THE EXPERT’S VOICE® IN JAVA™ TECHNOLOGY-,.‘._.. |

Pro Apache

Struts
with AJ aX

Architect, build, and configure multitier web applications
using the Apache Struts framework along with some Ajax.

John Carnell
with Rob Harrop
Edited by Kunal Mittal

Apress’

ww.allitebooks.co

http://www.allitebooks.org

Pro Apache Struts
with Ajax

John Carnell
with Rob Harrop,
Edited by Kunal Mittal

[vww allitebooks.cond

Apress*

http://www.allitebooks.org

Pro Apache Struts with Ajax
Gopyright © 2006 by John Carnell, Rob Harrop, Kunal Mittal

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-738-5
ISBN-10 (pbk): 1-59059-738-9
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Java™ and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc., in the
United States and other countries. Apress, Inc., is not affiliated with Sun Microsystems, Inc., and this book
was written without endorsement from Sun Microsystems, Inc.

Lead Editor: Steve Anglin

Technical Reviewer: John Fallows

Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,
Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, Jim Sumser,
Keir Thomas, Matt Wade

Project Managers: Beth Christmas, Elizabeth Seymour

Copy Edit Manager: Nicole Flores

Copy Editors: Ami Knox, Bill McManus

Assistant Production Director: Kari Brooks-Copony

Production Editor: Lori Bring

Compositor: Diana Van Winkle, Van Winkle Design

Proofreader: April Eddy

Indexer: Michael Brinkman

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219,
Berkeley, CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com,
or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.comin the Source Code/
Download section.

vww allitebooks.conl

http://www.allitebooks.org

To my wife, Janet: Thank you for the love, the patience, and the time I needed
to complete this book (and every other book I have worked on). Without your love
and wisdom, my life would be a shadow of what it is now. You are everything to me.
To my son, Christopher: Every experience I have had or will have will never compare

with the first time I held you in my arms. Everyday, I revel in the miracle that you are.
—TJohn Carnell

This book is dedicated to my secondary school English teacher, Neville McGraw,
for sparking my abiding interest in literature and teaching me the

importance of the written word.
—Rob Harrop

vww allitebooks.conl

http://www.allitebooks.org

vww allitebooks.conl

http://www.allitebooks.org

Contents at a Glance

Aboutthe AUthOrs XV
Aboutthe Editor Xvi
About the Technical ReVIBWEIScc.iiiiii e Xvii
ACKnoWledgments Xviii
Preface for This Edition. Xix
Preface from Previous Edition XX
CHAPTER 1 What We Do Wrong: Web Antipatterns Explained 1
CHAPTER 2 StrutsFundamentals .. 31
CHAPTER 3 Form Presentation and Validation with Struts 75
CHAPTER 4 Managing Business Logic with Struts 123
CHAPTER 5 Architecting the Data Access Tier with ObjectRelationalBridge. .. 173
CHAPTER 6 Building Flexible Front-Ends with the Tiles Framework 225
CHAPTER 7 Dynamic Forms and the Struts Validator Framework 255
CHAPTER 8 Speeding Struts Development with XDoclet 289
CHAPTER 9 Loggingand Debugging 317
CHAPTER 10 Velocity Template Engine 359
CHAPTER 11 Extending the Struts Framework 391
CHAPTER 12 StrutsandAjax i, 421
APPENDIX A JavaEdge Setup and Installation 433
APPENDIX B Struts DevelopmentTools 441
APPENDIX C Strutsand Strecks 473
INDEX .. 477

[vww allitebooks.cond

http://www.allitebooks.org

vww allitebooks.conl

http://www.allitebooks.org

Contents

About the AUTOrS XV
Aboutthe Editor Xvi
About the Technical ReVIBWEIScc.iiiiii e Xvii
ACKnoWledgments Xviii
Preface for This Edition. o Xix
Preface from Previous Edition XX
CHAPTER1 What We Do Wrong: Web Antipatterns Explained.......... 1
What ThisBook IsAbout 3

What This Chapter IsAbout 4

Challenges of Web Application Development......................... 4

Enterprise Services 6

Application Servicesco i 7

An Introduction to Patterns and Antipatterns 8

Web Application Antipatterns 9

ConcernSlush 10

TierLeakage ... 13

Hardwired 16

Validation Confusion 18

Tight-SKinS 20

DataMadness i 22

Antipatterns, JOS Frameworks, and Economics 24

The JavaEdge Application 27

SUMMArY ... 28

CHAPTER 2 Struts Fundamentals 31
The JavaEdge Application Architecture 32

The Designo 33

Using Struts to Implement the MVC Pattern 34

Getting Started: The JavaEdge SourceTree 37

The Power of the Command Pattern 48

[vww allitebooks.cond

vii

http://www.allitebooks.org

viii

CONTENTS

CHAPTER 3

CHAPTER 4

Constructing the Presentation Tier 52
The JavaEdge Home Pagecooiiit 53
BeanTags ... 57
LOgICTagS ..o 67
lteration Tagscoii i 68
Conditional Tags ... 69
MovementTagso 71

SUMMArY ... 73

Form Presentation and Validation with Struts............ 75

Problems with Form Validation.................................... 75

Using Struts for Form Validation 77

Implementing Form Validation with Struts 79
The struts-config.xmlFileo... 80
Struts ActionForm Class 81
Prepopulating an ActionForm with Data 87
Another Technique for Prepopulation 91
Prepopulating a Form the CorrectWay 92
Validatingthe FormData 93

The Struts HTML Tag Library it 103
SettingUpa Struts HTML Form 104
Using Text and TextArea Input Fields 107
Drop-Down Lists, Checkboxes, and Radio Buttons 108
Building More Dynamic ActionForms 111
ActionForms and Business LogiCooils 118

SUMMANY ... 122

Managing Business Logic with Struts.................... 123

Business Logic Antipatternsand Struts 124
ConcernSlushand StrutsL. 125
Tier Leakage and Struts 130
Separating Business Logic from Struts 132

Implementing the Design Patterns 134
Implementing the Business Delegate Pattern 135
Implementing the Service Locator Pattern 141
The Service Locator Revisited 149
EJBsandStruts 154

Handling Exceptions inthe Action Class 160
Exception Handling in Struts 1.0.x 161

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 5

CHAPTER 6

CONTENTS
Exception Handling in Struts 1.1 and Later 163
Rewriting the ApplicationException Class 164
Setting Up the struts-config.xmlFile 164
Writing a Custom ExceptionHandler 167

SUMMArY ... 171

Architecting the Data Access Tier with

ObjectRelationalBridge 173

Developing a Data Access Strategy 174
The JavaEdge DataAccessModel 176
Value Objects 182
The JavaEdge Value Objectscoones. 184
Using an O/R MappingToolccoiviiiiininnt 187
Setting Up the Object/Relational Mappings 190
Which Sequence ManagertoUse? 201

OJBINACKON ... 208
Retrieving Data: A Simple Example 212
Retrieving Data: A More Complicated Example 215
StoringDataUsingOJBt 217
Deleting DatawithOJB 219

Bringing It All Together i 219

SUMMANY ... 223

Building Flexible Front-Ends with the Tiles Framework . . 225

What Is the Tiles Framework? 227
Enabling Struts Version 1.1toUseTiles 228
Configuring the TilesPlug-In 229
The tiles-defs.xmlFile 231
AddingtheTilesTLDS 231
Your FirstTilesTemplate 232
What Are Tiles Definitions?, 235
Tiles Definitions: A JSP-Based Approach 236
Overriding the Attribute Values in a Tiles Definition 238
Using Dummy Values in Your Tiles Definition 239
Disadvantages of JSP Tiles Definitions 239
Anatomy of the tiles-defs.xmlFile 240
Inheritance Using Tiles Definitions 241
Extending a Tiles Definition 244
Modifying the template.jspFile 245

[vww allitebooks.cond

ix

http://www.allitebooks.org

X

CONTENTS

CHAPTER 7

CHAPTER 8

Adding the New Definition to tiles-defs.xml 246
Modifying the .homePage Definition 247
Mapping Tiles Definitions to Action Forwards 248
SUMMaArY .. 252

Dynamic Forms and the Struts Validator Framework. 255

Introducing Dynamic Forms i 256
Defining the postStoryForm Struts FormBean 256
Writing the PostStoryDynaForm.java Implementation 258
Some Thoughts About BeanUtils and the Preceding Code 263

The Jakarta Commons Validator Framework 266
Validator Framework Setup 266
Implementing the Required Fields Validation 268
The maxlength ValidationRule 270

Use the Validator Framework Within an ActionForm Class 273
Writing Your Own ValidationRules 275
Implementing the VulgarityRule 275
Adding the Vulgarity Rule to the validator-rules.xml File 279
Struts Validation and Potential Long-Term Consequences 281
Implementing the Vulgarity RuleinaForm 282
An ActionForm WithoutJava 283
When to Use the Validator Framework 284

SUMMANY .. 285

Speeding Struts Development with XDoclet.............. 289

Installing XDoclet 291

What Exactly Is XDoclet? 292
From XDoclet to Source, and All the Steps in Between 295
The Available XDocletTags ..., 297
Anatomy of an XDocletTagooiiiiints. 298

Integrating Antand XDoclet 299
UsingMerge Points i, 302

XDocletand Struts 303
Declaring Struts FormBeans 304
Declaring Struts Actions 304
XDoclet and Java Inheritance 306
Declaring Application Exceptions 306
Building struts-config.xml Using <webdoclet..../> 308
XDoclets and the Validator Framework 309
Generating the Validator Tags fromAnt 313

SUMMArY 315

CHAPTER 9

CHAPTER 10

CONTENTS
Logging and Debugging 317
Why Use Logging? ..o 318
Log Message Levelscci i, 319
Simple Web Application Loggingooiiiats 319
Logging with ServletContext 319
Using Commons Logging ...t 320
TheJava 1.4 Logging APlo 325
Apache 1ogd) ... 328
Using log4j with Commons Logging 330
LogInheritance i 334
Logging Performance ..., 337
Logging Best Practices 338
JBossand log4) ... 342
Integrating Logging into JavaEdge 343
LoggingintheWeb Tier L. 349
Debugging Struts Applications Using JBoss and Eclipse 351
Debugging the JavaEdge Application 353
Hot-Deploy 355
Debugging the Struts Framework 356
SUMMANY ... 356
Velocity Template Engine.................................. 359
What Is aTemplate Engine? 359
Getting Started o i 360
Velocity and VelocityContext Classes 362
Velocity Template Language 362
Variables 363
AccessingVariables 363
VariableValues i 364
JavaBean Propertiesl 369
Arithmetic ... 369
Directives ... 370
MaCroS 379
Strutsand Velocity 381
VelocityTools i 381
StrutsandVelocity 388
Best Practices for Velocity Use iin... 388
USEMACIOS ..o 388
Know When to Use #parse and When to Use #include 388
Use JavaBean PropertyNames 389

SUMMArY ... 389

Xi

Xii CONTENTS

CHAPTER 11

CHAPTER 12

Extending the Struts Framework 391
Extending Action and ActionForml 391
Providing Common Services to Your Actions 392
Hooking into the Action Execution 397
Extending RequestProcessorl 398
Building a RequestProcessor 399
Using RequestProcessor Instead of Filter 400
Verifying Host Access with RequestProcessor 403
Creating ConfigurationBeans 403
Building the JavaEdgeActionMapping 404
Revisiting RequestProcessor, 405
BuildingaPlug-In 409
Newsletter Service Basics 410
NewsletterManager i, 410
NewsletterTaskco i, 415
NewsletterPlugin i 416
Configuringthe Plug-In il 419
SUMMArY ... 419
Strutsand Ajax.. 421
Ajax Dissectedot 421
Ajaxon Google 422
AjaxonYahoo i 422
Where Should I Use Ajax? ..., 422
AjaxandWeb 2.0 i 423
Ajaxand SOA 423
AjaxInternals 423
Ajax Request-Response Cyclecvvun... 424
XMLHttpRequest Object i 425
Ajax and StrutsinAction 426
GBS SP « o vt 426
GetCitiesNamesAction 429
CitieSDAD ... i 430

SUMMANY . .ot 432

APPENDIX A

APPENDIX B

CONTENTS
JavaEdge Setup and Installation.......................... 433
EnvironmentSetup ... 433
InstallingMySQL 433
Installing JBOSSovii 436
Installing Apache Ant 436
Obtaining the JavakEdge Code and Dependencies 437
Installing the JavaEdge Database 437
BuildingJavakdgel 438
Deploying JavaEdge 439
SUMMArY ... 440
Struts DevelopmentTools 441
EClipSe ... 442
Eclipse Summary 444
Eclipse NextStepo i 444
NetBeans ... 444
JSP, HTML, XML, and DTD Editors 444
In-Process Tomcat Server, 446
NetBeans Summaryc i, 446
NetBeans NextStep L. 447
IBMWebSphere ... 447
Creating a Struts Project il 447
Managing Configurationooialt. 448
Creating Actions and ActionForms 449
WebDiagrams ... 451
WebSphere Summaryl 451
WebSphere NextStep 452
Borland JBuilder 2006t 452
Web Projects ... 452
Configuration File Editor, 453
JSPEdItOr 454
UML DeSIgnerot e 454
JavaDoc Preview 454
Action Designer i 456
JBuilder Summary ... 456

JBuilder NextStep ... 457

Xiii

Xiv

CONTENTS

APPENDIX C

StrutsConsole ... 457
Getting Started 457
Editing the Struts ConfigurationFile 458
Editing Other ConfigurationFiles 460
Struts Console Summary 460
Struts Console NextStep ...l 461

Exadel Studio 461
Struts Projects ... 461
Configuration File Editors 461
XMLEditor 463
JSPEdItOr 463
Web Flow Designero i 465
Exadel Studio Summary 465
Exadel StudioNextStep, 466

XDOCIBt .o 466

Apache Meter 466
Getting Started 466
Features ... 466
Creatinga SampleTest, 467
JMeterSummary ... 470
JMeterNextStep ... 471

SUMMANY ... 471

Strutsand Strecks .. 473

USINg SEreckS 473
@Controller and @Actioninterface 474
@NavigateForward 475
@BindSimple and @ValidateRequired 475

What You Can Do with Strecks 476

Is Strecks for Me? 476

.. 477

About the Authors

JOHN CARNELL is the president and owner of NetChange, a leading provider
of enterprise architecture solutions and training. John has over nine years
of experience in the field of software engineering and application develop-
ment. Most of John’s time has been spent working in Object-Oriented (OO)
and Component-Based Development (CBD) software solutions.

John has authored, coauthored, and served as technical reviewer for
a number of technology books and industry publications. Some of his
works include

* Professional Struts Applications: Building Web Sites with Struts, Object Relational Bridge,
Lucene, and Velocity (Apress, 2003)

» Coauthor, J2EE Design Patterns Applied (Apress, 2002)

* Coauthor, Oracle 9i Java Programming: Solutions for Developers Using PL/SQL and Java
(Apress, 2001)

* Coauthor, Beginning Java Databases (Apress, 2001)

» Coauthor, Professional Oracle 8i Application Programming with Java, PL/SQL, and XML
(Wrox Press, 2001)

e Technical reviewer, J2EE Design and Deployment Practices (Wrox Press, 2002)

In addition to his teaching, John travels the country on a regular basis speaking at nation-
ally recognized conferences on a variety of Java development topics.

John lives in Green Bay, Wisconsin, with his wife, Janet; son, Christopher; and two dogs,
LadyBug and Ginger. John always welcomes questions and comments from his readers and
can be reached at john.carnell@netchange.us.

ROB HARROP is a software consultant specializing in delivering high-
performance, highly scalable enterprise applications. He is an experienced
architect with a particular flair for understanding and solving complex
design issues. With a thorough knowledge of both Java and .NET, Rob has
successfully deployed projects across both platforms. He also has exten-
sive experience across a variety of sectors, retail and government
in particular.

Rob is the author of five books, including Pro Spring (Apress 2005), a
widely acclaimed, comprehensive resource on the Spring Framework.

Rob has been a core developer of the Spring Framework since June 2004 and currently
leads the JMX and AOP efforts. He cofounded UK-based software company Cake Solutions
Limited, in May 2001, having spent the previous two years working as Lead Developer for a
successful dotcom start-up. Rob is a member of the JCP and is involved in the JSR-255 Expert
Group for JMX 2.0.

Xv

About the Editor

KUNAL MITTAL serves as the Director of Technology for the Domestic TV
group at Sony Pictures Entertainment. He is responsible for the technol-
ogy strategy and application development for the group. Kunal is very
active in several enterprise initiatives such as the SOA strategy and
roadmap and the implementation of several ITIL processes within
Sony Pictures.

Kunal has authored and edited several books and written over
20 articles on J2EE, WebLogic, and SOA. Some of his works include

e Pro Apache Beehive (Apress, 2005)
e BEA WebLogic 8.1 Unleashed (Wrox, 2004)

e “Build your SOA: Maturity and Methodology,” a three-part series (SOAlInstitute.com,
2006)

For a full list of Kunal’s publications, visit his web site at http://www.kunalmittal.com/
html/publications.shtml.
Kunal holds a master’s degree in software engineering and is a licensed private pilot.

XVi

About the Technical Reviewers

QB"

JAN MACHACEK started with microelectronics in 1992 and then moved on
to computer programming a few years later. During his studies at Czech
Technical University in Prague and University of Hradec Kralove in the
Czech Republic, Jan was involved in the development of distributed appli-
cations running on Windows, Linux, and Unix using each platform’s native
code and Java.

Currently, Jan is Lead Programmer of UK-based software company
Cake Solutions Limited (http://www.cakesolutions.net), where he has

helped design and implement enterprise-level applications for a variety of UK- and US-based
clients. In his spare time, he enjoys exploring software architectures, nonprocedural and
Al programming, as well as playing with computer hardware.

As a proper computer geek, Jan loves the Star Wars and The Lord of the Rings series.
Jan lives with his lovely housemates in Manchester in the UK and can be reached at
jan@cakesolutions.net.

oo

JOHN R. FALLOWS is a Java architect at TXE Systems. Originally from North-
ern Ireland, John graduated from Cambridge University in the United
Kingdom and has worked in the software industry for more than ten years.
Prior to joining TXE Systems, John worked as a JavaServer Faces technol-
ogy architect at Oracle. John played a lead role in the Oracle ADF Faces
team to influence the architecture of the JavaServer Faces standard and
to enhance the standard with Ajax functionality in the ADF Faces project.

John is a popular speaker at international conferences such as

JavaOne and JavaPolis, and has written numerous articles for leading IT magazines such
as Java Developer’s Journal. John is coauthor of the highly popular book, Pro JSF and Ajax:
Building Rich Internet Components (Apress, 2006).

Xvii

xviii

Acknowledgments

When people pick up a book, they often think of only the effort the author put into writing
the text. However, creating any book is a team effort that involves the endeavors of many indi-
viduals. I would like to first thank Gary Cornell, who had enough confidence in my work to ask
me to work on a second edition of this book. His confidence, especially coming from someone
with his background and experiences, meant a lot.

I also want to thank the following people:

* Beth Christmas, my Apress project editor, for her tireless effort in keeping this book
on track.

* Ami Knox, my copy editor, whose keen eyes and attention to detail has made sure that
I come across as an intelligent and grammatically correct author. Thanks, Ami!

¢ Jan Machacek, my technical editor. Your comments and careful insight kept me honest
and made sure this book was always the best it could be.

* Rob Harrop, my coauthor. Rob, you brought a lot of energy back into this book. Your
insights and the work you did for this book will always be appreciated.

John Carnell

Many people don't realize just how much work goes on behind the scenes when making a
book like this. First, I want to thank my coauthor, John Carnell, who has an amazing ability to
explain even the most difficult of topics to absolute beginners. Thanks also to our technical
reviewer and my colleague, Jan Machacek, undoubtedly one of the best Struts programmers in
the world. Thanks to everyone at Apress, especially Beth Christmas and Ami Knox; without the
support of such a great team, writing this book would have been an absolute nightmare. A
final word of thanks goes to my girlfriend, Sally, for putting up with me through all the nights I
spent sitting in front of the computer and for listening to all the “cool” stories about Struts.

Rob Harrop

I'would like to thank John, Rob, and the entire Apress team for giving me the opportunity to
edit this book. Steve, Elizabeth, Lori, Bill, and many others who have worked behind the scenes
on this edition, I owe you one! I would also like to thank my wife, Neeta, and my pooches,
Dusty and Snowie, for letting me ignore them over the weekends and focus on this book.

Kunal Mittal

Preface for This Edition

Apache Struts 1.2.x is still the de facto Java industry-standard MVC-based Web framework
despite challenges from JavaServer Faces (JSF), Spring MVC, WebWork, Wicket, and other APIs
and frameworks.

Pro Apache Struts with Ajax is essentially a revision of the previously published Pro
Jakarta Struts, Second Edition that accounts for changes to the open source Apache Struts
MVC web framework in the following ways:

¢ The Struts web framework in this edition is based on final Struts 1.2.x.

e This edition acknowledges the graduation of Struts from Jakarta to Apache within the
Apache Software Foundation.

¢ This edition provides a new chapter that shows how to integrate Ajax (Asynchronous
JavaScript and XML) with Apache Struts.

While this book addresses the above matters, it does not address the evolving and still
nascent Apache Shale nor Struts 2.0, also known as Struts Action Framework 2.0, which com-
bines Struts 2 and WebWork. However, future Apress books likely will address these areas.

Sincerely,
Editors of this revision

[vww allitebooks.cond

Xix

http://www.allitebooks.org

XX

Preface from Previous Edition
(Pro Jakarta Struts, Second Edition)

One of the questions I always get from people when they find out I am an author is “Why did
you get into writing?” While it is fundamentally a simple question to ask, the answer is not so
clear or concise.

If I had to summarize into one sentence why I wrote this book, it would have to be for one
reason and one reason alone: Ilove technology and I love building things with it. I have been
coding since I was 12 years old. I have worked with dozens of technologies, and for the last
four years I have had the opportunity to build enterprise-level software using several different
open source projects.

I have been consistently blown away with the quality and functionality these technologies
bring to the table. One of my favorite open source technologies is the Apache Group’s Struts
development framework. The Struts framework is a powerful Java development framework
that really allows Java web developers to focus on building applications and not infrastruc-
ture.

When I worked on the first edition of this book, I had two goals in mind: First, I wanted to
write a book that would introduce readers to the Struts development framework, but would
not overwhelm them with all of the nitty-gritty details associated with writing Struts applica-
tions. I personally think most people, even advanced developers, learn best by doing and
seeing rather than reading through tons of details.

Second, I wanted people to see how Struts could be used to solve everyday problems they
encounter in building their own web applications. That is why there is such a focus through-
out the book on the concept of identifying common design mistakes (aka antipatterns) and
looking at how Struts can be used to solve these problems.

However, this book always sticks to the core tenet that a framework never absolves the
developer of the responsibility of designing an application. The Struts framework, like any
framework, is a tool, and like any tool can be used inappropriately. That is why this book
emphasizes the importance of good design even when using a framework like Struts. Good
code is never something that unexpectedly appears. It is something that evolves from fore-
thought and clean design.

This book has been designed with both the intermediate and advanced developer in
mind. The application being built in this book is very simple and easy to follow, so anyone
with a basic understanding of JSPs and servlets should be able to very quickly follow along.
However, at every point my coauthor and I always try to call out how simple design decisions
and design patterns can have a significant impact on the long-term health of extensibility.

In the second edition of this book, we have updated all of the material to Struts 1.1.

We have included entire chapters on many of the new Struts 1.1 features (like the Tiles and
Validator frameworks). In addition, we explore a host of other open source technologies, like
ObjectRelationalBridge, Lucene, and Velocity, that when used in tandem with Struts can sig-
nificantly reduce the amount of time and effort it takes to build common pieces of application
functionality.

PREFACE

I guess in the end, I do not consider this book a one-way narrative where you read my
thoughts on a particular topic. Instead, this book is part of an ongoing conversation that I
have had since I fell in love with my first Commodore 64. As such, I always welcome com-
ments (both positive and negative) from my readers. If you have any questions, comments,
or just want to vent, please feel free to contact me at john.carnell@netchange.us. I hope you
enjoy reading this book, and I look forward to hearing from you.

Sincerely,
John Carnell

XXi

CHAPTER 1

What We Do Wrong:
Web Antipatterns Explained

Everything in the universe moves to chaos. What is ordered becomes disordered, what is
created becomes destroyed. This phenomenon has long been observed in the field of physics
and carries the name of entropy.

Definition Webster’s New World Dictionary defines entropy as a measure of the degree of disorder in
a substance or system: entropy always increases and available energy diminishes in a closed system as
in the universe.

Entropy is a phenomenon that is also observed in the field of software development. How
many times have you worked on an application whose initial code base started out neat and
organized, or met your own personal coding and documentation styles, guidelines, and stan-
dards, only to see over time the code base became more and more chaotic as the application
evolved and was maintained? You probably yourself cut corners on your standards due to time
pressures, or while making minor enhancements or bug fixes.

Entropy and the ensuing chaos it brings is the same whether it is being applied to the
laws of physics or a software development project. In a software development project, the
more entropy present within the application and its code base, the less energy available to
write software that meets end-user requirements or overall business goals. Every hour that a
developer spends dealing with hard-to-maintain and nonextensible code reduces the time
available for that developer to write useful software by one hour. This does not even include
the risk of writing buggy code when the original code is not well written in the first place.

Why are software development efforts so prone to move from an ordered state to almost
absolute chaos? There are many reasons that can be given, but all reasons often point back to
one root cause: complexity. Some other common reasons are time pressures, changing or
unclear requirements, or just pure bad habits.

The act of writing code for an application is an attempt to impose structure and order on
some process. These processes can be mundane (for example, determining whether or not
individuals have enough money in their bank accounts to make requested withdrawals) or
very complicated (for example, a missile fire control system trying to ascertain whether an
incoming airplane is a commercial airliner or a military fighter jet). We know this is a stretch
to imagine, but you get the point.

CHAPTER 1 ©© WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED

Most software development professionals have learned that the processes they try to cap-
ture in their code rarely have neatly defined boundaries. These processes are often nonlinear
in nature. They cannot be easily described in terms of discrete steps. Instead these processes
often have multiple decision points that can result in completely different outcomes.

Almost all software is constantly in a state of flux. It is almost always being changed and
updated to meet new end-user requirements. The general perception is that the functionality
of an application can easily be changed without affecting its overall quality and integrity.

The nonlinear nature of software, combined with ever-changing end-user requirements
and perceptions of software malleability, makes it extremely difficult to avoid complexity
within an application. In a software development project, the relationship between entropy
and complexity can be stated as follows: The more complexity a developer has to deal with,
the higher the level of entropy present in the application. This complexity leaves developers
with less time to do what they were hired to do: write software to solve a particular problem
faced by an organization.

Unmanaged complexity results in poorly designed software that is often full of bugs, hard
to maintain, and even harder to extend and reuse. The development team that is responsible
for maintaining the application’s code base will build workarounds and patches onto the soft-
ware until the source code is completely unmanageable. Oftentimes, the chaos surrounding
the application’s implementation and maintenance will force the organization to throw away
the code without ever realizing the full business benefits the software was supposed to give.

At this point, with all of the problems involved with implementing quality software, you
might be questioning why you would even become involved in the field of software develop-
ment.! Things are not as bleak as they might appear. Many of us in the software development
profession do successfully deliver applications that bring value to the organizations we work for.

However, even when we are successful in building applications, we are often left with the
nagging feeling that there should be a better way of building and delivering software. It is pos-
sible to build high-quality software on time and on budget. However, in order to do this, the
software needs to be built on a solid foundation.

Software built without a plan, without a well-laid-out architecture, will soon collapse
under its own weight. However, say the word architecture to many business managers and
developers and you will see a look of pain cross their faces. The word architecture is one of the
most abused words in the software engineering lexicon.

For many business managers, the word architecture invokes images of a whole team of
software developers (often a very expensive team) going off to write code that is very intellec-
tually stimulating for them, but has no value to the business. They see a lot of development
time and resources spent without getting a well-defined Return On Investment (ROI).

For developers, the term architecture often invokes feelings of guilt and longing: guilt,
because many developers realize that there are better ways to write software; longing, because
frankly with enough time and resources a development team could put together a develop-
ment framework that would enable them to write better software.

However, the simple truth is this: Writing a development framework is hard work that
requires dedicated time from senior development resources. Quantifying the value of a devel-
opment framework to the business managers in an organization is an even tougher challenge.

1. One of the authors of this book did so because his criminology degree did not pay nearly as well as his
computer science degree.

CHAPTER 1 ©© WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED

What This Book Is About

This book will demonstrate the use of freely available Java Open Source (JOS) development
frameworks for building and deploying applications. Specifically, we will focus on the JOS devel-
opment frameworks available from the Apache Software Foundation (http://apache.org) as
well as its Jakarta group (http://jakarta.apache.org).

While most books are heavy on explanation and light on actual code demonstration,
this book emphasizes approachable code examples. The authors of this book want to provide
aroadmap of JOS development tools to build your applications. Our intent in this book is not
to present each of the frameworks in minute detail. Frankly, many of the development frame-
works presented in this book could have entire books written about them.

This book will build a simple application using the following Apache technologies, except
for XDoclet:

Struts Web Development framework: A Model-View-Controller-based development frame-
work that enables developers to quickly assemble applications in a pluggable and extensible
manner. This book will highlight some of the more exciting pieces of the Struts 1.2 framework.
These pieces are described next.

Tiles: A new user interface framework that allows a development team to “componentize”
a screen into granular pieces of code that can be easily built and updated.

Dynamic ActionForms and Validator framework: A new set of tools for alleviating many of
the more monotonous tasks of writing web-based data collection screens.

Lucene: A powerful indexing and search tool that can be used to implement a search
engine for any web-based application.

Jakarta Velocity: A templating framework that allows a development team to easily build
“skinnable” applications, whose “look and feel” can be easily modified and changed.

ObjectRelationalBridge (OJB): An object/relational mapping tool that significantly simplifies
the development of data access code against a relational database. ObjectRelationalBridge
can literally allow a development team to build an entire application without ever having to
write a single line of JDBC code.

XDoclet: A metatag-based, code-generation tool that eliminates the need for a developer to
support the usual plethora of J2EE (web.xml, ejb-jar.xml, etc.) and Struts (struts-config.xml,
validation.xml, etc.) configuration files. It is important to note that XDoclet is not an Apache
technology. However, XDoclet has strong support for Struts and has been included as a
topic of discussion for this book.

Ant: An industry-accepted Java build utility that allows you to create sophisticated appli-
cation and deployment scripts.

In addition, this book includes a quick introduction and overview of Asynchronous
JavaScript and XML (Ajax). Ajax is a technology that addresses a very common problem in
web application development. Let me introduce this with the help of an example.2

2. The example described here is also a good example of the Tier Leakage antipattern.

CHAPTER 1 ©© WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED

Assume you have a web site that accepts information about a customer—typical informa-
tion like name, address, telephone number, etc. Some drop-down fields that you are likely to
have are State, City, and Country. Let’s assume that when the customer selects their Country,
you want to automatically refresh the State drop-down with appropriate values, and once
they select a State, you want to refresh the City drop-down. In a typical web application, this
requires a round trip to the server, and causes the entire page to refresh. Based on the amount
of information on the page, this might take a few seconds. In addition, you have to decide
which validations to execute at this stage (most likely none, because the user has not clicked
Save yet). With Ajax, this sort of an operation happens behind the scenes, or asynchronously,
avoiding the page refresh and improving the performance. Only the required information is
sent to the server and a small packet of information is received back and populated onto the
page.

Don’t worry if this is a little confusing at the moment. We will spend a lot of time on this
concept at the end of the book.

What This Chapter Is About

This chapter will not go into the details of the technologies just listed. Instead, it will highlight
some of the challenges in building web applications and explore some common design mis-
takes and flaws that creep into web-based application development efforts.

The truth is that, while all developers would like to write new applications from scratch,
most of their time is spent performing maintenance work on existing software. Identifying
design flaws, referred to as antipatterns throughout this book, and learning to use JOS devel-
opment frameworks to refactor or fix these flaws can be an invaluable tool.

Specifically, the chapter will explore how the following web-based antipatterns contribute
to entropy within an application:

e Concern Slush

» Tier Leakage

e Hardwired
 Validation Confusion
* Tight-Skins

e Data Madness

The chapter will end with a discussion of the cost savings associated with building your
own application development framework versus using the JOS development framework.

Challenges of Web Application Development

In the mid-nineties, the field of software development was finally achieving recognition as
being a discipline that could radically change the way business was conducted. The Internet
was quickly recognized as a revolutionary means for companies to communicate their data
and processes to not only their employees but also their customers.

CHAPTER 1 ©© WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED

Fueling the Internet explosion was the World Wide Web and the web browser. Web
browsers offered an easy-to-use graphical interface that was based on the standards and
allowed easy access to data on a remote server. Originally, the web browser was viewed as a
means of allowing end users to access static content of a web server. Early web applications
were often nothing more than “brochures” that provided users browsing information about a
company and the products and services it offered.

However, many software developers realized that the web browser was a new application
development platform. The web browser could be used to build applications that provided
customers with direct and easy access to corporate applications and data sources. This was a
revolutionary concept because for many businesses, it eliminated the need to have a large
customer service department to handle routine customer requests. It allowed them to make
their processes more efficient and develop a more intimate relationship with their customers.

The “thin” nature of the web browser meant that software could be quickly written,
deployed, and maintained without ever touching the end user’s desktop. Moreover, the web
browser had a naturally intuitive interface that most end users could use with very little train-
ing. Thus, the Internet and the web browser have become a ubiquitous part of our computing
lives and a primary application development platform for many of today’s applications.

The transition of the web from being electronic “brochureware” to an application devel-
opment platform has not been without growing pains. Writing anything more than a small
web application often requires a significant amount of application architecture before even a
single line of real business logic is written.

The additional overhead for implementing a solid web application is the result of several
factors, such as

The stateless nature of the web: Hypertext Transfer Protocol (HTTP), the communication
protocol for the web, was built around a request/response model. The stateless nature
means a user would make a request and the web server would process the request. But
the web server would not remember who the user was between any two requests. Some
development teams build elaborate schemes using hidden form fields or manually gener-
ated session cookies that tie back to state data stored in a database. These schemes, while
meeting the functional needs of the application, are complex to implement and difficult
to maintain over the long term.

The limited functionality of a web browser-based user interface: The web originally started
as a means to share content and not perform business logic. The Hypertext Markup Lan-
guage (HTML) used for writing most web pages only offers limited capabilities in terms of
presentation. A web-based interface basically consists of HTML forms with a very limited
number of controls available for capturing user data.

The large number of users that the web application would have to support: Many times a
web application has thousands of concurrent users, all hitting the application using dif-
ferent computing and networking technologies.

The amount of content and functionality present in the web application: In equal proportion
to the number of end users to be supported, the amount of content and navigability of a
web-based application is staggering. Many companies have web-based applications in
which the number of screens the user can interact with and navigate to is in the thousands.
Web developers often have to worry about presenting the same content to diverse audiences
with a wide degree of cultural and language differences (also known as internationalization).

CHAPTER 1 ©" WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED

The number of systems that must be integrated so that a web application can give its end
users a seamless, friction-free experience: Most people assume that the front-end applica-
tion that a user interacts with is where the majority of development work takes place.
This is not true. Most web application development often involves the integration of
back-office applications, built on heterogeneous software and hardware platforms and
distributed throughout the enterprise. Furthermore, extra care must be taken in securing
these back-end systems so that web-based users do not inadvertently get access to sensi-
tive corporate assets.

The availability of web-based applications: Web-based applications have forced enter-
prises to shift from a batch-process mentality to one in which their applications and the
data they use must be available 365 days a year.

Early web-based development was often chaotic and free flowing. Little thought was
given to building web applications based on application frameworks that abstracted away
many of the “uglier” aspects of web development. The emphasis was on being first to market,
not on building solid application architectures. However, the size and complexity of web
applications grew with time, and many web developers found it increasingly difficult to
maintain and add additional functionality to their applications.

Most experienced software developers deal with this complexity by abstracting various
pieces of an application’s functionality into small manageable pieces of code. These small
pieces of code capture a single piece of functionality, and when taken together as a whole
form the basis for an application development framework.

Definition An application development framework can be defined as follows: A collection of services
that provides a development team with a common set of functionality, which can be reused and leveraged
across multiple applications.

For web applications these services can be broken down into two broad categories:
* Enterprise services

* Application services

Enterprise Services

Enterprise services consist of the traditional “plumbing” code needed to build applications.
These services are extremely difficult to implement correctly and are outside the ability of
most corporate developers.

Some examples of enterprise services include

e Transaction management, to make sure any data changes made to an application are
consistently saved or rolled back across all the systems connected to the application.
This is extremely important in a web application that might have to process the
updates across half a dozen systems to complete an end user’s request.

CHAPTER 1 ©© WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED

¢ Resource pooling of expensive resources like database connections, threads, and
network sockets. Web applications oftentimes have to support thousands of users
with a limited amount of computing resources. Managing the resources, like the
ones just named, is essential to have a scalable application.

¢ Load balancing and clustering to ensure that the web application can scale gracefully,
as the number of users using the application increases. This functionality also ensures
that an application can continue to function even if one of the servers running the
application fails.

e Security to ensure the validation of the users (authentication) and that they are allowed
to carry out the action they have requested (authorization). While security is often con-
sidered an administrative function, there are times when application developers need
to be able to access security services to authenticate and authorize an action requested
by a developer.

Fortunately, the widespread acceptance of building applications based on application
servers has taken the responsibility for implementing these services out of the hands of corpo-
rate developers. Enterprise-level development platforms, like Sun’s J2EE specification and
Microsoft’s .NET, offer all of the functionalities listed previously as ready-to-use services that
developers can use in their applications. Application servers have eliminated much of the
plumbing code that an application developer traditionally has had to write.

This book will not be focusing on the services provided by J2EE and .NET application
servers, rather it will be focusing heavily on the next topic, application services.

Application Services

The enterprise-level development platforms, such as J2EE or .NET, simplify many of the basic
and core development tasks. While the services offered solve many enterprise issues (security,
transaction management, etc.), they do not help the application architect with the often
daunting task of building web applications that are maintainable and extensible. To achieve
the goals of maintainability and extensibility, several challenges need to be overcome:

Application navigation: How does the end user move from one screen to the next? Is the
navigation logic embedded directly in the business logic of the application? Web applica-
tions, having a primitive user interface, can allow users to access and navigate through
thousands of pages of content and functionality.

Screen layout and personalization: As web applications run in a thin-client environment
(with a web browser), the screen layout can be personalized to each user. Since user
requirements are constantly changing, web developers need to adapt the look and feel
of the application quickly and efficiently. Design decisions made early in the application
design process can have a significant impact on the level of personalization that can be
built into the application at a later date.

Data validation and error handling: Very few web development teams have a consistent
mechanism for collecting data, validating it, and indicating to the end user that there is
an error. An inconsistent interface for data validation and error handling decreases the
maintainability of the application and makes it difficult for one developer to support
another developer’s code.

vww allitebooks.conl

http://www.allitebooks.org

8

CHAPTER 1 ©© WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED

Reuse of business logic: This is one of the most problematic areas of web application
development, the reason being that the development team does not have a disciplined
approach for building its business logic into discrete components that can be shared
across applications. The developers couple the business logic too tightly to the web appli-
cation, and resort to the oldest method of reuse, cut and paste, when they want to use
that code in another application. This makes it difficult to maintain the business rules

in a consistent fashion across all of the web applications in the organization.

Data abstraction services: The majority of web application development efforts involve
integrating the front-end web application with back-office data stores. However, data
retrieval and manipulation logic is tedious code to write, and when poorly implemented,
ties the front-end application to the physical structure of the back-office data stores.

Unfortunately, most developers either do not have the expertise or are not given the time
to properly address these issues before they begin application development. With the pressure
to deliver the application, they are forced to “design on the fly” and begin writing code with
little thought to what the long-term implications of their actions are. This may result in
antipatterns being formed within their applications.

These antipatterns contribute to the overall complexity of the application and ultimately
increase the presence of entropy within the code base. Many times, developers do not realize
the impact of these antipatterns until they have implemented several web applications and
subsequently try to support these applications while developing new code.

In the following sections, we are going to introduce you to the concept of patterns and
antipatterns. We will then identify some common antipatterns in web application develop-
ment, based on the preceding discussion.

An Introduction to Patterns and Antipatterns

You cannot open a software development journal or go to the bookstore without seeing some
reference to software design patterns. While many software architects love to enshroud pat-
terns in a cloak of tribal mysticism, the concept of a software development pattern is really
quite simple.

Design patterns capture software development patterns in a written form. The idea
behind design patterns is to identify and articulate these best practices so as to help other
developers avoid spending a significant amount of time reinventing the wheel. The notion of
the design pattern did not originate in the field of software development.

Design patterns originated in the field of architecture. In 1977, an architect by the name
of Christopher Alexander was looking for a method to identify common practices in the field
of architecture that could be used to teach others. The concept of design patterns was first
applied to the field of software engineering in 1987 by Kent Beck and Ward Cunningham
(http://c2.com/doc/oopsla87.html).

However, the embracing of software development design patterns really occurred with
the publishing of the now infamous Gang of Four (GOF) book, Design Patterns: Elements of
Reusable Object Oriented Software (Gamma, Helm, Johnson, and Vlissides, Addison-Wesley;,
ISBN: 0-20163-361-2). First published in 1995, this classic book identified 23 common design
patterns used in building software applications. Over a decade later, this is still one of the
most interesting books in the software space today and is still a best seller.

CHAPTER 1 ©° WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED

The concept of the antipattern was first introduced in the groundbreaking text, AntiPatterns:
Refactoring Software, Architectures, and Projects in Crisis (Brown et al., John Wiley & Sons, ISBN:
0-47119-713-0). The book examined common patterns of misbehavior in system architecture and
project management. As you are going to explore various antipatterns associated with web appli-
cation development, it is useful to look at the original definition (from the aforementioned book)
of the antipattern:

Definition An antipattern s a literary form that describes a commonly occurring solution to a problem
that generates decidedly negative consequences. The antipattern might be the result of a manager or devel-
oper not knowing any better, not having sufficient knowledge or experience in solving a particular type of
problem, or having applied a perfectly good pattern in the wrong context.

An antipattern is a means of establishing a common language for identifying poor design
decisions and implementations within your application. Antipatterns help identify poor
design decisions and help give suggestions on how to refactor or improve the software. How-
ever, the suggestions associated with an antipattern are only that. There is no right or wrong
way of refactoring any antipattern, because every instance of an antipattern is different. Each
instance of an antipattern will often have a unique set of circumstances that caused the pat-
tern to form. Web antipatterns focus on poor design decisions made in web-based
applications.

It is not an uncommon experience for a developer studying an antipattern to stop and
say, “I have seen this before,” or to feel a sense of guilt and think, “I have done this before.”
Antipatterns capture common development mistakes and provide suggestions on how to
refactor these mistakes into workable solutions. However, there is no single way to refactor an
antipattern. There are dozens of solutions. In this book, we merely offer you guidance and
advice, not dogmatic principles.

The web development antipatterns that are identified and discussed throughout this
book are not purely invented by the authors. They are based on our experience working with
lots of development teams on a wide variety of projects.

Web Application Antipatterns

For the purpose of this book, we have identified six basic antipatterns that most Java develop-
ers will encounter while building web-based applications. The web development antipatterns
to be discussed are Concern Slush, Tier Leakage, Hardwired, Validation Confusion, Tight-Skins,
and Data Madness.

Since the original definition of an antipattern is a literary form of communication, we will
discuss antipatterns in general. In addition, symptoms of the antipattern are identified along
with suggested solutions. However, the solutions described in this chapter are only described
at a very high level. Specific solutions for the antipatterns will be demonstrated, throughout
this book, by the application of JOS development frameworks.

10 CHAPTER 1 ©" WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED

We wrote this book with the following key points in mind:

e Most developers are not architects. They do not have the time and energy to write the
application architecture from the ground up and provide constant maintenance to it.
Therefore, practical solutions using an existing application’s framework are more valu-
able than the code snippets demonstrating one part of the application architecture. So
try to leverage other people’s code. Every feature you use in application architecture is
one less feature you have to write and maintain yourself.

¢ There are already several open source development frameworks ready for immediate
use. Writing architecture code might be intellectually challenging for some developers,
but it is often a waste of time, resources, and energy for the organization employing
them.

* Focus on the business logic. The job of most developers is to solve business problems.
Every time they are confronted with writing a piece of code that is not directly related
to solving a business problem, they should try to build a business case for writing
that code. An architecture without a business case is nothing more than an esoteric,
academic coding exercise.

* Keep it simple. The most extensible and maintainable systems are ones that always
focus on and strive for simplicity.

Tip Architecture is done right when it has been implemented in the most straightforward fashion. Sim-
plicity, above everything else, will guarantee the long-term maintainability and extensibility of an application.

Now let’s discuss the different web antipatterns in more detail.

Concern Slush

The Concern Slush antipattern is found in applications when the development team has not
adequately separated the concerns of the application into distinct tiers (that is, the presenta-
tion, business, and data logic). Instead, the code for the applications is mixed together in a
muddy slush of presentation, business, and data tier logic. While development platforms like
J2EE help developers separate their application logic into distinct tiers, it is ultimately how the
application is designed that determines how well defined the application tiers are. Technology
can never replace good design and a strong sense of code discipline.

The Concern Slush antipattern makes the code extremely brittle. Changing even a small
piece of functionality can cause a ripple effect across the entire application. In addition, every
time a business rule needs to be modified or the structure of a data store changes, the devel-
opers have to search the application source code looking for all the areas affected by the
change. This leads to a significant amount of time being wasted.

CHAPTER 1 ©° WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED

REFACTORING

Martin Fowler wrote a classic book on refactoring existing software code. The book, Refactoring: Improving
the Design of Existing Code (Fowler et al., Addison-Wesley, ISBN: 0-201-48567-2), is a must-have on any
developer’s bookshelf.

Unfortunately, he did not cover one of the most common and most unmanageable forms of refactoring:
refactoring through search and replace. One of the most common symptoms of the Concern Slush antipattern
is that when a change has to be made to a piece of code, developers have to open their editor, search for all
occurrences of that code within the application, and modify the code.

A good example of this would be when platform-specific database code is embedded in the business
tier. If a new requirement comes along that requires the application to support multiple database platforms,
developers must go through each of the business objects in their application hunting for references to the
platform-specific code and refactor the code. This can be a huge amount of work and might require extensive
retesting of the application. After all, every time code is touched, it is considered broken until a unit test
proves otherwise.

This type of “refactoring” occurs because developers oftentimes do not separate their application into
cleanly divided tiers of functionality. Instead, the application code evolves and when reuse is needed, rather
than refactor the code out into a single unit that can be called by anyone, the developers employ the oldest
form of reuse: reuse through cut and paste.

This antipattern also tends to lead to insidious bugs creeping into the application,
because invariably the developer will miss some code that needs to be modified. The bugs
resulting from these missed changes might not manifest themselves for several months after
the change to the original code was made. Hence, the development team has to spend even
more time tracking down the missed code and fixing, testing, and redeploying it.

Most of the time, the Concern Slush antipattern will emerge for one of the following reasons:

Lack of an application architect: The development team does not have a senior developer
playing the role of an application architect. The application architect’s primary role is to
provide high-level design constructions for the application. The architect establishes the
boundaries for each of the application tiers. They enforce development discipline within
the team and ensure that the overall architectural integrity of the application stays in
place.

Inexperience of the development team: Members of the development team are new to
enterprise development and write their web applications without a thorough understand-
ing of the technology they are working with. Many times the developers are used to
writing code in a procedural language (such as C or Visual Basic) and are suddenly
appointed to write web-based applications with an object-oriented language like Java.
Development team members continue to rely on their original training and continue to
write code in a procedural fashion, never fully embracing multitiered, object-oriented
design techniques.

Extreme time pressures: Team members realize their mistakes during the development
phase of a project, but they have been given an aggressive deadline to meet. They toss
caution to the wind and begin coding. They often do not realize how poorly designed
the application is until they begin the maintenance phase of the project.

11

12

CHAPTER 1 ©© WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED

Using an application prototype as the base for development: Often, the development team
will work together on a quick prototype for an application as a proof of concept. The code
for the prototype is poorly designed. However, upon demonstrating the prototype, it
becomes a huge success. The developers now fall victim to this success as they are put
under heavy pressure to deliver the prototyped application quickly. Therefore, they
decide to use the prototype code as the basis for the application.

Symptoms

For web applications based on the Java platform, the symptoms for this antipattern will
usually manifest in one of two ways:

* Overloading of responsibilities
 Indiscrete mixing of presentation, business, and data logic

The first symptom, overloading of responsibilities, occurs when a single or small group
of servlets or JSP pages is responsible for all actions carried out by the application. A basic
tenet of object-oriented design is that each class within the system should have a small,
well-defined, and discrete set of responsibilities.

A class, in this case a servlet or JSP page, is overloaded when the exact responsibilities
of the class are not clear. Servlets and JSP pages that do not have well-defined responsibilities
are often said to be fat or heavy. The call to such a page always includes a number of control
parameters that are used by the servlet or JSP page. These control parameters are used by
conditional logic embedded by the servlet or JSP page to determine the code to be executed
within the page.

In the second symptom, a servlet or JSP page mixes together presentation, business,
and data logic into one massive procedure call. An example of this particular symptom is
out.write() statements mixed with business logic and data logic. JSP pages are even more
prone to this abuse because JSP scriptlets make it extremely easy, for even a novice web
developer, to quickly build an application.

In the second symptom, you should assume that no session Enterprise JavaBeans (EJBs)
are being used in the application. When EJBs are used in an application, most developers
will gravitate toward putting the business logic in the EJBs. The Concern Slush antipattern
manifests itself in EJBs, when developers indiscriminately mix data access logic with the
application’s business logic in the EJB.

Solution

The solution is to provide software constructs that adequately separate the application’s
code into readily recognizable presentation, business, and data logic. For Java-based applica-
tions, the JSP Model-2 architecture is the recommended architectural model for building
web applications. The JSP Model-2 architecture is based on the concept of a Model-View-
Controller (MVC) framework.

In an MVC framework, all requests made by the end user are routed through a controller
class (usually a servlet) that determines the business object used to carry out the request. The
data that the users request and the corresponding business object are considered to be a
model piece of the framework. After the business object has processed the user’s request,

CHAPTER 1 ©© WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED

the results are forwarded by the controller to the view portion of the framework. The view por-
tion of the framework is responsible for the presentation logic that renders the results of the
user’s request to the end user. Figure 1-1 presents a conceptual view of an MVC framework.

2. The request is examined by the controller and the
controller sends it to the model. The model processes
the request and returns any data for the end user back
to the controller.

S

1. The end user makes a request
to the controller service

—

End User \
4. The controller routes the HTML \ View

generated by the view back to the
end user.

3. The controller sends the data to the view for
formatting. The view then processes the data and
puts it into a targeted presentation format. In the
case of a web application, the view generates the HTML.

Figure 1-1. An overview of the Model-View-Controller (MVC) framework

The two key features of the MVC framework are as follows:

* The clean separation of the presentation, business, and data logic into self-contained
software constructs: The MVC framework acts as a natural roadmap that helps software
developers ensure that they keep their application’s logic broken into distinct pieces.

* The emphasis on building an application through declarative programming: Since all the
access to presentation, business, and data logic is controlled through a single entity (that
is, the controller), the developer can easily change the behavior of the application by
changing the configuration data being fed to the controller. The application developer
can completely “rewire” the code to display a different presentation interface or apply
different business logic without having to touch the source code for the application.

Tier Leakage

The Tier Leakage antipattern occurs in applications that have been separated into three dis-
tinct layers of application logic (presentation, business, and data). Tier leakage occurs when
code and functionality from one tier are exposed to the other tiers.

This antipattern occurs when the application architect does not enforce the principle of
“closed” tier architecture. A closed tier architecture allows each tier to communicate only with
the tier immediately below it. In other words, the presentation tier can only communicate
with the business tier. It should never bypass the business tier and access data directly. The
communication between the tiers happens via well-defined interfaces that do not expose the
underlying implementation details of that tier to the one above.

13

14

CHAPTER 1 ©" WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED

In the case of tier leakage, application architects break the application into three tiers, but
they also allow communication between the tiers to be open. This means the presentation tier
can still call and invoke services on the data access tier. In addition, even if there is encapsula-
tion of services, the underlying tier details still remain exposed. This allows the developers to
bypass the application partitions put in place and use functionality they do not have access to.

Figure 1-2 illustrates the differences between closed and open tier architectures.

Open Architecture Closed Architecture

« Code is grouped
into logical tiers.
Developers canstill

Presentation Tier Presentation Tier

bypass the tiers and
access functionality e Atier can communicate
that they should not. only with the tier

« Tier -dependent immediately below

Business Tier classes are passed Business Tier or above }t-

back and forth * Well-defined
between the tiers. interfaces abstract

« Implementation the implementation.
details inone tier
are exposed to the

Data Tier other tiers. Data Tier

Figure 1-2. Characteristics of open versus closed multitiered architectures

The end result of not enforcing a closed tier architecture is that while various classes
within the web application can be identified and grouped together in distinct tiers, dependen-
cies still exist between the tiers. This means that the changes to one tier can have side effects
that ripple through the code in the other tiers.

