
•Howtouseanddesignyourownlibraries,classesandmethods
•Howtousethenewlambdaexpressions,closures,streamAPIandmore
•HowtousethenewthreadandI/OAPIsfortoday’sJavaapplicationsthat

•HowtousetheimprovedcollectionsAPIs
•HowtobuildabetterJavaUI/UXusinglayoutmanagers,Swing’sJTable

andJTreeAPIs,cut-and-paste,anddrag-and-drop
•HowtouseJavaDatabaseConnectivity(JDBC)toconnectandintegrate

•Howtoworkwithinternationalization,localizationandmore
•HowtoeffectivelyuseXMLandaddannotationstoyourJavaapplications

www.allitebooks.com

http://www.allitebooks.org

For your convenience Apress has placed some of the front

matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author ..xxiii

About the Technical Reviewer ...xxv

Acknowledgments ...xxvii

Introduction ..xxix

Chapter 1: Going Inside Java ■ ... 1

Chapter 2: Designing Libraries, Classes, and Methods ■ 19

Chapter 3: Lambdas and Other Java 8 Features ■ .. 81

Chapter 4: Using Threads in Your Applications ■ ... 105

Chapter 5: Using Stream APIs and Collections ■ .. 163

Chapter 6: Using Layout Managers ■ .. 207

Chapter 7: Using Swing’s JTable ■ ... 281

Chapter 8: Using Swing’s JTree ■ ... 327

Chapter 9: Adding Cut-and-Paste Functionality ■ .. 379

Chapter 10: Adding Drag-and-Drop Functionality ■ ... 403

Chapter 11: Printing ■ .. 449

Chapter 12: Introducing JDBC ■ ... 479

Chapter 13: Internationalizing Your Applications ■ .. 529

Chapter 14: Using XML ■ .. 587

Chapter 15: Adding Annotations ■ .. 637

Index ... 663

www.allitebooks.com

http://www.allitebooks.org

xxix

Introduction

It’s been a while since I last revised this material and even longer than that since the irst edition was
published. In that time the technologies that Java programmers use have changed quite a bit and there’s no
doubt that if I were writing this book for the irst time I would do some things diferently. For example, I’d
place more of an emphasis on technologies related to web development to relect the dominance that it has
in the industry today. Even so, it’s a little surprising to ind out how relevant most of the original material
still is, and I hope that you’ll ind both the principles and speciic technology topics covered here useful in
learning how to program in Java.

www.allitebooks.com

http://www.allitebooks.org

1

CHAPTER 1

Going Inside Java

Java has been described as “a simple, robust, object-oriented, platform-independent, multithreaded,
dynamic, general-purpose programming environment.” Living up to this definition allowed Java to grow
and expand into so many niches that it’s almost unrecognizable from its earliest days. Today you can find
Java just about anywhere you can find a microprocessor. It’s used in the largest of enterprises to the smallest
of devices, and it’s used in devices from cell phones to supercooled mainframes. For Java to support such a
wide range of environments, an almost bewildering array of application programming interfaces (APIs) and
versions have been developed, though they’re built around a common set of core classes.

In order to become a good Java programmer, it’s important to be able to do the basics well. Being
able to produce a highly complex user interface is all very well, but if your code is bloated, memory
hungry, and inefficient, your users won’t be happy. This book isn’t about the huge array of development
options available to you as a Java developer but about how to do the common tasks that as a Java
developer you’ll encounter again and again. Over the course of the book, we’ll examine some of the core
language features, such as threading and memory management, that can really make the difference in a
professional-quality Java application.

At the core of Java’s adaptability, and hence popularity, is that it’s platform-independent. Its “write
once, run anywhere” (WORA) capability stems from the way Java itself operates and in particular from
the use of an abstract execution environment that allows Java code to be separated from the underlying
operating system. Whereas the rest of this book will be about exploring the programming language and APIs
of Java, in this chapter we’ll look at the foundations of how Java really operates under the hood, with the Java
Virtual Machine (JVM). Understanding the inner workings of Java will give you as a programmer a better
understanding of the language, which should make you a better programmer.

In this chapter, we’ll cover the following:

The various components of the Java platform•

How the JVM allows Java to be platform-independent•

What happens when you run a Java program•

What a Java class file really contains•

The key tools needed to work with a JVM•

First, then, let’s look at what Java actually is.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ GOING INSIDE JAVA

2

Java’s Architecture
It’s easy to think of Java as merely the programming language with which you develop your applications—writing
source files and compiling them into bytecode. However, Java as a programming language is just one
component of Java, and it’s the underlying architecture that gives Java many of its advantages, including
platform independence.

The complete Java architecture is actually the combination of four components:

The Java programming language•

The Java class file format•

The Java APIs•

The JVM•

So, when you develop in Java, you’re writing with the Java programming language, which is then
compiled into Java class files, and those in turn are executed in the JVM. In fact, these days the Java language
is just one of the options available if you want to use the rest of the Java platform. Scala, for example, has
generated a great deal of interest as an alternative to the Java language and is only one of many different
languages that use Java technology without also using the Java language.

The combination of the JVM and the core classes form the Java platform, also known as the Java
Runtime Environment (JRE), sits on whatever operating system is being used. Figure 1-1 shows how different
aspects of Java function relative to one another, to your application, and to the operating system.

Figure 1-1. An overview of Java’s role

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ GOING INSIDE JAVA

3

The Java API is prewritten code organized into packages of similar topics. The Java API is divided into
three main platforms:

• Java Platform, Standard Edition (Java SE): This platform contains the core Java
classes and the graphical user interface (GUI) classes.

• Java Platform, Enterprise Edition (Java EE): This platform contains the classes
and interfaces for developing more complex “enterprise” applications; it contains
servlets, JavaServer Pages, and Enterprise JavaBeans, among others.

• Java Platform, Micro Edition (Java ME): In this platform, Java goes back to its
roots. It provides an optimized runtime environment for consumer products such as
Blu-ray disc players, cell phones, and various other types of hardware such as smart
appliances.

The Java Virtual Machine
Before we cover the various aspects of writing powerful Java applications, in this section we’ll spend some
time examining the engine that makes this possible. That engine is the JVM, which is an abstract computing
machine that interprets compiled Java programs.

With other programming languages such as C or C++, a compiler, which is specific to the processor
and often also the operating system, compiles the source code into an executable. This executable is then
self-sufficient and can be run on the machine.

One drawback of this is the lack of portability: code compiled under one operating system can’t be
run on another operating system but must be recompiled on every different system on which it is to run.
In addition, because of vendor-specific compiler features, code compiled under a certain operating system
for a certain processor family (for example, Intel x86, SPARC) may not run on a different type of processor,
even if that processor supports the same operating system.

This problem occurred particularly when people began writing applications for the Internet.
Their applications were intended for users running many different operating systems on various different
platforms through different browsers. The only way to resolve this problem was to develop a
platform-independent language.

In the early 1990s, developers at Sun Microsystems were working on a platform-independent language
for use in consumer electronic devices, which unfortunately was somewhat ahead of its time and was
therefore shelved. With the advent of the Internet, these developers saw a much greater potential for the
language they had created and therefore Java was born.

The key to the portability of the Java language is that the output of the Java compiler isn’t standard
executable code. Instead, the Java compiler generates an optimized set of instructions called a bytecode
program. Bytecodes are sequences of bytes that follow a documented pattern, and we’ll cover them in
more detail later. The bytecode program is interpreted by the runtime system, otherwise known as the
JVM, and a bytecode program generated on one platform can be run on any other platform that has a
JVM installed.

This is generally true even though some specifics of the JVM may differ from platform to platform.
In other words, a Java program that’s compiled on a Linux workstation can be run on a PC or a Mac.
The source code is written in a standard way in the Java language and compiled into a bytecode program,
and each JVM interprets the bytecode into native calls specific to its platform (that is, into a language the
specific processor can understand). This abstraction is the way various operating systems achieve such
operations as printing, accessing files, and handling hardware in a consistent manner across platforms.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ GOING INSIDE JAVA

4

One feature (and some would say disadvantage) of bytecode is that it’s not executed directly by the
processor of the machine on which it’s run. The bytecode program is run through the JVM, which interprets
the bytecode, and that’s why Java is referred to as an interpreted language. In reality, Java’s days of being
a purely interpreted language are long gone, and the current architecture of most JVM implementations
is a mixture of interpretation and compilation. Interpretation is a relatively slow process compared to
compilation, and it was during the days of purely interpreted Java that it gained a reputation for being slower
than other languages. However, the newer interpreted/compiled hybrid model has largely eliminated the
speed difference in Java programs and those of other programming languages, making it appropriate for all
but the most resource-intensive applications.

Table 1-1 lists compiled versus interpreted languages.

Table 1-1. Compiled vs. Interpreted Languages

Language Compiled or Interpreted? Portable Code? Minimal Execution Overhead?

C++ Compiled No Yes

Java Interpreted Yes No

It’s also worth noting that Java includes an API for interfacing with native applications (those written in
non-Java languages such as C and C++). This API is the Java Native Interface (JNI) API and allows developers
to call code written in a non-Java language from Java code, and vice versa. JNI accomplishes two things, one
of which is to allow your application to take advantage of operating system–specific features that wouldn’t
be available directly through Java. More to the point, JNI allows you to use a compiled language such as C
or C++ for functions used by your Java application where performance is critical. Using JNI does, however,
negate some of the platform independence of Java, as the native code is generally platform-specific, and
therefore the Java code will be tied to the target platform as well if it relies on the native code for some
functionality.

For machine portability to work, the JVM must be fairly tightly defined, and that’s achieved by the JVM
specification. That specification dictates the format of the bytecode recognized by the JVM as well as features
and functionality that must be implemented by the JVM. The JVM specification is what ensures the platform
independence of the Java language; you can find it on the Oracle web site.

In this context, referring to a “JVM” can mean any one of three different things:

An abstract specification, such as the specification for Java 8.•

A concrete implementation of the specification.•

A runtime execution environment.•

Different JVM Implementations
Sun Microsystems, the original company that developed Java, initially provided its own implementations of
various Java technologies, including the JVM, and these were referred to as the reference implementations.
However, Sun (and now Oracle, which acquired Sun in 2010) has also granted licenses that allow other
organizations to create their own implementations. Although the reference implementations of the JVM and
other Java technologies have always been widely used, they’re far from the only implementations available
and licensees include IBM, Apple, Hewlett-Packard, and many other organizations. Following the standards
defined in the JVM specification means that Java code will behave the same in one-on-one implementation
as it does in any other.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ GOING INSIDE JAVA

5

In 2006, Sun began transitioning Java from its original proprietary model—where Sun tightly controlled
the standards and reference implementation—to an open model. That transition resulted in changes in
how Java was managed, including the following:

The full source code was made publicly available, or at least as much of it as Sun •
could legally publish given associated licensing restrictions.

Future changes and additions to Java have been handled through the Java •
Community Process (JCP) instead of internally within Sun. The JCP is an open and
collaborative process for making decisions about the future of Java, though Sun
(and now Oracle) continued to play a prominent role in the decision-making process.

The reference implementation of Java is now produced using an open source model •
and is referred to as the Open Java Development Kit (OpenJDK).

Many JVM implementations still exist, but the OpenJDK remains the most commonly used implementation.
Why do different versions of the JVM exist? Remember, the JVM specification sets down the required

functionality for a JVM but doesn’t mandate how that functionality should be implemented. In an attempt
to maximize the use of Java, some flexibility to be creative with the platform was given. The important thing
is that whatever the implementation, a JVM must adhere to the guidelines defined by the Java specification.
In terms of platform independence, this means a JVM must be able to interpret bytecode that’s correctly
generated on any other platform.

The JVM As a Runtime Execution Environment
Every time you run a Java application, you’re in fact running your application within an instance of the JVM,
and each separate application you run will have its own JVM instance. So far you’ve seen that Java uses an
interpreted form of source code called bytecode, but how do the instructions you code in the Java programming
language get translated into instructions that the underlying operating system (OS) can understand?

The JVM specification defines an abstract internal architecture for this process. You’ll learn about the
components of this internal architecture in a moment, but at a high level, class files (compiled Java files have
a .class extension and are referred to as class files) are loaded into the JVM where they’re then executed
by an execution engine. When executing the bytecodes, the JVM interacts with the underlying OS through
means of native methods, and it’s the implementation of those native methods that tie a particular JVM
implementation to a particular platform (see Figure 1-2).

Figure 1-2. Role of the JVM

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ GOING INSIDE JAVA

6

In addition to the previous components, a JVM also needs memory in order to store temporary data
related to code execution, such as local variables, which method is executing, and so on. That data is stored
within the runtime data areas of the JVM, as explained next.

The Runtime Data Areas of the JVM
Although the individual implementations may differ slightly from platform to platform, every JVM must
supply the runtime components shown in Figure 1-3.

Figure 1-3. Runtime data area

The Heap

The heap is a region of free memory that’s often used for dynamic or temporary memory allocation. The
heap is the runtime data area that provides memory for class and array objects. When class or array objects
are created in Java, the memory they require is allocated from the heap, which is created when the JVM
starts. Heap memory is reclaimed when references to an object or array no longer exist by an automatic
storage management system known as the garbage collection, which you’ll learn more about later.

The JVM specification doesn’t dictate how the heap is implemented; that’s left up to the creativity of
the individual implementations of the JVM. The size of the heap may be constant, or it may be allowed
to grow as needed or shrink if the current size is unnecessarily large. The programmer may be allowed
to specify the initial size of the heap; for example, on the Win32 and Solaris reference implementations,
you can do this with the –mx command-line option. Heap memory doesn’t need to be contiguous. If the
heap runs out of memory and additional memory can’t be allocated to it, the system will generate an
OutOfMemoryError exception.

The Stack

A Java stack frame stores the state of method invocations. The stack frame stores data and partial results
and includes the method’s execution environment, any local variables used for the method invocation, and
the method’s operand stack. The operand stack stores the parameters and return values for most bytecode
instructions. The execution environment contains pointers to various aspects of the method invocation.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ GOING INSIDE JAVA

7

Frames are the components that make up the JVM stack. They store partial results, data, and return
values for methods. They also perform dynamic linking and issue runtime exceptions. A frame is created
when a method is invoked and destroyed when the method exits for any reason. A frame consists of an
array of local variables, an operand stack, and a reference to the runtime constant pool of the class of the
current method.

When the JVM runs Java code, only one frame, corresponding to the currently executing method,
is active at any one time. This is referred to as the current frame. The method it represents is the current
method, and the class that includes that method is the current class. When a thread invokes a method
(each thread has its own stack), the JVM creates a new frame, which becomes the current frame, and pushes
it onto the stack for that thread.

As with the heap, the JVM specification leaves it up to the specific implementation of the JVM how
the stack frames are implemented. The stacks either can be of fixed size or can expand or contract in size
as needed. The programmer may be given control over the initial size of the stack and its maximum and
minimum sizes. Again, on Win32 and Solaris, this is possible through the command-line options –ss and
–oss. If a computation requires a larger stack than is possible, a StackOverflowError exception is generated.

Method Area

The method area is a common storage area shared among all JVM threads. It’s used to store such things as
the runtime constant pool, method data, field data, and bytecode for methods and constructors. The JVM
specification details only the general features of the method area but doesn’t mandate the location of the
area or dictate how the area is implemented. The method area may be a fixed size, or it may be allowed to
grow or shrink. The programmer may be allowed to specify the initial size of the method area, and the area
doesn’t need to be contiguous.

Registers

The registers maintained by the JVM are similar to registers on other computer systems. They reflect the
current state of the machine and are updated as bytecode is executed. The primary register is the program
counter (the pc register) that indicates the address of the JVM instruction that’s currently being executed.
If the method currently being executed is native (written in a language other than Java), the value of the
pc register is undefined. Other registers in the JVM include a pointer to the execution environment of the
current method, a pointer to the first local variable of the currently executing method, and a pointer to the
top of the operand stack.

Runtime Constant Pool

The runtime constant pool is similar to a symbol table used in other programming languages. As the name
suggests, it contains constants including numeric literals and field constants. The memory for each runtime
constant pool is allocated from the method area, and the runtime constant pool is constructed when the
JVM loads the class file for a class or interface.

The Garbage Collector
Older languages such as C require the programmer to explicitly allocate and release memory. Memory is
allocated when needed and released when no longer needed by the application.

CHAPTER 1 ■ GOING INSIDE JAVA

8

Unfortunately, this approach often causes “memory leaks,” where memory is allocated and for one
reason or another never released. When that takes place repeatedly, the application will eventually run
out of memory and terminate abnormally or at least no longer be able to function. In contrast, Java never
requires the programmer to explicitly allocate or release memory, preventing many of the problems that
can occur. Instead, Java automatically allocates memory when you create an object, and Java will release the
memory when references to the object no longer exist.

Java uses what’s known as a garbage collector to monitor a Java program while it runs and automatically
releases memory used by objects that are no longer in use. Java uses a series of soft pointers to keep track of
object references and an object table to map those soft pointers to the object references. The soft pointers
are so named because they don’t point directly to the object but instead point to the object references
themselves. Using soft pointers allows Java’s garbage collector to run in the background using a separate
thread, and it can examine one object at a time. The garbage collector can mark, remove, move, or examine
objects by changing the object table entries.

The garbage collector runs on its own, and explicit garbage collector requests are generally not
necessary. The garbage collector performs its checking of object references sporadically during the
execution of a program, and when no references to an object exist, the memory allocated to that object
can be reclaimed. You can request that the garbage collector run by invoking the static gc() method in the
System class, though this represents a request that may or may not be honored and there’s no guarantee that
an object will be garbage collected at any given time.

The JVM: Loading, Linking, and Initializing
For the JVM to interpret a Java bytecode, it must perform three steps for the required classes and interfaces:

 1. Loading: When the JVM loads a class, it finds a binary representation of a class
or interface and creates a Class object from that binary representation (usually
a class file created by a Java compiler). A Class object encapsulates the runtime
state of a class or interface.

 2. Linking: Linking is the process of taking the loaded class or interface and
combining it with the runtime of the JVM, preparing it for execution.

 3. Initializing: Initialization occurs when the JVM invokes the class or interface
initialization method.

The First Step

The first thing the JVM does when a stand-alone Java application starts is create a Class object representing
the Java class that contains the public static void main(String[] args) method. The JVM links and
initializes this class and invokes the main() method, and that method drives the loading, linking, and
initializing of any additional classes and interfaces that are referenced.

Loading

The loading process itself is carried out by a class loader, which is an object that’s a subclass of ClassLoader;
the class loader will do some of its own verification checks on the class or interface it’s loading. An
exception is thrown if the binary data representing the compiled class or interface is malformed, if the
class or interface uses an unsupported version of the class file format, if the class loader couldn’t find the
definition of the class or interface, or if circularity exists. Class circularity occurs if a class or interface
would be its own superclass.

CHAPTER 1 ■ GOING INSIDE JAVA

9

Two general types of class loader exist: the one supplied by the JVM, which is called the bootstrap
class loader, and user-defined class loaders. User-defined class loaders are always subclasses of Java’s
ClassLoader class and can be used to create Class objects from nonstandard, user-defined sources. For
instance, the Class object could be extracted from an encrypted file. A loader may delegate part or all of the
loading process to another loader, but the loader that ultimately creates the Class object is referred to as the
defining loader. The loader that begins the loading process is known as the initiating loader.

The loading process using the default bootstrap loader is as follows: The loader first determines if it has
already been recorded as the initiating loader of a class corresponding to the desired class file. If it has, the
Class object already exists, and the loader stops. (You should note here that loading a class isn’t the same as
creating an instance of it; this step merely makes the class available to the JVM.) If it’s not already loaded, the
loader searches for the class file and, if found, will create the Class object from that file. If the class file isn’t
found, a NoClassDefFoundError exception is generated.

When a user-defined class loader is used, the process is somewhat different. As with the bootstrap
loader, the user-defined loader first determines if it has already been recorded as the initiating loader of a
class file corresponding to the desired class file. If it has, the Class object already exists and the loader stops,
but if it doesn’t already exist, the user-defined loader invokes the loadClass() method. The return value of
that method is the desired class file, and the loadClass() method assembles the array of bytes representing
the class into a ClassFile structure. It then calls the defineClass() method, which creates a Class object
from the ClassFile structure; alternatively, the loadClass() method can simply delegate the loading to
another class loader.

Linking

The first step in the linking process is verifying the class files to be linked.

Java Class File Verification

Because the JVM is completely separate from the Java compiler, the JVM, which interprets the class file,
has no guarantee that the class file is properly formed or that it was even generated by a Java compiler.
Another problem arises with inheritance and class compatibility. If a given class file represents a class that
inherits from a superclass represented by another class file, the JVM must make sure the subclass class file is
compatible with the superclass class file.

The JVM verifies that each class file satisfies the constraints placed on it by the Java language
specification, although the Java class verifier is independent of the Java language. Programs written in
certain other languages can also be compiled into the class file format and (if everything has been done
correctly) pass the verification process.

The verification process itself happens in four steps:

 1. In the first step, the class file is loaded by the JVM and checked to make sure
it adheres to the basic format of a class file. The class file must be the correct
length. The magic number (which identifies a class file as really being a class) is
checked. The constant pool must not contain any unrecognizable information,
and the length of each attribute is checked to be sure it’s the correct length.

 2. The second step in the verification process occurs when the file is linked.
The actions performed in this step include ensuring that the final keyword
constraint is respected. This means final classes can’t be subclassed and final
methods can’t be overridden. The constant pool is checked to make sure the
elements don’t violate any language constraints. All field and method references
in the constant pool are validated, and every class except the Object class is
checked to see if it has a direct superclass.

CHAPTER 1 ■ GOING INSIDE JAVA

10

 3. The third verification step also occurs during the linking phase. Every method
referenced in the class file is checked to ensure it adheres to the constraints
placed on methods by the Java language. The methods must be invoked with the
correct number and type of arguments. The operand stack must always be the
same size and contain the same types of values. Local variables must contain an
appropriate value before they’re accessed. Fields must be assigned values of the
proper type only.

 4. The final step in the verification looks at events that occur the first time a method
is invoked and ensures that everything happens according to the specification.
The checks include ensuring that a referenced field or method exists in a given
class, verifying that the referenced field or method has the proper descriptor,
and ensuring that a method has access to the referenced method or field
when it executes.

Preparation

Once the class file has been verified, the JVM prepares the class for initialization by allocating memory space
for the class variables and also sets them to the default initial values. These are the standard default values,
such as 0 for int, false for Boolean, and so on. These values will be set to their program-dependent defaults
during the initialization phase.

Resolution

At this (optional) step, the JVM resolves the symbolic references in the runtime constant pool into
concrete values.

Initialization

Once the linking process is complete, any static fields and static initializers are invoked. Static fields have
values that are accessible even when there are no instances of the class; static initializers provide for static
initialization that can’t be expressed in a single expression. All these initializers for a type are collected by
the JVM into a special method. For example, the collected initializers for a class become the initialization
method <clinit>.

However, when initializing a class, not only must the class initialization method be invoked by the JVM
(only the JVM can call it) but in addition any superclasses must also be initialized (which also involves the
invocation of <clinit> for those classes). As a result, the first class that will always be initialized is Object.
The class containing the main() method for an application will always be initialized.

Bytecode Execution
The bytecode from a class file consists of a series of 1-byte opcode instructions specifying an operation
to be performed. Each opcode is followed by zero or more operands, which supply arguments or data
used by that operation. The JVM interpreter essentially uses a do...while loop that loads each opcode
and any associated operands and executes the action represented by the opcode. The bytecode is
translated into an action according to the JVM instruction set, which maps bytecode to operations
represented by the bytecode as specified by the JVM specifications. This process continues until all the
opcode has been interpreted.

CHAPTER 1 ■ GOING INSIDE JAVA

11

The first set of instructions in the JVM instruction set involves basic operations performed on the
primitive data types and on objects. The nomenclature used is generally the data type followed by the
operation. For instance, the iload instruction (iload is merely a mnemonic representation of the actual
instruction) represents a local variable that’s an int being loaded onto the operand stack. The fload
instruction is for loading a local variable that’s a float onto the operand stack, and so on. There are a series
of instructions to store a value of a certain data type from the operand stack into a local variable, to load a
constant onto the operand stack, and to gain access to more than one local variable.

The second set in the instruction set concerns arithmetic operations, and the arithmetic operation
generally involves two values currently on the operand stack, with the result of the operation being pushed
onto the operand stack. The nomenclature is the same as before; for instance, the iadd operation is for
adding two integer values, and the dadd operation is for adding two double values.

Similarly, some operations represent basic mathematical functions (add, subtract, multiply, and
divide), some represent logical operations (bitwise OR, bitwise AND, and bitwise NOT), and some
specialized functions including remainder, negate, shift, increment, and comparison.

The JVM adheres to the IEEE 754 standards when it comes to things such as floating-point number
operations and rounding toward zero. Some integer operations—divide by zero, for instance—can throw
an ArithmeticException, while the floating-point operators don’t throw runtime exceptions but instead
will return a NaN (“Not a Number”—the result is an invalid mathematical operation) if an overflow
condition occurs.

The JVM instruction set includes operations for converting between different types. The JVM directly
supports widening conversions (for instance, float to double). The naming convention is the first type,
then 2, and then the second type. For example, the instruction i2l is for conversion of an int to a long.
The instruction set also includes some narrowing operations, the conversion of an int to a char, for
instance. The nomenclature for these operations is the same as for the widening operation.

Instructions exist for creating and manipulating class and array objects. The new command creates
a new class object, and the newarray, anewarray, and multilinearray instructions create array objects.
Instructions also exist to access the static and instance variables of classes, to load an array component onto
the operand stack, to store a value from the operand stack into an array component, to return the length of
an array, and to check certain properties of class objects or arrays.

The JVM instruction set provides the invokevirtual, invokeinterface, invokespecial, and
invokestatic instructions that are used to invoke methods, where invokevirtual is the normal method
dispatch mode. The other instructions are for methods implemented by an interface, methods requiring
special handling such as private or superclass methods, and static methods. Method return instructions are
also defined for each data type.

Another JVM instruction worth mentioning is invokedynamic, which was added to the JVM
specification for Java 7. Ironically, the instruction actually had little impact on the Java language in
that release, but it did provide the framework for a major change introduced in Java 8, namely, lambda
expressions which are covered in detail in Chapter 3. The older invocation instructions (invokevirtual,
invokeinterface, etc.) only supported what’s referred to as “static linking”; that is, the type of an object
that’s referenced is established at compile time. For example, when invokevirtual is used, the specific
method that’s called is known to exist because the type (class) of the object in which that method is defined
is known. That approach is referred to as static linking because it’s defined at compile time and can’t change
or be substituted later for a different type. In contrast to static linking, invokedynamic supports dynamic
linking, where the type of the object for which a method is invoked is determined at runtime, and any
type is valid as long as it meets certain criteria. Specifically, the method must accept parameters that are
consistent with what’s specified by the invocation, and any data type with a method satisfying that condition
is acceptable. Although invokedynamic didn’t really impact the Java language until Java 8, it did allow for
better implementations of other languages besides Java that use the JVM.

Finally, there’s a collection of miscellaneous instructions for doing various other operations, including
managing the operand stack, transferring control, throwing exceptions, implementing the finally keyword,
and synchronizing.

http://dx.doi.org/10.1007/9781484206423_3

CHAPTER 1 ■ GOING INSIDE JAVA

12

For example, consider the following simple Java class:

class Hello {
 public static void main(String[] args) {
 System.out.println("Hello World!");
 }
}

If you compile this class and then use the javap utility with the –c switch (covered later) to disassemble
the class file, you can get a mnemonic version of the bytecode.

Compiled from "Hello.java"
class Hello {
 Hello();
 Code:
 0: aload_0
 1: invokespecial #1 // Method java/lang/Object."<init>":()V
 4: return

 public static void main(java.lang.String[]);
 Code:
 0: getstatic #2 // Field java/lang/System.out:Ljava/io/

PrintStream;
 3: ldc #3 // String Hello World!
 5: invokevirtual #4 // Method java/io/PrintStream.println:

(Ljava/lang/String;)V
 8: return
}

The main set of mnemonics we’re interested in consists of the three lines under the main() method,
which translate the single System.out.println("Hello World"); line of code.

The first instruction, getstatic, retrieves a PrintStream object from the out field of the java.lang.System
object and places it onto the operand stack. The next line, ldc, pushes the String “Hello World!” onto the
operand stack. Finally, invokevirtual executes a method, in this case println (on the java.io.PrintStream
class). For that method to successfully execute, it expects there to be a String and an instance of
java.io.PrintStream in the stack, in that order. Upon execution these items are removed from the stack.

The Java Class File Format
As already explained, the JVM can’t interpret the Java programming language directly, so when Java code is
compiled, the result is one or more class files containing bytecode, a symbol table, and other information.
The class file structure is a precisely defined binary format that ensures any JVM can load and interpret any
class file, no matter where the class file was produced.

The class file itself consists of a stream of 8-bit bytes. All higher-bit quantities (16, 32, or 64 bits) are
created by reading in a combination of 8-bit bytes, and multibyte quantities are stored in big-endian order
(the high bytes come first). The Java language provides I/O (input/output) streams (supported by the
DataInput, DataInputStream, DataOutput, and DataOutputStream interfaces from the java.io package)
that can read and write class files.

CHAPTER 1 ■ GOING INSIDE JAVA

13

The data types in the class file are unsigned 1-, 2-, or 4-byte quantities. These are denoted by the syntax
u1, u2, and u4. The class file can also contain a series of contiguous fixed-size items that can be indexed like
an array. These are designated using square brackets ([]).

The class format contains a single ClassFile structure, and that structure contains all the information
about the class or interface that the JVM needs to know. The general structure of the ClassFile is as follows:

ClassFile {
 u4 magic;
 u2 minor_version;
 u2 major_version;
 u2 constant_pool_count;
 cp_info constant_pool[constant_pool_count – 1];
 u2 access_flags;
 u2 this_class
 u2 super_class;
 u2 interfaces_count;
 u2 interfaces[interfaces_count];
 u2 fields_count;
 field_info fields[fields_count];
 u2 methods_count;
 method_info methods[methods_count];
 u2 attributes_count;
 attribute_into attributes[attributes_count];
}

The magic parameter is the magic number assigned to the class file format. This will have the value
0xCAFEBABE and identifies the code as being a class file.

The major_version and minor_version items are the major and minor versions of the class file format.
To the JVM, the version numbers indicate the format to which the class file adheres. JVMs can generally
load class files only within a certain version range (for example, within a single major version but a range of
minor versions) and will generally reject files from a newer specification than that of the JVM itself.

The constant_pool_count item is equal to the number of elements contained in the constant pool
plus one. This variable determines if a constant_pool index is valid. The constant_pool[] item is a table of
cp_info structures containing information on the elements in the constant_pool.

The access_flags item is a mask of flags reflecting whether the file is a class or interface and the access
permissions of the class or interface. The mask will be off or will be a combination of public, final, super,
interface, or abstract flags.

The this_class parameter points to a CONSTANT_Class_infor structure in the constant_pool table
representing the class or interface defined by this class file. The super_class item points to a similar
element in the constant_pool representing the direct superclass or interface or zero if no superclass exists.

The interfaces_count parameter represents the number of direct superinterfaces for the class or
interface. The interfaces[] item contains the location of those superinterfaces in the constant_pool table.

The fields_count variable gives the number of field_info structures contained in the ClassFile.
The field_info structures represent all fields, both static and instance, declared by the class or interface.
The methods[] item is a table containing the method_info structures.

Finally, the attributes_count variable gives the number of attributes in the attributes table of the
class or interface. The attributes[] item is a table containing the attributes’ structure.

CHAPTER 1 ■ GOING INSIDE JAVA

14

The Java Programming Language and APIs
All that we’ve covered so far happens transparently from the perspective of an application developer. In fact,
you don’t really have to know any details of Java’s internal architecture to program in Java. However, what
you do need to know is how to use Java as a programming language and also how to use the various APIs that
come with the different platforms to communicate with the underlying software and operating system. In
fact, this is essentially what the remainder of the book will be about—how to develop effectively with Java.

The Java Programming Language
Although knowledge of the various APIs is essential to achieving anything with Java, a solid foundation in
the core Java language is also highly desirable to make the most effective use of the APIs. In this book, you’ll
explore the following features of core Java programming:

Method, interface, and class design: Writing the main building blocks of your
applications with Java objects can be simultaneously quite straightforward and very
complex. However, if you take the time to follow some basic guidelines for creating
methods, classes, and libraries, it’s not too difficult to develop classes that not only
provide the required functionality but are also reliable, maintainable, and reusable.

Threading: Java includes built-in support for multithreaded applications, and
you’ll often find it necessary or desirable to take advantage of this. To do so,
you should be familiar with Java’s multithreading capabilities and know how to
implement threads correctly within an application.

The Java APIs
As discussed earlier in the chapter, three major versions of the Java platform exist, and each consists of some
significantly different APIs. In this book, we’ll concentrate on some (although by no means all) of the APIs
that form the Standard Edition. More specifically, we’ll cover the following:

User interface components: We’ll take an in-depth approach to show some
of the more complex user interface components; you’ll also learn how to use a
layout manager to arrange components within an interface.

The data transfer API: Closely related to providing the user interface for your
application is the need to provide cut-and-paste and drag-and-drop capabilities.

The printing API: Another common feature often required is the ability to print,
which you’ll examine through the use of Java’s printing capabilities.

JDBC: All but the most trivial of applications require data to be loaded,
manipulated, and stored in some form or another, and a relational database is
the most common means for storing such data. The Java Database Connectivity
(JDBC) API is provided for that purpose; we’ll discuss it in detail.

Internationalization: Most commercial applications and those developed for
internal use by large organizations are used in more than one country and need to
support more than one language. This requirement is sometimes overlooked and
treated as an implementation detail, but to be done successfully, internationalization
should be considered as part of an application’s design. To create a successful
design that includes internationalization support, you should be familiar with Java’s
capabilities in that area, and we’ll discuss them in detail in this book.

CHAPTER 1 ■ GOING INSIDE JAVA

15

Metadata: Java provides the ability to easily associate data with classes, interfaces,
methods, and fields. Java also includes an API that allows the metadata to be read
programmatically and used by tools to provide various useful functions such as
code generation.

Java Utility Tools: Making the Most of the JVM
Java SE comes with a number of development tools that you can use to compile, execute, and debug Java
programs; we’ll discuss some of the tools that relate to the JVM in the next sections. You can find a description
of all the utility tools on the Oracle web site at http://docs.oracle.com/javase/8/docs/technotes/tools/.

The Java Compiler
The compiler that comes with the J2SE is named javac; it reads class and interface definition files and
converts these into bytecode files. The command to run the Java compiler is as follows:

javac [options] [source files] [@file list]

The options are command-line options. If the number of source files to be compiled is sufficiently short,
the files can just be listed one after another. However, if the number of files is large, a file containing the
names of the files to be compiled can be used preceded by the @ character. Source code file names must end
with the .java suffix.

You can use the command-line options described in Table 1-2 to include additional functionality in the
standard compile command. This is only a partial list of options; for a complete list, including some that may
be specific to the Java compiler implementation, enter javac –help at the command line.

Table 1-2. Standard Options Supported by Java Compilers

Option Description

–classpath This command, followed by a user-specific class path, overrides the system CLASSPATH
environment variable.

–d This command, followed by a directory path, sets the destination directory for the
class files generated by the compiler.

–deprecation This command displays a description of any deprecated methods or classes used in
the source code.

–encoding This command sets the source file encoding name. Otherwise, the default
encoding is used.

–g This command provides more complete debugging information, including local
variable information.

–g:none This command turns off all debugging information.

–g:keyword This command allows the user to specify the type of debugging information provided.
Valid keyword options are source, lines, and vars.

–help This command displays information about the compiler utility options.

(continued)

http://docs.oracle.com/javase/8/docs/technotes/tools/

CHAPTER 1 ■ GOING INSIDE JAVA

16

Option Description

–nowarn This command prevents warning messages from being displayed. Warnings occur
when the compiler suspects something is wrong with the source code but the
problem isn’t severe enough to stop compilation.

–source This command indicates that features added after the specified release aren’t
supported. For example, specifying –source 1.3 will cause the compiler to fail if it
encounters the assert keyword, since assertions weren’t available until Java 1.4.

–sourcepath This command, followed by a source path, specifies the path that the compiler will
use to search for source code files.

–verbose This command produces additional information about the classes that are loaded
and the source files that were compiled.

–X This command displays information about nonstandard options. These are
options that need not be implemented by a compiler to be considered a valid
implementation, and as such may or may not be supported by a given compiler
implementation.

Table 1-2. (continued)

The Java Interpreter
The java utility launches a Java application by loading and running the class file containing the main
method of the application. The java utility will interpret the bytecode contained in that file and any other
class files that are part of the application. The general command syntax for the java utility is as follows:

java [options] class [arguments]

Alternatively, you can run it as follows:

java [options] –jar file.jar [arguments]

You can provide the initial class file as a separate file or as part of a Java Archive (JAR) file. The options
are command-line options for the JVM, and the class is the name of the class file containing the static
main() method to execute. The arguments are any arguments that need to be passed to main().

Table 1-3 describes some of the standard options for the java utility and, as with the compiler, you can
enter java –help at the command line to see a complete set of options supported by the implementation
you’re using.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ GOING INSIDE JAVA

17

Table 1-3. Standard Options Supported by JVM Implementations

Option Description

–client This command specifies that the Java HotSpot Client Virtual
Machine should be used. This is the default and is optimized for
executing client/desktop application code.

–server This command specifies that the Java HotSpot Server Virtual
Machine should be used. This Virtual Machine is optimized
for executing server code, such as that used to support web
applications.

–classpath or –cp This command, followed by a user-specified class path, overrides
the system CLASSPATH environment variable.

–Dproperty=value This command provides a system property with a value.

–enableassertions or –ea This command enables assertions, which are disabled by default.

–disableassertions or –da This command disables assertions.

–enablesystemassertions or –esa This command enables assertions in all system classes.

–disablesystemassertions or –dsa This command disables assertions in all system classes.

–help or –? This command displays information about the java utility.

–jar This command executes a program contained in a JAR file, as
shown previously.

–showversion This command shows version information and continues running.

–verbose This command provides information about each class that’s loaded.

–verbose:gc This command reports garbage collection events.

–verbose:jni This command displays information about native methods and
other JNI activity.

–version This command shows version information and then exits.

–showversion This command shows the version number and then continues.

–X This command displays information about nonstandard options
and then exits.

The Java Class Disassembler
You can use the javap utility to look inside a class file, which can be helpful if you want to have only
the compiled code and want to want to understand what the source code looked like or if you want to
understand how Java source code is mapped to bytecode. The standard command lists declarations of
nonprivate and nonstatic fields, methods, constructors, and static initializers for a specific class file. You
can also use the javap utility to provide a printout of the JVM bytecode instructions that are executed for
each method as we did earlier in the chapter to examine the bytecodes generated by compiling the source.
The basic syntax for the javap command is as follows:

javap [options] class

CHAPTER 1 ■ GOING INSIDE JAVA

18

Summary
This chapter has been a bit of a whirlwind tour inside Java, poking in the corners of Java’s internal
architecture that don’t get explored very often. You should now have a better appreciation of what’s actually
going on when you type java MyClass at the command prompt.

We’ve covered the following:

The components of Java’s architecture•

What the JVM is and how it functions•

The internals of the JVM architecture•

The Java class file format•

Now that you’ve taken a bit of time to explore the foundations of Java, you’re ready to start the main
work of learning how to use all the different components of the Java platform in detail, starting with library,
class, and method design.

Table 1-4. Some of the Options Supported by the javap Utility

Option Description

–b This command ensures backward compatibility with earlier versions of javap.

–bootclasspath This command, followed by a path, specifies the path from which to load the
bootstrap classes. Normally these would be classes contained in the
/lib/rt.jar archive.

–c This command prints the JVM instructions for the execution of each method.
This tells you what the bytecode for each method actually does.

–classpath This command, followed by a user-specified class path, overrides the system
CLASSPATH environment variable.

–extdirs This command, followed by a directory, overrides the location the system searches
for installed extensions. The default location is /lib/ext.

–help This command prints information about the javap utility.

–Jflag This command passes the specified flag directly to the runtime system.

–l This command displays line and local variables.

–package This command shows only package, protected, and public classes and members.
This is the default.

–private This command shows information about all classes and members.

–protected This command displays information about protected and public classes and
members only.

–public This command shows information only about public classes and members.

–s This command prints internal type signatures.

–verbose This command prints additional information for each method including stack size,
local variable information, and arguments.

The options are command-line options for the javap utility (see Table 1-4).

19

CHAPTER 2

Designing Libraries, Classes,
and Methods

Understanding the mechanics of creating Java code is relatively easy, but creating a good object-oriented
design is much more complex. In this context, good means that the code works correctly and is reasonably
easy to understand, maintain, extend, and reuse. This chapter describes some guidelines that can help you
create code with those characteristics.

Reusability is an important goal and is one of the primary advantages of using object-oriented
programming languages. Creating reusable code saves time and effort by avoiding the duplication that
occurs when software must be created that’s similar or identical to something that was written previously.

Although creating reusable code should always be your goal, the reality is that it’s not always possible
or practical to do so. Some classes are good candidates for reuse while others aren’t, and creating reusable
software usually requires more work in the short term than creating “throwaway” code. However, as
you become more experienced in creating good object-oriented designs, you’ll learn to recognize good
candidates for reuse and become better at creating classes, interfaces, and packages that aren’t tied too
closely to a single application. This chapter provides some of the basic concepts that will help you learn
those skills.

Library Design
Since it’s almost certain that some of the code you write won’t be reusable, it’s a good idea to segregate your
classes into those that are reusable and those that aren’t. For example, if you’re creating a class containing
functionality that’s useful throughout the application—and perhaps even in other applications—it’s usually
a good idea to put that class and other reusable ones that are related to it in their own package. On the
other hand, when you’re creating classes that aren’t likely to be reusable because they serve a very specific
purpose it’s best to put those groups of related single-use classes in a separate package or packages. In other
words, the goal should be for each individual package to represent either code that’s reusable or code that
isn’t. By doing this, you can begin to assemble a library of reusable classes and can easily import them into
another application. You should try to treat these reusable classes the same way most programmers do the
Java core classes: as code that can’t (or at least shouldn’t) be changed. To avoid making changes, you should
put a great deal of thought into the initial design of a class. In particular, you should think about how it might
need to be used differently in the future than the initial use you have in mind.

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

20

Package Design
Perhaps the first question to be answered concerning packages is when to define them. Ideally, you should
define packages early in the design phase, prior to creating class definitions. In practice, however, it’s
usually easier to create packages once your design is at least partially complete. At that point, it’s more
evident what sort of logical groupings you can create, and those groupings can be the basis for your package
design. Fortunately, modern Integrated Development Environment (IDE) software makes moving classes to
different packages trivial to do, which in turn helps facilitate good design.

A package should be kept reasonably focused and have some type of theme or consistency to the
classes assigned to it. If the package grows large and contains a subset of classes that can be separated from
the main package, you should consider moving them into newly defined subpackages. For example, the
java.util.concurrent package contains many classes and interfaces representing utilities associated with
concurrent (multithreaded) programming. Instead of putting all of the concurrency classes and interfaces
in java.util.concurrent, however, Java’s package structure breaks out those related to atomic wrappers
into one subpackage (java.util.concurrent.atomic) and those related to locks into another (java.util.
concurrent.locks). Multiple levels of subpackage are possible and entirely appropriate when further logical
subdivisions can be made, and you should take advantage of this when designing your own libraries.

Keep in mind that package design isn’t an exact science; there is no right and wrong, but you should try to
make the placement of your classes as predictable and logical as possible and you generally should avoid creating
packages with only one or two classes in them. If a given class doesn’t seem to be a good fit for a particular
subpackage then a good rule of thumb is to keep it in the higher-level package. For example, in the case of the
concurrency packages just mentioned a class that’s not related to atomic wrappers or to locks would probably be
best suited for the java.util.concurrent package, and in fact that’s how the concurrency classes are organized.

The recommended approach for package hierarchies is to use something resembling a reverse domain
name. For example, if you’re writing code for the Acme Corporation whose domain name is www.acme.com,
your packages should begin with com.acme and include as many other levels as are necessary to support an
effective division of classes. For example, if you’re writing code for a project referred to as the CRM project,
you might use a base package of com.acme.crm with appropriate sublevels below that base.

If you don’t have a registered domain name, you can always choose to use geography or other criteria
for selecting your base package hierarchy, such as us.tx.plano.bspell which is a combination of country,
state, city, and user name. As this example suggests, package names should be kept short and abbreviations
and acronyms are commonly used to support that convention. The important point to keep in mind is that
packages are primarily intended to prevent naming “collisions” where two classes exist in the same package
with the same name. If you’re never going to share your code with anyone, you can use any package-naming
convention you want or none at all. There’s no technical reason you can’t define classes in a package such
as com.sun or com.microsoft, but doing so may confuse people who want to use your code or even make it
difficult for them to use it if they’re already using code with the same package/class name combination.

Class Design
An important part of being a professional object-oriented programmer is the ability to create well-designed
classes. Practice is an important ingredient in mastering this skill, but some simple principles can help
you become more effective. Class design is largely a matter of assigning responsibility, where you identify
the functions that must be implemented and assign each one to the class or classes best suited to perform
that function. Alternatively, if there’s no existing class that’s appropriate, you may decide to create a new
class. Some classes are identified in the analysis phase and correspond to real-world entities; for example,
a Student class might be defined that corresponds to a real-world student. Other classes, though, called
pure abstractions exist solely to provide needed functionality while allowing you to create a better design.
To promote reusability, your classes should have two general characteristics: loose coupling and strong
cohesion. A class should also encapsulate its data in an effective manner, and we’ll now examine each of
these points as they relate to class design.

http://www.acme.com/

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

21

Loose Coupling
Coupling refers to the degree to which classes depend upon one another, and two classes that are highly
dependent upon each other are considered tightly (sometimes called highly) coupled. Coupling is inevitable
in some cases because classes must maintain references to one another and perform method calls. However,
when you implement a class that’s a good candidate for reuse, you should limit its dependencies on other
classes as much as possible. It’s often not obvious how to do this because you usually can’t simply eliminate
the interaction between classes. In many cases, it’s possible to create a pure abstraction that handles the
interaction between two classes or to shift the responsibility for the interaction to an existing class that you
don’t intend to make reusable.

As an example, suppose you need to create a graphical component that allows you to select font
properties, enter some sample text, and have that sample text displayed using the selected font properties.
When the font or the sample text changes, the display should update to display the sample text value using
the current font settings.

To satisfy these requirements, you might first create a class similar to the one in Listing 2-1, which
defines a panel that allows you to select the font properties (name, size, bold, italic). (See Figure 2-1).

Listing 2-1. The Initial FontPropertiesPanel Code

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;

public class FontPropertiesPanel extends JPanel {

 protected JList<String> nameList;
 protected JComboBox<Integer> sizeBox;
 protected JCheckBox boldBox;
 protected JCheckBox italicBox;

 protected SampleTextFrame frame;

 public final static int[] fontSizes = {10, 12, 14, 18, 24, 32, 48, 64};

 public FontPropertiesPanel(SampleTextFrame stf) {
 super();
 frame = stf;
 createComponents();
 buildLayout();
 }

 protected void buildLayout() {
 JLabel label;
 GridBagConstraints constraints = new GridBagConstraints();
 GridBagLayout layout = new GridBagLayout();
 setLayout(layout);

 constraints.anchor = GridBagConstraints.WEST;
 constraints.insets = new Insets(5, 10, 5, 10);

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

22

 constraints.gridx = 0;
 label = new JLabel("Name:", JLabel.LEFT);
 layout.setConstraints(label, constraints);
 add(label);
 label = new JLabel("Size:", JLabel.LEFT);
 layout.setConstraints(label, constraints);
 add(label);
 layout.setConstraints(boldBox, constraints);
 add(boldBox);

 constraints.gridx++;
 nameList.setVisibleRowCount(3);
 JScrollPane jsp = new JScrollPane(nameList);
 layout.setConstraints(jsp, constraints);
 add(jsp);
 layout.setConstraints(sizeBox, constraints);
 add(sizeBox);
 layout.setConstraints(italicBox, constraints);
 add(italicBox);
 }

 protected void createComponents() {
 GraphicsEnvironment ge =
 GraphicsEnvironment.getLocalGraphicsEnvironment();
 String[] names = ge.getAvailableFontFamilyNames();
 nameList = new JList<String>(names);
 nameList.setSelectedIndex(0);
 nameList.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);
 nameList.addListSelectionListener(new ListSelectionListener() {
 public void valueChanged(ListSelectionEvent event) {
 handleFontPropertyChange();
 }
 }
);
 Integer sizes[] = new Integer[fontSizes.length];
 for (int i = 0; i < sizes.length; i++) {
 sizes[i] = new Integer(fontSizes[i]);
 }
 sizeBox = new JComboBox<Integer>(sizes);
 sizeBox.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 handleFontPropertyChange();
 }
 }
);
 boldBox = new JCheckBox("Bold");
 boldBox.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 handleFontPropertyChange();
 }
 }
);

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

23

 italicBox = new JCheckBox("Italic");
 italicBox.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 handleFontPropertyChange();
 }
 }
);
 }

 protected void handleFontPropertyChange() {
 frame.refreshDisplayFont();
 }

 public String getSelectedFontName() {
 return (String)(nameList.getSelectedValue());
 }

 public int getSelectedFontSize() {
 return ((Integer)(sizeBox.getSelectedItem())).intValue();
 }

 public boolean isBoldSelected() {
 return boldBox.isSelected();
 }

 public boolean isItalicSelected() {
 return italicBox.isSelected();
 }

}

Figure 2-1. Font testing application interface

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

24

Next, you might create a class similar to the one shown in Listing 2-2 that contains an instance of
FontPropertiesPanel, contains a text field that allows you to type the sample text, and contains a label that
displays that text using the specified font.

Listing 2-2. The Initial SampleTextFrame Class

import java.awt.*;
import javax.swing.*;
import javax.swing.border.*;
import javax.swing.event.*;
import javax.swing.text.*;

public class SampleTextFrame extends JFrame {

 protected FontPropertiesPanel propertiesPanel;
 protected JTextField sampleText;
 protected JLabel displayArea;

 public static void main(String[] args) {
 SampleTextFrame stf = new SampleTextFrame();
 stf.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 stf.setVisible(true);
 }

 public SampleTextFrame() {
 super();
 createComponents();
 createDocumentListener();
 buildLayout();
 refreshDisplayFont();
 pack();
 }

 protected void createComponents() {
 propertiesPanel = new FontPropertiesPanel(this);
 sampleText = new JTextField(20);
 displayArea = new JLabel("");
 displayArea.setPreferredSize(new Dimension(200, 75));
 displayArea.setMinimumSize(new Dimension(200, 75));
 }

 protected void createDocumentListener() {
 Document document = sampleText.getDocument();
 document.addDocumentListener(new DocumentListener() {
 public void changedUpdate(DocumentEvent event) {
 handleDocumentUpdate();
 }

 public void insertUpdate(DocumentEvent event) {
 handleDocumentUpdate();
 }

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

25

 public void removeUpdate(DocumentEvent event) {
 handleDocumentUpdate();
 }
 }
);
 }

 protected void buildLayout() {
 Container pane = getContentPane();
 GridBagConstraints constraints = new GridBagConstraints();
 GridBagLayout layout = new GridBagLayout();
 pane.setLayout(layout);

 constraints.insets = new Insets(5, 10, 5, 10);
 constraints.fill = GridBagConstraints.HORIZONTAL;
 constraints.weightx = 1;

 constraints.gridx = 0;
 BevelBorder bb = new BevelBorder(BevelBorder.RAISED);
 TitledBorder tb = new TitledBorder(bb, "Font");
 propertiesPanel.setBorder(tb);
 layout.setConstraints(propertiesPanel, constraints);
 pane.add(propertiesPanel);

 layout.setConstraints(sampleText, constraints);
 pane.add(sampleText);

 layout.setConstraints(displayArea, constraints);
 pane.add(displayArea);
 }

 protected void handleDocumentUpdate() {
 displayArea.setText(sampleText.getText());
 }

 public void refreshDisplayFont() {
 displayArea.setFont(getSelectedFont());
 }

 public Font getSelectedFont() {
 String name = propertiesPanel.getSelectedFontName();
 int style = 0;
 style += (propertiesPanel.isBoldSelected() ? Font.BOLD : 0);
 style += (propertiesPanel.isItalicSelected() ? Font.ITALIC : 0);
 int size = propertiesPanel.getSelectedFontSize();
 return new Font(name, style, size);
 }

}

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

26

As you can see from this code, FontPropertiesPanel maintains a reference to its parent
SampleTextFrame and, when a font property changes, calls the frame’s refreshDisplayFont() method. At
first glance this may appear to be an acceptable design, but it has a significant drawback: neither class can
be used independently of the other. In other words, SampleTextFrame and FontPropertiesPanel are tightly
coupled and as a result are poor candidates for reuse. If you wanted to use FontPropertiesPanel as part of
some user interface component other than SampleTextFrame, you’d be unable to do so in its present form, as
the current design allows it to operate only in conjunction with an instance of SampleTextFrame. Figure 2-2
shows the relationship between these two classes.

Figure 2-2. FontPropertiesPanel’s dependency upon SampleTextFrame greatly limits the reuse potential of
the former class

Since it provides functionality that might be useful in another context, FontPropertiesPanel appears
to be a good candidate for reuse if it can be decoupled from SampleTextFrame. The existing dependence is
because FontPropertiesPanel calls refreshDisplayFont() directly. Consequently, FontPropertiesPanel
depends not only upon the existence of SampleTextFrame but also upon its implementing the
refreshDisplayFont() method. Obviously, changes to the font must be communicated to the text display
somehow, but ideally it should be done in a way that allows FontPropertiesPanel and SampleTextFrame to
be loosely coupled.

One solution to this problem is to use a technique that’s simple but powerful: couple a class to an
interface instead of to another class. For example, you might create an interface called FontListener that
defines a single fontChanged() method, which is called when the font property value changes. In fact,
you can use this technique to reduce SampleTextFrame’s dependence upon FontPropertiesPanel as
well. Notice that currently when a property changes, SampleTextFrame is responsible for extracting the
font properties from FontPropertiesPanel and using that information to construct an instance of Font.
This is a poor design not only because it makes the two classes more tightly coupled but also because it
actually requires more code than building a Font instance inside of FontPropertiesPanel, which has all the
information needed to do so.

This illustrates another important point related to class design: functionality should typically be
assigned to the class that contains the information needed to perform the function. So, to make these
two classes more loosely coupled, we’ll specify that the listener’s fontChanged() method should be
passed a reference to a new font that was built using the newly selected properties. The following is an
implementation of such an interface:

public interface FontListener {
 public void fontChanged(java.awt.Font newFont);
}

Next, you’ll implement the previous interface in SampleTextFrame and have it update the label’s font
when it receives a message from the FontPropertiesPanel instance (see Listing 2-3).

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

27

Listing 2-3. Implementing the FontListener Interface

import java.awt.*;
import javax.swing.*;
import javax.swing.border.*;
import javax.swing.event.*;
import javax.swing.text.*;

public class SampleTextFrame extends JFrame implements FontListener {

 protected FontPropertiesPanel propertiesPanel;
 protected JTextField sampleText;
 protected JLabel displayArea;

 public static void main(String[] args) {
 SampleTextFrame stf = new SampleTextFrame();
 stf.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 stf.setVisible(true);
 }

 public SampleTextFrame() {
 super();
 createComponents();
 createDocumentListener();
 buildLayout();
 displayArea.setFont(propertiesPanel.getSelectedFont());
 propertiesPanel.setFontListener(this);
 pack();
 }

 protected void createComponents() {
 propertiesPanel = new FontPropertiesPanel();
 sampleText = new JTextField(20);
 displayArea = new JLabel("");
 displayArea.setPreferredSize(new Dimension(200, 75));
 displayArea.setMinimumSize(new Dimension(200, 75));
 }

 protected void createDocumentListener() {
 Document document = sampleText.getDocument();
 document.addDocumentListener(new DocumentListener() {
 public void changedUpdate(DocumentEvent event) {
 handleDocumentUpdate();
 }

 public void insertUpdate(DocumentEvent event) {
 handleDocumentUpdate();
 }

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

28

 public void removeUpdate(DocumentEvent event) {
 handleDocumentUpdate();
 }
 }
);
 }
 protected void buildLayout() {
 Container pane = getContentPane();
 GridBagConstraints constraints = new GridBagConstraints();
 GridBagLayout layout = new GridBagLayout();
 pane.setLayout(layout);

 constraints.insets = new Insets(5, 10, 5, 10);
 constraints.fill = GridBagConstraints.HORIZONTAL;
 constraints.weightx = 1;

 constraints.gridx = 0;
 BevelBorder bb = new BevelBorder(BevelBorder.RAISED);
 TitledBorder tb = new TitledBorder(bb, "Font");
 propertiesPanel.setBorder(tb);
 layout.setConstraints(propertiesPanel, constraints);
 pane.add(propertiesPanel);

 layout.setConstraints(sampleText, constraints);
 pane.add(sampleText);

 layout.setConstraints(displayArea, constraints);
 pane.add(displayArea);
 }

 protected void handleDocumentUpdate() {
 displayArea.setText(sampleText.getText());
 }

// public void refreshDisplayFont() {
// displayArea.setFont(getSelectedFont());
// }

// public Font getSelectedFont() {
// String name = propertiesPanel.getSelectedFontName();
// int style = 0;
// style += (propertiesPanel.isBoldSelected() ? Font.BOLD : 0);
// style += (propertiesPanel.isItalicSelected() ? Font.ITALIC : 0);
// int size = propertiesPanel.getSelectedFontSize();
// return new Font(name, style, size);
// }

 public void fontChanged(Font newFont) {
 displayArea.setFont(newFont);
 }
}

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

29

Finally, you can modify FontPropertiesPanel so it no longer maintains a reference to SampleTextFrame
but instead keeps a reference to a FontListener. You can also implement a getSelectedFont() method that
can be used to create a new Font instance using the currently selected properties (see Listing 2-4).

Listing 2-4. Decoupling FontPropertiesPanel and SampleTextFrame

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;

public class FontPropertiesPanel extends JPanel {

 protected JList<String> nameList;
 protected JComboBox<Integer> sizeBox;
 protected JCheckBox boldBox;
 protected JCheckBox italicBox;

// protected SampleTextFrame frame;
 protected FontListener listener;

 public final static int[] fontSizes = {10, 12, 14, 18, 24, 32, 48, 64};

 public FontPropertiesPanel() {
 super();
 createComponents();
 buildLayout();
 }

 protected void buildLayout() {
 JLabel label;
 GridBagConstraints constraints = new GridBagConstraints();
 GridBagLayout layout = new GridBagLayout();
 setLayout(layout);

 constraints.anchor = GridBagConstraints.WEST;
 constraints.insets = new Insets(5, 10, 5, 10);

 constraints.gridx = 0;
 label = new JLabel("Name:", JLabel.LEFT);
 layout.setConstraints(label, constraints);
 add(label);
 label = new JLabel("Size:", JLabel.LEFT);
 layout.setConstraints(label, constraints);
 add(label);
 layout.setConstraints(boldBox, constraints);
 add(boldBox);

 constraints.gridx++;
 nameList.setVisibleRowCount(3);
 JScrollPane jsp = new JScrollPane(nameList);
 layout.setConstraints(jsp, constraints);

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

30

 add(jsp);
 layout.setConstraints(sizeBox, constraints);
 add(sizeBox);
 layout.setConstraints(italicBox, constraints);
 add(italicBox);
 }

 protected void createComponents() {
 GraphicsEnvironment ge =
 GraphicsEnvironment.getLocalGraphicsEnvironment();
 String[] names = ge.getAvailableFontFamilyNames();
 nameList = new JList<String>(names);
 nameList.setSelectedIndex(0);
 nameList.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);
 nameList.addListSelectionListener(new ListSelectionListener() {
 public void valueChanged(ListSelectionEvent event) {
 handleFontPropertyChange();
 }
 }
);
 Integer sizes[] = new Integer[fontSizes.length];
 for (int i = 0; i < sizes.length; i++) {
 sizes[i] = new Integer(fontSizes[i]);
 }
 sizeBox = new JComboBox<Integer>(sizes);
 sizeBox.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 handleFontPropertyChange();
 }
 }
);
 boldBox = new JCheckBox("Bold");
 boldBox.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 handleFontPropertyChange();
 }
 }
);
 italicBox = new JCheckBox("Italic");
 italicBox.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 handleFontPropertyChange();
 }
 }
);
 }

 public void setFontListener(FontListener fl) {
 listener = fl;
 }

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

31

 protected void handleFontPropertyChange() {
 listener.fontChanged(getSelectedFont());
 }

 public Font getSelectedFont() {
 String name = (String)(nameList.getSelectedValue());
 int style = 0;
 style += (boldBox.isSelected() ? Font.BOLD : 0);
 style += (italicBox.isSelected() ? Font.ITALIC : 0);
 int size = ((Integer)(sizeBox.getSelectedItem())).intValue();
 return new Font(name, style, size);
 }

// public String getSelectedFontName() {
// return (String)(nameList.getSelectedValue());
// }

// public int getSelectedFontSize() {
// return ((Integer)(sizeBox.getSelectedItem())).intValue();
// }

// public boolean isBoldSelected() {
// return boldBox.isSelected();
// }

// public boolean isItalicSelected() {
// return italicBox.isSelected();
// }

}

Figure 2-3 illustrates the relationships between the two classes and the new interface after these
changes have been made.

Figure 2-3. Reducing dependencies can also result in improved reuse

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

32

Although the design is slightly more complex than the original one, it’s much more desirable from a
reuse standpoint. FontPropertiesPanel is now dependent only upon FontListener and isn’t coupled to
SampleTextFrame. Any user interface component that needs to incorporate FontPropertiesPanel can do
so and must simply implement the FontListener interface (and its fontChanged() method) in a class that’s
responsible for monitoring the font properties. In this case, the method was implemented with just a single
line of code that refreshes the display so that it uses the updated font properties.

Although SampleTextFrame isn’t as good a candidate for reuse as FontPropertiesPanel, you can make
it more reusable by eliminating its dependence upon FontPropertiesPanel. You’ve already removed one
dependency by preventing SampleTextFrame from building a new Font instance based on the properties
in the panel, but dependencies still exist. For example, in the createComponents() method, an instance of
FontPropertiesPanel is created. In addition, the SampleTextFrame constructor makes calls to the panel’s
getSelectedFont() and getFontListener() methods.

Let’s assume that SampleTextFrame will always contain a JPanel subclass called propertiesPanel but
that you don’t want to couple it specifically to FontPropertiesPanel. This would allow you to use other
panel types and greatly reduce the coupling between these two classes, but how can you achieve this?

Another helpful guideline for creating reusable classes is to divide the functionality into two segments:
functionality that’s common and reusable and functionality that’s specific to one application and isn’t
reusable. Given this division, you can improve reusability by putting the common functionality in a
superclass and the application-specific logic in a subclass. For example, in this case, you can eliminate
SampleTextFrame’s references to the FontPropertiesPanel class and move them into a subclass of
SampleTextFrame. Listing 2-5 shows the modified SampleTextFrame.

Listing 2-5. SampleTextFrame, Modified

import java.awt.*;
import javax.swing.*;
import javax.swing.border.*;
import javax.swing.event.*;
import javax.swing.text.*;

public class SampleTextFrame extends JFrame implements FontListener {

// protected FontPropertiesPanel propertiesPanel;
 protected JPanel propertiesPanel;
 protected JTextField sampleText;
 protected JLabel displayArea;

 public static void main(String[] args) {
 SampleTextFrame stf = new SampleTextFrame();
 stf.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 stf.setVisible(true);
 }

 public SampleTextFrame() {
 super();
 createComponents();
 createDocumentListener();
 buildLayout();
// displayArea.setFont(propertiesPanel.getSelectedFont());
// propertiesPanel.setFontListener(this);
 pack();
 }

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

33

 protected void createComponents() {
// propertiesPanel = new FontPropertiesPanel();
 sampleText = new JTextField(20);
 displayArea = new JLabel("");
 displayArea.setPreferredSize(new Dimension(200, 75));
 displayArea.setMinimumSize(new Dimension(200, 75));
 }

 protected void createDocumentListener() {
 Document document = sampleText.getDocument();
 document.addDocumentListener(new DocumentListener() {
 public void changedUpdate(DocumentEvent event) {
 handleDocumentUpdate();
 }

 public void insertUpdate(DocumentEvent event) {
 handleDocumentUpdate();
 }

 public void removeUpdate(DocumentEvent event) {
 handleDocumentUpdate();
 }
 }
);
 }

protected void buildLayout() {
 Container pane = getContentPane();
 GridBagConstraints constraints = new GridBagConstraints();
 GridBagLayout layout = new GridBagLayout();
 pane.setLayout(layout);

 constraints.insets = new Insets(5, 10, 5, 10);
 constraints.fill = GridBagConstraints.HORIZONTAL;
 constraints.weightx = 1;

 constraints.gridx = 0;
 BevelBorder bb = new BevelBorder(BevelBorder.RAISED);

 TitledBorder tb = new TitledBorder(bb, "Font");
 propertiesPanel.setBorder(tb);
 layout.setConstraints(propertiesPanel, constraints);
 pane.add(propertiesPanel);

 layout.setConstraints(sampleText, constraints);
 pane.add(sampleText);

 layout.setConstraints(displayArea, constraints);
 pane.add(displayArea);
 }

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

34

 protected void handleDocumentUpdate() {
 displayArea.setText(sampleText.getText());
 }

 public void fontChanged(Font newFont) {
 displayArea.setFont(newFont);
 }

}

Listing 2-5 removes all explicit references to FontPropertiesPanel, which can be added to a new
subclass of SampleTextFrame (see Listing 2-6).

Listing 2-6. The FontPropertiesFrame Subclass

public class FontPropertiesFrame extends SampleTextFrame {

 public static void main(String[] args) {
 FontPropertiesFrame fpf = new FontPropertiesFrame();
 fpf.setVisible(true);
 }

 public FontPropertiesFrame() {
 super();
 FontPropertiesPanel fontPanel = (FontPropertiesPanel)propertiesPanel;
 displayArea.setFont(fontPanel.getSelectedFont());
 fontPanel.setFontListener(this);
 }

 protected void createComponents() {
 propertiesPanel = new FontPropertiesPanel();
 super.createComponents ();
 }

}

Figure 2-4 illustrates the relationship between these components.

Figure 2-4. Class diagrams such as this one illustrate the dependencies between classes and can be helpful in
identifying design weaknesses

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

35

Although it was necessary to create a small class (FontPropertiesFrame) and an interface
(FontListener), you’ve now converted two tightly coupled and practically impossible to reuse classes into
good candidates for a reusable code library.

