 {
 strFName = value;
 }
 }

8253.book Page 283 Tuesday, March 6, 2007 8:53 PM

284 C H A P T E R 9 ■ X M L W E B S E R V I C E S

 public string LastName
 {
 get
 {
 return strLName;
 }
 set
 {
 strLName = value;
 }
 }

 public string HomePhone
 {
 get
 {
 return strHPhone;
 }
 set
 {
 strHPhone = value;
 }
 }

 public string Notes
 {
 get
 {
 return strNotes;
 }
 set
 {
 strNotes = value;
 }
 }
}

The code creates a class named Employee with five public properties: EmployeeID,
FirstName, LastName, HomePhone, and Notes. Note that when an instance of any class is serial-
ized as a return value of a web method, only the public members are serialized. Next, we will
create a web method called GetEmployee() that creates an instance of the Employee class, sets
its properties, and returns it back to the client. Listing 9-14 shows the GetEmployee() method.

8253.book Page 284 Tuesday, March 6, 2007 8:53 PM

C H A P T E R 9 ■ X M L W E B S E R V I C E S 285

Listing 9-14. Returning an Object from a Web Method

[WebMethod]
public Employee GetEmployee()
{
 Employee emp = new Employee();
 emp.EmployeeID = 1;
 emp.FirstName = "Nancy";
 emp.LastName = "Davolio";
 emp.HomePhone = "(206) 555-9857";
 emp.Notes = "Notes go here";
 return emp;
 }

If you invoke the web method via the help page, you should see something similar to
Figure 9-9.

Figure 9-9. Returning a custom object from web methods

You will find that the output is very similar to the one generated during XML serialization
in Chapter 8.

Creating a Proxy for a Web Service
To create a proxy for the web service by using Visual Studio, you must first create the client
application because the proxy always resides there. Though any type of application can act as
a client to the web service, as an example we will create a Windows application that consumes
the web service.

Create a new Windows application in Visual Studio. Right-click on the project in Solution
Explorer and choose Add Web Reference. The Add Web Reference dialog box will be displayed,
as shown in Figure 9-10.

8253.book Page 285 Tuesday, March 6, 2007 8:53 PM

286 C H A P T E R 9 ■ X M L W E B S E R V I C E S

Figure 9-10. The Add Web Reference dialog box

A web reference is nothing but a proxy class that allows you to use classes and methods
exposed by a web service in your client application. In this dialog box, enter the complete
URL of the Service.asmx file and click the Go button. You will see the same help page as
before. In the Web Reference Name text box, key in a name for the web reference or leave it
unchanged. Whatever you supply in this text box becomes the namespace name for the
proxy class being created. Click the Add Reference button. Your Solution Explorer should
now look like Figure 9-11.

Figure 9-11. Web References folder

8253.book Page 286 Tuesday, March 6, 2007 8:53 PM

C H A P T E R 9 ■ X M L W E B S E R V I C E S 287

Note how a new folder called Web References has been added with a subfolder called
localhost. The localhost folder further contains a WSDL file. There will also be a file called
Reference.cs. This file contains the source code of the web service proxy class. If you change
the web service after adding the proxy, you need to update the web reference again. You can do
so by right-clicking on the web reference and selecting the Update Web Reference option.

Creating a Form That Consumes a Web Method
To demonstrate how to call web methods, you will need to create a form that will display the
records from the Employees table. The form should look like Figure 9-12.

Figure 9-12. Application that calls the GetEmployees() web method

The application consists of a DataGridView control that displays all the records from the
Employees table of the Northwind database. Import the localhost namespace in your project
(recollect that we have specified the web reference name as localhost). In the Load event of the
form, write the code shown in Listing 9-15.

Listing 9-15. Calling a Web Method

private void Form1_Load(object sender, EventArgs e)
{
 Service proxy = new Service();
 DataSet ds = proxy.GetEmployees();
 dataGridView1.DataSource = ds.Tables["myemployees"].DefaultView;
}

The code creates an instance of the proxy class. Note that Service is the proxy class, not
the web service class itself. We then call the GetEmployees() method of the proxy, which in turn
will call the actual GetEmployees() web method of the web service. Remember that the return
value of GetEmployees() is a DataSet populated with records from the Employees table. The
code then binds the DataSet to the DataGridView. If you run the application, you should see
the DataGridView populated with records from the Employees table.

8253.book Page 287 Tuesday, March 6, 2007 8:53 PM

288 C H A P T E R 9 ■ X M L W E B S E R V I C E S

Storing Values in a Web Service Session

Recollect that earlier we created two web methods—PutNameInSession() and
GetNameFromSession()—that deal with session storage. Let’s see how you can call
these methods in the client application. To see how this works, you need to create
an application as shown in Figure 9-13.

Figure 9-13. Storing session values

The application consists of a text box and two buttons. The text box accepts a name that is to
be stored in a session variable. The Store Name in Session button calls the PutNameInSession()
web method and stores the name in a session variable. The Retrieve Name from Session button
calls the GetNameFromSession() web method and displays the returned name in a message box.
Listing 9-16 shows the code that is responsible for storing the name in a session variable.

Listing 9-16. Storing a Value in a Session Variable

CookieContainer cookiecontainer = new CookieContainer();
private void button1_Click(object sender, EventArgs e)
{
 Service proxy = new Service();
 proxy.CookieContainer = cookiecontainer;
 proxy.PutNameInSession(textBox1.Text);
}

The code creates a form-level variable of type CookieContainer, which resides in the
System.Net namespace and acts as storage for cookies. You might be wondering why we need
this class. By default the session management of web services depends on a cookie, and the
web service needs to identify each and every session with the help of a unique identifier. This
identifier is passed to and fro with the help of a cookie.

The code then creates an instance of the web service proxy class. It sets its CookieContainer
property to the CookieContainer object we just created. The CookieContainer property of the
proxy class specifies the storage for the cookies created during the web service communication.
Finally, the code calls the PutNameInSession() method of the proxy by passing the name entered
in the text box. The Click event handler of the Retrieve Name from Session button contains the
code shown in Listing 9-17.

8253.book Page 288 Tuesday, March 6, 2007 8:53 PM

C H A P T E R 9 ■ X M L W E B S E R V I C E S 289

Listing 9-17. Retrieving a Value Stored in a Session Variable

private void button2_Click(object sender, EventArgs e)
{
 Service proxy = new Service();
 proxy.CookieContainer = cookiecontainer;
 MessageBox.Show(proxy.GetNameFromSession());
}

The code creates an instance of the proxy class as before. It then sets the CookieContainer
property of the proxy to the CookieContainer object we created previously. This way, the previously
issued session identifier can be passed back to the web service. Finally, the GetNameFromSession()
method is called. The value returned by the GetNameFromSession() method is displayed in a mes-
sage box.

Changing a Web Service URL at Run Time

While developing clients for a web service, you add a web reference to the web service by spec-
ifying the URL of the .ASMX file, and it is this URL that Visual Studio uses when generating the
required proxy object. However, after adding a web reference, the web service could be moved
to some other location. In such cases, the easiest way out is to re-create the proxy object. But
what if this happens after you deploy your web service client? It would be nice if you could
change the URL programmatically so that even if the original web service is moved, your cli-
ents need not be recompiled. The Url property of the web service proxy class allows you to do
just that. Listing 9-18 shows the relevant code.

Listing 9-18. Changing the Web Service URL at Run Time

Service proxy=new Service();
proxy.Url="http://localhost/newlocation/Service.asmx";

Calling a Web Method Asynchronously
Up until now, we have called web methods synchronously. That means that unless the web
method is not finished, our form processing is blocked. Synchronous calls are what you need
in most applications, but at times you may need to call web methods in asynchronous fashion.

Imagine that you are developing a portal by using ASP.NET 2.0. As a part of the feature set,
you want to provide a facility whereby users can get a comparative price list of computer
books. The users will specify a book title whose price list is to be generated. To obtain the cost
of the book, you consume web services exposed by various book suppliers. That means for a
book title you call many web methods that return the cost of the title by individual suppliers.
You then collectively display the costs to the user. If you call the web methods in synchronous
fashion, the total time taken will be the summation of the processing time taken by the individ-
ual web methods. On the other hand, if you call the web methods in asynchronous fashion, the
time taken will be reduced to the processing time taken by the lengthiest web method
(Figure 9-14).

8253.book Page 289 Tuesday, March 6, 2007 8:53 PM

290 C H A P T E R 9 ■ X M L W E B S E R V I C E S

Figure 9-14. Asynchronous web method calls

In a traditional approach, you might have created threads manually and then executed
each individual web method call on a separate thread. Fortunately, the web service proxy auto-
matically provides the entire infrastructure needed to call web methods asynchronously. The
proxy automatically creates methods of the form XXXXAsync(), where XXXX is the name of your
web method. For example, if your web method name is HelloWorld(), there will be a method
called HelloWorldAsync(). Calling this method invokes the web method in asynchronous
fashion.

After the web method has completed its processing, the proxy raises an event of the form
XXXXComplete, where XXXX is the name of your web method. Taking the preceding example fur-
ther, you will have the HelloWorldComplete event for your proxy. The automatically generated
events are based on an automatically generated delegate. The delegate will be of the form
XXXXEventHandler, where XXXX is the name of the event. You can use this event to trap the return
value of the web method.

To see how a web method can be called asynchronously, we will modify the example
shown previously in Figure 9-12. The modified code is shown in Listing 9-19.

8253.book Page 290 Tuesday, March 6, 2007 8:53 PM

C H A P T E R 9 ■ X M L W E B S E R V I C E S 291

Listing 9-19. Calling a Web Method Asynchronously

private void Form1_Load(object sender, EventArgs e)
{
 Service proxy = new Service();
 proxy.GetEmployeesCompleted +=
 new GetEmployeesCompletedEventHandler(proxy_GetEmployeesCompleted);
 proxy.GetEmployeesAsync();
}

void proxy_GetEmployeesCompleted(object sender, GetEmployeesCompletedEventArgs e)
{
 DataSet ds = e.Result;
 dataGridView1.DataSource = ds.Tables["myemployees"].DefaultView;
}

The code creates an instance of the web service proxy class in the Load event handler of the
form. Notice how the proxy automatically contains the GetEmployeesCompleted event and the
GetEmployeesCompletedEventHandler delegate. The code then wires this event to its event han-
dler function, proxy_GetEmployeesCompleted(). Finally, the GetEmployeesAsync() method of
the proxy is called to start executing the web method in asynchronous fashion.

After the execution is done, the proxy will raise the GetEmployeesCompleted event handler,
which receives a parameter of type GetEmployeesCompletedEventArgs. This event argument
parameter has a property called Result that gives you the actual return value of the web
method. In our case, the return value is a DataSet and hence the code collects it in a DataSet
variable. The DataGridView control is then bound with this returned DataSet.

Understanding SOAP
In the previous section, you learned that SOAP is a lightweight XML-based protocol that forms
one of the building blocks of the web service infrastructure. You also learned how web service
requests and responses are encoded in SOAP format. Now it’s time to peek inside SOAP in a bit
of detail. Have a look at Listing 9-20.

Listing 9-20. SOAP Request

POST /WebServiceDemos/Service.asmx HTTP/1.1
Host: localhost
Content-Type: text/xml; charset=utf-8
Content-Length: length
SOAPAction: "http://tempuri.org/HelloWorld"

8253.book Page 291 Tuesday, March 6, 2007 8:53 PM

292 C H A P T E R 9 ■ X M L W E B S E R V I C E S

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <HelloWorld xmlns="http://tempuri.org/" />
 </soap:Body>
</soap:Envelope>

As you might have guessed, Listing 9-20 represents a SOAP request. If you observe this
markup carefully, you will find that the request consists of an envelope (<soap:Envelope>) and
body (<soap:Body>). In fact, a SOAP request or response can contain four possible parts. Each
of these parts is described in Table 9-2.

Table 9-2. Parts of a SOAP Message

Using SOAP Headers
In this section, you will develop an application that illustrates the use of SOAP headers for user
authentication purposes. The application passes user credentials to the web service via a custom
SOAP header. The web service tries to authenticate the user on the basis of these credentials and
returns the requested data if authentication is successful.

To begin developing the application, you need to create a new web service by using Visual
Studio. Then add a class called User in the App_Code folder. This class represents a user of the
web service and contains two public properties: UserID and Password. Listing 9-21 shows the
completed User class.

Part Description

Envelope The SOAP envelope wraps the SOAP request or response. It is the root element of
the SOAP message and is represented by the <soap:Envelope> markup tag. All SOAP
messages must have an envelope.

Header SOAP headers are an optional part of a SOAP message. They are used to pass
arbitrary data to and from the web service and its client. For example, you can
use them to pass authentication information to the web service. A SOAP header is
represented by the <soap:Header> markup tag.

Body The SOAP body is a mandatory part of a SOAP message. It includes the actual
request or response data in XML format. The SOAP body is represented by the
<soap:Body> markup tag.

Fault A SOAP fault is an optional part of a SOAP message. It comes into the picture
whenever there is a runtime exception in the web service. The exception details
are enclosed in the <soap:Fault> tag and sent back to the client application.

8253.book Page 292 Tuesday, March 6, 2007 8:53 PM

C H A P T E R 9 ■ X M L W E B S E R V I C E S 293

Listing 9-21. Creating a Custom Class That Inherits from the SoapHeader Class

public class User:SoapHeader
{
 private string strUid;
 private string strPwd;

 public string UserID
 {
 get
 {
 return strUid;
 }
 set
 {
 strUid=value;
 }
 }

 public string Password
 {
 get
 {
 return strPwd;
 }
 set
 {
 strPwd = value;
 }
 }
}

Notice that the User class inherits from the SoapHeader base class, which resides in the
System.Web.Services.Protocols namespace and represents a basic SOAP header. All the cus-
tom SOAP header classes must inherit directly or indirectly from the SoapHeader class. Make
sure that you have imported the System.Web.Services.Protocols namespace before creating
the User class.

The User class simply contains two public properties: UserID and Password. After you cre-
ate the User class, you can create the web service as shown in Listing 9-22.

8253.book Page 293 Tuesday, March 6, 2007 8:53 PM

294 C H A P T E R 9 ■ X M L W E B S E R V I C E S

Listing 9-22. Using a SOAP Header

public class Service : System.Web.Services.WebService
{
 public User CurrentUser;

 [WebMethod]
 [SoapHeader("CurrentUser",Direction=SoapHeaderDirection.In,Required=true)]
 public DataSet GetEmployees()
 {
 if (CurrentUser == null)
 {
 throw new SoapHeaderException("Authentication details not found!",
 SoapException.ClientFaultCode);
 }
 if (CurrentUser.UserID == "Admin" && CurrentUser.Password == "password")
 {
 DataSet ds = new DataSet();
 SqlDataAdapter da =
 new SqlDataAdapter("SELECT * FROM employees", ➥

 "data source=.\\sqlexpress;initial catalog=northwind;Integrated Security=True");
 da.Fill(ds, "myemployees");
 return ds;
 }
 else
 {
 throw new SoapException("Authentication failed!",
 SoapException.ClientFaultCode);
 }
 }
}

Examine the web service class carefully. At the top it declares a variable of type User. The
GetEmployees() web method fills a DataSet with all the records from the Employees table and
returns the DataSet back to the caller. The important thing to note about the GetEmployees()
web method is that it is decorated with the SoapHeader attribute. This is how you inform
the web method that a SOAP header is to be processed.

The SoapHeader attribute specifies one parameter and two properties. The first parameter
specifies the instance name of the SOAP header class that we wish to use. In our example, the
name of the User variable is CurrentUser and hence that is what we pass to the web method. This
instance variable must be available publicly in the web service class. The Direction property

8253.book Page 294 Tuesday, March 6, 2007 8:53 PM

C H A P T E R 9 ■ X M L W E B S E R V I C E S 295

indicates the direction of the SoapHeader and is of enumeration type SoapHeaderDirection. The
possible values of the SoapHeaderDirection enumeration are as follows:

In: The direction of In indicates that the SOAP header is passed from the client to the web
service.

Out: The direction of Out indicates that the SOAP header is passed from the web service to
the client.

InOut: The direction of InOut indicates that the SOAP header is passed to and from the web
service and its client.

The Required property indicates that the presence of the SOAP header is mandatory.
Inside the GetEmployees() web method, we check whether the SOAP header is null.

If so, this indicates that the authentication details were not sent and hence the code raises a
SoapHeaderException. The SoapHeaderException class is used to represent an error in the SOAP
header. The first parameter of the SoapHeaderException constructor is the error message, and
the second parameter is the SOAP fault code for the client call. The code then checks the user
credentials. If the credentials are correct, a DataSet is created and filled with all the records
from the Employees table. Otherwise, a SoapException is raised. The SoapException class is used
to represent an error with the SOAP request processing. The constructor of SoapException
takes the same two parameters as the SoapHeaderException class.

To consume the web service you just created, you need to develop a client application as
shown in Figure 9-15.

Figure 9-15. Application that uses SOAP headers

8253.book Page 295 Tuesday, March 6, 2007 8:53 PM

296 C H A P T E R 9 ■ X M L W E B S E R V I C E S

The application consists of two text boxes for specifying the user ID and password. The
Get Employees button calls the GetEmployees() web method and displays the results in a
DataGridView control. After you create the user interface of the application, add a web refer-
ence to the web service. Then write the code as shown in Listing 9-23 in the Click event of the
Get Employees button.

Listing 9-23. Passing a SOAP Header from the Client to the Web Service

private void button1_Click(object sender, EventArgs e)
{
 Service proxy = new Service();
 if (textBox1.Text != "" && textBox2.Text != "")
 {
 User currentuser = new User();
 currentuser.UserID = textBox1.Text;
 currentuser.Password = textBox2.Text;
 proxy.UserValue = currentuser;
 }
 try
 {
 DataSet ds = proxy.GetEmployees();
 dataGridView1.DataSource = ds.Tables["myemployees"].DefaultView;
 }
 catch (SoapHeaderException ex2)
 {
 MessageBox.Show(ex2.Message + "[" + ex2.Code + "]");
 }
 catch (SoapException ex1)
 {
 MessageBox.Show(ex1.Message + "[" + ex1.Code + "]");
 }
}

Notice the code marked in bold. The code checks whether the user ID and password have
been entered. If so, it creates an instance of the User class. Remember that this User class is
created when you add a web reference to the web service. Then the UserID and Password prop-
erties of the User class are set with corresponding values from the text boxes.

Next, the UserValue property of the web service proxy is set. You might be wondering
where this UserValue property has come from. When you create a proxy for the web service, it
automatically creates a property of the form XXXXValue, where XXXX is the name of the SOAP
header class. The type of the XXXXValue property is the same as the class XXXX. After this prop-
erty has been set, the GetEmployees() web method is called and the DataSet returned is bound
to the DataGridView control.

The code also has some exception-handling code. The try...catch block checks for two
types of exceptions: SoapHeaderException and SoapException. Remember that these are the
same exceptions that we raise from the web service if there is an authentication error. The

8253.book Page 296 Tuesday, March 6, 2007 8:53 PM

C H A P T E R 9 ■ X M L W E B S E R V I C E S 297

Message property of both of these exception classes gives you the detailed error message, and
the Code property gives the SOAP fault code details.

To test the application, run it and click the Get Employees button without specifying any
credentials. You should get a message box as shown in Figure 9-16 that informs you about the
SoapHeaderException.

Figure 9-16. Catching a SoapHeaderException

Similarly, enter some invalid credentials and click the Get Employees button again. This
time the message box should resemble Figure 9-17.

Figure 9-17. Catching SoapException

Finally, if you supply valid credentials and then click the Get Employees button, your form
should resemble Figure 9-15.

Understanding the WSDL Document
While developing your first web service in this chapter, you learned that WSDL is an XML
vocabulary that describes the web service in terms of web methods exposed, their parameters,
data types, and return values. Though you will rarely modify or construct WSDL yourself (at
least when you are using Visual Studio), it is helpful to understand the internal structure of the
WSDL document. This way, your understanding of the web service metadata will broaden. You
will also find the knowledge of WSDL useful while learning Windows Communication Founda-
tion services, which are covered in Chapter 12.

Let’s see the WSDL of a simple Hello World web service that we created initially in this
chapter. We will be using this web service only as a sample. The discussion that follows is appli-
cable to any other WSDL document also. The WSDL of the preceding web service is shown in
Listing 9-24.

8253.book Page 297 Tuesday, March 6, 2007 8:53 PM

298 C H A P T E R 9 ■ X M L W E B S E R V I C E S

Listing 9-24. A Sample WSDL Document

<?xml version="1.0" encoding="utf-8"?>
<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:tns="http://tempuri.org/"
xmlns:s="http://www.w3.org/2001/XMLSchema"
xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
targetNamespace="http://tempuri.org/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <wsdl:types>
 <s:schema elementFormDefault="qualified" targetNamespace="http://tempuri.org/">
 <s:element name="HelloWorld">
 <s:complexType />
 </s:element>
 <s:element name="HelloWorldResponse">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="HelloWorldResult"
 type="s:string" />
 </s:sequence>
 </s:complexType>
 </s:element>
 </s:schema>
 </wsdl:types>
 <wsdl:message name="HelloWorldSoapIn">
 <wsdl:part name="parameters" element="tns:HelloWorld" />
 </wsdl:message>
 <wsdl:message name="HelloWorldSoapOut">
 <wsdl:part name="parameters" element="tns:HelloWorldResponse" />
 </wsdl:message>
 <wsdl:portType name="ServiceSoap">
 <wsdl:operation name="HelloWorld">
 <wsdl:input message="tns:HelloWorldSoapIn" />
 <wsdl:output message="tns:HelloWorldSoapOut" />
 </wsdl:operation>
 </wsdl:portType>

8253.book Page 298 Tuesday, March 6, 2007 8:53 PM

C H A P T E R 9 ■ X M L W E B S E R V I C E S 299

 <wsdl:binding name="ServiceSoap" type="tns:ServiceSoap">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" />
 <wsdl:operation name="HelloWorld">
 <soap:operation soapAction="http://tempuri.org/HelloWorld" style="document" />
 <wsdl:input>
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:binding name="ServiceSoap12" type="tns:ServiceSoap">
 <soap12:binding transport="http://schemas.xmlsoap.org/soap/http" />
 <wsdl:operation name="HelloWorld">
 <soap12:operation soapAction="http://tempuri.org/HelloWorld"
 style="document" />
 <wsdl:input>
 <soap12:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap12:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="Service">
 <wsdl:port name="ServiceSoap" binding="tns:ServiceSoap">
 <soap:address location="http://localhost:2230/WebApplication3/Service.asmx" />
 </wsdl:port>
 <wsdl:port name="ServiceSoap12" binding="tns:ServiceSoap12">
 <soap12:address
 location="http://localhost:2230/WebApplication3/Service.asmx" />
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

If you observe the WSDL markup in Listing 9-24, you can identify six parts of the docu-
ment. These six parts are the core elements of any WSDL document and are listed in Table 9-3.

8253.book Page 299 Tuesday, March 6, 2007 8:53 PM

300 C H A P T E R 9 ■ X M L W E B S E R V I C E S

Table 9-3. Parts of WSDL

Let’s look at each of these parts in more detail.

The Messages
You learned previously that web service communication works on the basis of a request and
response model. A web service request as well as response consists of SOAP data. This SOAP
data is called a SOAP message. Each web method has a message that represents a request for
the web method and a message that represents the response from that web method. Thus our
HelloWorld() web method will have two messages:

• The name of the request message is of the form XXXXSoapIn, where XXXX is the name of
the web method.

• Similarly, the name of the response message is of the form XXXXSoapOut, where XXXX is
the name of the web method.

The WSDL message elements provide a consolidated list of all the messages exposed by
the web service. The message names provided by this list are used everywhere else in the WSDL
document.

The Type Definitions
Each message in a web service has a specific structure, or schema. This schema is specified
by the types element of the WSDL document. If you observe the types section in the WSDL
mentioned earlier, you will find that it specifies a schema of two messages: HelloWorld and
HelloWorldResponse. You will also notice that the data type of the return value is specified here.
This schema closely matches the XSD schema you saw in earlier chapters.

Part Description

types The <wsdl:types> element encloses all the type definitions from the web service.

message A message is the XML data that is being carried between the web service and its
client. The <wsdl:message> element represents this message.

portType The <wsdl:portType> section contains a list of operations (web methods) exposed
by the web service.

binding A binding is the protocol and format used by the port. It is represented by the
<wsdl:binding> markup tag.

port A port is an end point of web service communication. It is represented by the
<wsdl:port> markup tag.

service A service is the collection of one or more ports. It is represented by the
<wsdl:service> markup tag.

8253.book Page 300 Tuesday, March 6, 2007 8:53 PM

C H A P T E R 9 ■ X M L W E B S E R V I C E S 301

The Port Types
A web service consists of one or more operations. In simple terms, an operation is analogous to
a function or method. Each operation has an input message (request) and an output message
(response). All the operations of a web service are listed under the portType section. The port
name is of the form XXXXSoap, where XXXX is the name of the web service class. Thus our sample
web service has one operation called HelloWorld. The HelloWorld operation consists of two
messages. The input message name is HelloWorldSoapIn, and the output message name is
HelloWorldSoapOut. Recollect that these message names were defined earlier in the message
section.

The Binding
A binding specifies the message format and protocol for each port type. For example, in our
web service there is a binding defined for the ServiceSoap port type. The linking between a
binding and port type is the type attribute of the <wsdl:binding> element. The binding name is
of the form XXXXSoap, where XXXX is the name of the web service class. Thus our WSDL has a
binding defined named ServiceSoap that is for a port type ServiceSoap.

The Service
A service is a set of ports and bindings. A web service port is a logical end point for a web service. A
service has the same name as the web service class. In our example, the service element defines a
port called ServiceSoap and links it with the ServiceSoap binding.

A Summary of WSDL
To summarize what we have discussed:

• Every web service consists of one or more operations.

• Each operation typically has a request message and a response message.

• Each message is listed in the message section of the WSDL.

• The schema of all the messages are defined by the types section of the WSDL.

• All the operations exposed by a web service are listed under the portType section of
the WSDL.

• For each port type, a transport format and protocol needs to be specified. This is referred
to as binding.

• The binding for a port type is specified by the binding section of the WSDL.

• The service section of the WSDL defines an end point for the web service called a port.

• A port has a specific binding associated with it.

8253.book Page 301 Tuesday, March 6, 2007 8:53 PM

302 C H A P T E R 9 ■ X M L W E B S E R V I C E S

Summary
In this chapter, you learned one of the powerful features of the .NET Framework: web services.
Web services are a programmable set of APIs that can be called over a network by using indus-
try standards such as XML, SOAP, and HTTP. Web services can prove to be very beneficial in
areas such as application integration, cross-platform communication, and distributed com-
munication over the Internet.

You learned to create web services, a proxy for the web service, and a client that consumes
the web service. You also learned many features that can be implemented on your web meth-
ods such as caching, response buffering, and transactions. Finally, you peeked into the internal
structure of SOAP and WSDL.

8253.book Page 302 Tuesday, March 6, 2007 8:53 PM

303

■ ■ ■

C H A P T E R 1 0

XML in SQL Server 2005

Most business applications store data in some kind of data store, which is usually a relational
database. To that end, SQL Server is one of Microsoft’s flagship products. With the increasing
use of XML in business applications, Microsoft found it necessary to incorporate strong sup-
port for XML in their database engine also, with SQL Server 2000 being possibly the first version
where this XML integration was clearly visible.

Since then, Microsoft has added many other features to SQL Server 2005. Because SQL
Server is such a popular database, it is worth learning its XML features. Moreover, it would be
interesting to see how these features can be consumed from the applications built on top of the
.NET Framework. In this chapter, you will learn about the following:

• Using XML extensions to the SELECT statement of SQL Server 2005

• Using SQLXML managed classes

• Working with the new XML data type

• Creating web services native to SQL Server 2005

You should note, however, that an extensive examination of all the XML features of SQL
Server 2005 is out of scope of this book. The intention here is to make you familiar with the XML
capabilities of SQL Server 2005.

Using XML Extensions to the SELECT Statement
As of SQL Server 2000, you can execute SELECT statements that return the results in XML for-
mat. In Chapter 7, you got a taste of this feature while using the ExecuteXmlReader() method of
the SqlCommand class. Now it’s time to look at these extensions in detail.

The FOR XML Clause
To fetch FOR XML clause SQL Server data in XML format, you need to use the FOR XML clause with
the SELECT statement. The FOR XML clause has four modes that allow you to return the XML
results in different formats. The modes of the FOR XML clause are listed in Table 10-1.

8253.book Page 303 Tuesday, March 6, 2007 8:53 PM

304 C H A P T E R 1 0 ■ X M L I N S Q L S E R V E R 2 0 0 5

Table 10-1. Modes of the FOR XML Clause

To test these modes of the FOR XML clause, you will execute some SELECT queries against
the famous Northwind database by using the SQL Server 2005 Management Studio, shown in
Figure 10-1.

Figure 10-1. The SQL Server 2005 Management Studio

■Note To work with the examples discussed in this chapter, you need to have SQL Server 2005 or SQL
Server 2005 Express Edition, SQL Server 2005 Management Studio, and SQLXML managed classes installed
on your machine.

Mode Description

AUTO The AUTO mode returns the results of the SELECT query as XML fragments. By default
it returns the data as XML elements. The name of the XML element is the same as the
table name, and column values are returned as XML attributes. You have the option
to return all the columns as elements instead of attributes.

RAW The RAW mode returns the results as a <row> element. The column values are returned
as XML attributes.

PATH The PATH mode allows you to define the nesting of the returned XML by using simple
XPath syntax.

EXPLICIT The EXPLICIT mode defines a schema for the returned results explicitly in the
SELECT query.

8253.book Page 304 Tuesday, March 6, 2007 8:53 PM

C H A P T E R 1 0 ■ X M L I N S Q L S E R V E R 2 0 0 5 305

The AUTO Mode

Open SQL Server 2005 Management Studio and issue the SELECT statement shown in Listing 10-1.

Listing 10-1. Using the AUTO Mode of the FOR XML Clause

SELECT EMPLOYEEID,FIRSTNAME,LASTNAME FROM EMPLOYEES FOR XML AUTO

<EMPLOYEES EMPLOYEEID="1" FIRSTNAME="Nancy" LASTNAME="Davolio"/>
<EMPLOYEES EMPLOYEEID="2" FIRSTNAME="Andrew" LASTNAME="Fuller"/>
<EMPLOYEES EMPLOYEEID="3" FIRSTNAME="Janet" LASTNAME="Leverling"/>
....

The SELECT statement from Listing 10-1 selects three columns—EmployeeID, FirstName,
and LastName—from the Employees table. Listing 10-1 also shows the returned data in XML for-
mat. Notice how the table name is used for the XML element names (<EMPLOYEES>), and column
names are used for attribute names.

Have you noticed something about the character casing of the returned XML? It depends
totally on the table name and columns used in the SELECT statement. For example, if you spec-
ify column names in uppercase, the XML attributes will be in uppercase. You may need to keep
this in mind while parsing the XML data in your application. By default the AUTO mode returns
all the column values as XML attributes. If you wish, you can return them as elements instead.
This is achieved by using the ELEMENTS clause with the AUTO mode. Listing 10-2 shows how the
ELEMENTS clause works.

Listing 10-2. Using the ELEMENTS Clause of the AUTO Mode

SELECT EMPLOYEEID,FIRSTNAME,LASTNAME FROM EMPLOYEES FOR XML AUTO,ELEMENTS

<EMPLOYEES>
<EMPLOYEEID>1</EMPLOYEEID>
<FIRSTNAME>Nancy</FIRSTNAME>
<LASTNAME>Davolio</LASTNAME>
</EMPLOYEES>
....

As you can see, we specify the ELEMENTS clause after the AUTO mode. Notice how the column
values are returned as elements this time. The names of the elements are the same as the col-
umn names.

■Note The XML data returned by the FOR XML clause in the preceding code is not well formed by default.
It doesn’t include the root element. However, as you will see later, you can specify the root element yourself.

8253.book Page 305 Tuesday, March 6, 2007 8:53 PM

306 C H A P T E R 1 0 ■ X M L I N S Q L S E R V E R 2 0 0 5

The RAW Mode

The RAW mode of the FOR XML clause returns the XML data as zero or more XML elements. By
default the name of the elements is <row>. You can change this default behavior by specifying
an element name yourself. The column values are returned as XML attributes. Listing 10-3
shows the use of RAW mode.

Listing 10-3. Using the RAW Mode of the FOR XML Clause

SELECT EmployeeID,FirstName,LastName FROM Employees FOR XML RAW

<row EmployeeID="1" FirstName="Nancy" LastName="Davolio"/>
<row EmployeeID="2" FirstName="Andrew" LastName="Fuller"/>
<row EmployeeID="3" FirstName="Janet" LastName="Leverling"/>
<row EmployeeID="4" FirstName="Margaret" LastName="Peacock"/>
....

As you can see, the FOR XML clause is followed by the RAW mode. The returned XML contains
<row> elements with attributes holding the column values. If you wish to change the default
element name, you can specify your own element name as shown in Listing 10-4.

Listing 10-4. Assigning a Custom Element Name to the Output of RAW Mode

SELECT EmployeeID,FirstName,LastName FROM Employees FOR XML RAW ('Employee')

<Employee EmployeeID="1" FirstName="Nancy" LastName="Davolio"/>
<Employee EmployeeID="2" FirstName="Andrew" LastName="Fuller"/>
<Employee EmployeeID="3" FirstName="Janet" LastName="Leverling"/>
<Employee EmployeeID="4" FirstName="Margaret" LastName="Peacock"/>
....

As you can see, we’ve now specified Employee as the element name in parentheses. This
element name is given to all the returned rows.

Returning the Schema of the XML

The XMLSCHEMA clause of the FOR XML clause allows you to return the XSD schema of the XML
data being returned. You may use this schema to validate your data further in your application.
Listing 10-5 shows how the XMLSCHEMA clause is used.

8253.book Page 306 Tuesday, March 6, 2007 8:53 PM

C H A P T E R 1 0 ■ X M L I N S Q L S E R V E R 2 0 0 5 307

Listing 10-5. Returning an XSD Schema

SELECT EmployeeID,FirstName,LastName FROM Employees FOR XML AUTO, XMLSCHEMA

<xsd:schema targetNamespace="urn:schemas-microsoft-com:sql:SqlRowSet1"
xmlns:schema="urn:schemas-microsoft-com:sql:SqlRowSet1"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:sqltypes="http://schemas.microsoft.com/sqlserver/2004/sqltypes"
elementFormDefault="qualified">
<xsd:import namespace="http://schemas.microsoft.com/sqlserver/2004/sqltypes"
schemaLocation="http://schemas.microsoft.com/sqlserver/2004/sqltypes/sqltypes.xsd"/>
<xsd:element name="Employees">
<xsd:complexType>
<xsd:attribute name="EmployeeID" type="sqltypes:int" use="required"/>
<xsd:attribute name="FirstName" use="required">
<xsd:simpleType><xsd:restriction base="sqltypes:nvarchar" sqltypes:localeId="1033"
sqltypes:sqlCompareOptions="IgnoreCase IgnoreKanaType IgnoreWidth"
sqltypes:sqlSortId="52">
<xsd:maxLength value="10"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
<xsd:attribute name="LastName" use="required">
<xsd:simpleType>
<xsd:restriction base="sqltypes:nvarchar" sqltypes:localeId="1033"
sqltypes:sqlCompareOptions="IgnoreCase IgnoreKanaType IgnoreWidth"
sqltypes:sqlSortId="52">
<xsd:maxLength value="20"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
</xsd:complexType>
</xsd:element>
</xsd:schema>
<Employees xmlns="urn:schemas-microsoft-com:sql:SqlRowSet1" EmployeeID="1"
FirstName="Nancy" LastName="Davolio"/>
<Employees xmlns="urn:schemas-microsoft-com:sql:SqlRowSet1" EmployeeID="2"
FirstName="Andrew" LastName="Fuller"/>
....

As you can see, the XMLSCHEMA clause returns the XSD schema along with the data.

8253.book Page 307 Tuesday, March 6, 2007 8:53 PM

308 C H A P T E R 1 0 ■ X M L I N S Q L S E R V E R 2 0 0 5

The PATH Mode

Though the AUTO and RAW modes return data in XML format, you have very little control over
the nesting and naming conventions of the returned data. The PATH mode, on the other hand,
allows you to specify the nesting structure as well as element and attribute names by using sim-
ple XPath syntax. Suppose you wish to retrieve records from the Employee table in the format
shown in Listing 10-6.

Listing 10-6. Custom Nesting and Naming

<Employee ID="1">
<Name>
<FirstName>Nancy</FirstName>
<LastName>Davolio</LastName>
</Name>
</Employee>

Each record is to be returned as an <Employee> element. The EmployeeID column value is to
be returned as the ID attribute of the <Employee> element. There should be an element named
<Name> with two further sub-elements: <FirstName> and <LastName>. The <FirstName> and
<LastName> elements should contain data from the FirstName and LastName columns, respec-
tively. To retrieve XML data in this format, you can use the PATH mode as shown in Listing 10-7.

Listing 10-7. Using the PATH Mode of the FOR XML Clause

SELECT EmployeeID "@ID",FirstName "Name/FirstName",LastName "Name/LastName"
FROM Employees FOR XML PATH ('Employee')

As you can see, the SELECT query now specifies certain extra pieces of information along
with the column names. We wish to return the EmployeeID column value as the ID attribute
and hence the query adds @ID after the EmployeeID column. Similarly, the FirstName and the
LastName columns are followed by the desired nesting and element names, that is, Name/
FirstName and Name/LastName, respectively. The name of the element generated is specified
after the PATH mode in parentheses. Notice how the XPath syntax (@, /) is used to specify the
attributes and element nesting.

The EXPLICIT Mode

The EXPLICIT mode is possibly the most confusing mode of the FOR XML clause. On one hand
it increases the complexity of the SELECT statement, but on the other it gives much more fine-
grained control on the resultant output.

8253.book Page 308 Tuesday, March 6, 2007 8:53 PM

C H A P T E R 1 0 ■ X M L I N S Q L S E R V E R 2 0 0 5 309

■Note I will discuss the EXPLICIT mode only to the extent of giving a feeling of how it renders the XML
output. In no way does this book try to teach you the EXPLICIT mode apart from the basics. If you wish to
learn about the EXPLICIT mode in detail, you may consider Pro SQL Server 2005 by Thomas Rizzo and others
(Apress, 2005).

Suppose that you wish to return the XML content as shown in Listing 10-8.

Listing 10-8. Customized XML Output Using EXPLICIT Mode

<Employee EmpID="1">
<FirstName>Nancy</FirstName>
<LastName>Davolio</LastName>
</Employee>

You can identity two levels in this markup. Level 1 consists of the <Employee> element, and
level 2 consists of the <FirstName> and <LastName> elements. The EmployeeID column is output-
ted as the EmpID attribute of the <Employee> element and hence belongs to level 1.

When using EXPLICIT mode to generate this XML output, we will need to write two SELECT
queries:

• The first query will outline the structure, nesting, and element names of the various col-
umns involved.

• The second query will actually fetch the data. The results of the two queries will be
merged with a UNION clause.

Let’s look at the first SELECT query (see Listing 10-9).

Listing 10-9. Defining the Structure of the XML Output

SELECT
1 AS Tag,
NULL AS Parent,
EmployeeID AS [Employee!1!EmpID],
FirstName AS [Employee!1!FirstName!element],
LastName AS [Employee!1!LastName!element]
FROM Employees

8253.book Page 309 Tuesday, March 6, 2007 8:53 PM

310 C H A P T E R 1 0 ■ X M L I N S Q L S E R V E R 2 0 0 5

The query selects five columns: 1, NULL, EmployeeID, FirstName, and LastName. The last
three columns are obvious, but what are 1 and NULL? The Tag and Parent columns are implicit
columns in the resultant table that are created by SQL Server internally:

• The Tag column specifies the nesting level of the current element. A Tag value of 1 indi-
cates that this query is defining the structure for level 1 of the XML output.

• The Parent column specifies the parent level of the current tag. A Parent value of NULL
indicates that this is the top-level element.

Each column specified after the Parent column has some metadata specifications
enclosed in square brackets. Multiple pieces of metadata are separated by an exclamation
character (!):

• The first part indicates the name of the parent element of the current element or
attribute.

• The second part indicates the tag number of the element.

• The third part indicates the name of the current element or attribute.

• If you specify only these three parts, the column value will be outputted as an attribute.
To specify that it should be outputted as an element, you must specify the fourth part.
The fourth part is a predefined keyword called element.

In our example, the top-level element is <Employee>. This top-level element name is
decided by the first real column in the SELECT list (in our case, EmployeeID). The top-level
element name is picked up from the first piece of metadata information specified after the
EmployeeID column. We want to output the EmployeeID column value as an attribute named
EmpID. Thus the parent level of the EmpID attribute is tag 1. Finally, the third piece of metadata
information specifies that the attribute name is EmpID.

The metadata for the FirstName and LastName columns specifies that their parent is
the level 1 element and they are to be outputted as <FirstName> and <LastName> elements,
respectively.

The second SELECT query is shown in Listing 10-10.

Listing 10-10. Fetching the Data for the Structure Defined in the Previous Query

SELECT
1,
NULL,
EmployeeID,
FirstName,
LastName
FROM Employees
ORDER BY
[Employee!1!EmpID],
[Employee!1!FirstName!element],
[Employee!1!LastName!element]
FOR XML EXPLICIT

8253.book Page 310 Tuesday, March 6, 2007 8:53 PM

C H A P T E R 1 0 ■ X M L I N S Q L S E R V E R 2 0 0 5 311

The query selects data for tag 1 and selects the EmployeeID, FirstName, and LastName col-
umns. The ORDER BY clause indicates the sequence in which the elements will appear in the
resultant XML. Finally, the query adds a FOR XML EXPLICIT clause.