This antipattern occurs when the development team has not defined discrete interfaces
that hide the implementation details of one application tier from another. The causes for the
Tier Leakage antipattern are very similar to those of the Concern Slush antipattern: developer
inexperience, compressed delivery dates, and inappropriate reuse of an application prototype.

Symptoms
Some of the symptoms of tier leakage include the following:

* Changes to one tier break the code in other tiers.

* You find that you cannot easily reuse a piece of code in one tier because of dependen-
cies on a class in another tier.

The first symptom is a common mistake. Instead of wrapping data retrieved from the data
tier, the business tier exposes the details about the data tier, by allowing the data tier objects to
be passed back to the presentation tier. This results in the presentation class being unnecessarily
exposed to the data access technology being used to retrieve data (that is, JDBC, JDO, entity
beans). It also tightly couples the presentation code to the physical column names, data types,

CHAPTER 1 ©© WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED

and data relationships from the database. If physical details of the database change, developers
need to walk through all of the code in the application to reflect the database changes.

The second symptom occurs when the developer allows tier-specific classes to be passed
back and forth between the different tiers. For example, you may have several classes, respon-
sible for the business logic within your web application, that you may want to reuse in a
Swing-based application. However, you cannot easily reuse the business logic, as it accesses
an HttpSession object passed to it. The developer, rather than pulling the data out of the ses-
sion object and then passing it to the business class, passes the HttpSession object directly to
the class.

Solution

You can take three steps to avoid tier leakage:

1. Ensure that all the communication between the different tiers of an application takes
place behind well-defined interfaces. Again, this means that one tier (say, the presenta-
tion tier) should only be able to access the tier immediately below it (say, the business
logic tier). In a Java-based web application, this can be accomplished through the judi-
cious application of J2EE design patterns. (We will be covering certain details of specific
J2EE design patterns. For more information about this, you may refer to J2EE Design Pat-
terns Applied [Juric et al., Wrox Press, ISBN: 1-86100-528-8].) J2EE design patterns like the
Business Delegate, Data Access Object, and Value Object patterns all do an excellent job
of wrapping the implementation details of the classes within a particular tier. These
design patterns will be described in greater detail in Chapters 4 and 5.

2. Perform frequent code reviews. If you are using a version control system, establish a
process where nothing is checked into the version control system without another
developer reviewing it. Provide a checklist of elements in the code that must be archi-
tecturally compliant. Make developers who want to check the code walk through the
code changes they have made and have the reviewer compare this against the compli-
ancy checklist. This review is designed to be very short (no more than five minutes
long). It forces the developers to verbalize exactly what they have written and gives
the reviewer a chance to catch tier leakage mistakes before they creep into the overall
code base.

3. Leverage JOS development frameworks, such as Struts, to abstract away the imple-
mentation details of one tier from the other. These frameworks provide services that
allow you to minimize dependencies between the application tiers.

While any one of these steps can help minimize the risk of tier leakage, you will probably
find that using all three steps combined is the most effective. As you will see in later chapters,
even with application frameworks such as Struts, you will still need to apply the J2EE design
patterns within your application.

Using a development framework can still create dependencies in your code if you are not
careful. You can still end up having your application being too tightly bound to the application
development framework. Chapter 5 will look at how you can leverage various J2EE design pat-
terns to cleanly separate your application code from the development framework.

15

16

CHAPTER 1 ©© WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED

Hardwired

While the Tier Leakage antipattern deals with dependencies being created at the architectural
level of the application, the Hardwired antipattern occurs when developers create dependen-
cies at the application level. Hardwiring arises when the developer does not provide
configurable plug-in points for screen navigation and application business rules. These items
are hard coded into the application source code; thus, any changes to functionality require the
source code to be altered, recompiled, and redeployed.

The Hardwired antipattern makes maintenance of web applications difficult because

e Web applications can have thousands of pages of functionality. Hardwiring the pages that
a user can navigate to directly in the application source code creates tight dependencies
between the pages. This makes it difficult to rearrange the order in which screens are
accessed. It also makes it nearly impossible to break screens into independent entities
that can be reused across multiple applications.

¢ The business rules for a web application are in a constant state of flux. There is an unre-
lenting demand by organizations to provide a personalized web experience to their
customers. Therefore, hardwiring the creation and invocation of business rules directly
to a particular page demands the constant modification of the application source code
by the web development team of the organization.

The Hardwired antipattern develops because the web development team does not use a
declarative approach to build its applications. A declarative design approach separates the
application’s “what happens” functionality from the application’s “how it happens” functionality.

In a declarative architecture, the application is broken into small pieces of functionality
that can be configured together using metadata. Metadata is essentially data about data. In
most application frameworks, metadata is used to define how a user’s request is to be carried
out and processed by the framework.

Metadata is usually stored in configuration files, independent of the application source
code. When the application development team needs to change the behavior of the applica-
tion, it does it by changing the metadata configuration. By using a declarative architecture,
new functionality can be added or existing behavior modified by changing the metadata. Thus
the behavior of the application is not hard coded and does not require a recompilation and
redeployment for the changes to take place.

The advantage of a declarative architecture is that it allows the development team to
introduce new functionality into the application, while minimizing the risk of ripple effects
that the change will have throughout the system. The disadvantage is that it can be overdone
to the point where the application becomes overabstracted and hard to maintain because of
the complex configuration rules, and suffers from poor performance.

Symptoms
The symptoms for the Hardwired antipattern begin to manifest themselves when changes to

the application require functionality that was not in its original scope. The symptoms of hard-
wiring include the following:

* Navigation logic is hard coded directly within the application’s source code. If your
development team has to search through all of the application’s source code to change
a link, your application is showing signs of the Hardwired antipattern.

CHAPTER 1 ©© WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED

¢ The workflow of the application cannot be changed without a significant amount of
refactoring of the application’s source code. If the application you are writing always
assumes that data captured from the end user is always entered in a certain screen
order, then the application is hardwired.

e There is no consistency in how or when a particular screen invokes the business rules.
This inconsistency makes it difficult to maintain the application’s code and also means
that new logic or functionality cannot be “swapped” into the application. This symp-
tom is particularly common in projects with large development teams.

One of the true indications of whether or not your application is suffering from the Hard-
wired antipattern is when a small navigation or business rule change causes major headaches
for you or your development team.

Solution

The Hardwired antipattern can be refactored by taking the responsibility of writing the code
for screen navigation and business rule invocation out of the hands of the application devel-
oper. Instead, this logic should reside as a service within the application architecture. Since
this service is no longer a responsibility for the developer, consistency can be enforced among
the entire development team, and much of the application’s navigation, workflow, and busi-
ness rule invocation functionality can be described as metadata.

The MVC pattern is again an excellent tool for refactoring this antipattern. The controller
of the MVC is responsible for application navigation. The business logic for the application is
cleanly separated from the presentation logic. Metadata is used to tie all of these different
pieces together.

Even if an MVC development framework is used, the only true way to guarantee that a
Hardwired antipattern does not develop is through strong software development practices.
These practices include the following:

* Use design patterns judiciously to ensure that hardwiring does not occur between your
application code and the development framework you are using to build the applica-
tion. We will explore these design patterns in greater detail in Chapters 4 and 5.

e Write an application framework development guide that explains to your development
team how the application framework is partitioned into different pieces. Clearly iden-
tify the architectural best practices and identify those practices that violate the integrity
of the framework. The framework developer’s guide must be constantly updated, to
ensure that material contained within it matches the current implementation of the
framework. Depending on the complexity of the project, your development guide
might be something as simple as a set of UML diagrams explaining the major frame-
work components along with some notes about any design patterns used. Do not
always rely on the JOS framework documentation. JOS projects can have haphazard
documentation.

e Use the application framework development guide as a tool during code and design
reviews. Hold these review sessions frequently and make the developers accountable
for adhering to standards defined in the guide.

vww allitebooks.conl

17

http://www.allitebooks.org

18

CHAPTER 1 ©© WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED

Do not become overzealous while avoiding hardwiring in your applications. It is easy to
want to make everything in the application configurable.

Tip Good application architecture lies in its simplicity. You always have to negotiate between the need
to generalize and abstract framework functionality and the need to avoid tight dependencies. In the end,
overabstraction or tight dependencies both lead to the same problem: code that is too complex to under-
stand and maintain easily.

The Struts development framework takes a declarative approach to writing applications.
This framework allows you to change the behavior of the application by modifying configura-
tion files. In both of these frameworks, application configuration is very easy and is designed
to avoid the overabstraction problems mentioned previously.

Validation Confusion

The Validation Confusion antipattern revolves around the inconsistent application of valida-
tion and business logic in an application. Many web application developers do not clearly
separate the application’s validation logic from its business logic in an organized fashion.

The end result is the application consisting of a mess of JavaScript and server-side code
for handling data validations. The data validation code is split between the front-end screens
and also embedded within the business rules that carry out end-user requests. Logic for
handling end-user errors is often inconsistently applied and mixed with the business logic.

For the purpose of this book, validation logic is defined as any type of user interface code
that involves the following:

¢ Formatting of data being presented or collected from the end user.
¢ Checking to ensure the user entered the required data.

» Type checking to ensure that the data entered is the appropriate type. For instance, you
want to make sure that when users are asked to enter numerical data in a field, they do
not enter a nonnumeric character or nonnumeric string.

» Simple bound-checking logic to ensure that the data collected falls within a certain
range (whether it is numeric or date data being collected).

Validation logic is considered extremely “lightweight.” Validation rules are considered
light, because changing them should not have a significant amount of impact on the overall
business processes supported by the application. Business logic is the “heavyweight” cousin
of validation logic. Business logic supports business processes. Changing this logic can have a
significant impact on how a business is operated.

Why worry about the separation of validation logic from business logic? Failure to sepa-
rate these two types of logic from one another makes it difficult to support the code. Since the
validation logic is not centralized, developers have multiple spots to check when modifying a
business rule.

CHAPTER 1 ©© WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED

More importantly, not cleanly partitioning the application’s validation logic from its busi-
ness logic can make it more difficult to reuse that business logic in another application. How
validation rules are enforced and communicated to the end user is often very specific to an
application. Business logic can be abstracted, generalized, and reused across multiple appli-
cations. However, with validation rule invocations specific to the application embedded inside
of the business logic, a tight dependency is created that makes code reuse problematic.

A clean validation logic approach can help avoid the antipatterns mentioned previously,
namely Concern Slush and Tier Leakage. The validation layer can be responsible for adapting
the input provided by the user interface to the input required by the business logic. This can
help prevent the user interface details from leaking down into the business logic.

This antipattern occurs when members of the web development team have not clearly
defined how they are going to handle the validation of the data collected from the end user.
They pass all of the data directly to the business rules in their application, without first putting
the data through some kind of filter that ensures data validity.

Symptoms

Validation Confusion can be spotted in any of the following cases:

¢ When asked where a particular validation rule for a screen resides, a developer has to
search through presentation (that is, a language like JavaScript or JSP scriptlets) and
business tier code to find the exact spot of the validation rule.

* The development team needs to constantly refactor code, because application-specific
validation rules are embedded inside of the business logic this team wants to reuse.

* There is no consistent mechanism for how validation errors are handled. End users
encounter different formats for presenting error messages. For example, in an applica-
tion with validation confusion, some of the errors might be displayed directly in the
web browser, while other errors will pop up in JavaScript alert windows. In short, there
is no consistency in the error handling that the end user experiences.

Solution

Refactoring the Validation Confusion antipattern can be accomplished by defining a consis-
tent set of services used for form validation in the web application. These validation services
are invoked before any of the business logic for the application is invoked. Any validation
errors that occur are immediately processed, and the end user is notified in a consistent and
repeatable fashion.

This means that the validation for the application only resides in one tier of the applica-
tion, using a consistent mechanism, for invoking the validation rules. This might mean having
all of the application validation logic reside in a standard set of JavaScript class libraries, or, as
is the case with Struts, moving all validation logic for a form to a set of Java classes that are
invoked whenever the user submits data.

In Chapter 3, we will discuss the mechanism provided by Struts for handling form valida-
tion and error.

19

20

CHAPTER 1 ©© WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED

Tight-Skins

Web-based applications have the ability to deliver unprecedented amounts of personalized
content to the end user. Traditionally, companies pushed information out to their customers
in a mass-marketing approach. In this approach, customers were categorized into broad
groups who shared similar interests and backgrounds. The company would then direct differ-
ent advertising messages about its products to these groups. This mass-marketing approach
was considered successful if the organization running the marketing campaign received a
response rate of 1 percent.

The web development platform, with its thin-client, easy-to-use, personalizable interface,
has turned the mass-marketing concept on its head. Web-based applications can deliver
tightly focused information and functionality to individual users, with very specific prefer-
ences and interests. Many of the sophisticated web applications currently online have the
following characteristics:

¢ End users can choose the information and content that they want to see.

¢ End users can also personalize the color, font, and layout of the web application user
interface to reflect their personal choices.

» Aglobal audience is reached by presenting the web application in various languages,
using a look and feel appropriate for a particular end user’s culture.

However, the ability to deliver a customizable user interface to the end user requires some
careful planning in the design phase of a project. The Tight-Skins antipattern is a presentation
tier antipattern. It forms when the development team has not built its presentation tier to be
flexible enough to handle personalized content for individual end users.

This antipattern can occur for a number of reasons:

e The original requirements of the application did not include an extensible user inter-
face. However, requirements for the application changed. Since the development team
had not planned interface flexibility up front, it now has to face the challenge of refac-
toring the presentation tier of the application to support it.

e The development team was too focused on reuse at the business and data tier. The
team wrote the presentation tier in a monolithic fashion that did not have a component
structure. Most developers are very comfortable thinking in terms of generalization,
abstraction, and extensibility for server-side logic. However, the presentation code is
often written with no real attempt to “templatize” it into components that can be easily
swapped in and out of the application.

¢ The development team used the presentation code from the application prototype
(if there is one) for the production application. This is usually done to save time and
is again a reflection of the lack of design consideration for the user interface.

Unfortunately, the only way to combat the Tight-Skins antipattern, after it is formed, is
to rewrite the user interface from scratch. This is why it is critical to identify personalization
requirements for the application before any serious development work begins.

CHAPTER 1 ©© WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED

Symptoms
This antipattern has a number of symptoms including the following:

e The application’s content is not separate from the application code. If you need to mod-
ify your application’s source code to change the content delivered to the end user, this
is a definite sign of a Tight-Skins antipattern. A common example would be when a JSP
page has a significant amount of JSP scriptlet code and HTML mixed together. Tight
coupling could exist between some of the contents of the page and the JSP scriptlets.

e The application screens are not based on templates. You have not designed your appli-
cation’s screen so that it is divided into discrete components (that is, the header, the
footer, navigation bars, etc.), without which you will find yourself propagating the same
change across multiple screens.

e The presentation tier is hard coded in one language. Many web applications start out
supporting only one group of people. All content for the application is written in only
that language. If the development team has to support multiple languages, it usually
has to scour all code for any content that will be displayed to the end user and then
translate it over to the new language. This is especially painful if more than two lan-
guages have to be supported.

Solution

The solution for the Tight-Skins antipattern involves cleanly separating application content
from your Java source code. This way the content can be presented in multiple formats with-
out having to wade through code. This also makes it easier to change how the content is to be
displayed to the end user. Some ways of separating the application’s content from its source
include the following:

» Use JSP tag libraries to completely abstract any Java code from a JSP page. This way
presentation content can easily be changed without having to wade through Java
application code.

* The Struts framework makes heavy use of custom JSP tag libraries. Some of the
Struts tag libraries will be covered in greater detail in Chapter 3.

¢ In addition to Struts, a developer can use a templating framework like Jakarta’s
Velocity framework to avoid embedding Java code inside the application.
Chapter 12 of this book will introduce you to the Velocity templating language
and its various uses.

¢ Separate the application’s content by making it external to the application’s source
code. Struts allows you to separate screen content and messages in a file independent
of the application. This way, content can be changed without having to change the
actual JSP page. This material will be covered in Chapter 4.

* Build your application’s screens using a template. The Struts 1.1 framework now allows
developers to build screen templates, based on a collection of tiles. Each individual tile
within a screen template represents a small component that can be easily plugged in,
pulled out, or even shared across multiple screens. Tiles also allow common elements
in the presentation to be shared across all of the screens in the application.

21

22

CHAPTER 1 ©© WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED

Data Madness

Most web developers know that embedding data access logic inside of presentation code is
poor design. Applications written in this fashion are difficult to maintain, and are tightly cou-
pled with the underlying data structure of the database that they are manipulating. A change
to the database can cause many elements of the user interface to be visited and often modi-
fied.

Many Java-based web development teams never allow the presentation layer of an appli-
cation to directly obtain a database connection and use it to access a data store. Instead, they
always wrap these calls inside of the business tier. The development team never breaks out the
Create, Retrieve, Update, and Delete (CRUD) logic associated with manipulating the data into
a distinct set of classes. Instead, the team intermixes business and data access logic together
inside the business tier.

The Data Madness antipattern forms when the application’s architect does not decide
how data access logic is to be abstracted away from the other tiers in the application. When
building a data access tier, the following items have to be considered:

¢ How data is going to be accessed and manipulated

* Mapping relational data to Java-based objects

* Abstracting away physical details and relationships of the underlying data store
* Wrapping nonportable, vendor-specific database extensions

e How transactions are going to be managed, particularly transactions that cross multiple
objects manipulating data from a data source

As most developers do not think of the data access tier while designing, the formation of a
Data Madness antipattern can significantly increase the amount of time and effort needed to
complete a project. Consider the following:

e Most database access in Java is accomplished via the JDBC standard.

¢ The JDBC standard uses standard SQL code to retrieve and manipulate data from a
relational database. It is very easy to write poorly behaving SQL. Furthermore, JDBC
and SQL code can be fairly tedious, in that oftentimes it requires a significant amount
of code to perform even small data access tasks like retrieving data from or inserting
data into a table.

* The JDBC API, while using Java objects in the actual API, does not take an object-
oriented approach to data access. JDBC uses a relational model that retrieves data in
a very row-oriented relational manner. This method of access is very clumsy and time
consuming for a Java developer to work with.

* In a medium to large application, a significant amount of a developer’s time can be
spent doing nothing more than writing JDBC code to access data.

A significant amount of the development team’s time is taken up writing data access code
(usually SQL code). Code that does not fit an object-oriented development model is prone to
be coded improperly, and is scattered haphazardly through an application’s business tier. This
is the crux of the Data Madness antipattern.

CHAPTER 1 ©© WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED

Symptoms

Most development teams do not see the symptoms of the Data Madness antipattern until they
are well along in their development efforts. The first symptoms of the Data Madness antipat-
tern include the following:

» The same data access logic is repeated within several business logic classes. This symptom
is particularly prevalent in large development projects where very little development work is
being done in the database (there are no stored procedures, triggers, or queries being exe-
cuted inside the database). Developers are left to write their own data access code, and often
two developers will go after the same data for use in two different areas in the application
and end up with almost identical data access code.

e Members of the development team suddenly realize that they are seriously behind
schedule on the project. Upon examination, they find that most of their efforts are
spent writing database code.

» Data access helper classes and “homegrown” persistence frameworks suddenly appear
within the application source code. These helper classes might help reduce the amount
of code the developer is writing, but they do not solve the overall architectural issues of
not having a well-defined data access tier.

e The development team is unable to define the data access tier in anything other than
database or data access technology. Many development teams put a significant amount
of thought into how their application’s middle tier is designed. However, most develop-
ment teams treat the data access tier in physical rather than logical terms.

¢ A database has to be reorganized for performance reasons. If several table relationships
need to be changed, the development team faces a daunting refactoring project, as it
has to pour through all of the source code and make modifications to reflect the under-
lying database change.

* The developers try to port the application to a new database platform and find that
several key pieces of logic are relying on vendor-specific functionality. For example,
one of the most common problem areas is the generation of primary keys for a data-
base. Without a well-designed data access tier, moving an application from SQL Server
to Oracle can be a coding nightmare. SQL Server features auto-incrementing columns,
while Oracle uses sequence objects. This means to port the code you need to find every
SQL statement that uses sequences and change it. This is not a small task in a large
project. With a well-defined data access strategy in place, the development team could
have abstracted how primary keys are generated, and centralized all of this logic in one
class responsible for primary key generation.

* The development team wants to refactor the application to use the latest and greatest
technology (Java Data Objects, Web services—you choose the buzzword). Since the
technology used to retrieve and manipulate data is not abstracted away from the
classes using the data, the development team must again perform search-and-replace
missions to find all code that uses the existing technology, and replace it.

23

24

CHAPTER 1 ©© WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED

Solution
Two steps can be taken to refactor the Data Madness antipattern:

1. Include a clearly defined data access tier, which provides services that the business tier
can use to access data. These services should abstract away the physical details of the
database being accessed, any vendor-specific APIs being used, and how the data is
actually being retrieved.

2. Avoid writing data access code, whenever possible. Use technologies that will let the
developer map the underlying database tables to Plain Old Java Objects (POJOs). These
significantly reduce the amount of code that development team members must write
and let them more clearly focus on the functionality of the application.

The first step is a design-based approach involving the use of common J2EE data tier pat-
terns, like the Data Access Object and Value Object patterns, to abstract away database and
data access details. These patterns are extremely easy to implement and when used, help the
development team maintain data tier code without affecting the rest of the application.

The second step is a technology-based approach. Java is an object-oriented language that
is not well suited to deal with the table-centric structure of relational databases. Instead of
having the development team write its own SQL code, use an Object Relational (O/R) map-
ping tool to perform CRUD actions on behalf of the developers.

O/R mapping tools allow the development team to declare how data retrieved from the
database maps to Java objects. O/R mapping is not a new concept. The J2EE API supports the
concept of Container Managed Persistence (CMP) based entity beans. CMP-based entity beans
allow the developer to provide O/R mappings to the J2EE application server, and in turn, the
application server generates all of the SQL code needed to access the database.

An alternative to entity beans is to use commercial O/R mapping tools. These tools have
been available for years to C++ developers and have started gaining a significant amount of
acceptance from the Java development community.

Commercial O/R mapping tools, while being very powerful, often carry long and expen-
sive licensing agreements. They are often complicated to use and, being commercial products,
require a heavy investment in training before the development team becomes proficient in
their use.

However, over the last two years, JOS O/R mapping tools have started gaining more and
more acceptance as an alternative means of building data access tiers. In Chapter 5 of this
book, we are going to examine how one such JOS O/R mapping tool, ObjectRelationalBridge,
can be used to solve many of the problems created by the Data Madness antipattern.

Antipatterns, JOS Frameworks, and Economics

When web antipatterns form in an application, the cost of building and maintaining that
application grows substantially. The development team’s time is eaten up with the complexity
that has crawled its way into the application. Less time is available to write real code, and the
code that is written is usually of mediocre quality.

Why are these antipatterns allowed to form? Very few developers purposely write poorly
designed applications. We believe that web development frameworks can significantly reduce
the occurrences of web antipatterns forming within an application. Antipatterns sometimes
appear because applications are extremely complex to build and implement.

CHAPTER 1 ©© WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED

Again, developers do not purposely go out and introduce these antipatterns. These
antipatterns often occur because the developers try to manage the complexity of just imple-
menting the application’s business logic. At times, they do not realize that the decisions they
make now will come at a high price later when an antipattern manifests itself.

A well-designed web development framework will promote consistency and structure for
the development team. A framework will provide core application services for screen naviga-
tion, data validation, error handling, business rule management, and data persistence. With
all of these benefits, why haven’'t more Java web developers adopted the use of web develop-
ment frameworks in their application development efforts? The reasons vary:

* Writing a web development framework is expensive.

* Writing a development framework usually requires senior developers and architects
with a significant amount of design expertise.

* Development teams have not been able to build a business case for spending the
money necessary to build an application framework.

* The development team had to spend the time necessary to maintain the development
framework.

Until recently, open source development frameworks have not been readily available to
developers. This meant that if a development team wanted to use a framework, they needed to
build it themselves. Writing a homegrown development framework can be an expensive
undertaking. It usually requires a group of senior developers several months of uninterrupted
time to design, implement, and thoroughly test the development framework.

Most IT organizations do not have senior developers and architects sitting around with
nothing to do. Usually these individuals are extremely overallocated, and giving them the time
to focus on one problem requires commitment from the highest level of management. Even
after the framework is completed, additional ramp-up time is needed as the framework devel-
opers begin training the development teams in how to use the framework.

For example, the Struts framework has a significant number of services embedded in it.
To write an in-house version that offers even a fraction of the services offered by Struts, you
have to take into consideration the resources that have contributed to the Struts framework:

* The Struts framework was built by some of the finest developers currently in the indus-
try. Many of these individuals are senior Java developers who command extremely high
salaries.

* The Struts framework has had literally hundreds of individuals testing and debugging
the framework. Most organizations could not even begin to provide a quality assurance
(QA) team that could thoroughly debug a framework like Struts.

* Struts is now a mature framework that has literally hundreds of client implementations
all running on a wide variety of hardware and Java platforms.

For an organization to build a framework like Struts for internal use with the same level of
sophistication and quality assurance could literally cost between a half a million and a million
dollars.

Let’s not forget that even after a custom framework has been built, the costs of the frame-
work continue to accumulate, as you begin to factor in the development resources needed to
maintain and support the framework code base.

25

26

CHAPTER 1 ©© WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED

For organizations building their own application frameworks, it can take a year to a year
and a half before the organizations start seeing firm ROI from their framework development
efforts. (This includes the time needed to develop the framework and actually build two or
three applications using the framework.) This is simply too large of a leap of faith for most
companies to make.

Java Open Source development frameworks offer a viable alternative to building your own
application architecture. These frameworks provide the following advantages:

They are free to use. Most JOS frameworks have a liberal licensing agreement that lets you
use the framework free of charge for building your applications. The only real restrictions
that come into play with open source development tools is that the group sponsoring the
tools places restrictions on repackaging the tools and selling them as your own.

They are well supported. All of the open source development frameworks covered in this
book enjoy a significant amount of support. High-priority bugs that are discovered within
the framework are usually fixed and made available for general use within hours. In addi-
tion, mailing lists and Internet newsgroups offer a wealth of information on how to solve
common development problems encountered with JOS development frameworks.

The information is free of charge and, unlike most commercial software products, does not
require an annual support contract. Some open source projects have groups willing to sell
support for the product. JBoss (http://jboss.org) not only builds the JBoss Application
Server, but also offers different levels of paid support for the project.

They are extensible. If you find there are features lacking in the framework you have
chosen, there is nothing stopping you or your development team from extending it.

The source code is readily available for modification. Many of the features found in open
source frameworks started out as the result of challenges encountered by developers
using the framework. The developers extended the framework to handle their problems
and then donated their solutions back to the framework’s code base.

There are a couple of downsides with open source development frameworks that should
be noted:

Documentation for an open source framework can be extremely vague. People writing the
frameworks are donating most of their time and energy to do something that they love:
write code. But the same level of attention is not paid to the mundane but equally impor-
tant task of writing documentation. Occasionally, a JOS development framework does
require the developer to crack open a debugger to figure out what the framework is doing.

Open source frameworks tend to be very Darwinistic when it comes to features in the frame-
work. High-priority bugs in the JOS frameworks are often found and fixed immediately.
However, bugs that are of a low priority for the JOS framework developers might never be
fixed. This can be problematic for a development team using the framework that needs
that particular bug fixed.

JOS development frameworks are relatively new technology. Things can still go wrong with
them, and they cause unexpected behavior in your application. It is imperative that if
your development team is going to write mission-critical software with a JOS framework,
it needs to perform a significant amount of testing. In addition, the developers need to
ensure that the framework that they have chosen to use is supported by a vibrant devel-
opment group that actively supports their code.

CHAPTER 1 ©° WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED

Open source frameworks free a development team from having to invest its time in writ-
ing infrastructure code. Infrastructure code is the entry price you must pay before you can
seriously begin writing an application. From the authors’ anecdotal experiences, in many
projects, up to 40 to 60 percent of development effort involves the implementation of infra-
structure code. For the “we don’t have time for architecture” development teams, that 40 to 60
percent of infrastructure development effort is usually spent in increased maintenance of the
application over the course of its lifetime.

Note Trying to cut costs by implementing complex architectures shifts the up-front architect and infra-
structure costs to the maintenance phase of the application.

Ultimately, leveraging the functionality in open source frameworks translates into three
direct benefits:

* Less complexity for application developers in writing their applications
* More focus on writing code that has a direct benefit to the organization

* Asignificant cost savings, by allowing the development team to access a significant
amount of functionality without having to pay a dime for it

These benefits allow the developers to produce higher quality code and deliver their
applications more quickly to their end users.

From a management perspective, there are still some items to consider before you use a
JOS development framework on your projects:

» Using a Java Open Source framework does not eliminate the need to have an application
architect or architecture team. You still need individuals who can support JOS frame-
work questions and issues.

* Theinitial adoption of a JOS framework does require extra time to be built into a project
plan. The development team is going to need time to learn how to effectively use the
JOS framework. This means that the first one or two applications built on the frame-
work might take more time than what they would have taken without using the
framework.

e For the first application built on the framework, you should have someone who is experi-
enced with the framework to mentor your team. This might require bringing in outside
consulting resources. Consulting costs will be market rate if the JOS framework chosen
is widely known and used (that is, Struts). For more obscure JOS frameworks, consult-
ing costs could be significantly higher.

The JavaEdge Application

As stated earlier in this chapter, the purpose of this book is to provide a simple and straightfor-
ward roadmap that demonstrates how to successfully use the Apache web development
frameworks. To do this, we are going to show you how to build a simple weblog application

vww allitebooks.conl

27

http://www.allitebooks.org

28

CHAPTER 1 ©© WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED

(also known as a blog). A weblog, in its simplest form, is an electronic bulletin board on which
one user can post a story and other users can comment on it. Often, a weblog ends up being a
combination of reports on real-world events with a heavy dose of editorial bias from the story-
writers and their commentators. The example weblog is called JavaEdge.

The requirements for the JavaEdge application are as follows:

Visitor registration: Individuals who visit the JavaEdge blog can register themselves to be
the members of the JavaEdge community. By registering, users can receive the weekly
JavaEdge newsletter.

Browse stories: Visitors of the JavaEdge web site will be able to see the latest top ten stories
posted by the JavaEdge community. When browsing the stories, the JavaEdge user will be
able to see a short summary of the story. Clicking a link next to each story will bring up
the complete story listing.

Browse comments: When users click a link next to each story, they will be presented with
not only a complete listing of the story they have chosen, but also all of the comments
associated with that particular story. Each posted comment will display the comment
text, when the comment was posted, and who posted it.

Post stories and comments: Individuals can post a story or comments for an already exist-
ing story. If the individuals choose to register themselves as JavaEdge members, any
stories or comments posted by them will show the name they provided during the regis-
tration process. If they do not register as JavaEdge members, they can still post stories and
comments, but their name will not appear next to the story. Instead, the story will appear
to be posted by an anonymous user.

User registration: Users can register to become members of the JavaEdge community by
providing some simple information (such as name, e-mail, user ID, password, etc.).

Search capabilities: A user can search all the stories posted on the JavaEdge web site using
a simple keyword search engine. Any hits found by the search engine will be displayed as
a list of URLs.

The application code for JavaEdge is relatively sparse because we wanted to focus more
on the underlying open source frameworks than building a full-blown application. In addition
to demonstrating the capabilities of the Apache Java development frameworks, the applica-
tion will illustrate some basic design principles that will ensure the long-term maintainability
and extensibility of the JavaEdge code base.

Summary

Not every application developer needs to be an architect. However, all application developers
need to have some basic understanding of software architecture. Otherwise, it is easy to
bypass common design mistakes that form antipatterns that can make code difficult to sup-
port and extend.

CHAPTER 1 ©© WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED

This chapter has identified six common antipatterns that often spring up in web-based
application development. These antipatterns include

e Concern Slush

e Tier Leakage

e Hardwired
 Validation Confusion
 Tight-Skins

e Data Madness

Along with descriptions of these antipatterns, we discussed general solutions to these
antipatterns. A common theme that has formed throughout the discussions of solutions is
that JOS development frameworks offer a structured mechanism to develop applications and
minimize the amount of infrastructure code being written. Developing an application frame-
work is an expensive proposition. Open source frameworks have the advantage of being

¢ Free of charge
» Supported by a large and enthusiastic development community
» Easily extended to support new features and functionality

We also discussed the requirements of the JavaEdge application that we are going to
develop in this book.

The rest of this book will demonstrate the technique to use the following open source
frameworks to refactor the antipatterns discussed earlier:

e Struts web development framework

* ObjectRelationalBridge (OJB)

e XDoclet

* Velocity template engine

After reading this book, you should have

* A working definition of what an application framework is, the knowledge of the costs
and efforts of building an application development framework, and the attractiveness
of the open source framework.

¢ The ability to identify web antipatterns within your own projects. You should be able to
understand the root causes of these antipatterns and the long-term architectural impli-
cations of the antipatterns.

¢ An understanding of what steps needs to be taken to refactor the antipatterns.

29

30 CHAPTER 1 ©© WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED

¢ The ability to use common JOS development frameworks, like Struts, to refactor these
antipatterns out of your applications.

¢ A comprehensive set of best practices for each of the frameworks discussed in this
book. These best practices will cover a range of topics including what are common
development mistakes when using the framework and what design patterns can be
used to supplement the services offered by the framework.

CHAPTER 2

Struts Fundamentals

Building aweb-based application can be one of the most challenging tasks for a development
team. Web-based applications often encompass functionality and data pulled from multiple IT
systems. Most of the time, these systems are built on a variety of heterogeneous software and
hardware platforms. Hence, the question that the team always faces is, how do we build web
applications that are extensible and maintainable, even as they get more complex?

Most development teams attack the complexity by breaking the application into small,
manageable parts that can communicate with one another via well-defined interfaces. Gener-
ally, this is done by breaking the application logic into three basic tiers: the presentation tier,
business logic tier, and data access tier. By layering the code into these three tiers, the devel-
opers isolate any changes made in one tier from the other application tiers. However, simply
grouping the application logic into three categories is not enough for medium to large proj-
ects. When coordinating a web-based project of any significant size, the application architect
for the project must ensure that all the developers write their individual pieces to a standard
framework that their code will “plug” into. If they do not, the code base for the application will
be in absolute chaos, because multiple developers will implement their own pieces using their
own development style and design.

The solution is to use a generalized development framework that has specific plug-in points
for each of the major pieces of the application. However, building an application development
framework from the ground up entails a significant amount of work. It also commits the devel-
opment team to build and support the framework. Framework support forces the development
team to exhaust resources that could otherwise be used for building applications.

The next three chapters of this book introduce you to a readily available alternative for
building your own web application development framework, the Apache Struts development
framework. These chapters do not cover every minute detail associated with the Struts devel-
opment framework; instead, they are a guide on how to use Struts to build the JavaEdge
application, introduced in Chapter 1.

This chapter is going to focus on installing the Struts framework, configuring it, and
building the first screen in the JavaEdge application. We cover the following topics in this
chapter:

* A brief history of the Struts development framework.
* A Struts-based application walkthrough.

* Setting up your first Struts project, including the physical layout of the project, and an
explanation of all the important Struts configuration files.

31

32

CHAPTER 2 = STRUTS FUNDAMENTALS

» Configuring a Struts application. Some of the specific configuration issues that will be
dealt with here include

* Configuring the Struts ActionServlet
* Configuring Struts actions in the struts-config.xml file

* Best practices for Struts configuration

In addition to our brief Struts configuration tutorial, we are going to discuss how Struts
can be used to build a flexible and dynamic user interface. We will touch briefly on some, but
not all, of the custom JSP tag libraries available to the Struts developer. Some of the things you
can do with tag libraries that will be covered in this chapter include

e Manipulating JavaBeans by using the Struts Bean tag library

* Making JSP pages dynamic by leveraging the conditional and iterating power of the
Struts Logic tag library

Let’s begin our discussion with some of the common problems faced while building an
application.

The JavaEdge Application Architecture

The JavaEdge application, which we are going to show you how to develop, is a very simple
weblog (that is, a blog) that allows the end users to post their stories and comment on the
other stories. We have already discussed the requirements of the JavaEdge application in
Chapter 1 in the section called “The JavaEdge Application.” The application is going to be
written completely in Java. In addition, all the technologies used to build this application
will be based on technology made available by the Apache Software Foundation.

In this section, we'll focus on some of the architectural requirements needed to make this
application extensible and maintainable. This application is built by multiple developers. To
enforce consistency and promote code reuse, we will use an application development frame-
work that provides plug-in points for the developers to add their individual screens and
elements.

The framework used should alleviate the need for the JavaEdge developers to implement
the infrastructure code normally associated with building an application. Specifically, the
development framework should provide

» Aset of standard interfaces for plugging the business logic into the application: A devel-
oper should be able to add and modify new pieces of functionality using the framework
while keeping the overall application intact (that is, a small change in the business logic
should not require major updates in any part of the application).

* A consistent mechanism for performing tasks: This includes tasks such as end-user data
validation, screen navigation, and invocation of the business logic. None of these tasks
should be hard coded into the application source code. Instead, they should be imple-
mented in a declarative fashion that allows easy reconfiguration of the application.

» Aset of utility classes or custom JSP tag libraries that simplify the process in which the
developer builds new applications and screens: Commonly repeated development tasks,
such as manipulating the data in a JavaBean, should be the responsibility of the frame-
work and not the individual developer.

CHAPTER 2 © STRUTS FUNDAMENTALS

The chosen development framework must provide the scaffolding in which the applica-
tion is to be built. Without this scaffolding, antipatterns such as Tier Leakage and Hardwired
will manifest themselves. We will demonstrate how Struts can be used to refactor these
antipatterns in this chapter. Now, let’s start the discussion on the architectural design of the
JavaEdge application.

The Design

We will use a Model-View-Controller (MVC) pattern as the basis for the JavaEdge application
architecture. The three core components of the MVC pattern, also known as a Model-2 JSP
pattern by Sun Microsystems, are shown in Figure 2-1.

L)

Controller

User |« View

Figure 2-1. A Model-View-Controller pattern

The numbers shown in the diagram represent the flow in which a user’s request is processed.
When a user makes a request to an MVC-based application, it is always intercepted by the con-
troller (step 1). The controller acts as a traffic cop, examining the user’s request and then invoking
the business logic necessary to carry out the requested action.

The business logic for a user request is encapsulated in the model (step 2). The model
executes the business logic and returns the execution control back to the controller. Any data
to be displayed to the end user will be returned by the model via a standard interface.

The controller will then look up, via some metadata repository, how the data returned
from the model is to be displayed to the end user. The code responsible for formatting the
data, to be displayed to the end user, is called the view (step 3). Views contain only the presen-
tation logic and no business logic. When the view completes formatting the output data
returned from the model, it will return execution control to the controller. The controller, in
turn, will return control to the end user who made the call.

The MVC pattern is a powerful model for building applications. The code for each screen
in the application consists of a model and a view. Neither of these components has explicit
knowledge of the other’s existence. These two pieces are decoupled via the controller, which
acts as intermediary between these two components. At runtime, the controller assembles
the required business logic and the view associated with a particular user request. This clean
decoupling of the business and presentation logic allows the development team to build a

33

34

CHAPTER 2 I STRUTS FUNDAMENTALS

pluggable architecture. As a result, new functionality and methods to format end-user data
can easily be written while minimizing the chance of any changes disrupting the rest of the
application.

New functionality can be introduced into the application by writing a model and view
and then registering these items to the controller of the application. Let’s assume that you
have a web application whose view components are JSP pages generating HTML. If you want
to rewrite this application for a mobile device, or in something like Swing instead of standard
web-based HTML for users’ requests, you would only need to modify the view of the applica-
tion. The changes you make to the view implementation will not have an impact on the other
pieces of the application. At least in theory!

In a Java-based web application, the technology used to implement an MVC framework
might look as shown in Figure 2-2.

Controller (Servlet)

3 View

User |« (35P)

Figure 2-2. The Java technologies used in an MVC

An MVC-based framework offers a very flexible mechanism for building web-based
applications. However, building a robust MVC framework infrastructure requires a significant
amount of time and energy from your development team. It would be better if you could
leverage an already existing implementation of an MVC framework. Fortunately, the Struts
development framework is a full-blown implementation of the MVC pattern.

In the next section, we are going to walk through the major components of the Struts
architecture. While Struts has a wide variety of functionalities available in it, it is still in its
most basic form, which is an implementation of an MVC pattern.

Using Struts to Implement the MVC Pattern

The Struts development framework (and many of the other open source tools used in this
book) is developed and managed by the Apache Software Foundation (ASF). The ASF has

its roots in the Apache Group. The Apache Group was a loose confederation of open source
developers who, in 1995, came together and wrote the Apache Web Server. (The Apache

Web Server is the most popular web server in use and runs over half of the web applications
throughout the world.) Realizing that the group needed a more formalized and legal standing

CHAPTER 2 © STRUTS FUNDAMENTALS

for protecting their open source intellectual property rights, the Apache Group reorganized as
a nonprofit organization—the Apache Software Foundation—in 1999.

The Struts development framework was initially designed by Craig R. McClanahan. Craig,
a prolific open source developer, is also one of the lead developers for another well-known
Apache project, the Tomcat servlet container. He wrote the Struts framework to provide a solid
underpinning for quickly developing JSP-based web applications. He donated the initial
release of the Struts framework to the ASE in May 2002.

All of the examples in this book are based on Struts release 1.2, which is the latest stable
release. It is available for download from http://struts.apache.org/.

With this brief history of Struts complete, let’s walk through how a Struts-based applica-
tion works.

Walking Through Struts

Earlier in this chapter, we discussed the basics of the MVC pattern, on which the Struts devel-
opment framework is based. Now, let’s explore the workflow that occurs when an end user
makes a request to a Struts-based application. Figure 2-3 illustrates this workflow.

4 Action class

‘//' Model

1

N 3 ActionForm Class
ActionServlet
Web browser |, ‘//'
displaying "| Controller
a page <
5
y
y
View
JSP Page
struts-config.xml

6

Figure 2-3. The Struts implementation of an MVC pattern

Imagine an end user looking at a web page (step 1). This web page, be it a static HTML
page or a JavaServer Page, contains a variety of actions that the user may ask the application
to undertake. These actions may include clicking a hyperlink or an image that takes them to
another page, or perhaps submitting an online form that is to be processed by the application.
All actions that are to be processed by the Struts framework will have a unique URL mapping
(that is, /execute/*) or file extension (that is, *.do). This URL mapping or file extension is used
by the servlet container to map all the requests over to the Struts ActionServlet.

35

36

CHAPTER 2 = STRUTS FUNDAMENTALS

The Struts ActionServlet acts as the controller for the Struts MVC implementation. The
ActionServlet will take the incoming user request (step 2) and map it to an action mapping
defined in the struts-config.xml file. The struts-config.xml file contains all of the configuration
information needed by the Struts framework to process an end user’s request. An <action> is
an XML tag defined in the struts-config.xml file that tells the ActionServlet the following
information:

e The Action class that is going to carry out the end user’s request. An Action class is a
Struts class that is extended by the application developer. Its primary responsibility is
to contain all of the logic necessary to process an end user’s request.

e AnActionForm class that will validate any form data that is submitted by the end user.
It is extended by the developer. It is important to note that not every action in a Struts
application requires an ActionForm class. An ActionForm class is necessary only when
the data posted by an end user needs to be validated. An ActionForm class is also used
by the Action class to retrieve the form data submitted by the end user. An ActionForm
class will have get () and set() methods to retrieve each of the pieces of the form data.
This will be discussed in greater detail in Chapter 3.

¢ Where the users are to be forwarded to after their request has been processed by the
Action class. There can be multiple outcomes from an end user’s request. Thus, an
action mapping can contain multiple forward paths. A forward path, which is denoted
by the <forward> tag, is used by the Struts ActionServlet to direct the user to another
JSP page or to another action mapping in the struts-config.xml file.

Once the controller has collected all of the preceding information from the <action> ele-
ment for the request, it will process the end user’s request. If the <action> element indicates
that the end user is posting the form data that needs to be validated, the ActionServlet will
direct the request to the defined ActionForm class (step 3).

An ActionForm class contains a method called validate(). (The configuration code exam-
ples given later in this chapter may help you to understand this discussion better.) The
validate() method is overridden by the application developer and holds all of the validation
logic that will be applied against the data submitted by the end user. If the validation logic is
successfully applied, the user’s request will be forwarded by the ActionServlet to the Action
class for processing. If the user’s data is not valid, an error collection called ActionErrors is
populated by the developer and returned to the page where the data was submitted.

If the data has been successfully validated by the ActionForm class, or the <action-mapping>
does not define an ActionForm class, the ActionServlet will forward the user’s data to the Action
class defined by the action mapping (step 4). The Action class has three public methods and
several protected ones. For the purpose of this discussion, we will consider only the execute()
method of the Action class. This method, which is overridden by the application developer,
contains the entire business logic necessary for carrying out the end-user request.

Once the Action has completed processing the request, it will indicate to the
ActionServlet where the user is to be forwarded. It does this by providing a key value that
is used by the ActionServlet to look up from the action mapping. The actual code used to
carry out a forward will be shown in the section called “Configuring the homePageSetup
Action Element” later in this chapter. Most of the time, users will be forwarded to a JSP
page that will display the results of their request (step 5). The JSP page will render the data
returned from the model as an HTML page that is displayed to the end user (step 6).

CHAPTER 2 © STRUTS FUNDAMENTALS

In summary, a typical web screen, based on the Struts development framework, will
consist of the following:

* An action that represents the code that will be executed when the user’s request is
being processed. Each action in the web page will map to exactly one <action> element
defined in the struts-config.xml file. An action that is invoked by an end user will be
embedded in an HTML or a JSP page as a hyperlink or as an action attribute inside a
<form> tag.

e An<action> element that will define which ActionForm class, if any, will be used to
validate the form data submitted by the end user. It will also define which Action class
will be used to process the end user’s request.

e AnAction class can use one or more forwards. A forward is used to tell the ActionServlet
which JSP page should be used to render a response to the end user’s request. A forward is
defined as a <forward> element inside of the <action> element. Multiple forwards can be
defined within a single <ActionMapping> element.

Now that we have completed a conceptual overview of how a single web page in a Struts
application is processed, let’s look at how a single page from the JavaEdge blog is written and
plugged into the Struts framework.

Getting Started: The JavaEdge Source Tree

Before diving into the basics of Struts configuration, we need to enumerate the different
pieces of the JavaEdge application’s source tree. The JavaEdge blog is laid out in the directory
structure shown in Figure 2-4.

The root directory for the project is called waf. There are several key directories under-
neath it, as listed here:

 src: Contains the entire JavaEdge source code of the application. This directory has
several subdirectories, including

e java: All Java source files for the application.

* 0jb: All ObjectRelationalBridge configuration files. These files are discussed in
greater detail in Chapter 5.

* web: The entire source code of the application that is going to be put in the
WEB-INF directory. Files in this directory include any image file used in
the application along with any JSP files.

e sql: All of the MySQL-compliant SQL scripts for creating and prepopulating the waf
database used by the JavaEdge application.

e build: Contains the Ant build scripts used to compile, test, and deploy the application.

e [ib: Contains the jar files for the various open source projects used to build the JavaEdge
application.

vww allitebooks.conl

37

http://www.allitebooks.org

38 CHAPTER 2 I STRUTS FUNDAMENTALS

waf
v
sIC build lib
\
y
java ojb web sql test
WEB-INF img
v
Jsp

Figure 2-4. The JavaEdge directory structure

The JavaEdge application is built, tested, and deployed with the following software:

Tomecat 5.5.16: Tomcat is an implementation of Sun Microsystems’ Servlet and JSP speci-
fications. It is considered by Sun Microsystems to be the reference implementation for its
specifications. The JavaEdge application is built and deployed around Tomcat. In Chapter 4,
the open source application server bundle, JBoss 3/Tomcat 5.5.16, is used to run the appli-
cation. Tomcat is available for download at http://tomcat.apache.org/. JBoss is an open
source J2EE application server produced by JBoss. It can be downloaded at http://jboss.org.

MySQL: MySQL was chosen because it is one of the most popular open source databases
available today. It is highly scalable and extremely easy to install and configure.
MySQL 5.0 is available for download at http://www.mysqgl.com.

Ant: Version 1.6.5 of the Apache Software Foundation’s Ant build utility can be down-
loaded at http://ant.apache.org/.

Lucene: Lucene is a Java-based open source search engine. Version 1.9.1 can be down-
loaded at http://lucene.apache.org.

Velocity: Version 1.4 of this alternative templating framework to JSP is available at
http://jakarta.apache.org/velocity/.

ObjectRelationalBridge (OJB) 1.0.4: OJB is an open source Object Relational mapping
tool available from the Apache DB Project. It can be downloaded from http://db.apache.
org/ojb.

CHAPTER 2 © STRUTS FUNDAMENTALS

Note All of the source code used in this book can be downloaded from the Apress web site (http://
www. apress . com). We will not be discussing how to configure any of the development tools listed previously
in this chapter. For information on how to configure these tools to run the code examples in this book, please
refer to the readme.txt file packaged with the source code.

We will start the JavaEdge Struts configuration by demonstrating how to configure the
application to recognize the Struts ActionServlet.

Configuring the ActionServlet

Any application that is going to use Struts must be configured to recognize and use the Struts
ActionServlet. Configuring the ActionServlet requires that you manipulate two separate con-
figuration files:

web.xml: Your first task is to configure the Struts ActionServlet as you would any other
servlet by adding the appropriate entries to the web.xml file.

struts-config.xml: Your second task is to configure the internals of the ActionServlet.
Since version 1.1 of the Struts framework, the recommended mechanism for this configu-
ration is to use the struts-config.xml file. You can still configure the ActionServlet using
the init-param tag in web.xml, but this feature will be removed at a later date and is now
officially deprecated.

An example of the <servlet> tag that is used to configure the ActionServlet for the
JavaEdge application is shown here:

<?xml version="1.0" encoding="ISO-8859-1"?>

<IDOCTYPE web-app
PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com//dtd/web-app 2 3.dtd">

<web-app>

<!--Setting up the MemberFilter-->
<filter>
<filter-name>MemberFilter</filter-name>
<filter-class>com.apress.javaedge.common.MemberFilter</filter-class>
</filter>

<filter-mapping>
<filter-name>MemberFilter</filter-name>
<url-pattern>/execute/*</url-pattern>
</filter-mapping>

39

40 CHAPTER 2 = STRUTS FUNDAMENTALS

<!-- Standard Action Servlet Configuration (with debugging) -->
<servlet>
<servlet-name>action</servlet-name>
<servlet-class>org.apache.struts.action.ActionServlet</servlet-class>
<init-param>
<param-name>config</param-name>
<param-value>/WEB-INF/struts-config.xml </param-value>
</init-param>
<init-param>
<param-name>validating</param-name>
<param-value>true </param-value>
</init-param>
<load-on-startup>2</load-on-startup>
</servlet>

<!-- Standard Action Servlet Mapping -->
<servlet-mapping>
<servlet-name>action</servlet-name>
<url-pattern>/execute/*</url-pattern>
</servlet-mapping>

<!-- The Usual Welcome File List -->
<welcome-file-list>

<welcome-file>default.jsp</welcome-file>
</welcome-file-list>

<taglib>
<taglib-uri>/taglibs/struts-bean</taglib-uri>
<taglib-location>/WEB-INF/taglibs/struts-bean.tld</taglib-location>
</taglib>

<taglib>
<taglib-uri>/taglibs/struts-html</taglib-uri>
<taglib-location>/WEB-INF/taglibs/struts-html.tld</taglib-location>
</taglib>

<taglib>
<taglib-uri>/taglibs/struts-logic</taglib-uri>
<taglib-location>/WEB-INF/taglibs/struts-logic.tld</taglib-location>
</taglib>

<taglib>
<taglib-uri>/taglibs/struts-template</taglib-uri>
<taglib-location>/WEB-INF/taglibs/struts-template.tld</taglib-location>
</taglib>

CHAPTER 2 © STRUTS FUNDAMENTALS

<taglib>
<taglib-uri>http://jakarta.apache.org/taglibs/veltag-1.0</taglib-uri>
<taglib-location>/WEB-INF/taglibs/veltag.tld</taglib-location>
</taglib>

<!-- Tiles Tage Library Descriptors -->
<taglib>
<taglib-uri>/taglibs/struts-tiles</taglib-uri>
<taglib-location>/WEB-INF/taglibs/struts-tiles.tld</taglib-location>
</taglib>
</web-app>

Anyone who is familiar with Java servlet configuration will realize that there is nothing
particularly sophisticated going on here. The <filter> and <filter-mapping> tags define a fil-
ter that checks if the user has logged in to the application. If the user has not yet logged in,
they will automatically be logged in as an anonymous user. This filter is called every time the
Struts ActionServlet is invoked. The <servlet> tag defines all the information needed to use
the Struts ActionServlet in the JavaEdge application. The <servlet-name> tag provides a name
for the servlet. The <servlet-class> tag indicates the fully qualified Java class name of the
Struts ActionServlet.

From the preceding example, you will notice that not all configuration settings have been
moved into the struts-config.xml file. Mainly, the configuration parameters that are still speci-
fied using the <init-param> tag are those that are required to either find or read the
struts-config.xml file. Specifically, you are left with the parameters in Table 2-1.