Strong Cohesion
In addition to loosely coupling classes, another characteristic of good class design is a high level of cohesion.
If a class is highly cohesive, it means that all its responsibilities are closely related and that it’s complete. In
other words, the class isn’t cohesive if it contains methods that perform unrelated functions or if some set
of closely related functions is split across that class and one or more others. You saw an example of this in
the application just described, where the original implementation of FontPropertiesPanel didn’t contain a
method to create an instance of Font based on the selected property settings.

Cohesion most commonly becomes a problem when too much functionality is added to a single class.
To avoid that problem, a good rule of thumb is to keep the responsibilities of a class limited enough that they
can be outlined with a brief description. For another example of classes that aren’t cohesive, suppose you’re
given the code in Listing 2-7, which is part of a larger application. StudentReport is responsible for printing
out students’ reports.

Listing 2-7. StudentReport

import java.util.List;

public class StudentReport {

 public void printStudentGrades(Student[] students) {
 List<TestScore> testScores;
 int total;

 for (Student student : students) {
 testScores = student.getTestScores();
 total = 0;
 for (TestScore testScore : testScores) {
 total += testScore.getPercentCorrect();
 }
 System.out.println("Final grade for " + student.getName() + " is " +
 total / testScores.size());
 }
 }

}

Student holds students’ names and an array containing their test results:

import java.util.List;

public class Student {

 private List<TestScore> testScores;
 private String name;

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

36

 public Student(List<TestScore> scores, String name) {
 this.testScores = scores;
 this.name = name;
 }

 public String getName() {
 return name;
 }

 public List<TestScore> getTestScores() {
 return testScores;
 }

}

Finally, TestScore is as follows:

public class TestScore {

 private int percentCorrect;

 public TestScore(int percent) {
 this.percentCorrect = percent;
}

 public int getPercentCorrect() {
 return percentCorrect;
 }

}

This code will function correctly but is an example of poor design. StudentReport is responsible for
printing a list of students and the average of their grades, but it has also been assigned responsibility for
calculating the average. It’s coupled both to Student and to TestScore, because TestScore contains the
information needed to calculate the averages. Figure 2-5 illustrates the relationships among these three classes.

Figure 2-5. This diagram illustrates the relationship between the StudentReport, TestScore, and Student
classes

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

37

Notice that both StudentReport and Student depend upon TestScore. This code is poorly designed
because it violates both of the guidelines outlined previously.

The classes are tightly coupled because of an unnecessary dependency •
(specifically StudentReport’s dependency upon TestScore).

• StudentReport suffers from weak cohesion, because it performs two functions:
printing a report and calculating each student’s average.

This poor design is a result of the decision to assign StudentReport the responsibility for calculating
averages. A better design would involve assigning responsibility for the calculation to Student and
creating a method that allows StudentReport to obtain the information from that class. StudentReport’s
printStudentGrades() method is therefore much simpler.

public class StudentReport {

 public void printStudentGrades(Student[] students) {
 for (Student student : students) {
 System.out.println("Final grade for " + student.getName() +
 " is " + student.getAverage());
 }
 }

}

And Student gains a getAverage() method:

import java.util.List;

public class Student {

 private List<TestScore> testScores;
 private String name;

 public Student(List<TestScore> scores, String name) {
 this.testScores = scores;
 this.name = name;
 }

 public String getName() {
 return name;
 }

 public List<TestScore> getTestScores() {
 return testScores;
 }

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

38

 public int getAverage() {
 int total = 0;
 for (TestScore testScore : testScores) {
 total += testScore.getPercentCorrect();
 }
 return total / testScores.size();
 }

}

TestScore is unchanged. This code is not only more readable but also more reusable, since there are
fewer dependencies, as illustrated in Figure 2-6.

Figure 2-6. Modifying the classes results in fewer dependencies, which in turn results in application code
that’s easier to understand and support

In general, you should assign responsibilities carefully and minimize the number of dependencies
among different classes. As mentioned earlier, you should usually assign responsibility for manipulating
data to the class that has access to it. In this case, Student had access to all the necessary information while
StudentReport didn’t, which made Student a better choice for performing the task of calculating an average.

Encapsulation
One of the most basic ways of ensuring good class design is to provide effective encapsulation of your data.
For example, suppose you create a class called Employee that contains all the information an application
needs to describe an individual.

public class Employee {

 public int employeeID;
 public String firstName;
 public String lastName;

}

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

39

Since the three fields are public, it’s possible to access them from any other class, as in the following
code segment:

Employee emp = new Employee();
emp.employeeID = 123456;
emp.firstName = "John";
emp.lastName = "Smith";

Although Java allows you to read and modify fields this way, you shouldn’t normally do it. Instead,
change the visibility of the fields to restrict their accessibility and create a pair of accessor (get) and mutator
(set) methods (sometimes called getters and setters) for each field that will allow you access to it, as in
Listing 2-8.

Listing 2-8. Adding Accessor and Mutator Methods

public class Employee {

 private int employeeID;
 private String firstName;
 private String lastName;

 public int getEmployeeID() {
 return employeeID;
 }

 public void setEmployeeID(int id) {
 employeeID = id;
 }

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String name) {
 firstName = name;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String name) {
 lastName = name;
 }

}

Encapsulation and object-oriented “purity” are nice concepts, but this approach also has some practical
advantages. First, if it becomes necessary for Employee to be made thread-safe, which we’ll discuss in detail
in Chapter 3, then it’s relatively easy to do so if access to its fields is controlled this way. In contrast, when
implementation details—such as the fields that contain the data—are visible externally, there’s really no way
to control how those fields are used.

http://dx.doi.org/10.1007/9781484206423_3

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

40

Another advantage of using accessor and mutator methods is that they insulate you from changes to
a property’s implementation. For example, you could change employeeID from an int to a String without
affecting other classes, as long as you perform the appropriate conversions in the accessor and mutator
methods, as shown in Listing 2-9.

Listing 2-9. Encapsulation Hides Implementation Details

public class Employee {

 private String employeeID;
 private String firstName;
 private String lastName;

 public int getEmployeeID() {
 return Integer.parseInt(employeeID);
 }

 public void setEmployeeID(int id) {
 employeeID = Integer.toString(id);
 }

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String name) {
 firstName = name;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String name) {
 lastName = name;
 }

}

Although the implementation of employeeID changed, other classes that read or modify it won’t see
any change in its behavior, because the change in implementation is concealed by the accessor and mutator
methods.

Finally, encapsulating the class properties this way allows you to define derived values that can be made
accessible. For example, you might define a getFullName() method in Employee that returns the first and
last name together as a single string.

public String getFullName() {
 return firstName + " " + lastName;
}

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

41

Of course, it’s possible to obtain derived values without creating an accessor method, but often that
means duplicating the code that derives the value. For example, to derive the “full name” property in several
places within your application, you’d have to copy the implementation (firstName + " " + lastName)
to each of those places. This has the same disadvantage that always accompanies duplicated code: if
the implementation ever changes, you’ll need to change every place in the code that relied upon the old
implementation. If you decided to include a middle name, for instance, using a getFullName() method
would allow you to make the change in a single place within your code.

Visibility

In this example, the fields were private and the methods public. As a rule, you should assign fields and
methods the most restrictive visibility possible while still providing the functionality you need (see Table 2-1).
The methods in Employee are public because it’s assumed it should be possible for any other class in any
package to be able to access and manipulate the state of an Employee instance. As mentioned earlier, though,
overly permissive scope leaves a class open to usage in ways that weren’t anticipated or desirable. More
importantly, the more a class exposes its methods and fields to other classes the more likely it becomes that
other classes will be tightly coupled to that class and the harder it becomes to maintain and modify that class
without breaking other code.

Table 2-1. Variable and Method Scope

Visibility Description

public Accessible by all classes

protected Accessible by subclasses and by other classes within the same package

(Default) Accessible by classes within the same package

private Not accessible from any class other than the one in which it’s defined

Following are some rules of thumb for selecting visibility area:

If access is needed across a variety of classes in different packages use • public.

If access is only needed by subclasses use • protected.

If access is only needed for other classes in the same package use default visibility.•

If none of the above applies use • private.

Except for constants, which are marked static and/or final, fields should almost always be made
private, with access provided through an appropriate method as described earlier. Usually the hardest
decision related to scope is whether to use private, default, or protected visibility for a method. It is, of
course, a technically trivial change to increase a method’s scope later, but sometimes circumstances—such
as your organization’s processes or expectations—make code changes difficult or impossible. In that latter
case, where changes are discouraged or impossible, you may prefer to provide more visibility than is known
to be needed. In general, though, you should aim to provide the most restrictive scope possible at every level
of design: fields, methods, and classes.

Constant fields, as just mentioned, are somewhat of an exception to the rule of thumb regarding scope.
Constants are sometimes represented by primitive (int, char, etc.) values but can also be represented by
objects and to understand how this is accomplished it’s helpful to examine how to create and use what are
referred to as immutable objects.

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

42

Immutable Objects
To say that an object is immutable means that its state can’t be changed, which is most commonly
implemented by allowing its state to only set during construction. Some examples of this in Java’s core class
library are the wrapper classes defined in the java.lang package (Integer, Float, Boolean, etc.), which are
called wrapper classes because they “wrap” a primitive value with an object. String instances are probably
the most commonly used type of immutable object, even though it might appear on the surface that you’re
able to modify them. For example, the following three lines will compile and run successfully:

String myString = "Hi";
System.out.println(myString);

//...

myString = "Hello";
System.out.println(myString);
myString += " there";
System.out.println(myString);

Running this code segment will produce the following output:

Hi
Hello
Hello there

From this example, it may seem that the object instance referenced by myString was modified twice

after it was initially created: once when it was assigned a new value of “Hello” and a second time when
“there” is appended. In reality, an entirely new String instance was created for each distinct value shown,
and the reference was changed to point to the new instance. In other words, none of the objects was
modified; instead, a new object was created and a reference to it replaced the reference to the previous
value. Any references to the original string that existed before the two “changes” would still refer to the
original “Hi” text.

Although String and the wrapper classes for primitive values are part of Java’s core library, it’s easy
to create your own immutable class. In the case of the Employee class, for example, it can easily be made
immutable by declaring its fields to all be final, which in turn has two implications for the rest of the class:

At least one constructor must be defined that allows a value to be assigned to •
each field.

The mutator (setter) methods must be removed because modifying the fields after •
construction is no longer possible and code that attempts to do so will result in a
compiler error.

For example, we can easily convert the Employee class defined earlier into an immutable class by adding
a constructor and removing the mutator methods as shown in Listing 2-10.

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

43

Listing 2-10. An Immutable Version of the Employee Class

public class Employee {

 private String employeeID;
 private String firstName;
 private String lastName;

public Employee(String id, String first, String last) {
 employeeID = id;
 firstName = first;
 lastName = last;
}

public int getEmployeeID() {
 return Integer.parseInt(employeeID);
}

 public String getFirstName() {
 return firstName;
 }

 public String getLastName() {
 return lastName;
 }

}

Instances of Employee are now immutable because the properties are set during construction and can
never be modified after that. Note that we can—and arguably should—mark the three fields as final, though
this will have no functional impact on the code. What it would accomplish, though, is to make it obvious to
anyone looking at the class that its properties are immutable; otherwise it’s necessary to browse the entire
class to determine that no mutator methods exist. Browsing the entire class isn’t a problem in a small, simple
case like this one, but in a larger and more complex class it’s helpful to make clear by the use of final which
fields can’t be modified after construction.

On the other hand, it’s also important to understand that making all the fields in a class final doesn’t
automatically mean that the class is immutable. Remember that being immutable means that an object’s
state can’t be modified, but if the object contains references to other objects and the state of those objects
can change then the containing class isn’t immutable. If this explanation sounds a little confusing it may
help to consider another example using a different class that we used before, specifically, the Student
class, which defines a name and collection of test scores. Both the name and the test score collection are
initialized at construction and no mutator is defined for either, so on the surface it may appear that Student
is immutable, but in reality that’s not the case. Recall that one of its accessor methods returned a reference to
the test scores as shown next.

public List<TestScore> getTestScores() {
 return testScores;
}

The problem is that the Student class returns a reference to part of its internal state, specifically, the
collection of test scores, and that collection can be changed by adding or removing entries, which in turn
means that Student is mutable. Making the testScores field final wouldn’t have any effect at all because

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

44

that wouldn’t prevent the collection from being modified; it would only prevent the reference stored in
Student from being overwritten after construction. There are different ways this can be addressed but one
easy solution is to wrap the list passed to the Student constructor in an unmodifiable list.

public Student(List<TestScore> scores, String name) {
 this.testScores = Collections.unmodifiableList(scores);
 this.name = name;
}

Now when the getTestScores() method is called it will return a reference to a list that can’t be
modified. Depending on the design of your application this may be sufficient, but there’s still one potential
cause for concern: the class that created the Student instance could still modify the original List that was
passed to the constructor or could pass a reference to that List to some other object that might modify
it. To be certain that the test score data can’t be modified it’s necessary to create an object that’s never
exposed outside of Student, and an example of how this is done is shown in Listing 2-11, which shows a fully
immutable version of Student:

Listing 2-11. An Immutable Version of the Student Class

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

public class Student {

 private List<TestScore> testScores;
 private String name;

 public Student(List<TestScore> scores, String name) {
 this.testScores = Collections.unmodifiableList(
 new ArrayList<TestScore>(scores));
 this.name = name;
 }

 public String getName() {
 return name;
 }

 public List<TestScore> getTestScores() {
 return testScores;
 }

 public int getAverage() {
 int total = 0;
 for (TestScore testScore : testScores) {
 total += testScore.getPercentCorrect();
 }
 return total / testScores.size();
 }

}

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

45

This gives us the immutability we wanted; the List inside Student can’t be modified because that class
doesn’t contain any code to change it after it’s constructed and because there’s no way for any other class to
obtain a reference to the collection or otherwise modify it once it’s created.

We just spent a bit of time discussing how to make classes immutable, but why bother? What’s the
benefit of spending the additional effort it takes to make a class immutable? Aside from their simplicity,
the biggest advantage of an immutable class over a mutable one is that an immutable class is inherently
thread-safe. In other words, any number of threads can safely reference and use an immutable object, such
as an instance of Student, without any explicit synchronization between the other threads. Thread safety is
an important topic, and one that we’ll discuss in more detail in Chapter 3.

Overriding Object Methods
The java.lang.Object class is the direct or indirect superclass of all Java classes, and it’s often necessary
or desirable to override some of the methods in Object. The following sections cover the methods that are
commonly overridden, along with a description of how each one is used and what information you need to
know before overriding it.

clone()

The implementation of this method defined in Object returns a copy of the object instance, assuming that
the class implements the Cloneable interface. Cloneable is a tag interface—that is, it’s an interface that
doesn’t define any methods but is used to mark instances of a class as having some property. In this case,
the interface indicates it’s acceptable to create a clone, or copy, of an instance of the class. The following
code checks to see whether the object unknown implements Cloneable, and it displays a message indicating
whether that’s the case:

Object unknown = getAnObject();
if (unknown instanceof Cloneable) {
 System.out.println("I can create a clone of this object");
} else {
 System.out.println("I might not be able to create a clone of this object");
}

The indefinite wording of the second message reflects the fact that the Cloneable interface only
applies to the clone() implementation in Object. In other words, a class that inherits the clone() method
from Object can only be cloned if it implements Cloneable, but a class is free to override clone() with its
own implementation that ignores the presence or absence of that interface. The default implementation
of clone() defined in Object creates a shallow copy of the object, where shallow copy is defined as a copy
of the object that contains references to the same objects to which the original contained references. For
example, suppose that we have an implementation of Employee like the one defined earlier, but this time
implementing Cloneable (see Listing 2-12).

http://dx.doi.org/10.1007/9781484206423_3

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

46

Listing 2-12. An Employee Class That Implements Cloneable

public class Employee implements Cloneable {

 private int employeeID;
 private String firstName;
 private String lastName;

 public Employee(int id, String first, String last) {
 employeeID = id;
 firstName = first;
 lastName = last;
 }

 public int getEmployeeID() {
 return employeeID;
 }

 public String getFirstName() {
 return firstName;
 }

 public String getLastName() {
 return lastName;
 }

}

Let’s also suppose that an instance of this class is created and initialized, and the clone() method is
called to create a copy of it. Note that Object’s implementation of clone() is protected, so you must either
call it from a subclass or class in the same package or override it and make it public, and for this example
we’ll assume that one or both of those to approaches was used.

Employee original = new Employee(123456, "John", "Smith");
Employee myClone = (Employee)(original.clone());

In this code segment, a shallow copy of the Employee instance is created, and a reference to it is stored
in myClone. Since it’s only a shallow copy, the object references in the clone will point to the same objects—
not copies of those objects—that are referenced in the original. Figure 2-7 illustrates this. Both the original
and the clone have their own copy of employeeID, because it’s a primitive (integer) value and primitives
are always copied by value instead of by reference. Note, however, that the other (object) fields contain
references to the same object instances.

Figure 2-7. A shallow copy of an object is one that shares with the original object references to the same
instances of other referenced objects

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

47

Shallow copies are sometimes acceptable, but not in all cases. For example, when you create a clone of
an object, you’ll often do so intending to modify the contents of the clone without changing the original.
In that case, a shallow copy may not be sufficient. For example, suppose you’re using the following class:

public class MailMessage implements Cloneable {

 protected String sender;
 protected String recipient;
 protected StringBuffer messageText;

 public MailMessage(String from, String to, String message) {
 sender = from;
 recipient = to;
 messageText = new StringBuffer(message);
 }

 public StringBuffer getMessageText() {
 return messageText;
 }

}

If you use clone() to create a duplicate instance of this class, you’ll have a shallow copy that points to
the same object instances as the original. If you then make changes to the StringBuffer instance referenced
by messageText, your changes will affect both the original MailMessage instance and its cloned copy.
For example,

// Create a new instance of MailMessage
MailMessage original = new MailMessage("bspell", "jsmith",
 "This is the original text");

// Create a shallow copy
MailMessage shallowCopy = (MailMessage)(original.clone());

// Get a reference to the copy's message text
StringBuffer text = shallowCopy.getMessageText();

// Modify the message text using the clone/shallow copy
text.append(" with some additional text appended");

// Now print out the message text using the original MailMessage
System.out.println(original.getMessageText().toString());

Running this code segment results in the following message being displayed:

This is the original text with some additional text appended

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

48

To prevent this from happening, you must override the clone() method in MailMessage so it creates a
“deep” copy. For example,

public class MailMessage implements Cloneable {

 protected String sender;
 protected String recipient;
 protected StringBuffer messageText;

 public MailMessage(String from, String to, String message) {
 sender = from;
 recepient = to;
 messageText = new StringBuffer(message);
 }

 public StringBuffer getMessageText() {
 return messageText;
 }

 protected Object clone() CloneNotSupportedException {
 MailMessage mm = (MailMessage)(super.clone());
 mm.messageText = new StringBuffer(messageText.toString());
 return mm;
 }

}

Note that although it was necessary to create a new StringBuffer for messageText, it wasn’t necessary
to create new objects for either sender or recipient. This is because those two fields point to instances
of String, which are immutable objects. Since their state can’t be changed, it’s usually acceptable for the
original and the clone to reference the same object instance.

As these examples illustrate, it’s generally true that shallow copies are acceptable for objects that
contain references to immutable objects and/or to primitives, while more complicated object structures
usually require deep copies. When a deep copy is needed, it’s your responsibility to implement the
functionality yourself.

equals()

This method returns a boolean value (true or false) and determines whether two object instances should
be considered equal to one another. What determines equality between two instances is left up to the
programmer to decide, and this method can be overridden to perform any type of comparison that’s useful
to you. The default implementation provided in Object tests to see whether the two objects being compared
are actually the same object instance and, if so, returns true. However, if you define a class for which
instances will be compared to one another, you’ll often want to use some other criteria.

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

49

For example, you might decide that two instances of Employee should be considered equal if the value
of employeeID is the same in both instances. In that case, you’d add a method similar to the following to
the class:

public boolean equals(Object obj) {
 if ((obj != null) && (obj instanceof Employee)) {
 Employee emp = (Employee)obj;
 if (this.employeeID == emp.employeeID) {
 return true;
 }
 }
 return false;
}

This method first checks to ensure that the parameter passed to the equals() method isn’t null and
is an instance of Employee and, if so, casts it to a reference of that type. It then checks to see whether the
employeeID field in both instances contains the same value and, if so, returns a value of true, indicating that
the two instances are equal. Although this simple example uses only a single field to determine equality, you
can use any criteria that are meaningful to your application when overriding equals() in your own classes.

finalize()

The garbage collector calls this method when it determines there are no more references to the instance but
before the object is destroyed. The most common use of this method is to ensure that any resources held by
the instance are released.

Java makes no guarantees about when or even if this method will ever be called for an instance, so you
shouldn’t use it for normal cleanup. Instead, provide a separate method that releases active resources, and
encourage programmers who use the class to call that method to perform the cleanup. Listing 2-13 shows
an example.

Listing 2-13. Using the finalize() Method

public class MyFinalizeTest {

 private boolean resourcesInUse;
 public synchronized void allocateResources() {
 performAllocate();
 resourcesInUse = true;
 }

 public synchronized void releaseResources() {
 performRelease();
 resourcesInUse = false;
 }

 /**
 * If we're still holding resources, release them now
 */

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

50

 protected synchronized void finalize() throws Throwable {
 if (resourcesInUse) {
 releaseResources();
 }
 }

 // Allocate resources here
 protected void performAllocate() {
 }

 // Release resources here
 protected void performRelease() {
 }

}

hashCode()

An object’s hash code value is used primarily to improve the performance of some collection classes, such
as java.util.HashMap. It’s not necessary for each instance of a class to return a different hash code from
every other instance, but you should attempt to make them as unique as possible. Greater uniqueness will
generally translate into improved performance for collections that use hashing, such as HashMap.
The following are the two requirements for values returned from this method:

Two objects that are considered equal when compared using the • equals() method
must return the same hash code value.

When this method is invoked on an object two or more times during a single •
execution of an application, the method should return the same value. However,
this requirement doesn’t need to be met if the object’s state changes in such a way
that the object would no longer be considered equal to an instance to which it was
previously equal.

For example, given the previously defined Employee class, you might choose to simply use the
employeeID field as the hash code for each instance. This is an appropriate choice since it could be expected
to provide a reasonable degree of uniqueness from one instance to the next.

public int hashCode() {
 return employeeID;
}

This would satisfy the first requirement mentioned previously because the value of employeeID would
be used to determine equality and would be used as the hash code value. In other words, two instances
that have the same employeeID value are considered equal to one another, and they will return the same
hash code value. The second requirement is also satisfied, because as long as the employeeID value remains
unchanged, the hashCode() method will return the same result each time it’s called.

When you have multiple properties that you want to use in performing the hash code calculation, and
particularly if those properties are object references, you should consider using the hash() method defined
in the java.util.Objects class. That method allows you to specify a variable number of arguments and will
produce a hash code generated using the arguments supplied.

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

51

In general, the default implementation of hashCode() will return values that are reasonably unique, and
you won’t find it necessary to override this method. However, when you override the equals() method, you
must also override hashCode() to ensure it meets the two requirements listed previously. If you don’t, the
collections that use hash codes may not function correctly.

toString()

This method returns a string representation of the object instance. You can call this method explicitly
whenever it’s useful to do so (such as while debugging), but it’s also called implicitly whenever you specify
an object reference as part of a string expression. For example, if you create an instance of MailMessage and
include it in a string expression, the toString() method is called to obtain its string representation.

MailMessage message = new MailMessage("bspell", "jsmith", "This is a test");
System.out.println("Calling toString(): " + message);

// The following line is equivalent to the previous one and would produce
// exactly the same output if it were compiled and executed:
// System.out.println("Calling toString(): " + message.toString());

The default implementation of this method in Object simply displays the name of the object’s class and
the object’s hash code value, separated by the at (@) symbol:

MailMessage@71eaddc4

Since this information usually isn’t very helpful, you’ll normally want to override toString() so

it returns more useful information. Typically, that information should include a partial or complete
description of the object’s state. For example, you might choose to add the following method to
MailMessage:

public String toString() {
 return "MailMessage[sender=" + sender + ", recipient=" + recipient +
 ", messageText=" + messageText + "]";
}

With this implementation of toString(), running the code segment shown previously will result in the
following output:

MailMessage[sender=bspell, recipient=jsmith, messageText=This is a test]

You can use this information when debugging or at any other time when you need to obtain a string

representation of an object’s state.

Method Design
Many of the guidelines previously mentioned for classes also apply to methods. For example, methods
should be loosely coupled and strongly cohesive, with each method having a single responsibility that can
be easily described, and should be independent of other methods as much as possible.

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

52

One indication that a method may not be cohesive is the existence of many levels of code blocks, which
are easy to identify if the blocks are properly indented. For example,

public void doSomethingComplex(int a, int b, Object c, int d) {
 if (a < b) {
 if (c instanceof Number) {
 for (int i = 0; i < count; i++) {
 if (getSomeData(i) == null) {
 while (d < 5) {
 if (d == 0) {
 handleSpecialCase();
 }
 }
 }
 }
 }
 }
}

It’s sometimes necessary to create such complex logical constructs. However, it’s never necessary to
include the entire construct in a single method, and splitting it into two or more methods can make the code
much easier to understand. Most people find it difficult to follow more than a few levels of logic and would
probably find the following implementation more readable:

public void doSomethingComplex(int a, int b, Object c, int d) {
 if (a < b) {
 if (c instanceof Number) {
 for (int i = 0; i < count; i++) {
 doPartOfSomethingComplex(i, d);
 }
 }
 }
}

public void doPartOfSomethingComplex(int i, int d) {
 if (getSomeData(i) == null) {
 while (d < 5) {
 if (d == 0) {
 handleSpecialCase();
 }
 }
 }
}

Although this may not be the best implementation for these methods, it illustrates that by separating
pieces of functionality from a method, you can make its responsibilities simpler and clearer. In addition to
greater clarity, structuring your code this way can also make it easier to enhance and debug.

One basic but extremely important point worth mentioning concerning method design is the use of an
obscure, complex algorithm when a simpler alternative exists. Although the more complicated approach
may provide minor benefits such as slightly faster execution, that advantage is usually outweighed by the
added complexity involved in the maintenance and debugging of the code. Stated more simply, readability,

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

53

extensibility, and reliability are important, and you should be hesitant to sacrifice those qualities for an
algorithm that seems elegant and clever unless doing so provides some important advantage to your
application.

Passing Parameters
When deciding what parameters to pass to a method, you should avoid using “flags” or “control” parameters
that tell the method how to perform its function. For example, assume you’re responsible for a Roster class
that maintains a list of students. In addition, let’s assume a limit exists to the number of students that can
normally be included on the roster. However, in some cases, you want to be able to override that maximum,
so you might create a class like the one shown in Listing 2-14.

Listing 2-14. Initial Roster Implementation

import java.util.*;

public class Roster {

 protected int capacity;
 protected List<String> students;

 public Roster(int max) {
 capacity = max;
 students = new ArrayList<>();
 }

 /**
 * Attempts to add the student name to the List that is used to
 * maintain the list. There is a capacity value that normally will
 * limit the number of students that can be on the list, but the
 * caller can override that constraint if the student has been
 * given permission from their advisor to add the class even though
 * it's already full.
 *
 * @param name Student to add to the list.
 * @param allowExcess Override capacity check when adding student
 * @return <code>true</code> if the student was added
 * to the list, <code>false</code> otherwise.
 */
 public boolean addStringToList(String name, boolean allowExcess) {
 if (!allowExcess) {
 if (students.size() >= capacity) {
 return false;
 }
 }
 students.addElement(name);
 return true;
 }

}

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

54

At first glance, this method may appear to be reasonably well-designed, but in fact, it possesses a
number of undesirable characteristics. For one thing, it requires callers to pass a parameter that indicates
whether the student should be added when the capacity value has already been reached. This makes the
method less cohesive, because it not only has responsibility for adding the student’s name to the List but it
also must determine whether it’s acceptable to add the student.

Given that the method isn’t cohesive, how can it be improved? For starters, you should eliminate the
allowExcess flag, since it’s used as a way for the caller to communicate with the method concerning how
the method should operate. You should avoid using parameters for that purpose, since they tend to make
the function of your method less clear and cohesive. In this example, a better solution is to create a separate
method that always ignores the capacity value and remove the allowExcess flag, as shown in Listing 2-15.

Listing 2-15. Eliminating Flag Usage

import java.util.*;

public class Roster {

 protected int capacity;
 protected List<String> students;
 public Roster(int max) {
 capacity = max;
 students = new List<>();
 }

 /**
 * Adds the student name to the List that is used to maintain the
 * list.
 *
 * @param name Student to add to the list.
 */
 public void addStringToList(String name) {
 students.addElement(name);
 }

 /**
 * Attempts to add the student name to the List that is used to
 * maintain the list. There is a capacity value that normally will
 * limit the number of students that can be on the list, but the
 * caller can override this check if desired.
 *
 * @param name Student to add to the list.
 * @return <code>true</code> if the student was added
 * to the list, <code>false</code> otherwise.
 */
 public boolean conditionalAddStringToList(String name) {
 if (students.size() >= capacity) {
 return false;
 }
 addStringToList(name);
 return true;
 }

}

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

55

This is an improvement over the original design, as there’s more cohesion in these two methods than
in the original one. Instead of passing a flag to the method as in the previous implementation, the caller
can now call the method that provides the desired behavior. Notice that conditionalAddStringToList()
doesn’t actually add the student but instead calls addStringToList(). Since the “add” operation
requires just a single line of code, it might be tempting to copy the contents of addStringToList() to
conditionalAddStringToList(). However, not doing so makes the code more cohesive, and the lack of
code duplication makes the class easier to maintain.

Method Naming
One final point to make about the addStringToList() and conditionalAddStringToList() methods
in the previous example is that they’re poorly named. You should avoid names that describe the method
implementation and instead use names that describe what the method does conceptually. For example,
these method names imply that the purpose of the method is to add a String to a List, which is true
in this implementation. However, this approach has two problems. First, the names don’t provide any
useful information that couldn’t be obtained from a quick glance at the code, and naming these methods
enrollStudentConditionally() and enrollStudent() provides the reader with helpful information about
the responsibilities of these methods.

Second, choosing a name that describes a method’s implementation is a bad idea because the
implementation may change over time. If the Roster class were modified to use a different type of collection,
the method name would need to be changed to avoid being a misleading representation of what occurs in
the code. For example, if the student names were to be stored in a TreeSet instead of a List, you either must
change every occurrence of the method names or resign yourself to having method names that no longer
describe the implementation, which is at best confusing to programmers who read your code. Listing 2-16
shows an improved version of the Roster class.

Listing 2-16. Roster Class, Improved

import java.util.List;

public class Roster {

 protected int capacity;
 protected List<String> students;

 public Roster(int max) {
 capacity = max;
 students = new List<String>();
 }

 /**
 * Enrolls the student in this course.
 *
 * @param name Name of the student to enroll.
 */
 public void enrollStudent(String name) {
 students.addElement(name);
 }

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

56

 /**
 * Attempts to enroll a student in this course. The student is added
 * only if the capacity limit for the course has not been reached.
 *
 * @param name Name of the student to enroll.
 * @return <code>true</code> if the student was added
 * to the list, <code>false</code> otherwise.
 */
 public boolean enrollStudentConditionally(String name) {
 boolean isEnrolled = false;
 if (students.size() < capacity) {
 enrollStudent(name);
 isEnrolled = true;
 }
 return isEnrolled;
 }

}

Avoiding Code Duplication
In the previous example, we placed the logic for adding a student in one method and called that method
from a different one that needed the same functionality. Minimizing duplication is an important step in
creating maintainable code, as it prevents you from having to make identical changes to many methods
when some implementation detail must be modified. This is particularly important when multiple
programmers are involved in creating an application and it applies not only to methods but also to
constructors, since you can call one constructor from another. For example, the following class shows an
example of how duplication can occur in constructors:

public class DuplicationSample {

 protected int firstValue;
 protected String secondValue;
 protected Integer thirdValue;

 public DuplicationSample(int first, String second, Integer third) {
 firstValue = first;
 secondValue = second;
 thirdValue = third;
 }

 public DuplicationSample(int first, String second) {
 firstValue = first;
 secondValue = second;
 thirdValue = new Integer(0);
 }

}

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

57

Only the last statement differs in these two constructors, and you can eliminate the duplicate code
without changing the behavior of the constructors by modifying the class, as follows:

public class DuplicationSample {

 protected int firstValue;
 protected String secondValue;
 protected Integer thirdValue;

 public DuplicationSample(int first, String second, Integer third) {
 firstValue = first;
 secondValue = second;
 thirdValue = third;
 }

 public DuplicationSample(int first, String second) {
 this(first, second, new Integer(0));
 }

}

Similarly with methods, it’s often helpful to use overloading and identify a method implementation
that contains a superset of the functionality defined in the other implementations. The following example
illustrates this point:

public class AddingMachine {

 /**
 * Adds two integers together and returns the result.
 */
 public static int addIntegers(int first, int second) {
 return first + second;
 }

 /**
 * Adds some number of integers together and returns the result.
 */
 public static int addIntegers(int[] values) {
 int result = 0;
 for (int value : values) {
 result += value;
 }
 return result;
 }

}

Although there’s no code duplication here, there’s duplicate functionality, and eliminating that
duplication will make the class simpler and more maintainable. Both methods add numbers together, and
it’s necessary to decide which one should retain that functionality. One of the methods adds two numbers
together, and the other adds zero or more numbers together. In other words, the first method provides a

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

58

subset of the functionality of the second one. Since that’s the case, you can eliminate the duplication by
delegating responsibility for adding the two numbers to the more flexible method. The following is an
alternative implementation:

public class AddingMachine {

 /**
 * Adds two integers together and returns the result.
 */
 public static int addIntegers(int first, int second) {
 return addIntegers(new int[] {first, second});
 }

 /**
 * Adds some number of integers together and returns the result.
 */
 public static int addIntegers(int[] values) {
 int result = 0;
 for (int value : values) {
 result += value;
 }
 return result;
 }

}

This simplistic example illustrates an important point concerning something that’s common in
method design. Specifically, you can often reduce code or functional duplication by identifying a method
that represents a “special case” of some other method and delegating the request to the more generic
implementation. Although it does represent an improvement over the original implementation there are still
a couple of features of the implementation that are not ideal.

The caller of the second • addIntegers() method is required to construct an array.

Unless additional error checking is added it’s possible to specify zero or one integers •
to the method, neither of which is very meaningful. In other words, it doesn’t make
much sense to define a method that adds zero or one numbers together and returns
the result.

Variable Arguments
This code can be improved further in a way that will both make it “cleaner” and also reduce the amount of
code involved, specifically by creating a method that uses variable arguments, or varargs, adds the values
specified, and returns the result. As the name implies, varargs are a way of defining a method that can accept
a variable number of arguments, which in this case means that a variable number of integer values can
be added. In other words, instead of explicitly identifying each individual argument, varargs allow you to

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

59

indicate that zero or more arguments of a particular type can be specified. The following is an example of
how you can declare such a method:

/**
 * Add at least two integers together and returns the result.
 */
public static int addIntegers(int value1, int value2, int... values) {
 int result = value1 + value2;
 for (int value : values) {
 result += value;
 }
 return result;
}

The values parameter is identified by the ellipses (…) after its type as representing a variable number of
int values and it follows a pair of parameters that require the user to specify integer values. In other words,
the caller must specify at least two int values that correspond to the value1 and value2 parameters and can
also specify zero or more additional int values that will be assigned to the values vararg parameter.
For example, the caller could specify a pair of numbers, as shown.

int result = addInteger(37, 23);

Or, as in the following example, the caller can specify additional integers:

int result = addInteger(37, 23, 59, -2, 0);

Notice that when iterating through the varargs parameter values, we’re able to use Java’s enhanced
for looping just as we would with a collection or array. That’s possible because varargs are implemented
internally as arrays, so any code that will work with an array will work with a vararg parameter.

Varargs do have an important limitation: you can have only one vararg entry in a method signature. So,
for example, the following isn’t a valid method signature:

public void doSomething(String... firstList, int... secondList);

Using Exceptions
Exceptions provide a useful capability, and properly using exceptions is an important part of good method
design in Java. However, a number of questions arise when designing a class.

When should an exception be thrown?•

What type of exception should be thrown?•

When should a new exception subclass be created, and what should •
its superclass be?

What information should be included in the exceptions that are thrown?•

Where should exceptions be caught and handled?•

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

60

When to Throw an Exception

In general, your method should throw an exception when some sort of condition is detected that the method
can’t or shouldn’t handle. It’s usually obvious when a method can’t handle an exception, but it may be
less clear how to determine when it should handle some condition. Sometimes the method may be able to
handle the condition but it isn’t the best choice for doing so. For example, suppose you define a simple user
interface that allows the user to enter a name and an age. Let’s also assume that your interface provides a
button that ends the application when pressed, as illustrated in Figure 2-8.

Figure 2-8. A simple application with an interface that prompts the user to enter some basic information

The following two classes provide this functionality; the DataFrame class displays a frame with a button
and an instance of DataPanel (see Listing 2-17).

Listing 2-17. Initial DataFrame Implementation

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class DataFrame extends JFrame {

 public static void main(String[] args) {
 DataFrame df = new DataFrame();
 df.setVisible(true);
 }

 public DataFrame() {
 super("Enter Data");
 buildLayout();
 pack();
 }

 protected void buildLayout() {
 Container pane = getContentPane();
 pane.setLayout(new BorderLayout());
 pane.add(new DataPanel(), BorderLayout.CENTER);
 JButton button = new JButton("Ok");
 button.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 System.exit(0);
 }
 }
);

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

61

 JPanel panel = new JPanel();
 panel.setLayout(new FlowLayout(FlowLayout.CENTER, 0, 0));
 panel.add(button);
 pane.add(panel, BorderLayout.SOUTH);
 }

}

The DataPanel class defines the text fields that allow the user to enter a name and an age
(see Listing 2-18).

Listing 2-18. Initial DataPanel Implementation

import java.awt.GridLayout;
import javax.swing.*;

public class DataPanel extends JPanel {

 protected JTextField nameField;
 protected JTextField ageField;

 public DataPanel() {
 buildDisplay();
 }

 protected void buildDisplay() {
 setLayout(new GridLayout(2, 2, 10, 5));
 JLabel label = new JLabel("Name:");
 add(label);
 nameField = new JTextField(10);
 add(nameField);
 label = new JLabel("Age:");
 add(label);
 ageField = new JTextField(10);
 add(ageField);
 }

}

Now let’s assume the requirements change after these two classes have been created, and it’s now
required that the user must enter valid data before exiting the application. Specifically, the “Name” field
shouldn’t be blank, and the “Age” field should contain a positive integer. In addition, let’s specify that if
either of these two conditions isn’t met, then an error dialog should be displayed and the input focus set to
the field that contains invalid data.

Given these requirements, you must decide where to assign responsibility for the new functionality. The
design guidelines covered previously indicate that the responsibility for validation belongs in DataPanel,
since it already has access to the data being validated. The other new responsibility that must be assigned is
the error message display, and DataFrame stands out as the more desirable choice, because putting the error
display logic into DataPanel would make it less cohesive and less flexible. For example, another application
might need to reuse DataPanel but might not want to use dialogs to display validation errors.

This scenario provides an example of what was referred to previously as an error that a method
shouldn’t handle. The validation method in DataPanel shouldn’t be responsible for displaying the error
dialog because doing so would make it less cohesive, flexible, and extensible. Instead, it should throw an
exception and let its caller in DataFrame display the error.

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

62

Choosing the Exception Type

Now that you’ve determined an exception will be thrown, what type of exception should be used? Many
subclasses of Exception are defined with the Java core classes, and it’s appropriate for applications
to create and throw instances of those. In fact, nothing prevents you from throwing an exception
that’s totally unrelated to the problem that has occurred. For example, when the validation routine
determines that the user has entered a non-numeric age value, it could throw any type of exception,
such as a NullPointerException, a SocketException, or an InterruptedException. However, those are
inappropriate choices because those exceptions are normally used to indicate specific problems that have
no relationship to our user interface validation. While it’s possible to use the exception classes defined as
part of Java, you should do so only if the exception is an appropriate choice for signaling the type of error
your application experienced. Otherwise, you should instead create your own Exception subclass and throw
an instance of that class. Besides a situation where no existing exception class accurately describes the
condition that has occurred, there’s at least one other case where you’ll want to create a custom exception
class. Specifically, you’ll do so when you need to return more information than a simple text message to the
caller who’s responsible for handling the exception; you’ll see an example of this later in the chapter.

Choosing a Superclass for a Custom Exception Class

When creating your own exception classes, you’ll normally want to extend one of two classes: either Exception
or RuntimeException. You should subclass Exception when you want your exception classified as a checked
exception. A checked exception is one that must be declared when you create a method that can throw the
exception, while unchecked exceptions (subclasses of RuntimeException) need not be declared or caught.

For example, the doSomething() method in the class shown in Listing 2-19 can throw either
MyFirstException or MySecondException, but only MyFirstException must be identified, because it’s a
checked exception (in other words, it subclasses Exception).

Listing 2-19. ExceptionSampler Implementation

public class ExceptionSampler {

 /**
 * Not declaring that this method can throw MyFirstException will
 * cause the Java compiler to generate an error message when this
 * class is compiled. However, declaring MySecondException is
 * optional.
 */
 public void doSomething(boolean throwFirst) throws MyFirstException {
 if (throwFirst) {
 throw new MyFirstException();
 } else {
 throw new MySecondException();
 }
 }

 class MyFirstException extends Exception {
 }

 class MySecondException extends RuntimeException {
 }

}

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

63

Determining which type of exception to create is usually based on the nature of the error or errors
that can cause the exception to be thrown. Checked (Exception subclasses) should be used when the
condition is one for which the software can provide some type of recovery; on the other hand, if the error
is one from which it isn’t practical to try to recover then unchecked exceptions are the more appropriate
choice. Stated another way, unchecked (RuntimeException subclass) exceptions are best used to represent
programming errors. For example, the exception that’s probably thrown more frequently than any other
is NullPointerException. It’s thrown any time you attempt to use a null object reference to access a field
or method, which almost by definition indicates a programming error. If NullPointerException were a
checked exception, you’d be forced to throw it from virtually all methods or to catch it at hundreds or even
thousands of places within a single application, but because it’s an unchecked exception you can selectively
choose when (or if) to catch it, which makes code less tedious to write and easier to understand.

In the case of our input validation routine for DataFrame and DataPanel, though, we actually intend to
recover from the error by indicating to the user that invalid data was entered and giving the user a chance
to enter something different. To accommodate that behavior we’ll create a checked exception and call it
InputValidationException:

public class InputValidationException extends Exception {
}

Using a Common Superclass for Different Exception Types

Another issue you’ll commonly need to address regarding exceptions occurs when you throw exceptions
for different but related types of error conditions. For example, suppose you create a method called
attemptLogon() that can throw a LogonFailedException if either the username or password specified
is invalid. It’s possible to use only a single LogonFailedException class in both cases and simply
create an appropriate message that describes which type of condition caused the exception to be
thrown. Alternatively, you may consider creating subclasses of that exception (perhaps calling them
InvalidUseridException and InvalidPasswordException) and throwing instances of those subclasses
instead of an instance of LogonFailedException.

To determine which approach is better you need to consider how the exceptions will be handled. If
you plan to create error handling for the entry of an invalid password that’s different from the handling
for an invalid username, you should create the two subclasses and throw instances of those. However, if
your application will simply display the message encapsulated within the exception object and it doesn’t
care which type of error occurred, you should create and use only a single exception class. In other words,
splitting an exception class into a hierarchy with additional subclasses gives you extra flexibility in terms of
how you handle specific exception causes and their corresponding types. For example, the following code
illustrates how you might just display the error message contained within the exception class:

String userid, password;
// ...
try {
 attemptLogon(userid, password);
} catch (LogonFailedException lfe) {
 System.out.println("Logon failed: " + lfe.getMessage());
}

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

64

In contrast, the following code assumes that the InvalidPasswordException is handled differently from
other errors (for example, InvalidUseridException):

String userid, password;
// ...
try {
 attemptLogon(userid, password);
}
// Handle the case where the password was invalid
catch (InvalidPasswordException ipe) {
 // Log the logon attempt and possibly lock the userid
 // to prevent more logon attempts
 recordFailedLogon(userid);
 System.out.println("Logon failed: " + ipe.getMessage());
}
// Handle all other types of errors
catch (LogonFailedException lfe) {
 System.out.println("Logon failed: " + lfe.getMessage());
}

Although it’s not necessary to make InvalidUseridException and InvalidPasswordException share
a single superclass, doing so has a significant advantage. Instead of specifying that it throws both types of
exception, the attemptLogon() method can be defined to throw instances of LogonFailedException as follows:

public void attemptLogon(String userid, String password)
 throws LogonFailedException {

instead of the following:

public void attemptLogon(String userid, String password)
 throws InvalidUseridException, InvalidPasswordException {

Besides making your code slightly simpler, the first approach shown also makes it possible for you to
modify attemptLogon() so it throws additional exception types without also changing the code that calls
the method. In fact, you can add any number of new exception types without affecting the method signature
as long as the new exception types are subclasses of an exception type already declared. For example, you
might change attemptLogon() so it also throws an exception called AlreadyLoggedOnException. As long as
that new exception type is a subclass of LogonFailedException, you’re not required to make any changes to
the code that calls attemptLogon().

Adding Information to an Exception

When creating your exception, you should include a message that describes the nature of the error that
occurred, along with any information that exception handlers will need. Keep in mind that exceptions
are a mechanism for communicating with your method’s callers, and any information that’s needed to
process the error should be included. In the case of our input validation, the validation routine will pass
back to the handler two pieces of information: an error message and a reference to the field that contains
invalid information. The Exception class inherits the ability to store a message from its parent, so the only
additional field you need to define is a reference to the component associated with the error. By returning a
reference to the component, you make it possible for the frame to move the input focus to that component as
a convenience for the user.

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

65

import java.awt.Component;

public class InputValidationException extends Exception {

 protected Component errorSource;

 public InputValidationException(String message, Component source) {
 super(message);
 errorSource = source;
 }

 public Component getErrorSource() {
 return errorSource;
 }

}

Now that the exception class is created, you can implement the validation routine in DataPanel and
make it throw an exception when it encounters an error, as shown in Listing 2-20.

Listing 2-20. Throwing InputValidationException

import java.awt.GridLayout;
import javax.swing.*;

public class DataPanel extends JPanel {

 protected JTextField nameField;
 protected JTextField ageField;

 public DataPanel() {
 buildDisplay();
 }

 public void validateInput() throws InputValidationException {
 String name = nameField.getText();
 if (name.length() == 0) {
 throw new InputValidationException("No name was specified",
 nameField);
 }
 String age = ageField.getText();
 try {
 int value = Integer.parseInt(age);
 if (value <= 0) {
 throw new InputValidationException("Age value must be " +
 "a positive integer",
 ageField);
 }
 }

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

66

 catch (NumberFormatException e) {
 throw new InputValidationException("Age value is missing " +
 "or invalid", ageField);
 }
 }

protected void buildDisplay() {
 setLayout(new GridLayout(2, 2, 10, 5));
 JLabel label = new JLabel("Name:");
 add(label);
 nameField = new JTextField(10);
 add(nameField);
 label = new JLabel("Age:");
 add(label);
 ageField = new JTextField(10);
 add(ageField);
 }

}

Notice that there are three cases where you throw InputValidationException: when the “Name” field
is empty, when the “Age” field is less than or equal to zero, and when the “Age” field isn’t a valid integer. It’s
easy to create more than one exception class, such as one for a missing name and one for an invalid age, as
shown in Figure 2-9.

Figure 2-9. Creating more granular exception classes gives you more control over exception processing

However, the only time you should do this is when there are multiple possible error conditions and
some of them are handled differently from others. This example has three different error conditions, but
they’re all handled the same way and by the same caller. Therefore, you have no need to define more than
one new Exception subclass.

Finally, you must modify DataFrame so that it catches any validation errors and displays them in a
dialog (see Listing 2-21). In addition, we’ll use the reference to the component with the invalid data to set the
input focus to that component after the error message is displayed that indicates why the data is invalid.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

67

Listing 2-21. Handling the Exception

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class DataFrame extends JFrame {

 protected DataPanel panel = new DataPanel();

 public static void main(String[] args) {
 DataFrame df = new DataFrame();
 df.setVisible(true);
 }

 public DataFrame() {
 super("Enter Data");
 buildLayout();
 pack();
 }

 protected void buildLayout() {
 Container pane = getContentPane();
 pane.setLayout(new BorderLayout());
 pane.add(panel, BorderLayout.CENTER);
 JButton button = new JButton("Ok");
 button.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 onOk();
 }
 }
);
 JPanel panel = new JPanel();
 panel.setLayout(new FlowLayout(FlowLayout.CENTER, 0, 0));
 panel.add(button);
 pane.add(panel, BorderLayout.SOUTH);
 }

 protected void onOk() {
 try {
 panel.validateInput();
 System.exit(0);
 }
 catch (InputValidationException ive) {
 ive.getErrorSource().requestFocus();
 JOptionPane.showMessageDialog(this, ive.getMessage(),
 "Validation Error",
 JOptionPane.ERROR_MESSAGE);
 }
 }

}

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

68

When to Catch Exceptions

Two final points should be made concerning where exceptions should be caught and handled. As
mentioned earlier, the main factor that will determine where to catch an exception is often simply a matter
of good class design. In other words, your choice of where to handle an exception should be one that
maintains the cohesiveness and flexibility of the classes involved. However, when no particular class stands
out as an appropriate place to handle an exception, a rule of thumb is that you should catch the exception as
early as possible. For example, suppose you have the following nested calls:

Method A() calls method B()
 Method B() calls method C()
 Method C() calls method D()
 Method D() calls method E(), which can throw SomeException

In this scenario, if method E() can throw SomeException, it’s better to catch that exception as far down
the call stack as possible. For example, if SomeException can be handled appropriately in method D()
while still maintaining cohesion and loose coupling, then you should do so. If SomeException is a checked
exception, handling it in D() will prevent you from having to declare that SomeException can be thrown
from A(), B(), or C(), which simplifies your code. Depending upon the nature of the exception condition
and the design of your application, it may be necessary to allow the exception to propagate all the way back
to method A(). However, you should do so only if handling the exception earlier would cause you to violate
object-oriented design principles such as cohesion and loose coupling. In other words, throw exceptions as
often as necessary but handle them as early as possible.

Lastly, you’ll often find yourself creating a block of code that contains multiple statements that can
throw exceptions, either a particular type of exception or several different types. In this situation, you should
enclose all the statements within a single try/catch instead of creating a separate one for each statement.
For example, suppose you’ve created the following segment of code that creates a database connection and
uses it to execute and process the results of a query:

Connection connection = DriverManager.getConnection(url, userid, password);
Statement statement = connection.createStatement();
ResultSet results = null;
results = statement.executeQuery("SELECT * FROM CUSTOMERS WHERE CUSTID = 123");
if (results.next()) {
 String custname = results.getString("CUSTNAME");
 System.out.println(custname.toUpperCase());
}

The majority of the statements in this code segment are capable of throwing SQLException, but
enclosing each one within its own try/catch block would be tedious and result in code that’s difficult to
read. Although it may be necessary to do so if your application needs to know specifically which statement
caused the exception, it’s often appropriate to simply enclose all of the statements in a single try/catch
block as follows:

try {
 Connection connection = DriverManager.getConnection(url, userid, password);
 Statement statement = connection.createStatement();
 ResultSet results = null;
 results = statement.executeQuery(
 "SELECT * FROM CUSTOMERS WHERE CUSTID = 123");

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

69

 if (results.next()) {
 String custname = results.getString("CUSTNAME");
 System.out.println(custname.toUpperCase());
 }
} catch (SQLException sqle) {
 // Handle exception thrown by one of the statements
}

Using a finally Block

One of the more useful features of Java’s exception handling facility is the ability to include a finally block,
which is simply a section of code that’s always executed after the code in the try block regardless of what
happens during the execution of the code within that block. For example, suppose you create the following
code segment:

String value;
// ...
try {
 int intValue = Integer.parseInt(value);
 System.out.println("Is a valid integer value");
}
catch (NumberFormatException nfe) {
 System.out.println("Not a valid integer value");
}
finally {
 System.out.println("This is always executed");
}

If the value string in the previous code represents a valid integer value, the try block will complete
successfully and the following two messages will be displayed:

Is a valid integer value
This is always executed

In contrast, if the value string doesn’t represent a valid integer, the parseInt() call will cause the try

block to be exited, the catch block to be entered, and the following messages to be displayed:

Not a valid integer value
This is always executed

The most common reason for using a finally block is to ensure that cleanup occurs regardless of

what happens within the try block. For example, suppose your application creates multiple threads that
are using a Lock instance and you implement code that obtains the lock, performs an operation, and then
releases the lock.

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

70

java.util.concurrent.locks.Lock resourceLock;
.
.
.
resourceLock.lock();
doSomething();

What’s missing is a call to the Lock object’s unlock() method that will cause the lock to be released.
Placing the unlock() call inside a try/catch block as follows is a solution:

resourceLock.lock();
try {
 doSomething();
 resourceLock.unlock();
}
catch (Exception e) {
 resourceLock.unlock();
}

Note that a call to unlock() was defined both inside the try block and inside the catch block. This was
done to ensure that the lock is released regardless of whether the call doSomething() throws an exception.
If it doesn’t throw an exception the unlock() call within the try block will release the lock; otherwise the
one inside the catch block will release it. One possible way of eliminating the duplicate code is to put the
unlock() call after the try/catch.

resourceLock.lock();
try {
 doSomething();
}
catch (Exception e) {
}
resourceLock.unlock();

Functionally this approach may work, but it’s even less ideal than the previous approach. The catch
block is empty because we didn’t really intend to handle the exception at all, and in fact this design could
very well mask a bug if doSomething() does throw an exception. In effect, we declared a catch block
for an exception we aren’t going to handle and then ignored the exception, which is a very poor coding
practice. What we really want is to define code that’s executed regardless of the success or failure of the
doSomething() invocation, and we want to define that code without having to catch the exception. This is
where the finally block is useful, and the following is an example of how it can be used:

resourceLock.lock();
try {
 doSomething();
}
finally {
 resourceLock.unlock();
}

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

71

In effect, the finally block defines code that will be executed regardless of what occurs inside the try
block and—if one is defined—within the catch block. Even if, for example, you put a return statement inside
the try (or catch) block, the code inside the finally block will be executed. That behavior is somewhat
counter-intuitive, though, so for the sake of readability it’s preferable to avoid relying on it that way. In practice
it’s better to define a single exit point inside a method, which would result in more structured and readable code.

You should be aware, too, that although we didn’t define a catch block in this example, catch and
finally aren’t mutually exclusive: it’s just as valid to include one, resulting in a try/catch/finally block
as shown next, where the previous code has been modified to catch and rethrow the exception generated by
doSomething().

resourceLock.lock();
try {
 doSomething();
}
catch (Exception e) {
 logError("An error occurred calling doFinally()");
}
finally {
 resourceLock.unlock();
}

Although this code is somewhat contrived, it does illustrate some of the important points just covered
related to the finally block and its relationship to the try and catch blocks. If doSomething() does throw
an exception it will be caught and rethrown by the catch block—but the call to unlock() will also be called.
On the other hand, if no exception is generated then execution will continue with the code that follows this
segment after unlock() is called.

Nested Exceptions

An interesting point to consider related to the last example is what will happen if the logError() invocation
causes an exception to be thrown, since that invocation occurs inside the catch block that handles a different
exception. In practice, of course, logging doesn’t generally cause exceptions, but it’s worthwhile to consider
what would happen if one did occur. With the code in its current state the original exception generated by
doSomething() would effectively be discarded and the one generated by logError() would be thrown.

Discarding the original exception obviously isn’t ideal, and in fact it’s not substantially different from
the code shown earlier with the empty catch block that caught the exception from doSomething() and
ignored it. Again, this is very undesirable behavior, but having two exceptions does present something of a
problem, because Java doesn’t support the ability to throw two different exceptions from a single method
invocation—at least not directly.

The best solution to this is to use exception nesting, where one exception is essentially wrapped by
another, and the original or “inner” exception is said to be the “cause” of the second “outer” exception. In
this scenario the inner exception is the one generated by doSomething() while the outer exception is the
one generated by logError(). Support for exception nesting is built in to the exception facility, with the
Exception class (and most of its subclasses) defining constructors that accept both a message like the ones
we’ve been creating and also a reference to an inner exception to be wrapped. We can take advantage of this
design by putting the call to logError() inside its own try/catch block, and creating and throwing a new
exception that encapsulates both the original exception and the one generated by the logError() call.

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

72

resourceLock.lock();
try {
 doSomething();
}
catch (Exception e) {
 try {
 logError("An error occurred calling doFinally()");
 }
 catch (Exception le) {
 throw new LoggingException(
 "An error occurred during logging: " + le.getMessage(), le);
 }
 throw e;
}
finally {
 resourceLock.unlock();
}

As mentioned before, we don’t want to just ignore the original exception from doSomething() but want
to wrap it in our custom exception class, so we’ll implement a constructor that accepts a reference to the
original exception and maintains a reference to it as shown here.

public class LoggingException extends Exception {

 public LoggingException(String message, Exception cause) {
 super(message, cause);
 }

}

When the LoggingException is thrown, the caller can retrieve information on both exceptions: the
Exception that occurred when attempting to create the log message and the original exception generated by
doSomething(). Accessing the original exception is done by calling the getCause() method defined in the
Throwable class and inherited by Exception and its subclasses.

Stack Traces and Message Text

When an exception class is instantiated, a stack trace is created and associated with the exception object.
A stack trace is nothing more than information that describes the path of execution of a thread at some point
in time, including the name of each method that was called, the class in which each method is defined, and
in most cases the line number within the class. It’s the stack trace information that’s displayed when you
execute an application that terminates with an exception. For example, suppose you create a class like the
following one that attempts to read the contents of a file:

import java.io.*;

public class ShowStack {

 public static void main(String[] args) throws IOException {
 ShowStack ss = new ShowStack();
 }

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

73

 public ShowStack() throws IOException {
 initialize();
 }

 protected void initialize() throws IOException {
 readFileData();
 }

 protected void readFileData() throws IOException {
 File f = new File("test.txt");
 FileReader fr = new FileReader(f);
 BufferedReader br = new BufferedReader(fr);
 String line = br.readLine();
 }

}

If the file doesn’t exist, this application will terminate by displaying a stack trace like the following:

C:\brett\temp>java ShowStack
Exception in thread "main" java.io.FileNotFoundException: test.txt
(The system cannot find the file specified)
 at java.io.FileInputStream.open(Native Method)
 at java.io.FileInputStream.<init>(FileInputStream.java:138)
 at java.io.FileReader.<init>(FileReader.java:72)
 at ShowStack.readFileData(ShowStack.java:19)
 at ShowStack.initialize(ShowStack.java:14)
 at ShowStack.<init>(ShowStack.java:10)
 at ShowStack.main(ShowStack.java:6)

This information indicates that the exception was generated from within the native open() method

defined in the FileInputStream class. Prior to that method being called, two levels of constructors were
invoked, which are indicated by the <init> entries, with the class name and line numbers indicating which
Java class’s constructors were involved. The original FileReader constructor was called as part of the
instantiation that’s found on line 19 of our ShowStack class, which is a statement within the readFileData()
method.

By examining the stack trace entries, you can determine the complete execution path of the thread
that generated an exception, which in this case began with the execution of the static main() method in
StackTrace. That information is very useful for debugging purposes, but it raises the question of how to
handle the stack trace information in the case of a nested exception.

Returning to our implementation of LoggingException, the obvious question is which stack trace
should be displayed in the case of a nested exception: the one from the original exception or the one
associated with the outer exception? The answer is that both are potentially useful, so both should be
displayed, and in fact the support in Exception for nested exceptions ensure that both will be shown when
there is a cause (nested/inner exception) associated with the exception for which a stack trace is generated.

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

74

This behavior can be illustrated by making a small change to the ShowStack class that wraps the generated
exception in an outer exception and throws the outer exception as follows:

protected void initialize() {
 try {
 readFileData();
 }
 catch (IOException e) {
 throw new RuntimeException("An error occurred during initialization", e);
 }
}

Running the ShowStack example now produces a very different stack trace from the original as
shown next.

Exception in thread "main" java.lang.RuntimeException:
 An error occurred during initialization
 at ShowStack.initialize(ShowStack.java:18)
 at ShowStack.<init>(ShowStack.java:10)
 at ShowStack.main(ShowStack.java:6)
Caused by: java.io.FileNotFoundException: test.txt
 (The system cannot find the file specified)
 at java.io.FileInputStream.open(Native Method)
 at java.io.FileInputStream.<init>(FileInputStream.java:138)
 at java.io.FileReader.<init>(FileReader.java:72)
 at ShowStack.readFileData(ShowStack.java:24)
 at ShowStack.initialize(ShowStack.java:15)
 ... 2 more

Now the user is shown information about both the original/inner and wrapper/outer exceptions and
the original problem of the first exception being ignored has been addressed.

Avoiding Exceptions

There are some situations where an exception might initially seem appropriate when in fact it’s not the best
choice. For example, suppose you define a method that performs a search and returns a value, as in the
following case:

public Student findStudent(int studentID) {
 // ...
}

One question that would need to be answered in designing and implementing this method is what
should happen when no student is found for the associated identifier. Depending upon the nature of your
application it might be entirely appropriate to throw an exception. However, if the method could reasonably
be expected to not find a Student instance that matches the specified criteria, it’s probably more appropriate
to return a null value instead of throwing an exception. An even better approach would be to return an
instance of the new Optional class introduced in Java 8, and we’ll discuss the application of that approach in
depth in Chapter 3.

http://dx.doi.org/10.1007/9781484206423_3

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

75

Similarly, if you define a method that returns some integer value that should always be positive or zero,
returning a negative value could be used in place of an exception to indicate an error. For example, the
indexOf() method in the String class does just that if it can’t find an occurrence of the character you specify.

String test = "Hello";
// Prints the index of the first occurrence of 'e', in this case 1
System.out.println(test.indexOf('e'));
// Prints -1, since the character 'z' isn't found in the string
System.out.println(test.indexOf('z'));

In some cases, such as the two just described, what constitutes an error can be subjective and
dependent upon the context. Is it really an error at all when a given character isn’t found in a string?
Maybe, and maybe not—it depends upon the context. If the application were designed in such a way that
the character should be found, most people would classify the results as an error. Otherwise, it’s just one
possible outcome of the method call, in which case you should avoid throwing exceptions.

Assertions
Since version 1.4, Java has included support for a feature called assertions. Assertions are related to exception
processing but with some important differences. Before we examine how assertions are to be used, let’s
examine how to add an assertion to your code. The format is quite simple, with the assert followed by either
a single boolean argument or a boolean and an expression separated by a colon, as follows:

boolean systemValid;
.
.
.
assert systemValid;

Alternatively, it’s as follows:

assert systemValid : "Invalid System State";

In both cases, if systemValid is false, an AssertionError is thrown, and if the expression is specified
as with the “Invalid System State” message shown previously, the string representation of that expression is
used as the message for the AssertionError.

So, what’s the advantage of using an assertion instead of throwing an exception directly? One advantage
is that assertions can be enabled and disabled without making any code changes. Assertions are disabled
by default and must be explicitly enabled using the –enableassertions command-line option or its
abbreviated –ea equivalent as follows:

java –enableassertions MyClass

If you don’t enable assertions, any assert statements in your code will be ignored at execution time.

For this reason, you shouldn’t include in an assertion’s boolean expression any functionality that must
be executed for your code to work correctly. For example, let’s suppose you have a method that updates a

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

76

database and returns a boolean value indicating whether it was successful. If you use the following code,
that code will be executed only when assertions are enabled:

assert updateDatabase(parms);

In most cases, what you’ll want is to perform the operation unconditionally (that is, whether assertions
are enabled) and then check the results of the update operation, generating an assertion if the operation
failed to complete successfully. You can easily accomplish this with the following code:

boolean success = updateDatabase(parms);
assert success;

For essentially the same reason, you also shouldn’t use assertions for checking the validity of
parameters passed to public methods. In other words, checking the validity of those parameters is
something you should do whether or not assertions are enabled, and for that purpose, you should use the
existing exception classes such as IllegalArgumentException and NullPointerException.

Note that assertions are specifically intended to be used in debugging and not in production code. So,
what are some situations where it’s appropriate to use assertions? A good place is any section of code that
theoretically should never be executed, such as an if/else that shouldn’t be reached, as in the following
example:

int age;
.
.
.
if ((age > 12) && (age < 20)) {
 // Handle teenagers here
}
else if (age >= 65) {
 // Handle seniors here
}
else if (age >= 0) {
 // Handle all other valid ages here
}
else {
 assert false;
}

Similarly, another good candidate is the default block of a select statement as in the following
example:

public class processPassenger(Passenger passenger) {
 int cabinClass = passenger.getCabinClass();
 switch (cabinClass) {
 case TYPE_COACH:
 processCoachPassenger(passenger);
 break;
 case TYPE_BUSINESS:
 processBusinessPassenger(passenger);
 break;

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

77

 case TYPE_FIRST_CLASS:
 processFirstClassPassenger(passenger);
 break;
 default:
 assert false;
 }
}

Another possible use of assertions is to verify that an object is in a state that’s valid and/or adequate
for the application to continue execution. For example, as you’ll see in another chapter, the interfaces
that Java uses for database access such as Connection, Statement, and ResultSet contain methods called
getWarnings() and clearWarnings(). Those methods are provided because some of their “sibling” methods
can result in warnings being quietly attached to the object when called. For example, calling the getInt()
method for a ResultSet can cause a warning to be added to the ResultSet if there was a loss of precision
when the value retrieved is returned as an integer.