Now that you understand both queries, you can use the UNION ALL clause as shown in
Listing 10-11.

Listing 10-11. Using the UNION ALL Clause

SELECT
1 AS Tag,
NULL AS Parent,
EmployeeID AS [Employee!1!EmpID],
FirstName AS [Employee!1!FirstName!element],
LastName AS [Employee!1!LastName!element]
FROM Employees
UNION All
SELECT
1,NULL,
EmployeeID,
FirstName,
LastName
FROM Employees
ORDER BY [Employee!1!EmpID],
[Employee!1!FirstName!element],
[Employee!1!LastName!element]
FOR XML EXPLICIT

The UNION ALL clause combines the results of both of these queries, and you get XML out-
put as shown in Listing 10-8. Let’s go a bit further and assume that you wish to retrieve XML in
the format shown in Listing 10-12.

Listing 10-12. XML Output with Deeper Nesting

<Employee empid="1">
<Name>
<FName>Nancy</FName>
<LName>Davolio</LName>
</Name>
</Employee>

The XML output has one more level of nesting. The <FName> and <LName> elements are
enclosed in the <Name> element, which in turn is enclosed in the <Employee> element. The
EmployeeID column is outputted as an empid attribute. The SELECT queries required to generate
this output are given in Listing 10-13.

8253.book Page 311 Tuesday, March 6, 2007 8:53 PM

312 C H A P T E R 1 0 ■ X M L I N S Q L S E R V E R 2 0 0 5

Listing 10-13. SELECT Queries for Generating Output as Shown in Listing 10-12

SELECT
1 AS Tag,
NULL AS Parent,
EmployeeID AS [employee!1!empid],
FirstName AS [Name!2!FName!element],
LastName AS [Name!2!LName!element]
FROM Employees

UNION ALL

SELECT 2 AS Tag,
1 AS Parent,
EmployeeID,
FirstName,
LastName
FROM Employees
ORDER BY
[Employee!1!empid],
[Name!2!FName!element],
[Name!2!LName!element]
FOR XML EXPLICIT

The first SELECT statement defines the structure of the resultant XML output. Notice that
this time, the FirstName and LastName columns define their parent element as <Name> and have
a tag level of 2. They also define element names for the FirstName and LastName columns as
<FName> and <LName>, respectively. The second query defines tag 2. It specifies that the parent
of tag 2 is tag 1 via the Parent column. It orders the result set by using the ORDER BY clause as
before. If you run this script in Management Studio, you should see the XML output shown in
Listing 10-12.

Specifying the Root Element Name

In all the preceding queries, you obtained XML markup for an individual table row but there
was no root element specified for the markup. If you wish, you can specify the root element by
adding the ROOT clause, as shown in Listing 10-14.

Listing 10-14. Using the ROOT Clause

SELECT EmployeeID,FirstName,LastName FROM Employees FOR XML AUTO, ROOT('MyRoot')

8253.book Page 312 Tuesday, March 6, 2007 8:53 PM

C H A P T E R 1 0 ■ X M L I N S Q L S E R V E R 2 0 0 5 313

<MyRoot>
<Employees EmployeeID="1" FirstName="Nancy" LastName="Davolio"/>
<Employees EmployeeID="2" FirstName="Andrew" LastName="Fuller"/>
....
</MyRoot>

As you can see, the ROOT clause is appended at the end of the query with the name of the
root element in parentheses. The returned XML is now wrapped inside this root element.

Using OPENXML
As you’ve seen, the FOR XML clause of SQL Server 2005 allows you to retrieve relational data in
XML format. However, there is another way to do it—the OPENXML function, which allows you to
read XML data in a relational fashion. Suppose that you have XML markup that contains a list
of employees and your aim is to import this list into your Employees table. In the absence of
something like OPENXML, accomplishing this task would be tedious. As you will soon see, the
OPENXML function makes your job much easier. Listing 10-15 shows the source XML markup
containing the employee listing.

Listing 10-15. The Source XML Markup

<Employees>
<Employee EmployeeID="10" FirstName="John" LastName="Moore" />
<Employee EmployeeID="11" FirstName="Bill" LastName="Short" />
</Employees>

As you can see, the root element of the markup is <Employees>. Further, it contains
<Employee> elements representing an employee record. The EmployeeID, FirstName, and
LastName appear as attributes of the <Employee> element. To read any XML markup by
using the OPENXML function, you need to perform the following steps:

1. Prepare and load the XML document for processing.

2. Call the OPENXML function as per your need.

3. Remove the loaded XML document from memory.

These three steps are illustrated in Listing 10-16.

8253.book Page 313 Tuesday, March 6, 2007 8:53 PM

314 C H A P T E R 1 0 ■ X M L I N S Q L S E R V E R 2 0 0 5

Listing 10-16. Using the OPENXML Function

SET IDENTITY_INSERT Employees ON
DECLARE @hDoc INT
DECLARE @xml VARCHAR(1000)

SET @xml=
'<Employees>
<Employee EmployeeID="10" FirstName="John" LastName="Gates" />
<Employee EmployeeID="11" FirstName="Bill" LastName="Short" />
</Employees>'

EXEC sp_xml_preparedocument @hDoc OUTPUT, @xml

INSERT INTO EMPLOYEES (EMPLOYEEID,FIRSTNAME,LASTNAME)
(
SELECT * FROM
OPENXML(@hDoc,'Employees/Employee',0)
WITH (EmployeeID int,FirstName varchar(50),LastName varchar(50))
)

EXEC sp_xml_removedocument @hDoc

The script in Listing 10-16 declares two variables named hDoc and xml. The integer variable
hDoc is used later for storing a handle to the loaded XML document. The VARCHAR variable xml is
used to store the XML markup shown in Listing 10-15 as a string. The SET statement assigns the
XML markup to the xml variable. Then we call the sp_xml_preparedocument system stored pro-
cedure, which parses and loads the supplied XML markup in memory. It returns a handle to the
loaded document in the form of an integer.

Next, this handle is collected in the hDoc variable that we declared earlier. Then an INSERT
statement is executed, making use of the OPENXML function. Observe the call to OPENXML care-
fully. The OPENXML function is used in a SELECT statement as if it were a table. It accepts three
parameters:

• The first parameter is a handle to the XML data loaded by using sp_xml_preparedocument.

• The second parameter is an XPath pattern pointing to the node of the XML data that is
to be treated as a row. In our example, this base path is Employees/Employee.

• The third parameter is a flag indicating the mapping between the XML data and the rela-
tional rowset. The third parameter can take values as shown in Table 10-2.

8253.book Page 314 Tuesday, March 6, 2007 8:53 PM

C H A P T E R 1 0 ■ X M L I N S Q L S E R V E R 2 0 0 5 315

Table 10-2. Mapping Between XML Data and a Relational Rowset

Further, the WITH clause of OPENXML specifies the structure of the resultant rowset. The
structure can be specified as a comma-separated list of column names and their data types.
In our example, we have three columns: EmployeeID, FirstName, and LastName. Note that these
column names are the same as the attribute names in the source XML markup.

Thus the rowset returned from the SELECT statement and OPENXML is fed to the INSERT state-
ment. The INSERT statement then adds the data to the Employees table. In our example, it will
add two rows.

After the INSERT operation is done, the XML document is removed from memory by using
another system stored procedure: sp_xml_removedocument. This accepts the handle of an XML
document loaded previously by using sp_xml_preparedocument and cleans up the memory con-
sumed by the document. Calling sp_xml_removedocument is very important because failing to
do so can waste valuable memory of your application.

■Note A thorough discussion of the OPENXML clause is outside the scope of this book. The aim here is to
give you a reasonable understanding of the XML functionality of SQL Server 2005.

Using SQLXML Features
Modern applications are becoming more and more Internet centric. In Chapter 9, you learned
that web services offer an industry standard for communicating over HTTP. Web services are,
however, generic programmable APIs and do not associate themselves to any database as
such. However, SQL Server 2005 allows you to expose your data over the Internet in XML for-
mat. The underlying channel is, of course, HTTP. By using this feature, you can query your
database over the Internet and retrieve the returned results as an XML document in your client
applications. This feature of SQL Server 2005 is referred to as SQLXML.

Flag Value Description

0 Specifies that attributes of the XML elements are supplying column values for the
relational rowset. This is the default.

1 Specifies that attributes of the XML elements are supplying column values for the
relational rowset. When combined with a flag value of 2, attributes are picked up as
column values and then element values are assigned to the remaining columns.

2 Specifies that elements of the source XML are supplying column values for the
relational rowset.

8 This flag can be combined with 1 or 2 and indicates that the consumed data should
not be copied to the overflow property @mp:xmltext.

8253.book Page 315 Tuesday, March 6, 2007 8:53 PM

316 C H A P T E R 1 0 ■ X M L I N S Q L S E R V E R 2 0 0 5

■Note If you wish to use SQLXML on SQL Server 2000, you need to download the SQLXML installable sep-
arately and install it on your machine.

SQLXML also provides you with a set of managed classes, which you can use in your .NET
applications to query the SQL Server database and read the returned results in XML format.
You can also send updates from the client application in special XML formats, and SQL Server
2005 can update the database.

■Note The version of SQLXML that ships with SQL Server 2005 is 4.0. If you have SQL Server 2000,
you can download SQLXML 3.0. Though the overall concepts that you learn in this chapter are applicable
to SQL Server 2000, there are some differences between these two versions. In this book, I focus solely on
SQL Sever 2005.

The SQLXML Managed Classes
SQLXML provides you with a set of managed classes that can be used to execute queries against
the database and return results in XML form. The classes provided by SQLXML physically reside
in an assembly, Microsoft.Data.SqlXml. The three core classes exposed by SQLXML are listed in
Table 10-3.

Table 10-3. SQLXML Managed Classes

All the preceding classes can use the SQL Server OLEDB provider (SQLOLEDB) or the SQL
Native Client to communicate with the underlying database. In the next few sections, you are
going to learn how the SQLXML classes can be used in your .NET applications.

Class Name Description

SqlXmlCommand SqlXmlCommand allows you to execute queries as well as non-queries
against the database. This class exposes methods such as
ExecuteNonQuery(), ExecuteStream(), and ExecuteXmlReader(). This
class is analogous to the ADO.NET SqlCommand class.

SqlXmlParameter SqlXmlParameter represents parameters to the queries executed by
using the SqlXmlCommand class. This class is analogous to the ADO.NET
SqlParameter class.

SqlXmlAdapter SqlXmlAdapter is used to interact with the ADO.NET DataSet class. This
class is analogous to the ADO.NET SqlDataAdapter class.

8253.book Page 316 Tuesday, March 6, 2007 8:53 PM

C H A P T E R 1 0 ■ X M L I N S Q L S E R V E R 2 0 0 5 317

Executing SELECT Queries

Let’s begin by developing an application that will allow you to execute SELECT queries against
the SQL Server database. The application user interface is shown in Figure 10-2.

Figure 10-2. Application for executing SELECT queries via SqlXmlCommand

The application consists of a text box for entering SELECT queries. Note that these SELECT
queries must use some mode of the FOR XML clause you learned earlier. The Execute button exe-
cutes the query and displays the results in a Web Browser control. The Click event handler of
the Execute button is shown in Listing 10-17.

Listing 10-17. Using the SqlXmlCommand Class

private void button1_Click(object sender, EventArgs e)
{
 string strConn =
 @"Provider=SQLOLEDB;server=.\sqlexpress;database=northwind;integrated ➥

security=SSPI";
 SqlXmlCommand cmd = new SqlXmlCommand(strConn);
 cmd.CommandText = textBox1.Text;
 Stream stream= cmd.ExecuteStream();
 StreamReader reader=new StreamReader(stream);
 StreamWriter writer =
 File.CreateText(Application.StartupPath + @"\sqlxmlresults.xml");
 writer.Write(reader.ReadToEnd());
 writer.Close();
 webBrowser1.Navigate(Application.StartupPath + @"\sqlxmlresults.xml");
}

8253.book Page 317 Tuesday, March 6, 2007 8:53 PM

318 C H A P T E R 1 0 ■ X M L I N S Q L S E R V E R 2 0 0 5

■Note Make sure to change the database connection string to match your development environment
before running the preceding code.

The code declares a string variable for storing the database connection string. Notice the
Provider parameter of the connection string, which specifies the SQLOLEDB provider. Then the
code creates an instance of the SqlXmlCommand class by passing the connection string in its con-
structor. The CommandText property of SqlXmlCommand is set to the SELECT query entered in the text
box, and the query is executed by calling the ExecuteStream() method of the SqlXmlCommand class.

The ExecuteStream() method executes your query and returns a Stream object contain-
ing the XML results. This Stream can then be used further to read the data. In the preceding
code, the Stream is fed to a StreamReader class. We could have read the Stream byte by byte,
but the StreamReader class makes our job easy.

The CreateText() method of the File class creates a new XML file at the specified loca-
tion and returns a StreamWriter pointing to it. The XML returned from the database is read
by using the ReadToEnd() method of the StreamReader class and is then written to the XML
file. Finally, the Navigate() method of the Web Browser control is called to show the user the
XML file.

There is an alternative way to do the same task. Have a look at Listing 10-18.

Listing 10-18. Using the ExecuteToStream() Method

private void button1_Click(object sender, EventArgs e)
{
string strConn =
 @"Provider=SQLOLEDB;server=.\sqlexpress;database=northwind;integrated ➥

security=SSPI";
 SqlXmlCommand cmd = new SqlXmlCommand(strConn);
 cmd.CommandText = textBox1.Text;
 StreamWriter writer =
 File.CreateText(Application.StartupPath + @"\sqlxmlresults.xml");
 cmd.ExecuteToStream(writer.BaseStream);
 writer.Close();
 webBrowser1.Navigate(Application.StartupPath + @"\sqlxmlresults.xml");
}

The code in Listing 10-18 looks very similar to that in Listing 10-17. The difference is that
it calls the ExecuteToStream() method instead of ExecuteStream(), and by doing so emits the
XML output to an existing Stream. The BaseStream property of the StreamWriter class returns
the underlying Stream, which is then supplied to the ExecuteToStream() method.

■Note You can also use the ExecuteXmlReader() method of the SqlXmlCommand class. This method is
identical to the ExecuteXmlReader() method of the SqlCommand class that you learned about in Chapter 7.

8253.book Page 318 Tuesday, March 6, 2007 8:53 PM

C H A P T E R 1 0 ■ X M L I N S Q L S E R V E R 2 0 0 5 319

Executing Parameterized SELECT Queries

It will be common for your SELECT queries to have some parameters, and the technique to
execute parameterized queries is similar to ADO.NET. However, there are a few differences.
First, a parameter is represented by the SqlXmlParameter class. Second, the SqlXmlCommand
class doesn’t have a Parameters collection as does the SqlCommand class, so you need to call
the CreateParameter() method of the SqlXmlCommand class to create a new parameter that
belongs to the command. The value of the parameter can then be set. To illustrate the use of
the SqlXmlParameter class, we will create an application as shown in Figure 10-3.

Figure 10-3. Application for executing parameterized queries

The application allows you to fetch details of only one employee whose EmployeeID is spec-
ified in the text box. The returned XML data is displayed in the Web Browser control as before.
Listing 10-19 shows the Click event handler of the Execute button.

Listing 10-19. Using the SqlXmlParameter Class

private void button1_Click(object sender, EventArgs e)
{
 string strConn =
 @"Provider=SQLOLEDB;server=.\sqlexpress;database=northwind;integrated ➥

security=SSPI";
 string sql = "SELECT employeeid,firstname,lastname FROM employees
 WHERE employeeid=? FOR XML AUTO,ROOT('MyRoot')";
 SqlXmlCommand cmd = new SqlXmlCommand(strConn);
 cmd.CommandText = sql;
 SqlXmlParameter param = cmd.CreateParameter();
 param.Value = textBox1.Text;
 StreamWriter writer =
 File.CreateText(Application.StartupPath + @"\sqlxmlresults.xml");
 cmd.ExecuteToStream(writer.BaseStream);
 writer.Close();
 webBrowser1.Navigate(Application.StartupPath + @"\sqlxmlresults.xml");
}

8253.book Page 319 Tuesday, March 6, 2007 8:53 PM

320 C H A P T E R 1 0 ■ X M L I N S Q L S E R V E R 2 0 0 5

Examine the SELECT query carefully. It has a WHERE clause with a parameter marked with a
question mark (?). Further, the CreateParameter() method is called on the SqlXmlCommand class.
The CreateParameter() method creates and returns a new SqlXmlParameter. You can then set
the Value property of this SqlXmlParameter class. If your query has more than one parameter,
you will need to call the CreateParameter() method once for each parameter. Note that the
sequence of parameters in the query and the sequence in which you create SqlXmlParameter
objects must be the same. After creating the required parameter, the XML output is saved to a
FileStream by using the ExecuteToStream() method of SqlXmlCommand.

Filling a DataSet

A DataSet is one of the most commonly used objects for data binding and disconnected process-
ing. It is obvious that the SQLXML object model must provide some mechanism to populate
DataSet objects, and the SqlXmlAdapter fits the bill. It allows you to populate a DataSet and reflect
the changes made to the DataSet back in the database. To illustrate the use of SqlXmlAdapter in
populating a DataSet, you need to create an application as shown in Figure 10-4.

Figure 10-4. Application that fills a DataSet by using SqlXmlAdapter

The application consists of a DataGridView control. When the form loads, a DataSet is
filled with all the records from the Employees table and the resultant DataSet is bound to the
DataGridView control. The Load event handler that does this job is shown in Listing 10-20.

Listing 10-20. Filling a DataSet with SqlXmlAdapter

private void Form1_Load(object sender, EventArgs e)
{
 string strConn =
 @"Provider=SQLOLEDB;server=.\sqlexpress;database=northwind;integrated ➥

8253.book Page 320 Tuesday, March 6, 2007 8:53 PM

C H A P T E R 1 0 ■ X M L I N S Q L S E R V E R 2 0 0 5 321

security=SSPI";
 string sql = "SELECT employeeid,firstname,lastname FROM employees FOR XML AUTO";
 SqlXmlCommand cmd = new SqlXmlCommand(strConn);
 cmd.CommandText = sql;
 DataSet ds = new DataSet();
 SqlXmlAdapter da = new SqlXmlAdapter(cmd);
 da.Fill(ds);
 dataGridView1.DataSource = ds.Tables[0].DefaultView;
}

The code creates a SqlXmlCommand object as before. It then creates a new instance of
the DataSet and SqlXmlAdapter classes. The SqlXmlAdapter accepts the SqlXmlCommand object
as a parameter and thus the SELECT query (or stored procedure) is passed to it. The Fill()
method of SqlXmlAdapter is then called by passing a DataSet object as a parameter. The
Fill() method populates the DataSet with the results returned from the query. Finally, the
DataSet is bound to the DataGridView control.

Updating a DataSet by Using SqlXmlAdapter

In the preceding example, we simply populated a DataSet with the help of the SqlXmlAdapter
class. What if you make changes to the DataSet data and wish to save those changes in the data-
base? The SqlXmlAdapter does provide the Update() method that updates the database with
any changes to your DataSet. However, you need to do a bit more work than that. While filling
the DataSet, you need to specify the XSD schema for the DataTable being created. This schema
provides mapping between the DataTable column names and the actual table column names.
In our example, we retrieve three columns of the Employee table: EmployeeID, FirstName, and
LastName. The schema for this data structure is shown in Listing 10-21.

Listing 10-21. Schema—Employees.xsd—for Our Data

<?xml version="1.0" encoding="utf-8" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="Employees">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="EmployeeID" type="xs:integer"/>
 <xs:element name="FirstName" type="xs:string"/>
 <xs:element name="LastName" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

8253.book Page 321 Tuesday, March 6, 2007 8:53 PM

322 C H A P T E R 1 0 ■ X M L I N S Q L S E R V E R 2 0 0 5

The schema defines a root element called <Employees>, which has three child elements:
<EmployeeID>, <FirstName>, and <LastName>. Note that the schema defines the columns as ele-
ments and not as attributes. To see the SqlXmlAdapter class in action, you need to develop an
application as shown in Figure 10-5.

Figure 10-5. Application for illustrating the Update() method of SqlXmlAdapter

The application consists of a DataGridView control that displays all the employees from
the Employees table. You can change the data in the DataGridView and click the Update button
to save the changes back to the database. The complete code that makes this application work
is shown in Listing 10-22.

Listing 10-22. Saving Changes Made to a DataSet

DataSet ds = new DataSet();
SqlXmlAdapter da;
SqlXmlCommand cmd;
string strConn =
 @"Provider=SQLOLEDB;server=.\sqlexpress;database=northwind;integrated ➥

security=SSPI";

8253.book Page 322 Tuesday, March 6, 2007 8:53 PM

C H A P T E R 1 0 ■ X M L I N S Q L S E R V E R 2 0 0 5 323

private void Form1_Load(object sender, EventArgs e)
{
 cmd = new SqlXmlCommand(strConn);
 cmd.RootTag = "ROOT";
 cmd.CommandText = "Employees";
 cmd.CommandType = SqlXmlCommandType.XPath;
 cmd.SchemaPath = Application.StartupPath + @"\employees.xsd";
 ds = new DataSet();
 da = new SqlXmlAdapter(cmd);
 da.Fill(ds);
 dataGridView1.DataSource = ds.Tables[0].DefaultView;
}

private void button1_Click(object sender, EventArgs e)
{
 da.Update(ds);
}

The code in Listing 10-22 shows several interesting things. The SqlXmlCommand, DataSet,
and SqlXmlAdapter variables are declared at the form level because we will be using them
in more than one place. Notice the code marked in bold. It sets the RootTag property of the
SqlXmlCommand property. The AUTO mode of the FOR XML clause doesn’t return data along with
a root element by default, so this property is used to indicate the name of the root element
inside which the rest of the XML data will be wrapped.

The CommandType property is set to XPath, indicating that the CommandText property is an
XPath expression. This means that this time the CommandText property is not a SELECT query but
the XPath expression Employees, which will return various <Employees> elements.

The CommandType property of the SqlXmlCommand class is of type SqlXmlCommandType. The
possible values of the SqlXmlCommandType enumeration are listed in Table 10-4.

Table 10-4. Values of the SqlXmlCommandType Enumeration

Further, the SchemaPath property specifies the path of the schema file that we created ear-
lier. Then the SqlXmlAdapter populates a DataSet, which is bound to the DataGridView.

Value Description

DiffGram Indicates that CommandText is a DiffGram

Sql Indicates that CommandText is a SQL statement (default)

Template Indicates that CommandText is a template

TemplateFile Indicates that CommandText is a template file

UpdateGram Indicates that CommandText is an UpdateGram

XPath Indicates that CommandText is a valid XPath expression

8253.book Page 323 Tuesday, March 6, 2007 8:53 PM

324 C H A P T E R 1 0 ■ X M L I N S Q L S E R V E R 2 0 0 5

After the data is displayed in the DataGridView, you can modify it. After the modifications
are complete, you need to click the Update button. The Click event of the Update button calls
the Update() method of SqlXmlAdapter, which accepts the DataSet whose changes are to be
reflected in the database. In Chapter 7, you learned that the DataSet class internally tracks the
changes made to the data by using the DiffGram format. The same DiffGram is used by the
SqlXmlAdapter class to propagate the changes back to the database.

Applying XSLT Templates

In Chapter 6, you learned to apply XSLT style sheets to XML data. You saw that XSLT allows you
to transform XML data from one form to another. The same concept also can be applied in
SQLXML, where you may wish to apply XSLT templates to whatever data you receive in your
client application. This is accomplished by using the XslPath property of the SqlXmlCommand
class. To demonstrate the use of XslPath, you need to develop an application as shown in
Figure 10-6.

Figure 10-6. Application to illustrate the use of the XslPath property

The application consists of a Web Browser control. When the form loads, a SELECT query
is executed by using SqlXmlCommand. An XSLT style sheet is then applied to the returned XML
data to transform it into HTML. The resultant HTML document is then displayed in the Web
Browser control.

8253.book Page 324 Tuesday, March 6, 2007 8:53 PM

C H A P T E R 1 0 ■ X M L I N S Q L S E R V E R 2 0 0 5 325

Before you write any code, you must create an XSLT style sheet named Employees.xslt as
shown in Listing 10-23.

Listing 10-23. Employees.xslt Markup

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="/">
 <html>
 <body>
 <h1>Employee Listing</h1>
 <table border="1">
 <tr>
 <th>Employee ID</th>
 <th>First Name</th>
 <th>Last Name</th>
 </tr>
 <xsl:for-each select="root/employees">
 <tr>
 <td>
 <xsl:value-of select="@EmployeeID"/>
 </td>
 <td>
 <xsl:value-of select="@FirstName"/>
 </td>
 <td>
 <xsl:value-of select="@LastName"/>
 </td>
 </tr>
 </xsl:for-each>
 </table>
 </body>
 </html>
 </xsl:template>
</xsl:stylesheet>

The style sheet iterates through all the <Employees> elements and renders an HTML table.
The HTML table displays the attribute values in various cells. Note that we will be using the
AUTO mode of the FOR XML clause, which returns column values as XML attributes. That is why
the style sheet uses attribute names (@EmployeeID, @FirstName, and @LastName). The code that
actually executes the SELECT query and performs the transformation is shown in Listing 10-24.

8253.book Page 325 Tuesday, March 6, 2007 8:53 PM

326 C H A P T E R 1 0 ■ X M L I N S Q L S E R V E R 2 0 0 5

Listing 10-24. Applying an XSLT Style Sheet

private void Form1_Load(object sender, EventArgs e)
{
string strConn =
 @"Provider=SQLOLEDB;server=.\sqlexpress;database=northwind;integrated ➥

security=SSPI";
 SqlXmlCommand cmd = new SqlXmlCommand(strConn);
 cmd.CommandText = "SELECT EmployeeID,FirstName,LastName
 FROM employees FOR XML AUTO";
 cmd.RootTag = "root";
 cmd.XslPath = Application.StartupPath + @"\employees.xslt";
 StreamWriter writer =
 File.CreateText(Application.StartupPath + @"\sqlxmlresults.htm");
 cmd.ExecuteToStream(writer.BaseStream);
 writer.Close();
 webBrowser1.Navigate(Application.StartupPath + @"\sqlxmlresults.htm");
}

Notice the code marked in bold. This time the SELECT statement doesn’t contain a ROOT
clause. We could indeed have used it, but the code achieves the same thing with the help of the
RootTag property of the SqlXmlCommand class. Recollect that in the absence of a ROOT clause in
the FOR XML query, the returned XML data doesn’t contain a root element. The RootTag property
of SqlXmlCommand specifies the name of the root tag inside which the output of the SELECT query
will be wrapped.

The XSLT style sheet to be used for transformation is specified via the XslPath property of
the SqlXmlCommand class. This way, the SqlXmlCommand class knows which style sheet to apply
to the returned XML data. The rest of the code should be familiar to you, as we discussed it in
previous examples. It simply saves the transformed XML data into a disk file and displays that
file in the Web Browser control.

Writing Template Queries

In the preceding example, we specified the SELECT query directly in code. There is an alterna-
tive to this too: you can store the queries in an XML file and specify the path of this XML file
as the CommandText of the SqlXmlCommand class. These XML files are called XML templates. The
structure of this XML file can be seen in Listing 10-25.

8253.book Page 326 Tuesday, March 6, 2007 8:53 PM

C H A P T E R 1 0 ■ X M L I N S Q L S E R V E R 2 0 0 5 327

Listing 10-25. Creating an XML Template

<?xml version="1.0" encoding="utf-8" ?>
<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:header>
 <sql:param name='EmpID'>1</sql:param>
 </sql:header>
 <sql:query>
 SELECT EmployeeID,FirstName,LastName FROM Employees
 WHERE employeeid>@Empid FOR XML AUTO
 </sql:query>
</ROOT>

The root element <ROOT> is a user-defined element, but the namespace urn:schemas-
microsoft-com:xml-sql is necessary. The <ROOT> element contains an optional section called
<sql:header>, which is used to define parameters used by your query (if any). Each parameter
is specified by using a <sql:param> element. The name attribute of the <sql:param> element
indicates the name of the parameter, while the value of the parameter is stored within the
<sql:param> and </sql:param> tags. The actual query is stored in the <sql:query> section. The
query uses the parameter by prefixing its name with the @ symbol.

To use this XML template file, you need to create an application as shown in Figure 10-7.

Figure 10-7. Application that illustrates the use of XML templates

The application consists of a DataGridView that displays all the records from the
Employees table. The Load event of the form contains all the code necessary to use the XML
template (Listing 10-26).

8253.book Page 327 Tuesday, March 6, 2007 8:53 PM

328 C H A P T E R 1 0 ■ X M L I N S Q L S E R V E R 2 0 0 5

Listing 10-26. Using XML Templates

private void Form1_Load(object sender, EventArgs e)
{
 string strConn =
 @"Provider=SQLOLEDB;server=.\sqlexpress;database=northwind;integrated ➥

security=SSPI";
 SqlXmlCommand cmd = new SqlXmlCommand(strConn);
 cmd.CommandType = SqlXmlCommandType.TemplateFile;
 cmd.CommandText = Application.StartupPath + @"\querytemplate.xml";
 DataSet ds = new DataSet();
 SqlXmlAdapter da = new SqlXmlAdapter(cmd);
 da.Fill(ds);
 dataGridView1.DataSource = ds.Tables[0].DefaultView;
}

Notice the code marked in bold. This time the CommandType property of the SqlXmlCommand
class is set to TemplateFile. This indicates that the CommandText property will be specifying the
path of the XML template file. Then the CommandText property is set to the path of the XML tem-
plate file we just created in Listing 10-25. The instance of SqlXmlAdapter is used as before to
populate a DataSet. The DataSet is finally bound to the DataGridView control.

Updating Data with DiffGrams

In Chapter 7, you learned that DataSet objects can be serialized as XML documents. While seri-
alizing a DataSet object, we used an XmlWriteMode enumeration to specify how the data is to
be written. Now, one of the options of XmlWriteMode was DiffGram, which persisted the DataSet
contents in DiffGram format. Imagine that you have such a DiffGram containing inserts,
updates, and deletes and you want to save these changes back to the database. One way to
do this is to use DataSet and SqlXmlAdapter, which you’ve already seen.

There is another technique that also involves the SqlXmlCommand class. The SqlXmlCommand
class can come in handy if you have a raw DiffGram that is not necessarily loaded in a DataSet.
To illustrate the use of the SqlXmlCommand class, you need to develop an application as shown in
Figure 10-8.

The application consists of a DataGridView control for displaying all the records from the
Employees table. There are two buttons: Save DiffGram and Update DiffGram. The former saves
the contents of the DataSet to a disk file in DiffGram format. The latter button reads the previ-
ously saved DiffGram and updates the database.

8253.book Page 328 Tuesday, March 6, 2007 8:53 PM

C H A P T E R 1 0 ■ X M L I N S Q L S E R V E R 2 0 0 5 329

Figure 10-8. Application for updating DiffGrams

The Load event handler of the form contains the code shown in Listing 10-27.

Listing 10-27. Filling a DataSet

private void Form1_Load(object sender, EventArgs e)
{
 SqlXmlCommand cmd = new SqlXmlCommand(strConn);
 cmd.RootTag = "ROOT";
 cmd.CommandText = "Employees";
 cmd.CommandType = SqlXmlCommandType.XPath;
 cmd.SchemaPath = Application.StartupPath + @"\employees.xsd";
 SqlXmlAdapter da = new SqlXmlAdapter(cmd);
 da.Fill(ds);
 dataGridView1.DataSource = ds.Tables[0].DefaultView;
}

The code should be familiar to you, as you used it in previous examples. It simply populates
a DataSet by using the SqlXmlAdapter class. The DataSet acts as DataSource for the DataGridView
control. The code that saves this DataSet as a DiffGram goes in the Click event of the Save Diff-
Gram button and is shown in Listing 10-28.

8253.book Page 329 Tuesday, March 6, 2007 8:53 PM

330 C H A P T E R 1 0 ■ X M L I N S Q L S E R V E R 2 0 0 5

Listing 10-28. Saving a DataSet as a DiffGram

private void button2_Click(object sender, EventArgs e)
{
 StreamWriter writer=File.CreateText(Application.StartupPath + @"\employees.xml");
 ds.WriteXml(writer, XmlWriteMode.DiffGram);
 writer.Close();
}

The code calls the WriteXml() method of DataSet to save its contents to an XML file
(Employees.xml). The XmlWriteMode parameter of WriteXml() indicates that DiffGram format
is to be used while writing the data. This DiffGram is executed against the database when you
click the Update DiffGram button. The Click event handler of the Update DiffGram button is
shown in Listing 10-29.

Listing 10-29. Updating a DiffGram in a Database

private void button1_Click(object sender, EventArgs e)
{
 StreamReader reader = File.OpenText(Application.StartupPath + @"\employees.xml");
 SqlXmlCommand cmd = new SqlXmlCommand(strConn);
 cmd.CommandType = SqlXmlCommandType.DiffGram;
 cmd.CommandText = reader.ReadToEnd();
 cmd.SchemaPath = Application.StartupPath + @"\employees.xsd";
 cmd.ExecuteNonQuery();
 MessageBox.Show("DiffGram updated to database successfully!");
}

The code opens the Employees.xml file in a StreamReader object. It then creates an instance
of the SqlXmlCommand class and sets the CommandType property of the SqlXmlCommand instance
to DiffGram. This is how you tell SqlXmlCommand about your intention to update a DiffGram.
When the CommandType is DiffGram, the CommandText property must contain the DiffGram itself.
The ReadToEnd() method of StreamReader reads the complete DiffGram and assigns it to the
CommandText property.

If you wish to update the database by using the DiffGram method, you must specify the
SchemaPath property also. In this case, the schema is the same as we created in Listing 10-21
earlier. Finally, the ExecuteNonQuery() method of the SqlXmlCommand is called to save all the
changes to the database. The ExecuteNonQuery() method is used for executing queries that
do not return anything. In our example, we simply want to update the DiffGram to the data-
base and hence we used the ExecuteNonQuery() method.

8253.book Page 330 Tuesday, March 6, 2007 8:53 PM

C H A P T E R 1 0 ■ X M L I N S Q L S E R V E R 2 0 0 5 331

■Note Just like DiffGram, the SqlXmlCommand object also allows you to update UpdateGrams. The Update-
Gram format is similar to DiffGram in that it keeps the differential versions of the data. However, the DataSet
class doesn’t have any methods to serialize itself in UpdateGram format. You can think of DiffGram as a sub-
set of UpdateGram.

The XML Data Type
Up until now, you’ve seen various features of SQL Server 2005 that provide a strong integration
between relational and XML data. But that’s not all. This section gives the next installment of
the XML features of SQL Server 2005: the XML data type. Prior to SQL Server 2005, storing XML
data in a table essentially meant that you had to use a VARCHAR or TEXT column for the data.
From the point of view of storage, this was fine; but from a data-manipulation point of view,
it was tedious. The XML data was treated just like any other text data. The new XML data type
introduced in SQL Server 2005 is exclusively for storing XML documents and fragments.

■Note An XML document is markup that contains the root element, whereas an XML fragment is markup
without any root element. Remember that the FOR XML clause by default returns XML fragments and not
documents.

As well as storing XML data, you can also execute XQuery operations and special XML
data-manipulation statements on the data. The XML data can have an XSD schema attached
to it so that data validations can be performed. You can also index tables on the basis of an
XML column.

■Note XQuery is a W3C proposed standard that deals with querying XML documents. You can think of
XQuery as SQL for XML data. The XQuery syntax is based on XPath expression syntax.

To begin, let’s see how to add a column of type XML to a SQL Server table.

8253.book Page 331 Tuesday, March 6, 2007 8:53 PM

332 C H A P T E R 1 0 ■ X M L I N S Q L S E R V E R 2 0 0 5

Creating a Table with an XML Column
To see how a column of type XML can be added to a SQL Server table, you will create a new table
in the Northwind database called XMLDocs. Figure 10-9 shows the XMLDocs table is design mode.

Figure 10-9. Creating a table with an XML column

The XMLDocs table consists of two columns: Id and XmlData. The former column is the pri-
mary and is marked as an identity column, and the latter is of type XML.

Inserting, Modifying, and Deleting XML Data
Inserting, modifying, or deleting XML data is similar to any other data type. However, there are
some points to keep in mind. Listing 10-30 shows how to use INSERT and UPDATE statements
against a column of type XML.

8253.book Page 332 Tuesday, March 6, 2007 8:53 PM

C H A P T E R 1 0 ■ X M L I N S Q L S E R V E R 2 0 0 5 333

Listing 10-30. Inserting and Updating XML Columns

-- Here goes INSERT
INSERT INTO xmldocs(xmldata)
VALUES(
'<Employee EmployeeID="1">
<FirstName>Nancy</FirstName>
<LastName>Davolio</LastName>
</Employee>')

-- Here goes UPDATE
UPDATE xmldocs
SET xmldata='
<Employee EmployeeID="1">
<FirstName>Nancy</FirstName>
<LastName>Davolio</LastName>
</Employee>'
WHERE Id=1

As you can see, for an INSERT or an UPDATE against a column of the XML data type, you can
use XML data in string format. You can also declare a variable of type XML in your Transact-SQL
(T-SQL) scripts, as shown in Listing 10-31.

Listing 10-31. Declaring a Variable of Type XML

DECLARE @xmldata xml
SET @xmldata='
<Employee EmployeeID="2">
<FirstName>Nancy</FirstName>
<LastName> Davolio</LastName>
</Employee>'

UPDATE xmldocs
SET xmldata=@xmldata
WHERE Id=1

The script declares a variable called xmldata of type XML and stores some XML markup in it.
The xmldata variable is then used in the UPDATE statement. If you wish to explicitly convert a
string value into the XML data type, you can use the CONVERT function as shown in Listing 10-32.

8253.book Page 333 Tuesday, March 6, 2007 8:53 PM

334 C H A P T E R 1 0 ■ X M L I N S Q L S E R V E R 2 0 0 5

Listing 10-32. Converting String Values to an XML Data Type

DECLARE @xmldata VARCHAR(255)
SET @xmldata='
<Employee EmployeeID="2">
<FirstName>Nancy</FirstName>
<LastName> Davolio</LastName>
</Employee>'

UPDATE xmldocs
SET xmldata=CONVERT(xml,@xmldata,0)
WHERE Id=1

The first parameter to the CONVERT function is the target data type. The second parameter
is the source data to be converted, and the third parameter is the style. The value of 0 indi-
cates that insignificant white spaces will be discarded. You might be wondering—if XML data
can be represented as a string, why would we want to use XML variables at all? The answer is,
using the XML data type is recommended because the XML data type checks that the XML data
is well formed.

Methods of the XML Data Type
The XML data type provides some methods to query XML columns or variables. Some of these
methods are listed in Table 10-5.

Table 10-5. Methods of the XML Data Type

Some of these methods are discussed in the following sections.

Method Description

query() Queries an XML column or variable based on some XQuery expression and returns
the results of the query

value() Queries an XML column or variable and returns a scalar value of the SQL data type

exist() Tells you whether the given XQuery expression returns any results

modify() Modifies the content of an XML data type column or variable with the help of XML
Data Modification Language, discussed later in this chapter

nodes() Returns XML data as relational data

8253.book Page 334 Tuesday, March 6, 2007 8:53 PM

C H A P T E R 1 0 ■ X M L I N S Q L S E R V E R 2 0 0 5 335

Using the query() Method

The query() method is used to query XML data by using XQuery expressions. Listing 10-33
illustrates how this method is used.

Listing 10-33. Using the query() Method

SELECT xmldata.query('/Employee[@EmployeeID=2]') FROM xmldocs

<Employee EmployeeID="2">
<FirstName>Nancy</FirstName>
<LastName> Davolio</LastName>
</Employee>

The SELECT query uses the query() method on the XmlData column. The query() method
accepts a valid XQuery expression and returns the matching nodes. In our example. we fetch
the <Employee> element whose EmployeeID attribute value is 1. As you can see, the XQuery syn-
tax is based on XPath syntax.

Using the value() Method

The value() method accepts an XQuery expression and returns a scalar (single) value.
Listing 10-34 shows the use of this method.

Listing 10-34. Using the value() Method

SELECT xmldata.value('(/Employee/@EmployeeID)[1]','int') FROM xmldocs WHERE id=1

1

The value() method accepts two parameters:

• The first parameter is an XQuery.

• The second parameter is the target SQL Server data type.

In our example, we are trying to select the EmployeeID attribute value of the first employee.
Note that the expression /Employee/@EmployeeID returns multiple rows and hence we specify
the row index to access by using array notation. The EmployeeID scalar value is to be repre-
sented as an integer and hence the second parameter is int. Note that the data type name must
be enclosed in quotes.

8253.book Page 335 Tuesday, March 6, 2007 8:53 PM

336 C H A P T E R 1 0 ■ X M L I N S Q L S E R V E R 2 0 0 5

Using the exist() Method

The exist() method checks whether there are any nodes matching the supplied XQuery
expression. Listing 10-35 illustrates the use of the exist() method.

Listing 10-35. Using the exist() Method

SELECT xmldata.exist('/Employee[@EmployeeID=1]') FROM xmldocs

The exist() method returns 1 if the XQuery expression returns at least one node, 0 if the
XQuery expression returns zero nodes, and NULL if the XML column is null.

XML Data Modification Language (XML DML)
As SQL provides data-manipulation statements for relational data, so the XML DML intro-
duced in SQL Server 2005 allows you to insert, replace, and delete data from an XML column.
The XML DML statements are used along with the modify() method mentioned in Table 10-5.
Listing 10-36 shows a script that inserts, replaces, and deletes XML data from the XmlData col-
umn of the XMLDocs table.