Table 2-1. The ActionServlet’s web.xml Configuration Parameters

Parameter Name Parameter Value

config This parameter provides the ActionServlet with the location of the
struts-config.xml file. By default the ActionServlet looks for struts-config.xml
at /WEB-INF/struts-config.xml. If you place your struts-config.xml at this
location, then you can omit this parameter, although we recommend that you
always specify the location. That way if the default value for this parameter
changes in a later release of Struts, then your application won’t be broken.

validating You should always leave this parameter set to true. Setting this parameter to
true causes the struts-config.xml file to be read by a validating XML parser.
This will at some point in your development career save you from tearing your
hair out trying to debug your application only to find there is a rogue angle
bracket in your config file.

The other important part of configuring the ActionServlet is setting up the mapping so
the container passes the correct requests to the Struts framework for processing. This is done
by defining a <servlet-mapping> tag in the web.xml file. The mapping can be done in one of
two ways:

e URL prefix mapping

¢ Extension mapping

41

42

CHAPTER 2 I STRUTS FUNDAMENTALS

In URL prefix mapping, the servlet container examines the URL coming in and maps it to
a servlet. The <servlet-mapping> for the JavaEdge application is shown here:

<web-app>

<servlet-mapping>
<servlet-name>action</servlet-name>
<url-pattern>/execute/*</url-pattern>
</servlet-mapping>
</web-app>

This servlet mapping indicates to the servlet container that any request coming into
the JavaEdge application, which has a URL pattern of /execute/*, should be directed to the
ActionServlet (defined by the <servlet-name> shown previously) running under the JavaEdge
application. For example, if you want to bring up the home page for the JavaEdge application,
you would point your browser to http://localhost:8080/Javakdge/execute/homePageSetup,
where JavaEdge is the application name, execute is the URL prefix, and homePageSetup is the
Struts action.

Note Itis important to note that all URLs shown in our code examples are case sensitive and must be
entered exactly as they appear.

The servlet container, upon getting this request, would go through the following steps:

1. Determine the name of the application. The user’s request indicates that they are mak-
ing a request for the JavaEdge application. The servlet container will then look in the
web.xml file associated with the JavaEdge application.

2. The servlet container will find the servlet that it should invoke. For this, it looks for a
<servlet-mapping> tag that matches a URL pattern called execute. In the JavaEdge
web.xml file, this <servlet-mapping> tag maps to the ActionServlet (that is, the Struts
ActionServlet).

3. The user’s request is then forwarded to the ActionServlet running under the JavaEdge
application. The homePageSetup in the preceding URL is the action the user would like
the Struts framework to carry out. Remember, an action in Struts maps to an <action>
element in the struts-config.xml file. (Note that we will be going through how to set up
an <action> element in the section “Configuring the homePageSetup Action Element.”)
This <action> element defines the Java classes and JSP pages that will process the
user’s request.

The second way to map the user’s request to the ActionServlet is to use extension map-
ping. In this method, the servlet container will take all URLs that map to a specified extension
and send them to the ActionServlet for processing. In the example that follows, all of the
URLs that end with an *. st extension will map to the Struts ActionServlet:

<web-app>
<servlet-mapping>

CHAPTER 2 © STRUTS FUNDAMENTALS

<servlet-name>action</servlet-name>
<url-pattern>*.st</url-pattern>
</servlet-mapping>
</web-app>

If you use extension mapping to map the user’s requests to the ActionServlet, the URL to
get to the JavaEdge home page would be http://localhost:8080/ Javakdge/homePageSetup.st,
where JavaEdge is the application name, homePageSetup is the Struts action, and . st is the
extension.

For the JavaEdge application being built in the next four chapters, we will be using the
URL prefix method (this is the best practice for setting up and prepopulating the screens).

Once the ActionServlet is configured within the container, all that is left to do is config-
ure the actual parameters for the Struts environment. The most important piece of
configuration needed is specifying the controller. Since version 1.1, the actual processing of
requests has been refactored from the ActionServlet and placed in a controller object. This
pattern, called the Application Controller pattern, provides a simple mechanism to decouple
the processing of the Struts request from the actual physical request mechanism, in this case
the ActionServlet. To configure the controller, you simply add this entry to the struts-
config.xml file:

<controller
processorClass="org.apache.struts.action.RequestProcessor">

Although this entry in the configuration file is entirely optional, RequestProcessor is the
default controller, and adding it means that any changes to the Struts framework in the future,
such as a change in the default controller, will not affect your application. The controller ele-
ment has a wide variety of parameters for configuring the Struts request controller, the most
widely used being those in Table 2-2.

Table 2-2. Configuration Parameters for the Struts Request Controller

Parameter Name Parameter Value

className Using this parameter, you can define a separate configuration bean to handle
the configuration of the Struts controller. By default this parameter is set to
org.apache.struts.config.ControllerConfig.

contentType Using this parameter, you can configure the default content type to use for each
response from the Struts controller. The default for this is text/html and the
default can be overridden by each action or JSP within your application as
needed.

locale Set this parameter to true (which is the default) to store a Locale object in the
user’s session if there isn't one already present.

maxFileSize If you are taking advantage of the Struts file-upload capabilities, then you can
configure the maximum file size allowed for upload. You specify an integer value
to represent the maximum number of bytes you wish to allow.
Alternatively you can suffix the number with K, M, or G to represent kilobytes,
megabytes, or gigabytes, respectively. The default for this is 250 megabytes.

multipartClass By default, the org.apache.struts.upload.CommonsMultipartRequestHandler
class is used to handle multipart uploads. If you have your own class to handle
this behavior or you want to override the behavior of the default class, then you
can use this parameter to do so.

43

44

CHAPTER 2 I STRUTS FUNDAMENTALS

The final part of this configuration is to configure a resource bundle to enable you to
externalize the application’s resources such as error messages, label text, and URLs. The Struts
framework provides support for resource bundles in almost all areas, and its support is central
to delivering a successfully internationalized application. To configure the resource bundle,
you simply specify the name of the properties file that stores your externalized resources:

<message-resources
parameter="ApplicationResources”
null="false" />

The parameter attribute is the name of the properties file without the file extension that
contains the application resources. For example, if your resource bundle is named Applica-
tionResources.properties, then the value of the parameter attribute is ApplicationResources.

Additional configuration parameters for both the <controller> and <message-resource>
tags can be found at http://struts.apache.org/1.x/userGuide/configuration.html.

As the servlet configuration is complete for the JavaEdge application, let’s focus on setting
up and implementing your first Struts action, the homePageSetup action. This action sends the
user to the JavaEdge home page. However, before the user actually sees the page, the action
will retrieve the latest postings from the JavaEdge database. These postings will then be made
available to the JSP page, called homePage.jsp.

Note If you look at homePage.jsp, you will notice that it is very small and that it does not seem to contain
any content. homePage.jsp describes the physical layout of the page in terms of individual screen compo-
nents. The actual content for the JavakEdge home page is contained in homePageContent.jsp. Chapter 6 will
go into greater detail on how to “componentize” your application’s screens.

This page displays the latest ten stories in a summarized format and allows the user to log
in to JavaEdge and view their personal account information. In addition, the JavaEdge reader
is given a link to see the full story and any comments made by the other JavaEdge readers.

To set up the homePageSetup action, the following steps must be undertaken:

1. A Struts <action> element must be added in the struts-config.xml file.
2. AnAction class must be written to process the user’s request.
3. AJSP page, in this case homePage.jsp, must be written to render the end user’s request.

It is important to note that the Struts framework follows all of Sun Microsystems’ guide-
lines for building and deploying web-based applications. The installation instructions, shown
here, can be used to configure and deploy Struts-based applications in any J2EE-compliant
application server or servlet container.

Configuring the homePageSetup Action Element

Setting up your first struts-config.xml file is a straightforward process. This file can be located
in the WEB-INF directory of the JavaEdge project, downloaded from the Apress web site

CHAPTER 2 © STRUTS FUNDAMENTALS

(http://www.apress.com). The location of the struts-config.xml file is also specified in the
config attribute, in the web.xml entry of the ActionServlet.
The struts-config.xml file has a root element, called <struts-config>:

<?xml version="1.0" encoding="IS0-8859-1"?>
<IDOCTYPE struts-config
PUBLIC "-//Apache Software Foundation//DTD Struts Configuration 1.1//EN"
"http://struts.apache.org/dtds/struts-config 1 1.dtd">
<struts-config>

</struts-config>

All actions for the JavaEdge application are contained in a tag called <action-mappings>.
Each action has its own <action> tag. To set up homeSetupAction, you would add the following
information to the struts-config.xml file:

<?xml version="1.0" encoding="ISO-8859-1"?>
<IDOCTYPE struts-config
PUBLIC "-//Apache Software Foundation//DTD Struts Configuration 1.1//EN"
"http://struts.apache.org/dtds/struts-config 1 1.dtd">
<struts-config>
<action-mappings>
<action
path="/homePageSetup"
type="com.apress.javaedge.struts.homepage.HomePageSetupAction”
unknown="true">
<forward name="homepage.success" path="/WEB-INF/jsp/homePage.jsp"/>
</action>
</action-mappings>
</struts-config>

An action has a number of different attributes that can be set. In this chapter, we will only
be concerned with the path, type, and unknown attributes of the <action> element. The other
<action> element attributes are discussed in Chapter 3. Let’s now discuss the previously men-
tioned attributes briefly.

* path: Holds the action name. When an end-user request is made to the ActionServlet,
it will search all of the actions defined in the struts-config.xml file and try to make a
match, based on the value of the path attribute.

If the ActionServlet finds a match, it will use the information in the rest of the <action>
element to determine how to fulfill the user’s request. In the preceding example, if

users point their web browser to http://localhost:8080/Javatdge/homePageSetup, the
ActionServlet will locate the action by finding the <action> element’s path attribute that
matches /homePageSetup. It is important to note that all path names are case sensitive.

Note Note that all values in the path attribute for an action must start with a forward slash (/) to map to
the attribute. If you fail to put this in your path attribute, Struts will not find your action.

45

46

CHAPTER 2 = STRUTS FUNDAMENTALS

* type: Holds the fully qualified name of the Action class. If the user invokes the URL
shown in the preceding bullet, the ActionServlet will instantiate an Action subclass
of type com.apress.javaedge.struts.homepage.HomePageSetupAction. This class will
contain all of the logic to look up the latest ten stories that are going to be displayed to
the end user.

* unknown: Can be used by only one <action> element in the entire struts-config.xml file.
When set to true, this tag tells the ActionServlet to use this <action> element as the
default behavior whenever it cannot find a path attribute that matches the end user’s
requested action. This prevents the user from entering a wrong URL and, as a result,
getting an error screen. Since the JavaEdge home page is the starting point for the entire
application, we set the homePageSetup action as the default action for all unmatched
requests. Only one <action> tag can have its unknown attribute set to true. The first one
encountered, in the struts-config.xml file, will be used and all others will be ignored. If
the unknown attribute is not specified in the <action> tag, the Struts ActionServlet will
take it as false. The false value simply means that Struts will not treat the action as the
default action.

An <action> tag can contain one or more <forward> tags. A <forward> tag is used to indi-
cate where the users are to be directed after their request has been processed. It consists of
two attributes, name and path. The name attribute is the name of the forward. Its value is the
user-defined value that can be arbitrarily determined. The path attribute holds a relative URL,
to which the user is directed by the ActionServlet after the action is completed. The value of
the name attribute of the <forward> tag is a completely arbitrary name. However, this attribute
is going to be used heavily by the Action class defined in the <action> tag. Later in this chap-
ter, when we demonstrate the HomePageSetupAction class, you will find out how an Action class
uses the <forward> tags for handling the screen navigation. When multiple <forward> tags
exist in a single action, the Action class carrying out the processing can indicate to the
ActionServlet that the user can be sent to multiple locations.

Exception handling has been greatly improved since the Struts 1.1 release. Struts now
allows developers to register unchecked exceptions raised in the Struts action with the Struts
ActionServlet. This concept, known as exception handlers, relieves developers of the need to
clutter up their Action code with what is essentially the same application exception logic.
Refer to Chapter 4 for more details on handling exceptions in Struts.

Sometimes, you might have to reuse the same <forward> tag across multiple <action>
tags. For example, in the JavaEdge application, if an exception is raised in the business tier, it
is caught and rewrapped as an ApplicationException.

In Struts version 1.0x of the JavaEdge application, when an ApplicationException is
caught in an Action class, the JavaEdge application will forward the end user to a properly for-
matted error page. Rather than repeating the same <forward> tag in each Struts action defined
in the application, you can define it to be global. This is done by adding a <global-forwards>
tag at the beginning of the struts-config.xml file:

<?xml version="1.0" encoding="ISO-8859-1"?>
<IDOCTYPE struts-config
PUBLIC "-//Apache Software Foundation//DTD Struts Configuration 1.1//EN"
"http://struts.apache.org/dtds/struts-config 1 1.dtd">
<struts-config>

CHAPTER 2 © STRUTS FUNDAMENTALS

<global-forwards type="org.apache.struts.action.ActionForward">
<forward name="system.error" path="/WEB-INF/jsp/systemError.jsp"/>

</global-forwards>

<action-mappings>

</action-mappings>
</struts-config>

The <global-forwards> tag has one attribute, called type, which defines the ActionForward
class that forwards the user to another location. Struts is an extremely pluggable framework,
and it is possible for a development team to override the base functionality of the Struts
ActionForward class with its own implementation. If your development team is not going
to override the base ActionForward functionality, the type attribute should always be set to
org.apache.struts.action.ActionForward. After the <global-forwards> tagis added to the
struts-config.xml file, any Action class in the JavaEdge application can redirect a user to
systemError.jsp by indicating to the ActionServlet that the user’s destination is the
system.error forward.

Now let’s discuss the corresponding Action class of the homePageSetup, that is,
HomePageSetupAction. java.

Building HomePageSetupAction.java

The HomePageSetupAction class, which is located in the src/java/com/apress/javaedge/struts/
homepage/HomePageSetupAction.java file, is used to retrieve the top postings made by
JavaEdge users. The code for this Action class is shown here:

package com.apress.javaedge.struts.homepage;

import com.apress.javaedge.common.ApplicationException;
import com.apress.javaedge.story.StoryManagerBD;

import com.apress.javaedge.story.IStoryManager;

import org.apache.struts.action.Action;

import org.apache.struts.action.ActionForm;

import org.apache.struts.action.ActionForward;

import org.apache.struts.action.ActionMapping;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.util.Collection;

Vak

* Retrieves the top ten posting on JavaEdge.

*/

public class HomePageSetupAction extends Action {

/** The execute() method comes from the base Struts Action class. You
* override this method and put the logic to carry out the user's
* request in the overridden method.

vww allitebooks.conl

47

http://www.allitebooks.org

48

CHAPTER 2 = STRUTS FUNDAMENTALS

*/

public ActionForward execute(ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response) {

IStoryManager storyManagerBD = StoryManagerBD.getStoryManagerBD();
Collection topStories = storyManagerBD.findTopStory();
request.setAttribute("topStories", topStories);

return (mapping.findForward("homepage.success"));

Before we begin with the discussion on the HomePageSetupAction class, let’s have a look at
the Command design pattern.

The Power of the Command Pattern

The Action class is an extremely powerful development metaphor, because it is implemented
using the Command design pattern.

DESIGN PATTERNS IN STRUTS

This chapter introduces the Command pattern. According to the Gang of Four’s (Erich Gamma, Richard Helm,
Ralph Johnson, and John Vlissides) definition, a Command pattern

Encapsulates a request as an object, thereby letting you parameterize clients with
different requests . . .

—Design Patterns, Elements of Reusable Object-Oriented Software
(Addison-Wesley, ISBN: 0-20163-361-2), p. 233

A Command pattern lets the developer encapsulate a set of behaviors in an object and provides a
standard interface for executing that behavior. Other objects can also invoke the behavior, but they have no
exposure to how the behavior is implemented. This pattern is implemented with a concrete class and either
an abstract class or an interface.

The JavaEdge application uses different J2EE design patterns such as the Business Delegate and Value
Object patterns. Chapters 4 and 5 will explore these patterns in greater detail.

The parent class or interface contains a single method definition (usually named perform()
or execute()) that carries out some kind of action. The actual behavior for the requested action
is implemented in a child class (which, in this example, is HomePageSetupAction), extending the
Command class. The Struts Action class is the parent class in the Command pattern implementa-
tion. Figure 2-5 illustrates the relationship between the Action and HomePageSetupAction classes.

CHAPTER 2 © STRUTS FUNDAMENTALS

Command Action
+execute() +execute()
Child Class HomePageSetupAction
+execute() +execute()

Figure 2-5. A simple object model of the Action and HomePageSetupAction classes

The use of the Command design pattern is one of reasons why Struts is so flexible. The
ActionServlet does not care how a user request is to be executed. It only knows that it has a
class that descends from Action and will have an execute() method. When the end user makes
arequest, the ActionServlet just executes the execute() method in the class that has been
defined in struts-config.xml. If the development team wants to change the way in which an
end-user request is processed, it can do it in two ways: either rewrite the code for the already
implemented Action class or write a new Action class and modify the struts-config.xml file to
point to the new Action class. The ActionServlet never knows that this change has occurred.
Later in this section, we will discuss how Struts’ flexible architecture can be used to solve the
Hardwired antipattern. For the sake of this discussion on the Command pattern, let’s go back
to the HomePageSetupAction class.

The first step in writing the HomeSetupAction class is to extend the Struts Action class:

public class HomePageSetupAction extends Action

Next, the execute() method for the class needs to be overridden. (In the Action class
source code, several execute() methods can be overridden, some of which are deprecated
as of version 1.1. Other methods allow you to make requests to Struts from a non-HTTP-
based call. For the purpose of this book, we will be dealing with only HTTP-based execute()
methods.)

public ActionForward execute(ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response){

The execute () method signature takes four parameters:

* ActionMapping: Used to find an ActionForward from the struts-config.xml file and return
it to the ActionServlet. This ActionForward class contains all the information needed by
the ActionServlet to forward end users to the next page in the application.

e ActionForm: A helper class that is used to hold any form data submitted by the end user.
The ActionForm class is not being used in the HomePageSetupAction class shown earlier.
This class will be discussed in greater detail in Chapters 3 and 4.

49

50

CHAPTER 2 I STRUTS FUNDAMENTALS

e HttpServletRequest: A standard HttpServletRequest object passed around within the
servlet.

e HttpServletResponse: A standard HttpServletResponse object passed around within the
servlet.

Now let’s look at the actual implementation of the execute() method:

IStoryManager storyManagerBD = StoryManagerBD.getStoryManagerBD();
Collection topStories = storyManagerBD.findTopStory();

The first step, carried out by the execute() method, is to use the StoryManagerBD class to
retrieve a business delegate of type IStoryManager. The storyManagerBD variable is then used
to retrieve a Collection, called topStories, of the top stories currently submitted to the
JavaEdge application. The topStories collection holds up to ten instances of type StoryVv0. A
StoryVO is based on the J2EE design pattern called the Value Object pattern. A value object is
used to wrap data retrieved from a data source in a Java-based implementation-neutral inter-
face. Each StoryV0 in the topStories collection represents a single row of data retrieved from
the JavaEdge database’s story table.

The Business Delegate pattern is a J2EE design pattern used to abstract away how a piece
of business logic is actually being invoked and carried out. In the preceding example, the
HomePageSetupAction class does not know how the StoryManagerBD class is actually retrieving
the collection of stories. The StoryManagerBD could be using an EJB, Web service, or a Plain Old
Java Object to carry out the requested action.

Note The term J2EE patterns is a bit of a misnomer. The Business Delegate pattern and Value Object pat-
tern—also known as the Data Transfer Object pattern—were used in other languages before Java. However,
they were called J2EE patterns when the patterns were explained in the book Core J2EE Design Patterns:
Best Practices and Design Strategies (Alur et al., Prentice Hall, ISBN: 0-13064-884-1).

After the storyManagerBD. findTopStory() method is executed, the topStories object will
be placed as an attribute of the request object:

request.setAttribute("topStories", topStories);

When the ActionServlet forwards this to the homePage. jsp page (as defined in the struts-
config.xml file), the homePage. jsp will be able to walk through each item in the topStories
Collection and display the data in it to the end user.

Once the story data has been retrieved, an ActionForward will be generated by calling the
findForward() method in the mapping object passed into the execute() method:

return (mapping.findForward("homepage.success"));

We have finished showing you how to configure the struts-config.xml file and build an
Action class to prepopulate the JavaEdge’s home screen with story data. Before we look at the
JSP file, homePage.jsp, let’s discuss how to refactor the Hardwired antipattern.

CHAPTER 2 © STRUTS FUNDAMENTALS 51

Refactoring the Hardwired Antipattern

The declarative architecture of the Struts development framework provides a powerful tool for
avoiding or refactoring a Hardwired antipattern. (Refer to Chapter 1 for the discussion of
Hardwired and other antipatterns.)

All activities executed by the user in a Struts-based application should be captured within
an <action> tag defined in the struts-config.xml file. Using an <action> tag gives the developer
flexibility in the way in which the screen navigation and application of business rules are carried.

The advantage of using the <action> tag is that it forces the development team members
to take a declarative approach to writing their applications. It decouples the various pieces of
code associated with building out a screen from one another. For instance, when JSP develop-
ers build an application without the Struts framework, they oftentimes will have a JSP page
directly invoke a piece of business logic to process a user’s request.

This essentially “hardwires” the JSP page to that piece of business logic. If you want to
change the behavior of the application, you need to either rewrite the class containing the
business logic or have the JSP call a completely different method or class containing the new
business logic. The problem is that modifying the relationship between the calling code (the
JSP) and the called code (the Java class containing the business logic) is easy to do when deal-
ing with one or two applications. However, maintaining this type of relationship in an
enterprise environment where the same caller/called relationship might occur in 10 to 20
applications can be extremely difficult.

What the <action> tag allows is for the development team to extract the caller/called
relationship out of the code into a metadata file (struts-config.xml). The development team
describes caller/called relationships in a declarative fashion, rather than programmatically.

If the development team wants to change the behavior of a screen in an application, it can
modify the <action> tag to describe a new Struts Action class to carry out users’ requests. The
development team still has to write code to implement the new functionality, but there are
now fewer touchpoints in the existing application that it has to modify.

This all ties back to the following:

Note If you touch the code, you break the code. The less code you have to modify to implement new
functionality, the less chance there is that existing functionality will be broken and cause a ripple of
destructive behavior through your applications.

According to our experience, while building a Struts application, <action> elements
defined within the application fall into three general categories:

» Setup actions: Used to perform any activities that take place before the user sees a
screen. In the JavaEdge home page example, you use the /HomePageSetup action to
retrieve the top stories from the JavaEdge database and place them as an attribute in
the HttpServletRequest object.

e Form actions: Actions that will process the data collected from the end user.

» Tear-down actions: Can be invoked after a user’s request has been processed. Usually,
this type of action carries out any cleanup needed after the user’s request has been
processed.

52

CHAPTER 2 = STRUTS FUNDAMENTALS

These three types of actions are purely conceptual. There is no way in the Struts <action>
tag to indicate that the action being defined is a setup, form, or tear-down action. However,
this classification is very useful for your own Struts applications. A setup action allows you to
easily enforce “precondition” logic before sending a user to a form. This logic ensures that,
before the user even sees the page, certain conditions are met. Setup actions are particularly
useful when you have to prepopulate a page with data. In Chapters 3 and 4, when we discuss
how to collect the user data in Struts, you will find several examples of a setup action used to
prepopulate a form. In addition, putting a setup action before a page gives you more flexibility
in maneuvering the user. This setup action can examine the current application state of end
users, and based on this state navigate them to any number of other Struts actions or JSP
pages.

A form action is invoked when the user submits the data entered in an HTML form. It
might insert a record into a database or just perform some simple data formatting on the data
entered by the user.

A tear-down action is used to enforce “postcondition” logic. This logic ensures that after
the user’s request has been processed, the data needed by the application is still in a valid
state. Tear-down actions might also be used to release any resources previously acquired by
the end user.

As you become more comfortable with Struts, you will prefer chaining together the differ-
ent actions. You will use the setup action to enforce preconditions that must exist when the
user makes the initial request. The setup action usually retrieves some data from a database
and puts it in one of the different JSP page contexts (that is, page, request, session, or applica-
tion context). It then forwards the user to a JSP page that will display the retrieved data. If
the JSP page contains a form, the user will be forwarded to a form action that will process
the user’s request. The form action will then forward the user to a tear-down action that will
enforce any postcondition rules. If all postcondition rules are met, the tear-down action
will forward the user to the next JSP page the user is going to visit.

It’s important to note that by using the strategies previously defined, you can change an
application’s behavior by reconfiguring the struts-config.xml file. This is a better approach
than to go constantly into the application source code and modify the existing business logic.

With this discussion on the Hardwired antipattern wrapped up, let’s have a look at home-
Page.jsp and the Struts tag libraries that are used to render the HTML page that users will see
after the request has been processed.

Constructing the Presentation Tier

Now we are going to look at how many of the Struts custom JSP tag libraries can be used to
simplify the development of the presentation tier. With careful design and use of these tag
libraries, you can literally write JSP pages without ever writing a single Java scriptlet. The
Struts development framework has four sets of custom tag libraries:

¢ Bean
* Logic
e HTML
o Tiles

We will not be discussing the Struts HTML or the Struts Tiles tag libraries in this chapter.
Instead, we will discuss these tags in Chapters 4 and 6, respectively.

CHAPTER 2 © STRUTS FUNDAMENTALS

Before we begin our discussion of the individual tag libraries, the web.xml file for the
JavaEdge application has to be modified to include the following Tag Library Definitions
(TLDs):

<web-app>
<taglib>
<taglib-uri>/taglibs/struts-bean</taglib-uri>

<taglib-location>/WEB-INF/taglibs/struts-bean.tld</taglib-location>
</taglib>

<taglib>
<taglib-uri>/taglibs/struts-html</taglib-uri>
<taglib-location>/WEB-INF/taglibs/struts-html.tld</taglib-location>
</taglib>

<taglib>
<taglib-uri>/taglibs/struts-logic</taglib-uri>
<taglib-location>/WEB-INF/taglibs/struts-logic.tld</taglib-location>
</taglib>

<taglib>
<taglib-uri>http://jakarta.apache.org/taglibs/veltag-1.0</taglib-uri>
<taglib-location>/WEB-INF/taglibs/veltag.tld</taglib-location>
</taglib>

<taglib>
<taglib-uri>/taglibs/struts-tiles</taglib-uri>
<taglib-location>/WEB-INF/taglibs/struts-tiles.tld</taglib-location>
</taglib>
</web-app>

With these TLDs added to the web.xml file, we next look at the first page in the JavaEdge
application that an end user will encounter: the JavaEdge home page.

The JavaEdge Home Page

All of the pages in the JavaEdge application are broken into three core components: a header,
footer, and page body. All of the pages share the same header and footer. Let’s look at the
header and footer JSP files (header.jsp and footer.jsp) for all JavaEdge JSP pages and the source
code for the homePageContent.jsp. We are not going to go into the actual page in great deal

in this section. Instead, we will explore the different Struts tags and demonstrate their use
throughout the rest of this book as we construct the JavaEdge application.

Note There are two sets of JSP files in the JavaEdge application. When using the URLS listed in the
book for the JavaEdge application, you are going to be using JSP files using the <template> tags found
in Struts 1.0x. These files were kept in here for backward compatibility with the first edition of this book.
The <template> tags are going to be deprecated in future of releases of Struts.

53

54

CHAPTER 2 = STRUTS FUNDAMENTALS

In Chapter 6, we look at a second set of JSP files based on the Tiles framework; these
replaced the <template> tags. The JSP files in the first set use the exact same set of JSP code,
with the only difference being how the screens are componentized. So anything you see in
this chapter and the following regarding the JSP tag libraries is applicable to the code seen in
Chapter 6.

header.jsp
Following is the code for the header JSP file:

<%@ page language="java" %>

<%@ taglib uri="/taglibs/struts-bean" prefix="bean" %>

<%@ taglib uri="/taglibs/struts-html" prefix="html" %>

<%@ taglib uri="/taglibs/struts-logic" prefix="logic" %>

<%@ taglib uri="/taglibs/struts-template" prefix="template" %>

<bean:message key="javaedge.header.title"/></p>

<div align="center">
<center>
<html:form action="login">
<table border="0" cellpadding="0"
cellspacing="0" style="border-collapse: collapse"
bordercolor="#111111" width="100%" id="AutoNumber1"
bgcolor="#FF66FF">
<tr>
<logic:notEqual scope="session"
name="memberV0" property="memberId" value="1">
<td width="16%" bgcolor="#99CCFF" align="center">
<bean:message key="javaedge.header.logout"/>
</td>
</logic:notEqual>
<logic:notEqual scope="session"
name="memberV0" property="memberId" value="1">
<td width="17%" bgcolor="#99CCFF" align="center">
<bean:message key="javaedge.header.myaccount"/>
</td>
</logic:notEqual>

<td width="17%" bgcolor="#99CCFF" align="center">
<bean:message key="javaedge.header.postastory"/>
</td>

<td width="17%" bgcolor="#99CCFF" align="center">
<bean:message key="javaedge.header.viewallstories"/>

</td>

<td width="17%" bgcolor="#99CCFF" align="center">

CHAPTER 2 © STRUTS FUNDAMENTALS

<bean:message key="javaedge.header.search"/>
</td>
<logic:equal scope="session" name="memberV0" property="memberId" value="1">
<td width="17%" bgcolor="#99CCFF" align="center">
<bean:message key="javaedge.header.signup"/>
</td>
</logic:equal>
</tr>
<tr>
<logic:equal scope="session" name="memberV0O" property="memberId" value="1">
<td width="16%" bgcolor="#99CCFF" align="left" colspan="4">
<bean:message key="javaedge.header.userid"/>
<input type="text" name="userId"/>
<bean:message key="javaedge.header.password"/>
<input type="password" name="password"/>
<html:submit property="submitButton" value="Submit"/>
<html:errors property="invalid.login"/>
</td>
</logic:equal>
</tr>

</table>

</html:form>

</center>
</div>

footer.jsp
Next is the code for the footer JSP file:

<%@ page language="java" %>

<%@ taglib uri="/taglibs/struts-bean" prefix="bean" %>

<%@ taglib uri="/taglibs/struts-html" prefix="html" %>

<%@ taglib uri="/taglibs/struts-logic" prefix="logic" %>

<%@ taglib uri="/taglibs/struts-template" prefix="template" %>

<table border="0" cellpadding="0"
cellspacing="0" style="border-collapse: collapse"
bordercolor="#111111" width="100%"
id="AutoNumber1" bgcolor="#FF66FF">
<tr bgcolor="#99CCFF">
<td>

</td>
</tr>
</table>

55

56

CHAPTER 2 = STRUTS FUNDAMENTALS

homePageContent.jsp

Here is the code for homePageContent.jsp:

<%@ page language="java" %>

<%@ taglib uri="/taglibs/struts-bean" prefix="bean" %>

<%@ taglib uri="/taglibs/struts-html" prefix="html" %>

<%@ taglib uri="/taglibs/struts-logic" prefix="logic" %>

<%@ taglib uri="/taglibs/struts-template" prefix="template" %>

<H1>Today's Top Stories</H1>
<TABLE>
<logic:iterate id="story" name="topStories"
scope="request" type="com.apress.javaedge.story.Storyvo">
<TR bgcolor="#99CCFF">
<TD>

<bean:write name="story" scope="page" property="storyTitle"/>

Posted By: <bean:write name="story"
property="storyAuthor.firstName"/>
<bean:write name="story" property="storyAuthor.lastName"/>
on <bean:write name="story" property="submissionDate"/>

</TD>
</TR>
<TR>
<TD>
<bean:write name="story" property="storyIntro"/>
</TD>
</TR>
<TR>
<TD align="right">
<a href="/Javakdge/execute/storyDetailSetup?storyId=®
<bean:write name="story" property="storyId"/>'>
Full Story

</TD>
</TR>
</logic:iterate>
</TABLE>

Now let’s break these different pages apart and see how the Struts JSP tag libraries were
used to build the pages. Let’s start with the Struts bean tags.

CHAPTER 2 © STRUTS FUNDAMENTALS 57

Bean Tags

Well-designed JSP pages use JavaBeans to separate the presentation logic in the application
from the data that is going to be displayed on the screen. A JavaBean is a regular class that can
contain the data and logic. In the JavaEdge home page example, the HomePageSetupAction
class retrieves a set of StoryV0 objects into a collection and puts them into the session. The
StoryVO class is a JavaBean that encapsulates all of the data for a single story posted in the
JavaEdge database. Each data element, stored within a StoryV0 object, has a getXXX() and
setXXX() method for each property. The code for the StoryVO class is shown here:

package com.apress.javaedge.story;

import com.apress.javaedge.common.ValueObject;
import com.apress.javaedge.member.MemberV0;

import java.util.Vector;

Vak

* Holds story data retrieved from the JavaEdge database.
*/

public class StoryVO extends ValueObject {

private Long storyld;

private String storyTitle;

private String storyIntro;

private byte[] storyBody;

private java.sql.Date submissionDate;

private Long memberId;

private MemberVO storyAuthor;

public Vector comments = new Vector(); // of type StoryCommentVO

public Long getStoryId() {
return storylId;

}

public void setStoryId(Long storyId) {
this.storyld = storyld;

}

public String getStoryTitle() {
return storyTitle;

}

public void setStoryTitle(String storyTitle) {
this.storyTitle = storyTitle;

}

58 CHAPTER 2 = STRUTS FUNDAMENTALS

public String getStoryIntro() {
return storyIntro;

}

public void setStoryIntro(String storyIntro) {
this.storyIntro = storyIntro;

}

public String getStoryBody() {
return new String(storyBody);

}

public void setStoryBody(String storyBody) {
this.storyBody = storyBody.getBytes();
}

public java.sql.Date getSubmissionDate() {
return submissionDate;

}

public void setSubmissionDate(java.sql.Date submissionDate) {
this.submissionDate = submissionDate;

}

public Vector getComments() {
return comments;

}

public void setComments(Vector comments) {
this.comments = comments;

}

public MemberVO getStoryAuthor() {
return storyAuthor;

}

public void setStoryAuthor(MemberVO storyAuthor) {
this.storyAuthor = storyAuthor;

}
} // end StoryVo

The JSP specification defines a number of JSP tags that give the developer the ability to
manipulate the contents of a JavaBean.

CHAPTER 2 © STRUTS FUNDAMENTALS

The Struts Bean tag library offers a significant amount of functionality beyond that offered
by the standard JSP tag libraries. The functionality provided by the Bean tag library can be bro-
ken into two broad categories of functionality:

¢ Generating output from an existing JavaBean residing in the page, request, or session
scope.

¢ Creating new JavaBeans. These new JavaBeans can hold the data specified by the devel-
oper or retrieved from web artifacts, such as a cookie or a value stored in an HTTP
header.

We are going to begin with the most common use of the Struts bean tag, the retrieval and
display of data from a JavaBean.
Two bean tags are available for generating output in the Struts Bean tag library:

* <bean:write>
* <bean:message>

The <bean:write> tag retrieves a value from a JavaBean and writes it to the web page
being generated. Examples of this tag can be found throughout the homePageContent.jsp file.
For example, the following code will retrieve the value of the property (storyTitle) froma
bean, called story, stored in the page context:

<bean:write name="story" scope="page" property="storyTitle"/>

To achieve the same result via a Java scriptlet would require the following code:

StoryVO story = (StoryV0) pageContext.getAttribute("story");

if (story != null){
out.write(story.getStoryTitle());
}
else{
//Throw an exception unless the <bean:write> ignore attribute is
// set to true.

%>

The <bean:write> tag supports the concept of the nested property values. For instance,
the StoryVo class has a property called storyAuthor. This property holds an instance of a
MemberVO object. The MemberVO class contains the data about the user who posted the original
story. The homePageContent.jsp page retrieves the values from a MemberVO object by using a
nested notation in the <bean:write> tag. For instance, to retrieve the first name of the user
who posted one of the stories to be displayed, the following syntax is used:

<bean:write name="story" property="storyAuthor.firstName"/>

In the preceding example, the <bean:write> tag is retrieving the storyAuthor by
calling story.getStoryAuthor() and then the firstName property by calling storyAuthor.
getFirstName().

59

60

CHAPTER 2 = STRUTS FUNDAMENTALS

The <bean:write> tag has the attributes listed in Table 2-3.

Table 2-3. Attributes for the <bean:write> Tag

Attribute Name Attribute Description

filter Determines whether or not characters that are sensitive in HTML should be
replaced with their & counterparts. For example, if the data retrieved from a call
to StoryV0.getTitle() contains an & symbol, setting the filter attribute to true
would cause the <bean:write> tag to write the character as &. The default
value for this attribute is true.

ignore When set to true, this attribute tells the <bean:write> not to throw a runtime
exception, if the bean name cannot be located in the scope specified. The
<bean:write> tag will simply generate an empty string to be displayed in
the page. (If scope is not specified, the same rules apply here, as specified
previously.) If this attribute is not set or is set to false, a runtime exception
will be thrown by the <bean:write> tag, if the requested bean cannot be found.

name The name of the JavaBean to be retrieved.

property The name of the property to be retrieved from the JavaBean. The <bean:write>
tag uses the reflection to call the appropriate get() method of the JavaBean from
which you are retrieving the data. Therefore, your JavaBean has to follow the
standard JavaBean naming conventions (that is, a get prefix followed by the first
letter of the method name capitalized).

scope The scope in which to look for the JavaBean. Valid values include page, request,
and session. If this attribute is not set, the <bean:write> tag will start searching
for the bean at the page level and continue until it finds the bean.

The second type of tag for generating output is the Struts <bean:message> tag. The
<bean:message> tag is used to separate the static content from the JSP page in which it resides.
All the contents are stored in a properties file, independent of the application. The properties
file consists of a name-value pair, where each piece of the text that is to be externalized is
associated with a key. The <bean:message> tag will use this key to look up a particular piece of
text from the properties file.

To tell the name of the properties file to the ActionServlet, you need to make sure
that the application parameter is set in the web.xml file. The properties file, usually called
ApplicationResources.properties, is placed in the classes directory underneath the WEB-INF
directory of the deployed applications. In the JavaEdge source tree, the ApplicationResources.
properties file is located in working directory/waf/src/web/WEB-INF/classes (where working
directory is the one in which you are editing and compiling the application source).

For the purpose of the JavaEdge application, an <init-param> tag must be configured as
shown here:

<servlet>

<init-param>
<param-name>application</param-name>
<param-value>ApplicationResources</param-value>
</init-param>
</Servlet>

CHAPTER 2 © STRUTS FUNDAMENTALS

The static content for the JavaEdge application has not been completely externalized
using the <bean:message> functionality. Only the header.jsp file has been externalized. The
following <bean:message> example, taken directly from header.jsp, will return the complete
URL for the JavaEdge login page:

<bean:message key="javaedge.header.logout"/>

When this tag call is processed, it will retrieve the value for the javaedge.header.logout
key from the ApplicationResources.properties file. All of the name-value pairs from the Appli-
cationResources.properties file used in the header.jsp file are shown here:

javaedge.header.title=The Java Edge
javaedge.header.logout=Logout
javaedge.header.myaccount=My Account
javaedge.header.postastory=

Post a Story
javaedge.header.viewallstories=

View All Stories
javaedge.header.signup=Sign Up
javaedge.header.search=Search

If the <bean:message> tag cannot find this key in the ApplicationResources.properties file,
the <bean:message> tag will throw a runtime exception.
The <bean:message> tag has the attributes listed in Table 2-4.

Table 2-4. Attributes for the <bean:message> Tag

Attribute Name Attribute Description

argo Parameter value that can be passed into the text string retrieved from the
properties file. For instance, if a property had the value hello.world=Hi {0}!,
using <bean:message key="hello.world" arg="John"/> would return the
following text to the output stream: Hi John!. The <bean:message> tag can
support at most five parameters being passed to a message.

argl Second parameter value that can be passed to the text string retrieved from
the properties file.

arg2 Third parameter value that can be passed to the text string retrieved from the
properties file.

arg3 Fourth parameter value that can be passed to the text string retrieved from
the properties file.

args Fifth parameter value that can be passed to the text string retrieved from the
properties file.

bundle The name of the application scope bean in which the MessageResources
object containing the application messages is stored.

key Key in the properties file for which the <bean:message> tag is going to look.

locale The name of the session scope bean in which the Locale object is stored.

Next we’ll have an interesting discussion on the Tight-Skins antipattern before moving on
to bean creation.

61

62

CHAPTER 2 = STRUTS FUNDAMENTALS

The Tight-Skins Antipattern

Recollecting our discussion in Chapter 1, the Tight-Skins antipattern occurs when the devel-
opment team does not have a presentation tier whose look and feel can be easily customized.
The Tight-Skins antipattern is formed when the development team embeds the static content
in the JSP pages. Any changes to the static content result in having to hunt through all of the
pages in the application and making the required changes.

As you saw earlier, the <bean:message> tag can be used to centralize all the static content
in an application to a single file called ApplicationResources.properties. However, the real
strength of this tag is it makes it very easy to write internationalized applications that can
support multiple languages. The JavaEdge header toolbar is written to support only English.
However, if you want the JavaEdge’s header toolbar to support French, you need to follow
these steps:

1. Create a new file called ApplicationResources_fr.properties.

The _fr extension to the ApplicationResources.properties file is not just a naming con-
vention followed here. This extension is part of the ISO-3166 standard. For a complete
list of all of the country codes supported by this standard, please visit http://www.ics.
uci.edu/pub/ietf/http/related/is0639.txt.

2. Copy all of the name-value pairs from the JavaEdge’s application into the new Applica-
tionResources_fr.properties file. Translate all of the static contents in these name-value
pairs to French. Also, if the JavaEdge application is going to support only French, you
may rename the file from ApplicationResources_{fr.properties to ApplicationRe-
sources.properties and replace the existing ApplicationResources.properties file.
However, if you want to support English and French at the same time, you to need to
tell Struts which java.util.Llocale is to be used for the user. A Locale object is part of
the standard Java SDK and is used to hold the information about a region. For more
details on the Locale object, please refer to the Sun JDK documentation (available at
http://java.sun.com).

3. To support both English and French concurrently, you could ask the users the language
in which they want to see the site when they are registering for a JavaEdge account.
Their language preference could be stored in the JavaEdge database. If a user chooses
French as their language preference, then anytime that user logs in to the JavaEdge
application, the following code could be executed in any Action class to switch the lan-
guage preference from English over to French:

HttpSession session = request.getSession();
session.setAttribute(org.apache.struts.action.Action.LOCALE KEY,
new java.util.Locale(LOCALE.FRENCH, LOCALE.FRENCH));

Struts stores a Locale object in the session as the attribute key org.apache.struts.
action.Action.LOCALE_KEY. Including a new Locale object (which is instantiated with the
values for French) will cause Struts to reference the ApplicationResources_{fr.properties file for
the time for which the user’s session is valid (or at least until a new Locale object containing
another region’s information is placed in the user’s session).

CHAPTER 2 © STRUTS FUNDAMENTALS

Accessing Indexed or Mapped Data

The Struts JSP tag libraries allow you to directly access a Java object stored inside of an Array,
List, or Map object. For example, say you modified the MemberVO class to contain an array of all
of the addresses associated with the JavaEdge user. This modification would get() and set() a
String array containing all of the address information:

public String[] getAddresses(){
return addresses;

}

public void setAddresses(String[] addresses){
this.addresses=addresses;

}

As you will see later in the chapter, you can walk through the returned array by using
the <logic:iterate> tag to retrieve each individual address stored in the array or Collection.
However, if you wanted to directly access an address via an array index, you can use the fol-
lowing syntax:

<bean:write name="memberV0" scope="request" property="addresses[1] "/>
Behind the scenes, the preceding code would be the equivalent of the following JSP code:

<%
MemberVO memberVO = (MemberVO) request.getAttribute("memberv0");

String[] addresses = memberVO.getAddresses();
out.write(addresses[1]);
%>

Now let’s make the address code a little bit more sophisticated. Let’s create a value object,
called AddressV0, to hold the entire address record. The code for AddressVO0 is shown here:

package com.apress.javaedge.member;

public class AddressVO {
public static final String HOME_ADDRESS="HOME";
public static final String BUSINESS ADDRESS="BUS";
public static final String TEMPORARY_ADDRESS="TEMP";

private String addressId;
private String addressType;
private String streeti;
private String street2;
private String street3;
private String city;
private String state;
private String zip;

private String country;

63

64 CHAPTER 2 = STRUTS FUNDAMENTALS

public String getCountry() {
return country;

}

public void setCountry(String country) {
this.country = country;

}

public String getZip() {
return zip;

}

public void setZip(String zip) {
this.zip = zip;

}

public String getAddressId() {
return addressId;

}

public void setAddressId(String addressId) {
this.addressId = addresslId;

}

public String getAddressType() {
return addressType;

}

public void setAddressType(String addressType) {
this.addressType = addressType;

}

public String getStreeti() {
return streeti;

}

public void setStreet1(String street1) {
this.streetl = streeti;

}

public String getStreet2() {
return street2;

}

public void setStreet2(String street2) {
this.street2 = street2;

}

CHAPTER 2 © STRUTS FUNDAMENTALS

public String getStreet3() {
return street3;

}

public void setStreet3(String street3) {
this.street3 = street3;

}

public String getCity() {
return city;

}

public void setCity(String city) {
this.city = city;
}

public String getState() {
return state;

}

public void setState(String state) {
this.state = state;

}

Let’s rewrite the getAddress() and setAddress() methods to return a specific AddressVo.
The getAddress() and setAddress() methods would “wrapper” a HashMap object and allow
the user to return a specific address by a type: BUSINESS, HOME, or TEMPORARY. The
getAddress() and setAddress () methods on the MemberVO for retrieving the addresses
would look something like this:

public void setAddress (String addressType, Object address){
addresses.put(addressType, address);

}

public Object getAddress(String addressType)
Object holder = addresses.get(addressType);

if (holder==null) return "";

return holder;

}

If you want to use a Struts custom tag library to access directly a property on the business
address for a JavaEdge member, the syntax would look something like this:

<bean:write name="memberV0" scope="request"
property="address(BUSINESS).street1"/>

65

66

CHAPTER 2 = STRUTS FUNDAMENTALS

The preceding code translates into the following JSP code:

<%
MemberVO memberVO = (MemberVO) request.getAttribute("memberv0");
out.write(memberV0.getAddress("BUSINESS").getStreet1());

%>

One thing to be concerned about is ensuring the value returned from the HashMap is actu-
ally a valid object. If the object being requested is not found, the getAddress() method must
decide how to handle the returned NULL value.

The concept of accessing mapped properties is an extremely powerful one. We will
explore it in greater detail in Chapter 3, where we will examine how to use the HashMap and
the ActionForm classes to build dynamic ActionForms.

Bean Creation

Struts offers a number of helper tags (bean creation tags) for creating the JavaBeans to be used
within a JSP page. With these tags, a number of tasks can be carried out within the JSP page,
without the need to write Java scriptlet code. These tasks include

* Retrieving a value from a cookie and creating a new JavaBean to hold the cookie’s contents
e Retrieving an HTTP parameter and storing its value in a new JavaBean

e Retrieving a configuration element of Struts (such as a forward, mapping, or form bean)
and storing its information in a JavaBean

e Retrieving an object from the JSP page context (that is, the application, request,
response, or session objects)

* Defining a new JavaBean from scratch and placing a value in it

* Copying the contents of a single property from an existing JavaBean into a new
JavaBean

Table 2-5 gives a brief summary of the different bean creation tags available.

Table 2-5. The Different Struts Bean Creation Tags

Bean Name Bean Description

<bean:cookie> Creates a new JavaBean to hold the contents of the specified cookie. To
retrieve a cookie named shoppingCart into a bean, you use the following
syntax: <bean:cookie id="cart" name="shoppingCart" value="None"/>.
This call creates a new JavaBean called cart, which will hold the value
stored in the cookie shoppingCart. The value attribute tells the bean to
store the string None, if the cookie cannot be found. Essentially, the value
attribute allows you to define a default value for a cookie if no cookie with
the correct name can be found. If the value attribute is not specified and
the cookie cannot be found, a runtime exception will be raised.

<bean:define> Creates a new JavaBean and populates it with a string value defined by the
developer. The following <bean:define> tag creates a JavaBean called hello
that will hold the ever ubiquitous phrase, "Hello World": <bean:define
id="hello" value="Hello World" scope="session"/>.This bean will be
placed in a session of the application.

CHAPTER 2 © STRUTS FUNDAMENTALS

Bean Name

Bean Description

<bean:header>

<bean:include>

<bean:page>

<bean:parameter>

<bean:resource>

<bean:struts>

Creates a new JavaBean and populates it with an item retrieved from the
HTTP header. In the following example, the referer property is being
pulled out of the HTTP header and placed in a bean called httpReferer:
<bean:header id="httpReferer" name="referer"/>. However, since no
value attribute is being defined, a runtime exception will be thrown if the
referer value cannot be found in the HTTP header.

Creates a JavaBean to hold the content returned from a call to another
URL. The following example will take the content retrieved from a call to
the /test.jsp page and place it in a JavaBean called testInclude:
<bean:include id="testInclude" name="/test.jsp"/>.

Creates a new JavaBean to hold an object retrieved from the JSP page
context. The following example will retrieve the session object from the
HttpServletRequest object and place it as a JavaBean called hSession:
<bean:page id="hSession" property="session"/>.

Creates a new JavaBean to hold the contents of a parameter retrieved from
the HttpServletRequest object. To retrieve a request parameter, called
sendEmail, from the HttpServletRequest, you use the following code:
<bean:parameter id="sendEmailFlag" name="sendEmail" value="None"/>.
Like the <bean:cookie> tag, if the value attribute is not specified and the
requested parameter is not located, a runtime exception will be raised.

Retrieves the data from a file located in a web application resource file.
This data can be retrieved as a string or an InputStream object by the tag.
The following code will create a new JavaBean, called webXmlBean, which
will hold the contents of the web.xml file as a string: <bean:resource
id="webXmlBean" name="/web.xml"/>.

Creates a new JavaBean to hold the contents of a Struts configuration
object. The following <bean:struts> tag will retrieve the homePageSetup
action and place the corresponding object into a JavaBean called
homePageSetupMap: <bean:struts id="homePageSetupMap" forward="/
homePageSetup"/>.

We have not used any of the bean creation tags in the JavaEdge application. There is sim-
ply no need to use them for any of the pages in this application. Also, in our opinion, most of
the bean creation tags can be included in an Action class using Java code. According to our
experience, the overuse of the bean creation tags can clutter up the presentation code and
make it difficult to follow.

Logic Tags

The Logic tag library gives the developer the ability to add a conditional and interactive con-
trol to the JSP page without having to write Java scriptlets. These tags can be broken into three

basic categories:

e Tags for controlling iteration.

¢ Tags for determining whether a property in an existing JavaBean is equal to, not equal
to, greater than, or less than another value. In addition, there are logic tags that can
determine whether or not a JavaBean is present within a particular JSP page context
(that is, page, request, session, or application scope).

¢ Tags for moving (that is, redirecting or forwarding) a user to another page in the appli-

cation.

67

68

CHAPTER 2 = STRUTS FUNDAMENTALS

Iteration Tags

The Logic tag library has a single tag, called <logic:iterate>, which can be used to cycle
through a Collection object in the JSP page context. Recollect that in the HomePageSetupAction
class, a collection of StoryV0 objects is placed into the request. This collection holds the latest
ten stories posted to the JavaEdge site. In the homePageContent.jsp page, you cycle through
each of the StoryV0 objects in the request by using the <logic:iterate> tag:

<logic:iterate id="story" name="topStories" scope="request"
type="com.apress.javaedge.valueobject.StoryVv0">
<TR bgcolor="#99CCFF">
<TD>
<bean:write name="story" scope="page" property="storyTitle"/>

</logic:iterate>

In the preceding code snippet, the <logic:iterate> taglooks up the topStories collection
in the request object of the JSP page. The name attribute defines the name of the collection.
The scope attribute defines the scope in which the <logic:iterate> tag is going to search for
the JavaBean. The type attribute defines the Java class that is going to be pulled out of the col-
lection, in this case, StoryV0. The id attribute holds the name of the JavaBean, which holds a
reference to the StoryV0 pulled out of the collection. When referencing an individual bean in
the <logic:iterate> tag, you use the <bean:write> tag. The name attribute of the <bean:write>
tag must match the id attribute defined in the <logic:iterate>.

<bean:write name="story" scope="page" property="storyTitle"/>
Keep in mind the following points while using the <logic:iterate> tag:

» Multiple types of collections can be supported by the <logic:iterate> tag. These types
include

eJava Collection objects

*Java Map objects

* Arrays of objects or primitives
eJava Enumeration objects
eJava Iterator objects

e If your collection can contain NULL values, the <logic:iterate> tag will still go through
the actions defined in the loop. It is the developer’s responsibility to check if a NULL
value is present by using the <logic:present> or <logic:notPresent> tags. (These tags
will be covered in the next section, “Conditional Tags.”)