In this scenario, you might use assertions at some point in your code to ensure that no warnings exist
for the object, as in the following example:

ResultSet results;
.
.
.
// Create a passenger object from the current row of the ResultSet
Passenger passenger = createPassenger(results);
// See if any warnings were generated for the ResultSet
assert (passenger.getWarnings() == null);

Enumerations
In the switch statement you just saw, which was an example of how assertions can be used, an integer was
expected to have a value that corresponds to one of several valid categories, and being assigned any other
value was considered to be an incorrect state. This is a situation that’s encountered often; you can use
several different approaches to handle it. The problem with the technique used previously is that it’s easy
for errors to occur because there’s no way to ensure that a particular parameter represents a valid value. For
example, let’s suppose that you define a Passenger class with a constructor that takes a string and an integer
and that the integer should correspond to one of the constants in the following class:

public class TicketType {
 public int TYPE_COACH = 1;
 public int TYPE_BUSINESS = 2;
 public int TYPE_FIRST_CLASS = 3;
}

Given these values, there’s nothing to prevent a Passenger object from being created with a constructor
like the following:

Passenger passenger = new Passenger("Del Griffith", -1);

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

78

Although it’s technically possible for the Passenger object to perform error checking on its parameters,
it’s not really desirable to do so. For example, suppose you implemented the constructor as follows:

public class Passenger {

 private String name;
 private int cabinClass;

 public Passenger(String nm, int type) {
 name = nm;
 switch (type) {
 case TicketType.TYPE_COACH:
 case TicketType.TYPE_BUSINESS:
 case TicketType.TYPE_FIRST_CLASS:
 break;
 default:
 assert false;
 }
 cabinClass = type;
 }
}

The problem with this approach is that the Passenger constructor is now tightly coupled to the list of
valid values, and the Passenger class would have to change if a new value is added to the application or an
existing one is removed. An alternative is to add a method to the TicketType class that checks the validity of
a value and call that method from the previous constructor, but an even better approach is to simply ensure
that an invalid value can’t be passed to the constructor at all. One way of implementing this in Java is to
define a single private constructor for the relevant class (TicketType in this case) and then create a public
instance for each valid state as follows:

public class TicketType {

 public static final TicketType TYPE_COACH = new TicketType();
 public static final TicketType TYPE_BUSINESS = new TicketType();
 public static final TicketType TYPE_FIRST_CLASS = new TicketType();

 private TicketType() {
 }

}

Since the available selections are now represented as instances of the TicketType class instead of
integer values, you’d also need to make the corresponding changes to Passenger.

public class Passenger {

 private String name;
 private TicketType cabinClass;

 public Passenger(String nm, TicketType type) {
 name = nm;
 cabinClass = type;
 }

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

79

 public TicketType getCabinClass() {
 return cabinClass;
 }
}

Although this prevents a Passenger from being constructed with an invalid type, there’s one potential
problem: it’s possible for multiple instances of the TicketType class to be created that correspond to the
same type. Without going into the details of how that can occur, suffice it to say that with the current code,
there’s no guarantee the following code will be evaluated as true even if both variables represent the same
type:

if (oldPassenger.getCabinClass() == newPassenger.getCabinClass())

A better option is to use an enumeration, which allows you to define a class-like structure that identifies
a finite list of valid instances/values. To define an enumeration for your TicketType class, create code like
the following:

public enum TicketType {
 TYPE_COACH,
 TYPE_BUSINESS,
 TYPE_FIRST_CLASS
}

Once you’ve defined an enumeration this way, you can access the values the same way they were
accessed with the class implementation shown earlier:

TicketType type = TicketType.TYPE_COACH;

Despite this simplistic example, enumerations aren’t limited to simply being instantiated; you can
define attributes, methods, and constructors just as you would in a standard class. For example, suppose
you wanted to associate each type in the previous example with a numeric value so you could store a
representation of the type in a database (for example, coach = 1, business = 2, and so on). In that case, you
could simply add a property and corresponding accessor method to the enumeration, specifying a different
value for each enumeration instance as follows:

public enum TicketType {

 TYPE_COACH(1),
 TYPE_BUSINESS(2),
 TYPE_FIRST_CLASS(3);

 private int value;

 private TicketType(int intValue) {
 value = intValue;
 }
 public int getValue() {
 return value;
 }

}

CHAPTER 2 ■ DESIGNING LIBRARIES, CLASSES, AND METHODS

80

As you can see, enumerations are similar to classes in terms of the functionality that’s available.
However, they offer a more reliable way of defining a finite set of values from which you can choose, and
doing so makes your code simpler and more maintainable.

Summary
In this chapter, we covered a number of issues related to the design of packages, classes, and methods,
including the following:

You can make a library of classes more manageable by organizing the classes into •
packages.

Creating classes, interfaces, and packages with loose coupling and strong cohesion •
tends to make those items more reusable.

Encapsulation provides many advantages, including the ability to hide •
implementation details and insulation from changes in implementation.

Immutable objects and fields can simplify an object-oriented design.•

The • Object class contains a number of important methods that it may be necessary
or helpful to override.

Method design and naming are an important part of a good design. Method design •
greatly influences the reusability of your code, while naming is an important part of
making your code intuitive and easy to understand.

Minimizing code duplication not only saves time but also makes your code more •
reliable and maintainable.

Java’s exception handling mechanism is a powerful, flexible facility that can handle •
conditions that require attention during the execution of your application.

Assertions can improve your code’s correctness by checking for a condition that you •
expect to be true under normal circumstances.

Enumerations are useful when defining a finite set of values that are employed to •
identify a selection or some kind of state.

81

CHAPTER 3

Lambdas and Other Java 8
Features

Rarely, if ever, has there been a new release of Java that created as much interest as Java 8, which was
officially released in early 2014. By far the most talked-about change was the introduction of lambda
expressions, although the new release also included a number of other changes, such as the following:

Implementation of default methods.•

The Streams API.•

A new API for the representation and manipulation of date and time values.•

Other less notable changes and additions were included in Java 8, but these items represent the ones
that have generated the most interest and as a result will be covered in this chapter along with lambda
expressions.

Lambda expressions generated by far the most “buzz” and rightly so, because they represent the
most radical change to the syntax of the language since at least the introduction of generics and arguably
the biggest change since the language was first created. In fact, several of the other new features in Java
8 support lambdas either directly or indirectly and some of those other new features, along with lambda
expressions themselves, will be examined here.

Lambda Expression Concepts
From a functional perspective lambda expressions represent something Java programmers—and
programmers in other languages—have been doing for a long time, at least conceptually. Specifically,
lambdas support the ability to define and pass method (or “function”) references within application code.
Initially it might seem that Java programmers haven’t been doing this and can’t in earlier versions of Java,
because Java has only supported passing references at an object level, not at a method/function level. To
understand how this has been supported, consider the common scenario where a class is instantiated that’s
an implementation of Runnable and a reference to that instance is passed to a method such as execute()
defined in ThreadPoolExecutor. A simple example of such a class is shown in Listing 3-1.

CHAPTER 3 ■ LAMBDAS AND OTHER JAVA 8 FEATURES

82

Listing 3-1. A Skeleton Runnable Implementation

class MyRunnable implements Runnable {

 public void run() {
 performLongRunningTask();
 }

 private void performLongRunningTask() {
 // Do some work here
 }

}

Creating and passing a reference to MyRunnable is easily done as shown in Listing 3-2.

Listing 3-2. Supplying a Runnable Reference to ThreadPoolExecutor

public void startExecution()
{
 ThreadPoolExecutor executor = getExecutor();
 Runnable newInstance = new MyRunnable();
 executor.execute(newInstance);
}

Very often the Runnable implementation is trivial and only used in a single class, in which case it’s
common practice to define it as an anonymous inner class. This is particularly appropriate and easy if the
functionality executed by the run() method is already defined or can be defined in the same class that
creates the Runnable, as in Listing 3-3.

Listing 3-3. It’s Common for a run() Method to Delegate Processing to Some Other Method

public void startExecution() {
 ThreadPoolExecutor executor = getExecutor();
 Runnable newInstance = new Runnable() {
 public void run() {
 performLongRunningTask();
 }
 };
 executor.execute(newInstance);
}

void performLongRunningTask() {
 // Do some work here
}

This implementation results in slightly less code and, more importantly, one less source file that must
be created and maintained, so it’s generally considered a faster and more convenient approach.

CHAPTER 3 ■ LAMBDAS AND OTHER JAVA 8 FEATURES

83

To understand how this relates to lambda expressions and to passing a function reference it’s helpful to
consider what the Runnable interface and its run() method represent. Most classes and methods represent
a specific type of behavior; for example, it’s obvious from their names and documentation that the add()
method in the Collection interface adds an object to a collection. In contrast, the run() method—and for
that matter the Runnable class that defines it—is named very generically, and for good reason: because there
is no prescribed behavior and the documentation of the interface itself can’t specify what will happen when
the run() method is called. What, then, does Runnable represent? It’s an object that’s known to have exactly
one method defined, namely, run(). In other words, when a Java programmer creates an implementation
of Runnable and passes a reference to it, what’s effectively being passed is a reference to a specific method.
The receiver of that reference knows which method to invoke because there’s only one method that
can be guaranteed to exist and the purpose of that method is to serve as an entry point into the object’s
functionality. So in a sense, when a reference to Runnable is passed it’s really just a reference to a method,
and the Runnable interface is a wrapper around that method.

In contrast, other languages allow function references to be passed directly, such as in JavaScript where
the following code will display a “Hello world” dialog five seconds after it’s executed:

setTimeout(function() {alert('Hello world');}, 5000);

This JavaScript code calls a function named “setTimeout” and passes two parameters to it: a function
that displays a message (“Hello world”), and a numeric value representing the number of milliseconds to
wait before calling the function. The function can be said to be “anonymous” because it’s not assigned a
specific name, and that type of anonymous function is what lambda expressions represent in Java. In fact,
the term “lambda expression” has been used for decades in the context of computer programming to refer
to a function that’s not assigned a name. The term was borrowed from an area of calculus represented by the
eleventh letter (lambda) of the Greek alphabet and was first used in the 1950s to describe the feature of the
Lisp programming language that allowed anonymous functions to be defined and used.

Programming that involves the use of function references is referred to as “functional programming,”
and the purpose of lambda expressions is to provide Java with better, more direct support for functional
programming than what was possible before. With that understanding in mind we can now look at an
example of how lambdas can be used, specifically in this case to pass a value to the ThreadPoolExecutor’s
execute() method as was done before using an inner class (see Listing 3-4).

Listing 3-4. Using the execute() Method in ThreadPoolExecutor with a Lambda Expression

ThreadPoolExecutor executor = getExecutor();
executor.execute(() -> performLongRunningTask());

Notice that the lambda expression fits easily on the same line as the call to execute() because
the “boilerplate” code—that is, the code that’s essentially identical each time something like this is
implemented—is eliminated.

It’s also worth pointing out that nowhere in the lambda expression is the run() method ever referenced.
The compiler knows that execute() requires a Runnable parameter and it also knows that Runnable defines
a single run() method, so when this code is compiled and executed the result is the same as the earlier
implementations, but again it’s done without having to write all the boilerplate code.

At this point we’ve implemented the call to execute() three different ways: using a top-level
Runnable implementation, an implementation using an anonymous inner class, and one that uses a
lambda expression. Comparing the three implementations illustrates clearly how much the use of lambda
expressions can reduce the volume of code produced for something like this (see Table 3-1).

CHAPTER 3 ■ LAMBDAS AND OTHER JAVA 8 FEATURES

84

Using lambda expressions won’t reduce the amount of code in an application by 80%, but it can greatly
decrease the amount of code needed for functional programming.

Analyzing the Example
Before going further in discussing lambda expressions it’s helpful to break the example down into its
component parts and understand what each one represents (see Table 3-2). The code in Listing 3-4 can be
broken down into three components, all three of which must be present in some form, although there is
some flexibility in how they’re specified.

Table 3-2. The Elements of a Lambda Expression in executor.execute(() ->
performLongRunningTask());

Name Description

() Parameters Defines parameters used by the expression

-> Arrow Token Separates the parameters from the body

performLongRunningTask() Expression Body The code to be executed

Table 3-1. Statistics Representing the Creation and Use of the Parameter
Passed to execute() Using Normal Code Formatting Standards

Implementation Class Files Lines of Code

Top-Level Class 2 11

Anonymous Inner Class 1 5

Lambda Expression 1 < 1

The first component identifies the function’s parameters. The format is essentially the same one used
for method or constructor parameters, with the individual parameters separated by commas and the set of
parameters enclosed in a pair of open and closing parentheses. In this no parameters are specified, which is
because the run() method’s signature doesn’t define any parameters.

To illustrate an example of how parameters are used, let’s suppose that there is an array of String
values that needs to be sorted and that the values all contain only numeric digits and should be sorted based
on the corresponding numeric value. A naïve implementation would use the sort() method as shown in
Listing 3-5.

Listing 3-5. Sorting Strings Using Arrays.sort()

String[] stringsToSort;
.
.
.
Arrays.sort(stringsToSort);

CHAPTER 3 ■ LAMBDAS AND OTHER JAVA 8 FEATURES

85

This wouldn’t produce the desired results because, for example, “12” would be considered less than “2” due
to the fact that the first character in “12” (the ”1”) is less than the first—and only—character in “2”. What’s needed
is something like the following (see Listing 3-6) where customized sort logic is defined for the text:

Listing 3-6. A Comparator Implementation for Sorting Strings Containing Numeric Values

Comparator<String> numericStringSorter = new Comparator<String>() {
 public int compare(String s1, String s2) {
 int i1 = Integer.valueOf(s1);
 int i2 = Integer.valueOf(s2);
 int relativeValue = Integer.compare(i1, i2);
 return relativeValue;
 }
};
Arrays.sort(stringsToSort, numericStringSorter);

The anonymous inner class implementation of Comparator can be shortened somewhat by combining
the logic into a single line as shown in Listing 3-7.

Listing 3-7. Sorting Numeric Strings with an Anonymous Inner Class Implementation of Comparator

Comparator<String> numericStringSorter = new Comparator<String>() {
 public int compare(String s1, String s2) {
 return Integer.compare(Integer.valueOf(s1), Integer.valueOf(s2));
 }
};

In effect, what this code does is to convert each pair of strings into their equivalent integer values and to
perform the comparison on those values instead. Implementing this as a lambda expression not only greatly
reduces the amount of code involved but also illustrates how parameters are specified (see Listing 3-8).

Listing 3-8. Implementing a Numeric String Sort Using Lambda Expressions

Arrays.sort(stringsToSort, (String s1, String s2) ->
 Integer.compare(Integer.valueOf(s1), Integer.valueOf(s2)));

Unlike the empty parentheses from the first example, this one in Listing 3-8 defines a pair of parameters,
s1 and s2, both of type String. That’s because the function being called, specifically the Comparator
interface’s compare() method, requires that a pair of values be passed to it and that they must be of the same
type, which in this case is String. As mentioned before, lambdas are very good at removing boilerplate code,
which is partly accomplished by having the compiler determine automatically things like which interface
(Comparable) and method (compare()) are to be used. In fact, the preceding lambda expression can be made
even shorter by omitting the parameter types and allowing them to be inferred (see Listing 3-9).

Listing 3-9. The Parameter Types Can Often Be Omitted in Lambda Expressions

Arrays.sort(stringsToSort, (s1, s2) ->
 Integer.compare(Integer.valueOf(s1), Integer.valueOf(s2)));

Additionally, the parentheses themselves are only necessary when there’s more than one parameter
to be specified. If, for example, a lambda expression is used with a functional interface where the method
accepts a single parameter then it’s possible to specify just a parameter name as in Listing 3-10.

CHAPTER 3 ■ LAMBDAS AND OTHER JAVA 8 FEATURES

86

Listing 3-10. The Parentheses Can Be Omitted When There’s Exactly One Parameter Value Specified

javax.swing.JButton button;
.
.
.
button.addActionListener(actionEvent ->
 System.out.println(actionEvent.getActionCommand()));

In all of the examples presented so far the body of the lambda expression consisted of a single
statement, such as the call to System.out.println() in Listing 3-10. Multiple statements are supported,
though, and are implemented the same way that a block of code is normally defined: by placing the
statements inside a pair of braces ({}) and ending each statement with a semicolon. For example,
to separate the retrieval of the ActionEvent command property from the call to display it could be
implemented as shown in Listing 3-11.

Listing 3-11. Braces Are Needed When More Than One Line of Code Is to Be Executed

button.addActionListener(actionEvent -> {
 String command = actionEvent.getActionCommand();
 System.out.println(command);
 });

Functional Interface Methods
When discussing the Runnable interface it was mentioned that the method to be invoked is implicitly
identified by its having only one method defined, and the same could be said for the ActionListener
method in the preceding example. However, it would be an oversimplification to say that a functional
interface can only define one method, because in fact the Comparable interface referenced earlier actually
defines two methods: compare() and equals(). In the example provided in Listing 3-8, the lambda
expression was obviously (and correctly) associated with the compare() method instead of equals(), but the
selection of compare() is simpler than finding a method with parameters that match the lambda parameters.
In fact, the requirement is that for an interface to be considered a functional interface it must define only a
single abstract (non-implemented) method. So why does Comparable qualify as having only a single abstract
method? Because the equals() method it defines matches exactly the signature of the equals() method
defined in the Object class, and by definition any class that implements the Comparable interface is a
subclass of Object and therefore does provide an implementation of equals().

Default Methods
The definition of a functional interface as one for which there’s only a single unimplemented method
is somewhat complicated by the addition in Java 8 of another new feature, specifically that of “default
methods.” Default methods are concrete method implementations implemented for interfaces, in which
case the interface much more closely resembles that of an abstract class. For example, suppose an
ApplicationManager interface is designed that contains a pair of methods for processing used to initialize
and shut down an application environment as in Listing 3-12.

CHAPTER 3 ■ LAMBDAS AND OTHER JAVA 8 FEATURES

87

Listing 3-12. A Simple Interface That Defines a Pair of Methods for Activating and Deactivating a System

public interface ApplicationManager {
 public void activate();
 public void deactivate();
}

At this point the ApplicationManager doesn’t qualify as a functional interface because it defines two
methods for which there’s no implementation. However, that’s no longer true if one of them is modified
to have a default implementation, which is done using the new default keyword and providing an
implementation as would be done with any abstract or concrete class (see Listing 3-13).

Listing 3-13. The ApplicationManager Interface with a Default deactivate() Method

public interface ApplicationManager {
 public void activate();
 public default void deactivate() {
 System.exit(0);
 }
}

The ApplicationManager interface now qualifies as a functional interface and can be used with lambda
expressions. Default methods do complement lambda expressions but that isn’t their only purpose or
even their primary one. Default methods allow additions to be made to an interface without “breaking”
older implementations of the interface that don’t implement the newly defined method. Specifically,
for example, a new forEach() method has been added to Java’s collection interfaces, and by including
a default implementation for that method with Java 8 the change can be made without invalidating any
existing collection implementations or instances that were created prior to the existence of the forEach()
method. As this example illustrates, default methods are primarily useful in the context of supporting an
interface that’s used by application code and that has a new method added to it that shouldn’t force existing
implementations to be updated.

Default methods are just that: a default, and like non-default methods defined in an interface a class
(either abstract or concrete) that implements the interface is free to provide its own implementation that
overrides the default version. In the case of the ApplicationManager interface just described, for example,
an implementation can provide its own version of deactivate() that contains completely different logic that
will be used instead of the version contained in the default method.

Multiple Inheritance Ambiguity
Interfaces have always been considered Java’s mechanism for implementing multiple inheritance: that is,
the ability for a class to inherit methods from more than one type, though in the past it could only inherit the
method signatures and not their implementations. The fact that no implementation could be inherited from
an interface also meant that there could be no conflict between two interfaces that define methods with
identical signatures. For example, let’s suppose that we have another interface called ResourceController
that defines a deactivate() method with no parameters and that we want to define a class that implements
both ResourceController and the previously defined ApplicationManager as shown here.

class ApplicationFacade implements ResourceController, ApplicationManager
{
}

CHAPTER 3 ■ LAMBDAS AND OTHER JAVA 8 FEATURES

88

This presents something of a dilemma because it’s not immediately obvious whether ApplicationFacade
should inherit the default implementation of deactivate() from the ApplicationManager class, and
becomes even more complex if ResourceController also defines its deactivate() method to have a default
method. In that scenario we will have defined a class that inherits from two different interfaces, each with its
own implementation of deactivate(). Java 8 addresses this by requiring you to provide an implementation
for the ambiguous method in the relevant class, in this case ApplicationFacade. In fact, if you try to compile
the foregoing code you’ll receive a message like the one shown next.

ApplicationFacade.java:1: error: ApplicationFacade is not abstract and does not override
abstract method deactivate() in ResourceController

As the message implies, you can resolve this issue by providing an implementation of the deactivate()
method in ApplicationFacade. If you do want it to use the default implementation provided by
ApplicationManager, you can invoke it using syntax similar to that normally used in a subclass to explicitly
indicate that a superclass method should be called, specifically by using the super keyword as shown in
Listing 3-14.

Listing 3-14. Invoking a Default Method from a Class That Implements Its Interface

class ApplicationFacade implements ResourceController, ApplicationManager
{
 public void deactivate() {
 ApplicationManager.super.deactivate();
 }
}

Streams
Another major change introduced in Java 8 is the Streams API, which provides a mechanism for processing
a set of data in various ways that can include filtering, transformation, or any other way that may be useful to
an application.

To understand what streams are meant to improve or replace it’s helpful to look at an example of how
you’d perform a filtering operation without them. Suppose that you have a List that represents a collection
of String values and you want to remove the entries that begin with some prefix text. In that case, you could
iterate through the List elements, test each one to see if it begins with the target text, and remove the ones
that do begin with that text as shown in Listing 3-15.

Listing 3-15. Filtering the Items in a Collection Without Using the Streams API

List<String> items;
String prefix;
.
.
.
for (ListIterator<String> iterator = items.listIterator(); iterator.hasNext();) {
 String item = iterator.next();
 if (item.startsWith(prefix)) {
 iterator.remove();
 }
}

CHAPTER 3 ■ LAMBDAS AND OTHER JAVA 8 FEATURES

89

This type of code where the iteration is explicitly coded is sometimes referred to, appropriately enough,
as “explicit” iteration and is also sometimes referred to as “active” or “external” iteration. However, the
Streams API in Java 8 supports a different type of iteration where you simply define the set of items to be
processed, the operation(s) to be performed on each item, and where the output of those operations is to
be stored. That type of iteration is referred to as “implicit,” “passive,” or “internal” iteration in contrast to the
processing shown previously.

As just described, a “stream” consists of three parts.

Data source: As its name implies, this part of the stream defines where the data •
comes from, such as a List or other object representing a collection.

Intermediate operations: These are the operations to be performed on the data, such •
as filtering or transformation operations.

Terminal operation: This describes what to do with the processed data, as well as •
determines when (or if) to stop processing the data. Only one terminal operation can
be specified per stream.

Probably the best way to understand these parts and how they relate to the Streams API is to see an
example, and the most obvious candidate for this is an example that performs the same function as the code
in Listing 3-15. So, take a look at Listing 3-16 to see the implementation.

Listing 3-16. Filtering the Items in a Collection Using the Streams API

List<String> filteredList = items.stream().
 filter(e -> (!e.startsWith(prefix))).
 collect(Collectors.toList());

To understand what has been done here, let’s break down the code in Listing 3-16 into its component
parts and determine what each one is doing.

List<String> filteredList =

This is just a standard declarative assignment statement. In this case we’re defining a local variable
named filteredList that represents a reference to a List containing String values.

items.stream()

This indicates that we wish to have the data in the items collection (List) processed using the Streams
API and is an example of a data source. In this case the List is our data source because it contains the
collection of values that are to be processed.

filter(e -> (!e.startsWith(prefix)))

This is an example of an intermediate operation. As its name implies, the filter() function filters the
stream data; that is, it excludes items that do not match the criteria defined by the filter. The filter in this
specific case is simply a lambda expression that determines whether a String value starts with the text
associated with the prefix variable.

collect(Collectors.toList())

CHAPTER 3 ■ LAMBDAS AND OTHER JAVA 8 FEATURES

90

Finally, this portion of the statement represents a terminal operation and identifies what should
be done with the items that are processed. Specifically, it indicates that they should be stored in a new
collection (List), and it’s that collection that will be returned and assigned to the filteredList variable
defined at the beginning of the statement.

This is a simple example, but as you may have guessed, the Streams API allows you to specify more
than one intermediate operation. For example, suppose that we have both a prefix and a suffix and want to
determine which values both begin with the specified suffix and end with the prefix. In that case we could
use a multi-stage “pipe” like the one shown in Listing 3-17, where the suffix is defined in a variable by that
same name.

Listing 3-17. Filtering the Items in a Collection Using a Multi-stage Pipe

List<String> items;
String prefix;
String suffix;
.
.
.
List<String> filteredList = items.stream().
 filter(e -> (e.startsWith(prefix))).
 filter(e -> (e.endsWith(suffix))).
 collect(Collectors.toList());

As the name implies, the “pipe” in this case represents a series of operations through which the data
flows and is very similar conceptually to a “pipeline” used on UNIX/Linux systems to perform some sort of
processing on the data.

This example only illustrates the Stream API’s support for filtering, but if you browse the API
documentation for the Stream class you’ll find that it supports a large number of very useful methods,
including the following:

Method Description

distinct() Returns a stream consisting of only the distinct items as determined by toString()

limit(int n) Returns a stream consisting of only the first “n” elements corresponding to the int
parameter value.

skip(int n) Returns a stream consisting of all elements except the first “n” ones.

sort() Returns a stream that generates the elements in their natural sort order.

In addition to the foregoing, there are a number of terminal operations that can be used to transform
the results of the intermediate operations. For example, using our previous example with the prefix and
suffix operations we could use the count() terminal operation to obtain the number of items that contain
the specified prefix and suffix instead of a collection that encapsulates those values.

long matchCount = items.stream().
 filter(e -> (e.startsWith(prefix))).
 filter(e -> (e.endsWith(suffix))).
 count();

CHAPTER 3 ■ LAMBDAS AND OTHER JAVA 8 FEATURES

91

Another example of a terminal operator is findFirst(), which in this example shown in Listing 3-18
will return just the first item that matches the prefix and suffix value.

Listing 3-18. An Example of the findFirst() Terminal Operator

Optional<String> firstItem = items.stream().
 filter(e -> (e.startsWith(prefix))).
 filter(e -> (e.endsWith(suffix))).
 findFirst();

This example illustrates another important concept that makes the Streams API potentially very
efficient, namely, the idea of “short-circuiting.” In the original example provided here where explicit iteration
was used, the code will iterate once for every item in the collection, which is necessary because we need to
examine each item to determine whether or not it matches the criteria (that is, contains a particular prefix)
that’s being used. In Listing 3-18, however, we’re looking for the first match and once that item is found
no additional iteration is necessary. Of course, if the first match happens to be the last item in the list then
we’ll still wind up iterating through every item, but if we were doing this using explicit iteration then we’d
probably include a break statement that would be executed once the first (and only) match is identified.

Fortunately, the Streams API was designed with this kind of capability built in, and it will stop
processing once a match is found. This is done by having the processing driven by the terminal operator,
which will “pull” data from its predecessor(s) until there is no more data or until it finds what it needs. In
this case, it will continue to pull values from the intermediate operators—which in turn will pull from the
data source—until it finds an item with the appropriate prefix and suffix. Again, that behavior is referred to
as “short-circuiting” and it can help ensure that your applications written using the Streams API execute as
efficiently as possible.

Optional
Another point worth mentioning regarding the previous code segment is the usage of the Optional class,
which is yet another new feature introduced in Java 8. In short, the Optional class acts as a wrapper around
a value that may or may not be null, and is used to reduce the frequency of NullPointerException in
applications that take advantage of it. It does this by ensuring that a method always returns a non-null
value because instead of directly returning the expected result the method returns an Optional, which in
turn contains and can return a reference the value the user intends to access. In other words, Optional is
meant to “force” a programmer to recognize and handle the possibility that a return value may be null and
to handle it gracefully instead of naïvely writing code that will eventually generate a NullPointerException.
In the previous example, the stream will produce a null value if there are no matches found that have the
expected suffix and prefix, but even if that occurs the firstItem variable will never be null. That’s because
the findFirst() method always returns an Optional that encapsulates the first value if there is one or null
if there isn’t one. The application code can access the wrapped value by calling the Optional object’s get()
method, and Optional also includes other useful methods like isPresent() for determining whether it
encapsulates a non-null value.

Parallel Streams
Another major advantage of the Streams API is that it may greatly improve performance where large volumes
of data are being processed. Microprocessors for many years now have been increasing in speed, although in
recent years it has become more common for processing power to be increased by the addition of multiple
“cores” that allow true multithreading to be performed. In other words, with a multi-core processor you

CHAPTER 3 ■ LAMBDAS AND OTHER JAVA 8 FEATURES

92

can have two almost completely independent threads executing at the same time. A limitation, though, is
that writing code to handle multithreaded applications is potentially very complex and error-prone, so it’s
often the case that an application that needs a performance boost won’t get one unless the programmer(s)
working on it are able to effectively write code that makes use of the multiple threads that are available.

Fortunately, the Streams API makes it very simple to take advantage of a multi-core environment, and
that feature can be enabled with only a very minor change to your code. Specifically, instead of calling the
stream() function as was done in the previous example you can call the parallelStream() method, which
indicates that the stream is allowed to be processed by multiple threads if that capability is supported by the
operating system and hardware. An example of this is shown in Listing 3-19.

Listing 3-19. Filtering with Parallel Processing Enabled

List<String> filteredList = items.parallelStream().
 filter(e -> (e.startsWith(prefix))).
 filter(e -> (e.endsWith(suffix))).
 collect(Collectors.toList());

In practice, you’re better off not enabling parallel processing unless you expect the data source to
contain a very large set of items that will be processed. That’s because there is overhead associated with
multithreading and there’s a threshold below which that overhead will exceed the performance gain from
using multiple threads. In other words, if you use parallelStream() with a small set of data, there’s a
good chance that performance will actually be worse than if you had used the single-threaded stream()
equivalent. For larger sets of data, though, it may be worthwhile to take advantage of parallel stream support.
In fact, this is arguably a bigger advantage of the Streams API than the elimination of boilerplate code: it
allows Java applications to easily provide better support for “big data” applications than would be possible
otherwise.

Improved Date/Time Handling In Java 8
The Java language is generally very robust, but one area that has been repeatedly criticized is its support for
processing date and time values. In fact, as a result of Java’s weakness in this area, an open source library
called Joda-Time was created by a developer named Stephen Colebourne and over the years had become a
popular alternative to Java’s built-in date and time handling. To address the problems with the core library
support, a decision was made via the Java Community Process (JCP) to improve Java’s built-in support and
eliminate the need for an add-on library like Joda. With Colebourne as one of the leaders of the JCP group, a
new API was included in Java 8 that represents an improved version of Joda-Time.

Date/Time Support Before Java 8
To fully understand and appreciate what the new Date and Time API provides it’s necessary to first understand
how dates and times were previously handled in Java. In the first (1.0) release of Java the only support for date/
time processing was through the java.util.Date class, which is essentially just a wrapper around a long value.
That value represents the number of milliseconds relative to midnight on January 1, 1970, with respect to the
Greenwich Mean Time (GMT) time zone, with that instant in time sometimes referred to as the “epoch” or as
Coordinated Universal Time (UTC). That point was somewhat arbitrarily chosen and corresponds to a value
of 0 for the long value of a Date, with each millisecond since that time corresponding to an increment in the
value. For example, a value of 1,000 corresponds to one second (1,000 milliseconds) after midnight GMT, while
a value of -60,000 corresponds to one minute before the epoch.

CHAPTER 3 ■ LAMBDAS AND OTHER JAVA 8 FEATURES

93

Date and Time Context

Before going any further in discussing Date, note that the foregoing description qualifies the epoch as
occurring relative to a specific time zone (GMT). That’s critical because there’s a difference between a
point in time and a local representation of a point in time. For example, suppose that you send an e-mail to
someone and tell that person to call you at 1:00 pm and he agrees to do so, but then 1:00 pm passes and the
phone doesn’t ring. Later you receive an e-mail saying that the person had called at 1:00 pm but you didn’t
answer. Even assuming that both of your phones are working correctly it’s entirely possible that both of you
are correct: this can happen if you and the person who called you are in different time zones. That person
called you when his clock said it’s 1:00 pm but you were able to answer the call at what your clock says is 1:00
pm, but what you refer to as 1:00 pm isn’t the same instant in time as what the person refers to as 1:00 pm if
you’re in different time zones.

This example may seem trivial but it illustrates a very important point related to representing dates and
times in Java: what we often refer to as a “time” like 1:00 pm is only meaningful in the context of a specific
time zone. This is sometimes overlooked because most communication regarding time takes place between
two people in the same time zone, so the time zone is implied to be the one in which both parties reside.
For example, if you live in a location that uses Central Time and tell someone to call you at 1:00 pm it’s
understood to mean 1:00 pm Central Time. A time that’s implicitly or explicitly associated with a specific
time zone is referred to as a “local time” to indicate that it’s associated with a particular geographic area and
that area’s time zone. In fact, this concept of a time only being meaningful in the context of a specific time
zone also applies to dates. For example, when it’s October 16th where you are, at some other places in the
world it’s either October 15th or October 17th.

On the other hand, a Date value is inherently neutral when it comes to time zones: it represents a
specific point in time, and it’s only by converting that value into a representation that a user understands—
typically the user’s local time—that the value becomes useful and recognizable. For example, a long value of
1413465227900 isn’t meaningful but it becomes meaningful when it’s translated into a local time like 8:13:47
am, which is implied to mean 8:13:47 am in the time zone of the person who’s viewing the time.

Calendar and GregorianCalendar

When it was introduced in Java 1.0 the Date class included a number of methods for setting and
retrieving specific parts of a date value from instances of the class, such as getYear() for returning an
integer representing the year and setYear() for updating the Date to correspond to the specified year.
This approach was determined to be insufficient for many scenarios and in Java 1.1 the Calendar and
GregorianCalendar classes were introduced and the methods in Date that supported updating and
retrieving date field values were deprecated. Calendar is meant to represent a generic calendar that can be
subclassed, but in practice creating additional calendar implementations is a complex task and as a result
GregorianCalendar is the only implementation provided with Java.

Calendar improved Java’s support for time and date processing by providing a larger number of
methods for setting and accessing date and time components, such as the year, month of the year, etc. In
reality, a Calendar is little more than an object that encapsulates an instant in time (Date) value and a time
zone, represented by the TimeZone class.

Joda-Time

Even with the introduction of the Calendar class date and time manipulation in Java remained somewhat
difficult, partly as a result of the fact that a small number of classes were used to represent many different
concepts: a date, a time, a combination date and time (sometimes referred to as a “timestamp”), an interval
such as a specific number of hours, days, months, etc. In addition, the poorly named Date and Calendar
classes made understanding Java’s date support somewhat more difficult due to confusion regarding what

CHAPTER 3 ■ LAMBDAS AND OTHER JAVA 8 FEATURES

94

they represent. In 2002 Stephen Colebourne began development on the Joda-Time library in order to provide
an easier and more flexible way of working with dates and times in Java, and the library eventually became a
popular addition to Java for developers needing something more than very simple date and time processing.
Later the decision was made to integrate Joda-Time or something similar to it into Java’s core libraries, and
the Java Community Process was used to create an improved version of Joda-Time that was included in Java
8. That new API is referred to as the Date and Time API.

Date and Time API
As mentioned before, part of the difficulty associated with Java’s older classes is that the classes weren’t
cohesive; that is, multiple concepts (a date, a time, a combination date and time) were represented by a single
class. The Date and Time API, like its Joda-Time predecessor, avoids that mistake by defining a larger number
of more cohesive classes that represent more specific concepts. Another advantage of the new API is that,
unlike GregorianCalendar, the Date and Time API classes are thread-safe, which is largely achieved through
the use of immutable classes. Yet another improvement is the names of the classes defined in the new API:
while Java previously only supported the badly named Date and Calendar classes, the new API uses names
that are more intuitive such as YearMonth, MonthDay, LocalDate, LocalTime, and LocalDateTime. Finally, yet
another difference is that while the older classes only support millisecond granularity the Date and Time API
classes support nanosecond granularity, allowing them to represent much more fine-grained values.

The root package of the date and time API is java.time, and we’ll look at some of the classes supported
there and in some of its subclasses to understand how they can be used in place of Java’s older date
processing classes.

Basic Classes
As you’d expect, the Date and Time API provides a superset of the functionality that was available before
and provides superior implementations for some of the classes that were already available. For example,
we’ve already seen that Date represents a point in time, but with the Date and Time API a better alternative
to Date is the Instant class. Instant instances are immutable, and the class includes a number of useful
static methods that can be called to retrieve an instance that meets some criteria. For example, to obtain an
Instant that corresponds to the current point in time you can call the static now() method as follows:

Instant currentPointInTime = Instant.now();

One of the simpler improvements included in the Date and Time API is the inclusion of DayOfWeek and
Month enumerated types. Enumerated types weren’t yet supported by Java when Calendar was introduced,
so days of the week and months of the year were defined as int constants. Besides the usual problems
associated with “simulated” enumerated types, these also had the disadvantage of being zero-based so that,
for example, the Calendar.JANUARY int constant corresponds to a value of 0 instead of the more intuitive
value of 1 (which is how January is traditionally represented in written/displayed dates). Given the new
Month enumerated type, a value corresponding to the month of January can be accessed through the type as
shown in the following code:

Month firstMonth = Month.JANUARY;

CHAPTER 3 ■ LAMBDAS AND OTHER JAVA 8 FEATURES

95

Converting Date and Time Values
The new API makes it easy to convert between its classes and the older types supported by Java. For
example, if you have code that uses the old Date class, it’s also easy to convert between instances of Date and
Instant using the methods provided by Instant. For example, given an instance of Date you can obtain a
corresponding Instant by using the static ofEpochMilli() method as shown in the following code:

Date someDate;
.
.
.
Instant someInstant = Instant.ofEpochMilli(someDate.getTime());

If, on the other hand, you want to create a Date from an Instant you can retrieve the number of epoch
milliseconds from the Instant as shown in the following code:

Instant someInstant;
.
.
.
Date someDate = new Date(someInstant.toEpochMilli());

As you’ll see if you browse the documentation for the API documentation, these methods defined in
Instant are common across many of the different types used to represent different concepts related to date
and time. Some of these are listed in Table 3-3, along with a brief description of what each one represents.

Table 3-3. Some Temporal Types in the Date and Time API

Class / Type Description

Year Represents a year.

YearMonth A month within a specific year.

LocalDate A date without an explicitly specified time zone.

LocalTime A time without an explicitly specified time zone.

LocalDateTime A combination date and time without an explicitly specified time zone.

Notice that several types are described as not having an explicitly specified time zone. This means that
those types represent a local time regardless of what time zone is applicable for the machine on which the
code is running. Or, to put it another way, these types represent a “wall clock time” (and date in the case of
LocalDateTime) as opposed to a specific point in time.

These types are all implementations of the Temporal interface, which is a type that identifies classes
representing various date and time types. Note that none of these, including the LocalDateTime type,
includes a time zone, so none of them corresponds to the Calendar class discussed earlier. However, in
addition to the previous classes there’s also a ZonedDateTime class that does include a time zone. Like the
other types related to date and time processing, however, the Java Date and Time API also includes a new
class for representing a time zone. In fact, it separates two concepts that were previously combined into
Java’s TimeZone class into two different classes: ZoneId and ZoneOffset.

CHAPTER 3 ■ LAMBDAS AND OTHER JAVA 8 FEATURES

96

Time Zones

Each time zone represents some offset—usually some number of hours—relative to GMT. For GMT itself,
the offset is implicitly zero, since it’s the basis on which other time zone offsets are defined, while for
Eastern Standard Time (EST) in the United States the office is five hours, for Central Standard Time (CST)
it’s six hours, etc. For those time zones that observe Daylight Savings Time (DST)—and not all do—the offset
is reduced by an hour, so Eastern Daylight Time (EDT) corresponds to an offset of four hours, and so on.
As implied by these examples, the offset for a given time zone can usually be expressed as some number of
hours relative to GMT, though in some cases the offset includes only part of an hour.

Prior to Java 8 the concept of a time zone was represented by instances of the TimeZone class defined in
the java.util package, with each instance encapsulating two properties: the actual time zone with which
the instance is associated and the associated offset for the time zone. More specifically, TimeZone includes
methods for retrieving an identifier such as “CST” or “CDT,” as well as methods for retrieving a “display
name” like “America/Chicago” that describes a geographic location associated with the time zone. It also
includes methods for returning an offset in milliseconds of the time zone relative to GMT.

ZoneId and ZoneOffset

In contrast to the older TimeZone class, the Date and Time API splits the concepts of a time zone identifier
and time zone offset into two separate classes, namely, ZoneId and ZoneOffset. As their names imply,
the ZoneId and ZoneOffset classes represent specific time zones and the offsets associated with time
zones, respectively. The distinction between a time zone (or its associated ZoneId) and a time zone offset
(represented by ZoneOffset) is an important one. At any point in time a time zone is associated with exactly
one offset value, but that offset can change, such as when DST begins or end and more than one time zone
may share the same offset value.

As mentioned earlier most of the Temporal types are defined as not being associated with a particular
time zone and as you’d expect none of them supports the ability to retrieve the time zone associated with
the type. In contrast, though, there is an additional Temporal type not mentioned earlier, specifically the
ZonedDateTime class which, as its name implies, is a combination date and time along with an associated
time zone. If this sounds familiar it’s because the combination of a specific date, time, and time zone
identifies a specific point in time, making ZonedDateTime the conceptual equivalent of a Calendar instance.
As you’d expect from this description, the ZonedDateTime class includes getZone() and getOffset()
methods that return the ZoneId and ZoneOffset, respectively, of the time zone associated with the
ZonedDateTime instance.

In addition to ZonedDateTime, there are also a pair of classes, namely, OffsetTime and OffsetDateTime,
that have an associated ZoneOffset.

Temporal Amounts

As mentioned earlier, a large part of the difficulty associated with date and time processing earlier versions
of Java was that a small number of classes were required to support various different concepts that are only
somewhat related, but Java 8’s Date and Time API provides a larger number of more cohesive classes. One
of the concepts that was only indirectly supported by Java’s earlier date and time classes is that of a time
interval, such as some number of minutes, hours, or days. By necessity these types of value were represented
using the number of milliseconds corresponding to the interval, which in some cases is appropriate and
simple. For example, 1,000 milliseconds always represents one second, so representing some number of
seconds is as simple as multiplying that number times 1,000. Representing some number of hours is equally
simple, because an hour is always 60 minutes (or 60 * 60 * 1,000 milliseconds) long. Initially it might seem
that a day is always 24 hours long, but in fact that’s not the case for every day in every time zone. Specifically,
a day can at least conceptually be only 23 or 25 hours long, and these odd lengths each occur once every

CHAPTER 3 ■ LAMBDAS AND OTHER JAVA 8 FEATURES

97

year in time zones where DST is observed. In reality, of course, the earth’s rotation hasn’t changed but
the boundaries that defined where one day ends and another begins are altered in order to adjust the
relationship between clock time and when and where the sun is visible in the sky.

As this illustration implies, the concept of a “day” actually is overloaded because it has at least two
meanings:

 1. A period of exactly 24 hours.

 2. The time interval that begins at a given time on one calendar day and ends at
exactly the same time on the following calendar day, such as from midnight on
one date to midnight of the next date.

Most of the time these meanings can be used interchangeably because usually calendar days also
happen to be exactly 24 hours long, but as just mentioned there are exceptions to that rule and to be reliable
software must be able to function correctly based on which of the previous two definitions is relevant to it.
For example, if you intend to add one week to some instant in time, it’s not always appropriate to simply
advance the instant by the number of milliseconds (or nanoseconds) that corresponds to seven 24-hour
days: if the one-week period includes a DST start or end date then one of the days will be either 23 hours
long or 25 hours long.

A “month” is an even less well-defined concept because different months in the Gregorian calendar
can be anywhere from 28 to 31 days long, and even in the context of a specific month the number of days
can vary, specifically in the case of February which is 29 days long in leap years. When someone refers to a
“month” as a time interval, its meaning is normally similar to that of the second definition of “day” described
earlier: specifically, they mean the period of time from a given date in one month to the same date in a
following month, such as January 1st to February 1st.

Similarly, a Gregorian “year” can be either 365 or 366 days long, depending upon whether it’s a leap
year, and when someone refers to a “year” they generally mean the interval corresponding to the start of a
date in one year to the start of the same date in the following year. A summary of these variations is shown in
Table 3-4.

Table 3-4. Some Temporal Types in the Date and Time API

Concept Duration Comments

Day 23–25 hours 23 hours when DST starts; 25 hours long when it ends

Month 28–31 days February is normally 28 days long; 29 in a leap year

Year 365–366 days 366 days long in a leap year; otherwise 365 days long

Fortunately, the Date and Time API has taken all of these variations into account and includes built-in
support that not only represents the various different concepts but can be used to accurately manipulate
date and time values based on the concepts involved. The relevant classes are Duration and Period, both of
which implement the TemporalAmount interface.

Duration

A Duration represents some number of elapsed seconds and conceptually can be thought of as representing
an amount of time similar to that captured by a stopwatch. A stopwatch strictly records the duration between
when it’s started and when it’s stopped and has no dependency or real relationship to a time zone or any
other concept related to calendar dates or wall clock times.

CHAPTER 3 ■ LAMBDAS AND OTHER JAVA 8 FEATURES

98

The Duration class includes a handful of methods that allow you to create instances representing
various numbers of days, hours, minutes, seconds, milliseconds, or nanoseconds. For example, to create an
instance of Duration representing 30 minutes you could use code like that shown here:

Duration halfAnHour = Duration.ofMinutes(30);

Or, to represent an interval of three days, you could use the following:

Duration threeDays = Duration.ofDays(3);

As mentioned before, the concept of a “day” is inherently ambiguous, but in the context of the static
ofDays() method defined in Duration a day is assumed to be a day that’s exactly 24 hours long, so it
corresponds to the first definition of “day” identified earlier.

Period

In contrast to the Duration class that represents fixed intervals, the Period class is used to represent the
more conceptual intervals like “year,” “month,” or the second definition of a “day” mentioned earlier. Unlike
Duration instances, a Period doesn’t represent a specific amount of “wall clock” time but instead represents
a conceptual length of time. In other words, a Period can represent a day, month, or year of indeterminate
length, and it’s only when it’s used in the context where it can be resolved to a specific length that its length
becomes meaningful. To better understand this, let’s construct a Period and see how it behaves.

Period oneMonth = Period.ofMonths(1);

The call to ofMonths() returned a Period representing a one-month interval, but is it a 28-, 29-, 30-,
or 31-day month? It can be any one of these, because what it really represents is the concept of a month as
described earlier: from a given day in one month to the same date in the following month, regardless of the
start date’s month. Let’s observe its behavior by creating a LocalDate and seeing how it interacts with the
Period we just created.

LocalDate newYearsDay = LocalDate.of(2015, Month.JANUARY, 1);
System.out.println(newYearsDay);

Running the foregoing code yields the following output:

2015-01-01

Now let’s add the Period to the date just created and display the results.

LocalDate newYearsDay = LocalDate.of(2015, Month.JANUARY, 1);
System.out.println(newYearsDay);
Period oneMonth = Period.ofMonths(1);
LocalDate firstOfFebruary = newYearsDay.plus(oneMonth);
System.out.println(firstOfFebruary);
LocalDate firstOfMarch = firstOfFebruary.plus(oneMonth);
System.out.println(firstOfMarch);

CHAPTER 3 ■ LAMBDAS AND OTHER JAVA 8 FEATURES

99

As expected, this code displays the dates for the first day of January, February, and March.

2015-01-01
2015-02-01
2015-03-01

To summarize, the Duration class is used to represent a fixed amount of “wall clock” time; the Period
class represents a temporal concept like day, month, and year that can vary in duration.

Note that in the previous example each distinct local date is represented by a different instance of
LocalDate. As mentioned earlier, the API provides thread safety by making its classes immutable, which
means that although we may talk of “manipulating” dates and times, what really occurs is that we create new
instances of them based on some criteria. In this case, those criteria represented a period of one month, and
we used a starting point (the initial newYearsDay) and Period value to derive two other dates.

Parsing and Formatting
Parsing and formatting dates and times are essentially opposites of each other: parsing involves converting
a text representation (usually text entered by a user) into an internal format such as one of the data types
mentioned here, while formatting involves converting an internal format into a text representation of that
value, usually for the purpose of displaying it.

Parsing and formatting are complicated by the fact that date and time formats vary from one region to
another and are further complicated by the fact that even within a single region multiple formats may be
used. Within the United States, for example, the format most commonly used mm/dd/yy, consisting of two
digits apiece for the month (“mm”), day (“dd”), and year (“yy”). Even within the United States, though, many
other date formats are used and the situation is roughly as complicated for times, where there’s no single
format that’s clearly used more frequently than others, though the hh:mm am|pm format (e.g., 2:45 pm) is
very common.

Prior to the introduction of the Java Data and Time API formatting and parsing were handled by the
abstract DateFormat class, usually with an instance of SimpleDateFormat. DateFormat supports a number
of commonly used date and time formats and custom formats can easily be defined by specifying a pattern
when creating an instance of SimpleDateFormat. An instance of DateFormat handles both parsing and
formatting for the format it’s associated with, but like the other classes defined in earlier versions of Java
DateFormat has been superseded with the introduction of the new API. Applications written using Java
8 can use the new DateTimeFormatter class, which serves a purpose very similar to that of DateFormat;
specifically, an instance of DateTimeFormatter represents a specific format that can be used to format and
parse text representing some combination of date and/or time components.

Similar to the way the DateFormat and SimpleDateFormat classes worked, DateTimeFormatter allows
you either to use a predefined format that’s considered appropriate for your system settings or to define your
own custom format. The predefined formats are associated with the FormatStyle enumerated type that
defines four styles: SHORT, MEDIUM, LONG, and FULL. The DateTimeFormatter defines three static methods:
one for dates, one for times, and one for timestamp (date and time) formatters, and each of the three static
methods requires you to specify the format style for which to return a DateTimeFormatter instance.

• ofLocalizedDate() - Returns a DateTimeFormatter for parsing and formatting
date text.

• ofLocalizedTime() - Returns a DateTimeFormatter for parsing and formatting
time text.

• ofLocalizedDateTime() - Returns a DateTimeFormatter for parsing and formatting
date and time text.

CHAPTER 3 ■ LAMBDAS AND OTHER JAVA 8 FEATURES

100

Table 3-5 shows the output generated by passing in a ZonedDateTime created using the following code:

ZonedDateTime timestamp = ZonedDateTime.of(2015, 7, 4, 12, 30, 0, 0,
ZoneId.systemDefault());

Table 3-5. Results of Various Combinations of FormatStyle and DateTimeFormatter Instances

ofLocalizedDate() ofLocalizedTime() ofLocalizedDateTime()

SHORT 7/4/15 12:30 pm 7/4/15 12:30 pm

MEDIUM Jul 4, 2015 12:30:00 pm Jul 4, 2015 12:30:00 pm

LONG July 4, 2015 12:30:00 pm July 4, 2015 12:30:00 pm cdt

FULL Saturday, July 4, 2015 12:30:00 pm cdt Saturday, July 4, 2015 12:30:00 pm cdt

Also, as mentioned earlier it’s possible to create an instance of DateTimeFormatter using a custom

pattern as shown in the following code fragment using the same ZonedDateTime value as before:

ZonedDateTime timestamp = ZonedDateTime.of(2015, 7, 4, 12, 30, 0, 0, ZoneId.
systemDefault());
DateTimeFormatter formatter = DateTimeFormatter.ofPattern("HH:mm a zzz MM/dd/yyyy");
System.out.println(formatter.format(timestamp));

Running this code results in output like the following with the local time zone:

12:30 PM CDT 07/04/2015

In the foregoing method we created a ZonedDateTime and passed it as a parameter to the format()

method of a DateTimeFormatter instance, but the API also includes convenience methods that support

doing the opposite. For example, the following code passes a DateTimeFormatter instance to the format

method of a ZonedDateTime and is functionally identical to the previous code fragment:

ZonedDateTime timestamp = ZonedDateTime.of(2015, 7, 4, 12, 30, 0, 0, ZoneId.
systemDefault());
DateTimeFormatter formatter = DateTimeFormatter.ofPattern("HH:mm a zzz MM/dd/yyyy");
System.out.println(timestamp.format(formatter));

In fact, this second approach is generally preferable, partly because it’s also consistent with how parsing

can be done. Specifically, you can create a DateTimeFormatter and pass it to the static parse() method

of the type that you want to parse. For example, you could use code like that shown next to parse text and

return an instance of LocalDateTime that represents the timestamp used in the previous example.

DateTimeFormatter formatter = DateTimeFormatter.ofPattern("HH:mm a zzz MM/dd/yyyy");
LocalDateTime dateTime = LocalDateTime.parse("12:30 PM CDT 07/04/2015", formatter);

In fact, most of the types defined in the java.time package include a parse() method that allows you to

obtain an instance of that type by parsing text using a formatter as shown previously.

CHAPTER 3 ■ LAMBDAS AND OTHER JAVA 8 FEATURES

101

Method Naming Conventions
One of the things that makes the Date and Time API easy to use is that it consistently adheres to a set
of naming conventions for the methods defined in the various classes we’ve examined, and gaining an
overview of these conventions is a helpful step in being able to effectively use the API. We’ve already
encountered some of these methods in the previous examples, but it’s still helpful to review the standards.

now()

The static now() method, when defined for a class, returns an instance of that class representing the current
point in time as shown in the following:

ZonedDateTime currentTimestamp = ZonedDateTime.now();
LocalDate currentDate = LocalDate.now();

of()

The static of() method is used to create an instance of the corresponding class that meets some criteria. For
example, the following code will create a LocalDateTime representing noon (12:00 PM) on July 4, 2015:

LocalDateTime julyFourthNoon = LocalDateTime.of(2015, Month.JULY, 4, 12, 0, 0);

from()

The static from() method is passed one or more input parameters that are used to derive an instance of
the class for which this method is called. For example, to retrieve the day of the week from a LocalDate you
could use code like the following:

LocalDate newYearsDay = LocalDate.of(2015, Month.JANUARY, 1);
DayOfWeek dayOfWeek = DayOfWeek.from(newYearsDay);

parse() and format()

As mentioned earlier, the parse() method can be used to convert text into an instance a class that represents
the corresponding value, while format() does the opposite: converts text representing a date or time into a
representation of that value. For example, to create a LocalDate by parsing some text that contains a date in
the mm/dd/yyyy format you could use the following:

String dateText;
.
.
.
DateTimeFormatter mmddyyyyFormatter = DateTimeFormatter.ofPattern("MM/dd/yyyy");
LocalDate parsedDateTime = LocalDate.parse(dateText, mmddyyyyFormatter);
System.out.println(parsedDateTime);

CHAPTER 3 ■ LAMBDAS AND OTHER JAVA 8 FEATURES

102

Similarly, to create text representing a date or time value you can use the format() method as shown in
the following code:

LocalDate today = LocalDate.now();
DateTimeFormatter mmddyyyyFormatter = DateTimeFormatter.ofPattern("MM/dd/yyyy");
System.out.println(today.format(mmddyyyyFormatter);

getXXX()

The Date and Time API classes include various methods prefixed with “get” that provide the ability to
retrieve a single component of the corresponding object. This is similar to the get() method defined in the
older Calendar class that allows you to specify a component type (e.g., year, month, day, hours, minutes,
seconds) and that returns an int value representing that part of the value the Calendar encapsulates. For
example, we already saw how a DayOfWeek could be retrieved from a LocalDate using the from() method in
DayOfWeek, but the same result could be achieved by calling the getDayOfWeek() method for the LocalDate
object as shown in the following:

LocalDate newYearsDay = LocalDate.of(2015, Month.JANUARY, 1);
DayOfWeek dayOfWeek = newYearsDay.getDayOfWeek();

isXXX()

The various methods prefixed by “is” return information related to the state of the object. For example, to
determine if a particular year is a leap year you could use code like the following:

Year year = Year.now();
System.out.println(year.isLeap()
 ? "This is a leap year" : "This is not a leap year");

In some cases a static method is also provided as a convenience, and in some cases it may be easier to
use that. For example, if you want to check an arbitrary year to determine whether it’s a leap year you could
use the Year.isLeap() method as shown in the following code:

System.out.println(Year.isLeap(2015)
 ? "It is a leap year" : "It's not a leap year");

Comparing Dates

In addition to implementing the Comparable interface, the Date and Time API classes also include
isBefore() and isAfter() methods that in many cases represent a more convenient way of comparing a
pair of values. For example, the following will display “true” because the first date is earlier than the second:

LocalDate first = LocalDate.of(2015, Month.FEBRUARY, 1);
LocalDate second = LocalDate.of(2015, Month.FEBRUARY, 2);
System.out.println(first.isBefore(second));

CHAPTER 3 ■ LAMBDAS AND OTHER JAVA 8 FEATURES

103

with()

Variations of the with() method are defined for the API classes, and each one represents a way of returning
a copy of the value that has been modified in some way, either by replacing one of the value’s components or
by adjusting the value in some manner. For example, the following code will create two LocalDate instances:
one for the first day of 2015, and the second representing the first day of 2016:

LocalDate newYears2015 = LocalDate.of(2015, Month.JANUARY, 1);
LocalDate newYears2016 = newYears2015.withYear(2016);

In this example the year was replaced using the withYear() method, but the API classes also contain
a more general-purpose with() method that allows you to specify a field and a value for the field. The
following code is functionally equivalent to the previous example but uses the LocalDate.with() method
that accepts TemporalField and long parameters representing the field to change and the new value to be
assigned to it:

LocalDate newYears2015 = LocalDate.of(2015, Month.JANUARY, 1);
LocalDate newYears2016 = newYears2015.with(ChronoField.YEAR, 2016);

Perhaps even more useful, though, is the with() method that accepts a single TemporalAdjuster value.
As the parameter type implies, this value will “adjust” the value by the specified amount. For example, the
following will display the date value for February 2, 2015 when executed:

LocalDate newYears2015 = LocalDate.of(2015, Month.JANUARY, 1);
MonthDay groundhogDay = MonthDay.of(Month.FEBRUARY, 2);
LocalDate groundhogDate = newYears2015.with(groundhogDay);
System.out.println(groundhogDate);

plus() and minus()

Variations of the plus() and minus() methods are included in the API classes and these allow an instance of
the corresponding class to be derived and returned by selecting a later (for plus()) or earlier (for minus())
value. For example, to retrieve the last date of a previous year you could use code like the following:

LocalDate newYears2015 = LocalDate.of(2015, Month.JANUARY, 1);
LocalDate newYearsEve2014 = newYears2015.minusDays(1);

Even more useful are the plus() and minus() methods that accept an instance of TemporalAmount. We
already discussed both of the classes that implement this interface, specifically the Duration and Period
classes representing a fixed interval (e.g., some specific number of hours) or a more conceptual interval
whose exact length can vary, such a day, month, or year. For example, to determine the date that’s 90 days
into the future from some arbitrary date you could use the following code:

Period ninetyDays = Period.ofDays(90);
LocalDate currentDate = LocalDate.now();
LocalDate ninetyDaysFromToday = currentDate.plus(ninetyDays);

CHAPTER 3 ■ LAMBDAS AND OTHER JAVA 8 FEATURES

104

toXXX()

The to() methods return an instance of some type that’s derived from a different type. For example, to
retrieve a LocalDate from an instance of LocalDateTime you could use the toLocalDate() method as shown
in the following code:

LocalDateTime dateTime;
.
.
.
LocalDate dateOnly = dateTime.toLocalDate();

atXXX()

The methods prefixed with “at” return a different type from the one for which the method is invoked, specifically
an instance of the return type that’s derived from the original object and the parameter values specified. For
example, given a YearMonth value you can retrieve a LocalDate by calling the atDay() method, passing to it an
int value representing the day of the month to be returned.

YearMonth december2015 = YearMonth.of(2015, Month.DECEMBER);
LocalDate christmas2015 = december2015.atDay(25);

Summary
In this chapter we’ve examined some—but certainly not all—of the features that have caused Java 8 to
receive so much attention, including lambda expressions, default methods, the Streams API, and the new
Date and Time API. These are arguably the most important of the new features introduced in Java 8, and
when used in a Java application they make that application easier to write, and easier to maintain, and can
allow it to process larger volumes of data more efficiently.

105

CHAPTER 4

Using Threads in Your Applications

If you’re like most users, you probably have more than one application running on your computer most of
the time. In addition, you probably sometimes initiate a long-running task in one application and switch
to another application while waiting for that task to complete. For example, you might start downloading
a file from the Internet, or begin a search that scans your disk drive for files matching a particular pattern,
and then read your e-mail while the download or search is in progress. Running multiple applications
simultaneously (or at least appearing to do so) is called multitasking, and each application is usually referred
to as a process.

Multitasking is possible partly because the operating system is designed to make it appear that multiple
processes are running at the same time even if your computer only has a single processor. That’s done by
allocating the available processor time—whether there’s a single processor or more than one—across the
various tasks that are supposed to be executing. This behavior is useful even on a single-processor system
because it makes efficient use of processor time that would otherwise be wasted. In both of the examples
mentioned (downloading and searching) a processor would spend much of its time simply waiting for I/O
operations to complete unless it has other work to do. From a user’s perspective, multitasking is desirable
because it allows you to continue to use your computer while some background task is being executed
instead of being blocked until that task completes.

Although the previous discussion assumed that there were multiple processes/applications running,
the same concept is relevant within the context of a single application. For example, a word processor
can automatically check your spelling and grammar while simultaneously (or at least apparently so)
allowing you to continue entering new text. Similarly, if your application performs a long-running task
such as downloading a large file from the Internet, it’s usually desirable to provide a user interface that
can respond to a user’s request to cancel the download. Java provides built-in support for simultaneous
(concurrent) tasks within a single application through its threading capabilities, where a thread is simply a
unit of execution.

In this chapter, we’ll cover the following topics related to using threads in Java:

We’ll examine common reasons for using threads and some of the advantages and •
disadvantages of using them.

We’ll see examples that illustrate how to create threads and manage their execution.•

We’ll cover tips on how to synchronize access to resources that are used by multiple •
threads, and information on how to prevent problems from occurring.

We’ll study changes that occurred to the • Thread class in Java 2 and sample code
that shows how to create or modify your applications to take into account those
changes.

We’ll examine thread pooling, a technique that’s used to reduce the overhead •
associated with creating threads, with an example of how you can take advantage of it.

CHAPTER 4 ■ USING THREADS IN YOUR APPLICATIONS

106

Threading in Java
It’s likely you’ve built a multithreaded application in Java, even if you didn’t do so explicitly. When
you execute a Java application, the main() method is executed by a thread, although that fact is largely
transparent. In addition, applications that provide a user interface (as most do) will implicitly cause another
thread to be created and used: the event dispatch thread.

The EDT is active for both Abstract Window Toolkit (AWT) and Swing-based user interfaces and is
responsible for painting lightweight components and for performing event notifications. If you create an
interface that includes a JButton instance, the event dispatch thread paints the button when it’s made visible
and will call the actionPerformed() method for each of the button’s listeners when it’s clicked.

The fact that the event dispatch thread is responsible for both painting and event notification provides
the motivation behind one of the most common uses of threads in Java. As long as the thread is busy with
event handling, it can’t repaint the user interface, and if you create an event handler that performs some
long-running function, the interface may remain unpainted long enough to produce undesirable results.

For example, the code shown in Listing 4-1 calls the performDatabaseQuery() method from
actionPerformed(). The called method simulates a long-running query by calling the sleep() method,
causing the currently running thread to pause for five seconds before continuing execution. Since
actionPerformed() will be called by the AWT event thread, that thread will be busy until the query
completes, which prevents it from repainting the user interface during that time. Therefore, the user
interface will appear to “hang” during the query, as shown in Figure 4-1.

Listing 4-1. Simulating a Long-Running Query

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

 public class ButtonPress extends JFrame {

 public static void main(String[] args) {
 ButtonPress bp = new ButtonPress();
 bp.setSize(400, 300);
 bp.setVisible(true);
 }

 public ButtonPress() {
 JMenuBar jmb = new JMenuBar();
 JMenu menu = new JMenu("Execute");
 jmb.add(menu);
 JMenuItem jmi = new JMenuItem("Database Query");
 menu.add(jmi);
 jmi.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 performDatabaseQuery();
 }
 });
 setJMenuBar(jmb);
 }

CHAPTER 4 ■ USING THREADS IN YOUR APPLICATIONS

107

 private Object performDatabaseQuery() {

 // Simulate long-running database query
 try {
 Thread.sleep(5000);
 } catch (Exception e) {}
 ;
 return null;
 }
}

Figure 4-1. Blocking the event dispatch thread prevents your GUI from being repainted/refreshed, which
makes the application look as though it’s “hung up” or is otherwise malfunctioning

This type of confusing display can occur when one window is temporarily overlaid by another and the
first window isn’t repainted after the second one is hidden or removed.

Creating Threads
As mentioned earlier, Java provides robust built-in support for supporting multithreaded applications, and
creating a new thread is simple. Each thread is represented by an instance of the java.lang.Thread class,
and to create a new instance, you simply define a class that extends Thread or implements the
java.lang.Runnable interface.

You’ll often want to create a class with code that runs in its own thread, but if that class extends Thread,
it can’t inherit functionality from any other class since Java doesn’t support multiple inheritance. Extending
Thread doesn’t provide any functional advantage over implementing Runnable, and neither approach is
significantly easier than the other one, so the latter approach (implementing Runnable) is usually better.

The only method defined in Runnable is run() which is called when the thread executes. Once the
thread exits run() (either normally or because of an uncaught exception), it’s considered dead and can’t
be restarted or reused. In effect, the run() method serves the same purpose in a thread that the main()
method does when executing a Java application: it’s the initial entry point into your code. As with the main()
method, you shouldn’t normally call run() explicitly. Instead, you’ll pass an instance of Runnable to a

CHAPTER 4 ■ USING THREADS IN YOUR APPLICATIONS

108

Thread constructor, and the thread will call run() automatically when it’s started. For example, to make the
ButtonPress application multithreaded, you could create a DatabaseQuery class like the following one that
implements Runnable:

class DatabaseQuery implements Runnable {

 public void run() {
 performDatabaseQuery();
 }
}

To use this class, all that’s necessary is to create a new instance of Thread, passing its constructor
a DatabaseQuery instance, and call the Thread's start() method to begin execution. Calling start()
indicates that the newly created thread should begin execution, and it does so by calling the object’s run()
method as mentioned previously.

Thread t = new Thread(new DatabaseQuery());
t.start();

In fact, the need to perform long-running operations outside the EDT is so common that since Java 1.6
a SwingWorker class has been included in Java that implements Runnable and that makes it easier to support
this functionality, and Listing 4-2 shows an example of how it can be used.

Listing 4-2. DatabaseQuery, Modified

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class ButtonPress extends JFrame {

public static void main(String[] args) {
 ButtonPress bp = new ButtonPress();
 bp.setSize(400, 300);
 bp.setVisible(true);
}

public ButtonPress() {
 JMenuBar jmb = new JMenuBar();
 JMenu menu = new JMenu("Execute");
 jmb.add(menu);
 JMenuItem jmi = new JMenuItem("Database Query");
 menu.add(jmi);
 jmi.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 SwingWorker<Object,Object> worker =
 new SwingWorker<Object,Object>() {
 public Object doInBackground() {
 return performDatabaseQuery();
 }
 };

CHAPTER 4 ■ USING THREADS IN YOUR APPLICATIONS

109

 Thread t = new Thread(worker);
 t.start();
 }
 });
 setJMenuBar(jmb);
}

private Object performDatabaseQuery() {

 // Simulate long-running database query
 try {
 Thread.sleep(50000);
 } catch (Exception e) {}
 ;
 return null;
}

}

When this code is executed and the menu item activated, the AWT event thread will call the
actionPerformed() method and create a new thread, passing to it the SwingWorker instance. When that
thread executes, it will call run() which in turn invokes the doInBackground() method. Creating a new
thread and using it to execute the long-running task prevents the EDT from being blocked, ensuring that the
application interface remains responsive to user input and that it can repaint the interface when appropriate.

