
this print for content only—size & color not accurate spine = 0.998" 528 page count

EMPOWERING PRODUCTIVITY FOR THE JAVA™ DEVELOPER

John Carnell, coauthor of

Pro Jakarta Struts

US $44.99

Shelve in
Java Programming

User level:
Intermediate–Advanced

Carnell
Apache Struts

w
ithAjax

THE EXPERT’S VOICE® IN JAVA™ TECHNOLOGY

John Carnell
with Rob Harrop
Edited by Kunal Mittal

Pro Apache

Struts
with Ajax

CYAN
MAGENTA

YELLOW
BLACK
PANTONE 123 CV

ISBN 1-59059-738-9

9 781590 597385

54499

6 89253 59738 5

Companion
eBook Available

Architect, build, and configure multitier web applications
using the Apache Struts framework along with some Ajax.

www.apress.com
SOURCE CODE ONLINE

forums.apress.com
FOR PROFESSIONALS
BY PROFESSIONALS™

Join online discussions:

Companion eBook

See last page for details
on $10 eBook version

Pro Apache Struts with Ajax
Dear Reader,

Open source has had a huge impact on the ability of software developers to
quickly build and deploy applications. One of the most vibrant areas of open
source development is that of Java™ development frameworks. In this book, we
present the open source Apache Struts framework, which provides the infra-
structure code that developers otherwise would need to write to build enterprise
web-based applications.

We explore Struts by looking at these key topics:

• Learning the core features of the Apache Struts framework, starting
with the architecture of Struts through to setting up and configuring
web applications using Struts

• Building each tier of a sample application, starting with the presentation
tier and diving through all of the tiers in a web-based application

• Leveraging the Struts JSP™ tag libraries and their templating capabilities
to simplify the development of web application screens

• Using Struts and industry accepted J2EE™ design patterns to build
business logic that can be easily re-used and maintainable across multiple
Struts and non-Struts applications

• Integrating open source Object Relational mapping tools such as Apache’s
ObjectRelationalBridge in the data access tier

Throughout the book, we also look at how to integrate Struts with powerful
open source tools such as Lucene, Velocity, and XDoclet, so you can add a sig-
nificant amount of functionality to your web applications. We show you the
mechanics of building a Struts application, and we also demonstrate proven
techniques for building multitier, web-based applications. Our aim is to enable
you to build on our own experience working with Struts over the course of our
careers.

Sincerely,

John Carnell and Rob Harrop

THE APRESS JAVA™ ROADMAP

Beginning Apache Struts Pro Apache Struts with Ajax

Pro Apache Ant

Pro Apache Tomcat 6

Enterprise Java™

Development on a Budget

Rob Harrop, coauthor of

Pro Jakarta Struts

Kunal Mittal, author of
Pro Apache Beehive
BEA WebLogic Server 8.1
Unleashed

Pro

www.allitebooks.com

http://www.allitebooks.org

John Carnell
with Rob Harrop,
Edited by Kunal Mittal

Pro Apache Struts
with Ajax

Ch00_7389_CMP3 9/28/06 8:37 PM Page i

www.allitebooks.com

http://www.allitebooks.org

Pro Apache Struts with Ajax

Copyright © 2006 by John Carnell, Rob Harrop, Kunal Mittal

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-738-5

ISBN-10 (pbk): 1-59059-738-9

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Java™ and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc., in the
United States and other countries. Apress, Inc., is not affiliated with Sun Microsystems, Inc., and this book
was written without endorsement from Sun Microsystems, Inc.

Lead Editor: Steve Anglin
Technical Reviewer: John Fallows
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,

Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, Jim Sumser,
Keir Thomas, Matt Wade

Project Managers: Beth Christmas, Elizabeth Seymour
Copy Edit Manager: Nicole Flores
Copy Editors: Ami Knox, Bill McManus
Assistant Production Director: Kari Brooks-Copony
Production Editor: Lori Bring
Compositor: Diana Van Winkle, Van Winkle Design
Proofreader: April Eddy
Indexer: Michael Brinkman
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219,
Berkeley, CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com,
or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code/
Download section.

Ch00_7389_CMP3 9/28/06 8:37 PM Page ii

www.allitebooks.com

http://www.allitebooks.org

To my wife, Janet: Thank you for the love, the patience, and the time I needed
to complete this book (and every other book I have worked on). Without your love

and wisdom, my life would be a shadow of what it is now. You are everything to me.
To my son, Christopher: Every experience I have had or will have will never compare

with the first time I held you in my arms. Everyday, I revel in the miracle that you are.
—John Carnell

This book is dedicated to my secondary school English teacher, Neville McGraw,
for sparking my abiding interest in literature and teaching me the

importance of the written word.
—Rob Harrop

Ch00_7389_CMP3 9/28/06 8:37 PM Page iii

www.allitebooks.com

http://www.allitebooks.org

Ch00_7389_CMP3 9/28/06 8:37 PM Page iv

www.allitebooks.com

http://www.allitebooks.org

Contents at a Glance

About the Authors . xv

About the Editor . xvi

About the Technical Reviewers . xvii

Acknowledgments . xviii

Preface for This Edition . xix

Preface from Previous Edition . xx

■CHAPTER 1 What We Do Wrong: Web Antipatterns Explained 1

■CHAPTER 2 Struts Fundamentals . 31

■CHAPTER 3 Form Presentation and Validation with Struts 75

■CHAPTER 4 Managing Business Logic with Struts . 123

■CHAPTER 5 Architecting the Data Access Tier with ObjectRelationalBridge . . . 173

■CHAPTER 6 Building Flexible Front-Ends with the Tiles Framework 225

■CHAPTER 7 Dynamic Forms and the Struts Validator Framework 255

■CHAPTER 8 Speeding Struts Development with XDoclet 289

■CHAPTER 9 Logging and Debugging . 317

■CHAPTER 10 Velocity Template Engine . 359

■CHAPTER 11 Extending the Struts Framework . 391

■CHAPTER 12 Struts and Ajax . 421

■APPENDIX A JavaEdge Setup and Installation . 433

■APPENDIX B Struts Development Tools . 441

■APPENDIX C Struts and Strecks . 473

■INDEX . 477

v

Ch00_7389_CMP3 9/28/06 8:37 PM Page v

www.allitebooks.com

http://www.allitebooks.org

Ch00_7389_CMP3 9/28/06 8:37 PM Page vi

www.allitebooks.com

http://www.allitebooks.org

Contents

About the Authors . xv

About the Editor . xvi

About the Technical Reviewers . xvii

Acknowledgments . xviii

Preface for This Edition . xix

Preface from Previous Edition . xx

■CHAPTER 1 What We Do Wrong: Web Antipatterns Explained 1

What This Book Is About . 3

What This Chapter Is About . 4

Challenges of Web Application Development . 4

Enterprise Services . 6

Application Services . 7

An Introduction to Patterns and Antipatterns . 8

Web Application Antipatterns . 9

Concern Slush . 10

Tier Leakage . 13

Hardwired . 16

Validation Confusion . 18

Tight-Skins . 20

Data Madness . 22

Antipatterns, JOS Frameworks, and Economics . 24

The JavaEdge Application . 27

Summary . 28

■CHAPTER 2 Struts Fundamentals . 31

The JavaEdge Application Architecture . 32

The Design . 33

Using Struts to Implement the MVC Pattern . 34

Getting Started: The JavaEdge Source Tree . 37

The Power of the Command Pattern . 48

vii

Ch00_7389_CMP3 9/28/06 8:37 PM Page vii

www.allitebooks.com

http://www.allitebooks.org

Constructing the Presentation Tier . 52

The JavaEdge Home Page . 53

Bean Tags . 57

Logic Tags . 67

Iteration Tags . 68

Conditional Tags . 69

Movement Tags . 71

Summary . 73

■CHAPTER 3 Form Presentation and Validation with Struts 75

Problems with Form Validation . 75

Using Struts for Form Validation . 77

Implementing Form Validation with Struts . 79

The struts-config.xml File . 80

Struts ActionForm Class . 81

Prepopulating an ActionForm with Data . 87

Another Technique for Prepopulation . 91

Prepopulating a Form the Correct Way . 92

Validating the Form Data . 93

The Struts HTML Tag Library . 103

Setting Up a Struts HTML Form . 104

Using Text and TextArea Input Fields . 107

Drop-Down Lists, Checkboxes, and Radio Buttons 108

Building More Dynamic ActionForms . 111

ActionForms and Business Logic . 118

Summary . 122

■CHAPTER 4 Managing Business Logic with Struts . 123

Business Logic Antipatterns and Struts . 124

Concern Slush and Struts . 125

Tier Leakage and Struts . 130

Separating Business Logic from Struts . 132

Implementing the Design Patterns . 134

Implementing the Business Delegate Pattern 135

Implementing the Service Locator Pattern . 141

The Service Locator Revisited . 149

EJBs and Struts . 154

Handling Exceptions in the Action Class . 160

Exception Handling in Struts 1.0.x . 161

■CONTENTSviii

Ch00_7389_CMP3 9/28/06 8:37 PM Page viii

www.allitebooks.com

http://www.allitebooks.org

Exception Handling in Struts 1.1 and Later 163

Rewriting the ApplicationException Class . 164

Setting Up the struts-config.xml File . 164

Writing a Custom ExceptionHandler . 167

Summary . 171

■CHAPTER 5 Architecting the Data Access Tier with
ObjectRelationalBridge . 173

Developing a Data Access Strategy . 174

The JavaEdge Data Access Model . 176

Value Objects . 182

The JavaEdge Value Objects . 184

Using an O/R Mapping Tool . 187

Setting Up the Object/Relational Mappings 190

Which Sequence Manager to Use? . 201

OJB in Action . 208

Retrieving Data: A Simple Example . 212

Retrieving Data: A More Complicated Example 215

Storing Data Using OJB . 217

Deleting Data with OJB . 219

Bringing It All Together . 219

Summary . 223

■CHAPTER 6 Building Flexible Front-Ends with the Tiles Framework . . 225

What Is the Tiles Framework? . 227

Enabling Struts Version 1.1 to Use Tiles . 228

Configuring the Tiles Plug-In . 229

The tiles-defs.xml File . 231

Adding the Tiles TLDs . 231

Your First Tiles Template . 232

What Are Tiles Definitions? . 235

Tiles Definitions: A JSP-Based Approach . 236

Overriding the Attribute Values in a Tiles Definition 238

Using Dummy Values in Your Tiles Definition 239

Disadvantages of JSP Tiles Definitions . 239

Anatomy of the tiles-defs.xml File . 240

Inheritance Using Tiles Definitions . 241

Extending a Tiles Definition . 244

Modifying the template.jsp File . 245

■CONTENTS ix

Ch00_7389_CMP3 9/28/06 8:37 PM Page ix

www.allitebooks.com

http://www.allitebooks.org

Adding the New Definition to tiles-defs.xml 246

Modifying the .homePage Definition . 247

Mapping Tiles Definitions to Action Forwards . 248

Summary . 252

■CHAPTER 7 Dynamic Forms and the Struts Validator Framework. 255

Introducing Dynamic Forms . 256

Defining the postStoryForm Struts Form Bean 256

Writing the PostStoryDynaForm.java Implementation 258

Some Thoughts About BeanUtils and the Preceding Code 263

The Jakarta Commons Validator Framework . 266

Validator Framework Setup . 266

Implementing the Required Fields Validation 268

The maxlength Validation Rule . 270

Use the Validator Framework Within an ActionForm Class 273

Writing Your Own Validation Rules . 275

Implementing the Vulgarity Rule . 275

Adding the Vulgarity Rule to the validator-rules.xml File 279

Struts Validation and Potential Long-Term Consequences 281

Implementing the Vulgarity Rule in a Form 282

An ActionForm Without Java . 283

When to Use the Validator Framework . 284

Summary . 285

■CHAPTER 8 Speeding Struts Development with XDoclet. 289

Installing XDoclet . 291

What Exactly Is XDoclet? . 292

From XDoclet to Source, and All the Steps in Between 295

The Available XDoclet Tags . 297

Anatomy of an XDoclet Tag . 298

Integrating Ant and XDoclet . 299

Using Merge Points . 302

XDoclet and Struts . 303

Declaring Struts Form Beans . 304

Declaring Struts Actions . 304

XDoclet and Java Inheritance . 306

Declaring Application Exceptions . 306

Building struts-config.xml Using <webdoclet..../> 308

XDoclets and the Validator Framework . 309

Generating the Validator Tags from Ant . 313

Summary . 315

■CONTENTSx

Ch00_7389_CMP3 9/28/06 8:37 PM Page x

■CHAPTER 9 Logging and Debugging . 317

Why Use Logging? . 318

Log Message Levels . 319

Simple Web Application Logging . 319

Logging with ServletContext . 319

Using Commons Logging . 320

The Java 1.4 Logging API . 325

Apache log4j . 328

Using log4j with Commons Logging . 330

Log Inheritance . 334

Logging Performance . 337

Logging Best Practices . 338

JBoss and log4j . 342

Integrating Logging into JavaEdge . 343

Logging in the Web Tier . 349

Debugging Struts Applications Using JBoss and Eclipse 351

Debugging the JavaEdge Application . 353

Hot-Deploy . 355

Debugging the Struts Framework . 356

Summary . 356

■CHAPTER 10 Velocity Template Engine . 359

What Is a Template Engine? . 359

Getting Started . 360

Velocity and VelocityContext Classes . 362

Velocity Template Language . 362

Variables . 363

Accessing Variables . 363

Variable Values . 364

JavaBean Properties . 369

Arithmetic . 369

Directives . 370

Macros . 379

Struts and Velocity . 381

VelocityTools . 381

Struts and Velocity . 388

Best Practices for Velocity Use . 388

Use Macros . 388

Know When to Use #parse and When to Use #include 388

Use JavaBean Property Names . 389

Summary . 389

■CONTENTS xi

Ch00_7389_CMP3 9/28/06 8:37 PM Page xi

■CHAPTER 11 Extending the Struts Framework . 391

Extending Action and ActionForm . 391

Providing Common Services to Your Actions 392

Hooking into the Action Execution . 397

Extending RequestProcessor . 398

Building a RequestProcessor . 399

Using RequestProcessor Instead of Filter . 400

Verifying Host Access with RequestProcessor 403

Creating Configuration Beans . 403

Building the JavaEdgeActionMapping . 404

Revisiting RequestProcessor . 405

Building a Plug-In . 409

Newsletter Service Basics . 410

NewsletterManager . 410

NewsletterTask . 415

NewsletterPlugIn . 416

Configuring the Plug-In . 419

Summary . 419

■CHAPTER 12 Struts and Ajax . 421

Ajax Dissected . 421

Ajax on Google . 422

Ajax on Yahoo . 422

Where Should I Use Ajax? . 422

Ajax and Web 2.0 . 423

Ajax and SOA . 423

Ajax Internals . 423

Ajax Request-Response Cycle . 424

XMLHttpRequest Object . 425

Ajax and Struts in Action . 426

Cities.jsp . 426

GetCitiesNamesAction . 429

CitiesDAO . 430

Summary . 432

■CONTENTSxii

Ch00_7389_CMP3 9/28/06 8:37 PM Page xii

■APPENDIX A JavaEdge Setup and Installation . 433

Environment Setup . 433

Installing MySQL . 433

Installing JBoss . 436

Installing Apache Ant . 436

Obtaining the JavaEdge Code and Dependencies 437

Installing the JavaEdge Database . 437

Building JavaEdge . 438

Deploying JavaEdge . 439

Summary . 440

■APPENDIX B Struts Development Tools . 441

Eclipse . 442

Eclipse Summary . 444

Eclipse Next Step . 444

NetBeans . 444

JSP, HTML, XML, and DTD Editors . 444

In-Process Tomcat Server . 446

NetBeans Summary . 446

NetBeans Next Step . 447

IBM WebSphere . 447

Creating a Struts Project . 447

Managing Configuration . 448

Creating Actions and ActionForms . 449

Web Diagrams . 451

WebSphere Summary . 451

WebSphere Next Step . 452

Borland JBuilder 2006 . 452

Web Projects . 452

Configuration File Editor . 453

JSP Editor . 454

UML Designer . 454

JavaDoc Preview . 454

Action Designer . 456

JBuilder Summary . 456

JBuilder Next Step . 457

■CONTENTS xiii

Ch00_7389_CMP3 9/28/06 8:37 PM Page xiii

Struts Console . 457

Getting Started . 457

Editing the Struts Configuration File . 458

Editing Other Configuration Files . 460

Struts Console Summary . 460

Struts Console Next Step . 461

Exadel Studio . 461

Struts Projects . 461

Configuration File Editors . 461

XML Editor . 463

JSP Editor . 463

Web Flow Designer . 465

Exadel Studio Summary . 465

Exadel Studio Next Step . 466

XDoclet . 466

Apache JMeter . 466

Getting Started . 466

Features . 466

Creating a Sample Test . 467

JMeter Summary . 470

JMeter Next Step . 471

Summary . 471

■APPENDIX C Struts and Strecks . 473

Using Strecks . 473

@Controller and @ActionInterface . 474

@NavigateForward . 475

@BindSimple and @ValidateRequired . 475

What You Can Do with Strecks . 476

Is Strecks for Me? . 476

■INDEX . 477

■CONTENTSxiv

Ch00_7389_CMP3 9/28/06 8:37 PM Page xiv

About the Authors

■JOHN CARNELL is the president and owner of NetChange, a leading provider
of enterprise architecture solutions and training. John has over nine years
of experience in the field of software engineering and application develop-
ment. Most of John’s time has been spent working in Object-Oriented (OO)
and Component-Based Development (CBD) software solutions.

John has authored, coauthored, and served as technical reviewer for
a number of technology books and industry publications. Some of his
works include

• Professional Struts Applications: Building Web Sites with Struts, Object Relational Bridge,
Lucene, and Velocity (Apress, 2003)

• Coauthor, J2EE Design Patterns Applied (Apress, 2002)

• Coauthor, Oracle 9i Java Programming: Solutions for Developers Using PL/SQL and Java
(Apress, 2001)

• Coauthor, Beginning Java Databases (Apress, 2001)

• Coauthor, Professional Oracle 8i Application Programming with Java, PL/SQL, and XML
(Wrox Press, 2001)

• Technical reviewer, J2EE Design and Deployment Practices (Wrox Press, 2002)

In addition to his teaching, John travels the country on a regular basis speaking at nation-
ally recognized conferences on a variety of Java development topics.

John lives in Green Bay, Wisconsin, with his wife, Janet; son, Christopher; and two dogs,
LadyBug and Ginger. John always welcomes questions and comments from his readers and
can be reached at john.carnell@netchange.us.

■ROB HARROP is a software consultant specializing in delivering high-
performance, highly scalable enterprise applications. He is an experienced
architect with a particular flair for understanding and solving complex
design issues. With a thorough knowledge of both Java and .NET, Rob has
successfully deployed projects across both platforms. He also has exten-
sive experience across a variety of sectors, retail and government
in particular.

Rob is the author of five books, including Pro Spring (Apress 2005), a
widely acclaimed, comprehensive resource on the Spring Framework.

Rob has been a core developer of the Spring Framework since June 2004 and currently
leads the JMX and AOP efforts. He cofounded UK-based software company Cake Solutions
Limited, in May 2001, having spent the previous two years working as Lead Developer for a
successful dotcom start-up. Rob is a member of the JCP and is involved in the JSR-255 Expert
Group for JMX 2.0. xv

Ch00_7389_CMP3 9/28/06 8:37 PM Page xv

About the Editor

xvi

■KUNAL MITTAL serves as the Director of Technology for the Domestic TV
group at Sony Pictures Entertainment. He is responsible for the technol-
ogy strategy and application development for the group. Kunal is very
active in several enterprise initiatives such as the SOA strategy and
roadmap and the implementation of several ITIL processes within
Sony Pictures.

Kunal has authored and edited several books and written over
20 articles on J2EE, WebLogic, and SOA. Some of his works include

• Pro Apache Beehive (Apress, 2005)

• BEA WebLogic 8.1 Unleashed (Wrox, 2004)

• “Build your SOA: Maturity and Methodology,” a three-part series (SOAInstitute.com,
2006)

For a full list of Kunal’s publications, visit his web site at http://www.kunalmittal.com/
html/publications.shtml.

Kunal holds a master’s degree in software engineering and is a licensed private pilot.

Ch00_7389_CMP3 9/28/06 8:37 PM Page xvi

About the Technical Reviewers

■JAN MACHACEK started with microelectronics in 1992 and then moved on
to computer programming a few years later. During his studies at Czech
Technical University in Prague and University of Hradec Kralove in the
Czech Republic, Jan was involved in the development of distributed appli-
cations running on Windows, Linux, and Unix using each platform’s native
code and Java.

Currently, Jan is Lead Programmer of UK-based software company
Cake Solutions Limited (http://www.cakesolutions.net), where he has

helped design and implement enterprise-level applications for a variety of UK- and US-based
clients. In his spare time, he enjoys exploring software architectures, nonprocedural and
AI programming, as well as playing with computer hardware.

As a proper computer geek, Jan loves the Star Wars and The Lord of the Rings series.
Jan lives with his lovely housemates in Manchester in the UK and can be reached at
jan@cakesolutions.net.

■JOHN R. FALLOWS is a Java architect at TXE Systems. Originally from North-
ern Ireland, John graduated from Cambridge University in the United
Kingdom and has worked in the software industry for more than ten years.
Prior to joining TXE Systems, John worked as a JavaServer Faces technol-
ogy architect at Oracle. John played a lead role in the Oracle ADF Faces
team to influence the architecture of the JavaServer Faces standard and
to enhance the standard with Ajax functionality in the ADF Faces project.

John is a popular speaker at international conferences such as
JavaOne and JavaPolis, and has written numerous articles for leading IT magazines such
as Java Developer’s Journal. John is coauthor of the highly popular book, Pro JSF and Ajax:
Building Rich Internet Components (Apress, 2006).

xvii

Ch00_7389_CMP3 9/28/06 8:37 PM Page xvii

Acknowledgments

When people pick up a book, they often think of only the effort the author put into writing
the text. However, creating any book is a team effort that involves the endeavors of many indi-
viduals. I would like to first thank Gary Cornell, who had enough confidence in my work to ask
me to work on a second edition of this book. His confidence, especially coming from someone
with his background and experiences, meant a lot.

I also want to thank the following people:

• Beth Christmas, my Apress project editor, for her tireless effort in keeping this book
on track.

• Ami Knox, my copy editor, whose keen eyes and attention to detail has made sure that
I come across as an intelligent and grammatically correct author. Thanks, Ami!

• Jan Machacek, my technical editor. Your comments and careful insight kept me honest
and made sure this book was always the best it could be.

• Rob Harrop, my coauthor. Rob, you brought a lot of energy back into this book. Your
insights and the work you did for this book will always be appreciated.

John Carnell

Many people don’t realize just how much work goes on behind the scenes when making a
book like this. First, I want to thank my coauthor, John Carnell, who has an amazing ability to
explain even the most difficult of topics to absolute beginners. Thanks also to our technical
reviewer and my colleague, Jan Machacek, undoubtedly one of the best Struts programmers in
the world. Thanks to everyone at Apress, especially Beth Christmas and Ami Knox; without the
support of such a great team, writing this book would have been an absolute nightmare. A
final word of thanks goes to my girlfriend, Sally, for putting up with me through all the nights I
spent sitting in front of the computer and for listening to all the “cool” stories about Struts.

Rob Harrop

I would like to thank John, Rob, and the entire Apress team for giving me the opportunity to
edit this book. Steve, Elizabeth, Lori, Bill, and many others who have worked behind the scenes
on this edition, I owe you one! I would also like to thank my wife, Neeta, and my pooches,
Dusty and Snowie, for letting me ignore them over the weekends and focus on this book.

Kunal Mittal

xviii

Ch00_7389_CMP3 9/28/06 8:37 PM Page xviii

Preface for This Edition

Apache Struts 1.2.x is still the de facto Java industry-standard MVC-based Web framework
despite challenges from JavaServer Faces (JSF), Spring MVC, WebWork, Wicket, and other APIs
and frameworks.

Pro Apache Struts with Ajax is essentially a revision of the previously published Pro
Jakarta Struts, Second Edition that accounts for changes to the open source Apache Struts
MVC web framework in the following ways:

• The Struts web framework in this edition is based on final Struts 1.2.x.

• This edition acknowledges the graduation of Struts from Jakarta to Apache within the
Apache Software Foundation.

• This edition provides a new chapter that shows how to integrate Ajax (Asynchronous
JavaScript and XML) with Apache Struts.

While this book addresses the above matters, it does not address the evolving and still
nascent Apache Shale nor Struts 2.0, also known as Struts Action Framework 2.0, which com-
bines Struts 2 and WebWork. However, future Apress books likely will address these areas.

Sincerely,
Editors of this revision

xix

Ch00_7389_CMP3 9/28/06 8:37 PM Page xix

www.allitebooks.com

http://www.allitebooks.org

Preface from Previous Edition
(Pro Jakarta Struts, Second Edition)

One of the questions I always get from people when they find out I am an author is “Why did
you get into writing?” While it is fundamentally a simple question to ask, the answer is not so
clear or concise.

If I had to summarize into one sentence why I wrote this book, it would have to be for one
reason and one reason alone: I love technology and I love building things with it. I have been
coding since I was 12 years old. I have worked with dozens of technologies, and for the last
four years I have had the opportunity to build enterprise-level software using several different
open source projects.

I have been consistently blown away with the quality and functionality these technologies
bring to the table. One of my favorite open source technologies is the Apache Group’s Struts
development framework. The Struts framework is a powerful Java development framework
that really allows Java web developers to focus on building applications and not infrastruc-
ture.

When I worked on the first edition of this book, I had two goals in mind: First, I wanted to
write a book that would introduce readers to the Struts development framework, but would
not overwhelm them with all of the nitty-gritty details associated with writing Struts applica-
tions. I personally think most people, even advanced developers, learn best by doing and
seeing rather than reading through tons of details.

Second, I wanted people to see how Struts could be used to solve everyday problems they
encounter in building their own web applications. That is why there is such a focus through-
out the book on the concept of identifying common design mistakes (aka antipatterns) and
looking at how Struts can be used to solve these problems.

However, this book always sticks to the core tenet that a framework never absolves the
developer of the responsibility of designing an application. The Struts framework, like any
framework, is a tool, and like any tool can be used inappropriately. That is why this book
emphasizes the importance of good design even when using a framework like Struts. Good
code is never something that unexpectedly appears. It is something that evolves from fore-
thought and clean design.

This book has been designed with both the intermediate and advanced developer in
mind. The application being built in this book is very simple and easy to follow, so anyone
with a basic understanding of JSPs and servlets should be able to very quickly follow along.
However, at every point my coauthor and I always try to call out how simple design decisions
and design patterns can have a significant impact on the long-term health of extensibility.

In the second edition of this book, we have updated all of the material to Struts 1.1.
We have included entire chapters on many of the new Struts 1.1 features (like the Tiles and
Validator frameworks). In addition, we explore a host of other open source technologies, like
ObjectRelationalBridge, Lucene, and Velocity, that when used in tandem with Struts can sig-
nificantly reduce the amount of time and effort it takes to build common pieces of application
functionality.

xx

Ch00_7389_CMP3 9/28/06 8:37 PM Page xx

I guess in the end, I do not consider this book a one-way narrative where you read my
thoughts on a particular topic. Instead, this book is part of an ongoing conversation that I
have had since I fell in love with my first Commodore 64. As such, I always welcome com-
ments (both positive and negative) from my readers. If you have any questions, comments,
or just want to vent, please feel free to contact me at john.carnell@netchange.us. I hope you
enjoy reading this book, and I look forward to hearing from you.

Sincerely,
John Carnell

■PREFACE xxi

Ch00_7389_CMP3 9/28/06 8:37 PM Page xxi

Ch00_7389_CMP3 9/28/06 8:37 PM Page xxii

What We Do Wrong:
Web Antipatterns Explained

Everything in the universe moves to chaos. What is ordered becomes disordered, what is
created becomes destroyed. This phenomenon has long been observed in the field of physics
and carries the name of entropy.

■Definition Webster’s New World Dictionary defines entropy as a measure of the degree of disorder in
a substance or system: entropy always increases and available energy diminishes in a closed system as
in the universe.

Entropy is a phenomenon that is also observed in the field of software development. How
many times have you worked on an application whose initial code base started out neat and
organized, or met your own personal coding and documentation styles, guidelines, and stan-
dards, only to see over time the code base became more and more chaotic as the application
evolved and was maintained? You probably yourself cut corners on your standards due to time
pressures, or while making minor enhancements or bug fixes.

Entropy and the ensuing chaos it brings is the same whether it is being applied to the
laws of physics or a software development project. In a software development project, the
more entropy present within the application and its code base, the less energy available to
write software that meets end-user requirements or overall business goals. Every hour that a
developer spends dealing with hard-to-maintain and nonextensible code reduces the time
available for that developer to write useful software by one hour. This does not even include
the risk of writing buggy code when the original code is not well written in the first place.

Why are software development efforts so prone to move from an ordered state to almost
absolute chaos? There are many reasons that can be given, but all reasons often point back to
one root cause: complexity. Some other common reasons are time pressures, changing or
unclear requirements, or just pure bad habits.

The act of writing code for an application is an attempt to impose structure and order on
some process. These processes can be mundane (for example, determining whether or not
individuals have enough money in their bank accounts to make requested withdrawals) or
very complicated (for example, a missile fire control system trying to ascertain whether an
incoming airplane is a commercial airliner or a military fighter jet). We know this is a stretch
to imagine, but you get the point. 1

C H A P T E R 1

■ ■ ■

Ch01_7389_CMP4 9/27/06 8:03 AM Page 1

Most software development professionals have learned that the processes they try to cap-
ture in their code rarely have neatly defined boundaries. These processes are often nonlinear
in nature. They cannot be easily described in terms of discrete steps. Instead these processes
often have multiple decision points that can result in completely different outcomes.

Almost all software is constantly in a state of flux. It is almost always being changed and
updated to meet new end-user requirements. The general perception is that the functionality
of an application can easily be changed without affecting its overall quality and integrity.

The nonlinear nature of software, combined with ever-changing end-user requirements
and perceptions of software malleability, makes it extremely difficult to avoid complexity
within an application. In a software development project, the relationship between entropy
and complexity can be stated as follows: The more complexity a developer has to deal with,
the higher the level of entropy present in the application. This complexity leaves developers
with less time to do what they were hired to do: write software to solve a particular problem
faced by an organization.

Unmanaged complexity results in poorly designed software that is often full of bugs, hard
to maintain, and even harder to extend and reuse. The development team that is responsible
for maintaining the application’s code base will build workarounds and patches onto the soft-
ware until the source code is completely unmanageable. Oftentimes, the chaos surrounding
the application’s implementation and maintenance will force the organization to throw away
the code without ever realizing the full business benefits the software was supposed to give.

At this point, with all of the problems involved with implementing quality software, you
might be questioning why you would even become involved in the field of software develop-
ment.1 Things are not as bleak as they might appear. Many of us in the software development
profession do successfully deliver applications that bring value to the organizations we work for.

However, even when we are successful in building applications, we are often left with the
nagging feeling that there should be a better way of building and delivering software. It is pos-
sible to build high-quality software on time and on budget. However, in order to do this, the
software needs to be built on a solid foundation.

Software built without a plan, without a well-laid-out architecture, will soon collapse
under its own weight. However, say the word architecture to many business managers and
developers and you will see a look of pain cross their faces. The word architecture is one of the
most abused words in the software engineering lexicon.

For many business managers, the word architecture invokes images of a whole team of
software developers (often a very expensive team) going off to write code that is very intellec-
tually stimulating for them, but has no value to the business. They see a lot of development
time and resources spent without getting a well-defined Return On Investment (ROI).

For developers, the term architecture often invokes feelings of guilt and longing: guilt,
because many developers realize that there are better ways to write software; longing, because
frankly with enough time and resources a development team could put together a develop-
ment framework that would enable them to write better software.

However, the simple truth is this: Writing a development framework is hard work that
requires dedicated time from senior development resources. Quantifying the value of a devel-
opment framework to the business managers in an organization is an even tougher challenge.

CHAPTER 1 ■ WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED2

1. One of the authors of this book did so because his criminology degree did not pay nearly as well as his
computer science degree.

Ch01_7389_CMP4 9/27/06 8:03 AM Page 2

What This Book Is About
This book will demonstrate the use of freely available Java Open Source (JOS) development
frameworks for building and deploying applications. Specifically, we will focus on the JOS devel-
opment frameworks available from the Apache Software Foundation (http://apache.org) as
well as its Jakarta group (http://jakarta.apache.org).

While most books are heavy on explanation and light on actual code demonstration,
this book emphasizes approachable code examples. The authors of this book want to provide
a roadmap of JOS development tools to build your applications. Our intent in this book is not
to present each of the frameworks in minute detail. Frankly, many of the development frame-
works presented in this book could have entire books written about them.

This book will build a simple application using the following Apache technologies, except
for XDoclet:

Struts Web Development framework: A Model-View-Controller–based development frame-
work that enables developers to quickly assemble applications in a pluggable and extensible
manner. This book will highlight some of the more exciting pieces of the Struts 1.2 framework.
These pieces are described next.

Tiles: A new user interface framework that allows a development team to “componentize”
a screen into granular pieces of code that can be easily built and updated.

Dynamic ActionForms and Validator framework: A new set of tools for alleviating many of
the more monotonous tasks of writing web-based data collection screens.

Lucene: A powerful indexing and search tool that can be used to implement a search
engine for any web-based application.

Jakarta Velocity: A templating framework that allows a development team to easily build
“skinnable” applications, whose “look and feel” can be easily modified and changed.

ObjectRelationalBridge (OJB): An object/relational mapping tool that significantly simplifies
the development of data access code against a relational database. ObjectRelationalBridge
can literally allow a development team to build an entire application without ever having to
write a single line of JDBC code.

XDoclet: A metatag-based, code-generation tool that eliminates the need for a developer to
support the usual plethora of J2EE (web.xml, ejb-jar.xml, etc.) and Struts (struts-config.xml,
validation.xml, etc.) configuration files. It is important to note that XDoclet is not an Apache
technology. However, XDoclet has strong support for Struts and has been included as a
topic of discussion for this book.

Ant: An industry-accepted Java build utility that allows you to create sophisticated appli-
cation and deployment scripts.

In addition, this book includes a quick introduction and overview of Asynchronous
JavaScript and XML (Ajax). Ajax is a technology that addresses a very common problem in
web application development. Let me introduce this with the help of an example.2

CHAPTER 1 ■ WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED 3

2. The example described here is also a good example of the Tier Leakage antipattern.

Ch01_7389_CMP4 9/27/06 8:03 AM Page 3

Assume you have a web site that accepts information about a customer—typical informa-
tion like name, address, telephone number, etc. Some drop-down fields that you are likely to
have are State, City, and Country. Let’s assume that when the customer selects their Country,
you want to automatically refresh the State drop-down with appropriate values, and once
they select a State, you want to refresh the City drop-down. In a typical web application, this
requires a round trip to the server, and causes the entire page to refresh. Based on the amount
of information on the page, this might take a few seconds. In addition, you have to decide
which validations to execute at this stage (most likely none, because the user has not clicked
Save yet). With Ajax, this sort of an operation happens behind the scenes, or asynchronously,
avoiding the page refresh and improving the performance. Only the required information is
sent to the server and a small packet of information is received back and populated onto the
page.

Don’t worry if this is a little confusing at the moment. We will spend a lot of time on this
concept at the end of the book.

What This Chapter Is About
This chapter will not go into the details of the technologies just listed. Instead, it will highlight
some of the challenges in building web applications and explore some common design mis-
takes and flaws that creep into web-based application development efforts.

The truth is that, while all developers would like to write new applications from scratch,
most of their time is spent performing maintenance work on existing software. Identifying
design flaws, referred to as antipatterns throughout this book, and learning to use JOS devel-
opment frameworks to refactor or fix these flaws can be an invaluable tool.

Specifically, the chapter will explore how the following web-based antipatterns contribute
to entropy within an application:

• Concern Slush

• Tier Leakage

• Hardwired

• Validation Confusion

• Tight-Skins

• Data Madness

The chapter will end with a discussion of the cost savings associated with building your
own application development framework versus using the JOS development framework.

Challenges of Web Application Development
In the mid-nineties, the field of software development was finally achieving recognition as
being a discipline that could radically change the way business was conducted. The Internet
was quickly recognized as a revolutionary means for companies to communicate their data
and processes to not only their employees but also their customers.

CHAPTER 1 ■ WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED4

Ch01_7389_CMP4 9/27/06 8:03 AM Page 4

Fueling the Internet explosion was the World Wide Web and the web browser. Web
browsers offered an easy-to-use graphical interface that was based on the standards and
allowed easy access to data on a remote server. Originally, the web browser was viewed as a
means of allowing end users to access static content of a web server. Early web applications
were often nothing more than “brochures” that provided users browsing information about a
company and the products and services it offered.

However, many software developers realized that the web browser was a new application
development platform. The web browser could be used to build applications that provided
customers with direct and easy access to corporate applications and data sources. This was a
revolutionary concept because for many businesses, it eliminated the need to have a large
customer service department to handle routine customer requests. It allowed them to make
their processes more efficient and develop a more intimate relationship with their customers.

The “thin” nature of the web browser meant that software could be quickly written,
deployed, and maintained without ever touching the end user’s desktop. Moreover, the web
browser had a naturally intuitive interface that most end users could use with very little train-
ing. Thus, the Internet and the web browser have become a ubiquitous part of our computing
lives and a primary application development platform for many of today’s applications.

The transition of the web from being electronic “brochureware” to an application devel-
opment platform has not been without growing pains. Writing anything more than a small
web application often requires a significant amount of application architecture before even a
single line of real business logic is written.

The additional overhead for implementing a solid web application is the result of several
factors, such as

The stateless nature of the web: Hypertext Transfer Protocol (HTTP), the communication
protocol for the web, was built around a request/response model. The stateless nature
means a user would make a request and the web server would process the request. But
the web server would not remember who the user was between any two requests. Some
development teams build elaborate schemes using hidden form fields or manually gener-
ated session cookies that tie back to state data stored in a database. These schemes, while
meeting the functional needs of the application, are complex to implement and difficult
to maintain over the long term.

The limited functionality of a web browser–based user interface: The web originally started
as a means to share content and not perform business logic. The Hypertext Markup Lan-
guage (HTML) used for writing most web pages only offers limited capabilities in terms of
presentation. A web-based interface basically consists of HTML forms with a very limited
number of controls available for capturing user data.

The large number of users that the web application would have to support: Many times a
web application has thousands of concurrent users, all hitting the application using dif-
ferent computing and networking technologies.

The amount of content and functionality present in the web application: In equal proportion
to the number of end users to be supported, the amount of content and navigability of a
web-based application is staggering. Many companies have web-based applications in
which the number of screens the user can interact with and navigate to is in the thousands.
Web developers often have to worry about presenting the same content to diverse audiences
with a wide degree of cultural and language differences (also known as internationalization).

CHAPTER 1 ■ WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED 5

Ch01_7389_CMP4 9/27/06 8:03 AM Page 5

The number of systems that must be integrated so that a web application can give its end
users a seamless, friction-free experience: Most people assume that the front-end applica-
tion that a user interacts with is where the majority of development work takes place.
This is not true. Most web application development often involves the integration of
back-office applications, built on heterogeneous software and hardware platforms and
distributed throughout the enterprise. Furthermore, extra care must be taken in securing
these back-end systems so that web-based users do not inadvertently get access to sensi-
tive corporate assets.

The availability of web-based applications: Web-based applications have forced enter-
prises to shift from a batch-process mentality to one in which their applications and the
data they use must be available 365 days a year.

Early web-based development was often chaotic and free flowing. Little thought was
given to building web applications based on application frameworks that abstracted away
many of the “uglier” aspects of web development. The emphasis was on being first to market,
not on building solid application architectures. However, the size and complexity of web
applications grew with time, and many web developers found it increasingly difficult to
maintain and add additional functionality to their applications.

Most experienced software developers deal with this complexity by abstracting various
pieces of an application’s functionality into small manageable pieces of code. These small
pieces of code capture a single piece of functionality, and when taken together as a whole
form the basis for an application development framework.

■Definition An application development framework can be defined as follows: A collection of services
that provides a development team with a common set of functionality, which can be reused and leveraged
across multiple applications.

For web applications these services can be broken down into two broad categories:

• Enterprise services

• Application services

Enterprise Services
Enterprise services consist of the traditional “plumbing” code needed to build applications.
These services are extremely difficult to implement correctly and are outside the ability of
most corporate developers.

Some examples of enterprise services include

• Transaction management, to make sure any data changes made to an application are
consistently saved or rolled back across all the systems connected to the application.
This is extremely important in a web application that might have to process the
updates across half a dozen systems to complete an end user’s request.

CHAPTER 1 ■ WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED6

Ch01_7389_CMP4 9/27/06 8:03 AM Page 6

• Resource pooling of expensive resources like database connections, threads, and
network sockets. Web applications oftentimes have to support thousands of users
with a limited amount of computing resources. Managing the resources, like the
ones just named, is essential to have a scalable application.

• Load balancing and clustering to ensure that the web application can scale gracefully,
as the number of users using the application increases. This functionality also ensures
that an application can continue to function even if one of the servers running the
application fails.

• Security to ensure the validation of the users (authentication) and that they are allowed
to carry out the action they have requested (authorization). While security is often con-
sidered an administrative function, there are times when application developers need
to be able to access security services to authenticate and authorize an action requested
by a developer.

Fortunately, the widespread acceptance of building applications based on application
servers has taken the responsibility for implementing these services out of the hands of corpo-
rate developers. Enterprise-level development platforms, like Sun’s J2EE specification and
Microsoft’s .NET, offer all of the functionalities listed previously as ready-to-use services that
developers can use in their applications. Application servers have eliminated much of the
plumbing code that an application developer traditionally has had to write.

This book will not be focusing on the services provided by J2EE and .NET application
servers, rather it will be focusing heavily on the next topic, application services.

Application Services
The enterprise-level development platforms, such as J2EE or .NET, simplify many of the basic
and core development tasks. While the services offered solve many enterprise issues (security,
transaction management, etc.), they do not help the application architect with the often
daunting task of building web applications that are maintainable and extensible. To achieve
the goals of maintainability and extensibility, several challenges need to be overcome:

Application navigation: How does the end user move from one screen to the next? Is the
navigation logic embedded directly in the business logic of the application? Web applica-
tions, having a primitive user interface, can allow users to access and navigate through
thousands of pages of content and functionality.

Screen layout and personalization: As web applications run in a thin-client environment
(with a web browser), the screen layout can be personalized to each user. Since user
requirements are constantly changing, web developers need to adapt the look and feel
of the application quickly and efficiently. Design decisions made early in the application
design process can have a significant impact on the level of personalization that can be
built into the application at a later date.

Data validation and error handling: Very few web development teams have a consistent
mechanism for collecting data, validating it, and indicating to the end user that there is
an error. An inconsistent interface for data validation and error handling decreases the
maintainability of the application and makes it difficult for one developer to support
another developer’s code.

CHAPTER 1 ■ WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED 7

Ch01_7389_CMP4 9/27/06 8:03 AM Page 7

www.allitebooks.com

http://www.allitebooks.org

Reuse of business logic: This is one of the most problematic areas of web application
development, the reason being that the development team does not have a disciplined
approach for building its business logic into discrete components that can be shared
across applications. The developers couple the business logic too tightly to the web appli-
cation, and resort to the oldest method of reuse, cut and paste, when they want to use
that code in another application. This makes it difficult to maintain the business rules
in a consistent fashion across all of the web applications in the organization.

Data abstraction services: The majority of web application development efforts involve
integrating the front-end web application with back-office data stores. However, data
retrieval and manipulation logic is tedious code to write, and when poorly implemented,
ties the front-end application to the physical structure of the back-office data stores.

Unfortunately, most developers either do not have the expertise or are not given the time
to properly address these issues before they begin application development. With the pressure
to deliver the application, they are forced to “design on the fly” and begin writing code with
little thought to what the long-term implications of their actions are. This may result in
antipatterns being formed within their applications.

These antipatterns contribute to the overall complexity of the application and ultimately
increase the presence of entropy within the code base. Many times, developers do not realize
the impact of these antipatterns until they have implemented several web applications and
subsequently try to support these applications while developing new code.

In the following sections, we are going to introduce you to the concept of patterns and
antipatterns. We will then identify some common antipatterns in web application develop-
ment, based on the preceding discussion.

An Introduction to Patterns and Antipatterns
You cannot open a software development journal or go to the bookstore without seeing some
reference to software design patterns. While many software architects love to enshroud pat-
terns in a cloak of tribal mysticism, the concept of a software development pattern is really
quite simple.

Design patterns capture software development patterns in a written form. The idea
behind design patterns is to identify and articulate these best practices so as to help other
developers avoid spending a significant amount of time reinventing the wheel. The notion of
the design pattern did not originate in the field of software development.

Design patterns originated in the field of architecture. In 1977, an architect by the name
of Christopher Alexander was looking for a method to identify common practices in the field
of architecture that could be used to teach others. The concept of design patterns was first
applied to the field of software engineering in 1987 by Kent Beck and Ward Cunningham
(http://c2.com/doc/oopsla87.html).

However, the embracing of software development design patterns really occurred with
the publishing of the now infamous Gang of Four (GOF) book, Design Patterns: Elements of
Reusable Object Oriented Software (Gamma, Helm, Johnson, and Vlissides, Addison-Wesley,
ISBN: 0-20163-361-2). First published in 1995, this classic book identified 23 common design
patterns used in building software applications. Over a decade later, this is still one of the
most interesting books in the software space today and is still a best seller.

CHAPTER 1 ■ WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED8

Ch01_7389_CMP4 9/27/06 8:03 AM Page 8

The concept of the antipattern was first introduced in the groundbreaking text, AntiPatterns:
Refactoring Software, Architectures, and Projects in Crisis (Brown et al., John Wiley & Sons, ISBN:
0-47119-713-0). The book examined common patterns of misbehavior in system architecture and
project management. As you are going to explore various antipatterns associated with web appli-
cation development, it is useful to look at the original definition (from the aforementioned book)
of the antipattern:

■Definition An antipattern is a literary form that describes a commonly occurring solution to a problem
that generates decidedly negative consequences. The antipattern might be the result of a manager or devel-
oper not knowing any better, not having sufficient knowledge or experience in solving a particular type of
problem, or having applied a perfectly good pattern in the wrong context.

An antipattern is a means of establishing a common language for identifying poor design
decisions and implementations within your application. Antipatterns help identify poor
design decisions and help give suggestions on how to refactor or improve the software. How-
ever, the suggestions associated with an antipattern are only that. There is no right or wrong
way of refactoring any antipattern, because every instance of an antipattern is different. Each
instance of an antipattern will often have a unique set of circumstances that caused the pat-
tern to form. Web antipatterns focus on poor design decisions made in web-based
applications.

It is not an uncommon experience for a developer studying an antipattern to stop and
say, “I have seen this before,” or to feel a sense of guilt and think, “I have done this before.”
Antipatterns capture common development mistakes and provide suggestions on how to
refactor these mistakes into workable solutions. However, there is no single way to refactor an
antipattern. There are dozens of solutions. In this book, we merely offer you guidance and
advice, not dogmatic principles.

The web development antipatterns that are identified and discussed throughout this
book are not purely invented by the authors. They are based on our experience working with
lots of development teams on a wide variety of projects.

Web Application Antipatterns
For the purpose of this book, we have identified six basic antipatterns that most Java develop-
ers will encounter while building web-based applications. The web development antipatterns
to be discussed are Concern Slush, Tier Leakage, Hardwired, Validation Confusion, Tight-Skins,
and Data Madness.

Since the original definition of an antipattern is a literary form of communication, we will
discuss antipatterns in general. In addition, symptoms of the antipattern are identified along
with suggested solutions. However, the solutions described in this chapter are only described
at a very high level. Specific solutions for the antipatterns will be demonstrated, throughout
this book, by the application of JOS development frameworks.

CHAPTER 1 ■ WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED 9

Ch01_7389_CMP4 9/27/06 8:03 AM Page 9

We wrote this book with the following key points in mind:

• Most developers are not architects. They do not have the time and energy to write the
application architecture from the ground up and provide constant maintenance to it.
Therefore, practical solutions using an existing application’s framework are more valu-
able than the code snippets demonstrating one part of the application architecture. So
try to leverage other people’s code. Every feature you use in application architecture is
one less feature you have to write and maintain yourself.

• There are already several open source development frameworks ready for immediate
use. Writing architecture code might be intellectually challenging for some developers,
but it is often a waste of time, resources, and energy for the organization employing
them.

• Focus on the business logic. The job of most developers is to solve business problems.
Every time they are confronted with writing a piece of code that is not directly related
to solving a business problem, they should try to build a business case for writing
that code. An architecture without a business case is nothing more than an esoteric,
academic coding exercise.

• Keep it simple. The most extensible and maintainable systems are ones that always
focus on and strive for simplicity.

■Tip Architecture is done right when it has been implemented in the most straightforward fashion. Sim-
plicity, above everything else, will guarantee the long-term maintainability and extensibility of an application.

Now let’s discuss the different web antipatterns in more detail.

Concern Slush
The Concern Slush antipattern is found in applications when the development team has not
adequately separated the concerns of the application into distinct tiers (that is, the presenta-
tion, business, and data logic). Instead, the code for the applications is mixed together in a
muddy slush of presentation, business, and data tier logic. While development platforms like
J2EE help developers separate their application logic into distinct tiers, it is ultimately how the
application is designed that determines how well defined the application tiers are. Technology
can never replace good design and a strong sense of code discipline.

The Concern Slush antipattern makes the code extremely brittle. Changing even a small
piece of functionality can cause a ripple effect across the entire application. In addition, every
time a business rule needs to be modified or the structure of a data store changes, the devel-
opers have to search the application source code looking for all the areas affected by the
change. This leads to a significant amount of time being wasted.

CHAPTER 1 ■ WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED10

Ch01_7389_CMP4 9/27/06 8:03 AM Page 10

REFACTORING

Martin Fowler wrote a classic book on refactoring existing software code. The book, Refactoring: Improving
the Design of Existing Code (Fowler et al., Addison-Wesley, ISBN: 0-201-48567-2), is a must-have on any
developer’s bookshelf.

Unfortunately, he did not cover one of the most common and most unmanageable forms of refactoring:
refactoring through search and replace. One of the most common symptoms of the Concern Slush antipattern
is that when a change has to be made to a piece of code, developers have to open their editor, search for all
occurrences of that code within the application, and modify the code.

A good example of this would be when platform-specific database code is embedded in the business
tier. If a new requirement comes along that requires the application to support multiple database platforms,
developers must go through each of the business objects in their application hunting for references to the
platform-specific code and refactor the code. This can be a huge amount of work and might require extensive
retesting of the application. After all, every time code is touched, it is considered broken until a unit test
proves otherwise.

This type of “refactoring” occurs because developers oftentimes do not separate their application into
cleanly divided tiers of functionality. Instead, the application code evolves and when reuse is needed, rather
than refactor the code out into a single unit that can be called by anyone, the developers employ the oldest
form of reuse: reuse through cut and paste.

This antipattern also tends to lead to insidious bugs creeping into the application,
because invariably the developer will miss some code that needs to be modified. The bugs
resulting from these missed changes might not manifest themselves for several months after
the change to the original code was made. Hence, the development team has to spend even
more time tracking down the missed code and fixing, testing, and redeploying it.

Most of the time, the Concern Slush antipattern will emerge for one of the following reasons:

Lack of an application architect: The development team does not have a senior developer
playing the role of an application architect. The application architect’s primary role is to
provide high-level design constructions for the application. The architect establishes the
boundaries for each of the application tiers. They enforce development discipline within
the team and ensure that the overall architectural integrity of the application stays in
place.

Inexperience of the development team: Members of the development team are new to
enterprise development and write their web applications without a thorough understand-
ing of the technology they are working with. Many times the developers are used to
writing code in a procedural language (such as C or Visual Basic) and are suddenly
appointed to write web-based applications with an object-oriented language like Java.
Development team members continue to rely on their original training and continue to
write code in a procedural fashion, never fully embracing multitiered, object-oriented
design techniques.

Extreme time pressures: Team members realize their mistakes during the development
phase of a project, but they have been given an aggressive deadline to meet. They toss
caution to the wind and begin coding. They often do not realize how poorly designed
the application is until they begin the maintenance phase of the project.

CHAPTER 1 ■ WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED 11

Ch01_7389_CMP4 9/27/06 8:03 AM Page 11

Using an application prototype as the base for development: Often, the development team
will work together on a quick prototype for an application as a proof of concept. The code
for the prototype is poorly designed. However, upon demonstrating the prototype, it
becomes a huge success. The developers now fall victim to this success as they are put
under heavy pressure to deliver the prototyped application quickly. Therefore, they
decide to use the prototype code as the basis for the application.

Symptoms
For web applications based on the Java platform, the symptoms for this antipattern will
usually manifest in one of two ways:

• Overloading of responsibilities

• Indiscrete mixing of presentation, business, and data logic

The first symptom, overloading of responsibilities, occurs when a single or small group
of servlets or JSP pages is responsible for all actions carried out by the application. A basic
tenet of object-oriented design is that each class within the system should have a small,
well-defined, and discrete set of responsibilities.

A class, in this case a servlet or JSP page, is overloaded when the exact responsibilities
of the class are not clear. Servlets and JSP pages that do not have well-defined responsibilities
are often said to be fat or heavy. The call to such a page always includes a number of control
parameters that are used by the servlet or JSP page. These control parameters are used by
conditional logic embedded by the servlet or JSP page to determine the code to be executed
within the page.

In the second symptom, a servlet or JSP page mixes together presentation, business,
and data logic into one massive procedure call. An example of this particular symptom is
out.write() statements mixed with business logic and data logic. JSP pages are even more
prone to this abuse because JSP scriptlets make it extremely easy, for even a novice web
developer, to quickly build an application.

In the second symptom, you should assume that no session Enterprise JavaBeans (EJBs)
are being used in the application. When EJBs are used in an application, most developers
will gravitate toward putting the business logic in the EJBs. The Concern Slush antipattern
manifests itself in EJBs, when developers indiscriminately mix data access logic with the
application’s business logic in the EJB.

Solution
The solution is to provide software constructs that adequately separate the application’s
code into readily recognizable presentation, business, and data logic. For Java-based applica-
tions, the JSP Model-2 architecture is the recommended architectural model for building
web applications. The JSP Model-2 architecture is based on the concept of a Model-View-
Controller (MVC) framework.

In an MVC framework, all requests made by the end user are routed through a controller
class (usually a servlet) that determines the business object used to carry out the request. The
data that the users request and the corresponding business object are considered to be a
model piece of the framework. After the business object has processed the user’s request,

CHAPTER 1 ■ WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED12

Ch01_7389_CMP4 9/27/06 8:03 AM Page 12

the results are forwarded by the controller to the view portion of the framework. The view por-
tion of the framework is responsible for the presentation logic that renders the results of the
user’s request to the end user. Figure 1-1 presents a conceptual view of an MVC framework.

Figure 1-1. An overview of the Model-View-Controller (MVC) framework

The two key features of the MVC framework are as follows:

• The clean separation of the presentation, business, and data logic into self-contained
software constructs: The MVC framework acts as a natural roadmap that helps software
developers ensure that they keep their application’s logic broken into distinct pieces.

• The emphasis on building an application through declarative programming: Since all the
access to presentation, business, and data logic is controlled through a single entity (that
is, the controller), the developer can easily change the behavior of the application by
changing the configuration data being fed to the controller. The application developer
can completely “rewire” the code to display a different presentation interface or apply
different business logic without having to touch the source code for the application.

Tier Leakage
The Tier Leakage antipattern occurs in applications that have been separated into three dis-
tinct layers of application logic (presentation, business, and data). Tier leakage occurs when
code and functionality from one tier are exposed to the other tiers.

This antipattern occurs when the application architect does not enforce the principle of
“closed” tier architecture. A closed tier architecture allows each tier to communicate only with
the tier immediately below it. In other words, the presentation tier can only communicate
with the business tier. It should never bypass the business tier and access data directly. The
communication between the tiers happens via well-defined interfaces that do not expose the
underlying implementation details of that tier to the one above.

CHAPTER 1 ■ WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED 13

Ch01_7389_CMP4 9/27/06 8:03 AM Page 13

In the case of tier leakage, application architects break the application into three tiers, but
they also allow communication between the tiers to be open. This means the presentation tier
can still call and invoke services on the data access tier. In addition, even if there is encapsula-
tion of services, the underlying tier details still remain exposed. This allows the developers to
bypass the application partitions put in place and use functionality they do not have access to.

Figure 1-2 illustrates the differences between closed and open tier architectures.

Figure 1-2. Characteristics of open versus closed multitiered architectures

The end result of not enforcing a closed tier architecture is that while various classes
within the web application can be identified and grouped together in distinct tiers, dependen-
cies still exist between the tiers. This means that the changes to one tier can have side effects
that ripple through the code in the other tiers.

This antipattern occurs when the development team has not defined discrete interfaces
that hide the implementation details of one application tier from another. The causes for the
Tier Leakage antipattern are very similar to those of the Concern Slush antipattern: developer
inexperience, compressed delivery dates, and inappropriate reuse of an application prototype.

Symptoms
Some of the symptoms of tier leakage include the following:

• Changes to one tier break the code in other tiers.

• You find that you cannot easily reuse a piece of code in one tier because of dependen-
cies on a class in another tier.

The first symptom is a common mistake. Instead of wrapping data retrieved from the data
tier, the business tier exposes the details about the data tier, by allowing the data tier objects to
be passed back to the presentation tier. This results in the presentation class being unnecessarily
exposed to the data access technology being used to retrieve data (that is, JDBC, JDO, entity
beans). It also tightly couples the presentation code to the physical column names, data types,

CHAPTER 1 ■ WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED14

Ch01_7389_CMP4 9/27/06 8:03 AM Page 14

and data relationships from the database. If physical details of the database change, developers
need to walk through all of the code in the application to reflect the database changes.

The second symptom occurs when the developer allows tier-specific classes to be passed
back and forth between the different tiers. For example, you may have several classes, respon-
sible for the business logic within your web application, that you may want to reuse in a
Swing-based application. However, you cannot easily reuse the business logic, as it accesses
an HttpSession object passed to it. The developer, rather than pulling the data out of the ses-
sion object and then passing it to the business class, passes the HttpSession object directly to
the class.

Solution
You can take three steps to avoid tier leakage:

1. Ensure that all the communication between the different tiers of an application takes
place behind well-defined interfaces. Again, this means that one tier (say, the presenta-
tion tier) should only be able to access the tier immediately below it (say, the business
logic tier). In a Java-based web application, this can be accomplished through the judi-
cious application of J2EE design patterns. (We will be covering certain details of specific
J2EE design patterns. For more information about this, you may refer to J2EE Design Pat-
terns Applied [Juric et al., Wrox Press, ISBN: 1-86100-528-8].) J2EE design patterns like the
Business Delegate, Data Access Object, and Value Object patterns all do an excellent job
of wrapping the implementation details of the classes within a particular tier. These
design patterns will be described in greater detail in Chapters 4 and 5.

2. Perform frequent code reviews. If you are using a version control system, establish a
process where nothing is checked into the version control system without another
developer reviewing it. Provide a checklist of elements in the code that must be archi-
tecturally compliant. Make developers who want to check the code walk through the
code changes they have made and have the reviewer compare this against the compli-
ancy checklist. This review is designed to be very short (no more than five minutes
long). It forces the developers to verbalize exactly what they have written and gives
the reviewer a chance to catch tier leakage mistakes before they creep into the overall
code base.

3. Leverage JOS development frameworks, such as Struts, to abstract away the imple-
mentation details of one tier from the other. These frameworks provide services that
allow you to minimize dependencies between the application tiers.

While any one of these steps can help minimize the risk of tier leakage, you will probably
find that using all three steps combined is the most effective. As you will see in later chapters,
even with application frameworks such as Struts, you will still need to apply the J2EE design
patterns within your application.

Using a development framework can still create dependencies in your code if you are not
careful. You can still end up having your application being too tightly bound to the application
development framework. Chapter 5 will look at how you can leverage various J2EE design pat-
terns to cleanly separate your application code from the development framework.

CHAPTER 1 ■ WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED 15

Ch01_7389_CMP4 9/27/06 8:03 AM Page 15

Hardwired
While the Tier Leakage antipattern deals with dependencies being created at the architectural
level of the application, the Hardwired antipattern occurs when developers create dependen-
cies at the application level. Hardwiring arises when the developer does not provide
configurable plug-in points for screen navigation and application business rules. These items
are hard coded into the application source code; thus, any changes to functionality require the
source code to be altered, recompiled, and redeployed.

The Hardwired antipattern makes maintenance of web applications difficult because

• Web applications can have thousands of pages of functionality. Hardwiring the pages that
a user can navigate to directly in the application source code creates tight dependencies
between the pages. This makes it difficult to rearrange the order in which screens are
accessed. It also makes it nearly impossible to break screens into independent entities
that can be reused across multiple applications.

• The business rules for a web application are in a constant state of flux. There is an unre-
lenting demand by organizations to provide a personalized web experience to their
customers. Therefore, hardwiring the creation and invocation of business rules directly
to a particular page demands the constant modification of the application source code
by the web development team of the organization.

The Hardwired antipattern develops because the web development team does not use a
declarative approach to build its applications. A declarative design approach separates the
application’s “what happens” functionality from the application’s “how it happens” functionality.

In a declarative architecture, the application is broken into small pieces of functionality
that can be configured together using metadata. Metadata is essentially data about data. In
most application frameworks, metadata is used to define how a user’s request is to be carried
out and processed by the framework.

Metadata is usually stored in configuration files, independent of the application source
code. When the application development team needs to change the behavior of the applica-
tion, it does it by changing the metadata configuration. By using a declarative architecture,
new functionality can be added or existing behavior modified by changing the metadata. Thus
the behavior of the application is not hard coded and does not require a recompilation and
redeployment for the changes to take place.

The advantage of a declarative architecture is that it allows the development team to
introduce new functionality into the application, while minimizing the risk of ripple effects
that the change will have throughout the system. The disadvantage is that it can be overdone
to the point where the application becomes overabstracted and hard to maintain because of
the complex configuration rules, and suffers from poor performance.

Symptoms
The symptoms for the Hardwired antipattern begin to manifest themselves when changes to
the application require functionality that was not in its original scope. The symptoms of hard-
wiring include the following:

• Navigation logic is hard coded directly within the application’s source code. If your
development team has to search through all of the application’s source code to change
a link, your application is showing signs of the Hardwired antipattern.

CHAPTER 1 ■ WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED16

Ch01_7389_CMP4 9/27/06 8:03 AM Page 16

• The workflow of the application cannot be changed without a significant amount of
refactoring of the application’s source code. If the application you are writing always
assumes that data captured from the end user is always entered in a certain screen
order, then the application is hardwired.

• There is no consistency in how or when a particular screen invokes the business rules.
This inconsistency makes it difficult to maintain the application’s code and also means
that new logic or functionality cannot be “swapped” into the application. This symp-
tom is particularly common in projects with large development teams.

One of the true indications of whether or not your application is suffering from the Hard-
wired antipattern is when a small navigation or business rule change causes major headaches
for you or your development team.

Solution
The Hardwired antipattern can be refactored by taking the responsibility of writing the code
for screen navigation and business rule invocation out of the hands of the application devel-
oper. Instead, this logic should reside as a service within the application architecture. Since
this service is no longer a responsibility for the developer, consistency can be enforced among
the entire development team, and much of the application’s navigation, workflow, and busi-
ness rule invocation functionality can be described as metadata.

The MVC pattern is again an excellent tool for refactoring this antipattern. The controller
of the MVC is responsible for application navigation. The business logic for the application is
cleanly separated from the presentation logic. Metadata is used to tie all of these different
pieces together.

Even if an MVC development framework is used, the only true way to guarantee that a
Hardwired antipattern does not develop is through strong software development practices.
These practices include the following:

• Use design patterns judiciously to ensure that hardwiring does not occur between your
application code and the development framework you are using to build the applica-
tion. We will explore these design patterns in greater detail in Chapters 4 and 5.

• Write an application framework development guide that explains to your development
team how the application framework is partitioned into different pieces. Clearly iden-
tify the architectural best practices and identify those practices that violate the integrity
of the framework. The framework developer’s guide must be constantly updated, to
ensure that material contained within it matches the current implementation of the
framework. Depending on the complexity of the project, your development guide
might be something as simple as a set of UML diagrams explaining the major frame-
work components along with some notes about any design patterns used. Do not
always rely on the JOS framework documentation. JOS projects can have haphazard
documentation.

• Use the application framework development guide as a tool during code and design
reviews. Hold these review sessions frequently and make the developers accountable
for adhering to standards defined in the guide.

CHAPTER 1 ■ WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED 17

Ch01_7389_CMP4 9/27/06 8:03 AM Page 17

www.allitebooks.com

http://www.allitebooks.org

Do not become overzealous while avoiding hardwiring in your applications. It is easy to
want to make everything in the application configurable.

■Tip Good application architecture lies in its simplicity. You always have to negotiate between the need
to generalize and abstract framework functionality and the need to avoid tight dependencies. In the end,
overabstraction or tight dependencies both lead to the same problem: code that is too complex to under-
stand and maintain easily.

The Struts development framework takes a declarative approach to writing applications.
This framework allows you to change the behavior of the application by modifying configura-
tion files. In both of these frameworks, application configuration is very easy and is designed
to avoid the overabstraction problems mentioned previously.

Validation Confusion
The Validation Confusion antipattern revolves around the inconsistent application of valida-
tion and business logic in an application. Many web application developers do not clearly
separate the application’s validation logic from its business logic in an organized fashion.

The end result is the application consisting of a mess of JavaScript and server-side code
for handling data validations. The data validation code is split between the front-end screens
and also embedded within the business rules that carry out end-user requests. Logic for
handling end-user errors is often inconsistently applied and mixed with the business logic.

For the purpose of this book, validation logic is defined as any type of user interface code
that involves the following:

• Formatting of data being presented or collected from the end user.

• Checking to ensure the user entered the required data.

• Type checking to ensure that the data entered is the appropriate type. For instance, you
want to make sure that when users are asked to enter numerical data in a field, they do
not enter a nonnumeric character or nonnumeric string.

• Simple bound-checking logic to ensure that the data collected falls within a certain
range (whether it is numeric or date data being collected).

Validation logic is considered extremely “lightweight.” Validation rules are considered
light, because changing them should not have a significant amount of impact on the overall
business processes supported by the application. Business logic is the “heavyweight” cousin
of validation logic. Business logic supports business processes. Changing this logic can have a
significant impact on how a business is operated.

Why worry about the separation of validation logic from business logic? Failure to sepa-
rate these two types of logic from one another makes it difficult to support the code. Since the
validation logic is not centralized, developers have multiple spots to check when modifying a
business rule.

CHAPTER 1 ■ WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED18

Ch01_7389_CMP4 9/27/06 8:03 AM Page 18

More importantly, not cleanly partitioning the application’s validation logic from its busi-
ness logic can make it more difficult to reuse that business logic in another application. How
validation rules are enforced and communicated to the end user is often very specific to an
application. Business logic can be abstracted, generalized, and reused across multiple appli-
cations. However, with validation rule invocations specific to the application embedded inside
of the business logic, a tight dependency is created that makes code reuse problematic.

A clean validation logic approach can help avoid the antipatterns mentioned previously,
namely Concern Slush and Tier Leakage. The validation layer can be responsible for adapting
the input provided by the user interface to the input required by the business logic. This can
help prevent the user interface details from leaking down into the business logic.

This antipattern occurs when members of the web development team have not clearly
defined how they are going to handle the validation of the data collected from the end user.
They pass all of the data directly to the business rules in their application, without first putting
the data through some kind of filter that ensures data validity.

Symptoms
Validation Confusion can be spotted in any of the following cases:

• When asked where a particular validation rule for a screen resides, a developer has to
search through presentation (that is, a language like JavaScript or JSP scriptlets) and
business tier code to find the exact spot of the validation rule.

• The development team needs to constantly refactor code, because application-specific
validation rules are embedded inside of the business logic this team wants to reuse.

• There is no consistent mechanism for how validation errors are handled. End users
encounter different formats for presenting error messages. For example, in an applica-
tion with validation confusion, some of the errors might be displayed directly in the
web browser, while other errors will pop up in JavaScript alert windows. In short, there
is no consistency in the error handling that the end user experiences.

Solution
Refactoring the Validation Confusion antipattern can be accomplished by defining a consis-
tent set of services used for form validation in the web application. These validation services
are invoked before any of the business logic for the application is invoked. Any validation
errors that occur are immediately processed, and the end user is notified in a consistent and
repeatable fashion.

This means that the validation for the application only resides in one tier of the applica-
tion, using a consistent mechanism, for invoking the validation rules. This might mean having
all of the application validation logic reside in a standard set of JavaScript class libraries, or, as
is the case with Struts, moving all validation logic for a form to a set of Java classes that are
invoked whenever the user submits data.

In Chapter 3, we will discuss the mechanism provided by Struts for handling form valida-
tion and error.

CHAPTER 1 ■ WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED 19

Ch01_7389_CMP4 9/27/06 8:03 AM Page 19

Tight-Skins
Web-based applications have the ability to deliver unprecedented amounts of personalized
content to the end user. Traditionally, companies pushed information out to their customers
in a mass-marketing approach. In this approach, customers were categorized into broad
groups who shared similar interests and backgrounds. The company would then direct differ-
ent advertising messages about its products to these groups. This mass-marketing approach
was considered successful if the organization running the marketing campaign received a
response rate of 1 percent.

The web development platform, with its thin-client, easy-to-use, personalizable interface,
has turned the mass-marketing concept on its head. Web-based applications can deliver
tightly focused information and functionality to individual users, with very specific prefer-
ences and interests. Many of the sophisticated web applications currently online have the
following characteristics:

• End users can choose the information and content that they want to see.

• End users can also personalize the color, font, and layout of the web application user
interface to reflect their personal choices.

• A global audience is reached by presenting the web application in various languages,
using a look and feel appropriate for a particular end user’s culture.

However, the ability to deliver a customizable user interface to the end user requires some
careful planning in the design phase of a project. The Tight-Skins antipattern is a presentation
tier antipattern. It forms when the development team has not built its presentation tier to be
flexible enough to handle personalized content for individual end users.

This antipattern can occur for a number of reasons:

• The original requirements of the application did not include an extensible user inter-
face. However, requirements for the application changed. Since the development team
had not planned interface flexibility up front, it now has to face the challenge of refac-
toring the presentation tier of the application to support it.

• The development team was too focused on reuse at the business and data tier. The
team wrote the presentation tier in a monolithic fashion that did not have a component
structure. Most developers are very comfortable thinking in terms of generalization,
abstraction, and extensibility for server-side logic. However, the presentation code is
often written with no real attempt to “templatize” it into components that can be easily
swapped in and out of the application.

• The development team used the presentation code from the application prototype
(if there is one) for the production application. This is usually done to save time and
is again a reflection of the lack of design consideration for the user interface.

Unfortunately, the only way to combat the Tight-Skins antipattern, after it is formed, is
to rewrite the user interface from scratch. This is why it is critical to identify personalization
requirements for the application before any serious development work begins.

CHAPTER 1 ■ WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED20

Ch01_7389_CMP4 9/27/06 8:03 AM Page 20

Symptoms
This antipattern has a number of symptoms including the following:

• The application’s content is not separate from the application code. If you need to mod-
ify your application’s source code to change the content delivered to the end user, this
is a definite sign of a Tight-Skins antipattern. A common example would be when a JSP
page has a significant amount of JSP scriptlet code and HTML mixed together. Tight
coupling could exist between some of the contents of the page and the JSP scriptlets.

• The application screens are not based on templates. You have not designed your appli-
cation’s screen so that it is divided into discrete components (that is, the header, the
footer, navigation bars, etc.), without which you will find yourself propagating the same
change across multiple screens.

• The presentation tier is hard coded in one language. Many web applications start out
supporting only one group of people. All content for the application is written in only
that language. If the development team has to support multiple languages, it usually
has to scour all code for any content that will be displayed to the end user and then
translate it over to the new language. This is especially painful if more than two lan-
guages have to be supported.

Solution
The solution for the Tight-Skins antipattern involves cleanly separating application content
from your Java source code. This way the content can be presented in multiple formats with-
out having to wade through code. This also makes it easier to change how the content is to be
displayed to the end user. Some ways of separating the application’s content from its source
include the following:

• Use JSP tag libraries to completely abstract any Java code from a JSP page. This way
presentation content can easily be changed without having to wade through Java
application code.

• The Struts framework makes heavy use of custom JSP tag libraries. Some of the
Struts tag libraries will be covered in greater detail in Chapter 3.

• In addition to Struts, a developer can use a templating framework like Jakarta’s
Velocity framework to avoid embedding Java code inside the application.
Chapter 12 of this book will introduce you to the Velocity templating language
and its various uses.

• Separate the application’s content by making it external to the application’s source
code. Struts allows you to separate screen content and messages in a file independent
of the application. This way, content can be changed without having to change the
actual JSP page. This material will be covered in Chapter 4.

• Build your application’s screens using a template. The Struts 1.1 framework now allows
developers to build screen templates, based on a collection of tiles. Each individual tile
within a screen template represents a small component that can be easily plugged in,
pulled out, or even shared across multiple screens. Tiles also allow common elements
in the presentation to be shared across all of the screens in the application.

CHAPTER 1 ■ WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED 21

Ch01_7389_CMP4 9/27/06 8:03 AM Page 21

Data Madness
Most web developers know that embedding data access logic inside of presentation code is
poor design. Applications written in this fashion are difficult to maintain, and are tightly cou-
pled with the underlying data structure of the database that they are manipulating. A change
to the database can cause many elements of the user interface to be visited and often modi-
fied.

Many Java-based web development teams never allow the presentation layer of an appli-
cation to directly obtain a database connection and use it to access a data store. Instead, they
always wrap these calls inside of the business tier. The development team never breaks out the
Create, Retrieve, Update, and Delete (CRUD) logic associated with manipulating the data into
a distinct set of classes. Instead, the team intermixes business and data access logic together
inside the business tier.

The Data Madness antipattern forms when the application’s architect does not decide
how data access logic is to be abstracted away from the other tiers in the application. When
building a data access tier, the following items have to be considered:

• How data is going to be accessed and manipulated

• Mapping relational data to Java-based objects

• Abstracting away physical details and relationships of the underlying data store

• Wrapping nonportable, vendor-specific database extensions

• How transactions are going to be managed, particularly transactions that cross multiple
objects manipulating data from a data source

As most developers do not think of the data access tier while designing, the formation of a
Data Madness antipattern can significantly increase the amount of time and effort needed to
complete a project. Consider the following:

• Most database access in Java is accomplished via the JDBC standard.

• The JDBC standard uses standard SQL code to retrieve and manipulate data from a
relational database. It is very easy to write poorly behaving SQL. Furthermore, JDBC
and SQL code can be fairly tedious, in that oftentimes it requires a significant amount
of code to perform even small data access tasks like retrieving data from or inserting
data into a table.

• The JDBC API, while using Java objects in the actual API, does not take an object-
oriented approach to data access. JDBC uses a relational model that retrieves data in
a very row-oriented relational manner. This method of access is very clumsy and time
consuming for a Java developer to work with.

• In a medium to large application, a significant amount of a developer’s time can be
spent doing nothing more than writing JDBC code to access data.

A significant amount of the development team’s time is taken up writing data access code
(usually SQL code). Code that does not fit an object-oriented development model is prone to
be coded improperly, and is scattered haphazardly through an application’s business tier. This
is the crux of the Data Madness antipattern.

CHAPTER 1 ■ WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED22

Ch01_7389_CMP4 9/27/06 8:03 AM Page 22

Symptoms
Most development teams do not see the symptoms of the Data Madness antipattern until they
are well along in their development efforts. The first symptoms of the Data Madness antipat-
tern include the following:

• The same data access logic is repeated within several business logic classes. This symptom
is particularly prevalent in large development projects where very little development work is
being done in the database (there are no stored procedures, triggers, or queries being exe-
cuted inside the database). Developers are left to write their own data access code, and often
two developers will go after the same data for use in two different areas in the application
and end up with almost identical data access code.

• Members of the development team suddenly realize that they are seriously behind
schedule on the project. Upon examination, they find that most of their efforts are
spent writing database code.

• Data access helper classes and “homegrown” persistence frameworks suddenly appear
within the application source code. These helper classes might help reduce the amount
of code the developer is writing, but they do not solve the overall architectural issues of
not having a well-defined data access tier.

• The development team is unable to define the data access tier in anything other than
database or data access technology. Many development teams put a significant amount
of thought into how their application’s middle tier is designed. However, most develop-
ment teams treat the data access tier in physical rather than logical terms.

• A database has to be reorganized for performance reasons. If several table relationships
need to be changed, the development team faces a daunting refactoring project, as it
has to pour through all of the source code and make modifications to reflect the under-
lying database change.

• The developers try to port the application to a new database platform and find that
several key pieces of logic are relying on vendor-specific functionality. For example,
one of the most common problem areas is the generation of primary keys for a data-
base. Without a well-designed data access tier, moving an application from SQL Server
to Oracle can be a coding nightmare. SQL Server features auto-incrementing columns,
while Oracle uses sequence objects. This means to port the code you need to find every
SQL statement that uses sequences and change it. This is not a small task in a large
project. With a well-defined data access strategy in place, the development team could
have abstracted how primary keys are generated, and centralized all of this logic in one
class responsible for primary key generation.

• The development team wants to refactor the application to use the latest and greatest
technology (Java Data Objects, Web services—you choose the buzzword). Since the
technology used to retrieve and manipulate data is not abstracted away from the
classes using the data, the development team must again perform search-and-replace
missions to find all code that uses the existing technology, and replace it.

CHAPTER 1 ■ WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED 23

Ch01_7389_CMP4 9/27/06 8:03 AM Page 23

Solution
Two steps can be taken to refactor the Data Madness antipattern:

1. Include a clearly defined data access tier, which provides services that the business tier
can use to access data. These services should abstract away the physical details of the
database being accessed, any vendor-specific APIs being used, and how the data is
actually being retrieved.

2. Avoid writing data access code, whenever possible. Use technologies that will let the
developer map the underlying database tables to Plain Old Java Objects (POJOs). These
significantly reduce the amount of code that development team members must write
and let them more clearly focus on the functionality of the application.

The first step is a design-based approach involving the use of common J2EE data tier pat-
terns, like the Data Access Object and Value Object patterns, to abstract away database and
data access details. These patterns are extremely easy to implement and when used, help the
development team maintain data tier code without affecting the rest of the application.

The second step is a technology-based approach. Java is an object-oriented language that
is not well suited to deal with the table-centric structure of relational databases. Instead of
having the development team write its own SQL code, use an Object Relational (O/R) map-
ping tool to perform CRUD actions on behalf of the developers.

O/R mapping tools allow the development team to declare how data retrieved from the
database maps to Java objects. O/R mapping is not a new concept. The J2EE API supports the
concept of Container Managed Persistence (CMP) based entity beans. CMP-based entity beans
allow the developer to provide O/R mappings to the J2EE application server, and in turn, the
application server generates all of the SQL code needed to access the database.

An alternative to entity beans is to use commercial O/R mapping tools. These tools have
been available for years to C++ developers and have started gaining a significant amount of
acceptance from the Java development community.

Commercial O/R mapping tools, while being very powerful, often carry long and expen-
sive licensing agreements. They are often complicated to use and, being commercial products,
require a heavy investment in training before the development team becomes proficient in
their use.

However, over the last two years, JOS O/R mapping tools have started gaining more and
more acceptance as an alternative means of building data access tiers. In Chapter 5 of this
book, we are going to examine how one such JOS O/R mapping tool, ObjectRelationalBridge,
can be used to solve many of the problems created by the Data Madness antipattern.

Antipatterns, JOS Frameworks, and Economics
When web antipatterns form in an application, the cost of building and maintaining that
application grows substantially. The development team’s time is eaten up with the complexity
that has crawled its way into the application. Less time is available to write real code, and the
code that is written is usually of mediocre quality.

Why are these antipatterns allowed to form? Very few developers purposely write poorly
designed applications. We believe that web development frameworks can significantly reduce
the occurrences of web antipatterns forming within an application. Antipatterns sometimes
appear because applications are extremely complex to build and implement.

CHAPTER 1 ■ WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED24

Ch01_7389_CMP4 9/27/06 8:03 AM Page 24

Again, developers do not purposely go out and introduce these antipatterns. These
antipatterns often occur because the developers try to manage the complexity of just imple-
menting the application’s business logic. At times, they do not realize that the decisions they
make now will come at a high price later when an antipattern manifests itself.

A well-designed web development framework will promote consistency and structure for
the development team. A framework will provide core application services for screen naviga-
tion, data validation, error handling, business rule management, and data persistence. With
all of these benefits, why haven’t more Java web developers adopted the use of web develop-
ment frameworks in their application development efforts? The reasons vary:

• Writing a web development framework is expensive.

• Writing a development framework usually requires senior developers and architects
with a significant amount of design expertise.

• Development teams have not been able to build a business case for spending the
money necessary to build an application framework.

• The development team had to spend the time necessary to maintain the development
framework.

Until recently, open source development frameworks have not been readily available to
developers. This meant that if a development team wanted to use a framework, they needed to
build it themselves. Writing a homegrown development framework can be an expensive
undertaking. It usually requires a group of senior developers several months of uninterrupted
time to design, implement, and thoroughly test the development framework.

Most IT organizations do not have senior developers and architects sitting around with
nothing to do. Usually these individuals are extremely overallocated, and giving them the time
to focus on one problem requires commitment from the highest level of management. Even
after the framework is completed, additional ramp-up time is needed as the framework devel-
opers begin training the development teams in how to use the framework.

For example, the Struts framework has a significant number of services embedded in it.
To write an in-house version that offers even a fraction of the services offered by Struts, you
have to take into consideration the resources that have contributed to the Struts framework:

• The Struts framework was built by some of the finest developers currently in the indus-
try. Many of these individuals are senior Java developers who command extremely high
salaries.

• The Struts framework has had literally hundreds of individuals testing and debugging
the framework. Most organizations could not even begin to provide a quality assurance
(QA) team that could thoroughly debug a framework like Struts.

• Struts is now a mature framework that has literally hundreds of client implementations
all running on a wide variety of hardware and Java platforms.

For an organization to build a framework like Struts for internal use with the same level of
sophistication and quality assurance could literally cost between a half a million and a million
dollars.

Let’s not forget that even after a custom framework has been built, the costs of the frame-
work continue to accumulate, as you begin to factor in the development resources needed to
maintain and support the framework code base.

CHAPTER 1 ■ WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED 25

Ch01_7389_CMP4 9/27/06 8:03 AM Page 25

For organizations building their own application frameworks, it can take a year to a year
and a half before the organizations start seeing firm ROI from their framework development
efforts. (This includes the time needed to develop the framework and actually build two or
three applications using the framework.) This is simply too large of a leap of faith for most
companies to make.

Java Open Source development frameworks offer a viable alternative to building your own
application architecture. These frameworks provide the following advantages:

They are free to use. Most JOS frameworks have a liberal licensing agreement that lets you
use the framework free of charge for building your applications. The only real restrictions
that come into play with open source development tools is that the group sponsoring the
tools places restrictions on repackaging the tools and selling them as your own.

They are well supported. All of the open source development frameworks covered in this
book enjoy a significant amount of support. High-priority bugs that are discovered within
the framework are usually fixed and made available for general use within hours. In addi-
tion, mailing lists and Internet newsgroups offer a wealth of information on how to solve
common development problems encountered with JOS development frameworks.

The information is free of charge and, unlike most commercial software products, does not
require an annual support contract. Some open source projects have groups willing to sell
support for the product. JBoss (http://jboss.org) not only builds the JBoss Application
Server, but also offers different levels of paid support for the project.

They are extensible. If you find there are features lacking in the framework you have
chosen, there is nothing stopping you or your development team from extending it.
The source code is readily available for modification. Many of the features found in open
source frameworks started out as the result of challenges encountered by developers
using the framework. The developers extended the framework to handle their problems
and then donated their solutions back to the framework’s code base.

There are a couple of downsides with open source development frameworks that should
be noted:

Documentation for an open source framework can be extremely vague. People writing the
frameworks are donating most of their time and energy to do something that they love:
write code. But the same level of attention is not paid to the mundane but equally impor-
tant task of writing documentation. Occasionally, a JOS development framework does
require the developer to crack open a debugger to figure out what the framework is doing.

Open source frameworks tend to be very Darwinistic when it comes to features in the frame-
work. High-priority bugs in the JOS frameworks are often found and fixed immediately.
However, bugs that are of a low priority for the JOS framework developers might never be
fixed. This can be problematic for a development team using the framework that needs
that particular bug fixed.

JOS development frameworks are relatively new technology. Things can still go wrong with
them, and they cause unexpected behavior in your application. It is imperative that if
your development team is going to write mission-critical software with a JOS framework,
it needs to perform a significant amount of testing. In addition, the developers need to
ensure that the framework that they have chosen to use is supported by a vibrant devel-
opment group that actively supports their code.

CHAPTER 1 ■ WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED26

Ch01_7389_CMP4 9/27/06 8:03 AM Page 26

Open source frameworks free a development team from having to invest its time in writ-
ing infrastructure code. Infrastructure code is the entry price you must pay before you can
seriously begin writing an application. From the authors’ anecdotal experiences, in many
projects, up to 40 to 60 percent of development effort involves the implementation of infra-
structure code. For the “we don’t have time for architecture” development teams, that 40 to 60
percent of infrastructure development effort is usually spent in increased maintenance of the
application over the course of its lifetime.

■Note Trying to cut costs by implementing complex architectures shifts the up-front architect and infra-
structure costs to the maintenance phase of the application.

Ultimately, leveraging the functionality in open source frameworks translates into three
direct benefits:

• Less complexity for application developers in writing their applications

• More focus on writing code that has a direct benefit to the organization

• A significant cost savings, by allowing the development team to access a significant
amount of functionality without having to pay a dime for it

These benefits allow the developers to produce higher quality code and deliver their
applications more quickly to their end users.

From a management perspective, there are still some items to consider before you use a
JOS development framework on your projects:

• Using a Java Open Source framework does not eliminate the need to have an application
architect or architecture team. You still need individuals who can support JOS frame-
work questions and issues.

• The initial adoption of a JOS framework does require extra time to be built into a project
plan. The development team is going to need time to learn how to effectively use the
JOS framework. This means that the first one or two applications built on the frame-
work might take more time than what they would have taken without using the
framework.

• For the first application built on the framework, you should have someone who is experi-
enced with the framework to mentor your team. This might require bringing in outside
consulting resources. Consulting costs will be market rate if the JOS framework chosen
is widely known and used (that is, Struts). For more obscure JOS frameworks, consult-
ing costs could be significantly higher.

The JavaEdge Application
As stated earlier in this chapter, the purpose of this book is to provide a simple and straightfor-
ward roadmap that demonstrates how to successfully use the Apache web development
frameworks. To do this, we are going to show you how to build a simple weblog application

CHAPTER 1 ■ WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED 27

Ch01_7389_CMP4 9/27/06 8:03 AM Page 27

www.allitebooks.com

http://www.allitebooks.org

(also known as a blog). A weblog, in its simplest form, is an electronic bulletin board on which
one user can post a story and other users can comment on it. Often, a weblog ends up being a
combination of reports on real-world events with a heavy dose of editorial bias from the story-
writers and their commentators. The example weblog is called JavaEdge.

The requirements for the JavaEdge application are as follows:

Visitor registration: Individuals who visit the JavaEdge blog can register themselves to be
the members of the JavaEdge community. By registering, users can receive the weekly
JavaEdge newsletter.

Browse stories: Visitors of the JavaEdge web site will be able to see the latest top ten stories
posted by the JavaEdge community. When browsing the stories, the JavaEdge user will be
able to see a short summary of the story. Clicking a link next to each story will bring up
the complete story listing.

Browse comments: When users click a link next to each story, they will be presented with
not only a complete listing of the story they have chosen, but also all of the comments
associated with that particular story. Each posted comment will display the comment
text, when the comment was posted, and who posted it.

Post stories and comments: Individuals can post a story or comments for an already exist-
ing story. If the individuals choose to register themselves as JavaEdge members, any
stories or comments posted by them will show the name they provided during the regis-
tration process. If they do not register as JavaEdge members, they can still post stories and
comments, but their name will not appear next to the story. Instead, the story will appear
to be posted by an anonymous user.

User registration: Users can register to become members of the JavaEdge community by
providing some simple information (such as name, e-mail, user ID, password, etc.).

Search capabilities: A user can search all the stories posted on the JavaEdge web site using
a simple keyword search engine. Any hits found by the search engine will be displayed as
a list of URLs.

The application code for JavaEdge is relatively sparse because we wanted to focus more
on the underlying open source frameworks than building a full-blown application. In addition
to demonstrating the capabilities of the Apache Java development frameworks, the applica-
tion will illustrate some basic design principles that will ensure the long-term maintainability
and extensibility of the JavaEdge code base.

Summary
Not every application developer needs to be an architect. However, all application developers
need to have some basic understanding of software architecture. Otherwise, it is easy to
bypass common design mistakes that form antipatterns that can make code difficult to sup-
port and extend.

CHAPTER 1 ■ WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED28

Ch01_7389_CMP4 9/27/06 8:03 AM Page 28

This chapter has identified six common antipatterns that often spring up in web-based
application development. These antipatterns include

• Concern Slush

• Tier Leakage

• Hardwired

• Validation Confusion

• Tight-Skins

• Data Madness

Along with descriptions of these antipatterns, we discussed general solutions to these
antipatterns. A common theme that has formed throughout the discussions of solutions is
that JOS development frameworks offer a structured mechanism to develop applications and
minimize the amount of infrastructure code being written. Developing an application frame-
work is an expensive proposition. Open source frameworks have the advantage of being

• Free of charge

• Supported by a large and enthusiastic development community

• Easily extended to support new features and functionality

We also discussed the requirements of the JavaEdge application that we are going to
develop in this book.

The rest of this book will demonstrate the technique to use the following open source
frameworks to refactor the antipatterns discussed earlier:

• Struts web development framework

• ObjectRelationalBridge (OJB)

• XDoclet

• Velocity template engine

After reading this book, you should have

• A working definition of what an application framework is, the knowledge of the costs
and efforts of building an application development framework, and the attractiveness
of the open source framework.

• The ability to identify web antipatterns within your own projects. You should be able to
understand the root causes of these antipatterns and the long-term architectural impli-
cations of the antipatterns.

• An understanding of what steps needs to be taken to refactor the antipatterns.

CHAPTER 1 ■ WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED 29

Ch01_7389_CMP4 9/27/06 8:03 AM Page 29

• The ability to use common JOS development frameworks, like Struts, to refactor these
antipatterns out of your applications.

• A comprehensive set of best practices for each of the frameworks discussed in this
book. These best practices will cover a range of topics including what are common
development mistakes when using the framework and what design patterns can be
used to supplement the services offered by the framework.

CHAPTER 1 ■ WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED30

Ch01_7389_CMP4 9/27/06 8:03 AM Page 30

Struts Fundamentals

Building a web-based application can be one of the most challenging tasks for a development
team. Web-based applications often encompass functionality and data pulled from multiple IT
systems. Most of the time, these systems are built on a variety of heterogeneous software and
hardware platforms. Hence, the question that the team always faces is, how do we build web
applications that are extensible and maintainable, even as they get more complex?

Most development teams attack the complexity by breaking the application into small,
manageable parts that can communicate with one another via well-defined interfaces. Gener-
ally, this is done by breaking the application logic into three basic tiers: the presentation tier,
business logic tier, and data access tier. By layering the code into these three tiers, the devel-
opers isolate any changes made in one tier from the other application tiers. However, simply
grouping the application logic into three categories is not enough for medium to large proj-
ects. When coordinating a web-based project of any significant size, the application architect
for the project must ensure that all the developers write their individual pieces to a standard
framework that their code will “plug” into. If they do not, the code base for the application will
be in absolute chaos, because multiple developers will implement their own pieces using their
own development style and design.

The solution is to use a generalized development framework that has specific plug-in points
for each of the major pieces of the application. However, building an application development
framework from the ground up entails a significant amount of work. It also commits the devel-
opment team to build and support the framework. Framework support forces the development
team to exhaust resources that could otherwise be used for building applications.

The next three chapters of this book introduce you to a readily available alternative for
building your own web application development framework, the Apache Struts development
framework. These chapters do not cover every minute detail associated with the Struts devel-
opment framework; instead, they are a guide on how to use Struts to build the JavaEdge
application, introduced in Chapter 1.

This chapter is going to focus on installing the Struts framework, configuring it, and
building the first screen in the JavaEdge application. We cover the following topics in this
chapter:

• A brief history of the Struts development framework.

• A Struts-based application walkthrough.

• Setting up your first Struts project, including the physical layout of the project, and an
explanation of all the important Struts configuration files.

31

C H A P T E R 2

■ ■ ■

Ch02_7389_CMP4 9/27/06 8:11 AM Page 31

• Configuring a Struts application. Some of the specific configuration issues that will be
dealt with here include

• Configuring the Struts ActionServlet

• Configuring Struts actions in the struts-config.xml file

• Best practices for Struts configuration

In addition to our brief Struts configuration tutorial, we are going to discuss how Struts
can be used to build a flexible and dynamic user interface. We will touch briefly on some, but
not all, of the custom JSP tag libraries available to the Struts developer. Some of the things you
can do with tag libraries that will be covered in this chapter include

• Manipulating JavaBeans by using the Struts Bean tag library

• Making JSP pages dynamic by leveraging the conditional and iterating power of the
Struts Logic tag library

Let’s begin our discussion with some of the common problems faced while building an
application.

The JavaEdge Application Architecture
The JavaEdge application, which we are going to show you how to develop, is a very simple
weblog (that is, a blog) that allows the end users to post their stories and comment on the
other stories. We have already discussed the requirements of the JavaEdge application in
Chapter 1 in the section called “The JavaEdge Application.” The application is going to be
written completely in Java. In addition, all the technologies used to build this application
will be based on technology made available by the Apache Software Foundation.

In this section, we’ll focus on some of the architectural requirements needed to make this
application extensible and maintainable. This application is built by multiple developers. To
enforce consistency and promote code reuse, we will use an application development frame-
work that provides plug-in points for the developers to add their individual screens and
elements.

The framework used should alleviate the need for the JavaEdge developers to implement
the infrastructure code normally associated with building an application. Specifically, the
development framework should provide

• A set of standard interfaces for plugging the business logic into the application: A devel-
oper should be able to add and modify new pieces of functionality using the framework
while keeping the overall application intact (that is, a small change in the business logic
should not require major updates in any part of the application).

• A consistent mechanism for performing tasks: This includes tasks such as end-user data
validation, screen navigation, and invocation of the business logic. None of these tasks
should be hard coded into the application source code. Instead, they should be imple-
mented in a declarative fashion that allows easy reconfiguration of the application.

• A set of utility classes or custom JSP tag libraries that simplify the process in which the
developer builds new applications and screens: Commonly repeated development tasks,
such as manipulating the data in a JavaBean, should be the responsibility of the frame-
work and not the individual developer.

CHAPTER 2 ■ STRUTS FUNDAMENTALS32

Ch02_7389_CMP4 9/27/06 8:11 AM Page 32

The chosen development framework must provide the scaffolding in which the applica-
tion is to be built. Without this scaffolding, antipatterns such as Tier Leakage and Hardwired
will manifest themselves. We will demonstrate how Struts can be used to refactor these
antipatterns in this chapter. Now, let’s start the discussion on the architectural design of the
JavaEdge application.

The Design
We will use a Model-View-Controller (MVC) pattern as the basis for the JavaEdge application
architecture. The three core components of the MVC pattern, also known as a Model-2 JSP
pattern by Sun Microsystems, are shown in Figure 2-1.

Figure 2-1. A Model-View-Controller pattern

The numbers shown in the diagram represent the flow in which a user’s request is processed.
When a user makes a request to an MVC-based application, it is always intercepted by the con-
troller (step 1). The controller acts as a traffic cop, examining the user’s request and then invoking
the business logic necessary to carry out the requested action.

The business logic for a user request is encapsulated in the model (step 2). The model
executes the business logic and returns the execution control back to the controller. Any data
to be displayed to the end user will be returned by the model via a standard interface.

The controller will then look up, via some metadata repository, how the data returned
from the model is to be displayed to the end user. The code responsible for formatting the
data, to be displayed to the end user, is called the view (step 3). Views contain only the presen-
tation logic and no business logic. When the view completes formatting the output data
returned from the model, it will return execution control to the controller. The controller, in
turn, will return control to the end user who made the call.

The MVC pattern is a powerful model for building applications. The code for each screen
in the application consists of a model and a view. Neither of these components has explicit
knowledge of the other’s existence. These two pieces are decoupled via the controller, which
acts as intermediary between these two components. At runtime, the controller assembles
the required business logic and the view associated with a particular user request. This clean
decoupling of the business and presentation logic allows the development team to build a

CHAPTER 2 ■ STRUTS FUNDAMENTALS 33

Ch02_7389_CMP4 9/27/06 8:11 AM Page 33

pluggable architecture. As a result, new functionality and methods to format end-user data
can easily be written while minimizing the chance of any changes disrupting the rest of the
application.

New functionality can be introduced into the application by writing a model and view
and then registering these items to the controller of the application. Let’s assume that you
have a web application whose view components are JSP pages generating HTML. If you want
to rewrite this application for a mobile device, or in something like Swing instead of standard
web-based HTML for users’ requests, you would only need to modify the view of the applica-
tion. The changes you make to the view implementation will not have an impact on the other
pieces of the application. At least in theory!

In a Java-based web application, the technology used to implement an MVC framework
might look as shown in Figure 2-2.

Figure 2-2. The Java technologies used in an MVC

An MVC-based framework offers a very flexible mechanism for building web-based
applications. However, building a robust MVC framework infrastructure requires a significant
amount of time and energy from your development team. It would be better if you could
leverage an already existing implementation of an MVC framework. Fortunately, the Struts
development framework is a full-blown implementation of the MVC pattern.

In the next section, we are going to walk through the major components of the Struts
architecture. While Struts has a wide variety of functionalities available in it, it is still in its
most basic form, which is an implementation of an MVC pattern.

Using Struts to Implement the MVC Pattern
The Struts development framework (and many of the other open source tools used in this
book) is developed and managed by the Apache Software Foundation (ASF). The ASF has
its roots in the Apache Group. The Apache Group was a loose confederation of open source
developers who, in 1995, came together and wrote the Apache Web Server. (The Apache
Web Server is the most popular web server in use and runs over half of the web applications
throughout the world.) Realizing that the group needed a more formalized and legal standing

CHAPTER 2 ■ STRUTS FUNDAMENTALS34

Ch02_7389_CMP4 9/27/06 8:11 AM Page 34

for protecting their open source intellectual property rights, the Apache Group reorganized as
a nonprofit organization—the Apache Software Foundation—in 1999.

The Struts development framework was initially designed by Craig R. McClanahan. Craig,
a prolific open source developer, is also one of the lead developers for another well-known
Apache project, the Tomcat servlet container. He wrote the Struts framework to provide a solid
underpinning for quickly developing JSP-based web applications. He donated the initial
release of the Struts framework to the ASF, in May 2002.

All of the examples in this book are based on Struts release 1.2, which is the latest stable
release. It is available for download from http://struts.apache.org/.

With this brief history of Struts complete, let’s walk through how a Struts-based applica-
tion works.

Walking Through Struts
Earlier in this chapter, we discussed the basics of the MVC pattern, on which the Struts devel-
opment framework is based. Now, let’s explore the workflow that occurs when an end user
makes a request to a Struts-based application. Figure 2-3 illustrates this workflow.

Figure 2-3. The Struts implementation of an MVC pattern

Imagine an end user looking at a web page (step 1). This web page, be it a static HTML
page or a JavaServer Page, contains a variety of actions that the user may ask the application
to undertake. These actions may include clicking a hyperlink or an image that takes them to
another page, or perhaps submitting an online form that is to be processed by the application.
All actions that are to be processed by the Struts framework will have a unique URL mapping
(that is, /execute/*) or file extension (that is, *.do). This URL mapping or file extension is used
by the servlet container to map all the requests over to the Struts ActionServlet.

CHAPTER 2 ■ STRUTS FUNDAMENTALS 35

Ch02_7389_CMP4 9/27/06 8:11 AM Page 35

The Struts ActionServlet acts as the controller for the Struts MVC implementation. The
ActionServlet will take the incoming user request (step 2) and map it to an action mapping
defined in the struts-config.xml file. The struts-config.xml file contains all of the configuration
information needed by the Struts framework to process an end user’s request. An <action> is
an XML tag defined in the struts-config.xml file that tells the ActionServlet the following
information:

• The Action class that is going to carry out the end user’s request. An Action class is a
Struts class that is extended by the application developer. Its primary responsibility is
to contain all of the logic necessary to process an end user’s request.

• An ActionForm class that will validate any form data that is submitted by the end user.
It is extended by the developer. It is important to note that not every action in a Struts
application requires an ActionForm class. An ActionForm class is necessary only when
the data posted by an end user needs to be validated. An ActionForm class is also used
by the Action class to retrieve the form data submitted by the end user. An ActionForm
class will have get() and set() methods to retrieve each of the pieces of the form data.
This will be discussed in greater detail in Chapter 3.

• Where the users are to be forwarded to after their request has been processed by the
Action class. There can be multiple outcomes from an end user’s request. Thus, an
action mapping can contain multiple forward paths. A forward path, which is denoted
by the <forward> tag, is used by the Struts ActionServlet to direct the user to another
JSP page or to another action mapping in the struts-config.xml file.

Once the controller has collected all of the preceding information from the <action> ele-
ment for the request, it will process the end user’s request. If the <action> element indicates
that the end user is posting the form data that needs to be validated, the ActionServlet will
direct the request to the defined ActionForm class (step 3).

An ActionForm class contains a method called validate(). (The configuration code exam-
ples given later in this chapter may help you to understand this discussion better.) The
validate() method is overridden by the application developer and holds all of the validation
logic that will be applied against the data submitted by the end user. If the validation logic is
successfully applied, the user’s request will be forwarded by the ActionServlet to the Action
class for processing. If the user’s data is not valid, an error collection called ActionErrors is
populated by the developer and returned to the page where the data was submitted.

If the data has been successfully validated by the ActionForm class, or the <action-mapping>
does not define an ActionForm class, the ActionServlet will forward the user’s data to the Action
class defined by the action mapping (step 4). The Action class has three public methods and
several protected ones. For the purpose of this discussion, we will consider only the execute()
method of the Action class. This method, which is overridden by the application developer,
contains the entire business logic necessary for carrying out the end-user request.

Once the Action has completed processing the request, it will indicate to the
ActionServlet where the user is to be forwarded. It does this by providing a key value that
is used by the ActionServlet to look up from the action mapping. The actual code used to
carry out a forward will be shown in the section called “Configuring the homePageSetup
Action Element” later in this chapter. Most of the time, users will be forwarded to a JSP
page that will display the results of their request (step 5). The JSP page will render the data
returned from the model as an HTML page that is displayed to the end user (step 6).

CHAPTER 2 ■ STRUTS FUNDAMENTALS36

Ch02_7389_CMP4 9/27/06 8:11 AM Page 36

In summary, a typical web screen, based on the Struts development framework, will
consist of the following:

• An action that represents the code that will be executed when the user’s request is
being processed. Each action in the web page will map to exactly one <action> element
defined in the struts-config.xml file. An action that is invoked by an end user will be
embedded in an HTML or a JSP page as a hyperlink or as an action attribute inside a
<form> tag.

• An <action> element that will define which ActionForm class, if any, will be used to
validate the form data submitted by the end user. It will also define which Action class
will be used to process the end user’s request.

• An Action class can use one or more forwards. A forward is used to tell the ActionServlet
which JSP page should be used to render a response to the end user’s request. A forward is
defined as a <forward> element inside of the <action> element. Multiple forwards can be
defined within a single <ActionMapping> element.

Now that we have completed a conceptual overview of how a single web page in a Struts
application is processed, let’s look at how a single page from the JavaEdge blog is written and
plugged into the Struts framework.

Getting Started: The JavaEdge Source Tree
Before diving into the basics of Struts configuration, we need to enumerate the different
pieces of the JavaEdge application’s source tree. The JavaEdge blog is laid out in the directory
structure shown in Figure 2-4.

The root directory for the project is called waf. There are several key directories under-
neath it, as listed here:

• src: Contains the entire JavaEdge source code of the application. This directory has
several subdirectories, including

• java: All Java source files for the application.

• ojb: All ObjectRelationalBridge configuration files. These files are discussed in
greater detail in Chapter 5.

• web: The entire source code of the application that is going to be put in the
WEB-INF directory. Files in this directory include any image file used in
the application along with any JSP files.

• sql: All of the MySQL-compliant SQL scripts for creating and prepopulating the waf
database used by the JavaEdge application.

• build: Contains the Ant build scripts used to compile, test, and deploy the application.

• lib: Contains the jar files for the various open source projects used to build the JavaEdge
application.

CHAPTER 2 ■ STRUTS FUNDAMENTALS 37

Ch02_7389_CMP4 9/27/06 8:11 AM Page 37

www.allitebooks.com

http://www.allitebooks.org

Figure 2-4. The JavaEdge directory structure

The JavaEdge application is built, tested, and deployed with the following software:

Tomcat 5.5.16: Tomcat is an implementation of Sun Microsystems’ Servlet and JSP speci-
fications. It is considered by Sun Microsystems to be the reference implementation for its
specifications. The JavaEdge application is built and deployed around Tomcat. In Chapter 4,
the open source application server bundle, JBoss 3/Tomcat 5.5.16, is used to run the appli-
cation. Tomcat is available for download at http://tomcat.apache.org/. JBoss is an open
source J2EE application server produced by JBoss. It can be downloaded at http://jboss.org.

MySQL: MySQL was chosen because it is one of the most popular open source databases
available today. It is highly scalable and extremely easy to install and configure.
MySQL 5.0 is available for download at http://www.mysql.com.

Ant: Version 1.6.5 of the Apache Software Foundation’s Ant build utility can be down-
loaded at http://ant.apache.org/.

Lucene: Lucene is a Java-based open source search engine. Version 1.9.1 can be down-
loaded at http://lucene.apache.org.

Velocity: Version 1.4 of this alternative templating framework to JSP is available at
http://jakarta.apache.org/velocity/.

ObjectRelationalBridge (OJB) 1.0.4: OJB is an open source Object Relational mapping
tool available from the Apache DB Project. It can be downloaded from http://db.apache.
org/ojb.

CHAPTER 2 ■ STRUTS FUNDAMENTALS38

Ch02_7389_CMP4 9/27/06 8:11 AM Page 38

■Note All of the source code used in this book can be downloaded from the Apress web site (http://
www.apress.com). We will not be discussing how to configure any of the development tools listed previously
in this chapter. For information on how to configure these tools to run the code examples in this book, please
refer to the readme.txt file packaged with the source code.

We will start the JavaEdge Struts configuration by demonstrating how to configure the
application to recognize the Struts ActionServlet.

Configuring the ActionServlet
Any application that is going to use Struts must be configured to recognize and use the Struts
ActionServlet. Configuring the ActionServlet requires that you manipulate two separate con-
figuration files:

web.xml: Your first task is to configure the Struts ActionServlet as you would any other
servlet by adding the appropriate entries to the web.xml file.

struts-config.xml: Your second task is to configure the internals of the ActionServlet.
Since version 1.1 of the Struts framework, the recommended mechanism for this configu-
ration is to use the struts-config.xml file. You can still configure the ActionServlet using
the init-param tag in web.xml, but this feature will be removed at a later date and is now
officially deprecated.

An example of the <servlet> tag that is used to configure the ActionServlet for the
JavaEdge application is shown here:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app
PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com//dtd/web-app_2_3.dtd">

<web-app>

<!--Setting up the MemberFilter-->
<filter>
<filter-name>MemberFilter</filter-name>
<filter-class>com.apress.javaedge.common.MemberFilter</filter-class>

</filter>

<filter-mapping>
<filter-name>MemberFilter</filter-name>
<url-pattern>/execute/*</url-pattern>

</filter-mapping>

CHAPTER 2 ■ STRUTS FUNDAMENTALS 39

Ch02_7389_CMP4 9/27/06 8:11 AM Page 39

<!-- Standard Action Servlet Configuration (with debugging) -->
<servlet>
<servlet-name>action</servlet-name>
<servlet-class>org.apache.struts.action.ActionServlet</servlet-class>
<init-param>

<param-name>config</param-name>
<param-value>/WEB-INF/struts-config.xml </param-value>

</init-param>
<init-param>

<param-name>validating</param-name>
<param-value>true </param-value>

</init-param>
<load-on-startup>2</load-on-startup>

</servlet>

<!-- Standard Action Servlet Mapping -->
<servlet-mapping>
<servlet-name>action</servlet-name>
<url-pattern>/execute/*</url-pattern>

</servlet-mapping>

<!-- The Usual Welcome File List -->
<welcome-file-list>
<welcome-file>default.jsp</welcome-file>

</welcome-file-list>

<taglib>
<taglib-uri>/taglibs/struts-bean</taglib-uri>
<taglib-location>/WEB-INF/taglibs/struts-bean.tld</taglib-location>

</taglib>

<taglib>
<taglib-uri>/taglibs/struts-html</taglib-uri>
<taglib-location>/WEB-INF/taglibs/struts-html.tld</taglib-location>

</taglib>

<taglib>
<taglib-uri>/taglibs/struts-logic</taglib-uri>
<taglib-location>/WEB-INF/taglibs/struts-logic.tld</taglib-location>

</taglib>

<taglib>
<taglib-uri>/taglibs/struts-template</taglib-uri>
<taglib-location>/WEB-INF/taglibs/struts-template.tld</taglib-location>

</taglib>

CHAPTER 2 ■ STRUTS FUNDAMENTALS40

Ch02_7389_CMP4 9/27/06 8:11 AM Page 40

<taglib>
<taglib-uri>http://jakarta.apache.org/taglibs/veltag-1.0</taglib-uri>
<taglib-location>/WEB-INF/taglibs/veltag.tld</taglib-location>

</taglib>

<!-- Tiles Tage Library Descriptors -->
<taglib>

<taglib-uri>/taglibs/struts-tiles</taglib-uri>
<taglib-location>/WEB-INF/taglibs/struts-tiles.tld</taglib-location>

</taglib>
</web-app>

Anyone who is familiar with Java servlet configuration will realize that there is nothing
particularly sophisticated going on here. The <filter> and <filter-mapping> tags define a fil-
ter that checks if the user has logged in to the application. If the user has not yet logged in,
they will automatically be logged in as an anonymous user. This filter is called every time the
Struts ActionServlet is invoked. The <servlet> tag defines all the information needed to use
the Struts ActionServlet in the JavaEdge application. The <servlet-name> tag provides a name
for the servlet. The <servlet-class> tag indicates the fully qualified Java class name of the
Struts ActionServlet.

From the preceding example, you will notice that not all configuration settings have been
moved into the struts-config.xml file. Mainly, the configuration parameters that are still speci-
fied using the <init-param> tag are those that are required to either find or read the
struts-config.xml file. Specifically, you are left with the parameters in Table 2-1.

Table 2-1. The ActionServlet’s web.xml Configuration Parameters

Parameter Name Parameter Value

config This parameter provides the ActionServlet with the location of the
struts-config.xml file. By default the ActionServlet looks for struts-config.xml
at /WEB-INF/struts-config.xml. If you place your struts-config.xml at this
location, then you can omit this parameter, although we recommend that you
always specify the location. That way if the default value for this parameter
changes in a later release of Struts, then your application won’t be broken.

validating You should always leave this parameter set to true. Setting this parameter to
true causes the struts-config.xml file to be read by a validating XML parser.
This will at some point in your development career save you from tearing your
hair out trying to debug your application only to find there is a rogue angle
bracket in your config file.

The other important part of configuring the ActionServlet is setting up the mapping so
the container passes the correct requests to the Struts framework for processing. This is done
by defining a <servlet-mapping> tag in the web.xml file. The mapping can be done in one of
two ways:

• URL prefix mapping

• Extension mapping

CHAPTER 2 ■ STRUTS FUNDAMENTALS 41

Ch02_7389_CMP4 9/27/06 8:11 AM Page 41

In URL prefix mapping, the servlet container examines the URL coming in and maps it to
a servlet. The <servlet-mapping> for the JavaEdge application is shown here:

<web-app>
...
<servlet-mapping>
<servlet-name>action</servlet-name>
<url-pattern>/execute/*</url-pattern>

</servlet-mapping>
</web-app>

This servlet mapping indicates to the servlet container that any request coming into
the JavaEdge application, which has a URL pattern of /execute/*, should be directed to the
ActionServlet (defined by the <servlet-name> shown previously) running under the JavaEdge
application. For example, if you want to bring up the home page for the JavaEdge application,
you would point your browser to http://localhost:8080/JavaEdge/execute/homePageSetup,
where JavaEdge is the application name, execute is the URL prefix, and homePageSetup is the
Struts action.

■Note It is important to note that all URLs shown in our code examples are case sensitive and must be
entered exactly as they appear.

The servlet container, upon getting this request, would go through the following steps:

1. Determine the name of the application. The user’s request indicates that they are mak-
ing a request for the JavaEdge application. The servlet container will then look in the
web.xml file associated with the JavaEdge application.

2. The servlet container will find the servlet that it should invoke. For this, it looks for a
<servlet-mapping> tag that matches a URL pattern called execute. In the JavaEdge
web.xml file, this <servlet-mapping> tag maps to the ActionServlet (that is, the Struts
ActionServlet).

3. The user’s request is then forwarded to the ActionServlet running under the JavaEdge
application. The homePageSetup in the preceding URL is the action the user would like
the Struts framework to carry out. Remember, an action in Struts maps to an <action>
element in the struts-config.xml file. (Note that we will be going through how to set up
an <action> element in the section “Configuring the homePageSetup Action Element.”)
This <action> element defines the Java classes and JSP pages that will process the
user’s request.

The second way to map the user’s request to the ActionServlet is to use extension map-
ping. In this method, the servlet container will take all URLs that map to a specified extension
and send them to the ActionServlet for processing. In the example that follows, all of the
URLs that end with an *.st extension will map to the Struts ActionServlet:

<web-app>
<servlet-mapping>

CHAPTER 2 ■ STRUTS FUNDAMENTALS42

Ch02_7389_CMP4 9/27/06 8:11 AM Page 42

<servlet-name>action</servlet-name>
<url-pattern>*.st</url-pattern>

</servlet-mapping>
</web-app>

If you use extension mapping to map the user’s requests to the ActionServlet, the URL to
get to the JavaEdge home page would be http://localhost:8080/ JavaEdge/homePageSetup.st,
where JavaEdge is the application name, homePageSetup is the Struts action, and .st is the
extension.

For the JavaEdge application being built in the next four chapters, we will be using the
URL prefix method (this is the best practice for setting up and prepopulating the screens).

Once the ActionServlet is configured within the container, all that is left to do is config-
ure the actual parameters for the Struts environment. The most important piece of
configuration needed is specifying the controller. Since version 1.1, the actual processing of
requests has been refactored from the ActionServlet and placed in a controller object. This
pattern, called the Application Controller pattern, provides a simple mechanism to decouple
the processing of the Struts request from the actual physical request mechanism, in this case
the ActionServlet. To configure the controller, you simply add this entry to the struts-
config.xml file:

<controller
processorClass="org.apache.struts.action.RequestProcessor">

Although this entry in the configuration file is entirely optional, RequestProcessor is the
default controller, and adding it means that any changes to the Struts framework in the future,
such as a change in the default controller, will not affect your application. The controller ele-
ment has a wide variety of parameters for configuring the Struts request controller, the most
widely used being those in Table 2-2.

Table 2-2. Configuration Parameters for the Struts Request Controller

Parameter Name Parameter Value

className Using this parameter, you can define a separate configuration bean to handle
the configuration of the Struts controller. By default this parameter is set to
org.apache.struts.config.ControllerConfig.

contentType Using this parameter, you can configure the default content type to use for each
response from the Struts controller. The default for this is text/html and the
default can be overridden by each action or JSP within your application as
needed.

locale Set this parameter to true (which is the default) to store a Locale object in the
user’s session if there isn’t one already present.

maxFileSize If you are taking advantage of the Struts file-upload capabilities, then you can
configure the maximum file size allowed for upload. You specify an integer value
to represent the maximum number of bytes you wish to allow.
Alternatively you can suffix the number with K, M, or G to represent kilobytes,
megabytes, or gigabytes, respectively. The default for this is 250 megabytes.

multipartClass By default, the org.apache.struts.upload.CommonsMultipartRequestHandler
class is used to handle multipart uploads. If you have your own class to handle
this behavior or you want to override the behavior of the default class, then you
can use this parameter to do so.

CHAPTER 2 ■ STRUTS FUNDAMENTALS 43

Ch02_7389_CMP4 9/27/06 8:11 AM Page 43

The final part of this configuration is to configure a resource bundle to enable you to
externalize the application’s resources such as error messages, label text, and URLs. The Struts
framework provides support for resource bundles in almost all areas, and its support is central
to delivering a successfully internationalized application. To configure the resource bundle,
you simply specify the name of the properties file that stores your externalized resources:

<message-resources
parameter="ApplicationResources"
null="false" />

The parameter attribute is the name of the properties file without the file extension that
contains the application resources. For example, if your resource bundle is named Applica-
tionResources.properties, then the value of the parameter attribute is ApplicationResources.

Additional configuration parameters for both the <controller> and <message-resource>
tags can be found at http://struts.apache.org/1.x/userGuide/configuration.html.

As the servlet configuration is complete for the JavaEdge application, let’s focus on setting
up and implementing your first Struts action, the homePageSetup action. This action sends the
user to the JavaEdge home page. However, before the user actually sees the page, the action
will retrieve the latest postings from the JavaEdge database. These postings will then be made
available to the JSP page, called homePage.jsp.

■Note If you look at homePage.jsp, you will notice that it is very small and that it does not seem to contain
any content. homePage.jsp describes the physical layout of the page in terms of individual screen compo-
nents. The actual content for the JavaEdge home page is contained in homePageContent.jsp. Chapter 6 will
go into greater detail on how to “componentize” your application’s screens.

This page displays the latest ten stories in a summarized format and allows the user to log
in to JavaEdge and view their personal account information. In addition, the JavaEdge reader
is given a link to see the full story and any comments made by the other JavaEdge readers.

To set up the homePageSetup action, the following steps must be undertaken:

1. A Struts <action> element must be added in the struts-config.xml file.

2. An Action class must be written to process the user’s request.

3. A JSP page, in this case homePage.jsp, must be written to render the end user’s request.

It is important to note that the Struts framework follows all of Sun Microsystems’ guide-
lines for building and deploying web-based applications. The installation instructions, shown
here, can be used to configure and deploy Struts-based applications in any J2EE-compliant
application server or servlet container.

Configuring the homePageSetup Action Element
Setting up your first struts-config.xml file is a straightforward process. This file can be located
in the WEB-INF directory of the JavaEdge project, downloaded from the Apress web site

CHAPTER 2 ■ STRUTS FUNDAMENTALS44

Ch02_7389_CMP4 9/27/06 8:11 AM Page 44

(http://www.apress.com). The location of the struts-config.xml file is also specified in the
config attribute, in the web.xml entry of the ActionServlet.

The struts-config.xml file has a root element, called <struts-config>:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE struts-config
PUBLIC "-//Apache Software Foundation//DTD Struts Configuration 1.1//EN"

"http://struts.apache.org/dtds/struts-config_1_1.dtd">
<struts-config>
...
</struts-config>

All actions for the JavaEdge application are contained in a tag called <action-mappings>.
Each action has its own <action> tag. To set up homeSetupAction, you would add the following
information to the struts-config.xml file:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE struts-config
PUBLIC "-//Apache Software Foundation//DTD Struts Configuration 1.1//EN"

"http://struts.apache.org/dtds/struts-config_1_1.dtd">
<struts-config>
<action-mappings>
<action
path="/homePageSetup"
type="com.apress.javaedge.struts.homepage.HomePageSetupAction"
unknown="true">
<forward name="homepage.success" path="/WEB-INF/jsp/homePage.jsp"/>

</action>
</action-mappings>

</struts-config>

An action has a number of different attributes that can be set. In this chapter, we will only
be concerned with the path, type, and unknown attributes of the <action> element. The other
<action> element attributes are discussed in Chapter 3. Let’s now discuss the previously men-
tioned attributes briefly.

• path: Holds the action name. When an end-user request is made to the ActionServlet,
it will search all of the actions defined in the struts-config.xml file and try to make a
match, based on the value of the path attribute.

If the ActionServlet finds a match, it will use the information in the rest of the <action>
element to determine how to fulfill the user’s request. In the preceding example, if
users point their web browser to http://localhost:8080/JavaEdge/homePageSetup, the
ActionServlet will locate the action by finding the <action> element’s path attribute that
matches /homePageSetup. It is important to note that all path names are case sensitive.

■Note Note that all values in the path attribute for an action must start with a forward slash (/) to map to
the attribute. If you fail to put this in your path attribute, Struts will not find your action.

CHAPTER 2 ■ STRUTS FUNDAMENTALS 45

Ch02_7389_CMP4 9/27/06 8:11 AM Page 45

• type: Holds the fully qualified name of the Action class. If the user invokes the URL
shown in the preceding bullet, the ActionServlet will instantiate an Action subclass
of type com.apress.javaedge.struts.homepage.HomePageSetupAction. This class will
contain all of the logic to look up the latest ten stories that are going to be displayed to
the end user.

• unknown: Can be used by only one <action> element in the entire struts-config.xml file.
When set to true, this tag tells the ActionServlet to use this <action> element as the
default behavior whenever it cannot find a path attribute that matches the end user’s
requested action. This prevents the user from entering a wrong URL and, as a result,
getting an error screen. Since the JavaEdge home page is the starting point for the entire
application, we set the homePageSetup action as the default action for all unmatched
requests. Only one <action> tag can have its unknown attribute set to true. The first one
encountered, in the struts-config.xml file, will be used and all others will be ignored. If
the unknown attribute is not specified in the <action> tag, the Struts ActionServlet will
take it as false. The false value simply means that Struts will not treat the action as the
default action.