CHAPTER 2 © STRUTS FUNDAMENTALS

Conditional Tags

The Struts development framework also provides a number of tags to perform basic condi-
tional logic. Using these tags, a JSP developer can perform a number of conditional checks on
the common servlet container properties. These conditional tags can check for the presence
of the value of a piece of data stored as one of the following types:

* Cookie

e HTTP header

e HttpServletRequest parameter
¢ JavaBean

¢ Property on a JavaBean

The Struts conditional tags <logic:equal> and <logic:notEqual> can be used to test
the equality or nonequality of a value sitting in a cookie, header variable, or JavaBean. For
instance, the JavaEdge application always has a memberVO placed in the session of the user
using the application.

If the user has not logged in, their session will hold a memberV0 object whose memberId
property is equal to "1". If they are logged in, the memberVO will hold the data retrieved from the
member table. In the header.jsp file, the <logic:equal> and <logic:notEqual> tags are used to
determine whether or not a login or logout link should be displayed to the end user:

<logic:notEqual scope="session" name="memberV0"
property="memberId" value="1">
<td width="16%" bgcolor="#99CCFF" align="center">
<bean:message key="javaedge.header.logout"/>
</td>
</logic:notEqual>
<logic:notEqual scope="session" name="memberV0"
property="memberId" value="1">
<td width="17%" bgcolor="#99CCFF" align="center">
<bean:message key="javaedge.header.myaccount"/>
</td>
</logic:notEqual>

Alternatively, you could modify how security is handled in the JavaEdge application and
only place a memberVO0 in the user’s session when they have actually logged in. Then you could
use the <logic:present> and <logic:notPresent> tags to determine if the user has logged in
and then display the corresponding login/logout links:

<logic:notPresent scope="session" name="memberV0" >
<td width="16%" bgcolor="#99CCFF" align="center">
<bean:message key="javaedge.header.login"/>
</td>
</logic:notPresent>

69

70

CHAPTER 2 = STRUTS FUNDAMENTALS

<logic:present scope="session" name="memberV0">
<td width="16%" bgcolor="#99CCFF" align="center">
<bean:message key="javaedge.header.logout"/>
</td>
</logic:present>

In this JSP code, a column containing a link to the login URL will be rendered only
if the JavaEdge user has not yet logged in to the application. The <logic:notPresent>
checks the user’s session to see if there is a valid memberV0 object present in the session.
The <logic:present> tag in the preceding code checks if there is a memberVO object in the
user’s session. If there is one, a column will be rendered containing a link to the logout page.
The <logic:present> and <logic:notPresent> tags are extremely useful, but in terms of
applying the conditional logic are extremely blunt instruments. Fortunately, Struts provides
you with a number of other conditional logic tags.

Conditional Logic and Cookies

Suppose that the user authentication scheme was again changed and the JavaEdge applica-
tion set a flag indicating that the user was authenticated by placing a value of true or false in
a cookie called userloggedin. You could rewrite the preceding code snippet as follows to use
the <logic:equals> and <logic:notEquals> tags:

<logic:notEquals cookie="userloggedin" value="true">
<td width="16%" bgcolor="#99CCFF" align="center">
<bean:message key="javaedge.header.login"/>
</td>
</logic:notEquals>

<logic:equals cookie="userloggedin" value="true">
<td width="16%" bgcolor="#99CCFF" align="center">
<bean:message key="javaedge.header.logout"/>
</td>
</logic:equals>

You can use the <logic:equals> and <logic:notEquals> tags to even check a property in a
JavaBean. For instance, you could rewrite the authentication piece of the JavaEdge application
to set an attribute (called authenticated) in the memberV0 object to a hold a string value of true or
false. You could then check the property in the memberVO JavaBean using the following code:

<logic:notEquals name="memberV0" property="authenticated" scope="session"
value="true">
<td width="16%" bgcolor="#99CCFF" align="center">
<bean:message key="javaedge.header.login"/>
</td>
</logic:notEquals>

<logic:equals name="memberV0" property="authenticated" scope="session"
value="true">
<td width="16%" bgcolor="#99CCFF" align="center">

CHAPTER 2 © STRUTS FUNDAMENTALS

<bean:message key="javaedge.header.logout"/>
</td>
</logic:equals>

When applying the conditional logic tags against a property on a JavaBean, keep two
things in mind:

* The scope that you are looking for the JavaBean in: If you do not define a scope attribute,
all of the contexts in the JSP will be searched. If you define this attribute and the value
you are looking for is not there, a runtime exception will be thrown by the Java tag.

e Chaining the property values of a JavaBean using dot (.) notation: You can find examples
of dot notation in the “Bean Output” section in this chapter.

Some other conditional logic tags are available:

e <logic:greaterThan>: Checks if the value retrieved from a JavaBean property,
HttpServletRequest parameter, or HTTP header is greater than the value stored
in the value attribute of the <logic:greaterThan> tag.

e <logic:lessThan>: Checks if the value retrieved from a JavaBean property,
HttpServletRequest parameter, or HTTP header value is less than the value
stored in the value attribute of the <logic:1lessThan> tag.

* <logic:greaterkqual>: Checks if the value retrieved from a JavaBean property,
HttpServletRequest parameter, or HTTP header value is greater than or equal to
the value stored in the value attribute of the <logic:greaterEqual> tag.

e <logic:lesskEqual>: Checks if the value retrieved from a JavaBean property,
HttpServletRequest parameter, or HTTP header value is less than or equal to
the value stored in the value attribute of the <logic:lessEqual> tag.

The logic tags just shown will try to convert the value they are retrieving to a float or
double and perform a numeric comparison. If the retrieved value cannot be converted to a
float or double, these tags will perform the comparisons based on the string values of the
items being retrieved.

Movement Tags

These logic tags in the Struts tag library offer the developer the ability to redirect the user to a
new URL. The two movement logic tags are

e <logic:forward>: Forwards the user to a specified global <forward> tag defined in the
struts-config.xml file

e <logic:redirect>: Performs a redirect to a URL specified by the developer

Let’s see how these two tags can be used. To bring up the JavaEdge application, users need
to point the browser to http://localhost:8080/Javatdge/homePageSetup. This forces users to
know they have to go to the /homePageSetup action. An easier solution would be to allow them
to go to http://localhost:8080/JavaEdge.

7

72

CHAPTER 2 = STRUTS FUNDAMENTALS

In a non-Struts-based application, this could be accomplished by setting up a <welcome-
file-1ist> tagin the application’s web.xml file. This tag allows you to define the default JSP or
HTML file, which is presented when users come to the application and do not define a specific
page. However, this is the problem for the Struts application. The <welcome-file-1ist> allows
you to specify only filenames and not URLs or Struts actions.

However, using the movement logic tags provides you with the ability to work around this
shortcoming. First, we will walk you through a solution using a <logic:forward> tag. You still
need to set up the <welcome-file-1list> tagin the web.xml file of JavaEdge. You are going to
set up a file, called default.jsp, for the default file to be executed:

<web-app>

<welcome-file-list>
<welcome-file>default.jsp</welcome-file>
</welcome-file-list>
</web-app>

Next, you add a new <forward> tag, called default.action, to the <global-forwards> tagin
the struts-config.xml file for the JavaEdge application:

<struts-config>
<global-forwards type="org.apache.struts.action.ActionForward">
<forward name="system.error" path="/WEB-INF/jsp/systemError.jsp"/>
<forward name="default.action" path="/execute/homePageSetup"/>
</global-forwards>

</struts-config>

The last step is to write the default.jsp file. This file contains the following two lines of
code:

<%@ taglib uri="/taglibs/struts-logic.tld" prefix="logic" %>
<logic:forward name="default.action"/>

You can perform the same functionality with the <logic:redirect> tag. If you implement
default.jsp using a <logic:redirect> tag, you still need to set up the default.jsp in the web.xml
file. However, you do not need to add another <forward> tag to the <global-forwards> tag
located in struts-config.xml. Instead, you just need to write the default.jsp in the following
manner:

<%@ taglib uri="/taglibs/struts-logic.tld" prefix="logic" %>
<logic:redirect page="/execute/homePageSetup"/>

This code will generate a URL relative to the JavaEdge application (http:// localhost:8080/
Javaedge/execute/HomePageSetup). You are not restricted, while using the <logic:redirect>, to
redirect to a relative URL. You can also use a fully qualified URL and even redirect the user to
another application. For instance, you could rewrite the default.jsp as follows:

CHAPTER 2 © STRUTS FUNDAMENTALS

<%@ taglib uri="/taglibs/struts-logic.tld" prefix="logic" %>
<logic:redirect
href="http://localhost:8080/Javakdge/execute/homePageSetup"/>

Using <logic:redirect> and <logic:forward> is the equivalent of calling the sendRedirect()
method on the HttpServletResponse class in the Java Servlet APL The difference between the two
tags is that the <logic:forward> tag will let you forward only to a <global-forward> defined in the
struts-config.xml file. The <logic:redirect> tag will let you redirect to any URL.

The <logic:redirect> tag has a significant amount of functionality. However, you have
had just a brief introduction to what the <logic:redirect> tag can do. A full listing of all the
attributes and functionalities of this tag can be found at http://struts.apache.org/1.x/
struts-el/tlddoc/logic/redirect.html.

Summary

In this chapter, we explored the basic elements of a Struts application and how to begin using
Struts to build the applications. To build a Struts application, you need to know the following:

e The basic components of a Struts application:

eActionServlet: Represents the controller in the Struts MVC implementation.
It takes all user requests and tries to map them to an <action> entry in the
struts-config.xml file.

eaction: Defines a single task that can be carried by the end user. Also, it defines
the class that will process the user’s request and the JSP page that will render the
HTML the user sees.

e Action class: Contains the entire logic to process a specific user request.

* ActionForm: Is associated with an <action> tag in the struts-config.xml file. It wraps
all the form data submitted by the end user and also can perform validation on the
data entered by the user.

¢ JSP pages: Used to render the HTML pages that the users will see as a result of their
request to the ActionServlet.

¢ The configuration files necessary to build a Struts application:

* web.xml: This file contains the entire ActionServlet configuration, the mapping of
user requests to the ActionServlet, and all the Struts Tag Library Definitions.

o struts-config.xml: This file contains all the configuration information for a
Struts-based application.

* ApplicationResources.properties: This file is a central location for static content for
a Struts application. It allows the developer to easily change the text or interna-
tionalize an application.

73

74 CHAPTER 2 = STRUTS FUNDAMENTALS

 The different Struts tag libraries for building the presentation piece of the application,
including the following:

* Bean: Provides the developer with JSP tags for generating output from a JavaBean
and creating a JavaBean from common JSP web artifacts.

¢ Logic: Can be used to apply the conditional logic in the JSP page through Collections
stored in the user’s JSP page context and redirect the user to another page.

* HTML: These tags are not discussed in this chapter. However, they offer a significant
amount of functionality and are discussed in greater detail in Chapters 3 and 4.

Also, we identified some different areas where Struts can be used to refactor the web
antipatterns that might form during the design and implementation of web-based applica-
tions. Refactoring of the following antipatterns was discussed:

* Hardwired: We looked at how to chain together Struts actions to perform the precondi-
tion, form processing, and postcondition logic. This segregation of the business logic
into the multiple applications provides a finer control over the application of the busi-
ness logic and makes it easier to redirect the user to different Struts actions and JSP

pages.

e Tight-Skins: While examining this antipattern, we looked at how to use the bean and
logic tags to implement role-based presentation logic.

This chapter lays the foundation for the material covered in Chapters 3 and 4. In the
next chapter, we are going to cover how to implement web-based forms using the Struts form
tags. We will also look at the Struts HTML tag library and how it simplifies form development.
Finally, the next chapter will focus on how to use the Struts ActionForm class to provide a com-
mon mechanism for validating the user data and reporting validation errors back to the user.

CHAPTER 3

Form Presentation
and Validation with Struts

In the previous chapter, all of our Struts examples were built around very simple screens that
were populated with data retrieved from the JavaEdge application. However, most web appli-
cations require a high degree of interaction, with end users often submitting the data via
HTML forms.

This chapter is going to look at how to simplify the construction of HTML forms and
form-handling code using the Struts development framework. We are going to discuss, from
both a conceptual and an implementation point of view, how the Struts framework can pro-
vide a configurable and consistent mechanism for building web forms. This chapter is going
to cover the following topics:

* Validating HTML form data using the ActionForm class

¢ How the validate() method of the ActionForm class is used to validate data against
the user

* Error handling when a validation rule is violated

* Prepopulating an HTML form with data

* Configuring Struts for processing HTML form data

 Simplifying the development of HTML form pages using the Struts HTML tag libraries
* Using Map-backed ActionForms to build flexibility into your application

* Best practices associated with using the Struts ActionForm class

Problems with Form Validation

Most web development teams do not have a consistent strategy for collecting data from the
end user, validating it, and returning any error messages that need to be displayed. They use
a hodgepodge of different means of collecting and processing the user’s data. Two commonly
used validation mechanisms include embedding JavaScript in the HTML or JSP page render-
ing the form, and/or mixing the validation logic for the screen with the business logic in the
business tier of the application.

75

76 CHAPTER 3 ©° FORM PRESENTATION AND VALIDATION WITH STRUTS

This inconsistency in how data is collected and validated often results in the following:

Customers, whether they are internal (such as employees) or external (such as pur-
chasers), having a disjointed experience while using the web-based applications of the
organization. Each application requires the customer to have a different set of skills and
an understanding of how the application works and how to respond to errors. In larger
applications, this inconsistency can exist even between different pages in the same
application.

Validation logic is strewn through the different layers of the application. This increases
the amount of time required to perform application maintenance. The maintenance
developer, who is rarely the same as the code developer, often has to hunt for the loca-
tion of the validation logic and know multiple development languages (JavaScript for
validation rules enforced in the browser, Java for validation logic in the middle tier, and
a stored procedure language for validation logic in the database).

Validation logic is used differently across different browsers. JavaScript, though “stan-
dardized,” is implemented differently across browsers. Developers of a web browser
take great liberties in the way in which they implement the JavaScript European Com-
puter Manufacturers Association (ECMA) standard. Often, they provide their own
browser-specific extensions, which make cross-browser viewing (and portability) of
the application difficult.

The application code is difficult to reuse. With validation logic strewn throughout

the tiers of an application, it is difficult to pick up that validation code and reuse it in
another application. The developer has to take care of the dependencies being present
before reusing the validation code, because there is no clean separation between the
validation and business logic.

All the problems just identified are the symptoms of the Validation Confusion antipattern.
Recollecting the discussion in Chapter 1, the Validation Confusion antipattern occurs due to
one of the following reasons:

No clear distinction between the validation logic of the form data and the business
logic that processes the user’s request

Lack of a pluggable interface, which allows the developer to easily modify the validation
logic for a particular screen

No standardized mechanism for identifying the validation violations and notifying the
end user of them

Fortunately, the Struts framework provides a rich set of software services for building and
managing the form data. These services allow a developer to handle the form validation in a
consistent fashion. Much of the logic, normally associated with capturing and presenting the
errors, becomes the responsibility of the Struts framework and not of the application developer.

CHAPTER 3 ©' FORM PRESENTATION AND VALIDATION WITH STRUTS

Using Struts for Form Validation

To build an HTML form, in Struts, you need to have the following pieces in place:

* A Struts ActionForm class, which is used to hold the data collected from the end user
and perform any validations on that data. This class provides a simple-to-use “wrap-
per” that eliminates the need for developers to pull the submitted data out of the
HttpServletRequest object, associated with the end user’s request.

e A Struts Action class to carry out the user’s request. In the process of carrying out the
user’s request, any business rules that should be enforced will be executed, and any
database inserts, updates, or deletes will be performed.

* AJSP page that uses the Struts HTML tag libraries to render the form elements that are
going to appear on the page.

Tying all of these pieces together is the struts-config.xml file. This file will have entries in
it for defining the Struts ActionForm classes used in the application, which ActionForm classes
are going to be used with which action, and whether an ActionForm class is going to enforce
the validation against the submitted data. Each Struts action processing the form data must
have its corresponding <action> tag modified, to indicate which ActionForm class will be used
by the action.

Let’s discuss what happens when the user submits the data in an HTML form. Figure 3-1
shows what happens when the user submits the form data to a Struts-based application, as
described next:

RequestProcessor.processPopulate()
RequestProcessor ActionForm.validate()

= ActionServlet 1.

Web form data
submitted by end user

\i

ActionForm.reset(h

-}
-
-}

-
—

3. 6.

ActionForm.execute()

struts-config.xml L

4.

HttpServletRequest data is
mapped to the ActionForm.

Figure 3-1. The flow of a user request through Struts

77

78 CHAPTER 3 ©° FORM PRESENTATION AND VALIDATION WITH STRUTS

1. The ActionServlet will examine the incoming URL mapping or extension to determine
what action the user submitting the data wants to take. The ActionServlet will create
an instance of an org.apache.struts.action.RequestProcessor class and hand over
responsibility for processing the user’s request to it.

The RequestProcessor will look at the data for the action requested in the struts-config.
xml file. It will then determine whether or not an ActionForm has been defined for the
action and, if so, what scope the ActionForm resides in.

Once a scope has been determined for an ActionForm, the RequestProcessor will check
to see if the ActionForm already exists in that scope. If the desired ActionForm class does
exist in the defined scope, the RequestProcessor will retrieve it and pass it to the
RequestProcessor.processPopulate() method.

If the desired ActionForm does not exist in the scope, the RequestProcessor will create
an instance of it, put it into the scope defined inside of the <action> tag in the struts-
config.xml file, and then pass the created ActionForm instance to the
processPopulate() method.

2. The processPopulate() method is responsible for mapping the form data passed into it
via the HttpServletRequest object to the Struts ActionForm defined for the action being
processed. It does this by first calling the reset () method on the ActionForm and then
populating the ActionForm with data from the HttpServletRequest object.

An ActionForm simplifies the form processing, but it is not required to access the
form data submitted by the end user. An Action class can still access the submitted
form data by calling the getParameter() method on the request object passed into its
execute() method. However, overreliance on the getParameter () method can bypass
much of the validation and error-handling support in Struts.

3. Before the data submitted can be validated, the RequestProcessor will call the
ActionForm’s reset() method. The reset() method is a method that can be overridden
by Struts developers to “initialize” or “override” individual properties on an ActionForm.

This method is most commonly used to properly handle a web form’s radio checkbox
fields when the form has been submitted multiple times. The reset() method will be
covered in greater detail later in the chapter.

4. Once the reset() method has been called, the RequestProcessor will populate the
ActionForm with data from the request by using the org.apache.struts.util.
RequestUtil’s populate() method.

5. Once the form data has been mapped from the HttpServletRequest object to the
ActionForm, the submitted data will be validated. The RequestProcessor will validate
the form data by calling the ActionForm’s validate() method.

CHAPTER 3 ©' FORM PRESENTATION AND VALIDATION WITH STRUTS

If a validation error occurs, the RequestProcessor will inform the ActionServlet to
redirect users back to the screen where data was submitted. Users will then have to
correct the validation violations before they can continue. We will be covering how
Struts is notified of a validation error in the section called “Validating the Form Data.”

6. If the data contained in the ActionForm successfully passes all validation rules defined
in the validate() method, the RequestProcessor will invoke the execute() method on
the Action class. The execute() method contains the business logic needed to carry
out the end user’s request.

Remember that the Java class, which carries out the end user’s request, is defined via the
type attribute in the <action> element. We suggest that you refer to Chapter 2 to understand
how to configure a Struts action before continuing.

Implementing Form Validation with Struts

Let’s begin the discussion of form handling by Struts by looking at how an HTML form is
processed by Struts when a user submits it. We are going to use the Post a Story page from the
JavaEdge application as our example.

This page can be accessed by either clicking the Post a Story link in the menu bar at the
top of every JavaEdge page or pointing your browser to http://localhost:8080/javaedge/
execute/postStorySetup. The Post a Story page is used by a JavaEdge user to submit a story,
which the other users visiting this page can read.

If you have successfully reached this page, you will see the screen in Figure 3-2.

Post a Stary View All Stories earch Sign Up
User Idiurbine Password! ™
Post a Story
The following story will be posted by: Anenymous
Story Title:
Enter & title here.
Story Intro:
Enter the story introduction here. Please be concise.
Story Body:
Enter the full story here. Please be nice :,>.
G ()

Figure 3-2. The Post a Story page

79

80

CHAPTER 3 ©° FORM PRESENTATION AND VALIDATION WITH STRUTS

Let’s begin by looking at how to set up the struts-config.xml file to use ActionForm objects.

The struts-config.xml File

To use an ActionForm class to validate the data collected from a user form, the struts-config.xml
file for the application must be modified. These modifications include

e Adding a <form-beans> tag, which will define each of the ActionForm classes used in the
application

* Modifying the <action> tag processing the user’s request to indicate that before the
user’s request is processed, it must be validated by an ActionForm class

The <form-beans> tag holds one or more <form-bean> tags within it. This tag appears at the
top of the struts-config.xml file. Each <form-bean> tag corresponds to only one ActionForm class
in the application. For the JavaEdge application, the <form-beans> taglooks as shown here:

<form-beans>
<form-bean name="postStoryForm"
type="com.apress.javaedge.struts.poststory.PostStoryForm"/>

<form-bean> //More form-bean definitions.
</form-beans>

The <form-bean> element has two attributes:

* name: A unique name for the form bean being defined. Later on, this name will be used
to associate this form bean with an <action> element. This attribute is a required field.

* type: The fully qualified class name of the ActionForm class that the form bean repre-
sents. This attribute is also a required field.

The <form-bean> element actually has a third optional attribute called className.
This attribute is used to specify what configuration bean to use for the defined form bean.
If the className attribute is omitted, Struts will default to the org.apache.struts.config.
FormBeanConfig class.

Once a <form-bean> has been defined, you can use it in an <action> element to perform
validation of the form data. To add the validation to a <form-bean>, you must supply the four
additional attributes described in Table 3-1 in an <action> element.

Table 3-1. Attributes of the Form Bean Tag

Attribute Name Attribute Description

name Maps to the name of the <form-bean> that will be used to process the
user’s data.

scope Defines whether or not the ActionForm class will be created in the user’s

request or session context. The scope attribute can be used only when the
name attribute is defined in the <action> tag. If the name attribute is present,
the scope attribute is an optional tag. The default value for the scope attribute
is request.

CHAPTER 3 ©' FORM PRESENTATION AND VALIDATION WITH STRUTS

Attribute Name Attribute Description

validate A Boolean attribute that indicates whether or not the submitted form data
will be validated. If it’s true, the validate() method in the ActionForm class
and the execute() method in the Action class will be invoked. If it's false,
then the validate() method will not be invoked, but the execute() method
in the Action class defined in the tag will be executed. The validate attribute
is used only when the name attribute has been defined in the tag. The default
value for the validate attribute is true.

input Used to define where the user should be redirected, if a validation error
occurs. Usually, the user is redirected back to the JSP page where the data was
submitted. It is not required if the name attribute is not present.

The /postStory action processing the data entered by the user in the postStory. jsp page
is shown here:

<action path="/postStory"
input="/WEB-INF/jsp/postStory.jsp"
name="postStoryForm"
scope="request"
validate="true"
type="com.apress.javaedge.struts.poststory.PostStory">
<forward name="poststory.success" path="/execute/homePageSetup"/>
</action>

Struts ActionForm Class

The Struts ActionForm class is used to hold the entire form data submitted by the end user. It

is a helper class that is used by the ActionServlet to hold the form data that it has pulled from
the end user’s request object. The application developer can then use the ActionFormto access
the form through get () and set() method calls.

The ActionForm class not only provides a convenient wrapper for the request data but also
validates the data submitted by the user. However, an Action class is not required to have an
ActionForm class. An Action class can still access the form data submitted by the end user by
calling the getParameter () method in the request object passed into its execute() method.

To build an ActionForm class, the developer needs to extend the base Struts ActionForm
class and override two methods in it, reset () and validate().

Just to review, the reset() method is overridden by the developer when an ActionForm
class for an action is to be stored in the user’s session context. The reset () method clears the
individual attributes in the ActionForm class to ensure that the ActionForm class is properly ini-
tialized before it is populated with the user’s form data. The validate() method is overridden
by the developer. This method will contain all of the validation logic used in validating the
data entered by the end user.

In addition, the application developer needs to define all the form elements that are going
to be collected by the ActionForm class and stored as private properties in the class. For each
defined property, there must be corresponding get () and set() methods that follow the stan-
dard JavaBean naming conventions.

81

82

CHAPTER 3 ©' FORM PRESENTATION AND VALIDATION WITH STRUTS

Note You must implement a get() and set () method for each form element captured off the web form.
These get () and set () methods should follow the standard JavaBean naming conventions. The first letter
of the word after get()/set () should be capitalized along with the first letter of each word in the method
thereafter. All other letters in the method name should be lowercase. The Struts framework uses Java reflec-
tion to read the data from and write data to the ActionForm class. An exception will be raised if the get ()
or set() method is not present for a piece of data submitted.

For the Post a Story page, you are going to write a Struts ActionForm class called
PostStoryForm. java. This class will hold the story title, the story intro, and the body of the
story. In addition, it will contain the validation code for the data being submitted by the user.

The class diagram shown in Figure 3-3 illustrates the class relationships, methods, and
attributes for the Struts ActionForm class and the PostStoryForm class.

ActionForm

+reset(mapping:ActionMapping,request :HttpServletRequest)

+validate(mapping:ActionMapping,request:HTTPServletRequest):ActionErrors

y

PostStoryForm

-storyTitle:String
-storyIntro:String
-storyBody:String

+getStoryTitle():String
+getStoryIntro():String
+getStoryBody () :String
+setStoryTitle(storyTitle:String)
+setStoryIntro(storyIntro:String)
+setStoryBody (storyBody:String)

Figure 3-3. PostStoryForm’s relationship to the ActionForm class

It is very easy to fall into the mind-set that there must be one ActionForm class for each
HTML form from which the data is collected. In small-to-medium size applications, there is
nothing wrong in using a single ActionForm placed in the user’s session. All the forms in the
application will use this ActionForm to hold the data collected from the user.

This simplifies the collection of the data because your application has only one
ActionForminstance that you have to work with. By using a single ActionForm class and
placing it in the user’s session, you can very easily implement a wizard-based application that

CHAPTER 3 ©' FORM PRESENTATION AND VALIDATION WITH STRUTS

will remember each piece of user information entered. As the user steps back and forth
through the wizard, the data can easily be retrieved from the single ActionForm class.

The problem with using a single ActionForm class in the user’s session is that the applica-
tion will not scale as well. Remember, the objects placed in the user’s session have a held
reference until the session times out and the objects are garbage collected.

Do not place ActionForm objects in the session merely as a convenience. The other prob-
lem with this method occurs if the users are carrying out a long-lived transaction. If the users
lose their connection or close their browser, any of the data entered till then will be lost.

To ensure that as much of the user’s data is captured and persisted as possible, break the
application into smaller transactions. Use an ActionForm class for each application screen and
persist the data in the ActionForm class as soon as the users submit their data. Place the
ActionForm class into the request so that server resources are not unnecessarily used.

The code for the PostStoryForm class is shown next. However, the reset() and validate()
methods for this class are not displayed. They will be discussed in the sections “Using the
reset() Method” and “Validating the Form Data,” respectively.

package com.apress.javaedge.struts.poststory;

import com.apress.javaedge.common.VulgarityFilter;
import com.apress.javaedge.common.ApplicationException;
import com.apress.javaedge.story.StoryVo;

import com.apress.javaedge.member.MemberV0;

import org.apache.struts.action.*;

import org.apache.struts.util.MessageResources;
import org.apache.commons.beanutils.BeanUtils;
import org.apache.struts.action.Action;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpSession;

import java.util.Vector;

import java.lang.reflect.InvocationTargetException;
import org.apache.struts.Globals;

Vak

* Standard Struts class that collects data
* submitted by the end-user.

* @author jcarnell

*

---------- XDoclet Tag----------------
* @struts.form name="postStoryForm"

*/
public class PostStoryForm extends ActionForm {

nn

String storyTitle = "";

nn

String storyIntro = "";

nn

String storyBody = "";

83

84

CHAPTER 3 ©° FORM PRESENTATION AND VALIDATION WITH STRUTS

//Checks to make sure field being checked is not null
private void checkForEmpty(String fieldName, String fieldKey,
String value, ActionErrors errors){
if (value.trim().length()==0){
ActionError error = new
ActionError("error.poststory.field.null", fieldName);
errors.add(fieldKey, error);
}
}

//Checks to make sure the field being checked does
// not violate our vulgarity list
private void checkForVulgarities(String fieldName, String fieldKey,
String value, ActionErrors errors){
VulgarityFilter filter = VulgarityFilter.getInstance();

if (filter.isOffensive(value)){
ActionError error =
new ActionError("error.poststory.field.vulgar”, fieldName);
errors.add(fieldKey, error);
}
}

//Checks to make sure the field in question
//does not exceed a maximum length
private void checkForLength(String fieldName,
String fieldKey, String value, int maxLength, ActionErrors errors){
if (value.trim().length()>maxLength){
ActionError error =
new ActionError("error.poststory.field.length", fieldName);
errors.add(fieldKey, error);
}
}

public ActionErrors validate(ActionMapping mapping,
HttpServletRequest request) {
ActionErrors errors = new ActionErrors();

checkForEmpty("Story Title", "error.storytitle.empty",
getStoryTitle(),errors);

checkForEmpty("Story Intro", "error.storyintro.empty",
getStoryIntro(), errors);

checkForEmpty("Story Body", "error.storybody.empty”,
getStoryBody(), errors);

checkForVulgarities("Story Title", "error.storytitle.vulgarity",
getStoryTitle(), errors);

CHAPTER 3 ©' FORM PRESENTATION AND VALIDATION WITH STRUTS

checkForVulgarities("Story Intro", "error.storyintro.vulgarity",
getStoryIntro(), errors);

checkForVulgarities("Story Body", "error.storybody.vulgarity",
getStoryBody(), errors);

checkForLength("Story Title", "error.storytitle.length",
getStoryTitle(), 100, errors);

checkForLength("Story Intro", "error.storyintro.length",
getStoryIntro(), 2048, errors);

checkForLength("Story Body", "error.storybody.length",
getStoryBody(), 10000, errors);

return errors;

}

/**
* @see org.apache.struts.action.ActionForm#reset
(org.apache.struts.action.ActionMapping,
javax.servlet.http.HttpServletRequest)
*/
public void reset(ActionMapping mapping,
HttpServletRequest request) {
// deprecated 1.1
//ActionServlet servlet = this.getServlet();
//MessageResources messageResources = servlet.getResources();

// new for 1.2
MessageResources messageResources =
(MessageResources) request.getAttribute(Globals.MESSAGES KEY);

storyTitle = messageResources.getMessage(
"javaedge.poststory.title.instructions");
storyIntro = messageResources.getMessage(

/** Getter for property storyTitle.

* @return Value of property storyTitle.

*/

public java.lang.String getStoryTitle() {
return storyTitle;

}

/** Setter for property storyTitle.

* @param storyTitle New value of property storyTitle.

*/

public void setStoryTitle(java.lang.String storyTitle) {
this.storyTitle = storyTitle;

}

85

CHAPTER 3 ©° FORM PRESENTATION AND VALIDATION WITH STRUTS

/** Getter for property storyIntro.

* @return Value of property storyIntro.

*/

public java.lang.String getStoryIntro() {
return storyIntro;

}

/** Setter for property storyIntro.

* @param storyIntro New value of property storyIntro.

*/

public void setStoryIntro(java.lang.String storyIntro) {
this.storyIntro = storyIntro;

}

/** Getter for property storyBody.

* @return Value of property storyBody.

*/

public java.lang.String getStoryBody() {
return storyBody;

}

/** Setter for property storyBody.

* @param storyBody New value of property storyBody.

*/

public void setStoryBody(java.lang.String storyBody) {
this.storyBody = storyBody;

}

Using the reset() Method

The reset() method is used to ensure that an ActionForm class is always put in a “clean” state
before the ActionServlet populates it with the form data submitted in the user’s request. In
the struts-config.xml file, the developer can choose to place an ActionForm for a specific Struts
action in either the user’s session or request.

The reset() method was originally implemented to allow developers to deal with one
of the more annoying HTML form controls: checkboxes. When a form is submitted with
unchecked checkboxes, no data values are submitted for the checkbox control in the HTTP
request.

Thus, if an ActionFormis sitting in the user’s session and the user changes a checkbox
value for the ActionForm from true to false, the ActionForm will not get updated because the
value for the checkbox will not be submitted. Remember, the HTML <input> tag does not send
avalue of false on an unchecked checkbox.

The reset() method can be used to initialize a form bean property to a predetermined
value. In the case of a form bean property that represents a checkbox, the reset() method can
be used to set the property value always to false.

CHAPTER 3 ©' FORM PRESENTATION AND VALIDATION WITH STRUTS 87

Since the reset() method is called before the form is populated with data from the
HttpServletRequest object, it can be used to ensure that a checkbox is set to false. Then if
the user has checked a checkbox, the false value set in the reset () method can be overridden
with the value submitted by the end user.

The Struts development team typically recommends the reset () method only be used for
the preceding purpose. However, as you will see in the next section, the reset() method can
be useful for prepopulating a JSP page with data.

A Word on the reset() Method

Among Struts developers, the use of the reset() method to prepopulate form data can be the
cause of rigorous debate. The Struts JavaDoc advises to not use the reset () method. The main
reason the Struts development team gives is that the reset () method maybe deprecated at
some point in the future (even though this has yet to be even mentioned anywhere).

In the next several sections, we will be demonstrating how to prepopulate a web page by
using the reset () method and a “setup” action. We give our reason for using both methods
and have seen both methods work rather successfully in production-level systems. That being
said, please do not deluge our mailboxes with angry e-mails if it is deprecated in the future.

Implementing the reset () method for the PostStoryForm will set all its properties to an
empty string. The reset () method for the PostStoryForm class is shown here:

public void reset(ActionMapping mapping,
HttpServletRequest request) {

storyTitle = "";

storyIntro = "";

storyBody = "";
}

Prepopulating an ActionForm with Data

So far, we have talked about using the reset () method to ensure that the contents of an
ActionForm class are cleared before the ActionServlet places data in it from the user request.
However, an ActionForm class can also be used to prepopulate an HTML form with data.
The data populating the form might be text information retrieved from a properties file or
a database.

To prepopulate an HTML form with data, you need to have the following Struts elements
in place:

e A Struts setup action that will be called before a user is redirected to a JSP page,
displaying an HTML form prepopulated with the data. The concept of setup actions
is discussed in Chapter 2.

e An ActionForm class whose reset () method will prepopulate the form fields with data
retrieved from the ApplicationResources.properties file. The
ApplicationResources.properties file is discussed in Chapter 2.

* AJSP page that uses the Struts HTML tag library to retrieve the data from the
ActionForm class.

88

CHAPTER 3 ©' FORM PRESENTATION AND VALIDATION WITH STRUTS

For example, you can prepopulate the HTML form for the Post a Story page with some
simple instructions on what data is supposed to go in each field. For this example, you are
going to use the following files:

¢ PostStoryForm.java
e PostStorySetupAction.java
¢ postStoryContent.jsp

We are only going to show you the PostStoryForm and the PostStorySetupAction Java
classes. The postStoryContent.jsp file will use the Struts HTML tag library to read the values
out of the PostStoryForm object stored in the request and display them in each field. The post-
StoryContent.jsp file and Struts HTML tag library are discussed later in the chapter, in the
section “The Struts HTML Tag Library.”

PostStoryForm.java

Writing the reset () method for a PostStoryForm to prepopulate the ActionForm with the
instructions for each field in the form is a straightforward task:

public void reset(ActionMapping mapping,
HttpServletRequest request) {
MessageResources messageResources =
(MessageResources) request.getAttribute(Globals.MESSAGES KEY);

storyTitle =
messageResources.getMessage("javaedge.poststory.title.instructions");

storyIntro =
messageResources.getMessage("javaedge.poststory.intro.instructions");

storyBody =
messageResources.getMessage("javaedge.poststory.body.instructions");

The reset() method just shown reads values from the ApplicationResources.properties
file and uses them to populate the properties of the PostStoryForm object.

Note In the preceding reset () method, the error messages being looked up by the call to getMessage()
have a string literal being passed in as a parameter. This string literal is the name of the message being looked
up from the resource bundle used for the JavaEdge application (that is, the ApplicationResources.properties file).

This was done for clarity in reading the code. A more maintainable solution would be
to replace the individual string literals with corresponding static final constant values.

The Struts development framework provides an easy-to-use wrapper class, called
MessageResources, for directly accessing the data in the ApplicationResources.properties file.

CHAPTER 3 ©' FORM PRESENTATION AND VALIDATION WITH STRUTS

Note We use the name ApplicationResources.properties for the name of the message resource bundle used
in the JavaEdge application because this is traditionally what this file has been called in the Struts application.
However, the name of the file used as the message resource bundle can be set in the parameter attribute
of the <message-resources> tag contained within the struts-config.xml file. For a review of the <message-
resources> tag, please review Chapter 2.

After getting an instance of a MessageResources object, you can pass the message key of
the item that you want to retrieve to getMessage(). The getMessage() method will retrieve the
desired value.

messageResources.getMessage("javaedge.poststory.title.instructions");

If the key passed to the getMessage() method cannot be found, a value of null will be
returned. The following are the name-value pairs from the ApplicationResources.properties
file used to prepopulate the PostStoryForm:

javaedge.poststory.title.instructions=Enter a title here.
javaedge.poststory.intro.instructions=

Enter the story introduction here. Please be concise.
javaedge.poststory.body.instructions=Enter the full story here. Please be nice.

The PostStoryForm.reset() method is a very simple example of how to prepopulate a
form with the data contained in an ActionForm class. In reality, many applications retrieve
their data from an underlying relational database rather than from a properties file. How the
reset() method on the PostStoryFormis invoked is yet to be explored.

Note A common mistake by beginning Struts and JSP developers is to try to use the ActionForm class
to manage Struts form data without using the Struts HTML tag library.

It is important to note that all of the techniques shown for prepopulating a web form will
only work with the Struts HTML JSP tag libraries.

Let’s take a look at the PostStorySetupAction.java file and see how we can trigger the
reset() method.

PostStorySetupAction.java

Triggering the PostStoryForm. reset () method does not require any coding in the
PostStorySetupAction.java file. All that the PostStorySetupAction class is going to do
is forward the user’s request to the postStoryContent.jsp file. So what role does the
PostStorySetupAction.java file play, if its execute () method just forwards the user
on to a JSP page? How is the reset () method in the PostStoryForm class called?

89

90

CHAPTER 3 ©° FORM PRESENTATION AND VALIDATION WITH STRUTS

If you set a Struts <action> tag in the struts-config.xml file to use an ActionForm and tell
the ActionServlet to put the PostStoryForm in the user’s request, the reset() method in the
PostStoryForm class will be invoked.

When users click the Post a Story link in the JavaEdge header, they are asking the
ActionServlet to invoke the /postStorySetup action. This action is configured to use the
ActionForm class of PostStoryForm. The PostStoryForm is going to be put in the users’ request
context by the ActionServlet.

Since the ActionForm class for the /postStorySetup action is the PostStoryForm class
and the PostStoryForm class is going to be placed into the users’ request context, the reset ()
method in the PostStoryForm class will be invoked. The reset() method is going to initialize
each of the attributes in the PostStoryForm class to hold a set of simple instructions pulled
from the ApplicationResources.properties file.

After the reset() method has been invoked, the ActionServlet will place any submitted
form data in the PostStoryForm instance. Since the user has not actually submitted any data,
the PostStoryForm class will still hold all of the values read from the ApplicationResources.
properties file. The ActionServlet will then invoke the execute() method in the
PostStorySetupAction class, which will forward the user to the postStoryContent.jsp page.
This page will display a form, prepopulated with instructions.

In summary, to prepopulate the form, you need to perform the following two steps:

1. Write a Struts Action class called PostStorySetupAction. The execute() method of this
class will pass the user on to postStoryContent.jsp.

2. Setup an action called /postStorySetup in the struts-config.xml file. This action will
use the PostStoryForm class.

The code for PostStorySetupAction.java is shown here:

package com.apress.javaedge.struts.poststory;

import org.apache.struts.action.Action;

import org.apache.struts.action.ActionMapping;
import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionForward;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;

public class PostStorySetupAction extends Action {
public ActionForward execute(ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response){

return (mapping.findForward("poststory.success"));

}
}

CHAPTER 3 ©' FORM PRESENTATION AND VALIDATION WITH STRUTS

The execute () method just forwards the user to the postStoryContent.jsp page by return-
ing an ActionForward mapped to this page:

return (mapping.findForward("poststory.success"));

The poststory.success mapping corresponds to the <forward> element, defined for the
following <action> tag of /postStorySetup:

<action path="/postStorySetup"
type="com.apress.javaedge.struts.poststory.PostStorySetupAction”
name="postStoryForm"
scope="request"
validate="false">
<forward name="poststory.success" path="/WEB-INF/jsp/postStory.jsp"/>
</action>

The name attribute shown here tells the ActionServlet to use an instance of PostStoryForm
whenever the user invokes the /postStorySetup action:

name="postStoryForm"

Remember, the value of the name attribute must refer to a <form-bean> tag defined at the
beginning of the struts-config.xml file.

The scope attribute tells the ActionServlet to place the PostStoryForm as an attribute in
the HttpServletRequest object:

scope="request"

Setting the validate attribute to false in the preceding tag will cause the ActionServlet
not to invoke the validate() method of the PostStoryForm. This means the reset() method in
the PostStoryForm object is going to be invoked and placed in the user’s request, but no data
validation will take place.

Since no data validation takes place, the execute() method of PostStorySetupAction will
be invoked. Remember, the Action class that carries out the end user’s request is defined in
the type attribute:

type="com.apress.javaedge.struts.poststory.PostStorySetupAction”

Another Technique for Prepopulation

Another technique exists for prepopulating an ActionForm with data. It is discussed here
because implementing your Struts application using this technique can cause long-term
maintenance headaches.

In the PostStorySetupAction.java file, you could implement the execute() method so
that it creates an instance of PostStoryForm and invokes its reset () method directly. After the
reset() method is invoked, the PostStoryForm can then be set as an attribute in the request
object passed in the execute() method.

91

92 CHAPTER 3 ©° FORM PRESENTATION AND VALIDATION WITH STRUTS

The following code demonstrates this technique:

public class PostStorySetupAction extends Action {
public ActionForward execute(ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response){

PostStoryForm postStoryForm = new PostStoryForm();
postStoryForm.setServlet(this.getServlet());
postStoryForm.reset(mapping, request);
request.setAttribute("postStoryForm", postStoryForm);

return (mapping.findForward("poststory.success"));

Note If you find yourself working around the application framework, consider redesigning the task you
are trying to execute. Stepping outside the application framework, as in the example shown previously, can
lead to long-term maintenance and upgrade issues. The Struts architecture tries to remain very declarative,
and controlling the application flow programmatically breaks one of Struts’ fundamental tenets.

Prepopulating a Form the Correct Way

If you are going to use a setup action and not the reset () method on an ActionForm to prepop-
ulate a form with data, then you should do all of the work directly in the setup action. The
code that follows demonstrates this:

public class PostStorySetupAction extends Action {
public ActionForward execute(ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response){

ActionServlet servlet = this.getServlet();
PostStoryForm postStoryForm = new PostStoryForm();
postStoryForm.setServlet(this.getServlet());

MessageResources messageResources =
(MessageResources) request.getAttribute(Globals.MESSAGES KEY);

postStoryForm.setStoryTitle(
messageResources.getMessage("javaedge.poststory.title.instructions"));
postStoryForm.setStoryIntro(
messageResources.getMessage("javaedge.poststory.intro.instructions"));
postStoryForm. setStoryBody (

CHAPTER 3 ©' FORM PRESENTATION AND VALIDATION WITH STRUTS

messageResources.getMessage("javaedge.poststory.body.instructions™"));
request.setAttribute("postStoryForm", postStoryForm);

return (mapping.findForward("poststory.success"));

}
}

If you look at this code, you will notice that you can directly retrieve and set Struts
ActionForm classes in the user’s request or session context:

storyTitle =
messageResources.getMessage("javaedge.poststory.title.instructions");

storyBody =
messageResources.getMessage("javaedge.poststory.body.instructions");
request.setAttribute("postStoryForm", postStoryForm);

At some point as a Struts developer you will need to retrieve, create, or manipulate an
ActionForm manually.

Note The Struts framework always uses the value stored in the name attribute of an <action> element
as the key to storing the ActionForm class as the user’s request or session.

Validating the Form Data

As discussed earlier, a common mistake in web application development is for no clear dis-
tinction to exist between the application’s business logic and validation logic. The ActionForm
class helps the developers to solve this problem by allowing them to enforce lightweight vali-
dation rules against the data entered by a user. By encapsulating these validation rules in the
ActionForm class, the developer can clearly separate the validation rules from the business
logic that actually carries out the request. The business logic is placed in the corresponding
Action class for the end user’s request.

Web developers can override the validate() method and provide their own validation
rules for the submitted data, while writing their own ActionForm class. If the developers do not
override the validate() method, none of the data submitted will have any validation logic run
against it.

The validate() method for the PostStoryForm class is going to enforce three validation rules:

* The users must enter a story title, story introduction, and story body. If they leave any
field blank, they will receive an error message indicating that they must enter the data.

¢ The users are not allowed to put vulgarity in their application. The validate() method
will check the data entered by the user for any inappropriate phrases.

» Each field in the Post a Story page is not allowed to exceed a certain length; otherwise,
the user will get an error message.

It is important to note that in all the cases, the users will not be allowed to continue until
they correct the validation violation(s).

93

CHAPTER 3 ©' FORM PRESENTATION AND VALIDATION WITH STRUTS

The validate() method for the PostStoryForm class is as shown here:

public ActionErrors validate(ActionMapping mapping,
HttpServletRequest request) {
ActionErrors errors = new ActionErrors();

checkForEmpty("Story Title", "error.storytitle.empty",
getStoryTitle(), errors);

checkForEmpty("Story Intro", "error.storyintro.empty",
getStoryIntro(), errors);

checkForEmpty("Story Body", "error.storybody.empty",
getStoryBody(), errors);

checkForVulgarities("Story Title", "error.storytitle.vulgarity",
getStoryTitle(), errors);

checkForVulgarities("Story Intro", "error.storyintro.vulgarity",
getStoryIntro(), errors);

checkForVulgarities("Story Body", "error.storybody.vulgarity",
getStoryBody(), errors);

checkForLength("Story Title", "error.storytitle.length", getStoryTitle(),
100, errors);

checkForLength("Story Intro", "error.storyintro.length", getStoryIntro(),
2048, errors);

checkForLength("Story Body", "error.storybody.length", getStoryBody(),
2048, errors);

return errors;

}

The first step in the validate() method is to instantiate an instance, called errors, of the
ActionErrors class:

ActionErrors errors = new ActionErrors();

The ActionErrors class is a Struts class that holds one or more instances of an ActionError
class. An ActionError class represents a single violation of one of the validation rules being
enforced in the ActionForm class.

Note The Struts framework’s ActionError class is used throughout all of the code examples in this book.
As of Struts 1.2.1, the ActionError class will be deprecated and replaced by the ActionMessage class.

The upgrade of Struts 1.0.2 to Struts 1.1 took over a year to release to production. Struts 1.2 contains minor
bug fixes with no major new functionality. As such, new and existing applications using Struts 1.1 have a
while before they need to be upgraded. To use the code with this edition of the book, some code has been
modified to take advantage of the changes in APIs in Struts 1.2 and remove code that has been deprecated
since Struts 1.1.

CHAPTER 3 ©' FORM PRESENTATION AND VALIDATION WITH STRUTS

If a form element submitted by an end user violates a validation rule, an ActionError will
be added to the errors object.

When the validate() method completes, the errors object will be returned to the
ActionServlet:

return errors;

If the errors object is null or contains no ActionErrors, the ActionServlet will allow the
business logic to be carried out, based on the end user’s request. This is done by invoking the
execute() method in the Action class associated with the request.

Let’s look at the checkForVulgarities() method to see how an ActionError class is actu-
ally created when a validation rule is violated. The checkForEmpty() and checkForLength()
methods will not be discussed in detail, but the code for these methods is shown here:

private void checkForEmpty(String fieldName, String fieldKey, String value,
ActionErrors errors) {
if (value.trim().length() == 0) {
ActionError error = new ActionError(“error.poststory.field.null",
fieldName);
errors.add(fieldKey, error);
}
}

private void checkForLength(String fieldName, String fieldKey, String value,
int maxLength, ActionErrors errors){
if (value.trim().length() > maxLength){
ActionError error = new ActionError(“error.poststory.field.length",
fieldName);
errors.add(fieldKey, error);

}

Creating an ActionError

The checkForVulgarities() method is as shown here:

private void checkForVulgarities(String fieldName, String fieldKey,
String value, ActionErrors errors) {

VulgarityFilter filter = VulgarityFilter.getInstance();

if (filter.isOffensive(value)){
ActionError error = new ActionError(“error.poststory.field.vulgar",
fieldName);
errors.add(fieldKey, error);
}
}

95

96

CHAPTER 3 ©° FORM PRESENTATION AND VALIDATION WITH STRUTS

The first line in this method retrieves an instance of the VulgarityFilter into a variable
called filter.

VulgarityFilter filter = VulgarityFilter.getInstance();

The VulgarityFilter class is implemented using a Singleton design pattern and wraps a
collection of words that are considered to be offensive. The code for the class is shown here:

package com.apress.javaedge.common;
public class VulgarityFilter {
private static VulgarityFilter filter = null;

private static String[] badWords = {"Stupid", "Idiot", "Moron", "Dummy",
"Flippin", "Ninny"};

static {
filter = new VulgarityFilter();

}

public static VulgarityFilter getInstance(){
return filter;

}

public boolean isOffensive(String valueToCheck){

nn

String currentWord = "";

for (int x = 0; x <= badWords.length - 1; x++){
if (valueToCheck.tolowerCase().indexOf(badWords[x].toLowerCase())
1= -1) |
return true;
}
}

return false;

}
}

The VulgarityFilter class has a single method called isOffensive(), which checks if
the text passed in is offensive. A value of true returned by this method indicates the user has
entered data that contains offensive text:

if (filter.isOffensive(value))

When a vulgarity is found, a new ActionError is created and added to the errors object
passed to the checkForVulgarity() method:

ActionError error = new ActionError(“error.poststory.field.vulgar",
fieldname);
errors.add(fieldKey, error);

CHAPTER 3 ©' FORM PRESENTATION AND VALIDATION WITH STRUTS

There are five constructors that can be used to instantiate an ActionError class. The
first parameter of each of these constructors is a lookup key that Struts uses to find the text
of the error message displayed to the end user. Struts will look for all error messages in the
ApplicationResources.properties file associated with the application. The error messages for
the Post a Story page are shown here:

error.poststory.field.null= The following field: {0} is a required field.
error.poststory.field.vulgar= You have put a vulgarity in your {0} field.
error.poststory.field.length=Your {0} field is too long.

When the user violates the vulgarity validation rule and the checkForVulgarity() method
creates an ActionError, the lookup key error.poststory.field.vulgar will be used to return
the following error message:

The following field: {0} is a required field. Please provide a value for {0}.

The error message can contain at most four distinct parameter values. The parameter val-
ues are referenced by using the notation {number}, where number is between zero and three. In
the preceding example, only one parameter is inserted into the error message. A summary of
the five constructors in the ActionError class is given in Table 3-2.

Table 3-2. ActionError Attributes

ActionError Constructor Description

ActionError(String lookupKey) Retrieves the error message from the
ApplicationResources.properties file

ActionError(String lookupKey, String paramo) Retrieves the error message from the
ApplicationResources.properties file
and passes in one parameter

ActionError(String lookupKey, Retrieves the error message from the
String paramo, String parami) ApplicationResources.properties file
and passes in two parameters
ActionError(String lookupKey, Retrieves the error message from the
String paramo, String paraml, String param2) ApplicationResources.properties file
and passes in three parameters
ActionError(String lookupKey, String paramo, Retrieves the error message from the
String parami, String param2, String param3) ApplicationResources.properties file

and passes in four parameters

After the error object has been created, it is later added to the errors object by calling the
add() method in errors:

errors.add(fieldKey, error);
The add() method takes two parameters:

* Akey that uniquely identifies the added error within the ActionErrors class. This key
must be unique and can be used to look up a specific error in the ActionErrors class.

* AnActionError object containing the error message.

97

98

CHAPTER 3 ©° FORM PRESENTATION AND VALIDATION WITH STRUTS

Viewing the Errors

The Struts ActionServlet checks if there are any errors in the returned ActionErrors object to
determine if a validation error was returned by the validate() method. If the value returned
from the validate() method is null or contains no ActionError objects, no validation errors
were found.

If the Struts ActionServlet finds that there are errors present in the ActionError object, it
will redirect the user to the path set in the input attribute for the action.

Note Remember, the input attribute on the <action> tag is a required field if the name attribute is also
defined on the tag. The name attribute is used to define the name of the ActionForm that will hold the form
data being submitted.

Failure to include an input attribute when using an ActionForm will result in an exception
being thrown.