In addition to the constructor used here that accepts a single Runnable parameter, Thread also provides
constructors that allow you to specify a name (in the form of a String) for the thread and to identify the
ThreadGroup with which the Thread should be associated. We’ll examine thread groups in more detail later
in this chapter; they allow you to create logical groupings of threads. A thread’s name has no functional
significance but may allow you to more easily distinguish one thread from another while debugging a
multithreaded application.

Disadvantages of Using Threads
As you can see from the previous example, it’s extremely easy to create a thread in Java, but you should avoid
doing so when possible. Although not obvious from this simple example, using multiple threads within your
applications has several disadvantages, as described in the following sections.

Slow Initial Startup
Although not apparent from the previous ButtonPress class, creating and starting a new thread is a relatively
slow operation on some platforms, and in an application where performance is critical, this can be a
significant drawback. Thread pooling provides a reasonably simple solution to this problem, and will be
discussed in detail later in this chapter.

CHAPTER 4 ■ USING THREADS IN YOUR APPLICATIONS

110

Resource Utilization
Each thread is allocated its own stack, which is an area of storage used to contain local variable values (that
is, variables defined within a method) and other information related to execution. Other system resources
are used in addition to the stack, although the specific amount and type of those resources used vary from
one Java Virtual Machine (JVM) to the next. Although it’s typically possible to create a large number of
threads, the platform you’re using may limit the number that can be created. Even if the platform doesn’t
explicitly limit the number of threads you can create, there’s usually a practical limit determined by the
speed of your processor(s) and the amount of available memory on your system.

Although you can’t eliminate this problem, you can control it through thread pooling. In addition to
eliminating the overhead penalty associated with creating a new thread, you can use thread pools to limit
the number of threads that are created. This assumes, of course, that your application voluntarily allows a
thread pool manager to control when to create threads and how many to create.

Increased Complexity
By far the biggest disadvantage of using threads within your application is the complexity that it adds. For
example, if you’re debugging a single-threaded application, it’s relatively easy to observe your application’s
flow of execution, but it can be significantly more difficult to do so when using multiple threads.

Thread safety usually involves designing the object so that its data can’t be read or written by one thread
while another thread is in the process of modifying that data. In this context, data refers to the information
encapsulated by the object, and a single data item can consist of a field or collection of fields within the
object. An example of a data item is a person’s name, which might be contained within a single String field
or within several fields (for example, first, middle, and last names).

An even more complex problem is the matter of sharing resources among multiple threads. In this
context, a resource is any entity that can be used by more than one thread simultaneously, and in most
cases you’re responsible for coordinating their use by the threads. For example, Swing components aren’t
inherently thread-safe, so you’re responsible for coordinating how they’re used by your application’s
thread(s) and the AWT event thread. This is usually done using the invokeAndWait() and invokeLater()
methods in SwingUtilities to delegate modifications to visible components to the AWT event thread.

In general, if you create an object that contains data that can be modified, and the object is accessible
by more than one thread, you’re responsible for making that object thread-safe. Thread safety refers to
ensuring that no partial or otherwise inappropriate modifications can be made to an object’s state because
of two or more threads attempting to update the state simultaneously; you’ll see shortly how this can occur
when an object isn’t thread-safe.

Sharing Resources
Before discussing how to coordinate using shared resources among threads, we’ll first cover which
resources are shared. Variables defined locally within a method aren’t accessible outside that method and
are therefore not shared when multiple threads execute the same method for some object. For example,
suppose you run the following application, which creates two threads that use the same Runnable object
instance:

public class ThreadShare implements Runnable {

 public static void main(String[] args) {
 ThreadShare ts = new ThreadShare();
 Thread t1 = new Thread(ts);
 Thread t2 = new Thread(ts);

CHAPTER 4 ■ USING THREADS IN YOUR APPLICATIONS

111

 t1.start();
 t2.start();
 }

 public void run() {
 int nonSharedValue = 100;
 nonSharedValue += 100;
 System.out.println("Value: " + nonSharedValue);
 }

}

Because the nonSharedValue variable is defined inside the run() method, it’s local to that method and
isn’t shared by the two threads. Since each thread will get its own copy of nonSharedValue, running this
application will always produce the following output:

Value: 200
Value: 200

However, if the application is modified so that the run() method increments an instance variable, that

variable will be a shared resource:

public class ThreadShare implements Runnable {

 private int sharedValue = 100;

 public static void main(String[] args) {
 ThreadShare ts = new ThreadShare();
 Thread t1 = new Thread(ts);
 Thread t2 = new Thread(ts);
 t1.start();
 t2.start();
}

 public void run() {
 sharedValue += 100;
 System.out.println("Value: " + sharedValue);
 }

}

If you modify and execute this application, it will probably produce the following results:

Value: 200
Value: 300

However, it’s also possible that the output could match the following:

Value: 300
Value: 300

CHAPTER 4 ■ USING THREADS IN YOUR APPLICATIONS

112

It’s even possible for the program to produce these results.

Value: 300
Value: 200

To understand why the output can vary, it’s necessary to have some knowledge of how threads are

managed by operating systems, since Java’s threading support uses the native thread capabilities of the
platform on which the Java Virtual Machine executes.

Thread Management
For multiple operations to be executed concurrently by a single microprocessor, it’s necessary at some point
to transfer control of the processor from one thread to another, which is called context switching. Context
switching can occur when a thread voluntarily gives up control of the processor, and that approach is known
as cooperative multitasking. In cooperative multitasking, a thread must execute some instruction or call a
method to indicate that it’s willing to relinquish control over the processor to another thread. Unfortunately,
if a programmer deliberately or accidentally creates a thread that doesn’t periodically give up control of the
processor, that thread can easily cause the application to “hang” and/or prevent other threads from running.
Cooperative multitasking is relatively easy to implement and was used by older operating systems, but the
voluntary nature of context switching makes it possible for one thread to “lock up” an application or even the
entire operating system if that thread doesn’t occasionally release control of the processor.

A better approach is preemptive multitasking, where control of the processor is arbitrarily transferred
from one thread to another, such as after some amount of time has elapsed. Preemptive multitasking has
two advantages over cooperative multitasking:

It can prevent a thread from monopolizing the processor.•

It removes from the programmer the burden of deciding when to perform a context •
switch, shifting that responsibility to the operating system.

With preemptive multitasking, a programmer doesn’t need to be concerned with how or when to
perform a context switch, but that convenience comes at a price. Although the programmer doesn’t need to
be concerned with the details of context switching, it becomes necessary to coordinate the use of resources
that are shared by multiple threads.

In the previous example of the ThreadShare class, you saw that the results of running the application
could vary. The reason for this is that no effort was made to coordinate the use of the shared resource,
specifically the sharedValue variable. In most cases, the sequence of events will proceed as follows, where t1
represents the first thread and t2 the second:

t1 enters the run() method
t1 adds 100 to sharedValue, setting it equal to 200
t1 prints the value of sharedValue
t2 enters the run() method
t2 adds 100 to sharedValue, setting it equal to 300
t2 prints the value of sharedValue

CHAPTER 4 ■ USING THREADS IN YOUR APPLICATIONS

113

However, if the native platform uses preemptive multitasking, it’s possible that the sequence of steps
can be performed slightly differently. In fact, from an application perspective, it’s not possible to predict
when a context switch will occur, so you must assume a worst-case scenario. In this case, for example, it’s
possible for the sequence of steps to occur as follows:

t1 enters the run() method
t1 adds 100 to sharedValue, setting it equal to 200
(Context switch occurs here and t2 is allowed to run)
t2 enters the run() method
t2 adds 100 to sharedValue, setting it equal to 300
t2 prints the value of sharedValue
(Context switch occurs and t1 is allowed to resume execution)
t1 prints the value of sharedValue

This is just one of the possible combinations that can occur, which means the results of the application

are unpredictable. This type of situation, where the order in which threads execute can affect the results
of running an application, is called a race condition. Since unpredictability is obviously not desirable in a
software application, it’s important to avoid race conditions, and the following code illustrates that point.
The application creates two instances of CustomerAccount representing a customer’s savings and checking
accounts. Once the accounts have been created and initialized so that each one contains $1,000, two threads
are created that transfer random amounts of money between the two accounts.

In the case of the ThreadShare application, it wasn’t clear what the correct output should be because
the purpose behind the code’s design wasn’t stated, but it should be more obvious here. In this case, the
intent is clearly to transfer money between two accounts while still maintaining the same total value. To
allow you to determine whether that’s actually the case, the sum of the two account balances is printed both
before and after the transfers take place. Listing 4-3 shows the initial AccountManager implementation.

Listing 4-3. Initial AccountManager Implementation

public class AccountManager {

 private CustomerAccount savings;
 private CustomerAccount checking;

 public final static int SAVINGS_ACCOUNT = 1;
 public final static int CHECKING_ACCOUNT = 2;

 public static void main(String[] args) {
 int transfers = 1000000;
 try {
 transfers = Integer.parseInt(args[0]);
 } catch (Exception e) {}
 AccountManager am = new AccountManager(transfers);
 }

 public AccountManager(int transfers) {
 savings = new CustomerAccount(SAVINGS_ACCOUNT, 1000);
 checking = new CustomerAccount(CHECKING_ACCOUNT, 1000);
 java.text.NumberFormat formatter =
 java.text.NumberFormat.getCurrencyInstance(
 java.util.Locale.US);

CHAPTER 4 ■ USING THREADS IN YOUR APPLICATIONS

114

 System.out.println("Total balance before transfers: " +
 formatter.format(savings.getBalance() +
 checking.getBalance()));
 TransferManager tm1 = new TransferManager(checking,
 savings, transfers);
 TransferManager tm2 = new TransferManager(savings,
 checking, transfers);

 // Create two threads
 Thread t1 = new Thread(tm1);
 Thread t2 = new Thread(tm2);
 // Initiate execution of the threads
 t1.start();
 t2.start();
 // Wait for both threads to complete execution
 try {
 t1.join();
 t2.join();
 } catch (Exception e) {};
 System.out.println("Total balance after transfers: " +
 formatter.format(savings.getBalance() +
 checking.getBalance()));
 }

 class TransferManager implements Runnable {

 private CustomerAccount fromAccount;
 private CustomerAccount toAccount;
 private int transferCount;

 public TransferManager(CustomerAccount fromacct,
 CustomerAccount toacct, int transfers) {
 fromAccount = fromacct;
 toAccount = toacct;
 transferCount = transfers;
 }

 public void run() {
 double balance;
 double transferAmount;
 for (int i = 0 ; i < transferCount; i++) {
 balance = fromAccount.getBalance();
 transferAmount = (int)(balance * Math.random());
 balance -= transferAmount;
 fromAccount.setBalance(balance);
 balance = toAccount.getBalance();
 balance += transferAmount;
 toAccount.setBalance(balance);
 }
 }

 }

CHAPTER 4 ■ USING THREADS IN YOUR APPLICATIONS

115

 class CustomerAccount {

 private int accountType;
 private double balance;

 public CustomerAccount(int type, double bal) {
 accountType = type;
 balance = bal;
 }

 public int getAccountType() {
 return accountType;
 }

 public double getBalance() {
 return balance;
 }

 public void setBalance(double newbal) {
 balance = newbal;
 }

 }

}

Regardless of how many transfers take place or what the amounts of those transfers are, the total value
of the two accounts should be equal to $2,000 once the application completes. However, if you compile and
execute this application it can display the following results:

Total balance before transfers: $2,000.00
Total balance after transfers: $2.00

However, it’s also possible that it will display results like the following:

Total balance before transfers: $2,000.00
Total balance after transfers: $41.00

CHAPTER 4 ■ USING THREADS IN YOUR APPLICATIONS

116

This variation occurs for the same reason that ThreadShare’s output was unpredictable. Specifically,
the two threads that are modifying the account balances sometimes produce a conflict as follows, where t1
represents one thread and t2 represents the other:

t1 gets the current checking account balance (e.g. $1000).
t1 calculates the transfer amount (e.g. $15)
t1 subtracts the transfer amount from the checking balance (1000 - 15 = $985) (Context
switch occurs)
t2 calculates the transfer amount (e.g. $27)
t2 gets the current savings account balance (e.g. $1000).
t2 subtracts the transfer amount from the savings balance (1000 - 27 = $973)
t2 saves the new savings balance (973) in the CustomerAccount object
t2 gets the current checking account balance ($1000)
t2 adds the transfer amount ($27) to the checking balance (1000 + 27 = $1027)
t2 saves the new checking balance ($1027) in the CustomerAccount object
(Context switch occurs)
t1 saves the new checking balance ($985) in the CustomerAccount object
t1 gets the current savings account balance ($973)
t1 adds the transfer amount ($15) to the savings balance (973 + 15 = $988)
t1 saves the new savings balance ($988) in the CustomerAccount object

After this sequence of steps, the checking balance is $985 and the savings balance is $988. Although

the total of the two account balances should still be $2,000, their total is only $1,973. In effect, $27 was lost
because of context switching and the failure to prevent the two threads from making inappropriate updates
to the resources they share.

Understanding the Problem
Before discussing a solution to the problem we just encountered it’s helpful to clarify the reasons why a
problem like this can occur. One reason the potential exists is that some—in fact most—Java language
statements are executed as a series of byte code instructions. For example, suppose that you’ve defined an
instance variable called amount and that you execute the following line of code in the class where it’s defined:

this.amount += 100;

Although this is a single Java statement in practice it’s executed as a series of statements:

Load the value of the • amount field.

Add 100 to the loaded value.•

Store the new value in the • amount field.

If two different threads are manipulating the field as just described it’s possible that one of them could
overwrite the changes made by the other as described earlier. In fact, even if one thread completes all of
these steps it’s still possible that a second thread could overwrite its changes. That can occur because most
modern processors maintain a memory cache, and if one thread has changes that are cached but not stored
in the main memory (“flushed”) it can wind up overwriting the changes made to that same memory location
by a second thread even if the second thread executes later. For example, suppose that thread t1 updates
the amount field as described earlier but the change isn’t flushed (written to the processor’s main memory
area); if thread t2 then executes, makes a different change, and flushes its change that change will eventually
be overwritten when t1’s change is flushed.

CHAPTER 4 ■ USING THREADS IN YOUR APPLICATIONS

117

The implication of this behavior is that to be effective synchronization has to take into account two
factors: the multistage execution of some Java statements and the tendency of modern processors to cache
requested changes to memory locations.

Synchronizing the Use of Shared Resources
In the previous example we saw that it’s possible for data to effectively become corrupted when it’s modified
by more than one thread simultaneously. However, Java’s synchronized keyword provides an easy way
for you to prevent this from happening by allowing you to define methods and blocks of code that can be
executed by only one thread at a time. In effect, the synchronized keyword locks the method or block of
code while it’s being executed by one thread so that no other threads are allowed to enter until the first
thread has exited the method or block.

Each instance of java.lang.Object or one of its subclasses (in other words, every Java object)
maintains a lock (or monitor), and the synchronized keyword is always implicitly or explicitly associated
with an instance of Object (primitives can’t be used). Before a thread can enter a synchronized method or
section of code, it must obtain the monitor of the object associated with that code. If one thread obtains
an object’s monitor and a second thread attempts to do so, the second thread becomes blocked and its
execution is suspended until the monitor becomes available. In addition to the monitor, each object
maintains a list of threads that are blocked because they’re waiting on the object’s monitor. If a thread can’t
obtain an object’s monitor, it’s automatically put on the list, and once the monitor becomes available, one
of the threads in the list will be given the monitor and allowed to continue execution. This behavior occurs
when you use the synchronized keyword, and you don’t need to explicitly obtain or release an object’s
monitor. Instead, it will be automatically obtained (if possible) when a thread enters a synchronized method
or block of code and released when the thread exits that code block or method.

In the following code segment, a synchronized block of code is created that requires a thread to obtain
the studentList object’s monitor before entering the block:

public class StudentRoster {

 private java.util.Vector studentList;

 public void addStudentToList(Student st) {
 synchronized (studentList) {
 studentList.addElement(st);
 }
 st.setEnrolled(true);
 }

 public void removeStudentFromList(Student st) {
 studentList.removeElement(st);
 }

}

In this case, the object that’s used for synchronization is an instance of Vector, but it can be an
instance of any class. As in this example, it’s common (but not necessary) for the synchronization to be
performed using the object that’s accessed or modified within the synchronized block. There’s no technical
requirement that you do so, but this approach provides an easy way for you to remember which object’s
monitor is used to control access to that object’s data.

CHAPTER 4 ■ USING THREADS IN YOUR APPLICATIONS

118

You can also use the synchronized keyword as a method modifier, in which case the entire method is
synchronized as follows:

public class StudentRoster {

 private java.util.Vector studentList;

 public synchronized void addStudentToList(Student st) {
 studentList.addElement(st);
 st.setEnrolled(true);
 }

 public void removeStudentFromList(Student st) {
 studentList.removeElement(st);
 }

}

Since it was mentioned earlier that synchronized is always associated with an instance of Object, you
may be wondering which object that is in this case. When synchronized is used with an instance (in other
words, nonstatic) method, the object that will be used is the object against which the method was invoked.
For example, if you create an instance of the StudentList class and then call its synchronized addStudent()
method, the thread that calls the method must obtain the monitor of the StudentList object instance. In
other words, the following code is functionally identical to calling removeStudentFromList() after adding
synchronized to that method’s definition:

StudentRoster sr = new StudentRoster();
Student st = new Student();
.
.
// Putting the call to removeStudentFromList() in a code block that's
// synchronized on the instance of StudentList is functionally equivalent
// to adding the synchronized keyword to the method definition.
synchronized (studentList) {
 sr.removeStudentFromList(st);
}

When you define a class (in other words, static) method that’s synchronized, calls to that method will
be synchronized on the Class object associated with the class. For example, suppose that a static method is
added to StudentRoster.

public class StudentRoster {

 private java.util.Vector studentList;

 public synchronized void addStudentToList(Student st) {
 studentList.addElement(st);
 st.setEnrolled(true);
 }

CHAPTER 4 ■ USING THREADS IN YOUR APPLICATIONS

119

 public void removeStudentFromList(Student st) {
 studentList.removeElement(st);
 }

 public static synchronized StudentRoster getNewInstance() {
 return new StudentRoster();
 }

}

Calls to getNewInstance() will be synchronized on the Class object associated with StudentRoster, so
specifying synchronized with the getNewInstance() method definition is equivalent to calling that method
using the following code:

StudentRoster sr;
.
.
// The following code is equivalent to adding synchronized to the
// removeStudentFromList() method's definition, because it causes
// the running thread to attempt to obtain the lock of the Class
// object associated with StudentList.
synchronized (StudentRoster.class) {
 sr = StudentRoster.getNewInstance();
}

As these examples illustrate, you can use the synchronized keyword to make code thread-safe that
wouldn’t be otherwise. However, as you’ll see later in the chapter, thread safety often isn’t as simple as
adding this modifier to one or more method signatures. You need to be aware of some potential problems
that can occur in multithreaded applications, and synchronizing methods and code blocks is just part of
what you need to do to make your application function appropriately.

One final point should be made with respect to the synchronized keyword, specifically with regard
to the behavior mentioned earlier where a processor can cache a requested change to a memory location.
Synchronizing execution of a block of code is the most obvious outcome of using the synchronized keyword,
but in reality it’s not the only one. Specifically, when a thread is blocked trying to execute a synchronized
block the JVM also flushes that thread’s cached memory changes to the processor’s main memory before
allowing other threads to execute. Likewise, when a thread becomes eligible to resume execution its cache
is cleared so that it doesn’t contain any outdated (“dirty”) cache values. This ensure that not only are two
threads prevented from executing the same block of code but that the processor cache doesn’t cause any
unexpected results to occur.

CHAPTER 4 ■ USING THREADS IN YOUR APPLICATIONS

120

Nested Calls to Synchronized Methods and Code Blocks
As mentioned earlier, a thread becomes blocked if it tries to enter a synchronized method or section of
code while some other thread owns the associated object’s monitor. However, you may be wondering what
happens if a thread attempts to enter a synchronized method when it already owns the associated object’s
monitor. For example, you might have two synchronized methods in a class where one of them calls the
other as follows:

public synchronized void performFirstFunction() {
 // Some functionality performed here
 .
 performSecondFunction()
}

public synchronized void performSecondFunction() {
 // Some other functionality performed here
}

When a thread enters the performFirstFunction() method, it obtains the monitor for the object for
which the method is called. Once performSecondFunction() is called, there’s no need to obtain the object’s
monitor because the thread is already the owner of that monitor, so the thread is allowed to continue
executing normally.

Each time a thread successfully enters a method or section of code that’s synchronized on some object,
a count value associated with the object is incremented, and when the thread exits that method or block, the
value is decremented.

A thread releases an object’s monitor only when the count value associated with the object is zero,
which ensures that the thread keeps the monitor until it exits the code that originally caused it to obtain
the monitor. In this case, for example, when a thread enters performFirstFunction(), it obtains the
object’s monitor and increments the count value to one. When the call to performSecondFunction()
occurs, the count value is incremented to two but will be decremented back to one when the thread exits
performSecondFunction(). Finally, when the thread exits performFirstFunction(), the count value returns
to zero, and the object’s monitor is released by the thread.

Synchronized Blocks vs. Methods
As you’ve seen, it’s possible to synchronize both an entire method and a section of code within a method,
and you may wonder which one you should use. To understand which is appropriate in a given situation, it’s
important to consider what synchronization really provides.

Stated simply, synchronization allows you to prevent multithreaded execution of certain portions of a
multithreaded application. In other words, synchronization reduces the concurrency of your application’s
threads and, if used too extensively, defeats the purpose of using multiple threads. A good rule of thumb is
to include as few lines of code as possible within synchronized methods or blocks but only to the extent that
you haven’t sacrificed thread safety.

Adding the synchronized keyword to a method definition is a simple, readable way to provide thread
safety, but it’s sometimes not necessary and may be undesirable. For example, if only one or two lines of code
within the method really need to be synchronized, you should enclose that code within its own synchronized
block instead of synchronizing the entire method. This is particularly true if much of the time devoted
to executing that method is spent on code that doesn’t need to be synchronized. In other words, if you
synchronize too much of your code, you’ll prevent threads from running when they should be able to run.

CHAPTER 4 ■ USING THREADS IN YOUR APPLICATIONS

121

Deadlocks
Once you’ve synchronized access to the shared resources within your application, you may encounter
a deadlock. For example, returning to the AccountManager application as an example, let’s suppose you
decide to synchronize access to the resources (in other words, the CustomerAccount objects) that are used by
multiple threads, as shown in Listing 4-4.

Listing 4-4. Synchronizing Code Sections

class TransferManager implements Runnable {

 private CustomerAccount fromAccount;
 private CustomerAccount toAccount;
 private int transferCount;

 public TransferManager(CustomerAccount fromacct,
 CustomerAccount toacct, int transfers) {
 fromAccount = fromacct;
 toAccount = toacct;
 transferCount = transfers;
 }

 public void run() {
 double balance;
 double transferAmount;
 for (int i = 0 ; i < transferCount; i++) {
 synchronized (fromAccount) {
 balance = fromAccount.getBalance();
 transferAmount = (int)(balance * Math.random());
 balance -= transferAmount;
 fromAccount.setBalance(balance);
 synchronized (toAccount) {
 balance = toAccount.getBalance();
 balance += transferAmount;
 toAccount.setBalance(balance);
 }
 }
 }
 }

}

Although these modifications do fix one potential problem, they introduce the possibility of another:
deadlock. The first thread that’s started in the CustomerAccount application transfers money from the
checking account to the savings account, and the second thread transfers money from savings into checking.
Therefore, for each of the first thread’s iterations through the run() method, it will obtain the checking
account object’s monitor and then the savings account monitor. The second thread competes for the same
two monitors, but it attempts to obtain them in the reverse order.

Now suppose during an iteration of the run() method that the first thread is interrupted after it obtains
the checking account monitor but before it has gotten the savings account monitor. If the second thread then
begins executing the loop, it will successfully obtain the savings account monitor, but it will be blocked when

CHAPTER 4 ■ USING THREADS IN YOUR APPLICATIONS

122

it attempts to obtain the checking account monitor. At that point, each thread has successfully obtained one
of the two monitors, and each will wait indefinitely for the other monitor to become available, which is an
example of deadlock.

Deadlock conditions are common in multithreaded applications and often result in the application
becoming “hung.” Fortunately, you have at least two ways of preventing this problem, neither of which is
terribly complex: high-level synchronization and lock ordering.

High-Level Synchronization
In Listing 4-4, each CustomerAccount’s monitor was used to synchronize access to that CustomerAccount
instance. Since a transfer operation involved obtaining two locks, it was possible for deadlock to occur if a
thread obtained one of the locks but not the other. However, since this form of deadlock can’t occur if only
one lock is involved, high-level synchronization offers a potential solution to the problem.

As mentioned earlier, it’s customary when adding synchronization to your application to cause an
operation to synchronize on the object being accessed or modified, but there’s no technical reason you
must do so. In this case, for example, the application synchronizes access to each CustomerAccount object
using that instance’s monitor, but it’s entirely acceptable to synchronize access to those objects using some
other object.

In high-level synchronization, you simply select a single object that synchronizes access to all
shared resources that are involved in some operation. In the case of a transfer operation, for example,
you can select an existing object or create a new object that will be used to control access to all instances
of CustomerAccount. You can do this by creating a new object explicitly for that purpose, as shown in the
following variable declaration that might be added to CustomerAccount:

private final static Object synchronizerObject = new Object();

This new object is defined as a class variable because it will be used to synchronize access to all
instances of CustomerAccount as follows:

public void run() {
 double balance;
 double transferAmount;
 for (int i = 0 ; i < transferCount; i++) {
 synchronized (synchronizerObject) {
 balance = fromAccount.getBalance();
 transferAmount = (int)(balance * Math.random());
 balance -= transferAmount;
 fromAccount.setBalance(balance);
 balance = toAccount.getBalance();
 balance += transferAmount;
 toAccount.setBalance(balance);
 }
 }
}

In effect, you’ve eliminated the deadlock problem by reducing the number of monitors that a thread
must own from two to one. However, the problem with this approach is that it reduces the concurrency of
the application, since only one transfer can ever be in progress at any given time. In other words, even a
transfer involving two completely separate and unrelated CustomerAccount objects would be blocked while
a thread is executing the code inside this synchronized block.

CHAPTER 4 ■ USING THREADS IN YOUR APPLICATIONS

123

Lock Ordering
As you saw earlier, the deadlock condition occurred because the two threads attempt to obtain the objects’
monitors in a different order. The first thread attempts to obtain the checking account monitor and then
the savings account monitor, while the second thread attempts to obtain the same two monitors but in the
reverse order. This difference in the order in which the monitors are obtained lies at the root of the deadlock
problem, and you can address the problem by ensuring that the monitors are obtained in the same order by
all threads.

You can accomplish this by creating an if statement that switches the order in which the locks are
obtained based on the results of some comparison. In other words, when locking two objects, there must be
some way to compare those objects to determine which one’s monitor should be obtained first. In this case,
the CustomerAccount instances provide a convenient way of doing so, since each one maintains an account
type (in other words, checking or savings) that’s stored as an integer value. Listing 4-5 shows an example of
how you could implement this.

Listing 4-5. Implementing Lock Ordering

class TransferManager implements Runnable {

 private CustomerAccount fromAccount;
 private CustomerAccount toAccount;
 private int transferCount;

 public TransferManager(CustomerAccount fromacct,
 CustomerAccount toacct, int transfers) {
 fromAccount = fromacct;
 toAccount = toacct;
 transferCount = transfers;
 }

 public void run() {
 double balance;
 double transferAmount;
 for (int i = 0 ; i < transferCount; i++) {
 balance = fromAccount.getBalance();
 transferAmount = (int)(balance * Math.random());
 transferFunds(fromAccount, toAccount, transferAmount);
 }
}

private void transferFunds(CustomerAccount account1,
 CustomerAccount account2, double transferAmount) {
 double balance;
 CustomerAccount holder = null;
 // We want to always synchronize first on the account with the
 // smaller account type value. If it turns out that the "second"
 // account actually has a larger type value, we'll simply
 // switch the two references and multiply the amount being
 // transferred by -1.

CHAPTER 4 ■ USING THREADS IN YOUR APPLICATIONS

124

 if (account1.getAccountType() > account2.getAccountType()) {
 holder = account1;
 account1 = account2;
 account2 = holder;
 transferAmount *= -1;
 }
 synchronized (account1) {
 synchronized (account2) {
 balance = account1.getBalance();
 balance -= transferAmount;
 account1.setBalance(balance);
 balance = account2.getBalance();
 balance += transferAmount;
 account1.setBalance(balance);
 }
 }
}

}

Since the savings account’s type value (1) is less than the checking account type, (2) a savings account’s
monitor will always be obtained first by this code, regardless of the type of transfer being performed. In this
case, you obtain the monitor of the account with a lower type value, but this code would run equally well
if it were modified to first obtain the monitor of the account with the higher type value. In other words, it’s
not the order in which the monitors are obtained that’s important: it’s simply necessary to ensure that both
threads consistently obtain the monitors in the same order.

Thread Priorities
Each Thread is assigned a priority, which is a value between 1 and 10 (inclusive) that’s an indication of
when a thread should run relative to other threads. In general, a thread’s priority determines whether it’s
given preference by the processor when there are two or more runnable threads. A runnable thread is one
that’s able to execute instructions, which means it has been started, hasn’t yet died, and isn’t blocked for
any reason.

When a context switch occurs, the processor typically selects the runnable thread with the highest
priority, which means that higher-priority threads will usually run before and/or more frequently than
lower-priority threads. If two or more threads with the same priority are runnable, it’s more difficult to
predict which one will be allowed to run.

In fact, the factors that determine how long and how often a thread runs are specific to the platform
on which it’s running and to the Java Virtual Machine implementation in use. One operating system
might always select the first available runnable thread with the highest priority, while another system may
schedule threads with the same priority in a “round-robin” fashion. In addition, while Java supports ten
priorities, the underlying operating system’s threading architecture may support a lesser or greater number
of priorities. When that’s the case, the Java Virtual Machine is responsible for mapping the priority value
assigned to the Thread object to an appropriate native priority.

Given these differences between platforms, Java doesn’t make any guarantees concerning how
priority affects a thread’s execution. Therefore, you should avoid making assumptions about the effects of
thread priorities on your application or at least test its effects on each platform on which your code will be
deployed.

CHAPTER 4 ■ USING THREADS IN YOUR APPLICATIONS

125

When one Thread creates another, that new Thread (sometimes called the child thread) is given the
same priority value as the one that created it (the parent thread). However, you can explicitly set a Thread's
priority by calling its setPriority() method and specifying an int parameter value between 1 and 10.
The Thread class provides three constants that correspond to low, medium, and high thread priorities;
MIN_PRIORITY, NORM_PRIORITY, and MAX_PRIORITY correspond to values of 1, 5, and 10, respectively. For
example, to create a thread and assign it the lowest possible priority, you could use code similar to the
following:

Runnable myRunnable;
.
.
.
Thread t = new Thread(myRunnable);
t.setPriority(Thread.MIN_PRIORITY);

The specific priority you assign to a thread will depend primarily on the nature of the function(s)
performed by the thread. For example, if a thread will spend most of its time waiting for input and it
performs a task that must be completed quickly, it should normally be assigned a high priority. Conversely,
a thread that performs some type of noncritical background task (particularly one that takes a long time
to complete) should be given a low priority. The word processor used to create this book, for instance,
performs automatic spell checking, but that function is performed in a low-priority thread, at least until the
application receives an explicit request to spell check the document.

When selecting thread priorities, be aware that it may be possible for a long-running thread with a high
priority to monopolize the processor, even when preemptive multitasking is being used. Therefore, you
should use caution in assigning higher priorities and will usually do so only for threads that can be counted
on to periodically relinquish control of the processor voluntarily.

Daemon Threads
Each thread is classified as either a daemon thread or a user thread, and Thread's setDaemon() method
allows you to specify the thread’s type. To use setDaemon(), you must call it before a thread is started, and
passing a boolean value of true indicates that the thread should be a daemon thread, while false (the
default) indicates it should be a user thread.

The only difference between a daemon thread and a user thread is that one type (user) prevents the Java
Virtual Machine from exiting, while the other (daemon) doesn’t. For example, if you compile and execute
the following application, the JVM will terminate after executing the main() method:

public class Test {

 public static void main(String[] args) {
 Test t = new Test();
 }

 public Test() {
 System.out.println("Hello world.");
 }

}

CHAPTER 4 ■ USING THREADS IN YOUR APPLICATIONS

126

However, if you create a similar application that displays a visual component such as a frame or dialog,
as shown in Listing 4-6, the JVM doesn’t exit.

Listing 4-6. Displaying a Visual Component in Test

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Test {

 private JFrame frame;
 public static void main(String[] args) {
 Test t = new Test();
 }

 public Test() {
 frame = new JFrame("Hello World");
 frame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent event) {
 frame.setVisible(false);
 frame.removeWindowListener(this);
 frame.dispose();
 frame = null;
 }
 });
 Container pane = frame.getContentPane();
 pane.setLayout(new FlowLayout());
 pane.add(new JLabel("Hello world."));
 frame.setSize(400, 300);
 frame.setVisible(true);
 }

}

Although the modified Test class shown in Listing 4-6 performs all the appropriate cleanup operations,
the JVM doesn’t exit when the window is closed and the resources are released. This is because a JVM will
not automatically terminate as long as there are any live user threads, even if it may not be obvious which
user thread is active. In this case, the user thread preventing the JVM from exiting is the AWT event thread,
which is started automatically when the JFrame is created so that rendering and event notification services
can be provided. If you want to force the JVM to exit despite the fact that one or more user threads are still
executing, you must call the static exit() method in the System class as follows:

System.exit(0);

Daemon threads are often used for background tasks that run continuously and that don’t need to
perform any cleanup tasks before the JVM terminates execution; an example of this is the thread that
performs garbage collection. If it’s important for a thread to perform some cleanup task(s) before the Java
Virtual Machine exits, that thread should be made a user thread. Otherwise, it’s appropriate for the thread to
run as a daemon thread.

CHAPTER 4 ■ USING THREADS IN YOUR APPLICATIONS

127

Adding Threads to an Application
We’ll now see how to create an application that can benefit from the use of threads and cover some of the
issues you’ll face when doing so. This application allows you to specify the URL of a file and download it,
writing the file to disk. Figure 4-2 illustrates how the application will appear during the download.

Figure 4-2. The Downloader class allows you to download a file and displays the progress of the download

To run this application by itself, you must specify two parameters on the command line: the URL of the
file to download and the output file to which the contents of that URL should be written. When you do so, the
component will appear in a frame like the one shown in Figure 4-2, and the portion of the file downloaded will
be displayed visually through the progress bar. For example, to download the home page from Oracle’s Java
web site and store its contents in C:/brett/temp/javahome.html, you could enter the following command:

java Downloader http://www.oracle.com/java/index.html C:/brett/temp/javahome.html

Listing 4-7 shows the initial implementation of this code. The main() method defined here creates an

instance of the Downloader visual component, places it in a frame, displays that frame, and initiates the
download by calling performDownload().

Listing 4-7. Initial Downloader Implementation

import java.awt.*;
import java.io.*;
import java.net.*;
import javax.swing.*;

public class Downloader extends JPanel {

 private URL downloadURL;
 private InputStream inputStream;
 private OutputStream outputStream;
 private byte[] buffer;

 private int fileSize;
 private int bytesRead;

http://www.oracle.com/java/index.html

CHAPTER 4 ■ USING THREADS IN YOUR APPLICATIONS

128

 private JLabel urlLabel;
 private JLabel sizeLabel;
 private JLabel completeLabel;
 private JProgressBar progressBar;
 public final static int BUFFER_SIZE = 1000;

 private boolean stopped;

 public static void main(String[] args) throws Exception {
 Downloader dl = null;
 if (args.length < 2) {
 System.out.println("You must specify the URL of the file " +
 "to download and the name of the local file to " +
 "which its contents will be written.");
 System.exit(0);
 }
 URL url = new URL(args[0]);
 FileOutputStream fos = new FileOutputStream(args[1]);
 try {
 dl = new Downloader(url, fos);
 } catch (FileNotFoundException fnfe) {
 System.out.println("File '" + args[0] + "' does not exist");
 System.exit(0);
 }
 JFrame f = new JFrame();
 f.getContentPane().add(dl);
 f.setSize(600, 400);
 f.setVisible(true);
 dl.performDownload();
 }

The following portion of the code is passed a URL that identifies the file to be downloaded and an
OutputStream that represents the location to which the file’s contents will be written. In this case, it will be a
FileOutputStream, causing the contents to be written to a local disk file.

public Downloader(URL url, OutputStream os) throws IOException {
 downloadURL = url;
 outputStream = os;
 bytesRead = 0;
 URLConnection urlConnection = downloadURL.openConnection();
 fileSize = urlConnection.getContentLength();
 if (fileSize == -1) {
 throw new FileNotFoundException(url.toString());
 }
 inputStream = new BufferedInputStream(
 urlConnection.getInputStream());
 buffer = new byte[BUFFER_SIZE];
 buildLayout();

 stopped = false;
}

CHAPTER 4 ■ USING THREADS IN YOUR APPLICATIONS

129

The following section of the code simply builds the interface that’s used to provide feedback to the user
on the status of the download and consists of labels and a JProgressBar:

private void buildLayout() {
 JLabel label;
 setLayout(new GridBagLayout());
 GridBagConstraints constraints = new GridBagConstraints();
 constraints.fill = GridBagConstraints.HORIZONTAL;
 constraints.insets = new Insets(5, 10, 5, 10);

 constraints.gridx = 0;
 label = new JLabel("URL:", JLabel.LEFT);
 add(label, constraints);

 label = new JLabel("Complete:", JLabel.LEFT);
 add(label, constraints);

 label = new JLabel("Downloaded:", JLabel.LEFT);
 add(label, constraints);

 constraints.gridx = 1;
 constraints.gridwidth = GridBagConstraints.REMAINDER;
 constraints.weightx = 1;
 urlLabel = new JLabel(downloadURL.toString());
 add(urlLabel, constraints);

 progressBar = new JProgressBar(0, fileSize);
 progressBar.setStringPainted(true);
 add(progressBar, constraints);

 constraints.gridwidth = 1;
 completeLabel = new JLabel(Integer.toString(bytesRead));
 add(completeLabel, constraints);

 constraints.gridx = 2;
 constraints.weightx = 0;
 constraints.anchor = GridBagConstraints.EAST;
 label = new JLabel("Size:", JLabel.LEFT);
 add(label, constraints);

 constraints.gridx = 3;
 constraints.weightx = 1;
 sizeLabel = new JLabel(Integer.toString(fileSize));
 add(sizeLabel, constraints);
}

As its name implies, the performDownload() method, shown next, is responsible for performing the
download. It does this by repeatedly reading a portion of the file into a buffer, writing the contents of that
buffer to the output destination, and updating the user interface so that it illustrates the progress of the
download.

CHAPTER 4 ■ USING THREADS IN YOUR APPLICATIONS

130

public void performDownload() {
 int byteCount;
 while ((bytesRead < fileSize) && (!stopped)) {
 try {
 byteCount = inputStream.read(buffer);
 if (byteCount == -1) {
 stopped = true;
 break;
 }
 else {
 outputStream.write(buffer, 0,
 byteCount);
 bytesRead += byteCount;
 progressBar.setValue(bytesRead);
 completeLabel.setText(
 Integer.toString(
 bytesRead));
 }
 } catch (IOException ioe) {
 stopped = true;
 JOptionPane.showMessageDialog(this,
 ioe.getMessage(),
 "I/O Error",
 JOptionPane.ERROR_MESSAGE);
 break;
 }
 }
 try {
 outputStream.close();
 inputStream.close();
 } catch (IOException ioe) {};
}

}

One problem with this initial implementation of Downloader is that there’s no way to control the
download process. Downloading starts immediately when the application is executed and can’t be
suspended or canceled. This is particularly undesirable since downloading a large file can be time-
consuming, especially when the download occurs over a low-bandwidth network connection.

The first step in allowing a user to control the download process is to create a thread that exists
specifically to perform the download (see Listing 4-8). By making this change, it will be possible to integrate
an instance of Downloader into a user interface that will allow the download process to be controlled (in
other words, started, suspended, and stopped) through components such as buttons.

CHAPTER 4 ■ USING THREADS IN YOUR APPLICATIONS

131

Listing 4-8. Creating a Download Thread

import java.awt.*;
import java.io.*;
import java.net.*;
import javax.swing.*;

public class Downloader extends JPanel implements Runnable {

 private URL downloadURL;
 private InputStream inputStream;
 private OutputStream outputStream;
 private byte[] buffer;

 private int fileSize;
 private int bytesRead;

 private JLabel urlLabel;
 private JLabel sizeLabel;
 private JLabel completeLabel;
 private JProgressBar progressBar;

 public final static int BUFFER_SIZE = 1000;

 private boolean stopped;

 private Thread thisThread;

 public static void main(String[] args) throws Exception {
 Downloader dl = null;
 if (args.length < 2) {
 System.out.println("You must specify the URL of the file " +
 "to download and the name of the local file to which " +
 "its contents will be written.");
 System.exit(0);
 }
 URL url = new URL(args[0]);
 FileOutputStream fos = new FileOutputStream(args[1]);
 try {
 dl = new Downloader(url, fos);

 } catch (FileNotFoundException fnfe) {
 System.out.println("File '" + args[0] + "' does not exist");
 System.exit(0);
 }
 JFrame f = new JFrame();
 f.getContentPane().add(dl);
 f.setSize(600, 400);
 f.setVisible(true);
 dl.thisThread.start();
}

CHAPTER 4 ■ USING THREADS IN YOUR APPLICATIONS

132

public Downloader(URL url, OutputStream os) throws IOException {
 downloadURL = url;
 outputStream = os;
 bytesRead = 0;
 URLConnection urlConnection = downloadURL.openConnection();
 fileSize = urlConnection.getContentLength();
 if (fileSize == -1) {
 throw new FileNotFoundException(url.toString());
 }
 inputStream = new BufferedInputStream(
 urlConnection.getInputStream());
 buffer = new byte[BUFFER_SIZE];
 thisThread = new Thread(this);
 buildLayout();

 stopped = false;
}

private void buildLayout() {
 JLabel label;
 setLayout(new GridBagLayout());
 GridBagConstraints constraints = new GridBagConstraints();
 constraints.fill = GridBagConstraints.HORIZONTAL;
 constraints.insets = new Insets(5, 10, 5, 10);

 constraints.gridx = 0;
 label = new JLabel("URL:", JLabel.LEFT);
 add(label, constraints);

 label = new JLabel("Complete:", JLabel.LEFT);
 add(label, constraints);

 label = new JLabel("Downloaded:", JLabel.LEFT);
 add(label, constraints);

 constraints.gridx = 1;
 constraints.gridwidth = GridBagConstraints.REMAINDER;
 constraints.weightx = 1;
 urlLabel = new JLabel(downloadURL.toString());
 add(urlLabel, constraints);

 progressBar = new JProgressBar(0, fileSize);
 progressBar.setStringPainted(true);
 add(progressBar, constraints);

 constraints.gridwidth = 1;
 completeLabel = new JLabel(Integer.toString(bytesRead));
 add(completeLabel, constraints);

 constraints.gridx = 2;
 constraints.weightx = 0;

CHAPTER 4 ■ USING THREADS IN YOUR APPLICATIONS

133

 constraints.anchor = GridBagConstraints.EAST;
 label = new JLabel("Size:", JLabel.LEFT);
 add(label, constraints);

 constraints.gridx = 3;
 constraints.weightx = 1;
 sizeLabel = new JLabel(Integer.toString(fileSize));
 add(sizeLabel, constraints);
}

public void run() {
 performDownload();
}

public void performDownload() {
 int byteCount;
 while ((bytesRead < fileSize) && (!stopped)) {
 try {
 byteCount = inputStream.read(buffer);
 if (byteCount == -1) {
 stopped = true;
 break;
 }
 else {
 outputStream.write(buffer, 0,
 byteCount);
 bytesRead += byteCount;
 progressBar.setValue(bytesRead);
 completeLabel.setText(
 Integer.toString(
 bytesRead));
 }
 } catch (IOException ioe) {
 stopped = true;
 JOptionPane.showMessageDialog(this,
 ioe.getMessage(),
 "I/O Error",
 JOptionPane.ERROR_MESSAGE);
 break;
 }
 }
 try {
 outputStream.close();
 inputStream.close();
 } catch (IOException ioe) {};
 }

}

CHAPTER 4 ■ USING THREADS IN YOUR APPLICATIONS

134

Although this application appears correct on the surface, it has one small problem. Specifically,
the AWT event thread and the thread that performs the download share two resources that are not
synchronized: the JProgressBar and the JTextField that are updated to provide feedback on the download
operation’s progress. This is actually a common problem with multithreaded applications, but Java’s
SwingUtilities class provides a simple solution. When you create a multithreaded application that needs to
modify components after they’ve been made visible, you can use the invokeLater() and invokeAndWait()
methods in SwingUtilities.

These methods allow you to pass a Runnable object instance as a parameter, and they cause the
AWT event thread to execute the run() method of that object. The invokeLater() method represents an
asynchronous request, which means it may return before the event thread executes the object’s run()
method. In contrast, invokeAndWait() represents a synchronous request, meaning that the method waits
until the AWT event thread has completed execution of the object’s run() method before returning. In the
case of Downloader, there’s no reason it should wait for the user interface to be updated before it continues
downloading, so invokeLater() can be used.

Making this modification solves the problem of having two different threads sharing the same
resources, since only a single thread (in other words, the AWT event thread) will access JProgressBar and
JTextField once they’ve been made visible.

public void performDownload() {
 int byteCount;
 Runnable progressUpdate = new Runnable() {
 public void run() {
 progressBar.setValue(bytesRead);
 completeLabel.setText(
 Integer.toString(
 bytesRead));
 }
 };
 while ((bytesRead < fileSize) && (!stopped)) {
 try {
 byteCount = inputStream.read(buffer);
 if (byteCount == -1) {
 stopped = true;
 break;
 }
 else {
 outputStream.write(buffer, 0,
 byteCount);
 bytesRead += byteCount;
 SwingUtilities.invokeLater(
 progressUpdate);
 }
 } catch (IOException ioe) {
 stopped = true;
 JOptionPane.showMessageDialog(this,
 ioe.getMessage(),
 "I/O Error",
 JOptionPane.ERROR_MESSAGE);
 break;
 }
}

CHAPTER 4 ■ USING THREADS IN YOUR APPLICATIONS

135

 try {
 outputStream.close();
 inputStream.close();
 } catch (IOException ioe) {};
}

Controlling Threads
It’s acceptable in some cases to start a thread and simply allow it to die once it exits the run() method.
However, for various reasons, you’ll often want to terminate a thread before it exits the run() method, or
you may simply want to suspend its execution and allow it to resume later. In the latter case, you may want
to suspend its execution for some particular length of time, or you may want it to be suspended until some
condition has been met. To provide the functions just described, you can create a new subclass of JPanel
that defines five buttons (as shown in Figure 4-3):

A Start button that causes the download thread to begin execution•

A Sleep button that causes the download thread to suspend its execution for a •
specific length of time, which is for five seconds in this case

A Suspend button that causes the thread to suspend its execution indefinitely•

A Resume button that causes the thread to resume execution after the Suspend •
button was previously clicked

A Stop button that effectively kills the thread by causing it to exit the • run() method

Figure 4-3. The download code becomes more useful when you add buttons that allow you to control the
process

The DownloadManager class shown in Listing 4-9 displays an instance of Downloader and creates the
buttons just described that will be used to control the execution of the Downloader’s thread. It takes the same
two parameters as the Downloader class, but unlike that class, DownloadManager allows you to interact with
the thread performing the download by clicking one of the buttons that are displayed. It does that by adding
action listeners to each of the buttons, and you’ll see shortly how to create the code needed for each button
to perform the function requested.

CHAPTER 4 ■ USING THREADS IN YOUR APPLICATIONS

136

Listing 4-9. Initial DownloadManager Implementation

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.net.URL;
import javax.swing.*;
import javax.swing.border.*;

public class DownloadManager extends JPanel {

 private Downloader downloader;

 private JButton startButton;
 private JButton sleepButton;
 private JButton suspendButton;
 private JButton resumeButton;
 private JButton stopButton;

 public static void main(String[] args) throws Exception {
 URL url = new URL(args[0]);
 FileOutputStream fos = new FileOutputStream(args[1]);
 JFrame f = new JFrame();
 DownloadManager dm = new DownloadManager(url, fos);
 f.getContentPane().add(dm);
 f.setSize(600, 400);
 f.setVisible(true);
 }

 public DownloadManager(URL source, OutputStream os)
 throws IOException {
 downloader = new Downloader(source, os);
 buildLayout();
 Border border = new BevelBorder(BevelBorder.RAISED);
 String name = source.toString();
 int index = name.lastIndexOf('/');
 border = new TitledBorder(border,
 name.substring(index + 1));
 setBorder(border);
 }

 private void buildLayout() {
 setLayout(new BorderLayout());
 downloader.setBorder(new BevelBorder(BevelBorder.RAISED));
 add(downloader, BorderLayout.CENTER);

 add(getButtonPanel(), BorderLayout.SOUTH);
 }

 private JPanel getButtonPanel() {
 JPanel outerPanel;
 JPanel innerPanel;

CHAPTER 4 ■ USING THREADS IN YOUR APPLICATIONS

137

 innerPanel = new JPanel();
 innerPanel.setLayout(new GridLayout(1, 5, 10, 0));

 startButton = new JButton("Start");
 startButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 }
 });
 innerPanel.add(startButton);

 sleepButton = new JButton("Sleep");
 sleepButton.setEnabled(false);
 sleepButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 }
 });
 innerPanel.add(sleepButton);
 suspendButton = new JButton("Suspend");
 suspendButton.setEnabled(false);
 suspendButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 }
 });
 innerPanel.add(suspendButton);

 resumeButton = new JButton("Resume");
 resumeButton.setEnabled(false);
 resumeButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 }
 });
 innerPanel.add(resumeButton);

 stopButton = new JButton("Stop");
 stopButton.setEnabled(false);
 stopButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 }
 });
 innerPanel.add(stopButton);

 outerPanel = new JPanel();
 outerPanel.add(innerPanel);
 return outerPanel;
 }

}

We’ll now see how to create the functionality needed for each of these buttons and will then return to
the DownloadManager source code to have each button activate the appropriate functionality.

CHAPTER 4 ■ USING THREADS IN YOUR APPLICATIONS

138

Starting a Thread
As you’ve seen, starting the execution of a thread is trivial and simply requires that you call the Thread
instance’s start() method. Calling start() doesn’t necessarily cause the thread to run immediately but
simply makes the thread eligible for execution (in other words, makes it runnable). Once that occurs, the
thread will be executed by the processor at the first available opportunity, although when that occurs it is
platform-dependent and is affected by many factors. However, unless the processor is very busy executing
other applications or other threads within the Java Virtual Machine, the thread will usually begin executing
almost immediately when its start() method is called.

You can easily modify the Downloader class to provide a startDownload() method that starts the
thread’s execution, as shown in the following code, and that method will be called when the Start button
in a DownloaderManager instance is clicked. For now, however, you’ll simply define the startDownload()
method and wait until the methods for all five buttons have been defined before going back and calling
those methods from the buttons’ action event handlers.

public void startDownload() {
 thisThread.start();
}

Making a Thread “Sleep”
The static sleep() method defined in Thread causes the currently executing thread to temporarily stop
executing (in other words, to “sleep”) for some specific length of time. You can specify that length of time
either as long representing some number of milliseconds or as a combination of milliseconds and an int
value representing nanoseconds. However, milliseconds provide enough resolution for most situations,
so you’ll typically be able to use the simpler implementation of sleep(). For example, to cause the current
thread to pause for two seconds, you could use the following code:

Thread.sleep(2 * 1000);

Similarly, to sleep for 100 nanoseconds, you could use the following code:

Thread.sleep(0, 100);

Note that both of these methods can throw an InterruptedException if the sleeping thread is
interrupted, a scenario that will be discussed shortly. Since sleep() affects only the thread that’s currently
executing, it must be executed by the thread that should sleep, and that thread can’t be “forced” to sleep
by any other thread. For example, when the Sleep button is clicked, the actionPerformed() method will
be called by the AWT event thread. Since the event thread can’t force the download thread to sleep, it must
instead send a sleep request to the download thread, and the code executed by the download thread must
be designed to recognize and comply with the request. The easiest way to do so is simply to define a boolean
flag inside Downloader that’s set to true to signal the download thread that it should sleep, and once the
download thread wakes up, it can clear the flag. These steps will be taken each time the Downloader is about
to read another portion of the file being downloaded, as shown in the bold code of the run() method in
Listing 4-10.

CHAPTER 4 ■ USING THREADS IN YOUR APPLICATIONS

139

Listing 4-10. Implementing the Sleep Function

import java.awt.*;
import java.io.*;
import java.net.*;
import javax.swing.*;

public class Downloader extends JPanel implements Runnable {

 private URL downloadURL;
 private InputStream inputStream;

 private OutputStream outputStream;
 private byte[] buffer;

 private int fileSize;
 private int bytesRead;

 private JLabel urlLabel;
 private JLabel sizeLabel;
 private JLabel completeLabel;
 private JProgressBar progressBar;

 public final static int BUFFER_SIZE = 1000;

 private boolean stopped;
 private boolean sleepScheduled;

 public final static int SLEEP_TIME = 5 * 1000; // 5 seconds

 private Thread thisThread;

 public static void main(String[] args) throws Exception {
 Downloader dl = null;
 if (args.length < 2) {
 System.out.println("You must specify the URL of the file to download and "+
 "the name of the local file to which its contents will be written.");
 System.exit(0);
 }
 URL url = new URL(args[0]);
 FileOutputStream fos = new FileOutputStream(args[1]);
 try {
 dl = new Downloader(url, fos);
 } catch (FileNotFoundException fnfe) {
 System.out.println("File '" + args[0] + "' does not exist");
 System.exit(0);
 }
 JFrame f = new JFrame();
 f.getContentPane().add(dl);
 f.setSize(400, 300);

CHAPTER 4 ■ USING THREADS IN YOUR APPLICATIONS

140

 f.setVisible(true);
 dl.thisThread.start();
 }

 public Downloader(URL url, OutputStream os) throws IOException {
 downloadURL = url;
 outputStream = os;
 bytesRead = 0;
 URLConnection urlConnection = downloadURL.openConnection();
 fileSize = urlConnection.getContentLength();
 if (fileSize == -1) {
 throw new FileNotFoundException(url.toString());
 }
 inputStream = new BufferedInputStream(
 urlConnection.getInputStream());
 buffer = new byte[BUFFER_SIZE];
 thisThread = new Thread(this);
 buildLayout();

 stopped = false;
 sleepScheduled = false;
 }

 private void buildLayout() {
 JLabel label;
 setLayout(new GridBagLayout());
 GridBagConstraints constraints = new GridBagConstraints();
 constraints.fill = GridBagConstraints.HORIZONTAL;
 constraints.insets = new Insets(5, 10, 5, 10);

 constraints.gridx = 0;
 label = new JLabel("URL:", JLabel.LEFT);
 add(label, constraints);

 label = new JLabel("Complete:", JLabel.LEFT);
 add(label, constraints);

 label = new JLabel("Downloaded:", JLabel.LEFT);
 add(label, constraints);

 constraints.gridx = 1;
 constraints.gridwidth = GridBagConstraints.REMAINDER;
 constraints.weightx = 1;
 urlLabel = new JLabel(downloadURL.toString());
 add(urlLabel, constraints);

 progressBar = new JProgressBar(0, fileSize);
 progressBar.setStringPainted(true);
 add(progressBar, constraints);

CHAPTER 4 ■ USING THREADS IN YOUR APPLICATIONS

141

 constraints.gridwidth = 1;
 completeLabel = new JLabel(Integer.toString(bytesRead));
 add(completeLabel, constraints);

 constraints.gridx = 2;
 constraints.weightx = 0;
 constraints.anchor = GridBagConstraints.EAST;
 label = new JLabel("Size:", JLabel.LEFT);
 add(label, constraints);

 constraints.gridx = 3;
 constraints.weightx = 1;
 sizeLabel = new JLabel(Integer.toString(fileSize));
 add(sizeLabel, constraints);
 }

 public void startDownload() {
 thisThread.start();
 }

 public synchronized void setSleepScheduled(boolean doSleep) {
 sleepScheduled = doSleep;
 }

 public synchronized boolean isSleepScheduled() {
 return sleepScheduled;
 }

 public void run() {
 performDownload();
 }

 public void performDownload() {
 int byteCount;
 Runnable progressUpdate = new Runnable() {
 public void run() {
 progressBar.setValue(bytesRead);
 completeLabel.setText(
 Integer.toString(
 bytesRead));
 }
 };
 while ((bytesRead < fileSize) && (!stopped)) {
 try {
 if (isSleepScheduled()) {
 try {
 Thread.sleep(SLEEP_TIME);
 setSleepScheduled(false);
 }
 catch (InterruptedException ie) {
 }
 }

CHAPTER 4 ■ USING THREADS IN YOUR APPLICATIONS

142

 byteCount = inputStream.read(buffer);
 if (byteCount == -1) {
 stopped = true;
 break;
 }
 else {
 outputStream.write(buffer, 0,
 byteCount);
 bytesRead += byteCount;
 SwingUtilities.invokeLater(
 progressUpdate);
 }
 } catch (IOException ioe) {
 stopped = true;
 JOptionPane.showMessageDialog(this,
 ioe.getMessage(),
 "I/O Error",
 JOptionPane.ERROR_MESSAGE);
 break;
 }
 }
 try {
 outputStream.close();
 inputStream.close();
 } catch (IOException ioe) {};
 }

}

Note that the setSleepScheduled() and isSleepScheduled() methods are synchronized, which is
necessary since two threads access a resource. Specifically, that resource is the sleepScheduled flag that will
be set by the AWT event thread (when the Sleep button is clicked) and that will be both set and queried by
the download thread.

Suspending a Thread
As you just saw, you can suspend a thread’s execution for some length of time using the sleep() method.
Similarly, you’ll often want to suspend a thread for an indefinite length of time, usually until some condition is
met and the wait() method defined in Object allows you to do so. However, before a thread can call an object’s
wait() method, it must own that object’s monitor, or an IllegalMonitorStateException will be thrown.

The following modifications to Downloader illustrate how wait() can be used to suspend a thread’s
execution indefinitely; I’ll later show how to modify the DownloadManager class so that it calls the
setSuspended() method to suspend the download thread. Here, too, a boolean flag value provides a way for
the AWT event thread to communicate with the download thread when one of the DownloadManager buttons
(in other words, Suspend) is clicked.

First, add a new member variable.

private boolean stopped;
private boolean sleepScheduled;
private boolean suspended;

CHAPTER 4 ■ USING THREADS IN YOUR APPLICATIONS

143

Second, modify the constructor to set this suspended variable to false.

public Downloader(URL url, OutputStream os) throws IOException {
 downloadURL = url;
 outputStream = os;
 bytesRead = 0;
 URLConnection urlConnection = downloadURL.openConnection();
 fileSize = urlConnection.getContentLength();
 if (fileSize == -1) {
 throw new FileNotFoundException(url.toString());
 }
 inputStream = new BufferedInputStream(
 urlConnection.getInputStream());
 buffer = new byte[BUFFER_SIZE];
 thisThread = new Thread(this);
 buildLayout();

 stopped = false;
 sleepScheduled = false;
 suspended = false;
}

Third, add accessor and mutator methods that allow the suspended flag to be set and queried.

public synchronized void setSuspended(boolean suspend) {
 suspended = suspend;
}

public synchronized boolean isSuspended() {
 return suspended;
}

Finally, modify the performDownload() method as appropriate. This code checks the suspended flag
and calls wait() if the flag is assigned a value of true, causing the thread to be suspended. Later, I’ll show
how to add the ability to resume a suspended thread, and when the thread is resumed, it will clear the
suspended flag so that it continues execution unless explicitly suspended again.

public void performDownload() {
 int byteCount;
 Runnable progressUpdate = new Runnable() {
 public void run() {
 progressBar.setValue(bytesRead);
 completeLabel.setText(
 Integer.toString(
 bytesRead));
 }
 };

CHAPTER 4 ■ USING THREADS IN YOUR APPLICATIONS

144

 while ((bytesRead < fileSize) && (!stopped)) {
 try {
 if (isSleepScheduled()) {
 try {
 Thread.sleep(SLEEP_TIME);
 setSleepScheduled(false);
 }
 catch (InterruptedException ie) {
 }
 }
 byteCount = inputStream.read(buffer);
 if (byteCount == -1) {
 stopped = true;
 break;
 }
 else {
 outputStream.write(buffer, 0,
 byteCount);
 bytesRead += byteCount;
 SwingUtilities.invokeLater(
 progressUpdate);
 }
 } catch (IOException ioe) {
 stopped = true;
 JOptionPane.showMessageDialog(this,
 ioe.getMessage(),
 "I/O Error",
 JOptionPane.ERROR_MESSAGE);
 break;
 }
 synchronized (this) {
 if (isSuspended()) {
 try {
 this.wait();
 setSuspended(false);
 }
 catch (InterruptedException ie) {
 }
 }
 }
 }
 try {
 outputStream.close();
 inputStream.close();
 } catch (IOException ioe) {};
 }

}

CHAPTER 4 ■ USING THREADS IN YOUR APPLICATIONS

145

In this case, the object that’s used for synchronization is the instance of Downloader, and that object’s
wait() method is called to suspend the download thread. The download thread is able to invoke wait()
because it will implicitly obtain the object’s lock when it enters the synchronized block of code containing
the call to wait().

When a thread calls the wait() method and is suspended, it’s added to a list of waiting threads that’s
maintained for each instance of Object. In addition, calling wait() causes the thread to release control
of the object’s monitor, which means that other threads are able to obtain the monitor for that object. For
example, if one thread is blocked because it’s waiting to obtain an object’s monitor and the thread that owns
the monitor calls wait(), the first thread will be given the monitor and allowed to resume execution.

In this case, the wait() method was called with no parameters, which will cause the download thread
to wait indefinitely until another thread wakes it up; the following section describes how to do so. However,
you may sometimes want to have the thread wait for some finite period of time, in which case you can
specify that length of time on the wait() method. Like sleep(), wait() provides one method that accepts a
long value representing some number of milliseconds and another implementation that also allows you to
specify an int nanosecond value. You can take advantage of these methods to cause a thread to “time out”
when it’s waiting for some resource to become available and that resource doesn’t become available within
the desired length of time.

Resuming a Thread
Since calling wait() with no parameters causes a thread to be suspended indefinitely, you may be
wondering how you can cause the thread to resume execution. To do so, simply have another thread call
either notify() or notifyAll(), both of which are methods defined in Object. As with wait(), a thread
must own the object’s monitor before it can call notify() or notifyAll(), and if one of those methods is
called by a thread that doesn’t own the monitor, an IllegalMonitorStateException is thrown.

In this case, you can make the download thread “wake up” after it invokes wait() by having the AWT
event thread call notify() or notifyAll() when the Resume button in DownloadManager is clicked. To
accommodate this functionality, you can add a resumeDownload() method to Downloader as follows:

public synchronized void resumeDownload() {
 this.notify();
}

Notice that the resumeDownload() method is synchronized, even though it doesn’t modify any
resources that are shared between the AWT event thread and the download thread. You want to do this so
that the event thread will obtain the Downloader object’s monitor, which is necessary for the event thread to
be able to call the object’s notify() method successfully.

Also note that calling notify() or notifyAll() doesn’t cause the waiting thread to immediately resume
execution. Before any thread that was waiting can resume execution, it must again obtain the monitor of the
object on which it was synchronized. In this case, for example, when the AWT event thread calls notify()
by invoking resumeDownload(), the download thread is removed from the Downloader object’s wait list.
However, you should recall that when the download thread invoked the wait() method, it implicitly gave
up ownership of the monitor, and it must regain ownership of the monitor before it can resume execution.
Fortunately, that will happen automatically once the monitor becomes available, which in this case will
occur when the AWT event thread exits the resumeDownload() method.

Up to this point it has been implied that notify() and notifyAll() are interchangeable, which is true
in this case, but there’s a difference between those two methods that’s important for you to understand.
In this application, there will only ever be one thread (the download thread) on the object’s wait list, but
you’ll sometimes create applications that allow multiple threads to call wait() for a single object instance.
Calling notifyAll() causes all threads that are waiting to be removed from the wait list, while calling

CHAPTER 4 ■ USING THREADS IN YOUR APPLICATIONS

146

notify() results in only a single thread being removed. Java doesn’t specify which thread will be removed
when notify() is called, and you shouldn’t make any assumptions in that respect, since it can vary from
one JVM implementation to the next. It may intuitively seem that the first thread that called wait() should
be removed from the list, but that may or may not be the case. Since you can’t cause a specific thread to be
resumed using notify(), you should use it only when you want to wake up a single waiting thread and don’t
care which one is awakened.

Stopping a Thread
Most of the code that’s needed to stop the download thread is already present, since a stopped flag was
previously defined. The download thread tests that flag as it performs the download, and once the flag is set
to true, the download thread exits the run() method and dies. However, you’ll also want to allow the AWT
event thread to set the flag when a DownloadManager’s Stop button is clicked. Once you make that change,
the flag has effectively become a shared resource that can be used by multiple threads, so access to it must
be synchronized through accessor and mutator methods, making it thread-safe, as shown in Listing 4-11.

Listing 4-11. Adding Stop Support

public synchronized void setStopped(boolean stop) {
 stopped = stop;
}

public synchronized boolean isStopped() {
 return stopped;
}

public void run() {
 int byteCount;
 Runnable progressUpdate = new Runnable() {
 public void run() {
 progressBar.setValue(bytesRead);
 completeLabel.setText(
 Integer.toString(
 bytesRead));
 }
 };
 while ((bytesRead < fileSize) && (!isStopped())) {
 try {
 if (isSleepScheduled()) {s
 try {
 Thread.sleep(SLEEP_TIME);
 setSleepScheduled(false);
 }
 catch (InterruptedException ie) {
 }
 }
 byteCount = inputStream.read(buffer);
 if (byteCount == -1) {
 setStopped(true);
 break;
 }

CHAPTER 4 ■ USING THREADS IN YOUR APPLICATIONS

147

 else {
 outputStream.write(buffer, 0,
 byteCount);
 bytesRead += byteCount;
 SwingUtilities.invokeLater(
 progressUpdate);
 }
 } catch (IOException ioe) {
 setStopped(true);
 JOptionPane.showMessageDialog(this,
 ioe.getMessage(),
 "I/O Error",
 JOptionPane.ERROR_MESSAGE);
 break;
 }
 synchronized (this) {
 if (isSuspended()) {
 try {
 this.wait();
 setSuspended(false);
 }
 catch (InterruptedException ie) {
 }
 }
 }
 }
 try {
 outputStream.close();
 inputStream.close();
 } catch (IOException ioe) {};
 }

}

While this implementation will work, it has one weakness: the download thread can’t be stopped while
it’s suspended or sleeping. For example, suppose you start the download operation and decide to suspend
the download. If you then decide to terminate the download completely after having suspended it, you’re
forced to resume the download (in other words, click the Resume button) and then stop the download.
Ideally, it should be possible to stop a download that was suspended without first resuming the download;
the interrupt() method defined in Thread allows you to do so.