An <action> tag can contain one or more <forward> tags. A <forward> tag is used to indi-
cate where the users are to be directed after their request has been processed. It consists of
two attributes, name and path. The name attribute is the name of the forward. Its value is the
user-defined value that can be arbitrarily determined. The path attribute holds a relative URL,
to which the user is directed by the ActionServlet after the action is completed. The value of
the name attribute of the <forward> tag is a completely arbitrary name. However, this attribute
is going to be used heavily by the Action class defined in the <action> tag. Later in this chap-
ter, when we demonstrate the HomePageSetupAction class, you will find out how an Action class
uses the <forward> tags for handling the screen navigation. When multiple <forward> tags
exist in a single action, the Action class carrying out the processing can indicate to the
ActionServlet that the user can be sent to multiple locations.

Exception handling has been greatly improved since the Struts 1.1 release. Struts now
allows developers to register unchecked exceptions raised in the Struts action with the Struts
ActionServlet. This concept, known as exception handlers, relieves developers of the need to
clutter up their Action code with what is essentially the same application exception logic.
Refer to Chapter 4 for more details on handling exceptions in Struts.

Sometimes, you might have to reuse the same <forward> tag across multiple <action>
tags. For example, in the JavaEdge application, if an exception is raised in the business tier, it
is caught and rewrapped as an ApplicationException.

In Struts version 1.0x of the JavaEdge application, when an ApplicationException is
caught in an Action class, the JavaEdge application will forward the end user to a properly for-
matted error page. Rather than repeating the same <forward> tag in each Struts action defined
in the application, you can define it to be global. This is done by adding a <global-forwards>
tag at the beginning of the struts-config.xml file:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE struts-config
PUBLIC "-//Apache Software Foundation//DTD Struts Configuration 1.1//EN"

"http://struts.apache.org/dtds/struts-config_1_1.dtd">
<struts-config>

CHAPTER 2 ■ STRUTS FUNDAMENTALS46

Ch02_7389_CMP4 9/27/06 8:11 AM Page 46

<global-forwards type="org.apache.struts.action.ActionForward">
<forward name="system.error" path="/WEB-INF/jsp/systemError.jsp"/>

</global-forwards>
<action-mappings>

...
</action-mappings>

</struts-config>

The <global-forwards> tag has one attribute, called type, which defines the ActionForward
class that forwards the user to another location. Struts is an extremely pluggable framework,
and it is possible for a development team to override the base functionality of the Struts
ActionForward class with its own implementation. If your development team is not going
to override the base ActionForward functionality, the type attribute should always be set to
org.apache.struts.action.ActionForward. After the <global-forwards> tag is added to the
struts-config.xml file, any Action class in the JavaEdge application can redirect a user to
systemError.jsp by indicating to the ActionServlet that the user’s destination is the
system.error forward.

Now let’s discuss the corresponding Action class of the homePageSetup, that is,
HomePageSetupAction.java.

Building HomePageSetupAction.java
The HomePageSetupAction class, which is located in the src/java/com/apress/javaedge/struts/
homepage/HomePageSetupAction.java file, is used to retrieve the top postings made by
JavaEdge users. The code for this Action class is shown here:

package com.apress.javaedge.struts.homepage;

import com.apress.javaedge.common.ApplicationException;
import com.apress.javaedge.story.StoryManagerBD;
import com.apress.javaedge.story.IStoryManager;
import org.apache.struts.action.Action;
import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionForward;
import org.apache.struts.action.ActionMapping;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.util.Collection;

/**
* Retrieves the top ten posting on JavaEdge.
*/
public class HomePageSetupAction extends Action {

/** The execute() method comes from the base Struts Action class. You
* override this method and put the logic to carry out the user's
* request in the overridden method.

CHAPTER 2 ■ STRUTS FUNDAMENTALS 47

Ch02_7389_CMP4 9/27/06 8:11 AM Page 47

www.allitebooks.com

http://www.allitebooks.org

*/
public ActionForward execute(ActionMapping mapping,

ActionForm form,
HttpServletRequest request,
HttpServletResponse response) {

IStoryManager storyManagerBD = StoryManagerBD.getStoryManagerBD();
Collection topStories = storyManagerBD.findTopStory();
request.setAttribute("topStories", topStories);

return (mapping.findForward("homepage.success"));
}

}

Before we begin with the discussion on the HomePageSetupAction class, let’s have a look at
the Command design pattern.

The Power of the Command Pattern
The Action class is an extremely powerful development metaphor, because it is implemented
using the Command design pattern.

DESIGN PATTERNS IN STRUTS

This chapter introduces the Command pattern. According to the Gang of Four’s (Erich Gamma, Richard Helm,
Ralph Johnson, and John Vlissides) definition, a Command pattern

Encapsulates a request as an object, thereby letting you parameterize clients with

different requests . . .

—Design Patterns, Elements of Reusable Object-Oriented Software
(Addison-Wesley, ISBN: 0-20163-361-2), p. 233

A Command pattern lets the developer encapsulate a set of behaviors in an object and provides a
standard interface for executing that behavior. Other objects can also invoke the behavior, but they have no
exposure to how the behavior is implemented. This pattern is implemented with a concrete class and either
an abstract class or an interface.

The JavaEdge application uses different J2EE design patterns such as the Business Delegate and Value
Object patterns. Chapters 4 and 5 will explore these patterns in greater detail.

The parent class or interface contains a single method definition (usually named perform()
or execute()) that carries out some kind of action. The actual behavior for the requested action
is implemented in a child class (which, in this example, is HomePageSetupAction), extending the
Command class. The Struts Action class is the parent class in the Command pattern implementa-
tion. Figure 2-5 illustrates the relationship between the Action and HomePageSetupAction classes.

CHAPTER 2 ■ STRUTS FUNDAMENTALS48

Ch02_7389_CMP4 9/27/06 8:11 AM Page 48

Figure 2-5. A simple object model of the Action and HomePageSetupAction classes

The use of the Command design pattern is one of reasons why Struts is so flexible. The
ActionServlet does not care how a user request is to be executed. It only knows that it has a
class that descends from Action and will have an execute() method. When the end user makes
a request, the ActionServlet just executes the execute() method in the class that has been
defined in struts-config.xml. If the development team wants to change the way in which an
end-user request is processed, it can do it in two ways: either rewrite the code for the already
implemented Action class or write a new Action class and modify the struts-config.xml file to
point to the new Action class. The ActionServlet never knows that this change has occurred.
Later in this section, we will discuss how Struts’ flexible architecture can be used to solve the
Hardwired antipattern. For the sake of this discussion on the Command pattern, let’s go back
to the HomePageSetupAction class.

The first step in writing the HomeSetupAction class is to extend the Struts Action class:

public class HomePageSetupAction extends Action

Next, the execute() method for the class needs to be overridden. (In the Action class
source code, several execute() methods can be overridden, some of which are deprecated
as of version 1.1. Other methods allow you to make requests to Struts from a non-HTTP-
based call. For the purpose of this book, we will be dealing with only HTTP-based execute()
methods.)

public ActionForward execute(ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response){

}

The execute() method signature takes four parameters:

• ActionMapping: Used to find an ActionForward from the struts-config.xml file and return
it to the ActionServlet. This ActionForward class contains all the information needed by
the ActionServlet to forward end users to the next page in the application.

• ActionForm: A helper class that is used to hold any form data submitted by the end user.
The ActionForm class is not being used in the HomePageSetupAction class shown earlier.
This class will be discussed in greater detail in Chapters 3 and 4.

CHAPTER 2 ■ STRUTS FUNDAMENTALS 49

Ch02_7389_CMP4 9/27/06 8:11 AM Page 49

• HttpServletRequest: A standard HttpServletRequest object passed around within the
servlet.

• HttpServletResponse: A standard HttpServletResponse object passed around within the
servlet.

Now let’s look at the actual implementation of the execute() method:

IStoryManager storyManagerBD = StoryManagerBD.getStoryManagerBD();
Collection topStories = storyManagerBD.findTopStory();

The first step, carried out by the execute() method, is to use the StoryManagerBD class to
retrieve a business delegate of type IStoryManager. The storyManagerBD variable is then used
to retrieve a Collection, called topStories, of the top stories currently submitted to the
JavaEdge application. The topStories collection holds up to ten instances of type StoryVO. A
StoryVO is based on the J2EE design pattern called the Value Object pattern. A value object is
used to wrap data retrieved from a data source in a Java-based implementation-neutral inter-
face. Each StoryVO in the topStories collection represents a single row of data retrieved from
the JavaEdge database’s story table.

The Business Delegate pattern is a J2EE design pattern used to abstract away how a piece
of business logic is actually being invoked and carried out. In the preceding example, the
HomePageSetupAction class does not know how the StoryManagerBD class is actually retrieving
the collection of stories. The StoryManagerBD could be using an EJB, Web service, or a Plain Old
Java Object to carry out the requested action.

■Note The term J2EE patterns is a bit of a misnomer. The Business Delegate pattern and Value Object pat-
tern—also known as the Data Transfer Object pattern—were used in other languages before Java. However,
they were called J2EE patterns when the patterns were explained in the book Core J2EE Design Patterns:
Best Practices and Design Strategies (Alur et al., Prentice Hall, ISBN: 0-13064-884-1).

After the storyManagerBD.findTopStory() method is executed, the topStories object will
be placed as an attribute of the request object:

request.setAttribute("topStories", topStories);

When the ActionServlet forwards this to the homePage.jsp page (as defined in the struts-
config.xml file), the homePage.jsp will be able to walk through each item in the topStories
Collection and display the data in it to the end user.

Once the story data has been retrieved, an ActionForward will be generated by calling the
findForward() method in the mapping object passed into the execute() method:

return (mapping.findForward("homepage.success"));

We have finished showing you how to configure the struts-config.xml file and build an
Action class to prepopulate the JavaEdge’s home screen with story data. Before we look at the
JSP file, homePage.jsp, let’s discuss how to refactor the Hardwired antipattern.

CHAPTER 2 ■ STRUTS FUNDAMENTALS50

Ch02_7389_CMP4 9/27/06 8:11 AM Page 50

Refactoring the Hardwired Antipattern

The declarative architecture of the Struts development framework provides a powerful tool for
avoiding or refactoring a Hardwired antipattern. (Refer to Chapter 1 for the discussion of
Hardwired and other antipatterns.)

All activities executed by the user in a Struts-based application should be captured within
an <action> tag defined in the struts-config.xml file. Using an <action> tag gives the developer
flexibility in the way in which the screen navigation and application of business rules are carried.

The advantage of using the <action> tag is that it forces the development team members
to take a declarative approach to writing their applications. It decouples the various pieces of
code associated with building out a screen from one another. For instance, when JSP develop-
ers build an application without the Struts framework, they oftentimes will have a JSP page
directly invoke a piece of business logic to process a user’s request.

This essentially “hardwires” the JSP page to that piece of business logic. If you want to
change the behavior of the application, you need to either rewrite the class containing the
business logic or have the JSP call a completely different method or class containing the new
business logic. The problem is that modifying the relationship between the calling code (the
JSP) and the called code (the Java class containing the business logic) is easy to do when deal-
ing with one or two applications. However, maintaining this type of relationship in an
enterprise environment where the same caller/called relationship might occur in 10 to 20
applications can be extremely difficult.

What the <action> tag allows is for the development team to extract the caller/called
relationship out of the code into a metadata file (struts-config.xml). The development team
describes caller/called relationships in a declarative fashion, rather than programmatically.
If the development team wants to change the behavior of a screen in an application, it can
modify the <action> tag to describe a new Struts Action class to carry out users’ requests. The
development team still has to write code to implement the new functionality, but there are
now fewer touchpoints in the existing application that it has to modify.

This all ties back to the following:

■Note If you touch the code, you break the code. The less code you have to modify to implement new
functionality, the less chance there is that existing functionality will be broken and cause a ripple of
destructive behavior through your applications.

According to our experience, while building a Struts application, <action> elements
defined within the application fall into three general categories:

• Setup actions: Used to perform any activities that take place before the user sees a
screen. In the JavaEdge home page example, you use the /HomePageSetup action to
retrieve the top stories from the JavaEdge database and place them as an attribute in
the HttpServletRequest object.

• Form actions: Actions that will process the data collected from the end user.

• Tear-down actions: Can be invoked after a user’s request has been processed. Usually,
this type of action carries out any cleanup needed after the user’s request has been
processed.

CHAPTER 2 ■ STRUTS FUNDAMENTALS 51

Ch02_7389_CMP4 9/27/06 8:11 AM Page 51

These three types of actions are purely conceptual. There is no way in the Struts <action>
tag to indicate that the action being defined is a setup, form, or tear-down action. However,
this classification is very useful for your own Struts applications. A setup action allows you to
easily enforce “precondition” logic before sending a user to a form. This logic ensures that,
before the user even sees the page, certain conditions are met. Setup actions are particularly
useful when you have to prepopulate a page with data. In Chapters 3 and 4, when we discuss
how to collect the user data in Struts, you will find several examples of a setup action used to
prepopulate a form. In addition, putting a setup action before a page gives you more flexibility
in maneuvering the user. This setup action can examine the current application state of end
users, and based on this state navigate them to any number of other Struts actions or JSP
pages.

A form action is invoked when the user submits the data entered in an HTML form. It
might insert a record into a database or just perform some simple data formatting on the data
entered by the user.

A tear-down action is used to enforce “postcondition” logic. This logic ensures that after
the user’s request has been processed, the data needed by the application is still in a valid
state. Tear-down actions might also be used to release any resources previously acquired by
the end user.

As you become more comfortable with Struts, you will prefer chaining together the differ-
ent actions. You will use the setup action to enforce preconditions that must exist when the
user makes the initial request. The setup action usually retrieves some data from a database
and puts it in one of the different JSP page contexts (that is, page, request, session, or applica-
tion context). It then forwards the user to a JSP page that will display the retrieved data. If
the JSP page contains a form, the user will be forwarded to a form action that will process
the user’s request. The form action will then forward the user to a tear-down action that will
enforce any postcondition rules. If all postcondition rules are met, the tear-down action
will forward the user to the next JSP page the user is going to visit.

It’s important to note that by using the strategies previously defined, you can change an
application’s behavior by reconfiguring the struts-config.xml file. This is a better approach
than to go constantly into the application source code and modify the existing business logic.

With this discussion on the Hardwired antipattern wrapped up, let’s have a look at home-
Page.jsp and the Struts tag libraries that are used to render the HTML page that users will see
after the request has been processed.

Constructing the Presentation Tier
Now we are going to look at how many of the Struts custom JSP tag libraries can be used to
simplify the development of the presentation tier. With careful design and use of these tag
libraries, you can literally write JSP pages without ever writing a single Java scriptlet. The
Struts development framework has four sets of custom tag libraries:

• Bean

• Logic

• HTML

• Tiles

We will not be discussing the Struts HTML or the Struts Tiles tag libraries in this chapter.
Instead, we will discuss these tags in Chapters 4 and 6, respectively.

CHAPTER 2 ■ STRUTS FUNDAMENTALS52

Ch02_7389_CMP4 9/27/06 8:11 AM Page 52

Before we begin our discussion of the individual tag libraries, the web.xml file for the
JavaEdge application has to be modified to include the following Tag Library Definitions
(TLDs):

<web-app>
...
<taglib>

<taglib-uri>/taglibs/struts-bean</taglib-uri>
<taglib-location>/WEB-INF/taglibs/struts-bean.tld</taglib-location>

</taglib>

<taglib>
<taglib-uri>/taglibs/struts-html</taglib-uri>
<taglib-location>/WEB-INF/taglibs/struts-html.tld</taglib-location>

</taglib>

<taglib>
<taglib-uri>/taglibs/struts-logic</taglib-uri>
<taglib-location>/WEB-INF/taglibs/struts-logic.tld</taglib-location>

</taglib>

<taglib>
<taglib-uri>http://jakarta.apache.org/taglibs/veltag-1.0</taglib-uri>
<taglib-location>/WEB-INF/taglibs/veltag.tld</taglib-location>

</taglib>

<taglib>
<taglib-uri>/taglibs/struts-tiles</taglib-uri>
<taglib-location>/WEB-INF/taglibs/struts-tiles.tld</taglib-location>

</taglib>
</web-app>

With these TLDs added to the web.xml file, we next look at the first page in the JavaEdge
application that an end user will encounter: the JavaEdge home page.

The JavaEdge Home Page
All of the pages in the JavaEdge application are broken into three core components: a header,
footer, and page body. All of the pages share the same header and footer. Let’s look at the
header and footer JSP files (header.jsp and footer.jsp) for all JavaEdge JSP pages and the source
code for the homePageContent.jsp. We are not going to go into the actual page in great deal
in this section. Instead, we will explore the different Struts tags and demonstrate their use
throughout the rest of this book as we construct the JavaEdge application.

■Note There are two sets of JSP files in the JavaEdge application. When using the URLs listed in the
book for the JavaEdge application, you are going to be using JSP files using the <template> tags found
in Struts 1.0x. These files were kept in here for backward compatibility with the first edition of this book.
The <template> tags are going to be deprecated in future of releases of Struts.

CHAPTER 2 ■ STRUTS FUNDAMENTALS 53

Ch02_7389_CMP4 9/27/06 8:11 AM Page 53

In Chapter 6, we look at a second set of JSP files based on the Tiles framework; these
replaced the <template> tags. The JSP files in the first set use the exact same set of JSP code,
with the only difference being how the screens are componentized. So anything you see in
this chapter and the following regarding the JSP tag libraries is applicable to the code seen in
Chapter 6.

header.jsp
Following is the code for the header JSP file:

<%@ page language="java" %>
<%@ taglib uri="/taglibs/struts-bean" prefix="bean" %>
<%@ taglib uri="/taglibs/struts-html" prefix="html" %>
<%@ taglib uri="/taglibs/struts-logic" prefix="logic" %>
<%@ taglib uri="/taglibs/struts-template" prefix="template" %>

<bean:message key="javaedge.header.title"/></p>

<div align="center">
<center>
<html:form action="login">
<table border="0" cellpadding="0"

cellspacing="0" style="border-collapse: collapse"
bordercolor="#111111" width="100%" id="AutoNumber1"
bgcolor="#FF66FF">

<tr>
<logic:notEqual scope="session"

name="memberVO" property="memberId" value="1">
<td width="16%" bgcolor="#99CCFF" align="center">

<bean:message key="javaedge.header.logout"/>
</td>

</logic:notEqual>
<logic:notEqual scope="session"

name="memberVO" property="memberId" value="1">
<td width="17%" bgcolor="#99CCFF" align="center">

<bean:message key="javaedge.header.myaccount"/>
</td>

</logic:notEqual>

<td width="17%" bgcolor="#99CCFF" align="center">
<bean:message key="javaedge.header.postastory"/>

</td>

<td width="17%" bgcolor="#99CCFF" align="center">
<bean:message key="javaedge.header.viewallstories"/>

</td>

<td width="17%" bgcolor="#99CCFF" align="center">

CHAPTER 2 ■ STRUTS FUNDAMENTALS54

Ch02_7389_CMP4 9/27/06 8:11 AM Page 54

<bean:message key="javaedge.header.search"/>
</td>

<logic:equal scope="session" name="memberVO" property="memberId" value="1">
<td width="17%" bgcolor="#99CCFF" align="center">
<bean:message key="javaedge.header.signup"/>

</td>
</logic:equal>

</tr>
<tr>

<logic:equal scope="session" name="memberVO" property="memberId" value="1">
<td width="16%" bgcolor="#99CCFF" align="left" colspan="4">

<bean:message key="javaedge.header.userid"/>
<input type="text" name="userId"/>

<bean:message key="javaedge.header.password"/>
<input type="password" name="password"/>

<html:submit property="submitButton" value="Submit"/>
<html:errors property="invalid.login"/>

</td>
</logic:equal>

</tr>

</table>
</html:form>
</center>

</div>

footer.jsp
Next is the code for the footer JSP file:

<%@ page language="java" %>
<%@ taglib uri="/taglibs/struts-bean" prefix="bean" %>
<%@ taglib uri="/taglibs/struts-html" prefix="html" %>
<%@ taglib uri="/taglibs/struts-logic" prefix="logic" %>
<%@ taglib uri="/taglibs/struts-template" prefix="template" %>

<table border="0" cellpadding="0"
cellspacing="0" style="border-collapse: collapse"
bordercolor="#111111" width="100%"
id="AutoNumber1" bgcolor="#FF66FF">

<tr bgcolor="#99CCFF">
<td>

</td>

</tr>
</table>

CHAPTER 2 ■ STRUTS FUNDAMENTALS 55

Ch02_7389_CMP4 9/27/06 8:11 AM Page 55

homePageContent.jsp
Here is the code for homePageContent.jsp:

<%@ page language="java" %>
<%@ taglib uri="/taglibs/struts-bean" prefix="bean" %>
<%@ taglib uri="/taglibs/struts-html" prefix="html" %>
<%@ taglib uri="/taglibs/struts-logic" prefix="logic" %>
<%@ taglib uri="/taglibs/struts-template" prefix="template" %>

<H1>Today's Top Stories</H1>
<TABLE>

<logic:iterate id="story" name="topStories"
scope="request" type="com.apress.javaedge.story.StoryVO">

<TR bgcolor="#99CCFF">
<TD>

<bean:write name="story" scope="page" property="storyTitle"/>

Posted By: <bean:write name="story"
property="storyAuthor.firstName"/>

<bean:write name="story" property="storyAuthor.lastName"/>
on <bean:write name="story" property="submissionDate"/>

</TD>

</TR>
<TR>
<TD>
<bean:write name="story" property="storyIntro"/>

</TD>
</TR>
<TR>
<TD align="right">

<a href='/JavaEdge/execute/storyDetailSetup?storyId=➂

<bean:write name="story" property="storyId"/>'>
Full Story

</TD>
</TR>

</logic:iterate>
</TABLE>

Now let’s break these different pages apart and see how the Struts JSP tag libraries were
used to build the pages. Let’s start with the Struts bean tags.

CHAPTER 2 ■ STRUTS FUNDAMENTALS56

Ch02_7389_CMP4 9/27/06 8:11 AM Page 56

Bean Tags
Well-designed JSP pages use JavaBeans to separate the presentation logic in the application
from the data that is going to be displayed on the screen. A JavaBean is a regular class that can
contain the data and logic. In the JavaEdge home page example, the HomePageSetupAction
class retrieves a set of StoryVO objects into a collection and puts them into the session. The
StoryVO class is a JavaBean that encapsulates all of the data for a single story posted in the
JavaEdge database. Each data element, stored within a StoryVO object, has a getXXX() and
setXXX() method for each property. The code for the StoryVO class is shown here:

package com.apress.javaedge.story;

import com.apress.javaedge.common.ValueObject;
import com.apress.javaedge.member.MemberVO;

import java.util.Vector;

/**
* Holds story data retrieved from the JavaEdge database.
*/
public class StoryVO extends ValueObject {

private Long storyId;
private String storyTitle;
private String storyIntro;
private byte[] storyBody;
private java.sql.Date submissionDate;
private Long memberId;
private MemberVO storyAuthor;
public Vector comments = new Vector(); // of type StoryCommentVO

public Long getStoryId() {
return storyId;

}

public void setStoryId(Long storyId) {
this.storyId = storyId;

}

public String getStoryTitle() {
return storyTitle;

}

public void setStoryTitle(String storyTitle) {
this.storyTitle = storyTitle;

}

CHAPTER 2 ■ STRUTS FUNDAMENTALS 57

Ch02_7389_CMP4 9/27/06 8:11 AM Page 57

public String getStoryIntro() {
return storyIntro;

}

public void setStoryIntro(String storyIntro) {
this.storyIntro = storyIntro;

}

public String getStoryBody() {
return new String(storyBody);

}

public void setStoryBody(String storyBody) {
this.storyBody = storyBody.getBytes();

}

public java.sql.Date getSubmissionDate() {
return submissionDate;

}

public void setSubmissionDate(java.sql.Date submissionDate) {
this.submissionDate = submissionDate;

}

public Vector getComments() {
return comments;

}

public void setComments(Vector comments) {
this.comments = comments;

}

public MemberVO getStoryAuthor() {
return storyAuthor;

}

public void setStoryAuthor(MemberVO storyAuthor) {
this.storyAuthor = storyAuthor;

}
} // end StoryVO

The JSP specification defines a number of JSP tags that give the developer the ability to
manipulate the contents of a JavaBean.

CHAPTER 2 ■ STRUTS FUNDAMENTALS58

Ch02_7389_CMP4 9/27/06 8:11 AM Page 58

The Struts Bean tag library offers a significant amount of functionality beyond that offered
by the standard JSP tag libraries. The functionality provided by the Bean tag library can be bro-
ken into two broad categories of functionality:

• Generating output from an existing JavaBean residing in the page, request, or session
scope.

• Creating new JavaBeans. These new JavaBeans can hold the data specified by the devel-
oper or retrieved from web artifacts, such as a cookie or a value stored in an HTTP
header.

We are going to begin with the most common use of the Struts bean tag, the retrieval and
display of data from a JavaBean.

Two bean tags are available for generating output in the Struts Bean tag library:

• <bean:write>

• <bean:message>

The <bean:write> tag retrieves a value from a JavaBean and writes it to the web page
being generated. Examples of this tag can be found throughout the homePageContent.jsp file.
For example, the following code will retrieve the value of the property (storyTitle) from a
bean, called story, stored in the page context:

<bean:write name="story" scope="page" property="storyTitle"/>

To achieve the same result via a Java scriptlet would require the following code:

<%
StoryVO story = (StoryVO) pageContext.getAttribute("story");

if (story != null){
out.write(story.getStoryTitle());

}
else{

//Throw an exception unless the <bean:write> ignore attribute is
// set to true.

}
%>

The <bean:write> tag supports the concept of the nested property values. For instance,
the StoryVO class has a property called storyAuthor. This property holds an instance of a
MemberVO object. The MemberVO class contains the data about the user who posted the original
story. The homePageContent.jsp page retrieves the values from a MemberVO object by using a
nested notation in the <bean:write> tag. For instance, to retrieve the first name of the user
who posted one of the stories to be displayed, the following syntax is used:

<bean:write name="story" property="storyAuthor.firstName"/>

In the preceding example, the <bean:write> tag is retrieving the storyAuthor by
calling story.getStoryAuthor() and then the firstName property by calling storyAuthor.
getFirstName().

CHAPTER 2 ■ STRUTS FUNDAMENTALS 59

Ch02_7389_CMP4 9/27/06 8:11 AM Page 59

The <bean:write> tag has the attributes listed in Table 2-3.

Table 2-3. Attributes for the <bean:write> Tag

Attribute Name Attribute Description

filter Determines whether or not characters that are sensitive in HTML should be
replaced with their & counterparts. For example, if the data retrieved from a call
to StoryVO.getTitle() contains an & symbol, setting the filter attribute to true
would cause the <bean:write> tag to write the character as &. The default
value for this attribute is true.

ignore When set to true, this attribute tells the <bean:write> not to throw a runtime
exception, if the bean name cannot be located in the scope specified. The
<bean:write> tag will simply generate an empty string to be displayed in
the page. (If scope is not specified, the same rules apply here, as specified
previously.) If this attribute is not set or is set to false, a runtime exception
will be thrown by the <bean:write> tag, if the requested bean cannot be found.

name The name of the JavaBean to be retrieved.

property The name of the property to be retrieved from the JavaBean. The <bean:write>
tag uses the reflection to call the appropriate get() method of the JavaBean from
which you are retrieving the data. Therefore, your JavaBean has to follow the
standard JavaBean naming conventions (that is, a get prefix followed by the first
letter of the method name capitalized).

scope The scope in which to look for the JavaBean. Valid values include page, request,
and session. If this attribute is not set, the <bean:write> tag will start searching
for the bean at the page level and continue until it finds the bean.

The second type of tag for generating output is the Struts <bean:message> tag. The
<bean:message> tag is used to separate the static content from the JSP page in which it resides.
All the contents are stored in a properties file, independent of the application. The properties
file consists of a name-value pair, where each piece of the text that is to be externalized is
associated with a key. The <bean:message> tag will use this key to look up a particular piece of
text from the properties file.

To tell the name of the properties file to the ActionServlet, you need to make sure
that the application parameter is set in the web.xml file. The properties file, usually called
ApplicationResources.properties, is placed in the classes directory underneath the WEB-INF
directory of the deployed applications. In the JavaEdge source tree, the ApplicationResources.
properties file is located in working directory/waf/src/web/WEB-INF/classes (where working
directory is the one in which you are editing and compiling the application source).

For the purpose of the JavaEdge application, an <init-param> tag must be configured as
shown here:

<servlet>
...
<init-param>
<param-name>application</param-name>
<param-value>ApplicationResources</param-value>

</init-param>
</Servlet>

CHAPTER 2 ■ STRUTS FUNDAMENTALS60

Ch02_7389_CMP4 9/27/06 8:11 AM Page 60

The static content for the JavaEdge application has not been completely externalized
using the <bean:message> functionality. Only the header.jsp file has been externalized. The
following <bean:message> example, taken directly from header.jsp, will return the complete
URL for the JavaEdge login page:

<bean:message key="javaedge.header.logout"/>

When this tag call is processed, it will retrieve the value for the javaedge.header.logout
key from the ApplicationResources.properties file. All of the name-value pairs from the Appli-
cationResources.properties file used in the header.jsp file are shown here:

javaedge.header.title=The Java Edge
javaedge.header.logout=Logout
javaedge.header.myaccount=My Account
javaedge.header.postastory=

Post a Story
javaedge.header.viewallstories=

View All Stories
javaedge.header.signup=Sign Up
javaedge.header.search=Search

If the <bean:message> tag cannot find this key in the ApplicationResources.properties file,
the <bean:message> tag will throw a runtime exception.

The <bean:message> tag has the attributes listed in Table 2-4.

Table 2-4. Attributes for the <bean:message> Tag

Attribute Name Attribute Description

arg0 Parameter value that can be passed into the text string retrieved from the
properties file. For instance, if a property had the value hello.world=Hi {0}!,
using <bean:message key="hello.world" arg="John"/> would return the
following text to the output stream: Hi John!. The <bean:message> tag can
support at most five parameters being passed to a message.

arg1 Second parameter value that can be passed to the text string retrieved from
the properties file.

arg2 Third parameter value that can be passed to the text string retrieved from the
properties file.

arg3 Fourth parameter value that can be passed to the text string retrieved from
the properties file.

arg4 Fifth parameter value that can be passed to the text string retrieved from the
properties file.

bundle The name of the application scope bean in which the MessageResources
object containing the application messages is stored.

key Key in the properties file for which the <bean:message> tag is going to look.

locale The name of the session scope bean in which the Locale object is stored.

Next we’ll have an interesting discussion on the Tight-Skins antipattern before moving on
to bean creation.

CHAPTER 2 ■ STRUTS FUNDAMENTALS 61

Ch02_7389_CMP4 9/27/06 8:11 AM Page 61

The Tight-Skins Antipattern
Recollecting our discussion in Chapter 1, the Tight-Skins antipattern occurs when the devel-
opment team does not have a presentation tier whose look and feel can be easily customized.
The Tight-Skins antipattern is formed when the development team embeds the static content
in the JSP pages. Any changes to the static content result in having to hunt through all of the
pages in the application and making the required changes.

As you saw earlier, the <bean:message> tag can be used to centralize all the static content
in an application to a single file called ApplicationResources.properties. However, the real
strength of this tag is it makes it very easy to write internationalized applications that can
support multiple languages. The JavaEdge header toolbar is written to support only English.
However, if you want the JavaEdge’s header toolbar to support French, you need to follow
these steps:

1. Create a new file called ApplicationResources_fr.properties.

The _fr extension to the ApplicationResources.properties file is not just a naming con-
vention followed here. This extension is part of the ISO-3166 standard. For a complete
list of all of the country codes supported by this standard, please visit http://www.ics.
uci.edu/pub/ietf/http/related/iso639.txt.

2. Copy all of the name-value pairs from the JavaEdge’s application into the new Applica-
tionResources_fr.properties file. Translate all of the static contents in these name-value
pairs to French. Also, if the JavaEdge application is going to support only French, you
may rename the file from ApplicationResources_fr.properties to ApplicationRe-
sources.properties and replace the existing ApplicationResources.properties file.
However, if you want to support English and French at the same time, you to need to
tell Struts which java.util.Locale is to be used for the user. A Locale object is part of
the standard Java SDK and is used to hold the information about a region. For more
details on the Locale object, please refer to the Sun JDK documentation (available at
http://java.sun.com).

3. To support both English and French concurrently, you could ask the users the language
in which they want to see the site when they are registering for a JavaEdge account.
Their language preference could be stored in the JavaEdge database. If a user chooses
French as their language preference, then anytime that user logs in to the JavaEdge
application, the following code could be executed in any Action class to switch the lan-
guage preference from English over to French:

HttpSession session = request.getSession();
session.setAttribute(org.apache.struts.action.Action.LOCALE_KEY,

new java.util.Locale(LOCALE.FRENCH, LOCALE.FRENCH));

Struts stores a Locale object in the session as the attribute key org.apache.struts.
action.Action.LOCALE_KEY. Including a new Locale object (which is instantiated with the
values for French) will cause Struts to reference the ApplicationResources_fr.properties file for
the time for which the user’s session is valid (or at least until a new Locale object containing
another region’s information is placed in the user’s session).

CHAPTER 2 ■ STRUTS FUNDAMENTALS62

Ch02_7389_CMP4 9/27/06 8:11 AM Page 62

Accessing Indexed or Mapped Data
The Struts JSP tag libraries allow you to directly access a Java object stored inside of an Array,
List, or Map object. For example, say you modified the MemberVO class to contain an array of all
of the addresses associated with the JavaEdge user. This modification would get() and set() a
String array containing all of the address information:

public String[] getAddresses(){
return addresses;

}

public void setAddresses(String[] addresses){
this.addresses=addresses;

}

As you will see later in the chapter, you can walk through the returned array by using
the <logic:iterate> tag to retrieve each individual address stored in the array or Collection.
However, if you wanted to directly access an address via an array index, you can use the fol-
lowing syntax:

<bean:write name="memberVO" scope="request" property="addresses[1] "/>

Behind the scenes, the preceding code would be the equivalent of the following JSP code:

<%
MemberVO memberVO = (MemberVO) request.getAttribute("memberVO");

String[] addresses = memberVO.getAddresses();
out.write(addresses[1]);

%>

Now let’s make the address code a little bit more sophisticated. Let’s create a value object,
called AddressVO, to hold the entire address record. The code for AddressVO is shown here:

package com.apress.javaedge.member;

public class AddressVO {
public static final String HOME_ADDRESS="HOME";
public static final String BUSINESS_ADDRESS="BUS";
public static final String TEMPORARY_ADDRESS="TEMP";

private String addressId;
private String addressType;
private String street1;
private String street2;
private String street3;
private String city;
private String state;
private String zip;
private String country;

CHAPTER 2 ■ STRUTS FUNDAMENTALS 63

Ch02_7389_CMP4 9/27/06 8:11 AM Page 63

public String getCountry() {
return country;

}

public void setCountry(String country) {
this.country = country;

}

public String getZip() {
return zip;

}

public void setZip(String zip) {
this.zip = zip;

}

public String getAddressId() {
return addressId;

}

public void setAddressId(String addressId) {
this.addressId = addressId;

}

public String getAddressType() {
return addressType;

}

public void setAddressType(String addressType) {
this.addressType = addressType;

}

public String getStreet1() {
return street1;

}

public void setStreet1(String street1) {
this.street1 = street1;

}

public String getStreet2() {
return street2;

}

public void setStreet2(String street2) {
this.street2 = street2;

}

CHAPTER 2 ■ STRUTS FUNDAMENTALS64

Ch02_7389_CMP4 9/27/06 8:11 AM Page 64

public String getStreet3() {
return street3;

}

public void setStreet3(String street3) {
this.street3 = street3;

}

public String getCity() {
return city;

}

public void setCity(String city) {
this.city = city;

}

public String getState() {
return state;

}

public void setState(String state) {
this.state = state;

}
}

Let’s rewrite the getAddress() and setAddress() methods to return a specific AddressVO.
The getAddress() and setAddress() methods would “wrapper” a HashMap object and allow
the user to return a specific address by a type: BUSINESS, HOME, or TEMPORARY. The
getAddress() and setAddress() methods on the MemberVO for retrieving the addresses
would look something like this:

public void setAddress (String addressType, Object address){
addresses.put(addressType, address);

}

public Object getAddress(String addressType)
Object holder = addresses.get(addressType);

if (holder==null) return "";

return holder;
}

If you want to use a Struts custom tag library to access directly a property on the business
address for a JavaEdge member, the syntax would look something like this:

<bean:write name="memberVO" scope="request"
property="address(BUSINESS).street1"/>

CHAPTER 2 ■ STRUTS FUNDAMENTALS 65

Ch02_7389_CMP4 9/27/06 8:11 AM Page 65

The preceding code translates into the following JSP code:

<%
MemberVO memberVO = (MemberVO) request.getAttribute("memberVO");
out.write(memberVO.getAddress("BUSINESS").getStreet1());

%>

One thing to be concerned about is ensuring the value returned from the HashMap is actu-
ally a valid object. If the object being requested is not found, the getAddress() method must
decide how to handle the returned NULL value.

The concept of accessing mapped properties is an extremely powerful one. We will
explore it in greater detail in Chapter 3, where we will examine how to use the HashMap and
the ActionForm classes to build dynamic ActionForms.

Bean Creation
Struts offers a number of helper tags (bean creation tags) for creating the JavaBeans to be used
within a JSP page. With these tags, a number of tasks can be carried out within the JSP page,
without the need to write Java scriptlet code. These tasks include

• Retrieving a value from a cookie and creating a new JavaBean to hold the cookie’s contents

• Retrieving an HTTP parameter and storing its value in a new JavaBean

• Retrieving a configuration element of Struts (such as a forward, mapping, or form bean)
and storing its information in a JavaBean

• Retrieving an object from the JSP page context (that is, the application, request,
response, or session objects)

• Defining a new JavaBean from scratch and placing a value in it

• Copying the contents of a single property from an existing JavaBean into a new
JavaBean

Table 2-5 gives a brief summary of the different bean creation tags available.

Table 2-5. The Different Struts Bean Creation Tags

Bean Name Bean Description

<bean:cookie> Creates a new JavaBean to hold the contents of the specified cookie. To
retrieve a cookie named shoppingCart into a bean, you use the following
syntax: <bean:cookie id="cart" name="shoppingCart" value="None"/>.
This call creates a new JavaBean called cart, which will hold the value
stored in the cookie shoppingCart. The value attribute tells the bean to
store the string None, if the cookie cannot be found. Essentially, the value
attribute allows you to define a default value for a cookie if no cookie with
the correct name can be found. If the value attribute is not specified and
the cookie cannot be found, a runtime exception will be raised.

<bean:define> Creates a new JavaBean and populates it with a string value defined by the
developer. The following <bean:define> tag creates a JavaBean called hello
that will hold the ever ubiquitous phrase, "Hello World": <bean:define
id="hello" value="Hello World" scope="session"/>. This bean will be
placed in a session of the application.

CHAPTER 2 ■ STRUTS FUNDAMENTALS66

Ch02_7389_CMP4 9/27/06 8:11 AM Page 66

Bean Name Bean Description

<bean:header> Creates a new JavaBean and populates it with an item retrieved from the
HTTP header. In the following example, the referer property is being
pulled out of the HTTP header and placed in a bean called httpReferer:
<bean:header id="httpReferer" name="referer"/>. However, since no
value attribute is being defined, a runtime exception will be thrown if the
referer value cannot be found in the HTTP header.

<bean:include> Creates a JavaBean to hold the content returned from a call to another
URL. The following example will take the content retrieved from a call to
the /test.jsp page and place it in a JavaBean called testInclude:
<bean:include id="testInclude" name="/test.jsp"/>.

<bean:page> Creates a new JavaBean to hold an object retrieved from the JSP page
context. The following example will retrieve the session object from the
HttpServletRequest object and place it as a JavaBean called hSession:
<bean:page id="hSession" property="session"/>.

<bean:parameter> Creates a new JavaBean to hold the contents of a parameter retrieved from
the HttpServletRequest object. To retrieve a request parameter, called
sendEmail, from the HttpServletRequest, you use the following code:
<bean:parameter id="sendEmailFlag" name="sendEmail" value="None"/>.
Like the <bean:cookie> tag, if the value attribute is not specified and the
requested parameter is not located, a runtime exception will be raised.

<bean:resource> Retrieves the data from a file located in a web application resource file.
This data can be retrieved as a string or an InputStream object by the tag.
The following code will create a new JavaBean, called webXmlBean, which
will hold the contents of the web.xml file as a string: <bean:resource
id="webXmlBean" name="/web.xml"/>.

<bean:struts> Creates a new JavaBean to hold the contents of a Struts configuration
object. The following <bean:struts> tag will retrieve the homePageSetup
action and place the corresponding object into a JavaBean called
homePageSetupMap: <bean:struts id="homePageSetupMap" forward="/
homePageSetup"/>.

We have not used any of the bean creation tags in the JavaEdge application. There is sim-
ply no need to use them for any of the pages in this application. Also, in our opinion, most of
the bean creation tags can be included in an Action class using Java code. According to our
experience, the overuse of the bean creation tags can clutter up the presentation code and
make it difficult to follow.

Logic Tags
The Logic tag library gives the developer the ability to add a conditional and interactive con-
trol to the JSP page without having to write Java scriptlets. These tags can be broken into three
basic categories:

• Tags for controlling iteration.

• Tags for determining whether a property in an existing JavaBean is equal to, not equal
to, greater than, or less than another value. In addition, there are logic tags that can
determine whether or not a JavaBean is present within a particular JSP page context
(that is, page, request, session, or application scope).

• Tags for moving (that is, redirecting or forwarding) a user to another page in the appli-
cation.

CHAPTER 2 ■ STRUTS FUNDAMENTALS 67

Ch02_7389_CMP4 9/27/06 8:11 AM Page 67

Iteration Tags
The Logic tag library has a single tag, called <logic:iterate>, which can be used to cycle
through a Collection object in the JSP page context. Recollect that in the HomePageSetupAction
class, a collection of StoryVO objects is placed into the request. This collection holds the latest
ten stories posted to the JavaEdge site. In the homePageContent.jsp page, you cycle through
each of the StoryVO objects in the request by using the <logic:iterate> tag:

<logic:iterate id="story" name="topStories" scope="request"
type="com.apress.javaedge.valueobject.StoryVO">

<TR bgcolor="#99CCFF">
<TD>
<bean:write name="story" scope="page" property="storyTitle"/>

...

</logic:iterate>

In the preceding code snippet, the <logic:iterate> tag looks up the topStories collection
in the request object of the JSP page. The name attribute defines the name of the collection.
The scope attribute defines the scope in which the <logic:iterate> tag is going to search for
the JavaBean. The type attribute defines the Java class that is going to be pulled out of the col-
lection, in this case, StoryVO. The id attribute holds the name of the JavaBean, which holds a
reference to the StoryVO pulled out of the collection. When referencing an individual bean in
the <logic:iterate> tag, you use the <bean:write> tag. The name attribute of the <bean:write>
tag must match the id attribute defined in the <logic:iterate>.

<bean:write name="story" scope="page" property="storyTitle"/>

Keep in mind the following points while using the <logic:iterate> tag:

• Multiple types of collections can be supported by the <logic:iterate> tag. These types
include

• Java Collection objects

• Java Map objects

• Arrays of objects or primitives

• Java Enumeration objects

• Java Iterator objects

• If your collection can contain NULL values, the <logic:iterate> tag will still go through
the actions defined in the loop. It is the developer’s responsibility to check if a NULL
value is present by using the <logic:present> or <logic:notPresent> tags. (These tags
will be covered in the next section, “Conditional Tags.”)

CHAPTER 2 ■ STRUTS FUNDAMENTALS68

Ch02_7389_CMP4 9/27/06 8:11 AM Page 68

Conditional Tags
The Struts development framework also provides a number of tags to perform basic condi-
tional logic. Using these tags, a JSP developer can perform a number of conditional checks on
the common servlet container properties. These conditional tags can check for the presence
of the value of a piece of data stored as one of the following types:

• Cookie

• HTTP header

• HttpServletRequest parameter

• JavaBean

• Property on a JavaBean

The Struts conditional tags <logic:equal> and <logic:notEqual> can be used to test
the equality or nonequality of a value sitting in a cookie, header variable, or JavaBean. For
instance, the JavaEdge application always has a memberVO placed in the session of the user
using the application.

If the user has not logged in, their session will hold a memberVO object whose memberId
property is equal to "1". If they are logged in, the memberVO will hold the data retrieved from the
member table. In the header.jsp file, the <logic:equal> and <logic:notEqual> tags are used to
determine whether or not a login or logout link should be displayed to the end user:

<logic:notEqual scope="session" name="memberVO"
property="memberId" value="1">

<td width="16%" bgcolor="#99CCFF" align="center">
<bean:message key="javaedge.header.logout"/>

</td>
</logic:notEqual>
<logic:notEqual scope="session" name="memberVO"
property="memberId" value="1">

<td width="17%" bgcolor="#99CCFF" align="center">
<bean:message key="javaedge.header.myaccount"/>

</td>
</logic:notEqual>

Alternatively, you could modify how security is handled in the JavaEdge application and
only place a memberVO in the user’s session when they have actually logged in. Then you could
use the <logic:present> and <logic:notPresent> tags to determine if the user has logged in
and then display the corresponding login/logout links:

<logic:notPresent scope="session" name="memberVO" >
<td width="16%" bgcolor="#99CCFF" align="center">
<bean:message key="javaedge.header.login"/>

</td>
</logic:notPresent>

CHAPTER 2 ■ STRUTS FUNDAMENTALS 69

Ch02_7389_CMP4 9/27/06 8:11 AM Page 69

<logic:present scope="session" name="memberVO">
<td width="16%" bgcolor="#99CCFF" align="center">
<bean:message key="javaedge.header.logout"/>

</td>
</logic:present>

In this JSP code, a column containing a link to the login URL will be rendered only
if the JavaEdge user has not yet logged in to the application. The <logic:notPresent>
checks the user’s session to see if there is a valid memberVO object present in the session.
The <logic:present> tag in the preceding code checks if there is a memberVO object in the
user’s session. If there is one, a column will be rendered containing a link to the logout page.

The <logic:present> and <logic:notPresent> tags are extremely useful, but in terms of
applying the conditional logic are extremely blunt instruments. Fortunately, Struts provides
you with a number of other conditional logic tags.

Conditional Logic and Cookies
Suppose that the user authentication scheme was again changed and the JavaEdge applica-
tion set a flag indicating that the user was authenticated by placing a value of true or false in
a cookie called userloggedin. You could rewrite the preceding code snippet as follows to use
the <logic:equals> and <logic:notEquals> tags:

<logic:notEquals cookie="userloggedin" value="true">
<td width="16%" bgcolor="#99CCFF" align="center">
<bean:message key="javaedge.header.login"/>

</td>
</logic:notEquals>

<logic:equals cookie="userloggedin" value="true">
<td width="16%" bgcolor="#99CCFF" align="center">
<bean:message key="javaedge.header.logout"/>

</td>
</logic:equals>

You can use the <logic:equals> and <logic:notEquals> tags to even check a property in a
JavaBean. For instance, you could rewrite the authentication piece of the JavaEdge application
to set an attribute (called authenticated) in the memberVO object to a hold a string value of true or
false. You could then check the property in the memberVO JavaBean using the following code:

<logic:notEquals name="memberVO" property="authenticated" scope="session"
value="true">

<td width="16%" bgcolor="#99CCFF" align="center">
<bean:message key="javaedge.header.login"/>

</td>
</logic:notEquals>

<logic:equals name="memberVO" property="authenticated" scope="session"
value="true">

<td width="16%" bgcolor="#99CCFF" align="center">

CHAPTER 2 ■ STRUTS FUNDAMENTALS70

Ch02_7389_CMP4 9/27/06 8:11 AM Page 70

<bean:message key="javaedge.header.logout"/>
</td>

</logic:equals>

When applying the conditional logic tags against a property on a JavaBean, keep two
things in mind:

• The scope that you are looking for the JavaBean in: If you do not define a scope attribute,
all of the contexts in the JSP will be searched. If you define this attribute and the value
you are looking for is not there, a runtime exception will be thrown by the Java tag.

• Chaining the property values of a JavaBean using dot (.) notation: You can find examples
of dot notation in the “Bean Output” section in this chapter.

Some other conditional logic tags are available:

• <logic:greaterThan>: Checks if the value retrieved from a JavaBean property,
HttpServletRequest parameter, or HTTP header is greater than the value stored
in the value attribute of the <logic:greaterThan> tag.

• <logic:lessThan>: Checks if the value retrieved from a JavaBean property,
HttpServletRequest parameter, or HTTP header value is less than the value
stored in the value attribute of the <logic:lessThan> tag.

• <logic:greaterEqual>: Checks if the value retrieved from a JavaBean property,
HttpServletRequest parameter, or HTTP header value is greater than or equal to
the value stored in the value attribute of the <logic:greaterEqual> tag.

• <logic:lessEqual>: Checks if the value retrieved from a JavaBean property,
HttpServletRequest parameter, or HTTP header value is less than or equal to
the value stored in the value attribute of the <logic:lessEqual> tag.

The logic tags just shown will try to convert the value they are retrieving to a float or
double and perform a numeric comparison. If the retrieved value cannot be converted to a
float or double, these tags will perform the comparisons based on the string values of the
items being retrieved.

Movement Tags
These logic tags in the Struts tag library offer the developer the ability to redirect the user to a
new URL. The two movement logic tags are

• <logic:forward>: Forwards the user to a specified global <forward> tag defined in the
struts-config.xml file

• <logic:redirect>: Performs a redirect to a URL specified by the developer

Let’s see how these two tags can be used. To bring up the JavaEdge application, users need
to point the browser to http://localhost:8080/JavaEdge/homePageSetup. This forces users to
know they have to go to the /homePageSetup action. An easier solution would be to allow them
to go to http://localhost:8080/JavaEdge.

CHAPTER 2 ■ STRUTS FUNDAMENTALS 71

Ch02_7389_CMP4 9/27/06 8:11 AM Page 71

In a non–Struts-based application, this could be accomplished by setting up a <welcome-
file-list> tag in the application’s web.xml file. This tag allows you to define the default JSP or
HTML file, which is presented when users come to the application and do not define a specific
page. However, this is the problem for the Struts application. The <welcome-file-list> allows
you to specify only filenames and not URLs or Struts actions.

However, using the movement logic tags provides you with the ability to work around this
shortcoming. First, we will walk you through a solution using a <logic:forward> tag. You still
need to set up the <welcome-file-list> tag in the web.xml file of JavaEdge. You are going to
set up a file, called default.jsp, for the default file to be executed:

<web-app>
...
<welcome-file-list>
<welcome-file>default.jsp</welcome-file>

</welcome-file-list>
</web-app>

Next, you add a new <forward> tag, called default.action, to the <global-forwards> tag in
the struts-config.xml file for the JavaEdge application:

<struts-config>
<global-forwards type="org.apache.struts.action.ActionForward">
<forward name="system.error" path="/WEB-INF/jsp/systemError.jsp"/>
<forward name="default.action" path="/execute/homePageSetup"/>

</global-forwards>
...

</struts-config>

The last step is to write the default.jsp file. This file contains the following two lines of
code:

<%@ taglib uri="/taglibs/struts-logic.tld" prefix="logic" %>
<logic:forward name="default.action"/>

You can perform the same functionality with the <logic:redirect> tag. If you implement
default.jsp using a <logic:redirect> tag, you still need to set up the default.jsp in the web.xml
file. However, you do not need to add another <forward> tag to the <global-forwards> tag
located in struts-config.xml. Instead, you just need to write the default.jsp in the following
manner:

<%@ taglib uri="/taglibs/struts-logic.tld" prefix="logic" %>
<logic:redirect page="/execute/homePageSetup"/>

This code will generate a URL relative to the JavaEdge application (http:// localhost:8080/
Javaedge/execute/HomePageSetup). You are not restricted, while using the <logic:redirect>, to
redirect to a relative URL. You can also use a fully qualified URL and even redirect the user to
another application. For instance, you could rewrite the default.jsp as follows:

CHAPTER 2 ■ STRUTS FUNDAMENTALS72

Ch02_7389_CMP4 9/27/06 8:11 AM Page 72

<%@ taglib uri="/taglibs/struts-logic.tld" prefix="logic" %>
<logic:redirect
href="http://localhost:8080/JavaEdge/execute/homePageSetup"/>

Using <logic:redirect> and <logic:forward> is the equivalent of calling the sendRedirect()
method on the HttpServletResponse class in the Java Servlet API. The difference between the two
tags is that the <logic:forward> tag will let you forward only to a <global-forward> defined in the
struts-config.xml file. The <logic:redirect> tag will let you redirect to any URL.

The <logic:redirect> tag has a significant amount of functionality. However, you have
had just a brief introduction to what the <logic:redirect> tag can do. A full listing of all the
attributes and functionalities of this tag can be found at http://struts.apache.org/1.x/
struts-el/tlddoc/logic/redirect.html.

Summary
In this chapter, we explored the basic elements of a Struts application and how to begin using
Struts to build the applications. To build a Struts application, you need to know the following:

• The basic components of a Struts application:

•ActionServlet: Represents the controller in the Struts MVC implementation.
It takes all user requests and tries to map them to an <action> entry in the
struts-config.xml file.

•action: Defines a single task that can be carried by the end user. Also, it defines
the class that will process the user’s request and the JSP page that will render the
HTML the user sees.

•Action class: Contains the entire logic to process a specific user request.

•ActionForm: Is associated with an <action> tag in the struts-config.xml file. It wraps
all the form data submitted by the end user and also can perform validation on the
data entered by the user.

• JSP pages: Used to render the HTML pages that the users will see as a result of their
request to the ActionServlet.

• The configuration files necessary to build a Struts application:

• web.xml: This file contains the entire ActionServlet configuration, the mapping of
user requests to the ActionServlet, and all the Struts Tag Library Definitions.

• struts-config.xml: This file contains all the configuration information for a
Struts-based application.

• ApplicationResources.properties: This file is a central location for static content for
a Struts application. It allows the developer to easily change the text or interna-
tionalize an application.

CHAPTER 2 ■ STRUTS FUNDAMENTALS 73

Ch02_7389_CMP4 9/27/06 8:11 AM Page 73

• The different Struts tag libraries for building the presentation piece of the application,
including the following:

• Bean: Provides the developer with JSP tags for generating output from a JavaBean
and creating a JavaBean from common JSP web artifacts.

• Logic: Can be used to apply the conditional logic in the JSP page through Collections
stored in the user’s JSP page context and redirect the user to another page.

• HTML: These tags are not discussed in this chapter. However, they offer a significant
amount of functionality and are discussed in greater detail in Chapters 3 and 4.

Also, we identified some different areas where Struts can be used to refactor the web
antipatterns that might form during the design and implementation of web-based applica-
tions. Refactoring of the following antipatterns was discussed:

• Hardwired: We looked at how to chain together Struts actions to perform the precondi-
tion, form processing, and postcondition logic. This segregation of the business logic
into the multiple applications provides a finer control over the application of the busi-
ness logic and makes it easier to redirect the user to different Struts actions and JSP
pages.

• Tight-Skins: While examining this antipattern, we looked at how to use the bean and
logic tags to implement role-based presentation logic.

This chapter lays the foundation for the material covered in Chapters 3 and 4. In the
next chapter, we are going to cover how to implement web-based forms using the Struts form
tags. We will also look at the Struts HTML tag library and how it simplifies form development.
Finally, the next chapter will focus on how to use the Struts ActionForm class to provide a com-
mon mechanism for validating the user data and reporting validation errors back to the user.

CHAPTER 2 ■ STRUTS FUNDAMENTALS74

Ch02_7389_CMP4 9/27/06 8:11 AM Page 74

Form Presentation
and Validation with Struts

In the previous chapter, all of our Struts examples were built around very simple screens that
were populated with data retrieved from the JavaEdge application. However, most web appli-
cations require a high degree of interaction, with end users often submitting the data via
HTML forms.

This chapter is going to look at how to simplify the construction of HTML forms and
form-handling code using the Struts development framework. We are going to discuss, from
both a conceptual and an implementation point of view, how the Struts framework can pro-
vide a configurable and consistent mechanism for building web forms. This chapter is going
to cover the following topics:

• Validating HTML form data using the ActionForm class

• How the validate() method of the ActionForm class is used to validate data against
the user

• Error handling when a validation rule is violated

• Prepopulating an HTML form with data

• Configuring Struts for processing HTML form data

• Simplifying the development of HTML form pages using the Struts HTML tag libraries

• Using Map-backed ActionForms to build flexibility into your application

• Best practices associated with using the Struts ActionForm class

Problems with Form Validation
Most web development teams do not have a consistent strategy for collecting data from the
end user, validating it, and returning any error messages that need to be displayed. They use
a hodgepodge of different means of collecting and processing the user’s data. Two commonly
used validation mechanisms include embedding JavaScript in the HTML or JSP page render-
ing the form, and/or mixing the validation logic for the screen with the business logic in the
business tier of the application.

75

C H A P T E R 3

■ ■ ■

Ch03_7389_CMP3 9/29/06 9:26 AM Page 75

This inconsistency in how data is collected and validated often results in the following:

• Customers, whether they are internal (such as employees) or external (such as pur-
chasers), having a disjointed experience while using the web-based applications of the
organization. Each application requires the customer to have a different set of skills and
an understanding of how the application works and how to respond to errors. In larger
applications, this inconsistency can exist even between different pages in the same
application.

• Validation logic is strewn through the different layers of the application. This increases
the amount of time required to perform application maintenance. The maintenance
developer, who is rarely the same as the code developer, often has to hunt for the loca-
tion of the validation logic and know multiple development languages (JavaScript for
validation rules enforced in the browser, Java for validation logic in the middle tier, and
a stored procedure language for validation logic in the database).

• Validation logic is used differently across different browsers. JavaScript, though “stan-
dardized,” is implemented differently across browsers. Developers of a web browser
take great liberties in the way in which they implement the JavaScript European Com-
puter Manufacturers Association (ECMA) standard. Often, they provide their own
browser-specific extensions, which make cross-browser viewing (and portability) of
the application difficult.

• The application code is difficult to reuse. With validation logic strewn throughout
the tiers of an application, it is difficult to pick up that validation code and reuse it in
another application. The developer has to take care of the dependencies being present
before reusing the validation code, because there is no clean separation between the
validation and business logic.

All the problems just identified are the symptoms of the Validation Confusion antipattern.
Recollecting the discussion in Chapter 1, the Validation Confusion antipattern occurs due to
one of the following reasons:

• No clear distinction between the validation logic of the form data and the business
logic that processes the user’s request

• Lack of a pluggable interface, which allows the developer to easily modify the validation
logic for a particular screen

• No standardized mechanism for identifying the validation violations and notifying the
end user of them

Fortunately, the Struts framework provides a rich set of software services for building and
managing the form data. These services allow a developer to handle the form validation in a
consistent fashion. Much of the logic, normally associated with capturing and presenting the
errors, becomes the responsibility of the Struts framework and not of the application developer.

CHAPTER 3 ■ FORM PRESENTATION AND VALIDATION WITH STRUTS76

Ch03_7389_CMP3 9/29/06 9:26 AM Page 76

Using Struts for Form Validation
To build an HTML form, in Struts, you need to have the following pieces in place:

• A Struts ActionForm class, which is used to hold the data collected from the end user
and perform any validations on that data. This class provides a simple-to-use “wrap-
per” that eliminates the need for developers to pull the submitted data out of the
HttpServletRequest object, associated with the end user’s request.

• A Struts Action class to carry out the user’s request. In the process of carrying out the
user’s request, any business rules that should be enforced will be executed, and any
database inserts, updates, or deletes will be performed.

• A JSP page that uses the Struts HTML tag libraries to render the form elements that are
going to appear on the page.

Tying all of these pieces together is the struts-config.xml file. This file will have entries in
it for defining the Struts ActionForm classes used in the application, which ActionForm classes
are going to be used with which action, and whether an ActionForm class is going to enforce
the validation against the submitted data. Each Struts action processing the form data must
have its corresponding <action> tag modified, to indicate which ActionForm class will be used
by the action.

Let’s discuss what happens when the user submits the data in an HTML form. Figure 3-1
shows what happens when the user submits the form data to a Struts-based application, as
described next:

Figure 3-1. The flow of a user request through Struts

CHAPTER 3 ■ FORM PRESENTATION AND VALIDATION WITH STRUTS 77

Ch03_7389_CMP3 9/29/06 9:26 AM Page 77

1. The ActionServlet will examine the incoming URL mapping or extension to determine
what action the user submitting the data wants to take. The ActionServlet will create
an instance of an org.apache.struts.action.RequestProcessor class and hand over
responsibility for processing the user’s request to it.

The RequestProcessor will look at the data for the action requested in the struts-config.
xml file. It will then determine whether or not an ActionForm has been defined for the
action and, if so, what scope the ActionForm resides in.

Once a scope has been determined for an ActionForm, the RequestProcessor will check
to see if the ActionForm already exists in that scope. If the desired ActionForm class does
exist in the defined scope, the RequestProcessor will retrieve it and pass it to the
RequestProcessor.processPopulate() method.

If the desired ActionForm does not exist in the scope, the RequestProcessor will create
an instance of it, put it into the scope defined inside of the <action> tag in the struts-
config.xml file, and then pass the created ActionForm instance to the
processPopulate() method.

2. The processPopulate() method is responsible for mapping the form data passed into it
via the HttpServletRequest object to the Struts ActionForm defined for the action being
processed. It does this by first calling the reset() method on the ActionForm and then
populating the ActionForm with data from the HttpServletRequest object.

An ActionForm simplifies the form processing, but it is not required to access the
form data submitted by the end user. An Action class can still access the submitted
form data by calling the getParameter() method on the request object passed into its
execute() method. However, overreliance on the getParameter() method can bypass
much of the validation and error-handling support in Struts.

3. Before the data submitted can be validated, the RequestProcessor will call the
ActionForm’s reset() method. The reset() method is a method that can be overridden
by Struts developers to “initialize” or “override” individual properties on an ActionForm.

This method is most commonly used to properly handle a web form’s radio checkbox
fields when the form has been submitted multiple times. The reset() method will be
covered in greater detail later in the chapter.

4. Once the reset() method has been called, the RequestProcessor will populate the
ActionForm with data from the request by using the org.apache.struts.util.
RequestUtil’s populate() method.

5. Once the form data has been mapped from the HttpServletRequest object to the
ActionForm, the submitted data will be validated. The RequestProcessor will validate
the form data by calling the ActionForm’s validate() method.

CHAPTER 3 ■ FORM PRESENTATION AND VALIDATION WITH STRUTS78

Ch03_7389_CMP3 9/29/06 9:26 AM Page 78

If a validation error occurs, the RequestProcessor will inform the ActionServlet to
redirect users back to the screen where data was submitted. Users will then have to
correct the validation violations before they can continue. We will be covering how
Struts is notified of a validation error in the section called “Validating the Form Data.”

6. If the data contained in the ActionForm successfully passes all validation rules defined
in the validate() method, the RequestProcessor will invoke the execute() method on
the Action class. The execute() method contains the business logic needed to carry
out the end user’s request.

Remember that the Java class, which carries out the end user’s request, is defined via the
type attribute in the <action> element. We suggest that you refer to Chapter 2 to understand
how to configure a Struts action before continuing.

Implementing Form Validation with Struts
Let’s begin the discussion of form handling by Struts by looking at how an HTML form is
processed by Struts when a user submits it. We are going to use the Post a Story page from the
JavaEdge application as our example.

This page can be accessed by either clicking the Post a Story link in the menu bar at the
top of every JavaEdge page or pointing your browser to http://localhost:8080/javaedge/
execute/postStorySetup. The Post a Story page is used by a JavaEdge user to submit a story,
which the other users visiting this page can read.

If you have successfully reached this page, you will see the screen in Figure 3-2.

Figure 3-2. The Post a Story page

CHAPTER 3 ■ FORM PRESENTATION AND VALIDATION WITH STRUTS 79

Ch03_7389_CMP3 9/29/06 9:26 AM Page 79

Let’s begin by looking at how to set up the struts-config.xml file to use ActionForm objects.

The struts-config.xml File
To use an ActionForm class to validate the data collected from a user form, the struts-config.xml
file for the application must be modified. These modifications include

• Adding a <form-beans> tag, which will define each of the ActionForm classes used in the
application

• Modifying the <action> tag processing the user’s request to indicate that before the
user’s request is processed, it must be validated by an ActionForm class

The <form-beans> tag holds one or more <form-bean> tags within it. This tag appears at the
top of the struts-config.xml file. Each <form-bean> tag corresponds to only one ActionForm class
in the application. For the JavaEdge application, the <form-beans> tag looks as shown here:

<form-beans>
<form-bean name="postStoryForm"

type="com.apress.javaedge.struts.poststory.PostStoryForm"/>
...
<form-bean> //More form-bean definitions.

</form-beans>

The <form-bean> element has two attributes:

• name: A unique name for the form bean being defined. Later on, this name will be used
to associate this form bean with an <action> element. This attribute is a required field.

• type: The fully qualified class name of the ActionForm class that the form bean repre-
sents. This attribute is also a required field.

The <form-bean> element actually has a third optional attribute called className.
This attribute is used to specify what configuration bean to use for the defined form bean.
If the className attribute is omitted, Struts will default to the org.apache.struts.config.
FormBeanConfig class.

Once a <form-bean> has been defined, you can use it in an <action> element to perform
validation of the form data. To add the validation to a <form-bean>, you must supply the four
additional attributes described in Table 3-1 in an <action> element.

Table 3-1. Attributes of the Form Bean Tag

Attribute Name Attribute Description

name Maps to the name of the <form-bean> that will be used to process the
user’s data.

scope Defines whether or not the ActionForm class will be created in the user’s
request or session context. The scope attribute can be used only when the
name attribute is defined in the <action> tag. If the name attribute is present,
the scope attribute is an optional tag. The default value for the scope attribute
is request.

CHAPTER 3 ■ FORM PRESENTATION AND VALIDATION WITH STRUTS80

Ch03_7389_CMP3 9/29/06 9:26 AM Page 80

Attribute Name Attribute Description

validate A Boolean attribute that indicates whether or not the submitted form data
will be validated. If it’s true, the validate() method in the ActionForm class
and the execute() method in the Action class will be invoked. If it’s false,
then the validate() method will not be invoked, but the execute() method
in the Action class defined in the tag will be executed. The validate attribute
is used only when the name attribute has been defined in the tag. The default
value for the validate attribute is true.

input Used to define where the user should be redirected, if a validation error
occurs. Usually, the user is redirected back to the JSP page where the data was
submitted. It is not required if the name attribute is not present.

The /postStory action processing the data entered by the user in the postStory.jsp page
is shown here:

<action path="/postStory"
input="/WEB-INF/jsp/postStory.jsp"
name="postStoryForm"
scope="request"
validate="true"
type="com.apress.javaedge.struts.poststory.PostStory">

<forward name="poststory.success" path="/execute/homePageSetup"/>
</action>

Struts ActionForm Class
The Struts ActionForm class is used to hold the entire form data submitted by the end user. It
is a helper class that is used by the ActionServlet to hold the form data that it has pulled from
the end user’s request object. The application developer can then use the ActionForm to access
the form through get() and set() method calls.

The ActionForm class not only provides a convenient wrapper for the request data but also
validates the data submitted by the user. However, an Action class is not required to have an
ActionForm class. An Action class can still access the form data submitted by the end user by
calling the getParameter() method in the request object passed into its execute() method.

To build an ActionForm class, the developer needs to extend the base Struts ActionForm
class and override two methods in it, reset() and validate().

Just to review, the reset() method is overridden by the developer when an ActionForm
class for an action is to be stored in the user’s session context. The reset() method clears the
individual attributes in the ActionForm class to ensure that the ActionForm class is properly ini-
tialized before it is populated with the user’s form data. The validate() method is overridden
by the developer. This method will contain all of the validation logic used in validating the
data entered by the end user.

In addition, the application developer needs to define all the form elements that are going
to be collected by the ActionForm class and stored as private properties in the class. For each
defined property, there must be corresponding get() and set() methods that follow the stan-
dard JavaBean naming conventions.

CHAPTER 3 ■ FORM PRESENTATION AND VALIDATION WITH STRUTS 81

Ch03_7389_CMP3 9/29/06 9:26 AM Page 81

■Note You must implement a get() and set() method for each form element captured off the web form.
These get() and set() methods should follow the standard JavaBean naming conventions. The first letter
of the word after get()/set() should be capitalized along with the first letter of each word in the method
thereafter. All other letters in the method name should be lowercase. The Struts framework uses Java reflec-
tion to read the data from and write data to the ActionForm class. An exception will be raised if the get()
or set() method is not present for a piece of data submitted.

For the Post a Story page, you are going to write a Struts ActionForm class called
PostStoryForm.java. This class will hold the story title, the story intro, and the body of the
story. In addition, it will contain the validation code for the data being submitted by the user.

The class diagram shown in Figure 3-3 illustrates the class relationships, methods, and
attributes for the Struts ActionForm class and the PostStoryForm class.

Figure 3-3. PostStoryForm’s relationship to the ActionForm class

It is very easy to fall into the mind-set that there must be one ActionForm class for each
HTML form from which the data is collected. In small-to-medium size applications, there is
nothing wrong in using a single ActionForm placed in the user’s session. All the forms in the
application will use this ActionForm to hold the data collected from the user.

This simplifies the collection of the data because your application has only one
ActionForm instance that you have to work with. By using a single ActionForm class and
placing it in the user’s session, you can very easily implement a wizard-based application that

CHAPTER 3 ■ FORM PRESENTATION AND VALIDATION WITH STRUTS82

Ch03_7389_CMP3 9/29/06 9:26 AM Page 82

will remember each piece of user information entered. As the user steps back and forth
through the wizard, the data can easily be retrieved from the single ActionForm class.

The problem with using a single ActionForm class in the user’s session is that the applica-
tion will not scale as well. Remember, the objects placed in the user’s session have a held
reference until the session times out and the objects are garbage collected.

Do not place ActionForm objects in the session merely as a convenience. The other prob-
lem with this method occurs if the users are carrying out a long-lived transaction. If the users
lose their connection or close their browser, any of the data entered till then will be lost.

To ensure that as much of the user’s data is captured and persisted as possible, break the
application into smaller transactions. Use an ActionForm class for each application screen and
persist the data in the ActionForm class as soon as the users submit their data. Place the
ActionForm class into the request so that server resources are not unnecessarily used.

The code for the PostStoryForm class is shown next. However, the reset() and validate()
methods for this class are not displayed. They will be discussed in the sections “Using the
reset() Method” and “Validating the Form Data,” respectively.

package com.apress.javaedge.struts.poststory;

import com.apress.javaedge.common.VulgarityFilter;
import com.apress.javaedge.common.ApplicationException;
import com.apress.javaedge.story.StoryVO;
import com.apress.javaedge.member.MemberVO;
import org.apache.struts.action.*;
import org.apache.struts.util.MessageResources;
import org.apache.commons.beanutils.BeanUtils;
import org.apache.struts.action.Action;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpSession;
import java.util.Vector;
import java.lang.reflect.InvocationTargetException;
import org.apache.struts.Globals;

/**
* Standard Struts class that collects data
* submitted by the end-user.
* @author jcarnell
*
* ----------XDoclet Tag----------------
* @struts.form name="postStoryForm"
* -------------------------------------
*/
public class PostStoryForm extends ActionForm {

String storyTitle = "";
String storyIntro = "";
String storyBody = "";

CHAPTER 3 ■ FORM PRESENTATION AND VALIDATION WITH STRUTS 83

Ch03_7389_CMP3 9/29/06 9:26 AM Page 83

//Checks to make sure field being checked is not null
private void checkForEmpty(String fieldName, String fieldKey,

String value, ActionErrors errors){
if (value.trim().length()==0){
ActionError error = new
ActionError("error.poststory.field.null", fieldName);

errors.add(fieldKey, error);
}

}

//Checks to make sure the field being checked does
// not violate our vulgarity list
private void checkForVulgarities(String fieldName, String fieldKey,

String value, ActionErrors errors){
VulgarityFilter filter = VulgarityFilter.getInstance();

if (filter.isOffensive(value)){
ActionError error =
new ActionError("error.poststory.field.vulgar", fieldName);

errors.add(fieldKey, error);
}

}

//Checks to make sure the field in question
//does not exceed a maximum length
private void checkForLength(String fieldName,

String fieldKey, String value, int maxLength, ActionErrors errors){
if (value.trim().length()>maxLength){
ActionError error =
new ActionError("error.poststory.field.length", fieldName);

errors.add(fieldKey, error);
}

}

public ActionErrors validate(ActionMapping mapping,
HttpServletRequest request) {

ActionErrors errors = new ActionErrors();

checkForEmpty("Story Title", "error.storytitle.empty",
getStoryTitle(),errors);

checkForEmpty("Story Intro", "error.storyintro.empty",
getStoryIntro(), errors);

checkForEmpty("Story Body", "error.storybody.empty",
getStoryBody(), errors);

checkForVulgarities("Story Title", "error.storytitle.vulgarity",
getStoryTitle(), errors);

CHAPTER 3 ■ FORM PRESENTATION AND VALIDATION WITH STRUTS84

Ch03_7389_CMP3 9/29/06 9:26 AM Page 84

checkForVulgarities("Story Intro", "error.storyintro.vulgarity",
getStoryIntro(), errors);

checkForVulgarities("Story Body", "error.storybody.vulgarity",
getStoryBody(), errors);

checkForLength("Story Title", "error.storytitle.length",
getStoryTitle(), 100, errors);

checkForLength("Story Intro", "error.storyintro.length",
getStoryIntro(), 2048, errors);

checkForLength("Story Body", "error.storybody.length",
getStoryBody(), 10000, errors);

return errors;
}

/**
* @see org.apache.struts.action.ActionForm#reset
(org.apache.struts.action.ActionMapping,
javax.servlet.http.HttpServletRequest)
*/
public void reset(ActionMapping mapping,

HttpServletRequest request) {
// deprecated 1.1

//ActionServlet servlet = this.getServlet();
//MessageResources messageResources = servlet.getResources();

// new for 1.2
MessageResources messageResources =

(MessageResources) request.getAttribute(Globals.MESSAGES_KEY);

storyTitle = messageResources.getMessage(
"javaedge.poststory.title.instructions");

storyIntro = messageResources.getMessage(

/** Getter for property storyTitle.
* @return Value of property storyTitle.
*/
public java.lang.String getStoryTitle() {

return storyTitle;
}

/** Setter for property storyTitle.
* @param storyTitle New value of property storyTitle.
*/
public void setStoryTitle(java.lang.String storyTitle) {

this.storyTitle = storyTitle;
}

CHAPTER 3 ■ FORM PRESENTATION AND VALIDATION WITH STRUTS 85

Ch03_7389_CMP3 9/29/06 9:26 AM Page 85

/** Getter for property storyIntro.
* @return Value of property storyIntro.
*/
public java.lang.String getStoryIntro() {

return storyIntro;
}

/** Setter for property storyIntro.
* @param storyIntro New value of property storyIntro.
*/
public void setStoryIntro(java.lang.String storyIntro) {

this.storyIntro = storyIntro;
}

/** Getter for property storyBody.
* @return Value of property storyBody.
*/
public java.lang.String getStoryBody() {

return storyBody;
}

/** Setter for property storyBody.
* @param storyBody New value of property storyBody.
*/
public void setStoryBody(java.lang.String storyBody) {

this.storyBody = storyBody;
}

}

Using the reset() Method
The reset() method is used to ensure that an ActionForm class is always put in a “clean” state
before the ActionServlet populates it with the form data submitted in the user’s request. In
the struts-config.xml file, the developer can choose to place an ActionForm for a specific Struts
action in either the user’s session or request.

The reset() method was originally implemented to allow developers to deal with one
of the more annoying HTML form controls: checkboxes. When a form is submitted with
unchecked checkboxes, no data values are submitted for the checkbox control in the HTTP
request.

Thus, if an ActionForm is sitting in the user’s session and the user changes a checkbox
value for the ActionForm from true to false, the ActionForm will not get updated because the
value for the checkbox will not be submitted. Remember, the HTML <input> tag does not send
a value of false on an unchecked checkbox.

The reset() method can be used to initialize a form bean property to a predetermined
value. In the case of a form bean property that represents a checkbox, the reset() method can
be used to set the property value always to false.

CHAPTER 3 ■ FORM PRESENTATION AND VALIDATION WITH STRUTS86

Ch03_7389_CMP3 9/29/06 9:26 AM Page 86

Since the reset() method is called before the form is populated with data from the
HttpServletRequest object, it can be used to ensure that a checkbox is set to false. Then if
the user has checked a checkbox, the false value set in the reset() method can be overridden
with the value submitted by the end user.

The Struts development team typically recommends the reset() method only be used for
the preceding purpose. However, as you will see in the next section, the reset() method can
be useful for prepopulating a JSP page with data.

A Word on the reset() Method
Among Struts developers, the use of the reset() method to prepopulate form data can be the
cause of rigorous debate. The Struts JavaDoc advises to not use the reset() method. The main
reason the Struts development team gives is that the reset() method maybe deprecated at
some point in the future (even though this has yet to be even mentioned anywhere).

In the next several sections, we will be demonstrating how to prepopulate a web page by
using the reset() method and a “setup” action. We give our reason for using both methods
and have seen both methods work rather successfully in production-level systems. That being
said, please do not deluge our mailboxes with angry e-mails if it is deprecated in the future.

Implementing the reset() method for the PostStoryForm will set all its properties to an
empty string. The reset() method for the PostStoryForm class is shown here:

public void reset(ActionMapping mapping,
HttpServletRequest request) {

storyTitle = "";
storyIntro = "";
storyBody = "";

}

Prepopulating an ActionForm with Data
So far, we have talked about using the reset() method to ensure that the contents of an
ActionForm class are cleared before the ActionServlet places data in it from the user request.
However, an ActionForm class can also be used to prepopulate an HTML form with data.
The data populating the form might be text information retrieved from a properties file or
a database.

To prepopulate an HTML form with data, you need to have the following Struts elements
in place:

• A Struts setup action that will be called before a user is redirected to a JSP page,
displaying an HTML form prepopulated with the data. The concept of setup actions
is discussed in Chapter 2.

• An ActionForm class whose reset() method will prepopulate the form fields with data
retrieved from the ApplicationResources.properties file. The
ApplicationResources.properties file is discussed in Chapter 2.

• A JSP page that uses the Struts HTML tag library to retrieve the data from the
ActionForm class.

CHAPTER 3 ■ FORM PRESENTATION AND VALIDATION WITH STRUTS 87

Ch03_7389_CMP3 9/29/06 9:26 AM Page 87

For example, you can prepopulate the HTML form for the Post a Story page with some
simple instructions on what data is supposed to go in each field. For this example, you are
going to use the following files:

• PostStoryForm.java

• PostStorySetupAction.java

• postStoryContent.jsp

We are only going to show you the PostStoryForm and the PostStorySetupAction Java
classes. The postStoryContent.jsp file will use the Struts HTML tag library to read the values
out of the PostStoryForm object stored in the request and display them in each field. The post-
StoryContent.jsp file and Struts HTML tag library are discussed later in the chapter, in the
section “The Struts HTML Tag Library.”

PostStoryForm.java
Writing the reset() method for a PostStoryForm to prepopulate the ActionForm with the
instructions for each field in the form is a straightforward task:

public void reset(ActionMapping mapping,
HttpServletRequest request) {

MessageResources messageResources =
(MessageResources) request.getAttribute(Globals.MESSAGES_KEY);

storyTitle =
messageResources.getMessage("javaedge.poststory.title.instructions");

storyIntro =
messageResources.getMessage("javaedge.poststory.intro.instructions");

storyBody =
messageResources.getMessage("javaedge.poststory.body.instructions");

}

The reset() method just shown reads values from the ApplicationResources.properties
file and uses them to populate the properties of the PostStoryForm object.

■Note In the preceding reset() method, the error messages being looked up by the call to getMessage()
have a string literal being passed in as a parameter. This string literal is the name of the message being looked
up from the resource bundle used for the JavaEdge application (that is, the ApplicationResources.properties file).

This was done for clarity in reading the code. A more maintainable solution would be
to replace the individual string literals with corresponding static final constant values.

The Struts development framework provides an easy-to-use wrapper class, called
MessageResources, for directly accessing the data in the ApplicationResources.properties file.

CHAPTER 3 ■ FORM PRESENTATION AND VALIDATION WITH STRUTS88

Ch03_7389_CMP3 9/29/06 9:26 AM Page 88

■Note We use the name ApplicationResources.properties for the name of the message resource bundle used
in the JavaEdge application because this is traditionally what this file has been called in the Struts application.
However, the name of the file used as the message resource bundle can be set in the parameter attribute
of the <message-resources> tag contained within the struts-config.xml file. For a review of the <message-
resources> tag, please review Chapter 2.

After getting an instance of a MessageResources object, you can pass the message key of
the item that you want to retrieve to getMessage(). The getMessage() method will retrieve the
desired value.

messageResources.getMessage("javaedge.poststory.title.instructions");

If the key passed to the getMessage() method cannot be found, a value of null will be
returned. The following are the name-value pairs from the ApplicationResources.properties
file used to prepopulate the PostStoryForm:

javaedge.poststory.title.instructions=Enter a title here.
javaedge.poststory.intro.instructions=
Enter the story introduction here. Please be concise.
javaedge.poststory.body.instructions=Enter the full story here. Please be nice.

The PostStoryForm.reset() method is a very simple example of how to prepopulate a
form with the data contained in an ActionForm class. In reality, many applications retrieve
their data from an underlying relational database rather than from a properties file. How the
reset() method on the PostStoryForm is invoked is yet to be explored.

■Note A common mistake by beginning Struts and JSP developers is to try to use the ActionForm class
to manage Struts form data without using the Struts HTML tag library.

It is important to note that all of the techniques shown for prepopulating a web form will
only work with the Struts HTML JSP tag libraries.

Let’s take a look at the PostStorySetupAction.java file and see how we can trigger the
reset() method.

PostStorySetupAction.java
Triggering the PostStoryForm.reset() method does not require any coding in the
PostStorySetupAction.java file. All that the PostStorySetupAction class is going to do
is forward the user’s request to the postStoryContent.jsp file. So what role does the
PostStorySetupAction.java file play, if its execute() method just forwards the user
on to a JSP page? How is the reset() method in the PostStoryForm class called?

CHAPTER 3 ■ FORM PRESENTATION AND VALIDATION WITH STRUTS 89

Ch03_7389_CMP3 9/29/06 9:26 AM Page 89

If you set a Struts <action> tag in the struts-config.xml file to use an ActionForm and tell
the ActionServlet to put the PostStoryForm in the user’s request, the reset() method in the
PostStoryForm class will be invoked.

When users click the Post a Story link in the JavaEdge header, they are asking the
ActionServlet to invoke the /postStorySetup action. This action is configured to use the
ActionForm class of PostStoryForm. The PostStoryForm is going to be put in the users’ request
context by the ActionServlet.

Since the ActionForm class for the /postStorySetup action is the PostStoryForm class
and the PostStoryForm class is going to be placed into the users’ request context, the reset()
method in the PostStoryForm class will be invoked. The reset() method is going to initialize
each of the attributes in the PostStoryForm class to hold a set of simple instructions pulled
from the ApplicationResources.properties file.

After the reset() method has been invoked, the ActionServlet will place any submitted
form data in the PostStoryForm instance. Since the user has not actually submitted any data,
the PostStoryForm class will still hold all of the values read from the ApplicationResources.
properties file. The ActionServlet will then invoke the execute() method in the
PostStorySetupAction class, which will forward the user to the postStoryContent.jsp page.
This page will display a form, prepopulated with instructions.

In summary, to prepopulate the form, you need to perform the following two steps:

1. Write a Struts Action class called PostStorySetupAction. The execute() method of this
class will pass the user on to postStoryContent.jsp.

2. Set up an action called /postStorySetup in the struts-config.xml file. This action will
use the PostStoryForm class.

The code for PostStorySetupAction.java is shown here:

package com.apress.javaedge.struts.poststory;

import org.apache.struts.action.Action;
import org.apache.struts.action.ActionMapping;
import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionForward;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;

public class PostStorySetupAction extends Action {
public ActionForward execute(ActionMapping mapping,

ActionForm form,
HttpServletRequest request,
HttpServletResponse response){

return (mapping.findForward("poststory.success"));
}

}

CHAPTER 3 ■ FORM PRESENTATION AND VALIDATION WITH STRUTS90

Ch03_7389_CMP3 9/29/06 9:26 AM Page 90

The execute() method just forwards the user to the postStoryContent.jsp page by return-
ing an ActionForward mapped to this page:

return (mapping.findForward("poststory.success"));

The poststory.success mapping corresponds to the <forward> element, defined for the
following <action> tag of /postStorySetup:

<action path="/postStorySetup"
type="com.apress.javaedge.struts.poststory.PostStorySetupAction"
name="postStoryForm"
scope="request"
validate="false">

<forward name="poststory.success" path="/WEB-INF/jsp/postStory.jsp"/>
</action>

The name attribute shown here tells the ActionServlet to use an instance of PostStoryForm
whenever the user invokes the /postStorySetup action:

name="postStoryForm"

Remember, the value of the name attribute must refer to a <form-bean> tag defined at the
beginning of the struts-config.xml file.

The scope attribute tells the ActionServlet to place the PostStoryForm as an attribute in
the HttpServletRequest object:

scope="request"

Setting the validate attribute to false in the preceding tag will cause the ActionServlet
not to invoke the validate() method of the PostStoryForm. This means the reset() method in
the PostStoryForm object is going to be invoked and placed in the user’s request, but no data
validation will take place.

Since no data validation takes place, the execute() method of PostStorySetupAction will
be invoked. Remember, the Action class that carries out the end user’s request is defined in
the type attribute:

type="com.apress.javaedge.struts.poststory.PostStorySetupAction"

Another Technique for Prepopulation
Another technique exists for prepopulating an ActionForm with data. It is discussed here
because implementing your Struts application using this technique can cause long-term
maintenance headaches.

In the PostStorySetupAction.java file, you could implement the execute() method so
that it creates an instance of PostStoryForm and invokes its reset() method directly. After the
reset() method is invoked, the PostStoryForm can then be set as an attribute in the request
object passed in the execute() method.

CHAPTER 3 ■ FORM PRESENTATION AND VALIDATION WITH STRUTS 91

Ch03_7389_CMP3 9/29/06 9:26 AM Page 91

The following code demonstrates this technique:

public class PostStorySetupAction extends Action {
public ActionForward execute(ActionMapping mapping,

ActionForm form,
HttpServletRequest request,
HttpServletResponse response){

PostStoryForm postStoryForm = new PostStoryForm();
postStoryForm.setServlet(this.getServlet());
postStoryForm.reset(mapping, request);
request.setAttribute("postStoryForm", postStoryForm);

return (mapping.findForward("poststory.success"));
}

}

■Note If you find yourself working around the application framework, consider redesigning the task you
are trying to execute. Stepping outside the application framework, as in the example shown previously, can
lead to long-term maintenance and upgrade issues. The Struts architecture tries to remain very declarative,
and controlling the application flow programmatically breaks one of Struts’ fundamental tenets.

Prepopulating a Form the Correct Way
If you are going to use a setup action and not the reset() method on an ActionForm to prepop-
ulate a form with data, then you should do all of the work directly in the setup action. The
code that follows demonstrates this:

public class PostStorySetupAction extends Action {
public ActionForward execute(ActionMapping mapping,

ActionForm form,
HttpServletRequest request,
HttpServletResponse response){

ActionServlet servlet = this.getServlet();
PostStoryForm postStoryForm = new PostStoryForm();
postStoryForm.setServlet(this.getServlet());

MessageResources messageResources =
(MessageResources) request.getAttribute(Globals.MESSAGES_KEY);

postStoryForm.setStoryTitle(
messageResources.getMessage("javaedge.poststory.title.instructions"));

postStoryForm.setStoryIntro(
messageResources.getMessage("javaedge.poststory.intro.instructions"));

postStoryForm.setStoryBody(

CHAPTER 3 ■ FORM PRESENTATION AND VALIDATION WITH STRUTS92

Ch03_7389_CMP3 9/29/06 9:26 AM Page 92

messageResources.getMessage("javaedge.poststory.body.instructions"));
request.setAttribute("postStoryForm", postStoryForm);

return (mapping.findForward("poststory.success"));
}

}

If you look at this code, you will notice that you can directly retrieve and set Struts
ActionForm classes in the user’s request or session context:

storyTitle =
messageResources.getMessage("javaedge.poststory.title.instructions");

storyBody =
messageResources.getMessage("javaedge.poststory.body.instructions");

request.setAttribute("postStoryForm", postStoryForm);

At some point as a Struts developer you will need to retrieve, create, or manipulate an
ActionForm manually.

■Note The Struts framework always uses the value stored in the name attribute of an <action> element
as the key to storing the ActionForm class as the user’s request or session.

Validating the Form Data
As discussed earlier, a common mistake in web application development is for no clear dis-
tinction to exist between the application’s business logic and validation logic. The ActionForm
class helps the developers to solve this problem by allowing them to enforce lightweight vali-
dation rules against the data entered by a user. By encapsulating these validation rules in the
ActionForm class, the developer can clearly separate the validation rules from the business
logic that actually carries out the request. The business logic is placed in the corresponding
Action class for the end user’s request.

Web developers can override the validate() method and provide their own validation
rules for the submitted data, while writing their own ActionForm class. If the developers do not
override the validate() method, none of the data submitted will have any validation logic run
against it.

The validate() method for the PostStoryForm class is going to enforce three validation rules:

• The users must enter a story title, story introduction, and story body. If they leave any
field blank, they will receive an error message indicating that they must enter the data.

• The users are not allowed to put vulgarity in their application. The validate() method
will check the data entered by the user for any inappropriate phrases.

• Each field in the Post a Story page is not allowed to exceed a certain length; otherwise,
the user will get an error message.

It is important to note that in all the cases, the users will not be allowed to continue until
they correct the validation violation(s).

CHAPTER 3 ■ FORM PRESENTATION AND VALIDATION WITH STRUTS 93

Ch03_7389_CMP3 9/29/06 9:26 AM Page 93

The validate() method for the PostStoryForm class is as shown here:

public ActionErrors validate(ActionMapping mapping,
HttpServletRequest request) {

ActionErrors errors = new ActionErrors();

checkForEmpty("Story Title", "error.storytitle.empty",
getStoryTitle(), errors);

checkForEmpty("Story Intro", "error.storyintro.empty",
getStoryIntro(), errors);

checkForEmpty("Story Body", "error.storybody.empty",
getStoryBody(), errors);

checkForVulgarities("Story Title", "error.storytitle.vulgarity",
getStoryTitle(), errors);

checkForVulgarities("Story Intro", "error.storyintro.vulgarity",
getStoryIntro(), errors);

checkForVulgarities("Story Body", "error.storybody.vulgarity",
getStoryBody(), errors);

checkForLength("Story Title", "error.storytitle.length", getStoryTitle(),
100, errors);

checkForLength("Story Intro", "error.storyintro.length", getStoryIntro(),
2048, errors);

checkForLength("Story Body", "error.storybody.length", getStoryBody(),
2048, errors);

return errors;
}

The first step in the validate() method is to instantiate an instance, called errors, of the
ActionErrors class:

ActionErrors errors = new ActionErrors();

The ActionErrors class is a Struts class that holds one or more instances of an ActionError
class. An ActionError class represents a single violation of one of the validation rules being
enforced in the ActionForm class.

■Note The Struts framework’s ActionError class is used throughout all of the code examples in this book.
As of Struts 1.2.1, the ActionError class will be deprecated and replaced by the ActionMessage class.

The upgrade of Struts 1.0.2 to Struts 1.1 took over a year to release to production. Struts 1.2 contains minor
bug fixes with no major new functionality. As such, new and existing applications using Struts 1.1 have a
while before they need to be upgraded. To use the code with this edition of the book, some code has been
modified to take advantage of the changes in APIs in Struts 1.2 and remove code that has been deprecated
since Struts 1.1.

CHAPTER 3 ■ FORM PRESENTATION AND VALIDATION WITH STRUTS94

Ch03_7389_CMP3 9/29/06 9:26 AM Page 94

If a form element submitted by an end user violates a validation rule, an ActionError will
be added to the errors object.

When the validate() method completes, the errors object will be returned to the
ActionServlet:

return errors;

If the errors object is null or contains no ActionErrors, the ActionServlet will allow the
business logic to be carried out, based on the end user’s request. This is done by invoking the
execute() method in the Action class associated with the request.

Let’s look at the checkForVulgarities() method to see how an ActionError class is actu-
ally created when a validation rule is violated. The checkForEmpty() and checkForLength()
methods will not be discussed in detail, but the code for these methods is shown here:

private void checkForEmpty(String fieldName, String fieldKey, String value,
ActionErrors errors) {

if (value.trim().length() == 0) {
ActionError error = new ActionError("error.poststory.field.null",

fieldName);
errors.add(fieldKey, error);

}
}

private void checkForLength(String fieldName, String fieldKey, String value,
int maxLength, ActionErrors errors){

if (value.trim().length() > maxLength){
ActionError error = new ActionError("error.poststory.field.length",

fieldName);
errors.add(fieldKey, error);

}

Creating an ActionError
The checkForVulgarities() method is as shown here:

private void checkForVulgarities(String fieldName, String fieldKey,
String value, ActionErrors errors) {

VulgarityFilter filter = VulgarityFilter.getInstance();

if (filter.isOffensive(value)){
ActionError error = new ActionError("error.poststory.field.vulgar",

fieldName);
errors.add(fieldKey, error);

}
}

CHAPTER 3 ■ FORM PRESENTATION AND VALIDATION WITH STRUTS 95

Ch03_7389_CMP3 9/29/06 9:26 AM Page 95

The first line in this method retrieves an instance of the VulgarityFilter into a variable
called filter.

VulgarityFilter filter = VulgarityFilter.getInstance();

The VulgarityFilter class is implemented using a Singleton design pattern and wraps a
collection of words that are considered to be offensive. The code for the class is shown here:

package com.apress.javaedge.common;

public class VulgarityFilter {

private static VulgarityFilter filter = null;

private static String[] badWords = {"Stupid", "Idiot", "Moron", "Dummy",
"Flippin", "Ninny"};

static {
filter = new VulgarityFilter();

}

public static VulgarityFilter getInstance(){
return filter;

}

public boolean isOffensive(String valueToCheck){
String currentWord = "";

for (int x = 0; x <= badWords.length - 1; x++){
if (valueToCheck.toLowerCase().indexOf(badWords[x].toLowerCase())

!= -1) {
return true;

}
}

return false;
}

}

The VulgarityFilter class has a single method called isOffensive(), which checks if
the text passed in is offensive. A value of true returned by this method indicates the user has
entered data that contains offensive text:

if (filter.isOffensive(value))

When a vulgarity is found, a new ActionError is created and added to the errors object
passed to the checkForVulgarity() method:

ActionError error = new ActionError("error.poststory.field.vulgar",
fieldname);

errors.add(fieldKey, error);

CHAPTER 3 ■ FORM PRESENTATION AND VALIDATION WITH STRUTS96

Ch03_7389_CMP3 9/29/06 9:26 AM Page 96

There are five constructors that can be used to instantiate an ActionError class. The
first parameter of each of these constructors is a lookup key that Struts uses to find the text
of the error message displayed to the end user. Struts will look for all error messages in the
ApplicationResources.properties file associated with the application. The error messages for
the Post a Story page are shown here:

error.poststory.field.null= The following field: {0} is a required field.
error.poststory.field.vulgar= You have put a vulgarity in your {0} field.
error.poststory.field.length=Your {0} field is too long.

When the user violates the vulgarity validation rule and the checkForVulgarity() method
creates an ActionError, the lookup key error.poststory.field.vulgar will be used to return
the following error message:

The following field: {0} is a required field. Please provide a value for {0}.

The error message can contain at most four distinct parameter values. The parameter val-
ues are referenced by using the notation {number}, where number is between zero and three. In
the preceding example, only one parameter is inserted into the error message. A summary of
the five constructors in the ActionError class is given in Table 3-2.

Table 3-2. ActionError Attributes

ActionError Constructor Description

ActionError(String lookupKey) Retrieves the error message from the
ApplicationResources.properties file

ActionError(String lookupKey, String param0) Retrieves the error message from the
ApplicationResources.properties file
and passes in one parameter

ActionError(String lookupKey, Retrieves the error message from the
String param0, String param1) ApplicationResources.properties file

and passes in two parameters

ActionError(String lookupKey, Retrieves the error message from the
String param0, String param1, String param2) ApplicationResources.properties file

and passes in three parameters

ActionError(String lookupKey, String param0, Retrieves the error message from the
String param1, String param2, String param3) ApplicationResources.properties file

and passes in four parameters

After the error object has been created, it is later added to the errors object by calling the
add() method in errors:

errors.add(fieldKey, error);

The add() method takes two parameters:

• A key that uniquely identifies the added error within the ActionErrors class. This key
must be unique and can be used to look up a specific error in the ActionErrors class.

• An ActionError object containing the error message.

CHAPTER 3 ■ FORM PRESENTATION AND VALIDATION WITH STRUTS 97

Ch03_7389_CMP3 9/29/06 9:26 AM Page 97

Viewing the Errors
The Struts ActionServlet checks if there are any errors in the returned ActionErrors object to
determine if a validation error was returned by the validate() method. If the value returned
from the validate() method is null or contains no ActionError objects, no validation errors
were found.

If the Struts ActionServlet finds that there are errors present in the ActionError object, it
will redirect the user to the path set in the input attribute for the action.

■Note Remember, the input attribute on the <action> tag is a required field if the name attribute is also
defined on the tag. The name attribute is used to define the name of the ActionForm that will hold the form
data being submitted.

Failure to include an input attribute when using an ActionForm will result in an exception
being thrown.

Most of the time, the value in this input tag is the JSP page where the data was entered. The
ActionForm object holding the user’s data will still be in the request. Thus, any data entered by
the user in the form will appear prepopulated in the form. How does Struts present the user with
all the errors raised in the validate() method? It does this using the <html:errors/> tag. This tag
is found in the Struts HTML custom JSP tag library. (Several other form-related custom tags are
contained in the HTML tag library. We will be discussing the full HTML tag library in the section
“The Struts HTML Tag Libraries.”) There are two ways of using this tag:

• To write each error message stored within the ActionErrors class to the JSP PrintWriter
class

• To retrieve a specific error from the ActionErrors class and place it next to the specific
fields

Writing All Error Messages to the JSP Page
To perform the first action, you must import the Struts HTML tag library and place the
<html:errors/> tag where you want the errors to appear. For instance, in postStoryContent.jsp,
you use this tag in the following manner:

<%@ page language="java" %>
<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>

<H1><bean:message key="javaedge.poststory.text.header"/></H1>

<html:errors/>

This code will write all the errors in the ActionErrors class returned by the validate()
method of the PostStoryForm immediately below the header of the page. The following exam-
ple shows the type of error messages that can be presented to the end user:

CHAPTER 3 ■ FORM PRESENTATION AND VALIDATION WITH STRUTS98

Ch03_7389_CMP3 9/29/06 9:26 AM Page 98

You have put a vulgarity in your Story Title field.
Please refer to our terms
of use policy.

The following field: Story Intro is a required field.
Please provide a value for Story Intro.

The following field: Story Body is a required field.
Please provide a value for Story Body.

It is extremely important to note that the <html:errors/> tag will write the error text
exactly as it has been defined in the ApplicationResources.properties file. This means that the
developer must provide HTML tags to format the appearance of the error message. This also
includes putting any
 tags for the appropriate line breaks between the error messages.
The <html:errors/> tag allows the application developer to define a header and footer for a
collection of error messages. Headers and footers are defined by including an errors.header
property and errors.footer property in the ApplicationResources.properties file. These two
properties can contain text (and HTML code) that will appear immediately before and after
the errors written by the <html:errors/> tag. The following snippet shows these properties for
the JavaEdge application:

errors.header=<h3>Important Message</h3>
errors.footer=<hr>

The <html:errors/> tag provides a very simple and consistent error-handling mechanism.
Front-end screen developers only need to know that they have to put an <html:errors/> tag in
their JSP form pages to display any validation errors. The job of the server-side developers is
simplified because they can easily validate the form data submitted by the end user and com-
municate the errors back to the user by populating an ActionErrors object.

Keeping in mind all the discussion that we had so far, when the end users violate a valida-
tion rule on the Post a Story page, they will see the output shown in Figure 3-4.

Figure 3-4. The end result of a validation rule violation

Retrieving a Single Error Message
The <html:errors/> tag by itself is somewhat inflexible, because you have to present all the
validation errors caused by the end user at a single spot on the screen. Many application
developers like to break the validation errors apart and put them next to the field that contains
the invalid data.

Fortunately, the <html:errors/> tag allows you to pull a single error message from an
ActionErrors object. It has an attribute called property. This attribute will let you retrieve an

CHAPTER 3 ■ FORM PRESENTATION AND VALIDATION WITH STRUTS 99

Ch03_7389_CMP3 9/29/06 9:26 AM Page 99

error message, using the key value that was used while adding the error message to the
ActionErrors object. For example, when a user enters a word that violates the vulgarity filter,
you add that validation error to the errors object by calling

errors.add(fieldKey, error);

The fieldKey variable passed to the errors.add() method is the name we have chosen to
represent that particular error. For example, if the user typed the word dummy into the Story
Title field, this would violate the vulgarity validation rule and a new ActionError class would
be instantiated. The new ActionError would be added to the errors class and would have a
fieldKey value of error.storytitle.vulgarity.

If you wanted to put that specific error message directly above the Story Title field label,
you could rewrite postStoryContent.jsp with the following code:

<TR>
<TD>

<html:errors property="error.storytitle.vulgarity"/>

<bean:message key="javaedge.poststory.form.titlelabel"/>
<html:text name="postStoryForm" property="storyTitle"/>

</TD>
</TR>

By using the <html:errors/> tag in the manner shown, you can cause postStoryContent.jsp
to generate an error message that may look like the one shown in Figure 3-5.

Figure 3-5. Displaying a single validation error message

If you want to automatically format the individual error messages, you need to use
error.prefix and error.suffix rather than the error.header and error.footer properties in
the ApplicationResources.properties file:

error.prefix=
error.suffix=

CHAPTER 3 ■ FORM PRESENTATION AND VALIDATION WITH STRUTS100

Ch03_7389_CMP3 9/29/06 9:26 AM Page 100

Error Handling and Prepopulation
After discussing how HTML errors are handled in Struts, you might be a little bit confused.
Why does the form show up with all of the fields prepopulated with the data that the user just
entered? Why doesn’t the reset() method in the ActionForm class reset all the values?

The reason is simple. When the validate() method is invoked and if there are validation
errors, the ActionServlet is going to look at the value of the input attribute in the <action>
tag. The input attribute almost invariably points back to the JSP where the user entered the
data. Remember, the reset() method gets called only when an action is invoked. Redirecting
the user back to a JSP page will not invoke the reset() method. If the JSP page to which the
user is redirected uses the Struts HTML tag library and an ActionForm in the user’s request or
session, it will pull the data out of the ActionForm and prepopulate the form elements with
that data. Thus, when a validation error occurs, the user sees the validation errors and a pre-
populated form.

If you want to force the reset of all the elements in a form, after the validation occurs, you
need to point the input attribute in the <action> element to a setup action that will repopulate
the data.

On Validations and Validation Libraries
One of the biggest complaints that we have heard from development teams using Struts is that
it seems wrong to separate the validation logic from the actual business logic. After all, the
same validation logic is going to be applied regardless of where the actual business logic is
being executed. For example, a parameter that is required by a piece of business logic to be
non-null is going to have the same requirement regardless of which application is executing
the business logic.

The strength of the ActionForm class’s validate() method is that it provides a clean mech-
anism for performing validation and handling errors that are found during validation. The
examples in this chapter have shown the validation rules for the code embedded directly in
the ActionForm class doing the validation. This has been to simplify the reading of code and
allow the reader to follow the examples without having to wade through multiple layers of
abstraction and generalization.

The problem with embedding the validation logic inside the ActionForm class is that it ties
the code to a Struts-specific class and makes the embedded validation code difficult to reuse
in a non-Struts application.

Oftentimes, development teams will leverage a number of approaches to help generalize
validation and avoid tying it to a Struts ActionForm class. These include

• Separating all of the validation logic used in an application into a set of validation
“helper” classes that can be reused across multiple applications.

• Moving the validation code into the value objects being used to move data back and
forth across the application tiers. The base value object class extended by all of the
value objects in the application has a validate() method that can be overridden to
contain validation code. If you are not familiar with the Value Object pattern, please
refer to Chapter 5.

CHAPTER 3 ■ FORM PRESENTATION AND VALIDATION WITH STRUTS 101

Ch03_7389_CMP3 9/29/06 9:26 AM Page 101

• Moving all of the validation code into the business logic layer. Each object in the
business logic layer has a private validate() method that is called before the actual
business logic is processed.

• Using a validation framework, like the Validator framework in Struts, to externalize the
validation logic from the business logic and make them as declarative as possible.

Each of the items listed have their advantages and disadvantages. Moving all of the valida-
tion logic to a set of “helper” classes is simple, but oftentimes leads to the development team
creating a cumbersome set of low-level data validation calls that they must maintain and sup-
port. There are already plenty of open source libraries and frameworks that do this type of
low-level validation. The question becomes, Why waste time on something others have
already done?

Moving the validation logic to the Value Object pattern has the advantage of putting the
validation logic very close to the data. The same validation logic for data can be applied over
and over again by simply invoking the validate() method on the value object. The problem
with this approach is that the value objects are supposed to be lightweight “wrappers” for data
being passed across the different application boundaries (presentation, business, and data).
At any given time there can be a large number of value objects being used with only a small
fraction of them actually being validated. This is a lot of extra overhead for nothing.

Moving the validation logic to the business layer and embedding it inside of a business
object makes sense. After all, one of the first rules of object-oriented programming is that all
data and the code that acts on that data should be self-contained within a single discrete class.
Oftentimes when validation rules are built into a business layer class, nonbusiness layer
details that deal with error handling and error presentation are also embedded in the class.
This results in tight dependencies being created on the business object and violates another
tenet of OOP, the concept of Single Responsibility.

Classes and the methods contained within them should have a discrete set of responsibil-
ities that reflect on the domain being modeled by the class. When other pieces of nondomain-
specific logic start creeping into the class, it becomes bloated and difficult to maintain. This is
one of the principal reasons why the Struts ActionForm class is useful: It allows a developer to
write validation logic without getting the business logic used in the class too tightly tied to the
application.

The last option is our favorite. If you can use a framework that specifically is built for vali-
dation, you can save a lot of time. The Struts ActionForm class’s validate() method is only
meant to be a plug-in point from which validation logic is called. However, if you start from
the premise that validation logic is lightweight and will consist of no more than a handful of
standard checks, using a declarative validation framework where you have to write little to no
code for performing validation is the best approach. The Struts 1.1 framework now integrates
with the Validator framework. This framework lets you declare a set of validation rules that can
be processed against data contained within an ActionForm class.

The validation rules in the Validator framework cover most of the validation rules a devel-
oper is going to need while building an application. In addition, the Validator framework is
extensible enough to allow you to build your own validation rules. The Validator framework
will be covered in greater detail in Chapter 7.

CHAPTER 3 ■ FORM PRESENTATION AND VALIDATION WITH STRUTS102

Ch03_7389_CMP3 9/29/06 9:26 AM Page 102

The Struts HTML Tag Library
As we have seen earlier in this chapter, Struts provides the ActionForm and Action classes
as the means of validating and processing the data submitted by the end user. The Struts
development framework also provides a JSP tag library, called the HTML tag library, that
significantly simplifies the development of HTML-based forms. The HTML tag library allows
the developer to write JSP pages that tightly integrate with an ActionForm class.

The Struts HTML tag library can be used to generate HTML form controls and read data
out of an ActionForm class in the user’s session or request. It also helps developers avoid writ-
ing significant amounts of scriptlet code to pull the user data out of JavaBeans (that is, the
ActionForm objects) in the user’s request and/or session. When combined with the other Struts
tag libraries, as discussed in Chapter 2 (see the section called “Building the homepage.jsp”), a
developer can write very dynamic and data-driven web pages without ever having to write a
single line of JSP scriptlet code.

The Struts HTML tag library contains a wide variety of tags for generating HTML form con-
trols. We are not going to cover every tag in the Struts HTML tag library. Instead, we are going to
go through the most commonly used tags and explore their usage. For a full list of the different
tags available in the Struts HTML tag library, you can visit http://struts.apache.org/. The tags
discussed in this chapter are listed and described in Table 3-3.

Table 3-3. Commonly Used HTML Tags

Tag Name Tag Description

<html:form> Renders an HTML <form> tag

<html:submit> Renders a submit button

<html:cancel> Renders a cancel button

<html:text> Renders a text field

<html:textarea> Renders a textarea field

<html:select> Renders an HTML <select> tag for creating drop-down boxes

<html:option> Renders an HTML <option> control that represents a single option
in a drop-down box

<html:checkbox> Renders an HTML checkbox

<html:radio> Renders an HTML radio control

Let’s begin the discussion of the Struts HTML tag library by looking at the
postStoryContent.jsp page:

<%@ page language="java" %>
<%@ taglib uri="/taglibs/struts-bean.tld" prefix="bean" %>
<%@ taglib uri="/taglibs/struts-html.tld" prefix="html" %>
<%@ taglib uri="/taglibs/struts-logic.tld" prefix="logic" %>
<%@ taglib uri="/taglibs/struts-tiles.tld" prefix="tiles" %>

CHAPTER 3 ■ FORM PRESENTATION AND VALIDATION WITH STRUTS 103

Ch03_7389_CMP3 9/29/06 9:26 AM Page 103

<H1>
<bean:message key="javaedge.poststory.text.header"/>

</H1>

<html:errors/>

<html:form action="postStory">
<TABLE>
<TR>
<TD>
<bean:message key="javaedge.poststory.text.intro"/>
<logic:present scope="session" name="memberVO">

<bean:write name="memberVO" scope="session"

property="firstName"/>
<bean:write name="memberVO" scope="session"

property="lastName"/>

</logic:present>

<logic:notPresent scope="session" name="memberVO">
Anonymous

</logic:notPresent>
</html:form>

Setting Up a Struts HTML Form
Before using the individual Struts HTML tag within a JSP page, you must take three steps:

1. Import the Struts HTML Tag Library Definitions (TLDs).

2. Define an <html:form> tag, within the page that will map to an <action> tag defined in
the struts-config.xml file.

3. Define an <html:submit> button to allow the user to submit the entered data.

The Struts HTML TLD is imported as shown here:

<%@ taglib uri="/taglibs/struts-html.tld" prefix="html" %>

Next, you use the Struts HTML tags. Just as in a static HTML page, you need to define a
<form> tag that will encapsulate all the HTML form controls on the page. This is done by using
the <html:form> tag.

<html:form action="postStory">
...

</html:form>

CHAPTER 3 ■ FORM PRESENTATION AND VALIDATION WITH STRUTS104

Ch03_7389_CMP3 9/29/06 9:26 AM Page 104

The <html:form> tag has a number of different attributes associated with it. However, we
will not be discussing every <html:form> attribute in detail. Some of the <html:form> attributes
are given in Table 3-4.

Table 3-4. Attributes of the HTML Form Tag

Attribute Name Attribute Description

action Maps to the <action> tag that will carry out the user’s request when the form
data is submitted. This is a required field.

method Determines whether the form will be sent as a GET or POST. This is not a
mandatory field and if not specified, it will generate the <form> tag to use a
POST method.

name The name of the JavaBean that will be used to prepopulate the form controls.
The <html:form> tag will check if this bean is present in the user’s session or
request. The scope attribute defines whether to look into the user’s session
or request. If no JavaBean is found in the context defined in the scope
attribute, the <html:form> tag will create a new instance of the bean and
place it into the scope defined by the scope attribute. The class type of the
created JavaBean is determined by the type attribute.

scope Determines whether the tag should look in the user’s session or request for
the JavaBean named in the name attribute. The value for this attribute can be
either "session" or "request".

type Fully qualified Java class name for the JavaBean being used to populate
the form.

onsubmit Lets the developer define a JavaScript onSubmit() event handler for the
generated form.

onreset Lets the developer define a JavaScript onReset() event handler for the
generated form.

focus Name of the field that will have focus when the form is rendered.

The most important of these attributes is the action attribute. It maps to an <action>
element defined in the struts-config.xml file. If no name, scope, or type attribute is specified
in the <html:form> tag, the ActionForm that will be used to populate the form, its fully qualified
Java name, and the scope in which it resides will be pulled from the <action> tag in the
struts-config.xml file.

In the <html:form> tag used in the postStoryContent.jsp, all the ActionForm information
would be retrieved by the ActionServlet, by looking at the name attribute in the <action> tag of
the postStory action in the struts-config.xml file:

<action path="/postStory"
input="/WEB-INF/jsp/postStory.jsp"
name="postStoryForm"
scope="request"
validate="true"
type="com.apress.javaedge.struts.poststory.PostStory">
<forward name="poststory.success" path="/execute/homePageSetup"/>

</action>

CHAPTER 3 ■ FORM PRESENTATION AND VALIDATION WITH STRUTS 105

Ch03_7389_CMP3 9/29/06 9:26 AM Page 105

Since the value of name (postStoryForm) is defined as a <form-bean> element in the struts-
config.xml file, the ActionServlet can figure out its fully qualified Java class name and
instantiate an instance of that class.

■Note It is a good practice to use the action attribute rather than the name, scope, and type attributes
to define the JavaBean that will populate the form. Using this attribute gives you more flexibility by allowing
you to change the ActionForm class in one location (struts-config.xml) rather than searching multiple
JSP pages.

Let’s look at the HTML generated by the <html:form> tag shown earlier:

<form name="postStoryForm" method="POST"
action="/javaedge/execute/postStory">

The name attribute generated tells the ActionServlet of Struts that the postStoryForm
bean, defined in the <form-beans> tag of the struts-config.xml file, is going to be used to hold
all the data posted by the user. The default method of the form (since you did not define one
in the <html:form> tag) is going to be a POST method. The action attribute contains the URL
to which the form data is going to be submitted. Since the action of the <html:form> tag was
postStory, the <html:form> generated the action attribute (for the corresponding <form> tag)
as /javaedge/execute/postStory.

The last step in setting up an HTML form is using the Struts <html:submit> tag to generate
an HTML submit button:

<html:submit property="submitButton" value="Submit"/>

In addition to the <html:submit> tag, the Struts HTML tag library has HTML tags for creat-
ing cancel buttons. When an <html:cancel> tag is used, an HTML button will be rendered,
which when clicked will cause the ActionServlet to bypass the validate() method in the
ActionForm that is associated with the form.

Even though the validate() method is bypassed, the execute() method for the Action
class (in this case PostStory.java) linked with the form will be invoked. This means if you
want to use an <html:cancel> button in your page, the execute() method must detect when
the cancel button is invoked and act accordingly. For instance, let’s say the following
<html:cancel> tag was added to the postStoryContent.jsp file:

<html:cancel value="Cancel"/>

The validate() method in the PostStoryForm class would not be called. However, the
execute() method on the PostStory class will be invoked. The execute() method taken from
the PostStory class could be written in the following manner:

public ActionForward execute(ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response){

CHAPTER 3 ■ FORM PRESENTATION AND VALIDATION WITH STRUTS106

Ch03_7389_CMP3 9/29/06 9:26 AM Page 106

if (this.isCancelled(request)){
System.out.println("*****The user pressed cancel!!!");
return (mapping.findForward("poststory.success"));

}

//Add the story data to the database.
...
return (mapping.findForward("poststory.success"));

}

If you did not want the code in the execute() method to be executed, you will have to use
a method called isCancelled() to detect if the user pressed a cancel button. The isCancelled()
method is inherited from the base Struts Action class. This method looks for a parameter in the
user’s request, called org.apache.struts.taglib.html.CANCEL. If it finds this parameter, it will
return true, indicating to the developer writing the execute() method code that the user clicked
the cancel button.

The parameter name, org.apache.struts.taglib.html.CANCEL, maps to the name attribute
in the <input> tag generated by the <html:cancel> button. The HTML button generated by the
<html:cancel> tag shown earlier looks like this:

<input type="submit" name="org.apache.struts.taglib.html.CANCEL"
value="Cancel">

Unlike the <html:submit> tag, the property attribute on the <html:cancel> tag is rarely set.

■Note If you set the property attribute in the <html:cancel> button, it will override the default value
generated, and you will not be able to use the isCancelled() method to determine if the user wants to
cancel the action.

Using Text and TextArea Input Fields
The postStoryContent.jsp files use text <text> and <textarea> tags to collect the data from
the end user. The <html:text> and <html:textarea> tags are used to generate the text and
textarea <input> tags, respectively. For instance, the postContent.jsp page uses the
<html:text> tag to generate an HTML text <input> tag by using the following:

<html:text property="storyTitle"/>

The <html:text> tag has a number of attributes, but the most important are name and
property. The name attribute defines the name of the ActionForm bean that the input field is
going to map to. The property attribute defines the property in the ActionForm bean that
is going to map to this input field. You should keep in mind two things while working with
the property attribute:

• The property attribute will map to a get() and set() method in the ActionForm bean.
This means that value must match the standard JavaBean naming conventions. For
instance, the value storyTitle is going to be used by the ActionServlet to call the
getStoryTitle() and setStoryTitle() methods in the ActionForm.

CHAPTER 3 ■ FORM PRESENTATION AND VALIDATION WITH STRUTS 107

Ch03_7389_CMP3 9/29/06 9:26 AM Page 107

• The value in a property attribute can be nested by using a “.” notation. Let’s assume
that the ActionForm method had a property called member that mapped to a MemberVO
object containing the user data. The developer could set the value of the property
attribute to be member.firstName. This would translate into a call to the getMember().
getFirstName() and getMember().setFirstName() methods of the PostStoryForm class.

■Note If you refer to the Struts documentation on the Apache web site, you will notice that almost every
Struts HTML tag has a name attribute in it. This attribute is the name of the JavaBean that the HTML tag
will read and write data to. You do not have to supply a name attribute for the HTML form attributes we are
describing in the following sections. If you do not supply a name attribute and if the <html:*> control is
inside an <html:form> tag, the <html:*> control will automatically use the ActionForm associated with
the <html:form> tag.

The <html:textarea> input tag behaves in a similar fashion to the <html:text> tag. The
<html:textarea> tag uses the cols and rows attributes to define the width and length of the
textarea the user can type in:

<html:textarea name="postStoryForm" property="storyIntro" cols="80" rows="5"/>

The preceding tag will generate a <textarea> tag called storyIntro that will be 80 columns
wide and five rows long.

Drop-Down Lists, Checkboxes, and Radio Buttons
Most HTML forms are more than just a collection of the simple text field controls. They use
drop-down lists, checkboxes, and radio buttons to collect a wide variety of information. While
the postStoryContent.jsp file did not contain any of these controls, it is important to under-
stand how the Struts framework renders these controls using the HTML tag library. Let’s begin
the discussion by the looking at drop-down lists.

Drop-Down Lists
An HTML drop-down list control provides a list of options that a user can select from. However,
the user sees only the item that has been selected. All of the other items are hidden until the user
clicks the drop-down box. On clicking the box, the rest of the options will be displayed and the
user will be able to make a new choice.

Since the Post a Story page does not have a drop-down box, we will have to step away
from it briefly. Using the Struts HTML tag library, there are two ways of rendering a drop-
down box:

• Use an <html:select> tag and build a static list of options by hard coding a static list of
<html:option> tags in the code.

• Use an <html:select> tag and dynamically build the list by reading the data from a Java
collection object using the <html:options> tag.

CHAPTER 3 ■ FORM PRESENTATION AND VALIDATION WITH STRUTS108

Ch03_7389_CMP3 9/29/06 9:26 AM Page 108

The <html:select> tag renders a <select> tag in HTML. The <html:option> tag renders a
single option for the placement in the drop-down list. If you want to display a drop-down list
containing a list of name prefixes, you would write the following code in your JSP file:

<html:select property="someBeanProperty">
<html:option value="NS">Please select a prefix</html:option>
<html:option value="Mr.">Mr.</ html:option>
<html:option value="Ms.">Ms.</ html:option>
<html:option value="Mrs.">Mrs.</ html:option>
<html:option value="Dr.">Dr.</ html:option>

</html:select>

This code snippet would generate the following HTML:

<select name="someBeanProperty">
<option value="NS">Please select a prefix</option>
<option value="Mr.">Mr.</option>
<option value="Ms.">Ms.</option>
<option value="Mrs.">Mrs.</option>
<option value="Dr.">Dr.</option>

</select>

The <html:select> tag has one important attribute, the property attribute. It is the name
of the property of the ActionForm bean that will store the item selected from the drop-down
list. The <html:option> tag must always be contained within an <html:select> tag. The value
attribute in the <html:option> tag specifies the value that will be sent in the users’ request for
the selected item from the drop-down list when they hit the submit button.

The <html:select> and <html:option> tags work well while generating a drop-down list
that does not change. However, if you want to create a drop-down list based on data that is
dynamic, such as data pulled from a database, you need to the use the <html:options> tag.
The <html:options> tag allows you to generate an <option> list from a Java Collection object.

Let’s assume that in a SetupAction class, you created a Vector object and populated it with
the prefix codes. You then put that code in the request object as shown here:

Vector prefixes = new Vector();
prefixes.add("NS");
prefixes.add("Mr.");
prefixes.add("Ms.");
prefixes.add("Mrs.");
prefixes.add("Dr.");
request.setAttribute("prefixes", prefixes);

You could then render this collection into a drop-down list using the following code:

<html:select property="someBeanProperty">
<html:options name="prefixes">

</html:select>

CHAPTER 3 ■ FORM PRESENTATION AND VALIDATION WITH STRUTS 109

Ch03_7389_CMP3 9/29/06 9:26 AM Page 109

Checkboxes
Setting up a checkbox to appear on an HTML form is easy to do. It just requires the use of a
checkbox flag. To create a checkbox on a form, you can use the following syntax:

<html:checkbox property="someBeanProperty" value="true"/>

The property attribute for the checkbox matches the name of the property in the
ActionForm that the checkbox is going to get and set data from. The value attribute is the value
that will be sent in the HTTP request if the user checks the checkbox. If no value is specified,
then the default value will always be on.

One important thing to remember is that when a checkbox is not checked, no value
will be passed in the HTTP request. This also means that the value that was already set in
the ActionForm property associated with the checkbox will not change. You have to check
the request to see if the checkbox is present in the request. If it is not, you have to set the
ActionForm property to a false or off value:

if (request.getAttribute("someBeanProperty") == null) {
this.setSomeBeanProperty(false);

}

This is important because if the submitted data has a validation error and the
ActionServlet returns the user to the screen where they entered data, any checkboxes that had
been moved from a checked to an unchecked state will still show up on the screen as checked.