Most of the time, the value in this input tag is the JSP page where the data was entered. The
ActionForm object holding the user’s data will still be in the request. Thus, any data entered by
the user in the form will appear prepopulated in the form. How does Struts present the user with
all the errors raised in the validate() method? It does this using the <html:errors/> tag. This tag
is found in the Struts HTML custom JSP tag library. (Several other form-related custom tags are
contained in the HTML tag library. We will be discussing the full HTML tag library in the section
“The Struts HTML Tag Libraries.”) There are two ways of using this tag:

» To write each error message stored within the ActionErrors class to the JSP PrintWriter
class

* To retrieve a specific error from the ActionErrors class and place it next to the specific
fields

Writing All Error Messages to the JSP Page

To perform the first action, you must import the Struts HTML tag library and place the
<html:errors/> tag where you want the errors to appear. For instance, in postStoryContent.jsp,
you use this tag in the following manner:

<%@ page language="java" %>
<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>

<H1><bean:message key="javaedge.poststory.text.header"/></H1>

<html:errors/>

This code will write all the errors in the ActionErrors class returned by the validate()
method of the PostStoryForm immediately below the header of the page. The following exam-
ple shows the type of error messages that can be presented to the end user:

CHAPTER 3 ©' FORM PRESENTATION AND VALIDATION WITH STRUTS

You have put a vulgarity in your Story Title field.
Please refer to our terms
of use policy.

The following field: Story Intro is a required field.
Please provide a value for Story Intro.

The following field: Story Body is a required field.
Please provide a value for Story Body.

It is extremely important to note that the <html:errors/> tag will write the error text
exactly as it has been defined in the ApplicationResources.properties file. This means that the
developer must provide HTML tags to format the appearance of the error message. This also
includes putting any
 tags for the appropriate line breaks between the error messages.
The <html:errors/> tag allows the application developer to define a header and footer for a
collection of error messages. Headers and footers are defined by including an errors.header
property and errors.footer property in the ApplicationResources.properties file. These two
properties can contain text (and HTML code) that will appear immediately before and after
the errors written by the <html:errors/> tag. The following snippet shows these properties for
the JavaEdge application:

errors.header=<h3>Important Message</h3>
errors.footer=<hr>

The <html:errors/> tag provides a very simple and consistent error-handling mechanism.
Front-end screen developers only need to know that they have to put an <html:errors/> tagin
their JSP form pages to display any validation errors. The job of the server-side developers is
simplified because they can easily validate the form data submitted by the end user and com-
municate the errors back to the user by populating an ActionErrors object.

Keeping in mind all the discussion that we had so far, when the end users violate a valida-
tion rule on the Post a Story page, they will see the output shown in Figure 3-4.

The Java Edge

e View All Stories i
User Id:turbine Password: =" Search

Post a Story

The following field: Story Intro is a required field. Please provide a value for Story Intro.
The following field: Story Body is a required field. Please provide a value for Story Body
You have put a vulgarity in your Story Title field. Please refer to our lerms of use policy.

Figure 3-4. The end result of a validation rule violation

Retrieving a Single Error Message

The <html:errors/> tag by itself is somewhat inflexible, because you have to present all the
validation errors caused by the end user at a single spot on the screen. Many application
developers like to break the validation errors apart and put them next to the field that contains
the invalid data.

Fortunately, the <html:errors/> tag allows you to pull a single error message from an
ActionErrors object. It has an attribute called property. This attribute will let you retrieve an

99

100

CHAPTER 3 ©' FORM PRESENTATION AND VALIDATION WITH STRUTS

error message, using the key value that was used while adding the error message to the
ActionErrors object. For example, when a user enters a word that violates the vulgarity filter,
you add that validation error to the errors object by calling

errors.add(fieldKey, error);

The fieldKey variable passed to the errors.add() method is the name we have chosen to
represent that particular error. For example, if the user typed the word dummy into the Story
Title field, this would violate the vulgarity validation rule and a new ActionError class would
be instantiated. The new ActionError would be added to the errors class and would have a
fieldKey value of error.storytitle.vulgarity.

If you wanted to put that specific error message directly above the Story Title field label,
you could rewrite postStoryContent.jsp with the following code:

<TR>
<TD>

<html:errors property="error.storytitle.vulgarity"/>

<bean:message key="javaedge.poststory.form.titlelabel"/>
<html:text name="postStoryForm" property="storyTitle"/>
</TD>
</TR>

By using the <html:errors/> tag in the manner shown, you can cause postStoryContent.jsp
to generate an error message that may look like the one shown in Figure 3-5.

Post a Story

The following story will be posted by: Anonymous

You have put a vulgarily in your Story Title field. Please refer to our tarms of use palicy.
Story Title:

dummy

Story Intro:

Enter the story introduction here. Please be concise.

Figure 3-5. Displaying a single validation error message

If you want to automatically format the individual error messages, you need to use
error.prefix and error.suffix rather than the error.header and error.footer properties in
the ApplicationResources.properties file:

error.prefix=
error.suffix=

CHAPTER 3 ©' FORM PRESENTATION AND VALIDATION WITH STRUTS

Error Handling and Prepopulation

After discussing how HTML errors are handled in Struts, you might be a little bit confused.
Why does the form show up with all of the fields prepopulated with the data that the user just
entered? Why doesn'’t the reset () method in the ActionForm class reset all the values?

The reason is simple. When the validate() method is invoked and if there are validation
errors, the ActionServlet is going to look at the value of the input attribute in the <action>
tag. The input attribute almost invariably points back to the JSP where the user entered the
data. Remember, the reset () method gets called only when an action is invoked. Redirecting
the user back to a JSP page will not invoke the reset() method. If the JSP page to which the
user is redirected uses the Struts HTML tag library and an ActionForm in the user’s request or
session, it will pull the data out of the ActionForm and prepopulate the form elements with
that data. Thus, when a validation error occurs, the user sees the validation errors and a pre-
populated form.

If you want to force the reset of all the elements in a form, after the validation occurs, you
need to point the input attribute in the <action> element to a setup action that will repopulate
the data.

On Validations and Validation Libraries

One of the biggest complaints that we have heard from development teams using Struts is that
it seems wrong to separate the validation logic from the actual business logic. After all, the
same validation logic is going to be applied regardless of where the actual business logic is
being executed. For example, a parameter that is required by a piece of business logic to be
non-null is going to have the same requirement regardless of which application is executing
the business logic.

The strength of the ActionForm class’s validate() method is that it provides a clean mech-
anism for performing validation and handling errors that are found during validation. The
examples in this chapter have shown the validation rules for the code embedded directly in
the ActionForm class doing the validation. This has been to simplify the reading of code and
allow the reader to follow the examples without having to wade through multiple layers of
abstraction and generalization.

The problem with embedding the validation logic inside the ActionForm class is that it ties
the code to a Struts-specific class and makes the embedded validation code difficult to reuse
in a non-Struts application.

Oftentimes, development teams will leverage a number of approaches to help generalize
validation and avoid tying it to a Struts ActionForm class. These include

 Separating all of the validation logic used in an application into a set of validation
“helper” classes that can be reused across multiple applications.

e Moving the validation code into the value objects being used to move data back and
forth across the application tiers. The base value object class extended by all of the
value objects in the application has a validate() method that can be overridden to
contain validation code. If you are not familiar with the Value Object pattern, please
refer to Chapter 5.

101

102 CHAPTER 3 ©° FORM PRESENTATION AND VALIDATION WITH STRUTS

e Moving all of the validation code into the business logic layer. Each object in the
business logic layer has a private validate() method that is called before the actual
business logic is processed.

e Using a validation framework, like the Validator framework in Struts, to externalize the
validation logic from the business logic and make them as declarative as possible.

Each of the items listed have their advantages and disadvantages. Moving all of the valida-
tion logic to a set of “helper” classes is simple, but oftentimes leads to the development team
creating a cumbersome set of low-level data validation calls that they must maintain and sup-
port. There are already plenty of open source libraries and frameworks that do this type of
low-level validation. The question becomes, Why waste time on something others have
already done?

Moving the validation logic to the Value Object pattern has the advantage of putting the
validation logic very close to the data. The same validation logic for data can be applied over
and over again by simply invoking the validate() method on the value object. The problem
with this approach is that the value objects are supposed to be lightweight “wrappers” for data
being passed across the different application boundaries (presentation, business, and data).
At any given time there can be a large number of value objects being used with only a small
fraction of them actually being validated. This is a lot of extra overhead for nothing.

Moving the validation logic to the business layer and embedding it inside of a business
object makes sense. After all, one of the first rules of object-oriented programming is that all
data and the code that acts on that data should be self-contained within a single discrete class.
Oftentimes when validation rules are built into a business layer class, nonbusiness layer
details that deal with error handling and error presentation are also embedded in the class.
This results in tight dependencies being created on the business object and violates another
tenet of OOP, the concept of Single Responsibility.

Classes and the methods contained within them should have a discrete set of responsibil-
ities that reflect on the domain being modeled by the class. When other pieces of nondomain-
specific logic start creeping into the class, it becomes bloated and difficult to maintain. This is
one of the principal reasons why the Struts ActionForm class is useful: It allows a developer to
write validation logic without getting the business logic used in the class too tightly tied to the
application.

The last option is our favorite. If you can use a framework that specifically is built for vali-
dation, you can save a lot of time. The Struts ActionForm class’s validate() method is only
meant to be a plug-in point from which validation logic is called. However, if you start from
the premise that validation logic is lightweight and will consist of no more than a handful of
standard checks, using a declarative validation framework where you have to write little to no
code for performing validation is the best approach. The Struts 1.1 framework now integrates
with the Validator framework. This framework lets you declare a set of validation rules that can
be processed against data contained within an ActionForm class.

The validation rules in the Validator framework cover most of the validation rules a devel-
oper is going to need while building an application. In addition, the Validator framework is
extensible enough to allow you to build your own validation rules. The Validator framework
will be covered in greater detail in Chapter 7.

CHAPTER 3 ©' FORM PRESENTATION AND VALIDATION WITH STRUTS

The Struts HTML Tag Library

As we have seen earlier in this chapter, Struts provides the ActionForm and Action classes

as the means of validating and processing the data submitted by the end user. The Struts
development framework also provides a JSP tag library, called the HTML tag library, that
significantly simplifies the development of HTML-based forms. The HTML tag library allows
the developer to write JSP pages that tightly integrate with an ActionForm class.

The Struts HTML tag library can be used to generate HTML form controls and read data
out of an ActionForm class in the user’s session or request. It also helps developers avoid writ-
ing significant amounts of scriptlet code to pull the user data out of JavaBeans (that is, the
ActionForm objects) in the user’s request and/or session. When combined with the other Struts
tag libraries, as discussed in Chapter 2 (see the section called “Building the homepage.jsp”), a
developer can write very dynamic and data-driven web pages without ever having to write a
single line of JSP scriptlet code.

The Struts HTML tag library contains a wide variety of tags for generating HTML form con-
trols. We are not going to cover every tag in the Struts HTML tag library. Instead, we are going to
go through the most commonly used tags and explore their usage. For a full list of the different
tags available in the Struts HTML tag library, you can visit http://struts.apache.org/. The tags
discussed in this chapter are listed and described in Table 3-3.

Table 3-3. Commonly Used HTML Tags

Tag Name Tag Description

<html:form> Renders an HTML <form> tag

<html:submit> Renders a submit button

<html:cancel> Renders a cancel button

<html:text> Renders a text field

<html:textarea> Renders a textarea field

<html:select> Renders an HTML <select> tag for creating drop-down boxes
<html:option> Renders an HTML <option> control that represents a single option

in a drop-down box
<html:checkbox> Renders an HTML checkbox
<html:radio> Renders an HTML radio control

Let’s begin the discussion of the Struts HTML tag library by looking at the
postStoryContent.jsp page:

<%@ page language="java" %>

<@ taglib uri="/taglibs/struts-bean.tld" prefix="bean" %>
<@ taglib uri="/taglibs/struts-html.tld" prefix="html" %>
<@ taglib uri="/taglibs/struts-logic.tld" prefix="logic" %>
<@ taglib uri="/taglibs/struts-tiles.tld" prefix="tiles" %>

103

104

CHAPTER 3 ©° FORM PRESENTATION AND VALIDATION WITH STRUTS

<H1>
<bean:message key="javaedge.poststory.text.header"/>
</H1>

<html:errors/>

<html:form action="postStory">
<TABLE>
<TR>
<TD>
<bean:message key="javaedge.poststory.text.intro"/>
<logic:present scope="session" name="memberV0">

<bean:write name="memberV0" scope="session"
property="firstName"/>
<bean:write name="memberV0" scope="session"
property="lastName"/>

</logic:present>

<logic:notPresent scope="session" name="memberV0">
Anonymous
</logic:notPresent>
</html:form>

Setting Up a Struts HTML Form

Before using the individual Struts HTML tag within a JSP page, you must take three steps:

1. Import the Struts HTML Tag Library Definitions (TLDs).

2. Define an <html:form> tag, within the page that will map to an <action> tag defined in

the struts-config.xml file.

3. Define an <html:submit> button to allow the user to submit the entered data.

The Struts HTML TLD is imported as shown here:

<%@ taglib uri="/taglibs/struts-html.tld" prefix="html" %>

Next, you use the Struts HTML tags. Just as in a static HTML page, you need to define a
<form> tag that will encapsulate all the HTML form controls on the page. This is done by using

the <html:form> tag.

<html:form action="postStory">

</html:form>

CHAPTER 3 ©' FORM PRESENTATION AND VALIDATION WITH STRUTS

The <html:form> tag has a number of different attributes associated with it. However, we
will not be discussing every <html:form> attribute in detail. Some of the <html:form> attributes
are given in Table 3-4.

Table 3-4. Attributes of the HTML Form Tag

Attribute Name Attribute Description

action Maps to the <action> tag that will carry out the user’s request when the form
data is submitted. This is a required field.

method Determines whether the form will be sent as a GET or POST. This is not a
mandatory field and if not specified, it will generate the <form> tag to use a
POST method.

name The name of the JavaBean that will be used to prepopulate the form controls.

The <html:form> tag will check if this bean is present in the user’s session or
request. The scope attribute defines whether to look into the user’s session
or request. If no JavaBean is found in the context defined in the scope
attribute, the <html:form> tag will create a new instance of the bean and
place it into the scope defined by the scope attribute. The class type of the
created JavaBean is determined by the type attribute.

scope Determines whether the tag should look in the user’s session or request for
the JavaBean named in the name attribute. The value for this attribute can be
either "session" or "request".

type Fully qualified Java class name for the JavaBean being used to populate
the form.

onsubmit Lets the developer define a JavaScript onSubmit() event handler for the
generated form.

onreset Lets the developer define a JavaScript onReset () event handler for the
generated form.

focus Name of the field that will have focus when the form is rendered.

The most important of these attributes is the action attribute. It maps to an <action>
element defined in the struts-config.xml file. If no name, scope, or type attribute is specified
in the <html:form> tag, the ActionForm that will be used to populate the form, its fully qualified
Java name, and the scope in which it resides will be pulled from the <action> tagin the
struts-config.xml file.

In the <html:form> tag used in the postStoryContent.jsp, all the ActionForm information
would be retrieved by the ActionServlet, by looking at the name attribute in the <action> tag of
the postStory action in the struts-config.xml file:

<action path="/postStory"

input="/WEB-INF/jsp/postStory.jsp"

name="postStoryForm"

scope="request"

validate="true"

type="com.apress.javaedge.struts.poststory.PostStory">

<forward name="poststory.success" path="/execute/homePageSetup"/>
</action>

105

106

CHAPTER 3 ©° FORM PRESENTATION AND VALIDATION WITH STRUTS

Since the value of name (postStoryForm) is defined as a <form-bean> element in the struts-
config.xml file, the ActionServlet can figure out its fully qualified Java class name and
instantiate an instance of that class.

Note Itis a good practice to use the action attribute rather than the name, scope, and type attributes
to define the JavaBean that will populate the form. Using this attribute gives you more flexibility by allowing
you to change the ActionForm class in one location (struts-config.xml) rather than searching multiple
JSP pages.

Let’s look at the HTML generated by the <html:form> tag shown earlier:

<form name="postStoryForm" method="POST"
action="/javaedge/execute/postStory">

The name attribute generated tells the ActionServlet of Struts that the postStoryForm
bean, defined in the <form-beans> tag of the struts-config.xml file, is going to be used to hold
all the data posted by the user. The default method of the form (since you did not define one
in the <html:form> tag) is going to be a POST method. The action attribute contains the URL
to which the form data is going to be submitted. Since the action of the <html:form> tag was
postStory, the <html:form> generated the action attribute (for the corresponding <form> tag)
as /javaedge/execute/postStory.

The last step in setting up an HTML form is using the Struts <html:submit> tag to generate
an HTML submit button:

<html:submit property="submitButton" value="Submit"/>

In addition to the <html:submit> tag, the Struts HTML tag library has HTML tags for creat-
ing cancel buttons. When an <html:cancel> tag is used, an HTML button will be rendered,
which when clicked will cause the ActionServlet to bypass the validate() method in the
ActionForm that is associated with the form.

Even though the validate() method is bypassed, the execute() method for the Action
class (in this case PostStory. java) linked with the form will be invoked. This means if you
want to use an <html:cancel> button in your page, the execute() method must detect when
the cancel button is invoked and act accordingly. For instance, let’s say the following
<html:cancel> tag was added to the postStoryContent.jsp file:

<html:cancel value="Cancel"/>

The validate() method in the PostStoryForm class would not be called. However, the
execute() method on the PostStory class will be invoked. The execute() method taken from
the PostStory class could be written in the following manner:

public ActionForward execute(ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response){

CHAPTER 3 ©' FORM PRESENTATION AND VALIDATION WITH STRUTS

if (this.isCancelled(request)){
System.out.println("*****The user pressed cancell!!");
return (mapping.findForward("poststory.success"));

}

//Add the story data to the database.

return (mapping.findForward("poststory.success"));

}

If you did not want the code in the execute() method to be executed, you will have to use
amethod called isCancelled() to detect if the user pressed a cancel button. The isCancelled()
method is inherited from the base Struts Action class. This method looks for a parameter in the
user’s request, called org.apache.struts.taglib.html.CANCEL. If it finds this parameter, it will
return true, indicating to the developer writing the execute() method code that the user clicked
the cancel button.

The parameter name, org.apache.struts.taglib.html.CANCEL, maps to the name attribute
in the <input> tag generated by the <html:cancel> button. The HTML button generated by the
<html:cancel> tag shown earlier looks like this:

<input type="submit" name="org.apache.struts.taglib.html.CANCEL"
value="Cancel">

Unlike the <html:submit> tag, the property attribute on the <html:cancel> tagis rarely set.

Note If you set the property attribute in the <html:cancel> button, it will override the default value
generated, and you will not be able to use the isCancelled() method to determine if the user wants to
cancel the action.

Using Text and TextArea Input Fields

The postStoryContent.jsp files use text <text> and <textarea> tags to collect the data from
the end user. The <html:text> and <html:textarea> tags are used to generate the text and
textarea <input> tags, respectively. For instance, the postContent. jsp page uses the
<html:text> tagto generate an HTML text <input> tag by using the following:

<html:text property="storyTitle"/>

The <html:text> tag has a number of attributes, but the most important are name and
property. The name attribute defines the name of the ActionForm bean that the input field is
going to map to. The property attribute defines the property in the ActionForm bean that
is going to map to this input field. You should keep in mind two things while working with
the property attribute:

¢ The property attribute will map to a get() and set() method in the ActionForm bean.
This means that value must match the standard JavaBean naming conventions. For
instance, the value storyTitle is going to be used by the ActionServlet to call the
getStoryTitle() and setStoryTitle() methods in the ActionForm.

107

108 CHAPTER 3 ©° FORM PRESENTATION AND VALIDATION WITH STRUTS

“w o

e The value in a property attribute can be nested by using a “.” notation. Let’s assume
that the ActionForm method had a property called member that mapped to a MemberVO
object containing the user data. The developer could set the value of the property
attribute to be member . firstName. This would translate into a call to the getMember ().
getFirstName() and getMember () .setFirstName() methods of the PostStoryForm class.

Note If you refer to the Struts documentation on the Apache web site, you will notice that almost every
Struts HTML tag has a name attribute in it. This attribute is the name of the JavaBean that the HTML tag
will read and write data to. You do not have to supply a name attribute for the HTML form attributes we are
describing in the following sections. If you do not supply a name attribute and if the <htm1:*> control is
inside an <html:form> tag, the <html:*> control will automatically use the ActionForm associated with
the <html:form> tag.

The <html:textarea> input tag behaves in a similar fashion to the <html:text> tag. The
<html:textarea> tag uses the cols and rows attributes to define the width and length of the
textarea the user can type in:

<html:textarea name="postStoryForm" property="storyIntro" cols="80" rows="5"/>

The preceding tag will generate a <textarea> tag called storyIntro that will be 80 columns
wide and five rows long.

Drop-Down Lists, Checkboxes, and Radio Buttons

Most HTML forms are more than just a collection of the simple text field controls. They use
drop-down lists, checkboxes, and radio buttons to collect a wide variety of information. While
the postStoryContent.jsp file did not contain any of these controls, it is important to under-
stand how the Struts framework renders these controls using the HTML tag library. Let’s begin
the discussion by the looking at drop-down lists.

Drop-Down Lists

An HTML drop-down list control provides a list of options that a user can select from. However,
the user sees only the item that has been selected. All of the other items are hidden until the user
clicks the drop-down box. On clicking the box, the rest of the options will be displayed and the
user will be able to make a new choice.

Since the Post a Story page does not have a drop-down box, we will have to step away
from it briefly. Using the Struts HTML tag library, there are two ways of rendering a drop-
down box:

* Use an <html:select> tag and build a static list of options by hard coding a static list of
<html:option> tags in the code.

e Use an <html:select> tag and dynamically build the list by reading the data from a Java
collection object using the <html:options> tag.

CHAPTER 3 ©' FORM PRESENTATION AND VALIDATION WITH STRUTS

The <html:select> tag renders a <select> tag in HTML. The <html:option> tag renders a
single option for the placement in the drop-down list. If you want to display a drop-down list
containing a list of name prefixes, you would write the following code in your JSP file:

<html:select property="someBeanProperty">
<html:option value="NS">Please select a prefix</html:option>
<html:option value="Mr.">Mr.</ html:option>
<html:option value="Ms.">Ms.</ html:option>
<html:option value="Mrs.">Mrs.</ html:option>
<html:option value="Dr.">Dr.</ html:option>
</html:select>

This code snippet would generate the following HTML:

<select name="someBeanProperty">
<option value="NS">Please select a prefix</option>
<option value="Mr.">Mr.</option>
<option value="Ms.">Ms.</option>
<option value="Mrs.">Mrs.</option>
<option value="Dr.">Dr.</option>
</select>

The <html:select> tag has one important attribute, the property attribute. It is the name
of the property of the ActionForm bean that will store the item selected from the drop-down
list. The <html:option> tag must always be contained within an <html:select> tag. The value
attribute in the <html:option> tag specifies the value that will be sent in the users’ request for
the selected item from the drop-down list when they hit the submit button.

The <html:select> and <html:option> tags work well while generating a drop-down list
that does not change. However, if you want to create a drop-down list based on data that is
dynamic, such as data pulled from a database, you need to the use the <html:options> tag.
The <html:options> tag allows you to generate an <option> list from a Java Collection object.

Let’s assume that in a SetupAction class, you created a Vector object and populated it with
the prefix codes. You then put that code in the request object as shown here:

Vector prefixes = new Vector();
prefixes.add("NS");

prefixes.add("Mr.");

prefixes.add("Ms.");

prefixes.add("Mrs.");

prefixes.add("Dr.");
request.setAttribute("prefixes", prefixes);

You could then render this collection into a drop-down list using the following code:

<html:select property="someBeanProperty">
<html:options name="prefixes">
</html:select>

109

110

CHAPTER 3 ©' FORM PRESENTATION AND VALIDATION WITH STRUTS

Checkboxes

Setting up a checkbox to appear on an HTML form is easy to do. It just requires the use of a
checkbox flag. To create a checkbox on a form, you can use the following syntax:

<html:checkbox property="someBeanProperty" value="true"/>

The property attribute for the checkbox matches the name of the property in the
ActionForm that the checkbox is going to get and set data from. The value attribute is the value
that will be sent in the HTTP request if the user checks the checkbox. If no value is specified,
then the default value will always be on.

One important thing to remember is that when a checkbox is not checked, no value
will be passed in the HTTP request. This also means that the value that was already set in
the ActionForm property associated with the checkbox will not change. You have to check
the request to see if the checkbox is present in the request. If it is not, you have to set the
ActionForm property to a false or off value:

if (request.getAttribute("someBeanProperty") == null) {
this.setSomeBeanProperty(false);

}

This is important because if the submitted data has a validation error and the
ActionServlet returns the user to the screen where they entered data, any checkboxes that had
been moved from a checked to an unchecked state will still show up on the screen as checked.

So in the validate() method of your ActionForm bean you must check the request object
for the checkbox parameter. If the checkbox parameter has not been submitted as part of the
request, you must set the corresponding property in the ActionForm to be false. This has to be
done before you start doing any validation of the form data, or else you will end up with your
form data inconsistently handling the checkbox information passed to it. This also means that
if you want to prepopulate a form with checkboxes set in an off status, the reset () method of
the ActionForm being used to populate the page must set the properties in the ActionForm (that
map to checkboxes) to a false value.

Radio Buttons

To render a radio button in a form, you use the <html:radio> tag. This tag has two core attrib-
utes: property and value. These two attributes are similar in behavior to the <html:checkbox>
tag. The property attribute defines the name of the property in the ActionForm that the radio
button maps to. The value attribute is the value that will be sent, if the radio button is selected
when the user submits the form.

Caution If you do not preset a radio button and no radio button is selected by the user, the property on
the ActionForm representing the radio button will not have a value set on it. Use one of the ActionForm
prepopulation techniques described earlier if you require the radio button to have some default value
associated with it.

CHAPTER 3 ©' FORM PRESENTATION AND VALIDATION WITH STRUTS

To group a set of radio button controls together so that only one of a group of radio but-
tons can be set, you set each radio button’s property attribute to point to the same ActionForm
property.

If you wanted to use a radio button instead of the drop-down list to show a selection of
prefixes to the user, you could write the following code:

Mr. <html:radio property="someBeanProperty" value="Mr."/>
Ms. <html:radio property="someBeanProperty" value="Ms."/>
Mrs. <html:radio property="someBeanProperty" value="Mrs."/>
Dr. <html:radio property="someBeanProperty" value="Dr."/>

The HTML generated by this code would look as shown here:

Mr. <input type="radio" name="someBeanProperty" value="Mr.">
Ms. <input type="radio" name="someBeanProperty" value="Ms.">
Mrs. <input type="radio" name="someBeanProperty" value="Mrs.">
Dr. <input type="radio" name="someBeanProperty" value="Dr.">

Building More Dynamic ActionForms

The concept of wrapping data within an ActionFormis a powerful one because it allows the
application developer to retrieve and manipulate data submitted by the end user without hav-
ing to litter their code with the gory details of accessing an HttpRequest object. However, as
most developers will quickly discover, for large projects that collect significant amounts of
data, building ActionForm classes can be extremely tedious.

Writing individual get () /set() methods for each attribute being submitted by the end
user is a time-consuming and thus error-prone process. Fortunately, Struts 1.1 now provides
two mechanisms to simplify the process of building ActionForm classes:

e Dynamic ActionForm
* Map-backed ActionForm

Dynamic ActionForms allow the developer to declare a Struts form bean and its corre-
sponding attributes in the application’s struts-config.xml file. We are not going to go into any
greater detail on Dynamic ActionForms in this chapter. Instead, we will cover them in greater
detail in Chapter 7.

Map-backed ActionForms are an exciting new addition to the Struts framework. A
Map-backed ActionForm allows the developer to wrap a Map object (that is, HashMap, TreeMap,
etc.) and expose it on the ActionForm class.

Shown next is the PostStoryForm rewritten as a Map-backed ActionForm:

package com.apress.javaedge.struts.poststory;

import com.apress.javaedge.common.VulgarityFilter;
import org.apache.struts.action.*;
import org.apache.struts.util.MessageResources;

import javax.servlet.http.HttpServletRequest;
import java.util.HashMap;
import java.util.Map;

111

112 CHAPTER 3 ©° FORM PRESENTATION AND VALIDATION WITH STRUTS

public class PostStoryMapForm extends ActionForm{
private HashMap attributeMap = new HashMap();

private Map getMap(){
return attributeMap;
}

public void setAttribute(String attributeKey, Object attributeValue){
getMap().put(attributeKey, attributeValue);

public Object getAttribute(String attributeKey){
Object holder = getMap().get(attributeKey);
if (holder==null) return "";

return holder;

}

private void checkForEmpty(String fieldName, String fieldKey,

String value, ActionErrors errors){
//Same implementation as the PostStoryForm.

}

private void checkForVulgarities(String fieldName, String fieldKey,

String value, ActionErrors errors){
//Same implementation as the PostStoryForm.

}

private void checkForLength(String fieldName, String fieldKey,
String value, int maxLength,
ActionErrors errors){
//Same implementation as the PostStoryForm.

}

public ActionErrors validate(ActionMapping mapping,

HttpServletRequest request) {
ActionErrors errors = new ActionErrors();

checkForEmpty("Story Title", "error.storytitle.empty",
(String)getAttribute("storyTitle"),errors);

checkForEmpty("Story Intro", "error.storyintro.empty",
(String)getAttribute("storyIntro"), errors);

checkForEmpty("Story Body", "error.storybody.empty",
(String)getAttribute("storyBody"), errors);

checkForVulgarities("Story Title", "error.storytitle.vulgarity",
(String)getAttribute("storyTitle"), errors);

CHAPTER 3 ©' FORM PRESENTATION AND VALIDATION WITH STRUTS

checkForVulgarities("Story Intro", "error.storyintro.vulgarity",
(String)getAttribute("storyIntro"), errors);

checkForVulgarities("Story Body", "error.storybody.vulgarity",
(String)getAttribute("storyBody"), errors);

checkForLength("Story Title", "error.storytitle.length",
(String)getAttribute("storyTitle"), 100, errors);

checkForLength("Story Intro", "error.storyintro.length",
(String)getAttribute("storyIntro"), 2048, errors);

checkForLength("Story Body", "error.storybody.length",
(String)getAttribute("storyBody"), 10000, errors);

return errors;

public void reset(ActionMapping mapping,
HttpServletRequest request) {
ActionServlet servlet = this.getServlet();
MessageResources messageResources = servlet.getInternal();

setAttribute("storyTitle",
messageResources.getMessage®
("javaedge.poststory.title.instructions"));
setAttribute("storyIntro”, messageResources.getMessage®
("javaedge.poststory.intro.instructions"));
setAttribute("storyBody" , messageResources.getMessage®
("javaedge.poststory.body.instructions"));

The first thing you should notice about the PostStoryMapForm class is that there is no
get() and set() for individual attributes. All attributes for the form bean are stored in a
HashMap called attributeMap:

private HashMap attributeMap = new HashMap();

All access to the attributeMap variable is controlled by a pair of methods called
getAttribute() and setAttribute():

public void setAttribute(String attributeKey, Object attributeValue){
getMap().put(attributeKey, attributeValue);

}

public Object getAttribute(String attributeKey){
Object holder = getMap().get(attributeKey);

if (holder==null) return "";

return holder;

}

113

114 CHAPTER 3 ©° FORM PRESENTATION AND VALIDATION WITH STRUTS

These methods do nothing more than provide an entry point for Struts to perform a
retrieval and insertion of objects into the attributeMap variable, as shown in Figure 3-6.

<html:text property ="attribute(storyTitle)"/>

Name of the method on the
ActionForm used to access
the Map

Key of the item being
retrieved from the Map

Figure 3-6. Map-backed ActionForm

Note The method names getAttribute() and setAttribute() are arbitrary names. You can call your
“wrapper” method to an internal HashMap anything you want as long as the method names follow standard
JavaBean naming conventions and they have the same method signatures shown in the preceding code.

Keep in mind that entry methods like getAttribute() and setAttribute() do not have to
perform straight calls into the Map object. You can place code in the entry methods to ensure
that form attributes being retrieved out of and set in the internal Map object are formatted in a
particular manner. In the PostStoryMapForm class, the getAttribute() call always returns an
empty String object if the attribute from the attributeMap is null:

Object holder = getMap().get(attributeKey);
if (holder==null) return "";

return holder;

When data is accessed from the PostStoryMapForm class, the getAttribute() and
setAttribute() methods are used. You can see this in the PostStoryMapForm’s validate() method:

public ActionErrors validate(ActionMapping mapping,
HttpServletRequest request) {
ActionErrors errors = new ActionErrors();

checkForEmpty("Story Title", "error.storytitle.empty",
(String)getAttribute("storyTitle"),errors);

checkForEmpty("Story Intro", "error.storyintro.empty",
(String)getAttribute("storyIntro"), errors);

checkForEmpty("Story Body", "error.storybody.empty",
(String)getAttribute("storyBody"), errors);

return errors;

}

CHAPTER 3 ©' FORM PRESENTATION AND VALIDATION WITH STRUTS

At this point you might be wondering how the individual attributes in the PostStoryMapForm
class are accessed in a JSP page. Before Struts 1.1, there was no way a Struts custom tag could
directly access an element contained within an Array or a Map object. Sure, you could always
use a combination of <logic:iterate> and <logic:equals> tags to find a value, but you could
never tell the Struts tag to directly access element X contained within a particular attribute
on a form bean.

Since the release of Struts 1.1, you can now do this. Code examples often speak volumes,
so let’s look at a rewritten version of the Post a Story page that uses the PostStoryMapForm class
to retrieve and set form data. This new page, called postStoryMapContent.jsp, is shown here:

<%@ page language="java" %>

<%@ taglib uri="/taglibs/struts-bean" prefix="bean" %>
<%@ taglib uri="/taglibs/struts-html" prefix="html" %>
<%@ taglib uri="/taglibs/struts-logic" prefix="logic" %>
<%@ taglib uri="/taglibs/struts-tiles" prefix="tiles" %>

<H1><bean:message key="javaedge.poststory.text.header"/></H1>

<html:errors/>
<html:form action="postStory">

<TABLE>
<TR>
<TD>
<bean:message key="javaedge.poststory.text.intro"/>

<logic:present scope="session" name="memberVo">
<bean:write name="memberV0" scope="session"
property="firstName"/> <bean:write name="memberV0"
scope="session" property="lastName"/>

</logic:present>
<logic:notPresent scope="session" name="memberV0">
Anonymous
</logic:notPresent>

</TD>
<TD>

8nbsp;
</TD>
</TR>
<TR>
<TD>

<bean:message
key="javaedge.poststory.form.titlelabel"/>:

115

116

CHAPTER 3 ©° FORM PRESENTATION AND VALIDATION WITH STRUTS

<html:text property="attribute(storyTitle)"/>
</TD>
</TR>
<TR>
<TD>

<bean:message
key="javaedge.poststory.form.introlabel"/>:8nbsp;

<html:textarea property="attribute(storyIntro)" cols="80" rows="5"/>
</TD>
</TR>
<TR>
<TD>

<bean:message
key="javaedge.poststory.form.bodylabel"/>:

<html:textarea property="attribute(storyBody)" cols="80" rows="10"/>
</TD>
</TR>
<TR>
<TD align="center">
<html:submit property="submitButton" value="Submit"/> 8
<html:cancel value="Cancel"/>
</TD>
</TR>
</TABLE>
</html:form>

To use this new ActionForm, you need do the following:

¢ Add a new <form-bean> tag to the JavaEdge application’s struts-config.xml file for the
PostStoryMapForm.

e Modify the /postStorySetup and /postStory actions in the struts-config.xml file to use
the newly created <form-bean>.

* Modify the PostStory.java file to cast to a PostStoryMapForm class instead of the
PostStoryForm class. You also need to remove any references to PostStoryForm’s
get()/set() method class and replace them with calls to PostStoryMapForm’s
getAttribute() and setAttribute() methods.

* Modify the postStory.jsp to use the postStoryMapContent.jsp file instead of the
postStoryContent.jsp file.

CHAPTER 3 ©' FORM PRESENTATION AND VALIDATION WITH STRUTS

ActionForm Best Practices

ActionForm classes provide a very clean mechanism for abstracting the implementation
details of getting and setting data in the HttpServletRequest object passed into the Struts
ActionServlet. There are some best practices associated with using ActionForm classes. These
best practices have evolved, as development teams using Struts have had to maintain and
extend applications in a production environment.

Two of these best practices are documented here:

» Make all of the public attributes on your ActionForm of type String.

e Cleanly separate all of your ActionForm classes from your application’s business logic.
Do not pass ActionForm classes directly into your application’s business logic.

Strings and the ActionForm

While a Struts ActionForm can expose any data type using a get()/set() method on the
interface, it’s a good idea to only use Strings as the data types being passed in and out of the
ActionForm. The reason for this is that when a user submits form data to a Struts application,
the Struts ActionServlet is going to pull all of the data out of the HTTP request and match that
data to a get()/set() attribute on an ActionForm.

The problem arises when the user submits a piece of data in a form field that does not
match the data type of its corresponding attribute on the ActionForm. This problem is encoun-
tered most often when dealing with numeric (that is, Integer, Float, etc.), Date/Timestamps,
and Boolean data types. For example, suppose you expose an attribute on ActionForm with a
get()/set() pair of methods that accept and return an Integer class. The user enters a value
of "a" in the form field that is expecting an Integer object.

When this value is submitted, the Struts ActionServlet will try to set the value of "a" on
an attribute that has been defined to be of type Integer. When this happens, an exception will
be thrown and the user will usually end up with a big white screen full of informative Java
error messages. You cannot catch this problem in the validate() method on the ActionForm,
because the data is copied out of the HTTP request before the validate() method is invoked.

How do you deal with this kind of problem? You could try to point JavaScript code to the
HTML where the form data is being captured. The problem is that you can easily end up creat-
ing a Validation Confusion antipattern because you have effectively split your validation logic
for the form into two different locations, and that is what you are trying to avoid. In addition,
you lose a great deal of control when using JavaScript validation. End users can easily disable
the JavaScript validation by configuring their web browser to not execute JavaScript code.

The best way to deal with this type of problem is to keep all of the properties on your
ActionForm class as type String. By doing this, you can then capture all of the data entered
by the user without running the risk of a type mismatch. Then in the ActionForm’s validate()
method you can perform type checking on the data contained within these strings and cleanly
throw validation errors using Strut’s ActionError objects.

117

118

CHAPTER 3 ©° FORM PRESENTATION AND VALIDATION WITH STRUTS

ActionForms and Business Logic

The ActionForm class is used to hold data submitted by the end user. It is passed into the
execute() method on an Action class, where its data can then be used by the action to carry
out the business logic associated with the request. Ideally, business logic for the application
should not be embedded inside of the Action class code itself.

Instead, the business logic for the application should be contained in a POJO or an EJB
that is completely independent of the Action class. Unfortunately, for many developers using
Struts for the first time, the temptation to pass the ActionForm class from the Action class to
the corresponding business logic is a very strong one. After all the ActionForm class is already
holding the data submitted by the end user, so why not just pass it directly to the POJO or EJB
containing the business logic?

The problem with this approach is that you are introducing the Tier Leakage antipattern
into your application. You are letting an implementation detail from your presentation tier,
the ActionForm class, be passed to your business tier. This creates a dependency on a Struts-
specific class, with an unintended consequence if you want to reuse that piece of business
logic outside of a Struts-based application: You have to refactor the code to not have this
dependency or instantiate a Struts ActionForm class and populate it with data, even if you are
not building a web-based application.

To avoid this problem, you should copy the data contained within your ActionForm class
to a framework-independent class called a value object. The concept of a value object is cov-
ered in greater detail in Chapter 5. For now, think of a value object as being nothing more than
a class that holds data.

There are two ways you can copy data from an ActionForm. The first mechanism is to
brute force the copy and set the attributes on a value object by calling the individual get()
methods on the ActionForm class. For example, in the PostStory.execute() method, you need
to copy data from the ActionForm to the StoryV0 object:

public ActionForward execute(ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response){

PostStoryForm postStoryForm = (PostStoryForm) form,
HttpSession session = request.getSession();

MemberVO memberVO = (MemberV0) session.getAttribute("memberVo");
StoryV0 storyV0 = new StoryVo();

storyV0.setStoryIntro(postStoryForm.getStoryIntro());
storyV0.setStoryTitle(postStoryForm.getStoryTitle());
storyVO0.setStoryBody (postStoryForm.getStoryBody());

storyV0.setStoryAuthor (memberVo);
storyV0.setSubmissionDate(new java.sql.Date(System.currentTimeMillis()));

CHAPTER 3 ©' FORM PRESENTATION AND VALIDATION WITH STRUTS

storyV0.setComments(new Vector());

//Rest of the code

As you can guess, on an ActionForm with a lot of data, you can end up cluttering your
Action class with a lot of code that does nothing more than copy data from the ActionForm to
the value object.

The Struts framework does provide some utility classes that enable you to more quickly
copy data from the ActionForm to the value object. These two classes are part of the Apache
Commons BeanUtils project (http://jakarta.apache.org/commons). These classes are distrib-
uted with Struts in the commons-beanutils.jar file. The classes are

* org.apache.commons.beanutils.BeanUtils
e org.apache.commons.beanutils.PropertyUtils

Both of these classes simplify many of the most common tasks associated with manipu-
lating a JavaBean. In the code example, we are going to show you how to use the
copyProperties() method on the BeanUtils class to copy data from postStoryForm to storyVo:

public ActionForward execute(ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response){

PostStoryForm postStoryForm = (PostStoryForm) form;
HttpSession session = request.getSession();

MemberVO memberVO = (MemberVO) session.getAttribute("memberVo");
StoryVO storyVO = new StoryVO();

try{
BeanUtils.copyProperties(storyV0, postStoryForm);
}
catch(IllegalAccessException e) {
throw new ApplicationException("IllegalAccessException " +
" in PostStory.execute",e);
}
catch(InvocationTargetException e){
throw new ApplicationException(
"InvocationTargetException in PostStory.execute",

e);

119

120 CHAPTER 3 ©' FORM PRESENTATION AND VALIDATION WITH STRUTS

storyV0. setStoryAuthor (memberVo);
storyV0.setSubmissionDate(new java.sql.Date(System.currentTimeMillis()));
storyV0.setComments(new Vector());

//Rest of the code

When the copyProperties() method is invoked, it will use Java reflection to call each of
the get() methods on the postStoryForm object:

try{
BeanUtils.copyProperties(storyV0, postStoryForm);
}
catch(IllegalAccessException e) {
throw new ApplicationException("IllegalAccessException in
PostStory.execute",e);
}
catch(InvocationTargetException e){
throw new ApplicationException("InvocationTargetException in
PostStory.execute",e);

When BeanUtils.copyProperties() is called, it will invoke each of the get() methods on
the object passed in as the first parameter. As copyProperties() calls each get() method, it
will try to call a corresponding set () method that has the same name on the object passed as
the second parameter.

The BeanUtils.copyProperties() can be a significant time saver when you are trying to
copy data from an ActionForm to a value object. However, it still litters up the Action class’s
execute() method with exception-handling code.

Note The BeanUtils. copyProperties() method will try to do type conversions between properties
being copied from one JavaBean to another.

This means that if an application is trying to use the copyProperties() method to
copy a property defined as type Integer to a property of type String on another bean, the
copyProperties() method will attempt to do a type conversion. If the copyProperties()
method cannot do the type conversion, it will throw an exception of type java.lang.reflect.
InvocationTargetException.

Note If you know that there are going to be no type conversions when copying the contents of one
JavaBean to another JavaBean, you can use the PropertyUtils.copyProperties() method. This
copyProperties() method on PropertyUtils does the same function as the corresponding method
on BeanUtils, but does not attempt to do type conversion of properties.

CHAPTER 3 ©' FORM PRESENTATION AND VALIDATION WITH STRUTS

As you will see later, in Chapter 4, one of the design goals of a Struts application should be
to minimize the amount of code present in the Action class.

What if you were to encapsulate all the logic for copying data to and from a value object
inside of the ActionForm class itself? This way, the Action class would just need to invoke a
method on the ActionForm to get a value object that would be passed to Action’s business
logic. The concept of building a value object factory method into ActionForm is not new and
was first documented in the book Struts in Action (Ted Husted et al., Manning Press, ISBN:
1-930-11050-2).

Let’s add a new method to the PostStoryForm class called buildStoryVo:

public StoryVO buildStoryVO(HttpServletRequest request)
throws ApplicationException{
HttpSession session = request.getSession();

MemberVO membexrV0 = (MemberV0) session.getAttribute("memberV0");
StoryV0 storyV0 = new StoryVo();

/*Example of how to use the BeanUtils class to populate a valueobject.*/
try{
BeanUtils.copyProperties(storyV0, this);
}
catch(IllegalAccessException e) {
throw new ApplicationException("IllegalAccessException in
PostStoryForm.execute",e);
}
catch(InvocationTargetException e){
throw new ApplicationException("InvocationTargetException in
PostStoryForm.execute",e);

}

storyV0.setStoryAuthor (memberV0);
storyV0.setSubmissionDate(new java.sql.Date(System.currentTimeMillis()));
storyV0.setComments(new Vector());

return storyVo;

The buildStoryV0() method on the PostStoryForm class cleanly encapsulates all of
the details associated with building out a StoryV0 based on the data contained within the
PostStoryForm. When this method is used in the execute() method on the PostStory class,
you end up with a much cleaner method:

public ActionForward execute(ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response)
throws ApplicationException {

121

122 CHAPTER 3 ©° FORM PRESENTATION AND VALIDATION WITH STRUTS

if (this.isCancelled(request)){
return (mapping.findForward("poststory.success"));

}

PostStoryForm postStoryForm = (PostStoryForm) form;
StoryVO storyVO = postStoryForm.buildStoryVO(request);

StoryManagerBD storyManager = new StoryManagerBD();
storyManager.addStory(storyVo);
return (mapping.findForward("poststory.success"));

You may have noticed that the execute() method just shown throws an
ApplicationException. However, nowhere in the code is a try{}/catch{} block to handle
the exception. So, how does the JavaEdge application deal with the ApplicationException
if the exception is raised?

The JavaEdge application uses the Struts 1.1 exception-handler functionality to process
the ApplicationException. Struts exception handlers allow a development team to declare
how an Exception is to be thrown without cluttering up the Action class. This new exception-
handling functionality is described in greater detail in the next chapter.

Summary

This chapter focuses on how to use Struts to collect and process the data submitted in an HTML
form. The following four pieces must be present to use the Struts-based form processing:

e ActionForm class
e Action class

* JSP page that uses the Struts HTML tag library to generate the HTML <input> fields
used to collect the user information

* name attribute in an <action> tag in the struts-config.xml file
¢ Tags used for building the base HTML form:

e <html:form>: Used to render a <form> tag

e <html:submit>: Renders a submit button

e <html:cancel>: Renders a cancel button

e<html:errors>: Renders any validation errors that have been raised during
processing

CHAPTER 4

Managing Business Logic
with Struts

So far you've seen how to use the Struts framework to facilitate the construction of an appli-
cation. You've also had a chance to examine the basic workflow of a Struts-based request
along with the different components needed to carry out a user’s requested action. However,
while the Struts framework is a powerful tool for building applications, it is still only a tool.
Using the Struts framework does not relieve you of the responsibility of architecting your
application.

A framework like Struts is meant to promote rapid application development as well as
ease the maintenance and extensibility of an application. However, if no forethought is given
to how the business logic for an application is going to be built, it becomes very easy to “lock”
an application’s business logic into the Struts framework.

As aresult, a development team using Struts might be able to quickly build the initial
applications, but later, the team will find that it cannot easily reuse the functionality in a non-
Struts framework. A framework provides structure, but it also defines boundaries, constraints,
and dependencies, which will cause a significant number of problems if they are not consid-
ered early on.

This chapter demonstrates how to use several common J2EE design patterns to ensure
that an application’s business logic is not too tightly coupled with the Struts framework.
Specifically we are going to show you

e Common implementation mistakes made while implementing a Struts Action class. We
will discuss how, even with the use of the Struts development framework, the Concern
Slush and Tier Leakage antipatterns can still form. (Refer to Chapter 1 for our discus-
sion on the various antipatterns.)

¢ How to refactor these antipatterns into a more maintainable framework, which will
allow you to reuse business logic across both Struts and non-Struts applications.

The design patterns that will be covered in this chapter include
* The Business Delegate pattern
* The Service Locator pattern

* The Session Facade pattern

123

124

CHAPTER 4 © MANAGING BUSINESS LOGIC WITH STRUTS

All of these design patterns will be implemented with the help of the JavaEdge application
code.

In addition, we will look at how to properly handle application exceptions thrown from
your business logic.

Business Logic Antipatterns and Struts

The Struts framework’s Model-View-Controller implementation significantly reduces the
chance that the Concern Slush or Tier Leakage antipattern will form. Recollecting the discus-
sion from Chapter 1, the Concern Slush antipattern forms when the system architect does not
provide a framework separating the presentation, business, and data access logic into well-
defined application tiers. As a result, it becomes difficult to reuse and support the code.

The Tier Leakage antipattern occurs when an application developer exposes the imple-
mentation details of one application tier to another tier—for example, when the presentation
logic of the application, that is, a JSP page, creates an EJB to invoke some business logic on its
behalf. Although the business logic for the page has been cleanly separated from the JSP code,
the JSP page is exposed to the complexities of locating and instantiating the EJB. This creates a
tight dependency between the presentation tier and the business tier.

The Struts framework does an excellent job of enforcing a clean separation of presenta-
tion and business logic within an application. All the presentation logic is encapsulated in JSP
pages using Struts tag libraries to simplify the development effort. All business logic is placed
in a Struts Action class. The JSP pages in the application are never allowed to invoke the busi-
ness logic directly. It’s the responsibility of the ActionServlet.

However, in a Struts-based application, the way in which the business logic is imple-
mented is still decided by the application developer. Often, developers who are new to the
Struts framework will place all of the business and data access logic for the application into a
Struts Action class. They need to consider the long-term architectural consequences of doing
this. Without careful forethought and planning, antipatterns such as Concern Slush and Tier
Leakage can still manifest themselves within an application.

At this point, you might be asking the question, “I thought the Struts development frame-
work was supposed to refactor these antipatterns?” The answer is yes, to a point.

Note Using a development framework does not mitigate or relieve development teams of the responsibil-
ity of architecting the application. Development teams need to ensure that their use of a framework does not
create dependencies that make it difficult to reuse application logic outside of the framework. Application
architects are still responsible for enforcing the overall integrity of the application’s architecture. A develop-
ment framework is a tool, not a silver bullet.

When development teams make the decision to adopt a development framework, they
often rush in and immediately begin writing code. They have not cleanly separated the “core”
business logic from the framework itself. As a result, they often find themselves going through
all sorts of contortions to reuse the code in nonframework-based applications.

Let’s look at two code examples that can be precursors to the formation of the Concern
Slush and Tier Leakage antipatterns in Struts.

CHAPTER 4 ©° MANAGING BUSINESS LOGIC WITH STRUTS

Concern Slush and Struts

The Concern Slush antipattern can manifest itself in a Struts-based application when the
developer fails to cleanly separate the business and data access logic from the Struts Action
class. Let’s revisit the Post a Story page that was explored in Chapter 3. The following is an
example of how the PostStory action (as defined in PostStory.java file) can be implemented:

package com.apress.javaedge.struts.poststory;

import org.apache.struts.action.*;
import org.apache.struts.*;

import javax.servlet.http.*;
import javax.naming.*;

import java.sql.*;

import javax.sql.*;

import com.apress.javaedge.story.*;
import com.apress.javaedge.member.*;
import com.apress.javaedge.story.ejb.PrizeManager;

public class PostStory extends Action {

public ActionForward execute(ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response) {

PostStoryForm postStoryForm = (PostStoryForm) form;
HttpSession session = request.getSession();

MemberVO memberVO = (MemberVO) session.getAttribute("memberV0");

if (this.isCancelled(request)) {
return (mapping.findForward("poststory.success"));

}

Connection conn = null;
PreparedStatement ps = null;

try {
Context ctx = new InitialContext();
DataSource ds = (DataSource) ctx.lookup("java:/MySQLDS");
conn = ds.getConnection();
conn.setAutoCommit(false);

StringBuffer insertSOL = new StringBuffer();

125

126 CHAPTER 4 ©° MANAGING BUSINESS LOGIC WITH STRUTS

/*

* Please note that this code is only an example. The SQL code assumes
* that the story table is using an auto-generated key. However, in
* the Javakdge application we use ObjectRelationalBridge's Sequence
* capabilities to generate a key. This code will not work unless you
* modify the story table to use an auto-generated key for the

* story id column.