Listing 10-36. Inserting, Replacing, and Deleting Content from an XML Column

-- Here goes insert
UPDATE xmldocs
SET xmldata.modify
('
insert <Employee EmployeeID="3">
<FirstName>Janet</FirstName>
<LastName>Leverling</LastName>
</Employee> after (/Employee)[2]')

-- Here goes replace

UPDATE xmldocs
SET xmldata.modify
('
replace value of
(/Employee/@EmployeeID)[1] with "10"')

-- Here goes delete

UPDATE xmldocs
SET xmldata.modify
('
delete (/Employee[@EmployeeID=3])
')

8253.book Page 336 Tuesday, March 6, 2007 8:53 PM

C H A P T E R 1 0 ■ X M L I N S Q L S E R V E R 2 0 0 5 337

The first UPDATE query uses the modify() method of the XML column to specify an insert
XML DML statement that inserts a new <Employee> node at the end of the existing markup.
Observe this syntax carefully. The whole insert statement is enclosed within quotes and acts
as a parameter to the modify() method. The first expression in the insert statement is the new
XML markup to be inserted followed by the after clause. In our example, we wish to insert the
new <Employee> after the second <Employee> node and hence we specify (/Employee)[2]. You
can also use before, as first, and as last clauses.

The second UPDATE query uses the modify() method along with the replace value of XML
DML statement. The replace value of statement takes two expressions:

• The first specifies the markup to be replaced. In our example, we want to replace the
EmployeeID attribute of the first <Employee> node.

• The second expression is the new value to be replaced. In our example, we want to
assign a value of 10 to the EmployeeID attribute.

Finally, the third UPDATE statement uses the modify() method along with the delete XML
DML statement. The delete statement takes the expression on the basis of which the markup
is to be deleted. In our example, we want to delete an employee with EmployeeID equal to 3.

XQuery Support in the XML Data Type
While working with the XML data type, you saw that it heavily uses XQuery expressions. The
XQuery expressions are in turn based on XPath syntax. In Chapter 4, you were introduced
to XPath functions. The XQuery specifications support almost all the functions that you
learned earlier.

Native Web Services
In Chapter 9, you learned to create web services by using the .NET Framework and Visual
Studio. SQL Server 2005 has a built-in facility through which you can create web services native
to the database. After the web services are created, they can be accessed from any client appli-
cation over a network. To create and consume SQL Server 2005 native web services, you need
to perform the following steps:

1. Create stored procedures or functions that you wish to make web callable.

2. Create HTTP endpoints on the SQL Server instance.

3. Expose stored procedures and functions as web methods.

4. Create a proxy for the native web service.

5. Consume the native web service by calling its web methods.

Let’s perform these steps one by one and see how native web services work.

8253.book Page 337 Tuesday, March 6, 2007 8:53 PM

338 C H A P T E R 1 0 ■ X M L I N S Q L S E R V E R 2 0 0 5

Creating a Stored Procedure
The first step in creating a native web service is to create stored procedures or functions that
you want to make web callable. In our example, you need to create a stored procedure named
GetEmployees that returns the EmployeeID, FirstName, and LastName columns of the Employees
table. The complete script of the stored procedure is given in Listing 10-37.

Listing 10-37. Creating the GetEmployees Stored Procedure

CREATE PROCEDURE GetEmployees
AS
SELECT EmployeeID, FirstName, LastName FROM Employees

Creating an HTTP Endpoint
The next step is to create an HTTP endpoint for our stored procedure. An endpoint is an inter-
face through which the client application can access the web service. To create an endpoint,
T-SQL provides the CREATE ENDPOINT statement. Listing 10-38 shows the complete script that
creates an HTTP endpoint.

Listing 10-38. Creating an HTTP Endpoint

CREATE ENDPOINT GetEmployeesEndPoint
STATE=STARTED
AS HTTP
(
PATH = '/SQL/GetEmployees',
AUTHENTICATION=(INTEGRATED),
PORTS = (CLEAR)
)
FOR SOAP
(
WEBMETHOD 'GetEmployees'
(
NAME='Northwind.dbo.GetEmployees',
SCHEMA=STANDARD),
WSDL=DEFAULT,
DATABASE='Northwind'
)

8253.book Page 338 Tuesday, March 6, 2007 8:53 PM

C H A P T E R 1 0 ■ X M L I N S Q L S E R V E R 2 0 0 5 339

This script uses many options of the CREATE ENDPOINT statement:

• The STATE clause specifies the state of the endpoint. The possible states are STARTED,
STOPPED, and DISABLED. Because we wish to use the web service, we specify it as STARTED.

• The AS HTTP clause specifies that this endpoint will be used over HTTP. Alternatively, we
could have used TCP. Then the script gives some more information about the transport
protocol:

• The PATH indicates the URL that identifies the location of the endpoint on the host
computer. In our case, we specify it as /sql/GetEmployees.

• The AUTHENTICATION mode that will be used while consuming this endpoint will be
INTEGRATED.

• The PORTS clause specifies listening port types associated with the endpoint. The value
of CLEAR indicates that the incoming request must come over HTTP. If you specify SSL
instead, the request must come over HTTPS.

• The FOR SOAP clause indicates that the payload of the web service will be in SOAP format.

• The WEBMETHOD clause gives a name to the web method that we are exposing:

• The WEBMETHOD clause must be accompanied by the NAME of the web method. The NAME
is a three-part name (database.owner.stproc_name) of the stored procedure or func-
tion that you intend to expose as a web method.

• The SCHEMA clause governs whether an inline schema will be returned in SOAP
responses. The value of STANDARD indicates that the schema will not be returned.

• The WSDL clause specifies whether WSDL document generation is supported for this end-
point. If set to NONE, no WSDL response is generated. If set to DEFAULT, a default WSDL
response is generated and returned for WSDL queries submitted to the endpoint.

• Finally, the DATABASE clause specifies the name of the database (Northwind in our case).

■Note By default endpoints are created on port 80. If your machine is running any other application,
say Internet Information Services (IIS), that is already using the same port, you will receive an error while
creating the endpoint. If the application is IIS, you can stop the World Wide Web Publishing Service temporarily
and then execute the CREATE ENDPOINT statement.

Execute the preceding script in Management Studio to create the GetEmployees endpoint.

8253.book Page 339 Tuesday, March 6, 2007 8:53 PM

340 C H A P T E R 1 0 ■ X M L I N S Q L S E R V E R 2 0 0 5

Creating a Proxy for the Endpoint
Now that our GetEmployees endpoint is ready, we can create a proxy for it. The procedure for
this is the same as the one in Chapter 9. You need to create a Windows application by using
Visual Studio and then add a web reference to it. You might be wondering what URL you have
to supply in the Add Web Reference dialog box. Assuming that SQL Server is running on your
local machine, the URL will be http://localhost/sql/GetEmployees?wsdl. Remember that we
specified /sql/GetEmployees as the PATH while creating the endpoint. At the end of the URL, you
need to append the wsdl query string parameter. This way, SQL Server will return the WSDL
document for your web service. Figure 10-10 shows the Add Web Reference dialog box with the
URL entered.

Figure 10-10. Adding a web reference to the native web service

Click the Add Reference button to create a proxy for the web service.

8253.book Page 340 Tuesday, March 6, 2007 8:53 PM

C H A P T E R 1 0 ■ X M L I N S Q L S E R V E R 2 0 0 5 341

Consuming the Native Web Service
To consume the web service, you need to create a form as shown in Figure 10-11.

Figure 10-11. Application that consumes the native web service

The form consists of a DataGridView control. The records returned by the native web
service are displayed in it. The code that calls the GetEmployees web method and binds the
DataGridView with the results is shown in Listing 10-39.

Listing 10-39. Calling Web Methods

using WSClient.localhost;
using System.Net;

private void Form1_Load(object sender, EventArgs e)
{
 GetEmployeesEndPoint proxy = new GetEmployeesEndPoint();
 proxy.Credentials = CredentialCache.DefaultCredentials;
 object[] results=proxy.GetEmployees();
 dataGridView1.DataSource = ((DataSet)results[0]).Tables[0].DefaultView;
}

8253.book Page 341 Tuesday, March 6, 2007 8:53 PM

342 C H A P T E R 1 0 ■ X M L I N S Q L S E R V E R 2 0 0 5

The code imports the namespace for the proxy class. In the Load event of the form, an object
representing the proxy is created. Note that we have called our endpoint GetEmployeesEndPoint, so
the same name is given to the proxy class. Then the Credentials property of the proxy class is set
to the DefaultCredentials property of the CredentialCache class, which resides in the System.Net
namespace and allows you to pass user credentials to the proxy. Recollect that while creating the
endpoint, we specified the AUTHENTICATION mode as INTEGRATED. The DefaultCredentials property
returns the Windows credentials of the current user.

Then the code calls the GetEmployees() method on the proxy. The return value of
GetEmployees() is an object array, which contains two elements. The first element contains
the actual return value as returned by the web method, and the second parameter is of type
SqlRowCount. The SqlRowCount class contains a property called Count that tells you the number
of rows returned by the web method.

The records returned by the SELECT query are received as a DataSet object in .NET applica-
tions. Hence the code type casts the first element of the array to DataSet. Finally, the DataSet is
bound to the DataGridView.

Summary
SQL Server 2005 provides strong integration with XML. This chapter introduced you to many of
the XML features of SQL Server 2005, which allows you to view relational data as XML. This is
done with the help of the FOR XML clause of the SELECT statement. You can also look at XML data
in a relational way by using the OPENXML function.

We also saw how SQL Server 2005 makes it easy to retrieve data in a client application
over HTTP with the help of the SQLXML managed classes. These classes allow you to select
data as a stream, an XmlReader, or a DataSet. They also allow you to update UpdateGrams and
DiffGrams in the database. The newly added XML data type of SQL Server 2005 can be used to
store whole XML documents or fragments and allows you to manipulate them via XML DML.
You can expose stored procedures and functions as web methods by creating native web ser-
vices. These native web services can be consumed by client applications in a way similar to
their consuming .NET web services.

8253.book Page 342 Tuesday, March 6, 2007 8:53 PM

343

■ ■ ■

C H A P T E R 1 1

Use of XML in
the .NET Framework

Up until now, you have learned how to work with your own XML data. This includes reading,
writing, validating, serializing, and querying XML data. However, Microsoft has used XML
extensively in the .NET Framework. The most significant area where XML is used extensively
is in application configuration. Further, ASP.NET makes heavy use of XML for representing
server controls and data binding. Understanding the use of XML in the .NET Framework is
therefore essential for any .NET developer. This chapter introduces you to many of these fea-
tures. Specifically, you will learn about the following topics:

• Remoting

• How XML is used in a remoting configuration

• ASP.NET server controls

• Use of XML in representation of server controls

• The XML data source control

• Navigational controls of ASP.NET such as TreeView, Menu, and SiteMap

• The XML server control

• Website configuration files and XML

Note that although this chapter covers topics such as remoting and server controls, by no
means does it give an exhaustive treatment to these topics. The focus here is to learn how XML
is used in various areas of the .NET Framework.

Understanding Remoting
The concept of distributed applications is not new. For years companies have invented their
own ways to develop distributed applications. As far as Microsoft is concerned, Distributed
Component Object Model, or DCOM, was the main technology pillar for developing distrib-
uted applications during COM days. In the .NET Framework, they introduced remoting. You

8253ch11.fm Page 343 Thursday, March 22, 2007 11:26 AM

344 C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K

can think of remoting as the substitute for DCOM under the .NET Framework. However,
remoting is much more flexible and powerful than DCOM for the following reasons:

• Remoting provides open architecture that allows you to customize and extend it easily.

• Remoting allows you to customize the format of communication.

• Remoting allows you to customize the communication channel on which the applica-
tions talk with each other.

• Remoting doesn’t require a specific port range for communication.

• Remoting can be used easily in web-based scenarios also.

Now that you have brief idea about remoting, you’re ready to try to understand its general
architecture.

Remoting Architecture
The overall remoting architecture is shown in Figure 11-1.

Figure 11-1. Remoting architecture

Every .NET application has a security and isolation boundary. Traditionally, this boundary
is provided by the operating system in the form of a process. In the .NET Framework, however,
this boundary is provided by the Common Language Runtime (CLR) and is called the applica-
tion domain, or app domain for short. Two .NET app domains (or applications) cannot talk
to each other directly for the sake of obvious security and isolation reasons. If you wish to
communicate between two app domains, you need a proxy and marshalling infrastructure.

8253ch11.fm Page 344 Thursday, March 22, 2007 11:26 AM

C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K 345

Fortunately, the .NET Framework provides all the necessary infrastructure to achieve this
communication.

Figure 11-1 shows a remote object being consumed by a client application. The client
application is loaded in its own app domain. Similarly, the server object is loaded in its own
app domain. Before the remote object (often called a server) can be consumed, it must be
activated on the server. Activation is a process by which the remote object is published and
made available on a network, and the remoting infrastructure must be present at both ends
of the .NET Framework. When the client wishes to call any method of the remote object, it
does so via a proxy. The proxy marshals the method call to the remote server. The remote
object then executes it and marshals the return value back. Again, the proxy acts as a middle-
man and conveys the results back to the client application. The data marshalled from one
application to the other is transferred over a communication channel. Typically this channel
will be TCP or HTTP.

Object Activation
In the preceding section, you learned that a remote object must be activated prior to consum-
ing it. The term activation refers to how the objects are created and maintained on the server.
There are two ways in which the remote objects can be activated:

• Server-activated objects: The lifetime of these remote objects is controlled by the server.
These objects have a unique name (Uniform Resource Identifier, or URI) on the network
and are often called well-known objects. Server-activated objects can be further classi-
fied as singleton or single call.

• In the case of singleton objects, the server maintains only one instance of the remote
object. The same instance serves all the clients. In other words, all the clients share the
same object.

• In the case of single-call objects, the server creates and destroys an object on a per-call
basis. That means each method call gets its own instance to work with. After the
method completes, the instance is destroyed.

• Client-activated objects: The lifetime of these remote objects is controlled by the client
application. For each client, a separate object instance is created and maintained on
the server.

It is worth noting that server activation is recommended for stateless objects, whereas
client-side activation is good for stateful objects.

Channels and Formatters
Previously you learned that the proxy marshals data across the client and server over a chan-
nel. Thus a channel is responsible for carrying method calls and data across the network.
The .NET Framework provides three built-in channels: Transmission Control Protocol (TCP),
Hypertext Transfer Protocol (HTTP), and interprocess communication (IPC).

8253ch11.fm Page 345 Thursday, March 22, 2007 11:26 AM

346 C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K

The marshalled data must be sent in a certain understandable format. This is the job of
formatters. The .NET Framework comes with two formatters out of the box: a binary formatter
and a SOAP formatter.

■Note Recollect that in Chapter 8 you learned about serialization formats. The remoting framework inter-
nally uses the same serialization classes for marshalling the data.

By default the TCP channel uses a binary formatter, whereas the HTTP channel uses a
SOAP formatter. However, this coupling is by no means rigid. You can use SOAP over TCP and
binary over HTTP if you so wish. You can even develop custom channels and formatters.

Flavors of Marshalling
In the previous sections, you learned about the process of marshalling. The objects can be mar-
shalled over a network by using two techniques:

Marshalling by value: A copy of the remote object is made and is serialized over the wire to
the client application. A change to the copy doesn’t affect the remote server. You mark
classes for marshalling by value by using the [Serializable] attribute.

Marshalling by reference: The complete object is not sent to the client. Instead, a proxy for
the remote object is created and is serialized over the network. Any change made on the
proxy affects the remote server object (of course, depending on the activation model). To
mark your classes for marshalling by reference, you need to make sure they inherit from
the MarshalByRefObject base class.

Remoting Assemblies and Namespaces
All the functionality of the remoting infrastructure is available via an assembly, System.
Runtime.Remoting.dll. The System.Runtime.Remoting namespace residing in this assem-
bly contains classes that allow you to configure the client and server applications for
remoting services. The System.Runtime.Remoting.Channels namespace provides classes
that offer channel-related services. This namespace further contains sub-namespaces for
individual channel type (Tcp, Http, Ipc, and so forth).

8253ch11.fm Page 346 Thursday, March 22, 2007 11:26 AM

C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K 347

Creating a Remoting-Enabled Application
Any remoting-enabled application consists of three parts:

• The remote server

• An application that publishes the remote server

• A client that consumes the remote server

The remote server is typically created as a class library. In the class library, you need to cre-
ate the classes that you wish to consume remotely. The remote server must be published over
the network by selecting its activation model. This job is done by creating a console applica-
tion, Windows application, or Windows service. After the remote server is activated, it can then
be consumed in the client application.

The application that publishes the server and the client application require you to
configure certain parameters of the remoting infrastructure at the respective ends. These
configuration settings can be specified via code or via configuration files. We will be using
the latter approach. The remoting configuration files are XML files that contain certain pre-
defined elements and attributes. The advantage of using configuration files is that you can
change the configuration parameters at any time without recompiling the application.

In the following sections, you will create an application that displays employee details
based on the specified employee ID. The client calls a remote object called Employee to
retrieve these details. The remote server returns the details in the form of a serializable class
called EmployeeDetails. The remote server is published on the network by using a console
application.

Creating the Remote Server

To create the remote server, you need to create a project of type class library in Visual Studio.
Name the project EmployeeServer. This name is given by default to the output assembly
and namespace. Then add two classes in the class library and name them Employee and
EmployeeDetails, respectively. The Employee is the main remote object. The EmployeeDetails
class is used to carry information about an employee from the Employee object to the client
application. Listing 11-1 shows the EmployeeDetails class.

8253ch11.fm Page 347 Thursday, March 22, 2007 11:26 AM

348 C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K

Listing 11-1. EmployeeDetails Class

[Serializable]
public class EmployeeDetails
{
 private int intID;
 private string strFName;
 private string strLName;
 private string strHPhone;
 private string strNotes;

 public int EmployeeID
 {
 get
 {
 return intID;
 }
 set
 {
 intID = value;
 }
 }

 public string FirstName
 {
 get
 {
 return strFName;
 }
 set
 {
 strFName = value;
 }
 }

 public string LastName
 {
 get
 {
 return strLName;
 }
 set
 {
 strLName = value;
 }
 }

8253ch11.fm Page 348 Thursday, March 22, 2007 11:26 AM

C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K 349

 public string HomePhone
 {
 get
 {
 return strHPhone;
 }
 set
 {
 strHPhone = value;
 }
 }

 public string Notes
 {
 get
 {
 return strNotes;
 }
 set
 {
 strNotes = value;
 }
 }
}

The EmployeeDetails class consists of five private variables for storing the employee ID,
first name, last name, home phone, and notes. These private variables are wrapped in respec-
tive public properties: EmployeeID, FirstName, LastName, HomePhone, and Notes. The important
thing to notice about this class is that it is marked with the [Serializable] attribute. The
[Serializable] attribute is necessary so that the objects of the EmployeeDetails class can be
serialized over the wire. In other words, the EmployeeDetails class is a marshal-by-value type.

Listing 11-2 shows the complete Employee class.

Listing 11-2. Employee Class

public class Employee:MarshalByRefObject
{
 public Employee()
 {
 Console.WriteLine("Inside Employee Constructor...");
 }

 public EmployeeDetails GetEmployee(int empid)

8253ch11.fm Page 349 Thursday, March 22, 2007 11:26 AM

350 C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K

 {
 string strConn = @"data source=.\sqlexpress;initial ➥

catalog=northwind;integrated security=true";
 EmployeeDetails emp = new EmployeeDetails();
 SqlConnection cnn = new SqlConnection(strConn);
 SqlCommand cmd =
 new SqlCommand("SELECT employeeid,firstname,lastname,homephone,notes
 FROM employees WHERE employeeid=@id", cnn);
 SqlParameter p = new SqlParameter("@id", empid);
 cmd.Parameters.Add(p);
 cnn.Open();
 SqlDataReader reader = cmd.ExecuteReader();
 while (reader.Read())
 {
 emp.EmployeeID = reader.GetInt32(0);
 emp.FirstName = reader.GetString(1);
 emp.LastName = reader.GetString(2);
 emp.HomePhone = reader.GetString(3);
 emp.Notes = reader.GetString(4);
 }
 reader.Close();
 cnn.Close();
 return emp;
 }
}

■Note Make sure to change the database connection string in Listing 11-2 to suit your development
environment.

As mentioned earlier, any marshal-by-reference class must inherit from the
MarshalByRefObject class. Hence the Employee class inherits from the MarshalByRefObject
base class. The Employee class contains a single method named GetEmployee(), which accepts
the employee ID of an employee, populates its details in an object of the EmployeeDetails
class, and returns it back to the caller. To accomplish this, the code creates a SqlConnection
and passes a connection string to its constructor. It then creates an instance of the
SqlCommand class by passing a SELECT query and the SqlConnection instance that we just
created.

8253ch11.fm Page 350 Thursday, March 22, 2007 11:26 AM

C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K 351

The SELECT query fetches five columns from the Employees table of the Northwind database:
EmployeeID, FirstName, LastName, HomePhone, and Notes. Then the database connection is
opened for query execution by using the Open() method of the SqlConnection class. The
ExecuteReader() method of the SqlCommand class executes the SELECT query and returns its
results as a SqlDataReader. Then the code iterates through the SqlDataReader and sets various
properties of the EmployeeDetails object. After the properties are set, the SqlDataReader and
SqlConnection are closed. Finally, the EmployeeDetails instance is returned to the caller.

The class also has a public constructor, which simply emits a message on the console. The
purpose of putting a message here will be clear when we develop and run the client application
later in this chapter.

Creating an Application That Publishes the EmployeeServer

Now that you have completed the EmployeeServer class library, let’s create a console applica-
tion that publishes the EmployeeServer on the network. To do so, create a new project of
type console application. Add references to the System.Runtime.Remoting and EmployeeServer
assemblies by using the Add Reference dialog box.

At the top of the Main class, import two namespaces: System.Runtime.Remoting
and EmployeeServer. Right-click on your project and add a new XML file named
EmployeeServer.config. This XML file will contain markup necessary to configure
the remoting infrastructure on the server side. Listing 11-3 shows the contents of the
EmployeeServer.config configuration file.

Listing 11-3. Configuring the Remoting Server

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.runtime.remoting>
 <application>
 <service>
 <wellknown type="EmployeeServer.Employee,EmployeeServer"
 mode="SingleCall" objectUri="MyRemoteObject"></wellknown>
 </service>
 <channels>
 <channel port="8088" ref="tcp"></channel>
 </channels>
 </application>
 </system.runtime.remoting>
</configuration>

8253ch11.fm Page 351 Thursday, March 22, 2007 11:26 AM

352 C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K

The root tag of the XML document is <configuration> because .NET Framework configuration
files always have a root tag of <configuration>. Then comes the <system.runtime.remoting> sec-
tion. This section encloses all the remoting-related configuration settings. The <application>
section contains subsections related to application configuration.

The <service> section is used to configure server-activated objects. The <wellknown> tag
specifies more details about the type being published. Remember that server-activated objects
are also called well-known objects because they have a unique name over the network:

• The type attribute specifies the type being published as remotable. The format used
to specify the type is <fully_qualified_type_name>,<assembly_name>. In our case, the
fully qualified name of the Employee class is EmployeeServer.Employee and it resides in
the EmployeeServer assembly.

• The mode attribute governs whether the type is to be published as Singleton or
SingleCall. In our example, we are publishing it as SingleCall.

• The objectUri attribute specifies a unique URI for the type. The type is identified on the
network with the help of this URI. In our example, the URI is MyRemoteObject.

The <channels> section is used to configure the channel of communication. The <channel>
tag specifies more details about the transport channel:

• The port attribute specifies the port number at which the server will listen. Make sure to
specify a port number that is not in use.

• The ref attribute indicates the channel to be used for the communication. There are
three channels available out of the box: Tcp, Http, and Ipc.

After entering all the configuration information, save the file and add the code shown in
Listing 11-4 in the Main() method.

Listing 11-4. Loading the Remoting Configuration

class Program
{
 static void Main(string[] args)
 {
 RemotingConfiguration.Configure(Environment.CurrentDirectory +
 @"\EmployeeServer.config",false);
 Console.WriteLine("Employee Server Published Successfully!");
 Console.WriteLine("Press ENTER to exit...");
 Console.ReadLine();
 }
}

8253ch11.fm Page 352 Thursday, March 22, 2007 11:26 AM

C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K 353

The code calls the Configure() method of the RemotingConfiguration class, which accepts
two parameters. The first is the filename of the Remoting configuration file (note the use of the
Environment class to retrieve the current application folder). The second parameter indicates
whether you wish to enforce security on the underlying channel.

■Note The MSDN documentation of this method seems to be inadequate for the ensureSecurity
parameter. If the ensureSecurity parameter is set to true, the remoting system determines whether the
channel implements the ISecurableChannel interface. If it does, it enables encryption and digital signatures
for the channel. In our example, we are not using any of these security features and hence set this parameter
to false.

Then the code outputs a success message on the console. The server remains published
only while this application is running. To accomplish this, we call the ReadLine() method,
which blocks the current thread until the user presses the Enter key.

Creating the Client Application

In this section, we will develop a Windows application that acts as a client for the
EmployeeServer. The application user interface is shown in Figure 11-2.

Figure 11-2. Application that consumes the EmployeeServer

The application consists of a text box for accepting the employee ID whose details are to
be retrieved. Clicking the Show button calls the GetEmployee() method of the remote Employee
object. The returned employee details are displayed in labels.

8253ch11.fm Page 353 Thursday, March 22, 2007 11:26 AM

354 C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K

To begin developing the application, add a reference to the System.Runtime.Remoting and
EmployeeServer assemblies. Also, import the System.Runtime.Remoting and EmployeeServer
namespaces at the top of the form class. Now add a new XML file named EmployeeClient.config
to the project. This configuration file will store the settings required to configure the remoting
infrastructure at the client end. The complete markup of EmployeeClient.config is shown in
Listing 11-5.

Listing 11-5. Configuring the Remoting Client

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.runtime.remoting>
 <application>
 <client>
 <wellknown type="EmployeeServer.Employee,EmployeeServer"
 url="tcp://localhost:8088/MyRemoteObject"></wellknown>
 </client>
 </application>
 </system.runtime.remoting>
</configuration>

Just like the server configuration file, the root node of the client configuration file is
<configuration>, but the <application> section this time contains the <client> subsection.
The <client> subsection contains a tag named <wellknown> that specifies details about the
remote type. Its attributes are as follows:

• The tag attribute specifies the fully qualified type name and the assembly.

• The url attribute specifies the complete URL of the remote server. Because we are using
the TCP channel, the URL protocol is tcp. The port at which the server is listening is
mentioned just after localhost. Finally, the URI of the remote object (MyRemoteObject in
our case) is specified.

Now we are ready to consume the remote object. Listing 11-6 shows the relevant code.

Listing 11-6. Calling a Method of a Remote Object

private void Form1_Load(object sender, EventArgs e)
{
 RemotingConfiguration.Configure(Environment.CurrentDirectory +
 @"\EmployeeClient.config", false);
}

8253ch11.fm Page 354 Thursday, March 22, 2007 11:26 AM

C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K 355

private void button1_Click(object sender, EventArgs e)
{
 Employee emp = new Employee();
 EmployeeDetails ed= emp.GetEmployee(int.Parse(textBox1.Text));
 label7.Text = ed.EmployeeID.ToString();
 label8.Text = ed.FirstName;
 label9.Text = ed.LastName;
 label10.Text = ed.HomePhone;
 label11.Text = ed.Notes;
}

The Configure() method of the RemotingConfiguration class is called in the Load event
handler of the form. This method is the same as the one we called in the console application.
The code passes the full path of the client configuration file to the Configure() method. This
call is needed just once and hence it has been put in the Load event and not in the Click event
of the Show button.

Inside the Click event handler of the Show button, a new instance of the Employee class
is created. Then the GetEmployee() method of the Employee class is called by passing the sup-
plied employee ID. The GetEmployee() method returns an object of type EmployeeDetails.
The details such as EmployeeID, FirstName, LastName, HomePhone, and Notes are then displayed
in labels.

■Note If you look at the code that consumes the remote server, you won’t find anything different. This is
how you consume any other class. This feature is often called location transparency.

That’s it. You’ve just completed the three parts of a remoting application. To test the appli-
cation, you need to follow a specific sequence:

1. Run the console application.

2. Run the client application.

3. Enter a valid employee ID and click the Show button.

Figure 11-3 shows the console application window after the GetEmployee() method call has
been made. Notice the message that reads, “Inside Employee Constructor.” We outputted this
message from the constructor of the Employee class. After making a call to the GetEmployee()
method, this message is shown in the console window. This proves that it was the remote com-
ponent that was called and not the local copy.

8253ch11.fm Page 355 Thursday, March 22, 2007 11:26 AM

356 C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K

Figure 11-3. The console application publishing the EmployeeServer

■Note You might be wondering why we referenced the EmployeeServer in the client application when it
is to be consumed remotely. This is necessary because even though the method is to be called on a remote
object, the client application still needs the server’s metadata. There are ways to avoid this coupling, but they
are not within the scope of this book. You may refer to the MSDN library for a description of a command-line
tool called soapsuds.exe. This tool creates metadata-only assemblies that you can use in client applications
in place of the actual server assembly.

Using XML in ASP.NET
ASP.NET is a technology for building dynamic and data-driven web applications. In ASP.NET,
web pages are called web forms. Web forms use the .aspx extension and contain HTML
markup, server control markup, and optionally code. Web forms are called so because
they provide the same event-driven programming model as provided by Rapid Application
Development (RAD) tools such as Visual Basic 6. Every web form is a class that inherits directly
or indirectly from the System.Web.UI.Page base class.

Server controls are object-oriented wrappers over traditional HTML elements. They are
processed by ASP.NET on the server side, which is why they are called server controls. They
provide many advantages over traditional HTML controls, including rich functionality, data
binding, object-oriented features, and many others. An ASP.NET website is a collection of web
forms and related resources such as images, JavaScript files, and compiled components.

8253ch11.fm Page 356 Thursday, March 22, 2007 11:26 AM

C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K 357

Web Form Code Models
You can develop web forms via two coding models:

• The single-file code model

• The code-behind model

The Single-File Code Model

In the single-file code model, you place HTML markup, server control markup, and code
in a single physical file. This file has an extension of .aspx. Your code resides in a <script
runat="server"> </script> block.

The Code-Behind Model

In the code-behind model, there are two distinct files per web form: one with an extension of
.aspx, and the other with an extension of .cs if you are using C# or .vb if you are using VB.NET.
This latter file is referred to as the code-behind file of the web form.

The .ASPX file contains the entire HTML and server control markup. The .CS file contains
all the code including event handlers and user-defined functions. In our examples, we will be
using the code-behind model for all our web forms.

XML and ASP.NET
ASP.NET uses XML in several places. Some of the main areas where XML is used extensively are
as follows:

• Server control markup

• XML data source control

• Navigational controls such as TreeView, Menu, and SiteMap

• XML control

• Website configuration

You will learn about all these features in the following sections.

Server Control Markup

As mentioned previously, ASP.NET web forms consist of HTML and server control markup.
The server control markup is actually a special vocabulary of XML. Each server control has a
predefined tag name, tag prefix, and attributes. Some server controls are empty elements (they
do not contain any child elements), whereas others can contain markup or text.

8253ch11.fm Page 357 Thursday, March 22, 2007 11:26 AM

358 C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K

To better understand server controls, you will develop an ASP.NET website with one web
form. The web form represents a typical Contact Us page. The page will be used by end users
to contact you with any questions, feedback, or comments about your website.

Creating a Website

To create a new website by using Visual Studio, you need to choose the File ➤ New Web Site
option. This option opens the New Web Site dialog box, as shown in Figure 11-4.

Figure 11-4. Creating a new website

The ASP.NET Web Site template allows you to create a website. The Location drop-down list
indicates the target location where the website will be created. Possible locations are File System,
IIS Virtual Root (HTTP), and FTP Folder (FTP). In our example, we will choose File System. The
path specified after the Location drop-down is the target folder where the website will be created.
Make sure to select Visual C# as the language. Click the OK button to create the website. Visual
Studio will create the website with a single web form named Default.aspx.

Designing the Web Form

The next task is to design the Contact Us web form. To do so, choose Layout ➤ Insert Table
from the menu and insert a table with 11 rows and 2 columns in the default web form. Now you
need to drag and drop various controls and arrange them in the cells of this table, as detailed in
the following steps. Figure 11-5 shows Default.aspx after designing the web form.

8253ch11.fm Page 358 Thursday, March 22, 2007 11:26 AM

C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K 359

Figure 11-5. Designing a web form

The web form consists of many server controls such as Label, TextBox, DropDownList,
RadioButtonList, Button, RequiredFieldValidator, RegularExpressionValidator, and
ValidationSummary. To begin designing the web form, use the following steps:

1. Drag and drop a Label control to the first row of the table. Set its Text property to
Contact Us. Set its Font property to your choice. Also, drag and drop a Horizontal Rule
HTML control below the Contact Us label.

2. Drag and drop a ValidationSummary control in the second row. The ValidationSummary
control is available in the Validation node of the toolbox and is used to display a consoli-
dated list of validation errors from the current web form.

3. Drag and drop seven Label controls in rows 3 through 9. Set their Text properties to
Your Name :, Your Email :, Contacting For :, Subject :, Message :, Web Site (Optional) :,
and You represent :, respectively.

4. Drag and drop a TextBox control after the Your Name, Your Email, Subject, Message,
and Web Site (Optional) labels, respectively. Set the TextMode property of the Message
text box to MultiLine.

5. Drag and drop a DropDownList control after the Contacting For label.

6. Drag and drop a RadioButtonList after the You Represent label.

7. Drag and drop a Button control to row 10 and set its Text property to Submit.

8253ch11.fm Page 359 Thursday, March 22, 2007 11:26 AM

360 C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K

8. Drag and drop a Label control to row 11 and set its Text property to a blank string. This
label will be used to display a success message to the user.

9. Select the DropDownList control. Open its property window and locate the Items prop-
erty. Add four items in the DropDownList: Please Select, Sales Quotation, Technical
Problem, and Other.

10. Select the RadioButtonList control. Open its property window and locate the Items
property. Add two items in the RadioButtonList: Individual and Company.

11. Drag and drop a RequiredFieldValidator control in front of the controls that accept
name, email, reason for contact, subject, and message. The RequiredFieldValidator
control is used to validate that the control to which it has been attached contains some
value. Set the ControlToValidate property of all the RequiredFieldValidator controls to
the ID property of the respective text boxes or DropDownList.

12. Set the InitialValue property of the RequiredFieldValidator attached to the Contacting
For drop-down to Please Select. This way, the user will need to choose an option other
than Please Select.

13. Drag and drop a RegularExpressionValidator control in front of the controls that accept
email and website. The RegularExpressionValidator control validates the entered value
for a specific pattern. The pattern is set by using regular expression syntax. Set the
ControlToValidate property of both the RegularExpressionValidator controls to the ID
property of the respective text boxes. Set the ValidationExpression property of the first
RegularExpressionValidator control to Internet Email Address. Similarly, set the
ValidationExpression property of the second RegularExpressionValidator control to
Internet URL.

14. Set the Text property of all the validation controls (RequiredFieldValidator and Regular-
ExpressionValidator) to *. This text will be displayed in place of the validation control
whenever there is a validation error. Also, set the ErrorMessage property of all the vali-
dation controls to some meaningful error message. The ErrorMessage will be displayed
in the ValidationSummary control in the event of any validation error.

Our web form design is now over. At the bottom of the web form designer, you will find a
tab named Source. Click on it to see the markup generated for our web form. The relevant
markup of Default.aspx is given in Listing 11-7.

Listing 11-7. Server Control Markup from Default.aspx

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="Default.aspx.cs" Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

8253ch11.fm Page 360 Thursday, March 22, 2007 11:26 AM

C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K 361

...
<form id="form1" runat="server">
...
<asp:Label ID="Label1" runat="server" Font-Names="Arial"
Font-Size="X-Large" Text="Contact Us">
</asp:Label>
...
<asp:ValidationSummary ID="ValidationSummary1" runat="server" />
...
<asp:Label ID="Label2" runat="server" Text="Your Name :"></asp:Label>
...
<asp:TextBox ID="TextBox1" runat="server"></asp:TextBox>
<asp:RequiredFieldValidator
 ID="RequiredFieldValidator1"
 runat="server" ControlToValidate="TextBox1"
 Display="Dynamic"
 ErrorMessage="Please enter your name">*
</asp:RequiredFieldValidator>
...
<asp:Label ID="Label3" runat="server" Text="Your Email :"></asp:Label>
...
<asp:TextBox ID="TextBox2" runat="server"></asp:TextBox>
<asp:RequiredFieldValidator
 ID="RequiredFieldValidator2" runat="server"
 ControlToValidate="TextBox2"
 Display="Dynamic"
 ErrorMessage="Please enter your email">*
</asp:RequiredFieldValidator>
<asp:RegularExpressionValidator
 ID="RegularExpressionValidator1"
 runat="server"
 ControlToValidate="TextBox2"
 Display="Dynamic"
 ErrorMessage="Please enter a valid email address"
 ValidationExpression="\w+([-+.']\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*">*
 </asp:RegularExpressionValidator></td>
...
<asp:Label ID="Label4" runat="server" Text="Contacting For :"></asp:Label>
...
<asp:DropDownList ID="DropDownList1" runat="server">
<asp:ListItem Value=" Please select ">Please select</asp:ListItem>
<asp:ListItem Value=" Sales Quotation ">Sales Quotation</asp:ListItem>
<asp:ListItem Value=" Technical Problem ">Technical Problem</asp:ListItem>
<asp:ListItem Value=" Other ">Other</asp:ListItem>
</asp:DropDownList>

8253ch11.fm Page 361 Thursday, March 22, 2007 11:26 AM

362 C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K

<asp:RequiredFieldValidator ID="RequiredFieldValidator3" runat="server"
ControlToValidate="DropDownList1" Display="Dynamic"
ErrorMessage="Please select a reason for contacting us"
InitialValue="PS">*
</asp:RequiredFieldValidator>
...
<asp:Label ID="Label5" runat="server" Text="Subject :"></asp:Label>
...
<asp:TextBox ID="TextBox3" runat="server" Columns="37"></asp:TextBox>
<asp:RequiredFieldValidator
ID="RequiredFieldValidator4" runat="server" ControlToValidate="TextBox3"
Display="Dynamic" ErrorMessage="Please enter subject">*
</asp:RequiredFieldValidator>
...
<asp:Label ID="Label6" runat="server" Text="Message :"></asp:Label>
...
<asp:TextBox ID="TextBox4" runat="server" Columns="30" Rows="3"
 TextMode="MultiLine"></asp:TextBox>
<asp:RequiredFieldValidator
ID="RequiredFieldValidator5" runat="server" ControlToValidate="TextBox4"
Display="Dynamic" ErrorMessage="Please enter message">*
</asp:RequiredFieldValidator>
...
<asp:Label ID="Label7" runat="server" Text="Web Site (Optional) :"></asp:Label>
...
<asp:TextBox ID="TextBox5" runat="server"></asp:TextBox>
<asp:RegularExpressionValidator
ID="RegularExpressionValidator2" runat="server" ControlToValidate="TextBox5"
Display="Dynamic" ErrorMessage="Please enter a valid URL"
ValidationExpression="http(s)?://([\w-]+\.)+[\w-]+(/[\w- ./?%&=]*)?">
*</asp:RegularExpressionValidator>
...
<asp:Label ID="Label8" runat="server" Text="You represent :"></asp:Label>
...
<asp:RadioButtonList ID="RadioButtonList1" runat="server"
RepeatDirection="Horizontal">
<asp:ListItem Selected="True" Value="Individual">Individual</asp:ListItem>
<asp:ListItem Value="ListItem">Company</asp:ListItem>
</asp:RadioButtonList>
...
<asp:Button ID="Button1" runat="server" OnClick="Button1_Click" Text="Submit" />
...
<asp:Label ID="Label9" runat="server" Font-Bold="True" ForeColor="Red"></asp:Label>
...
</html>

8253ch11.fm Page 362 Thursday, March 22, 2007 11:26 AM

C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K 363

Observe the markup carefully. At the top you have a directive called @Page. A directive gives
information about some entity to the ASP.NET processing engine. The @Page directive gives details
about the current web form such as language of coding, code filename, and the class from the code
file that represents this web form.

Next there is a <!DOCTYPE> declaration that indicates that this document is based on a
DTD. The DTD in this case is a standard DTD from the W3C. The DTD indicates that this doc-
ument is XHTML compliant.

■Note XHTML markup is nothing but HTML markup that strictly follows the rules of XML grammar.

If you observe further, you will notice that every server control is represented by special
XML markup. For example, a Label control is represented by an <asp:Label> tag, and a TextBox
control is represented by an <asp:TextBox> tag. The part prior to the colon (:)—in other words,
asp—is called a tag prefix. The part after the colon—Label or TextBox—is called a tag name.

Each server control has its ID attribute set to a unique value. The ID of a control is used to
access it programmatically. Similarly, every server control has a runat attribute, which must
have the value of server and indicates that the tag is server control markup. You will also
observe that all the properties that you set via the property window are represented either
as attributes or child elements in the server control markup. Thus ASP.NET server control
markup is a special vocabulary of XML.

Writing Code

In this section, you will write some code so that when a user enters valid data and clicks the
Submit button, the data is emailed to you. To accomplish this requirement, you need to handle
the Click event of the Submit button. Listing 11-8 shows the web form class and the skeleton
Click event handler. We’ll fill that in next.