So in the validate() method of your ActionForm bean you must check the request object
for the checkbox parameter. If the checkbox parameter has not been submitted as part of the
request, you must set the corresponding property in the ActionForm to be false. This has to be
done before you start doing any validation of the form data, or else you will end up with your
form data inconsistently handling the checkbox information passed to it. This also means that
if you want to prepopulate a form with checkboxes set in an off status, the reset() method of
the ActionForm being used to populate the page must set the properties in the ActionForm (that
map to checkboxes) to a false value.

Radio Buttons
To render a radio button in a form, you use the <html:radio> tag. This tag has two core attrib-
utes: property and value. These two attributes are similar in behavior to the <html:checkbox>
tag. The property attribute defines the name of the property in the ActionForm that the radio
button maps to. The value attribute is the value that will be sent, if the radio button is selected
when the user submits the form.

■Caution If you do not preset a radio button and no radio button is selected by the user, the property on
the ActionForm representing the radio button will not have a value set on it. Use one of the ActionForm
prepopulation techniques described earlier if you require the radio button to have some default value
associated with it.

CHAPTER 3 ■ FORM PRESENTATION AND VALIDATION WITH STRUTS110

Ch03_7389_CMP3 9/29/06 9:26 AM Page 110

To group a set of radio button controls together so that only one of a group of radio but-
tons can be set, you set each radio button’s property attribute to point to the same ActionForm
property.

If you wanted to use a radio button instead of the drop-down list to show a selection of
prefixes to the user, you could write the following code:

Mr. <html:radio property="someBeanProperty" value="Mr."/>
Ms. <html:radio property="someBeanProperty" value="Ms."/>
Mrs. <html:radio property="someBeanProperty" value="Mrs."/>
Dr. <html:radio property="someBeanProperty" value="Dr."/>
The HTML generated by this code would look as shown here:
Mr. <input type="radio" name="someBeanProperty" value="Mr.">
Ms. <input type="radio" name="someBeanProperty" value="Ms.">
Mrs. <input type="radio" name="someBeanProperty" value="Mrs.">
Dr. <input type="radio" name="someBeanProperty" value="Dr.">

Building More Dynamic ActionForms
The concept of wrapping data within an ActionForm is a powerful one because it allows the
application developer to retrieve and manipulate data submitted by the end user without hav-
ing to litter their code with the gory details of accessing an HttpRequest object. However, as
most developers will quickly discover, for large projects that collect significant amounts of
data, building ActionForm classes can be extremely tedious.

Writing individual get()/set() methods for each attribute being submitted by the end
user is a time-consuming and thus error-prone process. Fortunately, Struts 1.1 now provides
two mechanisms to simplify the process of building ActionForm classes:

• Dynamic ActionForm

• Map-backed ActionForm

Dynamic ActionForms allow the developer to declare a Struts form bean and its corre-
sponding attributes in the application’s struts-config.xml file. We are not going to go into any
greater detail on Dynamic ActionForms in this chapter. Instead, we will cover them in greater
detail in Chapter 7.

Map-backed ActionForms are an exciting new addition to the Struts framework. A
Map-backed ActionForm allows the developer to wrap a Map object (that is, HashMap, TreeMap,
etc.) and expose it on the ActionForm class.

Shown next is the PostStoryForm rewritten as a Map-backed ActionForm:

package com.apress.javaedge.struts.poststory;

import com.apress.javaedge.common.VulgarityFilter;
import org.apache.struts.action.*;
import org.apache.struts.util.MessageResources;

import javax.servlet.http.HttpServletRequest;
import java.util.HashMap;
import java.util.Map;

CHAPTER 3 ■ FORM PRESENTATION AND VALIDATION WITH STRUTS 111

Ch03_7389_CMP3 9/29/06 9:26 AM Page 111

public class PostStoryMapForm extends ActionForm{
private HashMap attributeMap = new HashMap();

private Map getMap(){
return attributeMap;

}

public void setAttribute(String attributeKey, Object attributeValue){
getMap().put(attributeKey, attributeValue);

}

public Object getAttribute(String attributeKey){

Object holder = getMap().get(attributeKey);

if (holder==null) return "";

return holder;
}

private void checkForEmpty(String fieldName, String fieldKey,
String value, ActionErrors errors){

//Same implementation as the PostStoryForm.
}

private void checkForVulgarities(String fieldName, String fieldKey,
String value, ActionErrors errors){

//Same implementation as the PostStoryForm.
}

private void checkForLength(String fieldName, String fieldKey,
String value, int maxLength,
ActionErrors errors){

//Same implementation as the PostStoryForm.
}

public ActionErrors validate(ActionMapping mapping,
HttpServletRequest request) {

ActionErrors errors = new ActionErrors();

checkForEmpty("Story Title", "error.storytitle.empty",
(String)getAttribute("storyTitle"),errors);

checkForEmpty("Story Intro", "error.storyintro.empty",
(String)getAttribute("storyIntro"), errors);

checkForEmpty("Story Body", "error.storybody.empty",
(String)getAttribute("storyBody"), errors);

checkForVulgarities("Story Title", "error.storytitle.vulgarity",
(String)getAttribute("storyTitle"), errors);

CHAPTER 3 ■ FORM PRESENTATION AND VALIDATION WITH STRUTS112

Ch03_7389_CMP3 9/29/06 9:26 AM Page 112

checkForVulgarities("Story Intro", "error.storyintro.vulgarity",
(String)getAttribute("storyIntro"), errors);

checkForVulgarities("Story Body", "error.storybody.vulgarity",
(String)getAttribute("storyBody"), errors);

checkForLength("Story Title", "error.storytitle.length",
(String)getAttribute("storyTitle"), 100, errors);

checkForLength("Story Intro", "error.storyintro.length",
(String)getAttribute("storyIntro"), 2048, errors);

checkForLength("Story Body", "error.storybody.length",
(String)getAttribute("storyBody"), 10000, errors);

return errors;
}

public void reset(ActionMapping mapping,
HttpServletRequest request) {

ActionServlet servlet = this.getServlet();
MessageResources messageResources = servlet.getInternal();

setAttribute("storyTitle",
messageResources.getMessage➂

("javaedge.poststory.title.instructions"));
setAttribute("storyIntro", messageResources.getMessage➂

("javaedge.poststory.intro.instructions"));
setAttribute("storyBody" , messageResources.getMessage➂

("javaedge.poststory.body.instructions"));
}

}

The first thing you should notice about the PostStoryMapForm class is that there is no
get() and set() for individual attributes. All attributes for the form bean are stored in a
HashMap called attributeMap:

private HashMap attributeMap = new HashMap();

All access to the attributeMap variable is controlled by a pair of methods called
getAttribute() and setAttribute():

public void setAttribute(String attributeKey, Object attributeValue){
getMap().put(attributeKey, attributeValue);

}

public Object getAttribute(String attributeKey){

Object holder = getMap().get(attributeKey);

if (holder==null) return "";

return holder;
}

CHAPTER 3 ■ FORM PRESENTATION AND VALIDATION WITH STRUTS 113

Ch03_7389_CMP3 9/29/06 9:26 AM Page 113

These methods do nothing more than provide an entry point for Struts to perform a
retrieval and insertion of objects into the attributeMap variable, as shown in Figure 3-6.

Figure 3-6. Map-backed ActionForm

■Note The method names getAttribute() and setAttribute() are arbitrary names. You can call your
“wrapper” method to an internal HashMap anything you want as long as the method names follow standard
JavaBean naming conventions and they have the same method signatures shown in the preceding code.

Keep in mind that entry methods like getAttribute() and setAttribute() do not have to
perform straight calls into the Map object. You can place code in the entry methods to ensure
that form attributes being retrieved out of and set in the internal Map object are formatted in a
particular manner. In the PostStoryMapForm class, the getAttribute() call always returns an
empty String object if the attribute from the attributeMap is null:

Object holder = getMap().get(attributeKey);

if (holder==null) return "";

return holder;

When data is accessed from the PostStoryMapForm class, the getAttribute() and
setAttribute() methods are used. You can see this in the PostStoryMapForm’s validate() method:

public ActionErrors validate(ActionMapping mapping,
HttpServletRequest request) {

ActionErrors errors = new ActionErrors();

checkForEmpty("Story Title", "error.storytitle.empty",
(String)getAttribute("storyTitle"),errors);

checkForEmpty("Story Intro", "error.storyintro.empty",
(String)getAttribute("storyIntro"), errors);

checkForEmpty("Story Body", "error.storybody.empty",
(String)getAttribute("storyBody"), errors);

. . .
return errors;

}

CHAPTER 3 ■ FORM PRESENTATION AND VALIDATION WITH STRUTS114

Ch03_7389_CMP3 9/29/06 9:26 AM Page 114

At this point you might be wondering how the individual attributes in the PostStoryMapForm
class are accessed in a JSP page. Before Struts 1.1, there was no way a Struts custom tag could
directly access an element contained within an Array or a Map object. Sure, you could always
use a combination of <logic:iterate> and <logic:equals> tags to find a value, but you could
never tell the Struts tag to directly access element X contained within a particular attribute
on a form bean.

Since the release of Struts 1.1, you can now do this. Code examples often speak volumes,
so let’s look at a rewritten version of the Post a Story page that uses the PostStoryMapForm class
to retrieve and set form data. This new page, called postStoryMapContent.jsp, is shown here:

<%@ page language="java" %>
<%@ taglib uri="/taglibs/struts-bean" prefix="bean" %>
<%@ taglib uri="/taglibs/struts-html" prefix="html" %>
<%@ taglib uri="/taglibs/struts-logic" prefix="logic" %>
<%@ taglib uri="/taglibs/struts-tiles" prefix="tiles" %>

<H1><bean:message key="javaedge.poststory.text.header"/></H1>

<html:errors/>
<html:form action="postStory">

<TABLE>
<TR>

<TD>
<bean:message key="javaedge.poststory.text.intro"/>

<logic:present scope="session" name="memberVO">
<bean:write name="memberVO" scope="session"

property="firstName"/> <bean:write name="memberVO"
scope="session" property="lastName"/>

</logic:present>
<logic:notPresent scope="session" name="memberVO">
Anonymous

</logic:notPresent>

</TD>
<TD>

</TD>
</TR>
<TR>
<TD>

<bean:message
key="javaedge.poststory.form.titlelabel"/>:

CHAPTER 3 ■ FORM PRESENTATION AND VALIDATION WITH STRUTS 115

Ch03_7389_CMP3 9/29/06 9:26 AM Page 115

<html:text property="attribute(storyTitle)"/>
</TD>

</TR>
<TR>
<TD>

<bean:message

key="javaedge.poststory.form.introlabel"/>:

<html:textarea property="attribute(storyIntro)" cols="80" rows="5"/>
</TD>

</TR>
<TR>

<TD>

<bean:message
key="javaedge.poststory.form.bodylabel"/>:

<html:textarea property="attribute(storyBody)" cols="80" rows="10"/>

</TD>
</TR>
<TR>
<TD align="center">
<html:submit property="submitButton" value="Submit"/>
<html:cancel value="Cancel"/>

</TD>
</TR>

</TABLE>
</html:form>

To use this new ActionForm, you need do the following:

• Add a new <form-bean> tag to the JavaEdge application’s struts-config.xml file for the
PostStoryMapForm.

• Modify the /postStorySetup and /postStory actions in the struts-config.xml file to use
the newly created <form-bean>.

• Modify the PostStory.java file to cast to a PostStoryMapForm class instead of the
PostStoryForm class. You also need to remove any references to PostStoryForm’s
get()/set() method class and replace them with calls to PostStoryMapForm’s
getAttribute() and setAttribute() methods.

• Modify the postStory.jsp to use the postStoryMapContent.jsp file instead of the
postStoryContent.jsp file.

CHAPTER 3 ■ FORM PRESENTATION AND VALIDATION WITH STRUTS116

Ch03_7389_CMP3 9/29/06 9:26 AM Page 116

ActionForm Best Practices
ActionForm classes provide a very clean mechanism for abstracting the implementation
details of getting and setting data in the HttpServletRequest object passed into the Struts
ActionServlet. There are some best practices associated with using ActionForm classes. These
best practices have evolved, as development teams using Struts have had to maintain and
extend applications in a production environment.

Two of these best practices are documented here:

• Make all of the public attributes on your ActionForm of type String.

• Cleanly separate all of your ActionForm classes from your application’s business logic.
Do not pass ActionForm classes directly into your application’s business logic.

Strings and the ActionForm
While a Struts ActionForm can expose any data type using a get()/set() method on the
interface, it’s a good idea to only use Strings as the data types being passed in and out of the
ActionForm. The reason for this is that when a user submits form data to a Struts application,
the Struts ActionServlet is going to pull all of the data out of the HTTP request and match that
data to a get()/set() attribute on an ActionForm.

The problem arises when the user submits a piece of data in a form field that does not
match the data type of its corresponding attribute on the ActionForm. This problem is encoun-
tered most often when dealing with numeric (that is, Integer, Float, etc.), Date/Timestamps,
and Boolean data types. For example, suppose you expose an attribute on ActionForm with a
get()/set() pair of methods that accept and return an Integer class. The user enters a value
of "a" in the form field that is expecting an Integer object.

When this value is submitted, the Struts ActionServlet will try to set the value of "a" on
an attribute that has been defined to be of type Integer. When this happens, an exception will
be thrown and the user will usually end up with a big white screen full of informative Java
error messages. You cannot catch this problem in the validate() method on the ActionForm,
because the data is copied out of the HTTP request before the validate() method is invoked.

How do you deal with this kind of problem? You could try to point JavaScript code to the
HTML where the form data is being captured. The problem is that you can easily end up creat-
ing a Validation Confusion antipattern because you have effectively split your validation logic
for the form into two different locations, and that is what you are trying to avoid. In addition,
you lose a great deal of control when using JavaScript validation. End users can easily disable
the JavaScript validation by configuring their web browser to not execute JavaScript code.

The best way to deal with this type of problem is to keep all of the properties on your
ActionForm class as type String. By doing this, you can then capture all of the data entered
by the user without running the risk of a type mismatch. Then in the ActionForm’s validate()
method you can perform type checking on the data contained within these strings and cleanly
throw validation errors using Strut’s ActionError objects.

CHAPTER 3 ■ FORM PRESENTATION AND VALIDATION WITH STRUTS 117

Ch03_7389_CMP3 9/29/06 9:26 AM Page 117

ActionForms and Business Logic
The ActionForm class is used to hold data submitted by the end user. It is passed into the
execute() method on an Action class, where its data can then be used by the action to carry
out the business logic associated with the request. Ideally, business logic for the application
should not be embedded inside of the Action class code itself.

Instead, the business logic for the application should be contained in a POJO or an EJB
that is completely independent of the Action class. Unfortunately, for many developers using
Struts for the first time, the temptation to pass the ActionForm class from the Action class to
the corresponding business logic is a very strong one. After all the ActionForm class is already
holding the data submitted by the end user, so why not just pass it directly to the POJO or EJB
containing the business logic?

The problem with this approach is that you are introducing the Tier Leakage antipattern
into your application. You are letting an implementation detail from your presentation tier,
the ActionForm class, be passed to your business tier. This creates a dependency on a Struts-
specific class, with an unintended consequence if you want to reuse that piece of business
logic outside of a Struts-based application: You have to refactor the code to not have this
dependency or instantiate a Struts ActionForm class and populate it with data, even if you are
not building a web-based application.

To avoid this problem, you should copy the data contained within your ActionForm class
to a framework-independent class called a value object. The concept of a value object is cov-
ered in greater detail in Chapter 5. For now, think of a value object as being nothing more than
a class that holds data.

There are two ways you can copy data from an ActionForm. The first mechanism is to
brute force the copy and set the attributes on a value object by calling the individual get()
methods on the ActionForm class. For example, in the PostStory.execute() method, you need
to copy data from the ActionForm to the StoryVO object:

public ActionForward execute(ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response){

PostStoryForm postStoryForm = (PostStoryForm) form;

HttpSession session = request.getSession();

MemberVO memberVO = (MemberVO) session.getAttribute("memberVO");
StoryVO storyVO = new StoryVO();

storyVO.setStoryIntro(postStoryForm.getStoryIntro());
storyVO.setStoryTitle(postStoryForm.getStoryTitle());
storyVO.setStoryBody(postStoryForm.getStoryBody());

storyVO.setStoryAuthor(memberVO);
storyVO.setSubmissionDate(new java.sql.Date(System.currentTimeMillis()));

CHAPTER 3 ■ FORM PRESENTATION AND VALIDATION WITH STRUTS118

Ch03_7389_CMP3 9/29/06 9:26 AM Page 118

storyVO.setComments(new Vector());

//Rest of the code
.

}

As you can guess, on an ActionForm with a lot of data, you can end up cluttering your
Action class with a lot of code that does nothing more than copy data from the ActionForm to
the value object.

The Struts framework does provide some utility classes that enable you to more quickly
copy data from the ActionForm to the value object. These two classes are part of the Apache
Commons BeanUtils project (http://jakarta.apache.org/commons). These classes are distrib-
uted with Struts in the commons-beanutils.jar file. The classes are

• org.apache.commons.beanutils.BeanUtils

• org.apache.commons.beanutils.PropertyUtils

Both of these classes simplify many of the most common tasks associated with manipu-
lating a JavaBean. In the code example, we are going to show you how to use the
copyProperties() method on the BeanUtils class to copy data from postStoryForm to storyVO:

public ActionForward execute(ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response){

PostStoryForm postStoryForm = (PostStoryForm) form;

HttpSession session = request.getSession();

MemberVO memberVO = (MemberVO) session.getAttribute("memberVO");
StoryVO storyVO = new StoryVO();

try{
BeanUtils.copyProperties(storyVO, postStoryForm);

}
catch(IllegalAccessException e) {
throw new ApplicationException("IllegalAccessException " +
" in PostStory.execute",e);

}
catch(InvocationTargetException e){
throw new ApplicationException(
"InvocationTargetException in PostStory.execute",
e);

}

CHAPTER 3 ■ FORM PRESENTATION AND VALIDATION WITH STRUTS 119

Ch03_7389_CMP3 9/29/06 9:26 AM Page 119

storyVO.setStoryAuthor(memberVO);
storyVO.setSubmissionDate(new java.sql.Date(System.currentTimeMillis()));
storyVO.setComments(new Vector());

//Rest of the code
.

}

When the copyProperties() method is invoked, it will use Java reflection to call each of
the get() methods on the postStoryForm object:

try{
BeanUtils.copyProperties(storyVO, postStoryForm);

}
catch(IllegalAccessException e) {
throw new ApplicationException("IllegalAccessException in

PostStory.execute",e);
}
catch(InvocationTargetException e){
throw new ApplicationException("InvocationTargetException in

PostStory.execute",e);
}

When BeanUtils.copyProperties() is called, it will invoke each of the get() methods on
the object passed in as the first parameter. As copyProperties() calls each get() method, it
will try to call a corresponding set() method that has the same name on the object passed as
the second parameter.

The BeanUtils.copyProperties() can be a significant time saver when you are trying to
copy data from an ActionForm to a value object. However, it still litters up the Action class’s
execute() method with exception-handling code.

■Note The BeanUtils.copyProperties() method will try to do type conversions between properties
being copied from one JavaBean to another.

This means that if an application is trying to use the copyProperties() method to
copy a property defined as type Integer to a property of type String on another bean, the
copyProperties() method will attempt to do a type conversion. If the copyProperties()
method cannot do the type conversion, it will throw an exception of type java.lang.reflect.
InvocationTargetException.

■Note If you know that there are going to be no type conversions when copying the contents of one
JavaBean to another JavaBean, you can use the PropertyUtils.copyProperties() method. This
copyProperties() method on PropertyUtils does the same function as the corresponding method
on BeanUtils, but does not attempt to do type conversion of properties.

CHAPTER 3 ■ FORM PRESENTATION AND VALIDATION WITH STRUTS120

Ch03_7389_CMP3 9/29/06 9:26 AM Page 120

As you will see later, in Chapter 4, one of the design goals of a Struts application should be
to minimize the amount of code present in the Action class.

What if you were to encapsulate all the logic for copying data to and from a value object
inside of the ActionForm class itself? This way, the Action class would just need to invoke a
method on the ActionForm to get a value object that would be passed to Action’s business
logic. The concept of building a value object factory method into ActionForm is not new and
was first documented in the book Struts in Action (Ted Husted et al., Manning Press, ISBN:
1-930-11050-2).

Let’s add a new method to the PostStoryForm class called buildStoryVO:

public StoryVO buildStoryVO(HttpServletRequest request)
throws ApplicationException{
HttpSession session = request.getSession();

MemberVO memberVO = (MemberVO) session.getAttribute("memberVO");
StoryVO storyVO = new StoryVO();

/*Example of how to use the BeanUtils class to populate a valueobject.*/
try{
BeanUtils.copyProperties(storyVO, this);

}
catch(IllegalAccessException e) {
throw new ApplicationException("IllegalAccessException in

PostStoryForm.execute",e);
}
catch(InvocationTargetException e){
throw new ApplicationException("InvocationTargetException in

PostStoryForm.execute",e);
}

storyVO.setStoryAuthor(memberVO);
storyVO.setSubmissionDate(new java.sql.Date(System.currentTimeMillis()));
storyVO.setComments(new Vector());

return storyVO;
}

The buildStoryVO() method on the PostStoryForm class cleanly encapsulates all of
the details associated with building out a StoryVO based on the data contained within the
PostStoryForm. When this method is used in the execute() method on the PostStory class,
you end up with a much cleaner method:

public ActionForward execute(ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response)

throws ApplicationException {

CHAPTER 3 ■ FORM PRESENTATION AND VALIDATION WITH STRUTS 121

Ch03_7389_CMP3 9/29/06 9:26 AM Page 121

if (this.isCancelled(request)){
return (mapping.findForward("poststory.success"));

}

PostStoryForm postStoryForm = (PostStoryForm) form;
StoryVO storyVO = postStoryForm.buildStoryVO(request);

StoryManagerBD storyManager = new StoryManagerBD();
storyManager.addStory(storyVO);
return (mapping.findForward("poststory.success"));

}

You may have noticed that the execute() method just shown throws an
ApplicationException. However, nowhere in the code is a try{}/catch{} block to handle
the exception. So, how does the JavaEdge application deal with the ApplicationException
if the exception is raised?

The JavaEdge application uses the Struts 1.1 exception-handler functionality to process
the ApplicationException. Struts exception handlers allow a development team to declare
how an Exception is to be thrown without cluttering up the Action class. This new exception-
handling functionality is described in greater detail in the next chapter.

Summary
This chapter focuses on how to use Struts to collect and process the data submitted in an HTML
form. The following four pieces must be present to use the Struts-based form processing:

• ActionForm class

• Action class

• JSP page that uses the Struts HTML tag library to generate the HTML <input> fields
used to collect the user information

•name attribute in an <action> tag in the struts-config.xml file

• Tags used for building the base HTML form:

•<html:form>: Used to render a <form> tag

•<html:submit>: Renders a submit button

•<html:cancel>: Renders a cancel button

•<html:errors>: Renders any validation errors that have been raised during
processing

CHAPTER 3 ■ FORM PRESENTATION AND VALIDATION WITH STRUTS122

Ch03_7389_CMP3 9/29/06 9:26 AM Page 122

Managing Business Logic
with Struts

So far you’ve seen how to use the Struts framework to facilitate the construction of an appli-
cation. You’ve also had a chance to examine the basic workflow of a Struts-based request
along with the different components needed to carry out a user’s requested action. However,
while the Struts framework is a powerful tool for building applications, it is still only a tool.
Using the Struts framework does not relieve you of the responsibility of architecting your
application.

A framework like Struts is meant to promote rapid application development as well as
ease the maintenance and extensibility of an application. However, if no forethought is given
to how the business logic for an application is going to be built, it becomes very easy to “lock”
an application’s business logic into the Struts framework.

As a result, a development team using Struts might be able to quickly build the initial
applications, but later, the team will find that it cannot easily reuse the functionality in a non-
Struts framework. A framework provides structure, but it also defines boundaries, constraints,
and dependencies, which will cause a significant number of problems if they are not consid-
ered early on.

This chapter demonstrates how to use several common J2EE design patterns to ensure
that an application’s business logic is not too tightly coupled with the Struts framework.
Specifically we are going to show you

• Common implementation mistakes made while implementing a Struts Action class. We
will discuss how, even with the use of the Struts development framework, the Concern
Slush and Tier Leakage antipatterns can still form. (Refer to Chapter 1 for our discus-
sion on the various antipatterns.)

• How to refactor these antipatterns into a more maintainable framework, which will
allow you to reuse business logic across both Struts and non-Struts applications.

The design patterns that will be covered in this chapter include

• The Business Delegate pattern

• The Service Locator pattern

• The Session Facade pattern

123

C H A P T E R 4

■ ■ ■

Ch04_7389_CMP3 9/27/06 10:59 AM Page 123

All of these design patterns will be implemented with the help of the JavaEdge application
code.

In addition, we will look at how to properly handle application exceptions thrown from
your business logic.

Business Logic Antipatterns and Struts
The Struts framework’s Model-View-Controller implementation significantly reduces the
chance that the Concern Slush or Tier Leakage antipattern will form. Recollecting the discus-
sion from Chapter 1, the Concern Slush antipattern forms when the system architect does not
provide a framework separating the presentation, business, and data access logic into well-
defined application tiers. As a result, it becomes difficult to reuse and support the code.

The Tier Leakage antipattern occurs when an application developer exposes the imple-
mentation details of one application tier to another tier—for example, when the presentation
logic of the application, that is, a JSP page, creates an EJB to invoke some business logic on its
behalf. Although the business logic for the page has been cleanly separated from the JSP code,
the JSP page is exposed to the complexities of locating and instantiating the EJB. This creates a
tight dependency between the presentation tier and the business tier.

The Struts framework does an excellent job of enforcing a clean separation of presenta-
tion and business logic within an application. All the presentation logic is encapsulated in JSP
pages using Struts tag libraries to simplify the development effort. All business logic is placed
in a Struts Action class. The JSP pages in the application are never allowed to invoke the busi-
ness logic directly. It’s the responsibility of the ActionServlet.

However, in a Struts-based application, the way in which the business logic is imple-
mented is still decided by the application developer. Often, developers who are new to the
Struts framework will place all of the business and data access logic for the application into a
Struts Action class. They need to consider the long-term architectural consequences of doing
this. Without careful forethought and planning, antipatterns such as Concern Slush and Tier
Leakage can still manifest themselves within an application.

At this point, you might be asking the question, “I thought the Struts development frame-
work was supposed to refactor these antipatterns?” The answer is yes, to a point.

■Note Using a development framework does not mitigate or relieve development teams of the responsibil-
ity of architecting the application. Development teams need to ensure that their use of a framework does not
create dependencies that make it difficult to reuse application logic outside of the framework. Application
architects are still responsible for enforcing the overall integrity of the application’s architecture. A develop-
ment framework is a tool, not a silver bullet.

When development teams make the decision to adopt a development framework, they
often rush in and immediately begin writing code. They have not cleanly separated the “core”
business logic from the framework itself. As a result, they often find themselves going through
all sorts of contortions to reuse the code in nonframework-based applications.

Let’s look at two code examples that can be precursors to the formation of the Concern
Slush and Tier Leakage antipatterns in Struts.

CHAPTER 4 ■ MANAGING BUSINESS LOGIC WITH STRUTS124

Ch04_7389_CMP3 9/27/06 10:59 AM Page 124

Concern Slush and Struts
The Concern Slush antipattern can manifest itself in a Struts-based application when the
developer fails to cleanly separate the business and data access logic from the Struts Action
class. Let’s revisit the Post a Story page that was explored in Chapter 3. The following is an
example of how the PostStory action (as defined in PostStory.java file) can be implemented:

package com.apress.javaedge.struts.poststory;

import org.apache.struts.action.*;
import org.apache.struts.*;
import javax.servlet.http.*;
import javax.naming.*;
import java.sql.*;
import javax.sql.*;

import com.apress.javaedge.story.*;
import com.apress.javaedge.member.*;
import com.apress.javaedge.story.ejb.PrizeManager;

public class PostStory extends Action {

public ActionForward execute(ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response) {

PostStoryForm postStoryForm = (PostStoryForm) form;
HttpSession session = request.getSession();

MemberVO memberVO = (MemberVO) session.getAttribute("memberVO");

if (this.isCancelled(request)) {
return (mapping.findForward("poststory.success"));

}

Connection conn = null;
PreparedStatement ps = null;

try {
Context ctx = new InitialContext();
DataSource ds = (DataSource) ctx.lookup("java:/MySQLDS");
conn = ds.getConnection();
conn.setAutoCommit(false);

StringBuffer insertSQL = new StringBuffer();

CHAPTER 4 ■ MANAGING BUSINESS LOGIC WITH STRUTS 125

Ch04_7389_CMP3 9/27/06 10:59 AM Page 125

/*
* Please note that this code is only an example. The SQL code assumes
* that the story table is using an auto-generated key. However, in
* the JavaEdge application we use ObjectRelationalBridge's Sequence
* capabilities to generate a key. This code will not work unless you
* modify the story table to use an auto-generated key for the
* story_id column.
*/
insertSQL.append("INSERT INTO story(");
insertSQL.append(" member_id , ");
insertSQL.append(" story_title , ");
insertSQL.append(" story_into , ");
insertSQL.append(" story_body , ");
insertSQL.append(" submission_date ");
insertSQL.append(") ");
insertSQL.append("VALUES(");
insertSQL.append(" ? , ");
insertSQL.append(" ? , ");
insertSQL.append(" ? , ");
insertSQL.append(" ? , ");
insertSQL.append(" CURDATE()) ");

ps = conn.prepareStatement(insertSQL.toString());

ps.setLong(1, memberVO.getMemberId().longValue());
ps.setString(2, postStoryForm.getStoryTitle());
ps.setString(3, postStoryForm.getStoryIntro());
ps.setString(4, postStoryForm.getStoryBody());

ps.execute();
conn.commit();

checkStoryCount(memberVO);

} catch(SQLException e) {
try{
if (conn != null) conn.rollback();

} catch(SQLException ex) {}

System.err.println("A SQL exception has been raised in " +
"PostStory.execute(): " + e.toString());

return (mapping.findForward("system.failure"));
} catch(NamingException e) {
System.err.println("A Naming exception has been raised in " +

"PostStory.execute(): " + e.toString());

CHAPTER 4 ■ MANAGING BUSINESS LOGIC WITH STRUTS126

Ch04_7389_CMP3 9/27/06 10:59 AM Page 126

return (mapping.findForward("system.failure"));
} finally {
try {
if (ps != null) ps.close();
if (conn != null) conn.close();

} catch(SQLException e) {}

}

return (mapping.findForward("poststory.success"));
}

private void checkStoryCount(MemberVO memberVO)
throws SQLException, NamingException {

Connection conn = null;
PreparedStatement ps = null;
ResultSet rs = null;

try {
Context ctx = new InitialContext();
DataSource ds = (DataSource) ctx.lookup("java:/MySQLDS");
conn = ds.getConnection();

StringBuffer selectSQL = new StringBuffer();

selectSQL.append("SELECT ");
selectSQL.append(" count(*) total_count ");
selectSQL.append("FROM ");
selectSQL.append(" story where member_id=? ");

ps = conn.prepareStatement(selectSQL.toString());
ps.setLong(1, memberVO.getMemberId().longValue());

rs = ps.executeQuery();
int totalCount = 0;

if (rs.next()) {
totalCount = rs.getInt("total_count");

}

boolean TOTAL_COUNT_EQUAL_1000 = (totalCount==1000);
boolean TOTAL_COUNT_EQUAL_5000 = (totalCount==5000);

if (TOTAL_COUNT_EQUAL_1000 || TOTAL_COUNT_EQUAL_5000) {
//Notify Prize Manager
PrizeManager prizeManager = new PrizeManager();
prizeManager.notifyMarketing(memberVO, totalCount);

CHAPTER 4 ■ MANAGING BUSINESS LOGIC WITH STRUTS 127

Ch04_7389_CMP3 9/27/06 10:59 AM Page 127

}
} catch(SQLException e) {
System.err.println("A SQL exception has been raised in " +

" PostStory.checkStoryCount(): " + e.toString());

throw e;
} catch(NamingException e) {
System.err.println("A Naming exception has been raised in " +

" PostStory.checkStoryCount(): " +
e.toString());

throw e;
} finally {
try {
if (rs != null) rs.close();

if (ps != null) ps.close();
if (conn != null) conn.close();

} catch(SQLException e) {}
}

}
}

The preceding execute() method performs two very simple functions:

• It inserts the data submitted by the user on the Post a Story page using the standard
JDBC and SQL calls. From the discussions in Chapter 3, you know that the submitted
data has already been validated by the validate() method on the PostForm class.

• It checks, via a call to checkStoryCount(), if the total number of stories submitted by a
JavaEdge member is at the 1000th or 5000th mark. On the 1000th and 5000th story sub-
mitted by the user, the marketing department is notified via the PrizeManager class.

The PrizeManager class integrates several legacy systems throughout the organization and
ultimately sends the user $100 to spend at the bookstore on the JavaEdge site.

From a functional perspective, the code for the execute() method works well. However,
from an architectural viewpoint, the implementation for the PostStory class shown previously is
a mess. Several problems are present in the preceding code that will eventually cause significant
long-term maintenance and extensibility problems. These problems include the following:

• The entire business logic for adding a story and checking the total number of stories
submitted by a user is embedded in the Struts Action class. This has several architec-
tural consequences:

• If the development team wants to reuse this logic, it must use the PostStory class
(even if it does not really fit into the other application); refactor the business logic
into a new Java class; or perform the oldest form of reuse: cut and paste. This oper-
ation leads to either usage of more code than what is needed or, plainly put, bugs.

• The business logic for the application is tied directly to the Struts framework. If the
development team decides to move the application from the Struts framework into
something else, say Apache Beehive or Shale, it is looking at a significant amount of
rework.

CHAPTER 4 ■ MANAGING BUSINESS LOGIC WITH STRUTS128

Ch04_7389_CMP3 9/27/06 10:59 AM Page 128

• There is no clean separation of the business and data access logic. While these two
pieces of logic are cleanly separated by Struts from the presentation tier, a significant
number of dependencies are still being created between the business logic and the data
access logic:

• The Action class has intimate knowledge of which data access technology is being
used to access the data used by the JavaEdge application. If the development team
wants to switch to a new data access technology at some point, it must revisit
every single place in the application that is interacting with a database.

• The Action class has SQL Data Definition Language (DDL) embedded in it. Any
changes to the underlying table structures that the JavaEdge application is using
can send ripple effects throughout the system.

■Definition A ripple effect is when there are such tight dependencies between application modules or
application code and data structures that a change to one piece of code sends you hunting throughout the
rest of the application for other areas that must be modified to reflect that change.

For example, if a data relationship between two tables were to change, such as a one-to-
many relationship being refactored into a many-to-many relationship, any SQL code embedded
in the application that accessed these tables would need to be visited and probably refactored.

Abstraction is the key to avoiding a ripple effect. If the SQL logic for the application was
cleanly hidden behind a set of interfaces that did not expose the actual structure of the data-
base table to the application, the chance of a ripple effect occurring is much less. In the next
chapter, we will demonstrate how to use some basic data access design patterns to achieve
this goal.

■Note Ultimately, the Action class should be a plug-in point where business logic is invoked but not
contained.

The code shown previously is difficult to follow and maintain. Even though the business
logic for the Post a Story page is very simplistic, it still took a large amount of code to imple-
ment. Keep the following in mind, while building your first Struts-based application:

■Note Development frameworks like Struts are used for building applications. However, the business logic
in applications often belongs to the enterprise and not just a single application. How many times have you
seen the business logic cut across multiple applications within an organization? Be wary of embedding too
much business logic directly within Struts. Otherwise you might find that reuse of business logic becomes
extremely difficult.

CHAPTER 4 ■ MANAGING BUSINESS LOGIC WITH STRUTS 129

Ch04_7389_CMP3 9/27/06 10:59 AM Page 129

Tier Leakage and Struts
Many development teams will get an uneasy feeling about the amount of business logic being
placed in the Struts Action class. They might have already run into situations where they have
the same business logic being reused in many of their applications.

The natural tendency is to refactor the Struts code and move it into a component-based
architecture (such as Enterprise JavaBeans) or a services-based architecture (such as Web
services). This moves the business logic out of the Struts Action class and makes it more read-
ily accessible to the other applications. Let’s refactor the PostStory class and move all of the
business logic into an Enterprise JavaBean called StoryManager. The code for the rewritten
PostStory class is shown here:

package com.apress.javaedge.struts.poststory;

import org.apache.struts.action.*;
import javax.servlet.http.*;
import javax.naming.*;
import javax.ejb.*;
import java.rmi.*;
import javax.rmi.*;

import com.apress.javaedge.common.*;
import com.apress.javaedge.story.*;
import com.apress.javaedge.member.*;
import com.apress.javaedge.story.ejb.*;

public class PostStory extends Action {

public ActionForward execute(ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response){

if (this.isCancelled(request)) {
return (mapping.findForward("poststory.success"));

}

PostStoryForm postStoryForm = (PostStoryForm) form;
HttpSession session = request.getSession();

MemberVO memberVO = (MemberVO) session.getAttribute("memberVO");

try {
Context ctx = new InitialContext();
Object ref = ctx.lookup("storyManager/StoryManager");

CHAPTER 4 ■ MANAGING BUSINESS LOGIC WITH STRUTS130

Ch04_7389_CMP3 9/27/06 10:59 AM Page 130

StoryManagerHome storyManagerHome =
(StoryManagerHome) PortableRemoteObject.narrow(ref,
StoryManagerHome.class);

StoryManager storyManager = storyManagerHome.create();
storyManager.addStory(postStoryForm, memberVO);

} catch(ApplicationException e){
System.err.println("An Application exception has been raised in " +

"PostStory.execute(): " + e.toString());
return (mapping.findForward("system.failure"));

} catch(NamingException e) {
System.err.println("A Naming exception has been raised in " +

"PostStory. execute (): " + e.toString());
return (mapping.findForward("system.failure"));

} catch(RemoteException e) {
System.err.println("A Remote exception has been raised in " +

"PostStory. execute (): " + e.toString());
return (mapping.findForward("system.failure"));

} catch(CreateException e) {
System.err.println("A Create exception has been raised in " +

"PostStory. execute (): " + e.toString());
return (mapping.findForward("system.failure"));

}

return (mapping.findForward("poststory.success"));
}

}

The preceding code appears to solve all the problems defined earlier. It is much easier
to read and understand. The Concern Slush antipattern, which was present earlier, has been
refactored. By moving the business logic out of the PostStory.execute() method and into the
StoryManager EJB, the business logic can be reused more easily across multiple applications.

However, the rewritten PostStory class just shown still has flaws in it that can lead to a
Tier Leakage antipattern. The refactored execute() method has intimate knowledge of how
the business logic is being invoked. The entire business logic is contained within the EJB, and
the application developer has to perform a JNDI lookup and then retrieve a reference to the
EJB by invoking its create() method.

What happens if the development team later wants to rewrite the business logic and wrap
it to use a Web service instead of an EJB? Since the PostStory Action class has direct knowledge
that the business logic it needs is contained within an EJB, the class must be rewritten to now
invoke a Web service instead of an EJB.

CHAPTER 4 ■ MANAGING BUSINESS LOGIC WITH STRUTS 131

Ch04_7389_CMP3 9/27/06 10:59 AM Page 131

■Note As you will see shortly, what is needed here is some kind of proxy that will sit between the frame-
work class (the PostStory class) and the actual business logic (the EJB). The proxy should completely
abstract how the business logic is being invoked. This proxy, also known as the Business Delegate pattern,
will be discussed shortly.

Another problem with the preceding code is that the addStory() method is taking the
PostStoryForm class as an input parameter:

storyManager.addStory(postStoryForm, memberVO);

This creates a dependency between the business logic, which is responsible for adding a
story to the JavaEdge application, and the Struts framework in which the application is built.
If the developers want to use the StoryManager EJB in a non-Struts–based application, they
would not be able to do so easily.

■Note Even when choosing to use a Java open source development framework, it is important not to
create tight dependencies between the framework and business logic. Applications rarely exist in a vacuum.
They often have to be integrated with the other systems being maintained by the IT department. This inte-
gration often means reusing code that has already been written. Tight coupling of business logic with the
framework can limit your ability to reuse that business logic in applications that are not built with your
chosen framework.

This is why it is still extremely important to apply the architectural principles of abstrac-
tion and encapsulation, even when building Struts-based applications. Antipatterns are a
subtle beast. It is rare for developers to feel the full impact of an antipattern in the first appli-
cation that they build. Instead, the problems caused by an antipattern will suddenly manifest
themselves when the development team has already deployed several applications and needs
to integrate or reuse the code in these applications. That is when the antipattern and the full
scope of the necessary rework are revealed.

Separating Business Logic from Struts
The challenge is to build your Struts application in such a way that the business logic for the
application becomes independent of the actual Struts framework. The Action classes in your
Struts application should only be a plug-in point for the business logic.

Fortunately, common J2EE design patterns provide a readily available solution. These
patterns are particularly well suited for solving many of the dependencies between the frame-
work and the business logic as were discussed earlier. In this chapter, we are not going to cover
all the J2EE design patterns in great detail. Instead, we are going to discuss the patterns that
are most appropriate for use in building Struts-based applications.

CHAPTER 4 ■ MANAGING BUSINESS LOGIC WITH STRUTS132

Ch04_7389_CMP3 9/27/06 10:59 AM Page 132

The design patterns that are going to be discussed include

• The Business Delegate pattern

• The Service Locator pattern

• The Session Facade pattern

Figure 4-1 demonstrates how these J2EE design patterns can be assembled to partition
the business logic used in the application from the Struts development framework.

Figure 4-1. Struts and the J2EE design patterns—a conceptual view

Let’s revisit the whole process of how an end user adds a new story to the JavaEdge appli-
cation, using the architectural model shown in Figure 4-1:

1. The user makes a request to add a story. The execute() method in the PostStory
Action class is invoked. However, in this model, the PostStory action does not contain
the actual code for adding the user’s story and checking the number of stories submit-
ted by the user. Instead, the PostStory class instantiates a business delegate that
carries out this business logic.

2. The business delegate is a Java class that shields the PostStory Action class from
knowing how the business logic is created and executed. In the section “Tier Leakage
and Struts” earlier, the code for adding a story was moved to the StoryManager EJB.
The business delegate class would be responsible for looking up this EJB via JNDI. All
the public methods in the StoryManager EJB should be available to the business dele-
gate. All the public method calls in the business delegate would be forwarded to the
StoryManager EJB.

3. The business delegate does not have the direct knowledge of how to look up the
StoryManager EJB. Instead, it uses a class called the ServiceLocator. The ServiceLocator
is used to look up the various resources within the application. Examples of resources
looked up and returned by a ServiceLocator class include the home interface for EJBs
and DataSource objects for retrieving JDBC connections.

CHAPTER 4 ■ MANAGING BUSINESS LOGIC WITH STRUTS 133

Ch04_7389_CMP3 9/27/06 10:59 AM Page 133

4. The EJBs returned by the ServiceLocator class are known as session facades. A
session facade is an EJB that wraps a complex business process involving multiple
Java objects behind a simple-to-use coarse-grained interface. In the PostStory exam-
ple, the StoryManager EJB is a session facade that hides all of the steps involved in
adding a story to the JavaEdge application.

5. The business objects are responsible for carrying out the individual steps in the busi-
ness action requested by the end user. Business logic classes should never be allowed
to talk directly to any of the databases used by the application. Instead, these classes
should interact with the database via a data persistence layer. The Data Access Object
(DAO) pattern is used to encapsulate all of the CRUD (Create, Replace, Update, Delete)
logic needed by the application.

The Value Object (VO) pattern is used to carry data across the different tiers in the
application in a framework-neutral manner. The DAO and VO patterns will not be
discussed in this chapter. Instead, we will save the subject of these data access design
patterns for the next chapter.

At first glance, this might seem like a significant amount of work for carrying out even the
simplest task. However, the abstraction provided by these design patterns is tremendous.

■Note The effects of good architecture (and bad) are not immediately apparent. The pain of bad design
decisions is usually not felt until several iterations past when the application is initially released. However,
the time spent in properly abstracting your applications can have huge payoffs in terms of the maintainability
and extensibility of your code.

The J2EE design patterns, demonstrated in Figure 4-1, completely separate the business
logic from the Struts framework and ensure that the business logic for the application has no
intimate knowledge of the data access code being used.

Implementing the Design Patterns
The remaining sections of this chapter discuss the implementations of the J2EE design
patterns discussed so far. We will be refactoring the PostStory Action class so that it uses
a business delegate to invoke the logic, which it needs to carry out the user request.

Figure 4-2, which looks similar to the previous diagram, demonstrates the actions that
take place when the execute() method of the PostStory class is invoked.

CHAPTER 4 ■ MANAGING BUSINESS LOGIC WITH STRUTS134

Ch04_7389_CMP3 9/27/06 10:59 AM Page 134

Figure 4-2. An example of J2EE design patterns in action

Implementing the Business Delegate Pattern
A Business Delegate pattern hides the complexity of instantiating and using the enterprise
services such as EJBs or Web services from the application consuming the service. A Business
Delegate pattern is very straightforward. It is implemented by wrapping an already existing
service behind a plain Java class. Each public method available in the service is mapped to a
public method in the business delegate.

The code for StoryManagerBD.java that follows demonstrates how to wrap the business
logic associated with managing story data. For demonstration purposes, the StoryManagerBD.
java class does not simply delegate all calls to a Plain Old Java Object (POJO) or an EJB. Instead,
the StoryManagerBD provides a single method, getStoryManagerBD(), that returns a reference
to a class that implements the IStoryManager interface.

package com.apress.javaedge.story;

import com.apress.javaedge.common.ApplicationException;
import com.apress.javaedge.common.DataAccessException;
import com.apress.javaedge.story.dao.StoryDAO;

import java.util.Collection;

public class StoryManagerBD {

public static final IStoryManager getStoryManagerBD() {
return new StoryManagerPOJOImpl();

}

}

CHAPTER 4 ■ MANAGING BUSINESS LOGIC WITH STRUTS 135

Ch04_7389_CMP3 9/27/06 10:59 AM Page 135

The IStoryManager interface defines all of the public methods needed to carry out tasks
associated with retrieving, adding, and updating stories and comments from the JavaEdge
database.

■Note The details of the JavaEdge database will be covered in the next chapter.

The IStoryManager interface is shown here:

package com.apress.javaedge.story;

import com.apress.javaedge.common.ApplicationException;
import java.util.Collection;

public interface IStoryManager {

public void addStory(StoryVO storyVO) throws ApplicationException;
public Collection findTopStory() throws ApplicationException;
public StoryVO retrieveStory(String primaryKey);
public void updateStory(StoryVO storyVO) throws ApplicationException;

}

In the StoryManagerBD, we provide two different implementations that could possibly be
returned by the class. One implementation, StoryManagerPOJOImpl, uses POJO-based objects
to execute all requested actions against a JavaEdge story:

package com.apress.javaedge.story;

import com.apress.javaedge.common.ApplicationException;
import com.apress.javaedge.common.DataAccessException;
import com.apress.javaedge.story.dao.StoryDAO;

import java.util.Collection;

public class StoryManagerPOJOImpl implements IStoryManager {
StoryDAO storyDAO = new StoryDAO();

public void addStory(StoryVO storyVO) throws ApplicationException {
try {

storyDAO.insert(storyVO);
} catch (DataAccessException e) {

throw new ApplicationException(
"DataAccessException Error in StoryManagerBean.addStory(): "
+ e.toString(),
e);

}

CHAPTER 4 ■ MANAGING BUSINESS LOGIC WITH STRUTS136

Ch04_7389_CMP3 9/27/06 10:59 AM Page 136

}

public Collection findTopStory() throws ApplicationException {
Collection topStories = null;

try {

topStories = storyDAO.findTopStory();

} catch (DataAccessException e) {
e.printStackTrace();
String msg = "Data access exception raised in " +

"StoryManagerBD.findTopStory ()";
throw new ApplicationException(msg, e);

}

return topStories;
}

public StoryVO retrieveStory(String primaryKey) throws ApplicationException {
try {

return (StoryVO) storyDAO.findByPK(primaryKey);
} catch (DataAccessException e) {

throw new ApplicationException(
"DataAccessException Error in " +
"StoryManagerBean.retrieveStory(): "
+ e.toString(),
e);

}
}

public void updateStory(StoryVO storyVO) throws ApplicationException {
try {

storyDAO.insert(storyVO);
} catch (DataAccessException e) {

throw new ApplicationException(
"DataAccessException Error in StoryManagerBean.updateStory(): "
+ e.toString(),
e);

}
}

}

CHAPTER 4 ■ MANAGING BUSINESS LOGIC WITH STRUTS 137

Ch04_7389_CMP3 9/27/06 10:59 AM Page 137

The second implementation of our StoryManager business delegate, called
StoryManagerEJBImpl, passes all requests to an EJB called StoryManager:

package com.apress.javaedge.story;

import com.apress.javaedge.story.ejb.StoryManager;
import com.apress.javaedge.story.ejb.StoryManagerHome;
import com.apress.javaedge.common.ApplicationException;
import com.apress.javaedge.common.ServiceLocator;
import com.apress.javaedge.common.ServiceLocatorException;

import javax.ejb.CreateException;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.rmi.PortableRemoteObject;
import java.rmi.RemoteException;

public class StoryManagerEJBImpl {

StoryManager storyManager = null;

public StoryManagerEJBImpl() throws ApplicationException {
try {

Context ctx = new InitialContext();
Object ref = ctx.lookup("storyManager/StoryManager");

StoryManagerHome storyManagerHome = (StoryManagerHome)
PortableRemoteObject.narrow(ref, StoryManagerHome.class);

storyManager = storyManagerHome.create();
} catch (NamingException e) {
throw new ApplicationException("A Naming exception has been raised in " +

"StoryManagerBD constructor: " +
e.toString());

} catch (RemoteException e) {
throw new ApplicationException("A Remote exception has been raised in " +

"StoryManagerBD constructor: " +
e.toString());

} catch (CreateException e) {
throw new ApplicationException("A Create exception has been raised in " +

"StoryManagerBD constructor: " +
e.toString());

}
}

CHAPTER 4 ■ MANAGING BUSINESS LOGIC WITH STRUTS138

Ch04_7389_CMP3 9/27/06 10:59 AM Page 138

The StoryManagerEJBImpl class looks up the home interface of the StoryManager EJB in its
constructor. Using the retrieved home interface, the StoryManager EJB is created. A reference
to the newly created bean will be stored in the private attribute, called storyManager. The
StoryManagerBean being retrieved by StoryManagerEJBImpl has the same code being executed
as the StoryManagerPOJOImpl class. Thus, in an effort to save space, the StoryManagerBean’s
code will not be shown.

Avoiding Dependencies
Another noticeable part of this implementation of the StoryManagerBD class is that each of the
public methods is just a simple pass-through to the underlying service (in this case, a stateless
EJB). However, none of these public methods takes a class that can tie the business logic to a
particular front-end technology or development framework.

A very common mistake while implementing the first Struts application is to pass an
ActionForm or HttpServletRequest object to the code executing the business logic. Passing in a
Struts-based class, such as ActionForm, ties the business logic directly to the Struts framework.
Passing in an HttpServletRequest object creates a dependency whereby the business logic is
only usable by a web application. Both of these situations can be easily avoided by allowing
“neutral” objects, which do not create these dependencies, to be passed into a business dele-
gate implementation.

After the StoryManagerBD has been implemented, the PostStory class changes, as shown
here:

package com.apress.javaedge.struts.poststory;

import com.apress.javaedge.story.IStoryManager;
import com.apress.javaedge.story.StoryManagerBD;
import com.apress.javaedge.story.StoryVO;
import org.apache.struts.action.Action;
import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionForward;
import org.apache.struts.action.ActionMapping;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import com.apress.javaedge.common.ApplicationException;

public class PostStory extends Action {
public ActionForward execute(ActionMapping mapping,

ActionForm form,
HttpServletRequest request,
HttpServletResponse response) throws ApplicationException {

if (this.isCancelled(request)){
return (mapping.findForward("poststory.success"));

}

CHAPTER 4 ■ MANAGING BUSINESS LOGIC WITH STRUTS 139

Ch04_7389_CMP3 9/27/06 10:59 AM Page 139

PostStoryForm postStoryForm = (PostStoryForm) form;

StoryVO storyVO = postStoryForm.buildStoryVO(request);

IStoryManager storyManager = StoryManagerBD.getStoryManagerBD();
storyManager.addStory(storyVO);

return (mapping.findForward("poststory.success"));
}

}

The code in the PostStory class just shown is much simpler and cleaner than the
PostStory implementation shown earlier. Let’s make a couple of observations here:

• The code has absolutely no business logic embedded it in it. All business logic has been
moved safely behind the StoryManager business delegate. This business logic can easily
be called from a non-Struts–based application, web or otherwise.

• The code in the preceding execute() method has no idea how the business logic is
being invoked. It is using a simple Java interface, IStoryManager, to hide the actual
business logic invocation. By changing a single line in the StoryManagerBD, you can
plug in a new business delegate implementation that invokes its logic in a completely
different manner.

• All exceptions thrown from the business logic layer are now safely captured and
rethrown as a generic exception, ApplicationException. This code is using a Struts
global exception handler to process all ApplicationExceptions thrown from the Action
classes. Exception handlers will be discussed shortly.

Now we have to admit, the preceding StoryManagerBD implementation is a little contrived.
A more common implementation of a Business Delegate pattern is to have a class that “wraps”
all actual business logic invocations. If that logic were to change, a developer would go and
rewrite, recompile, and redeploy the newly modified business delegate.

The example shown is meant to demonstrate how quickly and easily a new method of
invoking business logic could be implemented without breaking any of the applications that are
consuming the services of that business logic component. For example, it would be extremely
easy for you to write a new StoryManager business delegate that invoked Web services to carry
out the end-user request. Even with this new implementation, the PostStory class would never
know the difference.

In both of the StoryManagerBD implementations, the PostStoryForm class is no longer
passed in as a parameter on any of its method implementations. This small piece of refactor-
ing avoids creating a dependency on a Struts-specific class.

■Note Abstraction, when applied appropriately, gives your applications the ability to evolve gracefully as
the business and technical requirements of the application change over time.

CHAPTER 4 ■ MANAGING BUSINESS LOGIC WITH STRUTS140

Ch04_7389_CMP3 9/27/06 10:59 AM Page 140

Implementing the Service Locator Pattern
Implementing a business delegate can involve a significant amount of repetitive coding. Every
business delegate constructor has to look up the service, which it is going to wrap, via a JNDI
call. The Service Locator pattern mitigates the need for this coding and, more importantly,
allows the developer to hide the implementation details associated with looking up a service.
A service locator can be used to hide a variety of different resources such as the following:

• JNDI lookups for an EJBHome interface

• JNDI lookups associated with finding a JDBC DataSource for retrieving a database
connection

• Object creation associated with the following:

• Looking up an Apache Axis Call class for invoking a Web service

• Retrieving Persistence Broker/Manager for Object Relational Management tools,
such as the open source package ObjectRelationalBridge (OJB) or Oracle’s TopLink

In addition, the implementation of a Service Locator pattern allows you to implement
optimizations to your code without having to revisit multiple places in your application.

For instance, performing a JNDI lookup is expensive. If you allow your business delegate
classes to directly invoke a JNDI lookup, implementing a caching mechanism that minimizes
the number of JNDI calls would involve a significant amount of rework. However, if you cen-
tralize all of your JNDI lookup calls behind a Service Locator pattern, you would be able to
implement the optimizations and caching and only have to touch one piece of code. A Service
Locator pattern is easy to implement. For the time it takes to implement the pattern, the
reduction in overall maintenance costs of the application can easily exceed the costs of writ-
ing the class.

The business delegate class also allows you to isolate vendor-specific options for looking
up JNDI components, thereby limiting the effects of “vendor lock-in.”

Shown next is a sample service locator implementation that abstracts how an EJBHome
interface is looked up via JNDI. The service locator implementation for the JavaEdge applica-
tion provides the methods for looking up EJBHome interfaces and JDBC database connections.

package com.apress.javaedge.common;

import org.apache.ojb.broker.PBFactoryException;
import org.apache.ojb.broker.PersistenceBroker;
import org.apache.ojb.broker.PersistenceBrokerFactory;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;

import javax.ejb.EJBHome;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.rmi.PortableRemoteObject;
import javax.sql.DataSource;
import java.sql.Connection;

CHAPTER 4 ■ MANAGING BUSINESS LOGIC WITH STRUTS 141

Ch04_7389_CMP3 9/27/06 10:59 AM Page 141

import java.sql.SQLException;
import java.util.Hashtable;

public class ServiceLocator{
private static ServiceLocator serviceLocatorRef = null;
private static Hashtable ejbHomeCache = null;
private static Hashtable dataSourceCache = null;

/*Enumerating the different services available from the service locator*/
public static final int STORYMANAGER = 0;
public static final int JAVAEDGEDB = 1;

/*The JNDI Names used to look up a service*/
private static final String STORYMANAGER_JNDINAME =

"storyManager/StoryManager";

private static final String JAVAEDGEDB_JNDINAME="java:/MySQLDS";

/*References to each of the different EJB Home Interfaces*/
//private static final Class STORYMANAGERCLASSREF = StoryManagerHome.class
private static final Class STORYMANAGERCLASSREF = null;

static {
serviceLocatorRef = new ServiceLocator();

}

/*Private Constructor for the ServiceLocator*/
private ServiceLocator(){
ejbHomeCache = new Hashtable();
dataSourceCache = new Hashtable();

}

/*
* The ServiceLocator is implemented as a Singleton. The getInstance()
* method will return the static reference to the ServiceLocator stored
* inside of the ServiceLocator Class.
*/
public static ServiceLocator getInstance(){
return serviceLocatorRef;

}

/*
* The getServiceName will retrieve the JNDI name for a requested
* service. The service is indicated by the ServiceId passed into
* the method.
*/
static private String getServiceName(int pServiceId)

CHAPTER 4 ■ MANAGING BUSINESS LOGIC WITH STRUTS142

Ch04_7389_CMP3 9/27/06 10:59 AM Page 142

throws ServiceLocatorException{
String serviceName = null;
switch (pServiceId){
case STORYMANAGER: serviceName = STORYMANAGER_JNDINAME;

break;
case JAVAEDGEDB: serviceName = JAVAEDGEDB_JNDINAME;

break;
default: throw new ServiceLocatorException(

"Unable to locate the service requested in " +
"ServiceLocator.getServiceName() method. ");

}
return serviceName;

}

static private Class getEJBHomeRef(int pServiceId)
throws ServiceLocatorException{
Class homeRef = null;
switch (pServiceId){
case STORYMANAGER: homeRef = STORYMANAGERCLASSREF;

break;
default: throw new ServiceLocatorException(

"Unable to locate the service requested in " +
"ServiceLocator.getEJBHomeRef() method. ");

}
return homeRef;

}

public EJBHome getEJBHome(int pServiceId)
throws ServiceLocatorException{

/*Trying to find the JNDI Name for the requested service*/
String serviceName = getServiceName(pServiceId);
EJBHome ejbHome = null;

try {
/*Checking to see if we can find the EJBHome interface in cache*/
if (ejbHomeCache.containsKey(serviceName)) {
ejbHome = (EJBHome) ejbHomeCache.get(serviceName);
return ejbHome;

} else {
/*
* If we could not find the EJBHome interface in the cache, look it
* up and then cache it.
* */

Context ctx = new InitialContext();
Object jndiRef = ctx.lookup(serviceName);

CHAPTER 4 ■ MANAGING BUSINESS LOGIC WITH STRUTS 143

Ch04_7389_CMP3 9/27/06 10:59 AM Page 143

Object portableObj =
PortableRemoteObject.narrow(jndiRef, getEJBHomeRef(pServiceId));

ejbHome = (EJBHome) portableObj;

ejbHomeCache.put(serviceName, ejbHome);
return ejbHome;

}
} catch(NamingException e) {

String msg = "Naming exception error in ServiceLocator.getEJBHome()";
throw new ServiceLocatorException(msg ,e);

} catch(Exception e) {
String msg = "General exception in ServiceLocator.getEJBHome";
throw new ServiceLocatorException(msg,e);

}

}

public Connection getDBConn(int pServiceId)
throws ServiceLocatorException{
/*Getting the JNDI Service Name*/
String serviceName = getServiceName(pServiceId);
Connection conn = null;
try {

/*Checking to see if the requested DataSource is in the Cache*/
if (dataSourceCache.containsKey(serviceName)) {
DataSource ds = (DataSource) dataSourceCache.get(serviceName);
conn = ((DataSource)ds).getConnection();

return conn;
} else {
/*
* The DataSource was not in the cache. Retrieve it from JNDI
* and put it in the cache.
*/
Context ctx = new InitialContext();
DataSource newDataSource = (DataSource) ctx.lookup(serviceName);
dataSourceCache.put(serviceName, newDataSource);
conn = newDataSource.getConnection();
return conn;

}
} catch(SQLException e) {
throw new ServiceLocatorException("A SQL error has occurred in " +

"ServiceLocator.getDBConn()", e);
} catch(NamingException e) {
throw new ServiceLocatorException("A JNDI Naming exception has "+

"occurred in "+
"ServiceLocator.getDBConn()" , e);

CHAPTER 4 ■ MANAGING BUSINESS LOGIC WITH STRUTS144

Ch04_7389_CMP3 9/27/06 10:59 AM Page 144

} catch(Exception e) {
throw new ServiceLocatorException("An exception has occurred "+

"in ServiceLocator.getDBConn()" ,e);
}

}

public PersistenceBroker findBroker() throws ServiceLocatorException{
PersistenceBroker broker = null;
try{
broker = PersistenceBrokerFactory.createPersistenceBroker();

}
catch(PBFactoryException e) {
e.printStackTrace();
throw new ServiceLocatorException("PBFactoryException error " +

"occurred while parsing the repository.xml file in " +
"ServiceLocator constructor",e);

}

return broker;
}
public Log getLog(Class aClass) {

return LogFactory.getLog(aClass);
}

}

The service locator implementation just shown is built using the Singleton design pattern.
This design pattern allows you to keep only one instance of a class per Java Virtual Machine
(JVM). This instance is used to service all the requests for the entire JVM.

Because looking up the resources such as EJBs or DataSource objects is a common activity,
implementing the Service Locator pattern as a Singleton pattern prevents the needless creation
of multiple copies of the same object doing the same thing. To implement the service locator as
a singleton, you need to first have a private constructor that will instantiate any resources being
used by the ServiceLocator class:

private ServiceLocator() {
ejbHomeCache = new Hashtable();
dataSourceCache = new Hashtable();

}

The default constructor for the ServiceLocator class just shown is declared as private so
that a developer cannot directly instantiate an instance of the ServiceLocator class. (You can
have only one instance of the class per JVM.)

A Singleton pattern ensures that only one instance of an object is present within the vir-
tual machine. The Singleton pattern is used to minimize the proliferation of large numbers of
objects that serve a very narrow purpose. In the case of the Service Locator pattern, its sole job
is to look up or create objects for other classes. It does not make sense to have a new service
locator instance being created every time a user needs to carry out one of these tasks.

CHAPTER 4 ■ MANAGING BUSINESS LOGIC WITH STRUTS 145

Ch04_7389_CMP3 9/27/06 10:59 AM Page 145

■Note The Singleton pattern is a very powerful design pattern, but it tends to be overused. Inexperienced
architects will make everything a singleton implementation. Using a Singleton pattern can introduce reen-
trancy problems in applications that are multithreaded.

■Note One thread can alter the state of a singleton implementation while another thread is working.
A Singleton pattern can be made thread-safe through the use of Java synchronization blocks. However,
synchronization blocks represent potential bottlenecks within an application, as only one thread at a time
can execute the code surrounded by a synchronization block.

The example service locator implementation is going to use two Hashtables, ejbHomeCache
and dataSourceCache, which respectively store EJBHome and DataSource interfaces. These two
Hashtable instances are initialized in the default constructor of the ServiceLocator.

The constructor is called via an anonymous static block that is invoked the first time the
ServiceLocator class is loaded by the JVM:

static {
serviceLocatorRef = new ServiceLocator();

}

This anonymous static code block invokes the constructor and sets a reference to a
ServiceLocator instance, which is declared as a private attribute in the ServiceLocator class.

You use a method called getInstance() to retrieve an instance of the ServiceLocator class
stored in the serviceLocatorRef variable:

public static ServiceLocator getInstance(){
return serviceLocatorRef;

}

To retrieve an EJBHome interface, the getEJBHome() method in the ServiceLocator class
is invoked. This method takes an integer value (pServiceId) that represents the EJB being
requested. For this service locator implementation, all the available EJBs have a public static
constant defined in the ServiceLocator class. For instance, the StoryManager EJB has the fol-
lowing constant value:

public static final int STORYMANAGER = 0;

The first action taken by the getEJBHome() method is to look up the JNDI name that will
be used to retrieve a resource, managed by the service locator. The JNDI name is looked up
by calling the getServiceName() method, in which the pServiceId parameter is passed:

String serviceName = getServiceName(pServiceId);

CHAPTER 4 ■ MANAGING BUSINESS LOGIC WITH STRUTS146

Ch04_7389_CMP3 9/27/06 10:59 AM Page 146

Once the JNDI service name is retrieved, the ejbHomeCache is checked to see if that
EJBHome interface is already cached. If a hit is found, the method immediately returns with
the EJBHome interface stored in the cache:

if (ejbHomeCache.containsKey(serviceName)) {
ejbHome = (EJBHome) ejbHomeCache.get(serviceName);
return ejbHome;

If the requested EJBHome interface is not located in the ejbHomeCache Hashtable, the
getEJBHome() method will look up the interface, add it to the ejbHomeCache, and then return
the newly retrieved interface back to the calling application code:

} else {
Context ctx = new InitialContext();
Object jndiRef = ctx.lookup(serviceName);

Object portableObj =
PortableRemoteObject.narrow(jndiRef, getEJBHomeRef(pServiceId));

ejbHome = (EJBHome) portableObj;
ejbHomeCache.put(serviceName, ejbHome);
return ejbHome;

}

The getDBConn() method is designed in a very similar fashion. When the user requests a
JDBC connection via the getDBConn() method, the method checks the dataSourceCache for a
DataSource object before doing a JNDI lookup. If the requested DataSource object is found in
the cache, it is returned to the method caller; otherwise, a JNDI lookup takes place.

Let’s revisit the constructor of the StoryManagerEJBImpl class and see how using a service
locator can significantly lower the amount of work involved in instantiating the StoryManager
EJB:

package com.apress.javaedge.story;

import com.apress.javaedge.story.ejb.StoryManager;
import com.apress.javaedge.story.ejb.StoryManagerHome;
import com.apress.javaedge.common.ApplicationException;
import com.apress.javaedge.common.ServiceLocator;
import com.apress.javaedge.common.ServiceLocatorException;

import javax.ejb.CreateException;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.rmi.PortableRemoteObject;
import java.rmi.RemoteException;

CHAPTER 4 ■ MANAGING BUSINESS LOGIC WITH STRUTS 147

Ch04_7389_CMP3 9/27/06 10:59 AM Page 147

public class StoryManagerEJBImpl {

StoryManager storyManager = null;

public StoryManagerEJBImpl() throws ApplicationException {
try{

ServiceLocator serviceLocator = ServiceLocator.getInstance();
StoryManagerHome storyManagerHome =
(StoryManagerHome)
serviceLocator.getEJBHome(ServiceLocator.STORYMANAGER);
storyManager = storyManagerHome.create();

}
catch(ServiceLocatorException e){
throw new ApplicationException("A ServiceLocator exception " +

" has been raised in StoryManagerEJBImpl constructor: " +
e.toString ());

}
catch(CreateException e){
throw new ApplicationException("A Create exception has been " +
" raised in StoryManagerEJBImpl constructor: " + e.toString ());

}
catch(RemoteException e){
throw new ApplicationException("A remote exception " +

"has been raised in StoryManagerEJBImpl constructor: "
+ e.toString ());

}
}

}

This service locator implementation has significantly simplified the process of looking up
and creating an EJB.

The Service Locator Pattern to the Rescue
We ran into a situation just this past year in which we were building a web-based application
that integrated to a third-party Customer Relationship Management (CRM) system.

The application had a significant amount of business logic, embedded as PL/SQL stored
procedures and triggers, in the Oracle database it was built on. Unfortunately, the third-party
application vendor had used an Oracle package, called DBMS_OUTPUT, to put the trace code
through all of their PL/SQL code. This package never caused any problems because the end
users of the CRM package used to enter the database data via a “fat” GUI, which always kept
the database transactions very short.

CHAPTER 4 ■ MANAGING BUSINESS LOGIC WITH STRUTS148

Ch04_7389_CMP3 9/27/06 10:59 AM Page 148

However, we needed to build a web application that would collect all of the user’s data
and commit it all at once. The transaction length was significantly longer than what the CRM
vendors had anticipated. As a result, the message buffer, which the DBMS_OUTPUT package used
for writing out the log, would run out of space and the web application would fail at what
appeared to be random intervals.

At this point we were faced with the choice of going through every PL/SQL package
and trigger and stripping out the DBMS_OUTPUT code (which should have never been put in
production code). However, the DBA informed us that if we started every session with a call
to DBMS_OUTPUT.DISABLE, we would be able to disable the DBMS_OUTPUT package. This would dis-
able the DBMS_OUTPUT package for that particular session, but would not cause any problems
for other application users.

If we had allowed a direct JNDI lookup to retrieve DataSource objects for getting a JDBC
connection, we would have had the daunting task of going through every line in the applica-
tion and making the call to DBMS_OUTPUT.DISABLE every time a new Connection object was
created from the retrieved DataSource. However, since we had implemented a Service Locator
pattern and used it to retrieve all the database connections, there was only one place in which
the code had to be modified.

This example illustrates that you might not appreciate the abstraction that the Service
Locator pattern provides until you need to make a change in how a resource is requested,
which will affect a significant amount of your code base.

The Service Locator Revisited
We built the service locator example using Hashtable classes to store the EJB and DataSource
instances. We used Hashtable because we wanted to keep the service locator example simple
and thread-safe. A Hashtable is thread-safe solution, but does not offer any kind of intelligence
regarding the actual number of items being stored within it. There are no caching algorithms (for
example, a Least-Recently-Used algorithm) built into the Hashtable that allow the developer to
control how many items are loaded into the Hashtable instance or when items should be
unloaded from it.

Fortunately, the Jakarta Commons project offers a number of “enhanced” Collections
classes that allow for a more intelligent caching solution.

■Note The Collections classes discussed in this section can be downloaded from the Jakarta Commons
project at http://jakarta.apache.org/commons/collections.

One of these Collections is the LRUMap class. The LRUMap class is a HashMap implementation
that is built around a Least-Recently-Used (LRU) algorithm. The LRU algorithm built into the
LRUMap class allows the developer to restrict the number of objects that can be held within it.

This means that if the maximum number of objects is reached with the LRUMap and
another object is added to it, the LRUMap will unload the least accessed object from the map
and then add the new object to it.

CHAPTER 4 ■ MANAGING BUSINESS LOGIC WITH STRUTS 149

Ch04_7389_CMP3 9/27/06 10:59 AM Page 149

Let’s make the service locator implementation a little bit more intelligent by using the
Jakarta Common’s LRUMap to allow it to hold only five references to an EJB or a data source at
any given time. The code for this is shown here and the areas in the code where the LRUMap is
being used appear in bold:

package com.apress.javaedge.common;

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.ojb.broker.PBFactoryException;
import org.apache.ojb.broker.PersistenceBroker;
import org.apache.ojb.broker.PersistenceBrokerFactory;
import org.apache.commons.collections.LRUMap;
import java.util.Collections;
import java.util.Map;

import javax.ejb.EJBHome;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.rmi.PortableRemoteObject;
import javax.sql.DataSource;
import java.sql.Connection;
import java.sql.SQLException;

public class ServiceLocatorLRU{
private static ServiceLocatorLRU serviceLocatorRef = null;
private static LRUMap ejbHomeCache = null;
private static LRUMap dataSourceCache = null;

/*Enumerating the different services available from the service locator*/
public static final int STORYMANAGER = 0;
public static final int JAVAEDGEDB = 1;

/*The JNDI Names used to look up a service*/
private static final String STORYMANAGER_JNDINAME =

"storyManager/StoryManager";

private static final String JAVAEDGEDB_JNDINAME="java:/MySQLDS";

/*References to each of the different EJB Home Interfaces*/
//private static final Class STORYMANAGERCLASSREF = StoryManagerHome.class
private static final Class STORYMANAGERCLASSREF = null;

static {
serviceLocatorRef = new ServiceLocatorLRU();

}

CHAPTER 4 ■ MANAGING BUSINESS LOGIC WITH STRUTS150

Ch04_7389_CMP3 9/27/06 10:59 AM Page 150

/*Private Constructor for the ServiceLocator*/
private ServiceLocatorLRU(){
ejbHomeCache = new LRUMap(5);
dataSourceCache = new LRUMap(5);

}

public static ServiceLocatorLRU getInstance(){
return serviceLocatorRef;

}

static private String getServiceName(int pServiceId)
throws ServiceLocatorException{
String serviceName = null;
switch (pServiceId){
case STORYMANAGER: serviceName = STORYMANAGER_JNDINAME;

break;
case JAVAEDGEDB: serviceName = JAVAEDGEDB_JNDINAME;

break;
default: throw new ServiceLocatorException(

"Unable to locate the service requested in " +
"ServiceLocator.getServiceName() method. ");

}
return serviceName;

}

static private Class getEJBHomeRef(int pServiceId)
throws ServiceLocatorException{
Class homeRef = null;
switch (pServiceId){
case STORYMANAGER: homeRef = STORYMANAGERCLASSREF;

break;
default: throw new ServiceLocatorException(

"Unable to locate the service requested in " +
"ServiceLocator.getEJBHomeRef() method. ");

}
return homeRef;

}

/
public EJBHome getEJBHome(int pServiceId)
throws ServiceLocatorException{

/*Trying to find the JNDI Name for the requested service*/
String serviceName = getServiceName(pServiceId);
EJBHome ejbHome = null;

Map ejbMap = Collections.synchronizedMap(ejbHomeCache);

CHAPTER 4 ■ MANAGING BUSINESS LOGIC WITH STRUTS 151

Ch04_7389_CMP3 9/27/06 10:59 AM Page 151

try {
/*Checking to see if we can find the EJBHome interface in cache*/
if (ejbMap.containsKey(serviceName)) {
ejbHome = (EJBHome) ejbMap.get(serviceName);
return ejbHome;

} else {
/*
* If we could not find the EJBHome interface in the cache, look it
* up and then cache it.
* */

Context ctx = new InitialContext();
Object jndiRef = ctx.lookup(serviceName);

Object portableObj =
PortableRemoteObject.narrow(jndiRef, getEJBHomeRef(pServiceId));

ejbHome = (EJBHome) portableObj;

ejbMap.put(serviceName, ejbHome);
return ejbHome;

}
} catch(NamingException e) {

throw new ServiceLocatorException("Naming exception " +
" error in ServiceLocator.getEJBHome()" ,e);

} catch(Exception e) {
throw new ServiceLocatorException("General exception " +

" in ServiceLocator.getEJBHome",e);

}

}

public Connection getDBConn(int pServiceId)
throws ServiceLocatorException{
/*Getting the JNDI Service Name*/
String serviceName = getServiceName(pServiceId);
Connection conn = null;
Map dsMap = Collections.synchronizedMap(dataSourceCache);

try {
/*Checking to see if the requested DataSource is in the Cache*/

if (dataSourceCache.containsKey(serviceName)) {
DataSource ds = (DataSource) dsMap.get(serviceName);
conn = ((DataSource)ds).getConnection();

CHAPTER 4 ■ MANAGING BUSINESS LOGIC WITH STRUTS152

Ch04_7389_CMP3 9/27/06 10:59 AM Page 152

return conn;
} else {
/*
* The DataSource was not in the cache. Retrieve it from JNDI
* and put it in the cache.
*/
Context ctx = new InitialContext();
DataSource newDataSource = (DataSource) ctx.lookup(serviceName);
dsMap.put(serviceName, newDataSource);
conn = newDataSource.getConnection();
return conn;

}
} catch(SQLException e) {
throw new ServiceLocatorException("A SQL error has occurred in " +

"ServiceLocator.getDBConn()", e);
} catch(NamingException e) {
throw new ServiceLocatorException("A JNDI Naming exception has "+

"occurred in "+
"ServiceLocator.getDBConn()" , e);

} catch(Exception e) {
throw new ServiceLocatorException("An exception has occurred "+

"in ServiceLocator.getDBConn()" ,e);
}

}

public PersistenceBroker findBroker() throws ServiceLocatorException{
......

}

public Log getLog(Class aClass) {
......

}

}

The difference between the ServiceLocator.java and ServiceLocatorLRU.java implementa-
tions is that the LRUMap is being used in place of the Hashtable:

private static LRUMap ejbHomeCache = null;
private static LRUMap dataSourceCache = null;

To set the maximum number of objects allowed to be stored in the ejbHomeCache and
dataSourceCache objects, an integer value is passed into the constructor on the LRUMap:

ejbHomeCache = new LRUMap(5);
dataSourceCache = new LRUMap(5);

CHAPTER 4 ■ MANAGING BUSINESS LOGIC WITH STRUTS 153

Ch04_7389_CMP3 9/27/06 10:59 AM Page 153

Remember, the Hashtable is a synchronized Java class and can be accessed safely by
multiple threads. The LRUMap is not. To make it thread-safe, you must get a synchronized Map
instance by calling the java.util.Collections’s synchronizedMap() method and passing in an
instance of an LRUMap:

Map dsMap = Collections.synchronizedMap(dataSourceCache);

With the addition of the LRUMap, the service locator used in the JavaEdge application has
become sophisticated. More importantly, this was accomplished without the need to write
your own LRU algorithm implementation. The “take-away” thought from this should be the
following:

■Note Whenever you start finding yourself or your development team writing low-level code, you should
take a step back. Most problems that a development team faces have already been overcome before. Look
to open source projects like the Jakarta Commons project for solutions before implementing your own.

EJBs and Struts
Since the release of the J2EE specifications, it has been incessantly drilled into every J2EE devel-
oper that all business logic for an application should be placed in the middle tier as session-based
Enterprise JavaBeans (EJB). Unfortunately, many developers believe that by putting their business
logic in EJBs, they have successfully designed their application’s middle tier.

The middle tier of an application often captures some of the core business processes used
throughout the enterprise. Without careful forethought and planning, many applications end
up with a middle tier that is too tightly coupled to a specific application. The business logic
contained within the application cannot easily be reused elsewhere and can become so com-
plex that it is not maintainable.

The following are symptoms of a poorly designed middle tier:

The EJBs are too fine-grained: A very common mistake when building Struts-based appli-
cations with EJBs is to have each Action class have a corresponding EJB. This results in a
proliferation of EJBs and can cause serious performance problems in a high-transaction
application. The root cause of this is that the application developer is treating a compo-
nent-based technology (that is, EJB) like an object-oriented technology (that is, plain old
Java classes).

In a Struts application, you can often have a small number of EJBs carrying out the
requests for a much larger number of Action classes. If you find a one-to-one mapping
between Action classes and EJBs, the design of the application needs to be revisited.

The EJBs are too fat: Conversely, some developers end up placing too much of their busi-
ness logic in an EJB. Putting too much business logic into a single EJB makes it difficult to
maintain and reuse it in other applications. “Fat” EJBs are often implemented by develop-
ers who are used to programming with a module development language, such as C or
Pascal, and are new to object-oriented analysis and design.

CHAPTER 4 ■ MANAGING BUSINESS LOGIC WITH STRUTS154

Ch04_7389_CMP3 9/27/06 10:59 AM Page 154

We have encountered far more of the latter design problem, “fat” EJBs, when building
Struts-based applications. Let’s look at the “fat” EJB problem in more detail.

On “Fat” EJBs
“Fat” EJBs are monolithic “blobs” of code that do not take advantage of object-oriented
design.

■Note The term blob is not our term. It is actually an antipattern that was first defined in the text
AntiPatterns: Refactoring Software Architectures and Projects in Crisis (Brown et al., John Wiley & Sons,
ISBN: 0-471-19713-0). The Blob antipattern is an antipattern that forms when a developer takes an
object-oriented language like C++ or Java and uses it in a procedural manner.

In a Struts application, an extreme example of this might be manifested by a single EJB
that contains one method for each of the Action classes present in the Struts application. The
execute() method for each Action class would invoke a corresponding method on the EJB to
carry out the business logic for the action.

This is an extreme example of a “fat” EJB. A more typical example of a “fat” EJB is one
in which the EJBs are designed along functional breakdowns within the application. In the
JavaEdge application, you might have a Member EJB and a Story EJB that encapsulate all of
the functionality for that specific set of application tasks.

This kind of functional breakdown into individual EJBs makes sense. EJBs are coarse-
grained components that wrap processes. The EJB model does offer the same type of object-
oriented features (polymorphism, encapsulation, etc.) as their more fine-grained counterparts:
plain Java classes. The problem arises when the EJB developer does not use the EJB as a wrapper
around more fine-grained objects but instead puts all of the business logic for a particular
process inside the EJB.

For example, if you remember earlier in the chapter we talked about how many developers
will push all of their business logic from their Struts Action class to an EJB. We demonstrated
how if your Struts did not use a Business Delegate pattern to hide the fact you were using EJBs,
you could end up creating tight dependencies between Struts and the EJB APIs.

What we did not talk about is how blindly moving your business logic out of the PostStory
Action class and into an EJB can result in a “fat” EJB. Shown here is the StoryManagerBean.java
class:

package com.apress.javaedge.story.ejb;

import javax.naming.*;
import java.rmi.*;
import javax.ejb.*;
import java.sql.*;

import com.apress.javaedge.common.*;
import com.apress.javaedge.story.*;

CHAPTER 4 ■ MANAGING BUSINESS LOGIC WITH STRUTS 155

Ch04_7389_CMP3 9/27/06 10:59 AM Page 155

import com.apress.javaedge.member.*;
import com.apress.javaedge.story.dao.*;
import com.apress.javaedge.struts.poststory.*;

public class StoryManagerBean implements SessionBean {
private SessionContext ctx;

public void setSessionContext(SessionContext sessionCtx) {
this.ctx = sessionCtx;

}

public void addStory(StoryVO storyVO)
throws ApplicationException, RemoteException{

Connection conn = null;
PreparedStatement ps = null;

try {
conn = ServiceLocator.getInstance().getDBConn(ServiceLocator.JAVAEDGEDB);
conn.setAutoCommit(false);

StringBuffer insertSQL = new StringBuffer();

insertSQL.append("INSERT INTO story(");
insertSQL.append(" member_id , ");
insertSQL.append(" story_title , ");
insertSQL.append(" story_into , ");
insertSQL.append(" story_body , ");
insertSQL.append(" submission_date ");
insertSQL.append(") ");
insertSQL.append("VALUES(");
insertSQL.append(" ? , ");
insertSQL.append(" ? , ");
insertSQL.append(" ? , ");
insertSQL.append(" ? , ");
insertSQL.append(" CURDATE()) ");

ps = conn.prepareStatement(insertSQL.toString());

ps.setLong(1, storyVO.getStoryAuthor().getMemberId().longValue());
ps.setString(2, storyVO.getStoryTitle());
ps.setString(3, storyVO.getStoryIntro());
ps.setString(4, storyVO.getStoryBody());

ps.execute();
checkStoryCount(storyVO.getStoryAuthor());

} catch(SQLException e) {

CHAPTER 4 ■ MANAGING BUSINESS LOGIC WITH STRUTS156

Ch04_7389_CMP3 9/27/06 10:59 AM Page 156

throw new ApplicationException("SQL Exception occurred in " +
"StoryManagerBean.addStory()", e);

} catch(ServiceLocatorException e) {
throw new ApplicationException("Service Locator Exception occurred in " +

"StoryManagerBean.addStory()", e);

} finally {
try {
if (ps != null) ps.close();
if (conn != null) conn.close();

} catch(SQLException e) {}

}
}

private void checkStoryCount(MemberVO memberVO)
throws SQLException, NamingException {

...
}

public void addStory(PostStoryForm postStoryForm, MemberVO memberVO)
throws ApplicationException, RemoteException{

...
}

public void ejbCreate() { }
public void ejbRemove() { }
public void ejbActivate() { }
public void ejbPassivate(){ }

}

We have not included the full listing of the StoryManagerBean class for the sake of brevity.
However, you should be able to tell that this EJB is going to be huge if all of the business logic
associated with managing stories is put into it.

The JavaEdge application is an extremely simple application. In more real-world EJB
implementations, the Struts amount of business logic that is put into the EJB can become
staggering. Let’s look at how the Session Facade design pattern can help you manage the
business logic contained within an EJB.

The Session Facade Pattern
The Session Facade pattern is implemented as a stateless session EJB, which acts as a coarse-
grained wrapper around finer-grained pieces of code. Typically, these finer-grained pieces of
code are going to be plain old Java classes rather than the more component-oriented EJB

CHAPTER 4 ■ MANAGING BUSINESS LOGIC WITH STRUTS 157

Ch04_7389_CMP3 9/27/06 10:59 AM Page 157

architecture. In a component-based architecture, a component wraps the business processes
behind immutable interfaces. The implementation of the business process may change, but
the interface that the component presents to the applications (which invoke the business
process) does not change.

Instead, the methods on an EJB implemented as a session facade should act as the entry
point in which the business process is carried by more fine-grained Java classes. Figure 4-3
illustrates this.

Figure 4-3. Application invoking a session facade via a business delegate

So if you were going to rewrite the StoryManagerBean’s addStory() method to be less
monolithic and more fine-grained, it might look something like this:

public void addStory(StoryVO storyVO)
throws ApplicationException, RemoteException {

try {
StoryDAO storyDAO = new StoryDAO();
storyDAO.insert(storyVO);

PrizeManager prizeManager = new PrizeManager();
int numberOfStories =
prizeManager.checkStoryCount(storyVO.getStoryAuthor());

boolean TOTAL_COUNT_EQUAL_1000 = (numberOfStories==1000);
boolean TOTAL_COUNT_EQUAL_5000 = (numberOfStories==5000);

if (TOTAL_COUNT_EQUAL_1000 || TOTAL_COUNT_EQUAL_5000) {
prizeManager.notifyMarketing(storyVO.getStoryAuthor(), numberOfStories);

}

CHAPTER 4 ■ MANAGING BUSINESS LOGIC WITH STRUTS158

Ch04_7389_CMP3 9/27/06 10:59 AM Page 158

} catch (DataAccessException e){
throw new ApplicationException("DataAccessException Error in " +

StoryManagerBean.addStory(): " +
e.toString(), e);

}
}

The addStory() method is much more manageable and extensible. All of the data access
logic for adding a story has been moved to the StoryDAO class (which will be covered in more
detail in the next chapter). All of the logic associated with prize management has been moved
to the PrizeManager class.

As you can see, you also need to refactor the code associated with the checkStoryCount()
method. The checkStoryCount() method is only used when trying to determine whether or
not the individual qualifies for a prize. So you move the checkStoryCount() method to the
PrizeManager. You could also move this method to the StoryDAO class. By moving it out of the
StoryManager EJB, you avoid having “extraneous” code in the session facade implementation.

Implementing the Session Facade pattern is not difficult. It involves looking at your EJBs
and ensuring that the individual steps for carrying out a business process are captured in fine-
grained Java objects. The code inside of the session facade implementation should act as the
“glue” that strings these individual steps together into a complete process.

Any method on a session facade EJB should be short. If it’s over 20 to 30 lines, you need to
go back and revisit the logic contained within the method to see if it can be refactored out into
smaller individual classes. Remember, one of the core concepts behind object-oriented design
is division of responsibility. Always keep this in mind as you are building your EJBs.

What About Non-EJB Applications?
All of the examples presented so far in this chapter have made the assumption that you are
using EJB-based J2EE to gain the benefits offered by these design patterns. However, it is very
easy to adapt these patterns to a non-EJB Struts-based application. We have worked on many
successful Struts applications using these patterns and just a web container.

For non-EJB Struts implementations, you should still use the Business Delegate pattern
to separate the Struts Action class from the Java classes that carry out the business logic. You
need not implement a Session Facade pattern in these situations. Instead, your business dele-
gate class will perform the same function as the session facade class. The business delegate
would act as a thin wrapper around the other Java objects carrying out a business process.

You might ask the question, “Why go through all of this extra work even in a non-J2EE
application?” The reason is simple: By cleanly separating your Action class from the applica-
tion’s business logic (using a Business Delegate pattern), you provide a migration path for
moving your applications to a full J2EE environment.

At some point, you might need to move the Struts applications to a full-blown J2EE appli-
cation server and not just a JSP/servlet container. You can very easily move your business logic
to session facades and EJBs, without rewriting any of your Struts applications. This is because
you have separated your Struts applications from your business logic.

Your Struts applications only invoke the business logic through a plain Java interface. This
abstraction allows you to completely refactor the business tier of your applications without
affecting the applications themselves.

CHAPTER 4 ■ MANAGING BUSINESS LOGIC WITH STRUTS 159

Ch04_7389_CMP3 9/27/06 10:59 AM Page 159

A DECISION POINT IN THE JAVAEDGE APPLICATION

We struggled when trying to determine whether or not we should build the JavaEdge application as an
EJB-based application. In the end, we decided not to because JavaEdge is such a simple application that it
didn’t require the power (and the complexity) that comes with implementing an EJB solution.

Since the logic for the JavaEdge application is simple, we embedded most of it as calls to Data Access
Objects (covered in the next chapter) directly inside of the business delegate implementations. The business
logic was not broken out into session facades and was instead kept inside of the business delegate classes.

However, even though the JavaEdge application does not use EJBs in its implementation,
we felt that this material was an important piece to cover when looking at using Struts for your
own EJB-based applications.

As the Struts Action classes only talk to business delegates, we could have easily refac-
tored the code into an EJB-based solution without having to touch any of the Struts code.

The design patterns discussed in this chapter cleanly separate the Struts framework from
how the business logic for the application is being invoked. This allows you to evolve the
application over time while minimizing the effects of these changes on the application.

Remember, design patterns are a powerful tool for abstraction and reuse, but when used
improperly become common causes of overabstraction and complexity.

Handling Exceptions in the Action Class
For the development team, unanticipated behavior in the application code is a byproduct of
the nonlinear, fuzzy, and complex business processes that are being modeled with the appli-
cation code. One of the most common mistakes developers make when building multitiered
applications, like web applications, is not understanding or appreciating how poorly designed
exception-handling code can cause implementation details from one tier to be exposed to the
tier immediately above it.

For example, the Business Delegate pattern is supposed to abstract away all implementa-
tion details of how the business logic in an application is actually invoked from the presentation
tier. However, we have seen many instances where development teams have implemented their
business delegate implementations and had the methods on the delegate throwing technology-
specific implementation details like a RemoteException.

The end result is that even though the business delegate implementation hides the fact
that an EJB is being invoked, the classes using the business delegate have to still catch the
RemoteException or rethrow it. This creates a dependency that must be reworked if the devel-
opment team ever changes the underlying implementation for the business delegate away
from something other than EJBs.

The best way to deal with any exceptions thrown from the business tier is to establish two
practices:

• Catch, process, and log all exceptions thrown in the business tier before the exception leaves
the business tier: This is important because by the time an application exception gets to
the presentation layer and to a Struts Action class, all of the heavy lifting associated with
processing the exception should be done. The Struts framework should merely be catch-
ing the exception and directing the user to a nicely formatted error page.

CHAPTER 4 ■ MANAGING BUSINESS LOGIC WITH STRUTS160

Ch04_7389_CMP3 9/27/06 10:59 AM Page 160

• When an exception is caught in the business tier, rethrow the exception as a single generic
exception type: That way, the presentation tier consuming the services of the business
logic tier only needs to know that it has to catch one type of exception. Catching an
exception and rethrowing it as a generic type completely abstracts away the implemen-
tation details associated with the exception.

If your application truly needs to be able to differentiate different types of exceptions
being thrown from the business logic tier, then you should consider building some sim-
ple type of exception hierarchy that minimizes the number of specific exception types
that need to be caught.

All the Action classes in the JavaEdge application are set to process a generic exception
called ApplicationException. An ApplicationException is a generic exception that is used to
“level” all exceptions thrown by the business logic tier to a single type of exception.

Without the ApplicationException being thrown from the StoryManagerBD, the develop-
ment team would have to rewrite its Action classes every time the underlying implementation
of the business delegate changed.

For instance, without a generic ApplicationException being thrown, if you wanted to
change the underlying logic for story management to be contained within an EJB rather than
a POJO, the PostStory class would need to be rewritten to have to catch the CreateException,
RemoteException, and NamingException that could be thrown from the StoryManagerEJBImpl
class. This would give the PostStory class the intimate knowledge of how the business logic
for the request was being carried out.

■Tip Never expose an application that uses a business delegate to any of the implementation details
wrapped by the delegate. This includes any exceptions that might be raised during the course of processing
a request.

The ApplicationException is used to notify the application, which consumes a service
provided by the business delegate, that some kind of error has occurred. It is up to the applica-
tion to decide how it will respond to an unexpected exception.

There are two different ways exception handling with ApplicationException can be
implemented. Each method is dependent on the version of Struts being used. Let’s start by
looking at how exception handling can be implemented in the older Struts 1.0.x releases.

Exception Handling in Struts 1.0.x
When building web applications using Struts 1.0.x, we have found that the best approach for
clear and uniform exception handling in the Action classes is to implement the following:

• Write an ApplicationException class that will represent all exceptions thrown from the
business tier layer.

• Implement a single global forward via the <global-forwards> tag in the application’s
struts-config.xml file. This global forward will be used to redirect the end user to a
neatly formatted error page rather than a web page full of Java code stack traces.

CHAPTER 4 ■ MANAGING BUSINESS LOGIC WITH STRUTS 161

Ch04_7389_CMP3 9/27/06 10:59 AM Page 161

• Ensure that all Action classes within the application catch the ApplicationException
and redirect the user to the error page defined in the global forward.

To build the JavaEdge application’s ApplicationException class, some of the functionality
in the Jakarta Commons lang project (http://jakarta.apache.org/commons/lang) was used.
All the classes from the Jakarta Common’s lang project are located in the commons-lang.jar
file.

For the Struts 1.0.x framework, we are going to demonstrate the use of the org.apache.
commons.lang.exception.NestableException class. The NestableException class provides a
nice mechanism to ensure that the call stack for the exception being caught is being main-
tained if the application chooses to rethrow the exception. The reason why the
NestableException is used is that before JDK 1.4 the propagation of the exception call stack
was not built into the core Java language.

Shown here is the ApplicationException class used specifically to build the JavaEdge
application in Struts version 1.0.x:

package com.apress.javaedge.common;
import org.apache.commons.lang.exception.NestableException;

public class ApplicationException extends NestableException {
Throwable exceptionCause = null;

/** Creates a new instance of ApplicationException */
public ApplicationException(String msg) {

super(msg);
}

public ApplicationException(String msg, Throwable exception){
super(msg, exception);
exceptionCause = exception;

}

/**Overriding the printStackTraceMethod*/
public void printStackTrace(){
if (exceptionCause!=null){
System.err.println("An exception has been caused by: " +

exceptionCause.toString());
exceptionCause.printStackTrace();

}
}

}

When an application exception is thrown, the user should always be directed to a nicely
formatted error page. To achieve this redirection, we are going to show you how to set up a
<global-forwards> tag in the JavaEdge application’s struts-config.xml file. Shown here is the
tag used, but we are not going to walk through the details of the <global-forwards> tag as this
information was covered in Chapter 2:

CHAPTER 4 ■ MANAGING BUSINESS LOGIC WITH STRUTS162

Ch04_7389_CMP3 9/27/06 10:59 AM Page 162

<global-forwards type="org.apache.struts.action.ActionForward">
<forward name="system.error" path="/WEB-INF/jsp/systemError.jsp"/>
<forward name="default.action" path="/execute/homePageSetup"/>

</global-forwards>

Once these two elements are set up, it is a straightforward process to capture an
ApplicationException and redirect the user to the error page. Shown here is the execute()
method from the PostStory class:

public ActionForward execute(ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response){

if (this.isCancelled(request)){
return (mapping.findForward("poststory.success"));

}

try{
PostStoryForm postStoryForm = (PostStoryForm) form;

StoryVO storyVO = postStoryForm.buildStoryVO(request);

IStoryManager storyManager = StoryManagerBD.getStoryManagerBD();
storyManager.addStory(storyVO);

} catch(ApplicationException e){
return (mapping.findForward("system.error"));

}

return (mapping.findForward("poststory.success"));
}

Although this code is a clean mechanism for capturing all exceptions thrown in your
Action classes, one issue should leap out at you. Capturing application exceptions and redi-
recting the user is very repetitive. The process of capturing these exceptions “clutters” up your
Action classes, especially because the exception handling code is doing the same thing over
and again. Fortunately, in Struts 1.1, the handling of exceptions thrown in an Action class has
now been integrated as part of the Struts framework in what is known as exception handlers.
Let’s revisit the preceding ApplicationException code. We will look at how to use Struts ver-
sion 1.1 exception handlers to automate the processing of the ApplicationException.

Exception Handling in Struts 1.1 and Later
The Struts version 1.1 framework introduced the concept of framework-based exception han-
dlers. This concept has not changed in the current 1.2.x releases of Struts. Framework-based
exception handlers allow you to handle application exceptions thrown in your Action classes
declaratively. Using them, you can define in your application’s struts-config.xml file what
exceptions are to be caught by the Action class and where the user should be directed when
the error occurs.

CHAPTER 4 ■ MANAGING BUSINESS LOGIC WITH STRUTS 163

Ch04_7389_CMP3 9/27/06 10:59 AM Page 163

Implementing exception handlers in Struts 1.1 was very easy to do. For the JavaEdge
application, you implement exception handling for the ApplicationException in the following
manner:

• Modify the ApplicationException to be a NestableRuntimeException rather than a
NestableException.

• Add a <global-exceptions> tag to the JavaEdge application’s struts-config.xml file. This
tag defines all of the exceptions that can be thrown and processed from a JavaEdge
Action class.

• Modify all of the Action classes in the JavaEdge application to remove all try..catch
statements that process the ApplicationException.

Rewriting the ApplicationException Class
The ApplicationException class is modified so that it extends the NestableRuntimeException
rather than NestableException:

package com.apress.javaedge.common;
import org.apache.commons.lang.exception.NestableRuntimeException;

public class ApplicationException extends NestableException {
. . .
}

The rest of the code for the ApplicationException remains exactly the same. So why
make the switch from NestableException to NestableRuntimeException? The reason is that
NestableException is a “checked” exception. Even with the use of Strut’s exception-handler
capability, the Java compiler would complain if you did not catch the ApplicationException
exception being thrown from your business delegate classes.

Since you want to delegate all exception-handling code to Struts, you make the
ApplicationException class a “runtime” exception that does not require a try..catch block.

Setting Up the struts-config.xml File
Now to actually tell Struts that it should be looking for a particular exception you need to
modify the application’s struts-config.xml file. There are two types of exception handlers:
global and local. A global exception handler uses the <global-exceptions> tag to define a list
of exceptions that can be thrown by all of the Action classes within the application.

A local exception handler is defined inside of an <action> tag and specifies an exception
that can be caught and processed specific to that Action class. Please note that there is noth-
ing stopping a developer from redefining the same exception to be caught by simply
redefining the same exception inside different <action> tags.

CHAPTER 4 ■ MANAGING BUSINESS LOGIC WITH STRUTS164

Ch04_7389_CMP3 9/27/06 10:59 AM Page 164

For the JavaEdge application, you define the following <global-exceptions> tag inside of
the application’s struts-config.xml file:

<global-exceptions>
<exception key="error.system"

scope="request"
type="com.apress.javaedge.common.ApplicationException"
path="/WEB-INF/jsp/systemError.jsp"/>

</global-exceptions>

For each exception defined inside of the <global-exceptions> tag, there will be a corre-
sponding <exception> tag. An <exception> tag can have a number of attributes associated
with it. The four attributes you are most concerned about are key, scope, type, and path.
We will walk you through each of these attributes with the understanding that the behavior
described by these three attributes are the same whether you are defining a global exception
handler or a local exception handler.

■Note To conform to the struts-config-1.1 or the struts-config-1.2 DTD, you must make sure that the
<global-exceptions> tag comes before the <global-forwards> tag. Otherwise, you might end up
wasting a lot of time scouring the application’s struts-config.xml file the first time you run this file through
a validating XML parser.

When a defined exception is caught and processed, Struts provides a default exception
handler whose fully qualified class name is org.apache.struts.action.ExceptionHandler.
This exception handler will create an ActionError instance for the exception and store it in an
ActionErrors collection. The corresponding resource key used to look up the error message
when creating the ActionError instance is defined by the value in the key attribute. Remem-
ber, this resource key is used to pull out the error message from the
ApplicationResources.properties file.

For instance, in the JavaEdge application, every time an ApplicationException is thrown
in a Struts Action, the following text will be read out of the ApplicationResources.properties
file:

error.system=A system error has occurred. Please contact JavaEdge customer
support at 262-555-1212 for support.
The error to report is:
 {0}

The actual exception message will be passed in as the first message parameter for the
ActionError. This means if you have a JSP page that will display a neatly formatted message
about the exception, you can get the text of the exception-thrown message by using the {0}
parameter used in the error message defined in the ApplicationResources.properties file.

CHAPTER 4 ■ MANAGING BUSINESS LOGIC WITH STRUTS 165

Ch04_7389_CMP3 9/27/06 10:59 AM Page 165

This also means that the <html:errors> tag and all of its corresponding formatting func-
tions can be used to display the exception information for the exception thrown. A very simple
example of this is shown here:

<%@page contentType="text/html"%>
<%@ taglib uri="/taglibs/struts-html" prefix="html" %>
<html>
<head><title>JSP Page</title></head>
<body>

<H1> A SYSTEM ERROR HAS OCCURRED</H1>
<html:errors/>
</body>
</html>

The type attribute provides the fully qualified Java class name of the exception that is to
be caught. The path attribute is the relative URL that the end user will be directed to if the
defined exception is caught. This URL can be another Struts action or a JSP page.

At this point, we have shown you how to implement a global exception handler.
Implementing a local exception handler for a specific class involves nothing more than
adding an <exception> tag to an <action> tag. Shown here is the PostStory action with the
ApplicationException being handled by that tag:

<action path="/postStory"
input="/WEB-INF/jsp/postStory.jsp"
name="postStoryMapForm"
scope="request"
validate="true"
type="com.apress.javaedge.struts.poststory.PostStory">
<exception key="error.system"

scope="request"
type="com.apress.javaedge.common.ApplicationException"
path="/WEB-INF/jsp/systemError.jsp"/>

<forward name="poststory.success" path="/execute/homePageSetup"/>
</action>

Once the ApplicationException code has been rewritten to use the
NestedRuntimeException and the <global-exceptions> tag setup, the PostStory class’s execute()
method shown earlier can be rewritten so that all try..catch information is removed:

public ActionForward execute(ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response)

throws ApplicationException {

if (this.isCancelled(request)){
return (mapping.findForward("poststory.success"));

}

CHAPTER 4 ■ MANAGING BUSINESS LOGIC WITH STRUTS166

Ch04_7389_CMP3 9/27/06 10:59 AM Page 166

PostStoryForm postStoryForm = (PostStoryForm) form;
StoryVO storyVO = postStoryForm.buildStoryVO(request);

IStoryManager storyManager = StoryManagerBD.getStoryManagerBD();
storyManager.addStory(storyVO);

return (mapping.findForward("poststory.success"));
}

Writing a Custom ExceptionHandler
Why would you want to write your own exception handler? The Struts ExceptionHandler does
not provide any kind of functionality like logging, e-mail notification, etc. However, Struts,
being the pluggable framework it is, allows you to write your own ExceptionHandler imple-
mentation and use it within the framework.

To write a custom ExceptionHandler, follow these guidelines:

• The custom ExceptionHandler must extend org.apache.struts.action.ExceptionHandler.

• The execute() method on ExceptionHandler must be overridden. The execute()
method is where the custom exception-handling code is implemented. Shown here is
the method signature for the execute() method:

public ActionForward execute(Exception ex,
ExceptionConfig ae,
ActionMapping mapping,
ActionForm formInstance,
HttpServletRequest request,
HttpServletResponse response)

throws ServletException {}

The Exception parameter holds the instance of the Exception thrown by the Action
class. The ExceptionConfig parameter holds the configuration information about the
exception defined inside of the <exception> tag. The ActionMapping and ActionForm
parameters are used to provide context on the Struts Action where the exception
occurred. The HttpServletRequest and HttpServletResponse parameters should
be self-explanatory.

• The custom ExceptionHandler can take any action as long as it returns an ActionForward
that is used by the Struts ActionServlet to determine where the end user is to go next.
There is no requirement that the path the ActionForward directs the user to has to be
defined only from the <exception> tag in the struts-config.xml file.

• If you want to store the exception as an ActionError from within your custom exception
handler, you need to make sure you invoke the storeException() method on the
ExceptionHandler class.

• Once the custom ExceptionHandler has been implemented, you must add the handler
attribute to the <exception> tag defining the exception handler. The handler attribute
defines the fully qualified Java class name of the custom ExceptionHandler class being
used to process the exception.

CHAPTER 4 ■ MANAGING BUSINESS LOGIC WITH STRUTS 167

Ch04_7389_CMP3 9/27/06 10:59 AM Page 167

Following is an example custom exception handler called MailExceptionHandler. This
exception handler will generate an e-mail every time an ApplicationException is thrown from
a Struts Action class.

package com.apress.javaedge.common;

import org.apache.struts.action.ExceptionHandler;
import org.apache.struts.action.ActionForward;
import org.apache.struts.action.ActionMapping;
import org.apache.struts.action.ActionForm;
import org.apache.struts.config.ExceptionConfig;
import org.apache.log4j.Logger;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.ServletException;
import javax.mail.internet.MimeMessage;
import javax.mail.internet.InternetAddress;
import javax.mail.Transport;
import java.util.Properties;

import javax.mail.Message;
import javax.mail.Transport;
import javax.mail.internet.InternetAddress;
import javax.mail.internet.MimeMessage;
import javax.mail.Session;

/**
* Simple ExceptionHandler that sends an e-mail every time a Struts Action class
* throws an ApplicationException.
*/
public class MailExceptionHandler extends ExceptionHandler{

private static Logger logger = Logger.getLogger(MailExceptionHandler.class);

public ActionForward execute(Exception e,
ExceptionConfig ex,
ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response)

throws ServletException{

ActionForward forward = super.execute(e, ex, mapping, form,
request, response);

CHAPTER 4 ■ MANAGING BUSINESS LOGIC WITH STRUTS168

Ch04_7389_CMP3 9/27/06 10:59 AM Page 168

Properties props = new Properties();

//Getting the name of the e-mail server.
props.put("mail.smtp.host", "netchange.us");
props.put("mail.from", "JavaEdgeApplication");

Session session = Session.getDefaultInstance(props,
null);

session.setDebug(false);

Message msg = new MimeMessage(session);

try{
msg.setFrom();

//Setting who is supposed to receive the e-mail
InternetAddress to = new InternetAddress("john.carnell@netchange.us");

//Setting the important text
msg.setRecipient(MimeMessage.RecipientType.TO, to);
msg.setSubject("Error message occurred in Action:" + mapping.getName());
msg.setText("An error occurred while trying " + "

to invoke execute() on Action:" +
mapping.getName () +

". Error is: " + e.getMessage());

Transport.send(msg);
}
catch(Exception exception){

logger.error("An error has occurred in the " +
"MailExceptionHandler while trying to process Action: "

+ mapping.getName());
logger.error("Exception raised is : " + exception.getMessage());
logger.error("Original Exception: " + e.getMessage());

}

return forward;
}

}

The MailExceptionHandler class is pretty simplistic. All it is doing is extending the
ExceptionHandler and overriding the execute() method on the class. The overridden
execute() method immediately calls the execute() method on the ExceptionHandler to
ensure the proper setup of the ActionErrors class:

CHAPTER 4 ■ MANAGING BUSINESS LOGIC WITH STRUTS 169

Ch04_7389_CMP3 9/27/06 10:59 AM Page 169

public class MailExceptionHandler extends ExceptionHandler{
public ActionForward execute(Exception e,

ExceptionConfig ex,
ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response)

throws ServletException{

//Calling the execute() method on the Struts ExceptionHandler class
ActionForward forward = super.execute(e, ex, mapping, form,

request, response);

}
}

Once the ActionForward class has been retrieved from the call to super.execute(), the
code sets up an e-mail message and sends it via the JavaMail API:

props.put("mail.smtp.host", "netchange.us");
props.put("mail.from", "JavaEdgeApplication");

javax.mail.Session session = javax.mail.Session.getDefaultInstance(props, null);
session.setDebug(false);

Message msg = new MimeMessage(session);

try{
msg.setFrom();

//Setting who is supposed to receive the e-mail
InternetAddress[] to =

{new InternetAddress("john.carnell@netchange.us")};

//Setting the important text
msg.setRecipients(MimeMessage.RecipientType.TO, to);
msg.setSubject("Error message occurred in Action:" + mapping.getName());
msg.setText("An error occurred while trying to invoke execute() on Action:" +

mapping.getName() +
". Error is: " + e.getMessage());

msg.setSentDate(new java.util.Date());
Transport.send(msg);
}
catch(Exception exception){}

CHAPTER 4 ■ MANAGING BUSINESS LOGIC WITH STRUTS170

Ch04_7389_CMP3 9/27/06 10:59 AM Page 170

To keep life simple, the MailExceptionHandler class catches all exceptions thrown by
the e-mail code and simply logs the error message. The forward instance returned by the
super.execute() method call is then returned from the code. The ActionServlet will forward
the user on to whatever request has been defined in the <exception> tag for the exception
handler.

To tell the JavaEdge application to use the MailExceptionHandler to process any
ApplicationException exceptions thrown from its Action classes, you need to add the
handler attribute to the <exception> tag in JavaEdge’s struts-config.xml file:

<global-exceptions>
<exception key="error.system"

scope="request"
handler="com.apress.javaedge.common.MailExceptionHandler"
type="com.apress.javaedge.common.ApplicationException"
path="/WEB-INF/jsp/systemError.jsp"/>

</global-exceptions>

Summary
Often in an object-oriented and component-based environment, more value is gained from
interface reuse and the abstraction it provides than the actual code reuse. The business logic
for an application changes regularly. Well-defined interfaces that abstract away the implemen-
tation details help shield an application from this uncertainty. This chapter explored how to
use common J2EE design patterns to cleanly separate the business logic from the Struts
framework on which the application is built. This promotes code reuse and also gives the
developer more flexibility in refactoring business logic at a later date.

This chapter covered the following J2EE design patterns:

Business Delegate pattern: Hides the details of how the business logic used by the Struts
application is actually invoked. It allows the development team to refactor the business
tier while minimizing its impact on the applications that use the business logic. It also
hides the technology (EJBs, Web services, or just plain Java classes) used to implement
the actual business logic. This chapter demonstrated how two different business delegate
implementations could be plugged in without the JavaEdge application ever knowing the
difference.

Service Locator pattern: Simplifies the process of requesting the commonly used
resources like EJBs and DataSource objects within your business delegate.

Session Facade pattern: Represents an EJB that provides a coarse-grained interface that
wraps a business process. Carrying out the individual steps for the business process,
wrapped by the session facade, is left to much more fine-grained Java objects.

CHAPTER 4 ■ MANAGING BUSINESS LOGIC WITH STRUTS 171

Ch04_7389_CMP3 9/27/06 10:59 AM Page 171

Finally, this chapter covered different approaches for managing exceptions thrown
from the business tier in Struts. Our efforts mainly focused around making sure that all
exceptions thrown from the business delegate classes were caught and rethrown as an
ApplicationException. We demonstrated how to use the ApplicationException in Struts
version 1.0.x.

We also discussed how to use the ApplicationException class and Struts version 1.1 and
later exception handlers to refactor exception handling completely out of the Action classes. We
demonstrated how to implement global and local exception handlers in the struts-config.xml
file using the default Struts ExceptionHandler. Finally, we briefly touched on how to write a cus-
tom ExceptionHandler class to generate an e-mail every time an ApplicationException is
thrown.

This chapter focused solely on modeling and implementing the business tier of a Struts-
based application. However, we still need to focus on how data is retrieved and manipulated
by the business logic tier. The next chapter is going to demonstrate how to use an open source
object/relational mapping tool, called ObjectRelationalBridge, to build a data persistence tier.
In addition, it will discuss how to use J2EE data access design patterns to hide the implemen-
tation details in the data persistence tier from the business tier.

CHAPTER 4 ■ MANAGING BUSINESS LOGIC WITH STRUTS172

Ch04_7389_CMP3 9/27/06 10:59 AM Page 172

173

Architecting the Data Access Tier
with ObjectRelationalBridge

A well-defined data access tier, which provides a logical interface for accessing corporate
data sources, is one of the most reused pieces of code in any system architecture. This state-
ment, on the surface, may appear to be an overinflated claim, but it is made with the following
two points in mind:

• Applications are developed according to the changing needs of the organization.
However, the data used by these applications is used for a long time, even after the
application has been replaced with some completely new piece of technology. The
data possessed by an organization is often the only constant in any IT ecosystem.

• Any application does not exist all by itself. Most of an organization’s development
efforts involve integrating a newly built or bought application with the other existing
systems. To maximize their value, most applications must exchange their data with
other systems using a consistent interface, which abstracts away the “messy” technol-
ogy details associated with accessing the data.

The previous three chapters have focused on building the presentation and business lay-
ers of the JavaEdge web site using the Struts development framework. In this chapter, we are
going to change our perspective and move the focus off the Struts development framework
and onto building the JavaEdge data access tier.

Building a data access tier is more than just using a particular technology to retrieve and
manipulate data. The requirements of the data access tier are as follows:

• To minimize the need to write significant amounts of SQL and JDBC database code.
Accessing data from a relational database using SQL is often a tedious and error-prone
process. It involves writing a large amount of code that does not map well into the object-
oriented model, in which most Java developers are used to working. Furthermore, poorly
written data access code can bring the performance of any application to an unpleasant
halt.

• To abstract away the underlying details of the data store used to hold the application
data. These details include the specific database technology used to hold the data,
physical details of how the data is stored, and the relationships that might exist
between the data. Abstracting away these details provides the developers with more
flexibility in changing the underlying data access tier, without having the impact of
those changes on the presentation and business tiers of the application.

C H A P T E R 5

■ ■ ■

Ch05_7389_CMP3 9/27/06 11:04 AM Page 173

While building the JavaEdge data access tier, we are going to focus on

• Using the Apache group’s Object/Relational (O/R) mapping tool: ObjectRelational-
Bridge (OJB). OJB allows a developer to transparently map data pulled from a relational
database to plain Java objects. Using OJB, you can significantly reduce the amount of
data access code that needs to be written and maintained by the application team.

• Implementing two core J2EE data access design patterns that ensure that your business
and presentation tiers are never exposed to the underlying data access technology used
to retrieve your data. There is no need for a business component to know whether the
data it is consuming is retrieved via JDBC, entity beans, or OJB. Specifically, we are
going to explore the following J2EE data access patterns:

• The Data Access Object (DAO) pattern

• The Value Object (VO) pattern

Developing a Data Access Strategy
Although it is difficult to emphasize the importance of a data access tier, the fact is that most
development teams do not have a coherent strategy defined for building one. Rather than
having a well-defined set of services and interfaces for accessing their data, they will define
their data access strategy in one of two ways:

• By the particular data access technology that they use to get the data

• By the database vendor that they use to hold their data

The problem with these two definitions is that the focus is on a purely technological
solution.

■Note A well-designed data access tier should transcend any one particular technology or data store.

Technologies change at a rapid rate; a new technology that appears to be a cutting-edge
technology can quickly become obsolete. Development teams who couple their applications
too tightly with a particular technology or technology vendor will find that their applications
are not as responsive when new business requirements force an organization to adopt new
data access technologies.

A data access tier should allow the business services to consume data without giving any
idea of how or from where it is being retrieved. Specifically, a data access tier should have the
following characteristics:

• Allows a clean separation of data persistence logic from the presentation and business
logic: For instance, a business component should never be passed a Java ResultSet
object or have to capture a SQLException. The entire data access logic should be central-
ized behind a distinct set of interfaces, which the business logic must use to retrieve or
manipulate data.

CHAPTER 5 ■ ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE174

Ch05_7389_CMP3 9/27/06 11:04 AM Page 174

• Decouples the application(s) from any knowledge of the database platform in which the
data resides: The objects in the business tier, requesting the data, need not know that
they are accessing a relational database such as Oracle, an object-based database such
as Poet, or an XML database such as the Apache Group’s Xindice database.

• Abstracts away the physical details of how data is stored within the database and the
relationships that exist between entities in the database: For instance, a business tier
class should never know how the Customer object and the Address object manage their
one-to-many relationship. These details should be handled by the data access tier and
be completely hidden from the developer.

• Simplifies the application development process by hiding the details associated with get-
ting a database connection, issuing a command, or managing transactions: Data access
code can be very complicated even though it looks very easy to write. By putting all
data access code behind a set of data access services, the development team can give
the responsibility of writing that code to one or two developers who thoroughly under-
stand the data access technology being used. All the other developers on the team only
have to use the services provided by the data access tier to retrieve and manipulate
data. They do not have to worry about the underlying details of the data access code.
This significantly simplifies application development efforts and reduces the chance
that a piece of poorly written data access code will inadvertently affect the application’s
code base.

As discussed in Chapter 1, the lack of planning for the data access tier results is the forma-
tion of the Data Madness antipattern. This antipattern manifests in a number of different
manners including the following:

• The creation of tight dependencies between the applications consuming the data and
the structures of the underlying data stores: Every time a change is made to the database
structure, the developers have to hunt through the application code, identify any code
that references the changed database structures (that is, the tables), and then update
the code to reflect the changes. This is time consuming and error prone.

• The inability to easily port an application to another database platform because of the
dependencies on the vendor-specific database extensions: Often, neglecting to abstract
simple things, such as how a primary key is generated in the application’s SQL code,
can make it very difficult to port the application to another database platform.

• The inability to easily change data access technologies without rewriting a significant
amount of application code: Many developers mix their data access code (that is, their
SQL/JDBC or entity EJB lookups) directly in their application code. This intermixing
will cause tight dependencies and an increase in the amount of code that needs to be
touched up when you want to use a new data access technology.

• The presence of a 2.5 tier architecture: A 2.5 tier architecture is an architecture in which
there is a well-defined presentation tier for the application, but the business logic is not
clearly separated from the data access logic of the application. This particular symptom
is sometimes very obvious.

CHAPTER 5 ■ ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE 175

Ch05_7389_CMP3 9/27/06 11:04 AM Page 175

You will find this symptom when you start studying the business logic of an application
and find the SQL code scattered throughout the logic. (The code is found anywhere in
the business logic and affects the flow. A good sign of this is when a database adminis-
trator asks the developers to look at all of the SQL code for an application and they have
to search the entire application source code to find it.)

The presence of “data madness” can be easily found by knowing how the data access tier
is designed. If the development team says that it is using JDBC, entity EJBs, SQLJ, Oracle, SQL
Server, and so on, it is likely that there has been no real preplanning for the data access tier.

The JavaEdge Data Access Model
The data model for the JavaEdge application is very simple. It contains three entities: member,
story, and story_comment. Figure 5-1 shows the JavaEdge database tables, the data elements
contained within them, and the relationships that exist between them.

Figure 5-1. The JavaEdge data model

CHAPTER 5 ■ ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE176

Ch05_7389_CMP3 9/27/06 11:04 AM Page 176

Figure 5-1 illustrates the following points:

• A JavaEdge member can post zero or more stories. A story can belong to one and only
one member.

• A story can have zero or more comments associated with it. A story_comment can
belong to one and only one story.

• A JavaEdge member can post zero or more comments on a particular story. A JavaEdge
story_comment can be posted only by one member.

The JavaEdge data access tier is going to be built on one tenet:

■Note The business code for the application will never be allowed to directly access the JavaEdge
database.

All interactions with the JavaEdge database will be through a set of Data Access Objects
(DAOs). DAO is a core J2EE design pattern that completely abstracts the Create, Retrieve,
Update, and Delete (CRUD) logic needed to retrieve and manipulate the data behind the Java
interface. One of the first examples of the Data Access Objects and Value Objects being
articulated in a Java book is in Core J2EE Patterns: Best Practices and Design Strategies
(Alur et al., Prentice Hall, ISBN 0-130-64884-1).

On Value Objects
The first edition of Core J2EE Patterns: Best Practices and Design Strategies used the term Value
Object to describe a pattern for moving data between different tiers of an application’s archi-
tecture. However, the use of this name has caused quite a bit of consternation in the patterns
community because the term Value Object has also been used to describe another type of
pattern implementation.

Many individuals feel that the name Data Transfer Object (DTO) is a more appropriate
name for this pattern. The second edition of Core J2EE Patterns: Best Practices and Design
Strategies has switched to this new name. For the sake of continuity with the previous edition
of this book, we will continue to call this pattern the Value Object pattern.

However, for purposes of this discussion the terms Value Object and Data Transfer Objects
are referring to the same type of pattern implementation.

The JavaEdge database is a relational database. Relational databases are row-oriented
and do not map well into an object-oriented environment like Java. Even with the use of DAO
classes, the question that needs to be solved is how to mitigate the need to pass row-oriented
Java objects, such as the ResultSet class, back and forth between the business tier and DAO
classes.

CHAPTER 5 ■ ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE 177

Ch05_7389_CMP3 9/27/06 11:04 AM Page 177

CHAPTER 5 ■ ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE178

The answer is to use the Value Object (VO) pattern to map the data, retrieved and sent to
a relational database, to a set of Java classes. These Java classes wrap the retrieved data behind
simple get() and set() methods and minimize the exposure of the physical implementation
details of the underlying database table to the developer. The underlying database structure
can be changed or even moved to an entirely different platform with a very small risk of break-
ing any applications consuming the data.

Let’s look at the diagram in Figure 5-2 and see how all of these pieces fit together.

Figure 5-2. The Data Access Object pattern in action

The diagram in Figure 5-2 lays out the architecture for the example data access tier at a
high level. As shown, the business tier uses the Data Access Objects to retrieve, insert, update,
and delete data from the JavaEdge database. All data coming to and going from the DAOs is
encapsulated in a Value Object. A Value Object represents a single record residing within the
JavaEdge database. It abstracts away the physical database-specific details of the record and
provides the Java programmer simple get()/set() methods for accessing individual attributes
in a record. A Value Object can contain collections of other Value Objects. For example, the
MemberVO class (in the JavaEdge application) contains a collection of stories. This collection
represents the relationship that exists between a member record and its corresponding story
records.