*/

insertSQL.append("INSERT INTO story(")s
insertSQL.append(" member id , ")
insertSQL.append(" story title , ")
insertSQL.append(" story into , ")
insertSQL.append(" story body , ");
insertSQL.append(" submission date ");
insertSQL.append(") ");
insertSQL.append("VALUES(");

insertSQL.append(" ? ’ ")

insertSQL.append(" ? ’ ")

insertSQL.append(" ? ’ ")

insertSQL.append(" ? ’ ")

insertSQL.append(" CURDATE()) ")

ps = conn.prepareStatement(insertSQL.toString());

ps.setlong(1, memberV0.getMemberId().longValue());
ps.setString(2, postStoryForm.getStoryTitle());
ps.setString(3, postStoryForm.getStoryIntro());
ps.setString(4, postStoryForm.getStoryBody());

ps.execute();
conn.commit();

checkStoryCount (memberVo);

} catch(SQLException e) {

try{
if (conn != null) conn.rollback();

} catch(SQLException ex) {}
System.err.printIn("A SQL exception has been raised in " +
"PostStory.execute(): " + e.toString());

return (mapping.findForward("system.failure"));
} catch(NamingException e) {
System.err.printIn("A Naming exception has been raised in " +
"PostStory.execute(): " + e.toString());

CHAPTER 4 ©° MANAGING BUSINESS LOGIC WITH STRUTS 127

return (mapping.findForward("system.failure"));

} finally {
try {
if (ps != null) ps.close();
if (conn != null) conn.close();

} catch(SQLException e) {}

}

return (mapping.findForward("poststory.success"));

}

private void checkStoryCount(MemberVO memberVO)
throws SQLException, NamingException {
Connection conn = null;
PreparedStatement ps = null;
ResultSet rs = null;

try {
Context ctx = new InitialContext();
DataSource ds = (DataSource) ctx.lookup("java:/MySQLDS");
conn = ds.getConnection();

StringBuffer selectSQL = new StringBuffer();

selectSQL.append("SELECT ");
selectSQL.append(" count(*) total count ";
selectSQL.append("FROM ");

selectSQL.append(" story where member id=? ");

ps = conn.prepareStatement(selectSQL.toString());
ps.setlong(1, memberV0.getMemberId().longValue());

rs = ps.executeQuery();
int totalCount = 0;

if (rs.next()) {
totalCount = rs.getInt("total count");

}

boolean TOTAL_COUNT EQUAL_1000
boolean TOTAL_COUNT EQUAL_5000

(totalCount==1000);
(totalCount==5000);

if (TOTAL _COUNT EQUAL 1000 || TOTAL COUNT EQUAL 5000) {
//Notify Prize Manager
PrizeManager prizeManager = new PrizeManager();
prizeManager.notifyMarketing(memberVO, totalCount);

128 CHAPTER 4 ©° MANAGING BUSINESS LOGIC WITH STRUTS

}
} catch(SQLException e) {

System.err.printIn("A SQL exception has been raised in " +
" PostStory.checkStoryCount(): " + e.toString());

throw e;
} catch(NamingException e) {
System.err.printIn("A Naming exception has been raised in " +
" PostStory.checkStoryCount(): " +
e.toString());
throw e;
} finally {
try {
if (rs != null) rs.close();
if (ps != null) ps.close();
if (conn != null) conn.close();
} catch(SQLException e) {}
}
}
}

The preceding execute() method performs two very simple functions:

e Itinserts the data submitted by the user on the Post a Story page using the standard
JDBC and SQL calls. From the discussions in Chapter 3, you know that the submitted
data has already been validated by the validate() method on the PostForm class.

e It checks, via a call to checkStoryCount (), if the total number of stories submitted by a
JavaEdge member is at the 1000th or 5000th mark. On the 1000th and 5000th story sub-
mitted by the user, the marketing department is notified via the PrizeManager class.

The PrizeManager class integrates several legacy systems throughout the organization and
ultimately sends the user $100 to spend at the bookstore on the JavaEdge site.

From a functional perspective, the code for the execute() method works well. However,
from an architectural viewpoint, the implementation for the PostStory class shown previously is
a mess. Several problems are present in the preceding code that will eventually cause significant
long-term maintenance and extensibility problems. These problems include the following:

* The entire business logic for adding a story and checking the total number of stories
submitted by a user is embedded in the Struts Action class. This has several architec-
tural consequences:

o If the development team wants to reuse this logic, it must use the PostStory class
(even if it does not really fit into the other application); refactor the business logic
into a new Java class; or perform the oldest form of reuse: cut and paste. This oper-
ation leads to either usage of more code than what is needed or, plainly put, bugs.

* The business logic for the application is tied directly to the Struts framework. If the
development team decides to move the application from the Struts framework into
something else, say Apache Beehive or Shale, it is looking at a significant amount of
rework.

CHAPTER 4 ©° MANAGING BUSINESS LOGIC WITH STRUTS

e There is no clean separation of the business and data access logic. While these two
pieces of logic are cleanly separated by Struts from the presentation tier, a significant
number of dependencies are still being created between the business logic and the data
access logic:

*The Action class has intimate knowledge of which data access technology is being
used to access the data used by the JavaEdge application. If the development team
wants to switch to a new data access technology at some point, it must revisit
every single place in the application that is interacting with a database.

e The Action class has SQL Data Definition Language (DDL) embedded in it. Any
changes to the underlying table structures that the JavaEdge application is using
can send ripple effects throughout the system.

Definition A ripple effectis when there are such tight dependencies between application modules or
application code and data structures that a change to one piece of code sends you hunting throughout the
rest of the application for other areas that must be modified to reflect that change.

For example, if a data relationship between two tables were to change, such as a one-to-
many relationship being refactored into a many-to-many relationship, any SQL code embedded
in the application that accessed these tables would need to be visited and probably refactored.

Abstraction is the key to avoiding a ripple effect. If the SQL logic for the application was
cleanly hidden behind a set of interfaces that did not expose the actual structure of the data-
base table to the application, the chance of a ripple effect occurring is much less. In the next
chapter, we will demonstrate how to use some basic data access design patterns to achieve
this goal.

Note Ultimately, the Action class should be a plug-in point where business logic is invoked but not
contained.

The code shown previously is difficult to follow and maintain. Even though the business
logic for the Post a Story page is very simplistic, it still took a large amount of code to imple-
ment. Keep the following in mind, while building your first Struts-based application:

Note Development frameworks like Struts are used for building applications. However, the business logic
in applications often belongs to the enterprise and not just a single application. How many times have you
seen the business logic cut across multiple applications within an organization? Be wary of embedding too
much business logic directly within Struts. Otherwise you might find that reuse of business logic becomes
extremely difficult.

129

130 CHAPTER 4 ©° MANAGING BUSINESS LOGIC WITH STRUTS

Tier Leakage and Struts

Many development teams will get an uneasy feeling about the amount of business logic being
placed in the Struts Action class. They might have already run into situations where they have
the same business logic being reused in many of their applications.

The natural tendency is to refactor the Struts code and move it into a component-based
architecture (such as Enterprise JavaBeans) or a services-based architecture (such as Web
services). This moves the business logic out of the Struts Action class and makes it more read-
ily accessible to the other applications. Let’s refactor the PostStory class and move all of the
business logic into an Enterprise JavaBean called StoryManager. The code for the rewritten
PostStory class is shown here:

package com.apress.javaedge.struts.poststory;

import org.apache.struts.action.*;
import javax.servlet.http.*;
import javax.naming.*;

import javax.ejb.*;

import java.rmi.*;

import javax.rmi.*;

import com.apress.javaedge.common.*;
import com.apress.javaedge.story.*;
import com.apress.javaedge.member.*;
import com.apress.javaedge.story.ejb.*;

public class PostStory extends Action {

public ActionForward execute(ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response){

if (this.isCancelled(request)) {
return (mapping.findForward("poststory.success"));

}

PostStoryForm postStoryForm = (PostStoryForm) form;
HttpSession session = request.getSession();

MemberVO memberVO = (MemberVO) session.getAttribute("memberV0");

try {
Context ctx = new InitialContext();
Object ref = ctx.lookup("storyManager/StoryManager");

CHAPTER 4 ©° MANAGING BUSINESS LOGIC WITH STRUTS

StoryManagerHome storyManagerHome =
(StoryManagerHome) PortableRemoteObject.narrow(ref,
StoryManagerHome.class);

StoryManager storyManager = storyManagerHome.create();

storyManager.addStory(postStoryForm, memberVO);

} catch(ApplicationException e){
System.err.println("An Application exception has been raised in " +
"PostStory.execute(): " + e.toString());
return (mapping.findForward("system.failure"));

} catch(NamingException e) {
System.err.println("A Naming exception has been raised in " +
"PostStory. execute (): " + e.toString());
return (mapping.findForward("system.failure"));

} catch(RemoteException e) {
System.err.println("A Remote exception has been raised in " +
"PostStory. execute (): " + e.toString());
return (mapping.findForward("system.failure"));

} catch(CreateException e) {
System.err.println("A Create exception has been raised in " +
"PostStory. execute (): " + e.toString());
return (mapping.findForward("system.failure"));

}

return (mapping.findForward("poststory.success"));

}
}

The preceding code appears to solve all the problems defined earlier. It is much easier
to read and understand. The Concern Slush antipattern, which was present earlier, has been
refactored. By moving the business logic out of the PostStory.execute() method and into the
StoryManager EJB, the business logic can be reused more easily across multiple applications.

However, the rewritten PostStory class just shown still has flaws in it that can lead to a
Tier Leakage antipattern. The refactored execute() method has intimate knowledge of how
the business logic is being invoked. The entire business logic is contained within the EJB, and
the application developer has to perform a JNDI lookup and then retrieve a reference to the
EJB by invoking its create() method.

What happens if the development team later wants to rewrite the business logic and wrap
it to use a Web service instead of an EJB? Since the PostStory Action class has direct knowledge
that the business logic it needs is contained within an EJB, the class must be rewritten to now
invoke a Web service instead of an EJB.

131

132

CHAPTER 4 ©° MANAGING BUSINESS LOGIC WITH STRUTS

Note As you will see shortly, what is needed here is some kind of proxy that will sit between the frame-
work class (the PostStory class) and the actual business logic (the EJB). The proxy should completely
abstract how the business logic is being invoked. This proxy, also known as the Business Delegate pattern,
will be discussed shortly.

Another problem with the preceding code is that the addStory() method is taking the
PostStoryForm class as an input parameter:

storyManager.addStory(postStoryForm, memberVo);

This creates a dependency between the business logic, which is responsible for adding a
story to the JavaEdge application, and the Struts framework in which the application is built.
If the developers want to use the StoryManager EJB in a non-Struts-based application, they
would not be able to do so easily.

Note Even when choosing to use a Java open source development framework, it is important not to
create tight dependencies between the framework and business logic. Applications rarely exist in a vacuum.
They often have to be integrated with the other systems being maintained by the IT department. This inte-
gration often means reusing code that has already been written. Tight coupling of business logic with the
framework can limit your ability to reuse that business logic in applications that are not built with your
chosen framework.

This is why it is still extremely important to apply the architectural principles of abstrac-
tion and encapsulation, even when building Struts-based applications. Antipatterns are a
subtle beast. It is rare for developers to feel the full impact of an antipattern in the first appli-
cation that they build. Instead, the problems caused by an antipattern will suddenly manifest
themselves when the development team has already deployed several applications and needs
to integrate or reuse the code in these applications. That is when the antipattern and the full
scope of the necessary rework are revealed.

Separating Business Logic from Struts

The challenge is to build your Struts application in such a way that the business logic for the
application becomes independent of the actual Struts framework. The Action classes in your
Struts application should only be a plug-in point for the business logic.

Fortunately, common J2EE design patterns provide a readily available solution. These
patterns are particularly well suited for solving many of the dependencies between the frame-
work and the business logic as were discussed earlier. In this chapter, we are not going to cover
all the J2EE design patterns in great detail. Instead, we are going to discuss the patterns that
are most appropriate for use in building Struts-based applications.

CHAPTER 4 ©° MANAGING BUSINESS LOGIC WITH STRUTS

The design patterns that are going to be discussed include
¢ The Business Delegate pattern

¢ The Service Locator pattern

¢ The Session Facade pattern

Figure 4-1 demonstrates how these J2EE design patterns can be assembled to partition

the business logic used in the application from the Struts development framework.

Business Logic Space
N 4 N
Vo | (vo 5
Session
1. >~ 3. Facade >~
Action Business - Session
Class Delegate Facade
Service [/ Session
Locator _Facade
— —
Framework VO) value Object VO) Data Access Space
Space N1 N

Figure 4-1. Struts and the J2EE design patterns—a conceptual view

Let’s revisit the whole process of how an end user adds a new story to the JavaEdge appli-
cation, using the architectural model shown in Figure 4-1:

1. The user makes a request to add a story. The execute() method in the PostStory

Action class is invoked. However, in this model, the PostStory action does not contain
the actual code for adding the user’s story and checking the number of stories submit-

ted by the user. Instead, the PostStory class instantiates a business delegate that
carries out this business logic.

2. The business delegate is a Java class that shields the PostStory Action class from
knowing how the business logic is created and executed. In the section “Tier Leakage
and Struts” earlier, the code for adding a story was moved to the StoryManager EJB.
The business delegate class would be responsible for looking up this EJB via JNDI. All
the public methods in the StoryManager EJB should be available to the business dele-
gate. All the public method calls in the business delegate would be forwarded to the
StoryManager EJB.

3. The business delegate does not have the direct knowledge of how to look up the

StoryManager EJB. Instead, it uses a class called the Servicelocator. The Servicelocator
is used to look up the various resources within the application. Examples of resources
looked up and returned by a Servicelocator class include the home interface for EJBs

and DataSource objects for retrieving JDBC connections.

133

134 CHAPTER 4 © MANAGING BUSINESS LOGIC WITH STRUTS

4. The EJBs returned by the Servicelocator class are known as session facades. A
session facade is an EJB that wraps a complex business process involving multiple
Java objects behind a simple-to-use coarse-grained interface. In the PostStory exam-
ple, the StoryManager EJB is a session facade that hides all of the steps involved in
adding a story to the JavaEdge application.

5. The business objects are responsible for carrying out the individual steps in the busi-
ness action requested by the end user. Business logic classes should never be allowed
to talk directly to any of the databases used by the application. Instead, these classes
should interact with the database via a data persistence layer. The Data Access Object
(DAO) pattern is used to encapsulate all of the CRUD (Create, Replace, Update, Delete)
logic needed by the application.

The Value Object (VO) pattern is used to carry data across the different tiers in the
application in a framework-neutral manner. The DAO and VO patterns will not be
discussed in this chapter. Instead, we will save the subject of these data access design
patterns for the next chapter.

At first glance, this might seem like a significant amount of work for carrying out even the
simplest task. However, the abstraction provided by these design patterns is tremendous.

Note The effects of good architecture (and bad) are not immediately apparent. The pain of bad design
decisions is usually not felt until several iterations past when the application is initially released. However,
the time spent in properly abstracting your applications can have huge payoffs in terms of the maintainability
and extensibility of your code.

The J2EE design patterns, demonstrated in Figure 4-1, completely separate the business
logic from the Struts framework and ensure that the business logic for the application has no
intimate knowledge of the data access code being used.

Implementing the Design Patterns

The remaining sections of this chapter discuss the implementations of the J2EE design
patterns discussed so far. We will be refactoring the PostStory Action class so that it uses
a business delegate to invoke the logic, which it needs to carry out the user request.

Figure 4-2, which looks similar to the previous diagram, demonstrates the actions that
take place when the execute() method of the PostStory class is invoked.

CHAPTER 4 ©° MANAGING BUSINESS LOGIC WITH STRUTS

Business Logic Space

| —
PostStory StoryManagerBD StoryManager) [{ StoryVo StoryDAO
a—

Servicelocator

Framework Data Access Space
Space

Figure 4-2. An example of J2EE design patterns in action

Implementing the Business Delegate Pattern

A Business Delegate pattern hides the complexity of instantiating and using the enterprise
services such as EJBs or Web services from the application consuming the service. A Business
Delegate pattern is very straightforward. It is implemented by wrapping an already existing
service behind a plain Java class. Each public method available in the service is mapped to a
public method in the business delegate.

The code for StoryManagerBD. java that follows demonstrates how to wrap the business
logic associated with managing story data. For demonstration purposes, the StoryManagerBD.
java class does not simply delegate all calls to a Plain Old Java Object (POJO) or an EJB. Instead,
the StoryManagerBD provides a single method, getStoryManagerBD(), that returns a reference
to a class that implements the IStoryManager interface.

package com.apress.javaedge.story;
import com.apress.javaedge.common.ApplicationException;
import com.apress.javaedge.common.DataAccessException;

import com.apress.javaedge.story.dao.StoryDAO;

import java.util.Collection;

public class StoryManagerBD {

public static final IStoryManager getStoryManagerBD() {
return new StoryManagerPOJOImpl();
}

135

136 CHAPTER 4 ©° MANAGING BUSINESS LOGIC WITH STRUTS

The IStoryManager interface defines all of the public methods needed to carry out tasks
associated with retrieving, adding, and updating stories and comments from the JavaEdge
database.

Note The details of the JavaEdge database will be covered in the next chapter.

The IStoryManager interface is shown here:

package com.apress.javaedge.story;

import com.apress.javaedge.common.ApplicationException;
import java.util.Collection;

public interface IStoryManager {

public void addStory(StoryVO storyV0) throws ApplicationException;
public Collection findTopStory() throws ApplicationException;

public StoryVO retrieveStory(String primaryKey);

public void updateStory(StoryVO storyV0) throws ApplicationException;

In the StoryManagerBD, we provide two different implementations that could possibly be
returned by the class. One implementation, StoryManagerP0J0Impl, uses POJO-based objects
to execute all requested actions against a JavaEdge story:

package com.apress.javaedge.story;

import com.apress.javaedge.common.ApplicationException;
import com.apress.javaedge.common.DataAccessException;
import com.apress.javaedge.story.dao.StoryDAO;

import java.util.Collection;

public class StoryManagerP0JOImpl implements IStoryManager {
StoryDAO storyDAO = new StoryDAO();

public void addStory(StoryVO storyVO) throws ApplicationException {
try {
storyDAO. insert(storyVo);
} catch (DataAccessException e) {
throw new ApplicationException(
"DataAccessException Error in StoryManagerBean.addStory():
+ e.toString(),

e);

CHAPTER 4 ©° MANAGING BUSINESS LOGIC WITH STRUTS

}

public Collection findTopStory() throws ApplicationException {
Collection topStories = null;

try {
topStories = storyDAO.findTopStory();

} catch (DataAccessException e) {
e.printStackTrace();
String msg = "Data access exception raised in " +
"StoryManagerBD. findTopStory ()";
throw new ApplicationException(msg, e);

}

return topStories;

}

public StoryVO retrieveStory(String primaryKey) throws ApplicationException {
try {
return (StoryV0) storyDAO.findByPK(primaryKey);
} catch (DataAccessException e) {
throw new ApplicationException(
"DataAccessException Error in " +
"StoryManagerBean.retrieveStory():
+ e.toString(),

e);

n

}

public void updateStory(StoryVO storyV0) throws ApplicationException {
try {
storyDAO.insert(storyVo);
} catch (DataAccessException e) {
throw new ApplicationException(
"DataAccessException Error in StoryManagerBean.updateStory():
+ e.toString(),

e);

137

138

CHAPTER 4

The second implementation of our StoryManager business delegate, called
StoryManagerEJIBImpl, passes all requests to an EJB called StoryManager:

MANAGING BUSINESS LOGIC WITH STRUTS

package com.apress.javaedge.story;

import
import
import
import
import

import
import
import
import
import
import

com.
com.
com.
com.
com.

javax.
javax.
javax.
javax.
javax.

apress
apress
apress
apress
apress

.javaedge.story.ejb.StoryManager;

.javaedge.story.ejb.StoryManagerHome;
.javaedge.common.ApplicationException;

.javaedge.common.Servicelocator;

.javaedge.common.ServicelocatorException;

ejb.CreateException;
naming.Context;
naming.InitialContext;
naming.NamingException;
rmi.PortableRemoteObject;

java.rmi.RemoteException;

public class StoryManagerEJBImpl {

StoryManager storyManager = null;

public StoryManagerEJIBImpl() throws ApplicationException {

try {
Context ctx = new InitialContext();

Object ref = ctx.lookup("storyManager/StoryManager");

StoryManagerHome storyManagerHome =

} catch (NamingException e) {

throw new ApplicationException("A Naming exception has been raised in

"StoryManagerBD constructor:
e.toString());

} catch (RemoteException e) {

throw new ApplicationException("A Remote exception has been raised in

"StoryManagerBD constructor:
e.toString());

} catch (CreateException e) {

throw new ApplicationException("A Create exception has been raised in

"StoryManagerBD constructor:
e.toString());

(StoryManagerHome)
PortableRemoteObject.narrow(ref, StoryManagerHome.class);
storyManager = storyManagerHome.create();

n

n

n

+

+

+

+

+

+

CHAPTER 4 ©° MANAGING BUSINESS LOGIC WITH STRUTS

The StoryManagerEJBImpl class looks up the home interface of the StoryManager EJB in its
constructor. Using the retrieved home interface, the StoryManager EJB is created. A reference
to the newly created bean will be stored in the private attribute, called storyManager. The
StoryManagerBean being retrieved by StoryManagerEJBImpl has the same code being executed
as the StoryManagerP0J0Impl class. Thus, in an effort to save space, the StoryManagerBean’s
code will not be shown.

Avoiding Dependencies

Another noticeable part of this implementation of the StoryManagerBD class is that each of the
public methods is just a simple pass-through to the underlying service (in this case, a stateless
EJB). However, none of these public methods takes a class that can tie the business logic to a
particular front-end technology or development framework.

A very common mistake while implementing the first Struts application is to pass an
ActionForm or HttpServletRequest object to the code executing the business logic. Passing in a
Struts-based class, such as ActionForm, ties the business logic directly to the Struts framework.
Passing in an HttpServletRequest object creates a dependency whereby the business logic is
only usable by a web application. Both of these situations can be easily avoided by allowing
“neutral” objects, which do not create these dependencies, to be passed into a business dele-
gate implementation.

After the StoryManagerBD has been implemented, the PostStory class changes, as shown
here:

package com.apress.javaedge.struts.poststory;

import com.apress.javaedge.story.IStoryManager;
import com.apress.javaedge.story.StoryManagerBD;
import com.apress.javaedge.story.StoryVo;

import org.apache.struts.action.Action;

import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionForward;
import org.apache.struts.action.ActionMapping;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import com.apress.javaedge.common.ApplicationException;

public class PostStory extends Action {
public ActionForward execute(ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response) throws ApplicationException {

if (this.isCancelled(request)){
return (mapping.findForward("poststory.success"));

}

139

CHAPTER 4 © MANAGING BUSINESS LOGIC WITH STRUTS

PostStoryForm postStoryForm = (PostStoryForm) form;
StoryV0 storyVO = postStoryForm.buildStoryVO(request);

IStoryManager storyManager = StoryManagerBD.getStoryManagerBD();
storyManager.addStory(storyVo);

return (mapping.findForward("poststory.success"));

The code in the PostStory class just shown is much simpler and cleaner than the
PostStory implementation shown earlier. Let’s make a couple of observations here:

¢ The code has absolutely no business logic embedded it in it. All business logic has been
moved safely behind the StoryManager business delegate. This business logic can easily
be called from a non-Struts-based application, web or otherwise.

¢ The code in the preceding execute() method has no idea how the business logic is
being invoked. It is using a simple Java interface, IStoryManager, to hide the actual
business logic invocation. By changing a single line in the StoryManagerBD, you can
plug in a new business delegate implementation that invokes its logic in a completely
different manner.

 All exceptions thrown from the business logic layer are now safely captured and
rethrown as a generic exception, ApplicationException. This code is using a Struts
global exception handler to process all ApplicationExceptions thrown from the Action
classes. Exception handlers will be discussed shortly.

Now we have to admit, the preceding StoryManagerBD implementation is a little contrived.
A more common implementation of a Business Delegate pattern is to have a class that “wraps”
all actual business logic invocations. If that logic were to change, a developer would go and
rewrite, recompile, and redeploy the newly modified business delegate.

The example shown is meant to demonstrate how quickly and easily a new method of
invoking business logic could be implemented without breaking any of the applications that are
consuming the services of that business logic component. For example, it would be extremely
easy for you to write a new StoryManager business delegate that invoked Web services to carry
out the end-user request. Even with this new implementation, the PostStory class would never
know the difference.

In both of the StoryManagerBD implementations, the PostStoryForm class is no longer
passed in as a parameter on any of its method implementations. This small piece of refactor-
ing avoids creating a dependency on a Struts-specific class.

Note Abstraction, when applied appropriately, gives your applications the ability to evolve gracefully as
the business and technical requirements of the application change over time.

CHAPTER 4 ©° MANAGING BUSINESS LOGIC WITH STRUTS

Implementing the Service Locator Pattern

Implementing a business delegate can involve a significant amount of repetitive coding. Every
business delegate constructor has to look up the service, which it is going to wrap, via a JNDI
call. The Service Locator pattern mitigates the need for this coding and, more importantly,
allows the developer to hide the implementation details associated with looking up a service.
A service locator can be used to hide a variety of different resources such as the following:

* JNDI lookups for an EJBHome interface

¢ JNDI lookups associated with finding a JDBC DataSource for retrieving a database
connection

* Object creation associated with the following:
* Looking up an Apache Axis Call class for invoking a Web service

* Retrieving Persistence Broker/Manager for Object Relational Management tools,
such as the open source package ObjectRelationalBridge (OJB) or Oracle’s TopLink

In addition, the implementation of a Service Locator pattern allows you to implement
optimizations to your code without having to revisit multiple places in your application.

For instance, performing a JNDI lookup is expensive. If you allow your business delegate
classes to directly invoke a JNDI lookup, implementing a caching mechanism that minimizes
the number of JNDI calls would involve a significant amount of rework. However, if you cen-
tralize all of your JNDI lookup calls behind a Service Locator pattern, you would be able to
implement the optimizations and caching and only have to touch one piece of code. A Service
Locator pattern is easy to implement. For the time it takes to implement the pattern, the
reduction in overall maintenance costs of the application can easily exceed the costs of writ-
ing the class.

The business delegate class also allows you to isolate vendor-specific options for looking
up JNDI components, thereby limiting the effects of “vendor lock-in.”

Shown next is a sample service locator implementation that abstracts how an EJBHome
interface is looked up via JNDI. The service locator implementation for the JavaEdge applica-
tion provides the methods for looking up EJBHome interfaces and JDBC database connections.

package com.apress.javaedge.common;

import org.apache.ojb.broker.PBFactoryException;
import org.apache.ojb.broker.PersistenceBroker;
import org.apache.ojb.broker.PersistenceBrokerFactory;
import org.apache.commons.logging.Log;

import org.apache.commons.logging.LogFactory;

import javax.ejb.EJBHome;

import javax.naming.Context;

import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.rmi.PortableRemoteObject;
import javax.sqgl.DataSource;

import java.sql.Connection;

141

142 CHAPTER 4 ©° MANAGING BUSINESS LOGIC WITH STRUTS

import java.sql.SQLException;
import java.util.Hashtable;

public class Servicelocator{
private static Servicelocator servicelocatorRef = null;
private static Hashtable ejbHomeCache = null;
private static Hashtable dataSourceCache = null;

/*Enumerating the different services available from the service locator*/
public static final int STORYMANAGER = 0;
public static final int JAVAEDGEDB = 1;

/*The INDI Names used to look up a service*/
private static final String STORYMANAGER INDINAME =
"storyManager/StoryManager";

private static final String JAVAEDGEDB_ JNDINAME="java:/MySQLDS";

/*References to each of the different EJB Home Interfaces*/
//private static final Class STORYMANAGERCLASSREF = StoryManagerHome.class
private static final Class STORYMANAGERCLASSREF = null;

static {
servicelocatorRef = new Servicelocator();

}

/*Private Constructor for the Servicelocator*/
private Servicelocator(){
ejbHomeCache = new Hashtable();
dataSourceCache = new Hashtable();

}

/*

* The Servicelocator is implemented as a Singleton. The getInstance()
* method will return the static reference to the Servicelocator stored
* inside of the Servicelocator (Class.

*/
public static Servicelocator getInstance(){

return servicelocatorRef;

}

/*

* The getServiceName will retrieve the INDI name for a requested
* service. The service is indicated by the Serviceld passed into
* the method.

*/

static private String getServiceName(int pServiceld)

CHAPTER 4 ©° MANAGING BUSINESS LOGIC WITH STRUTS 143

throws ServicelocatorException{
String serviceName = null;
switch (pServiceld){

case STORYMANAGER: serviceName = STORYMANAGER JINDINAME;
break;
case JAVAEDGEDB: serviceName = JAVAEDGEDB_JNDINAME;
break;
default: throw new ServicelocatorException(
"Unable to locate the service requested in " +
"Servicelocator.getServiceName() method. ");
}
return serviceName;

}

static private Class getEJBHomeRef(int pServiceld)
throws ServicelocatorException{
Class homeRef = null;
switch (pServiceld){

case STORYMANAGER: homeRef = STORYMANAGERCLASSREF;
break;
default: throw new ServicelocatorException(

"Unable to locate the service requested in " +
"Servicelocator.getEJBHomeRef() method. ");
}

return homeRef;

}

public EJBHome getEJBHome(int pServiceld)
throws ServicelocatorException{

/*Trying to find the INDI Name for the requested service*/
String serviceName = getServiceName(pServiceld);
EJBHome ejbHome = null;

try {
/*Checking to see if we can find the EJBHome interface in cache*/
if (ejbHomeCache.containsKey(serviceName)) {
ejbHome = (EJBHome) ejbHomeCache.get(serviceName);
return ejbHome;
} else {
/*
* If we could not find the EJBHome interface in the cache, look it
* up and then cache it.
* */
Context ctx = new InitialContext();
Object jndiRef = ctx.lookup(serviceName);

144 CHAPTER 4 ©° MANAGING BUSINESS LOGIC WITH STRUTS

Object portableObj =
PortableRemoteObject.narrow(jndiRef, getEIBHomeRef(pServiceld));

ejbHome = (EJBHome) portableObj;

ejbHomeCache.put(serviceName, ejbHome);
return ejbHome;

}

} catch(NamingException e) {

String msg = "Naming exception error in Servicelocator.getEIBHome()";
throw new ServicelocatorException(msg ,e);

} catch(Exception e) {
String msg = "General exception in Servicelocator.getEJBHome";
throw new ServicelocatorException(msg,e);

}
}

public Connection getDBConn(int pServiceld)
throws ServicelocatorException{
/*Getting the INDI Service Name*/

String serviceName = getServiceName(pServiceld);
Connection conn = null;
try {

/*Checking to see if the requested DataSource is in the Cache*/
if (dataSourceCache.containsKey(serviceName)) {
DataSource ds = (DataSource) dataSourceCache.get(serviceName);
conn = ((DataSource)ds).getConnection();

return conn;
} else {
/*
* The DataSource was not in the cache. Retrieve it from INDI
* and put it in the cache.
*/
Context ctx = new InitialContext();
DataSource newDataSource = (DataSource) ctx.lookup(serviceName);
dataSourceCache.put(serviceName, newDataSource);
conn = newDataSource.getConnection();
return conn;
}
} catch(SQLException e) {
throw new ServicelocatorException("A SQL error has occurred in " +
"Servicelocator.getDBConn()", e);
} catch(NamingException e) {
throw new ServicelocatorException("A INDI Naming exception has "+
"occurred in "+
"Servicelocator.getDBConn()

, €);

CHAPTER 4 ©° MANAGING BUSINESS LOGIC WITH STRUTS

} catch(Exception e) {
throw new ServicelocatorException("An exception has occurred "+
"in Servicelocator.getDBConn()" ,e);

}
}

public PersistenceBroker findBroker() throws ServicelocatorException{
PersistenceBroker broker = null;

try{
broker = PersistenceBrokerFactory.createPersistenceBroker();
}
catch(PBFactoryException e) {
e.printStackTrace();
throw new ServicelocatorException("PBFactoryException error " +

"occurred while parsing the repository.xml file in " +
"Servicelocator constructor”,e);

return broker;
}
public Log getlLog(Class aClass) {
return LogFactory.getlog(aClass);

The service locator implementation just shown is built using the Singleton design pattern.
This design pattern allows you to keep only one instance of a class per Java Virtual Machine
(JVM). This instance is used to service all the requests for the entire JVM.

Because looking up the resources such as EJBs or DataSource objects is a common activity,
implementing the Service Locator pattern as a Singleton pattern prevents the needless creation
of multiple copies of the same object doing the same thing. To implement the service locator as
a singleton, you need to first have a private constructor that will instantiate any resources being
used by the Servicelocator class:

private Servicelocator() {
ejbHomeCache = new Hashtable();
dataSourceCache = new Hashtable();

}

The default constructor for the Servicelocator class just shown is declared as private so
that a developer cannot directly instantiate an instance of the Servicelocator class. (You can
have only one instance of the class per JVM.)

A Singleton pattern ensures that only one instance of an object is present within the vir-
tual machine. The Singleton pattern is used to minimize the proliferation of large numbers of
objects that serve a very narrow purpose. In the case of the Service Locator pattern, its sole job
is to look up or create objects for other classes. It does not make sense to have a new service
locator instance being created every time a user needs to carry out one of these tasks.

145

146

CHAPTER 4 ©° MANAGING BUSINESS LOGIC WITH STRUTS

Note The Singleton pattern is a very powerful design pattern, but it tends to be overused. Inexperienced
architects will make everything a singleton implementation. Using a Singleton pattern can introduce reen-
trancy problems in applications that are multithreaded.

Note One thread can alter the state of a singleton implementation while another thread is working.
A Singleton pattern can be made thread-safe through the use of Java synchronization blocks. However,
synchronization blocks represent potential bottlenecks within an application, as only one thread at a time
can execute the code surrounded by a synchronization block.

The example service locator implementation is going to use two Hashtables, ejbHomeCache
and dataSourceCache, which respectively store EJBHome and DataSource interfaces. These two
Hashtable instances are initialized in the default constructor of the Servicelocator.

The constructor is called via an anonymous static block that is invoked the first time the
Servicelocator class is loaded by the JVM:

static {
servicelocatorRef = new Servicelocator();

}

This anonymous static code block invokes the constructor and sets a reference to a
Servicelocator instance, which is declared as a private attribute in the Servicelocator class.

You use a method called getInstance() to retrieve an instance of the Servicelocator class
stored in the servicelocatorRef variable:

public static Servicelocator getInstance(){
return servicelocatorRef;

}

To retrieve an EJBHome interface, the getEIBHome () method in the Servicelocator class
is invoked. This method takes an integer value (pServiceId) that represents the EJB being
requested. For this service locator implementation, all the available EJBs have a public static
constant defined in the Servicelocator class. For instance, the StoryManager EJB has the fol-
lowing constant value:

public static final int STORYMANAGER = 0;

The first action taken by the getEJBHome () method is to look up the JNDI name that will
be used to retrieve a resource, managed by the service locator. The JNDI name is looked up
by calling the getServiceName() method, in which the pServiceld parameter is passed:

String serviceName = getServiceName(pServiceld);

CHAPTER 4 ©° MANAGING BUSINESS LOGIC WITH STRUTS

Once the JNDI service name is retrieved, the ejbHomeCache is checked to see if that
EJBHome interface is already cached. If a hit is found, the method immediately returns with
the EJBHome interface stored in the cache:

if (ejbHomeCache.containsKey(serviceName)) {
ejbHome = (EJBHome) ejbHomeCache.get(serviceName);
return ejbHome;

If the requested EJBHome interface is not located in the ejbHomeCache Hashtable, the
getEIBHome () method will look up the interface, add it to the ejbHomeCache, and then return
the newly retrieved interface back to the calling application code:

} else {
Context ctx = new InitialContext();
Object jndiRef = ctx.lookup(serviceName);

Object portableObj =
PortableRemoteObject.narrow(jndiRef, getEJBHomeRef(pServiceld));

ejbHome = (EJBHome) portableQbj;
ejbHomeCache.put(serviceName, ejbHome);
return ejbHome;

}

The getDBConn() method is designed in a very similar fashion. When the user requests a
JDBC connection via the getDBConn() method, the method checks the dataSourceCache for a
DataSource object before doing a JNDI lookup. If the requested DataSource object is found in
the cache, it is returned to the method caller; otherwise, a JNDI lookup takes place.

Let’s revisit the constructor of the StoryManagerEJBImpl class and see how using a service
locator can significantly lower the amount of work involved in instantiating the StoryManager
EJB:

package com.apress.javaedge.story;

import com.apress.javaedge.story.ejb.StoryManager;

import com.apress.javaedge.story.ejb.StoryManagerHome;
import com.apress.javaedge.common.ApplicationException;
import com.apress.javaedge.common.Servicelocator;

import com.apress.javaedge.common.ServicelocatorException;

import javax.ejb.CreateException;
import javax.naming.Context;

import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.rmi.PortableRemoteObject;
import java.rmi.RemoteException;

147

148 CHAPTER 4 ©° MANAGING BUSINESS LOGIC WITH STRUTS

public class StoryManagerEJBImpl {
StoryManager storyManager = null;

public StoryManagerEJBImpl() throws ApplicationException {
try{
Servicelocator servicelocator = Servicelocator.getInstance();
StoryManagerHome storyManagerHome =
(StoryManagerHome)
servicelocator.getEJBHome (Servicelocator.STORYMANAGER);
storyManager = storyManagerHome.create();
}
catch(ServicelocatorException e){
throw new ApplicationException("A Servicelocator exception " +
" has been raised in StoryManagerEJBImpl constructor: " +
e.toString ());
}
catch(CreateException e){
throw new ApplicationException("A Create exception has been " +
raised in StoryManagerEJBImpl constructor: " + e.toString ());

n

}

catch(RemoteException e){
throw new ApplicationException("A remote exception " +
"has been raised in StoryManagerEJBImpl constructor:
+ e.toString ());

This service locator implementation has significantly simplified the process of looking up
and creating an EJB.

The Service Locator Pattern to the Rescue

We ran into a situation just this past year in which we were building a web-based application
that integrated to a third-party Customer Relationship Management (CRM) system.

The application had a significant amount of business logic, embedded as PL/SQL stored
procedures and triggers, in the Oracle database it was built on. Unfortunately, the third-party
application vendor had used an Oracle package, called DBMS_OUTPUT, to put the trace code
through all of their PL/SQL code. This package never caused any problems because the end
users of the CRM package used to enter the database data via a “fat” GUI, which always kept
the database transactions very short.

CHAPTER 4 ©° MANAGING BUSINESS LOGIC WITH STRUTS

However, we needed to build a web application that would collect all of the user’s data
and commit it all at once. The transaction length was significantly longer than what the CRM
vendors had anticipated. As a result, the message buffer, which the DBMS_OUTPUT package used
for writing out the log, would run out of space and the web application would fail at what
appeared to be random intervals.

At this point we were faced with the choice of going through every PL/SQL package
and trigger and stripping out the DBMS_OUTPUT code (which should have never been put in
production code). However, the DBA informed us that if we started every session with a call
to DBMS_OUTPUT.DISABLE, we would be able to disable the DBMS_OUTPUT package. This would dis-
able the DBMS_OUTPUT package for that particular session, but would not cause any problems
for other application users.

If we had allowed a direct JNDI lookup to retrieve DataSource objects for getting a JDBC
connection, we would have had the daunting task of going through every line in the applica-
tion and making the call to DBMS_OUTPUT.DISABLE every time a new Connection object was
created from the retrieved DataSource. However, since we had implemented a Service Locator
pattern and used it to retrieve all the database connections, there was only one place in which
the code had to be modified.

This example illustrates that you might not appreciate the abstraction that the Service
Locator pattern provides until you need to make a change in how a resource is requested,
which will affect a significant amount of your code base.

The Service Locator Revisited

We built the service locator example using Hashtable classes to store the EJB and DataSource
instances. We used Hashtable because we wanted to keep the service locator example simple
and thread-safe. A Hashtable is thread-safe solution, but does not offer any kind of intelligence
regarding the actual number of items being stored within it. There are no caching algorithms (for
example, a Least-Recently-Used algorithm) built into the Hashtable that allow the developer to
control how many items are loaded into the Hashtable instance or when items should be
unloaded from it.

Fortunately, the Jakarta Commons project offers a number of “enhanced” Collections
classes that allow for a more intelligent caching solution.

Note The Collections classes discussed in this section can be downloaded from the Jakarta Commons
project at http://jakarta.apache.org/commons/collections.

One of these Collections is the LRUMap class. The LRUMap class is a HashMap implementation
that is built around a Least-Recently-Used (LRU) algorithm. The LRU algorithm built into the
LRUMap class allows the developer to restrict the number of objects that can be held within it.

This means that if the maximum number of objects is reached with the LRUMap and
another object is added to it, the LRUMap will unload the least accessed object from the map
and then add the new object to it.

149

150 CHAPTER 4 ©° MANAGING BUSINESS LOGIC WITH STRUTS

Let’s make the service locator implementation a little bit more intelligent by using the
Jakarta Common’s LRUMap to allow it to hold only five references to an EJB or a data source at
any given time. The code for this is shown here and the areas in the code where the LRUMap is
being used appear in bold:

package com.apress.javaedge.common;

import org.apache.commons.logging.Log;

import org.apache.commons.logging.LogFactory;

import org.apache.ojb.broker.PBFactoryException;
import org.apache.ojb.broker.PersistenceBroker;

import org.apache.ojb.broker.PersistenceBrokerFactory;
import org.apache.commons.collections.LRUMap;

import java.util.Collections;

import java.util.Map;

import javax.ejb.EJBHome;

import javax.naming.Context;

import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.rmi.PortableRemoteObject;
import javax.sqgl.DataSource;

import java.sql.Connection;

import java.sql.SOLException;

public class ServicelocatorLRU{
private static ServicelocatorLRU servicelocatorRef = null;
private static LRUMap ejbHomeCache = null;
private static LRUMap dataSourceCache = null;

/*Enumerating the different services available from the service locator*/
public static final int STORYMANAGER = 0;
public static final int JAVAEDGEDB = 1;

/*The INDI Names used to look up a service*/
private static final String STORYMANAGER_JNDINAME =
"storyManager/StoryManager";

private static final String JAVAEDGEDB_JNDINAME="java:/MySQLDS";

/*References to each of the different EJB Home Interfaces*/
//private static final Class STORYMANAGERCLASSREF = StoryManagerHome.class
private static final Class STORYMANAGERCLASSREF = null;

static {
servicelocatorRef = new ServicelocatorLRU();

}

CHAPTER 4 ©° MANAGING BUSINESS LOGIC WITH STRUTS

/*Private Constructor for the Servicelocator*/
private ServicelocatorLRU(){
ejbHomeCache new LRUMap(5);
dataSourceCache = new LRUMap(5);

}

public static ServicelocatorLRU getInstance(){
return servicelocatorRef;

}

static private String getServiceName(int pServiceld)
throws ServicelocatorException{
String serviceName = null;
switch (pServiceld){

case STORYMANAGER: serviceName = STORYMANAGER JINDINAME;
break;
case JAVAEDGEDB: serviceName = JAVAEDGEDB_JNDINAME;
break;
default: throw new ServicelocatorException(
"Unable to locate the service requested in " +
"Servicelocator.getServiceName() method. ");

}

return serviceName;

}

static private Class getEJBHomeRef(int pServiceld)
throws ServicelocatorException{
Class homeRef = null;
switch (pServiceld){

case STORYMANAGER: homeRef = STORYMANAGERCLASSREF;
break;
default: throw new ServicelocatorException(

"Unable to locate the service requested in " +
"Servicelocator.getEIBHomeRef() method. ");
}

return homeRef;

}

/
public EJBHome getEJBHome(int pServiceld)
throws ServicelocatorException{

/*Trying to find the INDI Name for the requested service*/
String serviceName = getServiceName(pServiceld);

EJBHome ejbHome = null;

Map ejbMap = Collections.synchronizedMap(ejbHomeCache);

151

152 CHAPTER 4 ©° MANAGING BUSINESS LOGIC WITH STRUTS

try {
/*Checking to see if we can find the EJBHome interface in cache*/
if (ejbMap.containsKey(serviceName)) {
ejbHome = (EJBHome) ejbMap.get(serviceName);
return ejbHome;
} else {
/*
* If we could not find the EJBHome interface in the cache, look it
* up and then cache it.
* */
Context ctx = new InitialContext();
Object jndiRef = ctx.lookup(serviceName);

Object portableObj =
PortableRemoteObject.narrow(jndiRef, getEIBHomeRef(pServiceld));

ejbHome = (EJBHome) portableObj;

ejbMap.put(serviceName, ejbHome);
return ejbHome;
}
} catch(NamingException e) {
throw new ServicelocatorException(“Naming exception " +
" error in Servicelocator.getEJBHome()" ,e);

} catch(Exception e) {
throw new ServicelocatorException("General exception " +
" in Servicelocator.getEJBHome",e);

public Connection getDBConn(int pServiceld)
throws ServicelocatorException{
/*Getting the INDI Service Name*/

String serviceName = getServiceName(pServiceld);
Connection conn = null;
Map dsMap = Collections.synchronizedMap(dataSourceCache);

try {
/*Checking to see if the requested DataSource is in the Cache*/
if (dataSourceCache.containsKey(serviceName)) {
DataSource ds = (DataSource) dsMap.get(serviceName);
conn = ((DataSource)ds).getConnection();

CHAPTER 4 ©° MANAGING BUSINESS LOGIC WITH STRUTS

return conn;
} else {
/*
* The DataSource was not in the cache. Retrieve it from INDI
* and put it in the cache.
*/
Context ctx = new InitialContext();
DataSource newDataSource = (DataSource) ctx.lookup(serviceName);
dsMap.put(serviceName, newDataSource);
conn = newDataSource.getConnection();
return conn;
}
} catch(SQLException e) {
throw new ServicelocatorException("A SQL error has occurred in " +
"Servicelocator.getDBConn()", e);
} catch(NamingException e) {
throw new ServicelocatorException("A INDI Naming exception has "+
"occurred in "+
"Servicelocator.getDBConn()

n

> €);
} catch(Exception e) {
throw new ServicelocatorException("An exception has occurred "+

"in Servicelocator.getDBConn()" ,e);

public PersistenceBroker findBroker() throws ServicelocatorException{

}

The difference between the ServiceLocator.java and ServiceLocatorLRU.java implementa-
tions is that the LRUMap is being used in place of the Hashtable:

private static LRUMap ejbHomeCache = null;
private static LRUMap dataSourceCache = null;

To set the maximum number of objects allowed to be stored in the ejbHomeCache and
dataSourceCache objects, an integer value is passed into the constructor on the LRUMap:

ejbHomeCache new LRUMap(5);
dataSourceCache = new LRUMap(5);

153

154

CHAPTER 4 ©° MANAGING BUSINESS LOGIC WITH STRUTS

Remember, the Hashtable is a synchronized Java class and can be accessed safely by
multiple threads. The LRUMap is not. To make it thread-safe, you must get a synchronized Map
instance by calling the java.util.Collections’s synchronizedMap() method and passing in an
instance of an LRUMap:

Map dsMap = Collections.synchronizedMap(dataSourceCache);

With the addition of the LRUMap, the service locator used in the JavaEdge application has
become sophisticated. More importantly, this was accomplished without the need to write
your own LRU algorithm implementation. The “take-away” thought from this should be the
following:

Note Whenever you start finding yourself or your development team writing low-level code, you should
take a step back. Most problems that a development team faces have already been overcome before. Look
to open source projects like the Jakarta Commons project for solutions before implementing your own.

EJBs and Struts

Since the release of the J2EE specifications, it has been incessantly drilled into every J2EE devel-
oper that all business logic for an application should be placed in the middle tier as session-based
Enterprise JavaBeans (EJB). Unfortunately, many developers believe that by putting their business
logic in EJBs, they have successfully designed their application’s middle tier.

The middle tier of an application often captures some of the core business processes used
throughout the enterprise. Without careful forethought and planning, many applications end
up with a middle tier that is too tightly coupled to a specific application. The business logic
contained within the application cannot easily be reused elsewhere and can become so com-
plex that it is not maintainable.

The following are symptoms of a poorly designed middle tier:

The EJBs are too fine-grained: A very common mistake when building Struts-based appli-
cations with EJBs is to have each Action class have a corresponding EJB. This results in a
proliferation of EJBs and can cause serious performance problems in a high-transaction
application. The root cause of this is that the application developer is treating a compo-
nent-based technology (that is, EJB) like an object-oriented technology (that is, plain old
Java classes).

In a Struts application, you can often have a small number of EJBs carrying out the
requests for a much larger number of Action classes. If you find a one-to-one mapping
between Action classes and EJBs, the design of the application needs to be revisited.

The EJBs are too fat. Conversely, some developers end up placing too much of their busi-
ness logic in an EJB. Putting too much business logic into a single EJB makes it difficult to
maintain and reuse it in other applications. “Fat” EJBs are often implemented by develop-
ers who are used to programming with a module development language, such as C or
Pascal, and are new to object-oriented analysis and design.

CHAPTER 4 ©° MANAGING BUSINESS LOGIC WITH STRUTS

We have encountered far more of the latter design problem, “fat” EJBs, when building
Struts-based applications. Let’s look at the “fat” EJB problem in more detail.

On “Fat” EJBs

“Fat” EJBs are monolithic “blobs” of code that do not take advantage of object-oriented
design.

Note The term blobis not our term. It is actually an antipattern that was first defined in the text
AntiPatterns: Refactoring Software Architectures and Projects in Crisis (Brown et al., John Wiley & Sons,
ISBN: 0-471-19713-0). The Blob antipattern is an antipattern that forms when a developer takes an
object-oriented language like C++ or Java and uses it in a procedural manner.

In a Struts application, an extreme example of this might be manifested by a single EJB
that contains one method for each of the Action classes present in the Struts application. The
execute() method for each Action class would invoke a corresponding method on the EJB to
carry out the business logic for the action.

This is an extreme example of a “fat” EJB. A more typical example of a “fat” EJB is one
in which the EJBs are designed along functional breakdowns within the application. In the
JavaEdge application, you might have a Member EJB and a Story EJB that encapsulate all of
the functionality for that specific set of application tasks.

This kind of functional breakdown into individual EJBs makes sense. E]Bs are coarse-
grained components that wrap processes. The EJB model does offer the same type of object-
oriented features (polymorphism, encapsulation, etc.) as their more fine-grained counterparts:
plain Java classes. The problem arises when the EJB developer does not use the EJB as a wrapper
around more fine-grained objects but instead puts all of the business logic for a particular
process inside the EJB.

For example, if you remember earlier in the chapter we talked about how many developers
will push all of their business logic from their Struts Action class to an EJB. We demonstrated
how if your Struts did not use a Business Delegate pattern to hide the fact you were using EJBs,
you could end up creating tight dependencies between Struts and the EJB APIs.

What we did not talk about is how blindly moving your business logic out of the PostStory
Action class and into an EJB can result in a “fat” EJB. Shown here is the StoryManagerBean. java
class:

package com.apress.javaedge.story.ejb;

import javax.naming.*;
import java.rmi.*;
import javax.ejb.*;
import java.sql.*;

import com.apress.javaedge.common.*;
import com.apress.javaedge.story.*;

155

156 CHAPTER 4 ©° MANAGING BUSINESS LOGIC WITH STRUTS

import com.apress.javaedge.member.*;
import com.apress.javaedge.story.dao.*;
import com.apress.javaedge.struts.poststory.*;

public class StoryManagerBean implements SessionBean {
private SessionContext ctx;

public void setSessionContext(SessionContext sessionCtx) {
this.ctx = sessionCtx;

}

public void addStory(StoryVO storyVo)
throws ApplicationException, RemoteException{
Connection conn = null;
PreparedStatement ps = null;

try {
conn = Servicelocator.getInstance().getDBConn(Servicelocator.JAVAEDGEDB);

conn. setAutoCommit(false);

StringBuffer insertSQL = new StringBuffer();

insertSQL.append("INSERT INTO story(")s
insertSQL.append(" member id , ")
insertSQL.append(" story title , ")
insertSQL.append(" story into , ")
insertSQL.append(" story body , ");
insertSQL.append(" submission date ");
insertSQL.append(") ");
insertSQL.append("VALUES(");
insertSQL.append(" ? ’ ")
insertSQL.append(" ? ’ ")
insertSQL.append(" ? ’ ")
insertSQL.append(" ? ’ ")
insertSQL.append(" CURDATE()) ");

ps = conn.prepareStatement(insertSQL.toString());

ps.setlong(1, storyVO.getStoryAuthor().getMemberId().longValue());
ps.setString(2, storyV0.getStoryTitle());
ps.setString(3, storyV0.getStoryIntro());
ps.setString(4, storyV0.getStoryBody());

ps.execute();
checkStoryCount (storyV0.getStoryAuthor());

} catch(SQLException e) {

CHAPTER 4 ©° MANAGING BUSINESS LOGIC WITH STRUTS

throw new ApplicationException("SQL Exception occurred in " +
"StoryManagerBean.addStory()", e);

} catch(ServicelocatorException e) {
throw new ApplicationException("Service Locator Exception occurred in " +
"StoryManagerBean.addStory()", e);

} finally {
try {
if (ps != null) ps.close();
if (conn != null) conn.close();

} catch(SQLException e) {}

}
}

private void checkStoryCount(MemberVO memberV0)
throws SQLException, NamingException {

public void addStory(PostStoryForm postStoryForm, MemberVO memberVO)
throws ApplicationException, RemoteException{

}...

public void ejbCreate() { }
public void ejbRemove() { }
public void ejbActivate() { }
public void ejbPassivate(){ }

We have not included the full listing of the StoryManagerBean class for the sake of brevity.
However, you should be able to tell that this EJB is going to be huge if all of the business logic
associated with managing stories is put into it.

The JavaEdge application is an extremely simple application. In more real-world EJB
implementations, the Struts amount of business logic that is put into the EJB can become
staggering. Let’s look at how the Session Facade design pattern can help you manage the
business logic contained within an EJB.