Listing 11-8. Web Form Class and the Click Event Handler

using System;
using System.Data;
using System.Configuration;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

8253ch11.fm Page 363 Thursday, March 22, 2007 11:26 AM

364 C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K

public partial class _Default : System.Web.UI.Page
{
 protected void Button1_Click(object sender, EventArgs e)
 {

 }
}

The code-behind file contains a partial class named _Default that inherits from the
System.Web.UI.Page base class, which provides basic functionality to your web form. Remem-
ber that the @Page directive has an attribute called Inherits that refers to this class. The
_Default class is marked as partial because only when the markup file (.aspx) and code-behind
file (.cs) are combined together, the complete class is generated. This merging happens at run
time and is the job of the ASP.NET processing engine. Also, notice several namespaces that are
imported at the top. All the namespaces that start with System.Web are physically located in an
assembly, System.Web.dll.

■Note Thorough discussion of ASP.NET server controls and related concepts is out of the scope of this book. If
you are interested in ASP.NET web application development, consider Pro ASP.NET 2.0 in C# 2005, Special Edition
by Matthew MacDonald and Mario Szpuszta (Apress, 2006) or Pro ASP.NET 2.0 in VB 2005, Special Edition by
Laurence Moroney and Matthew MacDonald (Apress, 2006).

To code our functionality, you need to import two namespaces: System.Net and
System.Net.Mail. The latter namespace provides classes for sending emails. Listing 11-9
shows the Click event handler after adding the necessary code.

Listing 11-9. Sending Email from the Code-Behind File

protected void Button1_Click(object sender, EventArgs e)
{
 SmtpClient client = new SmtpClient("localhost");
 client.Credentials = CredentialCache.DefaultNetworkCredentials;
 MailMessage msg = new MailMessage();
 msg.From = new MailAddress(TextBox2.Text);
 msg.To.Add("you@yourdomain.com");
 msg.Subject = TextBox3.Text;
 msg.Body =
 "[" + DropDownList1.SelectedItem.Text + "]" + TextBox4.Text + "\r\n" +
 TextBox1.Text + "\r\n" + TextBox5.Text;
 client.Send(msg);
 Label9.Text = "Your message has been sent. Thank you!";
}

8253ch11.fm Page 364 Thursday, March 22, 2007 11:26 AM

C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K 365

The code declares an object of the SmtpClient class. The SmtpClient class allows you to send
emails based on Simple Mail Transfer Protocol (SMTP). The constructor of the SmltpClient class
accepts the IP address or name of the machine used for SMTP operations. In our example, it is
assumed that you are using a local installation of IIS for sending emails and hence localhost is
passed as the parameter. The Credentials property of the SmtpClient class indicates the network
credentials of a user for authenticating the sender. The DefaultNetworkCredentials property of
the CredentialCache class indicates the authentication credentials of the current Windows user.

After the credentials have been set, a new MailMessage is created. The MailMessage class
represents an email message. The From and To properties of this class represent the sender and
receiver, respectively, and are of type MailAddress. The Subject and Body properties indicate
the subject and body of the email, respectively. All these properties are assigned by using the
values entered in various web form controls. Finally, the Send() method of the SmtpClient class
sends the supplied MailMessage to one or more recipients. A success message is displayed in a
label informing the user that the message has been received.

Running the Web Application

To run the web application that you just finished, you need to choose the Debug ➤ Start
Debugging menu option. Visual Studio asks whether you would like to turn on debugging
(Figure 11-6). Simply keep the default selection and click OK.

Figure 11-6. Enabling debugging for your website

■Note After you click OK in the Debugging Not Enabled dialog box, Visual Studio will actually add a file
called web.config to your website that enables debugging for your website. You will learn about the
web.config file in later sections.

Visual Studio will launch the default development web server in the background and will
host your website in it. It will also open the default browser and navigate to Default.aspx.
Figure 11-7 shows the Default.aspx web form in the browser.

8253ch11.fm Page 365 Thursday, March 22, 2007 11:26 AM

366 C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K

Figure 11-7. Default.aspx in a browser

If you try to click the Submit button without entering any values, you should see validation
error messages, as shown in Figure 11-8.

Figure 11-8. Web form showing validation errors

Notice how the ValidationSummary displays a collective list of error messages, whereas an
asterisk is displayed in place of individual validation controls. If you enter valid values in the

8253ch11.fm Page 366 Thursday, March 22, 2007 11:26 AM

C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K 367

controls and click Submit, the code will send an email to your email address and will display a
success message, as shown in Figure 11-9.

Figure 11-9. Successful execution of the web form

The XML Data Source Control
One of the strengths of server controls is their ability to perform data binding with relational or
hierarchical data. ASP.NET data source controls are a set of web server controls that automate
common data-access tasks such as fetching records and displaying them in other data bound
controls. All of this is achieved without any code being written by the developer. As we are look-
ing at XML in this book, it is the XML data source control we are interested in. This control is
very useful when you are using controls such as TreeView that essentially display hierarchical
data. Let’s see how the XML data source control can be used along with a TreeView control.

Begin by creating a new website via Visual Studio. Add a new XML file to your website
by using the Add New Item dialog box and name it Navigation.xml. The Navigation.xml file
contains XML markup representing website navigation structure. The XML markup from
Navigation.xml is shown in Listing 11-10.

Listing 11-10. XML Markup from the Navigation.xml File

<?xml version="1.0" encoding="utf-8" ?>
<node text="Home" url="default.aspx">
 <node text="Products" url="products.aspx">
 <node text="Product 1" url="product1.aspx"></node>
 <node text="Product 2" url="product2.aspx"></node>
 <node text="Product 3" url="product3.aspx"></node>
 </node>
 <node text="Services" url="services.aspx">
 <node text="Service 1" url="service1.aspx"></node>
 <node text="Service 2" url="service2.aspx"></node>
 <node text="Service 3" url="service3.aspx"></node>
 </node>
 <node text="About Us" url="about.aspx"></node>
 <node text="Contact Us" url="contact.aspx"></node>
</node>

8253ch11.fm Page 367 Thursday, March 22, 2007 11:26 AM

368 C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K

The root tag of the document is <node>, which further contains various <node> tags. Each
<node> element represents a node of the TreeView control and has two attributes, text and url:

• The text attribute specifies the text to be displayed in the TreeView node.

• The url attribute points to a URL where the user should be navigated.

The nesting of the <node> elements decides the nesting of the TreeView rendered. Thus the
root node of the TreeView will be Home. The Home node will have four immediate children:
Products, Services, About Us, and Contact Us. Similarly, the Products and Services nodes will
have three children each.

Now drag and drop an XmlDataSource control from the toolbox onto the web form
designer. Set its DataFile property to Navigation.xml. The DataFile property points to an XML
file that will be supplying data to the XML data source control. Next, drag and drop a TreeView
control onto the web form and set its DataSourceID property to the ID of the XmlDataSource
control you just configured. Now locate the DataBindings property of the TreeView, and open
the TreeView DataBindings Editor (Figure 11-10).

Figure 11-10. TreeView DataBindings Editor

In the Available Data Bindings area, you will see all the nodes at each level from the XML
file. Select the node at each level and click the Add button. You will now have three entries
in the Selected Data Bindings area. Select the first data binding and set its TextField and
NavigateUrlField properties to text and url, respectively. As you might have guessed, text
and url are the attributes of the <node> element. The DataMember property indicates the name
of the element from the XML document that is supplying the data and is automatically set to

8253ch11.fm Page 368 Thursday, March 22, 2007 11:26 AM

C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K 369

node. Repeat the same process for the remaining two data bindings. Listing 11-11 shows the
complete markup of Default.aspx.

Listing 11-11. Markup Containing the XmlDataSource and the TreeView

<%@ Page Language="C#" AutoEventWireup="true" CodeFile="Default.aspx.cs"
Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >
 <head runat="server">
 <title>Untitled Page</title>
 </head>
 <body>
 <form id="form1" runat="server">
 <asp:XmlDataSource ID="XmlDataSource1" runat="server"
 DataFile="~/Navigation.xml">
 </asp:XmlDataSource>
 <asp:TreeView ID="TreeView1" runat="server" AutoGenerateDataBindings="False"
 DataSourceID="XmlDataSource1" Font-Bold="True" Font-Size="Large"
 ShowLines="True">
 <DataBindings>
 <asp:TreeNodeBinding DataMember="node" NavigateUrlField="url"
 TextField="text" />
 <asp:TreeNodeBinding DataMember="node" NavigateUrlField="url"
 TargetField="text" />
 <asp:TreeNodeBinding DataMember="node" NavigateUrlField="url"
 TargetField="text" />
 </DataBindings>
 </asp:TreeView>
 </form>
 </body>
</html>

As you can see, the XML data source control and the TreeView control are represented by
the <asp:XmlDataSource> and <asp:TreeView> markup tags, respectively. Each TreeView node
binding is represented by an <asp:TreeNodeBinding> tag. The DataMember, NavigateUrlField,
and TextField attributes of the TreeNodeBinding element represent the properties that you
assigned previously.

Now run the website as before and see how the TreeView control renders the various
nodes based on the structure specified in the Navigation.xml file. Figure 11-11 shows a sample
run of the web form.

8253ch11.fm Page 369 Thursday, March 22, 2007 11:26 AM

370 C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K

Figure 11-11. A TreeView populated by using an XML data source control

Applying Transformations

In the preceding example, you supplied the XML file as is to the XML data source control. What if
you wish to apply an XSLT transformation to the XML file and then bind it with the TreeView?
Fortunately, the XML data source control has a built-in facility to do just that: the TransformFile
property, which points to an XSLT file. Before supplying the XML data to other controls such as
a TreeView, the XSLT style sheet is applied to the XML data and then the transformed data is
passed on. Suppose that you bound a TreeView control to an XML document as shown in
Listing 11-12.

Listing 11-12. XML Document to Be Bound to a TreeView

<?xml version="1.0" encoding="utf-8"?>
<MenuItem Title="Home" URL="default.aspx">
 <MenuItem Title="Products" URL="products.aspx">
 <MenuItem Title="Product 1" URL="product1.aspx" />
 <MenuItem Title="Product 2" URL="product2.aspx" />
 <MenuItem Title="Product 3" URL="product3.aspx" />
 </MenuItem>
 <MenuItem Title="Services" URL="services.aspx">
 <MenuItem Title="Service 1" URL="service1.aspx" />
 <MenuItem Title="Service 2" URL="service2.aspx" />
 <MenuItem Title="Service 3" URL="service3.aspx" />
 </MenuItem>
 <MenuItem Title="About Us" URL="about.aspx" />
 <MenuItem Title="Contact Us" URL="contact.aspx" />
</MenuItem>

8253ch11.fm Page 370 Thursday, March 22, 2007 11:26 AM

C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K 371

As you can see, this XML document uses the <MenuItem> element to represent a TreeView
node. The Title and URL attributes represent the Text and NavigateUrlField properties of indi-
vidual TreeView nodes. Now suppose that for some reason you want to bind the same TreeView
to another XML document, as shown in Listing 11-13.

Listing 11-13. XML Markup from the New XML File

<?xml version="1.0" encoding="utf-8" ?>
<node text="Home" url="default.aspx">
 <node text="Products" url="products.aspx">
 <node text="Product 1" url="product1.aspx"></node>
 <node text="Product 2" url="product2.aspx"></node>
 <node text="Product 3" url="product3.aspx"></node>
 </node>
 <node text="Services" url="services.aspx">
 <node text="Service 1" url="service1.aspx"></node>
 <node text="Service 2" url="service2.aspx"></node>
 <node text="Service 3" url="service3.aspx"></node>
 </node>
 <node text="About Us" url="about.aspx"></node>
 <node text="Contact Us" url="contact.aspx"></node>
</node>

You might have noticed that this is the same XML file that we used in the previous exam-
ple. To cater to the change, you need to reconfigure the TreeView node data bindings to suit the
new XML document. If the underlying data binding has complex nesting, this may not be an
easy task. This situation can be avoided if you apply an XSLT style sheet to the XML from
Listing 11-13 and transform it to match the XML in Listing 11-12. The XSLT style sheet that can
do this transformation is shown in Listing 11-14.

Listing 11-14. An XSLT Style Sheet for Transforming the New XML Markup

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="/">
 <xsl:for-each select=".">
 <xsl:apply-templates/>
 </xsl:for-each>
 </xsl:template>
 <xsl:template match="node">
 <xsl:element name="MenuItem">
 <xsl:attribute name="Title">
 <xsl:value-of select="@text"/>
 </xsl:attribute>

8253ch11.fm Page 371 Thursday, March 22, 2007 11:26 AM

372 C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K

 <xsl:attribute name="URL">
 <xsl:value-of select="@url"/>
 </xsl:attribute>
 <xsl:apply-templates />
 </xsl:element>
 </xsl:template>
</xsl:stylesheet>

The style sheet transforms a <node> element to a <MenuItem> element. Further, it trans-
forms the text and url attributes to the Title and URL attributes, respectively.

To test how the TransformFile property works, you need to modify the preceding example
by following these steps:

1. Add a new XSLT file named Navigation.xsl into the website.

2. Key in the markup shown in Listing 11-14.

3. Set the TransformFile property of the XML data source control to Navigation.xsl.

4. Open the TreeView DataBindings Editor of the TreeView and modify the data bindings to
use the MenuItem node as DataMember, Title as TextField, and URL as NavigateUrlField.

This time, the TreeView DataBindings Editor looks like Figure 11-12.

Figure 11-12. TreeView DataBindings Editor showing transformed nodes

8253ch11.fm Page 372 Thursday, March 22, 2007 11:26 AM

C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K 373

You will observe that although the DataFile property is still Navigation.xml, the data bind-
ings shown are as per the transformation specified in the XSLT style sheet. If you run the web
form again, the output should be the same as in Figure 11-11 earlier.

Filtering Data by Using XPath Expressions

At times you may wish to filter the data from the source XML file and bind the filtered data to
other controls. This is where the XPath property of the XML data source control comes in. The
XPath property takes a valid XPath expression and applies it to the source XML data.

Suppose, for example, that you wish to display only product-related nodes in the
TreeView. You can achieve this by setting the XPath property of the XML data source to
/node/node[@text="Products"]. This way, only the product-related nodes (Products,
Product 1, Product 2, and Product 3) will be filtered. The TreeView will have nesting up
to two levels only (Products as the top node, and the other three nodes as child nodes).
Figure 11-13 shows a sample run of the same web form after setting the XPath property.

Figure 11-13. TreeView after applying the XPath filter

Binding an XML Data Source to a Menu Control

In the previous examples, you used a TreeView to display data supplied by an XML data source
control. ASP.NET also provides a Menu control that can be used to display hierarchical data.
The Menu control closely matches the TreeView control with respect to XML data binding.
However, it differs in its look and feel. The Menu control renders dynamic pull-down menus in
your web forms similar to traditional Windows applications. Let’s see an example of how it can
be used.

Create a new website in Visual Studio. Add the Navigation.xml file that you created previously
to the website by using the Add Existing Item dialog box. Drag and drop an XmlDataSource control
onto the default web form and set its DataFile property to Navigation.xml. Now drag and drop a
Menu control onto the form and set its DataSourceID property to the ID of the XmlDataSource con-
trol you just configured.

Now, locate the Menu control’s DataBindings property. Similar to the TreeView, the Menu
control opens the Menu DataBindings Editor, wherein you can configure the data bindings.

8253ch11.fm Page 373 Thursday, March 22, 2007 11:26 AM

374 C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K

The process of configuring data bindings is exactly the same as before. You need to select the
required data bindings and set their DataMember, TextField, and NavigateUrl properties to
node, text, and url, respectively. Figure 11-14 shows the Menu DataBindings Editor with
required data bindings added.

Figure 11-14. Menu DataBindings Editor

The complete markup of the web form is shown in Listing 11-15.

Listing 11-15. Markup of the Menu Control

<%@ Page Language="C#" AutoEventWireup="true" CodeFile="Default.aspx.cs"
 Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" >
 <head runat="server">
 <title>Untitled Page</title>
 </head>
 <body>
 <form id="form1" runat="server">
 <asp:XmlDataSource ID="XmlDataSource1" runat="server"
 DataFile="~/Navigation.xml"></asp:XmlDataSource>

8253ch11.fm Page 374 Thursday, March 22, 2007 11:26 AM

C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K 375

 <asp:Menu ID="Menu1" runat="server" BackColor="#E3EAEB"
 DataSourceID="XmlDataSource1"
 <DataBindings>
 <asp:MenuItemBinding DataMember="node" NavigateUrlField="url"
 TextField="text" />
 <asp:MenuItemBinding DataMember="node" NavigateUrlField="url"
 TextField="text" />
 <asp:MenuItemBinding DataMember="node" NavigateUrlField="url"
 TextField="text" />
 </DataBindings>
 </asp:Menu>
 </form>
 </body>
</html>

As you can see, the Menu control is represented by the <asp:Menu> markup tag. The
<DataBindings> section defines one or more data bindings, where each data binding is repre-
sented by an <asp:MenuItemBinding> element. Running the web form should render the menu
as shown in Figure 11-15.

Figure 11-15. The Menu control in action

Working with Site Maps
A site map is an XML file that details the overall navigational layout of your website. You can
then consume this site map file as required. The site map file has an extension of .sitemap.
Let’s examine site map files via an example. Have a look at Figure 11-16.

8253ch11.fm Page 375 Thursday, March 22, 2007 11:26 AM

376 C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K

Figure 11-16. Structure of a website

Figure 11-16 shows the directory structure of a sample website. The home page
(Default.aspx) and Contact Us page (contact.aspx) reside in the root folder of the website.
There are two subfolders called Products and Services. Each of them contains two web
forms—Product1.aspx and Product2.aspx, and Service1.aspx and Service2.aspx—respec-
tively. Now let’s represent this website structure by using a site map.

Create a new website by using Visual Studio. Add a new site map file by using the Add New
Item dialog box (Figure 11-17). Name the site map file Web.sitemap.

Figure 11-17. Adding a new site map

8253ch11.fm Page 376 Thursday, March 22, 2007 11:26 AM

C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K 377

Now key in the XML markup shown in Listing 11-16 in the Web.sitemap file.

Listing 11-16. Contents of the Web.sitemap File

<?xml version="1.0" encoding="utf-8" ?>
<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >
<siteMapNode url="default.aspx" title="Home" description="My Web Site">
 <siteMapNode url="~/products/default.aspx" title="Products">
 <siteMapNode url="~/products/product1.aspx" title="First Product" />
 <siteMapNode url="~/products/product2.aspx" title="Second Product" />
 </siteMapNode>
 <siteMapNode url="~/services/default.aspx" title="Services">
 <siteMapNode url="~/services/service1.aspx" title="First Service" />
 <siteMapNode url="~/services/service2.aspx" title="Second Service" />
 </siteMapNode>
<siteMapNode url="contact.aspx" title="Contact Us" />
</siteMapNode>
</siteMap>

The site map file contains a set of predefined tags and attributes. The root node of a site
map file is <siteMap>. It further contains several <siteMapNodes> tags depending on your
website structure. The <siteMapNode> tag has four important attributes. They are listed in
Table 11-1.

Table 11-1. Attributes of a Site Map Node

■Note Security trimming is a feature that implements role-based security by rendering only the nodes that
are allowed for the current user. In other words, a particular <siteMapNode> will be accessible to a user only
if the user’s role is specified in the roles attribute of the <siteMapNode> element.

Attribute Description

title Indicates the title of the page. This attribute is often used by navigational controls
to display the title for the URL.

url Indicates the URL of the page that this node represents.

description Specifies the description of the destination page. You can use this description to
show ToolTips.

roles While using security trimming, this attribute specifies the roles that are allowed
to access this page.

8253ch11.fm Page 377 Thursday, March 22, 2007 11:26 AM

378 C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K

Site map files are often used to render some kind of navigational structure. There are two
common ways in which you can consume the site map file you just created:

• In a SiteMapPath control

• In a SiteMapDataSource control

In the following sections, you are going to see both of them.

Using a SiteMapPath Control
The SiteMapPath control allows you to render what are often called breadcrumbs. Figure 11-18
shows what breadcrumbs are.

Figure 11-18. Breadcrumbs

The SiteMapPath control displays various levels of navigation. You can click on the parent
or root levels to navigate back or to the top level. Before we delve into the details, let’s first cre-
ate the required directory structure and web forms. Begin by adding two folders to the website
called Products and Services. Add the web forms as shown in Table 11-2.

Table 11-2. Folders and Web Forms

Web Form Name Folder

Default.aspx Root folder

Contact.aspx Root folder

Product1.aspx Products

Product2.aspx Products

Service1.aspx Services

Service2.aspx Services

8253ch11.fm Page 378 Thursday, March 22, 2007 11:26 AM

C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K 379

Now drag and drop a SiteMapPath control onto each web form. Run Service2.aspx in the
browser, and you should see something similar to Figure 11-18. The SiteMapPath control auto-
matically renders breadcrumbs for the current web form based on its location in the site map file.

Using a SiteMapDataSource Control
The use of site maps is not limited just to SiteMapPath controls. You can also attach the site
map to navigational controls such as a TreeView. In this example, we will use the same site map
file to bind to a TreeView.

Create a new website by using Visual Studio. Add the same Web.sitemap file to it. This time
drag and drop a SiteMapDataSource control onto the web form. The SiteMapDataSource
control automatically picks up the Web.sitemap file and supplies it to other controls. Further,
drag and drop a TreeView control and set its DataSourceID property to the ID attribute of the
SiteMapDataSource. That’s it. Run the web form, and it should resemble Figure 11-19.

Figure 11-19. TreeView bound with SiteMapDataSource control

Using the XML Control
In Chapter 6, you learned to apply XSLT style sheets to XML data and transform them from one
vocabulary to another. You achieved this by creating an instance of the XslCompiledTransform
class. You then loaded an XSLT style sheet into it by using its Load() method. Finally, you did
the transformation by using its Transform() method. ASP.NET provides an easy alternative to
this manual coding: the XML control. The XML control accepts an XML document and XSLT
style sheet. It then applies the style sheet to the XML data and renders the content on the web
page. The most common use of the XML control is to transform XML data into HTML, though
of course it doesn’t have to be HTML.

To illustrate the use of the XML control, create a new website. Add a new XML file named
Employees.xml and key in the markup shown in Listing 11-17.

8253ch11.fm Page 379 Thursday, March 22, 2007 11:26 AM

380 C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K

Listing 11-17. XML File That Supplies Data to the XML Control

<?xml version="1.0" encoding="utf-8" ?>
<?xml-stylesheet type="text/xsl" href="Employees4.xslt"?>
<!-- This is list of employees -->
<employees>
 <employee employeeid="1">
 <firstname>Nancy</firstname>
 <lastname>Davolio</lastname>
 <homephone>(206) 555-9857</homephone>
 <notes>
 <![CDATA[includes a BA in psychology from Colorado State University in 1970.
She also completed "The Art of the Cold Call." Nancy is a member of
Toastmasters International.]]>
 </notes>
 </employee>
 <employee employeeid="2">
 <firstname>Andrew</firstname>
 <lastname>Fuller</lastname>
 <homephone>(206) 555-9482</homephone>
 <notes>
 <![CDATA[Andrew received his BTS commercial in 1974 and a Ph.D. in
international marketing from the University of Dallas in 1981. He is fluent in
French and Italian and reads German. He joined the company as a sales
representative, was promoted to sales manager in January 1992 and to vice
president of sales in March 1993. Andrew is a member of the Sales Management
Roundtable, the Seattle Chamber of Commerce, and the Pacific Rim Importers
Association.]]>
 </notes>
 </employee>
 <employee employeeid="3">
 <firstname>Janet</firstname>
 <lastname>Leverling</lastname>
 <homephone>(206) 555-3412</homephone>
 <notes>
 <![CDATA[Janet has a BS degree in chemistry from Boston College (1984).
She has also completed a certificate program in food retailing management.
Janet was hired as a sales associate in 1991 and promoted to sales
representative in February 1992.]]>
 </notes>
 </employee>
</employees>

8253ch11.fm Page 380 Thursday, March 22, 2007 11:26 AM

C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K 381

Similarly, add a new XSLT style sheet named Employees.xsl and key in the markup shown
in Listing 11-18.

Listing 11-18. XSLT Style Sheet to Be Applied

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="/">
 <html>
 <body>
 <h1>Employee Listing</h1>
 <table border="1">
 <tr>
 <th>Employee ID</th>
 <th>First Name</th>
 <th>Last Name</th>
 <th>Home Phone</th>
 <th>Notes</th>
 </tr>
 <xsl:for-each select="employees/employee">
 <tr>
 <td>
 <xsl:value-of select="@employeeid"/>
 </td>
 <td>
 <xsl:value-of select="firstname"/>
 </td>
 <td>
 <xsl:value-of select="lastname"/>
 </td>
 <td>
 <xsl:value-of select="homephone"/>
 </td>
 <td>
 <xsl:value-of select="notes"/>
 </td>
 </tr>
 </xsl:for-each>
 </table>
 </body>
 </html>
 </xsl:template>
</xsl:stylesheet>

8253ch11.fm Page 381 Thursday, March 22, 2007 11:26 AM

382 C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K

■Note These are the same files that you used in Chapter 6. If you wish, you can add them to your website
instead of re-creating them.

Now drag and drop an XML control onto the default web form. Set its DocumentSource prop-
erty to Employees.xml and its TransformSource property to Employees.xsl. The former property
points to the XML file that is to be transformed, whereas the latter property points to the XSLT
style sheet that is to be applied to the DocumentSource. Now run the web form and you should
see something similar to Figure 11-20.

Figure 11-20. XML data transformed to HTML by using the XML control

Using the .NET Framework Configuration System
The .NET Framework’s configuration system is based purely on XML. When you install the
.NET Framework on a machine, an XML file named Machine.config is installed in the installa-
tion folder. The Machine.config file is the master configuration file and contains configuration
settings that are applied to all .NET applications running on that machine. Though this file is in
XML format and can be edited directly, you should do so with caution. Any change made to this
file is going to affect all the applications running on that machine. Figure 11-21 shows a view of
Machine.config.

8253ch11.fm Page 382 Thursday, March 22, 2007 11:26 AM

C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K 383

Figure 11-21. Machine.config

To override settings specified in the Machine.config file, you need to create application
configuration files. Application configuration files are also XML files containing special XML
markup. For Windows-based applications, the application configuration file is of the form
<exe_name>.exe.config, where exe_name is the name of the application executable. For web
applications and services, the application configuration filename must be web.config. In the
following sections, you are going to learn more about the web.config file and the XML vocabu-
lary used therein.

Structure of the web.config File
Listing 11-19 shows the general structural outline of a web.config file.

Listing 11-19. Structural Outline of web.config

<configuration>
 <appSettings />
 <connectionStrings />
 <system.web />
</configuration>

8253ch11.fm Page 383 Thursday, March 22, 2007 11:26 AM

384 C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K

As you can see, the root node of the web.config file is <configuration>, and there are three
main subsections:

• The <appSettings> section is used to specify application configuration settings.

• The <connectionStrings> section is used to store one or more database connection strings.

• The <system.web> section contains all the settings applicable to web applications.

All of these sections are optional. However, in most real-world cases you will have at least
the <system.web> section.

■Note The web.config file contains many configuration sections. It isn’t possible to cover every section
here. I am going to discuss some commonly used sections only.

Inheritance and web.config
The web.config file exhibits what is often referred to as inheritance behavior. In a single web
application, there can be one or more web.config files in different folders. The settings of one
web.config file are applied to the folder in which it resides and all the subfolders. However, if
the subfolders contain a web.config of their own, the settings specified in that web.config take
precedence.

Common Configuration Tasks
Now that we have a basic understanding of how web.config works, let’s see how to perform
some common configuration tasks. We are going to cover the following tasks in particular:

• How to store and retrieve application configuration settings

• How to store and retrieve your database connection strings

• How to work with membership, roles, and profile features

• How to provide custom error pages in your website

Storing and Retrieving Application Configuration Settings

Avoiding hard-coding values is a mandatory requirement in many real-world applications.
Earlier in this chapter, we developed a Contact Us web form that sends messages from users to
a specified email address. In that example, we hard-coded an email address in the code-behind
file. What if the email address changes after deployment? Obviously, you need to change the
source code to match the new email address and redeploy the application. This is not a recom-
mended practice for real-world applications. Wouldn’t it be nice if we could isolate the email
address from the application, store it in an external location, and retrieve it inside your code?
In VB6 or Visual C++, developers achieved this by using .INI files or the registry. In .NET you
have a nice alternative: the application configuration section of configuration files.

8253ch11.fm Page 384 Thursday, March 22, 2007 11:26 AM

C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K 385

The <appSettings> section of web.config allows you to store such application-specific set-
tings. You can then read these settings in your source code. Tomorrow if the settings change,
you need to change just the web.config file and not the source code. Let’s modify our Contact
Us web form to use application configuration settings.

Open the same website by choosing File ➤ Open Web Site from the menu. Open the
web.config file in the IDE and modify the <appSettings> section as shown in Listing 11-20.

Listing 11-20. Storing Values in the <appSettings> Section

<appSettings>
 <add key="host" value="localhost"/>
 <add key="email" value="you@yourdomain.com"/>
</appSettings>

The <appSettings> section can contain one or more <add> elements. The <add> element
has two attributes:

• The key attribute defines a key with which the value will be accessed in the code.

• The value attribute specifies the actual value of the key.

In our example, we defined two keys: host and email. The former key stores the value of the
SMTP host, and the latter stores your email address. Now open the code-behind web form and
modify the Click event handler of the Submit button as shown in Listing 11-21.

Listing 11-21. Retrieving Values from the <appSettings> Section

protected void Button1_Click(object sender, EventArgs e)
{
 string host = ConfigurationManager.AppSettings["host"];
 string email = ConfigurationManager.AppSettings["email"];
 SmtpClient client = new SmtpClient(host);
 client.Credentials = CredentialCache.DefaultNetworkCredentials;
 MailMessage msg = new MailMessage();
 msg.From = new MailAddress(TextBox2.Text);
 msg.To.Add(email);
 msg.Subject = TextBox3.Text;
 msg.Body =
 "[" + DropDownList1.SelectedItem.Text + "]" + TextBox4.Text + "\r\n" +
 TextBox1.Text + "\r\n" + TextBox5.Text;
 client.Send(msg);
 Label9.Text = "Your message has been sent. Thank you!";
}

Observe the code marked in bold. The code uses a class called ConfigurationManager,
which resides in the System.Configuration namespace. By default System.Configuration is
imported in the code-behind. The AppSettings property of the ConfigurationManager class
exposes the entire <appSettings> section as a NameValueCollection. You can access individual
values by using an index or a key name, though it is more common to access them by using
key names.

8253ch11.fm Page 385 Thursday, March 22, 2007 11:26 AM

386 C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K

The code retrieves the values of two keys—host and email—and stores them in a string
variable. The constructor of the SmtpClient class now accepts the value stored in the host
string variable instead of a hard-coded value. Similarly, the Add() method accepts the value
stored in the email string variable and not a hard-coded value. If you run the application, you
should get the results as before, but now you are free to change the host name and email
address without touching the source code.

Storing and Retrieving Database Connection Strings

Storing database connection strings outside the source code is probably the most common
configuration task. ASP.NET provides a special section of web.config to store database connec-
tion strings called <connectionStrings>. The <connectionStrings> section allows you to store
one or more database connection strings that can be retrieved later in your code. To retrieve
the connection strings stored in the <connectionStrings> section, you again need to use the
ConfigurationManager class.

To illustrate the use of the <connectionStrings> section, you will develop a simple employee
listing web form. The web form will display a list of employees in a GridView control. To begin,
create a new website by using Visual Studio. Add a web.config file to the website by using the Add
New Item dialog box (Figure 11-22).

Figure 11-22. Adding a web.config file

8253ch11.fm Page 386 Thursday, March 22, 2007 11:26 AM

C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K 387

Open the web.config file in the IDE and modify the <connectionStrings> section as shown
in Listing 11-22.

Listing 11-22. Adding a Connection String to the <connectionStrings> Section

<connectionStrings>
 <add name="connectionstring"
 connectionString="data source=.;initial catalog=Northwind;
 integrated security=true"
 providerName="System.Data.SqlClient"/>
</connectionStrings>

The <connectionStrings> section can contain one or more <add> elements, each defining
a database connection string:

• The name attribute of the <add> element defines a name for that connection string. This
name is used later to access the connection string.

• The connectionString attribute specifies the actual database connection string.

• Finally, the providerName attribute indicates the .NET data provider that can be used to
communicate with the database.

Now open the default web form and drag and drop a GridView control onto it. Then key in
the code shown in Listing 11-23 in the Page_Load event of the web form.

Listing 11-23. Retrieving the Connection String

protected void Page_Load(object sender, EventArgs e)
{
 string strConn=
 ConfigurationManager.ConnectionStrings["connectionstring"].ConnectionString;
 SqlDataAdapter da =
 new SqlDataAdapter("SELECT EmployeeID,FirstName, LastName FROM Employees",
 strConn);
 DataSet ds = new DataSet();
 da.Fill(ds, "employees");
 GridView1.DataSource = ds;
 GridView1.DataBind();
}

The code uses the ConfigurationManager class to retrieve the connection string value. The
ConnectionStrings collection can be accessed by using an index or a connection string name.
In our example, we access it with a name.

8253ch11.fm Page 387 Thursday, March 22, 2007 11:26 AM

388 C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K

Each connection string stored in the <connectionStrings> section is represented by
a ConnectionStringSettings class, and the ConnectionString property of this class returns
the actual connection string. The connection string is then used as the second parameter of the
SqlDataAdapter constructor, the first parameter being the SELECT query.

A DataSet is then filled by using the Fill() method of the SqlDataAdapter class. The
DataSet thus created acts as a DataSource to the GridView control. The DataBind() method of
the GridView control binds the data from the DataSet to the GridView. If you run the web form
after writing the code, you should see something similar to Figure 11-23.

Figure 11-23. Web form displaying an employee listing

The ASP.NET Provider Model
Prior to ASP.NET 2.0, a data store was never an integrated and built-in part of the application
framework. As a developer, you used to do all the work to use a database. ASP and ASP.NET 1.x
did not provide a direct interaction with the database for framework-level services. However,
ASP.NET 2.0 comes with a host of new features such as membership, roles, and profile man-
agement that require a database to store data involved in the functioning of a particular
feature. This database can be Microsoft SQL Server, Microsoft Office Access, or anything else.

To isolate a specific database from the ASP.NET infrastructure, ASP.NET brings in the con-
cept of the provider model. Figure 11-24 illustrates how the provider model works.

8253ch11.fm Page 388 Thursday, March 22, 2007 11:26 AM

C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K 389

Figure 11-24. ASP.NET provider model

As you can see, at the bottom you have the physical data store such as SQL Server or Access.
The data store stores all the data required for proper functioning of the feature under consider-
ation. ASP.NET deals with the data store through a set of classes called provider classes—for
example, the membership provider. Different features have different providers. For example, for
membership features with SQL Server, the class used is SqlMembershipProvider. If you wish, you
can also build your own provider. Finally, the actual feature-level APIs communicate with the
provider to get the data in and out of the actual data store. Out of the box, ASP.NET comes with
two providers:

• AspNetSqlProvider

• AspNetAccessProvider

AspNetSqlProvider

As you might have guessed, AspNetSqlProvider uses the SQL Server database as a data store.
This is the default provider in ASP.NET. In the default mode when you use any of the features
that require a provider to store data, ASP.NET automatically creates a SQL Server Express
database and adds it to the App_Data folder of your website. You can of course configure your
website to use a different SQL Server database, or even a non–SQL Server database.

8253ch11.fm Page 389 Thursday, March 22, 2007 11:26 AM

390 C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K

AspNetAccessProvider

AspNetAccessProvider uses the Access (Jet) database for storing information. Generally, Access
is not used in real-world heavy-duty applications, but you can certainly use it if the application
calls for it.

Services Offered by the Provider Model

The three frequently used implementations of the provider model are membership, roles, and
profile services:

• The membership services deal with user management. By using membership services,
you can create, manage, and authenticate users of your website.

• The roles services deal with role-based authentication. By using roles services, you can
check whether a user belongs to a specific role. You can also create and manage roles.

• The profile services deal with personalization. A profile is nothing but an extended set
of information about a user. For example, you may capture details such as birth date,
address, and full name while the user is registering with your website. These details are
stored as the profile of that user.

Using Membership, Roles, and Profile Services

Now that you have an idea about the ASP.NET provider model, let’s develop an application
that configures membership, roles, and profile providers and then uses these features in a web-
site. The general steps that you need to follow are as follows:

• Configure a database for supporting membership, roles, and profile services.

• Enable website security.

• Configure membership, roles, and profile providers.

• Define application-specific roles.

• Create a user registration and login page.

• Add users to roles.

• Capture profile information.

8253ch11.fm Page 390 Thursday, March 22, 2007 11:26 AM

C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K 391

Configure a Database for Supporting Membership, Roles, and Profile Services

Membership, roles, and profile data must be stored in a database. In our example, we will use the
Northwind database as a data store. To store membership, roles, and profile data in the Northwind
database, it must contain certain predefined tables and stored procedures. To create these tables
and stored procedures, the .NET Framework provides a tool called aspnet_regsql.exe. The tool
consists of a wizard that guides you through the necessary steps:

1. Open Visual Studio Command Prompt from the Visual Studio program group and run
the aspnet_regsql.exe tool from there. Figure 11-25 shows the first step of the wizard.

Figure 11-25. Step 1 of the aspnet_regsql.exe tool

2. Step 1 of the wizard is just a welcome step. Click Next to go to step 2 (Figure 11-26).

3. The second step allows you to specify whether you want to configure the database for
application services or remove the configuration. Keep the default selection as it is and
click Next. The screen shown in Figure 11-27 appears.

4. Step 3 of the wizard accepts database connectivity-related details such as server name,
authentication mode, and database name. Make sure that you specify Northwind as the
database to configure. Click Next to finish the wizard.

8253ch11.fm Page 391 Thursday, March 22, 2007 11:26 AM

392 C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K

Figure 11-26. Step 2 of the aspnet_regsql.exe tool

Figure 11-27. Step 3 of the aspnet_regsql.exe tool

Now your database is ready to consume membership, roles, and profile features.

8253ch11.fm Page 392 Thursday, March 22, 2007 11:26 AM

C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K 393

Enable Website Security

Now you need to tell ASP.NET about the security scheme you wish to apply. In this example,
we will be using forms-based security. This security scheme can be applied by entering the
markup shown in Listing 11-24 under the <system.web> section in web.config.

Listing 11-24. Applying a Forms-Based Security Schema

<authentication mode="Forms">
 <forms loginUrl="login.aspx"></forms>
</authentication>
<authorization>
 <deny users="?"/>
</authorization>

The mode attribute of the <authentication> section specifies the security scheme to be
applied. In our example, we set it to Forms. The sub-element <forms> has an attribute called
loginUrl that points to our login page. This way, ASP.NET can automatically redirect unau-
thenticated users to the login page.

The <authorization> section is used to grant or deny website access to specific users or
roles. The <deny> element denies access. The users attribute is set to a ? indicating that our
application should ban all anonymous users.

Configure Membership, Roles, and Profile Providers

The membership, roles, and profile providers are configured by using the <membership>,
<roleManager>, and <profile> sections, respectively. Enter the markup shown in Listing 11-25
that configures these providers to use the Northwind database as a data store.

Listing 11-25. Configuring Membership, Roles, and Profile Providers

<connectionStrings>
 <add name="connectionstring" connectionString="data source=.;initial ➥

catalog=Northwind;integrated security=true" providerName="System.Data.SqlClient"/>
</connectionStrings>

<system.web>
...
 <membership defaultProvider="mp">
 <providers>
 <add name="mp" connectionStringName="connectionstring"
 type="System.Web.Security.SqlMembershipProvider"/>
 </providers>
 </membership>

8253ch11.fm Page 393 Thursday, March 22, 2007 11:26 AM

394 C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K

 <roleManager enabled="true" defaultProvider="rp">
 <providers>
 <add name="rp" connectionStringName="connectionstring"
 type="System.Web.Security.SqlRoleProvider"/>
 </providers>
 </roleManager>
 <profile defaultProvider="pp">
 <providers>
 <add name="pp" connectionStringName="connectionstring"
 type="System.Web.Profile.SqlProfileProvider"/>
 </providers>
 <properties>
 <add name="FullName"/>
 <add name="DOB" type="System.DateTime"/>
 <group name="Address">
 <add name="Street"/>
 <add name="State"/>
 <add name="Country"/>
 <add name="PostalCode"/>
 </group>
 </properties>
 </profile>
...

The markup first specifies a database connection string in the <connectionString> section.
It points to the Northwind database and is named connectionstring. The <membership> tag con-
figures the membership provider. The <providers> section of <membership> can contain one or
more providers specified by the <add> element, which has the following attributes:

• The name attribute indicates the name of this provider entry. This name is specified in the
defaultProvider attribute of the <membership> tag.

• The connectionStringName attribute specifies the name of the connection string from
the <connectionStrings> section that is to be used.

• The type attribute specifies the fully qualified name of the membership provider. The
SqlMembershipProvider is the default membership provider for SQL Server databases.

The <roleManager> section is similar to the <membership> section with a couple of differ-
ences. First, the enabled attribute of the <roleManager> tag must be set to true to enable the
roles feature. Second, the type attribute of the <add> tag specifies the SqlRoleProvider class.

8253ch11.fm Page 394 Thursday, March 22, 2007 11:26 AM

C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K 395

The <profiles> section consists of two subsections: <providers> and <properties>. The
use of the former is the same as for the <membership> and <roleManager> sections. The type
used to deal with profiles is SqlProfileProvider. The <properties> section defines profile
properties and groups. A profile property is a single piece of information that you want to cap-
ture from users, whereas a group is a set of profile properties.