The DAOs never talk directly to the JavaEdge database. Instead, all the database access is
done through an O/R mapping tool. The introduction of an O/R mapping tool is significantly
time saving. This tool allows the developer to define declaratively, rather than programmati-
cally, how data is to be mapped to and from the Value Objects in the application. This means
that the developers do not have to write JDBC and SQL code to retrieve the JavaEdge data.

Now, let’s cover the Data Access Objects and Value Objects being used for the JavaEdge
application in more detail.

Ch05_7389_CMP3 9/27/06 11:04 AM Page 178

Data Access Objects
Data Access Objects are meant to wrap all the CRUD logic associated with entities within the
JavaEdge database. DAOs provide an abstraction layer between the business tier and the phys-
ical data stores. Specifically, DAOs abstract

• The type of data store being accessed

• The database access technology being used to retrieve the data

• The physical location of data

Use of a set of DAOs removes the need for a developer to know whether the database is
being stored in an Oracle server, a MySQL server, or a mainframe. This keeps the application
database independent and minimizes the risk of exposing vendor-specific database exten-
sions to the business tier. Database vendors provide a number of extensions that often make
writing the data access code easy or offer performance enhancements above the standard SQL
code. However, these extensions come at a price: portability. By abstracting away these data-
base-specific extensions from the business tier, the development team can minimize the
impact of vendor locking on its business code. Instead, only the data access tier is exposed
to these details.

In addition, DAOs keep the business tier code from being exposed to the way in which
the data is being accessed. This gives the development team a lot of flexibility in choosing data
access technology. A beginning team of Java developers may choose to write the application
code with JDBC. As they become more comfortable with the Java environment, they may
rewrite their Data Access Objects using a much more sophisticated technology such as entity
beans or Java Data Objects (JDO).

In many IT organizations, data is spread throughout various data stores. Hence, the devel-
opers have to know where all of this data is located and write the code to access it. DAOs allow
the system architect to put together the data that is found in multiple locations and present a
single logic interface for retrieving and updating it. The application consuming the data is
location independent. For example, most organizations do not have all of their customer data
in one location. They might have some of the data residing in the Customer Relationship Man-
agement (CRM) system, some of it in their order entry system, some of it in the contact
management used by the sales department, and so on. Using a Data Access Object, a system
architect can centralize all CRUD logic associated with the accessing of customer data into a
single Java object. This relieves the developer from having to know where and how to access
the customer data.

DAOs simplify the work for the development team because they relieve the majority of the
team from knowing the “dirty” details of data access.

CHAPTER 5 ■ ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE 179

Ch05_7389_CMP3 9/27/06 11:04 AM Page 179

The JavaEdge Data Access Objects
All the DAOs in the JavaEdge application are going to extend a single interface class called
DataAccessObject. This interface guarantees that all the Data Access Objects in the JavaEdge
application have the following four base methods:

• findByPK()

• insert()

• update()

• delete()

If you want all of your DAOs to have a particular functionality, make the DataAccessObject
an abstract class rather than an interface. The code for the DataAccessObject interface is
shown here:

package com.apress.javaedge.common;

public interface DataAccessObject {

public ValueObject findByPK(String primaryKey) throws DataAccessException;
public void insert(ValueObject insertRecord) throws DataAccessException;
public void update(ValueObject updateRecord) throws DataAccessException;
public void delete(ValueObject deleteRecord) throws DataAccessException;

}

The findByPK() method is a finder method used to retrieve a record based upon its pri-
mary key. This method will perform a database lookup and return a ValueObject containing
the data. A ValueObject is a Java class that wraps the data retrieved using get()/set() meth-
ods. We will discuss more about this class in the next section.

The DataAccessObject interface, shown previously, supports only primary key lookups
using a single key. However, many times in a data model, the uniqueness of a row of data can
be established only by combining two or more keys together. This is known as a composite pri-
mary key. To support this model, you could easily change the DataAccessObject interface to
have a ValueObject passed in as a parameter. This ValueObject could then contain more than
one value necessary to perform the database lookup.

The insert(), update(), and delete() methods correspond to different actions that can
be taken against the data stored in the JavaEdge database. Each of these three methods has a
ValueObject passed in as a parameter. The DAO will use the data contained in the ValueObject
parameter to carry out the requested action (that is, a database insert, update, or delete).

The DataAccessObject interface contains method signatures that reflect the four basic
actions associated with retrieving and manipulating data. If the developers want to add addi-
tional methods (that is, additional finder methods to perform specialized queries) these
methods will usually go on the concrete implementation of the DAO. For example, the
StoryDAO has an additional finder method called findTopStory().

All four of the methods in the DataAccessObject interface throw an exception called
DataAccessException. The DataAccessException is a user-defined exception used to wrap
any exceptions that might be thrown by the data access code contained within the DAO.

CHAPTER 5 ■ ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE180

Ch05_7389_CMP3 9/27/06 11:04 AM Page 180

The whole purpose of a DAO is to hide how the data is accessed. This means the DAO should
never allow a data-access-specific exception, such as a JDBC SQLException, to be thrown.

Many times, implementing a solid system architecture that is going to be easily maintain-
able and extensible may involve small decisions to be made early on in the design of the
architecture. In the data access tier for our example application, small things such as wrapping
the technology-specific exceptions with a more generic exception can have a huge impact. For
instance, allowing a JDBC SQLException to be thrown from the DAO would unnecessarily expose
the way in which the data is being accessed to application code using the DAO. The business
code would have to catch the SQLException every time it wants to access a method in that DAO.
Also, if the developers later want to rewrite the DAO to use something other than JDBC, they
would have to go back to every place in the business tier that used the DAO and refactor the
try..catch block for the SQLException. Wrapping the SQLException with the DataAccessExcep-
tion avoids this problem.

■Note You often do not feel the pain of poor design decisions until the application has gone into production
and you now have to maintain and extend it.

The JavaEdge application is going to have two DAOs: StoryDAO and MemberDAO. The class
diagram in Figure 5-3 shows the DAOs and their corresponding methods.

Figure 5-3. The Data Access Object and its methods

CHAPTER 5 ■ ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE 181

Ch05_7389_CMP3 9/27/06 11:04 AM Page 181

Two observations can be made from the class diagram in Figure 5-3. First, the
DataAccessObject interface defines only the base methods that all DAO classes must imple-
ment. You can add any other methods to the classes implementing the DAO interface. For
example, StoryDAO has an additional finder method called findTopStory(). This method will
return a Java Collection of StoryVOValue Objects. A DAO implementation can have as many
finder methods in it as needed. The additional methods added in a DAO implementation can
do additional tasks, such as perform specialized queries or invoke a stored procedure.

The second observation from the diagram is that even though there are three database
tables (member, story, and story_comment), only two DAOs (StoryDAO and MemberDAO) have been
implemented for the JavaEdge application. There is no DAO present for handling the data
logic associated with manipulating data in the story_comment table.

A common mistake that is made while implementing a data access tier using a Data
Access Object pattern is to mimic the physical layout of the database. The application
designer tends to create a DAO for each of the tables in the database schema. However, the
designers have to consider the context in which their data is going to be used while modeling
the DAOs.

In the JavaEdge application, the story and the story_comment table have a one-to-many
relationship. Story comments have no context other than being associated with a story. So, the
StoryDAO is responsible for managing both story and story_comment data. This may seem a lit-
tle unclear now, but as we start discussing Value Objects, you will see that one Value Object
can contain collections of other Value Objects.

■Note If you model your DAOs to mirror the physical layout of your database, you might introduce per-
formance problems into the application. This happens because you have to “join” several DAOs to mimic
the relationships that might exist in the database. As a result, multiple SQL statements are being issued
to retrieve, update, or delete data, which could have easily been done with one SQL statement.

By modeling your DAO based on how the application(s) is going to use the data and not
just mimicking the physical layout of the database, you can often avoid unnecessary database
calls. This is particularly true for relational databases, where with a little forethought you can
leverage SQL “joins” to retrieve data (particularly the data that has a one-to-many relation-
ship) in one SQL call inside one DAO, instead of multiple SQL calls involving multiple DAOs.

Value Objects
The Value Object pattern evolved in response to the performance problems inherent in the
EJB 1.1 specification. In the EJB 1.1 specification, entity beans supported only remote inter-
faces. It was expensive to invoke methods in a remote interface. Each time a method was
invoked, a significant amount of data marshaling had to take place, even if the code invoking
the entity bean was located in the same Java Virtual Machine (JVM) as the bean. This meant
that the fine-grained get() and set() method calls for retrieving individual data elements
from an entity bean could quickly incur a performance hit.

CHAPTER 5 ■ ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE182

Ch05_7389_CMP3 9/27/06 11:04 AM Page 182

The solution was to minimize the number of individual get()/set() methods being called
on an entity bean. This is how the Value Object pattern evolved. A Value Object pattern is
nothing more than a plain old Java class that originally held the data retrieved from an entity
bean lookup. A Value Object contains no business logic and only has get()/set() to retrieve
and alter data that it contains.

An entity bean populates a Value Object with the data it retrieved and then returns that
Value Object to the caller as a serialized object. By putting all of the data in a Value Object, an
entity bean developer could avoid the performance costs associated with multiple invocations
on a remote interface. The application using the Value Object would use the get() methods
in the object to retrieve the data looked up by the entity bean. Conversely, if the application
wanted to insert or update via the entity bean, it would populate a new Value Object or update
an already existing one and return it back to the entity bean to perform the database write.

The Value Object pattern was evolved to deal with the inherent performance problems in
entity beans. With the release of the EJB 2.0 specification and the introduction of local inter-
faces, it would seem that the Value Object pattern would not be needed. However, this pattern
is also very useful for abstracting physical database details and moving data back and forth
between the data tier and the other tiers in a web-based application.

Value Objects provide a mechanism in which the data being used by the application can
be decoupled from the data store that holds the data. By using Value Objects in your data
access tier, you can do the following:

• Easily pass data to and from the presentation and business tiers without ever exposing
the details of the underlying data store: The Value Objects become the transport mecha-
nism for moving data between the presentation framework (that is, Struts), the
business tier (that is, your business delegates and session facades), and the data tier.

• Hide the physical details of the underlying data store: Value Objects can be used to hold
your data; as a result, the developer would not know the physical data types being used
to store data in the database. For instance, one of your database tables may contain a
Binary Large Object (BLOB). Rather than forcing the developer to work with the JBDC
Blob type, you can have the developer work with a String data type on the Value Object
and make the DAO using that Value Object be responsible for converting that String to
the JDBC Blob data type.

• Hide the details of the relationships that exist between the entities within your data store:
An application using a Value Object is exposed to only the cardinality between entities
through a get() method that returns a Collection of objects. They have no idea of
whether or not that cardinality is a one-to-many or many-to-many relationship. In this
example, if you want to restructure the story and story_comment table to have a many-
to-many relationship, only the StoryDAO would need to be modified. None of the
applications using the Story data would be affected.

Let’s look at the Value Objects that are implemented for the JavaEdge application.

CHAPTER 5 ■ ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE 183

Ch05_7389_CMP3 9/27/06 11:04 AM Page 183

The JavaEdge Value Objects
Three Value Objects are used in the JavaEdge application: MemberVO, StoryVO, and
StoryCommentVO. All of these classes extend an abstract class called ValueObject. (The Value
Object pattern can be implemented in a number of ways.) The code for the ValueObject class
is shown here:

package com.apress.javaedge.common;
import org.apache.commons.lang.builder.ReflectionToStringBuilder;

public abstract class ValueObject {

/** Creates a new instance of ValueObject */
public ValueObject() {
}

public String toString() {
return ReflectionToStringBuilder.toString(this);

}
}

The Jakarta Commons Project to the Rescue Again
The ValueObject class serves as a good base class for putting methods that are going to be
shared across all Value Objects in the application. Oftentimes while building out the JavaEdge
application, the authors needed to dump the contents of a JavaBean. Rather than writing their
own method to do this, they used the ReflectionToStringBuilder class from the Jakarta Com-
mons lang project. The Commons lang project provides several “helper” utilities for carrying
out most low-level tasks related to the core java.lang classes. The ReflectionToStringBuilder
classes use Java reflection to build a string containing all of the properties within a class.

By overriding the toString() method on the base ValueObjects and using the
ReflectionToStringBuilder class, in three lines of code we were able to have a consistent
mechanism for dumping the contents of a JavaBean. The preceding example only shows a
very simple use of the ReflectionToStringBuilder class. For more in-depth examples of how
to use this functionality, please visit the Jakarta Commons lang project’s web site at
http://jakarta.apache.org/commons/lang.

For a different implementation of the Value Object pattern, you may want to refer to
J2EE Design Patterns Applied (Juric et al., Wrox Press, ISBN: 1-861-00528-8). It is common
for the Value Object base call to be either an interface or a class. If you are going to pass your
Value Objects between different Java Virtual Machines, they should at least implement the
Serializable interface.

In the JavaEdge application, the ValueObject interface is used as a marker interface to
indicate that the class is a Value Object. This interface has no method signatures and provides
a generic type for passing data in and out of a DAO. By passing only ValueObjects in the
DataAccessObject interface, you can guarantee that every DAO in the JavaEdge application
supports a base set of CRUD functionality. It is the responsibility of the DAO to cast the
ValueObject to the type it is expecting.

CHAPTER 5 ■ ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE184

Ch05_7389_CMP3 9/27/06 11:04 AM Page 184

The class diagram in Figure 5-4 shows the details of the Value Objects used in the
JavaEdge application.

Figure 5-4. The JavaEdge Value Objects

All of the classes in this diagram implement the ValueObject interface. Based on the class
diagram, you can see the following relationships among the classes: A StoryVO class can con-
tain zero or more StoryCommentVO objects. The StoryCommentVO classes are stored in a Vector
inside the StoryVO class. A StoryVO object contains a reference, via the storyAuthor property,
to the JavaEdge member who authored the original story.

Child objects can be returned from a parent object in a number of ways. For the JavaEdge
application, a Vector was chosen to return “groups” of Value Objects because a Vector enforces
thread-safety by synchronizing the access to the items stored within the Vector. This means two
threads cannot simultaneously add or remove items from the Vector.

CHAPTER 5 ■ ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE 185

Ch05_7389_CMP3 9/27/06 11:04 AM Page 185

If you are trying to maximize the performance and know that multiple threads in your
application are not going to add or remove items from the collection, you can use a nonsyn-
chronized Collection object like an ArrayList.

• The StoryVO class enforces strict navigability between the StoryCommentVO and MemberVO
objects it references. In other words, there is no bidirectional relationship between the
StoryVO and StoryCommentVO class or the StoryVO and MemberVO class. One cannot navi-
gate from a StoryCommentVO object to find the StoryVO it belongs to. The same holds true
for the MemberVO contained within the StoryVO class.

• A StoryCommentVO class contains a reference to the member, via the commentAuthor prop-
erty, who wrote the comment.

• The MemberVO class is a stand-alone object. It does not allow the developer to directly
access any of the stories or story comments authored by that member.

From the class diagram in Figure 5-4, you will also notice that the relationships that exist
between the classes do not map to the data relationships in the entity-relationship diagram
shown earlier. The reason for this is simple. The class diagram in Figure 5-4 is based on how
the data is going to be used by the JavaEdge application. The application does not have a
functional requirement to see all the stories associated with a particular member. If you
want to retrieve all of the stories associated with a member and map them into a Vector in
the MemberVO, you would be retrieving a significant amount of data into the objects that would
never be used.

Even though the JavaEdge application uses only a small number of Value Objects, you will
have to keep in mind the following items:

• The number of values being retrieved from a call to the DAOs: You would not want to
retrieve large amounts of Value Objects in one call, as this can quickly consume mem-
ory within the Java Virtual Machine. In particular, you need to be aware of the data that
is actually being used in your Value Objects. Many development teams end up retriev-
ing more data than is required.

• The number of child Value Objects being retrieved by a parent: Often, while building the
data access tier, developers will unknowingly retrieve a large number of Value Objects
because they do not realize how deep their object graphs are. For instance, if you retrieve
10 stories in a call to the StoryDAO and each StoryVO contains 20 StoryCommentVOs, you end
up retrieving

10 stories * 20 story comments + 10 story authors + 20 story comment authors = 230
objects for one call

The primary design principle that was embraced while designing the Value Objects used
in the JavaEdge application was this:

■Note Understand how the data in your application is going to be used. A Value Object is nothing more
than a view of the data, and there is nothing inappropriate about having a DAO return different types of
Value Objects, all showing a different perspective of the same piece of data.

CHAPTER 5 ■ ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE186

Ch05_7389_CMP3 9/27/06 11:04 AM Page 186

CHAPTER 5 ■ ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE 187

Using an O/R Mapping Tool
It has been said that 40 to 60 percent of a development team’s time is spent writing the data
access code. For most Java developers, this means writing significant amounts of SQL and
JDBC code. As the developers of the JavaEdge application, we decided that we wanted to sig-
nificantly reduce the amount of work needed to implement the data access tier. We decided to
use an O/R mapping tool that would allow us to dynamically generate SQL requests and map
any data operations needed from plain Java objects.

O/R mapping tools have been available for quite a while and actually have predated the
language. Even though these tools offer fine solutions, they are expensive. Hence we had to
use a single vendor’s proprietary toolset.

Fortunately, several open source O/R mapping tools are now available and gaining wide-
spread acceptance in the development community. O/R mapping tools fall into two broad
categories in terms of how they are implemented:

• Code generators: O/R mapping tools in the code generator category require the devel-
opment team to map out the structure of its database tables and Java objects. These
tools then generate all of the Java and JDBC code needed to carry out database transac-
tions. The development team can use these generated classes in the applications.
Examples of open source O/R code generators include

• The Apache Group’s Torque project: Torque originally started as a component of the
Apache Group’s Turbine project. Torque is a very powerful persistence tool that can
convert an existing database into a set of usable persistence-aware Java classes.
Torque can even be used to develop a database from scratch and then generate the
entire database DDL and Java classes via an Ant Task. Torque uses proprietary API
for performing database queries. More details on Torque are available at http://
db.apache.org/torque.

• The Middlegen project: Middlegen, another in this category, takes a slightly differ-
ent approach than Torque. It can take an existing database and generate either
Container-Managed Persistence–based (CMP) entity beans or Java Data Objects
(JDO). Both CMP entity beans and JDO are industry-accepted standards and are
not solely “owned” by a vendor. Middlegen can even generate the EJB 2.0 vendor-
specific deployment descriptors for many of the leading application servers. More
information on Middlegen can be found at http://boss.bekk.no/boss/middlegen.

• Dynamic SQL generators: The other category of O/R mapping tools is the dynamic SQL
generators. These O/R tools allow you to define your database according to Java object
mappings. However, these tools do not generate the Java classes for you. Instead, the
developer is responsible for writing the mapped Java objects (usually implemented as
Value Objects). The O/R tools’ runtime engine will then transparently map data to and
from the Java object.

Ch05_7389_CMP3 9/27/06 11:04 AM Page 187

CHAPTER 5 ■ ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE188

An example of a dynamic SQL generator is the Apache Group’s ObjectRelationalBridge
(OJB). Three main reasons for choosing this tool for implementing the JavaEdge project are
as follows:

• OJB is very lightweight and extremely easy to set up and use. A simple data persistence
tier can be implemented by just configuring two files: repository.xml and OJB.proper-
ties. You can start using OJB without having to modify existing Java class files.

• Since OJB does not perform the code generation, it makes it extremely easy to use with
existing applications. This is a key consideration while evaluating O/R mapping tools. It
is better to use O/R mapping tools that generate code while developing a project from
scratch. However, they can be an absolute nightmare to implement while retrofitting
the O/R tool into an existing application. If the developers want to tweak the code gen-
erated by the tool, they must remember to reimplement their changes every time they
regenerate their persistence tier code.

In addition, code generator O/R mapping tools require you to set up the generation
process as part of your development environment and/or build process. This itself can
be a time-consuming and error-prone process.

• OJB has a unique architecture that allows it to embrace multiple industry standards
for data persistence. As explained in the section “About ObjectRelationalBridge,” OJB
implements a micro-kernel architecture that allows it to use its own proprietary APIs
for making persistence calls and the JDO and Object Data Management Group (ODMG)
3.0 standards. This makes it easier to move the applications off of OJB and onto other
O/R mapping tools, if the OJB is not working out.

As with all of the tools talked about so far, OJB is open source.

In addition, OJB supports a number of features that are normally found in its more expen-
sive commercial cousins. Some of these features include

• An object cache, which greatly enhances the performance and helps guarantee the
identities of multiple objects pointing to the same data row.

• Transparent persistence. The developer does not need to use OJB-generated classes or
extend or implement any additional classes to make the state of the objects persistable
to a database.

• Automatic persistence of child objects. When a parent object is saved, updates are
made to all persistence-aware child objects that the parent references.

• An architecture that can run in a single JVM or in a client/server mode that can service
the needs of multiple application servers running in a cluster.

• The ability to integrate in an application server environment, including participation in
container-managed transactions and JNDI data source lookups.

• Multiple types of locking support, including support for optimistic locking.

• A built-in sequence manager.

Ch05_7389_CMP3 9/27/06 11:04 AM Page 188

This is just a small list of the features currently supported by OJB. Let’s discuss OJB in
more detail.

About ObjectRelationalBridge (OJB)
ObjectRelationalBridge is one of the newest Apache Group projects. It is a fully functional
O/R mapping tool. OJB is based on micro-kernel architecture. A micro-kernel architecture is
the one in which a core set of functionality is built around a very minimalist and concise set
of APIs. Additional functionality is then layered around the kernel APIs. Micro-kernel APIs are
very flexible because different implementations of a technology can be built around a single
set of APIs.

Figure 5-5 illustrates this architecture.

Figure 5-5. The OJB micro-kernel architecture

At the heart of OJB is the Persistence Broker (PB) API. This API defines a number of stan-
dard calls for interacting with a data store. The PB API supports making calls only against a
relational database (as designated by the Persistence Broker API shown in Figure 5-5). It uses
JDBC 1.0 database calls and a subset of SQL to guarantee the maximum amount of database
support. In future releases, the OJB development team is planning to implement additional
JDBC support along with support for Object, LDAP, and XML-based databases.

Since OJB is designed using micro-kernel architecture, OJB uses a very basic kernel API
(that is, the PB API) and then builds on that API to implement multiple data access APIs. OJB
currently supports both JDO and the ODMG’s Object Data Standard (version 3.0). Both of
these APIs are built on top of OJB’s PB API and interact with it.

CHAPTER 5 ■ ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE 189

Ch05_7389_CMP3 9/27/06 11:04 AM Page 189

OJB is an extremely configurable and tunable product. It is built on a set of pluggable
components, so that if you find that some feature in OJB does not meet your needs (such as
its caching model), you can easily replace that component with your own implementation.

The JavaEdge application uses the following technology to build the data access tier:

• MySQL MaxDB: Available at http://mysql.com.

• Connector/J 3.1 (a MySQL JDBC Driver): Available at http://mysql.com. Connector/J 5.0
is in development and might be in Generally Available (GA) release by the time this
book is published.

• OJB 1.0.4: Available at http://db.apache.org/ojb.

■Caution Please use at least OJB version 1.0.4 while running the JavaEdge application source code.
Earlier releases of OJB have bugs in them that cause unusual behavior with the JavaEdge application.

Now, we will walk through some of the key files.

The Core OJB Files
OJB is very easy to set up. To begin writing the code using OJB, you need to first place the fol-
lowing jar files in your classpath. These files are located in the lib directory of the unzipped
OJB distribution. The required files are

• db-ojb-1.0.4.jar, which is the core OJB jar file

• Several Jakarta Commons jar files, including the following:

• commons-beanutils.jar

• commons-collections.jar

• commons-lang-2.0.jar

• commons-logging.jar

• commons-pool.jar

Once these jar files are included in your classpath, you are ready to begin mapping
your Java class files. In the JavaEdge application, these will be the MemberVO, StoryVO, and
StoryCommentVO classes, mapped to your database tables.

Setting Up the Object/Relational Mappings
Setting up your O/R mappings using OJB is a straightforward process that involves creating
and editing two files: OJB.properties and repository.xml. The OJB.properties file is used to
customize the OJB runtime environment.

By modifying the OJB.properties file, a developer can control whether OJB is running
in single virtual machine or client/server mode, the size of the OJB connection pool, lock

CHAPTER 5 ■ ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE190

Ch05_7389_CMP3 9/27/06 11:04 AM Page 190

management, and the logging level of the OJB runtime engine. We will not be going through a
step-by-step description of the OJB.properties file. Instead, we are going to review the relevant
material.

The repository.xml file is responsible for defining the database-related information. It
defines the JDBC connection information that is going to be used to connect to a database. In
addition, it defines all of the Java class-to-table definitions. This includes mapping the class
attributes to the database columns, and the cardinality relationships that might exist in the
database (such as one-to-one, one-to-many, and many-to-many).

The JavaEdge repository.xml
The JavaEdge repository.xml file is quite simple. It only maps three classes to three database
tables. A repository.xml file for a medium-to-large size database would be huge. Right now, the
OJB team is working on a graphical O/R mapping tool, but it could take some time before it is
stable.

The following code is the JavaEdge repository.xml file:

<?xml version="1.0" encoding="UTF-8"?>

<!-- defining entities for include-files -->

<!DOCTYPE descriptor-repository SYSTEM "repository.dtd" [

<!ENTITY internal SYSTEM "repository_internal.xml">
]>

<descriptor-repository version="1.0" isolation-level="read-uncommitted">

<!-- The Default JDBC Connection. If a class-descriptor does not specify its own
JDBC Connection, the Connection specified here will be used. -->

<jdbc-connection-descriptor
jcd-alias="strutsdb"
default-connection="true"

platform="MySQL"
jdbc-level="2.0"
driver="org.gjt.mm.mysql.Driver"
protocol="jdbc"
subprotocol="@OJB_DB_URL@"
dbalias="waf"
username="waf_user"
password="password"
/>

<class-descriptor class="com.apress.javaedge.member.MemberVO" table="member">
<field-descriptor name="memberId" column="member_id"

jdbc-type="BIGINT" primarykey="true" autoincrement="true"/>

CHAPTER 5 ■ ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE 191

Ch05_7389_CMP3 9/27/06 11:04 AM Page 191

CHAPTER 5 ■ ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE192

<field-descriptor name="firstName" column="first_name" jdbc-type="VARCHAR"/>
<field-descriptor name="lastName" column="last_name" jdbc-type="VARCHAR"/>
<field-descriptor name="userId" column="userid" jdbc-type="VARCHAR"/>
<field-descriptor name="password" column="password" jdbc-type="VARCHAR"/>
<field-descriptor name="email" column="email" jdbc-type="VARCHAR"/>

</class-descriptor>

<class-descriptor class="com.apress.javaedge.story.StoryVO" table="story">
<field-descriptor name="storyId" column="story_id" jdbc-type="BIGINT"

primarykey="true" autoincrement="true"/>
<field-descriptor name="memberId" column="member_id" jdbc-type="BIGINT"/>
<field-descriptor name="storyTitle" column="story_title"

jdbc-type="VARCHAR"/>
<field-descriptor name="storyIntro" column="story_intro"

jdbc-type="VARCHAR"/>
<field-descriptor name="storyBody" column="story_body"

jdbc-type="LONGVARBINARY"/>
<field-descriptor name="submissionDate" column="submission_date"

jdbc-type="DATE"/>
<collection-descriptor name ="comments"

element-class-ref="com.apress.javaedge.story.StoryCommentVO"
auto-retrieve="true" auto-update="true" auto-delete="true">
<inverse-foreignkey field-ref="storyId"/>

</collection-descriptor>

<reference-descriptor name="storyAuthor"
class-ref="com.apress.javaedge.member.MemberVO" auto-retrieve="true">

<foreignkey field-ref="memberId"/>
</reference-descriptor>

</class-descriptor>

<class-descriptor class="com.apress.javaedge.story.StoryCommentVO"
table="story_comment">

<field-descriptor name="commentId" column="comment_id"
jdbc-type="BIGINT"
primarykey="true" autoincrement="true"/>

<field-descriptor name="storyId" column="story_id" jdbc-type="BIGINT"/>
<field-descriptor name="memberId" column="member_id" jdbc-type="BIGINT"/>
<field-descriptor name="commentBody" column="comment_body"

jdbc-type="LONGVARBINARY"/>
<field-descriptor name="submissionDate" column="submission_date"

jdbc-type="DATE"/>
<reference-descriptor name="commentAuthor"

class-ref="com.apress.javaedge.member.MemberVO" auto-retrieve="true">
<foreignkey field-ref="memberId"/>

</reference-descriptor>
</class-descriptor>

Ch05_7389_CMP3 9/27/06 11:04 AM Page 192

<!-- include ojb internal mappings here -->
&internal;

</descriptor-repository>

The root element of the repository.xml file is the deployment descriptor called
<descriptor-repository>. This element has two attributes defined in it: version and
isolation-level. The version attribute is a required attribute and indicates the version of
the repository.dtd file used for validating the repository.xml file. The isolation-level attribute
is used to indicate the default transaction level used by all of the class-descriptor elements
in the file. A class-descriptor element is used to describe a mapping between a Java class
and a database table, and we discuss this element in the section “Setting Up a Simple Java
Class-to-Table Mapping.”

The values that can be set for the isolation-level attribute include

• read-uncommitted

• read-committed

• repeatable-read

• serializable

• optimistic

If no value is set for the isolation-level attribute, it will default to read-uncommitted.
In the next several sections, you are going to get the chance to study the individual pieces

of the repository.xml file. We will start by discussing how to configure OJB to connect to a data-
base. We will then look at how to perform a simple table mapping, and finally work our way up
to the more traditional database relationships, such as one-to-one, one-to-many, and many-
to-many.

Setting Up the JDBC Connection Information
Setting up OJB to connect to a database is a straightforward process. It involves setting up a
<jdbc-connection-descriptor> element in the repository.xml file. The <jdbc-connection-
descriptor> for the JavaEdge application is shown here:

<jdbc-connection-descriptor
jcd-alias="strutsdb"
default-connection="true"

platform="MySQL"
jdbc-level="2.0"
driver="org.gjt.mm.mysql.Driver"
protocol="jdbc"
dbalias="waf"
username="waf_user"
password="password"
/>

CHAPTER 5 ■ ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE 193

Ch05_7389_CMP3 9/27/06 11:04 AM Page 193

The repository.xml file can contain multiple database connections defined within it. Each
database connection can be assigned a unique name using the jcd-alias attribute on the
<jdbc-connection-descriptor/> tag for the database connection. The default-connection
attribute is used to tell OJB which of the <jdbc-connection-descriptor/> tags in the reposi-
tory.xml file is the default connection. The value for the default-connection attribute can be
true or false. There can be only one default JDBC connection for a repository.xml file.

The rest of the attributes in the <jdbc-connection-descriptor/> tag map closely to the
properties used to configure a data source in any J2EE application. These attributes include
the following:

• driver: The fully qualified class name of the JDBC driver being used by OJB to connect
to the database.

• dbalias: The name of the database being connected to.

• username/password: The user name and password OJB will use to log in to the database.
These values do not need to be set in the repository.xml file and instead can be used in
the conjunction with the org.apache.ojb.broker.PBKey and org.apache.ojb.broker.
PersistenceBroker classes to perform database authentication dynamically at runtime.
These classes will be covered in greater detail in the section “OJB in Action.”

The two attributes that are not standard to JDBC and particular to OJB are the platform
and jdbc-level attributes. The platform attribute tells OJB the database platform that the
repository.xml file is being run against. OJB uses a pluggable mechanism to handle calls to
a specific database platform. The value specified in the platform attribute will map to a
PlatformxxxImpl.java (located in the org.apache.ojb.broker.platforms package).

The following databases are supported officially by OJB:

• DB2

• Hsqldb (HyperSonic)

• Informix

• MS Access (Microsoft Access)

• MS SQL Server (Microsoft SQL Server)

• MySQL

• Oracle

• PostgresSQL

• SapDB

• Sybase

The jdbc-level attribute is used to indicate the level of JDBC compliance at which the
JDBC driver being used runs. The values currently supported by the jdbc-level attribute are
1.0, 2.0, and 3.0. If it is not set, OJB will use the default value of 1.0.

CHAPTER 5 ■ ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE194

Ch05_7389_CMP3 9/27/06 11:04 AM Page 194

CHAPTER 5 ■ ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE 195

OJB can integrate with a JNDI-bound data source. To do this, you need to set up the
<jdbc-connection-descriptor> element to use the jndi-datasource-name attribute. For exam-
ple, you can rewrite the preceding <jdbc-connection-descriptor> to use a JNDI data source
bound to the JBoss application server running JavaEdge, as follows:

<jdbc-connection-descriptor
platform="MySql"
jdbc-level="2.0"
jndi-datasource-name="java:/MySqlDS"

/>

It is important to note that when a JNDI data source is defined in the <jdbc-connection-
descriptor> tag, no driver, protocol, or dbalias is needed. All of this information is going to
be defined via the application server’s JNDI configuration. In the preceding example, the
username and password attributes are not specified for the same reason.

Now, let’s discuss how to map the JavaEdge classes to database tables stored in your
database.

Setting Up a Simple Java Class-to-Table Mapping

Let’s start with a simple mapping, the MemberVO class. The MemberVO class does not have any
relationships with any of the classes in the JavaEdge application. The source code for the
MemberVO class is shown here:

package com.apress.javaedge.member;

import com.apress.javaedge.common.ValueObject;

public class MemberVO extends ValueObject implements java.io.Serializable{

private Long memberId;
private String firstName;
private String lastName;
private String userId;
private String password;
private String email;

public MemberVO(String email,
String firstName,
String lastName,
Long memberId,
String password,
String userId){

this.email = email;
this.firstName = firstName;
this.lastName = lastName;
this.memberId = memberId;
this.password = password;
this.userId = userId;

Ch05_7389_CMP3 9/27/06 11:04 AM Page 195

}

///////////////////////////////////////
// Access methods for attributes.

public String getFirstName() {
return firstName;

}

public void setFirstName(String firstName) {
this.firstName = firstName;

}

public String getLastName() {
return lastName;

}

public void setLastName(String lastName) {
this.lastName = lastName;

}

public String getUserId() {
return userId;

}

public void setUserId(String userId) {
this.userId = userId;

}

public String getPassword() {
return password;

}

public void setPassword(String password) {
this.password = password;

}

public String getEmail() {
return email;

}

public void setEmail(String email) {
this.email = email;

}

public Long getMemberId() {
return memberId;

CHAPTER 5 ■ ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE196

Ch05_7389_CMP3 9/27/06 11:04 AM Page 196

}

public void setMemberId(Long memberId) {
this.memberId = memberId;

}

} // end MemberVO

As you can see, the MemberVO class consists of nothing more than get()/set() methods for
member attributes. To begin the mapping, you need to set up a <class-descriptor> tag:

<class-descriptor class="com.apress.javaedge.member.MemberVO"
table="member">

...
</class-descriptor>

This <class-descriptor> has two attributes in it: class and table. The class attribute
gives the fully qualified Java class name that is going to be mapped. The table attribute
defines the name of the database table to which the class is mapping.

A <class-descriptor> tag contains one or more <field-descriptor> tags. These tags are
used to map the individual class attributes to their corresponding database columns. The
column mappings for the MemberVO are as shown here:

<field-descriptor name="memberId" column="member_id"
jdbc-type="BIGINT" primarykey="true"
autoincrement="true"/>

<field-descriptor name="firstName" column="first_name"
jdbc-type="VARCHAR"/>

<field-descriptor name="lastName" column="last_name"
jdbc-type="VARCHAR"/>

<field-descriptor name="userId" column="userid"
jdbc-type="VARCHAR"/>

<field-descriptor name="password" column="password"
jdbc-type="VARCHAR"/>

<field-descriptor name="email" column="email"
jdbc-type="VARCHAR"/>

Let’s take the <field-descriptor> tag for the memberId and look at its components. This
<field-descriptor> tag has five attributes. The first attribute is the name attribute, which
defines the name of the Java attribute that is going to be mapped. The column attribute defines
the name of the database column. By default, OJB directly sets the private attributes of the
class using Java reflection. By using reflection, you do not need get() or set() methods for
each attribute.

By having OJB set the mapped attributes directly via reflection, you do not need to make
the mapped attributes public or protected.

It is a good programming practice to have all attributes accessed in an object have a
get()/set() method. However, while performing O/R mappings via OJB, there are two advan-
tages to setting the private mapped attributes of a class directly. First, you can implement
read-only data attributes by having OJB directly setting private attributes of a class and then

CHAPTER 5 ■ ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE 197

Ch05_7389_CMP3 9/27/06 11:04 AM Page 197

CHAPTER 5 ■ ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE198

providing a get() method to access the data. If you have OJB for mapping data using get()
and set() methods, you cannot have only a get() method for an attribute; you must also have
a set() method because OJB requires it.

The second advantage is that you can hide the underlying details of how the data is stored
in the database. For example, all stories in the JavaEdge database are stored as BLOBs. Their
Java data type representation is an array of bytes. Rather than forcing the clients using the
mapped Java class to convert the byte[] array to a String object, you can tell OJB to map
directly to the private attribute (of type byte[]) of the Story class. Then, you provide
get()/set() methods for converting that array of bytes to a String object. The application
need not know that its data is actually being saved to the JavaEdge database as a BLOB.

If you were to tell OJB to map the data from the story table to the StoryVO object using the
get()/set() methods of StoryVO, you would need to have a pair of get() and set() methods
that would return an array of bytes as a return type and accept it as a parameter. This would
unnecessarily expose the implementation detail.

However, it is often desirable to have OJB go through the get()/set() methods of the class.
For example, in cases involving lightweight data transformation logic present in the get()/set()
methods of the class, this ensures the data is always properly formatted. Sidestepping the
get()/set() methods would be undesirable. Fortunately, OJB’s field manipulation behavior
can be customized.

OJB allows you to define your own field conversions so that if a mismatch occurs between
an existing Java class (that is, domain model) and your database schema (that is, data model),
you can implement your own FieldConversions class. The discussion of the FieldConversions
class is outside the scope of this book. However, an excellent tutorial is provided with the OJB
documentation that comes with the OJB distribution (ojb distribution/doc/jdbc-types.html).

The fourth attribute in the memberId tag is the primarykey attribute. When set to true, this
attribute indicates that the field being mapped is a primary key field. OJB supports the con-
cept of the composite primary key. Having more than one <field-descriptor> element with a
primarykey attribute set to true tells OJB that a composite primary key is present.

The last attribute, autoincrement, tells OJB to automatically generate a sequence value
whenever a database insert occurs for a database record that has been mapped into the class.
If the autoincrement flag is set to false or is not present in the tag, it is the responsibility of the
developer to set the primary key.

Let’s see how to set up the OJB auto-increment feature. To use this feature, you need to
install the OJB core tables. To install the OJB core tables, you need to perform the following
steps:

1. Edit the ojb-distribution/build.properties file. At the top of the file you will see several
different database profiles. Uncomment the mysql profile option (since that is the data-
base being used for the JavaEdge application) and put any other database, already
uncommented, in a comment.

2. Edit the ojb-distribution/profile/mysql.profile file. In this file, supply the connection
information for the mysql database. For the JavaEdge application, these properties will
look as follows:

dbmsName = MySql
jdbcLevel = 2.0
urlProtocol = jdbc

Ch05_7389_CMP3 9/27/06 11:04 AM Page 198

urlSubprotocol = mysql
urlDbalias = //localhost:3306/javaedge
createDatabaseUrl = ${urlProtocol}:${urlSubprotocol}:${urlDbalias}
buildDatabaseUrl = ${urlProtocol}:${urlSubprotocol}:${urlDbalias}
databaseUrl = ${urlProtocol}:${urlSubprotocol}:${urlDbalias}
databaseDriver = org.gjt.mm.mysql.Driver
databaseUser = jcarnell
databasePassword = netchange
databaseHost = 127.0.0.1

3. Run the prepare-testdb target in the build.xml file. This can be invoked by calling the
following command at the command line:

ant prepare-testdb

This will generate the SQL scripts needed for the core tables and execute them against
the JavaEdge database.

4. The OJB distribution comes with a number of unit tests and database tables. Running
the prepare-testdb target will generate these additional unit test tables. In a produc-
tion environment, the only tables needed by OJB are the following:

• OJB_DLIST

• OJB_DLIST_ENTRIES

• OJB_DMAP

• OJB_DMAP_ENTRIES

• OJB_DSET

• OJB_DSET_ENTRIES

• OJB_HL_SEQ

• OJB_LOCKENTRY

• OJB_NRM

In addition to the attributes described in the preceding MemberVO example, a number of
additional attributes can be defined in the <field-descriptor> tag:

• nullable: If set to true, OJB will allow null values to be inserted into the database. If set
to false, OJB will not allow a null value to be inserted. This attribute is set to true by
default.

• conversion: The fully qualified class name for any FieldConversions classes used to
handle the custom data conversion.

• length: Specifies the length of the field. This must match the length imposed on the
database column in the actual database scheme.

• precision/scale: Used to define the precision and scale for the float numbers being
mapped to the database column.

CHAPTER 5 ■ ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE 199

Ch05_7389_CMP3 9/27/06 11:04 AM Page 199

In this section, we described how to implement a simple table mapping using OJB.
However, the real power and flexibility related to OJB come into play while using OJB to
cleanly capture the data relationships between entities in a database. The next several
sections will demonstrate how to map common database relationships using OJB.

Sequence Generation, OJB, and Legacy Applications

Few developers have the luxury of using OJB to map to clean databases where they have
absolute control over the structure of the database and how such a common task as sequence
generation for primary keys is undertaken. Instead, the development team must map its Java
objects to an existing set of database tables and use whatever sequence generation technique
is already in place.

This means that OJB’s database-independent primary key generator (as shown previ-
ously) cannot be used to generate primary keys. Oftentimes, the developers need to use the
database’s native primary key generation mechanism. For instance, if the database being
mapped is Oracle, the development needs to map to an existing set of Oracle Sequence
objects.

OJB provides strong support for integrating to a database’s native sequence-generation
mechanism. To tell OJB to use the database’s native sequence-generation mechanism, you
need to configure a <sequence-manager/> tag. The <sequence-manager/> tag is placed inside
the <jdbc-connector/> tag in the repository.xml file. An example of this tag is shown here:

<descriptor-repository version="1.0" isolation-level="read-uncommitted">
<jdbc-connection-descriptor

jcd-alias="strutsdb"
default-connection="true"

platform="MySQL"
jdbc-level="2.0"
driver="org.gjt.mm.mysql.Driver"
protocol="jdbc"
subprotocol="@OJB_DB_URL@"
dbalias="waf"
username="waf_user"
password="password">

<sequence-manager className=
"org.apache.ojb.broker.util.sequence.SequenceManagerNextValImpl">

<attribute attribute-name="autoNaming" attribute-value="false"/>
</sequence-manager>

</jdbc-connection-descriptor>

<class-descriptor class="com.apress.javaedge.story.StoryCommentVO"
table="story_comment"/>

. . .
</descriptor-repository>

CHAPTER 5 ■ ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE200

Ch05_7389_CMP3 9/27/06 11:04 AM Page 200

The <sequence-manager/> tag has a single attribute on it, className. The className is used
to define the fully qualified Java class name that is implementing the sequence manager. OJB
currently has a number of sequence managers available for use. Three of the more common
sequence managers include

• org.apache.broker.util.sequence.SequenceManagerNextValImpl

• org.apache.broker.util.sequence.SequenceManagerHighLowImpl

• org.apache.broker.util.sequence.SequenceManagerInMemoryImpl

The SequenceManagerNextValImpl class uses the native database’s sequence generator to
retrieve a value. The SequenceManagerNextValImpl class makes a database call every time it
needs to retrieve a unique value from the database. In a high transaction environment, con-
stant database calls to get a sequence value can represent unnecessary overhead.

The SequenceManagerHighLowImpl class does not query the database every time it needs a
sequence. Instead, the SequenceManagerHighLowImpl class grabs a “batch” of sequences from
the database and hands them out as needed. When the current batch of sequences is gone
through, SequenceManagerHighLowImpl will grab another batch of sequences.

The SequenceManagerInMemoryImpl class is the most performant of the three sequence
managers described. The SequenceManagerInMemberImpl class will grab its initial sequence
value from a database sequence object. However, once the value is retrieved, all future
requests for sequences by OJB will be incremented from that base number and maintained
in memory.

Which Sequence Manager to Use?
When dealing with legacy applications in which you already have sequences being used,
always use either the SequenceManagerNextValImpl or SequenceManagerHiLoImpl classes. Both
of these sequence managers will always fetch a value from the database sequence object.
SequenceManagerHiLoImpl is a bit more efficient because it will retrieve a bunch of sequence
numbers from the database sequence object and cache them for use.

Never use the SequenceManagerInMemoryImpl class with legacy databases where you
have non-OJB clients using the database sequence objects. The SequenceManagerInMemoryImpl
class only reads a sequence value when the sequence manager is first loaded. This can be
problematic because you can end up with situations in which the values managed by
SequenceManagerInMemoryImpl can conflict with values being returned by the database
sequence object. This can lead to duplicate primary keys being generated for a record.

All sequence managers accept various parameters to control their behavior. These param-
eters can be passed in via the <attribute/> tag placed inside of the <sequence-manager/>
tag. In the interest of space, we are not going to go through all of the attributes available to
the different sequence managers. For this information, please visit the OJB project site at
http://db.apache.org/ojb/.

CHAPTER 5 ■ ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE 201

Ch05_7389_CMP3 9/27/06 11:04 AM Page 201

To use a database sequence for a field in a <class-descriptor> mapping, you need to add
the sequence-name attribute to the column that is going to hold the sequence. If you were to
use an Oracle database and you wanted to map the memberId column on the MemberVO to a
sequence called memberId_seq, the mapping would look something like this:

<class-descriptor class="com.apressjavaedge.member.MemberVO" table="member">
<field-descriptor name="memberId" column="member_id" jdbc-type="BIGINT"

primarykey="true" autoincrement="true" sequence-name="memberId_seq"/>
<field-descriptor name="firstName" column="first_name"

jdbc-type="VARCHAR"/>
<field-descriptor name="lastName" column="last_name"

jdbc-type="VARCHAR"/>
<field-descriptor name="userId" column="userid" jdbc-type="VARCHAR"/>
<field-descriptor name="password" column="password" jdbc-type="VARCHAR"/>
<field-descriptor name="email" column="email" jdbc-type="VARCHAR"/>

</class-descriptor>

By using the sequence-name attribute on the preceding column when performing an insert
for a MemberVO object, OJB will generate behind the scenes the following SQL statement:

SELECT memberId_seq.nextval FROM dual;

We have just gone through a whirlwind tour of OJB’s different sequence generation capa-
bilities. Let’s now resume our discussion on mapping database tables and looking at the
simplest form of mapping between two tables: a one-to-one mapping.

Mapping One-to-One Relationships

The first data relationship we are going to map is a one-to-one relationship. In the JavaEdge
application, the StoryVO class has a one-to-one relationship with the MemberVO object (that is,
one story can have one author that is a MemberVO).

We are not going to show the full code for the StoryVO class. Instead, here is an abbreviated
version of the class:

package com.apress.javaedge.story;

import com.apress.javaedge.common.ValueObject;
import com.apress.javaedge.member.MemberVO;

import java.util.Vector;

public class StoryVO extends ValueObject {

private Long storyId;
private String storyTitle;
private String storyIntro;
private byte[] storyBody;
private java.sql.Date submissionDate;
private Long memberId;

CHAPTER 5 ■ ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE202

Ch05_7389_CMP3 9/27/06 11:04 AM Page 202

private MemberVO storyAuthor;
public Vector comments = new Vector(); // of type StoryCommentVO

public Vector getComments() {
return comments;

}

public void setComments(Vector comments) {
this.comments = comments;

}

public MemberVO getStoryAuthor() {
return storyAuthor;

}

public void setStoryAuthor(MemberVO storyAuthor) {
this.storyAuthor = storyAuthor;

}

} // end StoryVO

The StoryVO class has an attribute called storyAuthor. The storyAuthor attribute holds a
single reference to a MemberVO object. This MemberVO object holds all the information for the
JavaEdge member who authored the story.

The following code is the <class-descriptor> tag that maps the StoryVO object to the
story table and captures the data relationship between the story and member tables:

<class-descriptor class="com.apress.javaedge.story.StoryVO" table="story">
<field-descriptor name="storyId" column="story_id"

jdbc-type="BIGINT" primarykey="true" autoincrement="true"/>
<field-descriptor name="memberId" column="member_id" jdbc-type="BIGINT"/>
<field-descriptor name="storyTitle" column="story_title"

jdbc-type="VARCHAR"/>
<field-descriptor name="storyIntro" column="story_intro"

jdbc-type="VARCHAR"/>
<field-descriptor name="storyBody" column="story_body"

jdbc-type="LONGVARBINARY"/>
<field-descriptor name="submissionDate" column="submission_date"

jdbc-type="DATE"/>

. . .
<reference-descriptor name="storyAuthor"
class-ref="com.apress.javaedge.member.MemberVO" auto-retrieve="true">

<foreignkey field-ref="memberId"/>
</reference-descriptor>

</class-descriptor>

CHAPTER 5 ■ ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE 203

Ch05_7389_CMP3 9/27/06 11:04 AM Page 203

CHAPTER 5 ■ ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE204

The preceding <reference-descriptor> tag maps a record, retrieved from the member
table, to the MemberVO object reference called storyAuthor. This <reference-descriptor> tag
has four attributes associated with it: name, class-ref, auto-retrieve, and auto-update.

The name attribute is used to specify the name of the attribute in the parent object to
which the retrieved data is mapped. In the preceding example, the member data retrieved for
the story is going to be mapped to the storyAuthor attribute.

The class-ref attribute tells OJB the type of class that is going to be used to hold the
mapped data. This attribute must define a fully qualified class name for a Java class. This class
must be defined in the <class-descriptor> element in the repository.xml file.

The remaining two attributes, auto-retrieve and auto-update, control how OJB handles
the child relationships when a data operation is performed on the parent object. When set to
true, auto-retrieve tells OJB to automatically retrieve the member data for the story. If it is set
to false, OJB will not perform a lookup, and it will be the responsibility of the developer to
ensure that child data is loaded.

■Note If OJB cannot find a child record associated with a parent or if the auto-retrieve attribute is set
to false, it will leave the attribute (which is going to be mapped) in the state that it was before the lookup
was performed. For instance, in the StoryVO object, the storyAuthor property is initialized with a call to
the default constructor of the MemberVO class. If OJB is asked to look up a particular story and no member
information is found in the member table, OJB will leave the storyAuthor attribute in the state that it was
before the call was made. It is extremely important to remember this if you leave child attributes to the
null value.

You need to be careful about the depth of your object graph while using the auto-
retrieve attribute. The indiscriminate use of the auto-retrieve attribute can retrieve a
significant number of objects, because the child objects can contain other mapped objects
that might also be configured to retrieve automatically any other child objects.

The auto-update attribute controls whether OJB will update any changes made to a set
of child objects, after the parent object has been persisted. In other words, if the auto-update
method is set to true, OJB will automatically update any of the changes made to the child
objects mapped in the <class-descriptor> for that parent. If this attribute is set to false or is
not present in the <reference-descriptor> tag, OJB will not update any mapped child objects.

OJB also provides an additional attribute, called auto-delete, that is not used in the
StoryVO mapping. When set to true, the auto-delete method will delete any mapped child
records when the parent object is deleted. This is the functional equivalent of a cascading
delete in a relational database. You need to be careful while using this attribute, as you can
accidentally delete the records that you did not intend to delete, or end up cluttering your
database with “orphaned” records that have no context outside the deleted parent records.

■Note Note that the auto-update and auto-delete attributes function only while using the low-level
Persistence Broker API (which we use for these code examples). The JDO and ODMG APIs do not support
these attributes.

Ch05_7389_CMP3 9/27/06 11:04 AM Page 204

One or more <foreignkey> tags are embedded in the <reference-descriptor> tag.
The <foreignkey> tag is used to tell OJB the id attribute of the <field-descriptor> attribute,
which the parent object is going to use to perform the join.

The field-ref attribute, contained inside the <foreignkey> tag, points to the
<field-descriptor> tag of the parent’s <class-descriptor> element.

Consider the following snippet of code:

<reference-descriptor name="storyAuthor"
class-ref="com.apress.javaedge.member.MemberVO"
auto-retrieve="true" auto-update="true">

<foreignkey field-ref="memberId"/>
</reference-descriptor>

This code maps to the <field-descriptor> memberId. OJB will then use the memberId to
map to the memberId attribute defined in the MemberVO <class-descriptor>. It is important to
note that, while the preceding <reference-descriptor> tag is mapping to the storyAuthor
attribute in the StoryVO class, the name of the attribute being mapped in the <foreignkey>
element must match the name of a <field-descriptor> defined in another class.

Thus, in the preceding example, the <foreignkey> maps to the memberId attribute of the
StoryVO class descriptor. This means that there must be a corresponding <field-descriptor>
for memberId in the <class-descriptor> element that maps to the MemberVO object.

Mapping One-to-Many Relationships

Mapping a one-to-many relationship is as straightforward as mapping a one-to-one relation-
ship. The story table has a one-to-many relationship with the story_comment table. This
relationship is mapped in the StoryVO mappings via the <collection-descriptor> tag.

The <collection-descriptor> tag for the StoryVO mapping is shown here:

<collection-descriptor name ="comments"
element-class-ref="com.apress.javaedge.story.StoryCommentVO"
auto-retrieve="true" auto-delete="true">

<inverse-foreignkey field-ref="storyId"/>
</collection-descriptor>

The name attribute for the tag holds the name of the attribute in the mapped class that is
going to hold the child data retrieved from the database. In the case of the StoryVO mapping,
this attribute will be the comments attribute. The comments attribute in the StoryVO code, shown
in the earlier section, is a Java Vector class.

OJB can use a number of data types to map the child data in a one-to-many relationship.
These data types include

• Vector

• Collection

• Arrays

• List

CHAPTER 5 ■ ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE 205

Ch05_7389_CMP3 9/27/06 11:04 AM Page 205

CHAPTER 5 ■ ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE206

OJB also supports user-defined collections, but this subject is outside the scope of this
book. For further information, please refer to the OJB documentation.

The element-class-ref attribute defines the fully qualified Java class that is going to hold
each of the records retrieved into the collection. Again, the Java class defined in this attribute
must be mapped as a <class-descriptor> in the repository.xml file.

The <collection-descriptor> also has attributes for automatically retrieving, updating,
and deleting the child records. These attributes have the same name and follow the same rules
as the ones discussed in the section “Mapping One-to-One Relationships.” There are a num-
ber of additional attributes in the <collection-descriptor> tag. These attributes deal with
using proxy classes to help improve the performance of data retrieved from a database. We
will not be covering these attributes in greater detail.

A <collection-descriptor> tag can contain one or more <inverse-foreignkey> elements.
The <inverse-foreignkey> element maps to a <field-descriptor> defined in the <class-
descriptor> of the object that is being “joined.”

■Note It is very important to understand the difference between an <inverse-foreignkey> and a
<foreignkey> element. An <inverse-foreignkey> element, used for mapping one-to-many and many-
to-many relationships, points to a <field-descriptor> that is located outside the <class-descriptor>
where the <inverse-foreignkey> is defined. A <foreignkey> element, which is used for one-to-one
mapping, points to a <field-descriptor> defined inside the <class-descriptor> where the
<foreignkey> element is located.

This small and subtle difference can cause major headaches if the developer doing the
O/R mapping does not understand the difference. OJB will not throw an error and will try to
map the data.

Mapping Many-to-Many Relationships

The JavaEdge database does not contain any tables that have a many-to-many relationship.
However, OJB does support many-to-many relationships in its table mappings. Let’s refactor
the one-to-many relationship between story and story_comment to a many-to-many relation-
ship. To refactor this relationship, you need to create a join table called story_story_comments.
This table will contain two columns: story_id and comment_id. You need to make only a small
adjustment to the StoryVO mappings to map the data retrieved via the story_story_comment
table to the comments vector in the StoryVO.

The revised mappings are as shown here:

<class-descriptor class="com.apress.javaedge.story.StoryVO"
table="story">

<field-descriptor name="storyId" column="story_id"
jdbc-type="BIGINT" primarykey="true"
autoincrement="true"/>

Ch05_7389_CMP3 9/27/06 11:04 AM Page 206

<field-descriptor name="memberId" column="member_id"
jdbc-type="BIGINT"/>

<field-descriptor name="storyTitle" column="story_title"
jdbc-type="VARCHAR"/>

<field-descriptor name="storyIntro" column="story_intro"
jdbc-type="VARCHAR"/>

<field-descriptor name="storyBody" column="story_body"
jdbc-type="LONGVARBINARY"/>

<field-descriptor name="submissionDate"
column="submission_date" jdbc-type="DATE"/>

<reference-descriptor name="storyAuthor"
class-ref="com.apress.javaedge.member.MemberVO"
auto-retrieve="true">

<foreignkey field-id-ref="memberId"/>
</reference-descriptor>

<collection-descriptor name ="comments"
element-class-ref=

"com.apress.javaedge.story.StoryCommentVO"
auto-retrieve="true" auto-delete="true"
indirection_table="STORY_STORY_COMMENTS">

<fk-pointing-to-this-class column="STORY_ID"/>
<fk-pointing-to-this-class column="COMMENT_ID"/>

</collection-descriptor>

</class-descriptor>

There are two differences between this and the one-to-many mapping. The first is the use
of the indirection_table attribute in the <collection-descriptor> tag. This attribute holds
the name of the join table used to join the story and story_comment tables. The other difference
is that the <collection-descriptor> tag does not contain an <inverse-foreignkey> tag.
Instead, there are two <fk-pointing-to-this-class> tags. The column attribute in both these
tags points to the database columns that will be used to perform the join between the story
and story_comment tables.

You will notice that even though the mapping for the StoryVO has changed, the actual
class code has not. As far as applications using the StoryVO are concerned, there has been no
change in the data relationships. This gives the database developer a flexibility to refactor a
database relationship while minimizing the risk that the change will break the existing appli-
cation code.

Now, you will see how OJB is actually used to retrieve and manipulate the data.

CHAPTER 5 ■ ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE 207

Ch05_7389_CMP3 9/27/06 11:04 AM Page 207

OJB in Action
OJB was used to build all the DAOs included in the JavaEdge application. Using an O/R map-
ping tool like OJB allows you to significantly reduce the amount of time and effort needed to
build the data access tier for the JavaEdge application. The following code is used to build the
StoryDAO. All the DAOs are implemented using the OJB Persistence Broker API. The code for
the other DAOs is available for download at http://www.apress.com.

package com.apress.javaedge.story.dao;

import com.apress.javaedge.common.*;
import com.apress.javaedge.story.StoryVO;
import org.apache.ojb.broker.PersistenceBroker;
import org.apache.ojb.broker.PersistenceBrokerException;
import org.apache.ojb.broker.query.Criteria;
import org.apache.ojb.broker.query.Query;
import org.apache.ojb.broker.query.QueryByCriteria;
import org.apache.ojb.broker.query.QueryFactory;

import java.util.Collection;

/**
*
* StoryDAO is responsible for all CRUD logic associated with stories.
*
*/
public class StoryDAO implements DataAccessObject {

public static final int MAXIMUM_TOPSTORIES = 11;

// Create Log4j category instance for logging.
static private org.apache.log4j.Category log =
org.apache.log4j.Category.getInstance(StoryDAO.class.getName());

/**
* Finds a single Story record by a story id passed into the method.
* @see com.apress.javaedge.common.DataAccessObject#findByPK(java.lang.String)
*/
public ValueObject findByPK(String primaryKey) throws DataAccessException {

PersistenceBroker broker = null;
StoryVO storyVO = null;

try {
broker = ServiceLocator.getInstance().findBroker();
storyVO = new StoryVO();
storyVO.setStoryId(new Long(primaryKey));

CHAPTER 5 ■ ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE208

Ch05_7389_CMP3 9/27/06 11:04 AM Page 208

CHAPTER 5 ■ ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE 209

Query query = new QueryByCriteria(storyVO);
storyVO = (StoryVO) broker.getObjectByQuery(query);

} catch (ServiceLocatorException e) {
log.error("PersistenceBrokerException thrown in StoryDAO.findByPK(): "

+ e.toString());
throw new DataAccessException("Error in StoryDAO.findByPK(): "

+ e.toString(), e);
} finally {

if (broker != null) broker.close();
}
return storyVO;

}

/**
* Returns a collection of the top latest stories. The number of records to
* be returned are controlled by the MAXIMUM_TOPSTORIES constant on this
* class.
* @return Collection
* @throws DataAccessException
*/
public Collection findTopStory () throws DataAccessException {

PersistenceBroker broker = null;
Collection results = null;

Criteria criteria = new Criteria();
criteria.addOrderByDescending("storyId");

Query query = QueryFactory.newQuery(StoryVO.class, criteria);

query.setStartAtIndex(1);
query.setEndAtIndex(MAXIMUM_TOPSTORIES - 1);

try {
broker = ServiceLocator.getInstance().findBroker();
results = (Collection) broker.getCollectionByQuery(query);

} catch (ServiceLocatorException e) {
log.error("PersistenceBrokerException thrown in " +

"StoryDAO.findTopStory(): "
+ e.toString());

throw new DataAccessException("Error in StoryDAO.findTopStory(): "
+ e.toString(), e);

} finally {
if (broker != null) broker.close();

}
return results;

}

Ch05_7389_CMP3 9/27/06 11:04 AM Page 209

/**
* Inserts a single story record into the database.
*
*/
public void insert(ValueObject insertRecord) throws DataAccessException {

PersistenceBroker broker = null;
try {

StoryVO storyVO = (StoryVO) insertRecord;

broker = ServiceLocator.getInstance().findBroker();
broker.beginTransaction();
broker.store(storyVO);
broker.commitTransaction();

} catch (PersistenceBrokerException e) {
// If something went wrong: rollback.
broker.abortTransaction();
log.error("PersistenceBrokerException thrown in StoryDAO.insert(): "

+ e.toString());
e.printStackTrace();

throw new DataAccessException("Error in StoryDAO.insert(): "
+ e.toString(), e);

} catch (ServiceLocatorException e) {
log.error("ServiceLocatorException thrown in StoryDAO.insert(): "

+ e.toString());
throw new DataAccessException("ServiceLocatorException " +

"thrown in StoryDAO.insert()", e);
} finally {

if (broker != null) broker.close();
}

}

/**
* Deletes a single record from the story table using OJB.
*/
public void delete(ValueObject deleteRecord) throws DataAccessException {
PersistenceBroker broker = null;

try {
broker = ServiceLocator.getInstance().findBroker();
StoryVO storyVO = (StoryVO) deleteRecord;

//Begin the transaction.
broker.beginTransaction();
broker.delete(storyVO);
broker.commitTransaction();

CHAPTER 5 ■ ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE210

Ch05_7389_CMP3 9/27/06 11:04 AM Page 210

} catch (PersistenceBrokerException e) {
// If something went wrong: rollback.
broker.abortTransaction();
log.error("PersistenceBrokerException thrown in StoryDAO.delete(): "

+ e.toString());
e.printStackTrace();

throw new DataAccessException("Error in StoryDAO.delete()", e);
} catch (ServiceLocatorException e) {

throw new DataAccessException("ServiceLocator exception in " +
"StoryDAO.delete()", e);

} finally {
if (broker != null) broker.close();

}
}

/**
* Updates a single record from the story table using OJB.
*/
public void update(ValueObject updateRecord) throws DataAccessException {

PersistenceBroker broker = null;

try {
StoryVO storyVO = (StoryVO) updateRecord;

broker = ServiceLocator.getInstance().findBroker();
broker.beginTransaction();
broker.store(storyVO);
broker.commitTransaction();

} catch (PersistenceBrokerException e) {
// If something went wrong: rollback.
broker.abortTransaction();
log.error("PersistenceBrokerException thrown in StoryDAO.update(): "

+ e.toString());
e.printStackTrace();

throw new DataAccessException("Error in StoryDAO.update()", e);
} catch (ServiceLocatorException e) {

log.error("ServiceLocatorException thrown in StoryDAO.delete(): "
+ e.toString());

throw new DataAccessException("ServiceLocatorException " +
"error in StoryDAO.delete()",

e);
} finally {

if (broker != null) broker.close();
}

CHAPTER 5 ■ ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE 211

Ch05_7389_CMP3 9/27/06 11:04 AM Page 211

}

/**
* Retrieves all stories in the database as a Collection.
* Used by Search functionality.
*
* @return all stories in the app;
*/

public Collection findAllStories() throws DataAccessException {
PersistenceBroker broker = null;
Collection results = null;

try {
Criteria criteria = new Criteria();
criteria.addOrderByDescending("storyId");
Query query = QueryFactory.newQuery(StoryVO.class, criteria);

query.setStartAtIndex(1);

broker = ServiceLocator.getInstance().findBroker();
results = (Collection) broker.getCollectionByQuery(query);

} catch (ServiceLocatorException e) {
log.error("ServiceLocatorException " +

" thrown in StoryDAO.findAllStories(): "
| + e.toString());

throw new DataAccessException("ServiceLocatorException error in "
+ StoryDAO.findAllStories()", e);

} finally {
if (broker != null) broker.close();

}

return results;

}

Now, we will examine the preceding code and discuss how OJB can be used to

• Perform queries to retrieve data

• Insert and update data into the JavaEdge database

• Delete data from the JavaEdge database

Retrieving Data: A Simple Example
The first piece of code that we are going to look at shows how to retrieve a single record from
the JavaEdge database. Let’s take a look at the findByPK() method from StoryDAO:

CHAPTER 5 ■ ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE212

Ch05_7389_CMP3 9/27/06 11:04 AM Page 212

CHAPTER 5 ■ ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE 213

public ValueObject findByPK(String primaryKey) throws DataAccessException {
PersistenceBroker broker = null;
StoryVO storyVO = null;

try {
broker = ServiceLocator.getInstance().findBroker();
storyVO = new StoryVO();
storyVO.setStoryId(new Long(primaryKey));

Query query = new QueryByCriteria(storyVO);
storyVO = (StoryVO) broker.getObjectByQuery(query);

} catch (ServiceLocatorException e) {
log.error("PersistenceBrokerException thrown in StoryDAO.findByPK(): "

+ e.toString());
throw new DataAccessException("Error in StoryDAO.findByPK(): "

+ e.toString(),e);
} finally {
if (broker != null) broker.close();

}

return storyVO;
}

The first step in the code is to get an instance of a PersistenceBroker object:

broker = ServiceLocator.getInstance().findBroker();

A PersistenceBroker is used to carry out all the data actions against the JavaEdge
database. We have written the code for retrieving a PersistenceBroker in the findBroker()
method of the ServiceLocator class (discussed in Chapter 4). The method, shown in the
following code, will use the PersistenceBrokerFactory class to retrieve a PersistenceBroker
and return it to the method caller:

public PersistenceBroker findBroker() throws ServiceLocatorException{
PersistenceBroker broker = null;
try{
broker = PersistenceBrokerFactory.defaultPersistenceBroker();

}
catch(PBFactoryException e) {
e.printStackTrace();
throw new ServiceLocatorException("Error occurred while trying to " +

"look up an OJB persistence broker: ",e);
}

In the preceding method, the application is going to create a PersistenceBroker by calling
the defaultPersistenceBroker() method in the PersistenceBrokerFactory without passing in a
value. When no value is passed into the method, the PersistenceBrokerFactory will look at the
root of the JavaEdge’s classes directory for a repository.xml file (/WEB-INF/classes). If it cannot
find the repository.xml file in this location, it will throw a PBFactoryException exception.

Ch05_7389_CMP3 9/27/06 11:04 AM Page 213

As mentioned early in the chapter, a repository.xml file can contain multiple database
sources. These data sources are identified by the jcd-alias attribute on the <jdbc-connection-
descriptor> tag. To look up a PersistenceBroker by a jcd-alias, you need to first instantiate
an org.apache.ojb.broker.PBKey object and pass it into the PersistenceBrokeryFactory.
createPersistenceBroker()’s method. The following code snippet demonstrates this:

PBKey pbKey = new PBKey("strutsdb");
PersistenceBroker broker = PersistenceBrokerFactory.createPersistenceBroker(pbKey);

After a broker has been retrieved in the findByPK() method, an empty StoryVO instance,
called storyVO, is created. Since the findByPK() method is used to look up the record by its
primary key, you call the setStoryId() method in which the primaryKey variable is passed:

storyVO = new StoryVO();
storyVO.setStoryId(new Long(primaryKey));

Once the storyVO instance has been created, it is going to be passed to a constructor in a
QueryByCritieria object:

Query query = new QueryByCriteria(storyVO);

A QueryByCriteria class is used to build the search criteria for a query. When a
“mapped” object, being mapped in the repository.xml file, is passed in as a parameter in
the QueryByCriteria constructor, the constructor will look at each of the nonnull attributes
in the object and create a where clause that maps to these values.

Because the code in the findByPK() method is performing a lookup based on the primary
key of the story table (that is, story_id), the where clause generated by the QueryByCriteria
constructor would look like this:

where story_id=? /*Where the question mark would be the value set in the
setStoryId() method*/

If you want to perform a lookup for an object by the story title, you would call the
setStoryTitle() method instead of setStoryID().

The QueryByCriteria object implements a Query interface. This interface is a generic
interface for different mechanisms for querying OJB. Some of the other mechanisms for
retrieving data via the OJB PB API include

• QueryBySQL: Lets you issue SQL calls to retrieve data

• QueryByMtoNCriteria: Lets you issue queries against the tables that have a many-to-
many data relationship

For more details on QueryBySQL() and QueryByMToNCriteria(), please refer to the OJB
JavaDocs.

We will not be covering these objects in any greater detail. Instead, we are going to focus
on building the criteria using the QueryByCriteria object.

Once a query instance is created, you pass it to the getObjectByQuery() method in broker.
This method will retrieve a single instance of an object based on the criteria defined in the
Query object passed into the method:

storyVO = (StoryVO) broker.getObjectByQuery(query);

CHAPTER 5 ■ ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE214

Ch05_7389_CMP3 9/27/06 11:04 AM Page 214

If the getObjectByQuery() method does not find the object by the presented criteria,
a value of null is returned. If more than one record is found by the preceding call,
PersistenceBrokerException is thrown. It is important to remember that you need to
cast the value returned by the getObjectByQuery() method to the type you are retrieving.

If you are using a broker to carry out the data actions, you need to make sure the broker is
closed. A broker instance is a functional equivalent of a JDBC database connection. Failure to
close the broker can result in connection leaks. To ensure that the broker connection is closed,
you put the following code in a finally block:

finally{
if (broker != null) broker.close();

}

Retrieving Data: A More Complicated Example
In the previous section, we looked at a very simple example of retrieving data using OJB. OJB
can be used to build some very sophisticated queries through its Criteria class. This class
contains a number of methods that represent common components of a where clause. Some
of these methods are listed in Table 5-1.

Table 5-1. The Different Methods for Building a Criteria Object

Method Name Description

addEqualTo(String attribute, Generates an equal-to clause in which
Object value) attribute = value.

addGreaterThan(String attribute, Generates a greater-than clause in which
Object value) attribute > value.

addGreaterOrEqualThan(String attribute, Generates a greater-than or equal-to clause in which
Object value) attribute >= value.

addLessThan(String attribute, Generates a less-than clause in which
Object value) attribute < value.

addLessOrEqualThan(String attribute, Generates a less-than or equals-to clause in which
Object value) attribute <= value.

addIsNull(String attribute) Generates an IS NULL clause.

addNotNull(String attribute) Generates a NOT NULL clause.

addIsLike(String attribute, Generates a LIKE clause.
Object value)

addOrderByAscending(String fieldName) Generates an ORDER BY ASCENDING clause.

addOrderByDescending(String fieldName) Generates an ORDER BY DESCENDING clause.

addAndCriteria(Criteria criteria) Uses AND to ensure that both the criteria objects
are applied.

addOrCriteria(Criteria criteria) Uses OR to ensure that one of the two criteria objects
is applied.

addSql(String sqlStatement) Adds a piece of a raw SQL to the criteria. This is
extremely useful if you want to use a vendor-specific
SQL extension.

CHAPTER 5 ■ ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE 215

Ch05_7389_CMP3 9/27/06 11:04 AM Page 215

Table 5-1 is by no means exhaustive, and it is highly recommended that you read the
JavaDocs for the Criteria objects to see the full list of methods available in the class.

Based on the preceding methods, let’s build a more complex query. Say you want to write
an OJB query that would retrieve a Collection of JavaEdge member records whose last name is
“Smith” and whose first name starts with a “J.” In addition, you want all of these records to be in
ascending order of the first name. To do this, you would write the following code fragment:

Criteria criteriaEquals = new Criteria (); //Criteria for the equals
Criteria criteriaLike = new Criteria (); //Criteria for the like

criteriaEquals.addEqualTo("last_name", "Smith");
criteriaLike.addLike("first_name", "J%");

criteriaEquals.addAndCriteria(criteriaLike); //Adding the two pieces
criteriaEquals.addOrderByAscending("first_name"); //Adding an order by
Query query = new QueryByCritieria(MemberVO.class, criteriaEquals);
Collection results = broker.getCollectionByQuery (Query);

In this code fragment, you first need to create Criteria objects for your query. You then
need to set the behavior of each of the Criteria objects. The criteriaEquals instance sets the
query clause to have the last name equal to "Smith". It does this by calling the addEqualTo()
method and passing the database column (last_name) and the value ("Smith") as parameters
into the method call:

criteriaEquals.addEqualTo ("last_name", "Smith");

■Note Note that while building your database queries, you need to use the name of the database column
and not the attribute in the Java class.

The second condition is implemented by calling the addLike() method in the criteriaLike
object and passing the parameter values of "first_name" and "J%":

criteriaLike.addLike ("first_name","J%");

■Note The addLike() method on the Criteria object has the following behavior:

If an * or % is passed in, the addLike() method will create a wildcard search. So searching for “Sm*” or
“Sm%” will return a value of Smith in the preceding example.

A ? passed into the addLike() method will match a single occurrence of a character within a string.

A \ will act as an escape character and allow the developer to search data for * and \ values.

CHAPTER 5 ■ ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE216

Ch05_7389_CMP3 9/27/06 11:04 AM Page 216

CHAPTER 5 ■ ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE 217

To ensure that both the conditions are applied, the addAndCriteria() method of the
criteriaEquals object is called and the criteriaLike object is passed as a parameter:

criteriaEquals.addAndCriteria (criteriaLike); //Adding the two pieces

The last step is to add the OrderBy clause to your where statement. This is done by calling
the addOrderByAscending() method and passing in the name of the database column:

criteriaEquals.addOrderByAscending ("first_name"); //Adding an order by

The where clause generated by building the preceding criteriaEquals object would look
as shown here:

WHERE last_name="Smith" and first_name LIKE "J%" ORDER BY first_name ASCENDING

■Note To see the SQL code generated by OJB, you need to set org.apache.ojb.broker.accesslayer.
sql.SqlGeneratorDefaultImpl.LogLevel to DEBUG. All the SQL code generated by OJB will be written
to System.out. Also, a number of other logging options are available that can be set in the OJB.properties
file.

Once the criteria have been built out, they can be passed as parameters to the
QueryCriteria constructor:

Query query = new QueryByCriteria (MemberVO.class, criteriaEquals);

Note that this time you pass in the MemberVO class and the criteriaEquals object
that is built. Since you are retrieving more than one record, you are going to call the
getCollectionByQuery() method in the broker instance as shown here:

Collection results = broker.getCollectionByQuery (Query);

The getCollectionByQuery() method will return a Collection of all of the records.
The collection will be of the data type Class, passed in the QueryCriteria constructor.

Storing Data Using OJB
Inserting and updating data with OJB is very easy. Both of these data operations require the
use of the store() method in a PersistenceBroker instance. The following code shows the
insert() method for the StoryDAO method:

public void insert(ValueObject insertRecord) throws DataAccessException {
PersistenceBroker broker = null;
try {
StoryVO storyVO = (StoryVO) insertRecord;

broker = ServiceLocator.getInstance().findBroker();
broker.beginTransaction();
broker.store(storyVO);
broker.commitTransaction();

Ch05_7389_CMP3 9/27/06 11:04 AM Page 217

} catch (PersistenceBrokerException e) {
// If something went wrong: rollback.
broker.abortTransaction();
System.out.println(e.getMessage());
e.printStackTrace();

throw new DataAccessException("Error in StoryDAO.insert(): "
+ e.toString(),e);

} catch(ServiceLocatorException e) {
System.out.println("ServiceLocatorException thrown in StoryDAO.insert():

" + e.toString());
throw new DataAccessException("ServiceLocatorException thrown in " +

"StoryDAO.insert()",e);
} finally {
if (broker != null) broker.close();

}
}

■Note You may have noticed that the code never checks to see if the object being passed into the
insert() method just shown is of type StoryVO. All of the DAOs in the JavaEdge application implement
the DataAccessObject interface that accepts a ValueObject as an interface. If you want to be more type
safe, you need to check the type passed in ValueObject by using instanceof.

The first step for saving the data is to retrieve a broker instance. Once a broker instance
is retrieved via the ServiceLocator.getInstance().findBroker() method, you need to set
a transactional boundary for your transaction. This is accomplished by calling the
beginTransaction() method on the broker instance:

broker.beginTransaction();

Now, you can actually insert or update the data into the database via a call to the store()
method of the broker instance and pass the object that is to be stored in the database:

broker.store(storyVO);

The OJB runtime engine will determine whether the data contained within the StoryVO
object needs to be inserted or updated. Depending on how the repository.xml mappings are
done, the store() method call will also persist any of the child objects associated with the
StoryVO instance.

The last step in the process is to commit the transaction via the broker.commitTransaction()
method call:

broker.commitTransaction();

If any exceptions are thrown while processing the user request, such as a
PersistenceBrokerException, a call to broker.abortTransaction will roll back any changes
currently made within that transactional context:

CHAPTER 5 ■ ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE218

Ch05_7389_CMP3 9/27/06 11:04 AM Page 218

} catch (PersistenceBrokerException e){
// If something went wrong: rollback.
broker.abortTransaction();
e.printStackTrace();

throw new DataAccessException("Error in StoryDAO.insert(): "
+ e.toString(),e);

}

If any exception is caught, the transaction is aborted and the exception is rethrown as a
DataAccessException.

Deleting Data with OJB
The following code shows the delete() method from the StoryDAO:

public void delete(ValueObject deleteRecord) throws DataAccessException {
PersistenceBroker broker = null;

try {
broker = ServiceLocator.getInstance().findBroker();
StoryVO storyVO = (StoryVO) deleteRecord;

//Begin the transaction.
broker.beginTransaction();
broker.delete(storyVO);
broker.commitTransaction();

} //Rest of the code has been omitted.

The delete() method in a broker instance will remove a record from the database, based
on the object passed into the method. If you want to isolate the transaction, you must use the
beginTransaction() and commitTransaction() or abortTransaction() methods shown in the
previous section.

Bringing It All Together
So far, we demonstrated how to use the OJB to perform common data transactions. However,
the business logic should never be exposed to data access code, whether implemented via
JDBC or OJB. Therefore, you should wrap all the code using a Data Access Object pattern.

The following code is the implementation of the addStory() method of the StoryManagerBD
class. It is being shown to demonstrate how a DAO is actually used.

public void addStory(StoryVO storyVO) throws ApplicationException {
try {
StoryDAO storyDAO = new StoryDAO();
storyDAO.insert(storyVO);

} catch (DataAccessException e) {
throw new ApplicationException("DataAccessException Error in

CHAPTER 5 ■ ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE 219

Ch05_7389_CMP3 9/27/06 11:04 AM Page 219

StoryManagerBean.addStory(): " + e.toString(), e);
}

}

The preceding code is for inserting a StoryVO into the database. Note that in the entire
code, you do not tie your business logic to a particular data access technology or database.
You can easily rewrite the preceding StoryDAO to use JDBC or entity beans, and the application
code would never know the difference. This small piece of abstraction can make a huge differ-
ence in terms of long-term maintainability and extensibility of the application.

For instance, you could easily write a different StoryDAO implementation using different
data access technologies. The object diagram in Figure 5-6 illustrates this.

Figure 5-6. StoryDAO implementations

In this model, there could be three different implementations of the StoryDAO. The appli-
cation using the DAO would never be allowed to directly create one of the three preceding
classes. Instead, you could introduce a DAOFactory that would be responsible for creating the
appropriate StoryDAO instance on behalf of the application. An example of the DAOFactory is
shown here:

package com.apress.javaedge.common;

import java.io.FileInputStream;
import java.io.IOException;
import java.util.Properties;

public class DAOFactory {
private static Properties classInfo =

new Properties();
private static DAOFactory daoFactory = null;
public static final String MEMBERDAO = "dao.member.impl";
public static final String STORYDAO = "dao.story.impl";

CHAPTER 5 ■ ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE220

Ch05_7389_CMP3 9/27/06 11:05 AM Page 220

/**
* Private constructor that will load all of the fully qualified DAO
* class names from the datatier.properties file.
*/
private DAOFactory() {

try{
String daoFileName = System.getProperty("datatier.properties", "");

classInfo.load(new FileInputStream(daoFileName));
}
catch(IOException e){

System.out.println(e.toString());
}

}

//Static block that creates a new DAO factory
//the first time a DAOFactory is created.
static{

daoFactory = new DAOFactory();
}

/**
* Returns a single instance of DAOFactory.
*/
public static DAOFactory getInstance(){

return daoFactory;
}

/**
* The getDAO() method will retrieve a DAO requested by the user.
*/
public DataAccessObject getDAO(String desiredDAO) throws DataAccessException{

Object dao = null;

//If the classInfo properties object contains the key requested
//by the user
if (classInfo.containsKey(desiredDAO)){

try{
//Get the fully qualified class name.
String className = (String) classInfo.get(desiredDAO);

//Retrieve a Class object for the requested className.
Class desiredClass = Class.forName(className);

//Retrieve a new instance of the requested DAO.
dao = desiredClass.newInstance();

CHAPTER 5 ■ ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE 221

Ch05_7389_CMP3 9/27/06 11:05 AM Page 221

}
catch(InstantiationException e){

throw new DataAccessException("InstantiationException " +
"in DAOFactory.getDAO(): " + desiredDAO,e);

}
catch(IllegalAccessException e){

throw new DataAccessException("IllegalAccessException " +
"in DAOFactory.getDAO(): " + desiredDAO,e);

}
catch(ClassNotFoundException e){

throw new DataAccessException("DataAccessException " +
"in DAOFactory.getDAO(): " + desiredDAO,e);

}

return (DataAccessObject) dao;
}
else{

throw new DataAccessException("Unable to locate the DAO requested " +
"in DAOFactory.getDAO(): " + desiredDAO);

}
}

}

We are not going to walk through the preceding code in great detail because we did
not show you how to use a DAO Factory pattern in this JavaEdge implementation. Since
this is a simple application and all of this data access code was going to be written in OJB,
using the preceding DAOFactory implementation would be too heavy. However, the preceding
DAOFactory implementation does allow you to declare DAO implementations that are going
to be used for the application without directly hard coding the creation of that object in the
application source. The addStory() method, shown earlier, rewritten to use the preceding
DAOFactory implementation would be as follows:

public void addStory(StoryVO storyVO) throws ApplicationException{
try {
DAOFactory daoFactory.getInstance()
StoryDAO storyDAO = (StoryDAO) daoFactory.getDAO(DAOFactory.STORYDAO);
storyDAO.insert(storyVO);

} catch (DataAccessException e) {
throw new ApplicationException("DataAccessException Error in " +

"StoryManagerBean.addStory(): " +
e.toString(), e);

}
}

CHAPTER 5 ■ ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE222

Ch05_7389_CMP3 9/27/06 11:05 AM Page 222

The actual Java class that implements the StoryDAO is defined in a Java properties file. This
Java properties filename and location is determined by a user-defined Java system property
called datatier.properties. A user can define this property by setting the CATALINA_OPTS envi-
ronment variable to be equal to -Ddatatier.properties=full name and path of the Java file
containing the DAO class information.

The following example shows this properties file:

dao.member.impl=com.apress.javaedge.member.dao.MemberDAO
dao.story.impl=com.apress.javaedge.story.dao.StoryDAO

Summary
Building a data access tier is more than picking a particular data access or database technol-
ogy. It needs basic design patterns that will allow the development team to abstract away the
data access implementation details. In this chapter, we discussed the following two J2EE
design patterns that help you accomplish these goals:

• The Data Access Object (DAO) pattern

• The Value Object (VO) pattern

The DAO pattern allows you to abstract away the CRUD logic associated with the data
store interactions. You need to remember the following key points about the DAO pattern:

• DAOs should completely abstract away the details of how data is retrieved and
manipulated.

• Watch the granularity of your DAOs. You need to understand how your data is used
and make sure you do not model your DAOs solely based on your physical data model.

• DAOs afford the opportunity to combine the data from multiple data sources behind a
single logical view. Do not write your DAOs to mirror the physical location of different
pieces of the same customer data.

The VO pattern is used to wrap data retrieved from the database. It is an object-based
representation of relational-oriented data. Key points of the Value Object pattern are the
following:

• Watch the number of Value Objects returned by a DAO. Returning a large number of
VOs results in a large amount of memory being consumed.

• Watch the level of your object graphs. Making the object graphs too deep will result in
multiple levels of data for a single record.

• Value Objects merely represent a particular view of the data. It is not necessary that
you have one Value Object return all of the data associated with a particular business
entity. Understand how your data is being used and build your Value Objects accordingly.

CHAPTER 5 ■ ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE 223

Ch05_7389_CMP3 9/27/06 11:05 AM Page 223

We also discussed how O/R mapping tools could save a significant amount of developers’
time for writing the data access tier. One of these tools, OJB, is an easy-to-use open source tool
that offers almost all the features found in similar commercial products. In this chapter, we
discussed how OJB can be used to

• Perform mappings between Java classes and database tables. The mappings demon-
strated in the chapter include the following:

• Simple table mappings

• One-to-one mappings

• One-to-many mappings

• Many-to-many mappings

• Perform data-related tasks, including the following:

• Managing sequences using both OJB-managed sequences and native database
sequence objects

• Retrieving data using OJB

• Inserting and updating data using OJB

• Deleting data with OJB

CHAPTER 5 ■ ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE224

Ch05_7389_CMP3 9/27/06 11:05 AM Page 224

Building Flexible Front-Ends
with the Tiles Framework

Earlier in Chapter 1, we talked about the Tight-Skins antipattern and how the formation of
this antipattern can lead to long-term difficulties in modifying the look and feel of web-based
applications. The Tight-Skins antipattern usually forms when the development team fails to
properly separate the content and look and feel of the application into discrete components
that are independent of the code rendering the unique data being presented on the page.

Symptoms of the Tight-Skins antipattern manifest themselves in a number of ways,
including the following:

• The content of the screen is tightly integrated with page-specific code: An example of this
would be a JSP page that has HTML and JSP scriptlet code heavily intermixed through-
out the page.

• Common pieces of page content are not broken out into discrete components that can be
maintained independently of the page: Developers are always looking for opportunities
for reuse. However, most development teams only focus on reuse at the business logic
layer of an application and never really focus their efforts on the presentation tier.

In the earlier edition of this book, we demonstrated how the Struts <template> tag
libraries allowed a developer to break an application screen into individual components.
These components can then be easily assembled together to form a page. Any modifications
to an individual component would be propagated to all of the pages using it.

225

C H A P T E R 6

■ ■ ■

Ch06_7389_CMP3 9/27/06 11:30 AM Page 225

While the Struts <template> tag library is very useful for building applications, after using
it a while, developers will quickly run into some of the limitations of the tag library, which
include the following:

• No centralized mechanism for declaring templates: In the JavaEdge application, every
page built using the <template> tags must have two JSP pages. One JSP declares the lay-
out of the page. The other declares the actual content of the page to be displayed. For
example, the home page JSP page for the JavaEdge application consists of two pages:
homePage.jsp (which defines the page layout) and homePageContent.jsp (which ren-
ders the content).

For small applications that is not much of an issue. However, for larger applications this
can become a huge problem. A 100-page application built using the Struts <template>
tags is going to end up with 201 JSP pages: 100 JSP pages declaring the page templates,
100 contents pages, and 1 master template page. Wouldn’t it be better to declare all of
the page templates in a single location and reduce the total number of JSP pages to
maintain in half?

• No inheritance mechanism built into a <template> tag: Every template built using the
<template> tags is considered a unique entity. There is no way to declare a master tem-
plate that can have existing features overridden or be extended to include a new look
and feel.

• Struts <template> tags very limited in how they can render information: The <template>
tags essentially take content from a source (for example, a JSP page) and include the
rendered content into the page. They do not offer the capability to render content
retrieved from a JavaBean.

Starting with Struts 1.1, the framework offered a new templating framework called Tiles.
Tiles overcomes the limitations of the existing Struts <template> tag library. While the Struts
<template> tag library is still available in Struts 1.2, the Tiles framework is being positioned to
eventually replace it completely.

This chapter is going to look at the basics of using the Tiles framework. We will examine
the core functionality of the framework and demonstrate how to refactor the existing JavaEdge
application from a <template> tag approach to a pure Tiles one. Specifically, the following
topics will be covered:

• The conceptual architecture of the Tiles framework

• How to configure Tiles for your Struts applications

• Writing your first Tiles-based page

• Moving beyond the basics and using Tiles definitions to build your Tiles templates

• Centralizing all of your template layouts in a single tiles-defs.xml file

• Using inheritance and overriding in your Tiles pages

CHAPTER 6 ■ BUILDING FLEXIBLE FRONT-ENDS WITH THE T ILES FRAMEWORK226

Ch06_7389_CMP3 9/27/06 11:30 AM Page 226

What Is the Tiles Framework?
The Tiles framework is a tool for defining how a page is going to be laid out using discrete
presentation components. A page in Tiles is based on a template. A template is a JSP page that
describes where different presentation components are going to be placed. Each presentation
component defined in the template is called a tile. The best way to think of a template is that it
generically describes how a page looks.

A tile represents a self-contained window in the web page that contains content that is
rendered by using JSP tags and scriptlets. A single tile can be composed of other tiles. By
breaking an application’s pages into tiles, it is extremely easy to identify pieces of presentation
code that can be shared across screens in your application. It also makes maintaining the look
and feel of your application much easier because modifying a specific tile will cause that
change to be propagated across all of the pages using it.

A tile can have zero or more attributes associated with it. A tile attribute is a parameter
that can be passed into the tile and allows JSP tags and scriptlets to modify their behavior
based on the attribute passed in. Tile attributes give the developer a great deal of control over
how a tile is going to render itself.

■Note A Tiles template merely declares the layout of the page. A JSP page in the JavaEdge application will
implement the template and define what JSP files will implement each of the different tiles defined within
the template.

Figure 6-1 shows the relationship between templates, tiles, and attributes.

Figure 6-1. Mapping a tile layout to JSP pages

CHAPTER 6 ■ BUILDING FLEXIBLE FRONT-ENDS WITH THE T ILES FRAMEWORK 227

Ch06_7389_CMP3 9/27/06 11:30 AM Page 227

In the JavaEdge application, every page has been broken into three pieces: a header that
contains the navigation links and the JavaEdge logo, a body consisting of any content or func-
tionality that is going to be presented to the end user, and a footer containing a blue bar
across the bottom of the page. This layout can easily be translated into three tiles for every
page in the application, as you can see in Figure 6-2.

Figure 6-2. The basic structure of a JavaEdge page

At this point you have been exposed to some of the basic concepts behind an application
built on the Tiles framework. Let’s move from a conceptual discussion of Tiles to doing some
hands-on work with it.

Enabling Struts Version 1.1 to Use Tiles
The Tiles framework is included with the Struts 1.2x distribution as a plug-in to the Struts
framework. Configuring Struts version 1.2x to use the Tiles framework is a straightforward
process that takes three steps:

1. Configure the struts-config.xml file to include the Tiles plug-in.

2. Write a tiles-defs.xml file to hold any Tiles definitions used by the Tiles framework.

3. Add the Tiles Tag Library Definitions (TLDs) to the web.xml file.

CHAPTER 6 ■ BUILDING FLEXIBLE FRONT-ENDS WITH THE T ILES FRAMEWORK228

Ch06_7389_CMP3 9/27/06 11:30 AM Page 228

Configuring the Tiles Plug-In
To turn on the Tiles functionality, you need to configure the Tiles plug-in developed by the
Struts development team. This plug-in is configured in the application’s struts-config.xml file.

A NOTE ABOUT CONFIGURATION

To cleanly separate the Tiles-based JavaEdge application from the non-Tiles JavaEdge application,
the struts-config.xml file for the Tiles-based application has been moved to the project root src/web/
WEB-INF/jsp/tiles directory. The file has been renamed to struts-config-tiles.xml. All of the plug-in
configuration information and any Struts actions for this chapter have been placed in this file.

Please remember to modify the <init-parameters> tag for the Struts ActionServlet in
JavaEdge’s web.xml file to use the struts-config-tiles.xml file.

The Tiles plug-in entry for the JavaEdge application is shown here:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE struts-config PUBLIC

"-//Apache Software Foundation//DTD Struts Configuration 1.2//EN"
http://struts.apache.org/dtds/struts-config_1_2.dtd>

<struts-config>

<!--Form Bean Entries -->
....
<!-- Global Forwards -->
....
<!-- Actions -->
....
<!--The tiles plug-in-->
<plug-in className="org.apache.struts.tiles.TilesPlugin" >

<set-property property="definitions-config"
value="/WEB-INF/jsp/tiles/tiles-defs.xml" />

<set-property property="definitions-parser-validate"
value="true" />

<set-property property="moduleAware "
value="false" />

</plug-in>
</struts-config>

CHAPTER 6 ■ BUILDING FLEXIBLE FRONT-ENDS WITH THE T ILES FRAMEWORK 229

Ch06_7389_CMP3 9/27/06 11:30 AM Page 229

Each plug-in used by Struts version 1.2x is going to have a <plug-in> XML tag defined in
the struts-config-tiles.xml file:

<plug-in className="org.apache.struts.tiles.TilesPlugin">
....
</plug-in>

This <plug-in> tag defines a single attribute called className. The className attribute
holds the fully qualified Java class name of the class that is going to act as an entry point for
all calls to that plug-in. The Java class used for the Tiles framework is the org.apache.struts.
tiles.TilesPlugin class. This class file, along with the other Tiles Java classes, has been pack-
aged up into the struts.jar file located in the lib of the JavaEdge project tree.

■Note In early releases of Struts 1.1, the Tiles plug-in supported two properties for configuring logging
within the Tiles framework: definitions-debug and definitions-parser-details. While these two
properties are still supported in the stable release of Struts 1.1, they have been deprecated and should not
be used. Struts 1.2 will be completely removing these parameters. To enable logging of the Tiles framework,
please use the Jakarta Commons Logging integration with Struts. This information will be covered in
Chapter 9.

A Struts plug-in can have zero or more properties that help configure the behavior of the
plug-in. These properties are defined using a <set-property> tag contained with the defined
<plug-in> tag. A <set-property> tag has two attributes in it: property and value. The preced-
ing Tiles plug-in configuration has three properties set:

<set-property property="definitions-config"
value="/WEB-INF/tiles-defs.xml"/>

<set-property property="definitions-parser-validate" value="true"/>
<set-property property="moduleAware"

value="true"/>

The <set-property> tag’s definitions-config property tells the Tiles plug-in the name
of the file that holds a description of all of the template layouts used in the Struts application.
This file is said to hold the Tiles definitions of the different screen layouts. We will be covering
the details of setting up these Tiles definitions later on in the chapter.

After the definitions-config <set-property> tag is the definitions-parser-validate
<set-property> tag. The definitions-parser-validate property takes a value of true or false.
If the property is set to true, the Struts framework will validate that the file designated earlier
in the definitions-config (i.e., tiles-defs.xml) is well formed and conforms to the XML DTD
file specified in the file. If the value is set to false, no DTD validation will take place.

CHAPTER 6 ■ BUILDING FLEXIBLE FRONT-ENDS WITH THE T ILES FRAMEWORK230

Ch06_7389_CMP3 9/27/06 11:30 AM Page 230

■Note It is a good practice during development to keep the value of this property set to true. Speaking
from experience, nothing is more frustrating than discovering that the bug you were trying to fix was caused
by a malformed or invalid XML file. The default value for the definitions-parser-validate file is true.

The last property tag is the moduleAware <set-property> tag. The moduleAware property is
used to tell Tiles whether or not the Tiles framework can support multiple Struts applications
modules. If the value of this property is set to true, then each module can have its own Tiles
setup and configuration. If this value is false, then the Tiles definitions and setup is shared
across all of the application modules.

For more information on Struts modules, please see Chapter 2.

The tiles-defs.xml File
As mentioned earlier, the tiles-defs.xml file can hold layout information related to the
templates being used in Tiles. For the purposes of configuring Struts to use Tiles, create the
following tiles-defs.xml file in the JavaEdge project’s project root/src/web/WEB-INF/jsp/tiles
directory:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE tiles-definitions PUBLIC

"-//Apache Software Foundation//DTD Tiles Configuration//EN"
http://struts.apache.org/dtds/tiles-config.dtd>

<tiles-definitions>

</tiles-definitions>

At this point there is no real information present in the tiles-defs.xml file other than the
XML version of the file, the location of the Tiles DTD that can be used to validate the file, and
the root tags for the file, <tiles-definitions>. As this chapter unfolds, we will show you how
to add more information to the tiles-defs.xml file.

Adding the Tiles TLDs
The last step in configuring the Tiles framework for use in a Struts version 1.2x application is
to add the Tiles TLDs to the application’s (in this case, JavaEdge’s) web.xml file. This step will
make the Tiles JSP tag libraries available to the JavaEdge application’s pages. Shown here is
the entry made in the JavaEdge application’s web.xml:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app
PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/j2ee/dtds/web-app_2_3.dtd">

CHAPTER 6 ■ BUILDING FLEXIBLE FRONT-ENDS WITH THE T ILES FRAMEWORK 231

Ch06_7389_CMP3 9/27/06 11:30 AM Page 231

<web-app>
<!--The beginning of the web.xml file -->
.....

<!-- Tiles Tag Library Descriptors -->
<taglib>

<taglib-uri>/taglibs/struts-tiles</taglib-uri>
<taglib-location>/WEB-INF/taglibs/struts-tiles.tld</taglib-location>

</taglib>
</web-app>

Upon completion of this step, the Tiles framework should now be fully available to the
JavaEdge application.

Your First Tiles Template
There are three methods for building web pages using the Tiles framework:

• Using a Tiles-enabled JSP template to build JSP pages

• Embedding Tiles definitions inside of a JSP page

• Centralizing your Tiles definitions into a single configuration file

Each of these methods has its own advantages and disadvantages.

Using Tiles-Enabled JSP Templates
The simplest method to begin working with the Tiles framework is to use JSP templates that
leverage the <tiles> JSP tag libraries to implement a page. This process involves the following
steps:

• Creating a JSP-based master template using the <tiles> JSP tag libraries to define what
the generic components of a screen are going to be.

• Writing a JSP page that defines the concrete elements that correspond to the generic
components described in the master template.

■Note All of the Tiles-based JSP pages written in this chapter will be located under the project
root/src/web/WEB-INF/jsp/tiles directory. These files have been broken out into a separate directory to
clearly delineate them from the JSP pages used in the rest of the book.

Let’s start by looking at how to refactor the existing JavaEdge home page to use the Tiles
framework. The first step in this process is to rewrite the template.jsp page, which acts as the
master template, for the Struts <template> implementation of the JavaEdge application to use
the <tiles> JSP tags:

CHAPTER 6 ■ BUILDING FLEXIBLE FRONT-ENDS WITH THE T ILES FRAMEWORK232

Ch06_7389_CMP3 9/27/06 11:30 AM Page 232

<%@ taglib uri="/taglibs/struts-tiles" prefix="tiles " %>

<html>
<head>

<title><tiles:getAsString name="title "/></title>
</head>

<body>
<p>
<tiles:insert attribute="header"/>
<tiles:insert attribute="content"/>
<tiles:insert attribute="footer"/>

</body>
</html>

The template.jsp file just shown has three distinct graphical components that are going to
be part of each page: a header, page body, and footer.

The first line of the template.jsp file imports the Tiles tag libraries:

<%@ taglib uri="/taglibs/struts-tiles" prefix="tiles"%>

The header, page body, and footer components for the template are defined using the
<tiles:insert> tag. The attribute parameter on the <tiles:insert> tag allows a developer to
define a name for each part of an application’s page layout:

<tiles:insert attribute= "header"/>
<tiles:insert attribute="content"/>
<tiles:insert attribute="footer"/>

The <tiles:insert> tag defines a runtime parameter that can be used by a page imple-
menting the template to pass in the absolute or relative path of a JSP file that renders the body
of the tile.

The <tiles:getAsString> tag also establishes a parameter in which the developer can
pass in information. The example that follows defines a template parameter called title.
This is set by setting the <tiles:getAsString> tag’s name attribute equal to "title":

<title><tiles:getAsString name="title"/></title>

The difference between the <tiles:insert> and the <tiles:getAsString> tag is as follows:
The <tiles:insert> tag will execute any JSP code it reads from the file defined in its attribute
parameter. The <tiles:getAsString> tag will write the value passed directly to the page’s
JspWriter object. Since the value is written as is, any JSP scriptlets or tag libraries passed in
will not be executed.

Now that you have set up the Tiles-based master template for the JavaEdge application,
you want to rewrite the JavaEdge home page to use the template shown previously. To do this
you need to write two additional files: homePage.jsp and homePageContent.jsp.

CHAPTER 6 ■ BUILDING FLEXIBLE FRONT-ENDS WITH THE T ILES FRAMEWORK 233

Ch06_7389_CMP3 9/27/06 11:30 AM Page 233

The homePage.jsp file implements the template and defines the JSP files that will render
each of the components laid out in the template. The homePage.jsp file is shown here:

<%@ page language="java" %>
<%@ taglib uri="/taglibs/struts-tiles" prefix="tiles" %>

<tiles:insert page="/WEB-INF/jsp/tiles/template.jsp" flush="true">
<tiles:put name="title" value="Todays Top Stories"/>
<tiles:put name="header" value="/WEB-INF/jsp/tiles/header.jsp"/>
<tiles:put name="content" value="/WEB-INF/jsp/tiles/homePageContent.jsp"/>
<tiles:put name="footer" value="/WEB-INF/jsp/tiles/footer.jsp"/>

</tiles:insert>

The page implements the template by using the <tiles:insert> tag and passing in the
name of the template file (in this case template.jsp) via its page attribute:

<tiles:insert page="/WEB-INF/jsp/tiles/template.jsp" flush="true">
. . .

</tiles:insert>

The <tile:insert> tag’s flush attribute indicates whether or not the JspWriter for the
JSP is flushed. If the flush attribute is set to true, any characters currently residing in the
JspWriter’s output stream’s buffer will be written out before any of the content for the tem-
plate is written out. If the flush attribute is set to false, then the JspWriter is not flushed
when the <tiles:insert> tag is processed.

The <tiles:insert> tag will contain one or more <tiles:put> tags. The <tiles:put> tag is
used to provide the value for the <tile:insert> tag’s attribute parameter defined in the tem-
plate.jsp page. Four values are being passed to the template.jsp page:

<tiles:put name="title" value="Todays Top Stories">
<tiles:put name="header" value="/WEB-INF/jsp/tiles/header.jsp"/>
<tiles:put name="content" value="/WEB-INF/jsp/tiles/homePageContent.jsp"/>
<tiles:put name="footer" value="/WEB-INF/jsp/tiles/footer.jsp"/>

Each <tiles:put> tag defines two attributes within it: name and value. The name attribute
defines the name of the attribute parameter that is going to be passed to the JSP template
defined in the <tiles:insert> tag. The value attribute defines a value that is going to be passed
to the template. Depending on how the attribute parameter is defined in the template.jsp page,
the value passed in may be a simple string or a path to a JSP file.

A <tiles:put> tag in the homePage.jsp page must correspond to a <tiles:insert> tag
defined in the template.jsp page. Table 6-1 shows the relationship between the attributes
defined in the template.jsp page and the homePage.jsp page.

Table 6-1. Mapping the Tags from template.jsp to homePage.jsp

template.jsp homePage.jsp

<tiles:getAsString name="title"/> <tiles:put name="title" value=....>

<tiles:insert attribute="header"/> <tiles:put name="header" value=..../>

<tiles:insert attribute="content"/> <tiles:put name="content" value=..../>

<tiles:insert attribute="footer"/> <tiles:put name="footer" value=..../>

CHAPTER 6 ■ BUILDING FLEXIBLE FRONT-ENDS WITH THE T ILES FRAMEWORK234

Ch06_7389_CMP3 9/27/06 11:30 AM Page 234

The actual content of the JavaEdge home page resides in the homePageContent.jsp
page. We will not be reviewing this page, as the code in this page is the exact same material
presented in Chapter 2.

Once the JavaEdge home page is rewritten using Tiles, it can be viewed by adding a new
<action> tag to JavaEdge’s struts-config-tiles.xml file. Shown here is the <action> tag for the
Tiles-based JavaEdge home page:

<action path="/homePageSetup"
type="com.apress.javaedge.struts.homepage.HomePageSetupAction"
unknown="true">

<forward name="homepage.success" path="/WEB-INF/jsp/tiles/homePage.jsp"/>
</action>

To see the rewritten page, open a web browser and key in the text http://localhost:8080/
JavaEdge/execute/homePageSetup. Once you have done this, you should see the JavaEdge
home page, fully populated with stories from its database.

What Are Tiles Definitions?
As noted earlier, the fashion in which you use the Tiles framework to refactor the JavaEdge
home page is very similar in design and usage to the Struts 1.0x <template> tags.

The use of Tiles in this fashion also means that like the <template> tag example, the devel-
oper needs to write two JSP files to implement a single page: a file to implement the JSP template
(i.e., homePage.jsp), and a file to implement the page’s content (i.e., homePageContent.jsp).

Many times the page used to implement the JSP template is only changing one or two
values. Let’s revisit the homePage.jsp file:

<%@ page language="java" %>
<%@ taglib uri="/taglibs/struts-tiles" prefix="tiles" %>

<tiles:insert page="/WEB-INF/jsp/tiles/template.jsp" flush="true">
<!-- Value Changes Every Page--> <tiles:put name="title" ../>
<!-- Never Changes --> <tiles:put name="header" ../>
<!-- Value Changes Every Page--> <tiles:put name="content" ../>
<!-- Never Changes --> <tiles:put name="footer" ../>
</tiles:insert>

In the JavaEdge application, all pages share the exact same header and footer. The only
thing that ever changes from page to page is the title of the page and the page body’s content.

However, the developer still has to define a <tiles:insert> tag that maps every attribute
being passed into a template via a <tiles:put> tag. Every attribute has to be declared, even if
the value being passed into the template never changes (for example, the values specifying the
header and footer).

Using Tiles, it is possible for the developer to define all of the attribute parameters that are
to be passed into a template into a single unit of work with a unique ID. This uniquely identi-
fied collection of attributes is known as a Tiles definition.

Tiles definitions afford the developer a great deal of flexibility. Using them, a developer
can do the following:

CHAPTER 6 ■ BUILDING FLEXIBLE FRONT-ENDS WITH THE T ILES FRAMEWORK 235

Ch06_7389_CMP3 9/27/06 11:30 AM Page 235

• Reuse definitions across multiple JSP pages: Using a definition, a developer does not
have to redeclare the template and the attribute parameter values that are going to be
passed into the template for every single page in the application.

• Inherit the attribute values defined within an existing definition: Since the majority of
attribute values do not change from page to page, a developer using JSP templates can
automatically inherit and use attribute values declared within a definition. Changing a
value in the base definition will automatically propagate the change to all JSP pages
using the definition.

• Override the values of attributes declared within a declaration with values specific to
that page: For those pieces of a page that do change, using a Tiles definition, a devel-
oper can, on a page-by-page basis, choose to override an attribute value declared in
the definition with a value specific to the page.

• Extend an existing definition to include new attributes: Definitions allow the developer
to add new attributes to an existing definition. This extensibility allows the developer to
build a hierarchy of Tiles definitions that share the same basic look and feel, but have
their own unique characteristics.

There are two ways to declare definitions within the Tiles framework:

• Declaring a definition in a JSP file

• Declaring a definition in an XML file

In the next several sections, we will walk through how to use both techniques.

Tiles Definitions: A JSP-Based Approach
Writing a Tiles definition using JSPs is extremely easy. Let’s start by writing a JSP fragment,
called javaEdgeDef.jsp, that is going to define the base definition implemented by all of the
pages in the JavaEdge application. Shown here is the javaEdgeDef.jsp page:

<%@ taglib uri="/taglibs/struts-tiles" prefix="tiles" %>

<tiles:definition id="baseDef"
page="/WEB-INF/jsp/tiles/template.jsp">

<tiles:put name="title" value="Base JavaEdge Template"/>
<tiles:put name="header" value="/WEB-INF/jsp/tiles/header.jsp"/>
<tiles:put name="content" value="/WEB-INF/jsp/tiles/baseContent.jsp"/>
<tiles:put name="footer" value="/WEB-INF/jsp/tiles/footer.jsp"/>

</tiles:definition>

CHAPTER 6 ■ BUILDING FLEXIBLE FRONT-ENDS WITH THE T ILES FRAMEWORK236

Ch06_7389_CMP3 9/27/06 11:30 AM Page 236

To declare a JSP-based Tiles definition, the <tiles:definition> tag is used:

<tiles:definition id="baseDef"
page="/WEB-INF/jsp/tiles/template.jsp>

. . .
</tiles:definition>

The <tiles:definition> tag has a number of different attributes associated with it. Right
now you only care about the id and the page attributes. The id attribute defines the name of
the Tiles definition. The value placed in the id attribute will be the value passed by a JSP page
when it indicates it wants to use a particular Tiles definition. The page attribute is used to
define what template file is going to be used by the definition.

A Tiles definition can contain one or more <tiles:put> tags within it. The
<tiles:put> tags can pass values to attribute parameters inside the template defined
in the <tile:definition> tag’s page attribute. The example Tiles definition shown previously
defines four <tiles:put> tags that correspond to <tiles:insert> tags defined inside the
template.jsp file:

<tiles:put name="title" value="Base JavaEdge Template"/>
<tiles:put name="header" value="/WEB-INF/jsp/tiles/header.jsp"/>
<tiles:put name="content" value="/WEB-INF/jsp/tiles/baseContent.jsp"/>
<tiles:put name="footer" value="/WEB-INF/jsp/tiles/footer.jsp"/>

Let’s look at how a Tiles definition is used. The file simplePage.jsp uses the preceding
Tiles definition to define its layout. It does not override any of the attribute parameters being
declared in the <tiles:put> tag for the javaEdgeDef.jsp file. The code contained within the
simplePage.jsp file is shown here:

<%@ taglib uri="/taglibs/struts-tiles" prefix="tiles"%>
<%@ include file="javaEdgeDef.jsp"%>

<tiles:insert beanName="baseDef" flush="true"/>

The simplePage.jsp page includes the Tiles definition called baseDef by including the
contents of javaEdgeDef.jsp using the <%@ include %> JSP page directive.

Once the contents of the javaEdgeDef.jsp file are included in the simplePage.jsp page,
the definition is used by placing a <tiles:insert> tag into the page and passing the name of
the definition, originally defined in the definition’s id attribute, to the <tile:insert> tag’s
beanName attribute.

Let’s take a look at the results of using the baseDef definition in simplePage.jsp. First, you
need to set up a Struts action for the page in the struts-config.xml file. The new <action> entry
is shown here:

<action path="/simplePage"
type="com.apress.javaedge.struts.tiles.TilesTestAction">

<forward name="tiles.success" path="/WEB-INF/jsp/tiles/simplePage.jsp"/>
</action>

CHAPTER 6 ■ BUILDING FLEXIBLE FRONT-ENDS WITH THE T ILES FRAMEWORK 237

Ch06_7389_CMP3 9/27/06 11:30 AM Page 237

To see the simplePage.jsp page, bring up a web browser and type http://
localhost:8080/JavaEdge/execute/tiles/simplePage in the Address field. You should see
the base content tile shown in Figure 6-3.

Figure 6-3. The base content tile

The Tiles definition example we have shown so far is very basic. It does not really do any-
thing other than demonstrate some of the mechanics involved in setting a page up to use a
Tiles definition.

The goal of the next section is to demonstrate how a Tiles definition can be reused across
multiple web pages by including it in the page and then overriding individual values declared
in the definition. To do this, we will show you how to rewrite the homePage.jsp page to over-
ride some of the attribute values declared in the baseDef Tiles definition with values that are
specific to the JavaEdge home page.

Overriding the Attribute Values in a Tiles Definition
Overriding attributes in a Tiles definition is extremely easy. First you need to declare that you
are going to use a definition by using the <tiles:insert> tag. To override individual attribute
values on the declared Tiles definition, you need to place <tiles:put> tags inside the
<tiles:insert> tag for each attribute in the declaration you want to override.

Shown next is a rewritten homePage.jsp file. This file has been modified to use the
baseDef Tiles definition shown in the previous section. However, this example overrides two
attribute parameters, title and content, with values that are specific to the JavaEdge home
page.

<%@ page language="java" %>
<%@ taglib uri="/taglibs/struts-tiles" prefix="tiles" %>
<%@ include file="javaEdgeDef.jsp"%>

<tiles:insert beanName="baseDef" flush="true">
<tiles:put name="title" value="Todays Top Stories"/>
<tiles:put name="content" value="/WEB-INF/jsp/tiles/homePageContent.jsp"/>

</tiles:insert>

The header and footer attributes from the baseDef Tiles definition do not have to be over-
ridden because they never change from page to page. The examples we are using in this
chapter are obviously simplistic by design. However, you should be able to see that if you are
using Tiles definitions with a great number of attributes that are not going to change, JSP-
based Tiles definition can save the developer a lot of typing.

CHAPTER 6 ■ BUILDING FLEXIBLE FRONT-ENDS WITH THE T ILES FRAMEWORK238

Ch06_7389_CMP3 9/27/06 11:30 AM Page 238

Using Dummy Values in Your Tiles Definition
Because the attribute values declared inside of a Tiles definition are automatically inherited
and used by any page employing the definition, it is a good idea to place clearly marked
dummy text in any of the attribute values that are going to be overridden on a regular basis.
This is one of the reasons why the title and content attributes on the baseDef Tiles definition
contain text indicating that it is “fake.”

We were working with a developer who had spent half of the day trying to figure out why
the content of one of his pages was not showing up correctly. The page always showed the
content of the application’s home page. The developer kept insisting that it must be a problem
with the Tiles framework.

On review of this developer’s Tiles definition, we found that the content attribute in his
base Tiles definition was set to point to the content on his home page. It turned out that he
had forgotten to override the content attribute on the page he was working on. A little dummy
text in the base Tiles definition would have prevented him from wasting his time on such a
simple error.

Disadvantages of JSP Tiles Definitions
JSP-based Tiles definitions can save you a lot of time and effort by eliminating the need to
redeclare a template implementation for each page in the application. Instead, you declare
the template implementation as a Tiles definition inside of the JSP file that can then be
included in each JSP page.

You can override individual attributes on a definition and can even add new attributes
by declaring new Tiles definitions and extending off of an existing definition. This makes
propagating changes to all of the pages in an application easy, as the Tiles definitions can be
modified and all changes made to them are immediately available to all changes implement-
ing the definitions.

While JSP-based Tiles definitions do offer a number of advantages to JSP page developers,
using them also has two disadvantages. First, using JSP-based Tiles definitions, you are faced
with either keeping all of the Tiles definitions in one JSP file or splitting the definitions into
multiple JSP files. If the definitions are put in one JSP file, all pages that include the definitions
will end up picking up definitions that they are not going to use. In a project with a large
number of Tiles definitions and a high volume of users, the extra processing associated with
executing the Tiles definitions can limit the overall response time and scalability of the appli-
cation.

The alternative here is to break the Tiles definitions into multiple JSP files and then include
them as needed into a page. This avoids the extra overhead associated with having too many
Tiles definitions in a page that never uses them. However, it does introduce two problems:

• Breaking Tiles definitions into multiple JSP files can make maintaining the pages in an
application more of a maintenance headache. The definitions are not located in one
file, and members of the development team might have to hunt through multiple files
before they find a definition they want to change.

• Breaking Tiles definitions into multiple JSP files, particularly in projects where a large
number of definitions are present, makes it difficult for the development team to see
commonalities that exist between Tiles definitions.

CHAPTER 6 ■ BUILDING FLEXIBLE FRONT-ENDS WITH THE T ILES FRAMEWORK 239

Ch06_7389_CMP3 9/27/06 11:30 AM Page 239

The second disadvantage to using JSP-based Tiles definitions is that if you want to build a
completely component-based user interface, you must maintain at least two physical files for
every page in the application:

• A JSP file that includes the Tiles definitions, declares which definitions are going to be
used in a page, and overrides any of the attributes used in the definition

• A JSP file that holds the page’s content

Fortunately, Tiles offers an alternative to using JSP-based Tiles definitions. The Tiles
framework can centralize all of the Tiles definitions in a single XML file. Using this XML file,
you can completely eliminate the need to write the JSP page that uses a Tiles definition.

The XML file that holds the Tiles definitions is declared as a property on the Tiles
plug-in in the application’s struts-config-tiles.xml file. The Tiles plug-in property that is set is
definitions-config. For the JavaEdge application, the definitions-config property is set to
the following value:

<set-property property="definitions-config"
value="/WEB-INF/jsp/tiles/tiles-defs.xml"/>

Let’s take a look at the structure and content of this file.

Anatomy of the tiles-defs.xml File
The tiles-defs.xml file will contain one or more definitions within it. The first definition to be
declared is the base definition that is going to be inherited by all of the screens in the JavaEdge
application. This definition is shown here:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE tiles-definitions PUBLIC
"-//Apache Software Foundation//DTD Tiles Configuration//EN"
"http://struts.apache.org/dtds/tiles-config.dtd">

<tiles-definitions>
<definition name=".baseDef" path="/WEB-INF/jsp/tiles/template.jsp">

<put name="title" value="Base Template Page"/>
<put name="header" value="/WEB-INF/jsp/tiles/header.jsp"/>
<put name="content" value="/WEB-INF/jsp/tiles/baseContent.jsp"/>
<put name="footer" value="/WEB-INF/jsp/tiles/footer.jsp"/>

</definition>
. . .

</tiles-definitions>

CHAPTER 6 ■ BUILDING FLEXIBLE FRONT-ENDS WITH THE T ILES FRAMEWORK240

Ch06_7389_CMP3 9/27/06 11:30 AM Page 240

The XML tag structure and format is almost exactly like that used in the JSP-based
Tiles definitions. The tiles-defs.xml file’s root tag is <tile-definitions>. Inside of the
<tiles-definitions> tag will be one or more <definition> XML tags.

A <definition> tag delineates each Tiles definition. Each <definition> tag has a name attrib-
ute that is used to define the unique name of the definition within the tiles-defs.xml file. The
name attribute plays the exact same role as the id attribute found in the <tiles:definition> JSP
tag. The <definition> tag’s path attribute defines the absolute or relative path of the JSP file that
will act as a template for all of the pages using the definition.

Inside of the <definition> tag will be zero or more <put> tags that define the attribute
values that will be passed to the template JSP declared for the definition:

<put name="title" value="Base Template Page"/>
<put name="header" value="/WEB-INF/jsp/tiles/header.jsp"/>
<put name="content" value="/WEB-INF/jsp/tiles/baseContent.jsp"/>
<put name="footer" value="/WEB-INF/jsp/tiles/footer.jsp"/>

The Tiles definition just shown, .baseDef, is the base definition for the JavaEdge applica-
tion. Every page in the JavaEdge application will have its own unique <definition> tag that
will inherit all of the attributes of the .baseDef Tiles definition. In the next section, we will
demonstrate how to set up the other JavaEdge pages using the inheritance capabilities of the
Tiles framework.

Inheritance Using Tiles Definitions
To inherit from an existing Tiles definition, the developer must create a new <definition> tag
and then use the extends attribute with the name of the Tiles definition the new definition is
inheriting from. The new definition inherits all of the attributes defined in the parent defini-
tion. Figure 6-4 illustrates this.

Figure 6-4. A basic Tiles hierarchy

CHAPTER 6 ■ BUILDING FLEXIBLE FRONT-ENDS WITH THE T ILES FRAMEWORK 241

Ch06_7389_CMP3 9/27/06 11:30 AM Page 241

To set up a Tiles definition for the JavaEdge home page, the following Tiles definition
would need to be declared in the tiles-defs.xml file:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE tiles-definitions PUBLIC
"-//Apache Software Foundation//DTD Tiles Configuration//EN"
"http://struts.apache.org/dtds/tiles-config.dtd">

<tiles-definitions>
<!-- Base Tile Definition from the previous section -->
<definition name=".baseDef" path="/WEB-INF/jsp/tiles/template.jsp">

. . .
</definition>

<definition name=".homePage" extends=".baseDef">
<put name="title" value="Todays Top Stories"/>
<put name="content" value="/WEB-INF/jsp/tiles/homePageContent.jsp"/>

</definition>

. . .
</tiles-definitions>

Remember, each page in the JavaEdge application will have the same basic look and feel.
The only thing that varies on each page is the page’s title and content. Fortunately, like JSP-
based Tiles definitions, XML-based definitions can override the values of an attribute
inherited from the parent definition.

Overriding an attribute can be accomplished by placing a <put> tag for the attribute to be
overridden inside a page’s <definition> tag. In the JavaEdge home page example earlier, the
values of the title and content attributes are being overridden with new values:

<definition name=".homePage" extends=".baseDef">
<put name="title" value="Todays Top Stories"/>
<put name="content" value="/WEB-INF/jsp/tiles/homePageContent.jsp"/>

</definition>

The header and footer attributes that are being inherited from the .baseDef definition do
not have <put> tags in the .homePage definition. Thus, when the .homePage definition is ren-
dered, the values for the .baseDef definition will be used when it is determined what is going
to be used for the page’s header and footer.

Shown here are the Tiles definitions for the rest of the pages in the JavaEdge application:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE tiles-definitions PUBLIC
"-//Apache Software Foundation//DTD Tiles Configuration//EN"
"http://struts.apache.org/dtds/tiles-config.dtd">

CHAPTER 6 ■ BUILDING FLEXIBLE FRONT-ENDS WITH THE T ILES FRAMEWORK242

Ch06_7389_CMP3 9/27/06 11:30 AM Page 242

<tiles-definitions>
<!-- Base Tile Definition from the previous section -->
<definition name=".baseDef" path="/WEB-INF/jsp/tiles/template.jsp">

. . .
</definition>

<definition name=".homePage" extends=".baseDef">
. . .