The Session Facade Pattern

The Session Facade pattern is implemented as a stateless session EJB, which acts as a coarse-
grained wrapper around finer-grained pieces of code. Typically, these finer-grained pieces of
code are going to be plain old Java classes rather than the more component-oriented EJB

157

158 CHAPTER 4 © MANAGING BUSINESS LOGIC WITH STRUTS

architecture. In a component-based architecture, a component wraps the business processes
behind immutable interfaces. The implementation of the business process may change, but
the interface that the component presents to the applications (which invoke the business
process) does not change.

Instead, the methods on an EJB implemented as a session facade should act as the entry
point in which the business process is carried by more fine-grained Java classes. Figure 4-3
illustrates this.

Business delegate looks up a EJB-based

session facade and invokes a method on it. Session Facade (EJB)
-
=
>
=] m
< 1
7] o
. >-<
=1 7
0] =3
8 3
w
Application o - - =
] ()
— Y]
1] <
oQ Q
Application invokes a method E- =)
on the business delegate o
>
w

The individual business steps wrapped by the session
facade are invoked

Figure 4-3. Application invoking a session facade via a business delegate

So if you were going to rewrite the StoryManagerBean’s addStory() method to be less
monolithic and more fine-grained, it might look something like this:

public void addStory(StoryVO storyVo)
throws ApplicationException, RemoteException {

try {
StoryDAO storyDAO = new StoryDAO();
storyDAQ. insert(storyVo);

PrizeManager prizeManager = new PrizeManager();
int numberOfStories =
prizeManager.checkStoryCount(storyV0.getStoryAuthor());

boolean TOTAL_COUNT_EQUAL_1000
boolean TOTAL_COUNT_EQUAL_5000

(numberOfStories==1000);
(numberOfStories==5000);

if (TOTAL COUNT EQUAL 1000 || TOTAL COUNT EQUAL 5000) {
prizeManager.notifyMarketing(storyV0.getStoryAuthor(), numberOfStories);

}

CHAPTER 4 ©° MANAGING BUSINESS LOGIC WITH STRUTS

} catch (DataAccessException e){
throw new ApplicationException("DataAccessException Error in " +
StoryManagerBean.addStory(): " +
e.toString(), e);

The addStory() method is much more manageable and extensible. All of the data access
logic for adding a story has been moved to the StoryDAO class (which will be covered in more
detail in the next chapter). All of the logic associated with prize management has been moved
to the PrizeManager class.

As you can see, you also need to refactor the code associated with the checkStoryCount()
method. The checkStoryCount () method is only used when trying to determine whether or
not the individual qualifies for a prize. So you move the checkStoryCount() method to the
PrizeManager. You could also move this method to the StoryDAO class. By moving it out of the
StoryManager EJB, you avoid having “extraneous” code in the session facade implementation.

Implementing the Session Facade pattern is not difficult. It involves looking at your EJBs
and ensuring that the individual steps for carrying out a business process are captured in fine-
grained Java objects. The code inside of the session facade implementation should act as the
“glue” that strings these individual steps together into a complete process.

Any method on a session facade EJB should be short. If it’s over 20 to 30 lines, you need to
go back and revisit the logic contained within the method to see if it can be refactored out into
smaller individual classes. Remember, one of the core concepts behind object-oriented design
is division of responsibility. Always keep this in mind as you are building your EJBs.

What About Non-EJB Applications?

All of the examples presented so far in this chapter have made the assumption that you are
using EJB-based J2EE to gain the benefits offered by these design patterns. However, it is very
easy to adapt these patterns to a non-EJB Struts-based application. We have worked on many
successful Struts applications using these patterns and just a web container.

For non-EJB Struts implementations, you should still use the Business Delegate pattern
to separate the Struts Action class from the Java classes that carry out the business logic. You
need not implement a Session Facade pattern in these situations. Instead, your business dele-
gate class will perform the same function as the session facade class. The business delegate
would act as a thin wrapper around the other Java objects carrying out a business process.

You might ask the question, “Why go through all of this extra work even in a non-J2EE
application?” The reason is simple: By cleanly separating your Action class from the applica-
tion’s business logic (using a Business Delegate pattern), you provide a migration path for
moving your applications to a full J2EE environment.

At some point, you might need to move the Struts applications to a full-blown J2EE appli-
cation server and not just a JSP/servlet container. You can very easily move your business logic
to session facades and EJBs, without rewriting any of your Struts applications. This is because
you have separated your Struts applications from your business logic.

Your Struts applications only invoke the business logic through a plain Java interface. This
abstraction allows you to completely refactor the business tier of your applications without
affecting the applications themselves.

159

160 CHAPTER 4 ©° MANAGING BUSINESS LOGIC WITH STRUTS

A DECISION POINT IN THE JAVAEDGE APPLICATION

We struggled when trying to determine whether or not we should build the JavaEdge application as an
EJB-based application. In the end, we decided not to because JavaEdge is such a simple application that it
didn’t require the power (and the complexity) that comes with implementing an EJB solution.

Since the logic for the JavaEdge application is simple, we embedded most of it as calls to Data Access
Objects (covered in the next chapter) directly inside of the business delegate implementations. The business
logic was not broken out into session facades and was instead kept inside of the business delegate classes.

However, even though the JavaEdge application does not use EJBs in its implementation,
we felt that this material was an important piece to cover when looking at using Struts for your
own EJB-based applications.

As the Struts Action classes only talk to business delegates, we could have easily refac-
tored the code into an EJB-based solution without having to touch any of the Struts code.

The design patterns discussed in this chapter cleanly separate the Struts framework from
how the business logic for the application is being invoked. This allows you to evolve the
application over time while minimizing the effects of these changes on the application.

Remember, design patterns are a powerful tool for abstraction and reuse, but when used
improperly become common causes of overabstraction and complexity.

Handling Exceptions in the Action Class

For the development team, unanticipated behavior in the application code is a byproduct of
the nonlinear, fuzzy, and complex business processes that are being modeled with the appli-
cation code. One of the most common mistakes developers make when building multitiered
applications, like web applications, is not understanding or appreciating how poorly designed
exception-handling code can cause implementation details from one tier to be exposed to the
tier immediately above it.

For example, the Business Delegate pattern is supposed to abstract away all implementa-
tion details of how the business logic in an application is actually invoked from the presentation
tier. However, we have seen many instances where development teams have implemented their
business delegate implementations and had the methods on the delegate throwing technology-
specific implementation details like a RemoteException.

The end result is that even though the business delegate implementation hides the fact
that an EJB is being invoked, the classes using the business delegate have to still catch the
RemoteException or rethrow it. This creates a dependency that must be reworked if the devel-
opment team ever changes the underlying implementation for the business delegate away
from something other than EJBs.

The best way to deal with any exceptions thrown from the business tier is to establish two
practices:

* Catch, process, and log all exceptions thrown in the business tier before the exception leaves
the business tier: This is important because by the time an application exception gets to
the presentation layer and to a Struts Action class, all of the heavy lifting associated with
processing the exception should be done. The Struts framework should merely be catch-
ing the exception and directing the user to a nicely formatted error page.

CHAPTER 4 ©° MANAGING BUSINESS LOGIC WITH STRUTS 161

e When an exception is caught in the business tier, rethrow the exception as a single generic
exception type: That way, the presentation tier consuming the services of the business
logic tier only needs to know that it has to catch one type of exception. Catching an
exception and rethrowing it as a generic type completely abstracts away the implemen-
tation details associated with the exception.

If your application truly needs to be able to differentiate different types of exceptions
being thrown from the business logic tier, then you should consider building some sim-
ple type of exception hierarchy that minimizes the number of specific exception types
that need to be caught.

All the Action classes in the JavaEdge application are set to process a generic exception
called ApplicationException. An ApplicationException is a generic exception that is used to
“level” all exceptions thrown by the business logic tier to a single type of exception.

Without the ApplicationException being thrown from the StoryManagerBD, the develop-
ment team would have to rewrite its Action classes every time the underlying implementation
of the business delegate changed.

For instance, without a generic ApplicationException being thrown, if you wanted to
change the underlying logic for story management to be contained within an EJB rather than
a POJO, the PostStory class would need to be rewritten to have to catch the CreateException,
RemoteException, and NamingException that could be thrown from the StoryManagerEJBImpl
class. This would give the PostStory class the intimate knowledge of how the business logic
for the request was being carried out.

Tip Never expose an application that uses a business delegate to any of the implementation details
wrapped by the delegate. This includes any exceptions that might be raised during the course of processing
arequest.

The ApplicationException is used to notify the application, which consumes a service
provided by the business delegate, that some kind of error has occurred. It is up to the applica-
tion to decide how it will respond to an unexpected exception.

There are two different ways exception handling with ApplicationException can be
implemented. Each method is dependent on the version of Struts being used. Let’s start by
looking at how exception handling can be implemented in the older Struts 1.0.x releases.

Exception Handling in Struts 1.0.x

When building web applications using Struts 1.0.x, we have found that the best approach for
clear and uniform exception handling in the Action classes is to implement the following:

» Write an ApplicationException class that will represent all exceptions thrown from the
business tier layer.

* Implement a single global forward via the <global-forwards> tag in the application’s
struts-config.xml file. This global forward will be used to redirect the end user to a
neatly formatted error page rather than a web page full of Java code stack traces.

162

CHAPTER 4 ©° MANAGING BUSINESS LOGIC WITH STRUTS

* Ensure that all Action classes within the application catch the ApplicationException
and redirect the user to the error page defined in the global forward.

To build the JavaEdge application’s ApplicationException class, some of the functionality
in the Jakarta Commons lang project (http://jakarta.apache.org/commons/lang) was used.
All the classes from the Jakarta Common’s lang project are located in the commons-lang.jar
file.

For the Struts 1.0.x framework, we are going to demonstrate the use of the org.apache.
commons. lang.exception.NestableException class. The NestableException class provides a
nice mechanism to ensure that the call stack for the exception being caught is being main-
tained if the application chooses to rethrow the exception. The reason why the
NestableException is used is that before JDK 1.4 the propagation of the exception call stack
was not built into the core Java language.

Shown here is the ApplicationException class used specifically to build the JavaEdge
application in Struts version 1.0.x:

package com.apress.javaedge.common;
import org.apache.commons.lang.exception.NestableException;

public class ApplicationException extends NestableException {
Throwable exceptionCause = null;

/** Creates a new instance of ApplicationException */
public ApplicationException(String msg) {
super(msg);

}

public ApplicationException(String msg, Throwable exception){
super(msg, exception);
exceptionCause = exception;

}

/**0verriding the printStackTraceMethod*/
public void printStackTrace(){
if (exceptionCause!=null){
System.err.println("An exception has been caused by: " +
exceptionCause.toString());
exceptionCause.printStackTrace();
}
}

When an application exception is thrown, the user should always be directed to a nicely
formatted error page. To achieve this redirection, we are going to show you how to set up a
<global-forwards> tagin the JavaEdge application’s struts-config.xml file. Shown here is the
tag used, but we are not going to walk through the details of the <global-forwards> tag as this
information was covered in Chapter 2:

CHAPTER 4 ©° MANAGING BUSINESS LOGIC WITH STRUTS

<global-forwards type="org.apache.struts.action.ActionForward">
<forward name="system.error" path="/WEB-INF/jsp/systemError.jsp"/>
<forward name="default.action" path="/execute/homePageSetup"/>
</global-forwards>

Once these two elements are set up, it is a straightforward process to capture an
ApplicationException and redirect the user to the error page. Shown here is the execute()
method from the PostStory class:

public ActionForward execute(ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response){

if (this.isCancelled(request)){
return (mapping.findForward("poststory.success"));

}

try{
PostStoryForm postStoryForm = (PostStoryForm) form;

StoryV0 storyVO = postStoryForm.buildStoryVO(request);

IStoryManager storyManager = StoryManagerBD.getStoryManagerBD();
storyManager.addStory(storyVo);

} catch(ApplicationException e){
return (mapping.findForward("system.error"));

}

return (mapping.findForward("poststory.success"));

}

Although this code is a clean mechanism for capturing all exceptions thrown in your
Action classes, one issue should leap out at you. Capturing application exceptions and redi-
recting the user is very repetitive. The process of capturing these exceptions “clutters” up your
Action classes, especially because the exception handling code is doing the same thing over
and again. Fortunately, in Struts 1.1, the handling of exceptions thrown in an Action class has
now been integrated as part of the Struts framework in what is known as exception handlers.
Let’s revisit the preceding ApplicationException code. We will look at how to use Struts ver-
sion 1.1 exception handlers to automate the processing of the ApplicationException.

Exception Handling in Struts 1.1 and Later

The Struts version 1.1 framework introduced the concept of framework-based exception han-
dlers. This concept has not changed in the current 1.2.x releases of Struts. Framework-based
exception handlers allow you to handle application exceptions thrown in your Action classes
declaratively. Using them, you can define in your application’s struts-config.xml file what
exceptions are to be caught by the Action class and where the user should be directed when
the error occurs.

163

164 CHAPTER 4 ©° MANAGING BUSINESS LOGIC WITH STRUTS

Implementing exception handlers in Struts 1.1 was very easy to do. For the JavaEdge
application, you implement exception handling for the ApplicationException in the following
manner:

* Modify the ApplicationException to be a NestableRuntimeException rather than a
NestableException.

e Add a<global-exceptions> tag to the JavaEdge application’s struts-config.xml file. This
tag defines all of the exceptions that can be thrown and processed from a JavaEdge
Action class.

* Modify all of the Action classes in the JavaEdge application to remove all try..catch
statements that process the ApplicationException.

Rewriting the ApplicationException Class

The ApplicationException class is modified so that it extends the NestableRuntimeException
rather than NestableException:

package com.apress.javaedge.common;
import org.apache.commons.lang.exception.NestableRuntimeException;

public class ApplicationException extends NestableException {

The rest of the code for the ApplicationException remains exactly the same. So why
make the switch from NestableException to NestableRuntimeException? The reason is that
NestableException is a “checked” exception. Even with the use of Strut’s exception-handler
capability, the Java compiler would complain if you did not catch the ApplicationException
exception being thrown from your business delegate classes.

Since you want to delegate all exception-handling code to Struts, you make the
ApplicationException class a “runtime” exception that does not require a try. .catch block.

Setting Up the struts-config.xml File

Now to actually tell Struts that it should be looking for a particular exception you need to
modify the application’s struts-config.xml file. There are two types of exception handlers:
global and local. A global exception handler uses the <global-exceptions> tag to define a list
of exceptions that can be thrown by all of the Action classes within the application.

A local exception handler is defined inside of an <action> tag and specifies an exception
that can be caught and processed specific to that Action class. Please note that there is noth-
ing stopping a developer from redefining the same exception to be caught by simply
redefining the same exception inside different <action> tags.

CHAPTER 4 ©° MANAGING BUSINESS LOGIC WITH STRUTS

For the JavaEdge application, you define the following <global-exceptions> tag inside of
the application’s struts-config.xml file:

<global-exceptions>
<exception key="error.system"
scope="request"
type="com.apress.javaedge.common.ApplicationException”
path="/WEB-INF/jsp/systemExrror.jsp"/>
</global-exceptions>

For each exception defined inside of the <global-exceptions> tag, there will be a corre-
sponding <exception> tag. An <exception> tag can have a number of attributes associated
with it. The four attributes you are most concerned about are key, scope, type, and path.

We will walk you through each of these attributes with the understanding that the behavior
described by these three attributes are the same whether you are defining a global exception
handler or a local exception handler.

Note To conform to the struts-config-1.1 or the struts-config-1.2 DTD, you must make sure that the
<global-exceptions> tag comes before the <global-forwards> tag. Otherwise, you might end up
wasting a lot of time scouring the application’s struts-config.xml file the first time you run this file through
a validating XML parser.

When a defined exception is caught and processed, Struts provides a default exception
handler whose fully qualified class name is org.apache.struts.action.ExceptionHandler.
This exception handler will create an ActionError instance for the exception and store it in an
ActionErrors collection. The corresponding resource key used to look up the error message
when creating the ActionError instance is defined by the value in the key attribute. Remem-
ber, this resource key is used to pull out the error message from the
ApplicationResources.properties file.

For instance, in the JavaEdge application, every time an ApplicationException is thrown
in a Struts Action, the following text will be read out of the ApplicationResources.properties
file:

error.system=A system error has occurred. Please contact JavaEdge customer
support at 262-555-1212 for support.
The error to report is:
 {0}

The actual exception message will be passed in as the first message parameter for the
ActionError. This means if you have a JSP page that will display a neatly formatted message
about the exception, you can get the text of the exception-thrown message by using the {0}
parameter used in the error message defined in the ApplicationResources.properties file.

165

166

CHAPTER 4 ©° MANAGING BUSINESS LOGIC WITH STRUTS

This also means that the <html:errors> tag and all of its corresponding formatting func-
tions can be used to display the exception information for the exception thrown. A very simple
example of this is shown here:

<%@page contentType="text/html"%>

<%@ taglib uri="/taglibs/struts-html" prefix="html" %>
<html>

<head><title>JSP Page</title></head>

<body>

<H1> A SYSTEM ERROR HAS OCCURRED</H1>
<html:errors/>

</body>

</html>

The type attribute provides the fully qualified Java class name of the exception that is to
be caught. The path attribute is the relative URL that the end user will be directed to if the
defined exception is caught. This URL can be another Struts action or a JSP page.

At this point, we have shown you how to implement a global exception handler.
Implementing a local exception handler for a specific class involves nothing more than
adding an <exception> tag to an <action> tag. Shown here is the PostStory action with the
ApplicationException being handled by that tag:

<action path="/postStory"
input="/WEB-INF/jsp/postStory.jsp"
name="postStoryMapForm"
scope="request"
validate="true"
type="com.apress.javaedge.struts.poststory.PostStory">
<exception key="error.system"
scope="request"
type="com.apress.javaedge.common.ApplicationException”
path="/WEB-INF/jsp/systemError.jsp"/>
<forward name="poststory.success" path="/execute/homePageSetup"/>
</action>

Once the ApplicationException code has been rewritten to use the
NestedRuntimeException and the <global-exceptions> tag setup, the PostStory class’s execute()
method shown earlier can be rewritten so that all try. .catch information is removed:

public ActionForward execute(ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response)
throws ApplicationException {

if (this.isCancelled(request)){
return (mapping.findForward("poststory.success"));

}

CHAPTER 4 ©° MANAGING BUSINESS LOGIC WITH STRUTS

PostStoryForm postStoryForm = (PostStoryForm) form;
StoryV0 storyVO = postStoryForm.buildStoryVO(request);

IStoryManager storyManager = StoryManagerBD.getStoryManagerBD();
storyManager.addStory(storyVo);

return (mapping.findForward("poststory.success"));

Writing a Custom ExceptionHandler

Why would you want to write your own exception handler? The Struts ExceptionHandler does
not provide any kind of functionality like logging, e-mail notification, etc. However, Struts,
being the pluggable framework it is, allows you to write your own ExceptionHandler imple-
mentation and use it within the framework.

To write a custom ExceptionHandler, follow these guidelines:

* The custom ExceptionHandler must extend org.apache.struts.action.ExceptionHandler.

e The execute() method on ExceptionHandler must be overridden. The execute()
method is where the custom exception-handling code is implemented. Shown here is
the method signature for the execute() method:

public ActionForward execute(Exception ex,
ExceptionConfig ae,
ActionMapping mapping,
ActionForm formInstance,
HttpServletRequest request,
HttpServletResponse response)
throws ServletException {}

The Exception parameter holds the instance of the Exception thrown by the Action
class. The ExceptionConfig parameter holds the configuration information about the
exception defined inside of the <exception> tag. The ActionMapping and ActionForm
parameters are used to provide context on the Struts Action where the exception
occurred. The HttpServletRequest and HttpServletResponse parameters should

be self-explanatory.

* The custom ExceptionHandler can take any action as long as it returns an ActionForward
that is used by the Struts ActionServlet to determine where the end user is to go next.
There is no requirement that the path the ActionForward directs the user to has to be
defined only from the <exception> tag in the struts-config.xml file.

 If you want to store the exception as an ActionError from within your custom exception
handler, you need to make sure you invoke the storeException() method on the
ExceptionHandler class.

e Once the custom ExceptionHandler has been implemented, you must add the handler
attribute to the <exception> tag defining the exception handler. The handler attribute
defines the fully qualified Java class name of the custom ExceptionHandler class being
used to process the exception.

167

168

CHAPTER 4 ©° MANAGING BUSINESS LOGIC WITH STRUTS

Following is an example custom exception handler called MailExceptionHandler. This
exception handler will generate an e-mail every time an ApplicationException is thrown from
a Struts Action class.

package com.apress.javaedge.common;

import org.apache.struts.action.ExceptionHandler;
import org.apache.struts.action.ActionForward;
import org.apache.struts.action.ActionMapping;
import org.apache.struts.action.ActionForm;
import org.apache.struts.config.ExceptionConfig;
import org.apache.log4j.Logger;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.ServletException;

import javax.mail.internet.MimeMessage;

import javax.mail.internet.InternetAddress;
import javax.mail.Transport;

import java.util.Properties;

import javax.mail.Message;

import javax.mail.Transport;

import javax.mail.internet.InternetAddress;
import javax.mail.internet.MimeMessage;
import javax.mail.Session;

/**

* Simple ExceptionHandler that sends an e-mail every time a Struts Action class
* throws an ApplicationException.

*/

public class MailExceptionHandler extends ExceptionHandler{

private static Logger logger = Logger.getlogger(MailExceptionHandler.class);

public ActionForward execute(Exception e,
ExceptionConfig ex,
ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response)
throws ServletException{

ActionForward forward = super.execute(e, ex, mapping, form,
request, response);

CHAPTER 4 ©° MANAGING BUSINESS LOGIC WITH STRUTS

Properties props = new Properties();

//Getting the name of the e-mail server.
props.put("mail.smtp.host", "netchange.us");
props.put("mail.from", "JavakdgeApplication");

Session session = Session.getDefaultInstance(props,
null);
session.setDebug(false);

Message msg = new MimeMessage(session);

try{
msg.setFrom();

//Setting who is supposed to receive the e-mail
InternetAddress to = new InternetAddress("john.carnell@netchange.us");

//Setting the important text

msg.setRecipient(MimeMessage.RecipientType.TO, to);

msg.setSubject("Error message occurred in Action:"

msg.setText("An error occurred while trying " + "
to invoke execute() on Action:" +
mapping.getName () +

+ mapping.getName());

n n

. Error is: " + e.getMessage());

Transport.send(msg);

}

catch(Exception exception){
logger.error("An error has occurred in the " +
"MailExceptionHandler while trying to process Action:
+ mapping.getName());
logger.error("Exception raised is :
logger.error("Original Exception: "

}

n

I

" + exception.getMessage());
+ e.getMessage());

return forward;

The MailExceptionHandler class is pretty simplistic. All it is doing is extending the
ExceptionHandler and overriding the execute() method on the class. The overridden
execute() method immediately calls the execute() method on the ExceptionHandler to
ensure the proper setup of the ActionErrors class:

169

170 CHAPTER 4 ©° MANAGING BUSINESS LOGIC WITH STRUTS

public class MailExceptionHandler extends ExceptionHandler{
public ActionForward execute(Exception e,
ExceptionConfig ex,
ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response)
throws ServletException{

//Calling the execute() method on the Struts ExceptionHandler class
ActionForward forward = super.execute(e, ex, mapping, form,
request, response);

Once the ActionForward class has been retrieved from the call to super.execute(), the
code sets up an e-mail message and sends it via the JavaMail API:

props.put("mail.smtp.host", "netchange.us");
props.put("mail.from", "JavaEdgeApplication");

javax.mail.Session session = javax.mail.Session.getDefaultInstance(props, null);
session.setDebug(false);

Message msg = new MimeMessage(session);

try{
msg.setFrom();

//Setting who is supposed to receive the e-mail
InternetAddress[] to =
{new InternetAddress("john.carnell@netchange.us")};

//Setting the important text

msg.setRecipients(MimeMessage.RecipientType.TO, to);

msg.setSubject("Error message occurred in Action:" + mapping.getName());

msg.setText("An error occurred while trying to invoke execute() on Action:" +
mapping.getName() +
". Error is: " + e.getMessage());

msg.setSentDate(new java.util.Date());

Transport.send(msg);

}

catch(Exception exception){}

n

CHAPTER 4 ©° MANAGING BUSINESS LOGIC WITH STRUTS

To keep life simple, the MailExceptionHandler class catches all exceptions thrown by
the e-mail code and simply logs the error message. The forward instance returned by the
super.execute() method call is then returned from the code. The ActionServlet will forward
the user on to whatever request has been defined in the <exception> tag for the exception
handler.

To tell the JavaEdge application to use the MailExceptionHandler to process any
ApplicationException exceptions thrown from its Action classes, you need to add the
handler attribute to the <exception> tag in JavaEdge’s struts-config.xml file:

<global-exceptions>
<exception key="error.system"
scope="request"
handler="com.apress.javaedge.common.MailExceptionHandler"
type="com.apress.javaedge.common.ApplicationException”
path="/WEB-INF/jsp/systemError.jsp"/>
</global-exceptions>

Summary

Often in an object-oriented and component-based environment, more value is gained from
interface reuse and the abstraction it provides than the actual code reuse. The business logic
for an application changes regularly. Well-defined interfaces that abstract away the implemen-
tation details help shield an application from this uncertainty. This chapter explored how to
use common J2EE design patterns to cleanly separate the business logic from the Struts
framework on which the application is built. This promotes code reuse and also gives the
developer more flexibility in refactoring business logic at a later date.

This chapter covered the following J2EE design patterns:

Business Delegate pattern: Hides the details of how the business logic used by the Struts
application is actually invoked. It allows the development team to refactor the business
tier while minimizing its impact on the applications that use the business logic. It also
hides the technology (EJBs, Web services, or just plain Java classes) used to implement
the actual business logic. This chapter demonstrated how two different business delegate
implementations could be plugged in without the JavaEdge application ever knowing the
difference.

Service Locator pattern: Simplifies the process of requesting the commonly used
resources like EJBs and DataSource objects within your business delegate.

Session Facade pattern: Represents an EJB that provides a coarse-grained interface that
wraps a business process. Carrying out the individual steps for the business process,
wrapped by the session facade, is left to much more fine-grained Java objects.

17

172

CHAPTER 4 ©° MANAGING BUSINESS LOGIC WITH STRUTS

Finally, this chapter covered different approaches for managing exceptions thrown
from the business tier in Struts. Our efforts mainly focused around making sure that all
exceptions thrown from the business delegate classes were caught and rethrown as an
ApplicationException. We demonstrated how to use the ApplicationException in Struts
version 1.0.x.

We also discussed how to use the ApplicationException class and Struts version 1.1 and
later exception handlers to refactor exception handling completely out of the Action classes. We
demonstrated how to implement global and local exception handlers in the struts-config.xml
file using the default Struts ExceptionHandler. Finally, we briefly touched on how to write a cus-
tom ExceptionHandler class to generate an e-mail every time an ApplicationExceptionis
thrown.

This chapter focused solely on modeling and implementing the business tier of a Struts-
based application. However, we still need to focus on how data is retrieved and manipulated
by the business logic tier. The next chapter is going to demonstrate how to use an open source
object/relational mapping tool, called ObjectRelationalBridge, to build a data persistence tier.
In addition, it will discuss how to use J2EE data access design patterns to hide the implemen-
tation details in the data persistence tier from the business tier.

CHAPTER 5

Architecting the Data Access Tier
with ObjectRelationalBridge

A well-defined data access tier, which provides a logical interface for accessing corporate
data sources, is one of the most reused pieces of code in any system architecture. This state-
ment, on the surface, may appear to be an overinflated claim, but it is made with the following
two points in mind:

¢ Applications are developed according to the changing needs of the organization.
However, the data used by these applications is used for a long time, even after the
application has been replaced with some completely new piece of technology. The
data possessed by an organization is often the only constant in any IT ecosystem.

* Any application does not exist all by itself. Most of an organization’s development
efforts involve integrating a newly built or bought application with the other existing
systems. To maximize their value, most applications must exchange their data with
other systems using a consistent interface, which abstracts away the “messy” technol-
ogy details associated with accessing the data.

The previous three chapters have focused on building the presentation and business lay-
ers of the JavaEdge web site using the Struts development framework. In this chapter, we are
going to change our perspective and move the focus off the Struts development framework
and onto building the JavaEdge data access tier.

Building a data access tier is more than just using a particular technology to retrieve and
manipulate data. The requirements of the data access tier are as follows:

* To minimize the need to write significant amounts of SQL and JDBC database code.
Accessing data from a relational database using SQL is often a tedious and error-prone
process. It involves writing a large amount of code that does not map well into the object-
oriented model, in which most Java developers are used to working. Furthermore, poorly
written data access code can bring the performance of any application to an unpleasant
halt.

* To abstract away the underlying details of the data store used to hold the application
data. These details include the specific database technology used to hold the data,
physical details of how the data is stored, and the relationships that might exist
between the data. Abstracting away these details provides the developers with more
flexibility in changing the underlying data access tier, without having the impact of
those changes on the presentation and business tiers of the application.

173

174 CHAPTER 5 " ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE

While building the JavaEdge data access tier, we are going to focus on

e Using the Apache group’s Object/Relational (O/R) mapping tool: ObjectRelational-
Bridge (OJB). OJB allows a developer to transparently map data pulled from a relational
database to plain Java objects. Using OJB, you can significantly reduce the amount of
data access code that needs to be written and maintained by the application team.

¢ Implementing two core J2EE data access design patterns that ensure that your business
and presentation tiers are never exposed to the underlying data access technology used
to retrieve your data. There is no need for a business component to know whether the
data it is consuming is retrieved via JDBC, entity beans, or OJB. Specifically, we are
going to explore the following J2EE data access patterns:

*The Data Access Object (DAO) pattern

* The Value Object (VO) pattern

Developing a Data Access Strategy

Although it is difficult to emphasize the importance of a data access tier, the fact is that most
development teams do not have a coherent strategy defined for building one. Rather than
having a well-defined set of services and interfaces for accessing their data, they will define
their data access strategy in one of two ways:

» By the particular data access technology that they use to get the data
* By the database vendor that they use to hold their data

The problem with these two definitions is that the focus is on a purely technological
solution.

Note A well-designed data access tier should transcend any one particular technology or data store.

Technologies change at a rapid rate; a new technology that appears to be a cutting-edge
technology can quickly become obsolete. Development teams who couple their applications
too tightly with a particular technology or technology vendor will find that their applications
are not as responsive when new business requirements force an organization to adopt new
data access technologies.

A data access tier should allow the business services to consume data without giving any
idea of how or from where it is being retrieved. Specifically, a data access tier should have the
following characteristics:

¢ Allows a clean separation of data persistence logic from the presentation and business
logic: For instance, a business component should never be passed a Java ResultSet
object or have to capture a SQLException. The entire data access logic should be central-
ized behind a distinct set of interfaces, which the business logic must use to retrieve or
manipulate data.

CHAPTER 5 © ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE 175

e Decouples the application(s) from any knowledge of the database platform in which the
data resides: The objects in the business tier, requesting the data, need not know that
they are accessing a relational database such as Oracle, an object-based database such
as Poet, or an XML database such as the Apache Group’s Xindice database.

e Abstracts away the physical details of how data is stored within the database and the
relationships that exist between entities in the database: For instance, a business tier
class should never know how the Customer object and the Address object manage their
one-to-many relationship. These details should be handled by the data access tier and
be completely hidden from the developer.

o Simplifies the application development process by hiding the details associated with get-
ting a database connection, issuing a command, or managing transactions: Data access
code can be very complicated even though it looks very easy to write. By putting all
data access code behind a set of data access services, the development team can give
the responsibility of writing that code to one or two developers who thoroughly under-
stand the data access technology being used. All the other developers on the team only
have to use the services provided by the data access tier to retrieve and manipulate
data. They do not have to worry about the underlying details of the data access code.
This significantly simplifies application development efforts and reduces the chance
that a piece of poorly written data access code will inadvertently affect the application’s
code base.

As discussed in Chapter 1, the lack of planning for the data access tier results is the forma-
tion of the Data Madness antipattern. This antipattern manifests in a number of different
manners including the following:

* The creation of tight dependencies between the applications consuming the data and
the structures of the underlying data stores: Every time a change is made to the database
structure, the developers have to hunt through the application code, identify any code
that references the changed database structures (that is, the tables), and then update
the code to reflect the changes. This is time consuming and error prone.

* The inability to easily port an application to another database platform because of the
dependencies on the vendor-specific database extensions: Often, neglecting to abstract
simple things, such as how a primary key is generated in the application’s SQL code,
can make it very difficult to port the application to another database platform.

e The inability to easily change data access technologies without rewriting a significant
amount of application code: Many developers mix their data access code (that is, their
SQL/JDBC or entity EJB lookups) directly in their application code. This intermixing
will cause tight dependencies and an increase in the amount of code that needs to be
touched up when you want to use a new data access technology.

e The presence of a 2.5 tier architecture: A 2.5 tier architecture is an architecture in which
there is a well-defined presentation tier for the application, but the business logic is not
clearly separated from the data access logic of the application. This particular symptom
is sometimes very obvious.

176 CHAPTER 5 " ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE

You will find this symptom when you start studying the business logic of an application
and find the SQL code scattered throughout the logic. (The code is found anywhere in
the business logic and affects the flow. A good sign of this is when a database adminis-
trator asks the developers to look at all of the SQL code for an application and they have
to search the entire application source code to find it.)

The presence of “data madness” can be easily found by knowing how the data access tier
is designed. If the development team says that it is using JDBC, entity EJBs, SQLJ, Oracle, SQL
Server, and so on, it is likely that there has been no real preplanning for the data access tier.

The JavaEdge Data Access Model

The data model for the JavaEdge application is very simple. It contains three entities: member,
story, and story comment. Figure 5-1 shows the JavaEdge database tables, the data elements
contained within them, and the relationships that exist between them.

membex story
member _id (pk) story id (pk)
first_name member_id
last_name posts Ot story title
userid story intro
password story body
email submission date

authors contains

story_comment

comment_id (pk)
story id
member id
comment_body

submission date

Figure 5-1. The JavaEdge data model

CHAPTER 5 © ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE

Figure 5-1 illustrates the following points:

e AJavaEdge member can post zero or more stories. A story can belong to one and only
one member.

e Astory can have zero or more comments associated with it. A story comment can
belong to one and only one story.

* AJavaEdge member can post zero or more comments on a particular story. A JavaEdge
story_comment can be posted only by one member.

The JavaEdge data access tier is going to be built on one tenet:

Note The business code for the application will never be allowed to directly access the JavaEdge
database.

All interactions with the JavaEdge database will be through a set of Data Access Objects
(DAOs). DAO is a core J2EE design pattern that completely abstracts the Create, Retrieve,
Update, and Delete (CRUD) logic needed to retrieve and manipulate the data behind the Java
interface. One of the first examples of the Data Access Objects and Value Objects being
articulated in a Java book is in Core J2EE Patterns: Best Practices and Design Strategies
(Alur et al., Prentice Hall, ISBN 0-130-64884-1).

On Value Objects

The first edition of Core J2EE Patterns: Best Practices and Design Strategies used the term Value
Object to describe a pattern for moving data between different tiers of an application’s archi-
tecture. However, the use of this name has caused quite a bit of consternation in the patterns
community because the term Value Object has also been used to describe another type of
pattern implementation.

Many individuals feel that the name Data Transfer Object (DTO) is a more appropriate
name for this pattern. The second edition of Core J2EE Patterns: Best Practices and Design
Strategies has switched to this new name. For the sake of continuity with the previous edition
of this book, we will continue to call this pattern the Value Object pattern.

However, for purposes of this discussion the terms Value Object and Data Transfer Objects
are referring to the same type of pattern implementation.

The JavaEdge database is a relational database. Relational databases are row-oriented
and do not map well into an object-oriented environment like Java. Even with the use of DAO
classes, the question that needs to be solved is how to mitigate the need to pass row-oriented
Java objects, such as the ResultSet class, back and forth between the business tier and DAO
classes.

177

178

CHAPTER 5 " ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE

The answer is to use the Value Object (VO) pattern to map the data, retrieved and sent to
arelational database, to a set of Java classes. These Java classes wrap the retrieved data behind
simple get() and set() methods and minimize the exposure of the physical implementation
details of the underlying database table to the developer. The underlying database structure
can be changed or even moved to an entirely different platform with a very small risk of break-
ing any applications consuming the data.

Let’s look at the diagram in Figure 5-2 and see how all of these pieces fit together.

B

Y

Ol0l0
'

Object —
Busi Logic S Relational JavaEdge
oifees ToBie opace Mapping Data Store
-~ Engine | <*—
JDBC Calls

A

l— Data Access Space
VO

Figure 5-2. The Data Access Object pattern in action

The diagram in Figure 5-2 lays out the architecture for the example data access tier at a
high level. As shown, the business tier uses the Data Access Objects to retrieve, insert, update,
and delete data from the JavaEdge database. All data coming to and going from the DAOs is
encapsulated in a Value Object. A Value Object represents a single record residing within the
JavaEdge database. It abstracts away the physical database-specific details of the record and
provides the Java programmer simple get()/set() methods for accessing individual attributes
in arecord. A Value Object can contain collections of other Value Objects. For example, the
MemberVO class (in the JavaEdge application) contains a collection of stories. This collection
represents the relationship that exists between a member record and its corresponding story
records.

The DAOs never talk directly to the JavaEdge database. Instead, all the database access is
done through an O/R mapping tool. The introduction of an O/R mapping tool is significantly
time saving. This tool allows the developer to define declaratively, rather than programmati-
cally, how data is to be mapped to and from the Value Objects in the application. This means
that the developers do not have to write JDBC and SQL code to retrieve the JavaEdge data.

Now, let’s cover the Data Access Objects and Value Objects being used for the JavaEdge
application in more detail.

CHAPTER 5 © ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE

Data Access Objects

Data Access Objects are meant to wrap all the CRUD logic associated with entities within the
JavaEdge database. DAOs provide an abstraction layer between the business tier and the phys-
ical data stores. Specifically, DAOs abstract

* The type of data store being accessed
* The database access technology being used to retrieve the data
* The physical location of data

Use of a set of DAOs removes the need for a developer to know whether the database is
being stored in an Oracle server, a MySQL server, or a mainframe. This keeps the application
database independent and minimizes the risk of exposing vendor-specific database exten-
sions to the business tier. Database vendors provide a number of extensions that often make
writing the data access code easy or offer performance enhancements above the standard SQL
code. However, these extensions come at a price: portability. By abstracting away these data-
base-specific extensions from the business tier, the development team can minimize the
impact of vendor locking on its business code. Instead, only the data access tier is exposed
to these details.

In addition, DAOs keep the business tier code from being exposed to the way in which
the data is being accessed. This gives the development team a lot of flexibility in choosing data
access technology. A beginning team of Java developers may choose to write the application
code with JDBC. As they become more comfortable with the Java environment, they may
rewrite their Data Access Objects using a much more sophisticated technology such as entity
beans or Java Data Objects (JDO).

In many IT organizations, data is spread throughout various data stores. Hence, the devel-
opers have to know where all of this data is located and write the code to access it. DAOs allow
the system architect to put together the data that is found in multiple locations and present a
single logic interface for retrieving and updating it. The application consuming the data is
location independent. For example, most organizations do not have all of their customer data
in one location. They might have some of the data residing in the Customer Relationship Man-
agement (CRM) system, some of it in their order entry system, some of it in the contact
management used by the sales department, and so on. Using a Data Access Object, a system
architect can centralize all CRUD logic associated with the accessing of customer data into a
single Java object. This relieves the developer from having to know where and how to access
the customer data.

DAOs simplify the work for the development team because they relieve the majority of the
team from knowing the “dirty” details of data access.

179

180

CHAPTER 5 " ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE

The JavaEdge Data Access Objects

All the DAOs in the JavaEdge application are going to extend a single interface class called
DataAccessObject. This interface guarantees that all the Data Access Objects in the JavaEdge
application have the following four base methods:

e findByPK()
e insert()
e update()
e delete()

If you want all of your DAOs to have a particular functionality, make the DataAccessObject
an abstract class rather than an interface. The code for the DataAccessObject interface is
shown here:

package com.apress.javaedge.common;
public interface DataAccessObject {

public ValueObject findByPK(String primaryKey) throws DataAccessException;
public void insert(ValueObject insertRecord) throws DataAccessException;
public void update(ValueObject updateRecord) throws DataAccessException;
public void delete(ValueObject deleteRecord) throws DataAccessException;

The findByPK() method is a finder method used to retrieve a record based upon its pri-
mary key. This method will perform a database lookup and return a ValueObject containing
the data. A ValueObject is a Java class that wraps the data retrieved using get()/set() meth-
ods. We will discuss more about this class in the next section.

The DataAccessObject interface, shown previously, supports only primary key lookups
using a single key. However, many times in a data model, the uniqueness of a row of data can
be established only by combining two or more keys together. This is known as a composite pri-
mary key. To support this model, you could easily change the DataAccessObject interface to
have a ValueObject passed in as a parameter. This ValueObject could then contain more than
one value necessary to perform the database lookup.

The insert(), update(), and delete() methods correspond to different actions that can
be taken against the data stored in the JavaEdge database. Each of these three methods has a
ValueObject passed in as a parameter. The DAO will use the data contained in the ValueObject
parameter to carry out the requested action (that is, a database insert, update, or delete).

The DataAccessObject interface contains method signatures that reflect the four basic
actions associated with retrieving and manipulating data. If the developers want to add addi-
tional methods (that is, additional finder methods to perform specialized queries) these
methods will usually go on the concrete implementation of the DAO. For example, the
StoryDAO has an additional finder method called findTopStory().

All four of the methods in the DataAccessObject interface throw an exception called
DataAccessException. The DataAccessException is a user-defined exception used to wrap
any exceptions that might be thrown by the data access code contained within the DAO.

CHAPTER 5 © ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE

The whole purpose of a DAO is to hide how the data is accessed. This means the DAO should
never allow a data-access-specific exception, such as a JDBC SQLException, to be thrown.

Many times, implementing a solid system architecture that is going to be easily maintain-
able and extensible may involve small decisions to be made early on in the design of the
architecture. In the data access tier for our example application, small things such as wrapping
the technology-specific exceptions with a more generic exception can have a huge impact. For
instance, allowing a JDBC SQLException to be thrown from the DAO would unnecessarily expose
the way in which the data is being accessed to application code using the DAO. The business
code would have to catch the SQLException every time it wants to access a method in that DAO.
Also, if the developers later want to rewrite the DAO to use something other than JDBC, they
would have to go back to every place in the business tier that used the DAO and refactor the
try..catch block for the SQLException. Wrapping the SOLException with the DataAccessExcep-
tion avoids this problem.

Note You often do not feel the pain of poor design decisions until the application has gone into production
and you now have to maintain and extend it.

The JavaEdge application is going to have two DAOs: StoryDAO and MemberDAO. The class
diagram in Figure 5-3 shows the DAOs and their corresponding methods.

<interface>>
DataAccessObject

+findByPK(primaryKey: String): ValueObject

+insert(insertRecord:
+update(updateRecord:
+delete(deleteRecord:

ValueObject): void
ValueObject): void
ValueObject): void

StoryDAO

+findTopStory(): Collection

|
R4

MembexrDAO

Figure 5-3. The Data Access Object and its methods

181

182

CHAPTER 5 " ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE

Two observations can be made from the class diagram in Figure 5-3. First, the
DataAccessObject interface defines only the base methods that all DAO classes must imple-
ment. You can add any other methods to the classes implementing the DAO interface. For
example, StoryDAO has an additional finder method called findTopStory(). This method will
return a Java Collection of StoryV0 Value Objects. A DAO implementation can have as many
finder methods in it as needed. The additional methods added in a DAO implementation can
do additional tasks, such as perform specialized queries or invoke a stored procedure.

The second observation from the diagram is that even though there are three database
tables (member, story, and story comment), only two DAOs (StoryDAO and MemberDAO) have been
implemented for the JavaEdge application. There is no DAO present for handling the data
logic associated with manipulating data in the story comment table.

A common mistake that is made while implementing a data access tier using a Data
Access Object pattern is to mimic the physical layout of the database. The application
designer tends to create a DAO for each of the tables in the database schema. However, the
designers have to consider the context in which their data is going to be used while modeling
the DAOs.

In the JavaEdge application, the story and the story comment table have a one-to-many
relationship. Story comments have no context other than being associated with a story. So, the
StoryDAO is responsible for managing both story and story comment data. This may seem a lit-
tle unclear now, but as we start discussing Value Objects, you will see that one Value Object
can contain collections of other Value Objects.

Note If you model your DAOs to mirror the physical layout of your database, you might introduce per-
formance problems into the application. This happens because you have to “join” several DAOs to mimic
the relationships that might exist in the database. As a result, multiple SQL statements are being issued
to retrieve, update, or delete data, which could have easily been done with one SQL statement.

By modeling your DAO based on how the application(s) is going to use the data and not
just mimicking the physical layout of the database, you can often avoid unnecessary database
calls. This is particularly true for relational databases, where with a little forethought you can
leverage SQL “joins” to retrieve data (particularly the data that has a one-to-many relation-
ship) in one SQL call inside one DAO, instead of multiple SQL calls involving multiple DAOs.

Value Objects

The Value Object pattern evolved in response to the performance problems inherent in the
EJB 1.1 specification. In the EJB 1.1 specification, entity beans supported only remote inter-
faces. It was expensive to invoke methods in a remote interface. Each time a method was
invoked, a significant amount of data marshaling had to take place, even if the code invoking
the entity bean was located in the same Java Virtual Machine (JVM) as the bean. This meant
that the fine-grained get () and set() method calls for retrieving individual data elements
from an entity bean could quickly incur a performance hit.

CHAPTER 5 © ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE

The solution was to minimize the number of individual get()/set() methods being called
on an entity bean. This is how the Value Object pattern evolved. A Value Object pattern is
nothing more than a plain old Java class that originally held the data retrieved from an entity
bean lookup. A Value Object contains no business logic and only has get()/set() to retrieve
and alter data that it contains.

An entity bean populates a Value Object with the data it retrieved and then returns that
Value Object to the caller as a serialized object. By putting all of the data in a Value Object, an
entity bean developer could avoid the performance costs associated with multiple invocations
on a remote interface. The application using the Value Object would use the get () methods
in the object to retrieve the data looked up by the entity bean. Conversely, if the application
wanted to insert or update via the entity bean, it would populate a new Value Object or update
an already existing one and return it back to the entity bean to perform the database write.

The Value Object pattern was evolved to deal with the inherent performance problems in
entity beans. With the release of the EJB 2.0 specification and the introduction of local inter-
faces, it would seem that the Value Object pattern would not be needed. However, this pattern
is also very useful for abstracting physical database details and moving data back and forth
between the data tier and the other tiers in a web-based application.

Value Objects provide a mechanism in which the data being used by the application can
be decoupled from the data store that holds the data. By using Value Objects in your data
access tier, you can do the following:

e Easily pass data to and from the presentation and business tiers without ever exposing
the details of the underlying data store: The Value Objects become the transport mecha-
nism for moving data between the presentation framework (that is, Struts), the
business tier (that is, your business delegates and session facades), and the data tier.

e Hide the physical details of the underlying data store: Value Objects can be used to hold
your data; as a result, the developer would not know the physical data types being used
to store data in the database. For instance, one of your database tables may contain a
Binary Large Object (BLOB). Rather than forcing the developer to work with the JBDC
Blob type, you can have the developer work with a String data type on the Value Object
and make the DAO using that Value Object be responsible for converting that String to
the JDBC Blob data type.

e Hide the details of the relationships that exist between the entities within your data store:
An application using a Value Object is exposed to only the cardinality between entities
through a get () method that returns a Collection of objects. They have no idea of
whether or not that cardinality is a one-to-many or many-to-many relationship. In this
example, if you want to restructure the story and story comment table to have a many-
to-many relationship, only the StoryDAO would need to be modified. None of the
applications using the Story data would be affected.

Let’s look at the Value Objects that are implemented for the JavaEdge application.

183

184

CHAPTER 5 " ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE

The JavaEdge Value Objects

Three Value Objects are used in the JavaEdge application: MemberV0, StoryV0, and
StoryCommentVO. All of these classes extend an abstract class called ValueObject. (The Value
Object pattern can be implemented in a number of ways.) The code for the ValueObject class
is shown here:

package com.apress.javaedge.common;
import org.apache.commons.lang.builder.ReflectionToStringBuilder;

public abstract class ValueObject {

/** Creates a new instance of ValueObject */
public ValueObject() {

}

public String toString() {
return ReflectionToStringBuilder.toString(this);

}

The Jakarta Commons Project to the Rescue Again

The ValueObject class serves as a good base class for putting methods that are going to be
shared across all Value Objects in the application. Oftentimes while building out the JavaEdge
application, the authors needed to dump the contents of a JavaBean. Rather than writing their
own method to do this, they used the ReflectionToStringBuilder class from the Jakarta Com-
mons lang project. The Commons lang project provides several “helper” utilities for carrying
out most low-level tasks related to the core java.lang classes. The ReflectionToStringBuilder
classes use Java reflection to build a string containing all of the properties within a class.

By overriding the toString() method on the base ValueObjects and using the
ReflectionToStringBuilder class, in three lines of code we were able to have a consistent
mechanism for dumping the contents of a JavaBean. The preceding example only shows a
very simple use of the ReflectionToStringBuilder class. For more in-depth examples of how
to use this functionality, please visit the Jakarta Commons lang project’s web site at
http://jakarta.apache.org/commons/lang.

For a different implementation of the Value Object pattern, you may want to refer to
J2EE Design Patterns Applied (Juric et al., Wrox Press, ISBN: 1-861-00528-8). It is common
for the Value Object base call to be either an interface or a class. If you are going to pass your
Value Objects between different Java Virtual Machines, they should at least implement the
Serializable interface.

In the JavaEdge application, the ValueObject interface is used as a marker interface to
indicate that the class is a Value Object. This interface has no method signatures and provides
a generic type for passing data in and out of a DAO. By passing only ValueObjects in the
DataAccessObject interface, you can guarantee that every DAO in the JavaEdge application
supports a base set of CRUD functionality. It is the responsibility of the DAO to cast the
ValueObject to the type it is expecting.

CHAPTER 5

ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE

The class diagram in Figure 5-4 shows the details of the Value Objects used in the

JavaEdge application.

StoryVo

-storyId:Long
-storyTitle: String
-storyIntro: String
-storyBody: String
-storyAuthor: MemberVO
-submissionDate: Date
-comments: Vector

+getStoryId(): Long

+getStoryTitle(): String
+getStoryIntro(): String
+getStoryBody(): String
+getStoryAuthor(): MemberVo
+getSubmissionDate(): Date
+getComments(): Vector

+setStoryId(in storyId:Long)
+setStoryTitle(in storyTitle:String)
+setStoryIntro(in storyIntro:String)
+setStoryBody(in storyBody:String)
+setStoryAuthor(in storyAuthor:MemberVO)
+setSubmissionDate(in submissionDate:Date)
+setComments(in comments:Vector)

0..*
| — owns ¥

authored by

kY

StoryCommentV0

-commentId:Long
-storyId:Long
-submissionDate:Date
-commentBody:String
-commentAuthor :MemberVO

+getCommentId():Long

+getStoryId():Long

+getSubmissionDate: Date
+getCommentBody(): String
+getCommentAuthor: MemberVO
+setCommentId(in commentId:Long)
+setStoryId(in storyId:Long)
+setSubmissionDate(in submissionDate:Date)
+setCommentBody (in commentBody:String)

+setCommentAuthor (in commentAuthor :MemberV0)

authored by

MemberVO

-memberId:Long
-firstName:String
-lastName:String
-userld:String
-password:String
-email:String

+getMemberId():
+getFirstName(): String
+getlastName():
+getUserId(): String
+getPassword():
+getEmail(): String
+setMemberId(in memberId:Long)
+setFirstName(in firstName:String)
+setLastName(in lastName:String)
+setUserId(in userId:String)
+setPassword(in password:String)
+setEmail(in email:String)

Long
String

String

Figure 5-4. The JavaEdge Value Objects

All of the classes in this diagram implement the ValueObject interface. Based on the class
diagram, you can see the following relationships among the classes: A StoryV0 class can con-
tain zero or more StoryCommentVO objects. The StoryCommentVO classes are stored in a Vector
inside the StoryVO class. A StoryV0 object contains a reference, via the storyAuthor property,

to the JavaEdge member who authored the original story.

Child objects can be returned from a parent object in a number of ways. For the JavaEdge
application, a Vector was chosen to return “groups” of Value Objects because a Vector enforces
thread-safety by synchronizing the access to the items stored within the Vector. This means two

threads cannot simultaneously add or remove items from the Vector.

185

186 CHAPTER 5 " ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE

If you are trying to maximize the performance and know that multiple threads in your
application are not going to add or remove items from the collection, you can use a nonsyn-
chronized Collection object like an ArraylList.

* The StoryVO0 class enforces strict navigability between the StoryCommentVO and MemberVO
objects it references. In other words, there is no bidirectional relationship between the
StoryV0 and StoryCommentVO class or the StoryV0 and MemberVO class. One cannot navi-
gate from a StoryCommentVO object to find the StoryVO0 it belongs to. The same holds true
for the MemberVO contained within the StoryVO0 class.

e A StoryCommentVO class contains a reference to the member, via the commentAuthor prop-
erty, who wrote the comment.

* The MemberVO class is a stand-alone object. It does not allow the developer to directly
access any of the stories or story comments authored by that member.