Let’s say we want to capture full name, birth date, street address, state, country, and postal
code from the end users. Thus our example defines FullName and DOB as profile properties and
Address as a group. The Address group further contains four properties: Street, State, Country,
and PostalCode. By default the data type of profile properties is assumed to be a string. You can
specify any other data type by using the type attribute of the <add> tag.

This completes the configuration of membership, roles, and profile providers.

Define Application-Specific Roles

The next step is to define application-specific roles. Let’s assume that our application
needs two groups: manager and salesperson. To define these roles, Visual Studio provides a
built-in tool called the Web Site Administration tool. Follow these steps to use the tool:

1. Invoke the Web Site Administration tool by choosing Website ➤ ASP.NET Configuration
from the Visual Studio menu. Figure 11-28 shows this tool.

Figure 11-28. The Web Site Configuration tool

2. Click the Security tab so that your browser will show the screen in Figure 11-29.

8253ch11.fm Page 395 Thursday, March 22, 2007 11:26 AM

396 C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K

Figure 11-29. The Security tab of the Web Site Administration tool

3. Click the Create or Manage Roles link so that your browser window resembles
Figure 11-30.

Figure 11-30. Creating roles

4. Using the Create New Role section, create two roles called Manager and Sales Person.
This tool reads your web.config file and from there picks up membership and roles pro-
vider information. Thus the newly created roles will be saved in the Northwind database.

8253ch11.fm Page 396 Thursday, March 22, 2007 11:26 AM

C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K 397

Create a User Registration and Login Page

Now add a new web form named Login.aspx to your website. This web form is going to be your
login and registration page. Traditionally, developers needed to manually design login and reg-
istration pages. ASP.NET simplifies this job by providing ready-made controls called Login and
CreateUserWizard. Drag and drop Login and CreateUserWizard controls onto the web form.
Your web form should look like Figure 11-31.

Figure 11-31. Login.aspx in design mode

The CreateUserWizard control refers to the membership provider specified in the web.config
file and stores the user data in the specified database. Similarly, the Login control uses the member-
ship provider specified in the web.config file for validating the user during the login process.

Run Login.aspx and create two users—Nancy and Andrew—by using the CreateUserWizard
control (Figure 11-32).

8253ch11.fm Page 397 Thursday, March 22, 2007 11:26 AM

398 C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K

Figure 11-32. Creating new users by using the CreateUserWizard control

Add Users to Roles

Now that you have created two users, it’s time to add them to a role. To do so, you will again
invoke the Web Site Administration tool. This time you need to click the Manage Users link
from the Security tab. You can then edit the required users and add them to the required roles
(Figure 11-33).

Figure 11-33. Assigning roles to the users

Add the user Nancy to the Sales Person role, and Andrew to the Manager role.

Capture Profile Information

Now the users can log in to the website, but we have not yet captured their profile information.
To do so, you need to design the Default.aspx as shown in Figure 11-34.

8253ch11.fm Page 398 Thursday, March 22, 2007 11:26 AM

C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K 399

Figure 11-34. Default.aspx in design mode

The web form consists of two more login-related controls at the top: UserName and
LoginStatus. The former control displays the user name of the logged-in control on the form,
whereas the latter displays the login status of the user (logged in or not logged in). Below the
UserName and LoginStatus controls there is a label that will display the roles to which the user
belongs. Finally, there is a set of text boxes for capturing all the profile properties. Clicking the
Save button will save the profile information.

The Page_Load event handler of Default.aspx is shown in Listing 11-26.

Listing 11-26. Displaying Information About User Roles

protected void Page_Load(object sender, EventArgs e)
{
 string[] roles=Roles.GetRolesForUser();
 Label2.Text = "Your are registered as " + string.Join(",", roles);
 if (!IsPostBack)
 {
 GetProfile();
 }
}

The code retrieves all the roles to which the current user belongs by using the
GetRolesForUser() method of the Roles object. Roles is a built-in object implicitly avail-
able to all ASP.NET applications. The GetRolesForUser() method returns all the roles as
a string array. The roles’ names are joined together by using the Join() method of the
string class and then displayed in a Label control.

Next, the code checks the IsPostBack property of the web form. The IsPostBack property
tells you whether you are in the Page_Load event handler because of a fresh request or because
of some post-back operation. If the user is visiting the page as a fresh request, the GetProfile()
helper method is called. The GetProfile() method retrieves the profile properties of the user
and displays them in the respective text boxes. This method is discussed shortly.

8253ch11.fm Page 399 Thursday, March 22, 2007 11:26 AM

400 C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K

The Click event handler of the Save button is shown in Listing 11-27.

Listing 11-27. Saving Profile Values

protected void Button1_Click(object sender, EventArgs e)
{
 SetProfile();
}

This simply calls a helper method—SetProfile()—that sets the profile properties as per
the values entered in various text boxes. The GetProfile() and SetProfile() helper methods
are shown in Listing 11-28.

Listing 11-28. Saving and Retrieving Profile Properties

private void SetProfile()
{
 Profile.FullName = TextBox1.Text;
 Profile.DOB = DateTime.Parse(TextBox2.Text);
 Profile.Address.Street = TextBox3.Text;
 Profile.Address.State = TextBox4.Text;
 Profile.Address.Country = TextBox5.Text;
 Profile.Address.PostalCode = TextBox6.Text;
}

private void GetProfile()
{
 if (Profile.FullName != "")
 {
 TextBox1.Text = Profile.FullName;
 TextBox2.Text = Profile.DOB.ToShortDateString();
 TextBox3.Text = Profile.Address.Street;
 TextBox4.Text = Profile.Address.State;
 TextBox5.Text = Profile.Address.Country;
 TextBox6.Text = Profile.Address.PostalCode;
 }
}

The SetProfile() method uses the Profile object to assign profile property values. Just
like the Roles object, the Profile object is a built-in object accessible to all web applications.
Notice how the profile properties defined in the web.config file appear as properties of the
Profile object. Also, note that the DOB property is of type DateTime and hence type conversion
is necessary. The profile properties from the group (Address) can be accessed by using the
familiar nested property notation.

The GetProfile() method retrieves profile property values and assigns them back to the
text boxes.

8253ch11.fm Page 400 Thursday, March 22, 2007 11:26 AM

C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K 401

That’s it. You are now ready to run and test your web forms. To test the application, you
can follow these steps:

1. Run Login.aspx.

2. Log in to the website by using any of the user credentials that you created earlier.

3. You will be taken to Default.aspx, where you can enter all profile details. Notice how
role information is displayed.

4. Enter all the profile values and click the Save button.

5. Click the Logout link rendered by the LoginStatus control so that you will be logged out
and redirected to Login.aspx again.

6. Sign in again with the same user credentials. This time you will see the text boxes
already populated with the previously entered profile values.

Figure 11-35 shows a sample run of the application.

Figure 11-35. Sample run of Default.aspx

Displaying Custom Error Pages
Even after taking great care during the coding phase, errors can crop up at run time in your
website. Users make typos in page URLs, try to access areas that are restricted, network failures
can happen, and so on. As a robust programming practice, you should make provisions to trap
all such unexpected errors. In classic ASP, developers used to set custom error pages for
web-server-level errors (file not found, access denied, and so on) in IIS. This required physical
access to the web server. Thankfully, ASP.NET allows you to specify such custom error pages in
the web.config file. Let’s see how.

8253ch11.fm Page 401 Thursday, March 22, 2007 11:26 AM

402 C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K

Create a new website in Visual Studio. Add a new folder in it called Admin. This folder is
supposed to contain administrative pages, and users are unauthorized to access it. Add five
web forms as shown in Table 11-3.

Table 11-3. Web Forms Arrangement

Now design Default.aspx from the root folder as shown in Figure 11-36.

Figure 11-36. Design of Default.aspx

Default.aspx contains two hyperlink controls titled Go to Admin Folder and Go to
Nonexistent File, respectively. Set the NavigateUrl property of these hyperlink controls to
~/admin/default.aspx and ~/notexists.aspx, respectively. Note that we are deliberately
setting NavigateUrl of the second hyperlink to a nonexistent file. Now drag and drop a
LinkButton control and set its Text property to Throw Exception. Add the code shown in
Listing 11-29 in its Click event handler.

Listing 11-29. Throwing an Exception

protected void LinkButton1_Click(object sender, EventArgs e)
{
 throw new Exception("Unexpected Error");
}

Web Form Folder Description

Default.aspx Root The default page of the website

FileNotFound.aspx Root Custom error page that is displayed for HTTP error code 404

UnAuthorized.aspx Root Custom error page that is displayed for HTTP error code 403

GlobalErrorPage.aspx Root Custom error page that is displayed for any other unhandled
error in code or otherwise

Default.aspx Admin Represents the default page of the Admin folder

8253ch11.fm Page 402 Thursday, March 22, 2007 11:26 AM

C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K 403

The code simply throws a new exception. Because this is an unhandled exception, we will
get a chance to trap it by using a custom error page. Now add a Label and a HyperLink control
each on FileNotFound.aspx, UnAuthorized.aspx, and GlobalErrorPage.aspx. Set the Text prop-
erty of the Label controls to a friendly error message. Point the HyperLink to Default.aspx so
that users can easily navigate back to the home page.

Add the code shown in Listing 11-30 in the Page_Load event of the Admin/Default.aspx
web form.

Listing 11-30. Throwing an HttpException

protected void Page_Load(object sender, EventArgs e)
{
 throw new HttpException(403, "Unauthorized");
}

The code raises an HttpException with a status code of 403 and a string message. The
HttpException class represents an HTTP-specific exception. This way, we trigger an exception
with status code 403 (unauthorized access).

Now open web.config in the IDE and add the markup shown in Listing 11-31 under the
<system.web> section.

Listing 11-31. Specifying Custom Error Pages

<customErrors mode="On" defaultRedirect="GlobalErrorPage.aspx">
 <error statusCode="403" redirect="~/UnAuthorized.aspx"/>
 <error statusCode="404" redirect="~/FileNotFound.aspx"/>
</customErrors>

The <customErrors> section allows you to specify custom error pages for your website. The
mode attribute has three possible values:

• If the mode is On, custom error pages are enabled for all the machines browsing the
website.

• If the mode is Off, custom error pages are disabled for all the machines.

• If the mode is RemoteOnly, the custom errors are enabled only for remote machines brows-
ing the website, but they are turned off for local browsers.

During development, most commonly your web server and the browser will be running on
the same machine and hence you should set the mode to On.

The defaultRedirect attribute points to a web page that is to be displayed in case there is
any application-wide unhandled error.

The <customErrors> section can have a number of <error> tags. The statusCode attribute
of the <error> tag specifies the web-server-level HTTP error code. The redirect attribute spec-
ifies the web page to be displayed in the event of that error. In our example, we configure two
custom error pages: one for status code 403 (UnAuthorized.aspx) and the other for status code
404 (FileNotFound.aspx).

8253ch11.fm Page 403 Thursday, March 22, 2007 11:26 AM

404 C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K

Now run Default.aspx and click all three links, one by one. You will notice that instead of
displaying the default error page, this time ASP.NET displays the custom error pages as speci-
fied in web.config. Figure 11-37 shows one sample run of the website.

Figure 11-37. Custom error page for status code 403

Documenting XML Code
Documenting your source code is a common requirement in any professional development.
Everybody knows the importance of well-documented code. However, documenting your
source code is just one part of the story. You also need to generate professional help files that
ship along with your application and are used by the end users.

There are various ways of creating documentation and help files. Most of them are manual
in that somebody (the developer or technical writer) needs to key in the help text in HTML or
PDF format. Then a tool (such as Microsoft HTML Help Workshop) is used to compile the
source files into a .CHM file. That means there is duplication of work. First, developers need to
write comments in the source code. Then the same information is repeated in the help files.

Fortunately, the .NET Framework and Visual Studio support a feature called XML com-
ments. By using this feature, you can add comments to your source code by using a specific
XML vocabulary. Later you can extract these XML comments in a separate XML file, which
is then converted into a .CHM file. Thus documentation of code is automated and avoids
duplication.

In C#, XML comments are indicated by three forward slashes (///). There are several XML
tags that you can use in XML comments. In the following sections, you will learn many of them.

Creating a Class Library
To begin, you need to create a class library named Calculator.dll. This class library represents
a simple mathematical calculator and consists of a single class called SimpleCalculator. The
SimpleCalculator class allows you to add, subtract, divide, and multiply numbers. Though
this example may sound too simple (and indeed it is), your aim here is to learn XML comment-
ing syntax.

Create a new class library project in Visual Studio. Name the project Calculator and the
class SimpleCalculator. Key in the code from Listing 11-32 in the SimpleCalculator class.

8253ch11.fm Page 404 Thursday, March 22, 2007 11:26 AM

C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K 405

Listing 11-32. The SimpleCalculator Class

public class SimpleCalculator
{
 public int Add(int a, int b)
 {
 return (a + b);
 }
 public int Subtract(int a, int b)
 {
 return (a - b);
 }
 public int Divide(int a, int b)
 {
 return (a / b);
 }
 public int Multiply(int a, int b)
 {
 return (a * b);
 }
}

The class consists of four methods: Add(), Subtract(), Divide(), and Multiply(). Each
method accepts two parameters and performs the corresponding action on them. The result of
the calculation is returned to the caller. Now that you have the class ready, let’s add XML doc-
umentation comments to it.

Documenting the Summary and Remarks

To describe your classes and members therein, you can use two tags: <summary> and <remarks>.
The <summary> tag is used to describe a type or its members. The <remarks> tag is used to specify
additional information about the type or member other than that specified in <summary>.
Listing 11-33 shows the SimpleCalculator class after adding <summary> and <remarks> tags.

Listing 11-33. Adding <summary> and <remarks>

 /// <summary>
 /// This is a class that represents
 /// a simple mathematical calculator.
 /// </summary>
 /// <remarks>
 /// This class is developed on .NET 2.0
 /// </remarks>
 public class SimpleCalculator
 {
 ...

8253ch11.fm Page 405 Thursday, March 22, 2007 11:26 AM

406 C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K

Adding Paragraphs

The summary or remarks may consist of multiple paragraphs of text. Each paragraph is
represented by a <para> tag. Note that a <para> tag is always a child element of <summary>
or <remarks>. Listing 11-34 shows the use of a <para> tag.

Listing 11-34. Using a <para> Tag

 /// <summary>
 /// This is a class that represents
 /// a simple mathematical calculator.
 /// <para>
 /// You can use it to add, subtract,
 /// divide and multiply integers and
 /// fractional numbers.
 /// </para>
 /// </summary>
 /// <remarks>
 /// This class is developed on .NET 2.0
 /// </remarks>

Documenting Method Parameters and Return Values

Methods often take one or more parameters. They might also return some value to the caller.
Parameters are represented by <param> tags, whereas return values are represented by <return>
tags. The <param> tag has one attribute—name—that indicates the name of the parameter.
Listing 11-35 shows the use of both of these tags on the Add() method.

Listing 11-35. Documenting Parameters and Return Values

/// <summary>
/// This method adds two integers.
/// </summary>
/// <param name="a">The first number</param>
/// <param name="b">The second number</param>
/// <returns>An integer representing addition of a and b</returns>
public int Add(int a, int b)
{
 return (a + b);
}

8253ch11.fm Page 406 Thursday, March 22, 2007 11:26 AM

C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K 407

Specifying Scope and Permissions

Your class may contain private, protected, or public members. The scope of these members
can be indicated by using the <permission> tag. The <permission> tag has one attribute—
cref—that specifies the name of the member in the given context. Listing 11-36 shows an
example of using the <permission> tag.

Listing 11-36. Using the <permission> Tag

/// <summary>
/// This method adds two integers.
/// </summary>
/// <param name="a">The first number</param>
/// <param name="b">The second number</param>
/// <returns>An integer representing addition of a and b</returns>
/// <permission cref="Add">Public method</permission>
public int Add(int a, int b)
{
 return (a + b);
}

Specifying Links to Other Members

You may need to cross-reference members of your class. The MSDN library itself is a good
example of this. At many places, documentation of one class points to another related class.
Also, at the bottom of the documentation page, there appears a section called See Also. You can
achieve the same thing for your documentation by using the <see> and <seealso> tags. The
<see> tag must be used inside the <summary> or <remarks> tags. The <seealso> tag has an
attribute called cref that points to another member and can be used outside the <summary> tag.
Listing 11-37 illustrates the use of the <seealso> tag as an example.

Listing 11-37. Using the <seealso> Tag

/// <summary>
/// This method adds two integers.
/// </summary>
/// <param name="a">The first number</param>
/// <param name="b">The second number</param>
/// <returns>An integer representing addition of a and b</returns>
/// <permission cref="Add">Public method</permission>
/// <seealso cref="Subtract"/>
public int Add(int a, int b)
{
 return (a + b);
}

8253ch11.fm Page 407 Thursday, March 22, 2007 11:26 AM

408 C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K

Adding Lists

Your documentation may need bulleted or numbered lists. This can be achieved by using
three tags: <list>, <item>, and <listheader>. The <item> and <listheader> tags must appear
inside the <list> tag. The <list> tag has an attribute named type that can take a value of
bullet, number, or table. The <listheader> tag serves the purpose of supplying a header for
the list. Finally, the <item> tag encapsulates a single item of the list. Listing 11-38 shows the
use of these tags.

Listing 11-38. Using the <list>, <item>, and <listheader> Tags

/// <summary>
/// This is a class that represents
/// a simple mathematical calculator.
/// <para>
/// You can use it to add, subtract,
/// divide and multiply integers and
/// fractional numbers.
/// </para>
/// <list type="bullet">
/// <listheader>Supported Operations</listheader>
/// <item>Addition</item>
/// <item>Subtraction</item>
/// <item>Division</item>
/// <item>Multiplication</item>
/// </list>
/// </summary>
/// <remarks>
/// This class is developed on .NET 2.0
/// </remarks>
public class SimpleCalculator
{
...

Generating Documentation
Generating documentation is a two-step process:

1. Generate XML documentation from the comments.

2. Generate .CHM documentation from XML documentation.

8253ch11.fm Page 408 Thursday, March 22, 2007 11:26 AM

C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K 409

Generating XML Documentation from Comments

To generate XML documentation from source code comments, you need to open the project
properties dialog box (Figure 11-38).

Figure 11-38. Generating XML documentation

The Output section of the Build tab allows you to specify whether to generate XML docu-
mentation and the filename. Specify the filename as Comments.xml and build the Calculator
class library. As a result of the compilation, you will get Calculator.dll and Comments.xml.

Generating .CHM Documentation from XML Documentation

This step is a bit tricky. There is no built-in tool in Visual Studio to compile XML documenta-
tion files into a .CHM file. One option is to apply your own style sheets to the output XML file
and get HTML documentation. The HTML files thus generated can be further fed to HTML
Help Workshop to generate a .CHM file. Luckily, Microsoft has developed a command-line tool
called Sandcastle that simplifies your job.

■Note The Sandcastle tool is still in beta. You can download it from http://msdn.microsoft.com. Cur-
rently this tool is not integrated with the Visual Studio IDE. It would be nice to see it integrated in the IDE at
some future date.

8253ch11.fm Page 409 Thursday, March 22, 2007 11:26 AM

410 C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K

Sandcastle requires that you have HTML Help Workshop installed. HTML Help Workshop
can be downloaded free from Microsoft’s website. Using Sandcastle involves the following
multiple steps:

1. Go to the installation folder of Sandcastle.

2. Go to the Examples subfolder.

3. Run the SetPath.bat file from the Examples folder to set the PATH variables to use the
Sandcastle tools.

4. Create a subfolder named Calculator inside the Examples subfolder.

5. Copy Calculator.dll and Comments.xml to the Calculator folder.

6. Run the following commands one by one at a command prompt:

MRefBuilder Calculator.dll /out:reflection.org

XslTransform /xsl:..\..\ProductionTransforms\AddOverloads.xsl reflection.org
/xsl:..\..\ProductionTransforms\AddGuidFilenames.xsl /out:reflection.xml

XslTransform /xsl:..\..\ProductionTransforms\ReflectionToManifest.xsl
reflection.xml /out:manifest.xml

call ..\..\Presentation\vs2005\copyOutput.bat

BuildAssembler /config:sandcastle.config manifest.xml

XslTransform /xsl:..\..\ProductionTransforms\ReflectionToChmProject.xsl
reflection.xml /out:Output\Calculator.hhp

XslTransform /xsl:..\..\ProductionTransforms\ReflectionToChmContents.xsl
reflection.xml /arg:html=Output\html /out:Output\Calculator.hhc

XslTransform /xsl:..\..\ProductionTransforms\ReflectionToChmIndex.xsl ➥
reflection.xml

/out:Output\Calculator.hhk

■Note Running so many commands might be tedious, but as of this writing, that is what is available in
Sandcastle. Detailed descriptions of each command and command-line switch are outside the scope of this
book. You can obtain more information about the tool from https://blogs.msdn.com/sandcastle/.

7. As a result of the preceding commands, you will get the Calculator.hhp file in the
Output subfolder of the Calculator folder. The .HHP files are HTML Help Workshop
project files.

8253ch11.fm Page 410 Thursday, March 22, 2007 11:26 AM

C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K 411

8. Open the Calculator.hhp file in HTML Help Workshop (Figure 11-39).

Figure 11-39. Loading Calculator.hhp in HTML Help Workshop

9. Click the project properties icon to open the Options dialog box, as shown in
Figure 11-40.

Figure 11-40. Help project properties

8253ch11.fm Page 411 Thursday, March 22, 2007 11:26 AM

412 C H A P T E R 1 1 ■ U S E O F X M L I N T H E . N E T F R A M E W O R K

10. Ensure that the Contents file is pointing to Calculator.hhc, and the Index file to
Calculator.hhk (these files are generated when you run the preceding commands).

11. Compile the help project by choosing File ➤ Compile from the menu to create
Calculator.chm.

12. Open Calculator.chm and you should see the XML comments neatly arranged in the
help file. Figure 11-41 shows the Calculator.chm file.

Figure 11-41. Calculator.chm

Note how the text from tags such as <summary>, <remarks>, and <param> is arranged.

Summary
Microsoft has tried to harness the power of XML in every possible way. The .NET Framework
is no exception. The .NET Framework not only allows you to work with an array of XML tech-
nologies, but also uses them at many places itself. This chapter gave you an introduction to
these areas.

You started with remoting, where the configuration files use XML markup. Then you
learned about application configuration files. Specifically you learned to store and retrieve
application configuration settings and database connection strings.

ASP.NET uses XML heavily for server control markup and configuration. The web.config
file is an XML file that stores ASP.NET configuration information. You learned how to configure
membership, roles, and profile providers by using XML markup. You also learned to configure
custom error pages for unexpected errors in your website. Finally, you generated .CHM help
files by using XML documentation syntax.

8253ch11.fm Page 412 Thursday, March 22, 2007 11:26 AM

413

■ ■ ■

C H A P T E R 1 2

Creating Services by Using
Windows Communication
Foundation

Chapter 9 introduced you to web services, and Chapter 11 introduced you to remoting—both
of which allow you to develop distributed applications. Web services are mainly used when you
wish to communicate across the Internet, whereas remoting is preferred in intranet scenarios.
However, in most real-world cases, you need to decide between web services and remoting
well in advance because your choice affects your development process. For example, if you
decide to use web services, their proxies and XML serialization come into the picture, whereas
if you decide to use remoting, activation type and binary serialization come into the picture. At
times these differences can prove to be painful. Imagine, for example, that you begin the devel-
opment with remoting in mind and the application is developed and deployed in a production
environment. After a few months, you want to replace remoting components with web ser-
vices. Can you do that without changing anything in the client application? In most cases, the
answer will be a resounding no.

Recognizing the need to bridge the gap between various component technologies,
Microsoft developed what is known as the Windows Communication Foundation (WCF). WCF
is a part of .NET Framework 3.0 and provides a unified model for developing service-oriented
software components. Under WCF you can employ the same piece of software regardless of
whether you are using it over the Internet or an intranet. You can design and develop your
software initially for TCP networks and later use it over HTTP. This can be achieved with no
changes to the client or component source code. Moreover, WCF heavily uses XML as the data
transfer format. That means data that is sent between the client and the server is in XML
format. You can also customize how your objects are serialized on the wire. This chapter intro-
duces you to the following topics:

• Common terms used in relation to WCF

• Creating a WCF service

• Hosting a WCF service

• Consuming a WCF service

• The role of XML in WCF services

8253ch12.fm Page 413 Wednesday, March 7, 2007 8:44 PM

414 C H A P T E R 1 2 ■ C R E A T I N G S E R V I C E S B Y U S I N G W I N D O W S C O M M U N I C A T I O N F O U N D A T I O N

Understanding WCF Vocabulary
In Chapter 9, you learned about the Web Services Description Language (WSDL). WSDL uses
terms such as port, message, service type, binding, and service. WCF vocabulary is very similar
to WSDL with a few differences. In this section, you will learn the WCF vocabulary:

Service model: The model provided by WCF to build software components is often called a
service model.

Channel layer: The channel layer is that part of WCF that deals with low-level network pro-
gramming. The classes from the channel layer are used by high-level classes of WCF.

Service: A service is a piece of software that responds to communication over a network. A
service has one or more endpoints. Communication with the service is redirected to one of
these endpoints.

Endpoint: An endpoint is where the actual request for a service is redirected. An endpoint
consists of an address, a binding, and a contract.

Address: An address is nothing but the unique location of the underlying service on a net-
work. Clients use this address to talk with the service. An address takes the form of a
Uniform Resource Locator (URL)—for example, http://localhost:8000/MyService.

Binding: An address is just a URL where the service can be located. However, that’s not
enough. You also need to know the protocol used for communication such as TCP or
HTTP. This is specified with the help of a binding. The binding specifies the protocol for
encoding the request and response as well as the protocol for transporting them over the
network.

Contract: A contract is a set of operations that are exposed by the service. In other words,
a contract is a set of operations available at a given endpoint. At the code level, a contract
is defined with the help of an interface.

Service type: A service type is a class that implements a contract.

8253ch12.fm Page 414 Wednesday, March 7, 2007 8:44 PM

C H A P T E R 1 2 ■ C R E A T I N G S E R V I C E S B Y U S I N G W I N D O W S C O M M U N I C A T I O N F O U N D A T I O N 415

■Note You must have the final version of .NET Framework 3.0 installed on your machine in order to work
with the examples discussed in this chapter. You can download it at http://msdn.microsoft.com. As far
as examples in this chapter are concerned, you need not have the .NET Framework software development kit
(SDK) as such; the .NET Framework runtime is sufficient.

Creating and Consuming a WCF Service
To create and consume WCF services, you essentially need to develop three pieces of software:

• One or more service types

• A host application that publishes the services exposed by the service types on a network

• A client application that consumes the services exposed by the service types

All the core functionality of WCF is available in the System.ServiceModel.dll assembly.
The System.ServiceModel namespaces contain many classes and attributes related to WCF. In
all the projects that we discuss in this chapter, you must reference this assembly and import
the System.ServiceModel namespace. In the next few sections, you will learn how to develop
each of the three parts listed.

Creating the Service
Creating a WCF service requires the following steps:

1. Define a contract for the service.

2. Implement the service contract.

3. Define the data structures (if any) to carry data from the service to the client.

8253ch12.fm Page 415 Wednesday, March 7, 2007 8:44 PM

416 C H A P T E R 1 2 ■ C R E A T I N G S E R V I C E S B Y U S I N G W I N D O W S C O M M U N I C A T I O N F O U N D A T I O N

Now that you have a brief idea about creating WCF services, let’s create our own service.
Begin by creating a new class library project named EmployeeLibrary. After you create the
project, add a reference to the System.ServiceModel assembly by using the Add Reference dialog
box. Add an interface to it by using the Add New Item dialog box and name it IEmployeeService
(Figure 12-1).

Figure 12-1. Adding a new interface

Import the System.ServiceModel namespace at the top of the interface file and add the
code shown in Listing 12-1 in the interface.

Listing 12-1. Creating the IEmployeeService Interface

using System;
using System.Collections.Generic;
using System.Text;
using System.ServiceModel;
using System.Data;

namespace EmployeeLibrary
{
 [ServiceContract]
 public interface IEmployeeService
 {
 [OperationContract]
 DataSet GetEmployees();

8253ch12.fm Page 416 Wednesday, March 7, 2007 8:44 PM

C H A P T E R 1 2 ■ C R E A T I N G S E R V I C E S B Y U S I N G W I N D O W S C O M M U N I C A T I O N F O U N D A T I O N 417

 [OperationContract]
 Employee GetEmployee(int id);

 }
}

The IEmployeeService interface acts as a WCF contract. A contract of a WCF service is
defined by an interface, which you define in the normal fashion. The IEmployeeService inter-
face defines two methods: GetEmployees() and GetEmployee(). The former method when
implemented will return a DataSet filled with a list of all the employees from the Employees
table of the Northwind database. The latter method when implemented will return an Employee
object containing details of a specified employee. The Employee class is defined later in this sec-
tion. Notice two things about the IEmployeeService interface:

• The interface must be decorated with the [ServiceContract] attribute. This attribute
indicates that the interface decorated by it is a WCF service contract.

• Each method signature in the interface must be marked with the [OperationContract]
attribute, which indicates that the method decorated by it will be exposed as a part of the
service. Methods are referred to as operations in WCF terms.

After you define a contract, you need to implement it. You do this by creating a class that
implements the contract interface. You need not do anything special with the service type apart
from implementing the service contract. In our example, the next step is to create the Employee
class. This class will be used to carry details of an employee from the service to the client. Add a
reference to the System.Runtime.Serialization assembly. Import the System.ServiceModel and
System.Runtime.Serialization namespaces at the top of the Employee class. Listing 12-2 shows
the complete code that makes up the Employee class.

Listing 12-2. The Employee Class

using System;
using System.Collections.Generic;
using System.Text;
using System.ServiceModel;
using System.Runtime.Serialization;
using System.Data;

namespace EmployeeLibrary
{
 [DataContract]
 public class Employee
 {
 private int intID;
 private string strFName;
 private string strLName;

8253ch12.fm Page 417 Wednesday, March 7, 2007 8:44 PM

418 C H A P T E R 1 2 ■ C R E A T I N G S E R V I C E S B Y U S I N G W I N D O W S C O M M U N I C A T I O N F O U N D A T I O N

 [DataMember]
 public int EmployeeID
 {
 get
 {
 return intID;
 }
 set
 {
 intID = value;
 }
 }

 [DataMember]
 public string FirstName
 {
 get
 {
 return strFName;
 }
 set
 {
 strFName = value;
 }
 }

 [DataMember]
 public string LastName
 {
 get
 {
 return strLName;
 }
 set
 {
 strLName = value;
 }
 }
 }
}

8253ch12.fm Page 418 Wednesday, March 7, 2007 8:44 PM

C H A P T E R 1 2 ■ C R E A T I N G S E R V I C E S B Y U S I N G W I N D O W S C O M M U N I C A T I O N F O U N D A T I O N 419

The Employee class consists of three public properties: EmployeeID, FirstName, and
LastName. Notice how the class is marked with the [DataContract] attribute, and individual
properties with the [DataMember] attribute. This way, the class and its state information are
serialized to the client. If you wish to return custom classes from your service methods, you
need to mark such classes with the [DataContract] attribute. Further, each member of the class
that will be transferred to the client must be marked with the [DataMember] attribute. You may
notice that the use of the [DataContract] attribute is similar to the [Serializable] attribute.

The last step in creating our service is to implement the service contract in a class called
EmployeeService. Listing 12-3 shows the complete code of the EmployeeService class.

Listing 12-3. The EmployeeService Class

using System;
using System.Collections.Generic;
using System.Text;
using System.Data;
using System.Data.SqlClient;

namespace EmployeeLibrary
{
 public class EmployeeService:IEmployeeService
 {

 public DataSet GetEmployees()
 {
 SqlDataAdapter da =
 new SqlDataAdapter("SELECT employeeid,firstname,lastname FROM employees",
 @"data source=.\sqlexpress;initial catalog=northwind;integrated ➥

security=true");
 DataSet ds = new DataSet();
 da.Fill(ds,"employees");
 return ds;
 }

 public Employee GetEmployee(int id)

8253ch12.fm Page 419 Wednesday, March 7, 2007 8:44 PM

420 C H A P T E R 1 2 ■ C R E A T I N G S E R V I C E S B Y U S I N G W I N D O W S C O M M U N I C A T I O N F O U N D A T I O N

 {
 SqlConnection cnn =
 new SqlConnection(@"data source=.\sqlexpress;initial ➥
catalog=northwind;integrated security=true");
 SqlCommand cmd = new SqlCommand();
 cmd.Connection = cnn;
 cmd.CommandText =
 "SELECT employeeid,firstname,lastname
 FROM employees WHERE employeeid=@id";
 SqlParameter p = new SqlParameter("@id", id);
 cmd.Parameters.Add(p);
 cnn.Open();
 SqlDataReader reader = cmd.ExecuteReader();
 Employee emp = new Employee();
 while (reader.Read())
 {
 emp.EmployeeID = reader.GetInt32(0);
 emp.FirstName = reader.GetString(1);
 emp.LastName= reader.GetString(2);
 }
 reader.Close();
 cnn.Close();
 return emp;
 }

 }
}

The EmployeeService class implements the IEmployeeService interface. The GetEmployees()
method fills a DataSet with a list of all the employees (including the EmployeeID, FirstName, and
LastName columns) and returns it to the caller.

The GetEmployee() method accepts an employee ID. It then fetches details of that
employee from the database and adds them to an Employee object. The Employee instance
is then returned to the caller.

Compile the EmployeeService class library so as to create the EmployeeLibrary.dll
assembly.

8253ch12.fm Page 420 Wednesday, March 7, 2007 8:44 PM

C H A P T E R 1 2 ■ C R E A T I N G S E R V I C E S B Y U S I N G W I N D O W S C O M M U N I C A T I O N F O U N D A T I O N 421

Hosting the Service
Now that you have created the service type, it’s time to think about hosting it. Hosting the ser-
vice will allow client applications to consume it. To host the service, you have three options:

• Create a console application and use it as a host.

• Host the WCF service in IIS.

• Host the WCF service in a Windows service application.

In this example, we will use a console application as a host. In later sections, you will learn
to use IIS to host WCF services.

Add a new project of the type console application in the same solution as the service
and name it EmployeeServiceHostConsole. Add a reference to the System.ServiceModel and
EmployeeLibrary assemblies. Add an application configuration file to the project by using the
Add New Item dialog box (Figure 12-2).

Figure 12-2. Adding an application configuration file

You need this configuration file to configure the service. Open the App.config file in Visual
Studio and enter the markup shown in Listing 12-4.

8253ch12.fm Page 421 Wednesday, March 7, 2007 8:44 PM

422 C H A P T E R 1 2 ■ C R E A T I N G S E R V I C E S B Y U S I N G W I N D O W S C O M M U N I C A T I O N F O U N D A T I O N

Listing 12-4. Configuring the Service

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.serviceModel>
 <services>
 <service name="EmployeeLibrary.EmployeeService"
 behaviorConfiguration="EmployeeServiceBehavior">
 <endpoint address="EmployeeService" binding="netTcpBinding"
 contract="EmployeeLibrary.IEmployeeService" />
 <endpoint address="EmployeeService" binding="basicHttpBinding"
 contract="EmployeeLibrary.IEmployeeService" />
 </service>
 </services>
 <behaviors>
 <serviceBehaviors>
 <behavior name="EmployeeServiceBehavior">
 <serviceMetadata httpGetEnabled="True"/>
 </behavior>
 </serviceBehaviors>
 </behaviors>
 </system.serviceModel>
</configuration>

The <system.serviceModel> section of the configuration file contains all the configuration
settings related to WCF services. There are two subsections: <services> and <behaviors>. The
former contains configuration information about one or more services in terms of name, end-
points, and addresses. The latter contains configuration information about behavior exhibited
by the services defined in the <services> section. A behavior is a class that modifies or extends
the service or client functionality. It can also modify channel settings.

Each service from the <services> section is configured via a <service> section:

• The name attribute specifies the fully qualified name of the service type
(EmployeeLibrary.EmployeeService in our case).

• The behaviorConfiguration attribute points to the name of the service behavior as
defined in the <serviceBehaviors> section.

• The <endpoint> element details one or more endpoints where the service is available.

• The address attribute of the <endpoint> element specifies the address of the service.

• The binding attribute specifies the protocol to be used for communication. The two
commonly used bindings are net.tcp for TCP and basicHttpBinding for HTTP. There
are several other bindings provided such as NetMsmqBinding, NetNamedPipeBinding,
and so on.

• Finally, the contract attribute specifies the fully qualified name of the interface that
provides the service contract.

8253ch12.fm Page 422 Wednesday, March 7, 2007 8:44 PM

C H A P T E R 1 2 ■ C R E A T I N G S E R V I C E S B Y U S I N G W I N D O W S C O M M U N I C A T I O N F O U N D A T I O N 423

In our example, we created two endpoints: one for TCP-based communication and one for
HTTP-based communication.

The <serviceBehaviors> section contains one or more <behavior> elements:

• The name attribute of the <behavior> element specifies the name of that behavior. This
name is used in the behaviorConfiguration attribute of the <service> element.

• The <serviceMetadata> element indicates that the metadata of the service can be
retrieved by using an HTTP GET request. You will find this feature analogous to web
services, where you retrieve WSDL by using a query string (that is, a GET request).

Now open the Main() method of the console application and key in the code shown in
Listing 12-5.

Listing 12-5. Hosting the WCF Service

using System;
using System.Collections.Generic;
using System.Text;
using System.ServiceModel;
using EmployeeLibrary;

namespace ServiceHostConsole
{
 class Program
 {
 static void Main(string[] args)
 {

 Type t = typeof(EmployeeService);
 Uri tcp = new Uri("net.tcp://localhost:8010/EmployeeService");
 Uri http = new Uri("http://localhost:8000/EmployeeService");
 ServiceHost host = new ServiceHost(t, tcp, http);
 host.Open();
 Console.WriteLine("Published");
 Console.ReadLine();
 host.Close();
 }
 }
}

The code retrieves the Type of the service type class by using the typeof() statement. It
then creates two instances of the Uri class: one pointing to the TCP-based URL where the
service is to be published and the other pointing to the HTTP-based URL. Note how the port
numbers are set as 8000 and 8010 for TCP and HTTP URLs, respectively.

Then an instance of the ServiceHost class is created. The ServiceHost class hosts the
service by publishing the service type at the specified URIs. Note that the constructor of the

8253ch12.fm Page 423 Wednesday, March 7, 2007 8:44 PM

424 C H A P T E R 1 2 ■ C R E A T I N G S E R V I C E S B Y U S I N G W I N D O W S C O M M U N I C A T I O N F O U N D A T I O N

ServiceHost class takes a parameter array of URIs. In our example, we have passed two, but
you can pass more if you so wish. The following constructor signature will make it clear:

public ServiceHost (Type serviceType, params Uri[] baseAddresses)
{
 ...
}

The Open() method of the ServiceHost class is then called. This method actually hosts the
service depending on the configuration information. The service will remain published so long
as the host application is live. That is why the ReadLine() method of the Console class is called.
It keeps the application live until the user presses the Enter key. Finally, the Close() method of
the ServiceHost class is called. This completes the host application.

Consuming the Service
In this section, you will create a client application that consumes the EmployeeService we cre-
ated previously. To begin, you need to create a Windows application as shown in Figure 12-3.

Figure 12-3. The client consuming the WCF service

The application consists of a text box for entering the URL where the EmployeeService is
available. After you enter the URL and click the Get Employees button, a list of employees is
displayed in a list box. Clicking a particular employee will display their details in Label controls.
Listing 12-6 shows the Click event handler of the Get Employees button.

8253ch12.fm Page 424 Wednesday, March 7, 2007 8:44 PM

C H A P T E R 1 2 ■ C R E A T I N G S E R V I C E S B Y U S I N G W I N D O W S C O M M U N I C A T I O N F O U N D A T I O N 425

Listing 12-6. Retrieving the List of Employees

private void button1_Click(object sender, EventArgs e)
{
 Uri uri = new Uri(textBox1.Text);
 ServiceEndpointCollection endpts =
 MetadataResolver.Resolve(typeof(IEmployeeService), uri,
 MetadataExchangeClientMode.HttpGet);
 foreach (ServiceEndpoint obj in endpts)
 {
 IEmployeeService proxy =
 new ChannelFactory<IEmployeeService>(obj.Binding, obj.Address).CreateChannel();
 DataSet ds = proxy.GetEmployees();
 listBox1.DataSource = ds.Tables[0].DefaultView;
 listBox1.DisplayMember = "FirstName";
 listBox1.ValueMember = "EmployeeID";
 ((IChannel)proxy).Close();
 }
}

The code creates a new instance of the Uri class by passing the supplied URL of the
EmployeeService. Then the Resolve() static method of the MetadataResolver class is called.
This class is used to retrieve and import the metadata of the service into one or more
ServiceEndpoint objects. The Resolve() method takes three parameters: the type of ser-
vice contract, the URI where the service is available, and MetadataExchangeClientMode.
The MetadataExchangeClientMode enumeration has two possible values: HttpGet and
MetadataExchange. The former is used when you wish to retrieve metadata by using a plain
GET request, whereas the latter is used with WS-MetadataExchange to retrieve the metadata
of a service.

■Note WCF implements the WS-MetadataExchange specifications to retrieve the XML schema, WSDL, and
WS-Policy of a service.