Interrupting a Thread
Each thread maintains a flag that indicates whether the thread has been interrupted, and when you call a
thread’s interrupt() method, that flag is set to true. In addition, if interrupt() is called while the thread is
blocked by a method such as sleep() or wait(), that method will terminate with an InterruptedException.
However, in some cases such as when a thread is blocked because it’s waiting for an I/O operation to
complete, the interrupt flag is set “quietly” (in other words, no exception is thrown) and the thread’s
execution isn’t affected.

CHAPTER 4 ■ USING THREADS IN YOUR APPLICATIONS

148

To determine whether interrupt() will cause a blocking method to terminate with an exception,
you should examine the API documentation for that method. For example, the read() method defined
in java.io.InputStream can block a thread, but it doesn’t throw InterruptedException. In contrast, the
waitForAll() method in java.awt.MediaTracker blocks and will result in an InterruptedException being
thrown if the thread that called waitForAll() is interrupted while blocked.

Since some blocking methods throw an InterruptedException and others don’t, you’ll sometimes
need to explicitly test the interrupted flag to determine whether the thread was interrupted. To accomplish
this, you can use either the static interrupted() method or the nonstatic isInterrupted(). The
interrupted() method returns a boolean value that identifies the state of the currently executing thread’s
interrupted flag and clears that flag if it was set. The isInterrupted() method similarly returns the value of
a thread’s interrupted flag but doesn’t change the state of the flag. Therefore, interrupted() is appropriate
if you want to both test and clear the flag, while isInterrupted() is often a better choice, particularly if
you prefer to leave the flag unchanged. Either is acceptable in many cases, and the choice of which one to
use will depend upon your application. By making the changes in bold in Listing 4-12, you can interrupt
the download thread (and cancel the download) by the AWT event thread, regardless of the state of the
download thread.

Listing 4-12. Supporting the Cancel Function

public void stopDownload() {
 thisThread.interrupt();
}

public void performDownload() {
 int byteCount;
 Runnable progressUpdate = new Runnable() {
 public void run() {
 progressBar.setValue(bytesRead);
 completeLabel.setText(
 Integer.toString(
 bytesRead));
 }
 };
 while ((bytesRead < fileSize) && (!isStopped())) {
 try {
 if (isSleepScheduled()) {
 try {
 Thread.sleep(SLEEP_TIME);
 setSleepScheduled(false);
 }
 catch (InterruptedException ie) {
 setStopped(true);
 break;
 }
 }
 byteCount = inputStream.read(buffer);
 if (byteCount == -1) {
 setStopped(true);
 break;
 }

CHAPTER 4 ■ USING THREADS IN YOUR APPLICATIONS

149

 else {
 outputStream.write(buffer, 0,
 byteCount);
 bytesRead += byteCount;
 SwingUtilities.invokeLater(
 progressUpdate);
 }
 } catch (IOException ioe) {
 setStopped(true);
 JOptionPane.showMessageDialog(this,
 ioe.getMessage(),
 "I/O Error",
 JOptionPane.ERROR_MESSAGE);
 break;
 }
 synchronized (this) {
 if (isSuspended()) {
 try {
 this.wait();
 setSuspended(false);
 }
 catch (InterruptedException ie) {
 setStopped(true);
 break;
 }
 }
 }
 if (Thread.interrupted()) {
 setStopped(true);
 break;
 }
 }
 try {
 outputStream.close();
 inputStream.close();
 } catch (IOException ioe) {};
 }

}

Completing DownloadManager
You’ve now added all the necessary functionality to Downloader and can tie that functionality to the buttons
previously defined in DownloadManager by making the changes shown in Listing 4-13. With these changes in
place, you can use those buttons to start, suspend/sleep, resume, and stop the download that’s in progress
(see Figure 4-4).

CHAPTER 4 ■ USING THREADS IN YOUR APPLICATIONS

150

Listing 4-13. Enabling the Function Buttons

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.net.URL;
import javax.swing.*;
import javax.swing.border.*;

public class DownloadManager extends JPanel {

 private Downloader downloader;

 private JButton startButton;
 private JButton sleepButton;
 private JButton suspendButton;
 private JButton resumeButton;
 private JButton stopButton;

public static void main(String[] args) throws Exception {
 URL url = new URL(args[0]);
 FileOutputStream fos = new FileOutputStream(args[1]);
 JFrame f = new JFrame();
 DownloadManager dm = new DownloadManager(url, fos);
 f.getContentPane().add(dm);
 f.setSize(400, 300);
 f.setVisible(true);
}

public DownloadManager(URL source, OutputStream os)
 throws IOException {
 downloader = new Downloader(source, os);
 buildLayout();
 Border border = new BevelBorder(BevelBorder.RAISED);
 String name = source.toString();
 int index = name.lastIndexOf('/');
 border = new TitledBorder(border,
 name.substring(index + 1));
 setBorder(border);
}

private void buildLayout() {
 setLayout(new BorderLayout());
 downloader.setBorder(new BevelBorder(BevelBorder.RAISED));
 add(downloader, BorderLayout.CENTER);

 add(getButtonPanel(), BorderLayout.SOUTH);
}

private JPanel getButtonPanel() {
 JPanel outerPanel;
 JPanel innerPanel;

CHAPTER 4 ■ USING THREADS IN YOUR APPLICATIONS

151

 innerPanel = new JPanel();
 innerPanel.setLayout(new GridLayout(1, 5, 10, 0));

 startButton = new JButton("Start");
 startButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 startButton.setEnabled(false);
 sleepButton.setEnabled(true);
 resumeButton.setEnabled(false);
 suspendButton.setEnabled(true);
 stopButton.setEnabled(true);
 downloader.startDownload();
 }
 });
 innerPanel.add(startButton);

 sleepButton = new JButton("Sleep");
 sleepButton.setEnabled(false);
 sleepButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 downloader.setSleepScheduled(true);
 }
 });
 innerPanel.add(sleepButton);

 suspendButton = new JButton("Suspend");
 suspendButton.setEnabled(false);
 suspendButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 suspendButton.setEnabled(false);
 resumeButton.setEnabled(true);
 stopButton.setEnabled(true);
 downloader.setSuspended(true);
 }
 });
 innerPanel.add(suspendButton);

 resumeButton = new JButton("Resume");
 resumeButton.setEnabled(false);
 resumeButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 resumeButton.setEnabled(false);
 suspendButton.setEnabled(true);
 stopButton.setEnabled(true);
 downloader.resumeDownload();
 }
 });
 innerPanel.add(resumeButton);

 stopButton = new JButton("Stop");
 stopButton.setEnabled(false);

CHAPTER 4 ■ USING THREADS IN YOUR APPLICATIONS

152

 stopButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 stopButton.setEnabled(false);
 sleepButton.setEnabled(false);
 suspendButton.setEnabled(false);
 resumeButton.setEnabled(false);
 downloader.stopDownload();
 }
 });
 innerPanel.add(stopButton);

 outerPanel = new JPanel();
 outerPanel.add(innerPanel);
 return outerPanel;
 }
}

Figure 4-4. The completed application allows you to start, delay, suspend, resume, and stop the file download

Deprecated Methods in Thread
You’ve now seen how to add code to an application that will suspend, resume, and stop a running thread,
but if you review the API documentation for the Thread class, you’ll see that it includes suspend(), resume(),
and stop() methods, even though they’re now deprecated. You can probably guess (correctly) from this
fact that those functions were handled “manually” within the application to avoid using the deprecated
methods, but it may not be as obvious why they’re deprecated.

When one thread wants to stop or suspend another thread, the first thread usually can’t know whether
the second thread is in a state that’s appropriate for it to be suspended. For example, suppose you’re running
the AccountManager example that was defined earlier in this chapter, where money is transferred between
two accounts. If a thread is stopped after it has removed money from one account but before it has increased
the balance in the other account, that money will again be lost. Similarly, if a thread is suspended while it
owns the monitor of some object, it will be impossible for other threads to obtain that object’s monitor while
the owning thread is suspended.

In effect, suspend() and stop() allow a thread to be suspended or stopped even while it’s in a state
where such an action is inappropriate. Therefore, instead of using those deprecated methods, you should
instead send a request to a thread that will cause it to suspend or stop itself at an appropriate point.

CHAPTER 4 ■ USING THREADS IN YOUR APPLICATIONS

153

For example, an AccountManager thread should allow itself to be stopped or suspended before or after a
transfer is performed but not while one is in progress. Similarly, if some resources may be needed by other
threads, the thread being suspended can release the monitor(s) of those resources before it’s suspended.
This reduces the likelihood of deadlock, which is a common problem with multithreaded applications, as
I discussed previously.

DownloadFiles
The existing implementations of Downloader and DownloadManager provide a great deal of flexibility and
functionality, but they have one limitation: you can’t initiate multiple downloads without running each one
in a separate Java Virtual Machine process. To address that limitation, I’ll now show how to create a new
DownloadFiles class that allows you to create instances of DownloadManager by entering URLs in a text field,
as shown in Figure 4-5.

Figure 4-5. The DownloadFiles class allows you to use multiple download managers so that multiple files can
be downloaded simultaneously

The code shown in Listing 4-14 provides the desired functionality. It creates a user interface like the
one shown in Figure 4-5 and creates a new DownloadManager instance when the user enters a URL in the
text field and presses Enter (or clicks the Download button). To use the application, simply compile and
execute it and enter the URL of each file you want to download into the text field. You can then control the
downloads using the buttons previously defined in the DownloadManager class, and each file will be written
to the local drive using the filename portion of its URL.

CHAPTER 4 ■ USING THREADS IN YOUR APPLICATIONS

154

Listing 4-14. Initial DownloadFiles Implementation

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.net.*;
import javax.swing.*;

public class DownloadFiles extends JPanel {

 private JPanel listPanel;
 private GridBagConstraints constraints;

 public static void main(String[] args) {
 JFrame f = new JFrame("Download Files");
 DownloadFiles df = new DownloadFiles();
 for (int i = 0; i < args.length; i++) {
 df.createDownloader(args[i]);
 }
 f.getContentPane().add(df);
 f.setSize(600, 400);
 f.setVisible(true);
 }

 public DownloadFiles() {
 setLayout(new BorderLayout());
 listPanel = new JPanel();
 listPanel.setLayout(new GridBagLayout());
 constraints = new GridBagConstraints();
 constraints.gridx = 0;
 constraints.weightx = 1;
 constraints.fill = GridBagConstraints.HORIZONTAL;
 constraints.anchor = GridBagConstraints.NORTH;
 JScrollPane jsp = new JScrollPane(listPanel);
 add(jsp, BorderLayout.CENTER);

 add(getAddURLPanel(), BorderLayout.SOUTH);
 }

 private JPanel getAddURLPanel() {
 JPanel panel = new JPanel();
 JLabel label = new JLabel("URL:");
 final JTextField textField = new JTextField(20);
 JButton downloadButton = new JButton("Download");
 ActionListener actionListener = new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 if (createDownloader(textField.getText())) {
 textField.setText("");
 revalidate();
 }
 }
 };

CHAPTER 4 ■ USING THREADS IN YOUR APPLICATIONS

155

 textField.addActionListener(actionListener);
 downloadButton.addActionListener(actionListener);
 panel.add(label);
 panel.add(textField);
 panel.add(downloadButton);
 return panel;
 }

 private boolean createDownloader(String url) {
 try {
 URL downloadURL = new URL(url);
 URLConnection urlConn = downloadURL.openConnection();
 int length = urlConn.getContentLength();
 if (length < 0) throw new Exception(
 "Unable to determine content " +
 "length for '" + url + "'");
 int index = url.lastIndexOf('/');
 FileOutputStream fos = new FileOutputStream(
 url.substring(index + 1));
 BufferedOutputStream bos =
 new BufferedOutputStream(fos);
 DownloadManager dm = new DownloadManager(
 downloadURL, bos);
 listPanel.add(dm, constraints);
 return true;
 }
 catch (Exception e) {
 JOptionPane.showMessageDialog(this, e.getMessage(),
 "Unable To Download",
 JOptionPane.ERROR_MESSAGE);
 }
 return false;
 }

}

Although this application provides an easy and convenient way to create instances of DownloadManager,
there’s currently no way to remove those instances once they’ve been added. To address that limitation, you
might choose to add a button to DownloadFiles that performs the following operations:

Interrupts each active thread, terminating its download•

Waits until all threads have died, which may take several seconds depending upon •
the speed of your network connection

Removes all the • Downloader instances from the user interface display

An easy way to perform the first operation described (interrupt the active threads) is to use a
ThreadGroup.

CHAPTER 4 ■ USING THREADS IN YOUR APPLICATIONS

156

ThreadGroup
Just as packages allow you to organize your Java classes in a hierarchy, the ThreadGroup class allows you
to create groups of associated threads and organize them hierarchically. Each ThreadGroup can have one
parent and may have child ThreadGroup instances, and you can add a Thread to a particular ThreadGroup
when the thread is created by passing a reference to that group to the thread’s constructor.

Runnable runnable;
ThreadGroup myGroup = new ThreadGroup("My ThreadGroup");
.
.
.
Thread t = new Thread(myGroup, runnable);

ThreadGroup wouldn’t be very useful if it simply allowed you to create a collection of associated threads,
but it also provides a convenient way to control those threads. Specifically, you can use ThreadGroup’s
interrupt() to interrupt all its threads with a single method call, and you can specify the maximum priority
that should be valid for a thread in the group. ThreadGroup also provides suspend(), resume(), and stop()
methods that allow you to control the execution of the threads, but those methods have been deprecated for
the reasons described earlier, so you shouldn’t use them in your application.

As illustrated previously, you can add a Thread to a ThreadGroup by passing a reference to the group as
a parameter when creating the Thread instance. As the following bold code illustrates, you can easily modify
Downloader to define a ThreadGroup that will contain all download threads, which will allow you to interrupt
them all with a single method call:

public static ThreadGroup downloaderGroup = new ThreadGroup(
 "Download Threads");

public Downloader(URL url, OutputStream os) throws IOException {
 downloadURL = url;
 outputStream = os;
 bytesRead = 0;
 URLConnection urlConnection = downloadURL.openConnection();
 fileSize = urlConnection.getContentLength();
 if (fileSize == -1) {
 throw new FileNotFoundException(url.toString());
 }
 inputStream = new BufferedInputStream(
 urlConnection.getInputStream());
 buffer = new byte[BUFFER_SIZE];
 thisThread = new Thread(downloaderGroup, this);
 buildLayout();

 stopped = false;
 sleepScheduled = false;
 suspended = false;
}

CHAPTER 4 ■ USING THREADS IN YOUR APPLICATIONS

157

Now that each thread associated with a Downloader instance is part of the same ThreadGroup, the
threads can all be stopped with a single call to the ThreadGroup’s interrupt() method. In this case, that will
be done by a static method called cancelAllAndWait() within the Downloader class.

public static void cancelAllAndWait() {
 downloaderGroup.interrupt();
}

To obtain a list of the threads that were active before interrupt() was called, it’s possible to use the
ThreadGroup’s activeCount() and enumerate() methods. As the names imply, activeCount() returns the
number of active threads in the group, while enumerate() stores a reference to each active thread within a
Thread array that’s passed to it as a parameter.

public static void cancelAllAndWait() {
 int count = downloaderGroup.activeCount();
 Thread[] threads = new Thread[count];
 count = downloaderGroup.enumerate(threads);
 downloaderGroup.interrupt();
}

To wait for each thread to die, you can use the join() method defined in Thread. When one thread
invokes another’s join() method, the first thread will be blocked until the second thread dies or until the
first thread’s interrupt() method is called. In this case, the AWT event thread will call each download
thread’s join() method once the download threads have been interrupted.

As with wait() and sleep(), it’s also possible to specify a particular length of time (in milliseconds and
optionally in nanoseconds) that the caller should wait when calling a thread’s join() method. However, if
you don’t do so, the caller waits indefinitely until the thread dies.

public static void cancelAllAndWait() {
 int count = downloaderGroup.activeCount();
 Thread[] threads = new Thread[count];
 count = downloaderGroup.enumerate(threads);
 downloaderGroup.interrupt();

 for (int i = 0; i < count; i++) {
 try {
 threads[i].join();
 } catch (InterruptedException ie) {};
 }
}

With the cancelAllAndWait() method available in Downloader, it’s easy to add a button
to DownloadFiles to use that method. When the new Clear All button is clicked, it will call
cancelAllAndWait(), remove the DownloadManager instances, and refresh the user interface display (as
shown in Figure 4-6). Listing 4-15 shows the code.

CHAPTER 4 ■ USING THREADS IN YOUR APPLICATIONS

158

Listing 4-15. Implementing the Clear All Button Functionality

private JPanel getAddURLPanel() {
 JPanel panel = new JPanel();
 JLabel label = new JLabel("URL:");
 final JTextField textField = new JTextField(20);
 JButton downloadButton = new JButton("Download");
 ActionListener actionListener = new ActionListener() {

 public void actionPerformed(ActionEvent event) {
 if (createDownloader(textField.getText())) {
 textField.setText("");
 revalidate();
 }
 }
 };
 textField.addActionListener(actionListener);
 downloadButton.addActionListener(actionListener);
 JButton clearAll = new JButton("Cancel All");
 clearAll.addActionListener(new ActionListener() {

Figure 4-6. This version of the user interface includes a button that allows you to cancel all the downloads
that are in progress

CHAPTER 4 ■ USING THREADS IN YOUR APPLICATIONS

159

 public void actionPerformed(ActionEvent event) {
 Downloader.cancelAllAndWait();
 listPanel.removeAll();
 revalidate();
 repaint();
 }
 });
 panel.add(label);
 panel.add(textField);
 panel.add(downloadButton);
 panel.add(clearAll);
 return panel;
}

Uncaught Exceptions
As mentioned earlier, a thread dies when it exits the run() method of the Runnable object with which it’s
associated. In most cases, this will occur when the thread has executed all the code within that method,
but it can also occur if an exception is thrown that’s not caught. For example, NullPointerException is
perhaps the most common exception that’s encountered by Java programmers, and it isn’t typically caught
and handled because there’s usually no way for the application to recover when a NullPointerException
is thrown. Assuming that a NullPointerException is thrown during execution of the run() method, either
within that method itself or within other code it calls, and assuming that no attempt is made to catch the
exception, it will cause the thread to die.

By default, an uncaught exception simply causes the thread’s stack trace to be printed before the thread
dies, but you can override this behavior using an uncaught exception handler. How you handle uncaught
exceptions depends upon whether you want to customize the behavior for all threads in a ThreadGroup or
you only want to change the behavior for a single thread. When an uncaught exception occurs for a thread
its getUncaughtExceptionHandler() method is called to determine if it has been assigned an instance of
the UncaughtExceptionHandler interface. If so, that object's uncaughtException() method is called and is
passed a reference to the thread and to the exception that occurred. If, on the other hand, no handler has
been assigned to the thread the uncaughtException() method is called for the ThreadGroup associated with
the thread and, as mentioned before, the behavior defined there is to simply display the stack trace of the
thread for which the exception occurred.

Voluntarily Relinquishing the Processor
As you’ve seen, the specific details of how threads share the processor’s time vary from one platform to the
next. The operating system will sometimes ensure that each thread is eventually given a chance to run, but
some platforms are more effective at this than others. Therefore, if you create a multithreaded application,
it’s possible that one or more threads won’t be able to run if other threads of a higher priority are constantly
executing. To prevent this from happening, you should be aware of situations where a high-priority thread
may run for a long time, and you may want to cause it to periodically relinquish control of the processor
voluntarily.

One way of making a thread give up control of the processor is to call the static yield() method defined
in Thread.

Thread.yield();

CHAPTER 4 ■ USING THREADS IN YOUR APPLICATIONS

160

This method causes the currently executing thread to signal that another thread of the same priority
should be allowed to run. Conceptually, you can think of yield() as causing the current thread to be moved
to the end of the list of runnable threads with the same priority. In theory, this should allow a different
thread to run, but as you saw earlier, the mechanism used to select the next thread to run is undefined and
platform-specific. Therefore, it’s possible that the same thread that yielded control of the processor will
be immediately reselected for execution, even if other runnable threads of the same priority are available.
In other words, yield() isn’t a completely reliable way to ensure that one thread doesn’t monopolize the
processor.

A more reliable method of ensuring that a thread is temporarily prevented from running is to use the
sleep() method, but this approach has a serious drawback. If you use sleep(), you’re effectively overriding
the native platform’s efforts to allocate the processor’s time in an efficient and “fair” manner among the
threads. For example, suppose you’re given the simple application shown in Listing 4-16.

Listing 4-16. Minimum and Maximum Priority Threads

public class Test {

 public static void main(String[] args) {
 Test t = new Test();
 }

 public Test() {
 Runnable runner = new MyRunnable("First");
 Thread t = new Thread(runner);
 t.setPriority(Thread.MIN_PRIORITY);
 t.start();
 runner = new MyRunnable("Second");
 t = new Thread(runner);
 t.setPriority(Thread.MAX_PRIORITY);
 t.start();
 }

 class MyRunnable implements Runnable {

 private String name;

 public MyRunnable(String tn) {
 name = tn;
 }

 public void run() {
 while (true) {
 System.out.println(name);
 }
 }
 }

}

CHAPTER 4 ■ USING THREADS IN YOUR APPLICATIONS

161

On most platforms, the second thread will be given more of the processor’s time because it’s assigned
a higher priority than the first, which is presumably the desired result. If you’re concerned that the first
thread might be prevented from ever running on some operating systems, you can modify the run()
method as follows:

public void run() {
 while (true) {
 try {Thread.sleep(500);} catch (Exception e) {};
 System.out.println(name);
 }
}

The problem with this approach is that it has effectively rendered the two threads’ priorities
meaningless. Since each thread will sleep for half a second as it loops within the run() method, the result on
most systems will be that each thread executes for approximately the same length of time.

While it’s possible to use sleep() to control how threads are run, you should do so only with caution
and understand that you may defeat the platform’s attempts to execute the threads in an appropriate
manner. In addition, using sleep() for this purpose may succeed on one platform but fail on another
because of differences in the behavior of the operating systems. Fortunately, most operating systems do a
reasonably good job of ensuring that each thread is given a chance to run, so you can and should normally
use yield() instead.

Regardless of whether you use sleep() or yield() you should be aware that there’s no way in Java
to guarantee that low-priority threads will ever be run, at least not while higher-priority threads are also
executing. Given this unpredictability and the increased complexity associated with scheduling threads of
different priorities, you should use priorities with caution.

Concurrency Utilities
As mentioned earlier, using threads complicates your application and has the potential to create problems.
For example, creating and starting a new thread can be a relatively slow process, and creating a large number
of threads can degrade the performance of your application. However, thread pooling is a technique that’s
commonly used to address this problem, particularly in applications that repeatedly execute tasks that
complete in a relatively short amount of time. By using a thread pool, you can avoid the overhead associated
with creating a new thread by maintaining a group, or pool, of available threads and retrieving one from the
pool when necessary. In other words, this technique allows you to reuse a single thread repeatedly instead of
creating a new thread for each task and allowing it to be destroyed when the task completes.

Thread pooling is just one function that’s often used by multithreaded applications, and in the past it
was common for programmers to create and use their own implementations. However, Java 5 included a
new set of packages containing interfaces and classes that support services such as a thread pooling that are
commonly needed by multithreaded applications.

Pooling is supported by a number of the interfaces and classes in the java.util.concurrent
package, one of which is the ScheduledThreadPoolExecutor class; the following shows an example of how
it can be used:

ScheduledThreadPoolExecutor executor = new ScheduledThreadPoolExecutor(1);
.
.
.
Runnable runner = getNextTask();
executor.execute(runner);

CHAPTER 4 ■ USING THREADS IN YOUR APPLICATIONS

162

The instance of ScheduledThreadPoolExecutor created in this sample code maintains a pool that
initially contains a single thread, and each time its execute() method is called, it will either create a new
thread or wait for an existing one to become available to execute the specified Runnable.

While the java.util.concurrent package contains general utility classes useful in multithreaded
applications, the java.util.concurrent.atomic package contains classes that provide manipulation and
comparison operations for various types of atomic (single-value) variables. For example, it contains classes
called AtomicBoolean, AtomicInteger, and AtomicLong, and each of those classes in turn contains methods
for examining and updating the encapsulated values in a thread-safe manner.

Another useful package is java.util.concurrent.locks, which contains classes that support locking
capabilities. At a high level, the locking refers to resource locking, which is conceptually similar to Java’s
synchronization capabilities but provides more robust capabilities. For example, Java’s synchronization
mechanism provides for serialization of access to resources but doesn’t directly provide a way for multiple
threads to share a resource in a read-only manner while also facilitating write access to that resource.
In contrast, the ReentrantReadWriteLock class, for example, provides that ability and much more.

Summary
In this chapter, I covered the following topics:

Common reasons for using threads and some of the advantages and disadvantages •
of using them

How to create threads and manage their execution•

How to synchronize access to resources that are used by multiple threads and how to •
prevent problems from occurring

Changes that occurred to the • Thread class in Java 2 and how to modify your
applications to take into account those changes

Java’s concurrency utilities•

163

CHAPTER 5

Using Stream APIs and Collections

By definition, an object-oriented application is one that creates and uses objects, and most useful applications
create and manage groups of objects. In fact, maintaining a group, or collection, of objects is done so often
that Java’s core library has always included classes designed specifically for that purpose.

To understand why collection classes are so important, let’s briefly examine the alternative and what
limitations existed. Before object-oriented programming became popular, procedural languages typically
used arrays to maintain groups of related values. Arrays are, of course, supported by Java and heavily used
within Java’s core classes, but they do have limitations. To illustrate those limitations, let’s first suppose your
application includes the following class, shown in Listing 5-1, which maintains student information:

Listing 5-1. A Simple Class for Encapsulating Student Information

public class Student {

 private int studentID;
 private String firstName;
 private String lastName;

 public Student(int id, String fname, String lname) {
 studentID = id;
 firstName = fname;
 lastName = lname;
 }

 public int getStudentID() {
 return studentID;
 }

 public String getFirstName() {
 return firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public String getFullName() {
 return getFirstName() + " " + getLastName();
 }

}

CHAPTER 5 ■ USING STREAM APIS AND COLLECTIONS

164

Now let’s also assume your application also uses a database that includes a table containing student
information, with one row per student, and you want to retrieve the list of students from that table and load
the list into memory using instances of the previous class. You’ll obviously need some way to maintain that
group of Student objects, and an array can easily be defined with a statement such as the following:

Student[] students;

The problem is that this statement hasn’t really defined an array of Student objects but has merely
created a pointer that can be used to reference such an array. To actually create an array, you’ll need to
include a statement like the following:

students = new Student[30];

Alternatively, you can replace both of the previous statements with a composite statement, such as the
following one, that both defines the pointer and creates the array:

Student[] students = new Student[30];

In this case we’ve arbitrarily decided that the array can reference up to 30 instances of Student. That
may very well be a valid assumption for this example application, but explicitly specifying the array size this
way means the code won’t work correctly if you ever need to load more than 30 students at one time. That’s
because once you create an array, it can never increase or decrease in size; the array just created is always
capable of holding 30 students—no more and no less.

Of course, if you know that there will normally be 30 or fewer students but that occasionally the number
will be as high as 50, you can simply make the array larger.

Student[] students = new Student[50];

This works because the array can technically contain fewer objects than its maximum size simply by
not changing the default null value for some or all of the array’s elements. For example, if you perform a
database query that you know will normally return 30 or fewer students, you could store them in the array
using code similar to that in Listing 5-2.

Listing 5-2. Defining and Populating an Array

Student[] students = new Student[50];
java.sql.ResultSet resultSet;
// Perform query
.
.
.
int index = 0;
while (resultSet.next()) {
 students[index++] = createStudent(resultSet);
}
.
.
.
// Creates and returns a Student from data in current row of the ResultSet
private Student createStudent(ResultSet resultSet) throws SQLException {

CHAPTER 5 ■ USING STREAM APIS AND COLLECTIONS

165

Assuming you were to execute the previous code and assuming that the query returns fewer than 50
students, the array will effectively contain fewer than 50 students simply because it doesn’t reference that
number of objects. Although this addresses the potential problem of having more than 30 students by
increasing the array size, this solution isn’t perfect. For one thing, if your requirements suddenly change
again so the maximum number of students is now 100, you’ll be forced to modify and recompile your code
for it to work correctly. Of course, you could simply choose an extremely large array size that you’re certain
will never need to be exceeded, as in the following code:

Student[] students = new Student[100000];

Although this change would allow the code to work with up to 100,000 students, it also wastes memory.
When you create the array, an amount of memory is allocated that’s sufficient to maintain a number of
object references that correspond to the size of the array. In other words, if you allocate an array using the
previous code but then store references to only 30 students in it, the other 99,970 entries represent wasted
memory. Ideally, you’d like for an array to be able to shrink and grow so that it uses only as much memory as
it needs to maintain the number of objects it contains, but arrays just don’t work that way. Although arrays
are definitely useful, they don’t offer as much flexibility as you’d probably like, and this is why Java includes
classes and interfaces used for managing collections. Figure 5-1 shows a class diagram with many of the
collection classes and interfaces.

LinkedList

VectorArrayListTreeSetHashSet

LinkedHashSet

EnumSet

AbstractListAbstractSet AbstractCollection

<<Interface>>

List

<<Interface>>

Set

<<Interface>>

Collection

AbstractSequentialList

Figure 5-1. Java’s collection types include a wide variety of interfaces and classes

CHAPTER 5 ■ USING STREAM APIS AND COLLECTIONS

166

The Evolution of Collections
In the earliest versions of Java, the only three collection classes were Vector, Hashtable, and Stack.
Although they provided basic collection capabilities, they weren’t a completely satisfactory solution.
For one thing, they didn’t offer enough flexibility to provide programmers with the functionality that’s
needed in many cases. For another, all the methods were synchronized to make them thread-safe, but that
synchronization also caused a performance penalty that’s present even in single-threaded situations where
thread-safe class design isn’t needed.

Java 2/Java 1.2
Most of the collection classes that are now part of Java’s core libraries were added in Java 2, and it’s those
classes that we’ll cover in this chapter. Unlike the older classes, however, these new classes weren’t designed
to be inherently thread-safe, so if you create a collection object that’s used by more than one thread, you’ll
need to take steps to serialize access to the collection.

Java 5/Java 1.5
Another major change occurred in Java 5, when support for new features was added that effectively changed
the syntax related to using collection classes. In other words, code that was written for prior versions of Java
will by default generate errors when you attempt to compile it with a Java 5 or later compiler. In addition,
source code written using the Java 5 syntax can’t be compiled using an earlier version of Java. Most of this
chapter will use the newer syntax, but you should be aware of the differences in case you need to work with
code written using an earlier version.

Prior to Java 5, you couldn’t directly add a primitive value to a collection. For example, an int value
could be added only if it was first encapsulated in an instance of the corresponding Integer wrapper.
However, Java 5 introduced a feature called autoboxing/unboxing that allows you to write source code that
appears to add primitives to and retrieve them from collection objects. In reality, the objects are still being
encapsulated in wrappers while they’re inside the collection, but the conversion between primitives and
objects is handled automatically and is concealed from the programmer.

Before Java 5, all objects stored in collections were treated as instances of Object, and you had no
restrictions on the type of object you could add to a collection. It was the responsibility of the programmer
to cast an Object to a more specific type when retrieving it from a collection, and a ClassCastException
would occur if you made an incorrect assumption about the class of the object. However, Java 5 introduced
a feature called generics that allows you to indicate what specific class of objects a collection will hold. If you
do, the compiler will use that information to ensure that the code being compiled only adds instances of the
specified class.

Java 7/Java 1.7
This release included a relatively minor change to generic support that simplified creating collection objects.
Prior to Java 7 it was necessary to define the collection type both on the variable declaration and on the
constructor portion of the statement. Java 7, however, introduced a feature called the diamond operator that
allows you to specify the generic information on just the declaration (left side) of the statement, and it’s that
notation that will be used in the remainder of this chapter.

CHAPTER 5 ■ USING STREAM APIS AND COLLECTIONS

167

GENERICS

Programmers had requested adding generics to Java for years; generics serve two purposes, both of

which you’ll see in detail later. One advantage of generics is that they eliminate some of the tedious

casting that’s otherwise necessary, which results in code that’s simpler and more readable. The bigger

advantage of generics is that they allow some types of errors to be detected at compile time instead

of at runtime, which improves reliability when the code runs because of the potential errors that were

eliminated.

Collection Classes and Interfaces
Before you examine the classes and interfaces that make up Java’s collection library, let’s review some of the
concepts and terminology you need to understand. An object that has been added to a collection is referred
to as an element; some collection classes allow duplicate elements, and others don’t. In this context, two
elements are considered duplicates if a value of true is returned when they’re compared using the equals()
method. For example, the following two objects are duplicate elements:

String first = "Hello";
String second = "Hello";

Some differences between collection classes, besides whether they support duplicate elements, are
whether the elements are ordered and whether the class allows null elements to be added. The functionality
your application requires will determine which class you use; however, some classes are used often, and
others are rarely needed.

Collection
At the top of the class hierarchy is the Collection interface, which defines methods that are common to
most class implementations. Note, however, that some of the methods aren’t applicable to some collection
implementations, so just because a method is defined in Collection doesn’t necessarily mean it’s valid in a
given implementation. If you try to call a method that isn’t valid, an UnsupportedOperationException will
be thrown, indicating that the method isn’t meaningful for that object. Table 5-1 describes some of the most
commonly used methods that are defined in Collection.

Table 5-1. Commonly Used Methods Defined in Collection

Method Description

add(Object o) Adds the specified object to the collection.

remove(Object o) Removes the specified object from the collection.

clear() Removes all elements from the collection.

size() Returns an integer that indicates how many elements are currently in the collection.

iterator() Returns an object that can be used to retrieve references to the elements in the collection.

CHAPTER 5 ■ USING STREAM APIS AND COLLECTIONS

168

Even without the descriptions, you could probably correctly guess what general behavior to expect
from most of these methods, but to illustrate the usefulness of generics let’s first look at examples of
how collections are used without them. Suppose you want to create and use an instance of a class that
implements the Collection interface. One of the most frequently used classes is ArrayList, and we’ll
discuss it in depth in the section “ArrayList,” but for now let’s say you simply want to create and use an
instance using its no-argument constructor.

Using Collection Implementations Without Generics

Prior to Java 5, you’d create an instance of a collection object in the same way you’d create any other object;
the following example shows how to do this:

Collection collection = new ArrayList();

Now let’s also assume you have a method that reads from a database and creates instances of Student
until there are no more to be read. If you wanted to add those objects to the collection, you could use code
like the following:

Student student = getNextStudent();
while (student != null) {
 collection.add(student);
}

Notice that all you did was call the add() method mentioned previously, and this particular code isn’t
affected by the use of generics. As you’ll see, what changed is primarily how you go about creating collection
objects and how you retrieve objects from a collection.

Now that you’ve created the collection object and added student information to it, how can you go
about retrieving references to those student objects? Table 5-1 mentioned an iterator() method that
allows you to access the elements in a collection, and the documentation for that method indicates it returns
an object that implements the Iterator interface defined in the java.util package. In other words, the
iterator() method returns an Iterator object, which is simply an object that provides methods that allow
you to access the objects in a collection one at a time. In fact, Iterator is a simple interface and includes
only the three methods described in Table 5-2.

Table 5-2. Iterator’s Methods

Method Description

next() Returns a reference to the next Object in the collection.

hasNext() Indicates whether the iterator has already returned references to all the objects
in the collection.

remove() Removes from the collection the object most recently returned by the next() method.

CHAPTER 5 ■ USING STREAM APIS AND COLLECTIONS

169

Now let’s suppose you want to print the first and last name of each Student in the collection, which
you can begin to implement by calling the collection’s iterator() method and looping through the list
of elements.

Student student;
Iterator iterator = collection.iterator();
while (iterator.hasNext()) {
}

The only thing that’s missing is to retrieve a reference to each Student and print the name for each one.
To accomplish that, keep in mind you’re currently looking at how this would be done without generics and
that, as mentioned earlier, using generics involves identifying what type of object a collection holds. Because
you intend for your collection to only contain Student instances and because the next() method is defined
to return an instance of Object, you’ll need to cast the return value as a Student, as shown by Listing 5-3.

Listing 5-3. Iteration Without Generics Often Requires Casting

Student student;
Iterator iterator = collection.iterator();
while (iterator.hasNext()) {
 student = (Student)(iterator.next());
 System.out.println(student.getFullName());
}

One point worth noting is that if your collection somehow contained an object other than an instance
of Student, the previous code would generate a ClassCastException when executed. The problem with
treating everything in a collection as an Object is that it becomes more likely that some type of object other
than the one you’re expecting will be added, and you have no way at compile time to prevent that from
occurring. Also, your code is more verbose because to treat an object retrieved from the previous collection
as a Student you first have to cast it accordingly.

Another limitation in the collection classes prior to Java 5 was that you could add primitive values to
a collection only by first encapsulating them in their corresponding wrapper classes. For example, let’s
suppose you wanted to create a collection containing a group of random integers. In that case, you’d be
required to explicitly create an Integer for each one and add that wrapper to the collection as shown
by Listing 5-4.

Listing 5-4. Wrapping Primitives to Store Their Values in Collections

Integer integer;
Random random = new Random();
Collection collection = new ArrayList ();
for (int i = 0; i < 10; i++) {
 integer = new Integer (random.nextInt());
 collection.add(integer);
}

Similarly, retrieving the objects from the collection would require you to cast the return value to an
Integer and then call the intValue() method (see Listing 5-5).

CHAPTER 5 ■ USING STREAM APIS AND COLLECTIONS

170

Listing 5-5. Unwrapping to Convert an Object Value into a Primitive

Integer integer;
int total = 0;
Iterator iterator = collection.iterator();
while (iterator.hasNext()) {
 integer = (Integer)(iterator.next());
 total += integer.intValue();
}

While encapsulating primitive values within wrappers isn’t a serious inconvenience, it’d certainly be
preferable to be able to add and retrieve primitive values directly.

Collection Support with Generics and Autoboxing

Java 5 introduced two new language features that addressed the limitations just discussed related to
collection classes. Generics address the need to explicitly cast objects retrieved from collections and also
reduce runtime errors by detecting more potential problems at compile time, and autoboxing/unboxing
allows you to treat primitives like objects.

To understand generics, it’s first helpful to realize that, within a well-designed application, a collection
object should almost always be homogenous in terms of the class of objects it contains. For example, if
the Student class were the superclass of the PartTimeStudent and FullTimeStudent classes, it might
be appropriate to add instances of those subclasses to a single collection, but it would probably not be
appropriate to store both Student and Integer objects in the same collection. In practice, you’ll almost
never have a reason to store two very different types of object in the same collection; when that does occur,
it’s more often a mistake rather than done intentionally. However, as long as collections are simply treated
as holding Object instances, you have no way to ensure at compile time that a given collection is being used
appropriately.

Generics address this by having you specify in your source code the type of object that your collection
will hold when you create an instance of a collection class. You do this by specifying the class name between
less than (<) and greater than (>) characters when you specify the variable class and the class that’s being
instantiated. Prior to Java 7 it was necessary to specify a type on both sides of the assignment as follows:

Collection<Student> collection = new ArrayList<Student>();

As mentioned earlier, though, Java 7 introduced the diamond operator, so-called because of the
somewhat diamond-like shape created by a less than/greater than pair as shown in the following, where the
type is omitted from the right side of the statement:

Collection<Student> collection = new ArrayList<>();

Using this notation the compiler simply infers that the generic type on the right side is the same as that
specified on the left and we’ll use this newer notation for the rest of the chapter.

You’ve now seen how creating a collection is done using generics, but how is the collection used
differently after that? The call to the add() method doesn’t change, but the most useful feature of generics is
that it provides more error checking at compile time. Let’s now suppose you attempt to write code that adds
an Integer to the collection of Student objects, something we’ve already established isn’t desirable in a
well-designed application.

collection.add(new Integer (12345));

CHAPTER 5 ■ USING STREAM APIS AND COLLECTIONS

171

Attempting to compile this code results in an error because it represents an attempt to add an
object of the wrong type to the collection. This ability to recognize problems at compile time prevents
you from accidentally adding the wrong type of object to a collection and is the biggest advantage
associated with generics.

Another useful feature of generics is that because the type of object a collection holds is now known by
the compiler, it’s not necessary for you to explicitly cast the collection objects back to the type you expect.
Instead, you can simply indicate that the Iterator generates references to the expected type and then omit
the explicit cast to the code that retrieves a reference.

Student student;
Iterator<Student> iterator = collection.iterator();
while (iterator.hasNext()) {
 student = iterator.next();
}

This approach results in code that’s more readable and maintainable because it allows you to specify
the object type in only one place, specifically when you obtain the Iterator reference. After that, you don’t
need to specify the type again regardless of how many different places within the code retrieve objects from
the Iterator.

AUTOBOXING AND UNBOXING

Another improvement in collection handling was the introduction of autoboxing and unboxing, which

eliminates the need to explicitly encapsulate primitive values within wrapper objects and to retrieve

them from those objects when the primitives are to be stored within a collection. The result is that you

can now simplify your code by eliminating the portions that perform the encapsulation and extraction.

In reality, the encapsulation is still being done, but it’s handled by the Java compiler rather than being

explicitly included in your code. Autoboxing is the process of performing the encapsulation before a

primitive is stored in a collection, and the following is an example of how this can improve your code:

Random random = new Random();
Collection<Integer> collection = new ArrayList<Integer>();
for (int i = 0; i < 10; i++) {
 collection.add(random.nextInt());
}

Similarly, unboxing is the process of extracting the primitive value from its corresponding wrapper

object when retrieving data from a collection:

int total = 0;
Iterator<Integer> iterator = collection.iterator();
while (iterator.hasNext()) {
 total += iterator.next();
}

Now that you’ve seen the basics of how to use the Collection methods, let’s continue to examine the
other interfaces and classes that make up Java’s collection API.

CHAPTER 5 ■ USING STREAM APIS AND COLLECTIONS

172

List
One of the characteristics of a collection class is whether it maintains a meaningful order for the elements
it contains, and the List interface defines such an implementation. In other words, when you use an
implementation of List and retrieve references to the elements, those elements will be returned in a
predictable sequence. The sequence is defined by the element’s position within the collection, and you
specify that position either explicitly or implicitly when you add the element. Besides accessing the elements
serially as you did earlier, a List also allows you to directly reference a particular element by specifying
its zero-based position within the collection. For example, the first element in a collection corresponds to
position 0, the second element to 1, and so on.

To better understand how this works, let’s assume you’re using an implementation of List to maintain a
collection of Student objects and you use the add() method defined in Collection.

List<Student> students = new ArrayList<>();
students.add(new Student(12345, "John", "Smith");
students.add(new Student(67890, "Jane", "Smith");

In this case, the object representing the student John Smith occupies the first position (index 0)
within the list, and Jane Smith occupies the second. In other words, when you use the add() method and
don’t explicitly specify a position for the element being added, the element is added to the end of the list.
Alternatively, if you want to add an element to an arbitrary position within the List, you can use the add()
method defined in the List interface that includes an index position. For example, continuing the previous
code segment, suppose that you executed the following line:

students.add(1, new Student(13579, "Adam", "Smith");

The first argument specified in this call to the overloaded add() method indicates that the specified
Student object should be inserted into the list at the position corresponding to an index of 1, a position that
was previously occupied by the Jane Smith object. The result of executing this line of code will be that the
newly added object will be inserted between the two originally stored in the collection, and the index of the
Jane Smith object effectively becomes 2.

An alternative to add() is the set() method, which performs a similar function; however, while add()
inserts the specified object into the collection at the given index, set() replaces the object currently stored
at that position with the one specified. For example, the code in Listing 5-6 would result in only two Student
objects being stored in the list, the one for John Smith and the one for Adam Smith, because the object
associated with Jane Smith would be replaced as part of the call to set().

Listing 5-6. Using set() to Store an Element in a Particular Location

List<Student> students = new ArrayList<>();
students.add(new Student(12345, "John", "Smith");
students.add(new Student(67890, "Jane", "Smith");
students.set(1, new Student(13579, "Adam", "Smith");

Removing Elements from a List

Just as List defines an add() method that accepts an index position, the interface also includes a remove()
method that allows you to specify the index of the object to be removed. Continuing with the previous
example, let’s suppose you execute the following line of code:

students.remove(0);

CHAPTER 5 ■ USING STREAM APIS AND COLLECTIONS

173

This removes the object at index position 0, which corresponds to the John Smith object added earlier.
With that first element in the collection removed, the indices of the remaining objects shift downward to
reflect the removal, resulting in Jane Smith becoming the first object and Adam Smith becoming the second
object in the collection, with positions of 0 and 1, respectively.

The fact that index positions aren’t constant for a given object in a List is an important point to
remember; forgetting it can cause you to write code that doesn’t work correctly. For example, suppose you
have a List of objects and an array of integers identifying index positions of objects that you want to remove
from the array and that those index positions are sorted from lowest to highest in the array. Your first thought
might be to write code as shown in Listing 5-7.

Listing 5-7. A Naive Approach to Removing Elements Corresponding to a Set of Index Values

int[] deleteIndices;
List myList;
// Populate list, get indices of objects to be deleted
.
.
.
for (int i = 0; i < deleteIndices.length; i++) {
 myList.remove(deleteIndices[i]);
}

The problem with this approach is that it will only work correctly when there’s no more than one
index in the deletion array. That’s because as soon as you remove the first entry, the other indices in the
array effectively become invalid because they no longer refer to the same elements. To understand this,
let’s assume you have a list that contains five elements and your deletion array contains two entries,
one with a value of 1 and the other with a value of 3, indicating that the second and fourth entries
should be deleted.

Once you delete the element corresponding to the position of 1 within the array, the other index no
longer refers to the object you intended to delete but instead corresponds to the one that follows it in the list.
The result will be that on the second (and later) iterations the code shown previously will remove the wrong
objects from the list.

An easy way to address this problem is to simply traverse the index list in reverse order, starting from
the last and ending with the first one. Since removing an element affects only the index of the elements that
follow it in the list, this approach will ensure that the correct objects are removed from the list.

for (int i = deleteIndices.length - 1; i >= 0; i--) {
 myList.remove(deletedIndices[i]);
}

Searching for Objects

Although we didn’t really discuss it, you may recall that the Collection interface includes a remove()
method that takes a single Object argument. Although you can use that method, doing so may limit
the scalability of your application; to understand why that’s the case, you need to understand how List
implementations handle that remove() method.

CHAPTER 5 ■ USING STREAM APIS AND COLLECTIONS

174

Internally, a List is nothing more than a sequentially arranged group of objects that isn’t really
designed for quick searching. It’s intended to allow you to easily add and remove elements, to maintain
those elements in a particular order, and to access an element at an arbitrary location, as you’ve just seen.
However, what a List isn’t designed to do is to allow you to quickly search for a particular object within the
collection. As you’ll see later, certain other collection objects do a better job of that, but the ability to quickly
search for a given element isn’t something that List implementations do efficiently. To illustrate this point,
let’s suppose you have a reference to a List object and you want to remove an object from it that was added
earlier. You can use the remove() method that accepts a single Object parameter, as follows:

List list;
Object objectToRemove;
// Initialize list, add some objects to it, get reference to object to remove
.
.
.
list.remove(objectToRemove);

When the remove() method is called, the entire list will be searched sequentially by comparing each
element in the list to the object passed to the remove() method. This will happen quickly if the List contains
a reasonably small number of elements and/or the element to be removed is near the front. However, if
the List is large and the element to be removed isn’t near the beginning of the list, many iterations and
comparisons will be needed to locate the object to be removed, and the removal will therefore be relatively
slow. In addition, this applies not only to the remove() method but also to any method that needs to locate a
particular object within a List that’s given a reference to that object. For example, the same limitation affects
the contains() method defined in the Collection interface and the indexOf() method defined in List.

Although this may seem like a severe limitation, the truth is that many times searching for an arbitrary
object within a large collection isn’t needed, in which case a List may be an appropriate choice for your
application. As you’ll see throughout the course of this chapter, the key is to be aware of the strengths and
weaknesses of each collection implementation so you can make an appropriate choice.

Using the equals() Method in Collections

Before moving on, it’s worthwhile to make one final point about how List implementations locate an object.
I already established that they do this by iterating through the objects in the collection and comparing each one
to the parameter, such as the one referenced in the call to remove() in the previous example, but how exactly are
they compared to one another? As you might expect, the equals() method defined in the Object class is used to
compare two objects, which has important implications if you intend to add an instance of a class you’ve created
to a List collection. To understand those implications, let’s suppose you execute the following code:

List<Student> list = new ArrayList<>();
Student s1 = new Student(12345, "John", "Smith");
Student s2 = new Student(12345, "John", "Smith");
list.add(s1);
list.remove(s2);
System.out.println(list.size());

As you can see, this segment creates two objects with identical states, adds the first one to a List, and
then attempts to remove the second one, after which it prints the number of elements stored in the array.
If you guessed that the value printed is 1 (that is, that the first Student remains an element of the collection
even after the remove() method is called), you’re correct. However, in practice, you’ll typically want two
objects with identical states to be treated as if they’re both an instance of the same object; in any case, it’s
helpful to understand what happens here.

CHAPTER 5 ■ USING STREAM APIS AND COLLECTIONS

175

The implementation of equals() that’s defined in the Object class returns a value of true only if the
object passed to the equals() method is the same object as the one for which the method was called. In
other words, no attempt is made to compare the state of the two objects, but they’re considered “equal” if
and only if the two objects are actually the same object instance. Having just said that this often isn’t the
desired behavior, how can you change it? You can override the equals() method so that it considers two
objects equal based on their state. In this case, for example, you might decide that two Student objects
should be equal if the identifier value is the same for both, so you might add a method like the following one
in Listing 5-8 to the Student class:

Listing 5-8. An Example of How to Implement the equals() Method

public boolean equals(Object o) {
 boolean isEqual = false;
 if ((o != null) && (o instanceof Student)) {
 Student target = (Student)o;
 isEqual = (target.getStudentID() == this.getStudentID());
 }
 return isEqual;
}

After adding this method to Student, running the code segment listed earlier returns a zero because
the reference to the first Student object is removed from the List when the call to remove() is passed a
reference to the second Student with an identical state.

Understanding Other List Characteristics

You need to be aware of these other characteristics of List implementations that will help you determine
whether one of those implementations is the right choice for your application.

Unlike some other types of collections, a • List normally allows duplicate elements.

• List implementations typically support null elements.

The ability to support duplicate elements means you can have two or more elements equal to one
another stored in the List. Those elements could be references to the same object that has been added more
than once, or, as in the previous example, they could be two different objects that simply have the same state.
For example, if you run the following code segment, it will display a value of 2 to reflect that the same object
occurs twice in the List:

List<String> list = new ArrayList<>();
String test = "Testing";
list.add(test);
list.add(test);
System.out.println(list.size());

In addition, adding the following bold line will cause the code segment to display a value of 3:

list.add(test);
list.add(null);
System.out.println(list.size());

As you’ll see later, some collection types don’t allow duplicate elements or null values, but List does
support them.

CHAPTER 5 ■ USING STREAM APIS AND COLLECTIONS

176

ListIterator
Earlier you saw that the Collection interface defines an iterator() method that returns an
implementation of Iterator, and that interface in turn defines methods for accessing the objects in a
collection and for removing the most recently retrieved object. As Figure 5-1 showed, ListIterator
is a subinterface of List, and, as you might expect, ListIterator defines some additional methods
that are appropriate for iterating through List collections. These methods primarily are related to the
characteristics of a list, namely, that the objects in the collection are assigned a specific order and by
extension that each one is associated with a particular index. So, while the basic Iterator interface
allows a forward-only approach to accessing the object, ListIterator provides both forward and
backward movement through the collection and allows you to retrieve the appropriate index values, as
shown in Table 5-3.

Table 5-3. ListIterator’s Methods for Iterating Through a List Implementation

Method Description

hasNext() Returns true if additional forward traversal of the list is possible.

hasPrevious() Returns true if additional backward traversal of the list is possible.

next() Returns the next element in the list.

previous() Returns the previous element in the list.

nextIndex() Returns the index of the next element in the list.

previousIndex() Returns the index of the previous element in the list.

To retrieve a ListIterator for a List implementation, simply call the listIterator() method that’s
defined in the List interface instead of the iterator() method defined in Collection.

ArrayList
Even though we haven’t previously discussed its characteristics, we used the ArrayList class in some of
the examples, and you’ll find that in practice it’s a class you’ll use often. As its name implies, ArrayList’s
approach to implementing the List interface is simply to define an Object array and increase the size of that
array as necessary to support the number of elements contained within the collection.

If you understand the functionality defined by the methods in the Collection and List interfaces, you
don’t need to know much else to use ArrayList since it’s simply an implementation of those interfaces.
However, when considering ArrayList, keep in mind the following characteristics that have been discussed
before and that apply to this class:

An • ArrayList can contain duplicate elements.

You can add null values to an • ArrayList.

• ArrayList isn’t an inherently thread-safe class, so if you create an instance that’s to
be used by multiple threads, you’re responsible for synchronizing modifications to
the list.

CHAPTER 5 ■ USING STREAM APIS AND COLLECTIONS

177

Thread Safety

In practice, the need to synchronize access to ArrayList applies only to cases where multiple threads are
referencing it while elements are being added or removed. However, if you simply create and populate an
ArrayList within a single thread, it’s safe to have multiple threads retrieving values from that ArrayList.
If you do modify the contents of an ArrayList through its methods while an iterator is being used to retrieve
the contents of the list, the iterator will in most cases throw a ConcurrentModificationException the next
time you attempt to use it.

In practice, thread safety is usually not necessary, but as you’ll see later, Java provides classes that are
thread-safe for those situations where that feature is needed.

Constructors

As you’ve already seen, ArrayList provides a no-argument constructor you can use to create an instance
of the class, but it also provides two other constructors you should know. One of the other two allows you
to pass a Collection object to the constructor, and using that constructor will cause the ArrayList to be
initially populated with the same elements that are stored in that other Collection.

The other constructor that ArrayList provides allows you to specify the collection’s “initial capacity.”
To understand what that means, remember that an ArrayList uses an array to maintain the references to
the elements in the collection. The capacity of an ArrayList is simply the size of the array it has allocated to
hold those references, although the capacity can change as needed. For example, suppose that an ArrayList
has a capacity of ten and it has reached full capacity, meaning the collection already contains ten elements.
If you add another element to the ArrayList, it will increase its capacity so it’s able to store a reference to the
additional element. As you saw at the beginning of the chapter, a capacity that’s extremely large (or an array
far larger than is needed to maintain the object references) wastes memory, so ideally you’d like the capacity
of an ArrayList to be as small as possible.

If you know exactly how many elements an ArrayList will hold, you can specify that number on the
constructor, as follows. In this case, you know that the collection will contain exactly ten elements, so you
can specify the capacity on construction.

List<Student> list = new ArrayList<>(10);

On the other hand, if you’ve already created an ArrayList and then obtain an estimate of the
capacity it needs or an exact amount, it can be helpful to call the ensureCapacity() method before
adding the elements to the list. In this scenario, imagine that you’ve previously constructed an ArrayList
but know the number of elements it will contain; therefore, you call ensureCapacity() to set its capacity
accordingly (see Listing 5-9).

Listing 5-9. Using ensureCapacity() to Make Certain That an Array Is Already Large Enough for Its
Intended Use

public void populateStudentCollection(ArrayList studentList) {
 studentList.clear();
 int count = getNumberOfStudents();
 studentList.ensureCapacity(count);
 for (int i = 0; i < count; i++) {
 studentList.set(i, getNextStudent());
 }

}

CHAPTER 5 ■ USING STREAM APIS AND COLLECTIONS

178

Keep in mind that you’re never required to set or update the capacity of an ArrayList; if you don’t, the
capacity will be increased for you automatically. However, if you know or have an estimate of the capacity
that will be needed, specifying it as I’ve shown here will in many cases cause the ArrayList to use less
memory than it would if it changes the capacity itself.

LinkedList
The LinkedList implementation of the List interface doesn’t provide any behavior that’s visibly different
from ArrayList, but LinkedList is different in terms of how the list is maintained. Just as the name of the
ArrayList class correctly implies that it uses an array, the LinkedList class uses a double linked list to
manage the collection of objects. What this means is that each node in the list contains a pointer to the node
that precedes it and one to the node that follows it, which in turn means the list can be traversed in either
direction (that is, both forward and backward). A node is simply an object created by the LinkedList when
you add an object to the collection, and the nodes are linked to one another in a way that maintains the
proper sequence for the objects in the list.

The advantages and disadvantages of linked lists are well documented, and in theory inserting and
removing an element at the beginning or from the end of a linked list should offer a significant performance
advantage over the same operation performed using (for example) an ArrayList. In practice, however, the
performance advantage is negligible, and the LinkedList is actually slower in cases where an entry is added
to the end and the ArrayList hasn’t reached full capacity. The reason for this is to a great extent because
operations performed on the middle of a linked list are relatively slow because the nodes must be traversed
to reach that location within the list. In other words, assuming you have a List that contains one million
elements, the following code will execute far more slowly with a LinkedList than with an ArrayList:

Object value = list.get(500000); // Get an element near the middle

To execute this line of code, a linked list will need to start with either the first node or the last node and
iterate through the list until it reaches the node that corresponds to the specified index. In other words, the
amount of time a LinkedList takes to access a given node is proportional to that node’s distance from the
beginning or end of the list. In contrast, accessing an element in the middle of an ArrayList is no faster or
slower than accessing one at any other location.

In addition to generally providing better performance, ArrayList presents another advantage over
LinkedList: it uses less memory. That’s because it’s necessary to create a node object for each element that’s
added to a LinkedList. On the other hand, an ArrayList needs to maintain only a single object array, and
the only time it needs to create a new object is when the capacity needs to increase. The object creation
associated with a LinkedList not only results in it using more memory but also is another reason why
LinkedList is generally slower than ArrayList, since object creation is a relatively time-consuming process.

The one scenario where you may see a performance improvement when using a LinkedList is when
you’re adding many entries to the beginning of the list. However, this is relatively rare, and the performance
improvement isn’t great, so as a general rule, you should use ArrayList when you need a List with the
characteristics that it and LinkedList provide.

Vector
As mentioned earlier, Vector is one of the few collection classes that have existed since the first release of
Java, and Vector is similar in terms of behavior to ArrayList. Like ArrayList, Vector is an implementation
of List, but List didn’t exist when Vector was originally defined. However, when Java’s collection library
expanded in Java 1.2, the Vector class was retrofitted to become an implementation of List to make it
consistent with the other collection classes. Like ArrayList, Vector is able to contain duplicate elements
and null values. In fact, the biggest difference between ArrayList and Vector is that Vector is inherently
thread-safe and ArrayList isn’t.

CHAPTER 5 ■ USING STREAM APIS AND COLLECTIONS

179

Although thread safety is a desirable feature, it’s simply not needed in many cases, and synchronizing
is a relatively slow process. In other words, if you use a synchronized collection class when you don’t need
one, your application may be unnecessarily slow. Even if you do need some level of synchronization,
you probably can do a better job of providing it based on how you know the collection will be used by
your application. Vector by necessity takes a “worst-case” approach to synchronization, which causes its
performance to suffer. For this reason, Vector isn’t often used. (However, you’ll sometimes still see it used by
long-time Java coders and in code written to run on early releases.)

Perhaps the one advantage that Vector does have over ArrayList is that Vector not only allows you to
specify the capacity on construction and change it later but also allows you to specify the amount that will be
automatically added to its capacity when an increase is needed.

Stack
This is another one of the original collection classes; it extends Vector, and Stack is effectively just a
wrapper around Vector that provides operations that make its behavior match that of a stack. Instead of
the concept of a beginning or end, the stack’s elements are considered to be accessible from the “top” to
the “bottom.” Elements can be added only to the top of the stack, and the most recently added one is the
only one that’s accessible at any given time. In other words, this is an implementation of a last-in/first-out
(LIFO) algorithm.

For the most part, this is just a matter of defining methods that match the terminology associated
with a stack and having those methods function appropriately. For example, while you’d call add() to add
an element to a Vector, you’d call push() to “push” an object onto the top of the stack. Similarly, while
remove() is used to remove an object from a Vector, you can use pop() to remove the object currently at the
top of the stack and retrieve a reference to it.

Although applications do sometimes need the functionality of a stack, it can easily be accomplished
with a more commonly used implementation such as ArrayList. The fact that the Stack class provides the
more academically correct terminology is of questionable value and may even be confusing to someone who
isn’t familiar with the concepts or doesn’t remember the terminology. In addition, because it’s simply a thin
wrapper around Vector, the Stack’s operations are synchronized and therefore will execute more slowly
than one of the newer classes. Given these disadvantages, you’ll rarely get any real benefit from using the
Stack class, but I mention it here for the sake of completeness.

Set
Now let’s examine another major branch of the collection class hierarchy, specifically the Set interface and
associated subinterfaces and implementing classes. As its name implies, Set is intended to roughly mimic
the idea of a mathematical “set” containing a group of distinct values. In contrast to the List interface,
implementations of Set generally have the following characteristics:

They can’t contain duplicate elements.•

The elements may or may not have a predictable order.•

Since the elements can’t be assumed to be in a particular order, no mechanism is •
provided for accessing an element based on its index position.

To better illustrate these points, let’s assume you’ve created a code segment like the following one, in
Listing 5-10, which creates an instance of ArrayList and calls its add() method four times, with one
instance of Student being added twice:

CHAPTER 5 ■ USING STREAM APIS AND COLLECTIONS

180

Listing 5-10. A List with the Same Object Added More Than Once

Collection<Student> collection = new ArrayList<>();
Student s1 = new Student(12345, "John", "Smith");
Student s2 = new Student(67890, "Jane", "Smith");
Student s3 = new Student(13579, "Adam", "Smith");
collection.add(s1);
collection.add(s1);
collection.add(s2);
collection.add(s3);
for (Student student : collection) {
 System.out.println(student.getFullName());
}

Running this code produces the following results, with “John Smith” being displayed two times because
that Student was added to the collection twice:

John Smith
John Smith
Jane Smith
Adam Smith

However, let’s now suppose you make one small change to the code segment, creating an instance of

HashSet instead of ArrayList (see Listing 5-11).

Listing 5-11. A Set with the Same Object Added More Than Once

Collection<Student> collection = new HashSet<>();
Student s1 = new Student(12345, "John", "Smith");
Student s2 = new Student(67890, "Jane", "Smith");
Student s3 = new Student(13579, "Adam", "Smith");
collection.add(s1);
collection.add(s1);
collection.add(s2);
collection.add(s3);
for (Student student : collection) {
 System.out.println(student.getFullName());
}

Now the results are very different. For one thing, the names aren’t necessarily displayed in the same
order in which they were added to the collection, and for another, “John Smith” is displayed only one time.

John Smith
Adam Smith
Jane Smith

CHAPTER 5 ■ USING STREAM APIS AND COLLECTIONS

181

The fact that the names are displayed in a different order shouldn’t be surprising since I already
established that the elements in a Set don’t necessarily have a predictable sequence. In addition, I said that
duplicates aren’t allowed, so only one John Smith object in the Set is also the expected behavior.

As you saw earlier, the way the definition of a duplicate element in the context of a List is determined
is by whether two objects are considered equal based upon the results of the equals() method. Assuming
that the equals() method you added to Student earlier is present, let’s extend the code segment with the
following changes, noting that you’re now adding two Student objects to the collection that will return
true when compared using equals(). Specifically, the Jane Smith and Tom Jones objects both have
identifier values of 67890, which will cause their equals() methods to return true when compared to one
another (see Listing 5-12).

Listing 5-12. A Set with Two “Equal” Objects

Collection<Student> collection = new HashSet<>();
Student s1 = new Student(12345, "John", "Smith");
Student s2 = new Student(67890, "Jane", "Smith");
Student s3 = new Student(13579, "Adam", "Smith");
Student s4 = new Student(67890, "Tom", "Jones");
collection.add(s1);
collection.add(s2);
collection.add(s3);
collection.add(s4);
for (Student student : collection) {
 System.out.println(student.getFullName());
}

Running this code segment will produce results similar to the following (although the order in which
the names will be displayed could vary):

John Smith
Adam Smith
Jane Smith
Tom Jones

Obviously, simply overriding the equals() method isn’t enough to make two elements be considered

duplicates in the context of a Set implementation. In fact, one additional step is necessary that’s actually
documented in the equals() method of the java.lang.Object class: you also need to override hashCode().

Using Collection Objects, Hash Codes, and equals()

If you review the API documentation for the equals() method defined in Object, you’ll find the following:

Note that it is generally necessary to override the hashCode method whenever this method
is overridden, so as to maintain the general contract for the hashCode method, which states
that equal objects must have equal hash codes.

CHAPTER 5 ■ USING STREAM APIS AND COLLECTIONS

182

Since you now know you need to override hashCode(), and since that method must return the same
integer value for objects that are considered equal, an appropriate implementation of hashCode() can easily
be added to the Student class by returning the following identifier value:

public int hashCode(){
 return studentID;
}

This implementation works well because it satisfies the contract of the hashCode() method and will
return a different hash code value for any two instances of Student that are considered to be unequal. If you
run the code segment listed earlier, the results now include only the following three entries:

Adam Smith
John Smith
Jane Smith

You might have expected the Tom Jones object to replace the Jane Smith object when it’s added to the

collection, but this obviously didn’t happen. The reason is that when you attempt to add an object that’s
considered to be a duplicate, the newer duplicate object is merely discarded instead of replacing the one
already in the collection that it appears to duplicate.

Overriding the hashCode() method in Student solved the problem, but it raises the question of why two
objects considered duplicates in a List weren’t treated as duplicates in a Set. The reason for this is because
List simply uses the hashCode() method when locating elements. Remember, when trying to locate an
element for a call such as contains(), the List iterates through its elements and uses the equals() method
to compare the object it’s looking for to each one it contains. In contrast, when you call a method such as
contains() for a Set to determine whether it contains an object, the Set uses that object’s hash code to
determine whether it contains the object or a duplicate of that object. In other words, if you add an object
with a hash code of 24680 to a set that doesn’t already contain an object with that same hash code, that new
object will be added even if its equals() method would return true when compared to one or more other
objects within the set.

Understanding Buckets

To better understand why this works the way it does, it helps to understand that hash codes provide
functionality in Set implementations similar to that of index values stored in a relational database. When an
object is added to the Set, its hash code is used to choose a “bucket” into which to place the object. Objects
that aren’t equal may have different hash codes and still wind up in the same bucket, but two objects that are
considered equal should always wind up in the same bucket. The reason this is important is that when the
Set goes to determine whether it contains a particular object, it will use that object’s hash code to determine
which bucket the object should be stored in and iterate through the objects in that bucket, using the
equals() method to determine whether the bucket contains the object. Stated another way, the hashCode()
method is used to derive a subset of objects in which a particular instance should occur, and the equals()
method is used to examine that subset to determine whether the object is found there.