</definition>

<definition name=".postComment" extends=".baseDef">
<put name="title" value="Post a Comment"/>
<put name="content"

value="/WEB-INF/jsp/tiles/postCommentContent.jsp"/>
</definition>

<definition name=".postStory" extends=".baseDef">
<put name="title" value="Post a Story"/>
<put name="content"

value="/WEB-INF/jsp/tiles/postStoryContent.jsp"/>
</definition>

<definition name=".searchForm" extends=".baseDef">
<put name="title" value="Search JavaEdge"/>
<put name="content"

value="/WEB-INF/jsp/tiles/searchFormContent.jsp"/>
</definition>

<definition name=".searchForm" extends=".baseDef">
<put name="title" value="Search JavaEdge"/>
<put name="content"

value="/WEB-INF/jsp/tiles/searchFormContent.jsp"/>
</definition>

<definition name=".signUp" extends=".baseDef">
<put name="title" value="Become a JavaEdge Member"/>
<put name="content" value="/WEB-INF/jsp/tiles/signUpContent.jsp"/>

</definition>

<definition name=".storyDetail" extends=".baseDef">
<put name="title" value="View a specific story"/>
<put name="content"

value="/WEB-INF/jsp/tiles/storyDetailContent.jsp"/>
</definition>

</tiles-definitions>

CHAPTER 6 ■ BUILDING FLEXIBLE FRONT-ENDS WITH THE T ILES FRAMEWORK 243

Ch06_7389_CMP3 9/27/06 11:30 AM Page 243

Extending a Tiles Definition
It is possible to declare a new Tiles definition that inherits all of the attributes of an existing
Tiles definition and then adds new attributes that are unique to that tile. This is often done
when you want to write a page that has the same basic look and feel as all the rest of the pages
in an application, but has some additional visual elements that are unique.

Let’s say that the marketing department has decided that they want to try and underwrite
some of the costs of the JavaEdge site by selling ad space immediately below the header on the
main page. However, the marketing department is also considering adding ads to other pages
in the JavaEdge application at some later point in the future.

The easy approach would be to modify the homePageContent.jsp file to include the ad
information. However, this is not very reusable because every time the marketing department
wants to add more pages with ads, the advertisement code added to the homePageContent.jsp
would need to be replicated.

A more flexible approach would be to use the inheritance and extensibility features found
in Tiles definitions to build a hierarchy of definitions. The root Tiles definition for the JavaEdge
application is still the .baseDef definition. All of the pages in the JavaEdge application, except
for the home page, would use this definition.

A new definition is going to be created for the JavaEdge home page that will extend the
.baseDef definition. This new definition, which will be called .baseWithOneAd, will include a
new attribute parameter that defines what HTML or JSP file is going to be used for the ad that
is going to be placed in the JavaEdge application.

Figure 6-5 shows the relationship between the .baseDef definition, the .baseWithOneAd
definition, and the pages that implement these definitions.

Figure 6-5. Building a base definition

CHAPTER 6 ■ BUILDING FLEXIBLE FRONT-ENDS WITH THE T ILES FRAMEWORK244

Ch06_7389_CMP3 9/27/06 11:30 AM Page 244

To implement the Tiles definition hierarchy shown previously, the following steps need to
be taken:

• The template.jsp that is being used by the JavaEdge application needs to be modified
to include additional attributes that are only going to be implemented by the
.baseWithOneAd Tiles definition.

• A new Tiles definition needs to be implemented in the tiles-defs.xml file that inherits
and extends the attributes defined in .baseDef.

• The .homePage Tiles definition needs to be modified to use the .baseWithOneAd defini-
tion instead of the .baseDef definition.

Modifying the template.jsp File
All of the attributes defined in the template.jsp file are being passed values from the individual
pages using the .baseDef Tiles definition. Every individual JavaEdge page that uses the
.baseDef definition must override the attribute values defined in the definition. If the page
does not override these values, the page will be rendered using the default values from the
definition.

Implementing the condition that some pages in the JavaEdge application support adver-
tisements requires a new attribute be added to the template.jsp page. This attribute, called
adone, holds the path to a JSP file that contains the advertisement. The template.jsp file with
the adone attribute declared is shown here:

<%@ taglib uri="/taglibs/struts-tiles" prefix="tiles" %>

<html>
<head>

<title><tiles:getAsString name="title"/></title>
</head>

<body>
<p>
<tiles:insert attribute="header"/>
<tiles:insert attribute="adone" ignore="true"/>
<tiles:insert attribute="content"/>
<tiles:insert attribute="footer"/>

</body>
</html>

Typically when a Tiles definition uses a template, each attribute declared in the template
must have a value passed into it. If a value is not passed into it, the Tiles framework will raise
an exception.

However, with the introduction of the advertisement requirement, there is now an attrib-
ute, adone, in the template.jsp file that does not need to have a value passed to it by every Tiles
definition using the template.

CHAPTER 6 ■ BUILDING FLEXIBLE FRONT-ENDS WITH THE T ILES FRAMEWORK 245

Ch06_7389_CMP3 9/27/06 11:30 AM Page 245

To make the adone attribute nonmandatory, the ignore XML attribute is added to the
attribute’s <tiles:insert> tag:

<tiles:insert attribute="adone" ignore="true"/>

The ignore XML attribute, when set to true, tells the Tiles framework to not throw an
exception if the Tiles definition using the template does not pass a value for this attribute
using a <tiles:put> tag. If the ignore XML attribute is set to false or is omitted altogether,
every attribute defined in the template JSP must have a corresponding <tiles:put> tag
defined in the Tiles definition implementing the template.

Now that the template.jsp has been modified, let’s look at setting up the inheritance
hierarchy for the JavaEdge Tiles definitions in the tiles-defs.xml file.

Adding the New Definition to tiles-defs.xml
Having one Tiles definition extend the attributes of another definition is straightforward.
Shown here is the tiles-defs.xml file rewritten with an additional Tiles definition,
.baseWithOneAd, added to it:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE tiles-definitions PUBLIC
"-//Apache Software Foundation//DTD Tiles Configuration//EN"
"http://struts.apache.org/dtds/tiles-config.dtd">

<tiles-definitions>
<definition name=".baseDef" path="/WEB-INF/jsp/tiles/template.jsp">

<put name="title" value="Base Template Page"/>
<put name="header" value="/WEB-INF/jsp/tiles/header.jsp"/>
<put name="content" value="/WEB-INF/jsp/tiles/baseContent.jsp"/>
<put name="footer" value="/WEB-INF/jsp/tiles/footer.jsp"/>

</definition>

<definition name=".baseWithOneAd" extends=".baseDef">
<put name="adone" value="/WEB-INF/jsp/tiles/baseAd.jsp"/>

</definition>
. . .

</tiles-definitions>

The .baseWithOneAd Tiles definition looks very similar to the .baseDef definition. Both
Tiles definitions use a <definition> tag to declare the definition. Both definitions also declare
attributes the definitions are going to pass to the template via the <put> tag.

The key difference between the two different definitions is that the .baseWithOneAd
definition does not use the path attribute to declare the path of the JSP file it is going to pass
attribute values to. Instead, the .baseWithOneAd definition uses the extends attribute to indi-
cate that it is inheriting all of the attributes from the .baseDef definition:

<definition id=".baseWithOneAd" extends=".baseDef">

CHAPTER 6 ■ BUILDING FLEXIBLE FRONT-ENDS WITH THE T ILES FRAMEWORK246

Ch06_7389_CMP3 9/27/06 11:30 AM Page 246

By using the extends attribute, the .baseWithOneAd definition automatically inherits all of
the attribute parameters declared in the .baseDef definition. The .baseWithOneAd definition
can choose to override the attribute values declared in the .baseDef definition by redeclaring
them via a <put> tag. Also remember, additional attributes can be added that are specific to
the child definition.

The .baseWithOneAd Tiles definition has declared that it is going to pass a value to the
adone attribute in the template.jsp file:

<tiles:put name="adone" value="/WEB-INF/jsp/tiles/baseAd.jsp"/>

Since the adone attribute is being declared in the .baseWithOneAd definition, only the
JavaEdge pages using this definition will have the ad content included on the page.

Modifying the .homePage Definition
At this point, the .homePage definition can now be modified to use the .baseWithOneAd instead
of the .baseDef Tiles definition:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE tiles-definitions PUBLIC
"-//Apache Software Foundation//DTD Tiles Configuration//EN"
"http://struts.apache.org/dtds/tiles-config.dtd">

<tiles-definitions>
<definition name=".baseWithOneAd" extends=".baseDef">

. . .
</definition>

<definition name=".homePage" extends=".baseWithOneAd">
<put name="title" value="Todays Top Stories"/>
<put name="content" value="/WEB-INF/jsp/tiles/homePageContent.jsp"/>
<put name="adone" value="/WEB-INF/jsp/tiles/ad.jsp"/>

</definition>
. . .

</tiles-definitions>

Let’s look at the JavaEdge home page with the newly added ad at the top of the page. Bring
up a web browser and go to http://localhost:8080/JavaEdge/execute/tiles/homePageSetup.

You should see the advertisement at the top of the screen immediately below the menu
bar, as shown in Figure 6-6. The home page will be the only application that has this advertise-
ment on it. However, it would be extremely easy to add the advertisement to other pages in
the JavaEdge application. All that is required is to modify the extends attribute on the page to
which you want to add the advertisement to use the .baseWithOneAd definition rather than the
.baseDef definition.

CHAPTER 6 ■ BUILDING FLEXIBLE FRONT-ENDS WITH THE T ILES FRAMEWORK 247

Ch06_7389_CMP3 9/27/06 11:30 AM Page 247

Figure 6-6. The JavaEdge application with an ad on the screen

The .homePage definition overrides attributes from the two different definitions, .baseDef
and .baseWithOneAd. However, the .homePage definition has no knowledge that the title and
content attributes come from the .baseDef definition.

Instead, as far as the .homePage definition is concerned, these attribute declarations are
derived only from the .baseWithOneAd definition. The reason for this is that the Tiles inheri-
tance model is a single-tree model. This means a definition can only inherit attributes from a
single parent definition.

The Tiles framework does not support multitree inheritance, in which a definition can
inherit from multiple definitions that have absolutely no relationship to one another. If you
want a tile to inherit attributes from multiple definitions, the definitions must be organized
into a hierarchical relationship where each definition inherits its attributes in a chain. The
bottom of this chain will be the definition that is going to inherit all of the attributes.

■Note It should be noted that while Tiles inheritance allows a great deal of flexibility in building the look
and feel of a page, overusing and developing complex and/or deep inheritance hierarchies can cause per-
formance problems and turn maintaining pages for the site into an absolute nightmare. We suggest never
having a Tiles inheritance hierarchy more than two or three levels deep.

If you find yourself creating overly deep inheritance hierarchies, you should consider cre-
ating multiple base definitions based on the different distinct page types in your application.

Mapping Tiles Definitions to Action Forwards
Placing the Tiles definitions in a single file eliminates almost half of the JSP pages needed to
build the JavaEdge application. However, the tiles-defs.xml file does not indicate how your
Struts applications are supposed to actually navigate to the individual JSP pages. The question
becomes, How does Struts map these Tiles definitions to JSP pages that can be reached from
the Struts framework?

CHAPTER 6 ■ BUILDING FLEXIBLE FRONT-ENDS WITH THE T ILES FRAMEWORK248

Ch06_7389_CMP3 9/27/06 11:30 AM Page 248

Struts uses the Tiles plug-in to map an XML-based Tiles definition to a Struts Action
Forward defined in the application’s struts-config.xml file.

To map a Tiles definition to a Struts Action Forward, the developer needs to use the value
in the <definition> tag’s name attribute in the <forward> tag for the Action. For example, to
refactor the JavaEdge’s /homePageSetup action to redirect the end user to the .homePage Tiles
definition, the <action> tag for the /homePageSetup Struts action needs to be rewritten as
shown here:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE struts-config PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 1.2//EN"
"http://struts.apache.org/dtds/struts-config_1_2.dtd">

<struts-config>
. . .
<action-mappings>

<action path="/homePageSetup"
type="com.apress.javaedge.struts.homepage.HomePageSetupAction"
unknown="true">
<forward name="homepage.success" path=".homePage"/>

</action>
. . .

</action-mappings>
</struts-config>

The key tag that needs to be modified is the <forward> tag. The path attribute in the
<forward> tag must point to the name of the Tiles definition the user is going to be redirected
to. With the Struts plug-in configured, the Struts framework will check to see if there is a Tiles
definition defined that maps to the name specified in the path attribute.

If the Struts framework finds a match, it will assemble the contents of the page from its
different component pieces and forward the user to the assembled page.

ON NAMING TILES

The “.” naming convention that is being used by all of the JavaEdge Tiles definitions is not mandatory. You
can still use “/” and a more traditional path structure to name the application’s individual Tiles definitions.

However, even the refactored JavaEdge application uses Action Forwards that are not Tiles-based. Many
of the Action Forwards in the JavaEdge application point to “pre-Actions” that do some work and then redi-
rect the user to a Tiles-based JSP page. Using the “.” notation for Tiles-based actions and the “/” notation for
Struts-based Actions helps keep the struts-config.xml file manageable and easy to follow.

The idea of using the “.” notation for Tiles-based Forwards is not ours. Cedric Dumoulin, one of the
authors of Struts in Action (Ted Husted et al., Manning Publications Company, ISBN: 1-930-011050-2), first
put forth this idea. We adopted it for our own Struts projects and have found it works well.

CHAPTER 6 ■ BUILDING FLEXIBLE FRONT-ENDS WITH THE T ILES FRAMEWORK 249

Ch06_7389_CMP3 9/27/06 11:30 AM Page 249

The homePageSetup Struts action does not submit any form data. However, when using
XML-based Tiles definitions and Struts actions that submit form data, make sure that the
input parameter on the action is mapped to the name of the Tiles definition for the page
rather than the JSP where the data was entered.

For example, in the /login action shown here, the input parameter is set to the .homePage
definition:

<action path="/login"
input=".homePage"
name="loginForm"
scope="request"
validate="true"
type="com.apress.javaedge.struts.login.Login">
<forward name="login.success" path="/execute/homePageSetup"/>

</action>

It is easy to overlook setting the input parameter to point to the Tiles definition. Missing
this can result in hours of fun and debugging. Shown here are the rest of the JavaEdge action
mappings converted to use XML-based Tiles definitions:

<action path="/storyDetailSetup"
type="com.apress.javaedge.struts.storydetail.StoryDetailSetupAction">

<forward name="storydetail.success" path=".storyDetail"/>
</action>

<action path="/signUpSetup"
type="com.apress.javaedge.struts.signup.SignUpSetupAction"
name="signUpForm"
scope="request"
validate="false">

<forward name="signup.success" path=".signUp"/>
</action>

<action path="/signUp"
input=".signUp"
name="signUpForm"
scope="request"
validate="true"
type="com.apress.javaedge.struts.signup.SignUp">

<forward name="signup.success" path="/execute/homePageSetup"/>
</action>

<action path="/postStorySetup"
type="com.apress.javaedge.struts.poststory.PostStorySetupAction"
name="postStoryForm"
scope="request"
validate="false">

CHAPTER 6 ■ BUILDING FLEXIBLE FRONT-ENDS WITH THE T ILES FRAMEWORK250

Ch06_7389_CMP3 9/27/06 11:30 AM Page 250

<forward name="poststory.success" path=".postStory"/>
</action>

<action path="/postStory"
input=".postStory"
name="postStoryForm"
scope="request"
validate="true"
type="com.apress.javaedge.struts.poststory.PostStory">

<forward name="poststory.success" path="/execute/homePageSetup"/>
</action>

<action path="/postCommentSetup"
type="com.apress.javaedge.struts.postcomment.PostCommentSetupAction"
name="postCommentForm"
scope="request"
validate="false">
<forward name="postcomment.success" path=".postComment"/>

</action>

<action path="/postComment"
type="com.apress.javaedge.struts.postcomment.PostComment"
name="postCommentForm"
scope="request"
validate="false">

<forward name="postcomment.success" path="/execute/homePageSetup"/>
</action>

<action path="/SearchSetup"
type="com.apress.javaedge.struts.search.SearchFormSetupAction"
name="searchForm"
scope="request"
validate="false">

<forward name="search.success" path=".searchForm"/>
</action>

<action path="/Search"
type="com.apress.javaedge.struts.search.Search"
input=".searchForm"
name="searchForm"
scope="request"
validate="false">

<forward name="search.success" path=".searchForm"/>
</action>

CHAPTER 6 ■ BUILDING FLEXIBLE FRONT-ENDS WITH THE T ILES FRAMEWORK 251

Ch06_7389_CMP3 9/27/06 11:30 AM Page 251

Summary
This chapter went through the basics of using the Tiles framework to build a flexible presenta-
tion tier that can easily be modified as the business needs of your organization evolve. Some
of the material that was covered in this chapter includes the following:

• Configuring Struts to use the Tiles framework:

• Configuring the struts-config.xml file (or in the examples for this chapter, the
struts-config-tiles.xml file) to activate the Tiles plug-in

• Configuring the Tiles plug-in to recognize where the tiles-defs.xml file is located
and what level of debugging the Tiles plug-in should carry out

• Laying out the skeleton tiles-defs.xml file.

• Writing a simple JSP page to leverage the <tiles> tag libraries.

• Exploring how Tiles definitions can be used to build the JavaEdge applications. This
chapter looked at the two different types of Tiles definitions (JSP-based and XML-
based) and how they could be used to do the following:

• Group together related page attributes into unique entities that could be reused
across multiple screens

• Demonstrate how to override individual attributes in a definition to allow cus-
tomization of the basic look and feel of an individual page or tile

• Use XML-based Tiles definitions to centralize all of the screen layouts into a single
file that can be easily managed and modified

• Leverage the inheritance and extensibility features of XML-based Tiles definitions
to add new elements to an existing application screen

• Modifying the struts-config-tiles.xml file so that XML-based Tiles definitions can be
used in a Struts Action Forward rather than the traditional JSP page.

Our advice is not to get caught up in the pure mechanics of the Tiles framework. It is more
important to understand how the Tiles framework can help a development team avoid the
Tight-Skins and Hardwired antipatterns. The Tiles framework allows the development team
to break the presentation layer into discrete and reusable components that can be managed
from a single location.

Let’s quickly review some of the changes made to the JavaEdge application during the
course of this chapter. It should become pretty apparent that we made some fundamental
changes to the application’s structure without having to rewrite a great deal of code.

• Reconfigured the application to use a completely different set of JSP files without having
to modify any of the existing files: By modifying the JavaEdge’s web.xml file to point to a
new Struts configuration file (struts-config-tiles.xml file), you could move the JavaEdge
application to a new presentation framework (Tiles) without having to touch any of the
existing application source code.

CHAPTER 6 ■ BUILDING FLEXIBLE FRONT-ENDS WITH THE T ILES FRAMEWORK252

Ch06_7389_CMP3 9/27/06 11:30 AM Page 252

• Centralized all template and layout information into a single configuration file: All tem-
plate and layout information was centralized into the tiles-defs.xml file. By centralizing
all of the template information into one file, you could eliminate half of the original JSP
pages needed in the application.

• Added the capability to modify or add new screen elements without visiting each appli-
cation page: By leveraging the Tiles framework’s inheritance, overriding, and extension
features, you could add new screen elements (for example, the ad on the JavaEdge
home page) without having to actually go in and modify each screen.

Normally, to take an existing application that is not built around a framework and under-
take the changes enumerated by the preceding three bullet points would require a
tremendous amount of rework. However, by using Struts and Tiles, these tasks become trivial.

When a development team first begins using the Tiles framework, there can be a steep
learning curve. The development team will have to design the initial application templates
and write each of the Tiles definitions that are going to be used in the application. However,
once this work has been completed, it becomes extremely easy to modify the core structure of
the application, while minimizing the risk that changes to the code will break the application.

This chapter shows that you can easily move existing applications to Tiles, but it also
shows that if you do that, you aren’t using the full power of Tiles. Don’t get me wrong: It’ll still
work and it’s a good investment for the future, but it’s like using Windows 2000 on a FAT file
system. You get the power of a new system, but you’re still dragging old limitations with you.
Also, if you add Tiles to a sizable non-Tiles project, you can easily break existing pages.

Because Tiles tags can insert output of any action into the target tile, your presentation
layer is not limited to only JSP pages. You can just as easily use Velocity, for example (see
Chapter 11).

CHAPTER 6 ■ BUILDING FLEXIBLE FRONT-ENDS WITH THE T ILES FRAMEWORK 253

Ch06_7389_CMP3 9/27/06 11:30 AM Page 253

Ch06_7389_CMP3 9/27/06 11:30 AM Page 254

Dynamic Forms and the
Struts Validator Framework

The current stable release of Struts, version 1.2.9, provides powerful development metaphors
for capturing, processing, and validating form data submitted by an end user. ActionForm
classes allow us to capture and validate data in a uniform manner. However, in medium-
to-large projects, it quickly becomes apparent that writing the ActionForm classes for the
application is a tedious, repetitive, and error-prone process.

The reason for this is twofold. First, the ActionForm class is used to scrape data submitted
by the user from the HttpServletRequest object and place it into a more developer-friendly
and type-safe Java object. However, the majority of the work involved with writing the
ActionForm class is writing get()/set() methods for each of the attributes being captured
from a submitted form. The hand coding of these get()/set() methods is usually reserved
as punishment for the individual whose code broke the build for the previous evening.

Secondly, in most applications, when data is collected from the end user, the same valida-
tion rules are usually applied against the data. For example, in the real world, just about every
HTML form submitted has some fields that are required to be populated. In addition, some
fields, like an e-mail address or a credit card number, are going to be required to be a certain
length and/or have a very specific format.

Using the ActionForm class and the validate() method requires the developer to invoke
these rules over and over against the individual form attributes in this class. The smart devel-
oper will often break the validation rules out into a set of classes that can be reused over and
over again. However, even by breaking the validation rules out into a set of reusable classes,
the developer writing the ActionForm class must still write Java code to invoke the rules.

Ultimately, the issue here is such developers are repeating the same type of code over and
over again throughout their application. Dave Thomas and Andrew Hunt, in their book The
Pragmatic Programmer (Addison-Wesley, ISBN: 0-201-61622-X), articulated this problem and
devised a simple yet powerful principle to battle it. This principle is called the D.R.Y. principle,
or “Don’t Repeat Yourself.”

The main point of the D.R.Y. principle is that “every piece of knowledge must have a single,
unambiguous, authoritative representation within a system.”

Dave Thomas and Andrew Hunt are big proponents of using code generators and devel-
opment frameworks to enforce the D.R.Y. principle. Starting with Struts version 1.1 and higher,
you can use two new features of the framework to solve the problems of repetitive code in
implementing ActionForm classes and validating the data contained within them.

255

C H A P T E R 7

■ ■ ■

Ch07_7389_CMP3 9/27/06 1:10 PM Page 255

These two features are Dynamic Forms and the Jakarta Commons Validator framework.
This chapter is going to explore the functionality and capabilities of these exciting new addi-
tions to the Struts framework. Specifically, we will be discussing the following:

• An introduction to Dynamic Forms

• Declaring Dynamic Forms within the struts-config.xml file

• Using Dynamic Forms within your Struts Action classes

• The Jakarta Commons Validator framework

• Configuring Struts to use the Validator framework

• The different validation rules available in the framework

• Declaring validation rules in applications using Dynamic Forms

• Implementing validation rules in applications using traditional Struts ActionForm
classes

• Writing your own validation rules for use within the Validator framework

Let’s begin our discussion by looking at how you can use Struts Dynamic Forms to refac-
tor the PostStoryForm.java Action class.

Introducing Dynamic Forms
Dynamic Forms allow a development team to declaratively define the attributes of an applica-
tion’s ActionForm classes in the struts-config.xml file. By declaring the attributes for an
ActionForm class in a file, the development team can significantly reduce the amount of repeti-
tive and tedious code that needs to be written. Furthermore, new fields can be added to the
other form without having to rewrite the existing ActionForm classes.

To use Dynamic Forms within a Struts version 1.2x application, you need to perform two
steps:

1. Define a <form-bean> tag for each Dynamic Form that is going to be used inside the
application’s struts-config.xml file.

2. Rewrite your ActionForm classes to extend the DynaActionForm class instead of the
ActionForm class.

We will begin this discussion by looking at how you would define the Struts postStoryForm
as a Dynamic Form.

Defining the postStoryForm Struts Form Bean
A <form-bean> tag for a Dynamic Form, like a <form-bean> tag for the more traditional Struts
form, is declared in the struts-config-validator.xml.1 However, unlike the more traditional

CHAPTER 7 ■ DYNAMIC FORMS AND THE STRUTS VALIDATOR FRAMEWORK256

1. As in the previous chapter, we have opted to break out the Validator configuration into a separate
struts-config.xml file. This file is called struts-config-validator.xml. Please remember to modify the
parameters for the ActionServlet in your web.xml file.

Ch07_7389_CMP3 9/27/06 1:10 PM Page 256

Struts ActionForms that declare attributes via get()/set() methods inside the specific Java
class implementations, the individual form attributes for a Dynamic Form are declared as
<form-property> tags inside the <form-bean> tag.

Shown here is the <form-bean> entry used to define the Dynamic Form postStoryForm
used in the Post a Story page:

<struts-config>
<form-beans

<form-bean name="postStoryForm"
type="com.apress.javaedge.poststory.PostStoryDynaForm">

<form-property name="storyIntro" type="java.lang.String"/>
<form-property name="storyBody" type="java.lang.String"/>
<form-property name="storyTitle" type="java.lang.String"/>

</form-bean>

<!-- Rest of the ActionForm definitions-->
</form-beans>
<!-- Rest of the struts-config.xml file -->

</struts-config>

Once you have defined the postStoryForm <form-bean> tag, you need to define the indi-
vidual properties on the <form-bean>. This is the equivalent of writing a get()/set() method
on a nondynamic ActionForm class:

<form-property name="storyIntro" type="java.lang.String"/>
<form-property name="storyBody" type="java.lang.String"/>
<form-property name="storyTitle" type="java.lang.String"/>

Just like the nondynamic example shown earlier in Chapter 3, this dynamic post
StoryForm ActionForm definition has three properties: storyIntro, storyBody, and
storyTitle. Each of these properties has a corresponding <form-property> tag.

A <form-property> tag can have three attributes in it. We are only using two of the three
attributes for the example declaration shown earlier, as listed in Table 7-1.

Table 7-1. Attributes of the <form-property> Tag

Attribute Name Attribute Description

name The name attribute is the name of the property and is the value that will be
referenced by the Struts HTML tag libraries when accessing and setting form
data. This is a mandatory attribute.

type The type attribute is the fully qualified Java class name of the attribute being
set. This is a mandatory attribute.

Now that the postStoryForm has been declared as a Dynamic Form, let’s take a look at the
actual implementation of the PostStoryDynaForm class.

CHAPTER 7 ■ DYNAMIC FORMS AND THE STRUTS VALIDATOR FRAMEWORK 257

Ch07_7389_CMP3 9/27/06 1:10 PM Page 257

Writing the PostStoryDynaForm.java Implementation
At face value, the PostStoryDynaForm class looks very similar to the PostStoryForm class shown
earlier. However, subtle differences exist between the implementations. Shown here is the
code for the PostStoryDynaForm class:

package com.apress.javaedge.struts.poststory;

import org.apache.struts.action.ActionMapping;
import org.apache.struts.action.DynaActionForm;
import org.apache.struts.action.ActionForward;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import org.apache.struts.action.ActionErrors;
import org.apache.struts.action.ActionError;
import org.apache.struts.action.ActionServlet;
import org.apache.struts.util.MessageResources;

import com.apress.javaedge.common.VulgarityFilter;

public class PostStoryDynaForm extends DynaActionForm {
//Checks to make sure field being checked is not null.
private void checkForEmpty(String fieldName,

String fieldKey, String value,
ActionErrors errors){

if (value.trim().length()==0){
ActionError error =
new ActionError("error.poststory.field.null",
fieldName);
errors.add(fieldKey, error);

}
}

//Checks to make sure the field being checked
//does not violate our vulgarity list.
private void checkForVulgarities(String fieldName,

String fieldKey,
String value,

ActionErrors errors){
VulgarityFilter filter = VulgarityFilter.getInstance();

if (filter.isOffensive(value)){
ActionError error =

new ActionError("error.poststory.field.vulgar",
fieldName);

errors.add(fieldKey, error);
}

}

CHAPTER 7 ■ DYNAMIC FORMS AND THE STRUTS VALIDATOR FRAMEWORK258

Ch07_7389_CMP3 9/27/06 1:10 PM Page 258

//Checks to make sure the field in question
//does not exceed a maximum length.
private void checkForLength(String fieldName,

String fieldKey,
String value,
int maxLength,
ActionErrors errors){
if (value.trim().length()>maxLength){
ActionError error =
new ActionError("error.poststory.field.length",

fieldName);
errors.add(fieldKey, error);

}
}

public ActionErrors validate(ActionMapping mapping,
HttpServletRequest request) {

ActionErrors errors = new ActionErrors();

checkForEmpty("Story Title",
"error.storytitle.empty",
(String) super.get("storyTitle"),errors);

checkForEmpty("Story Intro",
"error.storyintro.empty",
(String) super.get("storyIntro"), errors);

checkForEmpty("Story Body",
"error.storybody.empty",
(String) super.get("storyBody"), errors);

checkForVulgarities("Story Title",
"error.storytitle.vulgarity",
(String) super.get("storyTitle"),errors);

checkForVulgarities("Story Intro",
"error.storyintro.vulgarity",
(String) super.get("storyIntro"),

errors);
checkForVulgarities("Story Body",

"error.storybody.vulgarity",
(String) super.get("storyBody"),
errors);

checkForLength("Story Title",
"error.storytitle.length",
(String) super.get("storyTitle"), 100,
errors);

checkForLength("Story Intro", "error.storyintro.length",

CHAPTER 7 ■ DYNAMIC FORMS AND THE STRUTS VALIDATOR FRAMEWORK 259

Ch07_7389_CMP3 9/27/06 1:10 PM Page 259

(String) super.get("storyIntro"), 2048,
errors);

checkForLength("Story Body",
"error.storybody.length",
(String) super.get("storyBody"),
10000,
errors);

return errors;
}

public void reset(ActionMapping mapping,
HttpServletRequest request) {

ActionServlet servlet = super.getServlet();
MessageResources messageResources = servlet.getResources();

super.set("storyTitle",
messageResources.getMessage("javaedge.poststory.title.instructions"));

super.set("storyIntro",
messageResources.getMessage("javaedge.poststory.intro.instructions"));

super.set("storyBody",
messageResources.getMessage("javaedge.poststory.body.instructions"));

}
}

The first thing to notice about the PostStoryDynaForm class is that it extends the Struts
import org.apache.struts.action.DynaActionForm class rather than the Struts org.apache.
struts.action.ActionForm class:

public class PostStoryDynaForm extends DynaActionForm {
. . .

}

The DynaActionForm class extends the ActionForm. The DynaActionForm class is used to tell
the Struts framework that the class is a Dynamic Form and that its attributes need to be read
from the struts-config.xml file.

Because the DynaActionForm class extends the ActionForm class, it inherits the validate()
and reset() method from the parent. These methods are invoked by the Struts framework in
the exact same manner as their nondynamic ActionForm counterparts.

The PostStoryDynaForm’s validate() and reset() implementation looks almost
exactly like the PostStoryForm’s implementation. The only difference is how these methods
retrieve and set attributes when executing. Take a look at a code fragment from the
PostStoryDynaForm’s validate() method:

public ActionErrors validate(ActionMapping mapping,
HttpServletRequest request) {

ActionErrors errors = new ActionErrors();

checkForEmpty("Story Title", "error.storytitle.empty",
(String) super.get("storyTitle"),errors);

CHAPTER 7 ■ DYNAMIC FORMS AND THE STRUTS VALIDATOR FRAMEWORK260

Ch07_7389_CMP3 9/27/06 1:10 PM Page 260

checkForEmpty("Story Intro", "error.storyintro.empty",
(String) super.get("storyIntro"), errors);

checkForEmpty("Story Body", "error.storybody.empty",
(String) super.get("storyBody"), errors);

.
return errors;

}

When using Dynamic Forms, individual attributes are accessed by calling the
DynaActionForm’s get() method and passing in the name of the attribute that is to be retrieved:

checkForEmpty("Story Title",
"error.storytitle.empty",
(String) super.get("storyTitle"),
errors);

The DynaActionForm’s get() method will retrieve all values as objects. It is the responsibility
of the developer to cast the returned object to its appropriate type. If the get() method cannot
find the property requested, it will throw a NullPointerException.

To set an attribute on a Dynamic Form, you need to call the set() method on the
DynamicActionForm, passing in the name of the attribute to be set, along with the value to be
associated with that attribute. The set() method will accept only objects and not primitive
values.

The reset() method demonstrates how to set an attribute for a form:

public void reset(ActionMapping mapping,
HttpServletRequest request) {

ActionServlet servlet = super.getServlet();
MessageResources messageResources = servlet.getResources();
super.set("storyTitle",

messageResources.getMessage("javaedge.poststory.title.instructions"));
....

}

The DynaActionForm’s set() method does do type checking on the value being passed into
it. It does this by looking at the type attribute defined in the form attribute’s <form-property>
tag. If the set() finds that the object passed in does not match the type declared in the
<form-property>, it will throw an org.apache.commons.beanutils.ConversionException.
A ConversionException is an unchecked Java exception and does not have to be explicitly
caught within a try{}..catch{} block.

■Note Dynamic Forms allow the developer to quickly build forms without having to write extraneous Java
code. The only disadvantage with them is that the attributes are not type safe. A careless keystroke by a
developer can result in many hours of trying to debug this rather nefarious and difficult problem. However,
careful unit testing can help mitigate this risk. A great reference for unit testing is Java Development with
Ant by Erik Hatcher and Steve Loughran (Manning Publications, ISBN: 1-930-11058-8). While the book is
not entirely on unit testing, it does have some great chapters covering the topic.

CHAPTER 7 ■ DYNAMIC FORMS AND THE STRUTS VALIDATOR FRAMEWORK 261

Ch07_7389_CMP3 9/27/06 1:10 PM Page 261

Once a Dynamic Form’s <form-bean> tag and its corresponding <form-property> tags
have been declared, you’ve done all the work you need to do to tell Struts to use a dynamic
ActionForm class. The postStoryContent.jsp page that pulls data from the postStoryForm form
bean does not have to be modified. It does not care if you are using a nondynamic or dynamic
ActionForm.

Shown here is the rewritten PostStory Action class, pulling data from the dynamic
postStoryForm form bean defined earlier:

package com.apress.javaedge.struts.poststory;

import java.util.Vector;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;

import org.apache.struts.action.Action;
import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionForward;
import org.apache.struts.action.ActionMapping;
import org.apache.struts.action.DynaActionForm;

import com.apress.javaedge.common.ApplicationException;
import com.apress.javaedge.member.MemberVO;
import com.apress.javaedge.story.StoryManagerBD;
import com.apress.javaedge.story.StoryVO;
import com.apress.javaedge.story.dao.StoryDAO;

public class PostStory extends Action {

public ActionForward perform(ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response){

if (this.isCancelled(request)){
return (mapping.findForward("poststory.success"));

}

DynaActionForm postStoryForm = (DynaActionForm) form;

HttpSession session = request.getSession();

MemberVO memberVO = (MemberVO) session.getAttribute("memberVO");

try{

CHAPTER 7 ■ DYNAMIC FORMS AND THE STRUTS VALIDATOR FRAMEWORK262

Ch07_7389_CMP3 9/27/06 1:10 PM Page 262

StoryVO storyVO = new StoryVO();

storyVO.setStoryIntro((String)postStoryForm.get("storyIntro"));
storyVO.setStoryTitle((String)postStoryForm.get("storyTitle"));
storyVO.setStoryBody((String)postStoryForm.get("storyBody"));
storyVO.setStoryAuthor(memberVO);
storyVO.setSubmissionDate(new

java.sql.Date(System.currentTimeMillis()));
storyVO.setComments(new Vector());

StoryManagerBD storyManager = new StoryManagerBD();
storyManager.addStory(storyVO);

}
catch(Exception e){

System.err.println("An application exception" +
" has been raised in PostStory.perform(): " +
e.toString());
return (mapping.findForward("system.failure"));

}

return (mapping.findForward("poststory.success"));
}

}

There are really two differences between the PostStory class and the earlier PostStory
implementation shown in Chapter 3. First, the PostStory class just shown no longer casts the
ActionForm being passed into the perform() method on the class to the PostStoryForm class
shown earlier in the chapter. Instead, it casts the incoming ActionForm parameter to be of type
DynaActionForm:

DynaActionForm postStoryForm = (DynaActionForm) form;

Second, just like the validate() and reset() methods shown earlier, the PostStoryForm.
java implementation just shown does not call an individual getXXX() method for each prop-
erty on the ActionForm. Instead, it invokes the get() method on the class, passing in the name
of the property it wants to retrieve.

Some Thoughts About BeanUtils and the Preceding Code
You might be wondering why we did not use the BeanUtils.copyProperties() method to
populate the StoryVO class, as was shown in Chapter 4. In the example, we wanted to explicitly
demonstrate how to access Dynamic Form properties.

However, BeanUtils.copyProperties() does allow you to copy the properties from a Map
class into a JavaBean. The copyProperties() method will use the key of each value stored in
the Map object and try to match that to a get()/set() method on a JavaBean for copying. The
Map object that is to be copied must be passed in as the second parameter, the origin parame-
ter, on the BeanUtils.copyProperties() method.

CHAPTER 7 ■ DYNAMIC FORMS AND THE STRUTS VALIDATOR FRAMEWORK 263

Ch07_7389_CMP3 9/27/06 1:10 PM Page 263

So if you wanted to be consistent with what was shown in Chapter 4, you would rewrite
the buildStoryVO() method on the PostStoryForm class to look like this:

public StoryVO buildStoryVO(HttpServletRequest request)
throws ApplicationException{

HttpSession session = request.getSession();
MemberVO memberVO =

(MemberVO) session.getAttribute("memberVO");
StoryVO storyVO = new StoryVO();

try{
BeanUtils.copyProperties(storyVO, this.getMap());

}
catch(IllegalAccessException e) {

throw new ApplicationException("IllegalAccessException" +
" in PostStoryForm.buildStoryVO()",e);

}
catch(InvocationTargetException e){

throw new ApplicationException("InvocationTargetException " +
" in PostStoryForm.buildStoryVO()",e);

}

storyVO.setStoryAuthor(memberVO);
storyVO.setSubmissionDate(new java.sql.Date(System.currentTimeMillis()));
storyVO.setComments(new Vector());

return storyVO;
}

The only difference between the buildStoryVO() method shown here and the
buildStoryVO() method shown in Chapter 4 is

BeanUtils.copyProperties(storyVO, this.getMap());

The Struts DynamicActionForm lets you access the underlying Map that stores its properties
through the getMap() method. Otherwise the code is exactly the same.

Dynamic Form beans are a powerful feature of Struts. They allow you to easily implement
and change form beans without having to write a single line of code. This new feature keeps
very much in line with the philosophy of Struts: Let the framework do as much of the work as
possible, while allowing the developer to focus on building business code rather than infra-
structure code.

Dynamic Forms allow you to greatly reduce the amount of Java code that needs to be
written for a Struts form bean. However, while the Struts form beans are great for collecting
data, one of their biggest strengths lies in the fact that they allow the developer to easily sepa-
rate the validation data for the data being collected from the actual business rules being
executed on the data. However, as anyone with any web development experience can attest
to, writing validation logic for form data is a tedious undertaking. Oftentimes it involves exe-
cuting such basic tasks as checking to see if a web form field has been filled in by the end user,
whether it is the proper data type or the proper format, and so on.

CHAPTER 7 ■ DYNAMIC FORMS AND THE STRUTS VALIDATOR FRAMEWORK264

Ch07_7389_CMP3 9/27/06 1:10 PM Page 264

USING DYNAMIC FORMS TO DO RAPID PROTOTYPING

The introduction of Dynamic Forms in Struts version 1.1x has been incredibly useful for rapidly building
prototypes. Ideally, when building an application prototype, you want to be able to write the shell of the
application quickly. Then if you can get away with it, you want to use as much of the prototype code as
possible in the application.

Unfortunately, most development teams rarely get the time needed to really build a quality application
skeleton. The emphasis on speed to deliver the prototype often results in shoddy code that looks usable on
the surface, but from an architectural perspective is a “train wreck.”

Before Dynamic Forms, if the development team wanted to “shell” out the look and feel and navigation
for an application using Struts, the team still needed to write out the individual ActionForm classes needed
for each screen. This was a requirement because if you wanted to use the Struts tag libraries to mock up a
web form, the development team needed to have a fully implemented ActionForm class with each of the
get()/set() methods that were going to be displayed on the screen.

Development teams “under the gun” to build a prototype are not going to go through all of this extra
work. Instead, they usually end up using a combination of HTML and JSP scriptlets to throw the prototype
together. They end up meeting their goals, but then find themselves with little reusable code. Worse, their
management has now seen a “working” prototype and as is often the case jumps to the conclusion that
the application is almost done.

With Dynamic Forms, a development team can declare the form in the struts-config.xml file. However,
rather than extending and writing its own DynaActionForm class implementation and then declaring it
in the <form-bean> tag’s type attribute, the team can simply use org.apache.struts.action.
DynaActionForm for the type attribute’s value.

Thus, they do not have to write a Java class implementation. For example, if you just wanted to quickly
throw together a mock-up of the Post a Story screen using Struts, you could declare the following in the
application’s strut-config.xml file:

<struts-config>
<form-beans>

<form-bean name="postStoryForm"
type="org.apache.struts.validator.DynaActionForm">

. . .
</form-bean>

. . .
</struts-config>

Once this <form-bean> has been declared using DynaActionForm, it can be immediately used
throughout the prototype without having an actual class written. When the application is actually being built
out, a Java class can be written for the postStoryForm action and the type attribute can be modified to
point to the new class.

Fortunately, since Struts version 1.1x, a data validation framework called the Jakarta
Commons Validator framework has been integrated as a plug-in. The Validator framework
gives developers a rich library of common form validation tasks to immediately use in their
applications. The Validator framework is also extensible so that development teams can easily
add their own validation rules to the framework.

CHAPTER 7 ■ DYNAMIC FORMS AND THE STRUTS VALIDATOR FRAMEWORK 265

Ch07_7389_CMP3 9/27/06 1:10 PM Page 265

The Jakarta Commons Validator Framework
The Validator framework used in Struts did not originate in the Struts project. Rather, the
Validator framework is part of the Apache Jakarta Group’s Commons project (http://jakarta.
apache.org/commons). The Struts development team chose to integrate the Jakarta Commons
Validator as a Struts plug-in. The team also extended the Validator framework to make the
generic validation rules used in the Validator framework fit smoothly into the Struts validation
infrastructure.

The Struts developers did this because they found that after implementing several Struts-
based applications, they were performing the same types of validation over and over again.
Some of these common validations included

• Checking to see if the user has entered all required fields

• Checking to see if data is within a minimum or maximum size

• Checking to see if the data entered is of the right type

In the next several sections, we are going to show you how to use the Jakarta Commons
Validator framework and the PostStoryDynaForm implementation we examined earlier to
collect the Post a Story pages form data and apply the following validation rules:

• Check to make sure that the Story Title, Story Body, and Story Introduction fields on the
Post a Story page are filled in by the end user.

• Validate that each field entered by the user does not exceed a certain character length.

• Check to see if there is any vulgarity present in the user’s story.

The first two validation rules will be enforced using “out-of-the-box” validation rules
that come with the Validator framework. The last validation rule, checking for vulgarity, will
be implemented as a custom validation rule that is going to be added to the existing Struts
framework. To use the Validator framework in the JavaEdge application, you must take the
following steps:

1. Configure Struts to use the Validator plug-in.

2. Define a <formset> tag in the validations.xml file that lists the validation rules that are
going to be fired off when validating the PostStoryForm.

3. Write a new JavaEdge validation rule that checks for vulgarity.

4. Add a new entry to the validator-rules.xml file to tell the Validator framework about the
new vulgarity rule.

Let’s begin our discussion by looking at how the Validator framework is set up and
configured.

Validator Framework Setup
The Validator framework requires a modification to the struts-config.xml file and the addition
of two new configuration files: validator-rules.xml and validation.xml. Struts version 1.1 now

CHAPTER 7 ■ DYNAMIC FORMS AND THE STRUTS VALIDATOR FRAMEWORK266

Ch07_7389_CMP3 9/27/06 1:10 PM Page 266

allows new functionality to be added the framework via a plug-in. The Validator framework is
one such plug-in.

To make Struts aware of the Validator framework, you need to add the following entry to
the end of the JavaEdge struts-config.xml file:

<plug-in className="org.apache.struts.validator.ValidatorPlugIn">
<set-property property="pathnames" value="/WEB-INF/validator-rules.xml,

/WEB-INF/validation.xml"/>
</plug-in>

The <plug-in> tag goes at the end of your struts-config.xml file. It defines the fully quali-
fied Java class that represents the plug-in point between Struts and the third-party software.
The <set-property> tag is used to set a plug-in–specific property. In the preceding example,
the pathnames property contains a comma-separated list telling the Validator framework
where to find the validator-rules.xml file and the validation.xml file.

The validator-rules.xml file contains individual XML tags that describe the rules that
come with the Validator framework. The validator-rules.xml file that comes with the Struts
distribution will contain descriptions of all of the predefined validation rules that come as
part of the Validator framework. A partial listing of the validation rules defined in the valida-
tor-rules.xml file is shown in Table 7-2.

Table 7-2. Validator Rules

Rule Name Rule Description

required Validates that the field has been filled in by the end user

requiredif Deprecated; use validwhen

validwhen Checks one field with another

minlength Checks to ensure that the value entered is of a minimum length

maxlength Checks to ensure that the value entered is of a maximum length

range Deprecated; use intRange, doubleRange, or floatRange

mask Validates that the field entered is of a particular format

byte Validates that the field entered is of type byte

short Validates that the field entered is of type short

integer Validates that the field entered is of type integer

long Validates that the field entered is of type long

float Validates that the field entered is of type float

double Validates that the field entered is of type double

date Validates that the field entered is of type date

creditcard Validates a credit card format

email Validates that the field entered is a properly formatted e-mail address

intRange Validates whether an integer is within a particular range

floatRange Validates whether a float is within a particular range

doubleRange Validates whether a double is within a particular range

CHAPTER 7 ■ DYNAMIC FORMS AND THE STRUTS VALIDATOR FRAMEWORK 267

Ch07_7389_CMP3 9/27/06 1:10 PM Page 267

The validation.xml file contains the mappings to each form bean in the application that is
going to use the Validator framework. The validation.xml file maps each form bean field to the
validation rule that is going to be invoked against it. We will be going through some of the vali-
dation.xml details shortly.

Implementing the Required Fields Validation
In the Post a Story page, Story Title, Story Introduction, and Story Body are all required fields.
To use the Validator to enforce these rules, you must create a file called validation.xml. Shown
here is the validation.xml file that is used for enforcing required fields validation:

<form-validation>
<formset>

<form name="postStoryForm">
<field property="storyTitle" depends="required">

<msg name="required" key="error.poststory.field.null"/>
<arg0 key="javaedge.poststory.form.titlelabel"/>

</field>
<field property="storyIntro" depends="required">

<msg name="required" key="error.poststory.field.null"/>
<arg0 key="javaedge.poststory.form.introlabel"/>

</field>
<field property="storyBody" depends="required">

<msg name="required" key="error.poststory.field.null"/>
<arg0 key="javaedge.poststory.form.bodylabel"/>

</field>
</form>

</formset>
</form-validation>

The <form-validation> tag is the root element for the validation.xml file. The <formset>
tag represents a collection of forms for the application. A <formset> tag can contain one or
more <form> tags. A <form> tag represents one particular form bean in the application.

<form name="postStoryForm">

The name attribute on the <form> tag is the name of the form bean defined in the struts-
config.xml file. Each <form> tag has one or more <field> tags associated with it:

<field property="storyTitle" depends="required">
<msg name="required" key="error.poststory.field.null"/>
<arg0 key="javaedge.poststory.form.titlelabel"/>

</field>

The <field> tag represents a single attribute from the form that is going to be validated by
the Validator framework. A <field> tag has two attributes:

• property: The name of the field that is going to be validated. This must match the name
of a field defined in the <form-bean> on the struts-config.xml file. This is a mandatory
attribute.

CHAPTER 7 ■ DYNAMIC FORMS AND THE STRUTS VALIDATOR FRAMEWORK268

Ch07_7389_CMP3 9/27/06 1:10 PM Page 268

• depends: The depends attribute lists, from left to right, all of the validation rules that are
going to be invoked on the field. These rules will be fired off in the order they are listed.
In the preceding example, only the required rule is being applied against the field. This
is a mandatory attribute.

A <field> tag can contain one or more <msg> tags. The <msg> tag is used by the Validator
framework to determine what message should be displayed to the end user when a rule is
violated:

<msg name="required" key="error.poststory.field.null"/>

A <msg> tag has three attributes on it. The attributes available on the <msg> tag include the
following:

• name: The name attribute is the name of the rule the message is associated with. In the
preceding example, the value of name points to the required rule.

• key: The key attribute is the key for the message in the Struts resource bundle (that is,
ApplicationResources.properties) file. In the preceding example, the value of error.
poststory.field.null would be pulled from the ApplicationResources.properties file as

The following field: {0} is a required field.
Please provide a value for{0}.

The key attribute is a required attribute on the <form> tag.

• resource: The resource attribute tells the Validator framework that it should use the
resource bundle to look up an error message based on the value in the key attribute.
If the value of resource is set to true, then the resource bundle is used. If the value of
resource is set to false, the default Struts resource bundle will not be used and the
value in the key attribute will be taken as a literal string. The default value of the
resource attribute is true.

A <field> tag can also contain argument tags appropriately called <arg0>, <arg1>, <arg2>,
<arg3>, and <arg4>. These tags are used to pass arguments into the <msg> tags. The <argX> tag
allows developers to pass in values to a message defined in the Struts resource bundle. The
postStoryForm validation has one argument being passed into each of the messages on the
field.

For example, the Story Title field uses the following <arg0> tag to indicate that whenever
a validation error occurs on the storyValidation field of the postStoryForm, the following key
will be used to look up a value from the ApplicationResources.properties file and perform a
string substitution on the message:

<arg0 key="javaedge.poststory.form.titlelabel"/>

So, if users do not enter a value in the Story Title field, they get the following error message
presented to them:

The following field: Story Title is a required field.
Please provide a value for Story Title.

CHAPTER 7 ■ DYNAMIC FORMS AND THE STRUTS VALIDATOR FRAMEWORK 269

Ch07_7389_CMP3 9/27/06 1:10 PM Page 269

The <argX> tags have three attributes available to them:

• name: The name attribute defines the name of the validation rule this argument is associ-
ated with. For example, if you only wanted the first argument of the message to be
available when the required rule is invoked for the storyTitle field, you would write
the <arg0> tag as follows:

<arg0 name="required" key="javaedge.poststory.form.titlelabel"/>

If a name is not provided, this argument will be available to every validation rule that
fires off a validation exception for that particular field.

• key: The key attribute is the key for the message in the Struts resource bundle (that is,
ApplicationResources.properties) file.

• resource: The resource attribute tells the Validator framework that it should use the
resource bundle to look up an argument based on the value in the key attribute. If
the value of resource is set to true, then the resource bundle is used. If the value of
resource is set to false, the default Struts resource bundle will not be used and the
value in the key attribute will be taken as a literal string value. The default value of the
resource attribute is true.

Once you have defined all of the form and field mappings in the validation.xml file, you
still need to make one last change in order to validate your Dynamic Form bean against the
rules you have defined.

At this point, we have demonstrated how to set up a very simple validation rule using the
Validator framework. Let’s look at setting up a slightly more complicated rule using the
maxlength validation rule.

The maxlength Validation Rule
The next rule you want to implement for the rewritten Post a Story page is to put some maxi-
mum size limits on what the user can enter in each field on the page. To do this, you need to
set up the maxlength validation rule on each field.

Shown here is the revised validation.xml file, containing the new rule definitions:

<form-validation>
<formset>

<form name="postStoryForm">
<field property="storyTitle" depends="required,maxlength">

<msg name="required" key="error.poststory.field.null"/>
<msg name="maxlength" key="error.poststory.field.length"/>
<arg0 key="javaedge.poststory.form.titlelabel"/>
<arg1 name="maxlength" key="${var:maxlength}" resource="false"/>
<var>

<var-name>maxlength</var-name>
<var-value>100</var-value>

</var>
</field>
<field property="storyIntro" depends="required,maxlength">

CHAPTER 7 ■ DYNAMIC FORMS AND THE STRUTS VALIDATOR FRAMEWORK270

Ch07_7389_CMP3 9/27/06 1:10 PM Page 270

<msg name="required" key="error.poststory.field.null"/>
<msg name="maxlength" key="error.poststory.field.length"/>
<arg0 key="javaedge.poststory.form.introlabel"/>
<arg1 name="maxlength" key="${var:maxlength}" resource="false"/>
<var>

<var-name>maxlength</var-name>
<var-value>2048</var-value>

</var>
</field>
<field property="storyBody" depends="required,maxlength">

<msg name="required" key="error.poststory.field.null"/>
<msg name="maxlength" key="error.poststory.field.length"/>
<arg0 key="javaedge.poststory.form.bodylabel"/>
<arg1 name="maxlength" key="${var:maxlength}" resource="false"/>
<var>

<var-name>maxlength</var-name>
<var-value>100000</var-value>

</var>
</field>

</form>
</formset>

</form-validation>

To set up each field with the maxlength validation rule, you need to add the rule to the
value of the depends attribute on each <field> tag. For the Story Title field, this would look like
the following:

<field property="storyIntro" depends="required,maxlength">

Remember, rules are invoked from the left to the right. In the validation.xml file shown
previously, the required validation rule will be invoked before the maxlength rule.

Now that there are two rules associated with each field, you need to add <msg> tags that
will reflect different messages for each rule. In the Story Title field, you have two <msg> tags
with the name attribute of each <msg> tag being tied to a name defined in the <field> tag’s
depends attribute:

<msg name="required" key="error.poststory.field.null"/>
<msg name="maxlength" key="error.poststory.field.length"/>

In addition, each message is going to have two arguments passed to it. Thus, an <arg0>
and an <arg1> tag are defined in each <field> tag. For the Story Title field, this looks like the
following:

<arg0 key="javaedge.poststory.form.titlelabel"/>
<arg1 name="maxlength" key="${var:maxlength}" resource="false"/>

The first argument, <arg0>, is going to be shared across all messages being thrown by the
validation field. To do this, we do not define a name attribute on the <arg0> tag. However, the
second argument, <arg1>, is only going to be available to the maxlength validation rule. We
indicate this by setting the name attribute on the <arg1> tag to be maxlength.

CHAPTER 7 ■ DYNAMIC FORMS AND THE STRUTS VALIDATOR FRAMEWORK 271

Ch07_7389_CMP3 9/27/06 1:10 PM Page 271

Many of the validation rules in the Validator framework require values to be defined to
help enforce the validation rule. For instance, with the maxlength validation rule, you need to
tell the rule what the acceptable maximum length of the field being validated is. This value
can be set by using the <var> tag to define a value to pass into the validation rule.

■Note The <arg> tag is used to pass arguments to the error message being returned from a validation.
The <var> tag is used to pass values to the validation rule that is being used. This is brought up because it
is extremely easy to confuse how these two tags are used.

The maxlength validation rule takes a single parameter, maxlength, as an input value:

<var>
<var-name>maxlength</var-name>
<var-value>10</var-var>

</var>

The <var> tag contains two other tags: <var-name> and <var-value>. The <var-name> tag
holds the name of the input parameter being passed into the validation rule. The <var-value>
tag holds the value that is to be set for that variable.

Table 7-3 lists a few of the Validator rules that accept input parameters.

Table 7-3. A Few Validator Rules That Accept Input Parameters

Rule Name Parameter Names Parameter Description

minlength minlength Integer value representing the minimum
size of the field

maxlength maxlength Integer value representing the maximum
size of the field

intRange min, max Integer value representing the minimum
and maximum values for the field

mask mask Regular expression indicating the mask
to be applied to the field

url allowallschemes, allow2slashes,
nofragments, schemes Controls how the URL is validated

date datePattern Date pattern that is to be applied against
the field to determine whether or not the
user has entered a proper date

On the <arg1> tag you should have noticed the unusual syntax of the key attribute. The
<arg1> tag is set to the value ${var:maxlength}. This value will pull whatever value is defined for
the <var> tag whose <var-name> is equal to maxlength. You should note though that the value of
this variable will only be pulled if the resource attribute on the <arg1> tag is set to false.

At this point you now have two validation rules defined for the postStoryForm form bean.
Let’s take a look at how you can modify the PostStoryDynaForm class shown earlier to leverage
these two rules and still call the code that checks for the vulgarities within the story submission.

CHAPTER 7 ■ DYNAMIC FORMS AND THE STRUTS VALIDATOR FRAMEWORK272

Ch07_7389_CMP3 9/27/06 1:10 PM Page 272

Use the Validator Framework Within an
ActionForm Class
We are going to show you how to rewrite the PostStoryDynaForm class to use the Validator
framework. This new class is called PostStoryDynaValidatorForm.java and is shown here:

package com.apress.javaedge.struts.poststory;

import org.apache.struts.action.ActionMapping;
import org.apache.struts.validator.DynaValidatorForm;
import org.apache.struts.action.ActionForward;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;
import org.apache.struts.action.ActionErrors;
import org.apache.struts.action.ActionError;
import org.apache.struts.action.ActionServlet;
import org.apache.struts.util.MessageResources;

import com.apress.javaedge.common.VulgarityFilter;

public class PostStoryDynaValidatorForm extends DynaValidatorForm {

private void checkForVulgarities(String fieldName,
String fieldKey, String value,
ActionErrors errors){
VulgarityFilter filter = VulgarityFilter.getInstance();

if (filter.isOffensive(value)){
ActionError error =
new ActionError("error.poststory.field.vulgar",

fieldName);
errors.add(fieldKey, error);

}
}

public ActionErrors validate(ActionMapping mapping,
HttpServletRequest request) {

ActionErrors errors = super.validate(mapping, request);

checkForVulgarities("Story Title", "error.storytitle.vulgarity",
(String) super.get("storyTitle"),
errors);

checkForVulgarities("Story Intro", "error.storyintro.vulgarity",
(String) super.get("storyIntro"),
errors);

CHAPTER 7 ■ DYNAMIC FORMS AND THE STRUTS VALIDATOR FRAMEWORK 273

Ch07_7389_CMP3 9/27/06 1:10 PM Page 273

checkForVulgarities("Story Body", "error.storybody.vulgarity",
(String) super.get("storyBody"),
errors);

return errors;
}

}

The refactored postStoryForm Struts form bean is significantly smaller than its predecessors.
The original PostStoryForm.java class is 131 lines of code. The PostStoryDynaValidatorForm
class is 59 lines of code. By using Dynamic Forms and the Validator framework, a little over half
the code, give or take a few comment lines, for the postStoryForm form bean has been eliminated.

Modifying a Dynamic Form class to use the Validator framework requires the following
three steps to be undertaken:

1. Modify the Struts Action class in question to extend the DynamicValidatorForm class
instead of the DynaActionForm.

2. Call the validate() method on the parent DynamicValidatorForm class as the first
action in the Struts Action class’s validate() implementation.

3. Create a <form> tag in the validation.xml file to define the validation rules that are
going to be fired off when the form is validated.

The DynamicValidatorForm class is part of the org.apache.struts.validator package:

public class PostStoryDynaValidatorForm extends DynaValidatorForm {
}

To invoke the Validator framework from an existing validate() method on a Struts
ActionForm, you need to invoke the validate() method on the parent DynaValidatorForm
class, passing in the child class’s mapping and request object:

public ActionErrors validate(ActionMapping mapping,
HttpServletRequest request) {

ActionErrors errors = super.validate(mapping, request);
. . .

}

The DynaValidatorForm’s validate() method will look up the validation rules that are
to be applied to this form (if any) and invoke each of the rules. The DynamicValidatorForm’s
validate() method will return an ActionErrors collection for any Validation errors found
by the Validator Form class:

public ActionErrors validate(ActionMapping mapping,
HttpServletRequest request) {

ActionErrors errors = super.validate(mapping, request);

checkForVulgarities("Story Title", "error.storytitle.vulgarity",
(String)super.get("storyTitle"), errors);

. . .
}

CHAPTER 7 ■ DYNAMIC FORMS AND THE STRUTS VALIDATOR FRAMEWORK274

Ch07_7389_CMP3 9/27/06 1:10 PM Page 274

Using the Validator framework with Dynamic Forms significantly reduces the amount of
code that needs to be written for an ActionForm implementation. Furthermore, the Struts
framework is flexible enough to allow you to combine both “off-the-shelf” validation rules
from the Validator framework with your own custom code.

It is possible to use the Validator with nondynamic forms. To use an ActionForm class
employing get()/set() methods, have your ActionForm implementation extend the org.apache.
validator.ValidatorForm class rather than the standard Struts ActionForm class. Then, like
the Dynamic Form, have the first line of the ActionForm implementation call the parent
ValidatorForm’s validate() method (that is, super.validate(mapping, request);). Finally,
modify the <form-bean> tag’s type attribute to point to your class.

By mixing the Validator framework in with existing ActionForm implementations, you can
slowly start converting an existing Struts-based application over to these new features slowly
and methodically. This will allow you to manage the risk associated with using a new technol-
ogy feature and also give you the opportunity to evaluate how useful the Validator framework
is going to be in your environment.

Writing Your Own Validation Rules
One of the most powerful features of the Validator framework is the ability to extend it with
your own custom validation rules. In the JavaEdge application, any field on the Post a Story or
Post a Comment page must be checked for vulgarity.

Since this task is repeated over and over again, it makes sense to extend the Validator
framework and add the vulgarity checker as a validation rule. To create your own validation
rule and then use it in a Struts Dynamic Form, you need to perform the following steps:

1. Implement the rule using a method signature that the Struts/Validator framework
understands.

2. Modify the validation-rules.xml file to describe the new rules and the arguments that
should be passed to it.

3. Add a new <form> tag or modify an existing tag to indicate that the vulgarity rule is to
be applied when the form is validated.

Implementing the Vulgarity Rule
Writing a new validation rule is extremely easy and involves nothing more than providing an
“entry” method on a Java class that the Validator framework can call to invoke the validation
rule. However, there are two rules that must be followed when writing this entry method.

The first rule is that the entry method has to be declared as public and static. This rule
is in place because the Validator framework does not try to create a new instance of the Java
class–containing rule each time it tries to invoke the validation. This would be extremely inef-
ficient, because in a high-transaction environment this would lead to the creation of large
numbers of temporary objects.

The second rule is that the entry signature for the method must always be the following:

public static boolean methodName(
Object targetObject ,
ValidatorAction validatorAction ,
Field field ,
ActionErrors actionErrors ,
HttpServletRequest request){ . . . }

CHAPTER 7 ■ DYNAMIC FORMS AND THE STRUTS VALIDATOR FRAMEWORK 275

Ch07_7389_CMP3 9/27/06 1:10 PM Page 275

The targetObject parameter represents the Struts ActionForm class that is being processed
by the validation rule. The validatorAction parameter is a class that is part of the Validator
framework. The validatorAction parameter holds all of the metadata for the validation rule.
This metadata is described in the validator-rules.xml file inside of a <form> tag. Some of this
metadata includes what message arguments and variable parameters (for example, the maxi-
mum length of a field for the maxlength validation rule) and any dependencies the validation
rule might have on other fields in its <form>. The field parameter is of class type Field. The
Field class is also found in the Jakarta Commons Validator framework. The Field class is used
to represent the form field that the validation rule is firing against. This value will correspond to
a <field> tag defined inside a <form> in the validation.xml file.

The actionErrors parameter is passed to hold any errors that are raised during the execu-
tion of the validation rule. The request parameter is a standard HttpServletRequest object
that can be used by the validation rule to obtain any additional information that might need
to be used during the execution of the validation rule.

Finally, a method acting as a validation rule must return a Boolean value. If the value
returned by the method is true, the form field that is being validated by the method success-
fully passed the validation. If the value returned is false, the field being validated has violated
the validation rule.

Shown here is the implementation of the vulgarity rule as a Validator validation rule. It
has been refactored to take advantage of several features of the Validation framework (of
which we will get to shortly).

package com.apress.javaedge.common;

import javax.servlet.http.HttpServletRequest;
import org.apache.commons.validator.Field;
import org.apache.commons.validator.ValidatorAction;
import org.apache.struts.action.ActionErrors;
import org.apache.commons.validator.GenericValidator;
import org.apache.commons.validator.ValidatorUtil;
import org.apache.struts.validator.Resources;

import java.util.StringTokenizer;
import java.util.Enumeration;

public class VulgarityRule {

private static boolean isOffensive(String badWords, String value){
StringTokenizer tokenizer = new StringTokenizer(badWords,",");

while (tokenizer.hasMoreTokens()){
String badWord = tokenizer.nextToken().toLowerCase().trim();
if (value.toLowerCase().indexOf(badWord)!=-1){
return true;

}
}

CHAPTER 7 ■ DYNAMIC FORMS AND THE STRUTS VALIDATOR FRAMEWORK276

Ch07_7389_CMP3 9/27/06 1:10 PM Page 276

return false;
}

/*
Method that checks to see if the text contains a vulgarity.

*/
public static boolean isOffensive(Object targetObject ,

ValidatorAction validatorAction ,
Field field ,
ActionErrors actionErrors ,
HttpServletRequest request){

/*Checking to see if the target is null.*/
boolean TARGET_OBJECT_IS_NULL = (targetObject == null);
if (TARGET_OBJECT_IS_NULL) return true;

/*Checking to see if the field is null.*/
String fieldValue =
ValidatorUtil.getValueAsString(targetObject,
field.getProperty());

boolean FIELD_IS_NULL_OR_BLANK = GenericValidator.isBlankOrNull(fieldValue);
if (FIELD_IS_NULL_OR_BLANK) return true;

/*Getting the bad word list.*/
String vulgarities = field.getVarValue("vulgarities");

/*Checking to see if the value is offensive.*/
boolean RULE_INVALID = isOffensive(vulgarities, fieldValue);

if (RULE_INVALID){
actionErrors.add(field.getKey(),

Resources.getActionError(request,
validatorAction,field));

return false;
}

return true;
}

}

The public isOffensive() method is the entry point into the vulgarity checker validation
rule. The first thing this method does is determine whether or not the ActionForm (that is, the
targetObject parameter) is null and whether or not the field that is being validated by the rule
is null:

/*Checking to see if the target is null.*/
boolean TARGET_OBJECT_IS_NULL = (targetObject == null);
if (TARGET_OBJECT_IS_NULL) return true;

CHAPTER 7 ■ DYNAMIC FORMS AND THE STRUTS VALIDATOR FRAMEWORK 277

Ch07_7389_CMP3 9/27/06 1:10 PM Page 277

/*Checking to see if the field is null.*/
String fieldValue =
ValidatorUtil.getValueAsString(targetObject,
field.getProperty());

boolean FIELD_IS_NULL_OR_BLANK = GenericValidator.isBlankOrNull(fieldValue);
if (FIELD_IS_NULL_OR_BLANK) return true;

If either of these variables is null, you are going to return true. A null value cannot contain
a vulgarity.

To get the actual value of the field being called, you are going to use the getValueAsString()
method on the ValidatorUtil class:

String fieldValue =
ValidatorUtil.getValueAsString(targetObject,
field.getProperty());

The getValueAsString() method takes the ActionForm class and the name of the form
field, retrieved via the field.getProperty() method, as parameters.

Once the value of the submitted field is retrieved and placed into the fieldValue variable,
the value will be checked to see if it is null by calling the isBlankOrNull() method on the
GenericValidator class:

boolean FIELD_IS_NULL_OR_BLANK = GenericValidator.isBlankOrNull(fieldValue);

The GenericValidator class is part of the org.apache.common.validator package and
contains a set of base routines for performing basic types of validations. These validation
methods are only used as building blocks for writing more complex Validator validation rules.

After the ActionForm and field have been checked as to whether or not they are null,
the isOffensive() method is going to retrieve the list of words that are considered to be
vulgarities:

/*Getting the bad word list.*/
String vulgarities = field.getVarValue("vulgarities");

This is one place where we improved upon the functionality in the vulgarity checker. In
the original vulgarity checker class, all of the offensive words have been hard coded into the
class as an array of strings. If you want to modify the list, you need to modify the code, recom-
pile it, and redeploy.

Recall that earlier in our discussion about setting up a validation rule in the
validation.xml file, we mentioned validation rules can have parameters passed into them.
That is what the call to field.getVarValue("vulgarities") is doing. It is retrieving a comma-
separated list of vulgarities that have been defined specifically for the field being validated.

Once the vulgarity list has been retrieved, it and the field value that is going to be vali-
dated are sent to the private method isOffensive():

boolean RULE_INVALID = isOffensive(vulgarities, fieldValue);

The private isOffensive() method will tokenize the comma-separated list and check to
see if vulgarities are present. If a vulgarity is found in the submission, the private isOffensive()

CHAPTER 7 ■ DYNAMIC FORMS AND THE STRUTS VALIDATOR FRAMEWORK278

Ch07_7389_CMP3 9/27/06 1:10 PM Page 278

method will return true; otherwise it will return false. If the field being validated does contain a
vulgarity, then a new ActionError is going to be created and placed into the actionErrors vari-
able passed into the isOffensive() method.

if (RULE_INVALID){
actionErrors.add(field.getKey(),

StrutsValidatorUtil.getActionError(request,
validatorAction,field));

return false;
}

If a validation rule does fail, an ActionError class must be added to the actionErrors
parameter or the user will not see an error message displayed back to them. In the preceding
code snippet, an ActionError class is retrieved by calling the getActionError() method on the
StrutsValidatorUtil class. The getActionError() method will retrieve the ActionError object
based on the <msg> tag defined for the field in the validation.xml file. In summary, the code
you just saw demonstrates how to write a simple validation rule that is configurable via a
parameter.2 Let’s now look at how to let the Validator framework know that this vulgarity
rule exists and is available for use.

Adding the Vulgarity Rule to the validator-rules.xml File
To make the vulgarity rule available to the Validator framework, a description of the validation
rule needs to be added to the validator-rules.xml file. This new rule will be described with a
<validator> tag. Shown here is the <validator> tag for the vulgarity rule:

<validator
name="vulgaritychecker"
classname="com.apress.javaedge.common.VulgarityRule"
method="isOffensive"
methodParams="java.lang.Object,

org.apache.commons.validator.ValidatorAction,
org.apache.commons.validator.Field,
org.apache.struts.action.ActionErrors,
javax.servlet.http.HttpServletRequest"

msg="errors.vulgarity"
/>

The <validator> tag contains a number of attributes that describe different facets of the
validation rule. The name attribute is the logical name that the validation rule will be referred to
when being used in a <form>:

name="vulgaritychecker"

CHAPTER 7 ■ DYNAMIC FORMS AND THE STRUTS VALIDATOR FRAMEWORK 279

2. For other examples of how to write validation rules, download the Struts source code from the Jakarta
project and look at the FieldChecks.java file in the source directory/share/org/_apache/struts/
validator directory.

Ch07_7389_CMP3 9/27/06 1:10 PM Page 279

The classname attribute is the fully qualified Java class name that holds the validation
rule. In this case, the classname attribute contains the following value:

classname="com.apress.javaedge.common.VulgarityRule"

The method attribute contains the name of the method that will be invoked by the
Validator framework:

method="isOffensive"

Remember, the method name must be declared as both public and static. The
methodParams attribute lists the parameter types that will be passed into the method
declared in the method attribute:

methodParams="java.lang.Object,
org.apache.commons.validator.ValidatorAction,
org.apache.commons.validator.Field,
org.apache.struts.action.ActionErrors,
javax.servlet.http.HttpServletRequest"

The parameters listed here must be in the exact same order as the parameters listed in the
actual method.

■Note The Jakarta Commons Validator framework allows you to build validation rules that have different
method signatures. If you are going to write custom validation rules for use with the Struts/Validator plug-in,
the validation rules must use the parameter list shown in the preceding methodParams attribute. Struts
invokes validation rules using the preceding method signature. If your entry in the validation-rules.xml file
does not match this signature, your validation rule will not be properly recognized by Struts and the Validator
framework will not invoke the rule.

The final attribute in the <validator>, the msg attribute, defines the key of the error mes-
sage that will be displayed when the validation rule is violated.

This key, along with its corresponding message, is defined in the ApplicationResources.
properties file. The text of the error message from the ApplicationResources.properties file is
shown here:

error.vulgarity=The following field {0} has a vulgarity present in it.
Please correct this.

If you review the other validation rules in the validator-rules.xml file, you will find that
all of the <validation> tags that come with the Validator framework have a <javascript> tag
inside of them. The Struts Validator framework allows you to generate JavaScript validation
rules for web-form fields.

The <javascript> tag inside of each <validation> tag contains JavaScript code that is the
functional equivalent of the Java code for the validation rule. For example, shown here is the
<validation> tag for the maxlength validation rule:

CHAPTER 7 ■ DYNAMIC FORMS AND THE STRUTS VALIDATOR FRAMEWORK280

Ch07_7389_CMP3 9/27/06 1:10 PM Page 280

<validator name="maxlength"
classname="org.apache.struts.util.StrutsValidator"

method="validateMaxLength"
methodParams="java.lang.Object,

org.apache.commons.validator.ValidatorAction,
org.apache.commons.validator.Field,
org.apache.struts.action.ActionErrors,
javax.servlet.http.HttpServletRequest"

depends="required"
msg="errors.maxlength">

<javascript><![CDATA[
function validateMaxLength(form) {

var bValid = true;
var focusField = null;
var i = 0;
var fields = new Array();
oMaxLength = new maxlength();
for (x in oMaxLength) {

if (form[oMaxLength[x][0]].type == 'text' ||
form[oMaxLength[x][0]].type == 'textarea') {
var iMax = parseInt(oMaxLength[x][2]("maxlength"));
if (!(form[oMaxLength[x][0]].value.length <= iMax)) {

if (i == 0) {
focusField = form[oMaxLength[x][0]];

}
fields[i++] = oMaxLength[x][1];
bValid = false;

}
}

}
if (fields.length > 0) {

focusField.focus();
alert(fields.join('\n'));

}
return bValid; }]]>

</javascript>
</validator>

The vulgarity rule does not contain any JavaScript code within it, nor will this chapter be
discussing how to use or implement client-side JavaScript validation rules.

Struts Validation and Potential Long-Term Consequences
The main reason for not using or demonstrating the JavaScript validation rules is that while
JavaScript is a powerful tool, based on industry experience it tends to be abused and can often
have cross-platform execution issues. Furthermore, JavaScript can be easily turned off by end
users in their browser. This can quickly break an application that is dependent on JavaScript
for validation.

CHAPTER 7 ■ DYNAMIC FORMS AND THE STRUTS VALIDATOR FRAMEWORK 281

Ch07_7389_CMP3 9/27/06 1:10 PM Page 281

As discussed earlier, the inappropriate mixing of validation logic in JavaScript and Java
code often leads to the Validation Confusion antipattern. We would prefer that all validation
code be kept in a set of centralized Java classes (for example, ActionForms) where it can be eas-
ily maintained and modified.

The Struts framework’s validation mechanism is a powerful tool for building a consistent
interface for dealing with application validation errors. However, you do need to be aware of two
potential long-term architectural consequences of leveraging this functionality for your applica-
tions. First, you are moving your validation logic for a business application into code that is very
framework specific. If you use the ActionForm’s validate() method and/or the Struts Validator
framework, you are tightly coupling your validation logic to the Struts framework.

Secondly, Struts is a presentation framework for building web-based applications. If you
need to reuse your validation and business logic in a nonweb application, like a Swing appli-
cation, you are not going to be able to do it without rewriting code.

One solution to this would be to use the Validator framework in a stand-alone model,
independent of the Struts framework, and then move all of the validation logic to either the
value objects in the application or to your business objects. Then you could have the Struts
ActionForm.validate() method invoke the validation on the value object or the business
object and map the results back to an ActionErrors collection.

Another solution would be to implement your application’s validation logic in a set
of framework-independent validation classes that can be invoked from the ActionForm’s
validate() method or your business logic. These validation classes would throw an
ApplicationException if the rules were violated. Your application’s presentation layer,
whether it be Struts or some other kind of presentation layer (for example, a Swing interface),
would then catch the exception and process it accordingly.

While this does achieve long-term independence from the Struts framework of your vali-
dation logic, it requires infrastructure coding that you would not otherwise have to do if you
use the validation infrastructure already in Struts. In the end, it really comes down to what is
going to be right for your applications and application teams.

Implementing the Vulgarity Rule in a Form
Once the validator-rules.xml file has been modified to include a description of the vulgarity
rule, you are now able to use that rule in an actual field validation. Shown next is the <field>
tag for the storyTitle attribute for the postStoryForm form bean. The elements that appear in
bold are the new values that have to be added to activate the vulgarity rule.

<form-validation>
<formset>

<form name="postStoryForm">
<field property="storyTitle" depends="required,maxlength,vulgaritychecker">

<msg name="required" key="error.poststory.field.null"/>
<msg name="maxlength" key="error.poststory.field.length"/>
<msg name="vulgaritychecker" key="error.vulgarity"/>

<arg0 key="javaedge.poststory.form.titlelabel"/>
<arg1 name="maxlength" key="${var:maxlength}" resource="false"/>

CHAPTER 7 ■ DYNAMIC FORMS AND THE STRUTS VALIDATOR FRAMEWORK282

Ch07_7389_CMP3 9/27/06 1:10 PM Page 282

<var>
<var-name>maxlength</var-name>
<var-value>100</var-value>

</var>
<var>

<var-name>vulgarities</var-name>
<var-value>dummy, stupid, ninny</var-value>

</var>
</field>

. . .
</form>

</formset>
</form-validation>

When you compare the preceding field/validation mapping to the example shown earlier
in the chapter, you will see that adding the vulgarity checker to the mapping involves very lit-
tle effort. First you must add the rule vulgaritychecker to the comma-separated list of rules in
the property attribute:

<field property="storyTitle" field property="storyTitle"
depends="required,maxlength,vulgaritychecker">

You then declare the message that will be used by the Validator framework if an error is
raised:

<msg name="vulgaritychecker" key="error.vulgarity"/>

Since no arguments are going to be passed to the message, you will not need an <argX>
tag. The last XML element that needs to be defined is the list of the vulgarities that you are
going to be checking for. You do this by defining a <var> tag that contains the name of the
variable along with the list of vulgarities:

<var>
<var-name>vulgarities</var-name>

<var-value>dummy, stupid, ninny</var-value>
</var>

Once this mapping has been completed, you have now removed the need to have any
code in the validate() method on the PostStoryDynaActionForm class.

An ActionForm Without Java
Combining the power of Dynamic Forms with the Validator framework can allow the developer
to completely eliminate the need to write any Java code for an ActionForm. For the postStoryForm
bean, all of the attributes for the bean have been as XML inside of the struts-config.xml file.

All of the postStoryFrom form bean validation rules are either part of the existing Validator
framework (that is, the required and maxlength rules) or have been added as extensions to the
framework (for example, the vulgarity rule).

CHAPTER 7 ■ DYNAMIC FORMS AND THE STRUTS VALIDATOR FRAMEWORK 283

Ch07_7389_CMP3 9/27/06 1:10 PM Page 283

To completely eliminate the need for a custom form bean for the Post a Story page, you
need to make one more modification to the postStoryForm <form-bean> tag in the struts-config-
validator.xml file. This modification is shown here:

<form-bean name="postStoryForm"
type="org.apache.struts.validator.DynaValidatorForm">

<form-property name="storyIntro" type="java.lang.String"/>
<form-property name="storyBody" type="java.lang.String"/>
<form-property name="storyTitle" type="java.lang.String"/>

</form-bean>

In the preceding XML snippet, you see that you need to change the type of the class to be of
type DynaValidatorForm rather than of type PostStoryDynaActionForm. Whereas the earlier exam-
ple had the PostStoryDynaActionForm class extending the DynaValidatorForm class and then
overriding the DynaValidatorForm’s validate() method, you now use the DynaValidatorForm
class directly in your <form-bean> definition.

By configuring your <form-bean> in this manner, no Java class has to be written to per-
form validations. Instead, the DynaValidatorForm class executes all validations. Remember, all
of the validation rules for the postStoryForm form bean are defined in the validation.xml file.

When to Use the Validator Framework
The Validator framework is a very powerful tool that can empower your development team
and focus its energies on quickly delivering applications. However, like any framework, the
Validator framework is useful in some situations and in other situations causes more harm
than good.

The real power of the Validator framework comes into play when your development team
is building a large number of web-based forms that use the basic validation rules that come
with the framework. You can quickly leverage these validation rules and reduce the amount of
code needed to build out an application screen. The question becomes, what happens when
you have a set of validation rules that need to be applied against web forms that do not exist in
the Validator framework?

You have two choices in this situation: You can write a new validation rule and extend the
Validator framework, or you can embed the validation code inside of the validate() method
and keep it independent of the Validator framework.

We usually use the following questions to help us determine where a validation rule
should go:

• Is the validation rule going to be reused across multiple screens?

• How complex is the validation rule?

• Is the validation rule in question really a validation rule, or has some business logic
slipped into the validation layer?

The first question is a very valid question and should be considered carefully. If the vali-
dation code being written is going to be used in only one application screen, it does not make
sense to extend the Validator framework. One-time-use code is better served in the validate()

CHAPTER 7 ■ DYNAMIC FORMS AND THE STRUTS VALIDATOR FRAMEWORK284

Ch07_7389_CMP3 9/27/06 1:10 PM Page 284

method of an ActionForm class. Otherwise, you will find that over time your application’s vali-
dation rules will be extremely cluttered with single-use rules. As your validator-rules.xml file
becomes bigger and bigger, you will have a hard time tracking what rules can be reused.

The second question deals with complexity. The Validator framework allows you to build
dependencies between different validation rules and the fields that are being validated. Based
on our experiences, validation rules work best when they are used to validate a single field at
any given time. The more complexities and interrelationships that exist between rules and
fields, the more difficult it is to build a maintainable application. If you are building a custom
validation rule, if you find yourself having to code these dependencies into your rule, you
probably should consider leaving that validation rule out of the Validator framework and
keeping it in a validate() method.

The third question, “Is the logic really a validation rule or is it business logic?” is very
much related to the second question. Developers building validation rules for the first time
with the Validator framework oftentimes let logic that is better located in the business applica-
tion tier “slip” into the validation logic.

Always keep the following mind:

• Validation rules are meant to validate data within a field. While you capture interdepen-
dencies between field values, do not allow yourself to get carried away with your
implementation.

• The Validator framework is supposed to allow you to quickly build web forms. If you
find yourself getting bogged down in writing the validation rules for a form, you are
probably going beyond the intent of the framework.

• Use the tools like the Validator framework to quickly build your applications, but do not
let the structure of your applications become confined by the restrictions imposed by
the tools.

• The Validator framework should be extended only when the rule being written is “light-
weight” and can be reused across multiple business objects and applications.

Summary
This chapter has introduced you to some of the core pieces of functionality found in the Struts
Dynamic Forms and the Jakarta Commons Validator framework features. For Dynamic Forms,
we showed you how to

• Declare Dynamic Form beans in the struts-config.xml file.

• Use different implementations of Dynamic Forms, including the following:

• Extending the DynamicValidatorForm to write a Dynamic Form eliminates the need
to write individual get()/set() methods while still allowing the developer to over-
ride the validate() and reset() methods of the ActionForm.

• Using the DynamicValidatorForm class without validations allows the development
team to use Struts to quickly build a prototype that can then be iteratively con-
verted to an actual application.

CHAPTER 7 ■ DYNAMIC FORMS AND THE STRUTS VALIDATOR FRAMEWORK 285

Ch07_7389_CMP3 9/27/06 1:10 PM Page 285

We also introduced you to the Struts Jakarta Commons Validator framework and how,
when combined with Dynamic Forms, a development team could build web form applica-
tions with little-to-no Java code. Specifically, we discussed

• How to set up and configure the Struts/Jakarta Commons Validator plug-in.

• The configuration files used by the Validator plug-in. These files include the following:

• validator-rules.xml: Defines all of the validation rules that are available for use
by an application. By default, the Validator framework comes with a number of
prepackaged rules. In addition, custom validation rule definitions can be added
to this file.

• validator.xml: Defines the Struts form-to-validation rules mapping. Individual
fields on a Struts form are mapped to validation rules within this file.

• Mapping a form’s fields to validation rules defined in the validator-rules.xml file. Some
of the steps involved with mapping validation rules include the following:

• Set up a <formset> tag to define a web form.

• Define a <field> tag to map individual form fields to validation rules.

• Passing additional information to individual field-validation rules, including

• The error message keys, defined by the <msg> tag, used to locate the error messages
that will be passed to the end user

• Any arguments, defined via the <argX> tags, that are going to be passed to the error
messages when an error is raised

• Metadata, defined via the <var> tags, that help define how the rule is to behave

• Some examples of field-to-validation rule mappings. The two rules that were demon-
strated were required and maxlength.

• How to use the Validator framework in a number of different scenarios, including

• Using the Validator framework to define validation in combination with a Dynamic
Form’s validate() method

• Using the Validator framework and Dynamic Forms to eliminate the need for a Java
ActionForm implementation

• How to extend the Validator framework with custom validation rules. The steps
involved with implementing a custom validation rule include the following:

1. Write the validation rule using a Validation framework–compliant method
signature.

2. Describe the new validation rule in the validator-rules.xml file.

3. Modify the validation.xml file so the forms actually implement the rule.

CHAPTER 7 ■ DYNAMIC FORMS AND THE STRUTS VALIDATOR FRAMEWORK286

Ch07_7389_CMP3 9/27/06 1:10 PM Page 286

We finished the chapter by discussing when it is appropriate to extend the Validator
framework with your custom validation rules. We identified three questions that should be
asked when trying to make this decision:

• Is the validation rule going to be reused across multiple screens?

• How complex is the validation rule?

• Is the validation rule in question really a validation rule or has some business logic
slipped into the validation layer?

In the end, the decision to use Dynamic Forms and the Validator framework comes down
to whether or not these tools will work within the architectural context of your application.
Not every piece of Struts is going to be right for the project you are working on. Trying to lever-
age every piece of functionality of the Struts framework will oftentimes lead to a significant
increase in the amount of time and energy needed to implement an application.

CHAPTER 7 ■ DYNAMIC FORMS AND THE STRUTS VALIDATOR FRAMEWORK 287

Ch07_7389_CMP3 9/27/06 1:10 PM Page 287

Ch07_7389_CMP3 9/27/06 1:10 PM Page 288

Speeding Struts
Development with XDoclet

One of the most common complaints voiced by J2EE developers is that writing a J2EE appli-
cation, even a small application, is a complicated process. These complaints are valid because
writing a J2EE application, even a simple JSP/servlet-based application using Plain Old Java
Objects (POJOs), requires more than just writing the logic that carries out the user’s request.
It requires the developer to set up and configure a number of deployment descriptors and
configuration files in order for the application to be deployed.

Look at the configuration steps needed to build a JSP/servlet-based application like the
JavaEdge application used in this book. Before the JavaEdge application can even be run in a
servlet engine like Tomcat, a web.xml file must be written that describes the servlet and maps
any calls to the servlet to a URL. Since the JavaEdge application uses a number of third-party
JSP tag libraries, the web.xml file must also include the Tag Library Definitions (TLDs) for the
tags in the JavaEdge application’s web.xml file.

One can argue that setting up a single configuration file like the web.xml file is not a cum-
bersome burden for a development team to undertake. Now, let’s say that you wanted to use
stateless session Enterprise JavaBeans (EJBs) to encapsulate the JavaEdge application’s business
logic and entity EJBs to retrieve and access data. In order to implement the EJBs for the applica-
tion, you must write for each EJB being used three Java classes (the home and remote interfaces
and the bean class that executes the business logic or retrieves and manipulates data), and two
deployment descriptors: the application server–independent ejb-jar.xml file and an application
server–specific file that describes the EJB to the application server it is running in.

Even if the JavaEdge application used only three stateless session EJBs, the extra overhead
involved with writing and implementing the EJBs translates into a total of six Java classes (the
remote and home interfaces) and six deployment descriptors. All of this “extra” code and
deployment descriptors are needed to deploy the JavaEdge application, but in the end they
really amount to nothing more than overhead. Furthermore, the difficulty of writing these EJB
deployment descriptors can vary. Writing the deployment descriptors for a stateless session
EJB takes very little effort. However, trying to implement the deployment descriptors for an
entity EJB using Container Managed Persistence (CMP) and Container Managed Relations
(CMR) can turn into an effort of Herculean proportions.

289

C H A P T E R 8

■ ■ ■

Ch08_7389_CMP3 9/28/06 8:42 PM Page 289

Looking at the JavaEdge application, all of the configuration files and deployment
descriptors that have been described are J2EE-specific files. If you start adding in the configu-
ration files needed for using frameworks like Struts (such as struts-config.xml, validation.xml,
etc.) and ObjectRelationalBridge (ojb.properties and repository.xml), the complexity of build-
ing and deploying the JavaEdge application grows significantly.

One of the fundamental problems of the J2EE development platform is that it has poor
complexity scalability.

■Definition Complexity scalability is the ability for a development platform to remain simple to use even
in the face of multiple technologies and development paradigms (thin-client, multitiered, object-oriented). As
most J2EE developers will tell you, because J2EE has to remain platform and vendor independent, building
enterprise applications on the J2EE platform often requires tremendous amounts of metadata on the appli-
cation server to run the application.

A development platform has poor complexity scalability as the application becomes more
complex; the amount of information needed to get the application running becomes almost
unmanageable.

As the number of pieces of a J2EE application increases, the complexity of building and
deploying the application does not grow in a proportional manner to the amount of code
being written. Instead, the complexity of the application skyrockets because of the additional
overhead introduced with all of the configuration and deployment descriptor files. Any J2EE
developer who has paid penance in deployment descriptor purgatory1 can attest to the amount
of time and energy wasted on a project that can be traced back to a mistyped entry in a config-
uration file or a missing deployment descriptor.

What is needed here is a process that allows J2EE application code to be self-describing, so
that deployment descriptors and support class files can be generated in a repeatable and con-
sistent fashion. The process needs to be self-describing so that metadata needed to deploy the
application can be contained within the application code. The process needs to be repeatable
so that developers can use the same process and procedures to generate their applications.
They should not have to jump through hoops to generate the metadata for their application.
Whatever is generated should have the same consistent look and feel. This makes maintaining
the application easier and ensures that every type of deployment descriptor in the application
looks the same.

Fortunately, the Java Open Source community has developed a Java code generator that
meets these three criteria: XDoclet. XDoclet allows developers to embed custom, non-Sun
JavaDoc tags inside of their individual classes that, when run through the XDoclet engine,
can be used to generate many of the “support” files need for a J2EE application.

CHAPTER 8 ■ SPEEDING STRUTS DEVELOPMENT WITH XDOCLET290

1. Deployment descriptor purgatory is a state of staring at a screen full of error messages for days only to
realize it was not the code that was causing the problem, but the configuration. It is not as bad as
Microsoft’s DLL hell, but it comes close.

Ch08_7389_CMP3 9/28/06 8:42 PM Page 290

Going through a complete and thorough examination of XDoclet is outside the scope of
this book. However, we are going to show you how XDoclet can be used to help simplify many
of the common tasks associated with building a Struts-based application. Specifically, this
chapter will look at

• How to obtain and install XDoclet

• A conceptual view of how XDoclet generates code and configuration files

• How to use XDoclet to perform such common tasks as

• Generating an application’s web.xml file

• Automating the creation of common Struts files including the struts-config.xml file
and the Struts/Validator framework validation.xml file

Let’s begin this exploration of XDoclet by looking at where to obtain and install the
XDoclet tool.

Installing XDoclet
To install and use XDoclet, you need to first download the XDoclet distribution from http://
xdoclet.sourceforge.net/xdoclet/index.html. From this site you can download XDoclet in
the following forms:

• The source code distribution: This distribution includes the XDoclet source code, build
scripts, and documentation needed to build the XDoclet tool. This distribution includes
several useful samples of how to use various XDoclet tags.

• The binary distribution: The binary distribution includes all of the XDoclet libraries
already compiled and in a jar format. In addition, all of the documentation and sample
source code is included in this distribution.

• The library distribution: The library distribution has nothing in it but the XDoclet core
and contributor jar files.

All distributions include the considerable number of contributor extensions that have
been built around the core XDoclet engine.

The XDoclet engine is invoked from within an Ant script. XDoclet includes several Ant
Tasks that allow a developer to control its behavior. However, before just going out and using
XDoclet, there are some dependencies that you must take into consideration:

• XDoclet requires the use of Ant 1.5 and higher.

• The tools.jar file from the JDK being used in your project must be in your Ant build
script’s classpath.

• XDoclet requires the presence of the XJavaDoc engine. XJavaDoc is a clone of the
JavaDoc engine included with the JDK distribution. XJavaDoc can be downloaded from
http://xdoclet.sourceforge.net/xjavadoc/. The jar file for XJavaDoc must be in your
Ant build script’s classpath.

CHAPTER 8 ■ SPEEDING STRUTS DEVELOPMENT WITH XDOCLET 291

Ch08_7389_CMP3 9/28/06 8:42 PM Page 291

• The XDoclet jar files must be visible to your Ant build script’s classpath. You can accom-
plish this in one of three ways:

• You can copy the XDoclet jar files to your Ant distributions lib directory.

• You can set the classpath in your Ant build script to point to your unzipped
XDoclet directory.

• You can copy the XDoclet jars to the JavaEdge application’s lib/build directory.
We chose this route because the JavaEdge Ant script was written to automatically
include any jar files present in the lib directory.

Once your XDoclet distribution has been downloaded and placed in a location visible to
your Ant build scripts, you can begin using it. However, we are not going to jump right into all
of the “gory” details associated with XDoclet. Instead, we will start our conversation about
XDoclet with a high-level overview of the tool.

What Exactly Is XDoclet?
XDoclet is built around the concept of Attribute-Oriented Programming (AOP).2 Simply put,
the concept of AOP is to embed metadata, called attributes by the XDoclet team, inside of the
actual Java source code for an application. This metadata is then read by the XDoclet engine
and used to generate additional Java code, configuration files, and/or deployment descriptors.

■Note The concepts of metadata attributes are built into the .NET platform. Metadata attributes help
developers control the complexity of their applications by providing contextual information about the
application to its runtime environment. XDoclet implements metadata attributes by parsing the source
code. In JDK 1.5, metadata attributes will be included as part of the base language.

The XDoclet team extended Sun’s built-in JavaDoc engine and added several new @ tags
that can be used to define application metadata. The best way to understand XDoclet’s
approach to using JavaDoc-based tags to implement AOP-based programming is to see an
example.

If you remember, the MemberFilter class is a servlet filter that checks each incoming
HTTP request to see if the user has logged in. In order for the JavaEdge application to use the
MemberFilter class, the web.xml file must be configured with two entries. The first entry is a
<filter/> tag that describes the Java class that is going to be used to implement the filter. The
second tag, <filter-mapping/>, maps the filter described in the <filter/> tag to a URL.

Shown next is the MemberFilter.java class file. This class has been modified to include the
XDoclet tags that can be used to generate the <filter/> and <filter-mapping/> tags found
inside of the JavaEdge application’s web.xml file.

CHAPTER 8 ■ SPEEDING STRUTS DEVELOPMENT WITH XDOCLET292

2. Attribute-Oriented Programming (AOP) should not be confused with the concept of Aspect-Oriented
Programming (AOP). Unfortunately, AOP is often bandied around as an acronym for both concepts
even though they really are two separate subjects.

Ch08_7389_CMP3 9/28/06 8:42 PM Page 292

package com.apress.javaedge.common;

import java.io.IOException;
import javax.servlet.Filter;
import javax.servlet.FilterChain;
import javax.servlet.FilterConfig;
import javax.servlet.RequestDispatcher;
import javax.servlet.ServletException;
import javax.servlet.ServletRequest;
import javax.servlet.ServletResponse;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpSession;

import com.apress.javaedge.member.MemberVO;
import com.apress.javaedge.member.dao.MemberDAO;

/**
* This MemberFilter will check to see if the user is currently logged in. If
* they are not logged in, the user will automatically be set up with an
* anonymous login. This login is defined as the first record in the
* database.
*
* Filter information
*
* @author John Carnell
*
* -----------------------XDoclet Tags -------------------------------
* @web.filter name="MemberFilter"
* description="Filter for determining who the JavaEdge user is."
* display-name="Member Login Filter"
* @web.filter-mapping servlet-name="MemberFilter"
* url-pattern="/execute/*"
* -----------------------XDoclet Tags -------------------------------
public class MemberFilter implements Filter{

. . .
}

The MemberFilter class just shown is using two XDoclet tags in the preceding source code
to generate the <filter/> and <filter-map/> entries: @web.filter and @web.filter-mapping.
When this code is run through the XDoclet engine, the following entry is generated in the
web.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN
" "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app >
<distributable/>

CHAPTER 8 ■ SPEEDING STRUTS DEVELOPMENT WITH XDOCLET 293

Ch08_7389_CMP3 9/28/06 8:42 PM Page 293

<!--
To use non XDoclet filters, create a filters.xml file that
contains the additional filters (eg Sitemesh) and place it in your
project's merge dir. Don't include filter-mappings in this file,
include them in a file called filter-mappings.xml and put that in
the same directory.
-->

<filter>
<filter-name>MemberFilter</filter-name>
<display-name>Member Login Filter</display-name>
<description><![CDATA[Filter for determining who the JavaEdge user is.]]><

/description>
<filter-class>com.apress.javaedge.common.MemberFilter</filter-class>

</filter>

<filter-mapping>
<filter-name>MemberFilter</filter-name>
<url-pattern>/execute/*</url-pattern>

</filter-mapping>

. . .
</web-app>

Based on the simple XDoclet example just shown, we can make the following observations:

• To use XDoclet, you do not have not modify any of the actual Java source code. You just
need to add some XDoclet tags.

• The XDoclet tags fit cleanly into the application’s comments. The metadata for the
MemberFilter class is very easy to read and conveys a significant amount of information
in a very human readable fashion.3

• The inclusion of the web filter XDoclet tags allows you to significantly reduce the com-
plexity of writing the <filter/> and <filter-map/> tags in the web.xml file. Five lines of
XDoclet tags allow you to avoid writing ten lines of web.xml text.

These three points should demonstrate that using XDoclet allows a development team
to more effectively scale the complexity of their applications. Let’s now look at the individual
steps that are involved with marking up the example application source code and generating
the resulting web.xml file using XDoclet.

CHAPTER 8 ■ SPEEDING STRUTS DEVELOPMENT WITH XDOCLET294

3. While XML, the format that most configuration files and deployment descriptors are now based on, is
human readable, it is oftentimes very obtuse and difficult to follow.

Ch08_7389_CMP3 9/28/06 8:42 PM Page 294

From XDoclet to Source, and All the Steps in Between
Figure 8-1 gives a walkthrough of the steps involved with translating XDoclet metadata tags
into Java source code and/or configuration files.

Figure 8-1. The XDoclet process

As you saw earlier, step 1 of the process involves the development team marking their
Java classes up with XDoclet tags. XDoclet is not a stand-alone code generator; it must be used
as part of Ant build script.

■Note We assume you already know how to use Ant. For further information on Ant, please visit
http://ant.apache.org.

So in addition to marking up their application code, a development team using XDoclet
must modify their Ant build scripts to include an XDoclet Ant Task. (We will be covering some
of these build tags later on in the chapter.)

In step 2 of the preceding process, an Ant build script is going to be executed. One or
more targets within the Ant build script will contain XDoclet Ant Tasks that will be used to fire
off the XDoclet engine. Whenever an XDoclet Ant Task is encountered, the task will kick off
two basic processes.

The first process, which is step 3 in Figure 8-1, is the parse process. The XDoclet Ant Task,
based on the configuration information contained within it, will search through all of the Java
source files and look for the specific set of XDoclet tags associated with the XDoclet task. It will

CHAPTER 8 ■ SPEEDING STRUTS DEVELOPMENT WITH XDOCLET 295

Ch08_7389_CMP3 9/28/06 8:42 PM Page 295

then begin generating either deployment descriptors, configuration files, or source code
based on the XDoclets embedded in the application’s source code.

Let’s not forget though that XDoclet is a code generator. Oftentimes when writing up a
configuration file, like a web.xml file, you might need to include static content as part of the
file being dynamically generated. For instance, a development team using XDoclet might need
to configure a servlet contained within a jar file (for example, the Struts ActionServlet). This is
where step 4 comes into play.

XDoclet allows the development team to define static pieces of a configuration file in
what is called a merge point. As an XDoclet Ant Task parses an application’s source file, it will
try to locate any merge-point files (the actual merge files are different for each XDoclet Ant
Task) and merge the content of these files with the content dynamically generated from the
XDoclet tags inside the Java source code.

Another use for merge-point files is where you do not want to write Java code for some-
thing simple, like setting up a default action in Struts, but you need to make sure that the
information is added to the configuration file. For instance, you might want to send users to a
JSP page if they try to go to a URL not available in an application. You are not going to write a
Struts Action class just for this. Instead, you could place the following <action> definition in a
merge-point file called struts-actions.xml:

<action path="/foo"
unknown="true"
forward="/WEB-INF/foo.jsp"/>

The combination of static and dynamic text results in the output of a Java source file, con-
figuration file, or deployment descriptor.

■Note Remember that XDoclet does not just generate configuration files. Several XDoclet tags (for exam-
ple, <ejbdoclet....>) actually generate source code. There are even instances where that generated
source code can include source from a merge-point file.

If the output is Java source code, the Ant script can compile the source. If the output is a
configuration file or a deployment descriptor, the Ant script can then package it and deploy it
as a jar, war, or ear file.

We have now walked you through the conceptual process of using XDoclet. Let’s revisit
the web filter example used earlier in the chapter. We will explore in greater detail

• The available XDoclet tags

• The anatomy of an XDoclet tag

• Setting up and configuring Ant to parse and process XDoclet tags

After we go through this explanation, we will start looking at the Struts XDoclet tags.

CHAPTER 8 ■ SPEEDING STRUTS DEVELOPMENT WITH XDOCLET296

Ch08_7389_CMP3 9/28/06 8:42 PM Page 296

The Available XDoclet Tags
The number of XDoclet markup tags and the corresponding functionality they provide is
breathtaking and a bit overwhelming. Shown in Table 8-1 is a partial list of the technologies
supported by XDoclet.

Table 8-1. The Different XDoclet Tag Groups

Technology/Product Tag Prefixes Description

Apache SOAP and Apache Struts @soap Tags for generating SOAP descriptors,
@struts Tstruts-config.xml, and validation.xml

JSP and servlets @web Tags for generating the web.xml and the
@jsp TTLDs for custom JSP tags

Enterprise JavaBeans @ejb Tags for generating EJB remote interfaces,
home interfaces, and EJB deployment
descriptors

BEA WebLogic @weblogic Tags used to generate WebLogic-specific
deployment descriptor information

Borland Enterprise Application Server @bes Tags used to generate Borland Enterprise
Application Server–specific deployment
descriptor information

Oracle Container @oc4j Tags used to generate Oracle for Java
(OC4J) Container for Java–specific deployment

descriptor information

IBM WebSphere @web Tags used to generate WebSphere-specific
deployment descriptor information

JBoss Application Server @jboss Tags used to generate JBoss-specific
deployment descriptor information

Macromedia’s JRun @jrun Tags used to generate JRun-specific
Application Server deployment descriptor
information

Resin JSP/Servlet Engine @resin Tags used to generate Resin-specific
deployment descriptor information

ExoLab’s Castor @castor Tags used to generate O/R Mapping Tool
Object/Relational mappings for Castor

Hibernate O/R @hibernate Tags used to generate Mapping Tool
Object/Relational mappings for Hibernate

This list only shows the tag prefixes for each different product or technology set. Each
group of products can have literally dozens of XDoclet tags in them. For a full listing of these
tags, please visit the XDoclet project site.

While there are literally hundreds of XDoclet tags available for use, they all follow the
same basic rules and structures. So let’s examine the basic anatomy of an XDoclet tag.

CHAPTER 8 ■ SPEEDING STRUTS DEVELOPMENT WITH XDOCLET 297

Ch08_7389_CMP3 9/28/06 8:42 PM Page 297

Anatomy of an XDoclet Tag
Three levels of XDoclet tags can be embedded within the source:

• Class-level tags

• Method-level tags

• Field-level tags

Class-level tags are placed outside of the actual Java class definition. They provide meta-
data about the entire class. In the MemberFilter.java example shown at the beginning of the
chapter, the @web.filter tags are class-level tags.

Method-level tags are tags used to generate configuration information about individual
methods in a class. An example of a method-level XDoclet tag would be @struts.validator.
This tag is used to map validation rules from the Validator framework to individual setter
methods on an ActionForm class.4 We will be going through the details of @struts.validator
and other @struts tags later on in the chapter.

Field-level XDoclet tags are used to provide metadata information about individual prop-
erties within Java classes. Frankly, field-level tags are pretty uncommon. We are only aware of
one set of XDoclet tags (the @jdo tags) that actually use field-level tags.

Although there are three levels of XDoclet tags, the individual XDoclet tags have the same
structure. An XDoclet tag will always consist of a tag name followed by one or more tag attrib-
utes. Shown in Figure 8-2 is the @web.filter tag taken from the MemberFilter.java class.

Figure 8-2. Anatomy of an XDoclet tag

In the MemberFilter.java example shown earlier in the chapter, we used only a subset of
the @web.filter tags and attributes available. Table 8-2 provides a brief summary of all of the
@web.filter tags.

CHAPTER 8 ■ SPEEDING STRUTS DEVELOPMENT WITH XDOCLET298

4. If you are not familiar with the Validator framework, please review Chapter 7.

Ch08_7389_CMP3 9/28/06 8:42 PM Page 298

Table 8-2. The @web Tags and Their Descriptions

Tag Name Tag Attributes Tag Description

@web.filter name: A unique name for the filter. Generates a <filter>
This is a mandatory attribute. tag in the web.xml file.
display-name: The human-readable
display name of the filter.
icon: The path and filename of the
graphical icon used to represent
the filter.
description: Description of the filter.

@web.filter-init-param name: Name of an initialization Generates an <init-param>
parameter used by the filter. tag inside of a <filter> tag.
This is a mandatory attribute.
value: The value associated with
the parameter.
description: Description of the
initialization parameter.

@web.filter-mapping servlet-name: Name of the servlet Generates a <filter-mapping>
the web filter is going to be used with. tag with the appropriate
url-pattern: URL pattern that the <filter-name> and
filter will be used against. <url-pattern> tags.

This table only shows the @web tags used for building filter entries in the JavaEdge applica-
tion’s web.xml file. There are a number of additional XDoclet tags in the @web tags collection
that we have not covered. For full details, please visit the XDoclet site for a complete listing of
these tags.

Up until this point, we have looked at how to use the @web.filter tags to mark up the
MemberFilter.java class. Let’s look at how to actually integrate XDoclet into the JavaEdge
application. The integration of Ant and XDoclet, along with the @web tag material we just
covered, will lay the foundation for our discussions about the XDoclet @struts tags.

Integrating Ant and XDoclet
XDoclet currently has seven Ant Tasks that can be used for code generation. Each of these
tasks has a number different properties and nested elements available in them, including
those listed in Table 8-3.

Table 8-3. The Different XDoclet Tag Groups

Task Name Task Description

<doclet.../> The <doclet/> task is the base Ant Task for all of the preceding tasks. It
can be used to execute an XDoclet template that is not covered by any
of the other tasks. XDoclet allows developers to write their own code-
generation templates. For further information on writing your own
XDoclet templates, please refer to the XDoclet web site (http://
xdoclet.sourceforge.net/xdoclet/index.html).

<ejbdoclet..../> Used for carrying out various EJB-related tasks, including generating
EJB remote interfaces, EJB home interfaces, and EJB deployment
descriptors for a wide variety of application servers.

Continued

CHAPTER 8 ■ SPEEDING STRUTS DEVELOPMENT WITH XDOCLET 299

Ch08_7389_CMP3 9/28/06 8:42 PM Page 299

Table 8-3. Continued

Task Name Task Description

<hibernatedoclet..../> Generates Object/Relational (O/R) mappings for the open source tool
Hibernate (http://www.hibernate.org/).

<jdodoclet..../> Tasks for generating Java Data Objects (JDO) O/R mappings. JDO
is a Sun Microsystems vendor-neutral specification for building a
persistence tier. For more information on JDO, please visit
http://java.sun.com/products/jdo.

<jmxdoclet..../> Specifies tasks for generating Java Management Extensions (JMX)
classes. JMX is a Sun Microsystems API for building monitoring,
instrumenting, and managing Java-based devices, applications, and
networks. For more information on JMX, please visit http://java.
sun.com/products/JavaManagement/index.html.

<mockdoclet..../> Generates mock objects for use in testing. Mock objects provide a
testing framework that allows developers to test to common Java
interfaces. Mock objects allow a developer to simulate the behavior
of an object without having to actually fire off an implementation.

<webdoclet..../> Used for generating a number of web application–related tasks. This
Ant Task can generate multiple application-specific web.xml files. In
addition, this task is used by the @struts library to generate struts-
config.xml and validation.xml files.

Obviously, we cannot cover all of the details associated with the tasks listed in Table 8-3.
Instead, we will pick one tag, <webdoclet..../>, and demonstrate how it is used. The
<webdoclet..../> tag can be used to generate not only an application’s web.xml file, but
also a Struts-based application’s struts-config.xml and validation.xml file.

Let’s start by writing a simple Ant target called generate-source. The generate-source
target will use the <webdoclet..../> tag to parse through all of the Java source files in the
JavaEdge application and generate a web.xml file based on the @web tags found within the
source.

Shown here is the generate-source target:

<target name="generate-source">
<mkdir dir="${build.generated.dir}"/>
<taskdef name="webdoclet" classname="xdoclet.modules.web.WebDocletTask"

classpathref="compile.classpath"/>

<webdoclet
destdir="${build.generated.dir}"
mergedir="${src.web.dir}/WEB-INF/mergedir"
force="true">

<fileset dir=""${src.java.dir}">
<include name="**/*.java"/>

</fileset>
<deploymentdescriptor servletspec="2.3" destdir="${build.generated.dir}">

<taglib uri="http://java.sun.com/jstl/ea/core"
location="/WEB-INF/c.tld" />

CHAPTER 8 ■ SPEEDING STRUTS DEVELOPMENT WITH XDOCLET300

Ch08_7389_CMP3 9/28/06 8:42 PM Page 300

</deploymentdescriptor>
</webdoclet>

</target>

The first thing the generate-source target does is create a temporary directory where the
generated files are stored. This temporary directory is set in the Ant property build.generated.
property.

■Tip The temporary directory that is built by XDoclet is not deleted after each run. If you are using CVS,
you will see it note these files every time you run a cvs diff command against your source directory.
To avoid this, make sure you include the temporary directory used by XDoclet in the .cvsignore file.

This Ant property is defined at the beginning of the JavaEdge build.xml script.
Next, you define the <webdoclet....> tag using the Ant <taskdef> tag:

<taskdef name="webdoclet" classname="xdoclet.modules.web.WebDocletTask"
classpathref="compile.classpath"/>

The <taskdef> tag just shown defines a new tag, <webdoclet..../>, that can be used
within the generate-src task. The name of the tag is defined by the <taskdef> tag’s name
attribute. The classname attribute (in this case xdoclet.modules.web.WebDocletTask) is used
to define the fully defined Java class name of the Java class that will be executed when the
<webdoclet..../> tag is seen within the generate-src task. The <taskdef/> tag’s classpathref
defines an Ant reference that holds the classpath for the script. The jar files from the XDoclet
distribution must be part of this classpath.

■Note Remember, XDoclet is not part of the Apache Ant distribution. By using the Ant Task <taskdef>, you
expose the various XDoclet Java classes that are used to implement an Ant Task to your Ant build scripts.

The sample directory in the XDoclet source and binaries distribution contains a build.xml
file that demonstrates how to set up not only the <webdoclet..../> Ant Task, but also all of the
other XDoclet Ant Tasks.

The <webdoclet..../> task has a number of attributes that must be set in order to use
the tag:

<webdoclet
destdir="${build.generated.dir}"
mergedir="${src.web.dir}/WEB-INF/mergedir"
force="true">
. . .

</webdoclet>

CHAPTER 8 ■ SPEEDING STRUTS DEVELOPMENT WITH XDOCLET 301

Ch08_7389_CMP3 9/28/06 8:42 PM Page 301

The first attribute, destdir, tells the <webdoclet..../> task where to place all of the files
generated. The mergedir attribute is used to tell XDoclet the location of all the merge-point
files that hold the static content that needs to be included in the generated web.xml file when
the <webdoclet..../> task executes.

The <webdoclet..../> task’s force attribute tells the <webdoclet..../> tag to always parse
and generate its source and configuration files. Normally, the <webdoclet/> tag will compare
the time stamp on the source files against the generated files. If the time stamps are the same
and the force attribute is not set or is set to false, the <webdoclet..../> task will not generate
any files.

■Tip You don’t need to set the force attribute to true, because you can still use the previously generated
files. Having this attribute set to true does not hurt for smaller projects, but once the number of files to be
processed increases, the time for XDoclet to process them gets unpleasantly long. Set the force attribute to
true only when you want to always guarantee you have the latest generated files.

A <webdoclet..../> task can contain a number of different nested elements. We are only
going to examine the nested elements currently shown in the generate-src Ant target. The
first nested element is a <fileset/> element:

<fileset dir="${src.java.dir}">
<include name="**/*.java"/>

</fileset>

The <fileset> element tells the <webdoclet..../> task where and what source files
should be parsed when the <webdoclet..../> task is executed. The <fileset/> element used
in the generate-src task tells the <webdoclet..../> tag to parse all files located in the JavaEdge
source directory.

The <webdoclet..../> tag can generate many different files. If you want the
<webdoclet..../> tag to generate the web.xml file for an application, you need to embed the
<deploymentdescriptor/> element inside of it:

<deploymentdescriptor servletspec="2.3" destdir="${build.generated.dir}">
<taglib uri="http://java.sun.com/jstl/ea/core" location="/WEB-INF/c.tld" />

</deploymentdescriptor>

The preceding <deploymentdescriptor/> element tells the <webdoclet..../> tag to
generate a web.xml file that is compliant with the 2.3 version of the servlet specification. The
generated web.xml file is placed in the directory defined by the build.generated.dir property.

Both the <webdoclet..../> and <deploymentdescriptor/> tags have a significant number
of additional parameters and nested elements. Please refer to the XDoclet documentation for
further details.

Using Merge Points
As explained earlier, XDoclet is a code generator. However, there are several instances where
you need to incorporate static content into the files being generated. This static content is

CHAPTER 8 ■ SPEEDING STRUTS DEVELOPMENT WITH XDOCLET302

Ch08_7389_CMP3 9/28/06 8:42 PM Page 302

located as fragments of text stored inside of various files called merge-point files. The actual
names of the individual merge-point files will vary for each different XDoclet task and their
corresponding nested elements. For the <webdoclet..../> tag, you can have the merge-point
files listed in Table 8-4.

Table 8-4. The XDoclet Merge-Point Files

Filename File Description

filter-mappings.xml Contains all non–XDoclet-generated filter mappings

filters.xml Contains all non–XDoclet-generated filter definitions

listeners.xml Contains all non–XDoclet-generated servlet listener definitions

mime-mapping.xml Contains all of the MIME-type mappings for a web.xml file

error-page.xml Contains any error page mappings used for the application

welcomefiles.xml Contains the welcome file definitions used for the application

web-security.xml Contains all non–XDoclet-generated security mappings for the application

servlet-mappings.xml Contains all non–XDoclet-generated servlet mappings

servlets.xml Contains all non-XDoclet servlet definitions

XDoclet and Struts
The Struts framework is an extremely powerful tool for building applications. Its use of metadata
gives you an unprecedented amount of flexibility in building applications that are modular, easy
to change, and more importantly extensible. However, the creation and maintenance of the
metadata files needed by a Struts application (that is, the struts-config.xml file, the validation.xml
file, etc.) can be a tedious, time-consuming, and error-prone process.

The reason for this again ties back to the idea of complexity scalability. The bigger and
more complex the application being built around the Struts framework, the more metadata
that is needed. This increase in the amount of metadata leads to greater opportunities for con-
figuration errors and in turn lost evenings and weekends.

Fortunately, the XDoclet tool provides you with a number of XDoclet tags that can be
embedded inside of your Struts classes (that is, the Action and ActionForm classes) to simplify
the process of generating your Struts configuration files. Over the next several sections in this
chapter, we will be looking at how to use the XDoclet Struts tags to perform such common
tasks as

• Declaring Struts form beans within the struts-config.xml file

• Declaring Struts actions within the struts-config.xml file

• Declaring application exceptions within the struts-config.xml file

• Mapping validation rules from the Validator framework to a Struts Action class

• Modifying the <webdoclet..../> tag to generate the Struts metadata files

CHAPTER 8 ■ SPEEDING STRUTS DEVELOPMENT WITH XDOCLET 303

Ch08_7389_CMP3 9/28/06 8:42 PM Page 303

Declaring Struts Form Beans
As you saw in Chapter 3, in order to set up a web form to collect data from an end user, you
need to write an ActionForm class to hold the data submitted by the user and then add a
<form-bean/> tag to the application’s struts-config.xml file. Once this <form-bean/> entry
has been added, it can be used in an <action/> tag’s name attribute.

You can automate the creation of the <form-bean/> entry in the struts-config.xml file
by using the XDoclet’s @struts-form tag. This tag is a class-level tag and is extremely easy to
implement within an ActionForm class. Following is the PostStoryForm.java class using the
@struts-form tag:

package com.apress.javaedge.struts.story;

/**
* Standard Struts class that collects data submitted by the end user.
* @author jcarnell
*
* ----------XDoclet Tag----------------
* @struts.form name="postStoryForm"
* -------------------------------------
*/
public class PostStoryForm extends ActionForm {}

In the preceding example, the @struts.form will generate a <form-bean/> in the JavaEdge
application’s struts-config.xml file that looks something like this:

<form-beans>
<form-bean name="postStoryForm" type=➂

"com.apress.javaedge.struts.story.PostStoryForm"/>
....

</form-beans>

The name attribute in the preceding <form-bean/> entry corresponds to the name attribute
set on the @strut.form XDoclet tag. XDoclet picks up the <form-bean/> tag’s type attribute
when the tool is parsing the PostStoryForm.java file.

If you have any <form-bean/> tags that are not generated by XDoclet, they can be defined
as a merge-point file called struts-forms.xml. The content of this merge-point file will be
included immediately following any <form-bean/> tags generated by XDoclet.

Now that you have seen how to generate <form-bean/> tags using XDoclet, we will show
you how to use the @struts.action tag embedded within your Action classes to generate
<action/> tags within the JavaEdge application’s struts-config.xml file.

Declaring Struts Actions
The XDoclet @struts.action tag can be a bit intimidating when you first encounter it within
the XDoclet documentation. Although it does have a large number of attributes, you will find
that many of these attributes map to attributes that already have to be defined for a Struts
<action/> tag. If you look at the PostStoryAction class shown here, you will see that this is
the case:

CHAPTER 8 ■ SPEEDING STRUTS DEVELOPMENT WITH XDOCLET304

Ch08_7389_CMP3 9/28/06 8:42 PM Page 304

/**
* @author jcarnell
*
* Struts Action class used to submit a story by the end user.
*
*----------------XDoclet Tags--------------------
* @struts.action path="/postStory"
* input="/WEB-INF/jsp/postStory.jsp"
* name="postStoryForm"
* scope="request"
* validate="true"
@struts.action-forward name="poststory.success" path="/execute/homePageSetup"
*@struts.action-exception *type="com.apress.javaedge.common.ApplicationException"
*path="/WEB-INF/jsp/systemError.jsp"
* key="error.system"
*----------------XDoclet Tags--------------------
*/
public class PostStory extends Action {}

To generate an <action/> tag, you need to use two different XDoclet @struts tags:
@struts.action and @struts.action-forward.

The @struts.action tag generates the <action/> tag and its corresponding attributes.
All of the attributes on the @struts.action tag map to the corresponding attributes on the
<action/> tag.5

* @struts.action path="/postStory"
* input="/WEB-INF/jsp/postStory.jsp"
* name="postStoryForm"
* scope="request"
* validate="true"

In addition to the @struts.action tag just shown, a @struts.action-forward tag is also
defined. The @struts.action-forward tag will generate a <forward/> tag inside of the
<action/> tag for the class.

* @struts.action-forward name="poststory.success" path="/execute/homePageSetup"

A class using the @struts.action tag can also have multiple @struts.action-forward tags
defining different forwards that the <action/> tag can redirect the user to. Now, when the
PostStory.java class is processed by XDoclet, it will generate the following <action/> and
<forward/> tag entries:

<action
path="/postStory"
type="com.apress.javaedge.struts.poststory.PostStory"
name="postStoryForm"
scope="request"

CHAPTER 8 ■ SPEEDING STRUTS DEVELOPMENT WITH XDOCLET 305

5. If you need to review the attributes available on the <action/> tag, please refer to Chapter 2.

Ch08_7389_CMP3 9/28/06 8:42 PM Page 305

input="/WEB-INF/jsp/postStory.jsp"
unknown="false"
validate="true"

>
<forward name="poststory.success"

path="/execute/homePageSetup"
redirect="false"/>

</action>

One question you might have at this point is how to generate <global-forwards/> tags
for an application’s struts-config.xml file. The short answer is you cannot use XDoclet tags to
accomplish this. Instead, you must place all of your tag definitions inside of a merge-point file
called global-forwards.xml.

XDoclet and Java Inheritance
One thing you need to be aware of when using the Struts tags is that when using an object
hierarchy in your actions, you cannot define XDoclet tags on the superclass, because XDoclet
will not allow you to change the tasks on subclasses. Consider this source code:

/**
* @struts.action...
*/
public class FooSetupActionBase extends Action { }
and
/**
* @struts.action tags will not be processed correctly.
*/
public class FooSetupAction extends FooSetupActionBase { }

This is not very common, but it can be very annoying when the application is not working
because the struts-config.xml is not being generated properly.