8253ch12.fm Page 425 Wednesday, March 7, 2007 8:44 PM

426 C H A P T E R 1 2 ■ C R E A T I N G S E R V I C E S B Y U S I N G W I N D O W S C O M M U N I C A T I O N F O U N D A T I O N

The Resolve() method returns the endpoints as a ServiceEndpointCollection. The code
then iterates through the ServiceEndpointCollection. To call the service, you need to create
a proxy for it. This is accomplished by using the ChannelFactory class. The CreateChannel()
method of the ChannelFactory class accepts the binding and address of the endpoint and
returns a proxy for the service. Notice the use of generics in the ChannelFactory class. After the
proxy is retrieved, you can call any method on it. In our example, we call GetEmployees(). The
returned DataSet is then bound to the ListBox control. After we’ve finished with the proxy, we
call its Close() method.

When a user clicks on any of the employees listed in the ListBox, details of that employee
are to be displayed in the Label controls. This is done in the Click event handler of the ListBox
(Listing 12-7).

Listing 12-7. Retrieving the Details of an Employee

private void listBox1_Click(object sender, EventArgs e)
{
 Uri uri = new Uri(textBox1.Text);
 ServiceEndpointCollection endpts =
 MetadataResolver.Resolve(typeof(IEmployeeService), uri,
 MetadataExchangeClientMode.HttpGet);
 foreach (ServiceEndpoint obj in endpts)
 {
 IEmployeeService proxy =
 new ChannelFactory<IEmployeeService>(obj.Binding, obj.Address).CreateChannel();
 Employee emp = proxy.GetEmployee(int.Parse(listBox1.SelectedValue.ToString()));
 label5.Text = emp.EmployeeID.ToString();
 label6.Text = emp.FirstName;
 label7.Text = emp.LastName;
 ((IChannel)proxy).Close();
 }
}

The code is very similar to what you saw earlier. This time it calls the GetEmployee()
method on the proxy by passing the selected EmployeeID. The GetEmployee() method returns
an instance of the Employee class filled with the required details. The details such as EmployeeID,
FirstName, and LastName are then displayed in respective labels.

Testing the Host and Client
Now that you have coded all three parts (service, host, and client), let’s test them. First, compile
all the projects from the solution. Then navigate to the .EXE of the console application and run
it. If everything goes well, you should see a command prompt as shown in Figure 12-4.

8253ch12.fm Page 426 Wednesday, March 7, 2007 8:44 PM

C H A P T E R 1 2 ■ C R E A T I N G S E R V I C E S B Y U S I N G W I N D O W S C O M M U N I C A T I O N F O U N D A T I O N 427

Figure 12-4. Running the host application

Next open Internet Explorer and enter the URL of the service endpoint (http://localhost:
8000/EmployeeService) in the address bar. You should get a web page as shown in Figure 12-5.

Figure 12-5. Testing to see whether the service is hosted properly

If you get this page, the service is hosted correctly. Click on the URL specified at the top of
the web page and you should see the WSDL of the service, as shown in Figure 12-6.

8253ch12.fm Page 427 Wednesday, March 7, 2007 8:44 PM

428 C H A P T E R 1 2 ■ C R E A T I N G S E R V I C E S B Y U S I N G W I N D O W S C O M M U N I C A T I O N F O U N D A T I O N

Figure 12-6. WSDL of the service

You will find this mechanism very similar to web services, where you retrieved the WSDL
of a web service just by specifying the wsdl query string parameter.

Now run the client application and enter the URL of the service’s WSDL. You can simply
copy and paste the URL from the browser window of Figure 12-6. Next, click the Get Employees
button. You should see the ListBox populated with the list of all the employees. Click on indi-
vidual employee names, and their details will be displayed in various labels.

Hosting a WCF Service in IIS
In the preceding example, we used a console application to host our service. However, you can
also use IIS to host WCF services. This way, your service is automatically started when IIS starts
and you get all the security features of IIS for your service.

To begin, create a new website by using Visual Studio. Because you will be hosting the ser-
vice in IIS, make sure to create an HTTP-based website (Figure 12-7).

8253ch12.fm Page 428 Wednesday, March 7, 2007 8:44 PM

C H A P T E R 1 2 ■ C R E A T I N G S E R V I C E S B Y U S I N G W I N D O W S C O M M U N I C A T I O N F O U N D A T I O N 429

Figure 12-7. Creating an HTTP-based website

This way, an IIS application will be created for the newly created website. Remove the default
web form from the site. Add a new text file to the site and name it EmployeeServiceHost.svc. This
file essentially hosts the service inside IIS. Add a reference to EmployeeLibrary.dll so that it gets
copied to the Bin folder of your website. Now key in the markup inside the .SVC file as shown in
Listing 12-8.

Listing 12-8. Adding the ServiceHost Directive

<%@ServiceHost Service="EmployeeLibrary.EmployeeService" %>

The @ServiceHost directive indicates that the file is a WCF service host. The Service
attribute specifies the fully qualified name of the service type. Now add a web.config file to
the website and key in the markup shown in Listing 12-9.

8253ch12.fm Page 429 Wednesday, March 7, 2007 8:44 PM

430 C H A P T E R 1 2 ■ C R E A T I N G S E R V I C E S B Y U S I N G W I N D O W S C O M M U N I C A T I O N F O U N D A T I O N

Listing 12-9. Configuring the Host

<?xml version="1.0"?>
<configuration>
 <system.serviceModel>
 <services>
 <service name="EmployeeLibrary.EmployeeService"
 behaviorConfiguration="EmployeeServiceBehavior">
 <endpoint address="" binding="basicHttpBinding"
 contract="EmployeeLibrary.IEmployeeService"></endpoint>
 </service>
 </services>
 <behaviors>
 <serviceBehaviors>
 <behavior name="EmployeeServiceBehavior">
 <serviceMetadata httpGetEnabled="True"/>
 <serviceDebug includeExceptionDetailInFaults="true"/>
 </behavior>
 </serviceBehaviors>
 </behaviors>
 </system.serviceModel>
</configuration>

It is essentially the same markup that you specified for the console host. The only differ-
ence is that the address attribute of the <endpoint> element is an empty string. This is because
for an IIS-hosted service, the address is the same as the URI of the .SVC file hosting the service.

To access the EmployeeService hosted in IIS, the endpoint URL will be http://localhost/
EmployeeServiceHostWeb/EmployeeServicerHost.svc?wsdl. Observe that the URL points to the
.SVC file and contains the wsdl query string parameter. Everything else in the client application
remains the same.

Understanding the Role of XML in WCF Services
From what you have learned up until now, it is clear that WCF uses XML for configuring various
pieces of services. However, there is more to the story. Internally WCF services heavily rely
on XML.

When a WCF service call is made by a client application, the call is converted into a mes-
sage, which is represented by a class called Message. Internally, the client request is stored in a
special XML format called InfoSet. When the client call is sent to the service, it is serialized in
a format decided by the binding. For example, if the client is a non-WCF client, the message is
encoded in XML format, whereas if the client is a WCF client, it is represented in an optimized
binary format. When the message reaches the service, it is deserialized back into an InfoSet. A
Message object is created and then handed over to the service along with the InfoSet. The ser-
vice then executes the method call and returns the data in a similar fashion.

8253ch12.fm Page 430 Wednesday, March 7, 2007 8:44 PM

C H A P T E R 1 2 ■ C R E A T I N G S E R V I C E S B Y U S I N G W I N D O W S C O M M U N I C A T I O N F O U N D A T I O N 431

Using the XmlFormatter and XmlSerializer Classes
Internally, the WCF framework uses two classes for XML manipulation:

• XmlFormatter is new to .NET Framework 3.0 and is used by default in WCF communica-
tion. You have very little control on how XmlFormatter serializes the XML data.

• You learned about the XmlSerializer class in Chapter 8. You can also use XmlSerializer
for WCF communication. Doing so will give you more control of how the data is serial-
ized. You can customize the serialization process by using various attributes such as
[XmlAttribute] and [XmlElement]. However, XmlFormatter will be a better solution in
terms of performance.

Using XmlSerializer Instead of XmlFormatter
To instruct the WCF framework that it should use XmlSerializer instead of XmlFormatter, all
you need to do is decorate the service contract interface with the [XmlSerializerFormat]
attribute. The IEmployeeService interface after applying the [XmlSerializerFormat] attribute
is shown in Listing 12-10.

Listing 12-10. Applying the [XmlSerializerFormat] Attribute

[ServiceContract]
[XmlSerializerFormat]
public interface IEmployeeService
{
 [OperationContract]
 DataSet GetEmployees();

 [OperationContract]
 Employee GetEmployee(int id);
}

Summary
Windows Communication Foundation (WCF) provides a unified programming model for
developing service-oriented applications. This chapter gave you an overview of WCF. You
saw the basic vocabulary of WCF along with parts of a typical WCF-enabled application. You
created a WCF service, host, and client application. WCF services can be hosted in a console
application, on IIS, or as a Windows service. WCF relies heavily on XML for data transmis-
sion. The XmlFormatter and XmlSerializer classes can take part in the serialization process,
XmlFormatter being the default.

8253ch12.fm Page 431 Wednesday, March 7, 2007 8:44 PM

8253ch12.fm Page 432 Wednesday, March 7, 2007 8:44 PM

433

■ ■ ■

A P P E N D I X A

Creating Custom XmlReader
and XmlWriter Classes

In Chapter 3, you learned about the XmlReader and XmlWriter classes. The abstract classes
XmlReader and XmlWriter can be used in three ways:

• To call the Create() method of the respective classes that returns an instance of the
generic XmlReader or XmlWriter classes

• To use the concrete classes XmlTextReader and XmlTextWriter provided by the .NET
Framework

• To create custom classes that inherit from the XmlReader and XmlWriter classes

You are already familiar with the first two approaches. In the following sections, you
are going to learn how to create custom readers and writers from the abstract base classes
XmlReader and XmlWriter.

Creating a Custom Implementation of XmlReader
In this section, you will create a custom implementation of the XmlReader class. The SqlCommand
class provides the ExecuteXmlReader() method that returns an instance of XmlReader to the
caller. This works fine if your database is SQL Server, but what if your database is Microsoft
Office Access or any other OLEDB-compliant database? Moreover, XML extensions such as the
FOR XML clause may not be available for all databases. Does that mean that you cannot retrieve
the data and read it by using an XmlReader? Of course not.

There is no out-of-the-box solution for this problem, but you can build your own mecha-
nism to overcome this limitation, by creating a custom class that inherits from the XmlReader
abstract class. You can then override the required properties and methods as per your need.
The requirements for the custom XmlReader class are summarized here:

• It should accept the database connection string and table name to read.

• The column values should be treated as attribute values.

• It should allow iterating through the table to read each row.

• The column values should be accessible by specifying a column index or name.

8253.book Page 433 Wednesday, March 14, 2007 8:47 PM

434 A P P E N D I X A ■ C R E A T I N G C U S T O M X M L R E A D E R A N D X M L W R I T E R C L A S S E S

Inheriting from XmlReader
The XmlReader class is an abstract class and provides several properties and methods that you
need to override when you inherit from it. Listing A-1 shows signatures of these properties and
methods.

Listing A-1. Properties and Methods of the XmlReader Class

public abstract int AttributeCount;
public abstract string BaseURI
{
 get;
}
public abstract void Close();
public abstract int Depth
{
 get;
}
public abstract bool EOF
{
 get;
}
public abstract string GetAttribute(int i);
public abstract string GetAttribute(string name, string namespaceURI);
public abstract string GetAttribute(string name);
public abstract bool HasValue
{
 get;
}
public abstract bool IsEmptyElement
{
 get;
}
public abstract string LocalName
{
 get;
}
public abstract string LookupNamespace(string prefix);
public abstract bool MoveToAttribute(string name, string ns);
public abstract bool MoveToAttribute(string name);
public abstract bool MoveToElement();
public abstract bool MoveToFirstAttribute();
public abstract bool MoveToNextAttribute();
public abstract XmlNameTable NameTable
{
 get;
}

8253.book Page 434 Wednesday, March 14, 2007 8:47 PM

A P P E N D I X A ■ C R E A T I N G C U S T O M X M L R E A D E R A N D X M L W R I T E R C L A S S E S 435

public abstract string NamespaceURI
{
 get;
}
public abstract XmlNodeType NodeType
{
 get;
}
public abstract string Prefix
{
 get;
}
public abstract bool Read();
public abstract bool ReadAttributeValue();
public abstract ReadState ReadState
{
 get;
}
public abstract void ResolveEntity();
public abstract string Value
{
 get;
}

You can override these properties and methods and write your own data-manipulation
logic. If you do not want to override a particular property or method, you still need to have its
empty implementation. A better way is to throw an exception in such properties and methods
so that the caller knows that these properties and methods are not implemented by you. I
will not discuss every property here because you are already familiar with many of them (see
Chapter 3 for more information).

Creating a TableReader Class
Now that you are familiar with the XmlReader abstract class, let’s create our own implementa-
tion. To do so, create a new project of type class library by using Visual Studio. Add a class
named TableReader. Make sure that references to the System.Xml and System.Data assemblies
are added to the project. Import the namespaces as shown in Listing A-2 at the top of the
TableReader class and ensure that the TableReader class inherits from the XmlReader class.

Listing A-2. Importing Namespaces and Setting Inheritence

using System.Xml;
using System.Data;
using System.Data.OleDb;

class TableReader:XmlReader
{
...

8253.book Page 435 Wednesday, March 14, 2007 8:47 PM

436 A P P E N D I X A ■ C R E A T I N G C U S T O M X M L R E A D E R A N D X M L W R I T E R C L A S S E S

You need to add an implementation of each property and method mentioned. Visual
Studio provides a shortcut for adding empty implementations of these members. Right-click
on the XmlReader class in the class definition and choose the Implement Abstract Class menu
option (Figure A-1).

Figure A-1. Adding empty implementations of properties and methods

This will add dummy signatures of all the properties and methods that need to be overrid-
den. Notice how the dummy implementation throws an exception by using the throw keyword.
This way, if somebody tries to use unimplemented members, an exception will be thrown indi-
cating that “the method or operation is not implemented.” Code the TableReader class as
shown in Listing A-3.

Listing A-3. The TableReader Class

public class TableReader:XmlReader
{
 private OleDbConnection cnn;
 private OleDbCommand cmd;
 private OleDbDataReader reader;
 private int intColumnIndex = -1;
 private string strValue;

 public TableReader(string connectionString,string tableName)
 {
 cnn = new OleDbConnection(connectionString);
 cmd = new OleDbCommand();
 cmd.Connection = cnn;
 cmd.CommandText = tableName;
 cmd.CommandType = CommandType.TableDirect;
 cnn.Open();
 reader = cmd.ExecuteReader();
 }

8253.book Page 436 Wednesday, March 14, 2007 8:47 PM

A P P E N D I X A ■ C R E A T I N G C U S T O M X M L R E A D E R A N D X M L W R I T E R C L A S S E S 437

 public override int AttributeCount
 {
 get
 {
 return reader.FieldCount;
 }
 }

 public override void Close()
 {
 reader.Close();
 cnn.Close();
 }

 public override int Depth
 {
 get
 {
 return reader.Depth;
 }
 }

 public override string GetAttribute(int i)
 {
 return reader.GetValue(i).ToString();
 }

 public override string GetAttribute(string name)
 {
 return reader.GetValue(reader.GetOrdinal(name)).ToString();
 }

 public override bool MoveToAttribute(string name)
 {
 intColumnIndex = reader.GetOrdinal(name);
 return true;
 }

 public override bool MoveToElement()
 {
 intColumnIndex = -1;
 return true;
 }

8253.book Page 437 Wednesday, March 14, 2007 8:47 PM

438 A P P E N D I X A ■ C R E A T I N G C U S T O M X M L R E A D E R A N D X M L W R I T E R C L A S S E S

 public override bool MoveToFirstAttribute()
 {
 intColumnIndex = 0;
 return true;
 }

 public override bool MoveToNextAttribute()
 {
 intColumnIndex++;
 if (intColumnIndex > reader.FieldCount - 1)
 {
 return false;
 }
 else
 {
 return true;
 }
 }

 public override bool Read()
 {
 intColumnIndex = -1;
 strValue = "";
 return reader.Read();
 }

 public override bool HasValue
 {
 get
 {
 return reader.IsDBNull(intColumnIndex);
 }
 }

 public override bool ReadAttributeValue()
 {
 if (intColumnIndex < reader.FieldCount)
 {
 strValue = reader.GetValue(intColumnIndex).ToString();
 return true;
 }
 else
 {
 return false;
 }
 }

8253.book Page 438 Wednesday, March 14, 2007 8:47 PM

A P P E N D I X A ■ C R E A T I N G C U S T O M X M L R E A D E R A N D X M L W R I T E R C L A S S E S 439

 public string Name
 {
 get
 {
 if (intColumnIndex == -1)
 {
 return cmd.CommandText;
 }
 else
 {
 return reader.GetName(intColumnIndex);
 }
 }
 }

 public override string Value
 {
 get
 {
 return strValue;
 }
 }
...
}

In the following text, we will dissect the code step by step.

Declaring Class-Level Variables

private OleDbConnection cnn;
private OleDbCommand cmd;
private OleDbDataReader reader;
private int intColumnIndex = -1;
private string strValue;

The TableReader class declares private variables of type OleDbConnection, OleDbCommand,
and OleDbDataReader classes at the class level:

• The OleDbConnection class is used to establish a connection with OLEDB-compliant
databases such as Access.

• The OleDbCommand class is used to execute any query, SQL query, or stored procedures
against a database.

• The OleDbDataReader class allows you to iterate through a result set in a cursor-oriented
manner.

The intColumnIndex integer variable keeps track of the current column index whose value
is to be read. Similarly, the strValue string variable stores the value from the column indicated
by intColumnIndex.

8253.book Page 439 Wednesday, March 14, 2007 8:47 PM

440 A P P E N D I X A ■ C R E A T I N G C U S T O M X M L R E A D E R A N D X M L W R I T E R C L A S S E S

Initializing the Variables

public TableReader(string connectionString,string tableName)
{
 cnn = new OleDbConnection(connectionString);
 cmd = new OleDbCommand();
 cmd.Connection = cnn;
 cmd.CommandText = tableName;
 cmd.CommandType = CommandType.TableDirect;
 cnn.Open();
 reader = cmd.ExecuteReader();
}

The constructor of the TableReader class accepts two parameters: the database connec-
tion string and the name of the table whose data is to be read. Using the connection string,
the OleDbConnection is instantiated. The Connection property of the OleDbCommand class
is set to the OleDbConnection class we just instantiated. The CommandText property of the
OleDbCommand class is set to the name of the table whose data is to be read.

Have a look at the CommandType property. It is set to TableDirect, which returns all the
rows from the table indicated by the CommandText property. In effect, it works as if we have
specified SELECT * FROM <tableName> as the query. The database connection is then opened.
The ExecuteReader() method of OleDbCommand is called and an OleDbDataReader is retrieved.

Retrieving the Total Number of Attributes

public override int AttributeCount
{
 get
 {
 return reader.FieldCount;
 }
}

The TableReader class is going to return column values as attributes in the resultant XML
data. Hence, the AttributeCount read-only property returns the total number of columns
in the underlying table. The total number of columns in the table is obtained by using the
FieldCount property of the OleDbDataReader class.

Closing the Reader

public override void Close()
{
 reader.Close();
 cnn.Close();
}

8253.book Page 440 Wednesday, March 14, 2007 8:47 PM

A P P E N D I X A ■ C R E A T I N G C U S T O M X M L R E A D E R A N D X M L W R I T E R C L A S S E S 441

public override int Depth
{
 get
 {
 return reader.Depth;
 }
}

The Close() method closes the OleDbDataReader as well as the OleDbConnection. The Depth
property returns the Depth of the OleDbDataReader.

Reading Attributes

public override string GetAttribute(int i)
{
 return reader.GetValue(i).ToString();
}

public override string GetAttribute(string name)
{
 return reader.GetValue(reader.GetOrdinal(name)).ToString();
}

The column values can be retrieved by using two overloads of the GetAttribute() method.
The first overload accepts the attribute index. In our case, the attribute index is the same as the
column index. The GetValue() method of the OleDbDataReader class accepts the column index
and returns the column value as an object. The ToString() method returns a string representa-
tion of the object to the caller. The second overload accepts an attribute name. The GetOrdinal()
method of OleDbDataReader accepts the column name and returns its index. The returned index
is then passed to the GetValue() method as before.

Navigating Between the Attributes

public override bool MoveToAttribute(string name)
{
 intColumnIndex = reader.GetOrdinal(name);
 return true;
}

public override bool MoveToElement()
{
 intColumnIndex = -1;
 return true;
}

8253.book Page 441 Wednesday, March 14, 2007 8:47 PM

442 A P P E N D I X A ■ C R E A T I N G C U S T O M X M L R E A D E R A N D X M L W R I T E R C L A S S E S

public override bool MoveToFirstAttribute()
{
 intColumnIndex = 0;
 return true;
}

public override bool MoveToNextAttribute()
{
 intColumnIndex++;
 if (intColumnIndex > reader.FieldCount - 1)
 {
 return false;
 }
 else
 {
 return true;
 }
}

The MoveToAttribute(), MoveToFirstAttribute(), MoveToNextAtribute(), and
MoveToElement() methods allow you to navigate within the available attributes:

• The MoveToAttribute() method accepts the name of the column (which is the same as
the attribute name) and sets the column index variable to the index of that column.

• The MoveToFirstAttribute() method sets the current column index to 0, whereas
MoveToNextAttribute() increments it so that the next column value can be read.

• The MoveToElement() method simply sets the current column index to -1, indicating that
no column value can be read. The MoveToElement() method is intended to move the
reader to the element node from any of its attributes. By setting the column index to -1,
we reset the column index counter and mimic this behavior.

Advancing the Reader

public override bool Read()
{
 intColumnIndex = -1;
 strValue = "";
 return reader.Read();
}

8253.book Page 442 Wednesday, March 14, 2007 8:47 PM

A P P E N D I X A ■ C R E A T I N G C U S T O M X M L R E A D E R A N D X M L W R I T E R C L A S S E S 443

The Read() method allows you to iterate through the table. It calls the Read() method of
the OleDbDataReader class and returns a Boolean value indicating whether the read operation
was successful. As the record pointer is moving on to a new record, the current column index
and value are reset.

Checking Whether the Value Is Empty

public override bool HasValue
{
 get
 {
 return reader.IsDBNull(intColumnIndex);
 }
}

The HasValue property indicates whether the TableReader contains any value. If the
column contains a NULL value, HasValue should return false. The IsDbNull() method of
the OleDbDataReader class accepts a column index and returns true if the column contains
a NULL value.

Reading Values

public override bool ReadAttributeValue()
{
 if (intColumnIndex < reader.FieldCount)
 {
 strValue = reader.GetValue(intColumnIndex).ToString();
 return true;
 }
 else
 {
 return false;
 }
}

The ReadAttributeValue() method returns the value of the current column. It does so by
using the GetValue() method of the OleDbDataReader class as before.

8253.book Page 443 Wednesday, March 14, 2007 8:47 PM

444 A P P E N D I X A ■ C R E A T I N G C U S T O M X M L R E A D E R A N D X M L W R I T E R C L A S S E S

Returning the Table or Column Name

public string Name
{
 get
 {
 if (intColumnIndex == -1)
 {
 return cmd.CommandText;
 }
 else
 {
 return reader.GetName(intColumnIndex);
 }
 }
}

The Name property returns either the underlying table name or column name. This is useful
to see which column is being read. The table name is obtained from the CommandText property
of the OleDbCommand class, whereas the column name is obtained from the GetName() method of
the OleDbDataReader class.

Returning Values

public override string Value
{
 get
 {
 return strValue;
 }
}

Finally, the Value property simply returns the value stored in the strValue variable. Note
that strValue gets assigned in the ReadAttributeValue() method.

The remaining properties and methods are not implemented by the TableReader class.
Compile the class library and you should get an assembly, TableReader.dll. This assembly can
be used in client applications to work with OLEDB databases and XML.

Using the TableReader Class
To consume the TableReader class, you need to create a Windows application as shown in
Figure A-2.

The application consists of text boxes for entering the database connection string and
table name, respectively. After you click the Read button, the TableReader class is instantiated.
It reads the table data and writes it to an XML file. The XML file thus created is displayed in a
Web Browser control. The Click event handler of the Read button contains the code shown in
Listing A-4.

8253.book Page 444 Wednesday, March 14, 2007 8:47 PM

A P P E N D I X A ■ C R E A T I N G C U S T O M X M L R E A D E R A N D X M L W R I T E R C L A S S E S 445

Figure A-2. Application that consumes TableReader class

Listing A-4. Using the TableReader Class

private void button1_Click(object sender, EventArgs e)
{
 TableReader tr = new TableReader(textBox1.Text, textBox2.Text);
 XmlTextWriter writer =
 new XmlTextWriter(Application.StartupPath + @"\temp.xml", null);
 writer.WriteStartDocument();
 writer.WriteStartElement("root");
 int count = tr.AttributeCount;
 while (tr.Read())
 {
 writer.WriteStartElement(tr.Name);
 for (int i = 0; i < count; i++)
 {
 tr.MoveToAttribute(i);
 tr.ReadAttributeValue();
 writer.WriteAttributeString(tr.Name, tr.Value);
 }
 writer.WriteEndElement();
 }
 writer.WriteEndElement();
 tr.Close();
 writer.Close();
 webBrowser1.Navigate(Application.StartupPath + @"\temp.xml");
}

Before you write the preceding code, add a reference to TableReader.dll in the Windows
application and import the namespace at the top. The code creates an instance of the TableReader

8253.book Page 445 Wednesday, March 14, 2007 8:47 PM

446 A P P E N D I X A ■ C R E A T I N G C U S T O M X M L R E A D E R A N D X M L W R I T E R C L A S S E S

class by passing the database connection string and table name to its constructor. Then an
XmlTextWriter is created that writes data to a temporary XML file called temp.xml. The TableReader
class will return only the fragmented XML data; hence the root element is added by using the
WriteStartElement() method of the XmlTextWriter class. The total number of columns in the sup-
plied table is retrieved by using the AttributeCount property and is stored in a variable for later use.

A while loop calls the Read() method of the TableReader class. With each iteration, an
element is added to the file with the same name as the table name. Recollect that the Name
property of the TableReader class returns either the table name or column name depending on
the current column index. Because we have just called the Read() method, the column index is
going to be -1 and hence the table name will be returned.

Next, a for loop iterates through all the attributes—that is, columns. With each iteration of
the for loop, the value of the attribute is read by using the ReadAttributeValue() method. An
attribute is then written to the file along with its value by using the WriteAttributeString()
method of the XmlTextWriter class. The WriteEndElement() method of the XmlTextWriter class
writes end tags for the nearest open element. The TableReader and XmlTextReader are then
closed by using their respective Close() methods. Finally, the Navigate() method of the web
browser control shows the user the XML file.

Creating a Custom XmlWriter
Now that you have created a custom implementation of XmlReader, let’s move further and
see how to create a custom XmlWriter. As an example, we will create an RSS writer that emits
RSS feeds.

Really Simple Syndication (RSS) is a standard way to share your website content with oth-
ers. It is nothing but standardized XML markup that describes the content you want to share.
Because RSS is a widely accepted format, your content immediately becomes ready to be con-
sumed by others. Listing A-5 illustrates an RSS document.

Listing A-5. Sample RSS Markup

<rss version="2.0">
 <channel>
 <title>DotNetBips.com Latest Articles</title>
 <link>www.dotnetbips.com</link>
 <description>DotNetBips.com Latest Articles</description>
 <copyright>Copyright (C) DotNetBips.com. All rights reserved.</copyright>
 <generator>www.dotnetbips.com RSS Generator</generator>
 <item>
 <title>Using WebRequest and WebResponse</title>
 <link>http://www.dotnetbips.com/displayarticle.aspx?id=239</link>
 <description>Description here</description>
 <pubDate>Sun, 25 Jan 2004 12:00:00 AM GMT</pubDate>
 </item>
 </channel>
</rss>

8253.book Page 446 Wednesday, March 14, 2007 8:47 PM

A P P E N D I X A ■ C R E A T I N G C U S T O M X M L R E A D E R A N D X M L W R I T E R C L A S S E S 447

Let’s look at each markup tag closely:

• <rss> forms the root tag and has a version attribute. The latest version is 2.0.

• <channel> contains tags such as <title>, <link>, and <item> nodes. A channel represents
metadata information from a particular source. It essentially acts as a container for the
rest of the tags. An RSS document can contain one or more channels.

• <title> represents the title of this RSS feed.

• <link> represents the URL of the website providing the RSS feed.

• <description> details more information about this feed.

• <copyright> specifies copyright information.

• <generator> specifies the application that generated this feed.

In addition to the preceding tags, there can be one or more <item> tags, each of which
represents an actual item that you want to share (for example, an article or a blog entry).
Each <item> tag further contains the following subnodes:

• <title> represents the title of this item (for example, the article title).

• <link> represents the URL of this item (for example, the article URL).

• <description> contains the description of the item (for example, a summary of the
article).

• <pubDate> contains the publication date of the item. A typical date format is Sun 28 Dec
2003 12:00:00 AM GMT.

■Note The RSS markup shown here is the basic markup. You may need to add additional tags to incorpo-
rate additional information. You can obtain more information about RSS at http://en.wikipedia.org/
wiki/RSS_(file_format).

In the absence of any out-of-the-box solution for generating RSS feeds in your website,
you need to use classes such as XmlTextWriter yourself. You also need to remember the allowed
tag names. To overcome this problem, we will create a custom class called RssWriter. The
RssWriter class will inherit from XmlWriter and allow you to emit RSS feeds easily.

To create RssWriter, you need to create a class library project. As before, be sure to add a
reference to the System.Xml assembly.

Inheriting from XmlWriter
To create a custom implementation of XmlWriter, you need to inherit from it and override the
properties and methods shown in Listing A-6.

8253.book Page 447 Wednesday, March 14, 2007 8:47 PM

448 A P P E N D I X A ■ C R E A T I N G C U S T O M X M L R E A D E R A N D X M L W R I T E R C L A S S E S

Listing A-6. Properties and Methods of the XmlWriter Class

public abstract void Close();
public abstract void Flush();
public abstract string LookupPrefix(string ns);
public abstract void WriteBase64(byte[] buffer, int index, int count);
public abstract void WriteCData(string text);
public abstract void WriteCharEntity(char ch);
public abstract void WriteChars(char[] buffer, int index, int count);
public abstract void WriteComment(string text);
public abstract void
 WriteDocType(string name, string pubid, string sysid, string subset);
public abstract void WriteEndAttribute();
public abstract void WriteEndDocument();
public abstract void WriteEndElement();
public abstract void WriteEntityRef(string name);
public abstract void WriteFullEndElement();
public abstract void WriteProcessingInstruction(string name, string text);
public abstract void WriteRaw(string data);
public abstract void WriteRaw(char[] buffer, int index, int count);
public abstract void
 WriteStartAttribute(string prefix, string localName, string ns);
public abstract void WriteStartDocument(bool standalone);
public abstract void WriteStartDocument();
public abstract void WriteStartElement(string prefix, string localName, string ns);
public abstract WriteState WriteState
{
 get;
}
public abstract void WriteString(string text);
public abstract void WriteSurrogateCharEntity(char lowChar, char highChar);
public abstract void WriteWhitespace(string ws);

Many of these properties and methods should be familiar to you because we discussed
them in Chapter 3.

Creating the RssWriter Class

To begin, we need to specify that the RssWriter class inherits from the XmlWriter base class.
As shown in Figure A-1, add dummy definitions of the properties and methods that implement
the abstract base class XmlWriter. Then add a couple of variables and a constructor to the
RssWriter class as shown in Listing A-7.

8253.book Page 448 Wednesday, March 14, 2007 8:47 PM

A P P E N D I X A ■ C R E A T I N G C U S T O M X M L R E A D E R A N D X M L W R I T E R C L A S S E S 449

Listing A-7. The Constructor of RssWriter

public class RssWriter:XmlWriter
{
 private XmlWriter writer;
 private Stream objStream;
 public RssWriter(Stream stream)
 {
 objStream = stream;
 writer = XmlWriter.Create(objStream);
 }

The code declares class-level variables of XmlWriter and Stream types, respectively. The
constructor takes a parameter of type Stream. This stream acts as an output stream for emitting
the RSS feeds. An instance of the XmlWriter is constructed by using the Create() method of the
XmlWriter class. The stream passed to the constructor is supplied to the Create() method so
that the newly created instance of XmlWriter writes to that stream.

Coding Stream-Related Operations

The stream needs to be closed and flushed to ensure that the emitted data is saved correctly.
The two overridden methods—Close() and Flush()—do just that. Listing A-8 shows these
methods.

Listing A-8. The Close() and Flush() Methods

public override void Close()
{
 objStream.Close();
 writer.Close();
}
public override void Flush()
{
 writer.Flush();
}

The Close() method calls the Close() method of the underlying stream as well as that of
the XmlWriter. Similarly, the Flush() method calls the Flush() method of the XmlWriter so that
data is flushed to the stream.

Defining Enumerations for RSS-Specific Tags

It would be nice to readily provide RSS tag and attribute names so that you need not remember
them. This is achieved by creating two enumerations: RssElements and RssAttributes. The
enumerations are shown in Listing A-9.

8253.book Page 449 Wednesday, March 14, 2007 8:47 PM

450 A P P E N D I X A ■ C R E A T I N G C U S T O M X M L R E A D E R A N D X M L W R I T E R C L A S S E S

Listing A-9. Enumerations for Representing RSS Tags and Attributes

public enum RssElements
{
 Rss,Channel,Title,Description,Link,Copyright,Generator,Item,PubDate
}
public enum RssAttributes
{
 Version
}

The RssElements enumeration contains values for representing RSS elements. The
RssAttributes enumeration contains just one value—Version—that represents the version
attribute of the <rss> element.

Writing Elements

To emit the RSS feed, you need to write elements such as <rss> and <item> onto the output
stream. We will create three methods for this purpose: WriteElement(), WriteElementString(),
and WriteEndElement(). The complete code of these methods is shown in Listing A-10.

Listing A-10. Writing Elements

public void WriteStartElement(RssElements element)
{
 string elementName = "";
 switch (element)
 {
 case RssElements.Channel:
 elementName = "channel";
 break;
 case RssElements.Copyright:
 elementName = "copyright";
 break;
 case RssElements.Description:
 elementName = "description";
 break;
 case RssElements.Generator:
 elementName = "generator";
 break;
 case RssElements.Item:
 elementName = "item";
 break;

8253.book Page 450 Wednesday, March 14, 2007 8:47 PM

A P P E N D I X A ■ C R E A T I N G C U S T O M X M L R E A D E R A N D X M L W R I T E R C L A S S E S 451

 case RssElements.Link:
 elementName = "link";
 break;
 case RssElements.PubDate:
 elementName = "pubDate";
 break;
 case RssElements.Rss:
 elementName = "rss";
 break;
 case RssElements.Title:
 elementName = "title";
 break;
 }
 writer.WriteStartElement(elementName);
}

public void WriteElementString(RssElements element, string value)
{
 string elementName = "";
 switch (element)
 {
 case RssElements.Channel:
 elementName = "channel";
 break;
 case RssElements.Copyright:
 elementName = "copyright";
 break;
 case RssElements.Description:
 elementName = "description";
 break;
 case RssElements.Generator:
 elementName = "generator";
 break;
 case RssElements.Item:
 elementName = "item";
 break;
 case RssElements.Link:
 elementName = "link";
 break;
 case RssElements.PubDate:
 elementName = "pubDate";
 break;

8253.book Page 451 Wednesday, March 14, 2007 8:47 PM

452 A P P E N D I X A ■ C R E A T I N G C U S T O M X M L R E A D E R A N D X M L W R I T E R C L A S S E S

 case RssElements.Rss:
 elementName = "rss";
 break;
 case RssElements.Title:
 elementName = "title";
 break;
 }
 writer.WriteElementString(elementName, value);
}

public override void WriteEndElement()
{
 writer.WriteEndElement();
}

The WriteStartElement() method accepts a parameter of type RssElements that indicates
the element name to be written. It contains a switch statement that checks the supplied element
name against various values from the RssElements enumeration. The name of the element is
stored in a string variable. Finally, the WriteStartElement() method of XmlWriter is called by sup-
plying the element name stored in the variable.

The WriteElementString() method accepts two parameters: RssElements and the value of the
element. It contains a similar switch statement as in the previous method and stores the element
name in a variable. The WriteElementString() method of the XmlWriter class is called by passing
the element name and its value. Note that WriteStartElement() and WriteElementString() are new
methods—that is, they are not defined by the XmlWriter base class.

The WriteEndElement() method simply calls the WriteEndElement() method of the
XmlWriter instance so that the end tag of the nearest element is emitted.

Writing Attributes

Just as we added methods for writing elements, we also need to add methods for emit-
ting attributes. Three methods—WriteStartAttribute(), WriteAttributeString(), and
WriteEndAttribute()—will do that job. Listing A-11 shows these methods.

Listing A-11. Writing Attributes

public void WriteStartAttribute(RssAttributes attb)
{
 if (attb == RssAttributes.Version)
 {
 writer.WriteStartAttribute("version");
 }
}

8253.book Page 452 Wednesday, March 14, 2007 8:47 PM

A P P E N D I X A ■ C R E A T I N G C U S T O M X M L R E A D E R A N D X M L W R I T E R C L A S S E S 453

public void WriteAttributeString(RssAttributes attb, string value)
{
 if (attb == RssAttributes.Version)
 {
 writer.WriteAttributeString("version",value);
 }
}

public override void WriteEndAttribute()
{
 writer.WriteEndAttribute();
}

The WriteStartAttribute() method accepts a parameter of type RssAttributes. Inside it
checks whether the attribute to be emitted is Version, and if so, calls the WriteStartAttribute()
method of the XmlWriter instance to write the attribute.

The WriteAttributeString() method accepts two parameters: RssAttributes and the
value of the attribute. It then calls the WriteAttributeString() method of the XmlWriter
instance by passing the supplied value and version as the attribute name.

The WriteEndAttribute() method simply calls the WriteEndAttribute() method of the
XmlWriter instance.

Writing Data

Though the methods that we created for writing elements will take care of most of the RSS feed gen-
eration, you may need additional methods to emit comments, character data, white spaces, and so
on. To accomplish this task, we will write a set of methods as shown in Listing A-12.

Listing A-12. Methods for Writing Data

public override void WriteCData(string text)
{
 writer.WriteCData(text);
}

public override void WriteChars(char[] buffer, int index, int count)
{
 writer.WriteChars(buffer, index, count);
}

public override void WriteComment(string text)
{
 writer.WriteComment(text);
}

8253.book Page 453 Wednesday, March 14, 2007 8:47 PM

454 A P P E N D I X A ■ C R E A T I N G C U S T O M X M L R E A D E R A N D X M L W R I T E R C L A S S E S

public override void WriteWhitespace(string ws)
{
 writer.WriteWhitespace(ws);
}

public override void WriteString(string text)
{
 writer.WriteString(text);
}

These methods do not contain much code. They simply call the corresponding method on
the XmlWriter instance. For example, the WriteCData() method accepts a string and calls the
WriteCData() method of the XmlWriter by passing the string. The WriteChars(), WriteComment(),
WriteWhitespace(), and WriteString() methods also call the respective methods of the XmlWriter
instance.

Writing an XML Declaration

An RSS feed is an XML document and from that point of view should contain an XML declara-
tion. The methods WriteStartDocument() and WriteEndDocument() emit an XML declaration
with a version of 1.0. These methods are shown in Listing A-13.

Listing A-13. Writing an XML Declaration

public override void WriteStartDocument()
{
 writer.WriteStartDocument();
}
public override void WriteStartDocument(bool standalone)
{
 writer.WriteStartDocument(standalone);
}
public override void WriteEndDocument()
{
 writer.WriteEndDocument();
}

The WriteStartDocument() method has two overloads. The one with a Boolean para-
meter emits a stand-alone attribute. Both the methods call respective overloads of the
WriteStartDocument() method on the XmlWriter instance. The WriteEndDocument() method
simply calls the WriteEndDocument() method of the XmlWriter instance.

That’s it: the RssWriter class is now ready. Compile the class library to get its output
assembly.

8253.book Page 454 Wednesday, March 14, 2007 8:47 PM

A P P E N D I X A ■ C R E A T I N G C U S T O M X M L R E A D E R A N D X M L W R I T E R C L A S S E S 455

Consuming the RssWriter Class
To consume the RssWriter class we just created, you will need to create a new website in Visual
Studio. Add a reference to the assembly in which RssWriter resides. Open the default web form
in the IDE and write the code shown in Listing A-14 in its Page_Load event handler.

Listing A-14. Using the RssWriter Class

protected void Page_Load(object sender, EventArgs e)
{
 Response.ContentEncoding = System.Text.Encoding.UTF8;
 Response.ContentType = "text/xml";
 RssWriter writer = new RssWriter(Response.OutputStream);
 writer.WriteStartElement(RssElements.Rss);
 writer.WriteAttributeString(RssAttributes.Version, "2.0");
 writer.WriteStartElement(RssElements.Channel);
 writer.WriteElementString(RssElements.Title, "DotNetBips.com");
 writer.WriteElementString(RssElements.Link, "http://www.dotnetbips.com");
 writer.WriteElementString(RssElements.Description,
 "Latest Articles from DotNetBips.com");
 writer.WriteElementString(RssElements.Copyright,
 "Copyright (C) DotNetBips.com. All rights reserved.");
 writer.WriteElementString(RssElements.Generator, "Pro XML RSS Generator");
 writer.WriteStartElement(RssElements.Item);
 writer.WriteElementString(RssElements.Title, "DotNetBips.com");
 writer.WriteElementString(RssElements.Link,
 "http://www.dotnetbips.com/Articles/displayarticle.aspx?id=242");
 writer.WriteElementString(RssElements.Description,
 "This article explains how to create and consume RSS feeds.");
 writer.WriteElementString(RssElements.PubDate,
 "Sun, 25 Jan 2004 12:00:00 AM GMT");
 writer.WriteEndElement();
 writer.WriteEndElement();
 writer.WriteEndElement();
 writer.Close();
 Response.End();
 }

The code sets the ContentEncoding property of the Response object to UTF-8 (that is,
ASCII). It also sets the ContentType property to text/xml. This way, the browser knows that
the response is XML data rather than HTML. A new instance of the RssWriter class is then
created. The OutputStream of the Response object is passed as a parameter to the constructor of
the RssWriter class. This way, the XML data will be written directly on the response stream.