This concept of how hashCode() and equals() methods are used is an important one, not only for
using instances of Set but also for using implementations of the Map interface you’ll examine later in the
chapter. Overriding hashCode() and equals() isn’t an issue when you’re using system classes that are part
of Java such as String, Date, or the numeric wrappers (Integer, Float, and so on). However, once you begin
adding instances of custom classes like Student to a Set or a Map, you need to ensure that the equals() and
hashCode() methods will function appropriately, or your code may produce unexpected results.

CHAPTER 5 ■ USING STREAM APIS AND COLLECTIONS

183

HashSet
Now that you’re already familiar with the basic behavior of Set implementations, you don’t need
to know much else to understand and use the HashSet class. As previously indicated in the case for
Set implementations, HashSet has the following characteristics:

No guarantee is made concerning the order in which the elements will be returned •
when you’re iterating through them.

No duplicate elements are allowed, where “duplicate” elements are two objects •
that have the same hash code and that return true when compared using the
equals() method.

The • Set is allowed to contain a null element.

Constructors
Although the basic behavior of a HashSet may now be well understood, the constructors provided may be
slightly confusing. Aside from the no-argument constructor used in an earlier example, constructors exist
that allow you to specify an “initial capacity” and a “load factor.” In reality, those values aren’t used directly
by the HashSet class itself but by an instance of another collection class that HashSet uses called HashMap.
You’ll examine the HashMap class in detail later in the section “HashMap,” but for now all that’s important
for you to understand is that HashSet is really just a wrapper around an instance of HashMap. In other words,
most of the code that provides the functionality of a HashSet is actually defined in HashMap and its related
classes. The reason it’s important to know this is because the initial capacity and load factor are used by
HashSet only when it’s creating the instance of HashMap that it will use; you’ll examine their usage in detail
later in this chapter.

LinkedHashSet
This class provides functionality similar to that of HashSet but with one important difference: the elements
are returned in a predictable order, specifically in the same order in which they were added to the set. This
can be useful when fast lookups are needed to determine whether an object is contained within a Set and
when it’s also important to be able to retrieve the elements and have them returned in the same sequence in
which they were added to the set.

TreeSet
TreeSet allows elements to be retrieved in a predictable order, but in this case the elements are maintained
and returned based upon a sorting algorithm instead of the order in which they were added to the table.
That algorithm can be in one of two places, and the constructor you use when creating a TreeSet will
determine which location performs the sorting.

Using Comparable and Natural Order

In many cases, the objects you add to a Set will have what’s known as a natural order, which means the
object implements the Comparable interface defined in the java.lang package. This means for the given
class there’s a way of sorting instances that’s intuitive and appropriate for many or most situations.

CHAPTER 5 ■ USING STREAM APIS AND COLLECTIONS

184

For example, the natural order for instances of a numeric wrapper class, a String or a Date, is from lowest to
highest. To illustrate this point, let’s suppose you execute the following code segment, shown in Listing 5-13:

Listing 5-13. A TreeSet Example to Illustrate How Elements Are Ordered

TreeSet<Integer> set = new TreeSet<>();
set.add(new Integer (100));
set.add(new Integer (50));
set.add(new Integer (75));
set.add(new Integer (0));
for (Integer i : set) {
 System.out.println(i);
}

The results will appear exactly as follows:

0
50
75
100

The numbers are sorted and returned in ascending order because the Integer class implements the

Comparable interface, and the TreeSet is able to take advantage of that. Comparable defines a single method
that returns an integer that identifies the value of an object relative to some other object, as follows:

public int compareTo(Object o)

If the object for which this method is called is less than the one it’s being compared to (represented by
the local variable called o), a value less than zero will be returned. Similarly, if it’s greater than the one it’s
being compared to, then it will return a value greater than zero, and if the two are equal, then a value of zero
is returned. In other words, when the Integer containing a value of 75 is compared to the one containing
50, a positive (greater than zero) value is returned, and comparing the Integer containing 75 to the one
containing 100 causes a negative (less than zero) to be returned.

The Comparable interface is already implemented in Java’s system classes where a meaningful and
intuitive order exists, but what about user-defined classes such as the Student class you’ve been using?
To be able to sort Students, you can easily implement the Comparable interface in that class to assign a
natural order so instances of Student can be sorted by TreeSet. When implementing Comparable, the main
question that needs to be answered is, how will users of the class want instances sorted most often? In this
case, sorting the students in ascending order by last name and then by first name would seem to be the most
useful (or “natural”) arrangement.

You can begin your implementation by creating an assertion that the object passed to the compareTo()
method is also an instance of Student. Given Java’s support for generics, this is likely to be a valid
assumption, and if not, there probably isn’t going to be a meaningful value that can be returned anyway.
In other words, it’s reasonable to assume that instances of Student will be compared only to other instances
of Student and not to instances of (for example) Date or Integer or some other unrelated class.

public int compareTo(Object o) {
 assert (o instanceof Student);
}

CHAPTER 5 ■ USING STREAM APIS AND COLLECTIONS

185

You can now assume that the object passed to your method isn’t an instance of some other class, but
what about a null value? Although it’s technically possible to add a null value to most collections, and by
extension possible to compare one to an instance of Student, it’s not common in practice for this to occur, so
expand your assertion state as follows:

public int compareTo(Object o) {
 assert ((o instanceof Student) && (o != null));
}

Now that you’ve established that the object passed presumably isn’t a null and is an instance of
Student, you can cast it to the appropriate class.

public int compareTo(Object o) {
 assert ((o instanceof Student) && (o != null));
 Student s = (Student)o;
}

Now that you have a reference to the Student, you can begin the name comparison with the last name.
Since the String class already implements Comparable, you can take advantage of that by simply delegating
the comparisons to the object that contains the student’s last name.

public int compareTo(Object o) {
 assert ((o instanceof Student) && (o != null));
 Student s = (Student)o;
 int relativeValue = lastName.compareTo(s.getLastName());
 return relativeValue;
}

This code alone is sufficient for cases where the two students’ last names are different, but what
about those where they both have the same last name but a different first name? In that case, the call to
compareTo() you just added will return a value of 0, meaning that the two last name String values are equal;
when that occurs, you need to then perform the same comparison using the students’ first names.

public int compareTo(Object o) {
 assert ((o instanceof Student) && (o != null));
 Student s = (Student)o;
 int relativeValue = lastName.compareTo(s.getLastName());
 if (relativeValue == 0) {
 relativeValue = firstName.compareTo(s.getFirstName());
 }
 return relativeValue;
}

The implementation of the compareTo() method in Student is now complete. The only thing that
remains is to indicate that the class now implements Comparable.

public class Student implements Comparable {

CHAPTER 5 ■ USING STREAM APIS AND COLLECTIONS

186

Once you’ve completed these changes, you could test them using a code segment like the following
in Listing 5-14:

Listing 5-14. A Set with Comparable Objects

Collection<Student> collection = new TreeSet<>();
Student s1 = new Student(12345, "John", "Smith");
Student s2 = new Student(24680, "Jane", "Smith");
Student s3 = new Student(13579, "Adam", "Smith");
Student s4 = new Student(67890, "Tom", "Jones");
collection.add(s1);
collection.add(s2);
collection.add(s3);
collection.add(s4);
for (Student student : collection) {
 System.out.println(student.getFullName());
}

As expected, running this code will print the names of the students in alphabetical order by last name
and then by first name, as follows:

Tom Jones
Adam Smith
Jane Smith
John Smith

Using Comparator

As you’ve now seen, it’s easy to use a TreeSet to sort objects based on their natural order. In fact, no code
is required at all as long as the objects to be sorted were created from a class that implements Comparable.
However, sometimes this might not be possible or appropriate. For example, you might need to sort
instances of a class that you can’t modify and that doesn’t implement Comparable. Even if the class
implements Comparable, what about situations where you want to sort the objects using something other
than their natural order? In the example you just used, for instance, what if you wanted to sort the students
in descending order instead of ascending order?

Fortunately, Java’s collection library provides an easy way for you to sort objects in any way you want
regardless of whether they implement Comparable. It does this by defining an interface called Comparator
that allows you to write comparison code that’s external to a given class. Comparator defines just two
methods: an equals() method with a signature matching the one defined in the java.lang.Object class
and a compare() method that takes two Object arguments and returns an integer value. That integer value
serves exactly the same function as the value returned by Comparable’s compareTo() method but in this case
indicates the value of the first object relative to the second one.

CHAPTER 5 ■ USING STREAM APIS AND COLLECTIONS

187

To see how easily you can use Comparator, let’s suppose you want to sort the Student objects based
on their student identification number instead of the name values. You could easily create a class like the
following one, in Listing 5-15, which performs the comparison:

Listing 5-15. A Simple Comparator for Comparting and Sorting Student Instances

class StudentComparator implements Comparator<Student> {

 public int compare(Student s1, Student s2) {
 int relativeValue = s1.getStudentID() - s2.getStudentID();
 return relativeValue;
 }

}

With this class defined, you can now pass an instance of it to the TreeSet constructor to have the
TreeSet use the Comparator implementation when sorting the students, instead of using the Student
objects’ natural order as defined by the Comparable implementation. In addition, note that the line that
displays the list of students has been modified to also display the identification number, which makes it
easier to verify that the code worked as expected (see Listing 5-16).

Listing 5-16. Using the StudentComparator

Collection<Student> collection = new TreeSet<>(new StudentComparator());
Student s1 = new Student(12345, "John", "Smith");
Student s2 = new Student(24680, "Jane", "Smith");
Student s3 = new Student(13579, "Adam", "Smith");
Student s4 = new Student(67890, "Tom", "Jones");
collection.add(s1);
collection.add(s2);
collection.add(s3);
collection.add(s4);
for (Student student : collection) {
 System.out.println(student.getStudentID() + " " + student.getFullName());
}

Running the modified code produces the following results with the students sorted based on their
identification numbers:

12345 John Smith
13579 Adam Smith
24680 Jane Smith
67890 Tom Jones

Comparable vs. Comparator

As this example illustrates, you should use the Comparable interface to implement comparison code that
can appropriately be stored inside a given class and when there’s a “natural” order for instances of that class
that users can intuitively expect to represent the default order. In contrast, Comparator is appropriate when
the information needed to perform the sorting isn’t available within the object itself and in other situations
where it may not be feasible or appropriate to embed the sorting logic within the class.

CHAPTER 5 ■ USING STREAM APIS AND COLLECTIONS

188

One final point should be made concerning TreeSet, and it has to do with whether it supports adding
a null element. This wasn’t mentioned before because its ability to support a null value primarily depends
upon whether you use natural ordering or a Comparator implementation. A null value isn’t allowed in a
TreeSet if you use natural ordering because the null value can’t compare itself to other objects within the
set. However, if you specify a Comparator object, that object can be designed to compare the null value with
a non-null value and return a value that will cause the null to be sorted in whatever way is appropriate.
In that case, when you’ve used a Comparator and the implementation is designed to handle the null value,
the TreeSet will be able to contain a null value.

EnumSet
This implementation of Set has a unique function: to serve as a collection for a group of enumeration
values from a single enumeration type that has been defined using Java’s enumeration syntax. By combining
this collection with a variable argument, you can easily define a set that contains an arbitrary group of
enumeration values. For example, let’s suppose you’ve defined an enumeration that defines the days of the
week as follows:

public enum DayOfWeek {
 Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday;
}

Given that enumeration, you could easily create a set containing only the weekdays by using a single
line of code as follows. This is possible because one implementation of the overloaded of() method allows
you to specify a variable number of arguments.

EnumSet<DayOfWeek> schoolDays = EnumSet.of(DayOfWeek.Monday, DayOfWeek.Tuesday,
 DayOfWeek.Wednesday, DayOfWeek.Thursday, DayOfWeek.Friday);

You can further verify that this creates a set containing only the weekday values by adding code like the
following:

for (DayOfWeek day : schoolDays) {
 System.out.println(day);
}

This loop results in the following values being displayed:

Monday
Tuesday
Wednesday
Thursday
Friday

As these results suggest, the order in which the elements of an EnumSet are returned corresponds to

the order in which they’re defined within the enumeration. In addition, an EnumSet can’t contain any null
elements, which makes it somewhat different in that respect from other Set implementations.

CHAPTER 5 ■ USING STREAM APIS AND COLLECTIONS

189

Although EnumSet instances can be used in a relatively static manner, it’s entirely possible to add and
remove enumeration elements just as other collections allow you to add and remove objects.

schoolDays.add(DayOfWeek.Saturday);

In summary, an EnumSet is simply a Set implementation created specifically for use with enumeration
values, and its elements are guaranteed to have an order that corresponds to the sequence in which they’re
defined within the enumeration.

Map
In Figure 5-1 you saw a class diagram with many of the collection interfaces and classes in it. The Map
interface is also part of the collection API, but it was omitted from that diagram partly because it doesn’t
extend Collection or otherwise share a common superinterface, as shown in Figure 5-2.

<<Interface>>

ConcurrentMap

<<Interface>>

Map

<<Interface>>

SortedMap

ConcurrentHashMap

IdentityHashMap

WeakHashMap

LinkedHashMap

EnumMap

TreeMap

AbstractMap

HashMap

Figure 5-2. The Map interface and its associated classes aren’t part of the same hierarchy as the other
components you’ve seen

Since the Map interface doesn’t extend Collection, you might think that Map is different from any of
the classes and interfaces we’ve discussed up to this point. Although that’s partly correct in some ways, Map
implementations actually have a great deal in common in terms of their behavior with Set classes. That
shouldn’t be entirely surprising, since it was already mentioned that most of the behavior of a HashSet
is actually provided by that class’s use of a HashMap object. In fact, many of the most commonly used set
interfaces and classes correspond to equivalent map definitions, as shown in Table 5-4.

CHAPTER 5 ■ USING STREAM APIS AND COLLECTIONS

190

So how is it that a Map and a Set are so different that they don’t share a common interface ancestor
(Collection) but are so similar that they have implementations that mimic one another? The answer is
that while a Set is simply a collection of objects, a Map is a collection of objects with each one having a
corresponding value. In other words, a map represents a group of key/value pairs, with the keys being
analogous to the elements in a set. Because the functionality of a Map is largely a superset of the functionality
defined for a Set, HashSet and TreeSet use HashMap and TreeMap, respectively, to provide most of their
functionality.

Since a Map doesn’t contain a single data type but instead includes key/value pairs, the syntax that’s
used to support generics is slightly different. Instead of specifying a single class, you must specify two
classes: one for the keys and one for the corresponding values. For example, to create an instance of
HashMap, you might use code like the following:

HashMap<Integer,Student> map = new HashMap<>();

This code creates a HashMap that allows you to use Integer instances for the keys and Student objects
for the corresponding values. Adding an entry to a Map is simple, but instead of calling add() and specifying
a single object, you call put() and specify two arguments, the first representing the key and the second
representing the value. For example, let’s suppose you plan to store instances of Student in your newly
created HashMap and you want to use each Student object’s identifier value as the key. In that case, you could
use code as shown in Listing 5-17.

Listing 5-17. Autoboxing with Collection Generics

HashMap<Integer,Student> map = new HashMap<>();
Student s1 = new Student(12345, "John", "Smith");
Student s2 = new Student(24680, "Jane", "Smith");
Student s3 = new Student(13579, "Adam", "Smith");
Student s4 = new Student(67890, "Tom", "Jones");
map.put(s1.getStudentID(), s1);
map.put(s2.getStudentID(), s2);
map.put(s3.getStudentID(), s3);
map.put(s4.getStudentID(), s4);

Although the student identifier returned by the getStudentID() method is an integer primitive,
autoboxing support automatically converts it into an instance of the Integer wrapper before it’s stored in
the map.

Table 5-4. Map and Set Counterparts

Type Map Set

Interface Map Set

Abstract class AbstractMap AbstractSet

Class HashMap HashSet

Class LinkedHashMap LinkedHashSet

Class TreeMap TreeSet

Class EnumMap EnumSet

CHAPTER 5 ■ USING STREAM APIS AND COLLECTIONS

191

Once you’ve stored a key/value pair in the map, you can retrieve the value by passing the key value to the
get() method. By far the most useful feature of a Map, and arguably the most useful feature of any collection
class, is the ability to retrieve a value given the appropriate key. For example, if you have the student identifier
and want to retrieve the corresponding Student for it, you could execute code like the following:

Student s0 = map.get(13579);

This code searches the map for a key equal to 13579 and returns the corresponding Student value if
there’s one or null if no such key exists. This ability to perform an object lookup is extremely useful, partly
because unlike List searches, retrieving an object from a Map using a key value doesn’t require iteration
through the list of keys in the map. Instead, the key’s hash code locates the corresponding value in a “bucket”
as described earlier, which means Map lookups can be very fast even with extremely large collections.

To maximize the speed of such lookups, you should try to ensure to as great an extent as possible that
two objects that aren’t equal to one another return different hash code values.

It’s technically possible to have every instance of a given class return the same hash code value, and Map
(and Set) implementations will still work correctly in that case. However, their performance will be seriously
degraded because all objects will be placed in the same “bucket” because of having identical hash code
values. As mentioned earlier, searches are first done by determining which “bucket” an object should be
placed in given its hash code, and then a linear search of all objects within that bucket takes place until one
that matches the desired value is found.

While the List and Set implementations allow you to retrieve iterators that return the element values,
Map instances allow you to retrieve both the list of keys (through the keySet() method that returns a Set
containing all keys) and the values (through the appropriately named values() method that returns
a Collection containing all values). For example, the following code (in Listing 5-18) shows how you
can retrieve the set of key values and then iterate through the set, displaying each key and retrieving its
corresponding values:

Listing 5-18. Displaying the Keys in a Map

Student student;
Set<Integer> keys = map.keySet();
for (Integer i : keys) {
 student = map.get(i);
 System.out.println("Key: " + i + " Value:" + student.getFullName());
}

Aside from the variations discussed here, Map implementations function very much like their
corresponding Set classes described earlier.

HashMap
Earlier in the chapter we covered the HashSet class and briefly discussed that it included a constructor that
accepts an integer representing an initial capacity and a floating-point number representing a load factor.
However, we also deferred a meaningful examination of those values since those arguments are in fact not
used directly by the HashSet code but by the HashMap that the HashSet creates to maintain its list of elements.

So, how does HashMap use the initial capacity and load factor? If the words initial capacity sound
familiar, it’s because I previously discussed a parameter by the same name that can be used when
constructing an ArrayList, and as you’d expect, it represents essentially the same thing here. In this case,
the initial capacity is the number of “buckets” that are created for use by the collection. Once again, it’s
best to specify on construction the number of elements that will be stored in the collection if you know it,
because doing so will minimize the amount of memory used by the collection.

CHAPTER 5 ■ USING STREAM APIS AND COLLECTIONS

192

While the capacity is an integer value, the load factor is a floating-point number that essentially
represents a percentage value indicating how many elements can be added to the HashSet before the
capacity will be automatically increased. For example, if the capacity is set to 100 and the load factor to 0.5,
you can add up to 50 elements before the capacity will be increased (10 × .5 = 50). Once you add the 51st
element, for example, the capacity will automatically be roughly doubled, and this process will be repeated
as many times as needed. In effect, the load factor represents the relative importance to your application of
speed vs. memory usage: a low value means that you’re more concerned with lookup speed, while a high
value is appropriate when saving memory is expected to be more important.

LinkedHashMap
The behavior of LinkedHashMap is essentially the same as that of HashMap with the exception that it maintains
its entries in a predictable sequence, specifically, the order in which they were added to the map. In other
words, if you add entries to a LinkedHashMap and then retrieve them through an iterator, they will be
returned in the same order in which they were added.

TreeMap
This class maintains its keys in a sorted order either by using their natural order or by using an
implementation of the Comparator interface. The behavior of TreeMap with respect to its key values is
identical to the behavior previously described for the elements in a TreeSet.

EnumMap
Instances of EnumMap allow you to use enumeration values from a single type as keys in the map. The keys
(and by extension their associated values) are maintained in the order in which the values are defined in the
enumeration.

IdentityHashMap
This implementation of the Map interface is different from all others in terms of how it determines key
equality. Like the other Map implementations, it doesn’t allow duplicate entries, but it’s the way that
duplicates are identified within an IdentityHashMap that makes it unique. Instead of using the equals()
method to compare entries, IdentityHashMap compares them using the == operator. What this means from
a functional standpoint is that no two object references are considered equal unless they’re references to
the same object instance. With other implementations, the state of the objects is used to determine equality,
but in this case an object’s identity is the only criterion used to determine uniqueness. To illustrate how this
affects the behavior of the map, consider the following code in Listing 5-19:

Listing 5-19. An IdentityHashMap That Contains Equivalent Objects

IdentityHashMap<Integer,Student> map = new IdentityHashMap<>();
map.put(new Integer (123), null);
map.put(new Integer (123), null);
for (Integer i : map.keySet()) {
 System.out.println(i);
}

CHAPTER 5 ■ USING STREAM APIS AND COLLECTIONS

193

If you run this code segment, it will display the value “123” twice. Any other map implementation
besides IdentityHashMap would have displayed it only once, because the second Integer would have been
considered a duplicate and wouldn’t have been added. However, because the IdentityHashMap ignores
object state and considers every instance distinct from every other instance, it can contain entries that would
be considered duplicates of one another (and therefore discarded) in other Map implementations.

Since IdentityHashMap’s behavior is so different from that of other maps, it may be helpful to provide
one more example to illustrate an important point. Given the following code segment in Listing 5-20,
consider what you’d expect the output to be when it’s executed:

Listing 5-20. Unexpected IdentityHashMap Behavior

IdentityHashMap<Integer,Student> map = new IdentityHashMap<>();
Student s1 = new Student(12345, "John", "Smith");
map.put(s1.getStudentID(), s1);
map.put(s1.getStudentID(), s1);
for (Student s : map.values()) {
 System.out.println(s.getStudentID() + " " + s.getFullName());
}

If you compile and execute this code, the results will be as follows:

12345 John Smith
12345 John Smith

These results may come as a surprise even to someone with an understanding of how IdentityHashMap

works, because at first glance it would appear that the map contains a duplicate key. The map indeed
contains two references to the same Student object, but in fact each one has a distinct key value that
references it. The student identifier is actually a primitive value, and as you may recall from earlier in
the chapter, Java’s autoboxing feature simply creates wrappers around primitive values when they’re
specified. Therefore, the previous two lines of code that add the Student to the map twice are functionally
identical to the following:

map.put(new Integer(s1.getStudentID()), s1);
map.put(new Integer(s1.getStudentID()), s1);

As this illustrates, a separate object is being created for each key value, which explains why the
IdentityHashMap was able to hold what initially appeared to be duplicates even by its own very restrictive
definition.

WeakHashMap
WeakHashMap is another implementation of the Map interface that’s unique, and to fully understand it,
one needs to be aware of how Java’s garbage collection mechanism works, in particular with respect to
references to objects being maintained. Suffice it to say, though, it’s usually the case that an object will not
be garbage collected (the memory it uses reclaimed) as long as there’s at least one reference to the object
remaining. However, Java 2 introduced the concept of a weak reference, which simply means a reference
that by itself doesn’t prevent an object from being garbage collected. An object can have both weak and
“strong” (normal) references, and as long as at least one strong reference exists, the referenced object can
never be garbage collected. Once an object has no references or has only weak references, it becomes
eligible for garbage collection.

CHAPTER 5 ■ USING STREAM APIS AND COLLECTIONS

194

Although all other map implementations in the java.util package use strong references, instances
of WeakHashMap use only weak references to their key values. What this means is that at any given time, a
particular key that was added to the map might effectively be removed, but only if no strong references exist
to that object. To illustrate this point, you can run the following code in Listing 5-21:

Listing 5-21. A WeakHashMap Usage Example

WeakHashMap<Integer,Student> map = new WeakHashMap<>();
Student s1 = new Student(12345, "John", "Smith");
Student s2 = new Student(24680, "Jane", "Smith");
Student s3 = new Student(13579, "Adam", "Smith");
Student s4 = new Student(67890, "Tom", "Jones");
map.put(s1.getStudentID(), s1);
map.put(s2.getStudentID(), s2);
map.put(s3.getStudentID(), s3);
map.put(s4.getStudentID(), s4);
System.out.println("The map initially contained " + map.size() + " entries");
System.gc();
System.out.println("The map now contains " + map.size() + " entries");

Although it’s not possible to predict for certain what the garbage collector will do (if anything) when the
System.gc() method is called, running the previous code may produce the following results:

The map initially contained 4 entries
The map now contains 0 entries

What happened in this case is that the call to the System.gc() method prompted the garbage collector

to run. Since it found only weak references to the keys associated with the four Student values, it removed
them from the system and by extension from the WeakHashMap.

Understanding how WeakHashMap works also illustrates how it can be valuable. It allows you to provide
a caching mechanism for data without forcing you to explicitly remove items from the cache to ensure that
your application doesn’t run out of memory. Instead, items will be removed automatically when they’re
garbage collected.

ConcurrentHashMap
In most respects, the ConcurrentHashMap is identical to the Hashtable class: it doesn’t allow duplicates
or a null value for the key, its elements aren’t returned in a predictable order, and it’s thread-safe.
However, unlike Hashtable, the ConcurrentHashMap doesn’t implement thread safety by using Java’s
synchronization/locking abilities and therefore provides better performance than a Hashtable. In addition,
ConcurrentHashMap allows you to optimize its performance if you know in advance how many different
threads will be updating its contents. You do this by specifying the concurrency level parameter when
constructing an instance of the class, but you can’t change it after instantiation.

Unlike the other Map implementations you’ve examined, ConcurrentHashMap isn’t defined in the
java.util package but instead can be found in the java.util.concurrent package that was added in Java 5.
That package contains a variety of classes and interfaces that can be used by multithreaded applications,
including some other collection implementations discussed later in this chapter.

CHAPTER 5 ■ USING STREAM APIS AND COLLECTIONS

195

CopyOnWriteArrayList and CopyOnWriteArraySet
Just as ConcurrentHashMap offers a Map implementation that’s thread-safe without using synchronization,
CopyOnWriteArrayList and CopyOnWriteArraySet provide List and Set implementations, respectively,
that are thread-safe. As their names imply, these work by creating a copy of the collection data whenever a
change is made to it, such as an addition, removal, or replacement of an element in the collection. Creating
a new copy each time a modification occurs is a somewhat “expensive” operation in terms of computational
resources (memory and processor time), but this can be a worthwhile trade-off if your application needs a
List or Set that isn’t modified frequently during the execution of the application. If your application does
need to modify a List or Set frequently then it may be more efficient to use a synchronized collection such
as Vector or Hashtable or to use ArrayList or HashMap along with custom synchronization code that you
implement yourself to ensure the thread safety of your application.

Queue
This interface was added to the collection API in Java 5, and its implementations are used to define various
types of queues. Queues have a great deal in common with lists; in fact, the LinkedList class discussed
earlier in the chapter implements both the List and Queue interfaces. In addition, a queue that provides
LIFO behavior is usually known as a stack, and as described earlier, the java.util package includes a Stack
class that also implements the List interface.

As its similarity to a List implies, implementations of the Queue interfaces maintain their elements in a
predictable order although the order can vary across implementations. For example, with a LIFO queue, or
stack, the first element in the collection (also known as the head) is the one that was most recently added.
In contrast, the head of a first-in/first-out (FIFO) queue is the element that was added the earliest. Either
type (LIFO or FIFO) can easily be simulated with a linear collection such as an ArrayList or other List
implementation, but Java provides some helpful Queue implementations, as you’ll see later in the chapter.

Even though its behavior is similar to that of a List, the Queue interface defines methods with names
that are very different from those of the other collection interfaces and classes. However, the number of
methods defined in Queue is small, and Table 5-5 describes them.

Table 5-5. Queue Methods

Method Description

element() Returns a reference to the head element without removing it, throwing an
exception if the queue is empty.

peek() Returns a reference to the head element without removing it, returning null if the
queue is empty.

offer() Adds an element to the queue. Some implementations may reject the addition,
in which case a value of false is returned.

remove() Retrieves a reference to the head element and removes it from the queue, throwing
an exception if the queue is empty.

poll() Retrieves a reference to the head element and removes it from the queue, returning
null if the queue is empty.

CHAPTER 5 ■ USING STREAM APIS AND COLLECTIONS

196

PriorityQueue
Even though it implements the Queue interface, a PriorityQueue is really more like a TreeSet or a TreeMap in
that its elements are ordered based upon their “priority,” which is really just either their natural order or their
sequence as determined by an instance of Comparator. In other words, unlike most Queue implementations,
the order of the elements in a PriorityQueue isn’t affected by the order in which they were added but only
by their priorities relative to one another.

PriorityBlockingQueue
This class isn’t a subclass of PriorityQueue, but the two function in a similar manner, with one important
difference: as the name implies, this class represents a blocking queue. A blocking queue is one that causes
the calling thread to be blocked if the queue is empty, and the thread will remain blocked until at least one
element is added to the queue.

As you saw in the earlier method descriptions, the typical behavior for a Queue implementation is to
return a null value or throw an exception if an attempt is made to retrieve an element when none exists in
the queue. However, it’s common for applications to create threads that simply wait for some type of event or
information to be received and then take some action based on that. This type of behavior is where blocking
behavior is useful; a thread can simply request the next element from the queue and will wait until one
becomes available. In effect, the thread acts as a consumer of the elements added to the queue, while the
thread or threads adding elements to the queue represent producers.

This class is defined in the concurrency (java.util.concurrent) package introduced in Java 5 and
is inherently thread-safe. That package defines interfaces and implementations of those interfaces that
represent functionality often needed by multithreaded applications. Prior to Java 5, it was necessary for an
application to include or create its own implementations of many different types of thread-related classes,
but this package includes a robust set of classes that an application can use directly.

ArrayBlockingQueue
This class represents a blocking queue that uses an array to maintain its elements, and those elements
are returned in FIFO manner. As its name implies, this queue is implemented using an array, and it has
an important difference from many of the other collection classes you’ve examined. Specifically, you’re
required to specify a capacity when creating an instance of this class, and that capacity can never be
exceeded. Attempting to add an element to an ArrayBlockingQueue that’s already “full” (that is, it’s at
capacity) will cause the thread attempting to add the element to become blocked until an existing element
is removed. This class is defined in the concurrency (java.util.concurrent) package introduced in Java 5
and is inherently thread-safe.

You might use this class when threads are creating tasks that need to be processed and all the tasks
are considered to be of equal priority. In other words, you want the first task added to the queue to be
the first one that’s processed regardless of what other tasks may be added afterward. In addition, since
instances of this class have a fixed capacity, this is an appropriate choice only when it’s acceptable for
producer threads (those adding elements to the queue) to be blocked without causing your application to
function incorrectly.

CHAPTER 5 ■ USING STREAM APIS AND COLLECTIONS

197

LinkedBlockingQueue
This is a blocking queue that uses a linked list to maintain its elements, which are returned in FIFO order.
Like ArrayBlockingQueue, this class can be used as a bounded queue, or one where a fixed capacity is used
and attempts to add elements beyond that capacity will cause the producer thread to become blocked.
What’s different with this class is that you aren’t required to specify a capacity, and if you don’t do so, the
instance is considered to be unbounded. In other words, if you specify a capacity, then an instance of
LinkedBlockingQueue behaves similarly to an ArrayBlockingQueue. However, if you create an instance of
LinkedBlockingQueue using one of the constructors that doesn’t include a capacity argument, there will be
no limit to the number of elements that can be added to the queue.

This class is defined in the concurrency (java.util.concurrent) package introduced in Java 5
and is inherently thread-safe. This class is a good choice when your application needs a FIFO queue
implementation that should block when retrieving an element but not when adding elements.

ConcurrentLinkedQueue
ConcurrentLinkedQueue represents a queue that returns its elements in FIFO order but doesn’t block. It’s
defined in the concurrency (java.util.concurrent) package introduced in Java 5 and is inherently
thread-safe; it’s a good choice for applications that need a thread-safe FIFO queue that doesn’t block.

SynchronousQueue
This is a blocking queue that can’t contain any elements; instead, it blocks each request to add an element to
the queue until it receives a request to retrieve an element from the queue, and vice versa. It’s defined in the
concurrency (java.util.concurrent) package introduced in Java 5 and is inherently thread-safe.

A typical use for this class is in an application that contains the type of producer and consumer threads
I’ve discussed before but wants to block the producer until an element it adds to the queue has been retrieved
by the consumer. When you have this type of producer/consumer relationship, it’s typically desirable for the
producer to generate elements as quickly as it can and allow elements to simply wait until the consumer is able
to process them. In other cases, however, it’s more appropriate to ensure that there are no “waiting” elements.

Given its behavior, SynchronousQueue doesn’t really represent what you’d intuitively expect from
a queue implementation but instead provides a way to facilitate the transfer of an element from one
thread to another.

DelayQueue
Only objects that implement the Delayed interface can be added to this queue, which orders its elements
based upon the amount of time remaining before they can be removed from the queue. That time is
identified by calling the getDelay() method of the Delayed interface. An object can be retrieved from the
queue only once it has expired (its remaining delay is 0), and if no expired objects exist, attempts to retrieve
an object from the queue will fail. For example, a call to the poll() method would return null.

This class is useful when you have a group of elements that are time sensitive. That is, instead of being
ordered by their priority/importance or by the order in which they were added to the queue, a specific
target time is associated with each element. This might be useful if you had a series of reminders to send
to users and each one was associated with a particular point in time. You could add those reminders to a
DelayQueue and create a consumer thread that retrieves each one from the queue once its target deadline
has been reached. Listing 5-22 provides an example of how you could implement this.

CHAPTER 5 ■ USING STREAM APIS AND COLLECTIONS

198

Listing 5-22. Sample Implementation of the Delayed Interface

public class DelayedReminder implements Delayed {

 private String reminderText;
 private long delayInSeconds;

 public DelayedReminder(String reminder, long seconds) {
 reminderText = reminder;
 delayInSeconds = seconds;
 }

 public String getReminderText() {
 return reminderText;
 }

 public long getDelay(TimeUnit timeUnit) {
 return TimeUnit.SECONDS.convert(delayInSeconds, timeUnit);
 }

 public int compareTo(Delayed delayed) {
 return (int)(delayInSeconds - delayed.getDelay(TimeUnit.SECONDS));
 }

}

Given this implementation of the Delayed interface, you could use it in code like that in Listing 5-23 to
add time-sensitive reminders to a DelayQueue.

Listing 5-23. An Example of How to Use DelayQueue

DelayQueue queue = new DelayQueue();
DelayedReminder reminder = new DelayedReminder("Wake me up in 60 seconds", 60);
queue.add(reminder);
reminder = new DelayedReminder("Wake me up in 30 seconds", 30);
queue.add(reminder);

In this example, the second element added to the queue would actually be returned first because its
delay expires prior to that of the first element.

Tips on Using Collections
Now that you’ve looked at the various collection classes and how they function, we can make some
generalizations about how to use them. For example, you should use a List when you want to maintain a
collection of objects that need to be referenced in a sequence or that will be referenced based upon their
position within the collection. A Map is useful when you want to be able to quickly locate a particular object
using a corresponding key, while a Set is helpful when you simply want a collection of unique objects
and need to be able to quickly establish whether a given object is a member of that collection. Table 5-6
summarizes some of the collection characteristics and indicates whether the specified characteristic is
applicable to each of the classes discussed.

CHAPTER 5 ■ USING STREAM APIS AND COLLECTIONS

199

Shallow vs. Deep Copies
Some of the collection classes provide a clone() method that the documentation says creates a shallow copy
of the collection. This means the object that’s created results in only a copy of the collection itself and not
the objects it contains. Instead, a collection is created with references to the same objects that are contained
within the collection that was cloned. This is an important concept to understand, particularly if the objects
in the collection have state that can be changed. In that situation, a programmer might create a clone of a
collection and modify objects in the newly created collection without realizing that they were also modifying
the objects in the original collection. If you need to create a deep copy of a collection where the collection
and its elements are both copied, then you must implement the code yourself that will make copies of the
elements and store them in the new collection. To better understand the implications of shallow vs. deep
copies and how to implement each, you should refer to Chapter 2.

Table 5-6. Collection Class Characteristics

Class Sequential

Access?

Random

Access?

Thread-Safe? Allows

Duplicates?

Sorted?

ArrayList Yes Yes No Yes No

LinkedList Yes Yes No Yes No

Vector Yes Yes Yes Yes No

Stack Yes Yes Yes Yes No

HashSet No Yes No No No

LinkedHashSet No Yes No No No

TreeSet No Yes No No Yes

EnumSet No Yes No No No

HashMap No Yes No No No

LinkedHashMap No Yes No No No

TreeMap No Yes No No Yes

EnumMap No Yes No No No

IdentityHashMap No Yes No No No

WeakHashMap No Yes No No No

ConcurrentHashMap No Yes Yes No No

PriorityQueue Yes No Yes Yes Yes

PriorityBlockingQueue Yes No Yes Yes Yes

ArrayBlockingQueue Yes No Yes Yes No

LinkedBlockingQueue Yes No Yes Yes No

ConcurrentLinkedQueue Yes No Yes Yes No

SynchronousQueue Yes No Yes Yes No

DelayQueue Yes No Yes Yes Yes

http://dx.doi.org/10.1007/9781484206423_2

CHAPTER 5 ■ USING STREAM APIS AND COLLECTIONS

200

Referencing an Interface Instead of an Implementation
When you create a new collection object, it’s necessary to explicitly identify the class for which you want to
create an instance. However, you can improve the maintainability of your code in many cases by maintaining
a reference to only the interface the class implements rather than the class itself. For example, let’s suppose
you’ve created the following code:

HashSet<Student> students = new HashSet<>();
displayAllStudents(students);
.
.
.
private void displayAllStudents(HashSet<Student> students) {
 for (Student s : students) {
 System.out.println(s.getFullName());
 }
}

If you reference an object using its class as shown here, your code is less maintainable than it could
be; to illustrate this point, let’s suppose you decide to change the HashSet to a TreeSet so its elements will
be sorted using their natural order. You’d now need to change not only the line of code that creates the
collection but also the places where that collection’s class is explicitly referenced, which in this case includes
the signature of the displayAllStudents() method.

A better approach is to simply define the object as an instance of Set or even Collection if possible, as
follows:

Collection<Student> students = new HashSet<>();
displayAllStudents(students);
.
.
.
private void displayAllStudents(Collection<Student> students) {
 for (Student s : students) {
 System.out.println(s.getFullName());
 }
}

Notice that with this new approach, changing the code to create and use a TreeSet would require
that the code be changed in only one place, since it’s simply treated as a Collection when passed to the
displayAllStudents() method. The effect can be even more significant in a real-world application where
you might have many references to a given collection object. In this simplistic example, it was possible to
treat the object as a Collection, but in practice, you’ll often need one or more of the methods defined in the
subinterface. When that’s the case, it’s usually better to use the more specific interface such as Set instead of
the more generic one (Collection); otherwise, you’re likely to be forced to simply cast the object to a more
specific type in many places.

Keep in mind that this guideline isn’t specific to collection objects but is applicable to object-oriented
programming in general. It’s always better to refer to a less specific type when possible, but collections are
one area where you’ll often have the opportunity to reference an interface such as List instead of a specific
implementation such as ArrayList, and doing so makes your code more maintainable.

CHAPTER 5 ■ USING STREAM APIS AND COLLECTIONS

201

Streams API
As mentioned earlier, collections are an important part of Java because it’s very common for an application
to process a group of items, and as we’ve seen with the discussion of generics, it’s expected that a single
collection will normally contain multiple instances of the same type of item. For example, applications
often need to filter a collection: that is, to remove objects from the collection that meet (or don’t meet) some
criteria. Another common operation is transformation, where some or all of the objects in the collection
are modified in some way. In other words, you’ll often need to execute some set of code using each object
instance that’s stored in a collection and traditionally that’s been done using a for loop as has been done
here. In fact, it’s because that type of processing is so common that the enhanced for loop was introduced
that allows you to just specify the element variable and a collection (or array) as in the following example,
where myCollection is defined as an implementation of Collection that was defined as containing
instances of Student:

for (Student student : collection) {

This approach is referred to as “explicit” iteration, because iteration logic is explicitly specified by the
programmer: specifically, it indicates that the Student instances should be processed one at a time in the
order they’re returned by the collection.

As we saw earlier, a major initiative in Java 8 was to reduce the amount of “boilerplate” code needed to
create an application in Java, and one part of accomplishing that was through the use of lambda expressions.
Another was the introduction of the Streams API, which simplifies many of the tasks that are often performed
on collections such as filtering and transformation, and by combining this support with lambda expressions
you can greatly reduce the amount of code needed to perform some tasks that involve collections.

Reducing the amount of code needed to perform a task involving collections isn’t the only improvement
introduced with the Streams API, though. If, for example, you have a collection that is expected to contain
a very large number of objects and you want to process that collection quickly, using more than one thread
may be the best—or only—way to accomplish that. As we’ve seen, though, creating thread-safe code can be a
complex task, even with the various thread-related capabilities built in to Java’s core classes. Fortunately, one
aspect of the Streams API is that it allows you to use multithreading to process a collection without doing
anything except indicating that you want the processing to take advantage of your system’s multiprocessing
capabilities. In other words, the Streams API not only provides an easy way to process the objects in a
collection but essentially gives you thread-safe processing for “free”—that is, with no work on your part.

Anatomy of a Stream
The Streams API is used by defining a “stream,” which is Java code that consists of three parts which are
named and described in the following list:

Data source: As the name implies, this part of the stream defines where the data •
comes from, such as a List instance.

Intermediate operations: This part of the stream defines what should be done with •
the data, such as filtering or transforming it.

Terminal operation: This procedure describes what should be done with the •
processed data and when (or if) processing should be stopped. For example, this
might specify a collection in which the filtered set of items should be stored.

CHAPTER 5 ■ USING STREAM APIS AND COLLECTIONS

202

With this brief introduction let’s look at an example of how a stream can be defined. Suppose that
we have a collection of String instances and we want to filter the collection and create a new collection
containing only the objects from the original collection that begin with some prefix. This can easily be
accomplished in Java 8 using code like that in Listing 5-24, where the filterPrefix is assumed to be
initialized to the prefix text using for the filtering and the original collection (data source) is referenced by
the myItems variable.

Listing 5-24. A Simple Stream Implementation

List<String> filteredList =
 myItems.stream()
 .filter(item -> item.startsWith(prefix))
 .collect(Collectors.toList());

The first line in Listing 5-24 is a simple variable declaration and assignment statement, defining a List
of String values called filteredList, while the second, third, and fourth lines represent the stream’s data
source, intermediate operation, and terminal operation, respectively. Specifically, the myItems collection is
used to produce a data source by calling the stream() method defined in the Collection class. That method
returns an object of type Stream, an interface that is defined in the new java.util.stream package and
that defines a variety of methods. One of those methods is filter(), and as just mentioned that method
represents an intermediate operation. Note here that the single parameter passed to filter() is a lambda
expression that defines a single parameter assigned to the item variable, and that parameter’s startsWith()
method is called.

As we saw in Chapter 3, which introduced lambda expressions, the Java compiler is able to infer a
great deal of information, especially with regard to data types. In this case it recognizes—thanks to the
use of generics—that the items in filteredList are String instances, and one of the methods in String
is the startsWith() method that accepts a String parameter and returns true if the object for which it’s
called starts with the prefix identified by that parameter. And what about the type of object that’s passed to
the filter() method defined in Stream? Again, based on the previous discussion of lambda expressions
you can probably guess that filter() accepts an instance of a functional interface implementation, and
if you review the API documentation for filter() you’ll find that is in fact the case. Specifically, filter()
expects an instance of the Predicate interface that’s newly defined in Java 8. Predicate defines a small
number of methods but all except one include default implementations. The one that doesn’t include an
implementation—and therefore the one invoked by the lambda expression—is its test() method that is
passed a single parameter and returns a Boolean (true or false) value.

Finally, the last line invokes the collect() method, which is also defined in Stream. That method
accepts a single parameter that must be an instance of the Collector class, which again is a new
class introduced in Java 8 and defined in java.util.stream. If you review the API documentation for
collect() you’ll find that the information that describes the method includes the following statement:
“This is a terminal operation.” As mentioned before, a terminal operation is one that identifies what
to do with the processed data, and in this case it’s passed to a Collector that stores the data in a List
that’s returned.

It may be easier to understand what’s being done here if the foregoing code is “unraveled” as
shown in Listing 5-25.

http://dx.doi.org/10.1007/9781484206423_3

CHAPTER 5 ■ USING STREAM APIS AND COLLECTIONS

203

Listing 5-25. An Expanded Version of the Stream Example

// This anonymous inner class is equivalent to the lambda: item -> (item.startsWith(prefix))
Predicate<String> prefixSelector = new Predicate<String>() {
 public boolean test(String candidate)
 {
 return candidate.startsWith(prefix);
 }
};
Stream<String> dataSource = myItems.stream();
Stream<String> filtered = dataSource.filter(prefixSelector);
Collector<String, ?, List<String>> collector = Collectors.toList();
List<String> myList = filtered.collect(collector);

Again, note that although each item in the original (myItems) collection will be processed, nowhere is
any explicit iteration code implemented. Instead, the iteration is implicit (sometimes called “passive” or
“internal” iteration) in the use of the stream. In short, the Streams API has given us a way to eliminate a large
amount of “boilerplate” code involved in performing this filter operation.

Intermediate Operation Pipelining
Earlier when discussing the different parts of a stream it was mentioned that the second part is the set of
intermediate operations—plural. As this implies, there can be more than one intermediate operation used
to process the data. For example, let’s suppose that besides filtering items that don’t begin with a particular
prefix, we also want to transform the data so that a lower-case version of each string is what’s stored in the
returned collection. In that case, we can just add another intermediate operation to the stream, in this case
one that will convert each item into some other value. The best choice for this is the map() method defined
in Stream that accepts a parameter and returns a value that’s derived from the parameter. In this case, for
each String that’s processed we want to generate a lower-case equivalent, so we can use a stream like the
one shown in Listing 5-26.

Listing 5-26. A Stream Example That Contains Two Intermediate Operations

List<String> filteredList =
 myItems.stream()
 .filter(item -> item.startsWith(prefix))
 .map(item -> item.toLowerCase())
 .collect(Collectors.toList());

This technique is referred to as “pipelining” and in this case the pipeline is a set of operations that
represents a two-stage pipe through which data flows. Conceptually it’s very similar to the pipelining
support on Linux systems, where data can be passed through a series of commands that perform the same
kinds of filtering and transformation that we’ve seen here. Note that the syntax for pipelining is simplified by
the fact that the intermediate operation methods defined in Stream return a reference to a Stream, allowing
us to use the builder design pattern syntax, where we “chain” successive calls to the methods in a single
class, which in this case is Stream. For example, in the filtering sample just shown the filter() method
returns a Stream and the map() method of that returned object is invoked, and so on. This is an important
point to keep in mind because at first glance the syntax appears very different from traditional Java code, but
in reality it’s mostly a combination of the same syntactic elements that Java has always supported—with the
obvious exception of the lambda expression embedded in the map() call.

CHAPTER 5 ■ USING STREAM APIS AND COLLECTIONS

204

Some Other Intermediate Operation Methods
We’ve only used two of the intermediate operation methods defined in Stream, but there are many others
defined, and some of the most obviously useful ones are listed and described in Table 5-7.

Table 5-7. Some Additional Intermediate Operation Methods Defined in Stream

Method Description

distinct() Returns a stream consisting of only the distinct items as determined by toString().

limit(int n) Returns a stream consisting of only the first “n” elements corresponding to the int
parameter value.

skip(int n) Returns a stream consisting of all elements except the first “n” ones.

sort() Returns a stream that generates the elements in their natural sort order.

One useful aspect of the API documentation is that it describes the type of operation each method
represents with comments such as “This is an intermediate operation.” In the case of limit(), for example,
the documentation indicates that “This is a short-circuiting stateful intermediate operation.” We’ve already
defined what it means to be an intermediate operation, but what about “short-circuiting” and “stateful”?
A short-circuiting operation is one that may be able to stop processing before all elements in the data source
have been encountered. In this case, for example, the limit() is, by definition, only going to process the
first “n” elements that it receives from the preceding stage in the stream. If, for example, your data source
is a collection containing 1,000 elements but you include a limit(10) stage, only the first 10 elements will
ever be retrieved from the data source and no processing will occur for the others. A stateful operation is
just what its name implies: when it processes a given element it may contain and use state information
from previously encountered elements. In the case of the distinct() method, for example, the state must
necessarily keep track of what values it has already encountered in order to filter out the duplicates that
occur, and as expected, reviewing the API documentation for distinct() identifies it as a stateful operation.
Another aspect to be aware of is that a stateful operation may need to process the entire collection in order
to ensure that it produces the correct results. In the case of sort(), for example, it’s impossible to know
the sequence in which the elements should be forwarded until all elements have been examined. The
significance of this to your application is that a stream containing stateful operations may require more
memory—perhaps significantly more memory—than a stream without them.

Terminal Operations
In contrast to intermediate operations, a stream can only contain a single terminal operation that
determines what output the stream generates. In the earlier example we used the collection() operation
to have the elements placed in a collection, but other methods are also available. In fact, a collection is just
one of the types of output that can be generated by a terminal operation, with the specific type determined
by what kind of operation is requested. For example, as its name implies, the toArray() operator returns
an array containing the elements processed by the stream. Another example is the anyMatch() terminal
operation, which checks to see if any of the elements processed meet some criteria, returning a boolean
value of true if at least one does or false if none does as shown here.

boolean foundMatch = myItems.stream().anyMatch(s -> s.equals("Hello"));

CHAPTER 5 ■ USING STREAM APIS AND COLLECTIONS

205

This example assumed that myItems is a collection of String values and will assign true to foundMatch
if at least one of them equals “Hello.” Similarly, the Stream class also defined allMatch() and noneMatch()
methods that return true if all or none of the items matches the specified Predicate. Contrast this single
line of code with the code you’d create without the use of streams and it becomes apparent how much work
can be accomplished with a small amount of code using streams.

Another point is shown by what doesn’t appear in this example: specifically, notice that there is no
intermediate operation. Instead, there’s only a data source and a terminal operation, with no filtering or
transformation. There’s no restriction that prevents you from including intermediate operations, but there’s
also no requirement that you do so, and as shown in this example streams can be very useful even when
intermediate operations aren’t needed or used.

Table 5-8 lists some other terminal operators, their return types, and a description of their function.

Table 5-8. Some Additional Intermediate Operation Methods Defined in Stream

Method Return Type Description

min() Optional<T> Returns the minimum element from the stream as defined
by a supplied Comparator.

max() Optional<T> Returns the maximum element from the stream as defined
by a supplied Comparator.

findFirst() Optional<T> Returns the first element produced by the stream.

count() long Returns the total number of elements processed by the stream.

forEach() void Returns nothing; performs some function on each element in
the stream.

Note that the forEach() method described earlier arguably represents one of the more useful methods
because it allows you to define code that’s executed for each instance processed by the stream. For example,
to send the text representation of each object to standard output you could use code like the following:

myItems.stream().forEach(t -> System.out.println(t));

It’s also worth noting the use of the Optional interface as the return type for those terminal operations
that may or may not actually return a result. This ensures that those methods will never return a null value,
but will instead return an Optional wrapper for whatever is returned. Indeed, a number of different features
including lambda expressions, streams, the Optional interface, and generics all work together to make Java
code easier to write and more reliable.

Parallel Streams
Earlier in the section titled, “Streams API”, it was mentioned that one of the big advantages of the Streams
API is that it allows you to take advantage of your system’s multitasking capabilities without any effort
on your part. In other words, the system can allocate multiple threads that result in multiple elements
being processed by the pipeline simultaneously or nearly so, depending upon your system’s capabilities
and resources. The default behavior is for all processing to be done on a single thread, namely, the
thread that executes the stream code, but to request that multiprocessing support be used you simply
call the parallelStream() method defined in Collection instead of stream(). Even if your system does
support multitasking there are at least a couple of reasons that you may not want a stream to use parallel
processing, which is why it’s optional for you to request it. First, even if additional threads are available

CHAPTER 5 ■ USING STREAM APIS AND COLLECTIONS

206

you may not want them assigned to handling the stream processing. Second, due to the overhead
associated with multitasking, a stream that processes a small amount of data may actually run slower
when you specify parallelStream() than it would if you had instead used stream(). That’s due to the
overhead associated with multitasking and the synchronization associated with more than one thread
accessing and updating the same object or set of objects, so you should only use parallelStream() if you
have a large volume of data and you need the performance gains that can come from processing that data
using more than one thread.

Summary
In this chapter, we’ve examined several important topics related to collections:

Why they’re needed•

The history of Java’s collection API•

How the • List, Set, and Map interfaces and their implementations work

Some general guidelines for using collection objects•

The Streams API introduced in Java 8•

207

CHAPTER 6

Using Layout Managers

In Java, you can use the java.awt.Container class and its subclasses to display groups of Swing
components. For example, you might use a JPanel to display a related set of buttons or add components to
a JFrame. Layout managers are classes that control the size and location of each component that’s added to
a container, and in most cases a layout manager is also responsible for determining the sizes returned from
the container’s getMinimumSize(), getPreferredSize(), and getMaximumSize() methods. Layout managers
are important because they simplify the task of positioning and sizing components and because they allow
you to create flexible user interfaces.

Java provides a number of layout managers that you should be familiar with, and each one has
advantages and disadvantages. Some are easy to use but provide limited flexibility, and others are flexible
but also much more difficult to use. When none of the layout managers provided with Java suits your needs,
you can easily create your own, but it’s not often necessary to do so if you’re familiar with those already
available.

In some cases you may be able to create a user interface without being familiar with a layout manager,
because every major integrated development environment (IDE)—such as Eclipse, IntelliJ IDEA, and
NetBeans—includes a graphical user interface (GUI) builder that allows you to design an interface by
dragging and dropping components. Even if you’re working with code that was generated using a GUI
builder, though, it’s sometimes necessary to update the code manually or at least to have some level
of understanding of what the code is doing, especially since those GUI builders just generate layout
manager code automatically. In other words, UI code that’s created using a GUI builder just does what any
programmer could accomplish manually. That type of generated code may be appropriate for a simple
UI, but it tends to be more difficult to understand and maintain than manually created code, at least
code written by someone who’s comfortable with Java layout managers. Ultimately, understanding Java’s
layout managers ends up being helpful regardless of whether you expect to be able to use a GUI builder to
construct your UI.

Layout Managers and GUI Construction
To assign a layout manager to a container, you must create an instance of the manager and pass it to the
setLayout() method defined in Container. For example, the following code provides an example of how to
create an instance of BorderLayout and assign it to a JPanel:

JPanel panel = new JPanel();
panel.setLayout(new BorderLayout());

You can use the overloaded add() method defined in Container to add a Component to a container,
which then becomes known as the component’s parent container. Similarly, the component added is
referred to as a child component of the container.

CHAPTER 6 ■ USING LAYOUT MANAGERS

208

Although Container defines a number of different implementations of add(), the following are the two
used most often:

• add(Component comp)

• add(Component comp, Object constraints)

In both cases, a reference to the child component is sent to the Container. However, the second
implementation also includes a constraints parameter that provides information normally used by the
layout manager to determine where the component should be placed and/or what its size should be. The
specific subclass of Object used for this parameter depends upon what type of layout manager is involved.
For example, if you’re using a GridBagLayout, the constraints parameter must be an instance of the
java.awt.GridBagConstraints class; other layout managers require you to pass a String value.

Some layout managers don’t support constraints and instead use the order in which components are
added to their parent container to determine their positions. When you’re using a layout manager that
doesn’t accept constraints, you should use the simpler add() method shown previously that takes only a
single Component parameter. Doing so is equivalent to passing a null value for the constraint parameter,
which means the following two lines of code are functionally identical to one another:

myContainer.add(someComponent);
myContainer.add(someComponent, null);

On the other hand, using code like this with a layout manager that does support constraints will cause
the layout manager to assign some default constraint information to the component. Therefore, unless
you’re certain that the default information will produce the results you want, you should always explicitly
specify a constraints parameter when using a layout manager that supports constraints.

When add() is called, the container adds the component to a list that it maintains and calls the layout
manager’s addLayoutComponent() method. That method is passed references to the component being
added and to the constraints object specified, and this allows the layout manager to save the constraint
information and associate it with the component for later use.

When a layout manager’s layoutContainer() method is called, it’s passed a reference to the container
for which components should be arranged. The layout manager obtains the list of child components by
calling the container’s getComponents() method and sets the size and location for each visible child using
Component methods such as setSize(), setLocation(), and setBounds(). If the layout manager supports
constraints, it will use them to determine each component’s size and location, but if it doesn’t, it will arrange
the components based on the order in which they occurred in the list returned by getComponents().

To determine what a component’s size should be, the layout manager usually also considers
the container’s size and may call each component’s getPreferredSize(), getMinimumSize(), or
getMaximumSize() methods. However, the layout manager isn’t required to respect the values returned by
those methods, and in some cases, Java’s layout managers ignore them.

Each container has inset values that indicate the number of pixels around the container’s edges that are
reserved and can’t be used to display child components. Those values are encapsulated by an instance of
java.awt.Insets, which defines four int values, each corresponding to one side of the container: top, left,
bottom, and right. Those values usually describe the width of the border on the sides of the container, but
in some cases, additional space may be reserved. For example, JDialog and JFrame both include a title bar
along their top edges; you can reserve that space by setting the top inset value appropriately.

When a layout manager calculates the amount of space available in a container, it subtracts the
container’s left and right insets from its width and subtracts the top and bottom insets from the height.
In addition, when the layout manager arranges the child components, it positions them inside the
container’s inset area so that none of the components overlays the reserved portion of space around the
container’s edges.

CHAPTER 6 ■ USING LAYOUT MANAGERS

209

It’s possible to create your own layout manager class, and this chapter describes how to do so, but the
Java core classes include a number of layout managers that are flexible enough to meet the needs of most
applications. The following list identifies some of the layout manager classes that are provided with Java; the
classes are listed in what’s arguably their order of complexity starting with the least complex and ending with
the most complicated one:

• CardLayout

• FlowLayout

• GridLayout

• BorderLayout

• GridBagLayout

• BoxLayout

• GroupLayout

• SpringLayout

When you create an instance of a Container subclass that’s provided with Java (JPanel, JFrame,
JDialog, etc.), that object will automatically be assigned a layout manager. Table 6-1 lists some of the classes
you might use and also identifies the default layout manager type for each one.

Table 6-1. Layout Managers Used by Default for Various Component Subclasses

Component Default Layout Manager

JPanel FlowLayout

JFrame (content pane) BorderLayout

JDialog (content pane) BorderLayout

JApplet (content pane) BorderLayout

Box BoxLayout

This chapter examines the capabilities of the layout managers that are provided with Java and
specifically examines the following characteristics of each one:

How a layout manager instance is constructed•

The constraints that can be specified when adding a child component•

How each child component’s size is calculated•

How each child component’s position is calculated•

What happens when the container has more or less space than it needs to display its •
child components

How the values returned by a container’s • getMinimumSize(), getPreferredSize(),
and getMaximumSize() methods are calculated by the layout manager

CHAPTER 6 ■ USING LAYOUT MANAGERS

210

CardLayout
CardLayout allows you to add multiple components to a container, and each component is added and
displayed in the same location. However, only one of the components is visible at any given time, and you
can specify which one that should be by calling the first(), last(), next(), and previous() methods
defined in CardLayout. Those methods refer to the components added to the container, and they display the
component that was added in the order corresponding to the method name. For example, first() causes
the component added first to appear, last() causes the most recently added one to appear, and next() and
previous() allow you to iterate through the components in a forward or backward direction. In addition,
the show() method allows you to specify that a particular component should be displayed, regardless of the
order in which it was added to the container relative to the other components.

The CardLayout class is arguably the least useful of the layout managers included with Java. Prior to
the introduction of Swing, CardLayout was envisioned as a way to create a tabbed user interface, but the
JTabbedPane provides a much better mechanism for doing so. However, CardLayout may still be useful in
some cases, such as when constructing a Windows-style “wizard” interface that displays a series of panels
one at a time.

Constructing a CardLayout
You can specify horizontal and vertical gap values when you create a new instance of CardLayout, and
these gaps will be placed around the edges of the component displayed in the container. Specifically, the
horizontal gap appears on the left and right sides of the component, and the vertical gap appears at the
top and bottom of the component to separate it from the edge of the container. Listing 6-1 shows a simple
example of how to use CardLayout.

Listing 6-1. Simple CardLayout Test

import java.awt.*;
import javax.swing.*;

public class CardTest extends JFrame {

 private CardLayout layout;

 public static void main(String[] args) {
 CardTest ct = new CardTest();
 ct.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 ct.displayTab("Green Tab");
 ct.setSize(400, 300);
 ct.setVisible(true);
 }

 public CardTest() {
 JPanel tab;
 Container pane = getContentPane();
 layout = new CardLayout();
 pane.setLayout(layout);
 tab = new JPanel();
 tab.setBackground(Color.red);
 pane.add(tab, "Red Tab");
 tab = new JPanel();

CHAPTER 6 ■ USING LAYOUT MANAGERS

211

 tab.setBackground(Color.green);
 pane.add(tab, "Green Tab");
 tab = new JPanel();
 tab.setBackground(Color.blue);
 pane.add(tab, "Blue Tab");
 }
 public void displayTab(String name) {
 layout.show(this.getContentPane(), name);
 }

}

Child Component Sizes
Only a single child component is ever visible when a CardLayout is used, and that component’s size is set
to the container’s available display area. The available display area is defined as the container’s dimensions
minus its insets and any horizontal and vertical gaps that should be placed around the edges of the child
components.

Child Component Locations
The single visible child component always fills the entire available display area of the parent container, so its
location is implicitly defined to be the upper-left corner of the parent.

Resizing Behavior
The size of the component displayed is set to the container’s available display area. If the container’s size
increases or decreases, a corresponding change occurs to the size of the displayed component.

Container Size
CardLayout identifies the preferred size of its container as the largest preferred width and largest preferred
height of any child component. Similarly, the minimum size is equal to the largest minimum width and
height values returned by any of the container’s child components. The maximum size is effectively set
to infinity, since CardLayout’s maximumLayoutSize() method returns Integer.MAX_VALUE for both the
maximum width and maximum height, where Integer.MAX_VALUE is a constant that represents the largest
possible integer (in other words, int or Integer) value.

FlowLayout
FlowLayout arranges the components in rows from left-to-right and top-to-bottom order based on the order
in which they were added to the container, allowing each component to occupy as much or as little space as
it needs. This layout manager is useful when you want to create a collection of adjacent components that
are all allowed to be displayed using their default sizes.

CHAPTER 6 ■ USING LAYOUT MANAGERS

212

Constructing a FlowLayout
When creating a new FlowLayout instance, you can specify the alignment that should be used when
positioning the child components. The alignment value should correspond to one of the constants defined
in FlowLayout; specifically, this is LEFT, CENTER, or RIGHT. As mentioned previously, FlowLayout arranges
components in rows, and the alignment specifies the alignment of the rows. For example, if you create a
FlowLayout that’s left aligned, the components in each row will appear next to the left edge of the container.

The FlowLayout constructors allow you to specify the horizontal and vertical gaps that should appear
between components, and if you use a constructor that doesn’t accept these values, they both default to 5.
Note that unlike the gaps used by some other layout managers, the gaps generated by a FlowLayout appear
not only between adjacent components but also between components and the edge of the container.

To construct a FlowLayout that’s right aligned and uses a horizontal gap of 10 pixels and vertical gap of
5 pixels between components, you can use the following code:

FlowLayout fl = new FlowLayout(FlowLayout.RIGHT, 10, 5);

Constraints
FlowLayout doesn’t use any constraints to determine a component’s location or size, and you should use the
simple add(Component) method when adding components to a FlowLayout-managed container.

Child Component Sizes
Components managed by a FlowLayout are always set to their preferred size (both width and height),
regardless of the size of the parent container.

Child Component Locations
Components added to a FlowLayout-managed container are displayed in rows in left-to-right and top-
to-bottom order based on when each component was added to the container relative to the others. For
example, the first component appears at the top of the container to the left of other components in the row.

A component’s specific location depends upon three factors: the alignment value used by the
FlowLayout, the size of the component, and the size of the other components that were added to the layout
before it. A FlowLayout instance includes as many components as it can on each row until the width of the
row would exceed the size of the container. In Figure 6-1, five components have been added to a container
that uses a FlowLayout.

CHAPTER 6 ■ USING LAYOUT MANAGERS

213

Listing 6-2 shows the code you can use to create this display.

Listing 6-2. FlowLayout Behavior

import java.awt.*;
import javax.swing.*;

public class FlowTest extends JFrame {

 public static void main(String[] args) {
 FlowTest ft = new FlowTest();
 ft.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 ft.setSize(400, 300);
 ft.setVisible(true);
 }

 public FlowTest() {
 super();
 Container pane = getContentPane();
 pane.setLayout(new FlowLayout(FlowLayout.LEFT));
 pane.add(new JLabel("This is a test"));
 pane.add(new JButton("of a FlowLayout"));
 pane.add(new JTextField(30));
 pane.add(new JTextArea("This is a JTextArea", 3, 10));
 pane.add(new JLabel("This is a FlowLayout test with a long string"));
 }
}

In this case, the container is sufficiently wide to allow the first two components to be placed on the first
row. However, the third component appears on the next row by itself, and the fourth and fifth components
appear together on another row. The first row appears at the top of the container, and each subsequent row
occurs immediately below the previous one, with the height of a row determined by the height of the tallest
component in that row. Each component within a row is centered vertically within the row, as shown in
Figure 6-1.

Figure 6-1. An example of the default left alignment used by FlowLayout

CHAPTER 6 ■ USING LAYOUT MANAGERS

214

A component’s horizontal position within a row is determined partly by when it was added to the
container and is affected by the alignment value used by the FlowLayout instance. In Figure 6-1, the
components are left aligned, but in Figure 6-2 and Figure 6-3 you can see the displays that are generated
when the components are right aligned and center aligned, respectively.

Figure 6-3. An example of how components appear when center aligned with FlowLayout

Figure 6-2. An example of how components appear when right aligned with FlowLayout

Resizing Behavior
Reducing the width of a container managed by a FlowLayout causes the rows to shrink in size, which may
cause some components to be moved to a new or different row. If you reduce the width of the frame further,
then portions of the wider components begin to disappear, as shown in Figure 6-4.

CHAPTER 6 ■ USING LAYOUT MANAGERS

215

Similarly, if you reduce the frame’s vertical size so that there’s not enough vertical space to display all
rows, some of the components will become partially or completely inaccessible (see Figure 6-5).