Declaring Application Exceptions
Remember from our discussion in Chapter 4 that it is possible to tell the Struts framework to
capture and process exceptions on your behalf. This frees your development team from hav-
ing to clutter their Action classes with try..catch{} blocks that do nothing more than redirect
the end user to an error page.

Remember, you can declare two types of exception handlers in Struts. The first type is a
global exception handler that will be used to catch registered exceptions against all Action
classes within the application. The second type is a local exception handler that can cause
Struts to capture and process a specific exception on a specific Action class. If you want to use
global exception handlers with XDoclet, you have to place them in a merge-point file called
global-exceptions.xml.

You can use the @struts.action-exception XDoclet tag to mark up individual Action
classes where you want to use the local exception handlers. In the XDoclet markup for the
PostStory class, you can see this XDoclet tag in use:

CHAPTER 8 ■ SPEEDING STRUTS DEVELOPMENT WITH XDOCLET306

Ch08_7389_CMP3 9/28/06 8:42 PM Page 306

*@struts.action-exception
* type="com.apress.javaedge.common.ApplicationException"
* path="/WEB-INF/jsp/systemError.jsp"
* key="error.system"

When the @struts.action-exception just shown is processed via XDoclet, the following
code is generated. The code from the @struts.action-exception tag appears in bold.

<action path="/postStory"
type="com.apress.javaedge.struts.poststory.PostStory"
name="postStoryForm"
scope="request"
input="/WEB-INF/jsp/postStory.jsp"
unknown="false"
validate="true">
<exception key="error.system"
type="com.apress.javaedge.common.ApplicationException"
path="/WEB-INF/jsp/systemError.jsp"/>

<forward name="poststory.success"
path="/execute/homePageSetup"
redirect="false"/>

</action>

The @struts.action-exception tag has a number of different attributes associated with it.
We only show three of these attributes (type, path, and key), but Table 8-5 summarizes all of
the attributes in the @struts.action-exception tag.

Table 8-5. The Attributes in the @struts.action-exception XDoclet Tag

Attribute Name Attribute Description

className The fully qualified Java class name for the configuration bean for your
ExceptionHandler. This is not a mandatory attribute and is usually only
used when you write your own custom handler to process exceptions.
If you do not write your own custom ExceptionHandler, the default Struts
ExceptionHandler will be used for the exception handler in the generated
struts-config.xml file.

handler The fully qualified Java class name for a custom exception handler. This
attribute is only used if you subclass the Struts ExceptionHandler to provide
your own exception processing.

key Name of the resource bundle that will retrieve the error message associated
with this exception. This is a mandatory field.

path A relative URL that the end user will be directed to if this exception is raised.
Usually this will be some kind of neatly formatted error screen.

scope The context in which the ActionError class for this object is accessed. The
value can be either request or session.

type The fully qualified Java class name of the exception that is going to be caught
and processed when thrown by the action. This is a mandatory field.

CHAPTER 8 ■ SPEEDING STRUTS DEVELOPMENT WITH XDOCLET 307

Ch08_7389_CMP3 9/28/06 8:42 PM Page 307

Building struts-config.xml Using <webdoclet..../>
At this point, we have examined the majority of the XDoclet @struts tags and how they can be
used to mark up the Struts classes. Now, let’s modify the generate-src Ant target shown earlier
in the chapter to actually generate the struts-config.xml file for the JavaEdge application.

To do this, you need to add a new nested element to the <webdoclet..../> task inside the
generate-src target. This nested element, called <strutsconfigxml/>, appears in bold in the
following code example:

<target name="generate-src">
<mkdir dir="${build.generated.dir}"/>
<taskdef name="webdoclet" classname="xdoclet.modules.web.WebDocletTask"

classpathref="compile.classpath"/>

<webdoclet
destdir="${build.generated.dir}"
mergedir="${src.web.dir}/WEB-INF/mergedir"
force="true">

<fileset dir="${src.java.dir}">
<include name="**/*.java"/>

</fileset>
<deploymentdescriptor servletspec="2.3" destdir="${build.generated.dir}">

<taglib uri="http://java.sun.com/jstl/ea/core"
location="/WEB-INF/c.tld" />

</deploymentdescriptor>

<strutsconfigxml
destdir="${build.generated.dir}"
validatexml="true"
version="1.1"/>

</webdoclet>
</target>

The presence of the <strutsconfigxml> tag tells the <webdoclet..../> tag to parse all of
the Java source files and generate a struts-config.xml file. The <strutsconfigxml/> tag has a
large number of attributes associated with it. However, for the purposes of our discussion, we
will only focus on the three attributes shown previously.

The <strutsconfigxml/> tag’s destdir attribute tells the <strutsconfigxml/> tag where to
generate the struts-config.xml file. The validatexml attribute indicates to the <strutsconfigxml/>
tag whether or not to validate the form using XML or DTD for the struts-config.xml file. The ver-
sion of the XML or DTD file is specified in the version attribute for the <strutsconfigxml/> tag.

The <strutsconfigxml/> file has a number of merge-point files where static and
non–XDoclet-generated code can be placed. These files are listed in Table 8-6.

CHAPTER 8 ■ SPEEDING STRUTS DEVELOPMENT WITH XDOCLET308

Ch08_7389_CMP3 9/28/06 8:42 PM Page 308

Table 8-6. The Merge-Point Files for the @struts XDoclet Tags

Filename Description

global-exceptions.xml Holds any global exceptions for the application. Remember, XDoclet
can only generate local exception handlers. Any global exceptions for
your applications must go in this file.

global-forwards.xml Holds any of the global forwards needed within the Struts application.

struts-actions.xml Holds any non–XDoclet-generated action definitions that the
developer wants to be included in the struts-config.xml file.

struts-actions.xml Holds any non–XDoclet-generated XDoclet <action> tags.

struts-data-sources.xml Defines any data sources made available through Struts. We do not
use the Struts data source capability for the JavaEdge application. For
further information on this, please refer to the Struts documentation.

struts-forms.xml Holds any form bean information not generated by XDoclet. Any
DynamicActionForms defined in a Struts application must be placed
in here.

struts-plugins.xml Holds all <plug-in> information that needs to be included in the struts-
config.xml file.

XDoclets and the Validator Framework
Another area in which the @struts XDoclet tags can be used is for generating the validation.xml
files for use by the Validator framework. The @struts XDoclet tags can be embedded inside of an
application’s Struts form beans and used to indicate which Validator validation rules should be
enforced against a particular property on an ActionForm.

If you have read the previous chapter on the Validator framework and actually tried to
use the code examples, you quickly get a sense for how much configuration work needs to be
done to set up a large number of ActionForm classes in an application. The Validator frame-
work is a powerful framework, but the configuration files used to run it can quickly become
very large and unmanageable.

There are two @struts XDoclet tags that are used in marking up a Struts form bean for
Validator functionality. All of these tags are method-level tags that are placed on the setter()
tags of the form bean:

• @struts.validator: Used to indicate what validation rules will be enforced against the
property. This XDoclet tag will generate the <field/> tag for a <form/> tag inside of
the validation.xml file.

• @struts.validator-var: Used to generate the <var/> tags for a <form/> tag inside of the
validation.xml file.

Shown here is the PostStoryValidatorForm class using the @struts.validator and
@struts.validator-var tag. In the interest of space and trees, we are only going to show the
markup for the storyTitle attribute.

package com.apress.javaedge.struts.poststory;

import javax.servlet.http.HttpServletRequest;

CHAPTER 8 ■ SPEEDING STRUTS DEVELOPMENT WITH XDOCLET 309

Ch08_7389_CMP3 9/28/06 8:42 PM Page 309

import org.apache.struts.action.ActionError;
import org.apache.struts.action.ActionErrors;
import org.apache.struts.action.ActionMapping;
import org.apache.struts.action.ActionServlet;
import org.apache.struts.util.MessageResources;
import org.apache.struts.validator.ValidatorForm;
import com.apress.javaedge.common.VulgarityFilter;

/**
* @author John Carnell
* @struts.form name="postStoryValidatorForm"
*/
public class PostStoryValidatorForm extends ValidatorForm {

. . . .

/** Setter for property storyTitle.
* @param storyTitle New value of property storyTitle.
* @struts.validator type="required"
* msgkey="error.poststory.field.null"
*
* @struts.validator type="maxlength"
* msgkey="error.poststory.field.length"
* arg1value="${var:maxlength}"
*
* @struts.validator type="vulgaritychecker"
* msgkey="error.vulgarity"
*
* @struts.validator-var name="maxlength" value="100"
* @struts.validator-var name="vulgarities" value="dummy,stupid,ninny"
*/
public void setStoryTitle(java.lang.String storyTitle) {

this.storyTitle = storyTitle;
}

}

The first thing that should be pointed out is that if you want to use the @strutsValidator
XDoclet tags, you need to make sure that you extend the ValidatorForm class:

public class PostStoryValidatorForm extends ValidatorForm {}

The @strutsValidator tags will only be processed on classes that extend the ValidatorForm
class. You cannot use these tags with dynamic action forms. Even if you mark up a DynaActionForm
class with the @struts.validator tags, XDoclet will ignore the embedded XDoclet tags.

CHAPTER 8 ■ SPEEDING STRUTS DEVELOPMENT WITH XDOCLET310

Ch08_7389_CMP3 9/28/06 8:42 PM Page 310

The @strutsValidator tags are method-level tags and are defined only on the set() meth-
ods of the Struts form bean being marked up. Three validation rules are being applied against
the storyTitle attribute: required, maxlength, and vulgaritychecker. Each validation rule is
represented by one @strut.validator tag:

* @struts.validator type="required"
* msgkey="error.poststory.field.null"
*
* @struts.validator type="maxlength"
* msgkey="error.poststory.field.length"
* arg1value="${var:maxlength}"
*
*
* @struts.validator type="vulgaritychecker"
* msgkey="error.vulgarity"

The type attribute for the @struts.validator tag is used to indicate the name of the
validation rule that is going to be executed against the form bean property. The value that is
placed in this attribute is not cross-referenced with the actual validation-defined rules in the
validator-rules.xml file. You need to be careful here because a typo while entering the valida-
tion rule name will be propagated to the validation.xml file.

The msgkey attribute defines the key inside of the ApplicationResources.properties file
that will be used to look up the text returned to the user if an error arises. Each @struts.
validator tag can define arguments to be passed to the error message being raised by using
the argXresource and argXvalue attributes.

Remember from our discussion in Chapter 7 on the Validator framework that you can
pass in up to four arguments to an error message being raised by a validation rule. The actual
names of the attributes are

• arg0resource/arg0value

• arg1resource/arg1value

• arg2resource/arg2value

• arg3resource/arg3value

These arguments allow you to customize the message being raised. When you are writing
your @struts.validate tag, you should specify either the argXresource or the argXValue, but not
both. The reason why is that the argXresource tag is used to define a key of an argument value
residing in the application’s resource bundle (that is, the ApplicationResources.properties file).
If you use the argXvalue attribute, you are telling the @struts.validate tag to pass in the literal
value being defined in the tag. In the case of the maxlength validation rule, by setting the
arg1value attribute equal to "${var:maxlength}", an entry in the validation.xml file will be gen-
erated that tells the Validator framework not to look in the ApplicationResources.properties file
for the value to pass to the error message. Instead, the value set in the <var> tag for the maxlength
variable, which we will be discussing shortly, will be passed in.

CHAPTER 8 ■ SPEEDING STRUTS DEVELOPMENT WITH XDOCLET 311

Ch08_7389_CMP3 9/28/06 8:42 PM Page 311

ARGUMENT ANNOYANCES

In the Validator framework, if you do not specify a name attribute on the <argX> tag inside of <field>,
the value of that argument would be passed to all of the error messages raised during the validation of that
particular field. Typically, this “global” argument would be used for the first argument, <arg0>, to define the
name of the field being validated.

Unfortunately, there is no way of defining a global argument using @struts.validator XDoclet tags.
The @struts.validator tags will automatically generate a name attribute on the <argX> tag, thereby
tying the argument to the particular validation rule being generated for the field.

Now here is where things really get irritating. If you do not define an arg0resource or arg0value on
a field, the @struts.validator tag will automatically generate a global <arg0> tag for the field tag with
the key attribute being classname.propertyname. There is no way to override this key attribute.
Remember from Chapter 7 that all of the <arg0> tags were defined with no name attribute, which made the
argument global to all validation rules on the field, and then a key attribute was used to look up the name of
the field in the ApplicationResources.properties file.

The reason we bring this up is because one of us spent several hours wondering why the name of his
fields would not show up in his error messages. So, for the <arg0> tag contained within your <field> tag,
you have two choices. You can choose to let the @struts.validator XDoclet generate your <arg0> tag
by not supplying an arg0resource or arg0value attribute for any of the @struts.validator tags for
the field. However, you then need to make sure that you have a key in your ApplicationResources.properties
file that matches the key generated by the @struts.validator tag.

The alternative, if you do not want to have the @struts.validator tag generate the name of the
resource key used to look up arg0, is to define an arg0resource attribute for each one of the
@struts.validator tags associated with the field.

Table 8-7 shows a summary of all of the attributes for the @struts.validator XDoclet tag.

Table 8-7. Attributes of the @struts-validator XDoclet Tag

Tag Attribute Description

arg0resource The first argument that can be passed into the error message for the
validation rule. The value passed in is the key to look up the argument from
the application’s resource bundle. The first argument should always be the
name of the field being validated.

arg0value The first argument that can be passed into the error message for the
validation rule. This will pass in a literal value to the error message and not
use the application’s resource bundle.

arg1resource The second argument that can be passed into the error message for the
validation rule. The value passed in is the key to look up the argument from
the application’s resource bundle.

arg1value The second argument that can be passed into the error message for the
validation rule. This will pass in a literal value to the error message and not
use the application’s resource bundle.

arg2resource The third argument that can be passed into the error message for the
validation rule. The value passed in is the key to look up the argument from
the application’s resource bundle.

CHAPTER 8 ■ SPEEDING STRUTS DEVELOPMENT WITH XDOCLET312

Ch08_7389_CMP3 9/28/06 8:42 PM Page 312

Tag Attribute Description

arg2value The third argument that can be passed into the error message for the
validation rule. This will pass in a literal value to the error message and not
use the application’s resource bundle.

arg3resource The fourth argument that can be passed into the error message for the
validation rule. The value passed in is the key to look up the argument from
the application’s resource bundle.

arg3value The fourth argument that can be passed into the error message for the
validation rule. This will pass in a literal value to the error message and not
use the application’s resource bundle.

msgkey The key in the application’s resource bundle that will be used to look up the
error message when the validation rule for the field is violated.

type The name of the validation rule that is going to be fired off.

When the Validator framework is validating a field, there can be zero or more variables
that are passed into the validation rules. These variables are used to control the behavior of
the validation rules. For example, when associating the maxlength validation rule within a
<field> tag in the validation.xml file, you need to define a <var> tag that contains the name of
the variable via a <var-name> tag and a numeric value defined in the <var-value> tag that rep-
resents the maximum length to be enforced.

XDoclet provides the @struts.validator-var tag to help generate all of these tags. In the
example shown earlier, two variables, maxlength and vulgarities, were defined that will be
made available to all validations being fired against the storyTitle attribute:

* @struts.validator-var name="maxlength" value="100"
* @struts.validator-var name="vulgarities" value="dummy,stupid,ninny"

The @struts.validator tag has two attributes associated with it: name and value. The
@struts.validator-var will generate the <var> tag inside of a <field> tag and its two attrib-
utes, name and value, will generate the <var-name> and <var-value> tags inside of the <var> tag.

Generating the Validator Tags from Ant
Once you have marked up the Java source files in your project, you need to modify your
<webdoclet..../> task to tell it to generate the validation.xml file. This can be accomplished
by adding <strutsvalidationxml/> to the <webdoclet..../> target. Shown here is the revised
<webdoclet..../> target for the generate-src tag:

<target name="generate-src">
<mkdir dir="${build.generated.dir}"/>
<taskdef name="webdoclet" classname="xdoclet.modules.web.WebDocletTask"

classpathref="compile.classpath"/>

<webdoclet
destdir="${build.generated.dir}"
mergedir="${src.web.dir}/WEB-INF/mergedir"
force="true">

CHAPTER 8 ■ SPEEDING STRUTS DEVELOPMENT WITH XDOCLET 313

Ch08_7389_CMP3 9/28/06 8:42 PM Page 313

<fileset dir="${src.java.dir}">
<include name="**/*.java"/>

</fileset>
<deploymentdescriptor servletspec="2.3" destdir="${build.generated.dir}">

<taglib uri="http://java.sun.com/jstl/ea/core"
location="/WEB-INF/c.tld" />

</deploymentdescriptor>

<strutsconfigxml validatexml="true" version="1.1"/>
<strutsvalidationxml/>

</webdoclet>
</target>

On the <strutsvalidationxml/> tag, you can define the destdir and mergedir attributes to
tell the tag where to generate the validation.xml file and the location of any merge files.6 If you
do not define these attributes, as in the preceding example, the <strutsvalidationxml/> tag
will automatically read the values for these attributes from the <webdoclet..../> tag.

After adding the <strutsvalidationxml/> tag to the <webdoclet..../> tag, you can invoke
the generate-src target in your Ant script. If you look in your destination directory, you should
now see a validation.xml file. The file should look like this:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE form-validation
PUBLIC "-//Apache Software Foundation//DTD ➂

Commons Validator Rules Configuration 1.0//EN"➂

"http://jakarta.apache.org/commons/dtds/➂

validator_1_0.dtd">

<form-validation>
<!--
Define global validation config in validation-global.xml

-->
<formset>

<form name="postStoryValidatorForm">
<field property="storyTitle"

depends="required,maxlength,vulgaritychecker">
<msg name="required" key="error.poststory.field.null"/>
<msg name="maxlength" key="error.poststory.field.length"/>
<msg name="vulgaritychecker" key="error.vulgarity"/>

<arg0 key="postStoryValidatorForm.storyTitle"/>
<arg1 name="maxlength" key="${var:maxlength}"
resource="false"/>
<var>
<var-name>maxlength</var-name>

CHAPTER 8 ■ SPEEDING STRUTS DEVELOPMENT WITH XDOCLET314

6. The @struts.validate tags only have one merge file called validation-global.xml. This file contains
Ant validation rules that are global to all forms in the application.

Ch08_7389_CMP3 9/28/06 8:42 PM Page 314

<var-value>100</var-value>
</var>
<var>
<var-name>vulgarities</var-name>
<var-value>dummy,stupid,ninny</var-value>

</var>
</field>
..

</form>
</formset>

</form-validation>

Summary
Ultimately, the goal of XDoclet is to simplify the process of application development by mak-
ing the metadata associated with J2EE application development self-contained inside of the
actual Java source.

This greatly simplifies the management of any configuration files needed by the applica-
tion. For example, developers who are not using XDoclet and need to rename an Action class
within their application must manually check the application’s struts-config.xml file. As devel-
opers who have paid the price of deployment descriptor hell, we can say without a doubt that
sooner or later you are bound to miss at least one reference to that action and spend inordi-
nate amounts of time debugging the application.

In addition, using XDoclet greatly simplifies the management of configuration files by a
team of individuals. Nothing is more boring or annoying than having to resolve all of the con-
flicts in a web.xml file being committed to CVS because all the developers in a team have each
modified the file.

The XDoclet team built XDoclet so that it was easily extensible and customizable. At its
core the XDoclet engine is a templating engine that allows developers to write their own code
“templates” and Java classes to process their own customer JavaDoc-style @ tags. Because of
the extensible nature of XDoclet’s architecture, XDoclet can automate most J2EE development
tasks across a number of different application servers and provide additional functionality for
a wide variety for Java Open Source development frameworks.

It is impossible to capture all of the intricacies of XDoclet in a single chapter. However, we
have given you a brief overview of XDoclet and how it can be used to build Struts-based appli-
cations.

Specifically, we covered the following topics:

• The basic XDoclet architecture. We looked at how tags were processed and also looked
at the three different XDoclet tag levels:

• Class-level tags

• Method-level tags

• Field-level tags

CHAPTER 8 ■ SPEEDING STRUTS DEVELOPMENT WITH XDOCLET 315

Ch08_7389_CMP3 9/28/06 8:42 PM Page 315

• How to install and configure XDoclet

• How to build your web.xml file using XDoclet. We specifically looked at using XDoclet to

• Generate filter entries in the web.xml file

• Use merge-point files to include static and non–XDoclet-generated content in the
web.xml file

• How to build your struts-config.xml file using XDoclet. Specifically, we looked at how to
generate:

• The <form-bean> tag entries using the @struts.form-bean XDoclet tags

• The <action> tag entries using the @struts.action XDoclet tags

• The <action-forward> tags for an <action> by using the @struts.action-forward tag

• Local action exception handlers using the @struts.action-exception tags

• Generating a validation.xml file for use with the Validator framework. The XDoclet tags
we looked at included

• The @struts.validator tag for generating a field/validation rule mapping

• The @struts.validator-arg tag for generating <args> tags within a <field> tag in
the validation.xml file

• The @struts.validator-var tag for generating <var> tags for passing information
into a field/validation rule mapping

• Using Ant and the <webdoclet..../> tag to actually carry out the source code genera-
tion. In addition to covering the <webdoclet..../> tag, we also looked at how the
following nested tag elements could be used to generate Struts configuration files:

•<strutsconfigxml/> tells XDoclet to process any @struts tags and generate a
struts-config.xml file.

•<strutsvalidationxml/> tells XDoclet to process any @struts.validation tags and
generate a validation.xml file.

CHAPTER 8 ■ SPEEDING STRUTS DEVELOPMENT WITH XDOCLET316

Ch08_7389_CMP3 9/28/06 8:42 PM Page 316

Logging and Debugging

For a web application of any size, there tends to be a large number of participating classes,
views, and controllers, all performing their individual little bits. Using Struts is no different.
A typical request in Struts involves the ActionServlet, your chosen controller such as
RequestProcessor, your Action class, maybe an ActionForm, and of course your JSP view.
If any of these individual components has an error, especially a spurious one such as
NullPointerException, then narrowing down where this error occurs can be a nightmare.
To solve this, you need to have flexible mechanisms for debugging your application and
monitoring its behavior.

In this chapter, we are going to introduce you to two separate but associated topics.
First we are going to address how you can leverage an effective logging mechanism within
the JavaEdge application to enable you to debug an application easily and also to monitor the
application while it is in production. Second, we are going to show you how you can use the
Eclipse debugger capabilities to attach to the JBoss application server to debug the JavaEdge
application.

For the most part, this chapter focuses on logging, since you are probably already familiar
with debugging practices. Specifically, our discussion of logging will cover these topics:

• Logging using ServletContext: Part of the Servlet specification, the ability to write log
messages to the container log file is the most basic form of logging available in a web
application. No chapter on logging in a web application would be complete without a
discussion of this topic.

• Jakarta Commons Logging: The Jakarta Commons Logging project provides a light-
weight abstraction around many different logging tools and is the linchpin of many
open source applications, including Struts. This chapter focuses extensively on this tool
and how it is used.

• Java logging API: The standard Java logging API, available with version 1.4 of Java and
onwards, is covered for the sake of completeness; more focus is given to Commons
Logging and log4j.

• Apache log4j: This is an extremely powerful logging tool available from Apache that,
when coupled with Commons Logging, is almost unbeatable. The latter part of the log-
ging section of this chapter is pretty much focused on log4j and its associated features.

• Logging best practices: Logging is one of those things that is very easy to get wrong. In
this section, we discuss some of the practices that we have found make logging in our
applications easier to work with and easier to maintain with minimal impact on our
application’s performance.

317

C H A P T E R 9

■ ■ ■

Ch09_7389_CMP3 9/27/06 11:39 AM Page 317

• Configuring Struts logging: In this section, we draw on information from the previous
section to show how you can configure Commons Logging and log4j to capture the
Struts log messages to make debugging your Struts applications so much simpler.

In the final part of this chapter, we look at how you can use the debugging features of the
Eclipse IDE coupled with the JBoss IDE plug-ins to get full debugging of your web application,
including source-level debugging of Struts itself.

Why Use Logging?
Logging tends to be one of those things that is added to an application as an afterthought,
yet you will often find the same application with System.out.println() statements scattered
throughout the code, usually as a primitive means of debugging. When we talk about logging,
we tend to look at it from two separate angles. First, we like to use logging as part of our
debugging process. It is useful to be able to run through a process without having the debug-
ger stop you at every juncture, yet still have a log of what occurred in the process. Usually
during development this is done, as we said, with the System.out.println() method. The
main drawback of this comes when you want the log output to go somewhere other than
stdout. Sure, you can redirect stdout, but can you redirect it easily to a database or e-mail?
No. The second aspect of logging is its use to monitor the status of a live application. Any web
application with more than a few screens will have some kind of process or data that needs to
be monitored. A good logging technology can take care of both of these aspects in one simple,
lightweight solution.

So what makes a good logging technology? Three things really:

• Flexibility of output: A good logging technology allows for log messages to be output to
a variety of destinations and to more than one destination at a time.

• Different levels of logging: Not all log messages are created equal. Some log messages
are simply informational, such as logging the value of a variable at a certain point in a
process. Others are more serious, perhaps indicating a system or an application error.
A good logging solution can differentiate between message levels and allow for log mes-
sages for each level to be selectively turned on or off without touching the source code
of the application.

• Performance: Any logging solution that you choose to employ should not adversely
affect the performance of the application. Logging is meant to be an unintrusive part of
your application; you certainly can’t have your application competing for CPU cycles
with the logging tool.

Another aspect of a good logging tool, in fact any tool used within an application, is its
ability to stay loosely coupled to the application itself. This is quite an important factor that
many of the best logging implementations do not take into consideration. In fact, the Apache
project team considered this to be such a limiting factor that it started a specific project dedi-
cated to mitigating this problem.

During this chapter you will see that not all logging implementations available to you ful-
fill these key points, but they are useful in their own ways. We will, of course, look at logging
tools that offer all the functionality discussed previously, and we will demonstrate how such
functionality has been integrated into the JavaEdge application. Also, don’t think we’ve

CHAPTER 9 ■ LOGGING AND DEBUGGING318

Ch09_7389_CMP3 9/27/06 11:39 AM Page 318

forgotten about Struts. The logging tool that we have chosen to use for the JavaEdge applica-
tion is the same one used by Struts, and we will demonstrate how you can configure the Struts
logging capabilities to get more information about what is happening under the hood of your
application.

Log Message Levels
Before we start looking at any other methods of logging, we want to take a look at a concept
that is common to almost all logging implementations: log message levels. One of the three
main requirements of a good logging implementation is that it must be able to differentiate
between messages. Sometimes called message priority, the message level indicates how
important the message is and can be used by some logging implementations as a means to
filter out unwanted messages. Thankfully, there seems to be an agreement on what the levels
of logging should be, resulting in the following six levels being defined in all of the logging
implementations in which you are interested:

• FATAL: Indicates that a fatal condition, usually some Exception or Error, has occurred
and the application will be terminated.

• ERROR: Indicates an error or unexpected runtime behavior.

• WARN: Used to warn of the use of deprecated APIs—conditions within the application
that are undesirable but not necessarily an error. This is useful for flagging issues
related to performance and security.

• INFO: Gives general information about the application such as startup and shutdown
messages.

• DEBUG: Specifies detailed data about the operation of your application. This is useful
when you want to be able to monitor the internals of application state in a production
application.

• TRACE: Provides even more detailed information than the DEBUG level.

Effective use of these various message levels will allow you to filter out different messages
into different log destinations and selectively activate and deactivate certain log output.

Simple Web Application Logging
Before we jump into exploring the more complex logging tools, let’s take a quick look at what
can be accomplished using the standard J2EE tools.

Logging with ServletContext
All servlet containers provide an implementation of the ServletContext interface that you can
use to write a log entry to the containers’ log file. The ServletContext interface declares two
overloads for the log() method. The first accepts a single String parameter that is the mes-
sage you want to log, and the second accepts a String parameter for the message and a
Throwable parameter so you can log the details of an error. For example:

CHAPTER 9 ■ LOGGING AND DEBUGGING 319

Ch09_7389_CMP3 9/27/06 11:39 AM Page 319

public class LoggingServlet extends HttpServlet {

protected void doGet(
HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {

process(request, response);
}

protected void doPost(
HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

process(request, response);
}

private void process(
HttpServletRequest request,
HttpServletResponse response)
throws IOException {

ServletContext context = this.getServletContext();
context.log("Hello World!");

}
}

The important part of this code is the process() method. As you can see, you get access to
the current ServletContext instance using the getServletContext() of the Servlet superclass.
Once you have the ServletContext instance, you call the log() method to write to the servlet
log file.

In Struts, you can get access to the current ActionServlet from within your actions
by calling getServlet(), and from there you can access the ServletContext using
getServletContext().

While using the built-in logging capabilities of the servlet container provides a quick and
easy way for you to add logging to your application, there is no easy way to turn off the log
messages without going back to the source code and removing the calls to the log method.
Also, not only will you find that the location of the log file differs from container to container,
but you are also limited to sending your log messages to a file that may be fine for a develop-
ment environment yet lacks the sophistication necessary for your production requirements.

Using Commons Logging
The Java logging API isn’t the only API available for adding logging capabilities to your applica-
tion. In fact, a wide variety of logging APIs are available, but which one to use can prove a
difficult decision. Thankfully, you don’t need to make that decision up front. Commons

CHAPTER 9 ■ LOGGING AND DEBUGGING320

Ch09_7389_CMP3 9/27/06 11:39 AM Page 320

Logging from the Apache Jakarta project provides a lightweight wrapper around the most
well-known logging implementations, as well as providing its own simple logging tool.
Commons Logging includes a rich toolset and allows you to seamlessly plug in new logging
implementations without having to touch your source code. Not only can you use the wrap-
pers provided for the most well-known logging tools, but you can quite easily write a
Commons Logging wrapper for your own logging tools as well.

So why use Commons Logging, when Java now has logging support built in (since the Java
1.4 release)? Well, Java logging hasn’t got the widest range of features, and if you find in the
future that you need to perform some other logging that Java 1.4 or Java 1.5 is not capable of,
then you have to revisit your code to add the new capability. Also, Java 1.x logging is, quite
obviously, available only on JVM version 1.4 and above, whereas Commons Logging can be
used with any JVM version 1.2 or above. That is not to say that you shouldn’t use the Java log-
ging API when building applications targeted at a JVM version 1.4 or above, but in this case it
would be wise to use the Commons Logging wrapper for JDK 1.4 logging so as to decouple
your application from the logging implementation. Besides, when you see the wide range of
features available when you combine Commons Logging with the Apache log4j project, you
will probably decide that using JDK 1.4 is quite pointless.

Commons Logging in Other Applications
Before we jump into looking at Commons Logging, we want to show you which other applica-
tions use Commons Logging for logging. As we already mentioned, Struts uses Commons
Logging, as do most other Apache projects. However, Commons Logging isn’t just restricted
to Apache projects; it’s being used by many other projects in the Java world including JBoss,
Hibernate, and Axion.

Learning how to use Commons Logging and the associated logging implementations
means that you need to be familiar with the logging tool employed in most Java tools you will
use, especially any that are open source. Most of these projects use Commons Logging not
because of its logging abilities, since on its own it is no comparison to the likes of log4j or
Avalon LogKit, but because by using Commons Logging they can maintain a consistent code
base for logging while not being tied to any particular logging implementation.

Commons Logging Basics
Okay, now we are going to give you the lowdown on how Commons Logging works in isolation
and then we will move on to looking at Commons Logging in conjunction with other logging
tools, specifically log4j and JDK 1.4 logging.

The first thing you will need to do to get up and running with Commons Logging is obtain
the distribution. You can download the latest version of Commons Logging from http://jakarta.
apache.org/commons/logging/. You will also find that the Commons Logging jar file is included
with the Struts distribution. For the purpose of this book, we have used the latest stable
release of Commons Logging, which is currently 1.0.4.

Log and LogFactory
Let’s start with a discussion of how logging is structured when using Commons Logging.
The main two participating classes/interfaces in Commons Logging are Log and LogFactory.
The Log class acts as a wrapper around the actual log implementation and is used by your
application to write log messages. Each class that implements Log may write the actual log

CHAPTER 9 ■ LOGGING AND DEBUGGING 321

Ch09_7389_CMP3 9/27/06 11:39 AM Page 321

messages to multiple destinations such as a file, a system log, or an e-mail, but this is depend-
ent on the configuration of the underlying logging implementation. You don’t actually create
an instance of Log directly; instead you use LogFactory to create your Log instance based on
the data in your configuration file. The LogFactory class is the key to decoupling your applica-
tion from the logging implementation. Since all the data about your logs is stored in an
external configuration file, changing your logging implementation does not require any
changes to the code. Because you don’t have to change the code, you can change the logging
behavior of your application while it is in production use, which as you’ll see is very important
when you start to leverage the different levels of log messages.

So consider this simple example:

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;

public class SimpleExample {

public static void main(String[] args) {
Log log = LogFactory.getLog("com.apress.commons.logging.SimpleExample");
log.info("Hello Log!");

}
}

What happens when you run this from the command line? You get the following message
written to stdout:

[INFO] SimpleExample - Hello Log!

Notice the inclusion of [INFO] in this log message. This is the level of message created by
the info() method of the Log instance. There are corresponding methods on the Log class for
all six of the log levels discussed earlier.

No doubt you may be wondering what happened to the configuration of the logging
implementation that we talked about. Unless you specify otherwise, Commons Logging will
look for logging implementations in the following order:

• Apache log4j

• JDK 1.4 and above logging

• SimpleLog

If log4j is found on your classpath, then Commons Logging will use that; however, you
will need to configure it separately. If log4j is unavailable, Commons Logging will try to use
JDK 1.4 logging. If you are using JVM 1.3 or below and do not have log4j on your classpath,
then Commons Logging will default to its own internal logging implementation, called Sim-
pleLog.

If you decide to create a wrapper for your own logging implementation, then you can tell
Commons Logging to use that instead by setting the org.apache.commons.logging.Log system
property to the full name of your log class. Extending the Commons Logging framework is
outside the scope of this book, but you can find more details in the book Pro Jakarta Com-
mons by Harshad Oak (Apress, ISBN: 1-59059-283-2).

CHAPTER 9 ■ LOGGING AND DEBUGGING322

Ch09_7389_CMP3 9/27/06 11:39 AM Page 322

Log Names
If you look back at the previous example, you will see that in the call to LogFactory.getLog()
you pass in a String parameter. This is the name of the log that you want to retrieve. Most log-
ging implementations support the notion of multiple logs for an application and use some
form of naming scheme to retrieve each individual log. Commons Logging itself does not use
the logging name for anything other than to pass to the underlying logging implementation.
Also note that you do nothing to configure a log called SimpleExample. Instead, the underlying
logger, in this case SimpleLog, provides a default log instance.

SimpleLog
Since we know that you may not have a JVM version 1.4 available to run JDK 1.4 logging,
and you may not be able to use log4j within your applications, we want to cover the internal
Commons Logging logging implementation, SimpleLog.

SimpleLog is a very lightweight logging provider that comes standard with Commons
Logging. It doesn’t support any log destinations other than the console, but when you are
unable to use either JDK 1.4 logging or log4j, it makes a great alternative to using
System.out.println().

SimpleLog is configured by specifying system properties either directly with a call to
System.setProperty() or by specifying them in the simplelog.properties file. We prefer to use
the simplelog.properties file simply because it allows us to change the settings for our logs
without having to touch our code.

The first set of configuration parameters for SimpleLog, listed here, applies to all logs
within the application:

• org.apache.commons.logging.simplelog.defaultlog: Sets the default logging level for
all logs. By default this is set to INFO.

• org.apache.commons.logging.simplelog.showlogname: Enables you to have the full
name of the log displayed next to a log message. Set this to true to enable this behavior.
The default value of this is false.

• org.apache.commons.logging.simplelog.showShortLogname: When setto true, displays
the last component of the log name. For instance, in a log called com.apress.logging.
MyLog, the name MyLog would be displayed. This is the default behavior for SimpleLog.

• org.apache.commons.logging.simplelog.showdatetime: When set to true, displays the
time and date the log message was created alongside the log message. The default for
this property is false.

Next, try building a simple example that uses a few of these properties to change the default
log output. To do this, create the simplelog.properties file and place it in the root of your class-
path. For this example, you also change the name of your log to com.apress.logging.
SimpleExample. Add the following entries to the simplelog.properties file:

org.apache.commons.logging.simplelog.showdatetime=true
org.apache.commons.logging.simplelog.showlogname=true
org.apache.commons.logging.simplelog.showShortLogname=false

CHAPTER 9 ■ LOGGING AND DEBUGGING 323

Ch09_7389_CMP3 9/27/06 11:39 AM Page 323

When this example is run, you now get this output:

2003/11/07 14:05:20:738 GMT [INFO] com.apress.logging.SimpleExample - Hello Log!

As you can see, you now have the time and date of the log message along with the full
name of the log. Notice in the configuration parameters that you have to turn off the short-
name logging and turn on the full-name logging. It is not enough to simply set showlogname
to true; you must also set showShortLogname to false.

Now we want to move on and demonstrate how to perform multiple logs within your appli-
cation. To do this, you simply have to set the org.apache.commons.logging.simplelog.log.xxx
parameter to the maximum log level you wish to allow for a particular log, where xxx is the name
of the log. Here is an extended example that uses two different logs:

public class LogLevelExample {

public static void main(String[] args) {
Log log1 = LogFactory.getLog("log1");
Log log2 = LogFactory.getLog("log2");

log1.error("this is an error message");
log1.info("this is an info message");
log1.debug("this is a debug message");

log2.error("this is an error message");
log2.info("this is an info message");
log2.debug("this is a debug message");

}
}

For this example, all you do is load two separate logs into the application and then write
three log messages of differing levels to each one. When you run this application, it should
yield output like the following:

2003/11/07 14:14:23:615 GMT [ERROR] log1 - this is an error message
2003/11/07 14:14:23:630 GMT [INFO] log1 - this is an info message
2003/11/07 14:14:23:667 GMT [ERROR] log2 - this is an error message
2003/11/07 14:14:23:697 GMT [INFO] log2 - this is an info message

Notice that both the ERROR- and INFO-level messages have been outputted for each log,
but the DEBUG-level messages have been omitted. If this surprises you, think back to when we
showed you the configuration parameters for SimpleLog. By default, the log level is set to INFO.
What this means is that only messages of INFO level or above will be outputted. You may be
slightly confused by what we mean by “INFO level or above.” The logging levels aren’t just
named; they are also structured into a hierarchy with one level more important than the
other. The hierarchy is arranged as follows from most important to least important:

CHAPTER 9 ■ LOGGING AND DEBUGGING324

Ch09_7389_CMP3 9/27/06 11:39 AM Page 324

1. FATAL

2. ERROR

3. WARN

4. INFO

5. DEBUG

6. TRACE

So in the previous example, any DEBUG and TRACE messages would be discarded because
they fall below the default INFO level. To change this behavior on a per-log-level basis, simply
set the property corresponding to the log name to the lowest log level you want to allow for
that log:

org.apache.commons.logging.simplelog.log.log1=WARN
org.apache.commons.logging.simplelog.log.log2=DEBUG

With these parameters, you are telling the SimpleLog engine to output only log messages
of WARN level or above to log1 and only messages of DEBUG level or above to log2. When this
example is run, the output looks like this:

2003/11/07 14:24:58:879 GMT [ERROR] log1 - this is an error message
2003/11/07 14:24:58:889 GMT [ERROR] log2 - this is an error message
2003/11/07 14:24:58:897 GMT [INFO] log2 - this is an info message
2003/11/07 14:24:58:905 GMT [DEBUG] log2 - this is a debug message

Now you can see that since the maximum level for log1 was set to WARN, only the
ERROR-level message was outputted, but for log2 the maximum level was DEBUG, so all three
log messages were outputted to the log window.

As you can see, SimpleLog is quite simple to use and offers the most flexibility across
platforms, since you are not limited to having a JDK 1.4 JVM as you would be when using the
JDK 1.4 logging tools. Also, Struts is distributed with Commons Logging and uses it internally.
If you are not able to install another logging implementation such as log4j, then you may well
have to work with SimpleLog for your log output. Hopefully now you are confident with con-
figuring SimpleLog for your application.

In the next section, we will take you on a whirlwind tour of the JDK 1.4 logging API before
moving on to a much more in-depth discussion of log4j.

The Java 1.4 Logging API
Newly introduced with the 1.4 release of Java 2 Standard Edition (J2SE) is the logging API. As
you will see, Java 1.4 logging is very similar to log4j; it supports logger inheritance and a simi-
lar appender structure to log4j called handlers in Java 1.4 terminology. However, log4j has the
upper hand slightly because it can run on older versions of Java, whereas Java 1.4 logging is,
obviously, limited to running on a JVM version 1.4 or above. In terms of flexibility, log4j comes

CHAPTER 9 ■ LOGGING AND DEBUGGING 325

Ch09_7389_CMP3 9/27/06 11:39 AM Page 325

out on top again, as there is currently a wider range of appenders available for log4j than there
are handlers for Java 1.4 logging.

Java 1.4 logging has completely different log levels from those described earlier. These are

• SEVERE: Corresponds to FATAL or ERROR in Commons Logging

• WARNING: Corresponds to WARN in Commons Logging

• INFO: Same as INFO in Commons Logging

• FINE: Corresponds to DEBUG in Commons Logging

• FINEST: Corresponds to TRACE in Commons Logging

• FINER: More detailed level; nothing corresponds to this in Commons Logging

• FINEST: Most detailed level; nothing corresponds to this in Commons Logging

• OFF: No explicit OFF state in Commons Logging

• ALL: No explicit ON state in Commons Logging

• CONFIG: No corresponding log level in Commons Logging

Fortunately, Commons Logging maps these levels to its own levels behind the scenes so
you don’t need to worry about changing the code you have created.

Commons Logging will use Java 1.4 logging only if you are running on a JVM version 1.4
or above, you have not specified that it must use another logger, and log4j is unavailable. We
are not going to cover Java 1.4 logging separately; instead, we want to demonstrate how you
can use Java 1.4 logging in conjunction with Commons Logging.

Let’s start with a basic example:

public class JDK14Demo {
public static void main(String[] args) {

Log log = LogFactory.getLog("JDK14Demo");

System.out.println("Log Type: " + log.getClass().getName());

log.error("This is a FATAL message");
log.error("This an ERROR message");
log.warn("This is a WARN message");
log.info("This is an INFO message");
log.debug("This is a DEBUG message");
log.trace("This is a TRACE message");

}
}

To run this example correctly, make sure that you are on a JVM version 1.4 or above and
you do not have log4j in your classpath. When you run this, you will get the following output:

CHAPTER 9 ■ LOGGING AND DEBUGGING326

Ch09_7389_CMP3 9/27/06 11:39 AM Page 326

Log Type: org.apache.commons.logging.impl.Jdk14Logger
15-Nov-2003 16:50:44 JDK14Demo main
SEVERE: This is a FATAL message
15-Nov-2003 16:50:44 JDK14Demo main
SEVERE: This an ERROR message
15-Nov-2003 16:50:44 JDK14Demo main
WARNING: This is a WARN message
15-Nov-2003 16:50:44 JDK14Demo main
INFO: This is an INFO message

Notice that the DEBUG and TRACE messages have not been outputted. This is because
the default log supplied by the Java 1.4 logger writes only INFO-level messages and above,
and always writes them to the console. You can change the log behavior in a similar way to
SimpleLog by supplying configuration properties either as system properties or in a configu-
ration file. Unlike SimpleLog, Java 1.4 logging does not look for a configuration file for your
application; instead, you have to specify which file your configuration is stored in by setting
the java.util.logging.config.file property. You can modify the code as follows to do this:

public class JDK14Demo {
public static void main(String[] args) {

System.setProperty("java.util.logging.config.file", "logging.properties");

Log log = LogFactory.getLog("JDK14Demo");

System.out.println("Log Type: " + log.getClass().getName());

log.error("This is a FATAL message");
log.error("This an ERROR message");
log.warn("This is a WARN message");
log.info("This is an INFO message");
log.debug("This is a DEBUG message");
log.trace("This is a TRACE message");

}
}

Notice the call to System.setProperty() added as the first line. When you run this now, no
log messages are outputted at all because the logging.properties file does not exist and there-
fore cannot supply any configuration details. Now create the basic configuration file and
override the default log level:

set the default level
.level = FINEST

set the handlers
handlers = java.util.logging.ConsoleHandler

CHAPTER 9 ■ LOGGING AND DEBUGGING 327

Ch09_7389_CMP3 9/27/06 11:39 AM Page 327

In the first line of this configuration file, you set the default log level to FINEST using the
.level property. The second line configures the handlers that will be used by the log. In this
case, the example specifies just the ConsoleHandler, but you could have provided a comma-
separated list of handlers to send the log messages to.

When this is run, you would expect to see all the log messages outputted to the console,
but this is not the case. Instead, you get the same output as before. This is because the default
logging level for the ConsoleHandler is set to INFO, so you need to set the level of the handler as
well. This is done by adding the following line to the configuration file:

java.util.logging.ConsoleHandler.level = FINEST

Running the example now will display all the log messages in the console.
We don’t see any reason that would compel you to choose Java 1.4 logging as your logging

implementation. You have much more flexibility with log4j and the structure of the logs, and
the configuration works in a far more logical manner than with Java 1.4 logging; plus there are
many more appenders available for log4j than there are handlers for Java 1.4 logging. How-
ever, you should always choose to use Commons Logging as your interface for logging. That
way you are not tied to any particular logging technology, and you can easily change the log-
ging provider without having to change your code.

Apache log4j
Apache log4j is a logging package available from the Apache Logging Services project. It differs
from Commons Logging in many ways, not least because log4j is intended to be a full logging
implementation, whereas Commons Logging is more of an abstraction layer around a logging
provider. Apache log4j supports many advanced features that are not available with SimpleLog
such as multiple log destinations and different formats for log messages; and unlike with Java 1.4,
logging will run on older virtual machines. In this section, we are going to give you a quick look at
log4j, although we won’t be delving into the more advanced features offered, and we will also
demonstrate how to configure Commons Logging to use log4j as the underlying provider.

Category or Logger
In the original version of log4j, the central class to the entire package was the Category class.
The Category class represented a single log or category, such as com.apress.foo, and was used
to write the actual log messages. In the more recent versions of log4j, this class has been
superseded by the more intuitive Logger class. For all intents and purposes, while there are
some subtle differences that we won’t discuss here, the Category and Logger classes can be
considered interchangeable. However, some of the log4j documentation still uses the term
category in place of logger. More often than not, you will now see the term category refer to
log name, which is deemed to be the log’s category.

Appenders and Layouts
One of the main advantages of using log4j as your logging implementation is its ability to send
log output to multiple destinations. The component that controls where log output is sent is
called an appender. log4j has a wide variety of appenders provided to enable you to send log

CHAPTER 9 ■ LOGGING AND DEBUGGING328

Ch09_7389_CMP3 9/27/06 11:39 AM Page 328

output to the console, log files, Unix Syslog, NT Event Log, JMS, or a GUI component. With
log4j, you are not restricted to having to watch the console window of your application for log
messages; something that may be acceptable during development but is certainly no use
when your application is placed into production. You are not limited to the appenders avail-
able in the box with log4j; you can easily write your own custom appender to send log output
to any destination you choose.

Not only is the destination of your log message flexible with log4j, but using layouts you
can change the format of your messages as well. The use of this might not seem apparent
when you are working in the development environment, but it can prove useful when you are
in production. A prime example of where layouts can prove useful is when you have to provide
log data to your clients. If you have to provide any kind of Service Level Agreement (SLA), they
will probably want to be able to view the status and overall operation of the application. Using
layouts, you can send your log messages as XML to a file, and after some XSLT wizardry you
have a nice HTML page that you can allow your clients access to.

The standard distribution of log4j includes a wide selection of appenders, the most widely
used being the following:

• ConsoleAppender: This is the basic appender that will send the log message to the con-
sole window.

• FileAppender: As the name implies, this appender writes the log message out to a file.
This is useful if you want to keep a record of the log messages for a long time.

• RollingFileAppender: Similar to FileAppender in that log messages get written to a file,
but RollingFileAppender limits the size of the file so that once the maximum size for a
log is reached, the log file is moved to a backup location and the log file is started fresh.

• SMTPAppender: This appender broadcasts log messages to an e-mail address. This
appender takes more time to process than the other appenders, and you should restrict
the use of this to FATAL- or ERROR-level messages.

• NTEventLogAppender: When running your application on the Windows platform, you can
use this appender to write the log messages to the NT Event Log.

• SyslogAppender: When running your application on the Unix platform, this appender
can be used to write log messages to the Syslog.

• JDBCAppender: This appender will allow you to send log messages to a database so that
they can be stored for retrieval at a later date.

As with appenders, the log4j distribution comes with a wide selection of layouts such as
SimpleLayout, PatternLayout, and XMLLayout. These are discussed in more detail during the
demonstration of log4j in the next section.

Both of these features are some, not all, of what sets log4j apart from logging implementa-
tions such as SimpleLog. These two simple concepts combine to provide massive flexibility that,
with a small amount of configuration, can be leveraged from your Commons Logging–based
application.

CHAPTER 9 ■ LOGGING AND DEBUGGING 329

Ch09_7389_CMP3 9/27/06 11:39 AM Page 329

Using log4j with Commons Logging
We are not going to look at any examples of using log4j directly, as there is no real justification
for doing so. Within our applications, we always use Commons Logging in the code, then we
are free to configure whichever logging implementation we desire and that suits our purpose.
If you are interested in how log4j works on its own, you can find out more in the book Pro
Jakarta Commons (Oak, Apress, ISBN: 1-59059-283-2).

Okay, for this next example, use the code from the earlier SimpleLog example:

public class LogLevelExample {

public static void main(String[] args) {
Log log1 = LogFactory.getLog("log1");
Log log2 = LogFactory.getLog("log2");

log1.error("this is an error message");
log1.info("this is an info message");
log1.debug("this is a debug message");

log2.error("this is an error message");
log2.info("this is an info message");
log2.debug("this is a debug message");

}
}

This time, however, we are going to walk you through using log4j to handle the log output.
The first thing you need to do to enable log4j within your Commons Logging application is to
place the log4j.jar file in your classpath. Commons Logging will search the classpath for the log4j
classes and use log4j as the implementation of preference if it is available. Once you have done
that, you can try to run the application, but you will be presented with the following error:

log4j:WARN No appenders could be found for logger (log1).
log4j:WARN Please initialize the log4j system properly.

Before you can proceed, you need to configure log4j for use within your application.
Configuring log4j is similar to configuring SimpleLog in that you have to specify system prop-
erties either directly, with a call to System.setProperty(), or via a configuration file, this time
log4j.properties. That is where the similarities end, however. Configuring log4j is much more
complicated than configuring SimpleLog, but with the extra level of complexity comes much
more power.

Let’s take a look at a simple properties file for the sample application:

#configure the default (root) logger
log4j.rootLogger=INFO, APP1

#configure the APP1 appender
log4j.appender.APP1=org.apache.log4j.ConsoleAppender
log4j.appender.APP1.layout=org.apache.log4j.SimpleLayout

CHAPTER 9 ■ LOGGING AND DEBUGGING330

Ch09_7389_CMP3 9/27/06 11:39 AM Page 330

The first line of this properties file sets the default logger (rootLogger) to display messages of
INFO level or higher using the appender named APP1. In this case, the term logger is synonymous
with the term log used in SimpleLog. The name “APP1” is not a compulsory name for the appen-
der, nor does it follow any kind of naming convention. The next two lines configure the appender
APP1 to use the org.apache.log4j.ConsoleAppender class that writes log messages to the console
and the org.apache.log4j.SimpleLayout layout class that simply writes the log level and the mes-
sage. Running this example yields the following result:

ERROR - this is an error message
INFO - this is an info message
ERROR - this is an error message
INFO - this is an info message

As you can see, the log output is fairly basic, with no differentiation between the messages
for each log. The SimpleLayout is just that—simple. To improve the quality of the log output,
you can use PatternLayout, which allows you to specify a pattern expression for log output
similar to the functionality of the printf() function in C. Now set up PatternLayout as the
layout for the APP1 appender. Notice this time that you specify another property, the pattern
to use, which will be used by the PatternLayout class when building the output:

log4j.appender.APP1.layout=org.apache.log4j.PatternLayout
log4j.appender.APP1.layout.ConversionPattern=%-10c %d %-5p - [%t]: %m%n

Now when you run the example again, you get the following output:

log1 2003-11-07 11:40:38,395 ERROR - [main]: this is an error message
log1 2003-11-07 11:40:38,436 INFO - [main]: this is an info message
log2 2003-11-07 11:40:38,441 ERROR - [main]: this is an error message
log2 2003-11-07 11:40:38,469 INFO - [main]: this is an info message

The log messages are now much more descriptive and useful. The PatternLayout expres-
sions are very flexible. You are free to insert any literal text you want into the pattern, plus you
can take advantage of any of the % prefixed replacement variables such as %t in the example
to output the thread name. Not only can you perform simple variable replacement, but you
can perform advanced formatting on your replacements as well. In the pattern, you can see
the expression %-5p outputs the log priority level, right-padded with spaces so that it equals
five characters in length. The full list of replacement variables and formatting options can be
found under the PatternLayout JavaDoc entry in the log4j documentation.

Now that the output of your log is improved, let’s look at some of the other log4j configu-
ration options. First you will notice that none of the DEBUG-level messages are being outputted
and that both logs’ messages are being sent to the same location: the console. Now we will
show you how to modify your configuration so that only ERROR-level messages and above
from log1 get outputted to the console and all error messages (TRACE and above) from log2
get outputted in XML format to a file.

The first step in the configuration is to define a second appender to output to a file in
XML format. For this purpose, you can use org.apache.log4j.FileAppender to write the data

CHAPTER 9 ■ LOGGING AND DEBUGGING 331

Ch09_7389_CMP3 9/27/06 11:39 AM Page 331

to a file and org.apache.log4j.xml.XMLLayout to format the log messages in XML format. This
is a simple matter of creating a new appender definition in the log4j.properties file:

#configure the APP2 (file) appender
log4j.appender.APP2=org.apache.log4j.FileAppender
log4j.appender.APP2.layout=org.apache.log4j.xml.XMLLayout
log4j.appender.APP2.File=log.txt

For this appender, you specify the appender and layout as discussed and also specify the
File parameter for the appender so that the appender knows which file to place the log data in.

Now you need to create specific entries for the logs rather than using the default
rootLogger, which is set to output to the console. To do this, you create entries similar to
that of the rootLogger; however, this time you need to specify the log name:

configure log1 and log2
log4j.logger.log1=ERROR, APP1
log4j.logger.log2=TRACE, APP2

If you run the example now, you get the following messages sent as XML format to the
log.txt file:

<log4j:event logger="log2" timestamp="1068391735987" level="ERROR" thread="main">
<log4j:message><![CDATA[this is an error message]]></log4j:message>
</log4j:event>

<log4j:event logger="log2" timestamp="1068391736002" level="INFO" thread="main">
<log4j:message><![CDATA[this is an info message]]></log4j:message>
</log4j:event>

<log4j:event logger="log2" timestamp="1068391736010" level="DEBUG" thread="main">
<log4j:message><![CDATA[this is a debug message]]></log4j:message>
</log4j:event>

The XML log messages contain all the data about the message, including log name and
log level. You should note that you cannot directly manipulate XML in this file using any of the
Java XML APIs, because the XML is not well formed. There is no root node for the XML, so you
will need to wrap the XML inside of a root node before it can be processed by an XML parser.

If you now look at the console messages, you will notice something strange—the mes-
sages from log2 are still being sent to the console even though the appender for log2 is set to
send messages to a file. The reason for this is that all the logs are still inheriting the settings
from the rootLogger. If you remove the rootLogger definition or comment out that line, then
you will see that only the messages from log1 are sent to the console window.

log4j XML Configuration
In keeping with the current trend of making everything XML, log4j supports configuration
using an XML file in place of the standard properties file. The log4j XML configuration file fol-
lows an Apache-created DTD called log4j.dtd. You will find this DTD file in the log4j download
under the src directory.

CHAPTER 9 ■ LOGGING AND DEBUGGING332

Ch09_7389_CMP3 9/27/06 11:39 AM Page 332

Apache log4j doesn’t look for any XML configuration by default; it still uses the
log4j.properties file as the default configuration method. To use XML configuration, you need
to set the log4j.configuration property to the file path of your XML configuration file. This
file must end with the .xml suffix; otherwise log4j will not load the correct configuration class.

The XML configuration syntax is quite basic and self-descriptive. Here is the same config-
uration as in the previous example, this time in XML:

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">
<log4j:configuration xmlns:log4j=http://logging.apache.org/log4j/docs/index.html
debug="false">

<root>
<priority value="INFO" />
<appender-ref ref="APP1" />

</root>
<appender name="APP1" class="org.apache.log4j.ConsoleAppender">

<layout class="org.apache.log4j.SimpleLayout" />
</appender>
<appender name="APP2" class="org.apache.log4j.FileAppender">

<param name="File" value="$log.txt" />
<layout class="org.apache.log4j.xml.XMLLayout" />

</appender>
<category name="log1">

<priority value="ERROR" />
<appender-ref ref="APP1" />

</category>
<category name="log2">

<priority value="TRACE" />
<appender-ref ref="APP2" />

</category>
</log4j:configuration>

Notice that in this case the root logger is specified using the <root> tag, and underneath
the <root> you specify the priority and appender for the root log using the <priority> and
<appender> tags, respectively:

<root>
<priority value="INFO" />
<appender-ref ref="APP1" />

</root>

The appenders are defined using the <appender> tag, with the appender name and type
being attributes of the tag. Nested in the <appender> tag are any <param> tags needed to pass
parameters to the appender. In the case of FileAppender, you pass in the filename as the File
parameter. Also nested log4j in the <appender> tag is the <layout> tag, which is used to define
the layout for this particular appender. You can also pass parameters to the layout by nesting
<param> under the <layout> tag.

<appender name="APP1" class="org.apache.log4j.ConsoleAppender">
<layout class="org.apache.log4j.SimpleLayout" />

CHAPTER 9 ■ LOGGING AND DEBUGGING 333

Ch09_7389_CMP3 9/27/06 11:39 AM Page 333

</appender>
<appender name="APP2" class="org.apache.log4j.FileAppender">

<param name="File" value="$log.txt" />
<layout class="org.apache.log4j.xml.XMLLayout" />

</appender>

Finally comes the log configuration. Configuring the log is similar to configuring the
rootLogger, but instead of using the <root> tag, you use the <category> tag and the name of
the log is specified as an attribute:

<category name="log1">
<priority value="ERROR" />
<appender-ref ref="APP1" />

</category>
<category name="log2">

<priority value="TRACE" />
<appender-ref ref="APP2" />

</category>

Log Inheritance
Log inheritance is a powerful concept that allows for the creation of extremely fine-grained
logging within your application. Log inheritance is supported by both log4j and Java 1.4 log-
ging, although we are only going to discuss log inheritance in the context of log4j.

The main premise behind log inheritance is that you create a log structure to match your
package hierarchy. For instance, if you have two classes called com.apress.logging.Bar and
com.apress.logging.Foo, then you should have two logs with identical names. This allows for
extremely fine-grained control of your application logging. You are able to turn off logging on
a per-class basis or just log for a selection of classes—the possibilities are endless. Log names
in log4j are a lot more than simple identifiers and are used to build the inheritance structure
for your logs. If you consider our previous statement that you should have a log for each class,
then we are sure you have visions of a 1000-line configuration file—fortunately inheritance is
in place to prevent that. When looking for settings for your log, log4j starts by looking for a log
matching the actual name and will proceed up the hierarchy until it finds a match. Consider-
ing the previous example of com.apress.logging.Bar, log4j looks for the following logs in
this order:

1. com.apress.logging.Bar

2. com.apress.logging

3. com.apress

4. com

5. log4j root logger

CHAPTER 9 ■ LOGGING AND DEBUGGING334

Ch09_7389_CMP3 9/27/06 11:39 AM Page 334

You can see from this example that log4j uses the period (.) character to separate
levels of the hierarchy. You probably also realize that settings from the com, com.apress, and
com.apress.logging levels will apply not only to the Bar class but also to the Foo class. So in
this way, you can choose to apply settings to your entire package or to specific classes in the
hierarchy—and you can do this all without touching your code. We realize that this is quite a
complex concept, so we will walk you through an example before you proceed any further. For
this example, you simply modify the previous example to use different log names and add a
third log also:

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;

public class LogInheritance {

public static void main(String[] args) {

Log log1 = LogFactory.getLog("com.apress.logging.Bar");
Log log2 = LogFactory.getLog("com.apress.logging.Foo");
Log log3 = LogFactory.getLog("com.apress.logging.log4j.Foo");

log1.error("this is an error message");
log1.info("this is an info message");
log1.debug("this is a debug message");

log2.error("this is an error message");
log2.info("this is an info message");
log2.debug("this is a debug message");

log3.error("this is an error message");
log3.info("this is an info message");
log3.debug("this is a debug message");

}
}

As you can see in this example, you have three logs following a simple hierarchy—
two directly under the com.apress.logging hierarchy branch and another under the
com.apress.logging.log4j branch. Note that the log names are entirely fictional and are
meant to mirror some imaginary class structure. To start with, create a simple configuration
file aimed at all three logs:

configure com.apress.logging logger
log4j.logger.com.apress.logging=ERROR, APP1

#configure the APP1 appender
log4j.appender.APP1=org.apache.log4j.ConsoleAppender
log4j.appender.APP1.layout=org.apache.log4j.PatternLayout
log4j.appender.APP1.layout.ConversionPattern= %-30c %-5p: %m%n

CHAPTER 9 ■ LOGGING AND DEBUGGING 335

Ch09_7389_CMP3 9/27/06 11:39 AM Page 335

The appender declaration should be familiar; the important part is the log declaration.
Notice that you specify the log name as com.apress.logging, which in this log hierarchy is a
parent of all three logs in the code. When you run this example, you get the following output:

com.apress.logging.Bar ERROR: this is an error message
com.apress.logging.Foo ERROR: this is an error message
com.apress.logging.log4j.Foo ERROR: this is an error message

Let’s just take a second to digest what has happened. You set up a single log in the config-
uration with the name com.apress.logging to display log messages with a level of ERROR or
above to the console. In the code, you have three logs: com.apress.logging.Foo, com.apress.
logging.Bar, and com.apress.logging.log4j.Foo. When the code is run, you see that the set-
tings for the single log com.apress.logging are applied to all three logs in your code. The
reason for this is, of course, log inheritance. All the logs in your code are named with hierar-
chical names, each level separated by a period character, and all three share a common root
in the hierarchy, namely com.apress.logging. Of course, you could have just specified com or
com.apress as your log name, as they would also match the hierarchy of your logs. So what we
are really saying is that log com.apress.logging.Foo inherits from com.apress.logging, which
inherits from com.apress and so on up the tree.

So with log inheritance you can have a log for each class in your application, but you can
configure all of those logs quite easily by specifying the settings for a log high up in the hierar-
chy. This is fine for the most part, but what happens when you need to be a little more specific
about your logging? Perhaps you are in the throes of a big debugging session and want to get
information about a particular class or subpackage. Fortunately this is easy. When searching
for configuration details, log4j will look at the most specific part of the log hierarchy first and
then gradually work its way up the tree until it finds a match—it will always use the least gen-
eral match for your log as possible. So if you have settings for the com.apress and com.apress.
logging logs in your configuration and a log called com.apress.logging.Foo in your code, then
the settings for com.apress.logging are used, as this is the log furthest down the tree that
matches your log.

As an example of this, you can set all logs in the com.apress.logging.log4j subpackage
to display all log messages of INFO level and above by adding the following line to the
configuration:

log4j.logger.com.apress.logging.log4j=INFO, APP1

When you run the example now, you get the following output:

com.apress.logging.Bar ERROR: this is an error message
com.apress.logging.Foo ERROR: this is an error message
com.apress.logging.log4j.Foo ERROR: this is an error message
com.apress.logging.log4j.Foo ERROR: this is an error message
com.apress.logging.log4j.Foo INFO : this is an info message
com.apress.logging.log4j.Foo INFO : this is an info message

CHAPTER 9 ■ LOGGING AND DEBUGGING336

Ch09_7389_CMP3 9/27/06 11:39 AM Page 336

Notice that the log messages for the com.apress.logging.log4j.Foo log are being output
twice. This is because it matches both of the logs declared in the configuration file. You can, of
course, specify configuration settings that apply to a single log. For instance, by adding the
following line to the configuration file, you can cause the com.apress.logging.Foo log to
output all messages of DEBUG level or higher:

log4j.logger.com.apress.logging.Foo=DEBUG, APP1

This now yields the following output:

com.apress.logging.Bar ERROR: this is an error message
com.apress.logging.Foo ERROR: this is an error message
com.apress.logging.Foo ERROR: this is an error message
com.apress.logging.Foo INFO : this is an info message
com.apress.logging.Foo INFO : this is an info message
com.apress.logging.Foo DEBUG: this is a debug message
com.apress.logging.Foo DEBUG: this is a debug message
com.apress.logging.log4j.Foo ERROR: this is an error message
com.apress.logging.log4j.Foo ERROR: this is an error message
com.apress.logging.log4j.Foo INFO : this is an info message
com.apress.logging.log4j.Foo INFO : this is an info message

Log inheritance is a very important concept, as without it, maintaining a separate log for
each class in an application would prove unwieldy and undesirable. As it is, log inheritance
makes the configuration a breeze, so you are free to utilize this powerful logging mechanism.
When we come to demonstrating how you can capture Struts debug messages, you will see how
you can leverage Commons Logging and log4j to control the output of Struts log messages.

Logging Performance
Remember at the beginning of the chapter we told you one of the key features for any logging
tool was that it must perform well. A slow logging application can cause more harm than good
in your code, and you will no doubt find it hard to justify leaving your logging code in a pro-
duction release if it slows down your application dramatically.

The whole point of a logging tool such as log4j being externally configurable is that you
can leave the logging code in your production release and simply turn it on and off using con-
figuration files. However, if the checks to see if logging is enabled are slow and logging itself is
even slower, then you would be the first person to strip out the logging code and start again.

Thankfully, both Commons Logging and log4j are extremely fast, so you won’t be seeing
your application grind to a halt because of them. Apache has clocked log4j taking approxi-
mately 5 nanoseconds to check if a log message needs to be written and the actual log writing
process taking between 21 and 37 microseconds depending on the layout. These figures were
measured when running on an AMD Duron 800-MHz machine. Of course, the appender will
have a lot to do with the performance—writing to the console is evidently going to be faster
than writing to a file, which, in turn, should be faster than logging to e-mail.

Adding Commons Logging on top of log4j, you really won’t notice much of a drop in per-
formance, since in most cases all Commons Logging does is add a couple of extra calls to the
call stack.

CHAPTER 9 ■ LOGGING AND DEBUGGING 337

Ch09_7389_CMP3 9/27/06 11:39 AM Page 337

One thing you should always do, and this is especially true if you have your own custom
appenders, is test your logging code. All logging code should be tested to make sure it is func-
tional and not adversely affecting performance. There is nothing worse than seeing your
logging code throw an exception or grind your application to a halt.

Logging Best Practices
In this section, we are going to discuss some best practices that you should follow when
implementing logging to enable you to get the most out of your logging implementation.

Use Commons Logging
We know we have said this enough times already in this chapter, but you should really use
Commons Logging in your code for logging. Although we currently can’t think of any reason
why you wouldn’t use log4j as your logging provider, there may come a time when log4j is
superseded by a better logging tool. If you use log4j directly within your code and you want to
take advantage of a new implementation, then you had better break out your compiler and
debugger and get ready for some fun. If, however, you used Commons Logging, chances are
the new provider will come with a wrapper for Commons Logging, since it is the most widely
used logging tool that we know of. Of course, if you can’t use log4j for some reason, then using
Commons Logging as a wrapper around your logging provider of choice (or not as the case
may be!) provides you with an easy upgrade path to log4j in the future.

Don’t just take our word for it. There is a reason that projects such as Struts, JBoss, and
Hibernate use Commons Logging—you as a developer are not making preconceived ideas
about how your application will be logged, just that it will.

Use Log Inheritance
This is an important one. When you have a large application, having one or two logs for the
application can make debugging an absolute nightmare, not to mention making day-to-day
monitoring a major chore. You really need to be keeping a separate log for each of your
classes. This does not mean that you need a log file for each class, it simply means that you
should have the ability to direct the log messages of a single class or subpackage to a destina-
tion separate from your standard log destination. This is where log inheritance comes in.
Trying to implement and configure logging on a class-by-class basis without log inheritance
is an absolute nightmare.

The LogFactory class in Commons Logging supports this behavior by providing an over-
load of getLog() that accepts a Class instance as opposed to a String instance representing
the name. With this method, the full name of the class is used as the log name. For example:

package com.apress.logging;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;

public class Foo {

public static void main(String[] args) {
Log log1 = LogFactory.getLog(Foo.class);

CHAPTER 9 ■ LOGGING AND DEBUGGING338

Ch09_7389_CMP3 9/27/06 11:39 AM Page 338

log1.error("this is an error message");
log1.info("this is an info message");
log1.debug("this is a debug message");

}
}

In the preceding example, the call to LogFactory.getLog() returns the log configuration
closest to com.apress.logging.Foo. Notice that you don’t use the name directly; instead, you
pass in an instance of Class representing the Foo class.

For the most part, the requirement for log inheritance is going to mean you need to use
log4j as the underlying log provider, but we don’t see this being a major problem for you. Also
don’t forget that Java 1.4 logging supports log inheritance; so if you find that you can’t use log4j
for some reason, then consider that as an alternative.

Use External Configuration Files
Provided that your logging provider supports it, you should always use an external configura-
tion file to configure your logs. Unless you provide a user interface in your application to
configure the logging, you should always use a configuration file. There is absolutely nothing
worse than having to recompile and redeploy an application just to change the logging behav-
ior, especially if you have to deploy that application to a few different machines, and then test
them to make sure you didn’t inadvertently break the application.

External configuration files give you the flexibility to change your logging behavior when-
ever and however you need it. If you are getting unexpected errors in a certain class, then you
can redirect the logging for all levels just for that class to e-mail without even having to touch
the code. This makes fixing errors in a live application very easy, which makes for very happy
clients. Break this rule at your own peril.

Consider Externalizing Log Messages
You should consider placing log messages in an external location such as a ResourceBundle so
that you can change them without having to touch your application code.

This is useful for two reasons. First, if your application is considered more of a tool or
middleware and you will have other developers using it, then chances are they may not speak
your language. By externalizing the log messages, providing logging in another language won’t
require a massive overhaul of your code. Second, misspelled, misleading, or just plain wrong
log messages are sometimes just as bad as or worse than no log messages at all, especially
when you have other developers looking at the logs who won’t be familiar with your errors.
Correcting log messages when they are contained in a separate file is easy, but having to
recompile your application and then redeploy just to correct an error in your log messages
requires some degree of justification and a larger degree of effort.

If in Doubt, Log
If you aren’t sure whether to log something or not, do. Chances are at some point you will need
that information, and you don’t want to be going back to your code to add in another log mes-
sage. Just log anything that you aren’t sure about under the DEBUG or TRACE level—that way it
won’t be displayed during normal logging, but a change in your configuration file will get it up
and running with minimal fuss.

CHAPTER 9 ■ LOGGING AND DEBUGGING 339

Ch09_7389_CMP3 9/27/06 11:39 AM Page 339

Use Code Guards
At first, this one might seem counterproductive, but you should always explicitly check the log
level before performing some processing that is required to support the process of logging. For
instance, consider this code:

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;

public class CodeGuards {

public static void main(String[] args) {
Log myLog = LogFactory.getLog("myLog");

String name = "Darth Vader";

myLog.error(name + " caused an error");
}

}

In this example, the expression name + " caused an error" is always evaluated regardless
of whether myLog is set to log ERROR-level messages or not. So even if this log message is not
going to get written, you always have the overhead of creating a new String instance to pass
into the Log.error() call. In this case, you should explicitly test that the log is set to log ERROR
messages before building the log message, like this:

public class CodeGuards {

public static void main(String[] args) {
Log myLog = LogFactory.getLog("myLog");

String name = "Darth Vader";

if(myLog.isErrorEnabled()) {
myLog.error(name + " caused an error");

}
}

}

When you use this mechanism, the String instance representing the log message will
only be created if the log message will actually get written. You should note that there is no
performance difference between using a code guard or not when the log message does not
get written. The call to Log.isErrorEnabled() will always occur whether you perform it explic-
itly or whether it is done internally in the call to Log.error(). However, by calling it explicitly,
the check is performed before the String instance for the log message is created as opposed to
after. You should also note that two checks will occur when the ERROR level is enabled, resulting
in a slight degradation in logging performance. However, this is an extremely small degrada-
tion that is greatly outweighed by the time you will save by using this method.

CHAPTER 9 ■ LOGGING AND DEBUGGING340

Ch09_7389_CMP3 9/27/06 11:39 AM Page 340

Use Log Levels Correctly
Log levels exist for a purpose, and you should use them accordingly. It is no use just making all
log messages INFO level because it is easier to turn them on. Doing that means that you can’t
filter out important messages such as the inability to connect to the database from the fact
that an e-mail was successfully sent. Even if you don’t have a lot of log messages being written,
you should remember that the log level classification will prove useful to others who will not
be as familiar with the code as you will. Read our previous discussion on log levels for exam-
ples of situations to which each level is ideally suited.

Logging Exceptions
Logging exceptions can prove to be a difficult topic. There is a tendency to automatically log
each exception using the ERROR log level, but this should not always be the case. Consider the
FileNotFoundException. If your application expects this (as it always should), then you will
probably have some kind of alternate action, perhaps by creating a default file or allowing the
user to choose another location. Whatever the situation, a FileNotFoundException is rarely
serious enough to warrant being logged at ERROR level. Our point here is you need to try and
consider what situation the exception actually represents and then log it based on that. Doing
this will allow you to differentiate easily between situations that are truly errors and those that
are exceptional situations but are nonetheless expected.

Another issue with exceptions is where in the code to log them. With exceptions provided
by the JDK or third-party tools, you are limited to logging them at the time they are caught in
your code. With your own exceptions, you may want to consider performing the logging oper-
ation in the exception constructor. Using this practice you can easily reduce the amount of
code you need to write to support your application’s logging.

Capturing Struts Debug Messages
Now that we have most of the theory out of the way, we will show you how you can capture the
Struts debug messages and write them to a log file.

Struts Log Structure
Internally, Struts uses Commons Logging as the interface for logging. Each Struts class that
needs to write log messages has its own log that has the same name as the class. For this rea-
son, you must use a logging provider that supports log inheritance, such as log4j, to enable
simple configuration of the Struts log messages.

Since the Struts logs are structured to match the Struts package structure, you can lever-
age log inheritance to enable package-wide log configuration while still maintaining the
flexibility to configure logging at the class level.

Configuring Logging
Configuring Struts to use log4j as the log provider is a fairly simple two-stage process that you
should already be familiar with. First, you need to make sure that log4j is on the classpath of
your application. For a web application, this simply means ensuring that the log4j jar file is in
the lib directory of your application. Adding log4j to the JavaEdge classpath is simple; you will

CHAPTER 9 ■ LOGGING AND DEBUGGING 341

Ch09_7389_CMP3 9/27/06 11:39 AM Page 341

notice that it is included with the code download and that the Ant build script ensures that it
is placed in the lib directory inside of the application war file.

The second configuration task is to create the log4j configuration file. You should already
be familiar with the syntax of a log4j configuration file, so we won’t be describing what each
construct means. However, we want to discuss what you need to do to capture the Struts log
messages. First, you configure an appender that will be used to write all the Struts log mes-
sages to a log file. You can choose to write the log messages to the console, but if your servlet
container is running as a background process, then getting at the output won’t be easy. A log
file tends to be more flexible because you can view it whenever you please, even after you have
shut down the process running your servlet container.

log4j.appender.STRUTS=org.apache.log4j.FileAppender
log4j.appender.STRUTS.FileName=c:\struts.log.txt
log4j.appender.STRUTS.layout=org.apache.log4j.PatternLayout
log4j.appender.STRUTS.layout.ConversionPattern=%d %-5p [%c] %m%n

Now all that remains is to configure a log for the Struts classes. This example demon-
strates configuring a single log for the entire Struts package, org.apache.struts. If you want,
you could make that more specific to catch log messages for just a single class, but in this case
all you want to do is make sure you have some mechanism for seeing all the Struts log mes-
sages.

Set root category priority to DEBUG and its only appender to A1.
log4j.logger.com.apress=TRACE, STRUTS

Notice that you set the log level to TRACE to make sure you catch all the messages that
Struts outputs. Now that should get you up and running on most servlet containers, and we
say “most” because this does not work on all of them, including JBoss. In the next section,
we will demonstrate how to configure log4j logging when using JBoss.

JBoss and log4j
As we mentioned earlier in the chapter, JBoss uses log4j for its own internal logging. Unfortu-
nately, this causes a problem, as there is already a log4j configuration loaded into the JVM
when your application starts. JBoss has its own log4j bootstrapper that loads log4j into mem-
ory well before your application is loaded. This means that even if you don’t add log4j to your
application’s lib directory, your Commons Logging–enabled application will use it anyway
because it is already loaded into your VM. At this point, you might be thinking, “Great! I have
log4j all ready to go.” It is, however, not that simple. The problem is that your log4j.properties
file will be ignored because the instance of log4j that has been loaded into your application’s
VM has already been given a shiny new configuration by JBoss.

The log4j team has already realized that this is going to be a problem and has added fea-
tures to the latest log4j release to enable the developers of applications such as JBoss to get
around this limitation. However, in the current version of JBoss (3.2.2), this is not yet fixed.

Thankfully, it is not the end of the world—you can still configure logging for your applica-
tion, you just have to do it a little differently. By default, you will find that any Struts log
messages of INFO level or above are written to the JBoss console. Unfortunately, if you are
using a Unix flavor like one of us does, then you will probably have the console stashed away

CHAPTER 9 ■ LOGGING AND DEBUGGING342

Ch09_7389_CMP3 9/27/06 11:39 AM Page 342

in the background somewhere. To grab the Struts log messages and send them somewhere
useful like a log file, you need to edit the JBoss log4j configuration file. JBoss uses XML config-
uration for log4j, and you will find the configuration file at {instance home}/conf/log4j.xml. To
get all Struts error messages to output to a file when running in JBoss, you need to add the fol-
lowing code to your log4j.xml file:

<appender name="STRUTS" class="org.jboss.logging.appender.RollingFileAppender">
<param name="File" value="${jboss.server.home.dir}/log/struts-log.log"/>

<param name="DatePattern" value="'.'yyyy-MM-dd-HH"/>

<layout class="org.apache.log4j.PatternLayout">
<param name="ConversionPattern" value="%d %-5p [%c] %m%n"/>
</layout>

</appender>

<category name="org.apache.struts">
<priority value="TRACE" />
<appender-ref ref="STRUTS"/>

</category>

This code creates an appender using org.jboss.logging.appender.RollingFileAppender,
which will archive old logs and keep the main log to a sensible size. The File parameter speci-
fies that the log will be stored in {instance home}/logs directly with the filename struts-log.log,
and the DatePattern parameter is used to specify when the log will be archived (in this case
hourly). The layout declaration should look familiar; it uses the standard log4j PatternLayout
and passes in the required ConversionPattern parameter to define the layout of the log mes-
sage. This particular pattern mimics the layout of JBoss’s own log messages. The final part of
the code creates a new log category for org.apache.struts, which will catch all log messages
written by classes in the corresponding package or its subpackages. Set the log level to TRACE
so that you get all the log messages and set the appender for this category to the previously
defined RollingFileAppender.

Integrating Logging into JavaEdge
Now that you are up and running with the Struts log messages, it is time to add some log mes-
sages to the JavaEdge application. There are quite a few places to which you could add some
logging code in your application, namely the following:

• Data tier: In the data tier, you are currently capturing all JRE and ObjectRelational-
Bridge exceptions and wrapping them in DataAccessExceptions. You really want to
capture the information about these exceptions and log them.

• Business tier: In the business tier, you have all your application-specific logic, making
this the hardest tier to add logging to. You need a good understanding of what your
application is doing and what information may be required by the major stakeholders
to be able to add effective logging to this tier.

CHAPTER 9 ■ LOGGING AND DEBUGGING 343

Ch09_7389_CMP3 9/27/06 11:39 AM Page 343

• Web tier: In the web tier, you have three specific areas that would benefit from being
logged. First, you want to log any ApplicationExceptions that occur. Second, it would
be useful to be able to log information about requests and responses, as this informa-
tion can prove useful when you are trying to diagnose errors. And lastly, you want to log
any information pertaining to security such as when a user logs in or logs out.

In this section, we are going to address all these logging requirements as well as look at
some patterns that you can employ to reduce the amount of code you have to write and main-
tain to add logging to your application.

Extending Service Locator
An important part of logging in any application is getting an instance of the log class, in this
case org.apache.commons.logging.Log. In Commons Logging, the usual method of obtaining a
Log instance is to use the LogFactory class. When you are building your logging implementa-
tion, you can allow your classes to interact directly with the LogFactory class, or you can
choose to provide some kind of internal helper class that wraps the LogFactory.

In Chapter 4, we discussed the use of the Service Locator pattern as a way to provide a
simplified interface to application services. As it stands, obtaining a log instance directly from
the LogFactory is a trivial amount of code; however, we prefer to encapsulate that logic within
a service locator for three reasons:

• Maintenance: You are free to change the implementation of how you obtain your Log
instance without affecting the rest of your code. Although it is unlikely, the method for
obtaining a Log in Commons Logging may change, or more likely a better alternative
will come along that you wish to use. If you have spread calls to LogFactory.getLog()
throughout your code, then you will have a big job of changing to a new implementa-
tion, whereas if you have a single call to LogFactory.getLog() encapsulated within a
service locator, then you are going to have a pretty easy time of it.

• Code standards: One thing we always insist on is that log names match class names.
With LogFactory, developers are free to call the getLog() method and pass in a String
parameter with any name they please. By using a service locator, you can force develop-
ers to use the full class name as the log name by only allowing them to retrieve Log
instances using a Class instance.

• Good practice: Our final reason for advising you to use the Service Locator pattern is
that it is just good practice. Experience has taught us that if we didn’t encapsulate our
Log sourcing in some form or another, we would end up having to change it, which gen-
erally means trawling through thousands of lines of code looking for our log code, or,
worse still, resorting to the find-and-replace mechanism of code maintenance. Logging
is an application service and therefore should be sourced through a service locator.

We are sure that you can understand the reasons for wrapping the mechanism for obtain-
ing a Log instance inside a service locator, so now we will show you how to do it. First, you’ve
already seen the ServiceLocator class in Chapter 4. Here, you simply add a single method to
this class that allows for a Log to obtain a particular Class instance.

The code for this method is quite simple—it’s just a wrapper around the LogFactory.
getLog() from Commons Logging:

CHAPTER 9 ■ LOGGING AND DEBUGGING344

Ch09_7389_CMP3 9/27/06 11:39 AM Page 344

public Log getLog(Class aClass) {
return LogFactory.getLog(aClass);

}

With this in place, you can proceed on to the actual logging.

Logging in the Data Tier
For the data tier, JavaEdge uses the Apache ObjectRelationalBridge (OJB) to manage the per-
sistence and retrieval of data stored in the relational database, in this case MySQL. Within the
application, any errors that occur with OJB or when retrieving PersistenceBroker instances
from the ServiceLocator are wrapped inside a DataAccessException and passed up the stack,
hiding the actual details of the underlying implementation from the business logic. Any
occurrence of one of these exceptions is a fairly serious issue, since the rest of the application
won’t run if the data can’t be loaded. For this reason, we have chosen to log any exceptions
occurring in the DAOs as ERROR-level messages. This way they are of a suitably high priority
that they will appear in most logs, including the default logs—plus the classification is correct
in this case, as these exceptions are errors. We are not going to include all the code for the data
tier; instead, here is a standard method from the StoryDAO class:

public ValueObject findByPK(String primaryKey) throws DataAccessException {
log.debug("************Entering the StoryDAO.findByPK***************");
PersistenceBroker broker = null;
StoryVO storyVO = null;

try {
broker = ServiceLocator.getInstance().findBroker();
storyVO = new StoryVO();
storyVO.setStoryId(new Long(primaryKey));

Query query = new QueryByCriteria(storyVO);
storyVO = (StoryVO) broker.getObjectByQuery(query);

} catch (ServiceLocatorException e) {
log.error(

"PersistenceBrokerException thrown in StoryDAO.findByPK()",
e);

throw new DataAccessException(
"Error in StoryDAO.findByPK(): " + e.toString(), e);

} finally {
if (broker != null)

broker.close();
}

log.debug("************Done with the StoryDAO.findByPK()***************");
return storyVO;

}

You will notice from the preceding code that log.debug() statements appear at the begin-
ning and end of the method call. You may find these useful when debugging, as you can watch

CHAPTER 9 ■ LOGGING AND DEBUGGING 345

Ch09_7389_CMP3 9/27/06 11:39 AM Page 345

the activity of your data access layer to see how many times the commands are being executed.
This is especially useful if you use some kind of caching in the middle tier and you want to verify
that the data from the cache is being used and not the data from the database. With these mes-
sages set at DEBUG level, we can easily turn them off in the production system while still leaving
the error tracing messages turned on.

Another area in which log messages can prove useful in the data tier is in tracing what
your data access technology is doing. If you are using straight JDBC, this might involve logging
the SQL commands that are issued to the database server so that you can make sure they are
correct. In the case of OJB, the queries can get pretty complex, especially if you are building
the query up using the Criteria object. In this case, it is useful to log exactly what the
Criteria object is holding before the query is actually executed.

public Collection findAllStories() throws DataAccessException {
log.debug(

"************Entering the StoryDAO.findAllStories()***************");
PersistenceBroker broker = null;
Collection results = null;

try {
Criteria criteria = new Criteria();
criteria.addOrderByDescending("storyId");

if (log.isDebugEnabled()) {
log.debug("Critiera:" + criteria.toString());

}
Query query = QueryFactory.newQuery(StoryVO.class, criteria);

query.setStartAtIndex(1);
broker = ServiceLocator.getInstance().findBroker();
results = (Collection) broker.getCollectionByQuery(query);

} catch (ServiceLocatorException e) {
log.error(

"ServiceLocatorException thrown in StoryDAO.findAllStories()",
e);

throw new DataAccessException(
"ServiceLocatorException error in StoryDAO.findAllStories()", e);

} finally {
if (broker != null) broker.close();

}

log.debug(
"************Done with StoryDAO.findAllStories()***************");

return results;

}

CHAPTER 9 ■ LOGGING AND DEBUGGING346

Ch09_7389_CMP3 9/27/06 11:39 AM Page 346

In a case like this, it is often tempting to watch this data in the debugger or to use System.
out.println() during debugging before stripping it for deployment. If you use a low log prior-
ity level like DEBUG, you can turn the logging off for production, but you also have the ability to
easily test the Criteria on your live platform.

For each DAOs, you simply declare the log as a static field:

private static Log log = ServiceLocator.getInstance().getLog(StoryDAO.class);

Logging in the Business Tier
Unlike logging in the data tier, there are no hard-and-fast rules for logging in the business tier.
The business tier tends to be the part of the application that is most personalized for each
application. You can use OJB for the data tier and Struts for the web tier in all of your web
applications, but the chances of you using the same business logic in each application are
rare.

When building a logging strategy for your business tier, you have to consider how impor-
tant each particular piece of information is. If you have a particularly important process, then
you are going to want to include log messages for all the major stages of the process. If some-
thing goes wrong during the process, you need to know about it. There is nothing worse than
having your client breathing down your neck with a problem and not having the correct infor-
mation to answer the question. Normally you should stick log messages that describe main
parts of the business process under the INFO level. After all, the whole purpose of the applica-
tion is to execute the business logic, so those log messages are information about the normal
running of the application. If you have a particularly detailed process, you may want to log
some of the more in-depth details as DEBUG or TRACE messages so that you can at least rerun
the logic with the log messages activated. Try not to leave anything that you could possibly
need unlogged. If it seems unlikely that you’ll need the information often, just use a DEBUG or
TRACE message—that way it is there if someone asks for it.

For less important logic, you can be a bit more restrained with your logging; but remem-
ber that the performance hit when a message is not going to be logged is very minimal, so you
can afford to include a few extra log messages, provided you log them at the DEBUG or TRACE
level.

When building the logging for the business tier, remember one fact: logging is a way of cov-
ering your own back and proving that the code you have written is functional. Not only that, but
the quality of your logs directly affects your ability to diagnose and troubleshoot issues within
the application. If you have detailed logs for your application, you can prove to your boss that
your code is working, and your boss in turn can prove the same thing to the customer. This is
really useful if you have to give your customer some kind of SLA for an application, and you
need to make sure you can prove that you are meeting the agreed levels of service.

In the JavaEdge application, none of the processes are particularly complex, but you can
include DEBUG-level messages to signal the start and end of each of the business methods in
the Story and Member business delegate classes:

public void addStory(StoryVO storyVO) throws ApplicationException {
log.debug("addStory() started");
try {

storyDAO.insert(storyVO);
} catch (DataAccessException e) {

CHAPTER 9 ■ LOGGING AND DEBUGGING 347

Ch09_7389_CMP3 9/27/06 11:39 AM Page 347

log.error("DataAccessException in addStory()", e);
throw new ApplicationException(

"DataAccessException Error in StoryManagerBean.addStory(): "
+ e.toString(),
e);

}
log.debug("addStory() finished");

}

Notice in the preceding code that you log not only the start and end of the method, but
also any occurrences of DataAccessException. Although the root cause of these exceptions
would already have been logged in the data tier, we don’t want to make one tier dependent on
another for logging. We would rather have each tier log the error encountered there and get
multiple log entries than rely on the logging behavior of a different tier in the application and
get no log messages.

Monitoring Application Security
One part of the business logic that should always be monitored is application security. You will
no doubt have some kind of logic that you use to validate the users of your application. In this
case, it is useful to audit the attempts to log in to the system so you can monitor any attempts
to gain invalid access to your system. If you have a case in your log files where you see many
attempts to log in using the same user name and many different passwords in a short space
of time, it is very possible that someone is trying to guess the password for a user name they
know exists. This certainly isn’t the only measure you should be taking in your security, and
more often than not you will find you can use the security logs to discount your manager’s
“rogue hacker against the establishment” theory when something goes wrong in the applica-
tion.

The big issue with building a security log is where you should perform the actual logging.
Should you do it in the web tier during the data entry, or should you do it in the business tier
when performing the actual authentication? The answer to that question is, “It depends.” You
most definitely want to build a log in the business tier since that is where the actual authenti-
cation takes place; and if you add more than one user interface tier, then you don’t have to
reproduce the logging. However, you may want to log more details about the attempted login
such as the IP address the request came from. In that case, you can either log the request in
the web tier as well or pass the IP address as a parameter to the business tier. We would rec-
ommend that you build a separate log in the web tier if you want to log the IP address of the
request. Passing the IP address to the business tier is a case of the Tier Leakage antipattern
detailed in Chapter 1. If you decide to use a Swing-based user interface, then the IP address
really has no meaning.

For the JavaEdge application, you are only interested in maintaining a log of the login
attempts, so you need to add some simple logging code to the MemberManagerBD.authenticate()
method:

public MemberVO authenticate(String userId, String password)
throws ApplicationException{

log.debug("authenticate() started");
MemberVO memberVO = new MemberVO();

CHAPTER 9 ■ LOGGING AND DEBUGGING348

Ch09_7389_CMP3 9/27/06 11:39 AM Page 348

//Setting the query criteria.
memberVO.setUserId(userId);
memberVO.setPassword(password);

MemberDAO memberDAO = new MemberDAO();

try{
memberVO = (MemberVO) memberDAO.findByCriteria(memberVO);

if(memberVO == null) {
if (log.isInfoEnabled()) {
log.info(
"Failed Login Attempt. Username:" +
userId +
" Password:" + password);

}
} else {
If (log.isInfoEnabled()) {

log.info("Successful Login Attempt for user:" + userId);
}

}
}
catch(DataAccessException e){
log.error("Error in MemberManagerBD.authenticate()", e);
throw new ApplicationException(

"Error in MemberManagerBD.validateUserId(): " +
e.toString(),e);

}

log.debug("authenticate() finished");
return memberVO;

}

Notice that for failed attempts you write both the user name and the password to the log
file, whereas on successful attempts you write just the user name. The last thing you want to
do is compromise the security of the JavaEdge application by storing valid user name and
password combinations in a plain text file.

Logging in the Web Tier
Now to the section you’ve been waiting for!

Logging in Struts Actions or ActionForms
You can, of course, add any kind of logging you want to your Struts actions or ActionForms, but
since most if not all of the logic in your application will reside in the business tier, there isn’t
really that much to log. Couple this with the extensive log output available from Struts, and
you shouldn’t need to perform any logging inside of your actions or ActionForms.

CHAPTER 9 ■ LOGGING AND DEBUGGING 349

Ch09_7389_CMP3 9/27/06 11:39 AM Page 349

Logging ApplicationExceptions
The ApplicationException class derives indirectly from RuntimeException, making it an
unchecked exception—that is, there is no need to either catch the exception within a method
or declare it as thrown by that method. The JavaEdge application relies on Struts’ ability to
handle exceptions globally using a global exception handler. For the JavaEdge application,
you build a global exception handler that sends the error details to an e-mail recipient. This is
useful since it means that you can alert an administrator if something goes wrong in the appli-
cation. However, you also want any ApplicationExceptions to be logged in the application log
file. Since all ApplicationExceptions are caught and handled globally, this is a simple matter.
All you need to do is add the logging code to the MailExceptionHandler:

public class MailExceptionHandler extends ExceptionHandler {
private static Log log =

ServiceLocator.getInstance().getLog(MailExceptionHandler.class);
public ActionForward execute(Exception e,

ExceptionConfig ex,
ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response)

throws ServletException{

ActionForward forward =
super.execute(e, ex, mapping, form, request, response);

Properties props = new Properties();

//Getting the name of the e-mail server.
props.put("mail.smtp.host", "netchange.us");
props.put("mail.from", "JavaEdgeApplication");

Session session = Session.getDefaultInstance(props, null);
session.setDebug(false);

// Write the exception details to the log file.
log.error("An ApplicationException has occurred", e);

Message msg = new MimeMessage(session);

try{
msg.setFrom();

//Setting who is supposed to receive the e-mail.
InternetAddress to = new InternetAddress("john.carnell@netchange.us");

CHAPTER 9 ■ LOGGING AND DEBUGGING350

Ch09_7389_CMP3 9/27/06 11:39 AM Page 350

//Setting the important text.
msg.setRecipient(MimeMessage.RecipientType.TO, to);
msg.setSubject("Error message occurred in Action:" + mapping.getName());
msg.setText(

"An error occurred while trying to invoke execute() on Action:" +
mapping.getName() +

". Error is: " + e.getMessage());
Transport.send(msg);
if (log.isDebugEnabled()) {

log.debug("E-Mail sent to:" + to);
}

}
catch(Exception exception){

log.error(" ===================================");
log.error(
"An error has occurred in the MailExceptionHandler" +
"while trying to process Action:"

+ mapping.getName());
log.error("Exception raised is : " + exception.getMessage());
log.error("Original Exception: " + e.getMessage());
log.error("====================================");

}

return forward;
}

}

Notice that not only do you log the actual ApplicationException, but you also log when
an e-mail is sent successfully and when one fails. This way you have proof that the administra-
tor was notified of the error and you can also diagnose any errors with the mail delivery easily.

Debugging Struts Applications Using JBoss and Eclipse
So far, everything in this chapter has been focused on logging technologies and building and
logging implementations for your application. In this final section, we are going to demon-
strate how you can debug your Struts-based applications running in JBoss using the Eclipse
open source IDE. We are not going to go into the details about what a debugger is and how to
use one, since we assume you are already familiar with that topic. Instead, we want to give a
practical demonstration of debugging Struts applications with JBoss and Eclipse, so that you
will be able to use the knowledge in your own debugging.

JBoss IDE Eclipse Plug-Ins
We assume at this point you already have Eclipse and JBoss installed on your machine. If not,
you will find more information on obtaining Eclipse in Appendix A and more information on
obtaining and setting up JBoss in Appendix B.

CHAPTER 9 ■ LOGGING AND DEBUGGING 351

Ch09_7389_CMP3 9/27/06 11:39 AM Page 351

Once you have those applications up and running, you need to obtain the JBoss IDE.
JBoss IDE is a set of plug-ins developed by JBoss for use with Eclipse. Amongst other things,
the JBoss IDE plug-ins add support for managing JBoss servers directly from the Eclipse IDE,
hot code deployment, and application server debugging. You can download the JBoss IDE
from http://www.jboss.org. Once you have the download, you need to unpack it and place
the plug-ins in the appropriate directory in your Eclipse program directory.

Configuring the JBoss Server
Once you have the JBoss IDE plug-ins installed, the first thing you need to do is configure
the JBoss server instance. To do this, you need to open the Server Navigator view by going to
Window ➤ Show View ➤ Other and selecting the view from the JBoss IDE category, as shown
in Figure 9-1.

Figure 9-1. Eclipse view browser

Once the Server Navigator is displayed, right-click it and choose Configuration. When the
Configuration dialog box appears, right-click the appropriate icon for your version of JBoss
and choose New from the pop-up menu. Enter a meaningful name for your server and then
enter the path to the JBoss home directory in the corresponding box, as shown in Figure 9-2.
The home directory is the one containing the bin directory, not the bin directory itself.

CHAPTER 9 ■ LOGGING AND DEBUGGING352

Ch09_7389_CMP3 9/27/06 11:39 AM Page 352

Figure 9-2. JBoss IDE server configuration

Under the JDK tab, make sure that the JDK selected is actually a full JDK and not just a
JRE. When we first installed the plug-in on our Windows machine, it picked up the Sun JRE
instead of our BEA JDK. Once that is done, click Apply and then Debug.

When the Configuration dialog box closes, the JBoss application server will start up inside
the Eclipse IDE. You will see all the messages that usually go to the console being streamed
through the Eclipse Console window.

Debugging the JavaEdge Application
To start debugging, you need to create a new project in Eclipse to hold the JavaEdge source
code. To create a new project, go to File ➤ New ➤ Project and select Java Project from the
dialog box.

CHAPTER 9 ■ LOGGING AND DEBUGGING 353

Ch09_7389_CMP3 9/27/06 11:39 AM Page 353

When you create the project, don’t create it in the same folder as the JavaEdge source
code. Instead, once the project is created, right-click it in the Package Explorer and choose
Import from the menu. When the Import dialog box opens, choose File System as shown in
Figure 9-3, and click Next.

Figure 9-3. Eclipse Import dialog box

You are now prompted to choose the folder to import, so select the folder containing the
JavaEdge source code. You need to check the box displayed next to the source folder as shown
in Figure 9-4 to make sure Eclipse includes all the source files.

Once the source code is imported, make sure that JBoss is running by checking the status
on the Server Navigator. If JBoss is not running, you can right-click the icon for your server
and choose Start to run it. Now open up the source file for HomePageSetupAction and set a
breakpoint inside the execute() method as shown in Figure 9-5 by double-clicking the margin
of the code editor.

Now fire up your browser and point it to the JavaEdge application running in JBoss. Once
the home page executes, the code will stop at the breakpoint you defined, and Eclipse will
switch into Debug mode. From here you can step through your code in the standard way you
would with any debugger. You will find the debugger commands under the Run menu along
with the particular shortcut keys for your platform.

You can set breakpoints at any point in your code, enabling you to analyze exactly what is
going on within your application.

CHAPTER 9 ■ LOGGING AND DEBUGGING354

Ch09_7389_CMP3 9/27/06 11:39 AM Page 354

Figure 9-4. Eclipse Import wizard

Figure 9-5. Breakpoints in Eclipse

Hot-Deploy
One really nifty feature of running the JBoss application server from within Eclipse is hot
deployment of code. Provided you are running a JVM that supports in-VM replacement, such
as the Sun JVMs 1.4.1 and 1.4.2, then when you are running JBoss and your J2EE application
from within the Eclipse IDE, any time you recompile a class it will replace the current version
in the JBoss VM. This allows you to make lots of changes while debugging your application
without having to perform a full rebuild and redeploy each time.

CHAPTER 9 ■ LOGGING AND DEBUGGING 355

Ch09_7389_CMP3 9/27/06 11:39 AM Page 355

Debugging the Struts Framework
You’re not only restricted to debugging your own source code. If you suspect there may be a
problem with some part of the Struts framework, you can actually get the source code level for
the framework at the same level as your own source code. To do this, you first need to obtain
the source code for Struts, which you can either download from the Apache web site or check
out from the Apache CVS server. The example here uses the downloadable source package.

Once you have downloaded the source package, locate the struts.jar file listed in the Pack-
age Explorer, right-click it, and choose Properties. In the Java Source Attachment page of the
Properties dialog box, enter the path to the ZIP file containing the source in the Location Path
box, as shown in Figure 9-6.

Figure 9-6. Source code attachment for Struts

Once you have mounted the source code, expand the struts.jar node in the Package
Explorer, and then expand the org.struts.action node. Under this node you will find the
RequestProcessor class. If you expand this node, all the methods are listed. Clicking the
process() method will bring up the source code, and you can place a breakpoint directly
inside the process() method. When you next request a page from the JavaEdge application,
JBoss will halt execution at your breakpoint, and the Eclipse IDE will switch into debug mode
with the Struts RequestProcessor source code in the current view.

Summary
In this chapter, we have given you an in-depth look at logging technologies, addressing exactly
what makes a good logging tool and looking at tools that meet the required criteria. Specifi-
cally, this chapter has focused mainly on Commons Logging and log4j, as together these tools
provide the most flexible and complete logging solution currently available.

We have addressed issues related to the design of a logging strategy, as well as the per-
formance of Commons Logging and log4j. We discussed at length some of the best practices
that you should take into consideration when adding logging support to your application.
Most of the concepts in this chapter have been backed up by practical demonstrations, so
you should now have a sense of how these topics work in a real scenario, not just on paper.

CHAPTER 9 ■ LOGGING AND DEBUGGING356

Ch09_7389_CMP3 9/27/06 11:39 AM Page 356

Of course, we haven’t neglected Struts; we have taken an extensive look at how to configure
logging within Struts, and also at some specific issues related to the JBoss application server. To
cement these ideas, we demonstrated how logging has been integrated into the JavaEdge appli-
cation and also explained the decision-making process we went through when picking our
logging strategy.

In the final part of the chapter, we presented a practical demonstration of how you can
leverage the Eclipse IDE and JBoss application server to interactively debug not only your
application, but the Struts framework as well.

CHAPTER 9 ■ LOGGING AND DEBUGGING 357

Ch09_7389_CMP3 9/27/06 11:39 AM Page 357

Ch09_7389_CMP3 9/27/06 11:39 AM Page 358

Velocity Template Engine

All of the Struts examples you have seen so far in this book have used JSP as the view tech-
nology. Although JSP is sufficient for most applications, it can sometimes prove too complex
to be handled by designers, and there is always the temptation to “fix” a small problem by
using a scriptlet within the JSP rather than returning to the Struts actions or business logic.

As with any good MVC framework, Struts is not coupled to a single view technology. In
fact, one of the main reasons for using an MVC framework is so that the view technology can
be easily changed and decoupled from the logic. The Velocity template engine is another
project from the Apache Jakarta team designed to function as a view technology for web appli-
cations. Originally designed as a stand-alone project, Velocity is now integrated into many
other projects, Jakarta and otherwise, including of course Struts.

In this chapter, we are going to look at how Velocity can simplify view creation, especially
when working with designers who have little or no programming knowledge. We will also look at
how Velocity can help you avoid some of the antipatterns, specifically the Tight-Skins antipat-
tern, that have been discussed throughout the book. This chapter will introduce you to the
basics of the Velocity template engine as well as how it is integrated into the Struts framework.

What Is a Template Engine?
If you have had no experience working with a template engine, then you may be wondering
what exactly a template engine is. Essentially, a template engine forms a simplified version of
JSP. Most template engines allow you to create output based on a set of rules and operations.
Unlike JSP, a template engine does not allow for complex business logic to be embedded in the
template; there are just enough logic constructs to support the creation of the content.

Using a template engine offers some distinct benefits over using something like JSP:

Ease of use: You will generally find that template engines, Velocity included, are extremely
easy to use. This is especially true when you are working alongside nontechnical team
members such as designers, who should be able to get to grips with Velocity within a
few hours.

Simplicity: A good template engine contains few constructs for its template language,
making the construction of templates a simple matter. Since most template languages
simply focus on their ability to generate text output, the learning curve is much more
relaxed than that with technologies such as JSP, which has all the complexity of the Java
language behind it.

359

C H A P T E R 1 0

■ ■ ■

Ch10_7389_CMP2 9/25/06 9:11 PM Page 359

Flexibility: Template engines are simply mechanisms for generating dynamic output.
Although JSP is capable of producing output that is not HTML based, it is certainly most
suited to the creation of HTML for web pages. A template engine, on the other hand, is
equally comfortable creating HTML, XML, SQL, or text-based output. Using a template
engine, you can create the layouts for not only your web pages, but also any other output
your application might generate such as e-mails, invoices, or reports.

Reusability: A particularly useful feature of a template engine is that your templates are not
coupled to output to a browser. A template that generates an order confirmation e-mail can
be used in multiple applications and does not even need to be sent as an e-mail.

Template engines are not without their disadvantages, however:

Power: Although you will find that most template engines are quite powerful, they are not
quite as powerful as JSP. You have no ability to place scriptlets in your code, so you cannot
leverage any kind of advanced logic within your view. While many, including ourselves,
would consider this a good thing, if your application or development team relies exten-
sively on scriptlets, then this may pose a problem for you. On the other hand, if you have
gotten into the bad habit of using scriptlets, a template engine is a good method of
enforcing a clean separation of code and layout.

Tool support: Our biggest problem with using a template engine is the lack of integration
with other technologies. In the current release of Velocity, the integration of tiles isn’t as
good as the Tiles framework support in Struts when using JSP. Currently you can only use
Velocity as an individual tile, not to create the root layout of a Tiles framework applica-
tion. However, as we mention later on, this is changing, and many different tools are in
the process of being integrated with the Velocity engine.

Familiarity: Perhaps the least worrying of the disadvantages of a template engine is the
lack of familiarity you may have with it. If your team is made up solely of programmers
who are already proficient with JSP, then learning another mechanism for something to
which you have a perfectly good solution may not seem like a good use of your time.
When considering this, you should remember that the learning curve for a template
engine is especially low when compared with the likes of JSP.

Getting Started
At the core of Velocity is the template. You can’t really do much in Velocity without first build-
ing a template. Velocity templates are written using the Velocity Template Language (VTL) and
are then passed into the Velocity engine along with a Context object that contains all the vari-
able data that is needed to render the content for that template.

Before we take a look at the Velocity internals and the VTL syntax in some detail, let’s build
a simple example to highlight how Velocity works. To start with, you will need to obtain the
Velocity jar file from the Jakarta web site at http://jakarta.apache.org/velocity. At the time
of writing, the current release of Velocity is 1.4.

The Velocity distribution contains two separate jar files, one containing Velocity and
the other containing all the dependencies. You can either obtain all the classes that Velocity
requires separately or use the dependencies jar file instead.

CHAPTER 10 ■ VELOCITY TEMPLATE ENGINE360

Ch10_7389_CMP2 9/25/06 9:11 PM Page 360

This next section discusses Velocity in general and makes very little reference to its use in
a web environment. All the samples are run from the command line and are intended to pro-
vide an overview of Velocity without the added complexity of the web environment.

To start with, you need a template. A template is simply a plain text file that contains
the static content combined with VTL constructs that define how the template will be con-
structed. For the first template in this chapter, you will start small. Create a text file called
HelloVelocity.vm and add the following text to it:

Hello $who!

Don’t worry too much about the template syntax just yet; we will cover that in more detail
soon. Now you need to create the code to utilize this template. You want to load the template
into a simple console application and create some output based on it. The code to do this is
quite simple:

import java.io.StringWriter;

import org.apache.velocity.VelocityContext;
import org.apache.velocity.app.Velocity;

public class HelloVelocity {

public static void main(String[] args) throws Exception{

Velocity.init();

VelocityContext context = new VelocityContext();
context.put("who", "Velocity");

StringWriter writer = new StringWriter();

Velocity.mergeTemplate("HelloVelocity.vm", "ASCII", context, writer);
System.out.println(writer);

}
}

In the main() method you initialize the Velocity engine with default parameters with a call
to Velocity.init(). Next you create a new VelocityContext object and set the value of the who
variable to Velocity. The final part of the code merges the content of the HelloVelocity.vm
template with the content stored in the VelocityContext object and places the resulting text in
the supplied StringWriter instance. When you run this example, you see the following output:

Hello Velocity!

From the output you can see that content from the HelloVelocity.vm template was
merged with the parameters you set in the VelocityContext. You are probably thinking that
was an awful lot of code just to display “Hello Velocity” to the console window, and certainly in
this case you are correct. However, when you are outputting a large amount of content, espe-
cially lots of static and dynamic context mixed together, such as on web pages, you will save a
great deal of time using this method.

CHAPTER 10 ■ VELOCITY TEMPLATE ENGINE 361

Ch10_7389_CMP2 9/25/06 9:11 PM Page 361

Velocity and VelocityContext Classes
The Velocity class is the core class used to parse and execute your Velocity templates. Inter-
nally, the Velocity class is a simple wrapper around the RuntimeSingleton class, which in turn
maintains a singleton instance of the actual engine. Starting from version 1.2 of Velocity, you
can now create separate instances of the Velocity engine using the VelocityEngine class,
which provides a simple wrapper around the runtime. You should avoid invoking the runtime
directly, since the implementation details may change dramatically, but the Velocity and
VelocityEngine classes will maintain a consistent, if evolving, interface.

Velocity wouldn’t be much use if you couldn’t pass in data from your Java applications to
be used when executing a template. To this end, the Velocity engine introduces the notion of a
Context. To execute a template, you are required to create a Context, usually in the form of the
concrete VelocityContext class, and pass this to the Velocity engine along with the template.
The Context forms the container for all the data available to your template. When building the
VelocityContext in your Java application, each piece of data is associated with a key name
that you can use to refer to that data from within your template. In the previous example, you
add the value "Velocity" to the VelocityContext under the key "who". Then in the template
you are able to use the $who variable to access the value stored in VelocityContext.

Velocity Template Language
In the previous section, we showed you a simple demonstration of Velocity, but in reality you
wouldn’t want to use Velocity for something that simple, as you would just end up writing
more code than you need to. In this section, we are going to take you through a detailed look
at VTL and present some more complex examples along the way as well.

Comments
No programming language, VTL included, would be complete without comments. If you
decide to leverage Velocity extensively throughout your application, you will no doubt end up
with some very complex templates. Without the ability to annotate your templates, you will
find it very difficult to maintain your applications.

As in Java, Velocity supports single-line and multiline comments. A single-line comment
is denoted by two # characters at the beginning of your comment text. The comment then
runs to the end of the line:

say hello
Hello $who

unlike in Java, where something like this would be acceptable:

int x = 0; // end of line comment

You cannot use single-line VTL comments at the end of a line in your template. So some-
thing like this:

Hello $who ## end of line comment

CHAPTER 10 ■ VELOCITY TEMPLATE ENGINE362

Ch10_7389_CMP2 9/25/06 9:11 PM Page 362

would throw up a ParseException and your code will come to an abrupt stop. For multiline
comments, you simply need to start your comments with #* and end with *#—for example:

#* say hello
okay then I will *#
Hello $who

Unlike single-line comments, you can use multiline comments at the end of a line in your
template:

#* say hello
okay then I will *#
Hello $who #* end of line *#

Be careful with multiline comments as they can sometimes be responsible for undesirable
output in your template. If you run one of the previous templates with multiline comments
through the code example previously shown, you will notice that you get a stray line before the
“Hello Velocity” line. It seems that Velocity will ignore the multiline comments when processing
a template but not the trailing newline characters that follow the *# at the end of the comment.
You can get around this by doing something like the following:

#* say hello
okay then I will
*#Hello $who

In this case, there is no newline in the space between where the comment ends and the
template content starts, so you will get the desired behavior of a single line reading “Hello
Velocity”.

Variables
You can probably guess by now what a VTL variable looks like; all the previous examples
have contained a single variable, $who. Variables are passed to the Velocity engine via the
VelocityContext class. Without variables, you wouldn’t be able to create many useful tem-
plates because you would be restricted to using the content that was predefined in your
templates.

Accessing Variables
To access a variable within your template, you simply use the name of the variable prefixed
with the $ symbol as follows:

Hello $who

When you are passing a variable to the Velocity engine as part of a VelocityContext, you
should exclude the $ character:

VelocityContext context = new VelocityContext();
context.put("who", "Velocity");

CHAPTER 10 ■ VELOCITY TEMPLATE ENGINE 363

Ch10_7389_CMP2 9/25/06 9:11 PM Page 363

You are not limited to using variables that are passed into your template for Java. Within a
template you can create your own variables and utilize them in the same way throughout your
template. For instance, this template:

#set ($greeting = "How are you?")
Hello $who. $greeting

gives the following output:

#set ($greeting = "How are you?")
Hello $who. $greeting

In the first line of this template, you use the #set directive (more on directives in the next
section) to create a new variable called $greeting, and you give it the value "How are you?" On
the second line of the template, the value of the $greeting variable is substituted in the same
way as the $who variable.

Variable Values
When you are passing variables into Velocity from Java, you can use any primitive or object
that you want. For primitives, the corresponding String value will be displayed in the output.
For an object, Velocity calls the toString() method to get a String value for output, so you
should make sure that any objects you pass to Velocity return valid data from their toString()
method.

When declaring variables internally, you are limited to using any of the following:

• String literals: You can use any kind of string literal such as "Hello World".

• Number literals: You can use any integer literal such as 12 or 123456. You cannot use
floating-point numbers when declaring a variable internally.

• Boolean literals: You can declare a Boolean variable using either true or false (no quotes).

Quiet References
If you have added a variable to your template as part of the output, but you neither give it a
value inside the template nor pass in a value from Java, then the actual variable name will be
displayed instead. To see this in action, add an extra variable to the template from the previ-
ous example:

#set ($greeting = "How are you?")
Hello $who. $greeting $question

If you run the example now, you are presented with the following output:

Hello Velocity. How are you? $question

In most cases, this output is desirable, as it helps you to debug your templates. But there
may be some cases where you want to have an optional value that may or may not be passed
to your template from Java. In this case, you can use a quiet reference to prevent the variable

CHAPTER 10 ■ VELOCITY TEMPLATE ENGINE364

Ch10_7389_CMP2 9/25/06 9:11 PM Page 364

name from being displayed if no value is present. To use a quiet reference, you simply prefix
your variable name with $! instead of $:

#set ($greeting = "How are you?")
Hello $who. $greeting $!question

So when you run this example again, the output now reads:

Hello Velocity. How are you?

Variable Concatenation
Within a template, you will often find the need to concatenate the values of two or more
variables together. If all you need to do is concatenate the values of the variables together
for output, you can just place the variable names next to each other in your template:

#set ($firstName = "Gandalf ")
#set ($lastName = "Stormcrow")
Hello $who. My name is $firstName$lastName

Notice in the last line of this template you place the $lastName variable directly after the
$firstName variable. When you run this template, you get the following output:

Hello Velocity. My name is Gandalf Stormcrow

Notice that you add a space to the end of the $firstName variable declaration, which is
why it was included in the output. If you plan to use the concatenated value more than once
throughout the template, then you will probably want to create a new variable to hold the
concatenated value. To achieve this, you simply need to add the variable names inside of the
new variable declaration:

#set ($firstName = "Gandalf ")
#set ($lastName = "Stormcrow")
#set ($fullName = "$firstName$lastName")
Hello $who. My name is $fullName

This template gives the exact same output as the previous template. Notice that you still
have to include the quotes around the variable names. In this case, you could have added
some static text in between the variables to modify the variable that was created:

#set ($firstName = "Gandalf ")
#set ($lastName = "Stormcrow")
#set ($fullName = "$lastName. $firstName$lastName")
Hello $who. My name is $fullName

Notice that you add the $lastName variable again but also a static period character fol-
lowed by a space. When this template is run, both static characters are carried throughout the
(very James Bond) output:

Hello Velocity. My name is Stormcrow. Gandalf Stormcrow

CHAPTER 10 ■ VELOCITY TEMPLATE ENGINE 365

Ch10_7389_CMP2 9/25/06 9:11 PM Page 365

The problem with concatenation arises when you want to concatenate the value of a
variable with some static content. Consider this version of the previous template:

#set ($firstName = "Gandalf ")
#set ($lastName = "Stormcrow")
#set ($fullName = "$lastName. $firstName$lastName")
Hello $who. My name is $firstNameStormcrow

Notice how you add the last name as static content. When this runs, the content actually
displays $firstNameStormcrow rather than Gandalf Stormcrow because Velocity interprets this
as a single variable name without a value. In a case like this, you need to use the formal Veloc-
ity notation to reference the variable:

#set ($firstName = "Gandalf ")
#set ($lastName = "Stormcrow")
#set ($fullName = "$lastName. $firstName$lastName")
Hello $who. My name is ${firstName}Stormcrow

In the preceding example, you wrap the variable name for $firstName in curly braces,
which Velocity uses to denote a variable. In most cases, you can leave these braces off, as in
the previous template examples, but here they are required to get this template to function.

Escape Characters
Consider the following template example:

#set ($widgetCost = "12.99")
#set ($wotsitCost = "13.99")
Price List

$widgetCost = $widgetCost
$wotsitCost = $wotsitCost

While it is clear you want to display the variable name and the value, it is also clear that
the actual output will be:

Price List

12.99 = 12.99
13.99 = 13.99

To display the name of the variable that has a value, you need to prefix the variable name
with the escape character, which in keeping with Java is a \. So to correct your previous tem-
plate, you would simply need to prefix each variable name with a \ when you want the name
to be displayed:

CHAPTER 10 ■ VELOCITY TEMPLATE ENGINE366

Ch10_7389_CMP2 9/25/06 9:11 PM Page 366

#set ($widgetCost = "12.99")
#set ($wotsitCost = "13.99")
Price List

\$widgetCost = $widgetCost
\$wotsitCost = $wotsitCost

Now that the template is corrected, the output is as desired:

Price List

$widgetCost = 12.99
$wotsitCost = 13.99

To display the \ character itself, you can just include it in the template. Displaying the $
character is not as simple, however. In the case where you want to display the $ character
immediately before a variable value, you can include the $ character before the variable in
your template:

#set ($widgetCost = "12.99")
#set ($wotsitCost = "13.99")
Price List

\$widgetCost = $$widgetCost
\$wotsitCost = $$wotsitCost

Notice that where you are getting the values of the $widgetCost and $wotsitCost variables
you need to add an additional $ character before the variable. When you run the example now,
you get this output:

Price List

$widgetCost = $12.99
$wotsitCost = $13.99

In fact, you can place the $ character on its own anywhere in the template, and it will dis-
play just fine. The only place you cannot have a $ character is as the last character in your
template. So while this template will work fine:

#set ($widgetCost = "12.99")
#set ($wotsitCost = "13.99")
Price List

CHAPTER 10 ■ VELOCITY TEMPLATE ENGINE 367

Ch10_7389_CMP2 9/25/06 9:11 PM Page 367

\$widgetCost = $$widgetCost
\$wotsitCost = $$wotsitCost

All prices in USD ($).

if you remove the trailing) and . characters, you will get a ParseException. The only way
around this is to declare a variable with $ as its value and use that as the last value in your
template:

#set ($widgetCost = "12.99")
#set ($wotsitCost = "13.99")
#set ($dollar = "$")
Price List

\$widgetCost = $$widgetCost
\$wotsitCost = $$wotsitCost

All prices in USD $dollar

Variables are an important part of how Velocity works, and understanding them will
enable you to get the most of the Velocity engine. We have pretty much exhausted the variable
topic now, but you will find a much more in-depth discussion of escaping on the Velocity web
site at http://jakarta.apache.org/velocity.

Object Methods
If you want to pass an object to the Velocity template from your Java code, you are not limited
to accessing only the value of that object’s toString() method. Velocity supports the ability
to access any of the methods on the object as well. For instance, consider the first example in
this chapter. The Java code in that example adds a single String object to VelocityContext.
The template used for that example simply displayed the value of the String object and noth-
ing more, but what if you wanted to find out the length of String? You can simply access the
String.length() method from within your template:

Hello $who!
Your name has $who.length() characters in it.

Obviously this would throw an error if the object passed in as the $who variable didn’t have
a length() method, but since $who is a String, you get this output:

Hello Velocity!
Your name has 8 characters in it.

Velocity also supports chaining of method calls so you can have something like this in a
template:

Hello $who!
The who variable is a $who.getClass().getName() instance.

CHAPTER 10 ■ VELOCITY TEMPLATE ENGINE368

Ch10_7389_CMP2 9/25/06 9:11 PM Page 368

which creates this output:

Hello Velocity!
The who variable is a java.lang.String instance.

JavaBean Properties
Velocity has been designed with simplicity in mind, and for that reason it provides a simple
syntax for dealing with classes that expose properties as methods that conform to the
JavaBean naming conventions. You can modify the previous example to make use of this
simplified syntax as follows:

Hello $who!
The who variable is a $who.Class.Name instance.

In this case, the Velocity engine interprets $who.Class to match the $who.getClass()
property as per the JavaBeans specification. You can also refer to properties within a set
statement:

#set ($customer.FirstName = "Gandalf")

If there is no corresponding setFirstName() method on the $customer object, then this
throws an error; otherwise, the value of Gandalf would be stored in that property.

Arithmetic
Along with support for integer primitives inside of your templates, Velocity provides support
for simple integer arithmetic. The arithmetic support is very basic, supporting only five opera-
tors: +, -, *, /, %. You are no doubt more than familiar with the first four operators, but you may
not be as familiar with the fifth. The modulo (%) operator returns the remainder of a division.
As an example, 20 / 3 equals 6 with 2 remaining, so 20 % 3 equals 2. All arithmetic works on
integers, and the results will only ever be an integer, so 20 / 3 would return 6 as the answer
when executed inside a Velocity template.

In this example, we show you how to use the arithmetic support of Velocity to add the
shipping costs to your list of products:

#set ($widgetCost = 13)
#set ($wotsitCost = 14)
#set ($shipCost = 2)
#set ($widgetTotal = $widgetCost + $shipCost)
#set ($wotsitTotal = $wotsitCost + $shipCost)
Price List

\$widgetCost = $$widgetCost $$widgetTotal
\$wotsitCost = $$wotsitCost $$wotsitTotal

All prices in USD ($).