8253.book Page 455 Wednesday, March 14, 2007 8:47 PM

456 A P P E N D I X A ■ C R E A T I N G C U S T O M X M L R E A D E R A N D X M L W R I T E R C L A S S E S

Then, one by one, RSS tags are emitted so as to output an RSS feed, as shown in Listing A-5
earlier. Notice how the RssElements enumeration has made our job easy. Various methods such
as WriteElementString() and WriteStartElement() make extensive use of the RssElements enu-
meration. After the writing of the feed is over, the RssWriter instance is closed. Finally, the End()
method of the Response object is called so that the response stream is flushed off to the client.

■Note For the sake of simplicity, the code emits hard-coded values. In most real-world cases, you will
retrieve data such as the title, URL, and publication date from a database table.

If you run the web form after writing the code, it should look similar to Figure A-3.

Figure A-3. RSS feed displayed in the browser

Summary
In this appendix, you learned to create custom implementations of the XmlReader and XmlWriter
classes. The XmlReader and XmlWriter classes are abstract classes. To create custom readers and
writers, you need to inherit from them and override various properties and methods. This way, you
can easily extend the out-of-the-box functionality exposed by these classes for a specific scenario.

8253.book Page 456 Wednesday, March 14, 2007 8:47 PM

457

■ ■ ■

A P P E N D I X B

Case Study: A Web Service–
Driven Shopping Cart

In Chapter 9, you learned about web services. In the sections to follow, you are going to learn
how web services can be put to use in a real-world scenario. As an example, we are going to
develop a shopping cart driven entirely by web services. The business scenario under consid-
eration is as follows:

Acme Inc. is a company marketing and selling electric and electronic items. As an aggres-
sive marketing strategy, they wish to tie up with various leading websites to increase their sales
and reach. To attract website owners, Acme launches an affiliate program through which web-
site owners can sell Acme products on their respective websites. The websites will not ship or
distribute any products themselves. They will simply grab orders from their visitors and then
submit the orders to Acme for fulfillment. In return, the websites will earn a commission on
each order. Acme wants to develop a web service–based solution that is easy to implement,
cross-platform, and industry accepted.

Considering this scenario, we can define the requirements of the solution as follows:

• The solution must be platform independent.

• The individual websites will not maintain a product database themselves.

• Acme will expose the functionality of the shopping cart (addition, modification, and
removal of products from the cart) in the form of a web service.

• Acme will expose their product database via a web service so that individual websites
can display product catalogs on their respective sites.

• When the visitors of individual websites place an order, the data is saved directly into the
Acme database.

Creating the Database
To begin, you need to create a SQL Server database. You can do so with the help of Server
Explorer. Open Server Explorer by choosing View ➤ Server Explorer from the menu. Then
right-click on the Data Connection node of Server Explorer and choose Create New SQL Server
Database. Clicking this option will pop up the dialog box shown in Figure B-1.

8253.book Page 457 Wednesday, March 14, 2007 8:47 PM

458 A P P E N D I X B ■ C A S E S T U D Y : A W E B S E R V I C E – D R I V E N S H O P P I N G C A R T

Figure B-1. Creating a new database by using Server Explorer

The dialog box essentially allows you to specify a database server, authentication mode,
and database name. Name the database Database.

■Note You can also create the database via a CREATE DATABASE T-SQL statement. To do so, you can
open a query window of SQL Server Management Studio by clicking the New Query toolbar button and then
execute a CREATE DATABASE database statement. This will create a new database named Database with
default settings.

After you create the database, you need to create four tables in it: Products, ShoppingCart,
Orders, and OrderDetails. The structure of these tables should match the details shown in
Table B-1.

Table B-1. Table Structures

Table Name Column Name Data Type Description

Products Id int Product ID and primary key

Products Name varchar(50) Name of the product

Products Description varchar(MAX) Description of the product

Products UnitPrice money Unit price of the product

ShoppingCart Id int Identity column and primary key

ShoppingCart CartID varchar(255) A unique identifier (say, GUID) of a shopping cart

8253.book Page 458 Wednesday, March 14, 2007 8:47 PM

A P P E N D I X B ■ C A S E S T U D Y : A W E B S E R V I C E – D R I V E N S H O P P I N G C A R T 459

Creating the Web Service
Now that you have the database ready, you can proceed to create the web service. To do so,
choose File ➤ New Web Site from the menu to open the New Web Site dialog box. Name the
web service project ECommerceService.

Creating the SqlHelper Class
Right-click on the App_Code folder and choose the Add New Item option. Add a new class
named SqlHelper. This class will act as a data access layer and will take the data in and out
of the database. The complete code of the SqlHelper class is shown in Listing B-1.

Listing B-1. SqlHelper Class

using System;
using System.Configuration;
using System.Data;
using System.Data.SqlClient;

public class SqlHelper
{
 private static string strConn;

ShoppingCart ProductID int Product ID of an item

ShoppingCart Qty int Quantity of ProductID

Orders Id int Primary key

Orders CartID varchar(255) Cart ID for which this order has been placed

Orders OrderDate dateTime Date and time at which the order was placed

Orders Amount money Total amount of the order

Orders Street varchar(50) Street address where the order is to be shipped

Orders Country varchar(50) Country of shipment

Orders State varchar(50) State of shipment

Orders City varchar(50) City of shipment

Orders PostalCode varchar(50) Postal code of shipment

OrderDetails Id int Primary key

OrderDetails CartID varchar(255) A unique cart ID

OrderDetails ProductID int Product ID from the Products table

OrderDetails Qty int Quantity of a selected product

Table Name Column Name Data Type Description

8253.book Page 459 Wednesday, March 14, 2007 8:47 PM

460 A P P E N D I X B ■ C A S E S T U D Y : A W E B S E R V I C E – D R I V E N S H O P P I N G C A R T

 static SqlHelper()
 {
 strConn =
 ConfigurationManager.ConnectionStrings["connectionstring"].ConnectionString;
 }

 public static int ExecuteNonQuery(string sql, SqlParameter[] p)
 {
 SqlConnection cnn = new SqlConnection(strConn);
 SqlCommand cmd = new SqlCommand(sql, cnn);
 for (int i = 0; i < p.Length; i++)
 {
 cmd.Parameters.Add(p[i]);
 }
 cnn.Open();
 int retval = cmd.ExecuteNonQuery();
 cnn.Close();
 return retval;
 }

 public static object ExecuteScalar(string sql, SqlParameter[] p)
 {
 SqlConnection cnn = new SqlConnection(strConn);
 SqlCommand cmd = new SqlCommand(sql, cnn);
 for (int i = 0; i < p.Length; i++)
 {
 cmd.Parameters.Add(p[i]);
 }
 cnn.Open();
 object obj = cmd.ExecuteScalar();
 cnn.Close();
 return obj;
 }

 public static DataSet GetDataSet(string sql,SqlParameter[] p)
 {
 SqlConnection cnn = new SqlConnection(strConn);
 SqlCommand cmd = new SqlCommand(sql, cnn);
 if (p != null)
 {
 for (int i = 0; i < p.Length; i++)
 {
 cmd.Parameters.Add(p[i]);
 }

8253.book Page 460 Wednesday, March 14, 2007 8:47 PM

A P P E N D I X B ■ C A S E S T U D Y : A W E B S E R V I C E – D R I V E N S H O P P I N G C A R T 461

 }
 SqlDataAdapter da = new SqlDataAdapter();
 da.SelectCommand = cmd;
 DataSet ds = new DataSet();
 da.Fill(ds);
 return ds;
 }
}

Before you start coding the SqlHelper class, make sure to import the System.Data and
System.Data.SqlClient namespaces. The SqlHelper class consists of a static constructor
and three static methods: ExecuteNonQuery(), ExecuteScalar(), and ExecuteDataSet().

The constructor of SqlHelper reads the database connection string from the
<connectionStrings> section of the web.config file and stores it in a private static
variable. This is done with the help of the ConfigurationManager class.

The ExecuteNonQuery() method is intended for executing action queries such as INSERT,
UPDATE, and DELETE. The method takes two parameters: the SQL query to be executed and an
array of the SqlParameter class representing parameters of the query. Then the method creates
an instance of SqlConnection and SqlCommand. The SqlParameters are added to the Parameters
collection. The database connection is then opened and the query is executed by using the
ExecuteNonQuery() method of the SqlCommand object, which returns the number of records
affected by the query and is returned to the caller.

The ExecuteScalar() method is used to execute SELECT queries that return just one
value. It takes two parameters: the SQL query to be executed and an array of the SqlParameter
class representing parameters of the query. The pattern is then the same as before: the
method creates an instance of SqlConnection and SqlCommand, and SqlParameters are added
to the Parameters collection. The database connection is then opened and the query is exe-
cuted by using the ExecuteScalar() method of the SqlCommand object, which returns the
result of the query as an object. This object is returned to the caller.

The ExecuteDataSet() method is used to execute SELECT queries and retrieve the result
set as a DataSet. It takes two parameters: the SQL query to be executed and an array of the
SqlParameter class representing parameters of the query. The novel part of this method
instantiates a SqlDataAdapter. The SelectCommand property of the SqlDataAdapter is set to the
SqlCommand instance that we just created. The SqlDataAdapter then fills a DataSet with the
help of the Fill() method. The filled DataSet is then returned to the caller.

Specifying the Connection String in web.config
The database connection used by SqlHelper needs to be stored in the web.config file. Add a
web.config file by using the Add New Item dialog box of Visual Studio and specify the connec-
tion string in its <connectionStrings> section. Listing B-2 shows how this is done.

8253.book Page 461 Wednesday, March 14, 2007 8:47 PM

462 A P P E N D I X B ■ C A S E S T U D Y : A W E B S E R V I C E – D R I V E N S H O P P I N G C A R T

Listing B-2. Specifying the Connection String in web.config

<connectionStrings>
<add name="connectionstring"
connectionString="Data Source=.\SQLEXPRESS;Initial Catalog=Database;
Integrated Security=True;User Instance=True"
providerName="System.Data.SqlClient"/>
</connectionStrings>

Creating the Web Methods
The EcommerceService consists of several web methods. Before you code these web methods,
you must import System.Data and System.Data.SqlClient namespaces. The web methods of
ECommerceService are listed in Table B-2.

Table B-2. Web Methods of ECommerceService

Each of the web methods is described next.

Retrieving the List of Products

The GetProducts() web method is designed to return a list of products from the Products
table. The method is shown in Listing B-3.

Listing B-3. The GetProducts() Method

[WebMethod]
public DataSet GetProducts()
{
 DataSet ds = SqlHelper.GetDataSet("SELECT * FROM products",null);
 return ds;
}

The GetProducts() web method simply selects all the products from the Products table by
using the GetDataSet() method of the SqlHelper class and returns the DataSet to the caller.
This method can be used to create a product catalog in the client application.

Web Method Name Description

GetProducts() Returns a list of products from the Products table

AddItem() Adds an item to the shopping cart

UpdateItem() Updates an item from the shopping cart

RemoveItem() Removes an item from the shopping cart

GetCart() Returns all the items from a specified shopping cart

GetCartAmount() Returns the total amount of a specified shopping cart

PlaceOrder() Places an order for a specified shopping cart

8253.book Page 462 Wednesday, March 14, 2007 8:47 PM

A P P E N D I X B ■ C A S E S T U D Y : A W E B S E R V I C E – D R I V E N S H O P P I N G C A R T 463

Adding Items to the Shopping Cart

When an end user adds various items, they should be stored in the ShoppingCart table. This is
accomplished with the help of the AddItem() web method, shown in Listing B-4.

Listing B-4. Adding Items to the Shopping Cart

 [WebMethod]
public int AddItem(string cartid,int productid,int qty)
{
 string sql = "INSERT INTO shoppingcart(cartid,productid,qty)
 VALUES(@cartid,@productid,@qty)";
 SqlParameter[] p = new SqlParameter[3];
 p[0] = new SqlParameter("@cartid", cartid);
 p[1] = new SqlParameter("@productid", productid);
 p[2] = new SqlParameter("@qty", qty);
 return SqlHelper.ExecuteNonQuery(sql, p);
}

The AddItem() method accepts a unique cart identifier, product ID, and quantity. It then
executes an INSERT query against the ShoppingCart table by using the SqlHelper class. If the
item is added successfully, the ExecuteNonQuery() method of the SqlHelper class will return 1.
This return value is passed back to the client application. This value can be used to display suc-
cess or failure messages.

Updating Items in the Shopping Cart

The end users may change the quantity of a selected item and hence there must be a provision
to update already-selected items. The UpdateItem() web method does just that and is shown in
Listing B-5.

Listing B-5. Updating Items from the Shopping Cart

[WebMethod]
public int UpdateItem(string cartid, int productid,int qty)
{
 string sql = "UPDATE shoppingcart SET qty=@qty
 WHERE cartid=@cartid AND productid=@productid";
 SqlParameter[] p = new SqlParameter[3];
 p[0] = new SqlParameter("@qty", qty);
 p[1] = new SqlParameter("@cartid", cartid);
 p[2] = new SqlParameter("@productid", productid);
 return SqlHelper.ExecuteNonQuery(sql, p);
}

The UpdateItem() web method accepts a unique cart identifier, product ID, and quantity.
It then issues an UPDATE statement with the help of the SqlHelper class. As in the previous case,
the return value of the ExecuteNonQuery() method is sent back to the client.

8253.book Page 463 Wednesday, March 14, 2007 8:47 PM

464 A P P E N D I X B ■ C A S E S T U D Y : A W E B S E R V I C E – D R I V E N S H O P P I N G C A R T

Removing Items from the Shopping Cart

At times users may want to remove previously selected items from the shopping cart. This is
done with the help of the RemoveItem() web method, shown in Listing B-6.

Listing B-6. Removing Items from the Shopping Cart

[WebMethod]
public int RemoveItem(string cartid, int productid)
{
 string sql = "DELETE FROM shoppingcart
 WHERE cartid=@cartid AND productid=@productid";
 SqlParameter[] p = new SqlParameter[2];
 p[0] = new SqlParameter("@cartid", cartid);
 p[1] = new SqlParameter("@productid", productid);
 return SqlHelper.ExecuteNonQuery(sql, p);
}

The RemoveItem() web method accepts a unique cart identifier and product ID to be removed.
It then executes a DELETE statement against the ShoppingCart table by using the SqlHelper class. As
before, the return value of the ExecuteNonQuery() method is sent back to the client.

Retrieving Shopping Cart Items

The client application may need to display a complete list of items selected by a user in their
shopping cart. This is accomplished with the help of the GetCart() web method, shown in
Listing B-7.

Listing B-7. Retrieving Shopping Cart Items

[WebMethod]
public DataSet GetCart(string cartid)
{
 string sql = "SELECT * FROM shoppingcart c,products p
 WHERE c.productid=p.id AND c.cartid=@cartid";
 SqlParameter[] p = new SqlParameter[1];
 p[0] = new SqlParameter("@cartid", cartid);
 DataSet ds = SqlHelper.GetDataSet(sql, p);
 return ds;
}

The GetCart() web method accepts the shopping cart identifier and returns all the items
from that cart to the caller in the form of a DataSet. Notice that the SELECT query is based on two
tables—ShoppingCart and Products—because the product name and unit price also need to be
sent back to the client application.

8253.book Page 464 Wednesday, March 14, 2007 8:47 PM

A P P E N D I X B ■ C A S E S T U D Y : A W E B S E R V I C E – D R I V E N S H O P P I N G C A R T 465

Retrieving the Shopping Cart Amount

Often shopping cart web pages need to display the total amount of the cart. This is achieved by
a web method named GetCartAmount(), shown in Listing B-8.

Listing B-8. Retrieving the Cart Amount

 [WebMethod]
public decimal GetCartAmount(string cartid)
{
 string sql1 = "SELECT SUM(c.Qty * p.UnitPrice) AS Total FROM Products AS p
 INNER JOIN ShoppingCart AS c ON p.Id = c.ProductID
 WHERE c.CartID = @cartid";
 SqlParameter[] p1 = new SqlParameter[1];
 p1[0] = new SqlParameter("@cartid", cartid);
 object obj = SqlHelper.ExecuteScalar(sql1, p1);
 if (obj != DBNull.Value)
 {
 decimal amount = (decimal)obj;
 return amount;
 }
 else
 {
 return 0;
 }
}

The GetCartAmount() web method accepts a unique cart identifier and returns the total
amount for that cart. Inside it executes a SUM() aggregate query. If the query returns NULL, a value
of 0 is returned to the caller. Otherwise, the actual cart total is returned as a decimal value.

Placing Orders

When an order is placed, the Orders table should have an entry for that order. Moreover, all the
items from the shopping cart must be moved to the OrderDetails table. This is accomplished
with the help of the PlaceOrder() web method, shown in Listing B-9.

Listing B-9. Placing an Order

 [WebMethod]
public int PlaceOrder(string cartid,string street,string city,string state,
 string country,string postalcode)
{
 string sql1 = "SELECT SUM(c.Qty * p.UnitPrice) AS Total FROM Products AS p
 INNER JOIN ShoppingCart AS c ON p.Id = c.ProductID
 WHERE c.CartID = @cartid";

8253.book Page 465 Wednesday, March 14, 2007 8:47 PM

466 A P P E N D I X B ■ C A S E S T U D Y : A W E B S E R V I C E – D R I V E N S H O P P I N G C A R T

 SqlParameter[] p1 = new SqlParameter[1];
 p1[0] = new SqlParameter("@cartid", cartid);
 object obj=SqlHelper.ExecuteScalar(sql1, p1);
 decimal amount = (decimal)obj;
 string sql2 = "INSERT INTO
 Orders(cartid,orderdate,amount,street,
 country,state,city,postalcode)
 VALUES(@cartid,@orderdate,@amount,@street,
 @country,@state,@city,@postalcode)";
 SqlParameter[] p2 = new SqlParameter[8];
 p2[0] = new SqlParameter("@cartid", cartid);
 p2[1] = new SqlParameter("@orderdate", DateTime.Now);
 p2[2] = new SqlParameter("@amount", amount);
 p2[3] = new SqlParameter("@street", street);
 p2[4] = new SqlParameter("@country", country);
 p2[5] = new SqlParameter("@state", state);
 p2[6] = new SqlParameter("@city", city);
 p2[7] = new SqlParameter("@postalcode", postalcode);
 int i=SqlHelper.ExecuteNonQuery(sql2, p2);

 string sql3 = "INSERT INTO orderdetails(cartid,productid,qty)
 SELECT cartid,productid,qty FROM shoppingcart
 WHERE cartid=@cartid";
 SqlParameter[] p3 = new SqlParameter[1];
 p3[0] = new SqlParameter("@cartid", cartid);
 SqlHelper.ExecuteNonQuery(sql3, p3);

 string sql4 = "DELETE FROM shoppingcart WHERE cartid=@cartid";
 SqlParameter[] p4 = new SqlParameter[1];
 p4[0] = new SqlParameter("@cartid", cartid);
 SqlHelper.ExecuteNonQuery(sql4, p4);
 return i;
}

The PlaceOrder() method accepts six parameters. These parameters essentially capture
the unique cart identifier and shipping address. Inside, the method retrieves the total amount
of the cart. The shopping cart ID and shipping address are stored in the Orders table. Then
product details such as product ID and quantity are added to the OrderDetails table. The link
between the Orders and OrderDetails tables is CartID. The records are then deleted from the
ShoppingCart table.

This completes the web service. Compile it to ensure that there are no syntactical errors.

8253.book Page 466 Wednesday, March 14, 2007 8:47 PM

A P P E N D I X B ■ C A S E S T U D Y : A W E B S E R V I C E – D R I V E N S H O P P I N G C A R T 467

Creating the Shopping Cart
Now that you have created the Ecommerce web service, you are ready to consume it in a client appli-
cation. To do so, add a new website to the web service project you just created. Add three web forms
to the website: Default.aspx, ShoppingCart.aspx, and Success.aspx. The Default.aspx web form
will act as a product catalog and displays a list of products. Users can add items from the product
catalog to their shopping cart. The shopping cart is displayed on ShoppingCart.aspx. Users can add,
modify, or remove selected items here. When the order is placed successfully, the Success.aspx
web form displays a success message to the end user.

Adding the Web Reference
To consume the web service, you need to add a web reference to it first. This is done by right-
clicking on the website and choosing Add Web Reference. In the dialog box that appears, you
can either specify the complete URL of EcommerceService.asmx or use the Services from This
Solution option. Figure B-2 shows this dialog box.

Figure B-2. Adding a web reference to ECommerceService.asmx

8253.book Page 467 Wednesday, March 14, 2007 8:47 PM

468 A P P E N D I X B ■ C A S E S T U D Y : A W E B S E R V I C E – D R I V E N S H O P P I N G C A R T

Keep the web reference name to the default value of localhost and click the Add Reference
button. Visual Studio will add the App_WebReferences folder to your website and will store the
web reference files in it.

Displaying the Product Catalog
Figure B-3 shows Default.aspx in design mode.

Figure B-3. Product catalog page in design mode

The page consists of a GridView that lists all the products in a template field. The Add to
Cart button is used to add that product to the shopping cart. It also contains an Object Data
Source control. Listing B-10 shows the complete markup of Default.aspx.

Listing B-10. Markup of Default.aspx

<%@ Page Language="C#" AutoEventWireup="true" CodeFile="Default.aspx.cs"
 Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <title>Untitled Page</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>

8253.book Page 468 Wednesday, March 14, 2007 8:47 PM

A P P E N D I X B ■ C A S E S T U D Y : A W E B S E R V I C E – D R I V E N S H O P P I N G C A R T 469

 <asp:Label ID="Label1" runat="server" Font-Bold="True" Font-Names="Arial"
 Font-Size="X-Large" Text="Product Catalog"></asp:Label>

 <hr />

 <asp:GridView ID="GridView1" runat="server" AutoGenerateColumns="False"
 CellPadding="4" DataSourceID="ObjectDataSource1"
 ForeColor="#333333" GridLines="None"
 OnSelectedIndexChanged="GridView1_SelectedIndexChanged"
 DataKeyNames="Id" Width="341px">
 <FooterStyle BackColor="#990000" Font-Bold="True" ForeColor="White" />
 <Columns>
 <asp:TemplateField HeaderText="Products">
 <ItemTemplate>
 <table style="width: 100%">
 <tr>
 <td nowrap="noWrap">
 <asp:Label ID="Label2" runat="server" Font-Bold="True"
 Text='<%# Eval("Name") %>'
 Font-Size="Large"></asp:Label>
 </td>
 </tr>
 <tr>
 <td style="height: 21px" nowrap="noWrap">
 <asp:Label ID="Label3" runat="server"
 Text='<%# Eval("Description") %>'></asp:Label>
 </td>
 </tr>
 <tr>
 <td nowrap="noWrap">
 <asp:Label ID="Label5" runat="server" Font-Bold="True"
 Text="Price :"></asp:Label>
 <asp:Label ID="Label4" runat="server"
 Text='<%# Eval("UnitPrice","{0:C}") %>'
 Font-Bold="True"></asp:Label>
 </td>
 </tr>
 <tr>
 <td nowrap="nowrap">
 <asp:Button ID="Button1" runat="server"
 CommandArgument='<%# Eval("Id") %>'
 CommandName="Select" Text="Add To Cart" />
 </td>
 </tr>
 </table>
 </ItemTemplate>
 </asp:TemplateField>
 </Columns>

8253.book Page 469 Wednesday, March 14, 2007 8:47 PM

470 A P P E N D I X B ■ C A S E S T U D Y : A W E B S E R V I C E – D R I V E N S H O P P I N G C A R T

 <RowStyle BackColor="#FFFBD6" ForeColor="#333333" />
 <SelectedRowStyle BackColor="#FFCC66" Font-Bold="True" ForeColor="Navy" />
 <PagerStyle BackColor="#FFCC66" ForeColor="#333333"
 HorizontalAlign="Center" />
 <HeaderStyle BackColor="#990000" Font-Bold="True" ForeColor="White" />
 <AlternatingRowStyle BackColor="White" />
 </asp:GridView>
 </div>
 <asp:ObjectDataSource ID="ObjectDataSource1" runat="server"
 SelectMethod="GetProducts"
 TypeName="localhost.ECommerceService">
 </asp:ObjectDataSource>

 <asp:HyperLink ID="HyperLink1" runat="server" Font-Bold="True"
 NavigateUrl="~/ShoppingCart.aspx">Go To Shopping ➥

Cart</asp:HyperLink>
 </form>
</body>
</html>

Notice the use of the Eval() data-binding expression in binding columns such as Id, Name,
UnitPrice, and Description to various labels. To configure the Object Data Source control, you
need to set its TypeName property to localhost.ECommerceService. Also, set its SelectMethod
property to GetProducts(). At run time the Object Data Source control creates an instance of
the class specified by the TypeName property and calls SelectMethod on it. The returned data is
then supplied to the GridView. There is a hyperlink at the bottom of the web form that points
to ShoppingCart.aspx. This way, the user can navigate to the shopping cart.

Now go to the code-behind file of the web form and import the localhost namespace.
Remember that localhost is the web reference name that you specified while creating the web
service proxy.

Each user should have a unique shopping cart ID. Though you can use any unique ID, it is
best to use Globally Unique Identifiers (GUIDs) so you are sure that the cart has a unique value
globally. The code that generates a GUID for a user is shown in Listing B-11.

Listing B-11. Creating a Unique Shopping Cart Identifier

protected void Page_Load(object sender, EventArgs e)
{
 if (Session["cartid"] == null)
 {
 Session["cartid"]= Guid.NewGuid().ToString();
 }
}

8253.book Page 470 Wednesday, March 14, 2007 8:47 PM

A P P E N D I X B ■ C A S E S T U D Y : A W E B S E R V I C E – D R I V E N S H O P P I N G C A R T 471

In the Page_Load event, we check whether a session variable named cartid already exists.
If not, we create a new GUID by using the NewGuid() method of the Guid class. The GUID is then
stored in the cartid session variable. This variable is used further while calling various web
methods.

Whenever a user clicks the Add to Cart button, we should add that product to the user’s
shopping cart. This is done in the SelectedIndexChanged event handler, as shown in Listing B-12.

Listing B-12. Adding a Product to the Shopping Cart

protected void GridView1_SelectedIndexChanged(object sender, EventArgs e)
{
 ECommerceService proxy = new ECommerceService();
 proxy.AddItem(Session["cartid"].ToString(),
 Convert.ToInt32(GridView1.SelectedValue), 1);
}

The code creates an instance of the ECommerceService proxy class. Then the AddItem()
method of the proxy class is called. The shopping cart identifier stored in the session is passed
to the AddItem() method along with the product ID. Because we set the DataKeyNames property
of the GridView to Id, the SelectedValue property returns the value of the Id column for the
selected row. The quantity is passed as 1.

Creating the Shopping Cart Page
The shopping cart page consists of two parts. One part is the shopping cart itself, and the other
part is a panel for collecting the shipping address. Figures B-4 and B-5 show these parts in
design mode.

Figure B-4. Shopping cart in design mode

8253.book Page 471 Wednesday, March 14, 2007 8:47 PM

472 A P P E N D I X B ■ C A S E S T U D Y : A W E B S E R V I C E – D R I V E N S H O P P I N G C A R T

Figure B-5. Shipping address panel in design mode

The complete markup of the GridView is shown in Listing B-13.

Listing B-13. Markup of the GridView

<asp:GridView ID="GridView1" runat="server" AutoGenerateColumns="False"
 CellPadding="4" DataSourceID="ObjectDataSource1" ForeColor="#333333"
 GridLines="None" OnRowCommand="GridView1_RowCommand">
 <FooterStyle BackColor="#990000" Font-Bold="True" ForeColor="White" />
 <Columns>
 <asp:BoundField DataField="productid" HeaderText="Product ID" />
 <asp:BoundField DataField="Name" HeaderText="Name" />
 <asp:BoundField DataField="UnitPrice" DataFormatString="{0:c}"
 HeaderText="Unit Price" />
 <asp:TemplateField HeaderText="Qty">
 <EditItemTemplate>
 <asp:TextBox ID="TextBox1" runat="server" Text='<%# Bind("Qty") %>'>
 </asp:TextBox>
 </EditItemTemplate>
 <ItemTemplate>
 <asp:TextBox ID="TextBox2" runat="server"
 Columns="2" Text='<%# Bind("Qty") %>'>
 </asp:TextBox>
 </ItemTemplate>
 </asp:TemplateField>
 <asp:ButtonField CommandName="UpdateItem" Text="Update" />
 <asp:ButtonField CommandName="RemoveItem" Text="Remove" />
 </Columns>

8253.book Page 472 Wednesday, March 14, 2007 8:47 PM

A P P E N D I X B ■ C A S E S T U D Y : A W E B S E R V I C E – D R I V E N S H O P P I N G C A R T 473

 <RowStyle BackColor="#FFFBD6" ForeColor="#333333" />
 <EmptyDataTemplate>
 <asp:Label ID="Label2" runat="server" Font-Bold="True" ForeColor="Red"
 Text="Your shopping cart is empty"></asp:Label>
 </EmptyDataTemplate>
 <SelectedRowStyle BackColor="#FFCC66" Font-Bold="True" ForeColor="Navy" />
 <PagerStyle BackColor="#FFCC66" ForeColor="#333333" HorizontalAlign="Center" />
 <HeaderStyle BackColor="#990000" Font-Bold="True" ForeColor="White" />
 <AlternatingRowStyle BackColor="White" />
</asp:GridView>

The GridView consists of three bound fields for displaying the ProductID, Name, and
UnitPrice, respectively. There is a template field that displays quantity. The user can
also edit the quantity. The last two columns—Update and Remove—are button fields. The
CommandName property of these button fields is set to UpdateItem and RemoveItem, respectively.

The complete markup of the shipping address panel is shown in Listing B-14.

Listing B-14. Markup of the Shipping Address Panel

<asp:Panel ID="panel1" runat=server>

 <asp:Label ID="Label5" runat="server" Font-Bold="True" Font-Names="Arial"
 Font-Size="Large" Text="Shipping Address"></asp:Label>

 <table>
 <tr>
 <td style="width: 100px" valign="top">
 <asp:Label ID="Label6" runat="server" Text="Street :"></asp:Label>
 </td>
 <td style="width: 100px">
 <asp:TextBox ID="TextBox3" runat="server" TextMode="MultiLine">
 </asp:TextBox>
 </td>
 </tr>
 <tr>
 <td style="width: 100px">
 <asp:Label ID="Label7" runat="server" Text="City :"></asp:Label>
 </td>
 <td style="width: 100px">
 <asp:TextBox ID="TextBox4" runat="server"></asp:TextBox>
 </td>
 </tr>
 <tr>
 <td style="width: 100px">
 <asp:Label ID="Label8" runat="server" Text="State :"></asp:Label>
 </td>

8253.book Page 473 Wednesday, March 14, 2007 8:47 PM

474 A P P E N D I X B ■ C A S E S T U D Y : A W E B S E R V I C E – D R I V E N S H O P P I N G C A R T

 <td style="width: 100px">
 <asp:TextBox ID="TextBox5" runat="server"></asp:TextBox>
 </td>
 </tr>
 <tr>
 <td style="width: 100px">
 <asp:Label ID="Label9" runat="server" Text="Country :"></asp:Label>
 </td>
 <td style="width: 100px">
 <asp:TextBox ID="TextBox6" runat="server"></asp:TextBox>
 </td>
 </tr>
 <tr>
 <td style="width: 100px">
 <asp:Label ID="Label10" runat="server" Text="Postal Code :"></asp:Label>
 </td>
 <td style="width: 100px">
 <asp:TextBox ID="TextBox7" runat="server"></asp:TextBox>
 </td>
 </tr>
 </table>

 <asp:Button ID="Button1" runat="server" OnClick="Button1_Click"
 Text="Place Order" />
</asp:Panel>

The panel consists of text boxes for capturing street address, country, state, city, and postal
code. At the bottom there is a button titled Place Order.

An Object Data Source supplies data to the GridView, the complete markup of which is
shown in Listing B-15.

Listing B-15. Markup of the Object Data Source Control

<asp:ObjectDataSource ID="ObjectDataSource1" runat="server" SelectMethod="GetCart"
 TypeName="localhost.ECommerceService">
 <SelectParameters>
 <asp:SessionParameter Name="cartid" SessionField="cartid" Type="String" />
 </SelectParameters>
</asp:ObjectDataSource>

As before, the TypeName property specifies the proxy class name. This time the SelectMethod
property is set to GetCart. The GetCart() web method expects the shopping cart ID as a parameter,
which is supplied from the session variable cartid.

ShoppingCart.aspx needs to display the total amount of the cart at a given point. To
achieve this, you need to create a helper method called DisplayTotal(). The code of the
DisplayTotal() method is shown in Listing B-16.

8253.book Page 474 Wednesday, March 14, 2007 8:47 PM

A P P E N D I X B ■ C A S E S T U D Y : A W E B S E R V I C E – D R I V E N S H O P P I N G C A R T 475

Listing B-16. DisplayTotal() Method

private void DisplayTotal()
{
 ECommerceService proxy = new ECommerceService();
 decimal total=proxy.GetCartAmount(Session["cartid"].ToString());
 if (total == 0)
 {
 panel1.Visible = false;
 }
 Label3.Text = "$" + total ;
}

As before, make sure to import the localhost namespace before you proceed. The
DisplayTotal() method creates an instance of the web service proxy class. It then calls the
GetCartAmount() web method by passing the cart ID from the session variable. The returned
value is displayed in a Label control. The first place where the DislayTotal() method is called
is the Page_Load event handler (Listing B-17).

Listing B-17. The Page_Load Event Handler of ShoppingCart.aspx

protected void Page_Load(object sender, EventArgs e)
{
 if (!IsPostBack)
 {
 DisplayTotal();
 }
}

The RowCommand event handler of the GridView is where removal and modification of items
selected in the shopping cart are done. The RowCommand event handler is shown in Listing B-18.

Listing B-18. Removing and Updating Shopping Cart Items

protected void GridView1_RowCommand(object sender, GridViewCommandEventArgs e)
{
 ECommerceService proxy = new ECommerceService();
 GridViewRow row = GridView1.Rows[Convert.ToInt32(e.CommandArgument)];
 int productid = Convert.ToInt32(row.Cells[0].Text);
 if (e.CommandName == "RemoveItem")
 {
 proxy.RemoveItem(Session["cartid"].ToString(),productid);
 }
 if (e.CommandName == "UpdateItem")
 {
 int qty = Convert.ToInt32(((TextBox)row.FindControl("TextBox2")).Text);
 if (qty <= 0)

8253.book Page 475 Wednesday, March 14, 2007 8:47 PM

476 A P P E N D I X B ■ C A S E S T U D Y : A W E B S E R V I C E – D R I V E N S H O P P I N G C A R T

 {
 throw new Exception("Quantity must be greater than 0");
 }
 proxy.UpdateItem(Session["cartid"].ToString(),productid,qty);
 }
 GridView1.DataBind();
 DisplayTotal();
}

The code creates an instance of the web service proxy class. It then retrieves a reference
to the current row from the Rows collection with the help of the CommandArgument property of
GridViewCommandEventArgs, which returns the row index of the GridView row that triggered
the event. The product ID of the product to be removed or updated is then retrieved from the
first column of the GridView. The two if conditions check the CommandName property of the
GridViewCommandEventArgs class. If the CommandName is RemoveItem, the RemoveItem() web
method is called by passing the cart ID and the product ID. Similarly, if the CommandName is
UpdateItem, the UpdateItem() web method is called by passing the cart ID, the product ID,
and the new quantity. The GridView is then bound with the new cart details by calling its
DataBind() method. Finally, the DisplayTotal() helper method is called to reflect the
changed amount.

After the user has decided to place the order, the user needs to enter the shipping address
and click the Place Order button. The Click event handler of the Place Order button contains
the code shown in Listing B-19.

Listing B-19. Placing an Order

protected void Button1_Click(object sender, EventArgs e)
{
 ECommerceService proxy = new ECommerceService();
 proxy.PlaceOrder(Session["cartid"].ToString(), TextBox3.Text, TextBox4.Text,
 TextBox5.Text, TextBox6.Text, TextBox7.Text);
 Response.Redirect("success.aspx");
}

Again, an instance of the web service proxy class is created. This time the PlaceOrder()
web method is called by passing the cart ID and shipping address information. Finally, the user
is taken to the Success.aspx web form, wherein a success message is displayed.

Testing the Website
Now that you have created the web service and the client application, let’s test it. First, add a
few records to the Products table. If you wish, you can use the sample T-SQL script provided
along with the code download to add a few records for you.

Run Default.aspx in the browser. You should see something similar to Figure B-6.

8253.book Page 476 Wednesday, March 14, 2007 8:47 PM

A P P E N D I X B ■ C A S E S T U D Y : A W E B S E R V I C E – D R I V E N S H O P P I N G C A R T 477

Figure B-6. Product catalog

Now select a few items by clicking the Add to Cart button and then click the Go to
Shopping Cart button. The ShoppingCart.aspx web form should be displayed as shown in
Figure B-7.

Figure B-7. Shopping cart

Try modifying the quantity or removing some items. Then enter the shipping address and
click the Place Order button. You should see a success message as shown in Figure B-8.

8253.book Page 477 Wednesday, March 14, 2007 8:47 PM

478 A P P E N D I X B ■ C A S E S T U D Y : A W E B S E R V I C E – D R I V E N S H O P P I N G C A R T

Figure B-8. Order placed successfully

Also, open the database tables and verify that the data is stored correctly.
That’s it—we’ve created a web service–driven shopping cart. Web services play a major

role when the client and the server are communicating over the Internet. In our example, we
exposed e-commerce functionality such as a product catalog, a shopping cart, and order place-
ment via a single web service. The web service was then consumed in a website that acts as an
e-commerce storefront. You did that by creating a proxy to the e-commerce web service. The
controls such as Object Data Source were configured to call the web methods for the required
functionality. Though we didn’t use XML data directly, behind the scenes the data transfer
from web service to website was in XML format.