Figure 6-4. FlowLayout uses components’ preferred widths even when there isn’t enough horizontal room to
display the entire component

Figure 6-5. FlowLayout uses components’ preferred heights even when there isn’t enough room to display the
entire component

Container Size
When calculating the preferred and minimum size values for a container, FlowLayout can’t make any
assumptions about the width of the container or about how many rows of components should be created.
Instead, the size values are calculated so the container will be wide enough to contain all child components
in a single row. For example, the preferred width value returned by a FlowLayout is determined by adding
three values.

The left and right inset values of the container•

The amount of space needed to provide horizontal gaps•

The sum of all child components’ preferred widths•

CHAPTER 6 ■ USING LAYOUT MANAGERS

216

In other words, a FlowLayout’s preferred width is the amount of horizontal space needed to display all
its child components from end to end on a single row using their preferred sizes.

To determine the container’s preferred height, FlowLayout first identifies the preferred height of the
tallest component in the container. The container’s preferred height is then calculated as the sum of the
largest component height, the number of pixels needed to provide vertical gaps at the top and bottom edges
of the container, and the container’s top and bottom inset values.

The value returned for a container’s minimum size by a FlowLayout is calculated in essentially the same
way as the preferred size but by using the minimum sizes of the components in the container instead of their
preferred sizes.

GridLayout
The GridLayout layout manager divides the available space into a grid of cells, evenly allocating the space
among all the cells in the grid and placing one component in each cell. For example, in Listing 6-3, four
buttons are added to a container that uses a GridLayout.

Listing 6-3. Sample GridLayout Application

import java.awt.*;
import javax.swing.*;

public class GridSizeTest extends JFrame {

 public static void main(String[] args) {
 GridSizeTest gst = new GridSizeTest();
 gst.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 gst.pack();
 gst.setVisible(true);
 }

 public GridSizeTest() {
 Container pane = getContentPane();
 pane.setLayout(new GridLayout(2, 2));
 JButton button = new JButton("First");
 pane.add(button);
 button = new JButton("Second with a very long name");
 pane.add(button);
 button = new JButton("Hi");
 button.setFont(new Font("Courier", Font.PLAIN, 36));
 pane.add(button);
 button = new JButton("There");
 pane.add(button);
 }

}

When this code is compiled and executed, it produces a display like the one shown in Figure 6-6. Notice
that all the buttons are allocated the same amount of space, even though one button’s label is wider than the
others and another has a label that’s much taller than the rest.

CHAPTER 6 ■ USING LAYOUT MANAGERS

217

As this example illustrates, GridLayout is useful when some rectangular portion of your interface contains
adjacent components that should all be assigned the same size and when the amount of space between those
components is consistent. For instance, you might use a GridLayout to create a panel that contains a row of
buttons that are all the same size and that have the same amount of space between one another.

Constructing a GridLayout
When you create an instance of GridLayout, you normally will specify the number of rows and columns
that you want it to provide, and you may choose to specify the amount of horizontal and vertical space that
should appear between adjacent components. However, you can choose to set any of these values after
construction using the setRows(), setColumns(), setHgap(), and setVgap() methods. Listing 6-4 shows an
example of creating a GridLayout and assigning it to a container. This application parses the command-line
parameters to determine how many rows and columns should be available, creates 20 JButton instances,
and adds each button to the container.

Listing 6-4. Creating Rows of Buttons

import java.awt.*;
import javax.swing.*;

public class GridTest extends JFrame {

 public static void main(String[] args) {
 if (args.length < 2) {
 System.out.println("You must enter a row count and a column count");
 return;
 }
 int rows = Integer.parseInt(args[0]);
 int cols = Integer.parseInt(args[1]);
 GridTest gt = new GridTest(rows, cols);
 gt.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 gt.pack();
 gt.setVisible(true);
 }

 public GridTest(int rows, int cols) {
 Container pane = getContentPane();
 pane.setLayout(new GridLayout(rows, cols));
 for (int i = 0; i < 20; i++) {

Figure 6-6. GridLayout distributes both horizontal and vertical space evenly to the components regardless of
their preferred sizes

CHAPTER 6 ■ USING LAYOUT MANAGERS

218

 JButton button = new JButton(Integer.toString(i + 1));
 pane.add(button);
 }
 }

}

When you create a GridLayout, you can specify a value of 0 for either the row count or the column
count, but not both. If you set the number of rows to 0, GridLayout creates as many rows as it needs to
display all the components using the specified number of columns. For example, Figure 6-7 illustrates what
will be displayed when 0 is specified for the number of rows and 3 for the number of columns.

Figure 6-7. You can force GridLayout to use a specific number of columns by specifying a column count but
no row count

Figure 6-8. You can force GridLayout to use a specific number of rows by specifying a row count but no
column count

Similarly, if you set the number of columns to 0, the layout manager creates as many columns as it
needs to display the child components using the specified number of rows. In Figure 6-8, the column count
was set to 0 and the row count to 3.

It’s important to understand that the row and column counts you specify are considered suggestions,
and the GridLayout may not actually create the number you request. In most cases it will, but some
exceptions exist. For example, if you specify a nonzero value for both the row and column count, the column
count is effectively ignored, and the layout manager creates as many columns as it needs using the requested
number of rows. In other words, specifying both a row and column count produces the same result as
specifying 0 for the column count.

If you specify a value of 3 for the number of rows and 100 for the number of columns using the GridTest
class, the result is the same as shown in Figure 6-8 for zero columns and three rows. This behavior might
seem undesirable, but it happens this way for a reason. Specifically, it allows the layout manager to handle

CHAPTER 6 ■ USING LAYOUT MANAGERS

219

cases where the number of components in the container is greater than the product of the row count by the
column count. For example, if you specify a row count of 2 and a column count of 2 but then proceed to add
six components to the container, GridLayout simply adds another column to the grid so it can display
all six components.

As you can see, the number of rows and columns created by a GridLayout isn’t necessarily equal to the
number you request. In fact, the number actually created is calculated with a simple formula that uses the
number of child components in the container (which I’ll call childComponentCount), the requested number of
rows (requestedRows), and the requested number of columns (requestedColumns). If the requested number
of rows is nonzero, the GridLayout determines the number of rows and columns using the following equations:

actualRows = requestedRows
actualColumns = (childComponentCount + requestedRows - 1) / requestedRows

Note that this formula can lead to a situation where more rows are created than are needed to display
all the components. When that happens, an empty space will appear at the bottom of the container that
represents the unused rows. Since that’s not usually the desired behavior, you should be aware of this
possibility when deciding how many rows to request when creating a GridLayout. On the other hand, if the
requested number of rows (requestedRows) is zero, then GridLayout uses the following equations instead of
the ones shown previously:

actualColumns = requestedColumns
actualRows = (childComponentCount + requestedColumns - 1) / requestedColumns

In most cases, these equations result in the GridLayout creating the number of rows and columns you
specified, but as you’ve seen, that’s not always the case.

Constraints
GridLayout doesn’t use any constraints to determine a component’s location or size, and you should use the
add(Component) method when adding components to a GridLayout-managed container.

Child Component Sizes
Each cell in a GridLayout is assigned the same width and height, and each child component is compressed
or stretched to fill a single cell. The specific height and width values for the cells are determined by
calculating the available display area and dividing the width by the actual column count and the height
by the actual row count. The available display area is defined as the dimensions of the container minus its
insets and any space needed for the horizontal and vertical component gaps, as shown in the following
equations:

availableWidth = totalWidth - leftInset -
 rightInset - ((actualColumns - 1) * horizontalGap)
componentWidth = availableWidth / actualColumns

For example, if a component has a width of 400, has right and left insets of 5, has a horizontal gap value
of 10 between the components in a row, and contains four columns, the width of each component will be the
following:

availableWidth = 400 - 5 - 5 - ((4 - 1) * 10) = 400 - 10 - 30 = 360
componentWidth = 360 / 4 = 90 pixels

CHAPTER 6 ■ USING LAYOUT MANAGERS

220

In this case, every component in the container will be 90 pixels wide, and a similar equation calculates
the components’ heights. Note that GridLayout doesn’t respect the values returned by a component’s
getMinimumSize() and getMaximumSize() methods. In other words, a GridLayout may cause a component
to be smaller than its “minimum” size or larger than its “maximum” size. You can see an example of this
behavior by running the GridTest application defined earlier and resizing the frame that contains the
buttons. As the frame’s dimensions change, the button sizes will be increased or decreased to fill the
available display area.

Child Component Locations
GridLayout divides the container into a grid using the actual number of rows and columns that it calculates
is needed. As components are added to the container, they’re placed in the grid from left to right and from
top to bottom based on when they were added to the container relative to one another. For example, the
first component added to the container appears in the upper-left corner of the screen, and the second one
appears to the right of the first (if the grid provides at least two columns). That continues until an entire row
in the grid has been filled. After that, adding another component will cause it to appear in the second row in
the first column, the next one appears in the second row and second column, and so on.

Resizing Behavior
Since GridLayout forces all child components to fit within the container’s display area, the component
sizes may become very small if the container is allocated less space than it requests through its
getPreferredSize() method. For example, Figure 6-9 illustrates what happens when the GridTest
application runs and its window’s height is reduced. In this case, the button labels have become vertically
very small and are almost unreadable, illustrating the point made earlier that GridLayout doesn’t respect a
component’s minimum size.

Figure 6-9. GridLayout will shrink components if necessary to make them fit within the available space

Similarly, if a GridLayout-managed container is made larger than its requested size, the components
within the container will be made sufficiently large to fill the container, regardless of their maximum size.

Container Size
GridLayout calculates the size of its associated container by examining the dimensions of each child
component within the container and recording the largest width and height values it finds. For example,
when a GridLayout is asked for the container’s preferred size, it calls getPreferredSize() for each child
component and records the largest preferred height value returned by a component. That maximum
preferred component height is then multiplied by the number of rows to be displayed and added to the
container’s top and bottom insets, along with the number of pixels needed to provide the vertical spacing
between component rows. A similar calculation occurs for the container’s width, as follows:

containerHeight = (largestComponentHeight * actualRows) +
 ((actualRows - 1) * verticalGap) +
 (containerTopInset + containerBottomInset)

CHAPTER 6 ■ USING LAYOUT MANAGERS

221

containerWidth = (largestComponentWidth * actualColumns) +
 ((actualColumns - 1) * horizontalGap) +
 (containerLeftInset + containerRightInset)

The same equation calculates a container’s minimum size, but the largestComponentWidth and
largestComponentHeight values are obtained by calling getMinimumSize() instead of getPreferredSize().

BorderLayout
BorderLayout divides the container into five areas, and you can add a component to each area. The five
regions correspond to the top, left, bottom, and right sides of the container, along with one in the center, as
illustrated in Figure 6-10.

Figure 6-10. BorderLayout divides the container into five areas: center, top (“north”), left (“west”), right
(“east”), and bottom (“south”)

Listing 6-5 shows the code that produced this display. As the code and the button labels illustrate, each
of the five areas is associated with a constant value defined in BorderLayout: NORTH, SOUTH, EAST, WEST, and
CENTER for the top, bottom, right, left, and center regions, respectively.

Listing 6-5. A BorderLayout Example

import java.awt.*;
import javax.swing.*;
import javax.swing.border.BevelBorder;

public class BorderSample extends JFrame {

 public static void main(String[] args) {
 BorderSample bs = new BorderSample();
 bs.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Container pane = bs.getContentPane();
 pane.setLayout(new BorderLayout());
 Font f = new Font("Courier", Font.BOLD, 36);

CHAPTER 6 ■ USING LAYOUT MANAGERS

222

 JLabel label = new JLabel("North", JLabel.CENTER);
 label.setFont(f);
 label.setBorder(BorderFactory.createBevelBorder(BevelBorder.RAISED));
 pane.add(label, BorderLayout.NORTH);
 label = new JLabel("South", JLabel.CENTER);
 label.setFont(f);
 label.setBorder(BorderFactory.createBevelBorder(BevelBorder.RAISED));
 pane.add(label, BorderLayout.SOUTH);
 label = new JLabel("East", JLabel.CENTER);
 label.setFont(f);
 label.setBorder(BorderFactory.createBevelBorder(BevelBorder.RAISED));
 pane.add(label, BorderLayout.EAST);
 label = new JLabel("West", JLabel.CENTER);
 label.setFont(f);
 label.setBorder(BorderFactory.createBevelBorder(BevelBorder.RAISED));
 pane.add(label, BorderLayout.WEST);
 label = new JLabel("Center", JLabel.CENTER);
 label.setFont(f);
 label.setBorder(BorderFactory.createBevelBorder(BevelBorder.RAISED));
 pane.add(label, BorderLayout.CENTER);
 bs.setSize(400, 300);
 bs.setVisible(true);
 }

}

Note that although five regions are available within a BorderLayout, it’s not necessary to add a
component to each one. Leaving an area empty doesn’t affect the BorderLayout’s behavior, but it may result
in the CENTER component being made larger than it would have been otherwise.

Constructing a BorderLayout
The only parameters you’re allowed to pass to a BorderLayout constructor are the horizontal and vertical
gaps used to separate adjacent components. The vertical gap is inserted below the NORTH component and
above the SOUTH component, and the horizontal gap appears to the right of the WEST component and to
the left of the EAST component. If you use the constructor that doesn’t accept any parameters, no gaps are
inserted.

Constraints
When adding a component to a container that’s using a BorderLayout, you should supply a constraint that
identifies which area should contain the component. The constraint should be a reference to one of five
constants defined in BorderLayout: NORTH, SOUTH, EAST, WEST, or CENTER. The following code is an example of
adding a component to a container that uses a BorderLayout, where a JLabel instance is added to the NORTH
(top) area of the container:

myContainer.add(new JLabel("Hello"), BorderLayout.NORTH);

CHAPTER 6 ■ USING LAYOUT MANAGERS

223

You can use the simpler form of add() that accepts only a single Component parameter with no
constraints, in which case the component will be added as if you had specified the CENTER area. However,
since this form of add() doesn’t explicitly identify which area the component is added to and may be
confusing to someone reading your code, you should explicitly specify CENTER instead.

The last component you add to a region is the only one that will be displayed, so if you add a
component and specify an area that’s already occupied, the component that was previously added will
not appear. However, you’ll normally add a single component to a particular region, so you’ll usually only
encounter this behavior with code that was written incorrectly.

Child Component Sizes
The size assigned to a child component by BorderLayout depends upon a number of factors, including the
following: the component’s preferred size, the region of the container in which the component is displayed,
the preferred size of the other components within the container, and the size of the container:

• North component: The component displayed in the NORTH area is assigned a height
equal to its preferred height and a width equal to the available width of the container.
The available width is defined as the container’s total width minus its right and left
inset values.

• South component: Like the NORTH component, the component displayed in the
SOUTH area is assigned a height equal to its preferred height and a width equal to the
available width of the container.

• East component: The component displayed in the EAST area is assigned a width
equal to its preferred width and a height equal to the available height of the
container minus the vertical space occupied by the NORTH and SOUTH components.
The available height of the container is defined as the container’s total height minus
its top and bottom inset values.

• West component: Like the EAST component, the component displayed in the WEST
area is assigned a width equal to its preferred width. Its height is set to the available
height of the container minus the vertical space occupied by the NORTH and SOUTH
components.

• Center component: The CENTER component is allocated any space that’s left over
inside the container after the other four components have been allocated space as
described previously. As a result, the CENTER component shrinks and expands to fill
the remaining area, so its size depends upon the size of the container and how much
of that space is taken up by the other components in the container.

Child Component Locations
The location of each child component managed by BorderLayout is explicitly identified when it’s added
to the container. That is, the NORTH component appears at the top of the container, the SOUTH component
at the bottom, the EAST component on the right, and the WEST component on the left. The CENTER component
occupies any remaining area in the center of the container.

CHAPTER 6 ■ USING LAYOUT MANAGERS

224

Resizing Behavior
When BorderLayout manages a container’s components, reducing the container’s vertical size causes the
EAST, CENTER, and WEST components to become “shorter” (smaller vertically) until there’s only enough
vertical space to display the NORTH and SOUTH components. Reducing the container’s height so that it’s
smaller than the combined height of the NORTH and SOUTH components (which are always displayed using
their preferred height values) causes those two components to overlap one another, as shown in Figure 6-11.

Figure 6-12. BorderLayout horizontally resizes the EAST and WEST components as the container height
changes

Figure 6-11. BorderLayout vertically resizes the NORTH and SOUTH components as the container height
changes

Reducing the width of a container managed by a BorderLayout initially causes the widths of the NORTH,
CENTER, and SOUTH components to become smaller until the CENTER component eventually disappears
completely. At that point, reducing the container’s width further causes the EAST and WEST components to
overlap, as shown in Figure 6-12.

Increasing the size of a BorderLayout-managed container causes the CENTER component to become
larger and can increase the widths of the NORTH and SOUTH components and the heights of the EAST and WEST
components.

CHAPTER 6 ■ USING LAYOUT MANAGERS

225

Container Size
The minimum size defined for a container managed by a BorderLayout is calculated by calling the
getMinimumSize() method for all components in the container. The minimum widths of the WEST, CENTER,
and EAST components are added together (if they’re present) along with the value needed to create a
horizontal gap, and that sum is treated as a single value. The value is then compared to the minimum width
of the NORTH component and the minimum width of the SOUTH component, and the largest value of the
three is chosen as the container’s minimum width. The minimum height of the container is selected using a
similar approach, but the sequence of steps is slightly different. The minimum heights of the WEST, CENTER,
and EAST components are compared, and the largest of those three values is selected. That value is then
added to the minimum height of the NORTH and SOUTH components along with the space needed for vertical
gaps, and that value is used as the container’s minimum height.

The preferred size of a BorderLayout-managed container is calculated using the same approach
described previously, except that the getPreferredSize() method is called for each component instead of
getMinimumSize().

GridBagLayout
GridBagLayout is by far the most flexible layout manager that’s included with Java, but it doesn’t enjoy
widespread popularity among Java programmers because of its complexity and its sometimes nonintuitive
behavior. However, GridBagLayout is often the only layout manager flexible enough to arrange components
in a particular manner and is used frequently in spite of the difficulty involved.

As its name implies, GridBagLayout bears some similarity to GridLayout but only at a superficial level.
Both divide the container’s available display area into a grid of cells, but beyond that, GridBagLayout and
GridLayout don’t have much in common. Some of the important differences between them include the
following:

When using a • GridLayout, a component’s position within the grid is determined by
the order in which it’s added to the container relative to other components. With a
GridBagLayout, you can explicitly define the component’s location within the grid.

Each component in a • GridLayout occupies exactly one cell in the grid, but
components managed by a GridBagLayout can span multiple rows and/or columns
within the grid.

• GridLayout assigns each row the same height and each column the same width,
which causes every cell in the grid to have the same dimensions. In contrast,
GridBagLayout allows each row to have a separate height and every column its own
width, so every cell in the grid can theoretically have a unique size.

• GridLayout doesn’t support any constraints, while GridBagLayout allows you to
specify a different set of constraint values for each component; those constraints
allow you to customize the component’s size and position within the grid.

If you’re not already familiar with it, you may be wondering why GridBagLayout is considered so
difficult to use by many Java programmers. Some of the possible reasons are as follows:

• The number of constraints and their interactions: GridBagConstraints
encapsulates 11 constraint values, and each child component is assigned its own
instance of GridBagConstraints. Although no single constraint is particularly
difficult to understand, the way in which the constraints interact with one another
and with the constraints of other components is somewhat complex.

CHAPTER 6 ■ USING LAYOUT MANAGERS

226

• Row height and column width: GridBagLayout’s ability to provide a separate height
for each row and width for each column is one of its primary advantages, but that
capability also adds a great deal of complexity to its use. In some cases, especially
with complex layouts containing many components, it can be difficult to predict
what a component’s size or position will be, and it’s easy to make mistakes that
produce results that are different from what you expected.

• Component location: When you see a component inside a GridLayout, it’s usually
easy to identify which cell the component occupies without examining the source
code. That’s because all cells (and components) are the same size and because the
cells are aligned with one another. In the case of a GridBagLayout, identifying which
cell or cells a component occupies can be difficult, since cell widths and heights can
vary and since a component can span multiple cells.

• Component size: Most other layout managers have simple rules that determine the
size that a component is set to, but GridBagLayout provides much greater flexibility
in this area, as well as more complexity.

Figure 6-13 provides a simple example of the type of problem that can be difficult to diagnose when
using GridBagLayout. In this case, a frame was created, and a JLabel and a JTextField were added to it.
However, a large gap exists between the label and text field, and since JLabel instances are transparent by
default, there’s no indication of whether the gap is because of the label’s size or exists for some other reason.
Most of the time, a component includes a border that’s drawn around its edges, and that border provides
you with an easy way to estimate the component’s size. However, some frequently used components such
as JLabel and JPanel don’t include a border by default, and it can be more difficult to determine their sizes
visually.

Figure 6-13. Even if you’re familiar with GridBagLayout, it’s not always obvious why it doesn’t produce the
expected results

When you’re designing a user interface using a GridBagLayout, this type of problem can cause a great
deal of frustration. However, you can modify your code in some simple ways so it provides you with visual
feedback on the size of your components and/or the cells that they occupy. For example, when working with
a JLabel or JPanel, it can be helpful to temporarily add a border or set the component’s background color
so you can easily identify its edges. The following code sets the background color for the JLabel used in the
previous example, and Figure 6-14 shows how this is reflected in the interface:

label.setBackground(Color.pink);
label.setOpaque(true);

CHAPTER 6 ■ USING LAYOUT MANAGERS

227

In this case, the color was set to green, but you can use any color that contrasts with the background
color of the parent container. Note also that it was necessary to call the setOpaque() method, since a JLabel
normally has a transparent background. Although setting the label’s background color did establish that the
label itself doesn’t occupy the space between its text and the JTextField, it’s still not clear why such a large
gap appears between the two components.

Another way to provide helpful visual information is to create a JPanel subclass that overrides the
paintComponent() method and uses information provided by GridBagLayout to draw the borders of each
cell within the grid. The getLayoutDimensions() method returns a two-dimensional array of integer values
that identifies the height of each row and width of each column in the grid. Listing 6-6 shows how this affects
the interface when this technique is used.

Listing 6-6. A Class That Puts Borders Around Layout Cells

import java.awt.*;
import javax.swing.*;

public class GridBagCellPanel extends JPanel {

 public void paintComponent(Graphics g) {
 super.paintComponent(g);
 LayoutManager manager = getLayout();
 if ((manager != null) && (manager instanceof GridBagLayout)) {
 GridBagLayout layout = (GridBagLayout)manager;
 g.setColor(getForeground());
 Point p = layout.getLayoutOrigin();
 int[][] sizes = layout.getLayoutDimensions();
 int[] colWidths = sizes[0];
 int[] rowHeights = sizes[1];
 int width, height;
 int xpos = p.x;
 int ypos;
 for (int x = 0; x < colWidths.length; x++) {
 ypos = p.y;
 width = colWidths[x];
 for (int y = 0; y < rowHeights.length; y++) {
 height = rowHeights[y];
 g.drawRect(xpos, ypos, width - 1, height - 1);
 g.drawRect(xpos + 1, ypos + 1, width - 3,
 height - 3);

Figure 6-14. Temporarily changing a component’s background color is one way to determine what portion of
a panel GridBagLayout has allocated to it

CHAPTER 6 ■ USING LAYOUT MANAGERS

228

 ypos += height;
 }
 xpos += width;
 }
 }
 }

}

If the user interface is added to an instance of the GridBagCellPanel class, a dark border appears
around the edge of each cell in the grid, as shown in Figure 6-15. This illustrates that the column containing
the label is very large, and the gap exists because the component is positioned on the left side of its cell.

Figure 6-15. Drawing borders around components makes it apparent how much space a GridBagLayout has
allocated to a component’s cell

This example illustrates another important point related to GridBagLayout: a component doesn’t
necessarily expand to completely fill the cell or cells that it occupies. A component’s size is normally set to its
preferred or minimum size, and in this case, the component’s preferred width is considerably smaller than
the width of the cell it occupies. It’s important to keep in mind this distinction between a component’s actual
size and its display area or the area of the container reserved for that component. A component’s display area
is the rectangular region defined by the cell or cells assigned to the component. In this case, only a single cell
was assigned to each component, but as mentioned earlier, a cell can span multiple rows and/or columns.

Constructing a GridBagLayout
GridBagLayout provides only a single, no-argument constructor, so it’s very simple to create one.

GridBagLayout gbl = new GridBagLayout();

Constraints
Each component that’s added to a container managed by a GridBagLayout has an associated set of
constraint values, and those values are encapsulated by an instance of the GridBagConstraints class.

GridBagConstraints provides two constructors: one that accepts no parameters and another that
accepts the 11 constraint values that are supported. Although you can use either constructor, code that
passes many parameter values to a constructor can be difficult to understand, even for someone who’s
familiar with GridBagLayout, so you should avoid using that form. GridBagConstraints represents one of

CHAPTER 6 ■ USING LAYOUT MANAGERS

229

the few cases in Java where it’s acceptable to access the fields within an object without using accessor and
mutator methods. In fact, because GridBagConstraints doesn’t provide accessor or mutator methods for its
properties, you must set those properties directly by assigning them values.

GridBagConstraints constraints = new GridBagConstraints();
constraints.gridx = 0;
constraints.gridy = 3;

When you add a component to a container managed by a GridBagLayout, you can use the add()
method that accepts a Component and a constraint’s Object, or you can use the simpler form that accepts
only a Component reference. However, if you use the simpler form, you must call the setConstraints()
method in GridBagLayout to associate the Component with a set of constraint values. For example, suppose
you’ve created the following code:

GridBagLayout layout = new GridBagLayout();
setLayout(layout);
GridBagConstraints constraints = new GridBagConstraints();
JButton button = new JButton("Testing");

You can add the button to the container after first associating it with the set of constraints, as in the
following code:

layout.setConstraints(button, constraints);
add(button);

Alternatively, you can use the form of the add() method that accepts a parameter representing
constraint information:

add(button, constraints);

Both of these approaches are valid, but the second one is probably somewhat more intuitive for most
people and requires slightly less code.

Although you’ll typically add more than one component to a container and each component
will usually have different constraint values from the others, you can use the same instance of
GridBagConstraints for all components. That’s because when you add a component to a container
managed by a GridBagLayout, the layout manager uses the clone() method in GridBagConstraints to
make a “deep copy” of the constraints. In other words, when you add a component, a copy is made of its
associated GridBagConstraints object, and that copy is saved by the GridBagLayout for later reference.
Therefore, you can use a single GridBagConstraints object repeatedly, since the layout manager uses it just
long enough to create a copy of it.

Fields Defined in GridBagConstraints

The following fields are defined in GridBagConstraints, most of which are int values. However, the insets
field is a reference to an instance of the java.awt.Insets class, and weightx and weighty are double
(floating-point) values.

CHAPTER 6 ■ USING LAYOUT MANAGERS

230

gridx

This constraint allows you to identify the first/leftmost column within the grid that should be assigned to the
component’s display area. The first column (the one at the left edge of the container) corresponds to a value
of 0, the next column to a value of 1, and so on. For example, to specify that a component should begin in the
first column, you can add the following code to your application:

GridBagConstraints constraints = new GridBagConstraints();
constraints.gridx = 0;

By default, the gridx constraint value is set to GridBagConstraints.RELATIVE, which is discussed in a
moment.

gridy

This constraint allows you to identify the first/top row within the grid that should be assigned to the
component’s display area. The first row (the one at the top edge of the container) corresponds to a value of
0, the next row to a value of 1, and so on. For example, to specify that a component should begin in the third
row, you can add the following code to your application:

GridBagConstraints constraints = new GridBagConstraints();
constraints.gridy = 2;

By default, the gridy constraint value is set to GridBagConstraints.RELATIVE.

Relative Positioning

The two examples shown previously both use absolute position values. However, you can set gridx and/or
gridy to the value defined by the RELATIVE constant in GridBagConstraints to indicate that the component
should be positioned relative to some other component. If you specify RELATIVE for gridx and an absolute
value for gridy, the component you add will be placed at the end of the row identified by the gridy value.
For example, Listing 6-7 will create five JButton instances, adding three of them to the second row using
relative positioning.

Listing 6-7. Adding Components with a Relative X Position

import java.awt.*;
import javax.swing.*;

public class RelativeX {

 public static void main(String[] args) {
 JFrame f = new JFrame();
 f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Container pane = f.getContentPane();
 pane.setLayout(new GridBagLayout());
 GridBagConstraints constraints = new GridBagConstraints();
 constraints.gridy = 0;
 pane.add(new JButton("First row"), constraints);
 constraints.gridx = GridBagConstraints.RELATIVE;
 constraints.gridy = 1;

CHAPTER 6 ■ USING LAYOUT MANAGERS

231

 pane.add(new JButton("Second row, first column"), constraints);
 pane.add(new JButton("Second row, second column"), constraints);
 pane.add(new JButton("Second row, third column"), constraints);
 constraints.gridy = 2;
 pane.add(new JButton("Third row"), constraints);
 f.setSize(600, 300);
 f.setVisible(true);
 }

}

Figure 6-16 shows the display produced by this program.

Figure 6-16. Specifying an absolute Y position and a relative X position causes a component to appear to the
right of the one most recently added for the same Y position

Similarly, specifying an explicit column/gridx value and RELATIVE for the row/gridy value causes
components to be added on a top-to-bottom basis to the specified column. For example, Listing 6-8 will
create five JButton instances, adding three of them to the second column using relative positioning.

Listing 6-8. Adding Components with a Relative Y Position

import java.awt.*;
import javax.swing.*;

public class RelativeY {

 public static void main(String[] args) {
 JFrame f = new JFrame();
 f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Container pane = f.getContentPane();
 pane.setLayout(new GridBagLayout());
 GridBagConstraints constraints = new GridBagConstraints();
 constraints.gridx = 0;
 pane.add(new JButton("First column"), constraints);
 constraints.gridx = 1;
 constraints.gridy = GridBagConstraints.RELATIVE;

CHAPTER 6 ■ USING LAYOUT MANAGERS

232

 pane.add(new JButton("Second column, first row"), constraints);
 pane.add(new JButton("Second column, second row"), constraints);
 pane.add(new JButton("Second column, third row"), constraints);
 constraints.gridx = 2;
 pane.add(new JButton("Third column"), constraints);
 f.setSize(500, 300);
 f.setVisible(true);
 }

}

This version produces the display shown in Figure 6-17.

Figure 6-17. Specifying an absolute X position and a relative Y position causes a component to appear below
the one most recently added for the same X position

You can also specify RELATIVE for both gridx and gridy when adding a component to a container. If
you do so, the component will be added to the end of the top row (row 0) in the grid, as in Listing 6-9.

Listing 6-9. Adding Components with Relative X and Y Coordinates

import java.awt.*;
import javax.swing.*;

public class RelativeXY {

 public static void main(String[] args) {
 JFrame f = new JFrame();
 f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Container pane = f.getContentPane();
 pane.setLayout(new GridBagLayout());
 GridBagConstraints constraints = new GridBagConstraints();
 constraints.gridx = 1;
 constraints.gridy = GridBagConstraints.RELATIVE;

CHAPTER 6 ■ USING LAYOUT MANAGERS

233

 pane.add(new JButton("First row, first column"), constraints);
 pane.add(new JButton("Second row"), constraints);
 pane.add(new JButton("Third row"), constraints);
 constraints.gridx = GridBagConstraints.RELATIVE;
 pane.add(new JButton("First row, second column"), constraints);
 f.setSize(500, 300);
 f.setVisible(true);
 }

}

That code results in the display shown in Figure 6-18.

Figure 6-18. Specifying RELATIVE for both the X and Y coordinates results in components being added to the
end of the top row

fill

By default, a component’s size is set to either its preferred size or its minimum size, regardless of the size
of the cell or cells reserved for it. At the beginning of this section on GridBagLayout, you saw a JLabel in a
column that was much wider than the label’s preferred width, so the label occupied only a small portion of
its available display area. However, you can use the fill constraint to indicate that the component should
be stretched to fill its available display area horizontally, vertically, or both. For example, Listing 6-10 creates
three buttons, and the first two are displayed using their preferred sizes. However, the third button expands
horizontally to fill the width of its column.

CHAPTER 6 ■ USING LAYOUT MANAGERS

234

Listing 6-10. Effects of the fill Constraint

import java.awt.*;
import javax.swing.*;

public class Fill {

 public static void main(String[] args) {
 JFrame f = new JFrame();
 f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Container pane = f.getContentPane();
 pane.setLayout(new GridBagLayout());
 GridBagConstraints constraints = new GridBagConstraints();
 constraints.gridx = 0;
 constraints.gridy = GridBagConstraints.RELATIVE;
 pane.add(new JButton("This button’s preferred width " +
 "is large because its text is long"),
 constraints);
 pane.add(new JButton("Small centered button"), constraints);
 constraints.fill = GridBagConstraints.HORIZONTAL;
 pane.add(new JButton("Expands to fill column width"), constraints);
 f.setSize(400, 300);
 f.setVisible(true);
 }

}

Figure 6-19 shows the display produced by this example.

Figure 6-19. You can make a component fill its entire cell vertically and/or horizontally

CHAPTER 6 ■ USING LAYOUT MANAGERS

235

GridBagConstraints has four constants that you can use to set the fill value.

• HORIZONTAL: this expands the component horizontally to fill its display area.

• VERTICAL: this expands the component vertically to fill its display area.

• BOTH: this expands the component both horizontally and vertically to fill its display
area.

• NONE: the component should be allowed to remain at its natural (preferred or
minimum) size; this is the default value.

gridwidth

This constraint identifies the number of columns that the component spans, and its default value is 1. For
example, in Figure 6-20, the button in the third row spans both columns.

Figure 6-20. Notice that the component in the third row spans two of the columns in the first row

Listing 6-11 shows the code to create this display.

Listing 6-11. Effects of the gridwidth Constraint

import java.awt.*;
import javax.swing.*;

public class ColumnSpan {

 public static void main(String[] args) {
 JFrame f = new JFrame();
 f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Container pane = f.getContentPane();
 pane.setLayout(new GridBagLayout());
 GridBagConstraints constraints = new GridBagConstraints();
 constraints.gridx = 1;

CHAPTER 6 ■ USING LAYOUT MANAGERS

236

 constraints.gridy = GridBagConstraints.RELATIVE;
 pane.add(new JButton("First row, first column"), constraints);
 pane.add(new JButton("Second row"), constraints);
 constraints.gridwidth = 2;
 pane.add(new JButton("Third row, spans two columns"), constraints);
 constraints.gridwidth = 1;
 constraints.gridx = GridBagConstraints.RELATIVE;
 pane.add(new JButton("First row, second column"), constraints);
 f.setSize(400, 300);
 f.setVisible(true);
 }

}

In this case, the button’s size is set to its preferred width, and the button is centered horizontally
within its display area. However, you can make it fill both columns by setting the fill value, as shown in
Listing 6-12.

Listing 6-12. Filling the Entire Column

import java.awt.*;
import javax.swing.*;

public class ColumnSpan {

 public static void main(String[] args) {
 JFrame f = new JFrame();
 f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Container pane = f.getContentPane();
 pane.setLayout(new GridBagLayout());
 GridBagConstraints constraints = new GridBagConstraints();
 constraints.gridx = 1;
 constraints.gridy = GridBagConstraints.RELATIVE;
 pane.add(new JButton("First row, first column"), constraints);
 pane.add(new JButton("Second row"), constraints);
 constraints.gridwidth = 2;
 constraints.fill = GridBagConstraints.HORIZONTAL;
 pane.add(new JButton("Third row, spans two columns"), constraints);
 constraints.gridwidth = 1;
 constraints.fill = GridBagConstraints.NONE;
 constraints.gridx = GridBagConstraints.RELATIVE;
 pane.add(new JButton("First row, second column"), constraints);
 f.setSize(400, 300);
 f.setVisible(true);
 }

}

CHAPTER 6 ■ USING LAYOUT MANAGERS

237

In addition to specifying an explicit number of columns to span, you can use the REMAINDER constant
defined in GridBagConstraints. This indicates that the component’s display area should begin with the
column specified by the gridx value and that it should fill all the remaining columns to the right of that
column. Figure 6-22 shows an example.

Figure 6-21. The components in the top and bottom rows now expand to fill their entire cells

Figure 6-22. Specifying REMAINDER for the width causes the cell’s width to span the rest of the row

With these alterations, the display now looks like Figure 6-21.

CHAPTER 6 ■ USING LAYOUT MANAGERS

238

Listing 6-13 shows the code to produce this display.

Listing 6-13. Using the REMAINDER Value for a Width

import java.awt.*;
import javax.swing.*;

public class Remainder {

 public static void main(String[] args) {
 JFrame f = new JFrame();
 f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Container pane = f.getContentPane();
 pane.setLayout(new GridBagLayout());
 GridBagConstraints constraints = new GridBagConstraints();
 pane.add(new JButton("First row, first column"), constraints);
 pane.add(new JButton("First row, second column"), constraints);
 pane.add(new JButton("First row, third column"), constraints);
 constraints.gridx = 0;
 pane.add(new JButton("Second row"), constraints);
 constraints.gridwidth = GridBagConstraints.REMAINDER;
 constraints.fill = GridBagConstraints.HORIZONTAL;
 pane.add(new JButton(
 "Third row, gridwidth set to REMAINDER"), constraints);
 f.setSize(600, 300);
 f.setVisible(true);
 }

}

You can also set a gridwidth value to RELATIVE, which is similar to REMAINDER. However, RELATIVE
causes the component to span all remaining columns except the last one in the grid. For example, you might
make the following modifications to the Remainder class defined earlier:

pane.add(new JButton("Second row"), constraints);
constraints.gridwidth = GridBagConstraints.RELATIVE;
constraints.fill = GridBagConstraints.HORIZONTAL;
pane.add(new JButton("Third row, gridwidth set to RELATIVE"), constraints);

If you compile and execute the code, it will produce a display like the one shown in Figure 6-23.

CHAPTER 6 ■ USING LAYOUT MANAGERS

239

gridheight

Just as gridwidth defines the number of columns that a component’s display area spans, this constraint
defines the number of rows allocated. As with gridwidth, you can specify RELATIVE, REMAINDER, or an
absolute value. Listing 6-14 provides an example of this.

Listing 6-14. Effects of the gridheight Constraint

import java.awt.*;
import javax.swing.*;

public class GridHeight {

 public static void main(String[] args) {
 JFrame f = new JFrame();
 f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Container pane = f.getContentPane();
 pane.setLayout(new GridBagLayout());
 GridBagConstraints constraints = new GridBagConstraints();
 pane.add(new JButton("First row, first column"), constraints);
 pane.add(new JButton("First row, second column"), constraints);
 constraints.gridheight = GridBagConstraints.REMAINDER;
 constraints.fill = GridBagConstraints.VERTICAL;
 pane.add(new JButton("First row, third column"), constraints);
 constraints.gridx = 0;
 constraints.gridheight = 1;
 constraints.fill = GridBagConstraints.NONE;
 pane.add(new JButton("Second row"), constraints);
 pane.add(new JButton("Third row"), constraints);
 f.setSize(600, 300);
 f.setVisible(true);
 }

}

Figure 6-23. Specifying RELATIVE for the width causes the cell’s width to span the rest of the row except for the
last column in the row

CHAPTER 6 ■ USING LAYOUT MANAGERS

240

Figure 6-24 illustrates the behavior of this new class.

Figure 6-24. Specifying REMAINDER for the height causes the cell to span the rest of the rows in the grid

The default value for gridheight is 1, which causes the component to occupy a single row in the grid.

anchor

You can use this constraint to identify how a component should be positioned within its display area when
its size is smaller than that area. The anchor constraint should be set to one of the following nine values:
CENTER, NORTH, NORTHEAST, EAST, SOUTHEAST, SOUTH, SOUTHWEST, WEST, or NORTHWEST. The default value
(CENTER) causes the component to be centered both vertically and horizontally within its display area, and
the other values define a corner or side of the area. For example, NORTHEAST causes the component to be
placed in the upper-right corner of its display area, EAST causes it to be centered vertically and placed against
the right side of its display area, and so on. To illustrate an example of this behavior, suppose you make the
following additions to the GridHeight class defined previously:

constraints.fill = GridBagConstraints.NONE;
constraints.anchor = GridBagConstraints.EAST;
pane.add(new JButton("Second row"), constraints);
constraints.anchor = GridBagConstraints.CENTER;
pane.add(new JButton("Third row"), constraints);

This modification causes the button in the second row to appear in the “east”/right side of its display
area, as shown in Figure 6-25. However, once that button has been added to the panel, the anchor property
changes back to CENTER (the default value), so the button in the third row appears centered.

CHAPTER 6 ■ USING LAYOUT MANAGERS

241

insets

The insets constraint is a reference to an instance of the Insets class and allows you to define some
number of pixels that should be reserved around the four edges (top, left, bottom, and right) of the
component’s display area. You’ll typically use this to provide whitespace between components in adjacent
rows and columns, just as horizontal and vertical gap values are used by other layout managers. However,
GridBagLayout’s approach is much more flexible, because you can specify a different gap size for every
component and also specify a unique size for each side of the component.

To set the inset values for a component, you can create an instance of Insets or modify the one that’s
created automatically when a GridBagConstraints object is created. The following code segment illustrates
how to set these values:

GridBagConstraints constraints = new GridBagConstraints();
constraints.insets = new Insets(5, 10, 5, 10);

You can also use the following:

GridBagConstraints constraints = new GridBagConstraints();
constraints.insets.top = 5;
constraints.insets.left = 10;
constraints.insets.bottom = 5;
constraints.insets.right = 10;

If you insert one of these two code segments into the GridHeight class defined earlier, compile the
code, and execute it, it will produce a display like the one shown in Figure 6-26.

Figure 6-25. The anchor constraint affects where and how components are aligned within their cells

CHAPTER 6 ■ USING LAYOUT MANAGERS

242

One final point worth noting relative to insets is that a component is never allowed to overlay the inset
portions of its display area, even if the fill constraint causes the component be stretched.

ipadx

You can add this value to the component’s preferred or minimum size to determine the width of the
component, and the i refers to the fact that the pad value is added to the component’s “internal” (in
other words, preferred or minimum) width as opposed to its current (displayed) width. For example,
if a component has a preferred width of 40 pixels and you specify a value of 10 for this constraint, the
component will be 50 pixels wide when the components are displayed using preferred widths. You can also
make components smaller than their preferred or minimum sizes by specifying negative pad values, so if you
were to specify a value of -10 for this constraint in the previous example, the component would be assigned
a width of 30 pixels instead of its preferred width of 40 pixels. The default value of this constraint is 0.

ipady

Just as ipadx represents some number that’s added to a component’s preferred or minimum width, this
value is added to the component’s height before it’s displayed. The default value of this constraint is 0.

weightx

This value determines how to resize the columns in the grid when the container is either wider or narrower
than the area needed to display the components at their preferred or minimum widths. If all components
in a grid have a weightx value of 0.0 (the default), any extra horizontal space is divided evenly between the
left and right edges of the container. I provide a detailed description of how weights are used and how they
interact with other constraints later.

weighty

This value determines how to resize the rows within the grid when the container’s height is larger or smaller
than the size needed to display the components using their preferred or minimum heights. If all components
in a grid have a weighty value of 0.0 (the default), any extra vertical space is divided evenly between the top
and bottom edges of the container.

Figure 6-26. Insets represent unused space between the outer edges of the components and their cells

CHAPTER 6 ■ USING LAYOUT MANAGERS

243

Calculating Row Heights and Column Widths

The initial calculation of the height of a row happens by determining the amount of space that’s needed to
display the tallest component in the row. The height of a particular component is the sum of its preferred or
minimum height, the vertical pad value (ipady) specified for its constraints, and the top and bottom insets
that should appear around the component.

Similarly, when calculating the width of a column, the width needed for each component is calculated,
and the largest value is used as the column’s width. A component’s width is defined as the sum of its
preferred or minimum width, its horizontal pad (ipadx) value, and its right and left inset values. For
example, suppose you’ve created a container with nine child components, and those components have the
width values specified in Table 6-2.

Table 6-3. Column Widths for the Three Columns in the Table

Column 1 Width Column 2 Width Column 3 Width

47 50 32

Table 6-2. Preferred Widths of the Components in a Table with Three Rows and Three Columns

Column 1 Column 2 Column 3

35 50 32

47 25 10

28 30 28

Given these nine components and their preferred widths, the width of each of the three columns can
easily be determined by selecting the largest preferred width from each column, as shown in Table 6-3. This
assumes that the ipadx and left and right insets for all components are 0; otherwise, those values will be
added to the appropriate component’s width when determining the column width.

Calculating Sizes When Components Span Multiple Cells

The process of calculating a row height or column width is slightly more complex when it involves a
component that spans multiple rows or columns. When calculating row heights and column widths,
GridBagLayout processes the components in order of their gridwidth (for column widths) and gridheight
(for row heights) values. For example, to calculate column widths, the layout manager will first examine the
components that have a gridwidth of 1, then those with a gridwidth of 2, and so on.

When GridBagLayout needs to determine the size of a column and it encounters a component that
spans multiple columns, it attempts to distribute the component’s preferred width across those columns.
The distribution occurs in left-to-right order, and any remaining width is distributed to the last column that
the component occupies. For example, suppose you have the same components described earlier, but with
a component in the second row that has a gridwidth value of 2 (in other words, it fills the first two columns).
In that case, the column widths will be calculated as shown in Table 6-4. In this example, the first component
in the second row spans the first two columns (i.e., it has a grid width of 2).

CHAPTER 6 ■ USING LAYOUT MANAGERS

244

When the layout manager examines the components with a gridwidth value of 1, it establishes
preliminary widths of 35, 50, and 32 for the three columns. However, when it examines components with a
gridwidth of 2, it determines that the existing column widths aren’t adequate to allow the components to be
displayed properly. This is because of the component in the second row that spans the first two columns and
has a width of 109 pixels. Since that component’s width exceeds the sum of the preliminary widths for the
columns it occupies (35 + 50 = 85), the width of the second column is increased to 74 (109 – 35 = 74) so that
the component’s size can be accommodated. As Table 6-5 shows, the second column’s width is expanded to
74 to accommodate the wide component in the first row that spans the first and second columns.

Table 6-4. A Component That Spans Multiple Columns

Weight Values, Row Heights, and Column Widths

One of the more confusing aspects of GridBagLayout is how components’ weightx values affect column
widths and how weighty values affect row heights. When a GridBagLayout attempts to organize the
components in its container, it compares the amount of space it needs to the actual size of the container. If
the two sizes aren’t the same, the layout manager must decide where and by how much to increase or reduce
the size of rows and columns, and it uses weight values for this purpose. Stated simply, the weight values you
specify through GridBagConstraints assign each row and column a weight, and the amount of space taken
from or added to a row or column is determined by its weight value.

Distributing Extra Space

The following example illustrates how space is distributed, but for the sake of simplicity, it involves only
weightx values and column width adjustments. However, the calculation of row heights using weighty
values takes place in the same way, so the concepts are relevant to both column widths and row heights.

Let’s assume you’ve created a container that uses a GridBagLayout to manage the size and position of
its child components and that it needs a width of 400 pixels to display the components using their minimum
sizes. However, let’s also assume that when the layout manager prepares to arrange the components, it
determines that the container is 600 pixels wide. In this case, the GridBagLayout must determine how to
distribute the extra 200 pixels to its columns.

Calculating Column Weights

The first step that the GridBagLayout must take is to calculate a weight for each column, and that weight will
determine how many of the extra 200 pixels are distributed to the column. In the simplest case where each
component has a gridwidth value of 1 (in other words, no component spans multiple columns), the weight
of a column is defined as the largest weightx value of any component within that column. For example,
suppose that Table 6-6 represents the weightx values of components in a container.

Table 6-5. Derived Column Widths

Column 1 Width Column 2 Width Column 3 Width

35 74 44

CHAPTER 6 ■ USING LAYOUT MANAGERS

245

Table 6-7. Weights of the Three Columns

Column 1 Weight Column 2 Weight Column 3 Weight

20 50 30

Table 6-8. Calculating Weights When a Component Spans Two Columns

Table 6-9. Derived Weight Values

Column 1 Weight Column 2 Weight Column 3 Weight

1.0 1.0 2.0

Table 6-6. weightx Settings for the Components in the Respective Cells

Column 1 Column 2 Column 3

15 10 15

10 25 30

20 50 10

Since the weight of a column is defined as the maximum weightx value in that column, the weights
of the three columns in this grid are 20, 50, and 30, respectively, as shown in Table 6-7. The weight of each
column is equal to the largest weightx value selected from all the components in the column.

Note that although this example has been deliberately designed so that the sum of the column weights
is 100, there’s no technical reason why this is necessary: it was simply done that way here to simplify the
example. In fact, as you’ll see shortly, neither the weights’ absolute values nor their sum is particularly
important, but you may find it easier to work with round numbers.

In the case where a component spans multiple columns, the calculation of a column’s weight value is
slightly more complex. Using a different set of components in some other container, let’s suppose three rows
of components appear in the grid and that the second row contains a component that spans the second and
third columns, as shown in Table 6-8. It’s easy to guess the weight of the first column, since it’s simply the
maximum weightx value found in that column (1.0). However, it’s probably not as obvious how the weight
values of the remaining two columns are calculated.

Table 6-9 shows the weights calculated for the columns.

To understand how the weight values were derived for the second and third columns, it’s important to
know that when GridBagLayout calculates column weights, it processes components in order based on their
gridwidth values. In other words, GridBagLayout first examines the weightx values of all components that
have a gridwidth value of 1, then those that have a value of 2, and so on. In this case, the layout manager’s

CHAPTER 6 ■ USING LAYOUT MANAGERS

246

first iteration will process seven of the eight components in the container, initially ignoring the component
in the second row that has a gridwidth of 2. In the process of doing so, it calculates a preliminary column
weight of 0.25 for the second column and 0.5 for the third column.

On the GridBagLayout’s next iteration, it processes the weightx of the component that spans the second
and third columns and must distribute that value (3.0) across the two columns. It does this by distributing
the amount proportionally based upon the preliminary weight values of the columns. Specifically, it adds the
preliminary column weight values and divides the weight value of each column by that sum to determine a
percentage of the spanning component’s weightx value that should be distributed to the column.

For example, in this case, the preliminary weight values of the second and third columns are 0.25 and
0.5, respectively, and the sum of these two values is 0.75. Dividing the preliminary weight of the second
column by 0.75 produces a value of 0.33, and dividing the third column’s preliminary weight by the total
produces a value of 0.67. These values represent the percentage of the spanning component’s weightx value
that will be distributed to each column. Specifically, one-third (33%) will be assigned to the second column,
and the remaining two-thirds (67%) will be assigned to the third column. Since the weight of the component
that spans the two columns is 3, it represents a weight of 1 (3.0 * 0.33 = 1.0) for the second column and
2 (3.0 * 0.67 = 2.0) for the third.

Since the component in the second row represents a weightx value of 1 for the second column and 2 for
the third column, the second column’s final weight value is 1 and the third column’s final weight is 2.

Converting Weights to Percentages

Now that a weight value has been assigned to each column, those values can determine the amount of extra space
that should be allocated to each column. This happens by first calculating the sum of all column weight values
and dividing each column’s weight by that sum. In this case, the sum of all the weights is 4 (1.0 + 1.0 + 2.0 = 4), and
the first column is given one-fourth (25%) of the extra space. Similarly, the second column is allocated one-fourth
(25%) of the space, and the third and final column receives the remaining two-fourths (50%).

Distributing the Extra Space

Having calculated the percentage of extra space that should be added to the width of each column, it’s
easy to determine the number of pixels that will be distributed in this example. Since there are 200 extra
pixels, the first and second columns will be made wider by 50 pixels (200 * 0.25 = 50), and the third column
becomes 100 pixels wider (200 * 0.5 = 100).

Although this example describes a situation where extra space was being added to columns, the same
principles apply when you need to take away space. For example, if the container had been 200 pixels
smaller than it needed to be instead of 200 larger, the three columns would have been reduced in size by 50,
50, and 100 pixels, respectively.

General Guidelines for Setting Weights

As you can see, GridBagLayout’s behavior with respect to weight values is somewhat complex. However, you
can reduce the complexity in some cases by assigning weightx values only to the components in a single row
and weighty values to those in a particular column. If you do so, you’re effectively setting the weight value
for the entire row or column when you specify it for the component, which makes it easier to predict how
space will be added or taken away.

In addition, you may find it easier to use weight values that add up to some round number such as 1.0
or 100.0, allowing you to easily associate a weight value with a percentage. For example, given the previous
grid, you could specify the weightx values only on the components in the first row, as shown in Table 6-10.
In this scenario, weights are specified only for the components in the first row, resulting in the columns’
weights being assigned the corresponding values from those components.

CHAPTER 6 ■ USING LAYOUT MANAGERS

247

In this case, only the components in the first row were assigned weightx values, and the sum of those
values is 100, making it much more obvious how space will be added or removed from the columns. Specifically,
the first and second columns are allocated 25% of any extra space, and the third one is given the remaining 50%.

You may have noticed that in some examples, relatively large weight values (50, 10, 15, etc.) were used,
while smaller ones were specified at other times. I did this deliberately to illustrate a point: the absolute size
of weight values used is unimportant. What matters is how large those values are relative to one another.
In other words, you can produce the same results using fractional values as you can by using very large
numbers. For example, three columns with weights of 0.25, 0.25, and 0.50 have space distributed to them
in the same amounts that they would if the columns had weights of 100, 100, and 200.

It’s also important to remember that weights don’t necessarily represent the relative sizes of the cells
but rather the relative amount of space that will be added to or taken away from those cells. For example, if
you create a grid with two columns and the second column is assigned a weight that’s twice as large as the
first, you shouldn’t expect the second column to be twice as large. However, you can correctly assume that
the second column will be given twice as much extra space as the first if excess space is distributed to them.

GridBagTester

Even with a good understanding of GridBagLayout, it can be difficult to assign constraint values so that
your user interface is displayed correctly, and you may find it necessary to repeatedly modify, compile, and
execute your code. However, you can use the GridBagTester utility provided in the Source Code/Download
area of the Apress web site (www.apress.com) to test your user interface classes that use GridBagLayout and
to modify the constraint values graphically until they produce the desired results.

To use GridBagTester, you simply create an instance of it by passing its constructor a Container
that’s managed by a GridBagLayout, and GridBagTester will create a JFrame that displays the container. In
addition, it provides other information that describes the components, their constraint values, and the rows
and columns defined in the container grid.

A table at the top of the frame displays the width and weight of each column in
the grid. It also displays a value that identifies what percentage of space will be
added to or taken away from the column’s width if the container is made wider or
narrower than its current width.

A table on the left side of the frame displays the height and weight of each row
in the grid. It also displays a value that identifies what percentage of space will
be added to or taken away from the row’s height if the container is made taller or
shorter than its current height.

A table at the bottom of the frame displays information about each component
in the container. Specifically, that information includes the component’s name,
location within the container, actual/current size, preferred size, minimum size,
and constraint values assigned to the component. With the exception of the
preferred and minimum size values, all the cells in this table are editable. You can
dynamically change a component’s constraints and immediately see the effect of
your change upon its size and position, as well as the weight and size of any rows
and columns it occupies.

Table 6-10. Specifying Weights for Components in the First Row Only

http://www.apress.com/

CHAPTER 6 ■ USING LAYOUT MANAGERS

248

GridBagTester relies on a class called NumericTextField that’s used to allow entry of numeric
values; you can also download that class from the Source Code/Download area of the Apress web site
(www.apress.com).

As an example of how GridBagTester may be useful, suppose you’ve created a layout similar to the one
shown in Listing 6-15 that allows a first and last name to be entered, along with an address.

Listing 6-15. A Simple Application That Uses GridBagTester

import java.awt.*;
import javax.swing.*;

public class SimplePanel extends JPanel {

 public static void main(String[] args) {
 JFrame f = new JFrame();
 f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 f.getContentPane().add(new SimplePanel());
 f.setSize(400, 300);
 f.setVisible(true);
 }

 public SimplePanel() {
 super();
 GridBagConstraints constraints = new GridBagConstraints();
 GridBagLayout layout = new GridBagLayout();
 setLayout(layout);

 constraints.anchor = GridBagConstraints.WEST;

 constraints.gridy = 0;
 JLabel label = new JLabel("First name:");
 add(label, constraints);

 JTextField tf = new JTextField(8);
 add(tf, constraints);

 label = new JLabel("Last name:");
 add(label, constraints);

 tf = new JTextField(8);
 add(tf, constraints);

 constraints.gridy = 1;
 label = new JLabel("Address:");
 add(label, constraints);

 tf = new JTextField(10);
 add(tf, constraints);
 }

}

http://www.apress.com/

CHAPTER 6 ■ USING LAYOUT MANAGERS

249

Initially, it produces a display like the one shown in Figure 6-27.

Figure 6-27. Window that results from running the initial implementation of the SimplePanel class

Although this display is functional, it’s not very user-friendly. You can improve it by repeatedly
modifying, compiling, and executing your code, but doing so is tedious and time-consuming. Alternatively,
you can make a slight modification to the main() method that will allow you to view and modify the
component’s constraint information.

public static void main(String[] args) {
 // JFrame f = new JFrame();
 // f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 // f.getContentPane().add(new SimplePanel());
 // f.setSize(400, 300);
 // f.setVisible(true);
 GridBagTester gbt = new GridBagTester(new SimplePanel());
}

When the program runs now, the display is as shown in Figure 6-28.

CHAPTER 6 ■ USING LAYOUT MANAGERS

250

To test the utility, you might change the gridwidth value of the JTextField on the second row to
REMAINDER and its fill value to HORIZONTAL, which produces the display shown in Figure 6-29.

Figure 6-28. Window that results from running the initial implementation of the SimplePanel class

Figure 6-29. Changing the grid width value causes the address text field to span the entire row, resulting in a
more usable and appealing interface

CHAPTER 6 ■ USING LAYOUT MANAGERS

251

This improves the appearance of the display, but it still appears somewhat cluttered because no gaps
appear between the components. To add space between them, you could change the inset values for all the
components so there are 5 pixels above and below and 10 to the left and the right of each component, as
shown in Figure 6-30.

Figure 6-30. Adding insets also improves the appearance of the container by adding whitespace between the
child components

You may also find it helpful to use GridBagTester in addition to the GridBagCellPanel class defined
earlier so that you can easily identify the edges of a cell, as shown in Figure 6-31.

CHAPTER 6 ■ USING LAYOUT MANAGERS

252

For example, changing the superclass of SimplePanel from JPanel to GridBagCellPanel causes a
border to be drawn around each cell in the grid:

public class SimplePanel extends GridBagCellPanel {

Child Component Sizes
The size of a child component in a GridBagLayout depends upon the constraint values specified for the child
component as well as the size of the parent container. Specifically, the ipadx and ipady values are added to
the component’s preferred or minimum width and height, respectively, and the fill constraint can cause
the component to be expanded to fill its available display area.

I’ve stated a number of times that GridBagLayout uses a component’s preferred size or its minimum
size without explaining the circumstances in which one is used and the other isn’t. Very simply,
GridBagLayout attempts to use the preferred sizes of the child components, but it does so only if the
container is large enough to display all the child components using their preferred sizes. Otherwise, the
GridBagLayout reformats the display using the components’ minimum sizes. However, GridBagLayout
respects minimum sizes and will never make a component smaller than that size unless you specify a
negative value for either the ipadx property or the ipady property. In addition, it always adds the ipadx and
ipady values to either the preferred size or the minimum size, depending upon which one is being used.

To illustrate this behavior, let’s first review the components’ sizes in Figure 6-31, paying particular
attention to the JTextField instances. Notice that with the exception of the JTextField in the second row,
which has been stretched to fill three columns, each of the components is displayed using its preferred size.
You should also note that although the JLabel instances have the same values for preferred and minimum
sizes, the JTextField instances don’t. The JTextField minimum width values are much smaller than the

Figure 6-31. Combining GridBagTester and GridBagCellPanel creates an interface that allows you to easily
see the results of various constraint settings

CHAPTER 6 ■ USING LAYOUT MANAGERS

253

preferred widths (e.g., a minimum width of 4 pixels and a preferred width of 88 pixels). Since that’s the case,
you can expect that if the panel becomes too small to display the components using their preferred widths,
the text fields will shrink to their minimum sizes. As shown in Figure 6-32, that’s exactly what happens when
the dialog is made slightly narrower, reducing the container’s width as well. The second and fourth columns
have been reallocated 24 pixels wide each, since they both contain a JTextField with a minimum width of 4
and left and right inset values of 10.

Figure 6-32. Making the window narrower causes the text fields to “collapse” when they revert from their
preferred widths to their minimum widths

This behavior is somewhat undesirable, since the text fields can shrink dramatically in size to the point
of being unusable. One solution to the problem is to set the weightx values of the text fields so they don’t
shrink as much. For example, if you set the weightx for both of the JTextField instances in the first row to
0.5 and set their fill values to HORIZONTAL, they’ll grow and shrink as the width of the container changes
(see Figure 6-33). You could also use the ipadx values to ensure that the JTextField instances don’t become
unusable when set to their minimum sizes. However, doing so would also result in the specified number
of pixels being added to the JTextField widths when they’re displayed using their preferred sizes, causing
them to be larger than necessary in that case and wasting screen space.

CHAPTER 6 ■ USING LAYOUT MANAGERS

254

The fill value also can affect a component’s size, but it’s applied only after the grid’s row and column
sizes have been calculated. In other words, the fill value can affect the size of a component within its
display area, but unlike constraints such as ipadx, ipady, and insets, it’s not used in calculating the size
of that area. Similarly, the weight values are applicable only after the initial cell sizes have been calculated
using the component sizes, pads, and inset values.

Child Component Locations
The location of each child component in a GridBagLayout-managed container is determined primarily by
the component’s display area, which is identified by its gridx, gridy, gridwidth, and gridheight values.
Those values define the rectangular region within the grid that make up the component’s display area, and
the component will be displayed somewhere inside that area.

In addition to the number and location of cells that the component occupies, its anchor constraint
affects where a component is located within those cells. By default, a component is centered both vertically
and horizontally within its display area.

Resizing Behavior
If you shrink a container managed by a GridBagLayout so it can no longer display its components using their
preferred sizes, it reformats the display using their minimum sizes. If the container continues to shrink until
the components can’t be displayed using their minimum sizes, then portions of the display will disappear
from the panel, as shown in Figure 6-34.

Figure 6-33. Text field behavior improves when the weightx and fill values are modified

CHAPTER 6 ■ USING LAYOUT MANAGERS

255

Container Size
To calculate the preferred width of a container, GridBagLayout adds the widths of all grid columns in
the container, and those widths are calculated using the preferred width of each component in the
column. The sum of those width values is added to the container’s left and right inset values to obtain
the container’s preferred width, and its preferred height is calculated in the same manner using the
components’ preferred heights.

The container’s minimum size is calculated in the same manner, except that it uses the components’
minimum size values instead of their preferred sizes. GridBagLayout doesn’t impose any maximum size
limit on the container.

BoxLayout
A BoxLayout allows you to create either a single row or a single column of components. In other words, the
components you add to a BoxLayout are arranged vertically from top to bottom or horizontally from left to
right.

BoxLayout is different from the other layout managers in a number of ways, and it uses some properties
defined in Component that the other layout managers ignore. For example, BoxLayout respects a component’s
maximum size and will never make the component larger than the dimensions specified by that property.
In addition, a BoxLayout that arranges its components vertically (or a “vertical BoxLayout”) uses each
component’s alignment along the X axis, which is available through the getAlignmentX() method in
Component. Similarly, BoxLayout uses the components’ alignments along the Y axis (and the corresponding
getAlignmentY() method) when it arranges them horizontally.

BoxLayout is different from the other layout managers in one other important way: it uses a
component’s maximum size to determine the amount of space that the component should occupy. In many
cases, a component’s maximum size is the same as or close to its preferred size. However, as you’ll see later,
some components have large maximum size values, which can produce unexpected or undesirable results
when used with a BoxLayout.

Figure 6-34. GridBagLayout uses preferred sizes if enough space is available but reverts to the minimum size
if necessary

CHAPTER 6 ■ USING LAYOUT MANAGERS

256

Alignment Values, Ascents, and Descents
Component alignment values play a major role in determining how components are positioned within
a BoxLayout-managed container, but before I can cover how alignment values are used, it’s necessary to
define some terms.

A component’s alignment is represented by a float value that can range from 0.0 to 1.0, and you may
find it helpful to think of this number as a percentage value, with 0.0 representing 0% and 1.0 representing
100%. By default, a component’s X and Y alignment values are both set to 0.5. The component’s ascent value
is calculated by multiplying one of its dimensions by one of its alignment values. For example, if you’re using
a horizontal BoxLayout, you could calculate the preferred height ascent for a component by multiplying the
component’s preferred height by its Y alignment value, as in the following equation:

Dimension prefSize = comp.getPreferredSize();
int ascent = (int)(prefSize.height * comp.getAlignmentY());

Similarly, a component’s descent value is calculated by subtracting the component’s ascent value from
the size that was used to calculate the ascent, as follows:

int descent = prefSize.height - ascent;

In other words, the sum of the ascent and descent values is equal to the dimension that was used
to calculate them, and they represent the portions of the component that lie on either side of an
imaginary line. For example, suppose that the previous code was executed for a component with a
preferred height of 400 pixels and that the component’s Y alignment value is 0.25. The ascent value would
be 100 (400 * 0.25 = 100), and the descent value would be 300 (400 – 100 = 300).

Note that you can calculate ascent and descent values from a component’s preferred, minimum, or
maximum sizes, and as you’ll see, each one plays a role in BoxLayout’s behavior. In addition, the “ascent”
and “descent” concepts apply to both a component’s horizontal size as well as its vertical size, although
only one (either vertical or horizontal) is used in a given BoxLayout. A component’s horizontal ascent and
descent are used when it’s added to a vertical BoxLayout, while its vertical ascent and descent are used when
it’s in a horizontal BoxLayout. If this seems somewhat confusing, keep in mind that the horizontal placement
of components in a horizontal box is simple—they appear next to one another from left to right. Similarly,
for a vertical box, components are simply “stacked” from top to bottom. In either case, the alignment, ascent,
and descent values calculate the component’s position in the remaining dimension. You can see an example
of this behavior by compiling Listing 6-16, which uses a vertical BoxLayout.

Listing 6-16. A Simple BoxLayout Test

import java.awt.*;
import javax.swing.*;

public class BoxTest {

 public static void main(String[] args) {
 JFrame f = new JFrame("Vertical BoxLayout-managed container");
 f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Container pane = f.getContentPane();
 pane.setLayout(new BoxLayout(pane, BoxLayout.Y_AXIS));
 for (float align = 0.0f; align <= 1.0f; align += 0.25f) {
 JButton button = new JButton("X Alignment = " + align);
 button.setAlignmentX(align);
 pane.add(button);

CHAPTER 6 ■ USING LAYOUT MANAGERS

257

 }
 f.setSize(400, 300);
 f.setVisible(true);
 }

}

When executed, this code produces a display like the one shown in Figure 6-35.