CHAPTER 10 ■ VELOCITY TEMPLATE ENGINE 369

Ch10_7389_CMP2 9/25/06 9:11 PM Page 369

Notice that $widgetCost and $wotsitCost variables have been changed to integer literals
as opposed to string literals. The arithmetic functions will only work on integer literals and
not numbers contained within a string. You should also note that you have to change the item
costs to integers, as Velocity does not support floating-point literals inside its templates. This
template gives the following output:

Price List

$widgetCost = $13 $15
$wotsitCost = $14 $16

All prices in USD ($).

Directives
This is where it gets interesting. Using directives, you can make your templates much more
dynamic and appealing. In the previous examples, you use the #set directive to set a variable
value within the template. The #set directive is only one of the many directives available in
VTL. In this section, we are going to look at the most commonly used directives that you can
include in your templates.

Including Static Content with #include
If you are planning on building a web site with Velocity, then you will no doubt have a large
amount of content that is going to be common across your templates. Thankfully you are not
forced to include this content in every single template. Instead, you can place the common
content in a separate file and use the #include directive to have Velocity include it in another
template. For example, say you have a main HTML page in a template like this:

<html>
<head>

<title>Legolas Industries Homepage</title>
</head>
<body>

<h1>Welcome!!</h1>
#include("templates/HTMLFooter.vm")

</body>
</html>

Notice the #include directive near the bottom. If you couple this with the
HTMLFooter.vm template:

<h3>Copyright © Legolas Industries 2003</h3>

CHAPTER 10 ■ VELOCITY TEMPLATE ENGINE370

Ch10_7389_CMP2 9/25/06 9:11 PM Page 370

and run it through Velocity using the following code:

import java.io.StringWriter;

import org.apache.velocity.VelocityContext;
import org.apache.velocity.app.Velocity;
public class ImportDemo {

public static void main(String[] args) throws Exception {
Velocity.init();

VelocityContext context = new VelocityContext();

StringWriter writer = new StringWriter();

Velocity.mergeTemplate(
"templates/HTMLBody.vm",
"ASCII",
context,
writer);

System.out.println(writer);
}

}

you end up with this output:

<html>
<head>

<title>Legolas Industries Homepage</title>
</head>
<body>

<h1>Welcome!!</h1>
<h3>Copyright © Legolas Industries 2003</h3>

</body>
</html>

Notice from the Java code that you only specify the HTMLBody.vm template in your call
to Velocity.mergeTemplate(), but the code from the HTMLFooter.vm template still finds its
way into your final output. This is the #include directive at work. With #include the contents
of the include file are substituted for the directive itself. You can also pass multiple arguments
to the #include directive to import multiple files in one go:

#include("HTMLFooter.vm", "HTMLLinkBar.vm")

The drawback of the #include directive is that any VTL content in the include files is
ignored by Velocity and treated as static content, so you can’t change the content of the
included files based on any of the variables in the current context. However, this leads us
quite nicely into a discussion of the #parse directive.

CHAPTER 10 ■ VELOCITY TEMPLATE ENGINE 371

Ch10_7389_CMP2 9/25/06 9:11 PM Page 371

Embedding Other Templates with #parse
The #parse directive is designed to overcome the drawbacks with the #include directive by
first running include files through the Velocity engine before including the fully parsed con-
tents in the parent template. To highlight this, make a few small changes to the previous
templates. In the HTMLBody.vm template, replace the company name with a variable that
is defined in the first line of the template. Also replace the #include directive with a #parse
directive as shown here:

#set ($companyName = "Legolas Industries")
<html>

<head>
<title>$companyName Homepage</title>

</head>
<body>

<h1>Welcome!!</h1>
#parse("templates/HTMLFooter.vm")

</body>
</html>

In the HTMLFooter.vm template, you replace the company name with the same variable
you use in the HTMLBody.vm template, but notice that this template does not define the
value of the variable, as you want to use the value that is defined by the parent template (in
this case HTMLBody.vm):

<h3>Copyright © $companyName 2003</h3>

When you run this through the same Java code as before, you get the following output:

<html>
<head>

<title>Legolas Industries Homepage</title>
</head>
<body>

<h1>Welcome!!</h1>
<h3>Copyright © Legolas Industries 2003</h3>

</body>
</html>

As you can see, not only have the contents of the HTMLFooter.vm template been included
in place of the #parse directive, but the value of the $companyName variable has been replaced in
both templates by the variable defined in HTMLBody.vm.

When using the #parse directive, the template containing the directive is considered
the parent, and the template being parsed is considered the child. In this case, the child has
access to all of the variables in the parent template’s context. When you define a variable in the
child template, it is actually added to the parent template’s context—essentially all the tem-
plates in the tree share the same context. This may trip you up a little if you try to access a
variable that is defined in the child template from the parent template before the child tem-
plate has been parsed. In this case, the variable has no value, and the name will be outputted;

CHAPTER 10 ■ VELOCITY TEMPLATE ENGINE372

Ch10_7389_CMP2 9/25/06 9:11 PM Page 372

but if the child template has already been parsed, then the variable value will be outputted.
We know this is quite a complex topic to understand, so being the kind people we are, we will
walk you through another example. In this example, change the HTMLFooter.vm template
and add a single variable declaration:

#set ($innerVar = "This is an inner variable")
<h3>Copyright © $companyName 2003</h3>

In the HTMLBody.vm, you add two references to this variable, one before the #parse
directive and one after it:

#set ($companyName = "Legolas Industries")
<html>

<head>
<title>$companyName Homepage</title>

</head>
<body>

<h1>Welcome!!</h1>
$innerVar
#parse("templates/HTMLFooter.vm")
$innerVar

</body>
</html>

If you run this example, you will be presented with the following output:

<html>
<head>

<title>Legolas Industries Homepage</title>
</head>
<body>

<h1>Welcome!!</h1>
$innerVar
<h3>Copyright © Legolas Industries 2003</h3>
This is an inner variable

</body>
</html>

Notice that before the #parse directive the variable has no value, so the name is outputted;
but after the #parse statement, when the child template has been parsed, $innerVar has a value,
and this is included in the output.

You may be wondering what the point of the #include directive is when you have the
#parse directive at your fingertips. Well, the answer is simple: performance. When you use the
#parse directive, the Velocity engine will treat the file as another Velocity template and will
parse it for variables and directives, whereas with the #include directive Velocity will just read
in the file contents and insert them into the output stream. When all you need to do is include
the contents of a static resource, then use #include to avoid the overhead introduced by the
Velocity engine.

CHAPTER 10 ■ VELOCITY TEMPLATE ENGINE 373

Ch10_7389_CMP2 9/25/06 9:11 PM Page 373

If you find yourself using #import or #parse often within Struts/Velocity applications, then
you should consider refactoring to use Tiles, as you will find maintenance much easier.

Making Decisions with #if, #else, and #elseif
So far, all the templates you have seen in this chapter have been quite static. Aside from the
occasional variable substitution or template import, nothing much has changed within the
example templates—certainly the structure of the output hasn’t changed dramatically.

Velocity has quite sophisticated support for conditional blocks within your templates,
and without them it wouldn’t prove to be such a useful tool. The idea of the conditional state-
ments in Velocity is not to allow for complex business logic but more to support the logic
needed to produce the kinds of complex views that are required by today’s web applications.
Can you imagine trying to build a web application without being able to change the interface
that is displayed to your users? Even a relatively simple application like the JavaEdge applica-
tion developed in this book requires this ability. How well would the login/logout functionality
of the JavaEdge application work if you were unable to hide the logout button when a user is
logged out and show it when that user is logged in?

You will be glad to hear that using the conditional directives in Velocity is no more com-
plex than using any of the other VTL directives described previously.

At the most basic level, you have the #if directive, which is synonymous with the Java if
statement. The #if directive is complemented by the #else directive, which will allow you to
provide some alternative output if the #if directive evaluates to false. To see how this is done,
add some extra directives to your previous template as shown here:

#set ($companyName = "Legolas Industries")
<html>

<head>
<title>$companyName Homepage</title>

</head>
<body>

<h1>Welcome!!</h1>
#if ($userType == "elf")

<h2>You are an elf!</h2>
#else

<h2>I don't know what you are!</h2>
#end
#parse("templates/HTMLFooter.vm")

</body>
</html>

Also change the Java code slightly to add the $userType variable to VelocityContext:

public static void main(String[] args) throws Exception {
Velocity.init();

VelocityContext context = new VelocityContext();
context.put("userType", "elf");

StringWriter writer = new StringWriter();

CHAPTER 10 ■ VELOCITY TEMPLATE ENGINE374

Ch10_7389_CMP2 9/25/06 9:11 PM Page 374

Velocity.mergeTemplate(
"templates/HTMLBody.vm",
"ASCII",
context,
writer);

System.out.println(writer);
}

When you run this example, you get the following output:

<html>
<head>

<title>Legolas Industries Homepage</title>
</head>
<body>

<h1>Welcome!!</h1>
<h2>You are an elf!</h2>

<h3>Copyright © Legolas Industries 2003</h3>
</body>

</html>

You should also try running this example with a different value set for $userType. Of
course, you are not just limited to simple conditional statements like this one. Velocity also
supports the #elseif directive, allowing you to make more complex decisions within your
templates. For example:

#set ($companyName = "Legolas Industries")
<html>

<head>
<title>$companyName Homepage</title>

</head>
<body>

<h1>Welcome!!</h1>
#if ($userType == "human")

<h2>You are a human!</h2>
#elseif ($userType == "orc")

<h2>You are an orc. Damn, you're ugly!</h2>
#elseif ($userType == "elf")

<h2>You are an elf! How go the pointy ears?</h2>
#else

<h2>I don't know what you are!</h2>
#end
#parse("templates/HTMLFooter.vm")

</body>
</html>

CHAPTER 10 ■ VELOCITY TEMPLATE ENGINE 375

Ch10_7389_CMP2 9/25/06 9:11 PM Page 375

Try running this one with different values set for the $userType variable. You’ve seen the
examples, now comes the science. When building your conditional statements you should
follow these three guidelines:

• If you pass in a primitive Boolean, a Boolean object either as a variable or as an expres-
sion that evaluates to a Boolean value, then the Velocity engine will, quite obviously, use
the appropriate true or false value.

• If you pass in a variable that is not a Boolean, then the condition will evaluate to true if
that variable exists in the current context and false if it does not.

• You can pass in the literals true or false to represent their appropriate values.

Working with Collections Using #foreach
Building a web application usually means working with a database, and this in turn usually
means one thing: lists. The main reason you would use a database is to store data, and since
you are using a database to store the data, you are probably storing large lists of data rather
than individual items. No view technology would be complete without the ability to output
lists in a quick and efficient manner, and in Velocity this is executed with typical simplicity.

Using the #foreach directive, you can repeat a block of your template for each item in a
list of data, changing the output based on the current item in the list. When it comes to the
actual lists, you have three options:

• Velocity arrays

• Velocity ranges

• Java collections

Velocity provides a simple syntax to build arrays internally that can then be used with the
#foreach directive to output a list of data. To declare an array variable, you use the #set direc-
tive with a different syntax for the variable value:

#set (myArray = ["one", "two", "three"])

Notice that for the value you add three separate values, delimited by commas, and wrap
the whole thing in square brackets. Once you have an array available in the active context, you
can use the #foreach directive to loop through the elements and output them:

#set ($myArray = ["one", "two", "three"])
#foreach($item in $myArray)

List Item: $item
#end

When you run this through Velocity, you get the following output:

List Item: one
List Item: two
List Item: three

CHAPTER 10 ■ VELOCITY TEMPLATE ENGINE376

Ch10_7389_CMP2 9/25/06 9:11 PM Page 376

You should note that you don’t have to declare the array as a variable; instead, you can use
the array syntax in place of the array variable in the #foreach directive. The range operator in
Velocity provides a simple way to declare an array of integers without having to specify every
single integer; you simply specify the beginning and end of the range:

#foreach($number in [1..5])
Current Index: $number

#end

In this example, the range is declared using [1..5] with 1 being the start of the range and
5 being the end. You can, of course, specify any integer for the start and end of the range. This
example will create this output:

Current Index: 1
Current Index: 2
Current Index: 3
Current Index: 4
Current Index: 5

Note that in the preceding example you could have assigned the range to a variable
instead of creating the array directly inside of the #foreach directive. If you need to use a range
of numbers or an array more than once in the same template, then you should consider creat-
ing a variable to hold it rather than re-creating it each time you use the #foreach directive.

Of course, both of these features are quite useful, but the real power comes from being
able to pass in a Collection from your Java code and access the objects contained in it. Using
this capability, you can load the data from your database and package it up using the Value
Object pattern in a similar manner to the way we have demonstrated loading the data for the
JavaEdge application. Once you have a Collection of value objects, you can pass them into
Velocity and have the template render the data as appropriate.

This next example is slightly more involved than the previous ones and returns to the
earlier example of a price list. What you want to achieve is a list of products and their prices.
The products are described in Java as the Product class and are loaded from some data store
and passed to the presentation tier in a Collection. You want to use Velocity to take this
Collection of objects and build an HTML price list.

So first you need the Product class in Java to hold the product details:

public class Product {

private String name;
private double price;

public Product(String aName, double aPrice) {
name = aName;
price = aPrice;

}

public String getName() {
return name;

}

CHAPTER 10 ■ VELOCITY TEMPLATE ENGINE 377

Ch10_7389_CMP2 9/25/06 9:11 PM Page 377

public double getPrice() {
return price;

}

public void setName(String val) {
name = val;

}

public void setPrice(double val) {
price = val;

}
}

This is a very basic class to hold the data for one product. It has two properties, Name and
Price, with the corresponding get() and set() methods. The next thing you need to do is to
create a Collection of Product objects and store the Collection in the VelocityContext:

public static void main(String[] args) throws Exception {
Velocity.init();

VelocityContext context = new VelocityContext();

Collection products = new ArrayList();
products.add(new Product("Widget", 12.99));
products.add(new Product("Wotsit", 13.99));
products.add(new Product("Thingy", 11.99));

context.put("products", products);

StringWriter writer = new StringWriter();

Velocity.mergeTemplate(
"templates/Foreach.vm",
"ASCII",
context,
writer);

System.out.println(writer);
}

As you can see, constructing the Collection and storing it in the VelocityContext is pretty
basic stuff, although in real life you would probably load the Product objects from a database
rather than having them hard-coded into your application. The final piece for this example is
the template shown here:

<html>
<head>

<title>Gimli's Widgetarium</title>
</head>
<body>

CHAPTER 10 ■ VELOCITY TEMPLATE ENGINE378

Ch10_7389_CMP2 9/25/06 9:11 PM Page 378

<table>
#set ($rowCount = 1)
#foreach($product in $products)

#if ($rowCount % 2 == 0)
#set ($bgcolor = "#FFFFFF")

#else
#set ($bgcolor = "#CCCCCC")

#end
<tr>

<td bgcolor="$bgcolor">$product.Name</td>
<td bgcolor="$bgcolor">$product.Price</td>

</tr>
#set ($rowCount = $rowCount + 1)

#end
</table>

</body>
</html>

This template is quite complex and requires a little bit of explanation. Ignoring the static
content, the bulk of the content in this template is created in the #foreach loop. The #foreach
loop looks at each Product object stored in the $products Collection and outputs a table row
for each one. If you look at the table cells, you will notice that the actual properties of the
Product objects are accessed using the shortcuts discussed earlier. The other interesting part
of this template is the use of the modulo operator coupled with the #if and #else directives.
Using these constructs, you can differentiate between odd- and even-numbered rows in the
table and color them accordingly.

As you can see, using the #foreach directive is actually very easy—you are only really
limited by your creativity. As with all of the directives in Velocity, #foreach has a very simple
syntax that provides enough power to support the creation of your view, but is of little use
for performing any kind of business logic. Most people, ourselves included, would find this
to be a godsend, as it prevents any lax developers on your team from breaking your strict
architecture.

Macros
In the previous section, we looked at Velocity directives, but if you are familiar with Velocity,
you will have noticed that we missed one. Velocity provides excellent support for macros,
sometimes called Velocimacros, using another directive, #macro. We have decided to separate
our discussion of the #macro directives from that of all of the other directives, because you will
rarely use the #macro directive within the body of your template; it tends to be something that
you use once or twice near the top of your template or in a separate include file, instead of
referring to your defined macros in the body of your template.

If you aren’t familiar with the concept of macros, they are a way of packaging up bits of
functionality into a reusable unit. Macros in Velocity are simply a way of reducing the amount
of code you need to type and maintain. When your template is parsed, any calls to a macro are
expanded into the full code of that macro at the point in the template where the macro call
exists. Sort of like automatic find and replace!

CHAPTER 10 ■ VELOCITY TEMPLATE ENGINE 379

Ch10_7389_CMP2 9/25/06 9:11 PM Page 379

To declare a macro within your code, you use the #macro directive. Rather than give you a
trivial example, take a look at a rewritten version of the previous example that uses a macro to
output the table of products. The Java code for this example is the same; all that changes is the
template:

#macro (writeTable $productList)
#set ($rowCount = 1)
#foreach($product in $productList)
#if ($rowCount % 2 == 0)

#set ($bgcolor = "#FFFFFF")
#else

#set ($bgcolor = "#CCCCCC")
#end

<tr>
<td bgcolor="$bgcolor">$product.Name</td>
<td bgcolor="$bgcolor">$product.Price</td>

</tr>
#set ($rowCount = $rowCount + 1)

#end
#end
<html>

<head>
<title>Gimli's Widgetarium</title>

</head>
<body>

<table>
#writeTable($products)

</table>
</body>

</html>

Notice how you create a macro with the #macro directive. Inside of the parentheses the
first argument for the #macro directive is the name of the macro you want to create, in this case
writeTable. All the remaining arguments are the names of arguments that you can pass to the
macro; in this case, you see just one argument, $productList, but you can have as many argu-
ments as you like. Inside the macro body you use the #foreach directive to output the list of
Product objects contained in the $productList argument. As you can see, the code inside the
macro body is identical to the code used in the body of the previous example. Whereas before
you had the code to render the table, here you call the macro using the #writeTable directive,
which is created by the macro declaration instead. In this particular case, using a macro has
no particular benefit; it would have been simpler to render the table directly. However, if you
want to render the table again, then you could reuse the macro, or you could place the macro
in an external file and include it in multiple templates using #parse. In this way, Velocity pro-
vides a mechanism for you to centralize your presentation logic.

CHAPTER 10 ■ VELOCITY TEMPLATE ENGINE380

Ch10_7389_CMP2 9/25/06 9:11 PM Page 380

Struts and Velocity
Up to now, none of the examples have used Struts in any way. Instead, they have all run inside
a simple Java class and written their output to the console. In this section, we are going to
show how you can use Velocity alongside Struts in the JavaEdge application to build printer-
friendly output for a story.

VelocityTools
On its own, Velocity does not have support for working with Struts; that support is introduced
by another Jakarta project: VelocityTools. As part of the Velocity project, the Jakarta team
added a mechanism to extend the capabilities in a standard way without affecting the core
code base. This mechanism involves building a kind of plug-in called a tool and then configur-
ing this within Velocity so that it runs within your application. As well as building the model,
the Velocity team started a separate project, VelocityTools, to build a set of standard tools to
provide integration with other projects, one of these being Struts. The result of this is the
VelocityStruts toolset that enables your Velocity templates to work alongside Struts. This
includes, amongst other things, support for working with ActionForms, the Validator, and
more recently the Tiles framework.

For the next example, you will need to download VelocityTools from the Jakarta web site at
http://jakarta.apache.org. The JavaEdge application was built using version 1.0 of Velocity-
Tools and version 1.3.1 of Velocity.

Printer-Friendly Pages
The aim of this example is to demonstrate how you can replace JSP with Velocity as the view
layer in your application. We also want to show that you can quite happily run Velocity along-
side JSP in your application; you are not restricted to using one technology or the other. To this
end, we have decided that rather than showing you how to create a version of the JavaEdge
application that uses Velocity as the view technology, we will demonstrate creating an addi-
tional feature within the existing application, namely printer-friendly pages for the stories.
At the end of this example you should have a good understanding of how Velocity and Struts
interact and how you can leverage the Velocity engine in your own applications.

Getting Started
To start with, you need to add the Velocity, Velocity Dependencies, and VelocityTools jar files
to the lib directory of the JavaEdge application. You also need to add the dom4j jar file that is
included with the VelocityTools download, since the VelocityTools project won’t run without it.
The Ant build file that you use to build the JavaEdge application will automatically include
these new jar files in the war file when the application is assembled for deployment.

Configuring the Velocity Servlet
In the previous examples, all processing of the Velocity templates has been done by manually
constructing VelocityContext and manually configuring and executing the Velocity engine.
With Struts, you don’t want to have to go through this process every single time you build a
view using Velocity. Thankfully, you don’t need to. With the VelocityTools project comes the
VelocityViewServlet, which you can map to the *.vm extension to have all-out Velocity

CHAPTER 10 ■ VELOCITY TEMPLATE ENGINE 381

Ch10_7389_CMP2 9/25/06 9:11 PM Page 381

templates processed automatically by Velocity. Configuring the VelocityViewServlet is a fairly
simple matter of adding the servlet declaration and mapping options to the JavaEdge web.xml:

<!-- Velocity Template Engine Servlet -->
<servlet>

<servlet-name>velocity</servlet-name>
<servlet-class>
org.apache.velocity.tools.view.servlet.VelocityViewServlet

</servlet-class>

<init-param>
<param-name>org.apache.velocity.toolbox</param-name>
<param-value>/WEB-INF/toolbox.xml</param-value>

</init-param>

<init-param>
<param-name>org.apache.velocity.properties</param-name>
<param-value>/WEB-INF/velocity.properties</param-value>

</init-param>

<load-on-startup>10</load-on-startup>

</servlet>
<servlet-mapping>

<servlet-name>velocity</servlet-name>
<url-pattern>*.vm</url-pattern>

</servlet-mapping>

Two initialization parameters are passed to the VelocityViewServlet: one to specify an
optional configuration file (org.apache.velocity.properties), and one to specify where the
toolbox configuration file is (org.apache.velocity.toolbox). The properties file is unimpor-
tant, as you are sticking with the default settings for the servlet, but we usually add this in
anyway and create the file as it makes it easier to change the settings later on. The toolbox
configuration file is much more important, as this is how you configure additional tools within
the Velocity engine. The VelocityViewServlet takes care of instructing the Velocity engine to
read the file—you just need to tell the servlet where the toolbox configuration file is situated.

The toolbox configuration file is a simple XML file that is used to load additional tools into
the Velocity engine. To use Velocity with Struts, you are going to need to expose your Struts
objects to the Velocity templates, and to do this you need to use the four core Struts tools:

• MessageTool: This tool gives your template access to the resources stored in your Struts
resource file; in the case of the JavaEdge application this is the
ApplicationResources.properties file.

• FormTool: This tool allows you to access ActionForm beans that are accessible within the
current scope. You also use FormTool to build HTML forms that work with the Struts
framework from within your templates.

CHAPTER 10 ■ VELOCITY TEMPLATE ENGINE382

Ch10_7389_CMP2 9/25/06 9:11 PM Page 382

• ErrorsTool: Using this tool, you can work with Struts error messages within your tem-
plates in a manner similar to that by which the <html:error> tag works in JSP.

• StrutsLinkTool: This tool helps you to build links to other Struts actions from within
your templates. This is synonymous with the <html:link> tag used in JSP.

The toolbox.xml file looks like this:

<toolbox>
<tool>

<key>link</key>
<scope>request</scope>
<class>org.apache.velocity.tools.struts.StrutsLinkTool</class>

</tool>
<tool>

<key>msg</key>
<scope>request</scope>
<class>org.apache.velocity.tools.struts.MessageTool</class>

</tool>
<tool>

<key>errors</key>
<scope>request</scope>
<class>org.apache.velocity.tools.struts.ErrorsTool</class>

</tool>
<tool>

<key>form</key>
<scope>request</scope>
<class>org.apache.velocity.tools.struts.FormTool</class>

</tool>
</toolbox>

Notice that all four tools we discussed previously are defined here along with the scope in
which they are stored, in this case the request scope, and a name. The name you give the tools
here is the name of the variable with which you can access them inside of your templates.
While we will be demonstrating a selection of the methods available on these tools, we will not
be showing them all; you can find the list of methods in the documentation included with the
VelocityTools download.

So to recap, in this section you have seen how to map requests for any resource ending
with .vm to the VelocityViewServlet and also configure the four key Struts tools within the
Velocity engine. At this point, you can use a Velocity template as the destination for any
ActionForwards defined within Struts.

Creating the Struts Action
Typically, when creating a new feature in a Struts application, you have to create one or more
Action classes to hook up the user interface to the business logic behind. However, the whole
point of Struts is that your Action classes have nothing to do with the actual user interface;
instead, they are merely the control logic that sits behind the user interface. In this case,
the action you want the JavaEdge application to perform is to display a story and the list of

CHAPTER 10 ■ VELOCITY TEMPLATE ENGINE 383

Ch10_7389_CMP2 9/25/06 9:11 PM Page 383

associated comments. From a Struts point of view, you already have an action that does that:
StoryDetailSetupAction. Okay, so when this action is used now, the resultant output isn’t par-
ticularly printer friendly, but that has nothing to do with the Action class; it simply gathers the
data required and then passes off responsibility to the view.

StoryDetailSetupAction gathers all the data that you need for your printer-friendly view,
since all you are really doing is creating a different view of the same action within the web site,
that is, viewing a story. So you don’t actually need to create a new Action class; instead, all
you need to do is create a new ActionMapping in the struts-config.xml file and configure the
ActionForward for that mapping to use your Velocity template instead of the JSP page. So
where the mapping for the standard web view looks like this with a JSP view:

<action path="/storyDetailSetup"
type="com.apress.javaedge.struts.storydetail.StoryDetailSetupAction">
<forward name="storydetail.success" path="/WEB-INF/jsp/storyDetail.jsp"/>

</action>

your new mapping for the printer-friendly view looks like this, with a Velocity view:

<action path="/printFriendly"
type="com.apress.javaedge.struts.storydetail.StoryDetailSetupAction">
<forward name="storydetail.success" path="/WEB-INF/velocity/printFriendly.vm"/>

</action>

Notice that both actions are using the same Action class, because they are essentially two
different views of the same data.

Linking to the Action
It won’t surprise you to know that linking to your new action is no different than linking to any
other Struts action, because that is exactly what it is—just a standard Struts action. The impor-
tant point here is that the view technology has absolutely no bearing on how you interact with
your Struts actions. The following adds a link to the print-friendly story page from the stan-
dard story page using the Struts <html:link> tag:

<html:link action="/printFriendly" paramId="storyId"
paramName="storyVO" paramProperty="storyId">
Printer Friendly
</html:link>

Building the View
Now comes the fun part! The template that you build is fairly simple; we’ll include it com-
pletely here and then explain the individual parts separately:

<html>
<head>

<title>Print Friendly</title>
</head>
<body>

CHAPTER 10 ■ VELOCITY TEMPLATE ENGINE384

Ch10_7389_CMP2 9/25/06 9:11 PM Page 384

[back]
<table border="0" cellspacing="2" cellpadding="1">

<tr>
<td colspan="2">

$storyVO.StoryTitle
</td>

</tr>
<tr>

<td bgcolor="#CCCCCC">Posted By:</td>
<td>$storyVO.StoryAuthor.FirstName
$storyVO.StoryAuthor.LastName</td>

</tr>
<tr>

<td bgcolor="#CCCCCC">On:</td>
<td>$storyVO.SubmissionDate</td>

</tr>
<tr>

<td colspan="2">

<i>$storyVO.StoryIntro</i>

</td>
</tr>
<tr>

<td colspan="2">

$storyVO.StoryBody

</td>
</tr>
<tr>

<td colspan="2">

<i>Comments</i><hr>

</td>
#foreach ($comment in $comments)
<tr>

<td width="30"> </td>
<td>Posted By: $comment.CommentAuthor.FirstName

$comment.CommentAuthor.LastName

On: $comment.SubmissionDate</td>

</tr>
<tr>

<td width="30"> </td>
<td>$comment.CommentBody</td>

</tr>
<tr>

CHAPTER 10 ■ VELOCITY TEMPLATE ENGINE 385

Ch10_7389_CMP2 9/25/06 9:11 PM Page 385

<td colspan="2"><hr></td>
</tr>
#end

</table>
</body>

</html>

We’ll start with the simple bits. First off you render the details of the story and its
author. The code for this should look fairly familiar; just be aware that whatever beans were
placed into the request context by the StoryDetailSetupAction were transferred into the
VelocityContext by the VelocityViewServlet before it processed the view template.

<tr>
<td colspan="2">

$storyVO.StoryTitle
</td>
</tr>
<tr>

<td bgcolor="#CCCCCC">Posted By:</td>
<td>$storyVO.StoryAuthor.FirstName $storyVO.StoryAuthor.LastName</td>

</tr>
<tr>

<td bgcolor="#CCCCCC">On:</td>
<td>$storyVO.SubmissionDate</td>

</tr>
<tr>

<td colspan="2">

<i>$storyVO.StoryIntro</i>

</td>
</tr>
<tr>

<td colspan="2">

$storyVO.StoryBody

</td>
</tr>

Notice that the variable name for the StoryVO object matches the name given to it when it
was placed in the request context by the StoryDetailSetupAction:

public ActionForward execute(ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response){

CHAPTER 10 ■ VELOCITY TEMPLATE ENGINE386

Ch10_7389_CMP2 9/25/06 9:11 PM Page 386

String storyId = request.getParameter("storyId");

IStoryManager storyManager = StoryManagerBD.getStoryManagerBD();
StoryVO storyVO = storyManager.retrieveStory(storyId);

request.setAttribute("storyVO",storyVO);
request.setAttribute("comments", storyVO.getComments());

return (mapping.findForward("storydetail.success"));
}

Also notice from the template that you access the properties of the StoryVO and MemberVO
(the author) objects using the quick notation. This is because you use the JavaBean naming
conventions for all the value object classes in the JavaEdge application. When using Velocity,
this makes your templates much easier to read and maintain, especially by nonprogrammers.

The next part of the template renders the list of comments. If you look at the code for
StoryDetailSetupAction, you will see that the comments are stored as a vector instance in the
request scope. Before VelocityViewServlet parses the template, it will transfer this vector to
VelocityContext, and subsequently you can use the #foreach directive in your template to
output the list of comments.

#foreach ($comment in $comments)
<tr>

<td width="30"> </td>
<td>Posted By: $comment.CommentAuthor.FirstName

$comment.CommentAuthor.LastName

On: $comment.SubmissionDate</td>

</tr>
<tr>

<td width="30"> </td>
<td>$comment.CommentBody</td>

</tr>
<tr>

<td colspan="2"><hr></td>
</tr>
#end

The last part of the template we wish to touch on is the back link that is rendered at the
top of the page. For this you use StrutsLinkTool to avoid having to know in advance any of the
details about what URL mapping method is used in Struts or what the name of the context is
in which the JavaEdge application is deployed.

[back]

Notice the call to $link.setAction; the $link variable was mapped to StrutsLinkTool ear-
lier on in the toolbox.xml file. In this call, you simply pass in the name of the action you wish
to link back to. StrutsLinkTool takes care of making sure that the link is rendered correctly,
with the correct context name and correct URL format. And last of all, you simply append the
storyId parameter to the link using standard VTL so that the user is sent back to the correct
story page.

CHAPTER 10 ■ VELOCITY TEMPLATE ENGINE 387

Ch10_7389_CMP2 9/25/06 9:11 PM Page 387

Struts and Velocity
As you can see, getting Struts and Velocity working together is very easy; in fact, it has taken us
more time to write this single section than it did to put the example together.

This section has shown a practical example of how you can couple Struts and Velocity to
create powerful web applications quite simply. As we demonstrated, using a Velocity view with
a Struts action requires little or no work on your part, as your existing Struts actions will con-
tinue to function just as well with Velocity templates as they did with JSP. Most of the hard
work in connecting the two together is taken care of by the VelocityViewServlet.

The four core tools included in the 1.0 release of VelocityStruts provide all the exten-
sions you will need within your templates to rival most of your JSP view pages. We say “most”
because Velocity is missing integration with some of the more advanced features, such as inte-
gration with the Tiles and the Validator frameworks. However, as we write this, the next version
of VelocityTools is in development, and we were able to preview tools that added support not
only for Tiles and Validator, but also for manipulating ActionMessages and links in an SSL-
enabled environment.

The integration between Velocity and Struts is still very much in its infancy, but already
the project offers plenty of powerful features that enable you to build elegant solutions to your
problems. You can watch for the emergence of the next version of VelocityTools at the Velocity
web site.

Best Practices for Velocity Use
Before we close this chapter, we want to cover the practices that you should follow when using
Velocity.

Use Macros
If you decide to build your entire web application using Velocity, or even just a small part of it,
you should try and use as many macros as you can to centralize your layout logic. Doing this
will enable you to make and test any changes easily. You can move your macros into a separate
file and include them in your templates using #parse, or you can even create one or more
global macro files that are available to your entire application. By default, Velocity will look for
VM_global_library.vm in the root of your classpath as the default file for global macros. If you
have macros contained in separate files that you want to reuse in multiple applications, you
can make these available globally by setting the value of the velocimacro.library property
to a comma-separated list of the filenames. You can set this property either with a call to
System.setProperty() or via the velocity.properties file.

Know When to Use #parse and When to Use #include
It is good practice to split your templates into multiple files so that you can reuse the content
in multiple templates. Most web sites have some kind of header and maybe a footer—these
make ideal candidates to be placed in a separate template of their own. When importing exter-
nal files into a template, take care to use #include whenever you don’t require the file to be
processed by Velocity. By using #parse on files that have no VTL content, you are adding
unnecessary overhead to your application that is easily removed by using #include.

CHAPTER 10 ■ VELOCITY TEMPLATE ENGINE388

Ch10_7389_CMP2 9/25/06 9:11 PM Page 388

Use JavaBean Property Names
To make your template easier to read and maintain, especially by others who may have to
make changes in your absence, you should stick to using property name shortcuts such as
$customer.EmailAddress as opposed to $customer.getEmailAddress(). This is especially true
if you are working with web designers who are unfamiliar with Java, as Velocity is very easy to
understand and learn.

Summary
In this chapter, we have introduced the key concepts behind the Velocity template engine
as well as provided an in-depth look at the Velocity template language. Along with the many
console-style examples herein, we have demonstrated with a full working example how the
Velocity template engine can be integrated with the Struts framework as an alternative view
component to JSP. Finally, we have discussed some of the best practices you can employ
when developing your Struts- and Velocity-based applications.

CHAPTER 10 ■ VELOCITY TEMPLATE ENGINE 389

Ch10_7389_CMP2 9/25/06 9:11 PM Page 389

Ch10_7389_CMP2 9/25/06 9:11 PM Page 390

Extending the
Struts Framework

Any framework is only as good as what you can accomplish with it. To this end, most good
frameworks, Struts included, provide some mechanism to extend the features provided by the
framework, so that you are pretty much limited only by your own imagination.

Struts has more than one extension mechanism, each of which fits a specific purpose.
In this chapter, we are going to look at each method in turn, and take you through the key
features that will allow you to extend the Struts framework to provide extra services for your
application.

Specifically, this chapter addresses four main extension methods:

• Extending Action and ActionForm: The simplest method of extension within Struts is to
provide your own classes that override the Action and ActionForm classes. In this way,
you can provide standard services to your application’s presentation layer through the
Struts framework.

• Extending RequestProcessor: By extending RequestProcessor, you can hook into the
Struts request processing flow and perform your own processing during the request
cycle.

• Creating configuration beans: Using custom configuration beans, you can provide addi-
tional information about your actions that can be used by a custom Action or a custom
RequestProcessor.

• Building a plug-in: Using Struts plug-ins, you can provide application-level or back-
ground services to your application that allow you to perform processing outside the
context of a request.

Each topic is covered in its own section, and we provide the pros and cons for each mech-
anism along with guidelines for when best to employ a particular mechanism.

Extending Action and ActionForm
Most of the processing carried out by your application within the context of the Struts frame-
work happens inside an Action- or ActionForm-derived class. Quite often you will perform
repetitive tasks within your Action or ActionForm classes that you would like to refactor out
into a separate helper class. In cases like these, you can extend the Action and ActionForm 391

C H A P T E R 1 1

■ ■ ■

Ch11_7389_CMP2 9/25/06 9:12 PM Page 391

classes provided by Struts, creating your own base Action and ActionForm classes that are used
by the remaining actions in your code.

For the remainder of this section, we will focus on extending the Action class, but
you should remember that most of the principles still apply when you want to extend the
ActionForm class.

There are two main reasons to provide your own base Action class: You want to provide
some standard services to your actions, and you want to hook into the execution of your
actions to provide some form of preprocessing.

Providing Common Services to Your Actions
In any application, you will have common logic within the presentation tier that you would
like to avoid duplicating throughout the code. When using the Struts framework, the perfect
place for this is in a common base class shared by all your Action classes. Using this method,
you can make the code within your actions cleaner by avoiding the need to reference one or
more helper classes just to perform some standard logic processing. In some cases, such as
the one we demonstrate shortly, you will find that providing your own base actions makes
sense semantically when you look at the logic being performed.

Before we jump into the example, we want to give you some guidelines for using a base
Action class to provide application services:

• Avoid heavy processing: Try to avoid putting any heavy processing or large amounts
of logic inside a base Action class. In most cases, the logic you encapsulate within the
Action class should be short and sweet, such as providing typed access to session prop-
erties, not authenticating a user against an LDAP directory server.

• No business logic: You should avoid at all costs placing your business logic in the base
Action class. This is a classic exhibit of the Tier Leakage antipattern discussed in Chap-
ter 2 and will cause the logic to become very tightly coupled to the Struts framework.
Restrict the logic to presentation- or web container–specific issues.

• No side effects: Try to avoid making the logic have any major side effects. With this
mechanism you are encapsulating lightweight logic to reduce the amount of code you
need to write and maintenance you need to do. If your logic has side effects that are not
apparent by the method name, then your logic is in the wrong place and you should
consider refactoring.

Now for the example.

Accessing Session Properties
One of the common purposes for which we like to use a standard base Action class is to
provide typed access to data stored in the session. In this way, we can avoid checking for a
property’s existence and casting every time we want to access the property. In the JavaEdge
application, you store the current identity of the current user, as a MemberVO object, in the
user’s session. Every time you want to access it, you have to retrieve it from the session and
cast it to the correct type. This is certainly not a massive amount of logic, but it is enough to
drive you insane when you have typed it in hundreds of times in a big application. Consider
the maintenance of those hundreds of lines of code—time to try on your new wraparound

CHAPTER 11 ■ EXTENDING THE STRUTS FRAMEWORK392

Ch11_7389_CMP2 9/25/06 9:12 PM Page 392

jacket. But you can encapsulate this logic as a set of get() and set() methods in the base
Action class and then use those methods from the actual Action class that performs the
processing.

Currently you have the PostComment Action which processes any user requests to post a
comment about a story. The code for this class is as follows:

public class PostComment extends Action {
// Create Log4j category instance for logging.

static private org.apache.log4j.Category log =
org.apache.log4j.Category.getInstance(

PostComment.class.getName());

public ActionForward execute(ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response) throws Exception {

if (this.isCancelled(request)){
System.out.println("*****The user pressed cancel!!");
return (mapping.findForward("poststory.success"));

}

PostCommentForm postCommentForm = (PostCommentForm) form;
HttpSession session = request.getSession();

MemberVO memberVO = (MemberVO)
session.getAttribute("memberVO");

String storyId = (String)
request.getParameter("storyVO.storyId");

IStoryManager storyManagerBD = StoryManagerBD.getStoryManagerBD();
StoryVO storyVO = storyManagerBD.retrieveStory(storyId);

StoryCommentVO storyCommentVO = postCommentForm.getStoryCommentVO();
storyCommentVO.setCommentAuthor(memberVO);
storyCommentVO.setSubmissionDate(

new java.sql.Date(System.currentTimeMillis()));
storyVO.getComments().add(storyCommentVO);
storyManagerBD.updateStory(storyVO);

return (mapping.findForward("postcomment.success"));
}

}

Notice the code to retrieve the MemberVO from the session:

MemberVO memberVO = (MemberVO) session.getAttribute("memberVO");

CHAPTER 11 ■ EXTENDING THE STRUTS FRAMEWORK 393

Ch11_7389_CMP2 9/25/06 9:12 PM Page 393

It’s only one line of code, but it doesn’t do anything spectacular; there is no check to see if the
object exists, and there is no code to handle the nonexistence of the object at all—the code sim-
ply assumes that the MemberVO will be there. In this case, it most likely will be there, because the
JavaEdge application uses a Filter to make the current user the anonymous user if they have
not logged in or their session has expired.

Consider what would happen if the Filter were not used, and JavaEdge did not support
the anonymous user. To get around this, you would have to go back through all the code and
add checks everywhere that the MemberVO is loaded from the session. However, if it were the
case that the JavaEdge application would not always have a MemberVO in the session, you would
be able to encapsulate all the logic for retrieving the MemberVO in a base Action class.

So that is the theory behind it; now on to the code. We will show you the full code here
and discuss each part separately in the following text:

public class ActionBase extends Action {

private static final String MEMBER_VO_KEY = "memberVO";

private HttpServletRequest _request = null;
private HttpServletResponse _response = null;

public ActionForward execute(
ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response)
throws Exception {

_request = request;
_response = response;

return super.execute(mapping, form, request, response);
}

protected void setMember(MemberVO member) {
_request.getSession().setAttribute(MEMBER_VO_KEY, member);

}

protected MemberVO getMember() {
HttpSession session = _request.getSession();

if (session.getAttribute(MEMBER_VO_KEY) == null) {
throw new ApplicationException("Not Logged In");

} else if(!(session.getAttribute(MEMBER_VO_KEY) instanceof MemberVO)) {
throw new ApplicationException("Session Corrupted");

} else {
return (MemberVO) session.getAttribute(MEMBER_VO_KEY);

}
}

}

CHAPTER 11 ■ EXTENDING THE STRUTS FRAMEWORK394

Ch11_7389_CMP2 9/25/06 9:12 PM Page 394

First and most obvious is the class declaration. You define the Struts Action class as the
base class for this class:

public class ActionBase extends Action {

The next part is where it gets slightly tricky. If you want to capture data from the session
or from the request in your base action, then you need to override execute() so that you can
store the HttpServletRequest and HttpServletResponse objects. The Action class has no prop-
erties that allow you to access these, hence they are passed as arguments to the execute()
method.

public ActionForward execute(
ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response)
throws Exception {

_request = request;
_response = response;

return super.execute(mapping, form, request, response);
}

The code itself for this is nothing spectacular. You just store the objects in private fields
within the class. The next step is to define the property for the MemberVO object. The set()
method is very simple—you just store the object in the session. You don’t need to check the
type, because the method will only accept a MemberVO object or a derived type as the argument.

public void setMember(MemberVO member) {
_request.getSession().setAttribute(MEMBER_VO_KEY, member);

}

The get() method is slightly more complex, as this is where you perform most of the
checks to make sure that the MemberVO object exists in the session:

public MemberVO getMember() throws Exception {
HttpSession session = _request.getSession();

if (session.getAttribute(MEMBER_VO_KEY) == null) {
throw new ApplicationException("Not Logged In");

} else if(!(session.getAttribute(MEMBER_VO_KEY) instanceof MemberVO)) {
throw new ApplicationException("Session Corrupted");

} else {
return (MemberVO) session.getAttribute(MEMBER_VO_KEY);

}
}

CHAPTER 11 ■ EXTENDING THE STRUTS FRAMEWORK 395

Ch11_7389_CMP2 9/25/06 9:12 PM Page 395

Notice that you need to check both that MemberVO exists and that it is of the correct type.
If either of these conditions is false, then an ApplicationException is thrown. Don’t try to for-
ward the user to somewhere from this code—it won’t work. The request will be committed, but
the control will return to the subclass, which will then try to forward again via an ActionForward,
causing an Exception. Instead, use an Exception such as ApplicationException and configure a
global exception handler for it. You may want to build a specific Exception class to handle this
behavior so that you can handle the nonexistence of the MemberVO differently in the case of a
real error.

That is it for the base Action class; however, the solution does not yet work. Since Java does
not call overridden methods on parent classes by default, when you make PostComment derive
from ActionBase, the execute() method in ActionBase does not get executed, so the request and
response objects are unavailable to the getMember() and setMember() methods. To remedy this,
you simply need to add a call to super.execute() as the first line in the PostComment.execute()
method, remembering to allow for thrown exceptions. The modified code for the PostComment
action now looks like this:

public class PostComment extends ActionBase {
// Create Log4j category instance for logging.

static private org.apache.log4j.Category log =
org.apache.log4j.Category.getInstance(

PostComment.class.getName());

public ActionForward execute(ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response) throws
Exception {

super.execute(mapping, form, request, response);
if (this.isCancelled(request)){

System.out.println("*****The user pressed cancel!!!");
return (mapping.findForward("poststory.success"));

}

PostCommentForm postCommentForm = (PostCommentForm) form;
HttpSession session = request.getSession();

MemberVO memberVO = getMember();
String storyId = (String)

request.getParameter("storyVO.storyId");

IStoryManager storyManagerBD = StoryManagerBD.getStoryManagerBD();
StoryVO storyVO = storyManagerBD.retrieveStory(storyId);

StoryCommentVO storyCommentVO = postCommentForm.getStoryCommentVO();
storyCommentVO.setCommentAuthor(memberVO);
storyCommentVO.setSubmissionDate(

new java.sql.Date(System.currentTimeMillis()));

CHAPTER 11 ■ EXTENDING THE STRUTS FRAMEWORK396

Ch11_7389_CMP2 9/25/06 9:12 PM Page 396

storyVO.getComments().add(storyCommentVO);
storyManagerBD.updateStory(storyVO);

return (mapping.findForward("postcomment.success"));
}

}

With this solution, you have a simple mechanism for building your own base Action
classes. If you follow this simple pattern, you will be able to encapsulate much of the repetitive
state management and presentation within the base Action class.

Hooking into the Action Execution
Another reason you might want to extend the Action class is to hook into the execution process
to perform some kind of preprocessing before the Action class executes. In most cases, this kind
of behavior would be better handled by implementing your own RequestProcessor, because you
have to manually derive each Action class from the base Action class and also remember to call
super.execute(). However, as with anything else, there are some cases where you may find the
ability to hook into the execution of an action useful. For instance, what if you want to build an
application where certain pages can only be viewed by the local machine? You may be building a
web application, and you want to make sure that the configuration pages are only accessed from
the local host. Since you don’t want to do this for every page, the simplest solution is to provide a
standard base class that will restrict the access of the action.

We don’t have any pearls of wisdom for this approach, because it is not something we would
often use. Even in this example, we would have preferred to implement RequestProcessor and
build some kind of configuration tool so that we could selectively choose which actions could
and couldn’t be viewed externally. The code for this example is quite simple:

public class LocalAction extends Action {

public ActionForward execute(
ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response)
throws Exception {

if (!(request.getRemoteHost().equals("127.0.0.1"))) {
throw new ApplicationException("Access Denied!");

}

return super.execute(mapping, form, request, response);
}

}

Again notice that you throw an ApplicationException instead of trying to redirect the user
to a specific page. You could have used a global forward here, but that would mean a check in
the subclass to see if this method returned a meaningful ActionForward, which would then be
used by the subclass. This defeats the point really, since you end up with just as much code in

CHAPTER 11 ■ EXTENDING THE STRUTS FRAMEWORK 397

Ch11_7389_CMP2 9/25/06 9:12 PM Page 397

your Action classes as you would if you had checked the host address specifically. Anyone
trying to log on to this page from a machine that is not the local host will receive the access
denied message.

Of course, you still have to add an explicit call to super.execute() within your derived
Action class, so if you wanted to secure the home page, your code for the HomePageSetupAction.
execute() method would look like this:

public class HomePageSetupAction extends LocalAction {
public ActionForward execute(ActionMapping mapping,

ActionForm form,
HttpServletRequest request,
HttpServletResponse response)
throws Exception {

super.execute(mapping, form, request, response);
IStoryManager storyManagerBD = StoryManagerBD.getStoryManagerBD();
Collection topStories = storyManagerBD.findTopStory();
request.setAttribute("topStories", topStories);

return (mapping.findForward("homepage.success"));
}

}

The class is derived from LocalAction, and the first call in the execute() method is
super.execute(), meaning the security of this page will be checked. As you can see, this isn’t
the most elegant solution, as there are a lot of things to remember to do to use the security; it
is not something that, once it is implemented, just works. Later in the chapter, we will look at a
much more elegant solution to this problem using the RequestProcessor class.

As you can see from the examples, providing your own base Action class is quite a simple
thing to do; however, you will find that for anything more advanced than providing typed
access to simple parameters, much more elegant ways exist for achieving the goal. Overall you
will find this method of extension useful because it is quick and easy to implement, but in the
long term the solutions you build using this method may prove to be just as much hassle as
the problems they are intended to solve.

Extending RequestProcessor
Although from the outside it would appear that the ActionServlet class is the controller in
Struts’ MVC arsenal, in actual fact it is the RequestProcessor class. Since version 1.1 of Struts,
all request processing was moved from the ActionServlet into the RequestProcessor class (or
TilesRequestProcessor if using the Tiles framework). This mechanism of decoupling Struts
from the actual presentation technology, in this case servlets, is intended to allow Struts to be
used in many more areas in the future. For now, however, it makes extending core request pro-
cessing of the framework extremely easy.

Every time you make a request for a Struts action within your application, it is processed
by the RequestProcessor. It is important to note that the RequestProcessor will not handle
requests for images, HTML, or plain JSP pages unless you have configured the servlet con-

CHAPTER 11 ■ EXTENDING THE STRUTS FRAMEWORK398

Ch11_7389_CMP2 9/25/06 9:12 PM Page 398

tainer accordingly. By replacing the default RequestProcessor class with an implementation of
your own, you are able to hook into the request process and provide your own behavior. In this
section, we are going to provide two separate examples. First, we are going to demonstrate
how you can use the RequestProcessor to replace the functionality of a Filter, and second, we
are going to revisit the security examples from the “Extending Action and ActionForm” section
and show you how to restrict host access using the RequestProcessor.

Building a RequestProcessor
Before we move on to the examples, we want to take some time to discuss the main tech-
niques for implementing a RequestProcessor and discuss some patterns that you may find
useful in building your RequestProcessor.

When building your own RequestProcessor class, the first decision you have to make is
whether or not you want to support the Tiles framework in your application. If you are not
too concerned about Tiles framework support, then your customer RequestProcessor should
derive from the org.apache.struts.action.RequestProcessor class, whereas for Tiles frame-
work support you should derive from org.apache.struts.tiles.TilesRequestProcessor. If
you are unsure about whether or not your application will support the Tiles framework, then
you should refactor all your RequestProcessor code into a helper class and build two separate
RequestProcessors, one with Tiles framework support and the other without. Avoid the temp-
tation to automatically derive from TilesRequestProcessor, since you will have unnecessary
overhead in applications not using tiles.

The second thing to consider when building a RequestProcessor is which methods you
are going to use to hook into the request flow. The three most useful methods are process(),
processActionPerform(), and processPreprocess().

As its name implies, processPreprocess() is called before any of the actual request
processing begins. This method is a great place to manipulate the session or request scope,
but you can’t throw any exceptions from the method, so you have to catch and handle all
the exceptions within the method body. This only proves to be an issue when you have to
start catching and handling ServletExceptions or IOExceptions, which are thrown by the
RequestDispatcher class explicitly, as in most cases these will be caught and logged globally.

In the process() method, you are running at the root of the processing tree. You can
choose to perform your processing before a call to super.process(), effectively performing
some kind of preprocessing, or after super.process() to perform postprocessing; or you can
choose to replace the processing logic altogether with no call to super.process(). In most
cases, we advise you to use process() over processPreprocess(), since it has ServletException
and IOException in its signature; this means you don’t have to handle these exceptions explic-
itly within the process() code—you are free to leave them to be handled globally. Also, with
process() you can do everything that you can with processPreprocess() and more, all within
a single method.

The process() method is great because you get access to the request before Struts has
had anything to do with it. However, there are some occasions when you want to perform
some processing on the actual actions or their configuration data. In this case, you can hook
into processActionPerform(), which will allow you to see the request almost at its final stage
in Struts, when the configuration has been parsed, the appropriate Action and ActionMapping
classes have been created, and Struts is ready to create the ActionForward to handle the final
response.

CHAPTER 11 ■ EXTENDING THE STRUTS FRAMEWORK 399

Ch11_7389_CMP2 9/25/06 9:12 PM Page 399

In the examples that follow, we will implement one example using process() and the
other using processActionPerform() so you can see the differences in how they work. We have
decided not to use processPreprocess() for two reasons: There are more powerful options
available to you, and if you do choose to use it, it is very easy to understand if you understand
process().

Using RequestProcessor Instead of Filter
Let’s first start off this section by saying that whenever you can use Filter, do. The Filter
class is now part of the official servlet specification, and as such, the code you write will be
usable on any 2.3 or above servlet container with or without Struts. However, our last state-
ment contained the one caveat to using Filter that makes RequestProcessor viable: Filter
only works on 2.3 servlet containers. If you are using an older container, then you can build
your own RequestProcessor to implement pre- and postprocessing of the requests going into
your application.

For this example, we are going to show you how to replace the MemberFilter class with a
custom implementation of RequestProcessor. The MemberFilter checks the session to see if a
MemberVO exists, signifying that the current user is logged in. If the MemberVO does not exist,
then the MemberFilter adds the anonymous MemberVO to the session, making the user appear
as an anonymous user. The MemberFilter only works on 2.3 servlet containers; the next exam-
ple will run on any container capable of running Struts 1.1.

To start, you create three basic classes: RequestProcessorHelper, JavaEdgeRequestProcessor,
and JavaEdgeTilesRequestProcessor. Normally you wouldn’t include the name of the
application in a class name, but not having two different classes sharing the same name
will make perusing the examples in this chapter easier. The JavaEdgeRequestProcessor and
JavaEdgeTilesRequestProcessor defer all processing to the RequestProcessorHelper but
derive from different base classes.

First off, here is the code for RequestProcessorHelper:

package com.apress.javaedge.struts.controller;

import java.io.IOException;

import javax.servlet.RequestDispatcher;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;

import org.apache.commons.logging.Log;

import com.apress.javaedge.common.DataAccessException;
import com.apress.javaedge.common.MemberFilter;
import com.apress.javaedge.common.ServiceLocator;
import com.apress.javaedge.member.MemberVO;
import com.apress.javaedge.member.dao.MemberDAO;

public class RequestProcessorHelper {

CHAPTER 11 ■ EXTENDING THE STRUTS FRAMEWORK400

Ch11_7389_CMP2 9/25/06 9:12 PM Page 400

// Commons Log for this class.
private static Log log =

ServiceLocator.getInstance().getLog(MemberFilter.class);

public boolean checkMember(
HttpServletRequest request,
HttpServletResponse response)
throws IOException, ServletException {

HttpSession session = request.getSession();

MemberVO memberVO = (MemberVO) session.getAttribute("memberVO");
memberVO = null;

/*If a session cannot be found, give the user one.*/
if (memberVO == null) {

try {
MemberDAO memberDAO = new MemberDAO();
memberVO = (MemberVO) memberDAO.findByPK("1");

} catch (DataAccessException e) {
log.error(

"DataAccessException thrown in RequestProcessorHelper.checkMember(): "
+ e.toString(),

e);

RequestDispatcher rd =
request.getRequestDispatcher(

"/WEB-INF/jsp/systemError.jsp");
rd.forward(request, response);

return false;
}

session.setAttribute("memberVO", memberVO);
}

return true;
}

}

This code should seem fairly familiar; you define a static log instance to allow yourself to log
any errors that occur within the code. The checkMember() method accepts HttpServletRequest
and HttpServletResponse arguments. From there the code in that method is almost identical
to the code in the MemberFilter.doFilter() method, except the checkMember() has no call to
FilterChain.doChain() because it is not a Filter. Also, the checkMember() returns true if
everything goes through okay; otherwise, it returns false. You will see why this is important
when we get to the RequestProcessor hooks.

CHAPTER 11 ■ EXTENDING THE STRUTS FRAMEWORK 401

Ch11_7389_CMP2 9/25/06 9:12 PM Page 401

Now on to the implementation of JavaEdgeRequestProcessor:

package com.apress.javaedge.struts.controller;

import java.io.IOException;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class JavaEdgeRequestProcessor
extends org.apache.struts.action.RequestProcessor {

private RequestProcessorHelper helper = null;

public JavaEdgeRequestProcessor() {
super();
helper = new RequestProcessorHelper();

}

public void process(
HttpServletRequest request,
HttpServletResponse response)
throws IOException, ServletException {

if(helper.checkMember(request, response)) {
super.process(request, response);

}
}

}

First off, notice that this class extends org.apache.struts.action.RequestProcessor and
also that you need to define a private field to hold an instance of RequestProcessorHelper,
which is actually instantiated within the constructor. The important part of this class is the
process() method. Within process(), you use the RequestProcessorHelper class to check for
the existence of the MemberVO in the session and to create one as appropriate. The important
thing to notice here is that if checkMember() returns true (that is, it executed successfully), then
you allow the request chain to continue with a call to super.process(). If the checkMember()
method does not succeed, most likely because the anonymous user is not in the database and
there is no MemberVO in the session, then checkMember() sends the request elsewhere with this
code:

RequestDispatcher rd = request.getRequestDispatcher(
"/WEB-INF/jsp/systemError.jsp");

rd.forward(request, response);

If this code executes and the request chain is executed further by Struts, then a
ServletException will be generated because when Struts comes to redirect to the view,
it will find that the response has already been committed by the RequestDispatcher in

CHAPTER 11 ■ EXTENDING THE STRUTS FRAMEWORK402

Ch11_7389_CMP2 9/25/06 9:12 PM Page 402

checkMember(). So to recap this, if you want to send the user somewhere else within the
process() method, do not call super.process(); simply set the response as appropriate
with RequestDispatcher and then allow the process() method to end. The code for the
JavaEdgeTilesRequestProcessor is almost identical, other than the obvious difference in
parent class.

That is the actual code; now on to how to configure it. First off, you want to remove the
<filter> and <filter-mapping> tags for MemberFilter in the web.xml file so you can test the
processor. Now all you need to do is change the controller definition within struts-config.xml
depending on which controller you plan to use. If you want to use tiles, then you must have the
Tiles plug-in defined in the configuration file and you need to change the controller definition to

<controller
processorClass=
"com.apress.javaedge.struts.controller.JavaEdgeTilesRequestProcessor"

/>

If you just want to use Struts without the Tiles framework, then use the following con-
troller definition:

<controller
processorClass="com.apress.javaedge.struts.controller.JavaEdgeRequestProcessor"
/>

Now start up the application and it should work just fine—RequestProcessor now takes
care of the MemberVO class in the session and not the MemberFilter class.

Verifying Host Access with RequestProcessor
Earlier on in the chapter we presented a solution to restrict access to the web application based
on the host address. The solution used a customized base Action class to perform the check
before the execute() method of an Action was run. There were two main problems with this
solution. First, it required almost as much code to hook into the base Action as to perform the
check manually within each Action. Second, it relied on developers to remember to derive their
actions from the correct base class and to call super.execute() before any other processing. As
we promised, we will be showing you a better solution to this problem; however, before we con-
tinue along the road with the RequestProcessor class, we want to show you how to provide
custom configuration handling for your Action classes so you can then use this knowledge to
provide a much more reusable solution to the secure page problem.

Creating Configuration Beans
If you have read this book from the beginning, it may not have escaped your notice that in
Chapter 2 we described the configuration attributes for the <action> tag and left one of them
with no more than a cursory description, the className attribute. Well, now we’re going to
explain exactly what it is for.

Struts uses another Jakarta project called Commons Digester to handle the reading of the
configuration file and its transformation into a set of Java objects. The Digester project actu-
ally started out as part of Struts, but proved so useful that the Struts team separated it out into
a entirely new project.

CHAPTER 11 ■ EXTENDING THE STRUTS FRAMEWORK 403

Ch11_7389_CMP2 9/25/06 9:12 PM Page 403

The Struts team realized that extension capabilities in the world would be of no use
without some way to provide additional configuration details for the extensions people were
building. To this end, when integrating Digester into Struts, the Struts team left an extension
point in the configuration logic so that you can replace the configuration beans with your own
implementation and provide them with additional parameters.

In this section, we are going to build a configuration bean that will be used in conjunction
with the RequestProcessor code in the next section to provide pages that are accessible only
from the host machine.

Building the JavaEdgeActionMapping
As of Struts 1.1, the default configuration bean for an <action> node is the ActionMapping
class. By extending this class, you can provide additional configuration data to your custom
RequestProcessors or actions.

Okay, so that’s the theory behind it; now for an example. In this example, we are going to
show you how to build a configuration bean that will allow you to specify whether or not a
particular action mapping should be restricted to the local host only.

The code for the actual configuration bean is fairly basic, so here it is in full:

package com.apress.javaedge.struts.config;

import org.apache.struts.action.ActionMapping;

public class JavaEdgeActionMapping extends ActionMapping {

private boolean secure = false;

public JavaEdgeActionMapping() {
super();

}

public boolean isSecure () {
return secure;

}

public void setSecure(boolean isSecure) {
secure = isSecure;

}
}

The JavaEdgeActionMapping class derives from org.apache.struts.action.ActionMapping,
which is the default configuration bean for <action> nodes. Other than an explicit call to the
parent constructor, the only thing this class has is a single boolean property, secure, with both
get() and set() methods.

That’s all there is to the Java code. Now all you need to do is add the appropriate configu-
ration details to the struts-config.xml file. To secure the home page, you just set the className
attribute to the full name of the custom configuration bean, in this case com.apress.javaedge.

CHAPTER 11 ■ EXTENDING THE STRUTS FRAMEWORK404

Ch11_7389_CMP2 9/25/06 9:12 PM Page 404

struts.config.JavaEdgeActionMapping, and then use the <set-property> tag set the secure
property to true.

<action path="/homePageSetup"
type="com.apress.javaedge.struts.homepage.HomePageSetupAction"
unknown="true"
className="com.apress.javaedge.struts.config.JavaEdgeActionMapping">

<set-property property="secure" value="false" />
<forward name="homepage.success" path="/WEB-INF/jsp/homePage.jsp" />

</action>

Now when you request the home page from a remote machine, what happens? It is still
displayed. At this point, all you have done is provide the configuration data, nothing more. In
the next section, we are going to revisit the RequestProcessor classes, this time to implement
the processActionPerform() method to make use of this additional configuration data.

Revisiting RequestProcessor
At this point, we have taken you through the basic mechanics of extending the RequestProcessor
class and through building custom configuration beans. In this section, we are going to combine
that knowledge to build a much more comprehensive solution to the secure page problem that
was highlighted in the “Extending Action and ActionForm” section.

To recap the last section, we showed you how to build a custom configuration bean that
allows you to specify whether or not a page should be restricted to being viewed on the host
machine, by setting the secure property accordingly. Now you need to implement the code
within your RequestProcessor to read this configuration data and act appropriately.

You already have the basics of the RequestProcessor classes in place for both Tiles-based
and non–Tiles-based applications. All you need to do is extend these classes to provide the
desired features. To start, implement the checkHost() method in the RequestProcessorHelper
class:

public boolean checkHost(
HttpServletRequest request,
HttpServletResponse response,
ActionMapping mapping) throws IOException, ServletException {

if (mapping instanceof JavaEdgeActionMapping) {

JavaEdgeActionMapping jeMapping = (JavaEdgeActionMapping) mapping;

if (jeMapping.getSecure()) {

String hostAddress = request.getRemoteHost();

if (!hostAddress.equals("localhost")) {

RequestDispatcher rd =

CHAPTER 11 ■ EXTENDING THE STRUTS FRAMEWORK 405

Ch11_7389_CMP2 9/25/06 9:12 PM Page 405

request.getRequestDispatcher(
"/WEB-INF/jsp/accessDenied.jsp");

rd.forward(request, response);

// Secure action and different host.
// Deny access.
return false;

} else {
// Host address matches, allow access.
return true;

}
} else {

// Not a secure action, allow access.
return true;

}

} else {
// Not a secure action, allow access.
return true;

}
}

This method is quite complex, so we’ll take you through it step by step. First off is the list
of arguments the method accepts and its return type:

public boolean checkHost(
HttpServletRequest request,
HttpServletResponse response,
ActionMapping mapping) {

You define the checkHost() method as returning a boolean, which will be true if the users are
allowed access to the resource and false if they are not. In this way, you indicate when calling the
method from your custom RequestProcessor class whether to allow Struts to carry on processing
or not. As you can see, you include HttpServletRequest and HttpServletResponse arguments,
along with an ActionMapping argument. If you recall from the previous section, “Creating Configu-
ration Beans,” ActionMapping is the default configuration class for all action mappings in the
Struts framework. As such, Struts will pass this argument to the RequestProcessor; it is up to you
to check it to see if it is actually your custom configuration bean, which is exactly what occurs as
the first line of code for this method.

if (mapping instanceof JavaEdgeActionMapping) {

JavaEdgeActionMapping jeMapping = (JavaEdgeActionMapping) mapping; ...
} else {

// Not a secure action, allow access.
return true;

}

CHAPTER 11 ■ EXTENDING THE STRUTS FRAMEWORK406

Ch11_7389_CMP2 9/25/06 9:12 PM Page 406

If ActionMapping is an instance of JavaEdgeActionMapping, then you cast it to that type,
ready for additional checks; if not, then you assume that the resource the user is requesting is
not intended to be secure, so you return true, indicating that the user is allowed access. If you
are dealing with an instance of JavaEdgeActionMapping, then you first check the return value of
getSecure().

if (jeMapping.getSecure()) {
String hostAddress = request.getRemoteHost();

if (!hostAddress.equals("localhost")) {

RequestDispatcher rd =
request.getRequestDispatcher("/WEB-INF/jsp/accessDenied.jsp");

rd.forward(request, response);

// Secure action and different host.
// Deny access.
return false;

} else {
// Host address matches, allow access.
return true;

}
} else {

// Not a secure action, allow access.
return true;

}

If getSecure() returns false, then although the configuration bean has been set to
JavaEdgeActionMapping, the secure property is false, and this resource is intended for
public access. If, however, getSecure() returns true, then you perform further checks to see
if the host name of the requesting user is localhost. If the user is requesting from localhost,
then you return true to allow that user access; otherwise, you forward the request to the
accessDenied.jsp page and return false.

As far as explanations go, that was pretty intense, so just to recap: checkMember() will be
passed an instance of ActionMapping. If this ActionMapping instance is in fact an instance of
JavaEdgeActionMapping, then the method will perform further checks on the request; other-
wise, the method returns true. If the ActionMapping argument is a JavaEdgeActionMapping
instance, then the method checks to see if the getSecure() method returns true or false. If
getSecure() is false, then the user is cleared to view the resource and the method returns
true. If getSecure() is true, then checkMember() checks the host address of the requesting user.
If the user is requesting from localhost, then they are allowed access and checkMember()
returns true; otherwise the request is forwarded elsewhere and checkMember() returns false.

Now all that is left for us to do is hook into the appropriate method in the
JavaEdgeRequestProcessor and JavaEdgeTilesRequestProcessor classes. If you use forwards
or includes in your application as well as normal actions, then you will actually want to hook
into three methods in the RequestProcessor: processActionPerform(), processForward(),
and processInclude(); since processActionPerform is only called for actions, includes and

CHAPTER 11 ■ EXTENDING THE STRUTS FRAMEWORK 407

Ch11_7389_CMP2 9/25/06 9:12 PM Page 407

forwards have their own methods to hook into. Here is the code for processForward() and
processInclude() taken from JavaEdgeRequestProcessor:

protected boolean processForward(
HttpServletRequest request,
HttpServletResponse response,
ActionMapping mapping)
throws IOException, ServletException {

if (helper.checkHost(request, response, mapping)) {
return super.processForward(request, response, mapping);

} else {
return false;

}
}

protected boolean processInclude(
HttpServletRequest request,
HttpServletResponse response,
ActionMapping mapping)
throws IOException, ServletException {

if (helper.checkHost(request, response, mapping)) {
return super.processInclude(request, response, mapping);

} else {
return false;

}
}

As you can see, the methods are very similar, only differing in which method of the super-
class they call internally. The logic here is quite simple. If checkHost() returns true, then the
user is allowed access to the resource, and the method defers control to the superclass; this
allows Struts to process as normal and will return the value of the corresponding method of
the superclass. However, if checkHost() returns false, then the method returns false to stop
Struts from performing any more processing and causing an error, since the response has
already been committed by the call to RequestDispatcher.forward() in the checkHost()
method.

The code for processActionPerform() does not differ that much:

protected ActionForward processActionPerform(
HttpServletRequest request,
HttpServletResponse response,
Action action,
ActionForm form,
ActionMapping mapping)
throws IOException, ServletException {

if (helper.checkHost(request, response, mapping)) {

CHAPTER 11 ■ EXTENDING THE STRUTS FRAMEWORK408

Ch11_7389_CMP2 9/25/06 9:12 PM Page 408

return super.processActionPerform(
request,
response,
action,
form,
mapping);

} else {
return null;

}
}

Aside from the noticeable increase in method arguments, the only difference here is that
the method returns ActionForward instead of boolean. So, as with the previous method, if the
user is allowed to view the resource, then control is passed to the superclass and the appropri-
ate result is returned from the method, resulting in Struts carrying on processing as normal.
However, if the user isn’t allowed to view the resource, then the method returns null, which
will instruct Struts to stop any more processing, thus avoiding any errors.

As you can see from the code examples, you don’t actually need very much code to build
your own RequestProcessor and custom configuration beans. If you follow the patterns for
managing the response, then you shouldn’t come across any errors in which Struts tries to
manipulate a response that you have already committed earlier on. Just remember in this situ-
ation that if you send the request elsewhere, then you have to instruct Struts to stop
processing using the methods described.

One point of interest before we move on to the recap is that the process() method executes
before the processActionPerform, processForward(), and processInclude() methods. In fact,
the process() method is responsible for calling those methods. So in the case of the JavaEdge
application, the session will be checked for the MemberVO and have one added if appropriate
well before the user’s right to access the resource is verified. You may find that this could have
an impact on your application, in which case you can move any logic from process() into
processActionPerform(), processForward(), and processInclude().

The last few sections have given you an in-depth look at how to extend the Struts
RequestProcessor class and how to provide additional configuration data to your custom
RequestProcessor classes using custom configuration beans. The next section describes the
fourth and final method of extending the Struts framework.

Building a Plug-In
Perhaps the most widely known method of extension in Struts is the plug-in method. In fact,
many of the additional features for Struts, such as Validator and the Tiles framework, use plug-
ins to add their functionality to the framework. Building a plug-in differs from building a
RequestProcessor in that you are not intercepting each individual request; instead, you are
hooking into the framework as it loads. Generally, plug-ins are used to load in some kind of
application-specific data or to perform startup actions that are needed to ensure that the
application will run correctly. We have also found that using plug-ins is an ideal way to run
some background processes within the context of the servlet container, without having to
fudge some kind of solution in which you have a scheduled task on the OS that requests a
specific URL at a specific interval.

CHAPTER 11 ■ EXTENDING THE STRUTS FRAMEWORK 409

Ch11_7389_CMP2 9/25/06 9:12 PM Page 409

In this section, we are going to take you through the entire process of building a plug-in
and configuring it within the Struts framework. The plug-in we are going to show you how to
build will send out an e-mail newsletter of the top stories to all members in the JavaEdge
application at a set interval.

Newsletter Service Basics
Before we get to the details of the actual plug-in implementation, we want to discuss the exact
behavior of the Newsletter Service and look at the classes that actually implement the service
before demonstrating how to hook these classes into Struts with a custom plug-in implemen-
tation.

The basic aim of the Newsletter Service is to send the list of top stories, via e-mail, to each
member registered in the JavaEdge database. The logic for loading the top stories from the
database is already built and is explained in Chapter 2. On top of this, we want to make the
interval between sending the e-mails, the address of the SMTP server used, and the sender
address of the e-mail externally configurable so they can be changed without having to go
back to the code.

Thankfully, the Struts plug-in model makes it quite easy for you to create the implementa-
tion that you want. As you will see, building the logic for the actual Newsletter Service is much
more complex than building the plug-in.

NewsletterManager
When you are building a plug-in, you should really consider refactoring the logic that plug-in
is intended to perform into a separate class. If you have to use the logic elsewhere or for some
reason you want to move from Struts to another technology, then you will have a much easier
time of it. For the Newsletter Service, you create the NewsletterManager class to take care of
the newsletter construction and the sending of e-mails.

The code for NewsletterManager is quite long, so we will go through each method sepa-
rately, instead of giving one big block of code and attempting to explain it in one go. The basic
class looks like this:

public class NewsletterManager {

private static Log log =
ServiceLocator.getInstance().getLog(NewsletterManager.class);

private String _smtpServer = "";
private String _fromAddress = "";

public NewsletterManager(String smtpServer, String fromAddress) {
_smtpServer = smtpServer;
_fromAddress = fromAddress;

}
}

Notice that you define a Commons Log instance so that you can log any errors that occur
when trying to build or send the mail. Also note that there are two private fields to hold the
address of the SMTP server and the e-mail address to use as the sender address for the outgoing

CHAPTER 11 ■ EXTENDING THE STRUTS FRAMEWORK410

Ch11_7389_CMP2 9/25/06 9:12 PM Page 410

mail. The class has a single constructor that is used to pass in values for the _smtpServer and
_fromAddress fields.

The class contains one public method, sendNewsletter(), which when called by the client
application will build the newsletter and send it via e-mail to the JavaEdge members:

public void sendNewsletter() throws ApplicationException {

String mailContent = getNewsletterContent();

Session mailSession = getMailSession();

Collection recipients = loadRecipients();

Message msg = new MimeMessage(mailSession);

try {
// From address
Address fromAddress = new InternetAddress(_fromAddress);
msg.setFrom(fromAddress);

// Subject line
msg.setSubject("JavaEdge Newsletter");

// Body content
msg.setText(mailContent);

// Recipient addresses
Iterator iter = recipients.iterator();
while(iter.hasNext()) {

MemberVO member = (MemberVO)iter.next();

if(member.getEmail().length() > 0) {
Address bccAddress = new InternetAddress(member.getEmail());
msg.addRecipient(Message.RecipientType.BCC, bccAddress);

}
}

// Send.
Transport.send(msg);

} catch (AddressException e) {
log.error("AddressException in NewsletterManager", e);
throw new ApplicationException("AddressException in NewsletterManager", e);

} catch (MessagingException e) {
log.error("MessagingException in NewsletterManager", e);
throw new ApplicationException("MessagingException in NewsletterManager", e);

}

}

CHAPTER 11 ■ EXTENDING THE STRUTS FRAMEWORK 411

Ch11_7389_CMP2 9/25/06 9:12 PM Page 411

The first line of this method creates the content for the newsletter with a call to
getNewsletterContent():

private String getNewsletterContent(){

// Load the top stories.
IStoryManager manager = StoryManagerBD.getStoryManagerBD();
Collection stories = manager.findTopStory();

// Now build the content.
StringBuffer buffer = new StringBuffer();

// Header
buffer.append("Dear Member,\n\n")

.append("Here are the top stories from the JavaEdge web site:\n\n");

// Body
Iterator iter = stories.iterator();

while(iter.hasNext()) {
StoryVO story = (StoryVO)iter.next();

buffer.append("***\n")
.append(story.getStoryTitle())
.append("\n")
.append(story.getStoryIntro())
.append("\n")
.append("<http://localhost:8080/JavaEdge/execute/storyDetailSetup?storyId=")
.append(story.getStoryId())
.append(">")
.append("\n");

}

// footer
buffer.append("***");

return buffer.toString();
}

The getNewsletterContent() method retrieves the list of top stories from the
JavaEdge database with a call to IStoryManager.findTopStory(). Once the list is loaded,
the getNewsletterContent() method builds the newsletter content in a StringBuffer object.

■Note In a real application, you would probably use something like Jakarta Velocity to externalize the mail
content and make maintenance much easier. For more information on Jakarta Velocity, see Chapter 10.

CHAPTER 11 ■ EXTENDING THE STRUTS FRAMEWORK412

Ch11_7389_CMP2 9/25/06 9:12 PM Page 412

The content itself is fairly basic: Each story has the title and intro listed along with the link
needed to launch the JavaEdge application on the local machine with the appropriate story
displayed. Back to the sendNewsletter() method, the next line constructs a mail session with a
call to getMailSession():

private Session getMailSession() {

// Set properties
Properties mailProps = new Properties();
mailProps.put("mail.smtp.host", _smtpServer);

return Session.getDefaultInstance(mailProps);

}

This method is very basic—it simply sets the required property for the SMTP server using
the value stored in the _smtpServer field, and then returns a standard instance of javax.mail.
Session configured with the SMTP server address. Back in the sendNewsletter() method, the
next line retrieves a collection of MemberVO objects representing the entire list of members in
the JavaEdge application with a call to loadRecipients():

private Collection loadRecipients() throws ApplicationException {
MemberManagerBD manager = new MemberManagerBD();
Collection result = null;

result = manager.getAll();

return result;
}

The loadRecipients() method simply gets the list of recipients with a call to
MemberManagerBD.getAll().

■Note If you choose to implement something like this in your own application, you will probably have to
implement some kind of opt-in/opt-out feature, as most people expect it and many countries now require it
by law.

The MemberManagerBD.getAll() method was not created in previous chapters, so we have
included it here:

public Collection getAll() throws ApplicationException{
MemberDAO dao = new MemberDAO();

try {
return dao.findAll();

} catch(DataAccessException e) {

CHAPTER 11 ■ EXTENDING THE STRUTS FRAMEWORK 413

Ch11_7389_CMP2 9/25/06 9:12 PM Page 413

log.error("Error in MemberManagerBD.getAll()", e);
throw new ApplicationException(

"An application exception has been raised in MemberManagerBD.getAll()",e);
}

}

And here is the code for findAll():

public Collection findAll() throws DataAccessException {
log.debug(
"********************Starting MemberDAO.findAll()********************");
PersistenceBroker broker = null;
Collection result = null;

try {

Query query = QueryFactory.newQuery(MemberVO.class, new Criteria());

broker = ServiceLocator.getInstance().findBroker();

result = broker.getCollectionByQuery(query);

} catch(ServiceLocatorException e) {
log.error("ServiceLocatorException thrown in MemberDAO.findAll()", e);
throw new DataAccessException(

"DataAccessException error in MemberDAO.findAll()", e);
} finally {

if(broker != null) broker.close();
}
log.debug(

"******************Leaving MemberDAO.findAll()*****************");
return result;

}

You will find an explanation of the code in these methods in Chapters 4 and 5, respectively.
Back in the sendNewsletter() method, the newsletter content has now been created, a mail ses-
sion instance has been created, and the list of recipients has been loaded from the database. The
final block of code in the sendNewsletter() method builds a MimeMessage instance, populates the
sender address and subject fields, and adds a bcc recipient for each MemberVO loaded from the
database with a valid e-mail address. Once the body content is added to the MimeMessage, all that
remains is for the e-mail message to be sent with a call to Transport.send().

Notice that all exceptions generated by JavaMail are caught, wrapped, and rethrown as
ApplicationExceptions. This will simplify the exception-handling code within the client code.
It also means that if you want to use a different mail implementation than JavaMail, you can
do so without having to worry about editing client code to capture additional exceptions.

CHAPTER 11 ■ EXTENDING THE STRUTS FRAMEWORK414

Ch11_7389_CMP2 9/25/06 9:12 PM Page 414

NewsletterTask
Since the newsletter will be sent automatically at set intervals, you need some way to schedule
a task to execute the NewsletterManager.sendNewsletter() method at the appropriate time. As
of version 1.3, Java has included the Timer and TimerTask classes to allow for scheduled tasks.
By deriving a class from TimerTask and implementing the run() method, you can build a task
class that can then be scheduled to run using the Timer class. For the Newsletter Service, you
need to build the NewsletterTask class, which implements TimerTask.run() to create an
instance of NewsletterManager and call its sendNewsletter() method:

package com.apress.javaedge.struts.plugin;

import java.util.TimerTask;

import org.apache.commons.logging.Log;

import com.apress.javaedge.common.ApplicationException;
import com.apress.javaedge.common.ServiceLocator;

public class NewsletterTask extends TimerTask {

private static Log log =
ServiceLocator.getInstance().getLog(NewsletterTask.class);

private NewsletterManager manager = null;

public NewsletterTask(String smtpServer, String fromAddress) {
manager = new NewsletterManager(smtpServer, fromAddress);

}

public void run() {
log.info("Newsletter.run() started");

try {
manager.sendNewsletter();

} catch(ApplicationException e) {
log.error("Could not send newsletter", e);

}

log.debug("Newsletter.run() completed");
}

}

CHAPTER 11 ■ EXTENDING THE STRUTS FRAMEWORK 415

Ch11_7389_CMP2 9/25/06 9:12 PM Page 415

Notice that the constructor for the NewsletterTask class accepts the same set of arguments
as the NewsletterManager class, and in fact simply uses the arguments to create its own internal
instance of NewsletterManager. In the run() method, you log the start and end of the method to
ease debugging and wrap the sendNewsletter() call in a try/catch block. You don’t want any
exceptions to escape the run() method; instead, they are all caught and logged. If you don’t
catch and log the exceptions here, Struts will do it anyway, so you can’t crash your application
with a plug-in; but you want to be able to reuse this task in any framework, and you cannot rely
on that behavior existing in every framework.

NewsletterPlugIn
Now that you have the code to perform the actual logic of sending the newsletter and a
TimerTask class to enable this logic to be scheduled, we can move on to the actual plug-in.
To implement a Struts plug-in, you need to create a class that implements the org.apache.
struts.action.PlugIn interface. The interface has only two methods, init() and destroy(),
both of which return void.

The destroy() method will be called whenever your application is stopped or your appli-
cation server shuts down, provided that this occurs via the normal process and not because of
a crash. You can use the destroy() method to tear down any resources that you have open in
an orderly manner, but you cannot guarantee that this method will actually execute.

The init() method will always be executed each time your application starts up. You can
be sure that the init() method will have executed before any actions are processed since it
is indirectly called via the ActionServlet.init() method. The init() method is passed two
arguments: a reference to the ActionServlet instance for your application, and a reference to
the ModuleConfig instance for your application that contains all the configuration data for the
entire Struts application and can be used to get the properties specified for your plug-in. Since
all the logic for actually sending the e-mail is contained within the NewsletterManager class,
the NewsletterPlugIn class simply has code to read in the configuration data and to initialize a
Timer with the NewsletterTask class.

package com.apress.javaedge.struts.plugin;

import java.util.Map;
import java.util.Timer;

import javax.servlet.ServletException;

import org.apache.commons.logging.Log;
import org.apache.struts.action.ActionServlet;
import org.apache.struts.action.PlugIn;
import org.apache.struts.config.ModuleConfig;
import org.apache.struts.config.PlugInConfig;

import com.apress.javaedge.common.ServiceLocator;

public class NewsletterPlugIn implements PlugIn {

private static Log log =

CHAPTER 11 ■ EXTENDING THE STRUTS FRAMEWORK416

Ch11_7389_CMP2 9/25/06 9:12 PM Page 416

ServiceLocator.getInstance().getLog(NewsletterPlugIn.class);

private Timer timer = null;

private long intervalFactor = 1000 * 60;

private long interval = (60 * 72);

private String smtpServer = "localhost";

private String fromAddress = "javaedge@apress.com";

public void init(ActionServlet servlet, ModuleConfig config)
throws ServletException {
log.info("NewsletterPlugIn.init() called");

loadConfigData(config);
startTimer();

}

public void destroy() {
log.info("NewsletterPlugIn.destroy() called");

}

private void loadConfigData(ModuleConfig config) {

PlugInConfig[] pluginConfigs = config.findPlugInConfigs();

for(int x = 0; x < pluginConfigs.length; x++) {
if(pluginConfigs[x].getClassName().equals(this.getClass().getName())) {

log.debug("Found Plug-In Configuration");

Map props = pluginConfigs[x].getProperties();

// Load in the interval property.
if(props.containsKey("interval")) {

try {
interval = Long.parseLong(props.get("interval").toString());
log.debug("Interval set to: " + interval);

} catch(Exception ignored) {
log.debug("Specified Interval was not a valid log value");

}
}

// Load the smtp server property.
if(props.containsKey("smtp.server")) {

smtpServer = props.get("smtp.server").toString();

CHAPTER 11 ■ EXTENDING THE STRUTS FRAMEWORK 417

Ch11_7389_CMP2 9/25/06 9:12 PM Page 417

log.debug("smtpServer set to: " + smtpServer);
}

// Load the from address property.
if(props.containsKey("fromAddress")) {

fromAddress = props.get("fromAddress").toString();
log.debug("fromAddress set to: " + fromAddress);

}

break;
}

}
}

private void startTimer() {
timer = new Timer();

long timerInterval = (interval * intervalFactor);

timer.schedule(
new NewsletterTask(

smtpServer, fromAddress),
timerInterval, timerInterval);

}

}

The NewsletterPlugIn class has a variety of field variables to store the configuration
details for the NewsletterManager, the Commons Log instance used for logging within the
class, and the Timer instance that the plug-in will use to schedule the sending of the newslet-
ter. Notice that you also need to define a private field, intervalFactor. The reason for this field
is that in the configuration you want to be able to specify the interval between newsletters in
minutes, but the Timer works in milliseconds. The intervalFactor stores the number of mil-
liseconds in a minute and is used to convert the interval value from the configuration into
milliseconds for the Timer. Both the init() and destroy() methods write log entries to enable
you to verify that the plug-in is actually being loaded into Struts. The init() method loads the
configuration data with a call to loadConfigData() and then starts the Timer with a call to
startTimer().

For loadConfigData(), the init() method passes in the ModuleConfig for the Struts appli-
cation. The ModuleConfig object contains the configuration details for the entire application,
not just the plug-ins. To get at the plug-in configuration, you need to call ModuleConfig.
findPlugInConfigs() to get an array of PlugInConfig objects, one for each plug-in configured
within the application. You can then loop through this array to find the PlugInConfig object
for your plug-in by comparing the getClassName() property of the PlugInConfig object with
the full name of your plug-in class. Once you have the correct PlugInConfig object, you can
call getProperties() to retrieve a Map of the configuration properties specified for the plug-in.
With the Map of configuration properties retrieved, getting the configuration data is a simple
matter of accessing the elements in the Map. The loadConfigData() method follows this pattern

CHAPTER 11 ■ EXTENDING THE STRUTS FRAMEWORK418

Ch11_7389_CMP2 9/25/06 9:12 PM Page 418

and reads in three properties from the configuration: one for the SMTP server address, one for
the sender address, and one for the interval between newsletters.

The last method of the NewsletterPlugIn class is startTimer(). This method doesn’t really
have much to do other than to create the Timer instance and then schedule the NewsletterTask
to run. In the call to Timer.schedule(), you will notice that the interval is specified twice. The
first interval is the delay before the Timer runs the task the first time, and the second interval is
the delay between runs thereafter. This means that you set the task to run five minutes after the
plug-in starts and then maybe once an hour after that.

As you can see, the actual plug-in code is very simple; the main bulk of the code for this
plug-in was the logic required to actually send the newsletter. Creating the plug-in and start-
ing the Timer requires very little code—in fact, the largest amount of code for the plug-in is
the configuration load code. All that remains now is to configure the plug-in within the Struts
application.

Configuring the Plug-In
If you have read either Chapter 6 or 7, then you will no doubt recognize the syntax used to
configure the plug-in. To configure the basic plug-in, you simply need to add the following
entry to the struts-config.xml file:

<plug-in className="com.apress.javaedge.struts.plugin.NewsletterPlugIn"/>

This will run the plug-in with the default set of parameters. Since you have specified the
default period between newsletters to be 72 hours, you need to specify a much smaller period
than this for debugging. Also, you don’t use localhost as the SMTP server, so you can use the
configuration properties to set the values without having to change the code.

<plug-in className="com.apress.javaedge.struts.plugin.NewsletterPlugIn">
<set-property property="smtp.server" value="tiger"/>
<set-property property="interval" value="1"/>

</plug-in>

As you can see, configuring the plug-in is very easy, and you are free to configure as many
plug-ins as you like within your application.

Summary
Throughout this chapter, we have taken you through various extension mechanisms for the
Struts framework, each with its own distinct advantages and disadvantages. First we presented
a simple solution for providing typed access to session parameters using a base Action class,
and also a method of securing resources using the Action class. From this discussion, you
have seen that extending the Action class does not provide the most flexibility when extending
Struts, nor does it reduce the amount of code needed to implement simple tasks in every
action.

Next, we introduced custom RequestProcessor classes and how they can be used to hook
into the request processing flow for Struts. We combined the knowledge of RequestProcessors
gained earlier in the chapter with that of building custom configuration beans in order to
provide a much more elegant solution to the problem of secure pages. From this, we have

CHAPTER 11 ■ EXTENDING THE STRUTS FRAMEWORK 419

Ch11_7389_CMP2 9/25/06 9:12 PM Page 419

CHAPTER 11 ■ EXTENDING THE STRUTS FRAMEWORK420

demonstrated that for the most part using a custom RequestProcessor is a much more desir-
able solution than using a custom Action class when you want to hook into the request flow
within your Struts application.

Lastly, we focused on providing applicationwide startup or background services using
the Struts plug-in model. The plug-in model is a very simple mechanism for you to provide
services within your application that run outside the context of a user request. Any automated
processes such as cleanup operations, marketing, or auditing that you would normally do via
some kind of OS scheduled task can now be done using a Struts plug-in.

Ch11_7389_CMP2 9/25/06 9:12 PM Page 420

Struts and Ajax

Ajax, or Asynchronous JavaScript and XML, was introduced in 2005 by Jesse James Garrett,
sometimes referred to as the “father of Ajax.” Ajax is not a single technology; rather, it is a col-
lection of concepts and technologies that allow richer, more interactive user interactions with
web applications. The term Ajax has now grown to refer to any native browser technologies
that allow for asynchronous communication with a back-end server.

The fundamental concept behind Ajax is that when a portion of a web page changes, the
entire page does not need to be refreshed. For example, when a user selects a country from a
Country drop-down list, the States drop-down list is automatically populated with the appro-
priate list of states for that country. In a typical web application, this would require a round
trip to the server and a page refresh. Using Ajax, the round trip to the server is done asynchro-
nously and only the section of the page is refreshed behind the scenes. The fundamental
technologies that allow this to happen are XML, JavaScript, and XHTML.

In this chapter, we will expose you to the new Ajax technology that takes web application
development to a completely new level. We will show you how Ajax can be used in your Struts
applications. Let us first describe what Ajax is in a little more detail.

Ajax Dissected
The basic technology behind Ajax is JavaScript. It allows

• Data to be exchanged with a server using XML or other technologies such as JavaScript
Object Notation (JSON)

• Dynamic display of new or changed data using DHTML and the Document Object
Model (DOM)

• The use of data display standards such as Cascading Style Sheets (CSS)

Let’s look at a few examples of applications in which Ajax is being used today, just to give
you a flavor of what Ajax can really do.

421

C H A P T E R 1 2

■ ■ ■

Ch12_7389_CMP2 9/29/06 9:31 AM Page 421

Ajax on Google
Of course, as one might expect, Google is one of the biggest users of the new Ajax technologies.
Google Gmail, Google Calendar, and the Google Personalized Home page are some prime exam-
ples of web applications that implement Ajax.

Google Calendar, for example, uses Ajax to quickly add and update calendar entries.
If you use Gmail, it uses Ajax to display the little “loading” text in the top-right corner.

Ajax on Yahoo
Yahoo’s new home page also implements Ajax. A lot of personalization capabilities, and features
such as quick preview of e-mail, have been added to it recently, using the Ajax technologies.

Where Should I Use Ajax?
Here are several ideas about where Ajax might be worth using:

• Forms: This is a given. Web-based forms are slow! It should be a no-brainer to see how
and why Ajax can dramatically improve the performance of web-based forms.

• User communications: Ajax can be a very useful technology in designing user commu-
nication features such as chat pages, voting buttons, message threads, ratings, etc. An
example of this sort of feature is the Netflix movie ratings buttons.

• News: RSS feeds is another popular concept that can really leverage Ajax technologies.
A few examples of this have emerged on the web recently, such as Google News.

• Data manipulation: An example is sorting or filtering on columns in a table. Another
example is form completion with hints, such as the Google Suggest feature (you will see
some code for this later in the chapter).

■Note Ajax should not be thrown at every problem. Replacing large amounts of data with Ajax can lead to
performance and other issues. Use Ajax only when traditional JavaScript widgets don’t suffice, and when you
have to do data manipulations involving round trips to the server.

Here is a good blog you can read to find out when not to use Ajax: http://alexbosworth.
backpackit.com/pub/67688.

CHAPTER 12 ■ STRUTS AND AJAX422

Ch12_7389_CMP2 9/29/06 9:31 AM Page 422

Ajax and Web 2.0
The Internet has grown exponentially in the last decade. Web 1.0 is and was the era of primarily
static web sites transforming themselves to business processes/dynamic web applications, con-
tent management driven sites, and more recently portals. Even in the best of portals, there is still
some level of intermixing between the layers (presentation, logic, business process, and so forth).

Web 2.0 is the new buzzword. This concept is truly separating out the presentation from
the business logic. Ajax is one technology that really enables this vision—by allowing the pres-
entation to be driven by asynchronous calls to the server for data. Web Services technologies
and Service Oriented Architecture (SOA) make this vision even easier to implement.

Ajax and SOA
So what does Ajax have to do with SOA? Ajax allows pieces of a web page to be asynchronously
refreshed with new data. This data is typically retrieved by making a call to some back-end
server, such as a WebLogic or Tomcat server. The code running behind the scenes can be non-
service oriented and this would still work. However, if implemented as services, the boundaries
for the use of Ajax become close to limitless. It opens up a whole new level of data presentation
options and gives birth to a new generation of aggregated portal capabilities.

We have spent some time going over the basics of Ajax—what it is and what is does. Let’s
dive in and talk technology. In the next section, we explore the internals of Ajax.

Ajax Internals
Ajax is not a single technology, as mentioned earlier in this chapter. It is important to remember
that Ajax is not Java or .NET dependent. You can write Ajax code (in JavaScript) to communicate
with any sort of back-end code—Java, .NET, PHP, or just about anything else. From a technical
perspective, the single biggest benefit of Ajax is that it helps speed up your web application. It
does this in three basic ways:

• Better utilization of the browser cache

• Batching up of network requests in a single packet to reduce network latency issues

• Decreasing the workload on the server by not requiring it to process the entire page

Let’s look at a typical Ajax request-response cycle.

CHAPTER 12 ■ STRUTS AND AJAX 423

Ch12_7389_CMP2 9/29/06 9:31 AM Page 423

Ajax Request-Response Cycle
Figure 12-1 shows a typical user request-response cycle when using Ajax.

In this example, the user initiates a request by moving their mouse over some element
onscreen (let’s say they moved their mouse over the Password field, and you want to provide a
tool tip that displays the password rules that you would like to enforce). Using JavaScript, the
application would recognize the mouseOver and create an XMLHttpRequest object. This would
then interact with your back-end server and respond in XML. The client browser then parses
this XML and shows the tool tip to the user.

This is a typical request-response cycle using Ajax. The key thing here is the XMLHttpRequest
object, which we will examine next.

Figure 12-1. Ajax request-response cycle

JavaScript XMLHttpRequest BackendServer

creates

send getDetails

callback

XML response

parseMessage

showMessage

onMouseOver()

CHAPTER 12 ■ STRUTS AND AJAX424

Ch12_7389_CMP2 9/29/06 9:31 AM Page 424

XMLHttpRequest Object
The XMLHttpRequest object was introduced by Microsoft in Internet Explorer 5.0. Recently,
Mozilla and Apple have included support for this in their web browsers (Firefox and Safari,
respectively). This object is the fundamental basis for Ajax. Microsoft’s implementation is dif-
ferent from that of other browsers, so when you create this object in your code, you need to do
a typical browser check. For Internet Explorer, create this object using

var req = new ActiveXObject("Microsoft.XMLHTTP");

For Firefox and Safari, it’s just a native object:

var req = new XMLHttpRequest();

You will see detailed code samples in the next section.
There is now a working draft in the W3C to make XMLHttpRequest a standard. The follow-

ing is the interface definition that is proposed by W3C as the standard:

interface XMLHttpRequest {

attribute Function onreadystatechange;
readonly attribute unsigned short readyState;
void open(in DOMString method, in DOMString uri);
void open(in DOMString method, in DOMString uri, in boolean async);
void open(in DOMString method, in DOMString uri,

in boolean async, in DOMString user);
void open(in DOMString method, in DOMString uri,

in boolean async, in DOMString user, in DOMString password);
void setRequestHeader(in DOMString header, in DOMString value)

raises(DOMException);
void send(in DOMString data)

raises(DOMException);
void send(in Document data)

raises(DOMException);
void abort();
DOMString getAllResponseHeaders();
DOMString getResponseHeader(in DOMString header);

attribute DOMString responseText;
attribute Document responseXML;
attribute unsigned short status;

// raises(DOMException) on retrieval
attribute DOMString statusText;

// raises(DOMException) on retrieval
};

This should give you some idea of what features are available as part of the XMLHttpRequest
object. Enough fun and games, let’s look at an example of Ajax using Struts and see how the
XMLHttpRequest object is really used.

CHAPTER 12 ■ STRUTS AND AJAX 425

Ch12_7389_CMP2 9/29/06 9:31 AM Page 425

Ajax and Struts in Action
In this section we will build an example of a simple Struts application that uses Ajax. This
application is similar to the Google Suggest feature, which offers to the user search keywords
as they start typing. Think of a City text field in your web application. Imagine how much eas-
ier it would be for your users if you could “suggest” a list of cities as they started typing. For
example, if they typed “Ba” you could show them all the cities that started with “Ba,” as shown
in Figure 12-2, which assumes that the country is India.

Figure 12-2. Ajax “suggest” drop-down list

The rest of the chapter focuses on the code to build this feature using Ajax and Struts. We
will build some basic Struts code that performs the same functions as shown in Figure 12-2.
It will use the same request-response cycle for Ajax invocation as shown in Figure 12-1.

Cities.jsp
Cities.jsp, shown next, is the JSP file that we will use to invoke the Ajax code to get the list of
cities as the user types more characters into a text field:

<html>
<script language="javascript">
/*
* Returns an new XMLHttpRequest object, or false if the browser
* doesn't support it
*/
var availableSelectList;
function newXMLHttpRequest() {

var xmlreq = false;

// Create XMLHttpRequest object in non-Microsoft browsers
if (window.XMLHttpRequest) {
xmlreq = new XMLHttpRequest();

} else if (window.ActiveXObject) {

try {
// Try to create XMLHttpRequest in later versions
// of Internet Explorer

CHAPTER 12 ■ STRUTS AND AJAX426

Ch12_7389_CMP2 9/29/06 9:31 AM Page 426

xmlreq = new ActiveXObject("Msxml2.XMLHTTP");

} catch (e1) {

// Failed to create required ActiveXObject

try {
// Try version supported by older versions
// of Internet Explorer

xmlreq = new ActiveXObject("Microsoft.XMLHTTP");

} catch (e2) {
// Unable to create an XMLHttpRequest by any means
xmlreq = false;

}
}

}

return xmlreq;
}

/*
* Returns a function that waits for the specified XMLHttpRequest
* to complete, then passes it XML response to the given handler function.
* req - The XMLHttpRequest whose state is changing
* responseXmlHandler - Function to pass the XML response to
*/
function getReadyStateHandler(req, responseXmlHandler) {

// Return an anonymous function that listens to the XMLHttpRequest instance
return function () {

// If the request's status is "complete"
if (req.readyState == 4) {

// Check that we received a successful response from the server
if (req.status == 200) {
// Pass the XML payload of the response to the handler function.
responseXmlHandler(req.responseXML);

} else {

// An HTTP problem has occurred
alert("HTTP error "+req.status+": "+req.statusText);

}
}

}
}

CHAPTER 12 ■ STRUTS AND AJAX 427

Ch12_7389_CMP2 9/29/06 9:31 AM Page 427

function search(searchKey) {
var form = document.forms[0];
var keyValue = document.getElementById("getCities").value;

keyValue = keyValue.replace(/^\s*|\s*$/g,"");
if (keyValue.length > 1)

{
availableSelectList = document.getElementById("searchResult");

var req = newXMLHttpRequest();

req.onreadystatechange = getReadyStateHandler(req, update);
req.open("POST","<%=request.getContextPath()%>/searchCity.do", true);
req.setRequestHeader("Content-Type", "application/x-www-form-urlencoded");

req.send("getCities="+keyValue);
}
}

function update(cartXML)
{

var countries = cartXML.getElementsByTagName("cities")[0];

var country = countries.getElementsByTagName("city");
availableSelectList.innerHTML = '';
for (var i = 0; i < country.length ; i++)
{
var ndValue = country[i].firstChild.nodeValue;
availableSelectList.innerHTML += ndValue+"\n";

}

}
function searchByCountry()
{

var form = document.forms[0];
alert("This gets the city names");

}
</script>

<form action="searchCity" id="searchByCityForm">
<table border="0" cellpadding="3" cellspacing="0" width="100%">
<tr>

CHAPTER 12 ■ STRUTS AND AJAX428

Ch12_7389_CMP2 9/29/06 9:31 AM Page 428

<td >By Country</td>
</tr>
<tr>
<td class="promo">
<table border="0" cellpadding="3" cellspacing="0">

<tr>
<td valign="top">
<input type="textbox" id="getCities" size="20"

onKeyDown="search(this);" style="width:300px;"
autocomplete="off" >

<div align="left" id="searchResult" style="width:300px;➥

border:#000000; "></div>

<img src="<%=request.getContextPath()%>/b_go.gif" alt="go"
width="23" height="15" border="0">

</td>
</tr>

</table>
</td>

</tr>
</table>

</form>
</html>

The preceding code uses the XMLHttpRequest object to post to a Struts action to get a list of
cities. Let’s look at the Struts action next.

GetCitiesNamesAction
GetCitiesNamesAction is a typical Struts action class that calls a back-end data access object
(DAO) to get a list of cities:

package com.apress.strutsbook.ch12;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import org.apache.struts.action.ActionForward;
import org.apache.struts.action.ActionMapping;
import org.apache.struts.action.*;

/**
* Struts action class
*/
public class GetCitiesNamesAction extends Action {

public ActionForward execute(ActionMapping mapping,
ActionForm form,HttpServletRequest request,

HttpServletResponse response)

CHAPTER 12 ■ STRUTS AND AJAX 429

Ch12_7389_CMP2 9/29/06 9:31 AM Page 429

throws Exception {
CitiesDAO citiesDAO = new CitiesDAO();
String searchText = request.getParameter("getCities");
String cities = citiesDAO.getCitiesByName(searchText);
response.setContentType("application/xml");
response.getWriter().write(cities);
return null;

}
}

As you can see, there is nothing really fancy about the Struts action itself. Let’s look at the
DAO next.

CitiesDAO
The DAO class is also no different than it would be in a non-Ajax, or even a non-Struts,
application. Its function is to get the data from the database and, because it is Ajax based,
return XML. As a good programming practice, the DAO probably should return a String or
StringBuffer. The conversion to XML should be done in a separate helper or delegate class
(but hey, we are not here to study object-oriented design patterns).

package com.apress.strutsbook.ch12;
import java.sql.*;
import javax.naming.InitialContext;
import javax.sql.DataSource;

public class CitiesDAO {

/**
* Get a connection from a specified datasource
* @param dataSourceName name
* @return Connection
*/
public Connection getConnection(String dataSourceName) {

InitialContext context = null;
try {

context = new InitialContext();
DataSource dataSource = (DataSource) context.lookup(dataSourceName);
return dataSource.getConnection();

} catch(Exception ex) {
ex.printStackTrace();
return null;

}
}

/**
* constructs the xml string to be sent to the browser
* @param prefix

CHAPTER 12 ■ STRUTS AND AJAX430

Ch12_7389_CMP2 9/29/06 9:31 AM Page 430

* @return
*/
public String getCitiesByName (String prefix) {

Connection conn = null;
PreparedStatement psmt = null;
ResultSet rs = null;

StringBuffer cities = new StringBuffer();
String sql = "select city_name from city where city_name like ?";
try {

conn = getConnection("dsDB");//substitute dsDB with your datasource ➥

name
psmt = conn.prepareStatement(sql);
psmt.setString(1,searchText+"%");
rs = psmt.executeQuery();
//construct the xml string.
cities.append("<cities>");
while(rs.next()) {

cities.append("<city>"+rs.getString("city_name")+"</city>");
}
cities.append("</cities>");

rs.close();psmt.close();

}
catch(SQLException se) {
se.printStackTrace();

}
finally {
try {

conn.close();
}
catch(Exception e) {

e.printStackTrace()
};

}
return cities.toString();

}
}

That’s it. That’s all the code that you really need. Setting this up within a Struts application
will be left for you as an exercise to complete on your own. You need to register the action in
the struts-config.xml file and set it up like you would with any other struts JSP and action
classes. Run it, and see what you get.

CHAPTER 12 ■ STRUTS AND AJAX 431

Ch12_7389_CMP2 9/29/06 9:31 AM Page 431

Summary
Ajax is a cool new technology and is probably here to stay. It truly opens up a new avenue for
user interfaces for web applications. However, be cautious. Until the W3C standard is finalized
and then adopted, you need to deal with cross-browser issues when programming in Ajax.
Also, don’t abuse the use of Ajax. For example, persist only useful data in the background;
don’t use it to skip confirmation dialog boxes, and so on. Be wise about when you really need
the power of Ajax. Have fun with it!

CHAPTER 12 ■ STRUTS AND AJAX432

Ch12_7389_CMP2 9/29/06 9:31 AM Page 432

JavaEdge Setup
and Installation

Throughout the book, we have used the example application, JavaEdge, to provide a practical
demonstration of all the features discussed. In this appendix, we will walk you through setting
up the tools and applications required to build and run JavaEdge, as well as take you through
the steps needed to get the JavaEdge application running on your platform.

Environment Setup
Before you can get started with the JavaEdge application, you need to configure your platform
to be able to build and run JavaEdge. Specifically, you need to configure Apache Ant in order
to build the JavaEdge application and package it up for deployment. In addition, the JavaEdge
application is designed to run on a J2EE application server and to use MySQL as the back-end
database. You also need to have a current JDK installed; the JavaEdge application relies on
JVM version 1.5 or higher, so make sure your JDK is compatible. We haven’t included instruc-
tions for this here, since we are certain that you will already have a JDK installed if you are
reading this book. However, if you do need to download one, you can find it at http://java.
sun.com/j2se/1.5.0/download.jsp.

Installing MySQL
The JavaEdge application uses MySQL as the data store for all user, story, and comment data.
If you don’t already have the MySQL database server, then you need to obtain the version
applicable to your platform. You can obtain the latest production binary release of MySQL for
your platform at http://www.mysql.com. The code with this application has been tested with
the 4.0 release of MySQL, however, it should work just fine with a later release.

Windows Setup
The Windows distribution of MySQL comes complete with a Windows Installer package that
will automatically install and configure MySQL on your system. If you are running on Win-
dows NT, 2000, or XP, you need administrative privileges in order to get the installation to
succeed.

433

A P P E N D I X A

■ ■ ■

AppA_7389_CMP2 9/25/06 9:14 PM Page 433

Once you have downloaded the MySQL setup file, unzip it to a temporary directory and
then run the setup.exe file. The setup program will take you through a series of steps that will
allow you to choose which components are installed and where they are installed to. When
choosing an installation directory, try to avoid any paths that contain spaces, as these have
been known to cause problems.

Once the installation is complete, the easiest way to start and manage the MySQL server is
to use the WinMySQLAdmin tool. You will find this tool in the {mysql_home}\bin directory, and
once you have run it for the first time, it will run each time the machine starts. WinMySQLAdmin
puts a small icon in the taskbar, and by right-clicking this icon, you can easily start and stop the
MySQL server.

Linux RPM Setup
The simplest way to install MySQL is to use the RPM packages supplied on the download site.
If your system doesn’t support RPM packages, then read the instructions in the next section.

If you choose to install from the RPM package, then you need to obtain two separate
RPM files, one for the server and one for the client tools. The filenames for these packages
are MySQL-server-VERSION.i386.rpm and MySQL-client-VERSION.i386.rpm, respectively,
where VERSION is the version number of MySQL you are downloading.

Once you have obtained the correct files, you can use the RPM package manager on your
system to install MySQL. Many modern Linux distributions will allow you to do this graphi-
cally, but if you prefer to use the shell or you have to use the shell, then you can install with
this command:

rpm -i MySQL-server-VERSION.i386.rpm MySQL-client-VERSION.i386.rpm

This will install MySQL in the /var/lib/mysql directory and will also configure the system
to start MySQL automatically at boot time with the appropriate entries in the /etc/init.d file.
Now that the database server is installed, all that remains is to configure the basic mysql data-
base and to test that the installation runs. To install the mysql database, you need to switch to
the installation directory and run the following command:

./scripts/mysql_install_db

Then you can start up the server in a background process using the mysql_safe tool:

./bin/mysql_safe –user=mysql &

You can start mysql directly if you choose, but using the mysql_safe wrapper tool is the
preferred mechanism. If the server won’t start or you experience any installation issues, then
you should check out the MySQL web site at http://www.mysql.com.

Linux Non-RPM Setup
If you are running a Linux distribution that does not support RPM packages, you can install
MySQL directly from a binary distribution. The binary distribution is packaged as a tar file.
Installing the binary distribution directly involves performing many tasks such as configuring
the group and user for MySQL and setting permissions that were performed automatically by
the RPM installation. After downloading the tar file, you should issue the following commands
at the shell prompt:

APPENDIX A ■ JAVAEDGE SETUP AND INSTALLATION434

AppA_7389_CMP2 9/25/06 9:14 PM Page 434

shell> groupadd mysql
shell> useradd -g mysql mysql
shell> cd /usr/local
shell> gunzip < /path/to/mysql-VERSION-OS.tar.gz | tar xvf -
shell> ln -s full-path-to-mysql-VERSION-OS mysql
shell> cd mysql
shell> scripts/mysql_install_db
shell> chown -R root .
shell> chown -R mysql data
shell> chgrp -R mysql .
shell> bin/mysqld_safe --user=mysql &

This will configure a specific user and group for MySQL ownership and configure the
appropriate permissions with the OS to enable MySQL to run. You will find a much more
detailed explanation of this setup at http://www.mysql.com/documentation/mysql/bychapter/
manual_Installing.html#Installing_binary.

Other OS Setup
Windows and Linux are not the only operating systems that will run the MySQL database
server. Most Unix-based operating systems such as Solaris, FreeBSD, and even Mac OS X
will run MySQL. The MySQL web site has full installation instructions for all these operating
systems.

Changing the MySQL Root Password
After installing the MySQL database server, the root password for the server is blank. You
should change this as soon as you have started the server to prevent any security issues. By
default, you can log in to the MySQL server as the root user by simply using this command:

mysql –-user=root

You will not be prompted for a password, so anyone could gain full access to your data-
base. To rectify this, log on as a root user and issue the following commands to give the root
user a password:

use mysql;
UPDATE user SET Password=PASSWORD('mypassword') WHERE user='root';
FLUSH PRIVILEGES;

Log out of the server and try logging in again. You can’t. Now you need to use the follow-
ing command to log in:

mysql –user=root –p

at which point MySQL will prompt you for the password you provided when modifying the
user table in the mysql database.

With that change made, you are all ready to go on the MySQL front. Now for JBoss.

APPENDIX A ■ JAVAEDGE SETUP AND INSTALLATION 435

AppA_7389_CMP2 9/25/06 9:14 PM Page 435

Installing JBoss
With the database server ready and running, you now need to configure the application server
on which to run the JavaEdge application. For this book, we have used the JBoss application
server, and the JavaEdge application has been fully tested on JBoss. JBoss is a freely available
open source package used by many developers worldwide. You can obtain the latest version,
or any version above 3.2.2, from the JBoss web site at http://labs.jboss.com/portal/.

Setting up JBoss is actually quite easy and requires very little effort. There are no OS-specific
distributions of JBoss since it is all written in Java, but you can obtain the system in either a zip
file or a tar file. Once you have downloaded the appropriate archive file, simply extract the files
to a directory on the system.

■Caution Windows users: Avoid installing JBoss in a path that has spaces in the name and try to keep the
path names as short as possible, because long path names may cause some problems with certain JDKs.

Before running the JBoss application server, you should make sure that the JAVA_HOME
environment variables point to the installation directory of your Java SDK; otherwise, JBoss
will be unable to find the tools.jar file that it requires.

Once you have set the JAVA_HOME environment variable, you can run the JBoss server.
Windows users should run the run.bat file in the {jboss_home}\bin directory, whereas Unix
and Mac OS X users should run the run.sh file in the same directory.

■Tip Unix users: Although Windows users will have to put up with the JBoss console window staying
onscreen while the server is running, Unix users can run the JBoss start-up script as a background process
using this command: {jboss_home}/bin/run.sh &.

Once JBoss has started, you will see a message in the console indicating a successful start-
up and how long it took. If this message does not appear, you will instead see the stack trace of
the error. Visit the JBoss forums at http://www.jboss.com/index.html?module=bb to get some
assistance with the problem.

Installing Apache Ant
The last tool you need to get up and running with the JavaEdge application is Apache Ant. As
with JBoss, there is no platform-dependent distribution; you simply download either a zip or
tar archive as you prefer. The latest version of Ant is available from http://ant.apache.org; for
this book, we used version 1.6.5. Setting up Ant is very similar to setting up JBoss—you simply
extract the downloaded archive into a directory, preferably with no spaces in the name. To
make running Ant easier, you will probably want to add the Ant bin directory to the PATH envi-
ronment variable so you can run it easily from any location. Also, you need to configure the
ANT_HOME environment variable to point to the Ant installation directory, since a lot of tools,
including the JavaEdge build script, use this environment variable.

APPENDIX A ■ JAVAEDGE SETUP AND INSTALLATION436

AppA_7389_CMP2 9/25/06 9:14 PM Page 436

Application Setup
Now that your environment is configured correctly, it is time to build the JavaEdge application
and deploy it on the application server.

Obtaining the JavaEdge Code and Dependencies
You can download all the source code for the JavaEdge application from the Apress web site
at http://www.apress.com. The download includes all the jar files needed to run the JavaEdge
application such as Struts, Velocity, and OJB. You are free to download these tools yourself,
and you will find instructions for each tool in its corresponding chapter in this book. Once
you have downloaded the JavaEdge archive file, extract it to a directory on your machine.

Installing the JavaEdge Database
The first task to get the JavaEdge application up and running is to create the JavaEdge data-
base in your MySQL server. Make sure the MySQL server is running, and if it isn’t, start it up
using the commands described earlier.

Installing the JavaEdge Database and Tables
Provided with the code download is a script for creating the JavaEdge database and its tables,
along with some sample data to get you started. To run the script, connect to MySQL as a root
user and run the following commands, using the correct script path for your environment:

\. d:\javaedge\src\sql\create_java_edge.sql
\. d:\javaedge\src\sql\mysql_user_setup.sql
\. d:\javaedge\src\sql\insert_data.sql

Don’t forget the leading \. characters at the beginning of each line. These scripts will
create the JavaEdge database, the tables in it, the data for those tables, and the user name
used by the JavaEdge application to connect to MySQL. To verify that the scripts succeeded,
swap to the JavaEdge database, which is named waf, using the following command:

use waf;

Now verify that the tables were created by using the following command:

show tables;

This should show three tables: member, story, and story_comment. You should check that
the story table has its initial data by running the following command:

select * from story;

To make sure that the JavaEdge user account was created in MySQL, run the following
commands:

use mysql;
select user from user where user = 'waf_user';

APPENDIX A ■ JAVAEDGE SETUP AND INSTALLATION 437

AppA_7389_CMP2 9/25/06 9:14 PM Page 437

If this command returns zero results, then the user account is missing, and you should
run the mysql_user_setup.sql script again. The database is almost ready to go now; all that is
left is to configure OJB.

Installing the OJB Tables
The JavaEdge application takes advantage of the auto-increment features of OJB for which you
need to add the OJB tables to your database. To do this, you need to obtain the full OJB distri-
bution from http://db.apache.org/ojb. Once you have the OJB distribution, extract the files
to a directory on your machine.

With the OJB distribution extracted, open up the build.properties file in the main OJB
directory and find the database profiles at the top of the file. Uncomment the MySQL profile
and comment out any other database profiles that are currently uncommented.

Next, open up the mysql.profile file and change the configuration to point at the waf
database. The configuration file will look similar to this:

dbmsName = MySql
jdbcLevel = 2.0
urlProtocol = jdbc
urlSubprotocol = mysql
urlDbalias = //localhost:3306/waf
createDatabaseUrl = ${urlProtocol}:${urlSubprotocol}:${urlDbalias}
buildDatabaseUrl = ${urlProtocol}:${urlSubprotocol}:${urlDbalias}
databaseUrl = ${urlProtocol}:${urlSubprotocol}:${urlDbalias}
databaseDriver = org.gjt.mm.mysql.Driver
databaseUser = apress
databasePassword = pwd
databaseHost = 127.0.0.1

The user name you give OJB to connect to the database must have the CREATE TABLE
permission, as it won’t be able to create the OJB tables otherwise.

Now from the command line, run the following command within the OJB directory:

ant prepare-testdb

This generates the script necessary to create the OJB tables within MySQL and executes
them against the database. You can check that the tables have been created by logging into
the waf database with the MySQL client and running the show tables command as detailed
earlier.

Building JavaEdge
Now that the database is configured, all that is left is to build the application and deploy it.
Provided that you have configured Ant correctly, building JavaEdge is simple. The JavaEdge
application comes complete with build scripts for both Windows and Unix that provide an
extra level of error checking above that provided by the Ant scripts. Simply run the script
appropriate to your environment, build.bat for Windows and build.sh for Unix, and the appli-
cation will be built, the documentation generated, and the war file created for deployment.

APPENDIX A ■ JAVAEDGE SETUP AND INSTALLATION438

AppA_7389_CMP2 9/25/06 9:14 PM Page 438

Deploying JavaEdge
Once you have built the application, you are ready to deploy it to the application server and
test it out. There are two methods of deployment in JBoss, each with its own merits. Before you
start with the deployment of the JavaEdge application, make sure that the JBoss application
server is running; if it isn’t, you can start it using the run scripts detailed earlier.

■Tip JBoss and Apache users: If you have JBoss hosting provided by an external company that uses
Apache as the front-end web server, then you have to request that your hosting provider set up an additional
mount point to direct all Struts traffic to the JBoss container. The mount point required will differ based on
the URL mapping that you used for the Struts servlet.

War Deployment
The simplest method of deployment in JBoss is war deployment. With this method, you simply
drop the war file for your application into the {jboss_instance}/deploy directory, and JBoss
takes care of deploying the application and setting up the servlet container, in most cases
Tomcat, to run it. Try dropping the JavaEdge war file into the JBoss deploy directory. If you
have JBoss running in an active console, you will see the deployment messages streaming by.
Once the deployment has finished, point your browser at http://localhost:8080/JavaEdge to
try out the application.

The war deployment method makes the initial deployment of your application very easy,
but from a maintenance point of view it is a nightmare. To make any changes to the JSP files or
Struts configuration of your application, you have to rebuild the war file and then redeploy it
as a whole to the JBoss server. If you just want to make a simple change, this is quite a limiting
factor. Also, if you have a design team working on the layout of the JSP files, then it needs to be
familiar with Ant or some other build tool in order to build the war file.

■Tip Regarding war deployment and FTP: If you use FTP to deploy your applications in JBoss, you may
find that dropping the war file into the deploy directory over FTP throws up some problems. It seems that for
a big war file, JBoss will start to deploy the application before the entire war file has uploaded, resulting in
numerous spurious errors. There are two ways to get around this. The first is to stop the JBoss server, upload
the war file, and start JBoss again once the file is uploaded. The other is to FTP the war file to a temporary
directory and then use SSH to move the war file to the deploy directory.

Another issue with using the war deployment mechanism is that you can’t use any fea-
tures that are intended to create or update files within the scope of your applications. Because
the application does not have an actual directory structure, everything is accessed from the
war file; you cannot, for instance, upload files into the images directory for your application

APPENDIX A ■ JAVAEDGE SETUP AND INSTALLATION 439

AppA_7389_CMP2 9/25/06 9:14 PM Page 439

since there is no images directory. Any calls to ServletRequest.getRealPath() or
HttpServletRequest.getContextPath() will return null, as no physical OS location exists
for your application files. Thankfully, a solution to both of these problems is available.

Directory Deployment
JBoss supports another method of application deployment that allows for simple changes to
be made without having to re-create the war file each time. It also allows you to create files
within the subdirectories of your application and will return the correct results for calls to
ServletRequest.getRealPath() and HttpServletRequest.getContextPath().

This method of deployment is no more complicated than the war file method; it is just not
quite as clean. To start with, you need to create a directory within the JBoss deploy directory.
The name of this directory should be the intended name of the application context followed by
.war, so for the JavaEdge application the name of the directory would be JavaEdge.war. Once the
directory is created, you simply copy the files for your application, in the correct structure, into
the application directory in JBoss. JBoss will then pick up the application and deploy it.

We have found that it is still much easier to package the application up as a war file,
because it makes transporting the application between servers much easier and results in
fewer “lost” files. However, when deploying, you can simply extract the files from the war file
manually and place them in the directory. To extract files from a war file, you can use the jar
command-line tools supplied with your JDK. The following command will extract the files
from the JavaEdge war file:

jar-xf JavaEdge.war

If you make any changes to your application, you can force JBoss to reload the application
by simply updating the modified date of the web.xml file using the touch command in Unix, or
by opening the file and saving over it in Windows.

Summary
At this point, you can run the JavaEdge application and test it out. You will find that many of
the points discussed here will apply to applications that you develop yourself, and you should
now have a better understanding of what is involved in building and deploying an application
such as JavaEdge. If you make any changes to the JavaEdge application, provided that you fol-
low the same directory structure that we have, the build file will automatically compile and
include your changes, so you should have no problem deploying the changes to JBoss.

APPENDIX A ■ JAVAEDGE SETUP AND INSTALLATION440

AppA_7389_CMP2 9/25/06 9:14 PM Page 440

Struts Development Tools

An amazing and highly encouraging aspect of the Struts framework is the massive amount
of support it is given from tool vendors. The many, many different tools available to help you
develop with the Struts framework range from testing tools, to configuration file editors, to
full-on graphical designers for Struts. What is also remarkable is that not all the vendors for
these tools are small companies or open source developers. In fact, both Borland and IBM
have included Struts support in their mainstream IDEs.