From the class diagram in Figure 5-4, you will also notice that the relationships that exist
between the classes do not map to the data relationships in the entity-relationship diagram
shown earlier. The reason for this is simple. The class diagram in Figure 5-4 is based on how
the data is going to be used by the JavaEdge application. The application does not have a
functional requirement to see all the stories associated with a particular member. If you
want to retrieve all of the stories associated with a member and map them into a Vector in
the MemberVO0, you would be retrieving a significant amount of data into the objects that would
never be used.

Even though the JavaEdge application uses only a small number of Value Objects, you will
have to keep in mind the following items:

* The number of values being retrieved from a call to the DAOs: You would not want to
retrieve large amounts of Value Objects in one call, as this can quickly consume mem-
ory within the Java Virtual Machine. In particular, you need to be aware of the data that
is actually being used in your Value Objects. Many development teams end up retriev-
ing more data than is required.

* The number of child Value Objects being retrieved by a parent: Often, while building the
data access tier, developers will unknowingly retrieve a large number of Value Objects
because they do not realize how deep their object graphs are. For instance, if you retrieve
10 stories in a call to the StoryDAO and each StoryVO0 contains 20 StoryCommentV0s, you end
up retrieving

10 stories * 20 story comments + 10 story authors + 20 story comment authors = 230
objects for one call

The primary design principle that was embraced while designing the Value Objects used
in the JavaEdge application was this:

Note Understand how the data in your application is going to be used. A Value Object is nothing more
than a view of the data, and there is nothing inappropriate about having a DAO return different types of
Value Objects, all showing a different perspective of the same piece of data.

CHAPTER 5 © ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE

Using an O/R Mapping Tool

It has been said that 40 to 60 percent of a development team’s time is spent writing the data
access code. For most Java developers, this means writing significant amounts of SQL and
JDBC code. As the developers of the JavaEdge application, we decided that we wanted to sig-
nificantly reduce the amount of work needed to implement the data access tier. We decided to
use an O/R mapping tool that would allow us to dynamically generate SQL requests and map
any data operations needed from plain Java objects.

O/R mapping tools have been available for quite a while and actually have predated the
language. Even though these tools offer fine solutions, they are expensive. Hence we had to
use a single vendor’s proprietary toolset.

Fortunately, several open source O/R mapping tools are now available and gaining wide-
spread acceptance in the development community. O/R mapping tools fall into two broad
categories in terms of how they are implemented:

¢ Code generators: O/R mapping tools in the code generator category require the devel-
opment team to map out the structure of its database tables and Java objects. These
tools then generate all of the Java and JDBC code needed to carry out database transac-
tions. The development team can use these generated classes in the applications.
Examples of open source O/R code generators include

e The Apache Group’s Torque project: Torque originally started as a component of the
Apache Group’s Turbine project. Torque is a very powerful persistence tool that can
convert an existing database into a set of usable persistence-aware Java classes.
Torque can even be used to develop a database from scratch and then generate the
entire database DDL and Java classes via an Ant Task. Torque uses proprietary API
for performing database queries. More details on Torque are available at http://
db.apache.org/torque.

* The Middlegen project. Middlegen, another in this category, takes a slightly differ-
ent approach than Torque. It can take an existing database and generate either
Container-Managed Persistence-based (CMP) entity beans or Java Data Objects
(JDO). Both CMP entity beans and JDO are industry-accepted standards and are
not solely “owned” by a vendor. Middlegen can even generate the EJB 2.0 vendor-
specific deployment descriptors for many of the leading application servers. More
information on Middlegen can be found at http://boss.bekk.no/boss/middlegen.

* Dynamic SQL generators: The other category of O/R mapping tools is the dynamic SQL
generators. These O/R tools allow you to define your database according to Java object
mappings. However, these tools do not generate the Java classes for you. Instead, the
developer is responsible for writing the mapped Java objects (usually implemented as
Value Objects). The O/R tools’ runtime engine will then transparently map data to and
from the Java object.

187

188 CHAPTER 5 " ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE

An example of a dynamic SQL generator is the Apache Group’s ObjectRelationalBridge

(OJB).

Three main reasons for choosing this tool for implementing the JavaEdge project are

as follows:

OJB is very lightweight and extremely easy to set up and use. A simple data persistence
tier can be implemented by just configuring two files: repository.xml and OJB.proper-
ties. You can start using OJB without having to modify existing Java class files.

Since OJB does not perform the code generation, it makes it extremely easy to use with
existing applications. This is a key consideration while evaluating O/R mapping tools. It
is better to use O/R mapping tools that generate code while developing a project from
scratch. However, they can be an absolute nightmare to implement while retrofitting
the O/R tool into an existing application. If the developers want to tweak the code gen-
erated by the tool, they must remember to reimplement their changes every time they
regenerate their persistence tier code.

In addition, code generator O/R mapping tools require you to set up the generation
process as part of your development environment and/or build process. This itself can
be a time-consuming and error-prone process.

OJB has a unique architecture that allows it to embrace multiple industry standards

for data persistence. As explained in the section “About ObjectRelationalBridge,” OJB
implements a micro-kernel architecture that allows it to use its own proprietary APIs
for making persistence calls and the JDO and Object Data Management Group (ODMG)
3.0 standards. This makes it easier to move the applications off of OJB and onto other
O/R mapping tools, if the OJB is not working out.

As with all of the tools talked about so far, OJB is open source.

In addition, OJB supports a number of features that are normally found in its more expen-
sive commercial cousins. Some of these features include

An object cache, which greatly enhances the performance and helps guarantee the
identities of multiple objects pointing to the same data row.

Transparent persistence. The developer does not need to use OJB-generated classes or
extend or implement any additional classes to make the state of the objects persistable
to a database.

Automatic persistence of child objects. When a parent object is saved, updates are
made to all persistence-aware child objects that the parent references.

An architecture that can run in a single JVM or in a client/server mode that can service
the needs of multiple application servers running in a cluster.

The ability to integrate in an application server environment, including participation in
container-managed transactions and JNDI data source lookups.

Multiple types of locking support, including support for optimistic locking.

A built-in sequence manager.

CHAPTER 5 © ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE

This is just a small list of the features currently supported by OJB. Let’s discuss OJB in
more detail.

About ObjectRelationalBridge (0JB)

ObjectRelationalBridge is one of the newest Apache Group projects. It is a fully functional
O/R mapping tool. OJB is based on micro-kernel architecture. A micro-kernel architecture is
the one in which a core set of functionality is built around a very minimalist and concise set
of APIs. Additional functionality is then layered around the kernel APIs. Micro-kernel APIs are
very flexible because different implementations of a technology can be built around a single
set of APIs.

Figure 5-5 illustrates this architecture.

OMDG and JDO APIs

Object Transaction Manager

Persistence Broker

JDBC/SQL Code

Figure 5-5. The OJB micro-kernel architecture

At the heart of OJB is the Persistence Broker (PB) API. This API defines a number of stan-
dard calls for interacting with a data store. The PB API supports making calls only against a
relational database (as designated by the Persistence Broker API shown in Figure 5-5). It uses
JDBC 1.0 database calls and a subset of SQL to guarantee the maximum amount of database
support. In future releases, the OJB development team is planning to implement additional
JDBC support along with support for Object, LDAP, and XML-based databases.

Since OJB is designed using micro-kernel architecture, OJB uses a very basic kernel API
(that is, the PB API) and then builds on that API to implement multiple data access APIs. OJB
currently supports both JDO and the ODMG’s Object Data Standard (version 3.0). Both of
these APIs are built on top of OJB’s PB API and interact with it.

189

190 CHAPTER 5 " ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE

OJB is an extremely configurable and tunable product. It is built on a set of pluggable
components, so that if you find that some feature in OJB does not meet your needs (such as
its caching model), you can easily replace that component with your own implementation.

The JavaEdge application uses the following technology to build the data access tier:

* MySQL MaxDB: Available at http://mysqgl.com.

» Connector/] 3.1 (a MySQL JDBC Driver): Available at http://mysql.com. Connector/J 5.0
is in development and might be in Generally Available (GA) release by the time this
book is published.

* OJB 1.0.4: Available at http://db.apache.org/o;jb.

Caution Please use at least 0JB version 1.0.4 while running the JavaEdge application source code.
Earlier releases of 0JB have bugs in them that cause unusual behavior with the JavaEdge application.

Now, we will walk through some of the key files.

The Core 0JB Files

OJB is very easy to set up. To begin writing the code using OJB, you need to first place the fol-
lowing jar files in your classpath. These files are located in the lib directory of the unzipped
OJB distribution. The required files are

¢ db-o0jb-1.0.4.jar, which is the core OJB jar file
¢ Several Jakarta Commons jar files, including the following:
e commons-beanutils.jar
e commons-collections.jar
e commons-lang-2.0.jar
e commons-logging.jar
e commons-pool.jar

Once these jar files are included in your classpath, you are ready to begin mapping
your Java class files. In the JavaEdge application, these will be the MemberV0, StoryV0, and
StoryCommentVO0 classes, mapped to your database tables.

Setting Up the Object/Relational Mappings

Setting up your O/R mappings using OJB is a straightforward process that involves creating
and editing two files: OJB.properties and repository.xml. The OJB.properties file is used to
customize the OJB runtime environment.

By modifying the OJB.properties file, a developer can control whether OJB is running
in single virtual machine or client/server mode, the size of the OJB connection pool, lock

CHAPTER 5 © ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE

management, and the logging level of the OJB runtime engine. We will not be going through a
step-by-step description of the OJB.properties file. Instead, we are going to review the relevant
material.

The repository.xml file is responsible for defining the database-related information. It
defines the JDBC connection information that is going to be used to connect to a database. In
addition, it defines all of the Java class-to-table definitions. This includes mapping the class
attributes to the database columns, and the cardinality relationships that might exist in the
database (such as one-to-one, one-to-many, and many-to-many).

The JavaEdge repository.xml

The JavaEdge repository.xml file is quite simple. It only maps three classes to three database
tables. A repository.xml file for a medium-to-large size database would be huge. Right now, the
OJB team is working on a graphical O/R mapping tool, but it could take some time before it is
stable.

The following code is the JavaEdge repository.xml file:

<?xml version="1.0" encoding="UTF-8"?>

<!-- defining entities for include-files -->
<IDOCTYPE descriptor-repository SYSTEM "repository.dtd" [

<IENTITY internal SYSTEM "repository internal.xml">
>

<descriptor-repository version="1.0" isolation-level="read-uncommitted">

<!-- The Default JDBC Connection. If a class-descriptor does not specify its own
JDBC Connection, the Connection specified here will be used. -->

<jdbc-connection-descriptor

jcd-alias="strutsdb"

default-connection="true"
platform="MySQL"
jdbc-level="2.0"
driver="org.gjt.mm.mysql.Driver"
protocol="jdbc"
subprotocol="@0JB_DB_URL@"
dbalias="waf"
username="waf user"
password="password"
/>

<class-descriptor class="com.apress.javaedge.member.MemberV0" table="member">
<field-descriptor name="memberId" column="member id"
jdbc-type="BIGINT" primarykey="true" autoincrement="true"/>

191

192 CHAPTER 5 " ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE

<field-descriptor name="firstName" column="first name" jdbc-type="VARCHAR"/>

<field-descriptor name="lastName" column="last name" jdbc-type="VARCHAR"/>

<field-descriptor name="userId" column="userid" jdbc-type="VARCHAR"/>

<field-descriptor name="password" column="password" jdbc-type="VARCHAR"/>

<field-descriptor name="email" column="email" jdbc-type="VARCHAR"/>
</class-descriptor>

<class-descriptor class="com.apress.javaedge.story.StoryV0" table="story">
<field-descriptor name="storyId" column="story id" jdbc-type="BIGINT"
primarykey="true" autoincrement="true"/>
<field-descriptor name="memberId" column="member id" jdbc-type="BIGINT"/>
<field-descriptor name="storyTitle" column="story title"
jdbc-type="VARCHAR" />
<field-descriptor name="storyIntro" column="story intro"
jdbc-type="VARCHAR" />
<field-descriptor name="storyBody" column="story body"
jdbc-type="LONGVARBINARY" />
<field-descriptor name="submissionDate" column="submission date"
jdbc-type="DATE"/>
<collection-descriptor name ="comments"
element-class-ref="com.apress.javaedge.story.StoryCommentVv0"
auto-retrieve="true" auto-update="true" auto-delete="true">
<inverse-foreignkey field-ref="storyId"/>
</collection-descriptor>

<reference-descriptor name="storyAuthor"
class-ref="com.apress.javaedge.member.MemberV0" auto-retrieve="true">
<foreignkey field-ref="memberId"/>
</reference-descriptor>
</class-descriptor>

<class-descriptor class="com.apress.javaedge.story.StoryCommentVv0"
table="story comment">
<field-descriptor name="commentId" column="comment id"
jdbc-type="BIGINT"
primarykey="true" autoincrement="true"/>
<field-descriptor name="storyId" column="story id" jdbc-type="BIGINT"/>
<field-descriptor name="memberId" column="member id" jdbc-type="BIGINT"/>
<field-descriptor name="commentBody" column="comment body"
jdbc-type="LONGVARBINARY" />
<field-descriptor name="submissionDate" column="submission date"
jdbc-type="DATE"/>
<reference-descriptor name="commentAuthor"
class-ref="com.apress.javaedge.member.MemberV0" auto-retrieve="true">
<foreignkey field-ref="memberId"/>
</reference-descriptor>
</class-descriptor>

CHAPTER 5 © ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE

<!-- include ojb internal mappings here -->
&internal;

</descriptor-repository>

The root element of the repository.xml file is the deployment descriptor called
<descriptor-repository>. This element has two attributes defined in it: version and
isolation-level. The version attribute is a required attribute and indicates the version of
the repository.dtd file used for validating the repository.xml file. The isolation-level attribute
is used to indicate the default transaction level used by all of the class-descriptor elements
in the file. A class-descriptor element is used to describe a mapping between a Java class
and a database table, and we discuss this element in the section “Setting Up a Simple Java
Class-to-Table Mapping.”

The values that can be set for the isolation-1level attribute include

e read-uncommitted
e read-committed

e repeatable-read
e serializable

e optimistic

If no value is set for the isolation-1level attribute, it will default to read-uncommitted.

In the next several sections, you are going to get the chance to study the individual pieces
of the repository.xml file. We will start by discussing how to configure OJB to connect to a data-
base. We will then look at how to perform a simple table mapping, and finally work our way up
to the more traditional database relationships, such as one-to-one, one-to-many, and many-
to-many.

Setting Up the JDBC Connection Information

Setting up OJB to connect to a database is a straightforward process. It involves setting up a
<jdbc-connection-descriptor> element in the repository.xml file. The <jdbc-connection-
descriptor> for the JavaEdge application is shown here:

<jdbc-connection-descriptor

jcd-alias="strutsdb"

default-connection="true"
platform="MySQL"
jdbc-level="2.0"
driver="org.gjt.mm.mysql.Driver"
protocol="jdbc"
dbalias="waf"
username="waf user"
password="password"
/>

193

194

CHAPTER 5 " ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE

The repository.xml file can contain multiple database connections defined within it. Each
database connection can be assigned a unique name using the jcd-alias attribute on the
<jdbc-connection-descriptor/> tag for the database connection. The default-connection
attribute is used to tell OJB which of the <jdbc-connection-descriptor/> tags in the reposi-
tory.xml file is the default connection. The value for the default-connection attribute can be
true or false. There can be only one default JDBC connection for a repository.xml file.

The rest of the attributes in the <jdbc-connection-descriptor/> tag map closely to the
properties used to configure a data source in any J2EE application. These attributes include
the following:

e driver: The fully qualified class name of the JDBC driver being used by OJB to connect
to the database.

e dbalias: The name of the database being connected to.

* username/password: The user name and password OJB will use to log in to the database.
These values do not need to be set in the repository.xml file and instead can be used in
the conjunction with the org.apache.ojb.broker.PBKey and org.apache.ojb.broker.
PersistenceBroker classes to perform database authentication dynamically at runtime.
These classes will be covered in greater detail in the section “OJB in Action.”

The two attributes that are not standard to JDBC and particular to OJB are the platform
and jdbc-level attributes. The platform attribute tells OJB the database platform that the
repository.xml file is being run against. OJB uses a pluggable mechanism to handle calls to
a specific database platform. The value specified in the platform attribute will map to a
PlatformxxxImpl.java (located in the org.apache.ojb.broker.platforms package).

The following databases are supported officially by OJB:

e DB2

Hsqldb (HyperSonic)

e Informix

* MS Access (Microsoft Access)

e MS SQL Server (Microsoft SQL Server)
* MySQL

e Oracle

* PostgresSQL

¢ SapDB

e Sybase

The jdbc-1level attribute is used to indicate the level of JDBC compliance at which the
JDBC driver being used runs. The values currently supported by the jdbc-1level attribute are
1.0, 2.0, and 3.0. If it is not set, OJB will use the default value of 1.0.

CHAPTER 5 © ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE

OJB can integrate with a JNDI-bound data source. To do this, you need to set up the
<jdbc-connection-descriptor> element to use the jndi-datasource-name attribute. For exam-
ple, you can rewrite the preceding <jdbc-connection-descriptor> to use a JNDI data source
bound to the JBoss application server running JavaEdge, as follows:

<jdbc-connection-descriptor
platform="MySql"
jdbc-level="2.0"
jndi-datasource-name="java:/MySqlDS"
/>

It is important to note that when a JNDI data source is defined in the <jdbc-connection-
descriptor> tag, no driver, protocol, or dbalias is needed. All of this information is going to
be defined via the application server’s JNDI configuration. In the preceding example, the
username and password attributes are not specified for the same reason.

Now, let’s discuss how to map the JavaEdge classes to database tables stored in your
database.

Setting Up a Simple Java Class-to-Table Mapping

Let’s start with a simple mapping, the MemberVO0 class. The MemberVO0 class does not have any
relationships with any of the classes in the JavaEdge application. The source code for the
MemberVO class is shown here:

package com.apress.javaedge.member;
import com.apress.javaedge.common.ValueObject;
public class MemberVO extends ValueObject implements java.io.Serializable{

private Long memberId;
private String firstName;
private String lastName;
private String userId;
private String password;
private String email;

public MemberVO(String email,

String firstName,

String lastName,

Long memberId,

String password,

String userId){
this.email = email;
this.firstName = firstName;
this.lastName lastName;
this.memberId = memberId;
this.password password;
this.userId userld;

195

196 CHAPTER 5 " ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE

}

11111177177717771117111171171711711111717
// Access methods for attributes.

public String getFirstName() {
return firstName;

}

public void setFirstName(String firstName) {
this.firstName = firstName;

}

public String getlLastName() {
return lastName;

}

public void setlLastName(String lastName) {
this.lastName = lastName;

}

public String getUserId() {
return userld;

}

public void setUserId(String userId) {
this.userId = userld;

}

public String getPassword() {
return password;

}

public void setPassword(String password) {
this.password = password;

}

public String getEmail() {
return email;

}

public void setEmail(String email) {
this.email = email;

}

public Long getMemberId() {
return memberId;

CHAPTER 5 © ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE

}

public void setMemberId(Long memberId) {
this.memberId = memberId;

}

} // end MemberVO

As you can see, the MemberVO0 class consists of nothing more than get()/set() methods for
member attributes. To begin the mapping, you need to set up a <class-descriptor> tag:

<class-descriptor class="com.apress.javaedge.member.MemberV0"
table="member">

</class-descriptor>

This <class-descriptor> has two attributes in it: class and table. The class attribute
gives the fully qualified Java class name that is going to be mapped. The table attribute
defines the name of the database table to which the class is mapping.

A <class-descriptor> tag contains one or more <field-descriptor> tags. These tags are
used to map the individual class attributes to their corresponding database columns. The
column mappings for the MemberVO are as shown here:

<field-descriptor name="memberId" column="member id"
jdbc-type="BIGINT" primarykey="true"
autoincrement="true"/>

<field-descriptor name="firstName" column="first name"
jdbc-type="VARCHAR" />

<field-descriptor name="lastName" column="last name"
jdbc-type="VARCHAR" />
<field-descriptor name="userId" column="userid"
jdbc-type="VARCHAR" />
<field-descriptor name="password" column="password"
jdbc-type="VARCHAR" />
<field-descriptor name="email" column="email"
jdbc-type="VARCHAR" />

Let’s take the <field-descriptor> tag for the memberId and look at its components. This
<field-descriptor> taghas five attributes. The first attribute is the name attribute, which
defines the name of the Java attribute that is going to be mapped. The column attribute defines
the name of the database column. By default, OJB directly sets the private attributes of the
class using Java reflection. By using reflection, you do not need get () or set() methods for
each attribute.

By having OJB set the mapped attributes directly via reflection, you do not need to make
the mapped attributes public or protected.

Itis a good programming practice to have all attributes accessed in an object have a
get()/set() method. However, while performing O/R mappings via OJB, there are two advan-
tages to setting the private mapped attributes of a class directly. First, you can implement
read-only data attributes by having OJB directly setting private attributes of a class and then

197

198

CHAPTER 5 " ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE

providing a get () method to access the data. If you have OJB for mapping data using get ()
and set() methods, you cannot have only a get() method for an attribute; you must also have
a set() method because OJB requires it.

The second advantage is that you can hide the underlying details of how the data is stored
in the database. For example, all stories in the JavaEdge database are stored as BLOBs. Their
Java data type representation is an array of bytes. Rather than forcing the clients using the
mapped Java class to convert the byte[] array to a String object, you can tell OJB to map
directly to the private attribute (of type byte[]) of the Story class. Then, you provide
get()/set() methods for converting that array of bytes to a String object. The application
need not know that its data is actually being saved to the JavaEdge database as a BLOB.

If you were to tell OJB to map the data from the story table to the StoryV0 object using the
get()/set() methods of StoryV0, you would need to have a pair of get() and set() methods
that would return an array of bytes as a return type and accept it as a parameter. This would
unnecessarily expose the implementation detail.

However, it is often desirable to have OJB go through the get()/set() methods of the class.
For example, in cases involving lightweight data transformation logic present in the get () /set()
methods of the class, this ensures the data is always properly formatted. Sidestepping the
get()/set() methods would be undesirable. Fortunately, OJB’s field manipulation behavior
can be customized.

OJB allows you to define your own field conversions so that if a mismatch occurs between
an existing Java class (that is, domain model) and your database schema (that is, data model),
you can implement your own FieldConversions class. The discussion of the FieldConversions
class is outside the scope of this book. However, an excellent tutorial is provided with the OJB
documentation that comes with the OJB distribution (ojb distribution/doc/jdbc-types.html).

The fourth attribute in the memberId tag is the primarykey attribute. When set to true, this
attribute indicates that the field being mapped is a primary key field. OJB supports the con-
cept of the composite primary key. Having more than one <field-descriptor> element with a
primarykey attribute set to true tells OJB that a composite primary key is present.

The last attribute, autoincrement, tells OJB to automatically generate a sequence value
whenever a database insert occurs for a database record that has been mapped into the class.
If the autoincrement flag is set to false or is not present in the tag, it is the responsibility of the
developer to set the primary key.

Let’s see how to set up the OJB auto-increment feature. To use this feature, you need to
install the OJB core tables. To install the OJB core tables, you need to perform the following
steps:

1. Edit the ojb-distribution/build.properties file. At the top of the file you will see several
different database profiles. Uncomment the mysql profile option (since that is the data-
base being used for the JavaEdge application) and put any other database, already
uncommented, in a comment.

2. Edit the ojb-distribution/profile/mysql.profile file. In this file, supply the connection
information for the mysql database. For the JavaEdge application, these properties will
look as follows:

dbmsName = MySql
jdbclevel = 2.0
urlProtocol = jdbc

CHAPTER 5 © ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE

urlSubprotocol = mysql

urlDbalias = //localhost:3306/javaedge

createDatabaseUrl = ${urlProtocol}:${urlSubprotocol}:${urlDbalias}
buildDatabaseUrl = ${urlProtocol}:${urlSubprotocol}:${urlDbalias}
databaseUrl = ${urlProtocol}:${urlSubprotocol}:${urlDbalias}
databaseDriver = org.gjt.mm.mysql.Driver

databaseUser = jcarnell

databasePassword = netchange

databaseHost = 127.0.0.1

Run the prepare-testdb target in the build.xml file. This can be invoked by calling the
following command at the command line:

ant prepare-testdb

This will generate the SQL scripts needed for the core tables and execute them against
the JavaEdge database.

. The OJB distribution comes with a number of unit tests and database tables. Running

the prepare-testdb target will generate these additional unit test tables. In a produc-
tion environment, the only tables needed by OJB are the following:

* OJB_DLIST

* OJB_DLIST_ENTRIES
* OJB_DMAP

« OJB_DMAP_ENTRIES
* OJB_DSET

« OJB_DSET_ENTRIES

* OJB_HL_SEQ

* OJB_LOCKENTRY

« OJB_NRM

In addition to the attributes described in the preceding MemberV0 example, a number of
additional attributes can be defined in the <field-descriptor> tag:

nullable: If set to true, OJB will allow null values to be inserted into the database. If set
to false, OJB will not allow a null value to be inserted. This attribute is set to true by
default.

conversion: The fully qualified class name for any FieldConversions classes used to
handle the custom data conversion.

length: Specifies the length of the field. This must match the length imposed on the
database column in the actual database scheme.

precision/scale: Used to define the precision and scale for the float numbers being
mapped to the database column.

199

200

CHAPTER 5 " ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE

In this section, we described how to implement a simple table mapping using OJB.
However, the real power and flexibility related to OJB come into play while using OJB to
cleanly capture the data relationships between entities in a database. The next several
sections will demonstrate how to map common database relationships using OJB.

Sequence Generation, OJB, and Legacy Applications

Few developers have the luxury of using OJB to map to clean databases where they have
absolute control over the structure of the database and how such a common task as sequence
generation for primary keys is undertaken. Instead, the development team must map its Java
objects to an existing set of database tables and use whatever sequence generation technique
is already in place.

This means that OJB’s database-independent primary key generator (as shown previ-
ously) cannot be used to generate primary keys. Oftentimes, the developers need to use the
database’s native primary key generation mechanism. For instance, if the database being
mapped is Oracle, the development needs to map to an existing set of Oracle Sequence
objects.

OJB provides strong support for integrating to a database’s native sequence-generation
mechanism. To tell OJB to use the database’s native sequence-generation mechanism, you
need to configure a <sequence-manager/> tag. The <sequence-manager/> tag is placed inside
the <jdbc-connector/> tag in the repository.xml file. An example of this tag is shown here:

<descriptor-repository version="1.0" isolation-level="read-uncommitted">
<jdbc-connection-descriptor

jecd-alias="strutsdb"

default-connection="true"
platform="MySQL"
jdbc-level="2.0"
driver="org.gjt.mm.mysql.Driver"
protocol="jdbc"
subprotocol="@0JB_DB_URL@"
dbalias="waf"
username="waf_user"
password="password">

<sequence-manager className=
"org.apache.ojb.broker.util.sequence.SequenceManagerNextValImpl">
<attribute attribute-name="autoNaming" attribute-value="false"/>
</sequence-manager>
</jdbc-connection-descriptor>

<class-descriptor class="com.apress.javaedge.story.StoryCommentV0"
table="story_comment"/>

</descriptor-repository>

CHAPTER 5 © ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE

The <sequence-manager/> tag has a single attribute on it, className. The className is used
to define the fully qualified Java class name that is implementing the sequence manager. OJB
currently has a number of sequence managers available for use. Three of the more common
sequence managers include

e org.apache.broker.util.sequence.SequenceManagerNextVallmpl
e org.apache.broker.util.sequence.SequenceManagerHighLowImpl
e org.apache.broker.util.sequence.SequenceManagerInMemorylmpl

The SequenceManagerNextValImpl class uses the native database’s sequence generator to
retrieve a value. The SequenceManagerNextValImpl class makes a database call every time it
needs to retrieve a unique value from the database. In a high transaction environment, con-
stant database calls to get a sequence value can represent unnecessary overhead.

The SequenceManagerHighLowImpl class does not query the database every time it needs a
sequence. Instead, the SequenceManagerHighLowImpl class grabs a “batch” of sequences from
the database and hands them out as needed. When the current batch of sequences is gone
through, SequenceManagerHighlLowImpl will grab another batch of sequences.

The SequenceManagerInMemoryImpl class is the most performant of the three sequence
managers described. The SequenceManagerInMemberImpl class will grab its initial sequence
value from a database sequence object. However, once the value is retrieved, all future
requests for sequences by OJB will be incremented from that base number and maintained
in memory.

Which Sequence Manager to Use?

When dealing with legacy applications in which you already have sequences being used,
always use either the SequenceManagerNextValImpl or SequenceManagerHilLoImpl classes. Both
of these sequence managers will always fetch a value from the database sequence object.
SequenceManagerHilLoImpl is a bit more efficient because it will retrieve a bunch of sequence
numbers from the database sequence object and cache them for use.

Never use the SequenceManagerInMemoryImpl class with legacy databases where you
have non-OJB clients using the database sequence objects. The SequenceManagerInMemoryImpl
class only reads a sequence value when the sequence manager is first loaded. This can be
problematic because you can end up with situations in which the values managed by
SequenceManagerInMemoryImpl can conflict with values being returned by the database
sequence object. This can lead to duplicate primary keys being generated for a record.

All sequence managers accept various parameters to control their behavior. These param-
eters can be passed in via the <attribute/> tag placed inside of the <sequence-manager/>
tag. In the interest of space, we are not going to go through all of the attributes available to
the different sequence managers. For this information, please visit the OJB project site at
http://db.apache.org/ojb/.

201

202

CHAPTER 5 " ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE

To use a database sequence for a field in a <class-descriptor> mapping, you need to add
the sequence-name attribute to the column that is going to hold the sequence. If you were to
use an Oracle database and you wanted to map the memberId column on the MemberVO to a
sequence called memberId seq, the mapping would look something like this:

<class-descriptor class="com.apressjavaedge.member.MemberV0" table="member">
<field-descriptor name="memberId" column="member id" jdbc-type="BIGINT"
primarykey="true" autoincrement="true" sequence-name="memberId seq"/>
<field-descriptor name="firstName" column="first name"
jdbc-type="VARCHAR" />
<field-descriptor name="lastName" column="1last name"
jdbc-type="VARCHAR" />
<field-descriptor name="userId" column="userid" jdbc-type="VARCHAR"/>
<field-descriptor name="password" column="password" jdbc-type="VARCHAR"/>
<field-descriptor name="email" column="email" jdbc-type="VARCHAR"/>
</class-descriptor>

By using the sequence-name attribute on the preceding column when performing an insert
for a MemberVO object, OJB will generate behind the scenes the following SQL statement:

SELECT memberId seq.nextval FROM dual;

We have just gone through a whirlwind tour of OJB’s different sequence generation capa-
bilities. Let’s now resume our discussion on mapping database tables and looking at the
simplest form of mapping between two tables: a one-to-one mapping.

Mapping One-to-One Relationships

The first data relationship we are going to map is a one-to-one relationship. In the JavaEdge
application, the StoryVO0 class has a one-to-one relationship with the MemberV0 object (that is,
one story can have one author that is a MemberV0).

We are not going to show the full code for the StoryVO class. Instead, here is an abbreviated
version of the class:

package com.apress.javaedge.story;

import com.apress.javaedge.common.ValueObject;
import com.apress.javaedge.member.MemberVO;

import java.util.Vector;

public class StoryVO extends ValueObject {

private Long storyld;

private String storyTitle;

private String storyIntro;

private byte[] storyBody;

private java.sql.Date submissionDate;
private Long memberId;

CHAPTER 5 © ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE 203

private MemberVO storyAuthor;
public Vector comments = new Vector(); // of type StoryCommentVO

public Vector getComments() {
return comments;

}

public void setComments(Vector comments) {
this.comments = comments;

}

public MemberVO getStoryAuthor() {
return storyAuthor;

}

public void setStoryAuthor(MemberVO storyAuthor) {
this.storyAuthor = storyAuthor;
}

} // end StoryVo

The StoryVO class has an attribute called storyAuthor. The storyAuthor attribute holds a
single reference to a MemberV0 object. This MemberVO object holds all the information for the
JavaEdge member who authored the story.

The following code is the <class-descriptor> tag that maps the StoryV0 object to the
story table and captures the data relationship between the story and member tables:

<class-descriptor class="com.apress.javaedge.story.StoryV0" table="story">

<field-descriptor name="storyId" column="story id"
jdbc-type="BIGINT" primarykey="true" autoincrement="true"/>

<field-descriptor name="memberId" column="member id" jdbc-type="BIGINT"/>

<field-descriptor name="storyTitle" column="story title"
jdbc-type="VARCHAR" />

<field-descriptor name="storyIntro" column="story intro"
jdbc-type="VARCHAR" />

<field-descriptor name="storyBody" column="story body"
jdbc-type="LONGVARBINARY" />

<field-descriptor name="submissionDate" column="submission date"
jdbc-type="DATE"/>

<reference-descriptor name="storyAuthor"
class-ref="com.apress.javaedge.member .MemberV0" auto-retrieve="true">
<foreignkey field-ref="memberId"/>
</reference-descriptor>

</class-descriptor>

204

CHAPTER 5 " ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE

The preceding <reference-descriptor> tag maps a record, retrieved from the member
table, to the MemberVO object reference called storyAuthor. This <reference-descriptor> tag
has four attributes associated with it: name, class-ref, auto-retrieve, and auto-update.

The name attribute is used to specify the name of the attribute in the parent object to
which the retrieved data is mapped. In the preceding example, the member data retrieved for
the story is going to be mapped to the storyAuthor attribute.

The class-ref attribute tells OJB the type of class that is going to be used to hold the
mapped data. This attribute must define a fully qualified class name for a Java class. This class
must be defined in the <class-descriptor> element in the repository.xml file.

The remaining two attributes, auto-retrieve and auto-update, control how OJB handles
the child relationships when a data operation is performed on the parent object. When set to
true, auto-retrieve tells OJB to automatically retrieve the member data for the story. If it is set
to false, OJB will not perform a lookup, and it will be the responsibility of the developer to
ensure that child data is loaded.

Note If 0JB cannot find a child record associated with a parent or if the auto-retrieve attribute is set
to false, it will leave the attribute (which is going to be mapped) in the state that it was before the lookup
was performed. For instance, in the StoryVO0 object, the storyAuthor property is initialized with a call to
the default constructor of the MemberVO class. If 0JB is asked to look up a particular story and no member
information is found in the membex table, 0JB will leave the storyAuthor attribute in the state that it was
before the call was made. It is extremely important to remember this if you leave child attributes to the
null value.

You need to be careful about the depth of your object graph while using the auto-
retrieve attribute. The indiscriminate use of the auto-retrieve attribute can retrieve a
significant number of objects, because the child objects can contain other mapped objects
that might also be configured to retrieve automatically any other child objects.

The auto-update attribute controls whether OJB will update any changes made to a set
of child objects, after the parent object has been persisted. In other words, if the auto-update
method is set to true, OJB will automatically update any of the changes made to the child
objects mapped in the <class-descriptor> for that parent. If this attribute is set to false or is
not present in the <reference-descriptor> tag, OJB will not update any mapped child objects.

OJB also provides an additional attribute, called auto-delete, that is not used in the
StoryV0O mapping. When set to true, the auto-delete method will delete any mapped child
records when the parent object is deleted. This is the functional equivalent of a cascading
delete in a relational database. You need to be careful while using this attribute, as you can
accidentally delete the records that you did not intend to delete, or end up cluttering your
database with “orphaned” records that have no context outside the deleted parent records.

Note Note that the auto-update and auto-delete attributes function only while using the low-level
Persistence Broker API (which we use for these code examples). The JDO and ODMG APIs do not support
these attributes.

CHAPTER 5 © ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE

One or more <foreignkey> tags are embedded in the <reference-descriptor> tag.
The <foreignkey> tag is used to tell OJB the id attribute of the <field-descriptor> attribute,
which the parent object is going to use to perform the join.

The field-ref attribute, contained inside the <foreignkey> tag, points to the
<field-descriptor> tag of the parent’s <class-descriptor> element.

Consider the following snippet of code:

<reference-descriptor name="storyAuthor"
class-ref="com.apress.javaedge.member.MemberV0"
auto-retrieve="true" auto-update="true">
<foreignkey field-ref="memberId"/>
</reference-descriptor>

This code maps to the <field-descriptor> memberId. OJB will then use the memberId to
map to the memberId attribute defined in the MemberV0 <class-descriptor>. It is important to
note that, while the preceding <reference-descriptor> tag is mapping to the storyAuthor
attribute in the StoryVO class, the name of the attribute being mapped in the <foreignkey>
element must match the name of a <field-descriptor> defined in another class.

Thus, in the preceding example, the <foreignkey> maps to the memberId attribute of the
StoryVO class descriptor. This means that there must be a corresponding <field-descriptor>
for memberId in the <class-descriptor> element that maps to the MemberVO object.

Mapping One-to-Many Relationships

Mapping a one-to-many relationship is as straightforward as mapping a one-to-one relation-
ship. The story table has a one-to-many relationship with the story comment table. This
relationship is mapped in the StoryV0 mappings via the <collection-descriptor> tag.

The <collection-descriptor> tag for the StoryV0 mapping is shown here:

<collection-descriptor name ="comments"
element-class-ref="com.apress.javaedge.story.StoryCommentVv0"
auto-retrieve="true" auto-delete="true">
<inverse-foreignkey field-ref="storyId"/»>
</collection-descriptor>

The name attribute for the tag holds the name of the attribute in the mapped class that is
going to hold the child data retrieved from the database. In the case of the StoryV0 mapping,
this attribute will be the comments attribute. The comments attribute in the StoryV0 code, shown
in the earlier section, is a Java Vector class.

OJB can use a number of data types to map the child data in a one-to-many relationship.
These data types include

e Vector
¢ Collection
e Arrays

e List

205

206

CHAPTER 5 " ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE

OJB also supports user-defined collections, but this subject is outside the scope of this
book. For further information, please refer to the OJB documentation.

The element-class-ref attribute defines the fully qualified Java class that is going to hold
each of the records retrieved into the collection. Again, the Java class defined in this attribute
must be mapped as a <class-descriptor> in the repository.xml file.

The <collection-descriptor> also has attributes for automatically retrieving, updating,
and deleting the child records. These attributes have the same name and follow the same rules
as the ones discussed in the section “Mapping One-to-One Relationships.” There are a num-
ber of additional attributes in the <collection-descriptor> tag. These attributes deal with
using proxy classes to help improve the performance of data retrieved from a database. We
will not be covering these attributes in greater detail.

A <collection-descriptor> tag can contain one or more <inverse-foreignkey> elements.
The <inverse-foreignkey> element maps to a <field-descriptor> defined in the <class-
descriptor> of the object that is being “joined.”

Note It is very important to understand the difference between an <inverse-foreignkey> and a
<foreignkey> element. An <inverse-foreignkey> element, used for mapping one-to-many and many-
to-many relationships, points to a <field-descriptor> that is located outside the <class-descriptor>
where the <inverse-foreignkey> is defined. A <foreignkey> element, which is used for one-to-one
mapping, points to a <field-descriptor> defined inside the <class-descriptor> where the
<foreignkey> element is located.

This small and subtle difference can cause major headaches if the developer doing the
O/R mapping does not understand the difference. OJB will not throw an error and will try to
map the data.

Mapping Many-to-Many Relationships

The JavaEdge database does not contain any tables that have a many-to-many relationship.
However, OJB does support many-to-many relationships in its table mappings. Let’s refactor
the one-to-many relationship between story and story comment to a many-to-many relation-
ship. To refactor this relationship, you need to create a join table called story story comments.
This table will contain two columns: story _id and comment_id. You need to make only a small
adjustment to the StoryV0 mappings to map the data retrieved via the story story comment
table to the comments vector in the StoryV0.

The revised mappings are as shown here:

<class-descriptor class="com.apress.javaedge.story.Storyvo"
table="story">
<field-descriptor name="storyId" column="story id"
jdbc-type="BIGINT" primarykey="true"
autoincrement="true"/>

CHAPTER 5 © ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE

<field-descriptor name="memberId" column="member id"
jdbc-type="BIGINT"/>

<field-descriptor name="storyTitle" column="story title"
jdbc-type="VARCHAR" />

<field-descriptor name="storyIntro" column="story intro"
jdbc-type="VARCHAR" />

<field-descriptor name="storyBody" column="story body"
jdbc-type="LONGVARBINARY" />

<field-descriptor name="submissionDate"
column="submission date" jdbc-type="DATE"/>

<reference-descriptor name="storyAuthor"
class-ref="com.apress.javaedge.member.MemberV0"
auto-retrieve="true">
<foreignkey field-id-ref="memberId"/>
</reference-descriptor>

<collection-descriptor name ="comments"
element-class-ref=
"com.apress.javaedge.story.StoryCommentV0"
auto-retrieve="true" auto-delete="true"
indirection table="STORY_STORY_ COMMENTS">

<fk-pointing-to-this-class column="STORY ID"/>
<fk-pointing-to-this-class column="COMMENT ID"/>
</collection-descriptor>

</class-descriptor>

There are two differences between this and the one-to-many mapping. The first is the use
of the indirection table attribute in the <collection-descriptor> tag. This attribute holds
the name of the join table used to join the story and story comment tables. The other difference
is that the <collection-descriptor> tag does not contain an <inverse-foreignkey> tag.
Instead, there are two <fk-pointing-to-this-class> tags. The column attribute in both these
tags points to the database columns that will be used to perform the join between the story
and story comment tables.

You will notice that even though the mapping for the StoryV0 has changed, the actual
class code has not. As far as applications using the StoryV0 are concerned, there has been no
change in the data relationships. This gives the database developer a flexibility to refactor a
database relationship while minimizing the risk that the change will break the existing appli-
cation code.

Now, you will see how OJB is actually used to retrieve and manipulate the data.

207

208

CHAPTER 5 " ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE

0JB in Action

OJB was used to build all the DAOs included in the JavaEdge application. Using an O/R map-
ping tool like OJB allows you to significantly reduce the amount of time and effort needed to
build the data access tier for the JavaEdge application. The following code is used to build the
StoryDAO. All the DAOs are implemented using the OJB Persistence Broker API. The code for
the other DAOs is available for download at http://www.apress.com.

package com.apress.javaedge.story.dao;

import com.apress.javaedge.common.*;

import com.apress.javaedge.story.StoryVo;

import org.apache.ojb.broker.PersistenceBroker;

import org.apache.ojb.broker.PersistenceBrokerException;
import org.apache.ojb.broker.query.Criteria;

import org.apache.ojb.broker.query.Query;

import org.apache.ojb.broker.query.QueryByCriteria;
import org.apache.ojb.broker.query.QueryFactory;

import java.util.Collection;

Vaki
*
* StoryDAO is responsible for all CRUD logic associated with stories.
*
*/
public class StoryDAO implements DataAccessObject {

public static final int MAXIMUM_TOPSTORIES = 11;

// Create Log4j category instance for logging.
static private org.apache.log4j.Category log =
org.apache.log4j.Category.getInstance(StoryDAO.class.getName());

/x*
* Finds a single Story record by a story id passed into the method.
* @see com.apress.javaedge.common.DataAccessObject#findByPK(java.lang.String)
*/
public ValueObject findByPK(String primaryKey) throws DataAccessException {
PersistenceBroker broker = null;
StoryVO storyVO = null;

try {
broker = Servicelocator.getInstance().findBroker();
storyV0 = new StoryVo();
storyV0.setStoryId(new Long(primaryKey));

CHAPTER 5 © ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE

Query query = new QueryByCriteria(storyVo);
storyV0 = (StoryV0) broker.getObjectByQuery(query);
} catch (ServicelocatorException e) {
log.error("PersistenceBrokerException thrown in StoryDAO.findByPK(): "
+ e.toString());
throw new DataAccessException("Error in StoryDAO.findByPK(): "
+ e.toString(), e);

} finally {
if (broker != null) broker.close();
}
return storyVo;
}
/%K

* Returns a collection of the top latest stories. The number of records to

* be returned are controlled by the MAXIMUM TOPSTORIES constant on this

* class.

* @return Collection

* @throws DataAccessException

*/

public Collection findTopStory () throws DataAccessException {
PersistenceBroker broker = null;
Collection results = null;

Criteria criteria = new Criteria();
criteria.addOrderByDescending("storyId");

Query query = QueryFactory.newQuery(StoryVO.class, criteria);

query.setStartAtIndex(1);
query.setEndAtIndex(MAXIMUM TOPSTORIES - 1);

try {
broker = Servicelocator.getInstance().findBroker();
results = (Collection) broker.getCollectionByQuery(query);
} catch (ServicelocatorException e) {
log.error("PersistenceBrokerException thrown in " +
"StoryDAO. findTopStory(): "
+ e.toString());
throw new DataAccessException("Error in StoryDAO.findTopStory(): "
+ e.toString(), e);
} finally {
if (broker != null) broker.close();
}

return results;

209

210 CHAPTER 5 " ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE

/**

* Inserts a single story record into the database.

*

*/

public void insert(ValueObject insertRecord) throws DataAccessException {
PersistenceBroker broker = null;

try {
StoryV0 storyVO = (StoryV0) insertRecord;

broker = Servicelocator.getInstance().findBroker();
broker.beginTransaction();

broker.store(storyVo);

broker.commitTransaction();

} catch (PersistenceBrokerException e) {
// If something went wrong: rollback.
broker.abortTransaction();

log.error("PersistenceBrokerException thrown in StoryDAO.insert():

+ e.toString());
e.printStackTrace();
throw new DataAccessException("Error in StoryDAO.insert(): "
+ e.toString(), e);
} catch (ServicelocatorException e) {
log.error("ServicelocatorException thrown in StoryDAO.insert():
+ e.toString());
throw new DataAccessException("ServicelocatorException " +
"thrown in StoryDAO.insert()", e);

} finally {
if (broker != null) broker.close();
}
}

Vs

* Deletes a single record from the story table using 0JB.

*/

public void delete(ValueObject deleteRecord) throws DataAccessException {
PersistenceBroker broker = null;

try {
broker = Servicelocator.getInstance().findBroker();

StoryVO storyVO = (StoryV0) deleteRecord;

//Begin the transaction.
broker.beginTransaction();
broker.delete(storyV0);
broker.commitTransaction();

CHAPTER 5 © ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE 211

} catch (PersistenceBrokerException e) {
// If something went wrong: rollback.
broker.abortTransaction();
log.error("PersistenceBrokerException thrown in StoryDAO.delete():
+ e.toString());
e.printStackTrace();

n

throw new DataAccessException("Error in StoryDAO.delete()", e);
} catch (ServicelocatorException e) {
throw new DataAccessException("Servicelocator exception in " +
"StoryDAO.delete()", e);
} finally {
if (broker != null) broker.close();

}

Vs

* Updates a single record from the story table using 0JB.

*/

public void update(ValueObject updateRecord) throws DataAccessException {
PersistenceBroker broker = null;

try {
StoryV0 storyVO = (StoryV0) updateRecord;

broker = Servicelocator.getInstance().findBroker();
broker.beginTransaction();
broker.store(storyVo);
broker.commitTransaction();
} catch (PersistenceBrokerException e) {
// If something went wrong: rollback.
broker.abortTransaction();
log.error("PersistenceBrokerException thrown in StoryDAO.update():
+ e.toString());
e.printStackTrace();

n

throw new DataAccessException("Error in StoryDAO.update()", e);
} catch (ServicelocatorException e) {
log.error("ServicelocatorException thrown in StoryDAO.delete(): "
+ e.toString());
throw new DataAccessException("ServicelocatorException " +
"error in StoryDAO.delete()",
e);
} finally {
if (broker != null) broker.close();

}

212 CHAPTER 5 " ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE

}

/**

* Retrieves all stories in the database as a Collection.
* Used by Search functionality.

*

* @return all stories in the app;

*/

public Collection findAllStories() throws DataAccessException {
PersistenceBroker broker = null;
Collection results = null;

try {
Criteria criteria = new Criteria();
criteria.addOrderByDescending("storyId");
Query query = QueryFactory.newQuery(StoryVO.class, criteria);

query.setStartAtIndex(1);

broker = Servicelocator.getInstance().findBroker();
results = (Collection) broker.getCollectionByQuery(query);
} catch (ServicelocatorException e) {
log.error("ServicelocatorException " +
" thrown in StoryDAO.findAllStories(): "
+ e.toString());
throw new DataAccessException("ServicelocatorException error in
+ StoryDAO.findAllStories()", e);
} finally {
if (broker != null) broker.close();

}

return results;

Now, we will examine the preceding code and discuss how OJB can be used to
e Perform queries to retrieve data
e Insert and update data into the JavaEdge database

e Delete data from the JavaEdge database

Retrieving Data: A Simple Example

The first piece of code that we are going to look at shows how to retrieve a single record from
the JavaEdge database. Let’s take a look at the findByPK() method from StoryDAO:

CHAPTER 5 © ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE

public ValueObject findByPK(String primaryKey) throws DataAccessException {
PersistenceBroker broker = null;
StoryVO storyVO = null;

try {
broker = Servicelocator.getInstance().findBroker();

storyV0 = new StoryVo();
storyV0.setStoryId(new Long(primaryKey));

Query query = new QueryByCriteria(storyVo);
storyV0 = (StoryV0) broker.getObjectByQuery(query);

} catch (ServicelocatorException e) {
log.error("PersistenceBrokerException thrown in StoryDAO.findByPK(): "
+ e.toString());
throw new DataAccessException("Error in StoryDAO.findByPK(): "
+ e.toString(),e);
} finally {
if (broker != null) broker.close();
}

return storyVo;

The first step in the code is to get an instance of a PersistenceBroker object:
broker = Servicelocator.getInstance().findBroker();

A PersistenceBroker is used to carry out all the data actions against the JavaEdge
database. We have written the code for retrieving a PersistenceBroker in the findBroker ()
method of the Servicelocator class (discussed in Chapter 4). The method, shown in the
following code, will use the PersistenceBrokerFactory class to retrieve a PersistenceBroker
and return it to the method caller:

public PersistenceBroker findBroker() throws ServicelocatorException{
PersistenceBroker broker = null;
try{
broker = PersistenceBrokerFactory.defaultPersistenceBroker();
}
catch(PBFactoryException e) {
e.printStackTrace();
throw new ServicelocatorException("Error occurred while trying to " +
"look up an 0JB persistence broker: ",e);

In the preceding method, the application is going to create a PersistenceBroker by calling
the defaultPersistenceBroker () method in the PersistenceBrokerFactory without passing in a
value. When no value is passed into the method, the PersistenceBrokerFactory will look at the
root of the JavaEdge’s classes directory for a repository.xml file (/WEB-INF/classes). If it cannot
find the repository.xml file in this location, it will throw a PBFactoryException exception.

213

214

CHAPTER 5 " ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE

As mentioned early in the chapter, a repository.xml file can contain multiple database
sources. These data sources are identified by the jcd-alias attribute on the <jdbc-connection-
descriptor> tag. To look up a PersistenceBroker by a jcd-alias, you need to first instantiate
an org.apache.ojb.broker.PBKey object and pass it into the PersistenceBrokeryFactory.
createPersistenceBroker()’s method. The following code snippet demonstrates this:

PBKey pbKey = new PBKey("strutsdb");
PersistenceBroker broker = PersistenceBrokerFactory.createPersistenceBroker(pbKey);

After a broker has been retrieved in the findByPK() method, an empty StoryVO0 instance,
called storyVo, is created. Since the findByPK() method is used to look up the record by its
primary key, you call the setStoryId() method in which the primaryKey variable is passed:

storyV0 = new StoryVo();
storyV0.setStoryId(new Long(primaryKey));

Once the storyV0 instance has been created, it is going to be passed to a constructor in a
QueryByCritieria object:

Query query = new QueryByCriteria(storyVo);

A QueryByCriteria class is used to build the search criteria for a query. When a
“mapped” object, being mapped in the repository.xml file, is passed in as a parameter in
the QueryByCriteria constructor, the constructor will look at each of the nonnull attributes
in the object and create a where clause that maps to these values.

Because the code in the findByPK() method is performing a lookup based on the primary
key of the story table (that is, story id), the where clause generated by the QueryByCriteria
constructor would look like this:

where story id=? /*Where the question mark would be the value set in the
setStoryId() method*/

If you want to perform a lookup for an object by the story title, you would call the
setStoryTitle() method instead of setStoryID().

The QueryByCriteria object implements a Query interface. This interface is a generic
interface for different mechanisms for querying OJB. Some of the other mechanisms for
retrieving data via the OJB PB API include

* QueryBySQL: Lets you issue SQL calls to retrieve data

* QueryByMtoNCriteria: Lets you issue queries against the tables that have a many-to-
many data relationship

For more details on QueryBySQL () and QueryByMToNCriteria(), please refer to the OJB
JavaDocs.

We will not be covering these objects in any greater detail. Instead, we are going to focus
on building the criteria using the QueryByCriteria object.

Once a query instance is created, you pass it to the getObjectByQuery() method in broker.
This method will retrieve a single instance of an object based on the criteria defined in the
Query object passed into the method:

storyV0 = (StoryVO) broker.getObjectByQuery(query);

CHAPTER 5

ARCHITECTING THE DATA ACCESS TIER WITH OBJECTRELATIONALBRIDGE

If the getObjectByQuery () method does not find the object by the presented criteria,
avalue of null is returned. If more than one record is found