8253.book Page 478 Wednesday, March 14, 2007 8:47 PM

479

■ ■ ■

A P P E N D I X C

Resources

The following resources will help you learn more about XML, .NET, and web services:

W3C website for XML specifications

http://www.w3.org/XML

W3C website for XML schema specifications

http://www.w3.org/XML/Schema

W3C website for XPath-related information

http://www.w3.org/TR/xpath

W3C website for XSL-related information

http://www.w3.org/Style/XSL/

XML Developer’s Center—Microsoft’s website for XML-related resources and information

http://msdn.microsoft.com/xml/default.aspx

MSDN newsgroups for XML

http://msdn.microsoft.com/newsgroups/ ➥

default.aspx?dg=microsoft.public.xml&lang=en&cr=US
http://msdn.microsoft.com/newsgroups/ ➥

default.aspx?dg=microsoft.public.dotnet.xml&lang=en&cr=US
http://msdn.microsoft.com/newsgroups/ ➥

default.aspx?dg=microsoft.public.sqlserver.xml&lang=en&cr=US
http://msdn.microsoft.com/newsgroups/ ➥

default.aspx?dg=microsoft.public.xsl&lang=en&cr=US

Web Service Developer’s Center

http://msdn.microsoft.com/webservices/

8253appC.fm Page 479 Thursday, March 15, 2007 9:14 PM

480 A P P E N D I X C ■ R E S O U R C E S

SQL Server Developer’s Center

http://msdn2.microsoft.com/en-us/sql/default.aspx

.NET Framework Developer’s Center

http://msdn2.microsoft.com/en-us/netframework/default.aspx

W3Schools.com—tutorials on XML and allied technologies

http://msdn2.microsoft.com/en-us/netframework/default.aspx

Wikipedia—XML section

http://en.wikipedia.org/wiki/XML

Articles and code samples in ASP.NET, XML, web services, and .NET development in
general

http://www.dotnetbips.com
http://www.binaryintellect.net

XML Notepad—XML editor from Microsoft

http://www.microsoft.com/downloads/ ➥

details.aspx?FamilyID=72D6AA49-787D-4118-BA5F-4F30FE913628&displaylang=en

Sandcastle—MSDN style help creator

http://www.microsoft.com/downloads/ ➥

details.aspx?FamilyId=E82EA71D-DA89-42EE-A715-696E3A4873B2&displaylang=en

SQLXML programming

http://msdn2.microsoft.com/en-us/library/ms171779.aspx

8253appC.fm Page 480 Thursday, March 15, 2007 9:14 PM

481

Index

■Symbols
! exclamation point, 310

* asterisk, 97

/ forward slash, 168

/// forward slashes, 20, 404

[] square brackets, 46, 97, 310

: : operator, 97

“ ” quotes, 8

<? ?>, enclosing processing instructions, 6

■A
AcceptChanges() method, 212

Access (Jet) database, 390

activation, 345

Add() method

Items collection, 151

Rows collection, 207

schemas collection, 157

XmlSchemaSet class, 151

Added RowState, 209

AddExtensionObject() method, 191

adding content, 53

AddItem() web method, for sample web
service—driven shopping cart,
463, 471

AddParam() method, 185

addresses, WCF and, 414

ADO.NET, 17, 193–236

common classes and, 197

connected data access and, 193, 198–201

data providers and, 195

disconnected data access and, 17–19, 194,
201–226

ancestor axis, 96

ancestors, selecting, 107

Append() method, 55

AppendChild() method, 55, 118

application configuration files, 15, 383, 421

application domains (app domains), 344

application-specific roles, defining, 395

<appSettings> section, of web.config file,
384, 385

array names/array element names,
changing, 262

AS HTTP statement, 339

ASCII property, 83

.asmx file extension, 273

ASP.NET, 356–375

custom error pages and, 401

server controls and, 17

ASP.NET provider model, 388

ASP.NET website (sample), 358–367

running, 365

security and, 393

<asp:Label> element, 363

<asp:TextBox> element, 363

aspnet_regsql.exe tool, 391

AspNetAccessProvider, 390

AspNetSqlProvider, 389

.aspx file extension, 356

assemblies, 13, 139–142

asterisk (*), node tests and, 97

<!ATTLIST> declaration, 126

ATTLIST sections, 44

attribute axis, 96

attribute groups, XSD schemas and, 127

attribute values, quotes surrounding, 8

8253index.fm Page 481 Thursday, March 22, 2007 11:16 AM

482 ■I N D E X

AttributeName property, 262

attributes, 32

creating, 54

exporting columns as, 83

navigating, 76

navigating between, 108

reading, 69

transforming, 175

XSD schemas and, 127, 128

Attributes collection, 49, 55

AUTO mode

FOR XML statement and, 304, 325

SELECT statement and, 21

axes, XPath and, 96, 97

■B
Base Class Library, 12

Base64 encoding, 91

BaseStream property, 318

BaseTypeName property, 147

BeginEdit() method, 208

<behaviors> subsection, 422

binary files, 89

binary formatters, 346

binary serialization, 238

BinaryFormatter class, 238

bindings

WCF and, 414

web services and, 301

Body property, 365

Boolean data type, 128

Boolean values, XPath functions and, 98

branching, 171

breadcrumbs, 378

BufferResponse property, 279

bulleted lists, in documentation, 408

Button control, 359

Byte data type, 128

■C
CacheDuration property, 280

caching, web method output and, 280

calculator (sample), 404–408

CanEdit property, 116

Cascading Style Sheets (CSS), 165

case sensitivity, 7

catalog, for sample web service–driven
shopping cart, 468

CDATA (character data) sections, 7, 52, 55

ceiling() function, 99

channel layer, 414

channels, 345

Channels namespace, 346

character data (CDATA) sections, 7, 52, 55

character encoding, 83

check box (sample code), illustrating white
space, 56

child axis, 96

child nodes, 37

advancing to, 74

AppendChild() method and, 118

selecting, 107

skipping, 75

ChildNodes collection, 37, 53

.CHM files, compiling XML documentation
into, 409

Class attribute, 273

class libraries, 26

classes, 13

ADO.NET, 194, 197

for data access, 17

DataAdapter, 195, 198, 203–212

facet, 148

provider, ASP.NET and, 389

reader, 66–78

SQLXML managed, 21, 316–331

XML DOM, 33

8253index.fm Page 482 Thursday, March 22, 2007 11:16 AM

483■I N D E X

Find it faster at http://superindex.apress.com

Click event handler, 24, 241, 251, 254, 265, 363

client-activated objects, 345

client configuration file, 354

Close() method

SqlConnection class, 197, 201

XmlTextReader class, 72

XmlTextWriter class, 83

CLR (common language runtime), 11

Code Access Security, 17

Code property, 297

code-behind code model, web forms and, 357

CodeBehind attribute, 273

columns, exporting, 82

Columns collection, 203

combo box (sample code), 42

Command classes, ADO.NET and, 194, 197

CommandArgument property, 476

CommandName property, 476

CommandText property, 197, 200, 204

SqlCommand class, 81, 211

SqlXmlCommand class, 318, 326

CommandType property, 197, 200, 323, 330

comma-separated values (CSV) files, 2

comments, 6, 20, 32, 404–412

common language runtime (CLR), 11

Common namespace, 196

Common Object Request Broker
Architecture (CORBA), 271

Compile() method, 108, 151

compiling

XPath expressions, 108

schemas, 151

complex types, 144

creating, 149

serialization/deserialization and, 245–253

XSD schemas and, 127, 128, 132

components, 271

configuration files, 14

.NET Framework, 352

application, 383, 421

client, 354

remoting, 347, 353

server, 351

configuration system of .NET Framework,
382–404

configuration tasks, 384–388

ConfigurationManager class, 386, 387, 461

Configure() method, 353, 355

connected data access, 193, 198–201

Connection classes, ADO.NET and, 194, 197

Connection property, 81, 200, 211

connectionString attribute, 387

ConnectionString property, 388

ConnectionStringSettings class, 388

<connectionStrings> section, of web.config
file, 384, 386

Constraints collection, 203

consuming

WCF services, 415–430

web services, 272, 287–291

Contact Us web form, 358–363

contains() function, 99

content, reading, 77

contracts, WCF and, 414

Convert class, 92

CONVERT function, 333

CookieContainer class, 281

CookieContainer property, 281, 288

CORBA (Common Object Request Broker
Architecture), 271

Count property, 342

count() function, 98

CREATE DATABASE statement, 458

CREATE ENDPOINT statement, 338, 339

Create() method, 156, 158, 160, 162

Find it faster at http://superindex.apress.com

8253index.fm Page 483 Thursday, March 22, 2007 11:16 AM

484 ■I N D E X

CreateAttribute() method, 54, 61

CreateCDataSection() method, 52, 55

CreateElement() method, 54, 61

CreateNavigator() method, 99–105, 110, 162

CreateParameter() method, 319

CreateText() method, 318

CreateTextNode() method, 54

CreateUserWizard control, 397

creating

ASP.NET websites, 358–367

attributes, 54

CDATA sections, 55

class libraries, 26

database, for sample shopping cart, 457

DTDs, 125

elements, 54

help files, 404–412

HTTP endpoints, 338

login and user registration web form, 397

native web services, 337

overloaded web methods, 278

proxies, for web services, 285

root element, 151

RssWriter class, 448

schemas, 127–152

shopping cart (sample), 467–476

stored procedures, 338

structure for XML documents, 124–142

TableReader custom class, 435–444

text nodes, 54

typed DataSets, 226–231

WCF services, 415–430

web forms, 358–363

web methods, for sample shopping cart,
462–466

web services, 272–291, 459–466

Windows applications, 22

XmlReader class custom implementation,
433–446

XmlWriter class custom implementation,
446–456

CredentialCache class, 342, 365

Credentials property, 365

cross-platform/cross-vendor applications, 3

CSS (Cascading Style Sheets), 165

CSV format, 2

Current property, 105

CurrentNodeIndex integer variable, 49

CurrentPosition property, 105

cursor-oriented model, 13, 72

custom objects, web methods and, 283

customizing

SOAP serialization, 267

XML serialization, 257–263

■D
data, nontextual, 89

data access

classes for, 17

connected, 193, 198–201

disconnected, 17–19, 194, 201–226

data-driven architecture, 3

data-entry screen (sample), 49–55

DataGridView control and, 233

DataSet functionality and, 205–212

navigation buttons for, 49

Node . . . events and, 62

data exporter (sample), 79–83

Data namespace, 196, 206, 461, 462

data providers, 195

data source controls, 367–375

data types, XSD schemas and, 124, 127

DataAdapter classes, ADO.NET and, 195, 198,
203–212

8253index.fm Page 484 Thursday, March 22, 2007 11:16 AM

485■I N D E X

Find it faster at http://superindex.apress.com

database access

ADO.NET for, 193–236

connected/disconnected, 17–19, 193,
198–226

saving changes and, 210

working with rows and, 207

DATABASE statement, 339

database connection strings,
storing/retrieving settings and, 386

database tables, XSD schema creation and,
134–137

DataBind() method, 476

DataBindings property, 368, 373

DataFile property, 368, 373

DataGridView control (sample code), 233, 234

consuming web services and, 341

DiffGram format and, 328

SqlXmlAdapter and, 320

Update() method and, 322

web methods and, 287

XML templates and, 327

DataKeyNames property, 471

DataMember property, 368, 374

DataReader classes, ADO.NET and, 194, 197

DataRow class, 198, 234

DataRowState enumeration, 209

DataSet class, 17, 195, 198, 201, 205–212

extracting content as XML strings, 218

saving content in XML format, 212–218

SqlXmlAdapter and, 320

typed DataSets and, 226–231

web methods and, 282

DataSet property, 234

DataSourceID property, 373, 379

DataTable class, 198, 203

DataView class, 203

dateTime data type, 128

DCOM (Distributed Component Object
Model), 19, 271, 343

decimal data type, 128

Decode() method, 267, 269

deep serialization, 238

DefaultCredentials property, 342

DefaultNetworkCredentials property, 365

DELETE statement, 204, 464

Delete() methods, 208

DeleteCommand property, 204, 212

Deleted RowState, 209

DeleteSelf() method, 121

deleting

content, 52

nodes, 121

descendants, selecting, 107

descendant axis, 96

Description property, 281

deserialization, 237, 239–263

event handling and, 243

SOAP and, 266, 269

Deserialize() method, 242, 266

Detached RowState, 209

Diagnostics namespace, 115

DiffGram format, 212, 220, 328

disconnected data access, 17–19, 194, 201–226

DisplayDetails() helper function, 113

Distributed Component Object Model
(DCOM), 19, 271, 343

distributed technologies, 271

doc form-level variable, 44

<!DOCTYPE> declaration, 126, 153, 363

document element, 6, 32

Document Object Model. See DOM parsers

Document Type Definitions. See DTDs

DocumentElement property, 39, 53, 55

documenting code, 6, 20, 32, 404–412

DOM parsers, 8, 14

manipulating XML documents via, 31–64

when to use/not use, 34, 65

Double data type, 128

8253index.fm Page 485 Thursday, March 22, 2007 11:16 AM

486 ■I N D E X

downloads

.NET Framework 3.0, 415

Sandcastle tool, 409

Visual C# Express Edition, 22

Visual Web Developer, 22

DropDownList control, 359

.dtd file extension, 153

DTDs (Document Type Definitions), 8, 44,
123–127

creating, 125

validating XML documents against, 152–162

■E
<!ELEMENT> declaration, 125

element names, changing, 258, 262

elements, 6, 32

advancing to, 74

creating, 54

DTDs and, 126

exporting columns as, 82

finding specific, 39–48

navigating, 73

node tests for, 97

reading, 69, 78

SOM and, 142

transforming, 175

XSD schemas and, 127, 129, 132

ELEMENTS statement, 305

EMPCODE attribute, 178

Employees.xml (sample XML document),
34, 125

EnableScript property, 189

EnableSession property, 280

Encode() method, 267, 269

encoding attribute, 6

Encoding class, properties of, 83

end tag, 6, 7, 71

EndEdit() method, 208

endpoints, WCF and, 414

enumeration identifiers, changing, 263

error pages, ASP.NET and, 401

ErrorMessage property, 360

Eval() data-binding expression, 470

event arguments, 24

event handlers, signature for, 24

event handling, deserialization and, 243

EventArgs class, 24

event-based parsers, 9, 14

events

wiring, 25

XmlDocument class and, 61

exclamation point (!), metadata and, 310

ExecuteDataSet() method, 461

ExecuteNonQuery() method, 316, 330, 461, 463

ExecuteReader() method, 81, 351

ExecuteScalar() method, 461

ExecuteStream() method, 316, 318

ExecuteToStream() method, 318

ExecuteXmlReader() method, 21, 198, 316

SqlXmlCommand class, 318

XmlReader class custom implementation
and, 433

exist() method, 334, 336

EXPLICIT mode

FOR XML statement and, 304, 308

SELECT statement and, 21

exporter, for data (sample), 79–83

exporting columns, 82

Extensible Markup Language. See XML

Extensible Stylesheet Language
Transformations. See entries at XSLT

Extensible Stylesheet Language. See entries at
XSL

extension objects, 190

external DTDs, 153

external schemas, 154

■F
facet classes, 148

false() function, 98

8253index.fm Page 486 Thursday, March 22, 2007 11:16 AM

487■I N D E X

Find it faster at http://superindex.apress.com

FieldCount property, 82

File class, 318

FileStream, 68, 91

Fill() method, 282

DataAdapter class, 204

SqlDataAdapter class, 206, 230, 461

SqlXmlAdapter class, 321

FillControls() helper method, 49, 55

firehose cursors, 197

FirstChild property, 37

Float data type, 128

floor() function, 99

following axis, 96

following-sibling axis, 96

for loop, 82

FOR SOAP statement, 339

FOR XML statement, 21, 198, 303–313, 317

FOR XML EXPLICIT statement, 311

formatters, 345

formatting output, 84–86

Formatting property, 86

form-level variables, 205

forms-based security, 393

forward slash (/), indicating root element, 168

forward slashes (///), indicating XML
comments, 20, 404

forward-only cursors, 197

From property, 365

FromBase64String() method, 92, 268

FromStream() static method, 92

■G
GetAttribute() method, 72, 103, 108

GetBytes() method, 69

GetCart() web method, for sample web
service–driven shopping cart, 464

GetCartAmount() web method, for sample web
service–driven shopping cart, 465

GetDataSet() method, 462

GetElementById() method, 41–45

GetElementByTagName() method, 40

GetElementFromRow() method, 234

GetName() method, 83

GetProducts() web method, for sample web
service–driven shopping cart, 462

GetRowFromElement() method, 236

GetString() method, 268

GetValue() method, 83

GetXml() method, 218

GetXmlSchema() method, 218

Globally Unique Identifiers (GUIDs), 470

GridViewCommandEventArgs class, 476

groups (sets of profile properties), 395

Guid class, 471

GUIDs (Globally Unique Identifiers), 470

■H
HasChildren property, 103

HelloWorld web method, 276, 300

help files, creating, 404–412

helper methods, 55

hexadecimal encoding, 91

hosting services, 421, 428

HTML (Hypertext Markup Language), 1, 5, 356

HTTP channel, 345, 346

HTTP endpoints, creating, 338

HTTP protocol, web services and, 272, 315

Hypertext Markup Language (HTML), 1, 5, 356

■I
ID attribute, server controls and, 363

id() function, 98

IDs, of elements, 41

if statement, 71, 171

IIS, hosting services and, 428

Image class, 92

image files, 89

Image property, 92

Indentation property, 86

IndentChar property, 86

8253index.fm Page 487 Thursday, March 22, 2007 11:16 AM

488 ■I N D E X

InferXmlSchema() method, 224

inheritance

serialization and, 254

web.config file and, 384

inline DTDs, 153

inline schemas, 154

InnerXml property, 109

INSERT statement, 204, 314, 332, 463

InsertCommand property, 204, 212

Int data type, 128

IO namespace, 37

IPC channel, 345, 346

ISecurableChannel interface, 353

ISerializable interface, 267

<item> element, 408

IXPathNavigable interface, 99

■J
JScript .NET, 12

■K
key attribute, 385

■L
Label control, 359, 363

LANs (local area networks), remoting for, 19

last() function, 98

LastChild property, 37

list box (sample code), 40

<list> element, 408

<listheader> element, 408

lists, in documentation, 408

Load() method, 37, 49, 56

XmlDataDocument class, 234

XmlDocument class, 101, 160

XslCompiledTransform class, 180, 185,
189, 233

LoadXml() method, 37, 56

local area networks (LANs), remoting for, 19

local-name() function, 98

localhost folder, 287

LocalName property, 61, 73

location paths, 96, 97

location transparency, 355

Login control, 397

login page, web form for, 397

LoginStatus control, 399

Long data type, 128

■M
MacDonald, Matthew, 364

Machine.config file, 17, 382–404

Mail namespace, 364

MailMessage class, 365

Managed C++ 12

MarshalByRefObject class, 346, 350

marshalling, 344, 346

MaxOccursString property, 150

membership providers, configuring, 393

membership services, ASP.NET provider
model and, 390–401

MemoryStream, 68, 92

Menu control, data binding and, 373

menu items, generating dynamically, 221

MenuStrip control (sample), for dynamically
generated menu items, 221

Message class, 430

Message property, 297

MessageBox class, 25, 29

MessageName property, 279

methods, <param> element and, 406

Microsoft

.NET Framework. See .NET Framework

Visual Studio 2005. See Visual Studio 2005

Microsoft Intermediate Language (MSIL), 186

Microsoft XML Core Services (MSXML), 9

MinOccurs property, 150

mode attribute, 352

Modified RowState, 209

modify() method, 334, 336

8253index.fm Page 488 Thursday, March 22, 2007 11:16 AM

489■I N D E X

Find it faster at http://superindex.apress.com

modifying XML documents, 48–55

adding content, 53

deleting content, 52

modifying existing content, 51

Moroney, Laurence, 364

MoveNext() method, 105

MoveToAttribute() method, 76, 108

MoveToElement() method, 76

MoveToFirstAttribute() method, 76, 108

MoveToFirstChild() method, 103

MoveToNext() method, 103

MoveToNextAttribute() method, 76, 108

MoveToParent() method, 103

MoveToRoot() method, 103

MSIL (Microsoft Intermediate Language), 186

MSXML (Microsoft XML Core Services), 9

■N
name attribute, 387

Name property

elements and, 72

XmlSchemaAttribute, 150

XmlSchemaElement class, 150

XPathNavigator class, 103, 121

name tables, 72

name() function, 98

Namespace property, 274

namespaces, 13, 59

DTDs and, 124

support for, 87

NamespaceURI property, 61, 73

namespace-uri() function, 98

NameTable class, 72

native web services, 337–342

Navigate() method, 318

NavigateUrl property, 374

NavigateUrlField property, 368, 371

navigating

attributes, 76, 108

between nodes, 49

elements, 73

site maps for, 375–379

XML documents, 37, 101–108

navigator application (sample), 100

nesting tags, 7

.NET configuration files, 14

.NET Framework, 11

configuration files and, 352

configuration system of, 382–404

parsing model in, 14

version 3.0, downloading, 415

XML and, 12–21, 343–412

XML namespaces and, 59

Net namespace, 364

NewGuid() method, 471

NewRow() method, 207

NextSibling property, 37

node tests, 97

Node . . . events, 62

nodes, 6

adding to documents, 118

deleting, 52, 121

finding specific, 39–48

modifying, 119

navigating between, 49

selecting, 104–108

XPath functions and, 98

nodes() method, 334

NodeType property, 71

nontextual data, 89

nonvalidating parsers, 9

Northwind (sample) database, 134, 200, 391

not() function, 98

Notepad, 12

null objects, ignoring in serialization process,
263

number() function, 99

numbered lists, in documentation, 408

numbers, XPath functions and, 99

8253index.fm Page 489 Thursday, March 22, 2007 11:16 AM

490 ■I N D E X

■O
Object Data Source control, 468, 470

Object Linking and Embedding Database
(OLEDB), 195

object state, 237

objectUri attribute, 352

ODBC (Open Database Connectivity), 195

ODBC data providers, 196

OLEDB (Object Linking and Embedding
Database), 195

OLEDB data providers, 196

OleDb namespace, 196

OleDbCommand class, 197

OleDbConnection class, 197

OleDbDataAdapter class, 198

OleDbDataReader class, 197

OleDbParameter class, 197

[OnDeserialized] attribute, 269

[OnDeserializing] attribute, 269

[OnSerialized] attribute, 269

[OnSerializing] attribute, 269

OnValidationError() method, 160

Open Database Connectivity (ODBC), 195

Open() method, 81, 197, 200, 351

opening XML documents, 35, 67

OpenRead() method, 69

OPENXML function, 313

operations, web services and, 301

operators, predicates and, 97

Oracle data providers, 196

ORDER BY statement, 311, 312

OuterXml property, 105, 109

output, formatting, 84–86

overloaded web methods, 278

■P
Page class, 356, 364

<para> element, 406

<param> element, 406

Parameter classes, ADO.NET and, 197

parameterized SELECT queries, 319

parameters, passing to XSLT
transformations, 182

parent axis, 96

ParentNode property, 37

parsing documents, 1, 8, 14

opening existing XML documents for, 35

PreserveWhitespace property and, 58

Particle property, 150

Password property, 293

PATH mode

FOR XML statement and, 304, 308

SELECT statement and, 21

#PCDATA (plain-character data), 126

performance, name tables and, 72

<permission> element, 407

PlaceOrder() web method, for sample web
service–driven shopping cart, 465, 476

plain-character data (#PCDATA), 126

port attribute, 352

position() function, 98

post-events, 62

preceding axis, 96

preceding-sibling axis, 96

predicates, 97

pre-events, 61

Prefix property, 61, 73

PreserveWhitespace property, 56

PreviousSibling property, 37

Process class, 115, 201, 242

processing instructions, 6, 32, 169, 178

product catalog, for sample web
service–driven shopping cart, 468

profile information for users, capturing, 398

profile properties, 395

profile providers, configuring, 393

profile services, ASP.NET provider model
and, 390–401

programming languages, 12

ProhibitDtd property, 157

8253index.fm Page 490 Thursday, March 22, 2007 11:16 AM

491■I N D E X

Find it faster at http://superindex.apress.com

Protocols namespace, 293

provider classes, ASP.NET and, 389

providerName attribute, 387

proxies, 272, 285, 345

public members, serialization and, 262

pull model/push model, 65

■Q
query() method, 334

QuoteChar property, 86

quotes (“ ”), surrounding attribute values, 8

■R
RadioButtonList control, 359

RAW mode

FOR XML statement and, 304, 306

SELECT statement and, 21

RDBMS (relational database management
system), 195

Read() method

DataReader classes and, 198

FileStream class, 91

SqlDataReader class, 82

XmlReader class, 113, 200

XmlTextReader class, 71

read-only cursors, 197

ReadContentAsBase64() method, 92

ReadElementString() method, 72, 92

reader (sample), 109

reader-based parsers, 14

reader classes, 66–78

readers, creating custom, 433–444

reading

image files, 89

XML documents, 13, 35–47, 65–78

ReadInnerXml() method, 77

ReadLine() method, 353

ReadOuterXml() method, 78, 200

ReadString() method, 78, 113

ReadSubTree() method, 73, 111, 113

ReadToDescendant() method, 74

ReadToEnd() method, 318, 330

ReadToFollowing() method, 74

ReadToNextSibling() method, 75

ReadXml() method, 218–226, 233

ReadXmlSchema() method, 224

Really Simple Syndication (RSS), 446

Recordset class, 198

ref attribute, 352

RegularExpressionValidator control, 360

relational data, retrieving in XML format,
303–315

relational database management system
(RDBMS), 195

Relations collection, 202

<remarks> element, 405

Remote Method Invocation (RMI), 271

remote objects, 345

remoting, 19

architecture of, 343–356, 344

remoting-enabled application and, 347–356

Windows Communication Foundation
and, 413–431

remoting configuration files, 347, 353

Remoting namespace, 346, 351

Remoting.dll, 346, 354

RemoveChild() method, 53

RemoveItem() web method, for sample web
service–driven shopping cart, 464, 476

ReplaceChild() method, 52

RequiredFieldValidator control, 360

resources for further reading, 479

ASP.NET web application development, 364

EXPLICIT mode, 309

<return> element, 406

RMI (Remote Method Invocation), 271

roles, application-specific, 395

roles providers, configuring, 393

roles services, ASP.NET provider model and,
390–401

ROOT statement, 312

8253index.fm Page 491 Thursday, March 22, 2007 11:16 AM

492 ■I N D E X

root element, 6, 7

adding to schemas, 151

changing, 258, 262

creating, 151

DTD creation and, 125

specifying, 312

root node, 98

RootTag property, 323, 326

round() function, 99

rows, 207

Rows collection, 203

RowState property, 209

RSS (Really Simple Syndication), 446

RssWriter class

consuming, 455

creating, 448

rules, 5–8

runat attribute, server controls and, 363

■S
Sandcastle tool, 409

Save() method, 52, 121

saving

schemas, 152

changes, 121

SAX parsers, 8, 9, 14, 65

Schema namespace, 13, 142

Schema Object Model (SOM), 142–152

SchemaPath property, 323, 330

schemas, 8, 123. See also XSD schemas

classes for, 13

compiling, 151

creating, 127–152

extracting schema information only,
 216, 224

returning for XML data, 306

web services and, 300

SchemaType property, 150

SchemaTypeName property, 150

script blocks, embedding in XSLT style
sheets, 186

searching XML documents, 39–48

security, ASP.NET and, 393

security configuration files, 17

security trimming, 377

<see> element, 407

<seealso> element, 407

SELECT statement, 199, 204, 350, 461, 464

CommandText property and, 81

executing queries and, 317

OPENXML function and, 314

XML extensions to, 21, 303–313

Select() method

DataTable class, 207

XPathNavigator class, 105

SelectAncestors() method, 107

SelectChildren() method, 107

SelectCommand property, 204, 206, 461

SelectDescendants() method, 107

SelectedIndexChanged event handler, 471

SelectedValue property, 471

selecting nodes, 104–108

SelectMethod property, 470, 474

SelectNodes() method, 45, 51

SelectSingleNode() method, 47, 51, 53, 106

self axis, 96

Send() method, 365

sender parameter, 25

[Serializable] attribute, 263–265, 346, 419

serialization, 13, 18, 237–270

customizing XML serialization and, 257–263

formats/depth of, 238

inheritance and, 254

of nontextual data, 89

schema creation from assemblies and, 139

Serialization namespace, 13

Serialize() method, 242, 256, 266

server-activated objects, 345, 352

8253index.fm Page 492 Thursday, March 22, 2007 11:16 AM

493■I N D E X

Find it faster at http://superindex.apress.com

server configuration file, 351

server control markup, 356, 357–367

server controls, 17, 356

Server Explorer (Visual Studio), 134, 457

servers, 345

Service class, 287

service model, 414

service section, of WSDL, 301

service types, 414

ServiceModel.dll, 415

services, Windows Communication
Foundation for, 413–431

creating/consuming, 415–430

role of XML in, 430

testing, 426

<services> subsection, 422

Session class, 280

session state, enabling for web methods, 280

SetValue() method, 119

shallow serialization, 238

shopping cart (sample), 457–478

database for, 457

testing, 476

unique user ID for, 470

web methods for, 462–466

web service for, 459–466

shopping cart page (sample), 471–476

Show() method, 25, 29

Simple Mail Transfer Protocol (SMTP), 365

Simple Object Access Protocol. See entries at
SOAP

simple types

creating, 144–148

SOM and, 142

XSD schemas and, 127, 128, 132

XmlSchemaSimpleType class for, 147

single-call objects, 345

single-file code model, web forms and, 357

single nodes, selecting, 106

singleton objects, 345

site maps, 375–379

<siteMap> element, 377

.sitemap file extension, 375

SiteMapDataSource control, 379

<siteMapNode> element, 377

<siteMapNodes> element, 377

SiteMapPath control, 378

Skip() method, 75

SMTP (Simple Mail Transfer Protocol), 365

SmtpClient class, 365

SOAP (Simple Object Access Protocol), 19,
272, 291–297

SOAP formatters, 346

SOAP headers, 292

SOAP messages, 292, 300

SOAP requests/responses, 292, 300

SOAP serialization, 238, 263–270

customizing, 267

Base64 encoding and, 267–270

SoapException, 295

SoapFormatter class, 238, 263–270

SoapHeader class, 293

SoapHeaderDirection enumeration, 295

SoapHeaderException, 295

soapsuds.exe tool, 356

SOM (Schema Object Model), 142–152

sp_xml_preparedocument stored procedure,
314

sp_xml_removedocument stored procedure,
315

SQL commands, 198

<sql:header> element, 327

<sql:param> element, 327

SQL queries, 81, 197

<sql:query> element, 327

SQL Server 2005, 21, 303–342

SQL Server 2005 Express Edition, 200

SQL Server data providers, 195

SQL stored procedures, 197, 198

SqlClient namespace, 196, 206, 461, 462

8253index.fm Page 493 Thursday, March 22, 2007 11:16 AM

494 ■I N D E X

SqlCommand class, 17, 21, 79, 81, 197, 350

SqlConnection class, 79, 81, 197, 200, 350

SqlDataAdapter class, 198, 282, 461

SqlDataReader class, 82, 197, 351

SqlHelper class, 459

SqlParameter class, 197, 211, 461

SqlRowCount class, 342

SqlTypes namespace, 196

SQLXML, 315

SQLXML managed classes, 21, 316–331

SqlXmlAdapter class, 316, 320–324

SqlXmlCommand class, 316, 318, 328, 330

SqlXmlCommand property, 323

SqlXmlCommandType enumeration, 323

SqlXmlParameter class, 316, 319

square brackets ([]), 46, 97, 310

stack, of .NET Framework, 11

start tag, 6, 7, 71

Start() method, 115, 180, 242

STATE statement, 339

stateful objects, client-side activation and, 345

stateless objects, server activation and, 345

stored procedures, creating, 338

StreamReader class, 318

streams, reading XML documents and, 68

StreamWriter class, 318

String data type, 128

string-length() function, 99

strings

reading XML documents and, 68

XPath functions and, 99

structure, for XML documents, 123–142

sub-elements

defined in DTDs, 126

SOM and, 149

Subject property, 365

subnodes, reading, 73

substring() function, 99

SUM() aggregate queries, 465

sum() function, 99

<summary> element, 405

switch statement, 173

SYSTEM declaration, 126, 154

<system.web> section, of web.config file, 384

Szpuszta, Mario, 364

■T
table data exporter (sample), 79–83

TableReader custom class

creating, 435–444

using, 444

Tables collection, 202

tabular data streams (TDSs), 195

tag attribute, 354

tag names, 363

tag prefixes, 363

tags, 6

namespaces and, 59

nesting, 7

targetNamespace attribute, 155

TCP channel, 345, 346

TDSs (tabular data streams), 195

templates, XSLT and, 168

testing

shopping cart (sample), 476

WCF services, 426

web services, 274

XPath expressions, 104

text attribute, 368

text box (sample code), 40, 45–48

complex types and, 246–253

DataSets and, 212

event handling and, 244

extracting schema information and, 216, 225

inheritance and, 254

reading XML and, 219

schema creation and, 145

SELECT queries and, 199, 317, 319

SOAP serialization and, 263–270

8253index.fm Page 494 Thursday, March 22, 2007 11:16 AM

495■I N D E X

Find it faster at http://superindex.apress.com

TableReader custom class and, 444

typed DataSets and, 229

user credentials, for web services, 296

web service sessions and, 288

XML serialization/deserialization and,
239–243

XML validation and, 156

XPath expressions and, 104–121

XSLT transformations and, 179, 188

Text namespace, 83

text nodes, 7, 32

creating, 54

reading, 69, 78

Text property, 371

text() function, 98

TextBox control, 359, 363

TextField property, 368, 374

To property, 365

tools

aspnet_regsql.exe, 391

Sandcastle, 409

soapsuds.exe, 356

Web Site Administration, 395

ToString() method, 83

TransactionOption enumeration, 281

TransactionOption property, 281

transactions, enabling for web methods, 281

Transact-SQL (T-SQL), XML data type and, 333

Transform() method, 180, 185, 233

TransformFile property, 370, 372

transforming XML documents, 165–191

translate() function, 99

tree viewer (sample), 69, 101

tree-based parsers, 9, 14

TreeView control, 367, 369

true() function, 98

T-SQL (Transact-SQL), XML data type and, 333

type attribute, 352

typed DataSets, 226–231

TypeName property, 470

typeof keyword, 242

■U
Unchanged RowState, 209

Unicode property, 83

Uniform Resource Identifiers (URIs), 59, 345

UNION ALL statement, 311

UnknownAttribute event, 243

UnknownElement event, 243

UnknownNode event, 243

UnreferencedObject event, 243

unserializing nontextual data, 91

UPDATE statement, 204, 332, 337, 463

Update() method

DataAdapter class, 204

SqlDataAdapter class, 212

SqlXmlAdapter class, 321, 324

UpdateCommand property, 204, 212

UpdateGram format, 331

UpdateItem() web method, for sample web
service–driven shopping cart, 463, 476

UpdateLabel() helper method, 53, 55

URIs (Uniform Resource Identifiers), 59, 345

url attribute, 354, 368

Url property, 289

URLs, reading XML documents and, 68

Use property, 150

User class, 292

user registration page, web form for, 397

UserID property, 293

UserName control, 399

users

adding to roles, 398

capturing profile information for, 398

UserValue property, 296

UTF7 property, 83

UTF8 property, 83

utilities. See tools

8253index.fm Page 495 Thursday, March 22, 2007 11:16 AM

496 ■I N D E X

■V
valid documents, 8

Validate() method, 160

validating XML documents, 152–162

validating parsers, 9

validation controls, 360

ValidationEventHandler event, 158, 160

ValidationType property, 158

value () method, 334, 335

value attribute, 385

Value property, 103

XmlAttribute class, 54

XmlTextReader class, 72

XPathNavigator class, 107, 108, 118

version attribute, 6

Visual Basic .NET, 12

Visual C#, 12

Visual C# Express Edition, 22

Visual J#, 12

Visual Studio 2005, 12, 21–29

DTDs, creating with, 126

typed Datasets and, 227

XML documents and, 35

XSD schemas and, 130

Visual Web Developer (VWD), 22

vocabularies, 3

VWD (Visual Web Developer), 22

■W
W3C recommendations, 1, 124

WCF (Windows Communication
Foundation), 413–431

Web Browser control (sample), XSLT style
sheets and, 324

web forms, 356–388

code models for, 357

Contact Us, 358–363

designing, 358–363

emailing data and, 363

for login and user registration page, 397

running/testing, 401

web methods, 276–285

buffering responses and, 279

calling asynchronously, 289

description for, 281

overloaded, 278

for sample shopping cart, 462–466

web references, 286, 289, 467

web server controls XML, data source control
and, 367–375

web service help pages, 274

web services, 19, 271–302

consuming, 272, 287–291

creating, 272–291

native to SQL Server 2005, 337–342

sample shopping cart and, 457–478

URL and, changing at run time, 289

Windows Communication Foundation
and, 413–431

Web Services Description Language. See
entries at WSDL

Web Site Administration tool, 395

web.config file, 16, 383

sample web server shopping cart and, 461

structure of, 383

websites, adding to, 386

Web.dll, 364

WebMethod attribute, 278

WEBMETHOD statement, 339

[WebService] attribute, 274

WebService class, 274, 280

websites. See ASP.NET website (sample)

well-formed documents, 7

well-known objects, 345, 352

white space, 56, 71

WhitespaceHandling property, 71

Windows applications, creating, 22

Windows Communication Foundation
(WCF), 413–431

8253index.fm Page 496 Thursday, March 22, 2007 11:16 AM

497■I N D E X

Find it faster at http://superindex.apress.com

wiring events/event handlers, 25

Write() method, 152

WriteAttributeString() method, 83, 89

WriteBase64() method, 91

WriteComment() method, 82

WriteEndElement() method, 83

writers, creating custom, 446–454

WriteStartDocument() method, 82

WriteStartElement() method, 82, 83, 87

WriteString() method, 83

WriteSubtree() method, 114, 115

WriteXml() method, 212, 218, 330

WriteXmlSchema() method, 216, 218

writing XML documents, 13, 65, 78–89

WSDL (Web Services Description Language),
272, 274, 297–301

WSDL statement, 339

WSDL documents, parts of, 299

■X
XDR Schemas (XML Data Reduced

Schemas), 124

XHTML, 363

XML

ADO.NET and, 193–236

ASP.NET and, 356–375

benefits of, 2–5

documenting, 404–412

in .NET Framework, 343–412

reading into DataSet, 218–221

SQL Server 2005 and, 303–342

WCF services and, 430

XML columns, adding to SQL server tables, 332

XML data source control, 379

XML Data Modification Language (XML
DML), 336

XML Data Reduced Schemas (XDR
Schemas), 124

XML data type, 21, 331–337

Xml.dll, 13

XML DML (XML Data Modification
Language), 336

XML documents, 1

accessing via XPath data model, 95–122

attaching DTDs/schemas to, 153

classes for, 13

creating, 35

editing via XPathNavigator, 116–122

Employees.xml sample document and,
34, 125

events and, 61

manipulating via DOM, 31–64

modifying, 48–55

navigating, 37, 101–108

opening, 35, 67

parsing. See parsing documents

parts of, 6, 13, 32

reading, 13, 35–47, 65–78

searching, 39–48

structure for, 123–142

subsets of, 13

transforming, 165–191

validating, 152–162

writing, 13, 65, 78–89

XSD schema creation and, 137

XML DOM classes, 33

XML fragments, 304, 331

XML namespaces, 13, 37, 59, 274

DOM and, 31

XmlTextReader/XmlTextWriter classes
and, 65

XML protocol, web services and, 272

XML Schema Definition Language Schemas.
See XSD schemas

XML Schema Definition tool (xsd.exe), 137–142

XML schemas. See schemas

XML serialization, 238, 239–263

<?xml-stylesheet?> processing instruction,
169, 178

XML templates, 326

8253index.fm Page 497 Thursday, March 22, 2007 11:16 AM

498 ■I N D E X

[XmlArray] attribute, 262

[XmlArrayElement] attribute, 262

[XmlAttribute] attribute, 262

XmlAttribute class, 13, 33, 54

XmlAttributeAttribute class, 13

XmlCDataSection class, 52, 55

xmldata variable, 333

XmlDataDocument class, 17, 232–236

XMLDataSource control, 367–375

XmlDocument class, 13, 14, 31, 35–47, 99

events and, 61

opening documents for parsing, 35

Validate() method and, 160

validating XML documents via, 159

XmlNode class and, 33, 54

[XmlElement] attribute, 262, 263

XmlElement class, 13, 33, 234

[XmlEnum] attribute, 263

XmlFormatter class, 431

[XmlIgnore] attribute, 262

XmlNameTable class, 72

XmlNode class, 13, 33

Attributes collection, 49

ChildNodes collection, 37

XmlDocument class, 33, 54

XmlNodeChangedEventArgs class, 62

XmlNodeList class, 40

XmlNodeReader class, 67

xmlns:xsi attribute, 155

XmlProcessingInstruction class, 33

XmlQualifiedName class, 147

XmlReader class, 14, 65

custom implementation of, 433–446

inheriting from, 434

validating XML documents via, 156

when to use, 66

XPathNavigator class and, 111

XmlReaderSettings class, 156, 160

XmlReadMode enumeration, 219

[XmlRoot] attribute, 262

XmlRootAttribute class, 13

XmlSchema class, 13, 129, 143

XMLSCHEMA statement, 306

XmlSchemaAnnotated class, 143

XmlSchemaAttribute class, 143

XmlSchemaComplexType class, 13, 143, 149

XmlSchemaElement class, 13, 142, 143

XmlSchemaFacet class, 148

XmlSchemaMaxLengthFacet class, 148

XmlSchemaMinLengthFacet class, 148

XmlSchemaObject class, 142

XmlSchemaParticle class, 143

XmlSchemaSequence class, 149

XmlSchemaSet class, 151

XmlSchemaSimpleType class, 142, 143, 147

XmlSchemaSimpleTypeRestriction class, 147

XmlSchemaType class, 143

XmlSerializer class, 13, 19, 238–243, 263, 431

complex types, support for, 245

customizing XML serialization and, 257–263

event handling and, 243

XmlSignificantWhitespace class, 59

XmlText class, 13, 33, 54

XmlTextAttribute class, 13

XmlTextReader class, 13, 14, 66–73

namespaces and, 73

nontextual data and, 89

XmlNodeReader class and, 67

XmlTextWriter class, 13, 14, 66, 78, 81

formatting output and, 84

namespace support in, 87

nontextual data and, 89

XmlValidatingReader class, 66

XmlWhiteSpace class, 58

XmlWriteMode enumeration, 214, 328

XmlWriter class, 14, 65, 78

custom implementation of, 446–456

inheriting from, 447–454

8253index.fm Page 498 Thursday, March 22, 2007 11:16 AM

499■I N D E X

Find it faster at http://superindex.apress.com

when to use, 66

XPathNavigator class and, 114

XPath, 10, 95–122

data model of, 99–122

filtering nodes and, 45

XPath expressions

compiling, 108

examples of, 105

filtering data via, 373

testing, 104

XPath functions, 98

XPath namespace, 13, 95, 99

XPath property, 373

XPathExpression class, 13

XPathNavigator class, 13, 99–108

editing XML documents via, 116–122

saving changes and, 121

validating XML documents via, 162

XmlReader/XmlWriter and, 111

XPathNodeIterator class, 13, 105

XQuery, 331

XQuery expressions, 335, 337

XSD data types, 127, 147

XSD schemas, 124

creating, 127–142

parts of, 127s

SOM classes and, 143

validating XML documents against, 152–162

xsd.exe (XML Schema Definition tool),
137–142, 231

.xsd file extension, 127, 154

xsi:noNamespaceSchemaLocation attribute,
155

xsi:schemaLocation attribute, 156

XSL, 21

<xsl:apply-templates> element, 169

<xsl:choose> element, 173

XSL-FO, 165

<xsl:if> element, 171, 182

Xsl namespace, 13, 178

<xsl:param> element, 184

<xsl:stylesheet> element, 168, 187

<xsl:template> element, 168

<xsl:when> element, 173

XslCompiledTransform class, 13, 233,
178–191

XslPath property, 324, 326

XSLT, 10

XSLT style sheets, 167, 168, 370

embedding script blocks in, 186

passing parameters to, 182

SQLXML and, 324

XSLT transformations, 165–191, 370

classes for, 13

performing via XslCompiledTransform,
179–191

XML control and, 379

XsltArgumentList class, 182–186, 191

XslTransform class, 13

XsltSettings class, 13, 189

8253index.fm Page 499 Thursday, March 22, 2007 11:16 AM