In this appendix, we are going to explore a selection of tools that you will find useful when
developing applications with the Struts framework. Many of the tools would warrant entire
books to themselves, so instead of trying to cover all their features here, we will concentrate
mainly on using these tools with Struts, and provide sign-posting details so you can find out
more about each tool.

The tools we are going to cover are

• Eclipse IDE: An open source IDE project, originally started by IBM. Eclipse is a great
IDE that we use for most of our development. We have included it here for two reasons:
A good IDE can help increase your productivity greatly, and one of the other tools
described here is a plug-in for Eclipse.

• NetBeans IDE: Another open source IDE, this time started by Sun Microsystems.
NetBeans IDE forms the core of the Sun ONE Studio, but the open source version is
available for download from the Web. Not quite as fast as Eclipse, NetBeans does, how-
ever, have quite a nifty JSP editor that you might find useful. We have included this for
the same reasons as Eclipse.

• IBM WebSphere: A commercial IDE available from IBM. WebSphere is based on Eclipse but
adds many extra features, such as a full JSP editor and integrated support for Struts 1.1.

• Borland JBuilder 2006: Newly released from Borland, has, in our opinion, one of
the best JSP editors available. Struts support in JBuilder has been available since the
JBuilder X release.

• Struts Console: A cool open source project built by James Holmes that provides a Swing-
based editor for the most common Struts configuration files. This tool is available as a
plug-in for many different IDEs, including Eclipse, NetBeans, WebSphere, JBuilder, and
Oracle JDeveloper.

• Exadel Studio: Available from Exadel, Inc., a full graphical modeling tool for your Struts
applications. It allows you to model your Struts applications using a drag-and-drop
graphical environment and will generate all the configuration files and stubs for Action
and ActionForm classes. 441

A P P E N D I X B

■ ■ ■

AppB_7389_CMP2 9/25/06 9:15 PM Page 441

• XDoclet: The now ubiquitous code-generation tool. XDoclet is covered in much greater
detail in Chapter 8, but we have included it here for completeness.

• Apache JMeter: Another project from the Apache Jakarta team, a load testing tool that
you can use to make sure your Struts application will handle the load you want it to.

With this selection of tools, you have everything you need to design, build, test, and pro-
file your entire Struts-based application.

Eclipse
It’s likely that you are already familiar with the Eclipse project and the resulting IDE. While
Eclipse itself does not include any tools specific to Struts development, it does serve as the
host for many of the plug-in–based tools we are going to look at.

The current version of Eclipse as of the time of writing is 3.1.2. Eclipse is not only a good
plug-in host, but also has excellent support for refactoring, JUnit testing, and Ant. When building
our sections of the JavaEdge application, we used Eclipse as the IDE. Eclipse works particularly
fast and is based on its own UI class library called the Standard Widget Toolkit (SWT).

One the most useful features in Eclipse for any kind of development is its support for Ant.
For the JavaEdge application, we used Ant to build the entire application, package up the code
for distribution, control XDoclet, and generate the documentation. Of course, you can do much
more with Ant, but you will find that managing the Ant build file can quickly become unwieldy
and sometimes remembering a parameter for a certain task can prove to be a headache. Fortu-
nately, Eclipse comes with a fantastic Ant build file editor, shown in Figure B-1, that has code
insight and code completion to make creating and updating your build files a breeze.

As demonstrated in Figure B-2, you can also entirely control Ant from within the Eclipse
environment, so there is no need for you to open up a separate console window to control your
build process. Couple this with Eclipse’s support for incremental compilation, and you can rap-
idly reduce the time taken in the code, build, and test cycle that most developers go through.

Figure B-1. Editing Ant build files with Eclipse

APPENDIX B ■ STRUTS DEVELOPMENT TOOLS442

AppB_7389_CMP2 9/25/06 9:15 PM Page 442

Figure B-2. Running Ant from Eclipse

Where Eclipse really excels is in its support for unit testing. The JUnit testing tool is heav-
ily integrated into Eclipse, as you can see in Figure B-3, providing a fully integrated testing
environment. Eclipse provides simple shortcuts in your code for building JUnit TestCases as
well as an in-IDE test runner to enable you to run your tests easily while building your code.

Figure B-3. Eclipse and JUnit—strong integration

APPENDIX B ■ STRUTS DEVELOPMENT TOOLS 443

AppB_7389_CMP2 9/25/06 9:15 PM Page 443

Eclipse Summary
As we have already mentioned, we use Eclipse for most of our development, so we’ll try not
to be too biased! Eclipse’s main benefit lies in the fact that it is very lightweight. Although they
are getting better all the time, desktop Java applications are not known for their speed. With
Eclipse, you will struggle to notice the difference in performance between it and an IDE writ-
ten in native code.

Eclipse has great support for refactoring and unit testing, which is what makes us use it,
but if you have your own tools for these, then Eclipse might not seem that attractive.

On the downside, Eclipse is missing good JSP support and the ability to host a servlet
container in-process out of the box. However, there are many JSP editor plug-ins available
for Eclipse, and JBoss has IDE plug-ins for Eclipse that allow you to run JBoss within Eclipse.

Struts support in Eclipse is provided by way of the many plug-ins available, a selection
of which are detailed later in the appendix. We think when you first get Eclipse, you may feel
it seems a bit thin on features, mainly because they are all hidden away under the hood. We
found that the learning curve for Eclipse was much higher than for NetBeans, and this may
be a restrictive factor for you or your team.

Eclipse Next Step
You can try out the latest release and development versions of Eclipse by downloading them
from http://www.eclipse.org. You will find that the supplied help files are quite detailed and
should give you plenty of information to get you started.

NetBeans
NetBeans is the open source IDE offering from Sun and forms the basis of its Sun ONE Studio
product. NetBeans is a traditional Swing-based application, in contrast to the SWT-based
Eclipse IDE. While NetBeans doesn’t offer the same support for refactoring and unit testing
as Eclipse, it does have better support out of the box for building web applications.

JSP, HTML, XML, and DTD Editors
NetBeans comes with an impressive array of editors straight out of the box. The XML editor,
shown in Figure B-4, supports code completion using the DTD referenced in the file.

As shown in Figure B-5, the JSP and HTML editor also supports code completion, although
it won’t read the tag library descriptors for any tag libraries you have defined in your page, unlike
the JSP editor in Exadel Studio.

APPENDIX B ■ STRUTS DEVELOPMENT TOOLS444

AppB_7389_CMP2 9/25/06 9:15 PM Page 444

APPENDIX B ■ STRUTS DEVELOPMENT TOOLS 445

Figure B-4. Editing XML with NetBeans

Figure B-5. NetBeans has fantastic JSP support.

AppB_7389_CMP2 9/25/06 9:15 PM Page 445

In-Process Tomcat Server
One of our favorite features of NetBeans is the in-process Tomcat server that you can use to
test and debug your web application. All console output from Tomcat is captured and dis-
played in the NetBeans IDE, and you can easily attach to the process to enable debugging.

Quite a nifty utility that comes along with the in-process Tomcat support is the HTTP
Monitor, shown in Figure B-6, which allows you to monitor requests to the server and view
the details of each request, the response, the session, and other server objects.

Figure B-6. Monitoring requests and responses with HTTP Monitor

NetBeans Summary
NetBeans was the first Java IDE we used. Before that, we were in “text editor land,” and the
main reason we started using NetBeans was because it was, and still is, so easy to pick up. A
couple of hours and you can be up and running building your project. The support for JSP and
HTML out of the box is great, although the Java code editor is not quite as good as the others
we have tried.

NetBeans is seriously lacking in its support for refactoring and unit testing, which we
value quite highly. NetBeans attempts to make up for this with the inclusion of the embedded
Tomcat engine and the nifty and infinitely useful HTTP Monitor.

NetBeans doesn’t perform quite as well as Eclipse or WebSphere, but it isn’t slow; and the
memory consumption is relatively low, so it functions quite happily on a medium-specifica-
tion machine.

As with Eclipse, the Struts support in NetBeans comes in the form of plug-ins such as
Struts Console, which is discussed later in this appendix.

APPENDIX B ■ STRUTS DEVELOPMENT TOOLS446

AppB_7389_CMP2 9/25/06 9:15 PM Page 446

NetBeans Next Step
You can download the latest version of NetBeans from http://www.netbeans.org and, as with
Eclipse, the help documentation is actually quite good. We used version 5.0 for the discussion
in this appendix, which is the latest release at this time. You will find a full release roadmap
along with test builds on the NetBeans web site. Among the large amount of information on
the NetBeans web site, you will find information about some of the plug-ins to enable Ant
support, JUnit testing, and many other features.

IBM WebSphere
WebSphere is IBM’s commercial IDE based on the Eclipse project that IBM started. It seems
to be a rare occasion when you can say honestly that a commercial IDE that is also available
as an open source project is worth buying. But this IDE comes jam-packed with features that
could fill this book ten times over. In this next section, we are going to give you a whirlwind
tour of the Struts support available in WebSphere. You should note that the Struts support in
WebSphere is extensive and would warrant an entire book just to itself, so this is just a taster!
For the examples in this section, we used WebSphere Studio Application Developer 5.1.

Creating a Struts Project
With WebSphere, IBM has decided against just adding a few editors to ease Struts develop-
ment, opting instead to have a whole project type dedicated to Struts. In fact, you will find a
project type for Struts 1.2, with the IDE adapting to the features specific to that release of
Struts (see Figure B-7).

Figure B-7. Creating Struts applications with WebSphere

APPENDIX B ■ STRUTS DEVELOPMENT TOOLS 447

AppB_7389_CMP2 9/25/06 9:15 PM Page 447

The basic Struts project type is essentially the sample included with the Struts distribution,
but it is an excellent starting point if you are just starting out with Struts; the blank project will
save any Struts developer new or old the hassle of setting up the basic files. You can, of course,
just use a web project, and you still get full Struts support, but the blank project gives you a
skeleton struts-config.xml file, a basic Ant build script, and basic files for Tiles framework and
Validator support.

Managing Configuration
WebSphere has extensive support for managing the configuration of your Struts applications.
As you can see in Figure B-8, the struts-config.xml editor goes beyond a simple user interface
for editing the underlying XML and provides full integration with your Struts project.

Figure B-8. Editing Struts configuration with WebSphere

APPENDIX B ■ STRUTS DEVELOPMENT TOOLS448

AppB_7389_CMP2 9/25/06 9:15 PM Page 448

For instance, when setting up an action mapping, you don’t have to enter the name of
the Action class; instead you pick it from a list of Action classes that WebSphere builds from
your project and the referenced libraries. This is supported throughout from ActionForm
configuration to controller configuration and can really help iron out annoying errors due
to typos. On top of this, you get full error checking on the configuration file, which is useful
if you have changed some of the file by hand or imported it from elsewhere.

You will also find a similar editor for the web.xml file. While this isn’t specifically a Struts
configuration file, you won’t get very far without it, and the WebSphere editor really reduces
the amount of coding you have to do within this file.

The only downside we can see is that there is no editor for Tiles and Validator configura-
tion files; and while the XML editor is very smooth, it would have been nice to see these two
types of files get their own editors. However, you can get around this by using a plug-in such
as Struts Console, detailed later on, to add a Tiles and Validator configuration file editor.

Creating Actions and ActionForms
Despite having such a good configuration file editor, you will find that in the day-to-day activ-
ity of creating actions and ActionForms, you rarely have to use it. WebSphere provides simple
file wizards for creating actual actions and ActionForms that automatically add the appropriate
configuration details to the struts-config.xml file (see Figure B-9).

Figure B-9. Creating Struts application components in WebSphere

APPENDIX B ■ STRUTS DEVELOPMENT TOOLS 449

AppB_7389_CMP2 9/25/06 9:15 PM Page 449

With the wizards, you can create new classes or reuse existing ones and at the same time
specify all the configuration details possible. In keeping with the rest of the Struts support,
wherever possible the information required is presented in list form derived from the rest of
your project data. For example, in the New Action Mapping wizard, shown in Figure B-10,
you can choose a form bean from the list of those configured in the struts-config.xml file.

Figure B-10. Action mapping with WebSphere

APPENDIX B ■ STRUTS DEVELOPMENT TOOLS450

AppB_7389_CMP2 9/25/06 9:15 PM Page 450

One thing we were particularly impressed with was the code the wizards generate. Instead
of just giving you a basic class derived from Action, you instead get the class with the appropri-
ate methods already overridden and complete with usable skeleton code into which you can add
your Action code.

Web Diagrams
WebSphere comes complete with a Web Diagram Editor, shown in Figure B-11, that allows
you to graphically model a web application. As you draw the individual pieces and link them
together, the underlying code is generated in your project. IBM has fully integrated Struts sup-
port into the Web Diagram Editor, allowing you to graphically design your Struts applications.

Figure B-11. Modeling your Struts applications graphically using WebSphere

Essentially the Web Diagram Editor is a graphical wrapper around the wizards discussed
in the previous section. Although this is a nifty little feature, we have found that we get no pro-
ductivity benefit from using this method; instead, we prefer to stick with the wizards that give
us a productivity boost but allow us to think about our applications in a more traditional way.
Perhaps we’re stuck in our ways!

WebSphere Summary
We have found that WebSphere is a very useful and usable IDE. It has strong support for a lot
of the things that we value such as refactoring and unit testing. However, the support for JSP
editing is not quite as good as that in JBuilder, and we feel that while the UML support is there,
in JBuilder it is much better.

Struts support is, of course, excellent. We think the WebSphere configuration file editor is
our favorite, and we like the fact that the Struts examples come prepackaged as WebSphere
projects, making it easier for people who are learning Struts to get started.

APPENDIX B ■ STRUTS DEVELOPMENT TOOLS 451

AppB_7389_CMP2 9/25/06 9:15 PM Page 451

WebSphere’s biggest plus point is that for such a large IDE, it is not particularly resource
intensive; you certainly don’t need a high-powered machine to run the IDE comfortably. We
think this performance gain comes from the underlying use of the SWT library for graphics
as opposed to traditional Swing.

WebSphere Next Step
As we mentioned earlier, Struts support in WebSphere is a huge topic, and WebSphere itself
is even larger. Your first port of call should be the IBM web site (http://www-306.ibm.com/
software/websphere/) where you can download a 60-day evaluation of the software to get
yourself started. You can also get plenty of good books on WebSphere: try WebSphere Studio
Application Developer 5.0: Practical J2EE Development (Livshin, Apress, ISBN: 1-59059-120-8)
to get you going.

Borland JBuilder 2006
Borland added full support for the Struts framework in JBuilder X, providing editors for the
configuration files and a graphical designer for your application. JBuilder 2006 supports Struts
1.0, 1.1, and 1.2.

Web Projects
Like WebSphere, JBuilder has a specific project type for Web applications; however, this is struc-
tured as a web module that is added to a standard project (see Figure B-12). Adding a web
module to your project in JBuilder will allow you to get full support for Struts within the IDE.

Figure B-12. Creating projects with JBuilder

APPENDIX B ■ STRUTS DEVELOPMENT TOOLS452

AppB_7389_CMP2 9/25/06 9:15 PM Page 452

Configuration File Editor
As with most of the Struts tools in this appendix, JBuilder provides a graphical means for edit-
ing the Struts configuration files. JBuilder uses a tree view to navigate the struts-config.xml
file, as you can see in Figure B-13, but presents the details for each section in a full window
within the IDE.

Figure B-13. Tree navigation for Struts configuration file in JBuilder

You can also completely skip using the tree view for the configuration file, instead using
the tabs across the top of the display pane, which allows you to switch in and out of different
sections of the configuration file (see Figure B-14).

Figure B-14. Configuring your Struts application with JBuilder

APPENDIX B ■ STRUTS DEVELOPMENT TOOLS 453

AppB_7389_CMP2 9/25/06 9:15 PM Page 453

JSP Editor
Anyone who has already used JBuilder in the past will know it has one of the best JSP editors
on the market. It supports full code completion for HTML and JSP, including support for the
JSP and any tag libraries defined within your page (see Figure B-15).

Figure B-15. Fantastic JSP support in JBuilder

The JSP editor also includes a page preview feature so you can check out the layout of
your pages before you deploy them to the application server. This is extremely useful because
it will help you to reduce the amount of time you spend editing and redeploying just to get the
layout of a page correct.

UML Designer
JBuilder has full support for UML built in, allowing you to model your code directly in the
IDE and then have the code generated. You can also manipulate existing code in the UML
with some limited support for refactoring, as shown in Figure B-16.

While the UML designer is a very handy function, we would have liked to see better
support for refactoring as well because that is the area that JBuilder really shines in.

JavaDoc Preview
We have included mention of this feature because it is not something we have ever seen in an
IDE. Basically, JBuilder allows you to preview the JavaDoc for a class to see what it would look
like when converted to HTML (see Figure B-17). It provides a simple way to make sure that
your documentation is up to scratch without having to go through the generation process.

APPENDIX B ■ STRUTS DEVELOPMENT TOOLS454

AppB_7389_CMP2 9/25/06 9:15 PM Page 454

APPENDIX B ■ STRUTS DEVELOPMENT TOOLS 455

Figure B-16. Refactoring code with UML

Figure B-17. Previewing your JavaDoc with no lengthy generation process

AppB_7389_CMP2 9/25/06 9:15 PM Page 455

Action Designer
As with WebSphere, JBuilder includes a diagram-based designer for you to build your Struts
applications (see Figure B-18). Using the Action Designer, you can create actions, set up Action
Forwards, configure exception handling, and view pages, all in a simple diagram. In the back-
ground, JBuilder will generate the code for each of the pieces, creating Java code for the actions
and JSP pages for the view, and updating the Struts configuration as appropriate.

Figure B-18. Struts application modeling in JBuilder

As with most of the other designers, we have found that building a project like this can
quickly get messy, but this kind of view does serve as a great way to verify that the code you
have written is connected as you expected.

JBuilder Summary
Overall, JBuilder is a strong IDE; it has excellent support for JSP editing and some good UML
tools. We really miss the refactoring support when using this IDE, but not everyone will. The
Struts support is excellent; it is certainly not something Borland bolted on as an afterthought.

What we like about JBuilder and Borland is that they now have the whole suite of tools
available, and they integrated everything very well. So, in large projects you can have your
IDE, issue tracking, source control, and change control all integrated together.

APPENDIX B ■ STRUTS DEVELOPMENT TOOLS456

AppB_7389_CMP2 9/25/06 9:15 PM Page 456

The main drawback we found with JBuilder is that it is a mammoth to run. We are run-
ning on 1.5GB of RAM, so for us it is not so bad, but we used it on a friend’s machine once with
just 512MB RAM, and it was ridiculously slow. We have noticed that the memory usage will
slowly creep up through a session, so you may find yourself stopping and starting the IDE
once or twice a day on slow machines.

JBuilder is definitely worth a try; you might even feel that this is the IDE for you. We have
certainly found that people love or hate JBuilder in equal measure just as people love or hate
Eclipse/WebSphere. We know a lot of developers who use JBuilder X or JBuilder 2006 and love it.

JBuilder Next Step
Go get a copy! You can download a 30-day trial of the Enterprise Edition from http://www.
borland.com, and it is also giving away the Foundation Edition for JBuilder 2006, although
that doesn’t have support for Struts. Borland has an active, developer-focused web site at
http://bdn.borland.com, where you will find a mass of information about all its products.

Struts Console
Struts Console is a tool developed by James Holmes that provides a Swing-based editor for the
majority of the Struts configuration files. You can use Struts Console either as a stand-alone or
as a plug-in to one of the following IDEs:

• Eclipse

• IBM WebSphere

• IntelliJ IDEA

• NetBeans

• Sun ONE Studio

• Borland JBuilder

• Oracle JDeveloper

We prefer to use it within Eclipse, since that is the IDE that we use for most of our devel-
opment.

Getting Started
To get started with Struts Console, you need to download the current distribution from James
Holmes’ web site at http://www.jamesholmes.com/struts/console/index.html. As of the time
of writing, the current version of Struts Console was 4.8.

We are only going to discuss setting up Struts Console in an Eclipse environment; you will
find instructions for running Struts Console stand-alone or in one of the other IDEs on James
Holmes’ web site. So once you have Struts Console downloaded, you need to shut down your
copy of Eclipse if it isn’t already closed and open up the directory where you installed Eclipse.

APPENDIX B ■ STRUTS DEVELOPMENT TOOLS 457

AppB_7389_CMP2 9/25/06 9:15 PM Page 457

In this directory you will find another directory called plugins. Copy the com.jamesholmes.
console.struts directory from the Struts Console directory into the plugins directory in your
Eclipse installation directory, and then restart Eclipse. To verify that the Struts Console plug-in
has been correctly installed, open the Preferences dialog box from the Window menu and you
should see Struts Console listed on the left side, as shown in Figure B-19.

Figure B-19. Struts Console installed in Eclipse

With that done, you can now start using Struts Console to edit the Struts configuration files.

Editing the Struts Configuration File
The file we want to look at editing with Struts Console is struts-config.xml. To open the
struts-config.xml file in Struts Console, locate it in the Navigator, right-click it, and choose
Open With ➤ Struts Console. Struts Console will now open up, and the sections of the struts-
config.xml file will be listed on the left side (see Figure B-20). If Struts Console reports that the
file doesn’t match the Struts DTD but your application still runs, then you may have some of
the elements in the wrong order. At one point, we had the <global-exceptions> tag after the
<global-forwards> tag, but the DTD defines that they should appear the other way around.
Struts Console will enforce strict adherence to the DTD.

Figure B-20. Struts Console configuration editor

APPENDIX B ■ STRUTS DEVELOPMENT TOOLS458

AppB_7389_CMP2 9/25/06 9:15 PM Page 458

To start with, try editing the configuration of one of your form beans. Notice that we have
used the JavaEdge application for our examples. To open up the configuration screen for your
form bean, collapse the Form Beans node in the left-hand tree view, and you will see a list of
all the defined form beans. Select the form bean you want to edit, and the details for the bean
will appear in the right-hand pane (see Figure B-21).

Figure B-21. Manipulating form bean configuration with Struts Console

In addition to specifying a name and type for your form bean, you are able to specify a dif-
ferent configuration bean to use when reading in the configuration details for this form bean. In
the Type drop-down box, you will find that the three types of DynaActionForm are listed already;
using the Form Properties tab at the bottom, you can build up a dynamic action form. The last
tab, Referencing Actions, shows a list of all action mappings that use this particular form bean.

Now take at look at the configuration for one of your actions. Collapse the Action Mappings
node in the tree and select the action you want to configure, as shown in Figure B-22.

Figure B-22. Setting up action mappings with Struts Console

APPENDIX B ■ STRUTS DEVELOPMENT TOOLS 459

AppB_7389_CMP2 9/25/06 9:15 PM Page 459

APPENDIX B ■ STRUTS DEVELOPMENT TOOLS460

As with the form bean configuration, you are able to specify the name of the action as well
as a configuration bean to change the way in which the configuration is processed by Struts.
You have three options for what the action is mapped to: You can choose an Action class, you
can choose to forward to a resource, or you can choose to include a resource in the response
stream. These three choices are mutually exclusive.

Under the Form Bean tab at the bottom of the screen, you configure, if required, the form
bean used for this action. Under the Exceptions tab, you can configure specific exception han-
dling for this action. The Forwards tab allows you to configure Action Forwards that are specific
to this action. The final tab, Properties, allows you to specify additional configuration parame-
ters that you can use in conjunction with any custom configuration beans.

The last section of the struts-config.xml file that we want to look at in detail with Struts
Console is the controller configuration (see Figure B-23). Using this section, you can configure
which controller class to use, such as RequestProcessor or TilesRequestProcessor, as well as
specify the behavior for file uploads and content types other than text/html.

Figure B-23. Configure the Struts controller with Struts Console

We’re sure you noticed many more configuration options as you browsed the Struts Console
interface. Many of these are explained in detail in Chapters 2 and 3. You will find full details of
those parameters not found in this book on the Struts web site. Of course, these are not the only
sections of the struts-config.xml file you can edit using Struts Console. The remaining nodes of
the tree view will allow you to configure global exceptions and global forwards as well as data
sources, message resources, and plug-ins.

Editing Other Configuration Files
Struts Console has support for editing more than just the struts-config.xml file—it also sup-
ports the Tiles and Validator configuration files as well. Not only that, but you can also edit
any tag library descriptor file.

Struts Console Summary
What can we say about Struts Console other than it is cool? This is one of those utilities you
should just have. It is small, lightweight, and free. Struts Console allows you to edit all the pos-
sible parameters for Struts you could ever think of and few you didn’t know existed. The XML it
generates adheres 100 percent to the Struts DTD, so there will be no problems having Struts

AppB_7389_CMP2 9/25/06 9:15 PM Page 460

APPENDIX B ■ STRUTS DEVELOPMENT TOOLS 461

load it into the servlet container. There are no real downsides to this tool—we encourage you
to go and get it as soon as you finish reading this book.

Struts Console Next Step
We’re sure you can see that Struts Console is a useful tool that can take a lot of the drudge work
out of configuring your Struts application. It is really very simple to use, especially if you are
already familiar with the Struts framework, which by getting this far into the book we’ll assume
you are.

Exadel Studio
Exadel Studio is a full Struts development tool from Exadel, Inc. (http://www.exadel.com/web/
portal/home). It comes in two versions: either as a plug-in for Eclipse or as a stand-alone ver-
sion. There is no real difference between the two, since the stand-alone version is just the
basic Eclipse distribution and the plug-in packaged together.

The whole idea behind Exadel Studio is that you have a full environment in which to
develop your Struts-based applications. To this end, Exadel Studio comes with a massive num-
ber of features that aren’t directly related to Struts but will make your development life easier.

If you want to try out Exadel Studio, you can download a 30-day trial from the Exadel web
site. For this book, we used Exadel Studio 4.0.

Struts Projects
Exadel Studio adds a new project type to Eclipse, the Struts project, which you must use in
order to take advantage of most of the features. When you start a Struts project, you get the
base files you need such as struts-config.xml and web.xml.

Configuration File Editors
As with most of the tools discussed here, Exadel Studio provides an editor for the struts-config.
xml file, but chooses to use a different approach. In Exadel Studio, the struts-config.xml file node
in the project tree is collapsible and shows all the subsections of the files (see Figure B-24). Each
section of the file can be collapsed further to show the composite parts.

Figure B-24. Exadel Studio configuration navigator

AppB_7389_CMP2 9/25/06 9:15 PM Page 461

Selecting one of the nodes highlights the detail for that node in the Properties window,
where you can edit them directly (see Figure B-25).

Figure B-25. Configuration properties view in Exadel Studio

If you right-click a node, you get the options for that particular node, allowing you to view
the properties in a separate, more organized dialog box or to perform configuration actions
specific to that node. For instance, if you right-click the action-mappings node, you can choose
to add a new action. This will bring up an action mapping wizard, as shown in Figure B-26.

Figure B-26. Adding a new action with Exadel Studio

APPENDIX B ■ STRUTS DEVELOPMENT TOOLS462

AppB_7389_CMP2 9/25/06 9:15 PM Page 462

If the Action class doesn’t already exist, you can enter the name of a new class that will
be created later on. While Exadel Studio won’t automatically create a new Action class for an
action mapping, you can right-click the action mapping and choose Generate to create the
Action class. Once the action mapping is created, you can then right-click and add forwards,
exceptions, and properties. This behavior is carried out through the entire configuration file
editor.

Along with support for the struts-config.xml file, the Professional Edition of Exadel Studio
includes editors for Tiles framework configuration, Validator configuration, and TLD files.

Exadel Studio also comes with an editor for the web.xml file that works in a similar way to
the struts-config.xml editor (see Figure B-27).

Figure B-27. Editing web.xml with Exadel Studio

One last point on the Exadel Studio configuration file support in the Professional Edition is
that it has fully integrated support for Struts modules. With more and more applications using
multiple modules in their implementation, this is an important feature for any Struts tool.

XML Editor
For those times when an editor is not available or when you want to get down and dirty with
the configuration, Exadel Studio provides a simple XML editor with support for code high-
lighting and basic code completion. Eclipse developers will find this quite useful due to the
lack of an XML editor out of the box with Eclipse.

JSP Editor
Another thing that is sadly lacking in Eclipse is a good JSP editor. Exadel Studio includes quite
a good editor that has customizable code highlighting and good support for code completion,

APPENDIX B ■ STRUTS DEVELOPMENT TOOLS 463

AppB_7389_CMP2 9/25/06 9:15 PM Page 463

as shown in Figure B-28. A useful feature of the code completion is that it is not just limited to
HTML but also reads the TLD for any tag libraries specified in your JSP file and provides code
completion for those as well.

Figure B-28. Excellent JSP editing support in Exadel Studio

On top of this, Exadel Studio includes what has got to be one of our favorite features
available: JSP Preview. If you are like us, then you will hate having to tune designs by making
a change and then redeploying to the application server. Using JSP Preview, you get a good
idea of how the page will look before you have to deploy (see Figure B-29).

Figure B-29. Quickly previewing JSP views in Exadel Studio

APPENDIX B ■ STRUTS DEVELOPMENT TOOLS464

AppB_7389_CMP2 9/25/06 9:15 PM Page 464

Web Flow Designer
Exadel Studio also provides a diagram-based view of your Struts application, as shown in
Figure B-30, allowing you to manipulate the application graphically. The actual editor works
in a similar way to the configuration file editor in that as you create actions and ActionForms,
it won’t actually create the code for nonexistent classes until you explicitly instruct it to by
right-clicking the item you want to generate code for and choosing Generate.

Figure B-30. Full graphical modeling for Struts applications in Exadel Studio

In this case, this works quite well, since you can play around with the design until you are
happy with it and then generate the code in bulk by simply right-clicking a blank part of the
canvas and choosing Generate.

Connecting up the pieces of your application is simply a matter of dragging a connector
from one piece to another. Any changes you make, such as creating Action Forwards or excep-
tions, are automatically added to the diagram and the tree editor regardless of where you
make them. However, changes are not written to code until you choose to generate the code,
and they are not written to the struts-config.xml file until you explicitly choose Save from the
context menu. In this way, you are free to experiment with the design without worrying about
affecting something that is already working correctly.

Exadel Studio Summary
Exadel Studio will prove really useful to anyone who does a lot of Struts development. What
we like about Exadel Studio is that the developers have thought to include all the additional
functionality, such as a JSP editor, that you will need to build Struts applications and haven’t
just built a simple configuration file editor that you can get for free.

The graphical editor is the best we have seen, beating those in WebSphere and JBuilder
hands down, and the support for advanced features such as tiles and modules means that you
won’t be left with a tool that does just half of the job you want.

APPENDIX B ■ STRUTS DEVELOPMENT TOOLS 465

AppB_7389_CMP2 9/25/06 9:15 PM Page 465

On the downside, this tool may not prove useful to everyone. If all you want is a simple
configuration file editor, then you’d be better off sticking with Struts Console; but if you want
a full suite of tools for Struts development, then this is the tool for you.

Exadel Studio Next Step
As far as we know, there are no books available for Exadel Studio—just as well then that the
manual supplied with the product is very detailed. You will find that pretty much everything
you need to know about the product is in the manual. However, we would say that this isn’t a
tool for Struts beginners. If you are unfamiliar with how Struts works, we recommend you take
the time to understand how the pieces of the framework fit together and how to put applica-
tions together without using a tool like this. As we mentioned at the start of this section, you
can download a 30-day trial from http://www.exadel.com/web/portal/home.

XDoclet
XDoclet is a widely used project that reduces the amount of code you need to write to build
your applications. XDoclet can be used to reduce the amount of code needed to work with a
variety of tools and technologies including EJB, JMX, and Struts.

When developing Struts applications, you can use XDoclet to decrease the amount of
configuration code you need to write to get your application running. XDoclet is one of our
favorite tools. Although we like the graphical tools, which can sometimes give you a new per-
spective on a problem, we prefer to maintain a closer relationship with the actual code.
However, configuration code is a nightmare, and XDoclet helps you to reduce that while still
keeping you in full control of a project. We are not going to go into any more detail on XDoclet
here, as we have included a full rundown on XDoclet in Chapter 8.

Apache JMeter
JMeter is a load testing tool, written entirely in Java, that you can use to test and analyze the
performance of your application under a heavy load. JMeter is ridiculously easy to use and
provides you with a simple mechanism to verify whether your application will handle the
loads you expected it would.

Getting Started
The first thing you need to do is download JMeter from the Jakarta web site at http://jakarta.
apache.org/jmeter/. Once you have obtained JMeter, unpack it and then start it up. The distri-
bution contains a batch file and shell script to start the tool on both Windows and Linux
systems. For this book, we used the latest version at the time, which was 2.1.1.

Features
JMeter allows you to load many different application types. Core to JMeter is the concept of
a sampler. This is a class that will perform a single test and return some data about that test.
JMeter comes complete with samplers for making HTTP and FTP requests as well as samplers
for Web services, JDBC databases, and LDAP directories.

APPENDIX B ■ STRUTS DEVELOPMENT TOOLS466

AppB_7389_CMP2 9/25/06 9:15 PM Page 466

With JMeter, you are not limited to making simple requests to a sampler one after the other.
You can have multiple threads running at the same time, processing many different request pat-
terns. Using logic controllers, you can control how requests are made and in what order.

Of course, sometimes you do not want to simply bombard the system with request after
request. In this case, you can use timer components to submit a limited number of requests in
a certain period of time, or you can use a timer to ensure that a uniform number of requests
are submitted within a given period of time. JMeter even has support for random pauses
between request submissions so you can add some level of uncertainty to your load testing.

Sometimes it can be useful to ensure that the data that is being returned from a request is
correct. To support this, you can perform assertions on the data returned from a request, and
JMeter will track the number of successful and unsuccessful requests. This is useful for web
sites, as you can watch for valid data that you know the page will return, and then when this
stops appearing, you can tell that some kind of server error has occurred.

The final piece in the puzzle is how exactly you view your results. Well, JMeter has a wide
variety of analysis tools ranging from simple data tables, to aggregate reports, all the way up to
graphs of throughput displaying highs, lows, averages, and deviations.

Creating a Sample Test
So now that you know what JMeter does, in this section we’re going to give you a demonstra-
tion of how it works. For this example, we want to test the response time of the home page
and the View All Stories page. We also want to make sure that in each cycle the home page is
requested first, followed by the View All Stories page, as would most likely happen in a stan-
dard user scenario.

Once you open JMeter, you will see two nodes in the left-hand tree, one for the WorkBench
and one for the test plan, as shown in Figure B-31. We have renamed our test plan to JavaEdge Test.

Figure B-31. Renaming the test plan to JavaEdge Test

APPENDIX B ■ STRUTS DEVELOPMENT TOOLS 467

AppB_7389_CMP2 9/25/06 9:15 PM Page 467

APPENDIX B ■ STRUTS DEVELOPMENT TOOLS468

The next step is to create a thread group to control execution of the requests. To do this,
right-click the JavaEdge Test node and select Add ➤ Thread Group from the pop-up menu.
This will create a Thread Group node underneath the JavaEdge Test node in the tree and
bring up the Thread Group properties page in the right-hand pane (see Figure B-32).

Figure B-32. Creating a thread group for the tests

Give your thread group a meaningful name and choose the number of threads you want
to run your tests. We have chosen to limit our group to one thread, since that should be plenty
for what we want to do. You can choose to limit the number of times the thread group will
loop through the controllers and samples contained in it, or leave the loop to run until it is
manually stopped. We have left the loop to run indefinitely.

With the thread group created, it is now time to configure the test parameters for that
group. Right-click the thread group and choose Interleave Controller from the Add ➤ Logic
Controller menu. The interleave controller, shown in Figure B-33, will execute one of its sub-
controllers or samplers each iteration of the test loop, moving sequentially through the list.

You can place the samplers directly under the thread group, but we prefer to use the inter-
leave controller so that if we want to perform a specific number of page requests, we can just
set the loop count for the thread group accordingly.

Now it’s time to add in the samplers for the pages you want to test. To do this, you need to
right-click the interleave controller and choose HTTP Request from the Add ➤ Sampler menu.
This will display the HTTP Request properties page in the right-hand pane (see Figure B-34).

In this panel, you need to set the properties for the page you want to request. We have
configured the server as the localhost and the port to 8080, which we are running JBoss on.
In the Path field, we have entered the full path of the server to the JavaEdge home page action,
/JavaEdge/execute/homePageSetup. Don’t add the server name or port to the path, since they
are already included in the configuration for this request. Finish by giving the request a mean-
ingful name.

When you are specifying the HTTP request settings, you’re not limited to testing against an
application running on your local machine. In fact, in most cases you will want to test against a
live application to take into consideration Internet traffic and the live server hardware.

Repeat this process to create a request for the All Stories page. Now create an assertion
as shown in Figure B-35 to make sure that the page returned when the home page request is
processed is in fact the home page.

AppB_7389_CMP2 9/25/06 9:15 PM Page 468

APPENDIX B ■ STRUTS DEVELOPMENT TOOLS 469

Figure B-33. Adding an interleave controller to control requests

Figure B-34. Adding an HTTP request for the JavaEdge home page

Figure B-35. Creating a response assertion to verify response data

AppB_7389_CMP2 9/25/06 9:15 PM Page 469

Right-click the Home Page Request node and choose Response Assertion from the Add ➤
Assertions menu. Set the Response Field to Test option to Text Response and set the Pattern
Matching Rules option to Contains. Under Patterns to Test, click Add and then enter The Java
Edge in the new list item. This assertion will test that the text of the response contains “The
Java Edge”, and since all pages on the JavaEdge site contain this text, this will verify that what
is returned is not an error page.

The last thing to do is add some listeners to the plan to analyze the incoming data. We have
opted for the Assertion Results listener to watch for incoming assertion errors; the Aggregate
Report listener, which provides a nice quick overview of the test; and the Graph Results listener,
which gives a nice graphical overview of the application performance (see Figure B-36).

Figure B-36. Adding listeners to monitor test results

Now that the test is all set up, all that remains is to run it and view the results. You should
save the test plan first in case anything crashes during the test run. This is especially true
when you know that you will see an average of 95 percent CPU usage when running the test.

To start, select Start from the Run menu. If you want to watch the test in progress, then
you can monitor any of the listeners to see what is happening. For instance, you watch the
graph to monitor average throughput and response times. Once you are happy that you have
enough test data, then it is time to stop the test and analyze the data. To stop the test, simply
select Stop from the Run menu. Once the test is finished, you can take the time to look at the
results in detail. Be careful, because some of the results visualizers are very memory intensive
and may crash the JMeter tool—these particular tools are noted in the JMeter manual.

JMeter Summary
JMeter is a must-have tool. The features that we have discussed in this section are just a small
part of what JMeter can do. Every single web application that you build will have some kind of
performance expectations surrounding it. Using JMeter, you can test your code until it meets
these criteria, and also verify that the final deployed version of the software hits the criteria too.

APPENDIX B ■ STRUTS DEVELOPMENT TOOLS470

AppB_7389_CMP2 9/25/06 9:15 PM Page 470

JMeter Next Step
The obvious starting point for more information about JMeter is the Jakarta web site at
http://jakarta.apache.org/jmeter. Currently no books are available on the JMeter topic;
however, there is mass of information about it on the Internet, so fire up the browser and hit
Google for more information.

Summary
Okay, so by this time we know that you are probably chomping at the bit to get to grips with
some more of these tools. We’re sorry we couldn’t give you more details about each tool (like
any normal programmer we were bursting to tell you about every single one), but we also had
to avoid making a single appendix that was longer than the rest of the book while still giving
each tool a fair amount of coverage.

Most of the tools detailed in this appendix are mutually exclusive. It is our feeling that
if you use IBM WebSphere, then you are unlikely to use JBuilder or Exadel Studio. If you are
using Eclipse or NetBeans, then you probably won’t be parting with the cash for one of the
commercial IDEs, although you may find that Exadel Studio or Struts Console fit nicely into
your development environment. This should not stop you from trying out each of these tools
to see which fits you the best—you may be surprised.

One thing we’d really like to drive home about the IDE tools is that they are not a replace-
ment for a good understanding of the Struts framework. Even for experienced Struts developers,
using the RAD tools such as the designer from WebSphere, JBuilder, or Exadel Studio can quickly
get messy, but such developers have the knowledge to fix it. If you are just starting out in Struts,
then we strongly recommend that you do some work without using the configuration file editors
and without the diagram tools so you can build up a thorough understanding of how the frame-
work ticks. Then when you start to use the time-saving tools and something goes wrong, you will
have the knowledge required to fix it.

APPENDIX B ■ STRUTS DEVELOPMENT TOOLS 471

AppB_7389_CMP2 9/25/06 9:15 PM Page 471

AppB_7389_CMP2 9/25/06 9:15 PM Page 472

Struts and Strecks

Strecks is an extension to Struts that can only be used with Java 1.5 (Tiger) or later. It is
built on top of the 1.2.x codebase. Strecks is not a replacement to Struts, but rather a layer of
abstraction on top of it. All the inherit concepts of Struts such as Action and Action Forms are
still present, but in Strecks they are enhanced with some new functionality or are simplified
with annotations.

The goal of the Strecks project is to improve developer productivity and the overall maintain-
ability of the code. It is based on the concept of JSR 175 (“Java Language Metadata Technology”)
annotations that allow you to use a java.doc paradigm to generate some code in the background,
or enforce certain types of rules. This hides the inner workings of Struts from developers, allowing
them to focus on the business code that they need to write.

If you are a fan of BEA products, you might have heard of BEA WebLogic Workshop. The
first web application framework to use annotations was the Java Page Flow Controller frame-
work, a feature of WebLogic Workshop. BEA then donated the framework to open source, now
known as the Apache Beehive project. Pro Apache Beehive (Apress, 2005) is a good starting
place if you are interested in this framework. It is built on top of Struts and based totally on
JSR 175 annotations.

Strecks is yet in a nascent stage, with 1.0-beta-3 being the latest release (released on July 7,
2006). Since a lot of the technology is bound to change as people start using it, this appendix will
not cover it in much detail. Keep an eye on the Strecks home page for the most up-to-date infor-
mation (http://strecks.sourceforge.net//index.php). This appendix shows you one high-level
example to whet your appetite and get you excited about trying out Strecks.

Using Strecks
To get started with Strecks, first download the latest version from http://strecks.
sourceforge.net//download.php. Take the Strecks jar file and place it in WEB-INF/lib.
Add the following line to your struts-config.xml file to enable Strecks:

<controller
processorClass="org.strecks.controller.ControllerRequestProcessor"
contentType="text/html;charset=utf-8" inputForward="true"
nocache="true" />

473

A P P E N D I X C

■ ■ ■

Ch15_AppC_7389_CMP2 9/29/06 9:34 AM Page 473

■Note You must be using Java 1.5 or later to use Strecks.

You also need to make sure that your strecks.properties file is in the application classpath
somewhere (such as APP-INF/lib). This file is used to configure interceptors (think of them as
ServletFilters) and extension points, as follows:

form.handler.impl=org.strecks.form.handler.SessionErrorFormHandler
before.interceptor.1=org.strecks.interceptor.ActionLoggingInterceptor
before.interceptor.2=org.strecks.interceptor.RedirectBeforeInterceptor
after.interceptor.2=org.strecks.interceptor.ActionLoggingInterceptor

Let’s look at several basic annotations.

@Controller and @ActionInterface
The @Controller annotation is used to identify the controller action, which will execute the
ActionBean’s methods:

@Controller(name = MyController.class)
public class MyAction implements BasicAction
{

public String execute()
{

return "success";
}

}

This annotation goes hand in hand with the @ActionInterface annotation. In this case,
MyAction implements BasicAction, which is an ActionInterface, declared as follows:

@ActionInterface(name = BasicAction.class)
public class MyController extends BaseBasicController
{

protected ViewAdapter executeAction(Object actionBean, ActionContext context)
{

//implementation omitted
}

}

■Note Every ActionBean needs to have the @Controller annotation because it defines the controller
instance that will execute these actions.

APPENDIX C ■ STRUTS AND STRECKS474

Ch15_AppC_7389_CMP2 9/29/06 9:34 AM Page 474

@NavigateForward
This annotation provides a mechanism to decouple navigation logic from the business code.
For example, in an ActionBean, you can have a method that looks like this:

@NavigateForward
public String getResult()
{

return "success";
}

This annotation helps decouple navigation from the processing of the request. It ties to the
ActionMapping.findForward(String) to find the appropriate ActionForward.

@BindSimple and @ValidateRequired
The annotations we have described thus far are related to the ActionBean. The @BindSimple
class of annotations is for data binding and validation. The following is an example:

@BindSimple(expression = "myObject.integerValue")
public String getQuantity()
{

return quantity;
}
@ValidateRequired(key = "number.required")
@ValidateInteger(key = "field.must.be.number")
public void setQuantity(String quantity)
{

this. quantity = quantity;
}

This example shows you how to use the @BindSimple annotation to bind a getter
method to a variable. The setter method shows you an example of data validation using
the @ValidateRequired and @ValidateInteger annotations. This really highlights the power of
annotations. You do not have to write all the logic to perform the validation. Upon execution
two validations will be performed: the first to make sure that some value has been provided
(@ValidateRequired) and the second to make sure that the value entered is an integer
(@ValidateInteger). As a developer, you do not need to see an example to appreciate
how much code you have just saved yourself from writing.

APPENDIX C ■ STRUTS AND STRECKS 475

Ch15_AppC_7389_CMP2 9/29/06 9:34 AM Page 475

What You Can Do with Strecks
The preceding examples have shown you some very basic annotations. Strecks contains a
whole bunch of different annotations, which fall into the following categories:

• ActionBean annotations

• Data binding and conversion annotations

• Validation annotations

• Dependency injection annotations

In addition to many out-of-the-box annotations, Strecks comes with a complete frame-
work to extend and create your own annotations. For example, Strecks does not have an
annotation to validate currencies, something like @ValidateCurrency. If your application
involves many currency calculations, you might want to write this as a Strecks extension.
Another example could be a currency conversion extension that would convert U.S. dollars
to British pounds or Indian rupees.

Is Strecks for Me?
The concept of annotations is catching on fast. It is the “new” way to write Java code. So,
sooner or later you will be using some framework or technology that uses annotations. Strecks
is an excellent extension to Struts, and if you are already on Java 1.5, there is little to no reason
why we would recommend against Strecks.

If you are working in a Java 5 and Struts shop, you will definitely benefit from using Strecks.
Strecks represents the new set of best practices programming techniques for Java web applica-
tion development. However, if you still are not on Java 1.5, your obvious first move needs to be to
migrate to Java 1.5. Understandably, this might be a bigger undertaking than your team might
have the time and money for, but it probably is on your roadmap somewhere.

APPENDIX C ■ STRUTS AND STRECKS476

Ch15_AppC_7389_CMP2 9/29/06 9:34 AM Page 476

Index

477

■Symbols
#else directive

making decisions, 374–376
#elseif directive

making decisions, 374–376
#foreach directive

working with collections, 376–379
#if directive

making decisions, 374–376
#include directive

including static content, 370–371
knowing when to use, 388
when to use, 373

#macro directive, 379–380
declaring macro within code, 380

#parse directive
embedding other templates, 372–373
knowing when to use, 388

‰CE message, 319
% modulo operator, 369
.baseDef definition, 246

attributes, 238
base definition for JavaEdge application,

241
extending with.baseWithOneAd, 244
header and footer attributes, 242
overriding values defined in, 245
replacing with .baseWithOneAd

definition, 245
using .baseWithOneAd instead, 247–248

.baseWithOneAd Tiles definition
compared to .baseDef definition, 246
extending .baseDef definition, 244
using instead of .baseDef, 247–248

@ActionInterface annotation, 474
@bes tag, 297
@BindSimple annotation, 475
@castor tag, 297
@Controller annotation, 474
@ejb tag, 297
@hibernate tag, 297
@jboss tag, 297
@jrun tag, 297
@jsp tag, 297
@NavigateForward annotation, 475
@oc4j tag, 297
@resin tag, 297
@soap tag, 297

@struts tag, 297
@struts-form tag, 304

name attribute, 304
@struts.action tag

attributes, 304
generating <action> tags, 304–305

@struts.action-exception tag
attributes, 307
local exception handlers, 306

@struts.action-forward tag
generates <forward> tag, 305

@struts.validator tag, 309
arg0resource attribute, 312
arg0value attribute, 312
argXresource attribute, 311
argXvalue attribute, 311
defining global arguments, 312
table of attributes, 312
type attribute, 311

@struts.validator-var tag, 309
@ValidateInteger annotation, 475
@ValidateRequired annotation, 475
@web tag, 297
@web.filter tag

anatomy of, 298
attributes, 299
using with MemberFilter class, 293

@web.filter-init-param tag
attributes, 299

@web.filter-mapping tag
attributes, 299
using with MemberFilter class, 293

@weblogic tag, 297

■A
abortTransaction() method

PersistenceBroker class, 218
abstraction

application services, 8
avoiding ripple effect, 129

action attribute
<form> tag, 37
<html:form> element, 105

Action class
carrying out end user’s request, 36
common mistakes in implementing, 123
Concern Slush example, 125
creating in Velocity, 383–384
DDL embedded, 129

Ch16_Index_7389_CMP2 9/29/06 3:35 PM Page 477

Action class (continued)
defining as base class, 395
defining with <action> tag, 37
embedding business logic in, 128
exceptions, handling

ApplicationException generic
exception, 161

best practice, 161
practices, 160

execute() method, 36, 49, 79, 106, 118, 125
extending, 392
form validation, 77
get()/set() methods, 392, 395
getParameter() method, 78
handling exceptions, 160
hooking into execution process, 397–398
implements Command design pattern, 48
isCancelled() method, 107
linking in Velocity, 384
logging in JavaEdge Web tier, 349
placing business logic in, 124
processing user request, 36
providing common services to, 392
relationship with HomePageSetupAction

class, 48
retrieving MemberVO class from session,

394
Session Facade example, 158
Tier Leakage example, 130
use of <forward> tags, 46

Action designer and JBuilder, 456
Action Forwards

mapping Tiles definitions to, 248–250
action mapping and WebSphere, 451
<action> tag, 36, 78, 80

advantage of using declarative approach,
51

attributes, 45
categories of actions, 51
className attribute, 403

defining Action and ActionForm classes, 37
<form-bean> tags, 80, 81
<forward> tags, 46
generating in struts-config.xml file, 304
information conveyed to ActionServlet, 36
input attribute, 98, 101
postStory action, 81
struts-config.xml file, 36, 90

<action-mapping> tag, 36
<action-mappings> tag

actions contained within, 45
ActionBean annotations

using Strecks, 476
ActionError class

creating, 95
ActionErrors class, 165, 169

checkForEmpty() method, 95

checkForLength() method, 95
checkForVulgarities() method, 96
checking for errors, 98
constructors, 97
definition, 94
PostStoryForm class, error instantiation

in, 94
returning to page where data submitted,

36
actionErrors parameter class, 276
ActionForm class

avoiding dependencies, 139
best practices, 117
building dynamic ActionForms, 111–116
business logic, 118–122
D.R.Y. principle, 255
declaring attributes in struts-config.xml

file, 256
defining with <action> tag, 37
extending, 392
form pre-population, 87

PostStoryForm class, 88
PostStorySetupAction class, 88–89
requirements, 87
using setup actions, 92

form validation, 77, 81
PostStoryForm.java class, 82
single class usage advantages, 82

get()/set() methods, 255
getMessage() method, 89
logging in JavaEdge Web tier, 349
Map-backed, 111
problem with embedding validation logic

within, 101
problems in writing, 255
RequestProcessor class creates, 78
reset() method, 78, 81, 86–88, 101
strings, 117
using Validator Frameworkwithin, 273–275
validate() method, 36, 75, 78, 81, 101, 117,

255, 274, 282
validating form data, 36, 93
without Java, 283–284

ActionForward class, 170, 396
org.apache.struts.action package, 47

ActionMapping class
action mappings in Struts framework, 406
extending, 404
findForward method, 475
org.apache.struts.action package, 404

ActionServlet class, 171
configuring for JavaEdge application,

39–44
controller for MVC pattern, 36
directed by <forward> tag, 37
executes Action.execute, 49
extension mapping, 42

■INDEX478

Ch16_Index_7389_CMP2 9/29/06 3:35 PM Page 478

forward path, 36
forwarding user request to Action class, 36
getServletContext() method, 320
invoking business logic, 124
URL prefix mapping, 42
validation error checking, 98
web.xml configuration files, 41

addAndCriteria() method
Criteria class, 217

addEqualsTo() method
Criteria class, 216

addIsLike() method
Criteria class, 216

addLike() method
Criteria class, 216

addOrderByAscending() method
Criteria class, 217

AddressVO class, 63
addStory() method

storyManager class, 132
StoryManagerBD class, 219

adone XML attribute
adding to <tiles:insert> tag, 246

Ajax, 4
and internals, 423
and SOA, 423
and Struts, 426

Cities.jsp, 426–427, 429
CitiesDAO class, 430–431
GetCitiesNamesAction class, 429–430

and Web 2.0, 423
introduction, 421
on Google, 422
on Yahoo, 422
request-response cycle, 424
technology, 421
uses, 422
XMLHttpRequest object, 425

ALL log message level, 326
Alur et al

Core J2EE Design Patterns: Best Practices
and Design Strategies, 50, 177

Ant
build scripts, 295
definition, 3
downloading, 38
generating <validator> tags, 313–314
installing, 436
invoking XDoclet, 291
<taskdef> tag, 301

Ant Tasks, 295
integrating, 301–302
merge-point files, 296
table of, 299–300

antipatterns
Blob, 155, 157
business logic and, 124

Concern Slush, 10–13, 125, 129
contributing to entropy, 4
Data Madness, 22–24, 175
definition, 9
Hardwired, 16–18
history, 9
impact of, 8
introduction, 8
MVC reducing formation of, 124
reducing with web development

frameworks, 24
Tier Leakage, 13–15, 130–132
Tight Skins, 20–21
Validation Confusion, 18–19

AntiPatterns: Refactoring Software,
Architectures, and Projects in Crisis

Brown et al, 9
AOP (Attribute-Oriented Programming)

and XDoclet, 292
Apache Ant. See Ant
Apache Commons BeanUtils project

utility classes, 119
Apache Jakarta

Commons Digester project, 403
Commons Logging project, 317, 320
Commons project, 266
Struts framework, 31
Validator framework, 266
Velocity template engine, 359
Velocity Tools project, 381

Apache JMeter. See JMeter
Apache log4j. See log4j
Apache Torque project, 187
<appender> tag, 333
appenders, log4j, 328–329
Application Controller pattern, 43
application development framework

application services, 7–8
definition, 6
enterprise services, 6–7

application modeling, JBuilder, 456
application services, 7–8
ApplicationException class, 46, 140, 161, 351,

396–397
logging, 350
modifying to extend

NestableRuntimeException, 164
Service Locator handling, 147

Architecture and software development, 2
arg0 attribute

<bean:message> tag, 61
arg0 tag

<msg> tag, 269
arg0resource attribute

@struts.validator tag, 312
arg0value attribute

@struts.validator tag, 312

■INDEX 479

Find it faster at http://superindex.apress.com
/

Ch16_Index_7389_CMP2 9/29/06 3:35 PM Page 479

arg1 attribute
<bean:message> tag, 61

arg1 tag
key attribute, 272
name attribute, 271

arg1resource attribute
@struts.validator tag, 312

arg1value attribute
@struts.validator tag, 312

arg2resource attribute
@struts.validator tag, 312

arg3 attribute
<bean:message> tag, 61

arg3resource attribute
@struts.validator tag, 312

arg3value attribute
@struts.validator tag, 312

arg4 attribute
<bean:message> tag, 61

<argument> tags. See argX tags
<argX> tags

attributes, 270
<field> tag, 312
name attribute, 312

argXresource attribute
@struts.validator tag, 311

argXvalue attribute
@struts.validator tag, 311

arithmetic (VTL), 369–370
Asynchronous JavaScript and XML. See Ajax
<attribute> element

<sequence-manager> element, 201
Attribute-Oriented Programming. See AOP
authenticate() method, MemberDAO class,

348
auto-delete attribute

care in using, 204
<reference-descriptor> element, 204

auto-retrieve attribute
care in using, 204
<reference-descriptor> element, 204

auto-update attribute
<reference-descriptor> element, 204

autoincrement attribute
<field-descriptor> element, 198

■B
<bean:cookie> tag, 66
<bean:define> tag, 66
<bean:header> tag, 67
<bean:include> tag, 67
<bean:message> tag, 59, 61

attributes, 61
writing internationalized applications, 62

<bean:page> tag, 67
<bean:parameter> tag, 67
<bean:resource> tag, 67

<bean:struts> tag, 67
<bean:write> tag, 59

attributes, 60
name attribute, 68

bean tags
accessing indexed or mapped data, 63
bean creation tags, 66
Tight-Skins antipattern, 62
using to separate presentation and data

logic, 57–61
BeanUtils class

copyProperties() method, 119–120, 263
org.apache.commons.beanutils package,

119
beginTransaction() method

PersistenceBroker class, 218
binary distribution

XDoclet, 291
Blob antipattern, 155-157
book overview

considerations, 10
expected outcome, 29

Borland JBuilder X. See JBuilder
Brown et al

AntiPatterns; Refactoring Software,
Architectures, and Projects in Crisis, 9

buildStoryVO() method
PostStoryForm class, 121, 264

bundle attribute
<bean:message> tag, 61

Business Delegate pattern, 133, 171
avoiding dependencies, 139–140
implementing, 135–139
separating business logic from Struts, 133

non-EJB Struts implementations,
159–160

business logic
antipatterns and Struts, 124

Concern Slush, 125–129
Tier Leakage, 130–132

containing in EJBS or POJOs, 118
data access logic separated from, 177
design patterns separating from Struts, 134
integrating logging in JavaEdge

application, 343, 347–348
managing with struts, 123–124
placing in middle tier as EJB, 154
reusing in application services, 8
reusing in both Struts and non-Struts

applications, 123
separating from presentation logic, 124
separating from Struts, 132–134

non-EJB Struts implementations,
159–160

validation logic kept separate from, 101
wrapping business logic in DAO, 219–223

byte validation rule, 267

■INDEX480

Ch16_Index_7389_CMP2 9/29/06 3:35 PM Page 480

■C
caching solutions

Collections classes, 149
Category class, 328

See also Logger class
chaining of method calls (VTL), 368
checkboxes

<html:checkbox> element, 110
checkForEmpty() method

ActionErrors class, 95
checkForLength() method

ActionErrors class, 95
checkForVulgarities() method

ActionError class, creating, 95
VulgaritiesFilter class, instantiating, 96

checkHost() method
RequestProcessorHelper class, 405

checkMember() method
RequestProcessorHelper class, 401–402

class attribute
<class-descriptor> element, 197

<class-descriptor> element
class attribute, 197
mapping one-to-one, 203
repository.xml file, 197
sequence-name attribute, 202
simple class-to-table mapping, 197
table attribute, 197

class-level XDoclet tags, 298
@struts-form tag, 304

class-ref attribute
<reference-descriptor> element, 204

className attribute
<action> tag, 403
<plug-in> tag, 230
sequence-manager> element, 201

classname attribute
<validator> tag, 280

<className> tag
@struts.action-exception tag, 307

closed tier architecture, 13
CMP (Container Manager Persistence)

CMP-based entity beans, 24
Collection object, Java

generating option list with <html:option>
element, 109

<collection-descriptor> element
element-class-ref attribute, 206
indirection-table attribute, 207
mapping many-to-many, 207
mapping one-to-many, 205
name attribute, 205
repository.xml file, 205, 207

Collections classes
caching solutions, 149
LRUMap class, 149

cols attribute
<html:textarea> element, 108

column attribute
<field-descriptor> element, 197
<fk-pointing-to-this-class> element, 207

Command class
HomePageSetupAction extends, 48

Command design pattern
introduction, 48–52

commitTransaction() method
PersistenceBroker class, 218

Commons Digester project
creating configuration beans, 403

Commons Logging project, 317
best practices, 338
introduction, 321

Log class, 321–322
log names, 323
LogFactory class, 321–322
SimpleLog, 323–325

log4j and, 328–332
logging performance, 337
message priority and Java 1.4 logging,

325–328
projects that use, 321
reasons to use, 320–321

CommonsMultipartRequestHandler class
org.apache.struts.upload package, 43

complexity and entropy, 1–2
complexity scalability, 290, 303
Concern Slush antipattern, 10, 125, 129

causing, 125, 128
example architecture, 128

business/data access logic NOT
separated, 129

ripple effect, creating, 129
MVC reduces, 124
reasons for, 11
search and replace refactoring, 11
solution, 12–13
symptoms, 12

concurrant usage, web application
development, 5

conditional tags, 69–70
and JavaBean properties, 71
conditional logic and cookies, 70–71

CONFIG log message level, 326
configuration beans, creating, 403–405
configuration property

log4j package, 333
ConsoleAppender class, 329

org.apache.log4j package, 331
Container Manager Persistence. See CMP
content attribute

.baseDef Tiles definition, 239

■INDEX 481

Find it faster at http://superindex.apress.com
/

Ch16_Index_7389_CMP2 9/29/06 3:35 PM Page 481

Context class
See also VelocityContext class
building Velocity template, 360
executing a template, 362

conversion attribute
<field-descriptor> element, 199

ConversionException class
org.apache.commons.beanutils package,

261
unchecked Java exception, 261

copyProperties() method
BeanUtils class, 119–120

copyProperties() method, BeanUtils class,
263

Core J2EE Design Patterns: Best Practices and
Design Strategies

Alur et al, 50, 177
Create, Replace, Update, and Delete. See

CRUD
createPersistenceBroker() method

PersistenceBrokerFactory class, 213
creditcard validation rule, 267
Criteria class, 346

addAndCriteria() method, 217
addEqualsTo() method, 216
addIsLike() method, 216
addLike() method, 216
addOrderByAscending() method, 217
complex data retrieval, 215
table of methods, 215

CRUD (Create, Replace, Update & Delete)
logic, 22

abstracting with DAO (Data Access
Objects), 177–179

Data Madness antipattern and, 22
custom exception handler, writing

MailExceptionHandler example, 168
custom validation rules

steps required, 275
vulgarity rule, 275–279

adding to validator-rules.xml, 279–281
implementing in a Form, 282–283

■D
DAO (Data Access Objects)

abstracting CRUD logic, 177, 179
advantages of using, 179
building using OJB tool, 208
compared to Value Objects, 178
data access tier, 177
DataAccessException custom exception,

181
DataAccessObject interface, 180
description, 179
JavaEdge application, 180
MemberDAO class, 181–182
StoryDAO class, 181–182

DAO (Data Access Objects) pattern, 174
encapsulating CRUD logic, 134
wrapping business logic in DAO, 219–223

DAOFactory class
wrapping business logic in DAO, 220

data abstraction, 8
data access design patterns, 174
data access objects. See DAO
Data Access Objects pattern. See DAO

pattern
data access tier

architecting with ObjectRelationalBridge,
173

building, 173
business logic NOT separated from, 129
business logic separated from, 177
DAO (Data Access Objects), 177

building using OJB tool, 208–212
description, 179

Data Madness antipattern, 175
deleting data example, 219
developing strategies for, 174–176
inserting data example, 217–219
integrating logging in JavaEdge

application, 343–347
model for data, 176–177
O/R (Object Relational) mapping tool, 187
OJB tool, 189
retrieving data example, 214–215

Criteria class, 215–217
Value Object pattern, 178
Value Objects, 182–183
wrapping business logic in DAO, 219–223

data binding and conversion annotations
using Strecks, 476

Data Definition Language (DDL), 129
Data Madness antipattern, 22–24

data access tier, 175
data manipulation and use of Ajax

technology, 422
Data Transfer Object pattern. See Value

Object pattern
data types, mapping one-to-many, 205
data validation, 7
DataAccessException custom exception, 345,

348
JavaEdge application, 181
JBoss, and, 343
wrapping SQLException, 181

DataAccessObject interface
delete() method, 180
findByPK() method, 180
insert() method, 180
JavaEdge application, 180
methods, 180
update() method, 180

■INDEX482

Ch16_Index_7389_CMP2 9/29/06 3:35 PM Page 482

dataSourceCache class
setting maximum number of objects

stored, 153
datatier.properties property, 223
date validation rule, 267

parameters, 272
dbalias attribute

<jdbc-connection-descriptor> element,
194

DBMS_OUTPUT package
Service Locator case study handling, 148

DDL (Data Definition Language), 129
DEBUG message, 319, 324, 327, 337, 346–347
debugging, 317

hot-deploy, 355–356
JavaEdge application, 353–354
Struts applications using JBoss and

Eclipse, 351–352
Struts framework, 356

declarative architecture, 16
avoiding Hardwired antipattern, 16
metadata, using, 16

defaultlog property
simplelog class, 323

defaultPersistenceBroker() method
PersistenceBrokerFactory class, 213

<definition> tag, 241–242
attributes, 241
extends attribute, 241
inheriting attributes of .baseDef Tiles

definition, 241
name attribute, 249
<put> tags, 241

definitions-config property
<set-property> tag, 230

definitions-debug property
Tiles plug-in, 230

definitions-parser-details property
Tiles plug-in, 230

definitions-parser-validate property
<set-property> tag, 230

delete() method
DataAccessObject interface, 180
StoryDAO class, 219

dependency injection annotations using
Strecks, 476

depends attribute
<field> tag, 269, 271

<deployment-descriptor> element, 302
description attribute

@web.filter tag, 299
@web.filter-init-param tag, 299

<descriptor-repository> element
isolation-level attribute, 193
repository.xml file, 193
version attribute, 193

design patterns, 8
Business Delegate, 135–139

avoiding dependencies, 139–140
DAO (Data Access Objects), 177
history, 8
introduction, 8
separating business logic from Struts,

132–134
Service Locator, 141, 145–150, 153–154
Session Facade, 157, 159
Singleton, 145
Value objects, 178

Design Patterns: Elements of Reusable Object
Oriented Software

Gang of Four, 8
design patterns, J2EE, 171
destdir attribute

<strutsconfigxml> tag, 308
<strutsvalidationxml> tag, 314
<webdoclet> tag, 302

destroy() method
PlugIn interface, 416

directives (VTL), 370
#foreach, 376–379
#if, #else, and #elseif directives, 374–376
#include, 370–371

knowing when to use, 388
#macro directive, 379–380
#parse, 372–373

knowing when to use, 388
display-name attribute

@web.filter tag, 299
<doclet> tag

base Ant Task, 299
Don’t Repeat Yourself. See DRY principle
double validation rule, 267
doubleRange validation rule, 267
driver attribute

<jdbc-connection-descriptor> element,
194

dropdownlists
<html:option> element, 108
<html:options> element, 108
<html:select> element, 108

D.R.Y. principle
ActionForm class, 255

DTO (Data Transfer Object pattern). See
Value Object pattern

DynaActionForm class, 256
methods, 260
org.apache.struts.action package, 265

dynamic ActionForms, 3
building, 111, 113–116
Map-backed ActionForm classes, 111

Dynamic Form class
modifying to use Validator framework, 274

■INDEX 483

Find it faster at http://superindex.apress.com
/

Ch16_Index_7389_CMP2 9/29/06 3:35 PM Page 483

Dynamic Forms
accessing attributes of, 261
benefits, 264
<form:bean> tag, 262
<form:property> tag, 262
introduction, 256

DynaActionForm class, 256
<form:bean> tags, 257

rapidly building prototypes, 265
setting attributes of, 261
struts-config.xml file, 256
Validator framework, 255–256

dynamic SQL generators, 187
DynamicValidatorForm class

org.apache.struts.validator package, 274
validate() method, 274, 284

■E
Eclipse, 441

introduction, 442–444
plug-ins, 351
Struts Console as plug-in, 457

EJB (Enterprise JavaBeans)
and Struts, 154
business logic as EJB, 118, 154
fat EJBs, 155

code listing example, 155
extreme/typical examples, 155–157

Session Facade, 134, 157, 159
<ejbdoclet> tag, 299

generates source code, 296
EJBHome interface

retrieving with getEJBHome() method,
ServiceLocator class, 146

ejbHomeCache class
setting maximum number of objects

stored, 153
element-class-ref attribute

<collection-descriptor> element, 206
email validation rule, 267
enterprise services, 6–7
entity beans

and Value Objects, 183
preventing Data Madness antipattern, 24

entropy, 1
antipatterns and, 4
complexity leads to, 1
relationship with complexity, 2

error handling, 7
ERROR message, 319, 324, 340–341
error() method

Log class, 340
error-page.xml merge-point file

<webdoclet> tag, 303
errors

pre-populating form and error handling,
101

validate() method, viewing errors
generated by, 98

writing all error messages to JSP page, 98
writing single error message to JSP page,

99
ErrorsTool

exposing Struts objects to Velocity
templates, 382

Exadel Studio
action mapping wizard, 462
configuration file editors, 461
introduction, 461
JSP editor, 463
Struts projects, 461
web flow design, 465
XML editor, 463

exception handling and Struts 1.2, 46
<exception> tag, 171

attributes, 165
handler attribute, 167

ExceptionHandler class, 165
custom exception handler, writing, 167
execute() method, 167, 169
storeException() method, 167

exceptions, handling
Action class, 160

best practices, 160–161
ApplicationException, 147
DataAccessException custom exception,

181
Service Locator example, 147
setting up struts-config.xml file, 164–166
struts 1.0.x, 161–163
struts 1.1, 163–164
writing custom exception handler,

167–171
execute() method

Action class, 49, 79, 106, 118, 125
parameters, 49

design patterns, separating business logic,
134

ExceptionHandler class, 167, 169
<html:cancel> element and, 106
PostStory class, 118, 131, 163
PostStorySetupAction class, 91
Tier Leakage example, 131

execute() method, Action class, 36
extends attribute

<definition> tag, 241
extension mapping

ActionServlet class, 42

■F
fat EJBs, 154

code listing example, 155
typical examples, 155

■INDEX484

Ch16_Index_7389_CMP2 9/29/06 3:35 PM Page 484

FATAL message, 319
Field class, 276

getProperty() method, 278
getVarValue() method, 278

<field> tag
<argX> tag, 312
attributes, 268
depends attribute, 271
<form> tag, 268
<msg> tag, 269
property attribute, 283
validator-rules.xml file, 282

<field-descriptor> element
autoincrement attribute, 198
column attribute, 197
conversion attribute, 199
length attribute, 199
name attribute, 197
nullable attribute, 199
precision attribute, 199
primarykey attribute, 198
repository.xml file, 197
scale attribute, 199
simple class-to-table mapping, 197

reflection, 197
field-level XDoclet tags, 298
field-ref attribute

<foreignkey> element, 205
FileAppender class, 329, 333

org.apache.log4j package, 332
FileNotFoundException class, 341
<fileset> element, 302
filter attribute

<bean:write> tag, 60
Filter class, 400
<filter> tag, 41, 292, 294, 299

web.xml file, 292
<filter-mapping> tag, 41, 292, 294, 299

web.xml file, 292
filter-mappings.xml merge-point file

<webdoclet> tag, 303
filters.xml merge-point file

<webdoclet> tag, 303
findBroker() method

ServiceLocator class, 213
findByPK() method

DataAccessObject interface, 180
findForward method

ActionMapping class, 475
findPlugInConfigs() method

ModuleConfig class, 418
FINE log message level, 326
fine-grained EJBs, 154
FINER log message level, 326
FINEST log message level, 326–327
<fk-pointing-to-this-class> element

column attribute, 207

mapping many-to-many, 207
repository.xml file, 207

float validation rule, 267
floatRange validation rule, 267
focus attribute

<html:form> element, 105
footer attribute

.baseDef definition, 242

.baseDef Tiles definition, 238
footer.jsp file, 55
force attribute

<webdoclet> tag, 302
<foreignkey> element

compared to <inverse-foreignkey>
element, 206

field-ref attribute, 205
mapping one-to-one, 205
repository.xml file, 205

form actions defined with <action> tag, 51
form data validation, 93–95

creating ActionError, 95–97
error handling and prepopulation, 101
retrieving single error message, 99–100
validation libaries, 101–102
viewing the errors, 98
writing error messages to jsp page, 98–99

<form> tag
action attribute, 37
<field> tag, 268
name attribute, 268
validation.xml file, 268, 274, 276

form validation
ActionForm class, 81–86

reset() method, 86–87
lack of consistent deployment strategy,

75–76
Post a Story page example, 79
struts-config.xml file, 80–81
using Struts, 77–79

<form-bean> tag
<action> element, validation with, 80
attributes, 80
defining for DynamicForms, 256
defining for postStoryForm, 256
Dynamic Forms, 262
name attribute, 304
struts-config-validator.xml file, 284
struts-config.xml file, 304
type attribute, 265, 275, 304

<form-beans> tag
contains <form-bean> tag, 80
deployment example, 80
Post a Story page example, 80

<form-property> tag
attributes, 257
Dynamic Forms, 262

■INDEX 485

Find it faster at http://superindex.apress.com
/

Ch16_Index_7389_CMP2 9/29/06 3:35 PM Page 485

<form-validation> tag
validation.xml file, 268

forms
pre-population

alternative technique, 91
error handling and, 101
PostStoryForm class, 88–89
PostStorySetupAction class, 88–91
requirements, 87
setup actions, 92–93

use of Ajax technology, 422
<formset> tag

validation.xml file, 266, 268
FormTool

exposing Struts objects to Velocity
templates, 382

<forward> element
PostStorySetupAction class, 91

<forward> tag, 36, 249
attributes, 46
defining, 37
defining as global, 46
generated by @struts.action-forward tag,

305
Fowler et al

Refactoring: Improving the Design of
Existing Code, 11

functionality and content
web application development, 5

■G
Gamma, Helm, Johnson, and Vlissides. See

Gang of Four
Gang of Four

Design Patterns: Elements of Reusable
Object Oriented Software, 8

generate-src task, 301
GenericValidator class

isBlankOrNull() method, 278
org.apache.common.validator package,

278
get() method

ActionForm class, 81
DynaActionForm class, 261, 263
StoryVO class, 198

get()/set() methods
Action class, 392
ActionForm class, 255
ValueObject interface, 180

getActionError() method
StrutsValidatorUtil class, 279

getClassName() property
PlugInConfig object, 418

getCollectionByQuery() method
PersistenceBroker class, 217

getContextPath() method
HttpServletRequest class, 440

getDBConn() method
ServiceLocator class, 147

getEJBHome() method
ServiceLocator class, 146

getInstance() method
ServiceLocator class, 146, 218

getLog() method
LogFactory class, 323, 338, 344

getMessage() method
MessageResources class, 89

getObjectByQuery() method
PersistenceBroker class, 214

getParameter() method
Action class, 78
form validation, 81

getProperty() method
Field class, 278

getRealPath() method
ServletRequest class, 440

getServletContext() method
ActionServlet class, 320
HttpServlet class, 320

getStoryManagerBD() method
StoryManagerBD class, 135

getValueAsString() method
ValidatorUtil class, 278

getVarValue() method
Field class, 278

global exception handler
implementing, 164

global exception handlers
XDoclet and, 306

<global-exceptions> tag, 164
adding to struts-config.xml file, 164
right order for elements, 458

global-exceptions.xml merge-point file
@struts XDoclet tags, 309

<global-forwards> tag, 46, 161
generating, 306
right order for elements, 458
setting up in struts-config.xml file, 162
struts-config.xml file, 306
type attribute, 47

global-forwards.xml merge-point file
@struts XDoclet tags, 309

Google and use of Ajax technology, 422

■H
handler attribute

@struts.action-exception tag, 307
<exception> tag, 167

<handler> tag
@struts.action-exception tag, 307

Hardwired antipattern, 16-18
Hashtable class

lack of caching algorithms, 149

■INDEX486

Ch16_Index_7389_CMP2 9/29/06 3:35 PM Page 486

header attribute
.baseDef definition, 242
.baseDef Tiles definition, 238

header.jsp file, 54
<hibernatedoclet> tag, 300
homePageContent.jsp file, 56
HomePageSetupAction class

building, 47–48
relationship with Action class, 48

HomeSetupAction class
extending Struts Action class, 49

hot-deploy, 355–356
HTML (HyperText Markup Language)

limitations, 5
HTML forms. See forms
HTML tag library, Struts

best practices for ActionForms, 117
building more dynamic ActionForms,

111–116
business logic and ActionForms, 118–122
drop-down lists, 108–109
introduction, 103
setting up Struts HTML form, 104–107
strings and ActionForms, 117
table of elements, 103
TLD, 104
using text and textarea inputfields,

107–108
<html:cancel> element, 103, 106

execute() method and, 106
value attribute, 106

<html:checkbox> element, 103, 110
property attribute, 110

<html:errors> element, 98–99, 106
property attribute, 99–100
writing all error messages to JSP page, 98
writing single error message to JSP page,

99
<html:form> element, 103, 104

table of attributes, 105
<html:option> element, 103

dropdownlists, 108
generating option list from Collection

object, 109
value attribute, 109

<html:options> element
dropdownlists, 108
name attribute, 109

<html:radio> element, 103, 110–111
property attribute, 111
value attribute, 111

<html:select> element, 103
dropdownlists, 108
property attribute, 109

<html:submit> element, 103, 104
property attribute, 106
value attribute, 106

<html:text> element, 103, 107
name attribute, 107
property attribute, 107

<html:textarea> element, 103, 107
cols attribute, 108
name attribute, 108
property attribute, 108
rows attribute, 108

HTTP (HyperText Transport Protocol)
limitations, 5

HttpServlet class
getServletContext() method, 320
process() method, 320

HttpServletRequest class
avoiding dependencies, 139
data scraped by ActionForm, 255
getContextPath() method, 440
storing, 395

HttpServletRequest object, 78, 87
request parameter class, 276

HttpServletResponse class, 395
HttpSessionServletResponse class

redirect() method, 73
Hunt, Andrew and Thomas, Dave

Pragmatic Programmer, The, 255
HyperText Transport Protocol. See HTTP
IBM WebSphere. See WebSphere

■I
icon attribute

@web.filter tag, 299
id attribute

<logic:iterate> tag, 68
<tiles:definition> tag, 237

ignore attribute
adding to <tiles:insert> tag, 246
<bean:write> tag, 60

indexed data, accessing, 63, 65–66
indirection-table attribute

<collection-descriptor> element, 207
INFO log message level, 326–327, 347
INFO message, 319

creating, 322
info() method

Log class, 322
init() method

PlugIn interface, 416
Velocity class, 361

<init-param> tag, 60, 299
specifying configuration parameters, 41

input attribute
<action> tag, 98, 101
<FormBean> tag, 81

<input> tag, 86
insert() method

DataAccessObject interface, 180
StoryDAO class, 217

■INDEX 487

Find it faster at http://superindex.apress.com
/

Ch16_Index_7389_CMP2 9/29/06 3:35 PM Page 487

integer validation rule, 267
integration of systems

web application development, 6
intRange validation rule, 267
<inverse-foreignkey> element

compared to <foreignkey> element, 206
mapping one-to-many, 206
repository.xml file, 206

IOException class
catching and handling, 399

isBlankOrNull() method
GenericValidator class, 278

isCancelled() method
Action class, 107

isErrorEnabled() method
Log class, 340

isOffensive() method
VulgaritiesFilter class, 96

isolation-level attribute
<descriptor-repository> element, 193
list of values, 193

IStoryManager class
findTopStory() method, 412

IStoryManager interface, 136
<iteration> tags, 68

■J
J2EE

complexity scalability, 290
complications of building process, 289

J2EE Design Patterns Applied
Juric et al, 15

Jakarta Commons Lang project
ReflectionToStringBuilder class, 184

Jakarta Commons project, 184
Collections classes, 149

Jakarta technologies, 3
Java 1.4 logging API

log message levels, 325–328
Java inheritance

XDoclet tags, 306
Java logging API, 317
Java Open Source. See JOS
JavaBean properties

and conditional logic, 71
JavaDoc preview

JBuilder and, 454
JavaEdge application, 27

adding log4j to classpath, 342
Ant script, 292
application setup

accessing code and dependencies, 437
installing database, 437
installing OJB tables, 438
installing tables, 437–438

ApplicationException class, 162

architecture, 32
design, 33–34
directory structure, 37
technology, 38

building DAOs with OJB tool, 208–212
building JavaEdge, 438
configuration steps, 289
configuring ActionServlet, 39, 41–44

<servlet-mapping> tag, 42
configuring Tiles plug-in, 229–230
DAO (Data Access Objects), 180

CRUD functionality supported by, 184
DataAccessException custom

exception, 181
DataAccessObject interface, 180
MemberDAO class, 181–182
StoryDAO class, 181–182

data access tier, 173, 176–177
technology used to build, 190
Value Objects, 178

DataAccessException custom exception,
181

debugging, 353
Eclipse Import dialog box, 354
hot deployment, 355–356

deploying JavaEdge, 439
directory deployment, 440
war deployment, 439–440

environment setup, 433
Ant, installing, 436
JBoss installation, 436
MySQL installation, 433–435

exceptions, handling
ApplicationException class, 162–164
setting up struts-config.xml file, 165

Home page
modifying Tiles definition, 247–248
refactoring to use Tiles, 232
sample testing with JMeter, 468, 470
Tiles definition, 242
XML-based Tiles definitions

conversions, 250
HomePageSetupAction class

building, 47–48
configuring <action> element, 44

integrating logging, 343–344
business tier, 343, 347–348
data tier, 343–347
extending Service Locator, 344–345
monitoring application security,

348–349
web tier, 344, 349–351

Java class-to-table mapping, 195–199
JavaEdgeActionMapping class

building, 404–405
mapping tags from template.jsp to

homePage.jsp, 234

■INDEX488

Ch16_Index_7389_CMP2 9/29/06 3:35 PM Page 488

MemberFilter class
configuring web.xml file, 292
replacing with custom

RequestProcessor, 400
modifying template.jsp file, 245–246
Newsletter Service basics, 410
NewsletterManager, 410
NewsletterPlugin, 416

configuring, 419
NewsletterTask, 415
Post a Story page

validating data, 79
presentation tier, 52–53

<bean> tags, 57–66
conditional logic and cookies, 70–71
conditional tags, 69–70
Home page, 53–56
<iteration> tags, 68
Logic tags, 67
movement tags, 71–72

printer-friendly pages with Velocity, 381
building the view, 384–387
configuring Velocity servelet, 381
creating Struts action, 383–384
linking to action, 384

refactoring from <template> tag to Tiles
approach, 226

repository.xml file, 191–193
requirements, 28
setting up JDBC connection information,

193–195
struts-config.xml file

automating <form-bean> tag, 304
generating, 308
generating <action> tags, 304

Tiles definitions for pages, 242
Validator framework

steps to be taken, 266
Value Objects, 184–186

MemberVO class, 184
StoryCommentVO class, 184
StoryVO class, 184
ValueObject interface, 184

web.xml file
<filter> tag, 292
<filter-mapping> tag, 292
Tag Library Definitions, 53

XDoclet, integrating, 299
JavaEdgeActionMapping class

building, 404–405
JavaEdgeRequestProcessor class

creating, 402, 408
processActionPerform() method, 408

JavaEdgeTilesRequestProcessor class
implementing, 403

<javascript> tag
validator-rules.xml file, 280

JavaScript validation rules
possible problems, 281

JBoss
configuring log4j logging, 342
debugging Struts applications with Eclipse

IDE, 351–352
Eclipse plug-ins, 351
installing, 436
log4j, and, 342–343
war deployment, 439–440

JBuilder
Action designer, 456
configuration file editor, 453
JavaDoc preview, 454
JSP editor, 454
UML designer, 454
web projects, 452

JBuilder X, 441
advantages and disadvantages, 456
downloads and information, 457
web projects, 452

jcd-alias attribute
<jdbc-connection-descriptor> element,

194
looking up a PersistenceBroker, 214

JDBC (Java DataBase Connectivity)
Blob type, 183
getDBConn(), retrieving connection, 147
SQLException class, 181

<jdbc-connection-descriptor> element
dbalias attribute, 194
driver attribute, 194
jcd-alias attribute, 194
jdbc-level attribute, 194
jndi-datasource-name attribute, 195
platform attribute, 194
repository.xml file, 193
username/password attribute, 194

<jdbc-connector> tag, 200
jdbc-level attribute

<jdbc-connection-descriptor> element,
194

JDBCAppender class, 329
JDK 1.4 logging and Commons Logging, 322
<jdodoclet> tag, 300
JMeter, 442

creating sample test, 467–470
features, 466
load testing, 466

<jmxdoclet> tag, 300
JNDI lookups

abstracting looking up EJB home
interface, 141

performing costs, 141
Service Locator hiding, 141
Tier Leakage example, 131

■INDEX 489

Find it faster at http://superindex.apress.com
/

Ch16_Index_7389_CMP2 9/29/06 3:35 PM Page 489

jndi-datasource-name attribute
<jdbc-connection-descriptor> element,

195
JOS (Java Open Source)

frameworks, 3, 24–27
O/R mapping tools, 24

JSP
compared to template engines, 360
Exadel Studio and, 463
JBuilder and, 454

JSP Model-2 architecture
as Concern Slush solution, 12
MVCbased, 12

JSP page
writing all error messages, 98
writing single error message, 99

JSP/servlet-based applications
configuration steps, 289

Juric et al
J2EE Design Patterns Applied, 15

■K
key attribute

@struts.action-exception tag, 307
@struts.validator tag, 312
<arg1> tag, 272
<argX> tags, 270
<bean:message> tag, 61
<exception> tag, 165
<msg> tag, 269

<key> tag
@struts.action-exception tag, 307

■L
<layout> tag, 333
layouts

log4j, 329
legacy applications

OJB tool and, 200–201
length attribute

<field-descriptor> element, 199
library distribution

XDoclet, 291
Linux non-RPM setup

MySQL, installing, 434–435
Linux RPM setup

MySQL, installing, 434
listeners.xml merge-point file

<webdoclet> tag, 303
load balancing, 7
local exception handler

defining, 164
implementing, 166
XDoclet and, 306

locale attribute
<bean:message> tag, 61

Log class
error() method, 340
info() method, 322
introduction, 322
isErrorEnabled() method, 340
org.apache.commons.logging package, 344

log inheritance
benefits, 337
best practices, 338–339
example, 334
introduction, 334–337

log message levels, 319
and SimpleLog, 325

log() method
ServletContext interface, 319

log4j
and Commons Logging, 322, 328
appenders and layouts, 328–329
Category or Logger classes, 328
configuring, 330–331
configuring Struts to use, 341
JBoss, and, 342–343
log inheritance, 334–337
logging performance, 337
using with Commons Logging, 330–332
XML configuration, 332–333

LogFactory class, 344
getLog() method, 323, 338, 344
introduction, 322

Logger class, 328
See also Category class

logging, 317
See also JavaEdge application
best practices, 317

capturing Struts debug messages,
341–342

code guards, 340
Commons Logging, 338
exceptions, 341
external cofiguration files, 339
externalizing log messages, 339
log inheritance, 338–339
log levels, 341

Commons Logging project, 317, 320–321
introduction, 321
Log and LogFactory, 321–322
log names, 323
SimpleLog, 323–325

J2EE tools, 319
Java logging API, 317
JBoss and log4j, 342–343
log message levels, 319

Commond Logging and Java 1.4,
325–328

log4j, 328–329
log inheritance, 334–337
using with Commons Logging, 330–334

■INDEX490

Ch16_Index_7389_CMP2 9/29/06 3:35 PM Page 490

make up of good logging technology, 318
performance, 337
reasons for using, 318
ServletContext interface, 317, 319–320
Struts logging, 318

<logic:equal> tag, 69
<logic:equals> tag, 70, 115
<logic:forward> tag, 71–73
<logic:greaterEqual> tag, 71
<logic:greaterThan> tag, 71
<logic:iterate> tag, 63

collections supported, 68
id attribute, 68

<logic:iteration> tags, 68, 115
<logic:lessEqual> tag, 71
<logic:lessThan> tag, 71
<logic:notEqual> tag, 69
<logic:notEquals> tag, 70
<logic:notPresent> tag, 69
<logic:present> tag, 69
<logic:redirect> tag, 71–73
Logic tags, 67

categories, 67
conditional logic and cookies, 70–71
conditional tags, 69
iteration tags, 68
movement tags, 71–72

long validation rule, 267
Lucene, 38

definition, 3

■M
macros

#macro directive, 379–380
and Velocity, 388

MailExceptionHandler class
adding logging code, 350
example, 168

many-to-many relationships
mapping with OJB tool, 206–207

map-backed ActionForm classes, 111
mapped data, accessing, 63, 65–66
mask validation rule, 267

parameters, 272
maxlength validation rule, 267

implementing, 270–272
parameters, 272
<validation> tag, 280

McClanahan, Craig R, 35
MemberDAO class

authenticate() method, 348
JavaEdge application, 181–182

MemberFilter class, 292
removing tags, 403
replacing with custom RequestProcessor,

400
using @web.filter tag, 293

using @web.filter-mapping tag, 293
XDoclet tags, 293

MemberManagerBD class
getAll() method, 413

MemberVO class, 186
column mappings, 197
JavaEdge application, 184
mapping one-to-one, 202
retrieving from session, 393
simple class-to-table mapping, 195
source code, 195
storing user identity in, 392

merge-point files
@struts XDoclet tags, 308
<webdoclet> tag, 303

mergedir attribute
<strutsvalidationxml> tag, 314
<webdoclet> tag, 302

mergeTemplate() method
Velocity class, 371

message priority levels defined, 319
MessageResources class

getMessage() method, 89
MessageTool, exposing Struts objects to

Velocity templates, 382
metadata, 16

attributes, 292
declarative architecture using, 16

method attribute
<html:form> element, 105
<validator> tag, 280

method-level XDoclet tags, 298
@struts Validator tags, 311

methodParams attribute
<validator> tag, 280

micro-kernel architecture
OJB tool based on, 189

MiddleGen project, 187
mime-mapping.xml merge-point file

<webdoclet> tag, 303
minlength validation rule, 267

parameters, 272
<mockdoclet> tag, 300
Model-View-Controller. See MVC
moduleAware property

<set-property> tag, 231
ModuleConfig class

findPlugInConfigs() method, 418
modulo operator %, 369
movement tags, 71–72
msg attribute

<validator> tag, 280
<msg> tag

argument tags, 269
attributes, 269
<field> tag, 269

■INDEX 491

Find it faster at http://superindex.apress.com
/

Ch16_Index_7389_CMP2 9/29/06 3:35 PM Page 491

msgkey attribute
@struts.validator tag, 311–312

multiline comments and Velocity, 362
MVC (Model-View-Controller)

adding new functionality, 34
as basis for JavaEdge application, 33
components, 13
Java technologies used in, 34
JSP Model-2 architecture, 12
key features, 13
reducing formation of antipatterns, 124
Struts implementation of, 35
user request process, 33
using Struts to implement, 34

MVC pattern, refactoring Hardwired
antipattern, 17–18

MySQL, downloading, 38
MySQL, installing

changing MySQL root password, 435
Linux non-RPM setup, 434–435
Linux RPM setup, 434
Windows setup, 433

■N
name attribute

@struts-form tag, 304
@web.filter tag, 299
@web.filter-init-param tag, 299
arg1 tag, 271
argX tag, 312
argX tags, 270
<bean:write> tag, 60, 68
<collection-descriptor> element, 205
<definition> tag, 241, 249
<field-descriptor> element, 197
<form> tag, 268
<form-bean> tag, 80, 304
<form-property> tag, 257
<forward> tags, 46
<html:form> element, 105
<html:options> element, 109
<html:text> element, 107
<html:textarea> element, 108
<msg> tag, 269, 271
<reference-descriptor> element, 204
<tiles:put> tag, 234
<validator> tag, 279

navigation, 7
NestableException class, 162
NestableRuntimeException class

extending with ApplicationException
class, 164

NetBeans, 441
downloading, 447
editors, 444
in-process Tomcat server, 446
Swing-based application, 444

Newsletter Service
creating, 410
NewsLetterManager class

creating, 410
NewsLetterPlugIn class

building, 416
configuring, 419

NewsLetterManager class
creating, 410, 412–414
getNewsletterContent() method, 412
loadRecipients() method, 413
sendNewsletter() method, 411

NewsLetterPlugIn class
building, 416
configuring, 419
startTimer() method, 419

NewsletterTask class
building, 415–418
deriving from TimerTask class, 415

non-EJB applications, 159–160
NTEventLogAppender class, 329
nullable attribute

<field-descriptor> element, 199

■O
O/R (Object Relational) mapping tool

code generators, 187
MiddleGen project, 187
Torque project, 187

data access tier, 187
dynamic SQL generators, 187

ObjectRelationalBridge, 188
preventing Data Madness antipattern, 24

O/R mappings
setting up using OJB tool, 190

Oak, H
Pro Jakarta Commons, 330

Object Relational mapping tools. See O/R
ObjectRelationalBridge. See OJB
OFF log message level, 326
OJB (ObjectRelationalBridge) tool, 24

auto increment features, 198
building DAOs, 208-212
building data access tier, 174
core files, 190
Criteria class, 215
definition, 3
deleting data example, 219
downloading, 38
features supported, 188
inserting data example, 217–219
introduction, 189–190
JavaEdge repository.xml file, 191, 193
managing persistence and retrieval of

data, 345
mapping many-to-many relationships,

206–207

■INDEX492

Ch16_Index_7389_CMP2 9/29/06 3:35 PM Page 492

mapping one-to-many relationships,
205–206

mapping one-to-one relationships, 202,
204–205

O/R (Object Relational) mapping tool, 188
reasons for using, 188
reflection, 197
retrieving data example, 214–215

Criteria class, 215–217
sequence generation

and legacy applications, 200–201
managers, 201

setting up JDBC connection, 193–195
setting up O/R mappings, 190
simple class-to-table mapping, 195,

197–199
using get()/set() methods of StoryVO, 198

OJB.properties file
OJB tool, 191

one-to-many relationships
mapping with OJB tool, 205–206

one-to-one relationships
mapping with OJB tool, 202–205

onreset attribute
<html:form> element, 105

onsubmit attribute
<html:form> element, 105

optimistic value
isolation-level attribute, 193

org.apache.broker.util.sequence package
SequenceManagerHighLowImpl class, 201
SequenceManagerInMemoryImpl class,

201
SequenceManagerNextValImpl class, 201

org.apache.common.validator package
GenericValidator class, 278

org.apache.commons.beanutils package
ConversionException class, 261
utility classes, 119

org.apache.commons.lang.exception
package

NestableException class, 162
org.apache.commons.logging package

Log class, 344
simplelog class, 323

org.apache.log4j package
ConsoleAppender class, 331
FileAppender class, 332
PatternLayout class, 331
SimpleLayout class, 331

org.apache.log4j.xml package
XMLLayout class, 331

org.apache.ojb.broker package
PBKey class, 214

org.apache.struts package
configuring a single log for, 342

org.apache.struts.action package
ActionForward class, 47
ActionMapping class, 404
DynaActionForm class, 265
ExceptionHandler class, 165
PlugIn interface, 416
RequestProcessor class, 78, 399, 402

org.apache.struts.tiles package
TilesPlugin class, 230
TilesRequestProcessor class, 399

org.apache.struts.upload package
CommonsMultipartRequestHandler class,

43
org.apache.struts.util package

RequestUtil class, 78
org.apache.struts.validator package

DynamicValidatorForm class, 274
org.apache.validator package

ValidatorForm class, 275
org.jboss.logging.appender package

RollingFileAppender class, 343

■P
page attribute

<tile:definition> tag, 237
<param> tag, 333
ParseException class, 363
path attribute

@struts.action-exception tag, 307
<action> tag, 45
<definition> tag, 241
<exception> tag, 165
<forward> tags, 46

PatternLayout class, 329
org.apache.log4j package, 331
setting up as layout for appender, 331

patterns See design patterns
PB (Persistence Broker) API, 189
PBKey class

org.apache.ojb.broker package, 214
Persistence Broker (PB) API, 189
PersistenceBroker class, 345

abortTransaction() method, 218
beginTransaction() method, 218
commitTransaction() method, 218
getCollectionByQuery() method, 217
getObjectByQuery() method, 214
instantiating, 213
store() method, 217–218

PersistenceBrokerFactory class
createPersistenceBroker() method, 213
defaultPersistenceBroker() method, 213

personalization, screen layout, 7
platform attribute

<jdbc-connection-descriptor> element,
194

■INDEX 493

Find it faster at http://superindex.apress.com
/

Ch16_Index_7389_CMP2 9/29/06 3:35 PM Page 493

<plug-in> tag
className attribute, 230
<set-property> tag, 230
struts-config.xml file, 267

plug-ins
building, 409–410
Newsletter Service, 410

PlugIn interface
creating a class that implements, 416
methods, 416
org.apache.struts.action package, 416

PlugInConfig object
getClassName() property, 418

POJO (Plain Old Java Objects)
business logic, containing in, 118
complexity of use, 289

pooling resources. See resource pooling
populate() method

RequestUtil class, 78
Post a Story page

Business Delegate pattern, 135–139
Concern Slush antipattern, 125–128
PostStoryDynaForm class

applying validation rules, 266
writing java implementation, 258–263

PostStoryDynaFormValidator class
implementing validation rules, 272

postStoryForm class
defining <form-bean> tag, 257

separating business logic from struts,
132–134

Service Locator pattern, 141, 145–148
problem solving, 148–149
revisiting, 149–154

Session Facade pattern, 157–159
Tier Leakage antipattern, 130–131

implementing maxlength validation
rule, 270–272

implementing required validation rule,
268–270

Post a Story page example
page display, 79
postStory action, 81
PostStoryForm class, 83
rewritten to use PostStoryMapForm class,

115
struts-config.xml file, modifying, 80

PostForm class
validate() method, 128

PostStory class
chages to, 139
execute() method, 118, 131, 163

postStoryContent.jsp page
Struts HTML tag library, 103

PostStoryDynaForm class
applying validation rules, 266
extends DynaActionForm class, 260

rewriting as
PostStoryDynaValidatorForm.java,
273–274

writing java implementation, 258–263
PostStoryDynaValidatorForm class

implementing validation rules, 272
PostStoryDynaValidatorForm.java

rewiting PostStoryDynaForm class,
273–274

postStoryForm
defining <form-bean> tag, 256

PostStoryForm class, 82
buildStoryVO() method, 121, 264
deployment code, 83
form pre-population, 88

getMessage() method, 89
reset() method,, 88–89

refactoring, 140
reset() method, 86–87, 90
rewritten as Map-backed ActionForm

class, 111
validate() method, 93

ActionErrors class, error instantiation,
94

deployment example, 94
validation rules, 93

PostStoryForm.java class
ActionForm class, relationship with, 82

PostStoryMapForm class
validate() method, 114

PostStorySetupAction class
execute() method, 91
form pre-population, 88–91

execute() method, 91
<forward> element, 91
procedure, 90
setup actions, 92–93

reset() method, 89
Pragmatic Programmer, The

Thomas, Dave and Hunt, Andrew, 255
pre-populating form and error handling, 101
precision attribute

<field-descriptor> element, 199
presentation logic, separating from business

logic, 124
primarykey attribute

<field-descriptor> element, 198
Pro Jakarta Commons

Oak, H, 330
process() method

HttpServlet class, 320
RequestProcessor class, 356, 399, 409

processActionPerform() method
RequestProcessor class, 399, 407, 409
implementing, 405

processForward() method
RequestProcessor class, 407, 409

■INDEX494

Ch16_Index_7389_CMP2 9/29/06 3:35 PM Page 494

processInclude() method
RequestProcessor class, 407, 409

processPopulate() method
RequestProcessor class, 78

processPreprocess() method
RequestProcessor class, 399

property attribute
<bean:write> tag, 60
<field> tag, 268, 283
<html:cancel> tag, 107
<html:checkbox> element, 110
<html:errors> element, 99–100
<html:radio> element, 111
<html:select> element, 109
<html:submit> element, 106, 107
<html:text> element, 107
<html:textarea> element, 108
<set-property> tag, 230

PropertyUtils class
org.apache.commons.beanutils package,

119
<put> tag, 242

■Q
QueryByCriteria class, 214

■R
radio buttons

<html:radio> element, 110–111
range validation rule, 267

parameters, 272
rapid prototyping

Dynamic Forms, 265
read-committed value

isolation-level attribute, 193
read-uncommitted value

isolation-level attribute, 193
redirect() method,

HttpSessionServletResponse class, 73
refactoring, search and replace, 11
Refactoring: Improving the Design of Existing

Code
Fowler et al, 11

<reference-descriptor> element
auto-delete attribute, 204
auto-retrieve attribute, 204
auto-update attribute, 204
class-ref attribute, 204
mapping one-to-one, 204
name attribute, 204

reflection
OJB tool, 197
simple class-to-table mapping, 197

ReflectionToStringBuilder class, 184
repeatable-read value

isolation-level attribute, 193

repository.xml file
<class-descriptor> element, 197, 203
<collection-descriptor> element, 205, 207
<descriptor-repository> element, 193
<field-descriptor> element, 197
<fk-pointing-to-this-class> element, 207
<foreignkey> element, 205
<inverse-foreignkey> element, 206
JavaEdge application, 191, 193
<jdbc-connection-descriptor> element,

193
mapping many-to-many, 206
mapping one-to-many, 205
mapping one-to-one, 202
OJB tool, 191
<reference-descriptor> element, 204
sequence generation

OJB and legacy applications, 200
<sequence-manager> element, 200
setting up JDBC connection, 193
simple class-to-table mapping, 195

request parameter class
HttpServletRequest object, 276

request processing, 398
RequestDispatcher class

exceptions thrown, 399
RequestProcessor class, 460

ActionServlet creates instance of, 78
building, 399
deriving custom class from, 399
extending, 398–399, 402
implementing, 397
org.apache.struts.action package, 399
process() method, 356, 409
processActionPerform() method, 405, 407,

409
processForward() method, 407, 409
processInclude() method, 407, 409
processPopulate() method, 78
revisiting, 405–409
using instead of Filter, 400–403
verifying host access, 403

RequestProcessorHelper class
checkHost() method, 405
checkMember() method, 401

checking for MemberVO, 402
creating, 400

RequestUtil class
org.apache.struts.util package, 78
populate() method, 78

required validation rule, 267–270
requiredif validation rule, 267
reset() method

ActionForm class, 78, 86–87, 101
form validation, 81
prepopulating a JSP page with data, 87

DynaActionForm class, 260–261, 263

■INDEX 495

Find it faster at http://superindex.apress.com
/

Ch16_Index_7389_CMP2 9/29/06 3:35 PM Page 495

reset() method (continued)
PostStoryForm class, 87–88, 90
PostStorySetupAction class, 89

resource attribute
argX tags, 270
<msg> tag, 269

resource pooling, 7
ripple effect, 129

avoiding, 129
Concern Slush example, 129

RollingFileAppender class, 329
org.jboss.logging.appender package, 343

root logger
removing definition, 332
specifying for XML configuration, 333

rows attribute
<html:textarea> element, 108

RPM package manager
MySQL, installing, 434

RSS feeds and use of Ajax technology, 422
run() method, TimerTask class, 415
RuntimeSingleton class, 362

■S
Scalability and web application

development, 7
scale attribute

<field-descriptor> element, 199
scope attribute

@struts.action-exception tag, 307
Scope attribute

<bean:write> tag, 60
scope attribute

<exception> tag, 165
<FormBean> tag, 80
<html:form> element, 105

screen layout and personalization, 7
security

definition, 7
monitoring application security, 348–349

sequence generation
OJB tool and, 200–201

sequence managers
which to use, 201–202

<sequence-manager> element, 200
<attribute> element, 201
className attribute, 201
repository.xml file, 200

sequence-name attribute
<class-descriptor> element, 202

SequenceManagerHighLowImpl class
org.apache.broker.util.sequence package,

201
SequenceManagerHiLoImpl class, 201
SequenceManagerInMemoryImpl class

org.apache.broker.util.sequence package,
201

SequenceManagerNextValImpl class
org.apache.broker.util.sequence package,

201
serializable value

isolation-level attribute, 193
Service Locator design pattern, 171

extending, 344
using LRUMap class, 149

Service Locator pattern, 133
hiding resources, 141
implementing, 141, 145–148

as Singleton, 145
constructor, exception handling, 147
getDBConn() retrieving JDBC

connection, 147
getEJBHome() retrieving EJBHome, 146
getInstance() method, ServiceLocator

class, 146
invoking constructor, 146

problem solving case study, 148–149
revisiting, 149–150, 153–154

ServiceLocator class, 345
Business Delegate using, 133
findBroker() method, 213
get*() methods, 146
getDBConn() method, 147
getEJBHome() method, 146
getInstance() method, 146, 218
Session Facades, returning, 134

servlet specification
Filter class, 400

<servlet> tag, 41
configuring ActionServlet class, 39

<servlet-mapping> tag
web.xml configuration files, 41

servlet-mappings.xml merge-point file
<webdoclet> tag, 303

servlet-name attribute
@web.filter-mapping tag, 299

<servlet-name> tag, 41
ServletContext interface, 320

log() method, 319
logging, 317

ServletException class, 402
catching and handling, 399

ServletRequest class
getRealPath() method, 440

servlets.xml merge-point file
<webdoclet> tag, 303

Session Facade design pattern, 171
implementing as stateless session EJB,

157–159
ServiceLocator returning, 134

set() method
ActionForm class, 81
DynaActionForm class, 261
StoryVO class, 198

■INDEX496

Ch16_Index_7389_CMP2 9/29/06 3:35 PM Page 496

<set-property> tag
attributes, 230
definitions-config property, 230
definitions-parser-validate property, 230
moduleAware property, 231
setting Tiles plug-in properties, 230
struts-config.xml file, 267

setProperty() method
System class, 323, 327, 330, 388

setStoryId() method
StoryVO class, 214

setStoryTitle() method
StoryVO class, 214

setup actions, defined with <action> tag, 51
SEVERE log message level, 325
short validation rule, 267
showdatetime property

simplelog class, 323
showlogname property

simplelog class, 323
showShortLogname property

simplelog class, 323
SimpleLayout class, 329

org.apache.log4j package, 331
SimpleLog

and Commons Logging, 322
as alternative to System.out.println(), 323
configuration parameters, 323
logging levels, 324–325

simplelog.properties file
specifying system properties, 323

single-line comments and Velocity, 362
Singleton pattern

Service Locator, implementing as, 145
SMTPAppender class, 329
SOA (Service Oriented Architecture)

use of Ajax technology, 423
software, entropy and complexity, 2
software development

architecture and, 2
source code distribution

XDoclet, 291
SQLException

wrapping with DataAccessException
exception, 181

SQLException class, 181
store() method

PersistenceBroker class, 217–218
storeException() method

ExceptionHandler class, 167
story table

mapping one-to-many relationship, 205
StoryCommentVO class, 186

JavaEdge application, 184
StoryDAO class

building using OJB tool, 208
delete() method, 219

insert() method, 217
integrating logging in data tier, 345–347
JavaEdge application, 181–182
wrapping business logic in DAO, 220

storyManager class
addStory() method, 132
and business delegate, 133

StoryManagerBD class, 50
addStory() method, 219
getStoryManagerBD() method, 135
implementations, 136, 138–139

StoryVO class, 186
code, 57
JavaEdge application, 184
mapping one-to-many, 205
mapping one-to-one, 202
OJB tool using get/set() methods, 198
setStoryId() method, 214
setStoryTitle() method, 214
wrapping business logic in DAO, 220

Strecks, 473–476
Strings and ActionForm classes, 117
Struts

and Ajax, 421
and Strecks, 473
using Strecks, 473–474

Struts applications
debugging with JBoss and Eclipse, 351–352
configuring JBoss server, 352

Struts Console, 441
as Eclipse plug-in, 458

editing Struts configuration, 458
form bean configuration, 459

support for configuration files, 460
using as stand-alone or as plug-in, 457

Struts debug messages, 341
Struts framework

1.1 release, 35
accessing session properties, 392, 394–397

Struts framework
Action class, 123
ActionErrors class, 94
ActionMapping class, 406
Commons Digester project, 404
configuration beans, 403–405
custom tag libraries, 52
debugging, 356
default exception handler, 165
development tools, 441

Eclipse, 442
Exadel Studio, 461
JBuilder, 452
JMeter, 466
NetBeans, 444
Struts Console, 457
WebSphere, 447
XDoclet, 466

■INDEX 497

Find it faster at http://superindex.apress.com
/

Ch16_Index_7389_CMP2 9/29/06 3:35 PM Page 497

Struts framework (continued)
enabling Struts 1.1 to use Tiles, 228–235
exceptions, handling

version 1.0.x, 161–163
version 1.1, 163–164

extending Action and ActionForm, 391
form presentation and validation, 75–79
fundamentals, 31–32
history, 34
hooking into Action execution process,

397–398
HTML tag library, 103
implementating MVC pattern, 35

ActionServlet class, 36
managing business logic, 123–124
MessageResources class, 88
methods for extending, 391
plug-ins, 409–410
providing common services to Actions,

392
RequestProcessor class, 398–399

building, 399
revisiting, 405–409
using instead of filter, 400–403
verifying host access, 403

resources contributing to, 25
separating business and presentation

logic, 124
Tiles framework, 226
typical web screen, 37
using log4j as log provider, 341
validation mechanism, 281–282
Velocity, 381
XDoclet, 303

Struts logging
log structure, 341
logging, 318

Struts request controller
configuration parameters, 43

Struts Studio, 441
Struts template tag libraries

limitations, 226
<template> tag, 226

Struts Web Development Framework
definition, 3

struts-actions.xml merge-point file
@struts XDoclet tags, 309

struts-config-validator.xml file
<form-bean> tag, 284

struts-config.xml file
<action> tag, 36, 90
automating creation of <form-bean> tag,

304
configuring ActionServlet class, 39
configuring Tiles plug-in, 229
declaring attributes of ActionForm class,

256

editing with Struts Console, 458
<form-bean> tag, 256
generating <action> tags, 304
<global-forwards> tag, 46, 306
modifying to validate data, 80
<plug-in> tag, 267
right order for elements, 458
<set-property> tag, 267
setting up, 164–166
validating data with ActionForm class, 80

struts-data-sources.xml merge-point file
@struts XDoclet tags, 309

<struts-form> tag, 303
struts-forms.xml merge-point file

@struts XDoclet tags, 309
struts-plugins.xml merge-point file

@struts XDoclet tags, 309
<strutsconfigxml> tag

adding to <webdoclet> tag, 308
destdir attribute, 308
merge point files, 308
validatexml attribute, 308
version attribute, 308

StrutsLinkTool, 387
exposing Struts objects to Velocity

templates, 383
<strutsvalidationxml> tag

adding to webdoclet target, 313
defining attributes, 314

StrutsValidatorUtil class
getActionError() method, 279

super.execute() statement, 396–398
super.process() statement, 399, 402
SyslogAppender class, 329
System class

setProperty() method, 323, 327, 330, 388
System.out.println()

SimpleLog as alternative to, 323
temptation to use, 347

■T
table attribute

<class-descriptor> element, 197
Tag Library Definitions. See TLDs
targetObject parameter class, 277
<taskdef> tag, 301

defining <webdoclet> tag, 301
tear-down actions

categories of actions defined with
<action> tag, 51

template engines, 359–360
<template> tag, 53, 226

inheritance mechanism, 226
text, displaying

<html:text> element, 107
<html:textarea> element, 107

■INDEX498

Ch16_Index_7389_CMP2 9/29/06 3:35 PM Page 498

Thomas, Dave and Hunt, Andrew
Pragmatic Programmer, The, 255

Tier Leakage antipattern, 13
causes, 124
closed compared to open-tier architecure,

14
example, 130–132
MVC reduces, 124
reasons for, 13
solution, 15
struts and, 130–132
symptoms, 14–15

Tight Skins antipattern, 20
as presentation tier antipattern, 20
avoiding with Velocity template engine,

359
reasons for, 20
refactoring, 62
solution, 21
symptoms, 21, 225

tile attributes, 227
<tile-definitions> tag

<definition> tag, 241
tiles-defs.xml file, 241

Tiles
definitions, 3
introduction, 235–236
JSP-based approach, 236–238

disadvantages, 239–240
overriding attribute values, 238
using dummy values, 239

mapping to Action Forwards, 248–250
naming conventions, 249
XML based approach, 240

adding new definition to tiles-defs.xml,
246–247

extending Tiles definition, 244–245
inheritance using Tiles definitions,

241–242
modifying template.jsp file, 245–246
tiles-defs.xml file, 240–241

Tiles framework
building flexible front-ends, 225
compared to template tag library, 226
deprecated properties of plug-in, 230
enabling Struts 1.1 to use Tiles, 228

adding Tiles TLDs, 231–232
configuring Tiles plug-in, 229–231
tiles-defs.xml file, 231

introduction, 227–228
methods for building web pages, 232

using Tiles-enabled JSP templates,
232–235

Tiles definitions, 235–236
TilesRequestProcessor class, 398

Tiles JSP tag libraries
making available with Tiles TLDs, 231

<tiles:definition> tag, 237
<tiles:getAsString> tag, 233
<tiles:insert> tag, 233
<tiles:put> tag, 234

Tiles TLDs, adding, 231–232
<tiles:definitions> tag, 231
tiles-defs.xml file, 231

adding the new definition, 246–247
inheritance using Tiles definitions, 241

overriding attributes, 242
introduction, 240–241
<tile:definitions> tag, 241

<tiles:definition> tag
attributes, 237

<tiles:AsString> tag, 233
<tiles:insert> tag, 233–235, 237–238, 246

adding attributes, 246
attributes, 234

<tiles:put> tag, 234–235, 237–238, 246
attributes, 234

TilesPlugin class
org.apache.struts.tiles package, 230

TilesRequestProcessor class, 460
custom request processing, 399
org.apache.struts.tiles package, 399
request processing, 398

Timer class
initializing, 416
scheduling tasks, 415

TimerTask class
run() method, 415
scheduling tasks, 415

title attribute
.baseDef Tiles definition, 239

TLD (Tag Library Definitions), 53
bean tags, 57
Logic tags, 67

TLD (Type Library Definitions), 104
Tomcat, 38
Torque project, 187
toString() method

ValueObjects class, 184
TRACE message, 327, 347
transaction management, 6

definition, 6
@struts.action-exception tag, 307
@struts.validator tag, 311–312
<action> tag, 45–46
<exception> tag, 165
<form-bean> tag, 80, 265, 275, 304
<form-property> tag, 257
<global-forwards> tag, 47
<html:form> element, 105

Type Library Definitions. See TLD

■INDEX 499

Find it faster at http://superindex.apress.com
/

Ch16_Index_7389_CMP2 9/29/06 3:35 PM Page 499

■U
UML designer and JBuilder, 454
Unix-OS setup

MySQL installation, 435
unknown attribute

<action> tag, 45–46
update() method

DataAccessObject interface, 180
URL prefix mapping

ActionServlet class, 42
url validation rule

parameters, 272
url-pattern attribute

@web.filter-mapping tag, 299
<url-pattern> tag, 299
user communications

use of Ajax technology, 422
user request process

MVC (Model-View-Controller), 33
username/password attribute

<jdbc-connection-descriptor> element,
194

■V
validate attribute

<FormBean> tag, 81
validate() method

ActionForm class, 36, 75, 78, 117, 255, 274,
282

form validation, 81
strength of, 101

DynaActionForm class, 260, 263
DynamicValidatorForm class, 274, 284
PostForm class, 128
PostStoryForm class, 93

ActionErrors class, error instantiation,
94

deployment example, 94
validation rules, 93

PostStoryMapForm class, 114
viewing errors generated by, 98

validatexml attribute
<strutsconfigxml> tag, 308

validating data, 7
validation annotations using Strecks, 476
Validation Confusion antipattern, 18, 282

mixing validation and business logic, 18
possibility of creating, 117
solution, 19
symptoms, 19, 76

validation libraries, 101–102
validation logic

definition, 18
problem with embedding within

ActionForm class, 101
separating from business logic, 101

Validation Confusion if mixed with
business logic, 18

validation rules
maxlength validation rule, 270–272
parameters, 272
required validation rule, 268–270

<validation> tag
maxlength validation rule, 280

validation.xml files
<form> tag, 274, 276
<form-validation> tag, 268
<formset> tag, 266, 268
generating, 313
locating, 267
XDoclet tags for generating, 309

Validator framework, 3
actionErrors parameter class, 276
ActionForm without Java, 283–284
argument problems, 312
custom validation rules, 275

vulgarity rule, 275–283
Dynamic Forms, 255–256
Field class, 276
generating validator tags from Ant,

313–314
generic validation rules, 266

maxlength validation rule, 270–272
parameters, 272
required validation rule, 268–270

PostStoryDynaForm class, applying
validation rules, 266

request parameter class, 276
setup, 266
Struts validation and possible

consequences, 281–282
table of rules, 267
targetObject parameter class, 277
using within ActionForm class, 273–275
validation rules, 102
validatorAction parameter class, 276
when to use, 284–285
XDoclet struts tags, 309, 311–313

<validator> tag
classname attribute, 280
method attribute, 280
methodParams attribute, 280
msg attribute, 280
name attribute, 279
validator-rules.xml file, 279

validator-rules.xml file
adding custom validation rules, 279–281
<field> tag, 282
javascript tag, 280
locating, 267
<validator> tag, 279

■INDEX500

Ch16_Index_7389_CMP2 9/29/06 3:35 PM Page 500

validatorAction parameter class
holds metadata for validation rule, 276

ValidatorForm class
and @struts Validator tags, 310
org.apache.validator package, 275

ValidatorUtil class
getValueAsString() method, 278

validwhen validation rule, 267
value attribute

@web.filter-init-param tag, 299
<html:cancel> element, 106
<html:option> element, 109
<html:radio> element, 111
<html:submit> element, 106
<set-property> tag, 230
<tiles:put> tag, 234

Value Object pattern, 134, 174
data access tier, 178
entity beans and, 183
evolving of, 183
ValueObject interface, 184

Value Objects
advantages of using, 183
class holding data, 118
compared to DAOs, 178
description, 182
JavaEdge application, 185–186
MemberVO class, 184
StoryCommentVO class, 184
StoryVO class, 184

ValueObject interface
get()/set() methods, 180
JavaEdge application, 180, 184

ValueObjects class
toString() method, 184

<var> tag, 272
<var-name> tag, 272
<var-value> tag, 272
variables (VTL), 363

accessing, 363–364
concatenation, 365–366
escape characters, 366–368
object methods, 368
quiet references, 364–365
values, 364

Vectors, 185
Velocimacros. See macros
Velocity, 3
Velocity class

description, 362
init() method, 361
mergeTemplate() method, 371

Velocity jar file, accessing, 360
Velocity Template Engine, 38, 359

and Struts working together, 388
avoiding Tight-Skins antipattern, 359
best practices

using #parse and #include, 388
using JavaBean property names, 389
using macros, 388

classes, 362
getting started in applications, 381
simple example, 360–361
Struts framework, 381

Velocity template language. See VTL
VelocityContext class, 386–387

creating, 361
executing a template, 362
passing variables to engine, 363
storing Collections in, 378

VelocityEngine class, 362
Velocity Tools project, 381

building the view, 384, 386–387
creating Struts Action, 383–384
linking to Struts Action, 384
printer-friendly pages, 381
VelocityViewServlet class, 381–383

VelocityViewServlet class, 381–383, 386–387
version attribute

<descriptor-repository> element, 193
<strutsconfigxml> tag, 308

VO pattern. See Value Object pattern
VTL (Velocity template language), 360

arithmetic, 369–370
comments, 362–363
directives, 370

#foreach, 376–379
#if, #else, and #elseif directives, 374–376
#include, 370–371
#macro, 379–380
#parse, 372–373

JavaBean properties, 369
variables, 363

accessing, 363–364
concatenation, 365–366
escape characters, 366–368
object methods, 368
quiet references, 364–365
values, 364

VulgaritiesFilter class
checkForVulgarities() method,

instantiating using, 96
deployment code, 96
isOffensive() method, 96

vulgarity rule
adding to validator-rules.xml, 279–281
implementing, 275–279
implementing in a Form, 282–283

■W
WARN message, 319
WARNING log message level, 326
Web 2.0 and use of Ajax technology, 423
web application antipatterns, 9

■INDEX 501

Find it faster at http://superindex.apress.com
/

Ch16_Index_7389_CMP2 9/29/06 3:35 PM Page 501

web application development, 4
application development framework, 6
challenges, 5–6

web development frameworks, 24
benefits, 25
insufficient use of, 25
reducing antipattern occurrence, 24

web diagram designer, WebSphere, 451
web flow design and Exadel Studio, 465
Web tier

integrating logging in JavaEdge
application, 344

Actions and ActionForms, 349
ApplicationExceptions, 350

web-based applications and need for
framework, 31

web-security.xml merge-point file
<webdoclet> tag, 303

web.xml configuration files
ActionServlet class, 41
configuring ActionServlet class, 39
<servlet-mapping> tag, 41

web.xml file
<filter> tag, 292
<filter-mapping> tag, 292

<webdoclet> tag, 300
adding <strutsconfigxml> tag, 308
adding <strutsvalidationxml> tag to target,

313
building struts-config.xml, 308
defining with <taskdef> tag, 301
example of use, 300
force attribute, 302
merge-point files, 303
nested elements, 302
setting attributes, 301

weblog, creating, 28
WebSphere, 441

configuration management, 448–449
creating a Struts project, 447
creating Actions and ActionForms, 449
downloads and information, 452
web diagram designer, 451

welcomefiles.xml merge-point file
<webdoclet> tag, 303

where clause
adding components with Criteria class,

215
Windows Installer package

installing MySQL, 433
WinMySQLAdmin tool, 434
Wrappers and Commons Logging, 322

■X
XDoclet, 290–291, 442, 466

@web tags, 299
Ant Tasks, 295–296

integrating, 301–302
table of, 299–300

definition, 3
dependencies, 291
installing, 291–292
introduction, 292–294
merge-points, 302–303
process of translating metadata tags, 295
struts framework, 303

building struts-config.xml with
webdoclet, 308

declaring application exceptions,
306–307

declaring struts actions, 304–306
declaring struts form beans, 304

table of technologies supported, 297
Validator framework, 309, 311–313

generating tags from Ant, 313–314
XDoclet tags

@struts-form tag, 303
@struts.action tag, 304
@struts.action-exception tag, 306
@struts.action-forward tag, 305
@struts.validator tag, 309
@struts.validator-var tag, 309
@web.filter tag, 293
@web.filter-mapping tag, 293
available tags, 297
ejbdoclet tag, 296
Java inheritance, 306
levels of tags, 298
merge point files, 308

XjavaDoc engine, 291
XML editor

Exadel Studio and, 463
XMLHttpRequest object

Ajax request-response cycle, 425
XMLLayout class, 329

org.apache.log4j.xml package, 331

■Y
Yahoo and use of Ajax technology, 422

■INDEX502

Ch16_Index_7389_CMP2 9/29/06 3:35 PM Page 502

	Pro Apache Struts with Ajax
	Table of Content
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Appendix A_
	Appendix B_
	Appendix C_
	Index