Figure 6-35. An example of a component with varying alignment values arranged by a BoxLayout

In addition to the alignment values assigned to each component, an alignment value is calculated for a
container when it’s managed by a BoxLayout. The container’s horizontal alignment is calculated by a vertical
BoxLayout, and the vertical alignment is used by a horizontal BoxLayout. These are accessible through
LayoutManager2’s getLayoutAlignmentX() and getLayoutAlignmentY() methods, although BoxLayout is
currently the only layout manager that returns a meaningful value from those methods.

Layout Alignment Calculations

For a vertical BoxLayout, the container’s X alignment is used to position components within the container,
and its value is derived from the X alignment values of those components. The layout manager first examines
each component and identifies the largest minimum width ascent and minimum width descent (in other
words, ascent and descent values calculated using the components’ minimum widths) of any component.
Once it has identified those two values, it calculates their sum and divides the largest minimum width ascent
by that sum, and the result of that calculation becomes the container’s alignment.

For example, let’s assume Table 6-11 describes the components in a container managed by a vertical
BoxLayout. As mentioned, the ascent value is calculated by multiplying the dimension (in this case, the
width) by the alignment value, and the descent is the dimension value minus the ascent.

CHAPTER 6 ■ USING LAYOUT MANAGERS

258

In this case, the largest ascent value is 36 and the largest descent is 72. Therefore, the container’s
alignment value is 0.33, as calculated using the following formula:

alignment = max(ascent) / (max(ascent) + max(descent))

or using this formula:

alignment = 36 / (36 + 72) = 0.33

Note that although this example examines the calculation of the X alignment for a vertical BoxLayout,
the calculations are the same for a horizontal BoxLayout, although the components’ Y alignments and height
values are used instead.

Now that you’ve examined how a container’s alignment is calculated, you may be wondering why it’s
important. Conceptually, you can think of the container’s alignment as defining an imaginary line (or axis)
inside the container around which the components are positioned. For example, for a vertical BoxLayout, a
component with an X alignment of 0.0 will normally be placed completely to the right of the axis. Similarly,
a component with an alignment of 1.0 appears entirely to the left, while a component with an alignment
of 0.5 is centered on the axis. In other words, you can think of the component’s alignment as a value that
determines what portion of the component appears to the left of the container’s axis.

To identify the location of a container’s axis, you can multiply the appropriate alignment value by the
corresponding dimension. For example, if you’re using a horizontal container, you’d multiply the container’s
actual/current height by its Y alignment value. In Figure 6-36, the container’s axis is represented graphically
by a thick, dark-colored line (although you normally won’t see such an indication of its location when using
a BoxLayout).

Table 6-11. Minimum Width, X Alignment, Ascent, and Descent Values for Five Components

Minimum Width X Alignment Ascent Descent

90 0.20 18 72

36 0.75 27 9

80 0.25 20 60

72 0.50 36 36

28 1.00 28 0

CHAPTER 6 ■ USING LAYOUT MANAGERS

259

However, it’s easy to implement this functionality, which serves a purpose similar to that of the
GridBagCellPanel class defined earlier, as shown in Listing 6-17.

Listing 6-17. Drawing Borders Within a BoxLayout-Managed Container

import java.awt.*;
import javax.swing.*;

public class BoxPanel extends JPanel {

 public void paintChildren(Graphics g) {
 super.paintChildren(g);
 Dimension size = getSize();
 LayoutManager manager = getLayout();
 if ((manager != null) && (manager instanceof BoxLayout)) {
 BoxLayout layout = (BoxLayout)manager;
 // There's currently no accessor method that allows
 // us to determine the orientation (vertical or
 // horizontal) used by a BoxLayout, so we'll hard-code
 // this class to assume vertical orientation
 boolean vertical = true;
 if (vertical) {
 int axis = (int)(layout.getLayoutAlignmentX(this) * size.width);
 g.fillRect(axis - 1, 0, 3, size.height);
 }

Figure 6-36. The container’s axis is displayed graphically to show an example of how BoxPanel can be used

CHAPTER 6 ■ USING LAYOUT MANAGERS

260

 else {
 int axis = (int)(layout.getLayoutAlignmentY(this) * size.height);
 g.fillRect(0, axis - 1, size.width, 3);
 }
 }
 }

}

Once you’ve compiled BoxPanel, you can easily modify the BoxTest application defined earlier so that it
uses BoxTest (see Listing 6-18).

Listing 6-18. Incorporating the BoxPanel Class

public static void main(String[] args) {
 JFrame f = new JFrame("Vertical BoxLayout-managed container");
 f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Container pane = new BoxPanel();
 f.setContentPane(pane);
 pane.setLayout(new BoxLayout(pane, BoxLayout.Y_AXIS));
 for (float align = 0.0f; align <= 1.0f; align += 0.25f) {
 JButton button = new JButton("X Alignment = " + align);
 button.setAlignmentX(align);
 pane.add(button);
 }
 f.setSize(400, 300);
 f.setVisible(true);
}

Constructing a BoxLayout
BoxLayout is somewhat different from the other layout managers in that its constructor must be passed
a reference to the Container instance that uses it. In addition, you must specify how the BoxLayout
should arrange its components: vertically (in a column) or horizontally (in a row), specifying either the
BoxLayout.Y_AXIS constant or the BoxLayout.X_AXIS constant, respectively. For example, you can use the
following code to create a BoxLayout that will display its components in a column:

JPanel panel = new JPanel();
BoxLayout bl = new BoxLayout(panel, BoxLayout.Y_AXIS);
panel.setLayout(bl);

In addition to creating a BoxLayout this way, the Box class provides an alternative. Specifically, it
includes static getVerticalBox() and getHorizontalBox() factory methods that return an instance of
Box that uses a BoxLayout to arrange its components. As you might expect, getVerticalBox() returns a
container that arranges its components vertically, while getHorizontalBox() returns one that arranges its
components horizontally. I discuss the Box class in more detail shortly.

CHAPTER 6 ■ USING LAYOUT MANAGERS

261

Constraints
BoxLayout doesn’t support constraints in the traditional sense, and you should use the simple form of add()
when adding a component to a parent container. However, a component’s alignment values effectively act
as constraints by defining how the component should be placed within its parent container. In addition,
JComponent defines setAlignmentX() and setAlignmentY() mutator methods that allow you to set those
values instead of creating a subclass that overrides the accessor methods.

Child Component Sizes
Before setting the widths of components in a vertical box, BoxLayout calculates an ascent and a descent
value for the container using its current/actual width and its derived alignment value. In other words, the
BoxLayout determines how much space is available on each side of the container’s axis.

When setting the size of a component in a vertical box, BoxLayout calculates the component’s
maximum width ascent and maximum width descent. It then compares the component’s ascent to the
container’s ascent and compares the component’s descent to the container’s descent, selecting the smaller
value in each case. In other words, BoxLayout tries to use the component’s maximum width, but if that width
exceeds the size available within the container, it uses the container’s preferred width instead.

For many components, this behavior is acceptable because the maximum width is the same as or
close to the preferred width, but in some cases, the results may not be what you intended. For example, the
existing implementation of BoxTest displays buttons with different alignment values using the buttons’
preferred sizes. This behavior is consistent with the way that most other layout managers handle button
instances and is appropriate for most situations. However, suppose you modify the code so it creates
instances of JTextField instead of instances of JButton (see Listing 6-19).

Listing 6-19. BoxLayout with JTextField Instances

import java.awt.*;
import javax.swing.*;

public class BoxTest {

 public static void main(String[] args) {
 JFrame f = new JFrame("Vertical BoxLayout-managed container");
 f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Container pane = new BoxPanel();
 f.setContentPane(pane);
 pane.setLayout(new BoxLayout(pane, BoxLayout.Y_AXIS));
 for (float align = 0.0f; align <= 1.0f; align += 0.25f) {
// JButton button = new JButton("X Alignment = " + align);
// button.setAlignmentX(align);
// pane.add(button);
 JTextField tf = new JTextField("X Alignment = " + align, 10);
 tf.setAlignmentX(align);
 pane.add(tf);
 }
 f.setSize(400, 300);
 f.setVisible(true);
 }

}

CHAPTER 6 ■ USING LAYOUT MANAGERS

262

As Figure 6-37 illustrates, making these changes to the code does indeed cause text fields to appear in
place of the buttons, but unlike the buttons, the text fields are stretched to fill the parent container.

Figure 6-37. Text field behavior with BoxLayout isn’t always appropriate

This occurs because unlike JButton, the JTextField class returns an extremely large value for its
maximum width and height, and BoxLayout uses each component’s maximum width to determine its size.

Notice that in this example, the container is also filled vertically. When managing a vertical box,
BoxLayout attempts to stretch components to fill the container vertically, although it respects the
components’ maximum size values. If the components can’t be stretched to fill the area vertically, then
whitespace appears at the bottom (or at the right for a horizontal box), as shown earlier.

When components must be stretched vertically because the container is larger than their combined
heights, BoxLayout first calculates how much space remains to be filled. It then stretches each component
vertically by comparing the component’s maximum height to its preferred height and allocates the extra
space based on that difference. In other words, the closer a component’s maximum size is to its preferred
size, the less that component will be stretched. Components that have the same value for their maximum
and preferred sizes will not be stretched at all, and no component is ever made larger than its maximum size
by BoxLayout.

Although this discussion examines how a BoxLayout sets the sizes for child components in vertical
boxes, the same concepts are applicable to horizontal boxes, but their width values are used instead of their
heights.

Child Component Locations
The exact location of a child component within a BoxLayout is determined by a complex interaction
between the child’s size values, its alignment, and the size and alignment values of the other children in
the container. In addition, the order in which a component is added to the container affects its location,
since child components are displayed in top-to-bottom order for a vertical box and left-to-right order for a
horizontal one.

In general, a child component’s position is determined by its alignment values and the parent
container’s alignment value. If the child has an alignment value of 0.0, it appears to the right of or below the
container’s axis. Similarly, an alignment of 0.5 causes it to be centered on the axis, and a value of 1.0 causes
it to appear left of or above the axis.

CHAPTER 6 ■ USING LAYOUT MANAGERS

263

Resizing Behavior
Increasing and reducing the size of the parent container causes the absolute position of the container’s axis
to change, but the child components remain at the same position relative to the axis. If the child components
were compressed, their sizes will increase as the container grows, or they may shrink if the container shrinks.
For example, Figure 6-38 shows the results of running the modified BoxTest application and reducing the
size of the frame.

Figure 6-38. The text fields become smaller as the size of the BoxLayout-controlled parent container decreases

Container Size
The container’s minimum, preferred, and maximum sizes returned by a BoxLayout are the sizes needed to
display the components using their minimum, preferred, and maximum sizes, respectively. For example,
when using a vertical box, each child component’s size is calculated using the techniques described earlier;
the height of the container will be the sum of the child components’ heights, and the container’s width will
be equal to the width of the widest child component.

Swing’s Box Class
In addition to BoxLayout, Swing includes the Box class, which provides functionality that’s used to support
BoxLayout. Box is a subclass of java.awt.Container, and you can use an instance of it as a visual component
if it’s convenient to do so. However, you should keep in mind that as a direct subclass of Container, Box
doesn’t inherit the functionality of JComponent, which you’ll often need.

In addition to acting as a visual component, Box provides a number of static “factory methods”
that can be used to create instances of components that make using BoxLayout easier. For example, the
createHorizontalBox() and createVerticalBox() methods return instances of Box that use a horizontal
and vertical BoxLayout, respectively.

Box also provides factory methods that create transparent components that you can add to a BoxLayout-
managed container to provide space between the other components. The three types of components
provided by Box are rigid areas, glue components, and struts.

Rigid Areas

A rigid area is simply a component with no visual representation that has the same dimensions for its
minimum and maximum sizes. You must specify the dimensions to be used when you create a rigid area,
which you can do by calling the static createRigidArea() method in the Box class. In Figure 6-39, a rigid
area with a height of 15 has been added between each button in the original BoxTest class.

CHAPTER 6 ■ USING LAYOUT MANAGERS

264

You can achieve this by modifying the code as shown in Listing 6-20.

Listing 6-20. Incorporating Rigid Areas into a BoxLayout

import java.awt.*;
import javax.swing.*;

public class BoxTest {

 public static void main(String[] args) {
 JFrame f = new JFrame("Vertical BoxLayout-managed container");
 f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Container pane = new BoxPanel();
 f.setContentPane(pane);
 BoxLayout bl = new BoxLayout(pane, BoxLayout.Y_AXIS);
 pane.setLayout(bl);
 for (float align = 0.0f; align <= 1.0f; align += 0.25f) {
 JButton button = new JButton("X Alignment = " + align);
 button.setAlignmentX(align);
 pane.add(button);
 pane.add(Box.createRigidArea(new Dimension(0, 15)));
 }
 f.setSize(400, 300);
 f.setVisible(true);
 }
}

Figure 6-39. Rigid areas with heights of 15 here generate whitespace between the components arranged by the
BoxLayout

CHAPTER 6 ■ USING LAYOUT MANAGERS

265

Glue

Like a rigid area, a glue component is simply a component with no visual representation, but unlike a rigid
area, you’re not allowed to specify a size when creating an instance of a glue component. That’s because
while rigid areas occupy some fixed amount of space within containers, glue components expand and
contract based on the amount of space that’s left unused by other (in other words, nonglue) components. If
you think this brief description doesn’t describe behavior that’s conceptually similar to real-life glue, you’re
not alone. While “real” glue causes things to “stick together,” Swing’s glue components actually allow other
components to be spread apart from one another. Regardless of whether the name is appropriate, glue is the
term we’re stuck with (pun intended).

Which method you call to create a glue object depends upon the orientation of the BoxLayout
you’re using. For a vertical box, you should call the static createVerticalGlue() method, while
createHorizontalGlue() is intended to be used with a horizontal box.

Glue objects fill any extra vertical or horizontal space in a container so that the space won’t appear
at the bottom or right side of the container. Instead, the space is usually distributed evenly to the glue
components. Note that unlike a rigid area, glue components expand and contract to fill the area between
components when the container’s size increases or decreases. Listing 6-21 shows an example of how to use
glue, where the BoxTest application has been modified to add a glue component below each button.

Listing 6-21. Using “Glue” with a BoxLayout

import java.awt.*;
import javax.swing.*;

public class BoxTest {

 public static void main(String[] args) {
 JFrame f = new JFrame("Vertical BoxLayout-managed container");
 f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Container pane = new BoxPanel();
 f.setContentPane(pane);
 pane.setLayout(new BoxLayout(pane, BoxLayout.Y_AXIS));
 for (float align = 0.0f; align <= 1.0f; align += 0.25f) {
 JButton button = new JButton("X Alignment = " + align);
 button.setAlignmentX(align);
 pane.add(button);
 pane.add(Box.createVerticalGlue());
 }
 f.setSize(400, 300);
 f.setVisible(true);
 }

}

Executing this code produces results like those shown in Figure 6-40, where the extra vertical space is
distributed evenly to each of the glue components.

CHAPTER 6 ■ USING LAYOUT MANAGERS

266

As mentioned earlier, extra vertical space is distributed by a vertical BoxLayout based on the difference
between a component’s maximum vertical size and its preferred vertical size. As you might guess, glue
components are simply “dummy” components with a large maximum size and a minimum size of 0, so in
many cases, all extra space will be assigned to them. However, as you saw earlier with JTextField instances,
it’s possible for other components with large maximum sizes to accidentally be made inappropriately large
by a BoxLayout, and this can occur even when glue components are used.

Struts

One definition of the word strut in the dictionary is, “a brace fitted into a framework to resist pressure in
the direction of its length.” Unlike glue components, struts are appropriately named. Struts are similar
to rigid areas but with an important difference: instead of specifying both the width and height of the
component, you specify a strut’s size in only one dimension. Specifically, you specify the width when you
call createHorizontalStrut() and the height when calling createVerticalStrut(). The strut uses the
value you specify for its minimum, preferred, and maximum sizes in that dimension and uses 0 for the other
dimension when setting its minimum and preferred heights. However, when setting the maximum size,
Box uses a very large value for the remaining dimension (width for a vertical box and height for a horizontal
box), and this can cause undesirable results. Specifically, the presence of a very large strut component in the
BoxLayout can result in its container being assigned a size that’s larger than what was intended.

Because rigid areas can provide the same functionality and because there’s a potential problem
associated with the use of struts, you should avoid struts and use rigid areas instead.

Guidelines for Using Layout Managers
Now that I’ve covered the advantages and disadvantages of the layout managers included with Java, it’s
appropriate to discuss some general topics related to how to use layout managers.

Figure 6-40. These buttons are separated by “vertical glue”

CHAPTER 6 ■ USING LAYOUT MANAGERS

267

Combining Layout Managers
In the previous discussions of layout managers, I treated each one independently of the other, but it’s
common practice for a user interface to use multiple layout managers. In fact, you’ll often find it necessary
or desirable to create a container that uses one type of layout manager and add child containers to that
parent that use different types of layout managers. For example, suppose you want to create a user interface
like the one shown in Figure 6-41. In this case, the component at the top is displayed using its preferred
height and fills the width of the container. In addition, a row of buttons that are equal in size occupies the
bottom, and a component in the center fills the remaining area.

Figure 6-41. Creating even a simple screen such as this one is difficult to do with a single layout manager

To some extent, BorderLayout provides the functionality needed to create this component, but you
can’t use it directly to create the bottom row of buttons. That’s because BorderLayout allows only a single
component to be added to a location, such as the SOUTH portion of its container. You can resolve this
problem by adding the two buttons to a container such as a JPanel and adding that panel to the parent
managed by a BorderLayout. Since the buttons should be given the same size, GridLayout is the obvious
choice for the container that the buttons will be added to; Listing 6-22 shows the code to implement this.

Listing 6-22. Combining Layout Managers

import java.awt.*;
import javax.swing.*;

public class Embedded extends JFrame {

 public static void main(String[] args) {
 Embedded e = new Embedded();
 e.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 e.setSize(400, 300);
 e.setVisible(true);
 }

 public Embedded() {
 Container pane = getContentPane();
 pane.setLayout(new BorderLayout());

CHAPTER 6 ■ USING LAYOUT MANAGERS

268

 pane.add(getHeader(), BorderLayout.NORTH);
 pane.add(getTextArea(), BorderLayout.CENTER);
 pane.add(getButtonPanel(), BorderLayout.SOUTH);
 }

 private JComponent getHeader() {
 JLabel label = new JLabel("Embedded Layout Manager Test",
 JLabel.CENTER);
 label.setFont(new Font("Courier", Font.BOLD, 24));
 return label;
 }

 private JComponent getTextArea() {
 return new JTextArea(10, 10);
 }

 private JComponent getButtonPanel() {
 JPanel inner = new JPanel();
 inner.setLayout(new GridLayout(1, 2, 10, 0));
 inner.add(new JButton("Ok"));
 inner.add(new JButton("Cancel"));
 return inner;
 }

}

As shown in Figure 6-42, this code doesn’t quite achieve the desired results, since the buttons have been
stretched to fill the width of the container.

Figure 6-42. The top portion of the window is correct, but the buttons at the bottom have expanded to fill the
entire width of the container

CHAPTER 6 ■ USING LAYOUT MANAGERS

269

That’s because the buttons’ parent container was stretched by the BorderLayout so that its width is
equal to the width of the frame, and that in turn causes the GridLayout to stretch the buttons to fill their
parent container. To fix this problem, it’s necessary to put the panel managed by the GridLayout into
another container that won’t stretch it. Since FlowLayout always displays components using their preferred
size, you can use it to provide this behavior, so define an additional FlowLayout-managed JPanel, add the
button panel to it, and add the button panel to the content pane.

private JComponent getButtonPanel() {
 JPanel inner = new JPanel();
 inner.setLayout(new GridLayout(1, 2, 10, 0));
 inner.add(new JButton("Ok"));
 inner.add(new JButton("Cancel"));
 JPanel outer = new JPanel();
 outer.setLayout(new FlowLayout());
 outer.add(inner);
 return outer;
 // return inner;
}

Finally, running this modified code produces the desired interface that was illustrated at the start of this
section.

You’ll often find it necessary to embed containers within other containers and to use different layout
managers when doing so. If you’re creating a complex user interface, it’s often helpful to conceptually break
the interface down into smaller, simpler portions that can be created using the existing layout managers.
Those smaller pieces can then be created and combined into the large, complex interface instead of trying to
produce the desired results with a single layout manager.

Absolute Positioning Without a Layout Manager
Although there’s rarely a reason to do so, you can completely avoid using a layout manager when designing
an interface. However, if you don’t use a layout manager, you’re responsible for explicitly setting the
size and position of each component within a container using Component methods such as setSize(),
setLocation(), and setBounds().

Note ■ The approach described here—that is, using absolute positioning instead of a layout manager—is

rarely desirable, because it usually results in an interface that must be revised to appropriately handle even

minor changes.

If you want to remove the layout manager from a container and explicitly set the size and position of the
components in that container, you can call the setLayout() method and specify a null value, as shown in
the following code:

JPanel panel = new JPanel();
panel.setLayout(null);

CHAPTER 6 ■ USING LAYOUT MANAGERS

270

When a container displays its child components, it does so using the position and size values assigned
to those components, which are usually set by a layout manager. If you add a component to a container and
don’t set the component’s location, it will appear at the container’s origin (in other words, at coordinates 0,
0). However, if you add a component to a container and don’t specify the component’s size, it will not appear
at all, because its width and height values will both be 0. The preferred, minimum, and maximum size values
are used by layout managers to determine the size that should be used for a component, but components
aren’t automatically set to any of those three sizes when created.

Invisible Components
Components that have their visibility flag set to false don’t appear when their parent container is displayed,
and you can query and modify the visibility flag using Component’s isVisible() and setVisible() methods.
In general, layout managers ignore invisible components inside their layoutContainer() method, causing
the container to be formatted as though the invisible components had not been added.

You’ll most often use invisible components when some portion of your user interface shouldn’t
always be displayed. For example, your interface might have a menu item that allows the user to toggle the
display status of some element such as a toolbar or status bar. In that case, you could add the element to the
container when the container is being constructed but make it invisible until it should be displayed.

Depending upon the superclass of the component that’s made visible or invisible, it may be necessary
for you to use revalidate() to cause the layout manager to reposition and resize the components in the
container. JComponent subclasses automatically trigger this behavior, but others don’t.

Specifying an Index When Adding a Component
Earlier, you saw that each Container maintains a list of child components and that the components are listed
in the order in which they were added to the container. Normally when a component is added to a container,
that component is added to the end of the container’s list. However, if you prefer to insert the component
at a particular position within the list, you can use one of two additional forms of the add() method that
weren’t previously mentioned in this chapter:

• add(Component comp, int index)

• add(Component comp, Object constraints, int index)

As you’ve seen, some layout managers position child components within the container based on when
they were added. In reality, that behavior is based on the component’s index value (its position within the
parent container’s list), which is assumed to reflect the sequence in which the components were added to
the container. In most cases where the index value is significant, you’ll simply add components in the order
you want them to appear. However, for various reasons, it’s not always possible or desirable to do so, and
you’ll want to explicitly specify an index value when adding a child component.

A component’s place in the list is sometimes significant for another reason as well, since its index value
(also called its Z-order) defines its position on the Z axis. In other words, the order in which two components
appear in their parent container’s list determines which component appears “in front of” the other. When
a container receives a paint() request, it paints its children in reverse order (from last to first), so the most
recently added child appears “behind” the others, and the first one appears “in front.”

CHAPTER 6 ■ USING LAYOUT MANAGERS

271

Z-order isn’t usually important because layout managers normally don’t allow components to occupy
the coordinates within their parent container. However, if you’re not using a layout manager or if you’re
using one that allows components to overlap one another, Z-order can become significant. For example, the
following application in Listing 6-23 defines two JButton instances that partially overlap:

Listing 6-23. How Z-order Affects Displaying Components

import java.awt.*;
import javax.swing.*;

public class ZOrder extends JPanel {

 public static void main(String[] args) {
 JFrame f = new JFrame();
 f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 f.setContentPane(new ZOrder());
 f.setSize(400, 300);
 f.setVisible(true);
 }

 public ZOrder() {
 setLayout(null);
 JButton first = new JButton("This button is added first");
 first.setBounds(20, 50, 200, 30);
 add(first);
 JButton second = new JButton("This button is added second");
 second.setBounds(120, 65, 200, 30);
 add(second);
 }

}

If you compile and run this application, it displays the first button in front of the second one, as shown
in Figure 6-43, which is the expected result based on the behavior described.

Figure 6-43. The “first” button appears on top of the “second” one, at least initially

CHAPTER 6 ■ USING LAYOUT MANAGERS

272

However, if you move the cursor over the second button, that button will appear in front of the first one,
which may seem to contradict the statements that have been made concerning Z-order (see Figure 6-44).

Figure 6-44. Once the cursor is moved over the “second” button, it appears to be on top of the “first” one

In reality, the second button is still behind the first one in those cases, but it has been repainted while
the first one hasn’t been, so the second one seems to be in front. Moving the mouse over a component
causes the component to be repainted so that it will repair the “damage” done when the cursor painted over
part of the component, which is why this behavior occurs. You can prove that the first button is still in front
by moving the mouse over the portion of the interface where the two buttons overlap one another, at which
time the first button will be repainted and again appear in front of the second one.

Note that unlike a component’s X and Y coordinates, Z-order can be set only when a component is
added to a container. Therefore, if you want to change a component’s Z-order, you must remove it from the
container and add it again, explicitly specifying the new index value when you call the add() method.

Creating Your Own Layout Manager
The layout managers you’ve examined so far are a standard part of Java and provide enough functionality to
allow you to create very complex and flexible layouts. However, the existing layout managers are sometimes
not capable of setting the size or position of components the way you’d like, and in that situation, you may
choose to create your own layout manager.

For example, suppose you want to create a component that allows you to select items from a list like the
one shown in Figure 6-45 and that you have the following requirements that must be met:

The column of buttons in the middle of the component should always be displayed •
using its preferred size.

The two • JList components should both be the same size vertically and horizontally,
and they should shrink or expand to fill the container’s remaining horizontal space
after the center component has been allocated its preferred size.

CHAPTER 6 ■ USING LAYOUT MANAGERS

273

Given these requirements, none of the layout managers you’ve already seen is appropriate for this custom
component, primarily because of the requirement that the two JList components be the same size. Only
GridLayout allows you to ensure that two components have the same horizontal and vertical size, but using
that layout manager would also cause the button column in the center to have the same size as the JList
instances. GridBagLayout allows you to assign all components in a row the same height or all components in
a column the same width, but it doesn’t provide you with a way to make components the same size in both
dimensions. In this case, it’s necessary to create a layout manager to support this component; for this example,
you’ll name this new layout manager class DividerLayout.

As it turns out, creating a custom layout manager is simple. All you need to do is create a class that
implements the LayoutManager2 interface defined in the java.awt package. You’ll begin by examining the
methods defined in LayoutManager2 that your custom layout manager class must implement, and then
you’ll examine those in the LayoutManager class, since it’s the superclass of LayoutManager2.

When considering how you’ll implement these methods, keep in mind that a layout manager instance
is associated with and used by a Container and that these methods shouldn’t normally be called directly by
your application code.

With the exception of removeLayoutComponent() and the overloaded addLayoutComponent(), all
methods defined in LayoutManager and LayoutManager2 are passed a reference to the parent container
associated with the layout manager instance.

LayoutManager2 Methods
This interface defines five methods, three of which will normally contain little or no code. LayoutManager2
didn’t exist in Java 1.0 but was added in 1.1 to provide support for new features such as alignment values,
maximum sizes (Java 1.0 supported only minimum and preferred sizes), and a more generic add() method.

addLayoutComponent (Component, Object)

This method is called by the layout manager’s container when its add() method is invoked, indicating
that a component should be added to the container. The container passes the request along to the layout
manager so that the manager can take whatever action is necessary, such as creating a copy of the constraint

Figure 6-45. Creating a panel like the one shown here can be difficult with Java’s standard layout managers

CHAPTER 6 ■ USING LAYOUT MANAGERS

274

information and defining a relationship between the component and the constraint data. For example,
GridBagLayout creates a clone of the GridBagConstraints object that’s passed to it and associates that
GridBagConstraints clone with the component by adding an entry to a Hashtable.

As mentioned earlier in this chapter, the layout manager isn’t responsible for maintaining a list of the
components that have been added to the container. That task is performed by the container itself, and the
list of components maintained by the container is accessible through its getComponents() method. In fact,
FlowLayout and GridLayout don’t maintain references to the components added to the layout, since they
don’t support any constraint information. Instead, they position each component based on when it was
added to the Container, and they’re able to do this because the array returned by getComponents() lists the
components in the order in which they were added to the container. Only when a layout manager needs to
associate constraint information with a component will it normally maintain references to the components.

When you create a custom layout manager, you’ll need to decide whether any constraint information
should be specified when a component is added. If the layout manager doesn’t need constraint information,
then the application can simply call the add() method in Container that accepts a single component
instance.

If your layout manager does need constraint information, you can create a custom class such as
GridBagConstraints that encapsulates the information, or if the constraint information is simple, you
can use an existing class. For example, the DividerLayout requires some type of constraint information
that identifies which position (left, center, or right) the component should occupy. Since DividerLayout
is somewhat similar to BorderLayout, for this example you’ll define three String constants called WEST,
CENTER, and EAST that correspond to the three positions available within the container:

import java.awt.*;

public class DividerLayout implements LayoutManager2 {

 public final static String WEST = "WEST";
 public final static String EAST = "EAST";
 public final static String CENTER = "CENTER";

 private Component westComponent;
 private Component centerComponent;
 private Component eastComponent;

 // Methods go here ...
}

In addition, DividerLayout needs to associate a component with its constraint value so that the
component’s position can be selected when the time comes to set the sizes and positions of the container’s
child components.

public void addLayoutComponent(Component comp, Object constraints) {
 if (WEST.equalsIgnoreCase((String)constraints)) {
 westComponent = comp;
 }
 else if (CENTER.equalsIgnoreCase((String)constraints)) {
 centerComponent = comp;
 }
 else if (EAST.equalsIgnoreCase((String)constraints)) {
 eastComponent = comp;
 }
}

CHAPTER 6 ■ USING LAYOUT MANAGERS

275

maximumLayoutSize()

This method is called by a container when its getMaximumSize() method is called. The layout manager
is responsible for calculating the amount of space that the container needs in order to display all its
components using their maximum sizes.

In the case of DividerLayout, it identifies the largest height value from the three components and
determines which of the two outer components has a larger width value. That width value is multiplied by 2
since there are two “outer” components that will be assigned identical widths, and the result is added to the
width of the center component, as follows:

public Dimension maximumLayoutSize(Container target) {
 Dimension size;
 int width = 0;
 int height = 0;
 if ((westComponent != null) && (westComponent.isVisible())) {
 size = westComponent.getMaximumSize();
 width = Math.max(width, size.width);
 height = Math.max(height, size.height);
 }
 if ((eastComponent != null) && (eastComponent.isVisible())) {
 size = eastComponent.getMaximumSize();
 width = Math.max(width, size.width);
 height = Math.max(height, size.height);
 }
 width *= 2;
 if ((centerComponent != null) && (centerComponent.isVisible())) {
 size = centerComponent.getPreferredSize();
 width += size.width;
 height = Math.max(height, size.height);
 }
 return new Dimension(width, height);
}

getLayoutAlignmentX() and getLayoutAlignmentY()

These methods are provided for layout managers such as BoxLayout that use an alignment value to
position the components within the container. Like most layout managers, however, DividerLayout
doesn’t use alignment values, so the value returned isn’t important; the following code shows “dummy”
implementations:

public float getLayoutAlignmentX(Container target) {
 return 0.0f;
}
public float getLayoutAlignmentY(Container target) {
 return 0.0f;
}

CHAPTER 6 ■ USING LAYOUT MANAGERS

276

invalidateLayout()

This method is called to indicate to the layout manager that it should clear any cached information related
to the size and position of the container’s components. This is related only to information that has been
derived by the layout manager itself, and a call to this method doesn’t indicate that constraint information
that was explicitly passed to the layout manager should be discarded. For example, if your layout manager
performs computations that are slow and complex, it may be worthwhile to cache the results of those
computations. Like most layout managers, no action needs to be taken in DividerLayout’s implementation
of this method.

public void invalidateLayout(Container target) {
}

LayoutManager Methods
This is the interface originally included in Java 1.0 for creating a layout manager. It defines basic methods
related to managing the components added to a container.

addLayoutComponent (String, Component)

This is the method that was originally used for adding a child component to a parent container, but this
method has effectively been deprecated. It’s not marked as deprecated by a javadoc-style @deprecated tag,
but it’s deprecated conceptually, because another, more flexible method exists and should be used instead.
In fact, as you’ll see shortly, the implementation of this method in DividerLayout does nothing more than
call its replacement, which is the addLayoutComponent() method defined in LayoutManager2.

This method was provided to allow String constraint values to be passed to CardLayout and
BorderLayout instances. However, because this method accepts only a String value, you can’t pass any
other type of object to represent the constraints. For example, since an instance of GridBagConstraints
isn’t a subclass of String, you can’t use it as an argument with the add() method in Java 1.0. Instead, it’s
necessary to call GridBagLayout’s setConstraints() method to associate the GridBagConstraints with a
component, as shown in the following code:

GridBagLayout gbl = new GridBagLayout();
setLayout(gbl);
GridBagConstraints constraints = new GridBagConstraints();
Button btn = new Button("Testing");
gbl.setConstraints(btn, constraints);
add(btn);

With the addition of the more generic addLayoutComponent() method in LayoutManager2, it’s now
possible to pass any type of Object to the layout manager when you call add(). In Java 1.1, GridBagLayout
was modified to extend LayoutManager2, so you can now add a component to a container and specify that
component’s constraints at the same time, as follows:

GridBagLayout gbl = new GridBagLayout();
setLayout(gbl);
GridBagConstraints constraints = new GridBagConstraints();
Button btn = new Button("Testing");
// gbl.setConstraints(btn, constraints);
// add(btn);
add(btn, constraints);

CHAPTER 6 ■ USING LAYOUT MANAGERS

277

As mentioned, you’ll normally implement this method by delegating the call to the
addLayoutComponent() method defined in LayoutManager2, which you can do by simply reversing the order
of the parameter values as follows. Alternatively, you may simply choose to ignore a call to this method
completely if your custom layout manager doesn’t accept a String instance for a constraint parameter.

public void addLayoutComponent(String name, Component comp) {
 // The following line can be commented out without
 // affecting this layout manager
 addLayoutComponent(comp, name);
}

removeLayoutComponent()

This method is called when a component is removed from the container. Your custom layout manager should
remove any references to the component, as well as any data it maintains that’s related to the component,
such as constraint information. The following is the implementation of this method in DividerLayout:

public void removeLayoutComponent(Component comp) {
 if (comp == westComponent) {
 westComponent = null;
 }
 else if (comp == centerComponent) {
 centerComponent = null;
 }
 else if (comp == eastComponent) {
 centerComponent = null;
 }
}

preferredLayoutSize() and minimumLayoutSize()

preferredLayoutSize() is similar to the maximumLayoutSize() method described earlier; in fact, its
implementation will often differ only in that it calls the getPreferredSize() method for each component
instead of getMaximumSize(). The purpose of this method is to calculate the preferred size of the Container
instance associated with this layout manager. The following is the implementation of this method in
DividerLayout:

public Dimension preferredLayoutSize(Container parent) {
 Dimension size;
 int width = 0;
 int height = 0;
 if ((westComponent != null) && (westComponent.isVisible())) {
 size = westComponent.getPreferredSize();
 width = Math.max(width, size.width);
 height = Math.max(height, size.height);
 }
 if ((eastComponent != null) && (eastComponent.isVisible())) {
 size = eastComponent.getPreferredSize();
 width = Math.max(width, size.width);
 height = Math.max(height, size.height);
 }

CHAPTER 6 ■ USING LAYOUT MANAGERS

278

 width *= 2;
 if ((centerComponent != null) && (centerComponent.isVisible())) {
 size = centerComponent.getPreferredSize();
 width += size.width;
 height = Math.max(height, size.height);
 }
 return new Dimension(width, height);
}

Similarly, minimumLayoutSize() differs only in that it calls the getMinimumSize() method instead of
getPreferredSize() or getMaximumSize(); the purpose of this method is to calculate the minimum size of
the Container instance associated with this layout manager.

public Dimension minimumLayoutSize(Container parent) {
 Dimension size;
 int width = 0;
 int height = 0;
 if ((westComponent != null) && (westComponent.isVisible())) {
 size = westComponent.getMinimumSize();
 width = Math.max(width, size.width);
 height = Math.max(height, size.height);
 }
 if ((eastComponent != null) && (eastComponent.isVisible())) {
 size = eastComponent.getMinimumSize();
 width = Math.max(width, size.width);
 height = Math.max(height, size.height);
 }
 width *= 2;
 if ((centerComponent != null) && (centerComponent.isVisible())) {
 size = centerComponent.getPreferredSize();
 width += size.width;
 height += Math.max(height, size.height);
 }
 return new Dimension(width, height);
}

layoutContainer()

This is the method that’s responsible for setting the size and position of the child components within a
container and is called when the container’s doLayout() method is invoked.

Within this method, you’ll typically use the preferred, minimum, or maximum component sizes,
or some combination of those, and you should use methods defined in Component such as setSize(),
setLocation(), and setBounds() to modify each component’s size and/or position.

When implementing layoutContainer(), you should keep in mind that the size of the container may
or may not be the same size that your class returned from minimumLayoutSize(), preferredLayoutSize(),
or maximumLayoutSize(). In other words, you may have to allocate excess space or shrink your components,
depending upon what you decide is appropriate for your layout manager. For example, in the case of
DividerLayout, the two outer components are expected to shrink or expand to fill the space that remains
after the middle component is allocated its preferred size.

CHAPTER 6 ■ USING LAYOUT MANAGERS

279

Finally, you should be aware that it’s standard practice to ignore components that are invisible, which
can be determined by calling the isVisible() method. I discuss the reasons for making components
invisible in more detail later, but you should keep this guideline in mind when designing a custom layout
manager. Listing 6-24 shows the implementation of layoutContainer() and includes logic that will ignore
components that are invisible.

Listing 6-24. Implementing layoutContainer()

public void layoutContainer(Container container) {
 Insets insets = container.getInsets();
 Dimension westSize = new Dimension(0, 0);
 Dimension centerSize = new Dimension(0, 0);
 Dimension eastSize = new Dimension(0, 0);
 Rectangle centerBounds = new Rectangle(0, 0, 0, 0);
 Dimension containerSize = container.getSize();
 int centerX = containerSize.width / 2;
 int centerY = containerSize.height / 2;
 if ((centerComponent != null) &&
 (centerComponent.isVisible())) {
 centerSize = centerComponent.getPreferredSize();
 centerSize.width = Math.min(centerSize.width,
 containerSize.width - insets.left -
 insets.right);
 centerSize.height = Math.min(centerSize.height,
 containerSize.height - insets.top -
 insets.bottom);
 centerComponent.setBounds(centerX -
 (centerSize.width / 2),
 centerY - (centerSize.height / 2),
 centerSize.width, centerSize.height);
 centerBounds = centerComponent.getBounds();
 }
 if ((westComponent != null) && (westComponent.isVisible())) {
 westSize = westComponent.getPreferredSize();
 }
 if ((eastComponent != null) && (eastComponent.isVisible())) {
 eastSize = eastComponent.getPreferredSize();
 } int maxWidth = Math.min(westSize.width, eastSize.width);
 maxWidth = Math.max(maxWidth, (containerSize.width -
 centerBounds.width - insets.left -
 insets.right) / 2);
 int maxHeight = Math.min(westSize.height, eastSize.height);
 maxHeight = Math.min(maxHeight, containerSize.height -
 insets.top - insets.bottom);
 if (westComponent != null) {
 westComponent.setBounds(centerBounds.x - maxWidth,
 centerY - (maxHeight / 2),
 maxWidth, maxHeight);
 }
 if (eastComponent != null) {
 eastComponent.setBounds(centerBounds.x +
 centerBounds.width,

CHAPTER 6 ■ USING LAYOUT MANAGERS

280

 centerY - (maxHeight / 2),
 maxWidth, maxHeight);
 }
}

Using a Custom Layout Manager
You’ve now examined each of the methods you must implement to create a custom layout manager, and you
can download the completed DividerLayout from the Source Code/Download area of the Apress web site
(www.apress.com). To see how it’s used, you can also download, compile, and run the SelectorPanel class
stored there as well.

Finally, you can easily test this new class by compiling and executing the following code, shown in
Listing 6-25:

Listing 6-25. Simple Class That Uses a Custom Layout Manager

import java.awt.*;
import javax.swing.*;

public class SelectorTest extends JPanel {

 public static void main(String[] args) {
 JFrame f = new JFrame();
 f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Container pane = f.getContentPane();
 pane.setLayout(new BorderLayout());
 Object[] values = {"Sunday", "Monday", "Tuesday", "Wednesday",
 "Thursday", "Friday", "Saturday"};
 SelectorPanel sp = new SelectorPanel(values);
 sp.setBorder(BorderFactory.createEmptyBorder(5, 10, 5, 10));
 pane.add(sp);
 f.setSize(400, 300);
 f.setVisible(true);
 }

}

Summary
In this chapter, I covered the following topics related to layout managers:

The layout managers provided with the Java core classes and how they work•

How and when to create a custom layout manager class•

How to use layout managers together to build complex user interfaces•

How and when to use absolute positioning instead of a layout manager•

The behavior of layout managers with respect to invisible components•

The importance of Z-order and how to control it•

http://www.apress.com/

281

CHAPTER 7

Using Swing’s JTable

Many applications need to display data in a tabular form, and Swing provides a table component
(also sometimes called a grid) that allows you to do so. The JTable class, defined in the javax.swing package,
provides a great deal of functionality that you can use to create a user interface for viewing and updating
data. This chapter covers some of the functionality that’s commonly needed when using a table component
and illustrates how to implement it using JTable. In the process, you’ll learn a great deal about how JTable
works, how to use its existing capabilities, and how to extend its capabilities.

In this chapter, I’ll cover a variety of topics related to JTable, including the following:

Creating a data model for a table•

Assigning column widths•

Using different data models•

Cell rendering and editing•

Handling cell selections•

Working with table headers•

Implementing sort functionality for table rows•

Figure 7-1 shows an example of how a JTable component appears.

Figure 7-1. An example of how a JTable might be used

Besides the obvious ability to display information, JTable also allows you to easily edit the information,
set column headers and widths, and control how information is displayed within the table. However, the
most basic function is that of displaying the data, and before you can display information in a JTable, you
must encapsulate the data in a data model and make the model available to the table.

CHAPTER 7 ■ USING SWING’S JTABLE

282

The Data Model
In addition to the JTable class, which represents the visual table component, Swing provides a number of
support classes that are used by JTable, and they’re defined in the javax.swing.table package. Perhaps
the most important support class is TableModel, which defines the interface between a JTable and its
data model. Like other Swing components, JTable uses a model/view/controller design that separates the
visual component (a JTable instance) from its data (a TableModel implementation). This provides greater
flexibility and reusability but can also make JTable more complex to use. Fortunately, programmers can
insulate themselves from much of the complexity by using some of the default implementations provided
with Swing.

As you might expect, the TableModel associated with a JTable is responsible for providing the table
with the data that it displays, but the model is also responsible for providing some information that may not
be as obvious, including the following:

The dimensions of the table (in other words, the number of rows •
and the number of columns in the table)

The type of data contained within each column within the table•

The column headers that should be displayed•

Whether the value in a given cell can be edited•

Although this example is somewhat contrived, you’ll use the data that’s hard-coded in Listing 7-1 for
most of the chapter. In reality, the data displayed in a JTable is usually retrieved from some external source
such as a relational database table. However, the TableValues class is convenient because it can be created
easily and allows you to create sample JTable code without also writing JDBC code, which makes the
examples easier to follow.

Listing 7-1. A Class That Contains Table Data

import java.util.Calendar;
import java.util.GregorianCalendar;

public class TableValues {

 public final static int FIRST_NAME = 0;
 public final static int LAST_NAME = 1;
 public final static int DATE_OF_BIRTH = 2;
 public final static int ACCOUNT_BALANCE = 3;
 public final static int GENDER = 4;
 public final static boolean GENDER_MALE = true;
 public final static boolean GENDER_FEMALE = false;

 public Object[][] values = {
 {
 "Clay", "Ashworth",
 new GregorianCalendar(1962, Calendar.FEBRUARY, 20).getTime(),
 new Float(12345.67), new Boolean(GENDER_MALE)
 }, {
 "Jacob", "Ashworth",
 new GregorianCalendar(1987, Calendar.JANUARY, 6).getTime(),
 new Float(23456.78), new Boolean(GENDER_MALE)

CHAPTER 7 ■ USING SWING’S JTABLE

283

 }, {
 "Jordan", "Ashworth",
 new GregorianCalendar(1989, Calendar.AUGUST, 31).getTime(),
 new Float(34567.89), new Boolean(GENDER_FEMALE)
 }, {
 "Evelyn", "Kirk",
 new GregorianCalendar(1945, Calendar.JANUARY, 16).getTime(),
 new Float(-456.70), new Boolean(GENDER_FEMALE)
 }, {
 "Belle", "Spyres",
 new GregorianCalendar(1907, Calendar.AUGUST, 2).getTime(),
 new Float(567.00), new Boolean(GENDER_FEMALE)
 }
 };

}

At this point, the class contains only data and no executable code, but as you’ll see shortly, you can easily
transform it into a TableModel implementation that can expose the data to a JTable. Before doing so, you
may want to briefly study the class diagram shown in Figure 7-2, which describes the TableModel interface
and its methods.

Figure 7-2. A simple class diagram showing the methods defined in TableModel

With nine methods to implement, the interface might appear complex and tedious to implement to
someone who wants to create a table quickly. However, Java also provides the AbstractTableModel and
DefaultTableModel classes, which both implement the TableModel interface and which can be used with
minimal effort. In fact, you can extend the AbstractTableModel by implementing three simple methods.

One that returns the row count•

Another that returns the column count•

A third that returns the value associated with a particular cell•

Listing 7-2 shows an example of how to implement this; the code modifies the TableValues class to
extend AbstractTableModel and implements its three abstract methods.

CHAPTER 7 ■ USING SWING’S JTABLE

284

Listing 7-2. Extending AbstractTableModel

import java.util.Calendar;
import java.util.GregorianCalendar;
import javax.swing.table.AbstractTableModel;

public class TableValues extends AbstractTableModel {

 public final static int FIRST_NAME = 0;
 public final static int LAST_NAME = 1;
 public final static int DATE_OF_BIRTH = 2;
 public final static int ACCOUNT_BALANCE = 3;
 public final static int GENDER = 4;

 public final static boolean GENDER_MALE = true;
 public final static boolean GENDER_FEMALE = false;

 public Object[][] values = {
 {
 "Clay", "Ashworth",
 new GregorianCalendar(1962, Calendar.FEBRUARY, 20).getTime(),
 new Float(12345.67), new Boolean(GENDER_MALE)
 }, {
 "Jacob", "Ashworth",
 new GregorianCalendar(1987, Calendar.JANUARY, 6).getTime(),
 new Float(23456.78), new Boolean(GENDER_MALE)
 }, {
 "Jordan", "Ashworth",
 new GregorianCalendar(1989, Calendar.AUGUST, 31).getTime(),
 new Float(34567.89), new Boolean(GENDER_FEMALE)
 }, {
 "Evelyn", "Kirk",
 new GregorianCalendar(1945, Calendar.JANUARY, 16).getTime(),
 new Float(-456.70), new Boolean(GENDER_FEMALE)
 }, {
 "Belle", "Spyres",
 new GregorianCalendar(1907, Calendar.AUGUST, 2).getTime(),
 new Float(567.00), new Boolean(GENDER_FEMALE)
 }
 };

 public int getRowCount() {
 return values.length;
 }

 public int getColumnCount() {
 return values[0].length;
 }

 public Object getValueAt(int row, int column) {
 return values[row][column];
 }

}

CHAPTER 7 ■ USING SWING’S JTABLE

285

Creating a TableModel implementation is a trivial matter when using AbstractTableModel, and
in this case, it requires just a single line for each of the three methods implemented. Although the
DefaultTableModel provides a way to create a TableModel that’s sometimes even easier, its use isn’t
recommended, primarily because it creates its own references to the cell data. Besides being less scalable
and less flexible, that approach complicates the issue of editing, which I’ll cover later. To understand why
DefaultTableModel isn’t scalable, it’s necessary to have some understanding of how JTable works.

As you’ve seen, the TableModel is responsible for indicating how many rows and columns the table
contains, and getRowCount() and getColumnCount() are called immediately when a table is created and
displayed. However, the table never maintains references to the data from the TableModel but simply
accesses the information long enough to render it when needed. For example, suppose you create a model
that returns a value of 100 from getRowCount(), but your table is inside a JScrollPane and the display area is
large enough to display only ten rows at once. When the table is displayed, it will initially access the first ten
rows of data in the TableModel and will access the data for the other rows only when (or if) you scroll down
so that they’re displayed within the JScrollPane’s viewport. Why is this behavior important? It allows you
to display extremely large amounts of data within a JTable without having all the data loaded into memory
simultaneously. Instead, your TableModel can load the data it needs in an “on-demand” (or if you prefer,
“just-in-time”) fashion, which allows you to minimize the amount of memory used.

With this point in mind, let’s return to the discussion of DefaultTableModel and consider the
implications of it creating a reference to each of the data items it encapsulates. Since it requires a reference
to each item, all its data must be in memory for as long as the model is in use; it can’t respond to data
retrieval requests on an “as-needed” basis. Therefore, since DefaultTableModel has potentially serious
drawbacks and is only slightly easier to use, you should generally use AbstractTableModel instead. You
may still choose to use DefaultTableModel if your table will contain only a small amount of data, since it’s
always faster to have data cached in memory. However, if your table will contain a large amount of data and
memory utilization is a concern, you’ll want to use AbstractTableModel. When you create a subclass of
AbstractTableModel, that class is completely responsible for accessing the data that’s needed by the table.
Your implementation might cache data in memory the way DefaultTableModel does, or you might leave the
data in some external location such as a relational database and access it only when it’s needed. In the case
of the TableValues class, you hard-coded data into a class for the sake of convenience, but a more realistic
scenario would be to have the data retrieved from a database or a disk file.

Now that you’ve created a TableModel implementation, it’s possible to create a JTable and populate it
with the data stored in the TableValues class, as shown in Listing 7-3.

Listing 7-3. Using the Table Model

import java.awt.*;
import javax.swing.*;

public class SimpleTableTest extends JFrame {

 private JTable table;

 public static void main(String[] args) {
 SimpleTableTest stt = new SimpleTableTest();
 stt.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 stt.setSize(400, 200);
 stt.setVisible(true);
 }

CHAPTER 7 ■ USING SWING’S JTABLE

286

 public SimpleTableTest() {
 Container pane = getContentPane();
 pane.setLayout(new BorderLayout());
 TableValues tv = new TableValues();
 table = new JTable(tv);
 pane.add(table, BorderLayout.CENTER);
 }

}

This application provides a simple table that displays the TableValues data, as shown in Figure 7-3.

Figure 7-4. Making the frame smaller causes the cells to partially conceal their contents

Figure 7-3. The initial display produced by the SimpleTableTest class

However, this has several problems. For example, if the frame is resized so that it’s smaller than the
table, portions of the data are invisible and inaccessible, as shown in Figure 7-4.

In addition, several of the columns format their data in a way that’s not appropriate or not ideal.
For example, the Gender column displays “true” or “false” instead of “Male” or “Female,” and the Account
Balance column correctly displays the numeric value but doesn’t use currency conventions.

Using JScrollPane with JTable
As in any case where there may be too much information to display at one time, you can use the
JScrollPane class to allow large amounts of data to be viewed. In fact, instances of JTable should almost
always be displayed inside a JScrollPane, because as well as allowing you to view large tables, JScrollPane
also provides support for column headers.

You can supply the column headers by implementing the getColumnName() method in your
TableModel, or they will default to a letter of the alphabet, with a header of A for the first column, B for the
second, and so on. Listing 7-4 shows a modified version of TableValues that returns the column names.

CHAPTER 7 ■ USING SWING’S JTABLE

287

Listing 7-4. Specifying Column Names

import java.util.Calendar;
import java.util.GregorianCalendar;
import javax.swing.table.AbstractTableModel;

public class TableValues extends AbstractTableModel {

 public final static int FIRST_NAME = 0;
 public final static int LAST_NAME = 1;
 public final static int DATE_OF_BIRTH = 2;
 public final static int ACCOUNT_BALANCE = 3;
 public final static int GENDER = 4;

 public final static boolean GENDER_MALE = true;
 public final static boolean GENDER_FEMALE = false;

 public final static String[] COLUMN_NAMES = {
 "First Name", "Last Name", "Date of Birth", "Account Balance",
 "Gender"
 };

 public Object[][] values = {
 {
 "Clay", "Ashworth",
 new GregorianCalendar(1962, Calendar.FEBRUARY, 20).getTime(),
 new Float(12345.67), new Boolean(GENDER_MALE)
 }, {
 "Jacob", "Ashworth",
 new GregorianCalendar(1987, Calendar.JANUARY, 6).getTime(),
 new Float(23456.78), new Boolean(GENDER_MALE)
 }, {
 "Jordan", "Ashworth",
 new GregorianCalendar(1989, Calendar.AUGUST, 31).getTime(),
 new Float(34567.89), new Boolean(GENDER_FEMALE)
 }, {
 "Evelyn", "Kirk",
 new GregorianCalendar(1945, Calendar.JANUARY, 16).getTime(),
 new Float(-456.70), new Boolean(GENDER_FEMALE)
 }, {
 "Belle", "Spyres",
 new GregorianCalendar(1907, Calendar.AUGUST, 2).getTime(),
 new Float(567.00), new Boolean(GENDER_FEMALE)
 }
};

 public int getRowCount() {
 return values.length;
 }

 public int getColumnCount() {
 return values[0].length;
 }

CHAPTER 7 ■ USING SWING’S JTABLE

288

 public Object getValueAt(int row, int column) {
 return values[row][column];
 }

 public String getColumnName(int column) {
 return COLUMN_NAMES[column];
 }

}

You’ll now modify the SimpleTableTest constructor so that it encloses the table within a JScrollPane.

public SimpleTableTest() {
 Container pane = getContentPane();
 pane.setLayout(new BorderLayout());
 TableValues tv = new TableValues();
 table = new JTable(tv);
 // pane.add(table, BorderLayout.CENTER);
 JScrollPane jsp = new JScrollPane(table);
 pane.add(jsp, BorderLayout.CENTER);
}

Now that the table is displayed inside a JScrollPane, the column headers appear, as shown in Figure 7-5.

You might also expect that resizing the frame (and as a result, the table) will cause scrollbars to appear
when there’s not enough space to display all the data. As Figure 7-6 shows, a vertical scrollbar does appear
when the table is reduced in size, but instead of a horizontal scrollbar appearing, each column shrinks and
expands along with the table.

Figure 7-5. Tables are normally displayed within a JScrollPane, which allows the headers to appear and
results in vertical scrollbars appearing when needed

Figure 7-6. Instead of a horizontal scrollbar appearing when the table is too narrow to completely display its
contents, the cells become smaller

CHAPTER 7 ■ USING SWING’S JTABLE

289

To understand why this occurs, it’s necessary to examine the design of JTable and how some of its
support classes function.

JTable’s Column-Oriented Design
The design of the JTable component is very much column-oriented, and each JTable contains a reference to an
implementation of the TableColumnModel interface. A TableColumnModel, such as DefaultTableColumnModel
defined in javax.swing.table, describes a set of columns displayed by a JTable and represents each column
with an instance of the TableColumn class. For example, suppose you define a TableModel that contains five
columns of data. If you then create an instance of JTable using that model, the table creates an instance
of DefaultTableColumnModel, retrieves the column count from the TableModel, and creates and adds five
TableColumn instances to the DefaultTableColumnModel.

Each instance of TableColumn contains information such as the column header; the current, minimum,
maximum, and preferred width values for the column; and a flag that indicates whether the column can be
resized. When created, a column’s current and preferred width values are initially set to 75, the minimum is
set to 15, and the maximum width is effectively set to infinity (Integer.MAX_VALUE).

After you create a column, you can change its width values explicitly by using the setWidth(),
setMinWidth(), setMaxWidth(), and setPreferredWidth() methods for the current, minimum, maximum,
and preferred widths, respectively. In addition, you can modify a column’s current width if the size of the
table that it’s a part of changes.

Each JTable instance has an auto resize mode setting, which can be one of five values that correspond
to constants defined in JTable.

• AUTO_RESIZE_ALL_COLUMNS

• AUTO_RESIZE_LAST_COLUMN

• AUTO_RESIZE_NEXT_COLUMN

• AUTO_RESIZE_OFF

• AUTO_RESIZE_SUBSEQUENT_COLUMNS

The value of this setting determines how or if the table’s columns are resized when the width of the
table or one of the columns changes.

Table Resizing
If the table’s auto resize mode is set to AUTO_RESIZE_OFF, changing the size of the table doesn’t affect the
current size of the columns within the table. When it’s set to any of the other four values, however, a change
to the table’s width is distributed among all the columns in the table proportionally based on their preferred
sizes. For example, suppose that a table contains two columns and that one of the columns has a preferred
width of 200 and the other a preferred width of 100. In that case, the first column occupies two-thirds of
the table’s horizontal space, and the second column occupies the remaining one-third. If the table is then
made 30 pixels wider, 20 of the additional pixels will be distributed to the first column, and 10 to the second
one. This allows the column sizes to remain proportionally the same relative to one another, regardless of
changes to the table’s actual size.

CHAPTER 7 ■ USING SWING’S JTABLE

290

If a table’s mode is AUTO_RESIZE_OFF and the sum of all the column widths is greater than the table’s
width, then a horizontal scrollbar appears. To see this behavior, let’s make another minor change to the
SimpleTableTest constructor.

public SimpleTableTest() {
 Container pane = getContentPane();
 pane.setLayout(new BorderLayout());
 TableValues tv = new TableValues();
 table = new JTable(tv);
 table.setAutoResizeMode(JTable.AUTO_RESIZE_OFF);
 // pane.add(table, BorderLayout.CENTER);
 JScrollPane jsp = new JScrollPane(table);
 pane.add(jsp, BorderLayout.CENTER);
}

Each column maintains its default width (75), and when the table is made too narrow to display all
the columns, a horizontal scrollbar appears. Any other auto resize mode causes the columns to expand or
contract when the table is resized, as shown in Figure 7-7.

Column Resizing
Now that you’ve seen how changing the width of a table can affect the width of the columns within that table,
it’s also important to examine how changing the width of one column can change the widths of the others.
You can change a column’s width programmatically via the mutator methods for the four width values
(current, minimum, maximum, and preferred), or you can modify it through the user interface provided by
JTable. Specifically, to resize a column you must move the pointer to the right side of the header above the
column you want to resize. For example, to resize the “First Name” column in the test table you should move
the pointer so that it’s over the vertical line that separates that column from the next one (“Last Name”). The
cursor will change to a left/right resize cursor and at that point you can begin a drag operation by pressing
the left mouse button and moving it to the left to make the “First Name” column narrower or to the right to
make it wider.

When one column’s size is changed, its effect on the widths of the other columns depends upon the
table’s auto resize mode setting; I describe the behavior associated with each setting next.

Figure 7-7. Changing the auto resize mode results in a scrollbar appearing when the table isn’t wide enough
to display the contents of all its columns

CHAPTER 7 ■ USING SWING’S JTABLE

291

AUTO_RESIZE_OFF
When auto resizing is disabled, changing the width of one column has no effect on the size of the other
columns in the table. This may result in the table being too small to display all the columns, in which case a
horizontal scrollbar appears (if the table is contained within a JScrollPane). Alternatively, resizing a column
may result in the table being larger than the combined width of all the columns, in which case some amount
of whitespace appears inside the table.

AUTO_RESIZE_NEXT_COLUMN
With this setting, when a change is made to the width of a column, the column to the right of that column
(in other words, the next column) gains or loses horizontal space. In Figure 7-8, the Date of Birth column has
been increased in size, which results in the column to its right (Account Balance) becoming narrower.

AUTO_RESIZE_SUBSEQUENT_COLUMNS
This setting is similar to AUTO_RESIZE_NEXT_COLUMN, except that when a column is resized, all the other
columns to its right gain or lose width. In Figure 7-9, the Date of Birth column has been made wider, which
causes the two columns that follow it (Account Balance and Gender) to become narrower.

The difference between the original width of the resized column and its new width is referred to as the
delta value, and this amount is distributed proportionally among the columns to the right of the resized
column.

Figure 7-8. An example of AUTO_RESIZE_NEXT_COLUMN

Figure 7-9. As the Date of Birth column is made wider, the columns to its right become narrower

CHAPTER 7 ■ USING SWING’S JTABLE

292

AUTO_RESIZE_LAST_COLUMN
When this setting is used and a column is resized, the delta value is applied to the last column in the table
to make it wider or narrower than it was. In Figure 7-10, the Date of Birth column has been made wider,
causing the Gender column to become narrower by the same amount.

AUTO_RESIZE_ALL_COLUMNS
This is the default setting for a new instance of JTable, and it causes any changes to one column’s width to
be proportionally distributed among all other columns in the table. When the Date of Birth column becomes
larger, the delta value is divided among the other columns in the table, causing them to become narrower,
as shown in Figure 7-11.

Cell Rendering
As mentioned earlier, the data in several of the columns isn’t displayed in an ideal fashion. Specifically, you
can improve three things.

The Date of Birth column displays both a date and time but should display only a •
date, and that date should be in a format that doesn’t include the day of the week.

The Account Balance column displays a simple numeric value but should use •
currency-formatting conventions.

The Gender column displays a somewhat nonintuitive value of “true” or “false” •
instead of “Male” or “Female.”

Figure 7-11. With AUTO_RESIZE_ALL_COLUMNS, resizing one column causes all the others to increase or
decrease in size accordingly

Figure 7-10. With AUTO_RESIZE_LAST_COLUMN, the last column’s size changes to accommodate changes to the
other columns’ sizes

CHAPTER 7 ■ USING SWING’S JTABLE

293

JTable cells are drawn by cell renderers, which are classes that implement the TableCellRenderer
interface. That interface defines a single getTableCellRendererComponent() method that returns a
reference to the Component that will perform the drawing operation. However, since it’s often convenient
to define a single class that implements TableCellRenderer and can perform the rendering, a
TableCellRenderer will often simply return a reference to itself. Following are the parameters passed to
getTableCellRendererComponent():

A reference to the • JTable that contains the cell being drawn

A reference to the cell’s value•

A Boolean flag that indicates whether the cell is selected•

A Boolean flag that indicates whether the cell has the input focus•

The row index of the cell being drawn•

The column index of the cell being drawn•

In addition to returning a reference to the rendering component, getTableCellRenderer ➤ Component()
is responsible for initializing the component’s state. Notice that one of the parameters listed previously is a
reference to the value stored in the cell that’s about to be rendered, and some representation of that value is
usually stored in the rendering component before a reference to it is returned.

As you’ll see shortly, JTable provides predefined renderers that you can use to have your data displayed
properly, but first you’ll look at how easily you can define custom renderer classes.

Creating Custom Renderers
The class in Listing 7-5 provides an example of a custom renderer, and it will be used to display the values in
the Gender field in the sample application’s table. Those values currently appear as a text string of “true” or
“false” depending upon the cell’s value, but this renderer will cause them to be drawn by a JComboBox.

Listing 7-5. Cell Renderer for the Gender Column

import java.awt.Component;
import javax.swing.JComboBox;
import javax.swing.JTable;
import javax.swing.table.TableCellRenderer;

public class GenderRenderer extends JComboBox implements TableCellRenderer {

 public GenderRenderer() {
 super();
 addItem("Male");
 addItem("Female");
 }

 public Component getTableCellRendererComponent(JTable table,
 Object value, boolean isSelected, boolean hasFocus,
 int row, int column) {

CHAPTER 7 ■ USING SWING’S JTABLE

294

 if (isSelected) {
 setForeground(table.getSelectionForeground());
 super.setBackground(table.getSelectionBackground());
 } else {
 setForeground(table.getForeground());
 setBackground(table.getBackground());
 }

 boolean isMale = ((Boolean)value).booleanValue();
 setSelectedIndex(isMale ? 0 : 1);
 return this;
 }

 }

When an instance of this class is created, it adds two items to its list: a Male selection and a Female
selection. The getTableCellRendererComponent() performs some simple color selection for the foreground
and background and then selects the appropriate gender based on the cell’s value (Male for true and
Female for false). Once this renderer class has been created, you can specify that it should be used for the
Gender column by making the following changes (see Listing 7-6) to SimpleTableTest:

Listing 7-6. Assigning a Renderer to a Column

import java.awt.*;

import javax.swing.*;
import javax.swing.table.*;

public class SimpleTableTest extends JFrame {

 private JTable table;

 public static void main(String[] args) {
 SimpleTableTest stt = new SimpleTableTest();
 stt.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 stt.setSize(400, 200);
 stt.setVisible(true);
 }

 public SimpleTableTest() {
 Container pane = getContentPane();
 pane.setLayout(new BorderLayout());
 TableValues tv = new TableValues();
 table = new JTable(tv);
 TableColumnModel tcm = table.getColumnModel();
 TableColumn tc = tcm.getColumn(TableValues.GENDER);
 tc.setCellRenderer(new GenderRenderer());
 JScrollPane jsp = new JScrollPane(table);
 pane.add(jsp, BorderLayout.CENTER);
 }

}

CHAPTER 7 ■ USING SWING’S JTABLE

295

When you compile and execute the modified version of the application, it produces a display like the
one shown in Figure 7-12. Notice that the “true” and “false” strings that previously appeared in the Gender
column now seem to have been replaced by instances of JCheckBox.

It’s important to realize that renderers aren’t really added to JTable instances the way that visual
components are added to a Container, which in this case means that the table doesn’t contain any instances
of JCheckBox. Instead, when the table is painted, each cell delegates responsibility for drawing its contents,
which is done by passing a Graphics object to a renderer component’s paint() method, and the drawing
region is set to correspond to the area occupied by the cell. In other words, no instances of JCheckBox
were added to the JTable in this example, but rather a single instance of JCheckBox drew itself onto the
area occupied by each cell in the Gender column. This approach may seem unnecessarily complex, but it
allows a single component to draw most or all of a table’s cells instead of requiring the table to allocate a
component for each cell, which would consume far more memory.

In many cases, the easiest way to define a custom cell renderer is to extend Swing’s
DefaultTableCellRenderer, which as its name implies is the default renderer for cells in a
JTable. DefaultTableCellRenderer extends JLabel, and it displays cell values using their String
representations. An object’s String representation is obtained by calling its toString() method, and
DefaultTableCellRenderer passes that representation to the setText() method it inherits from JLabel.
This behavior is implemented in the setValue() method, which is passed a reference to the value of the cell
that’s about to be rendered.

private void setValue(Object value) {
 setText((value == null) ? "" : value.toString());
}

In effect, DefaultTableCellRenderer is simply a JLabel that sets its own text based on the value of the
cell being rendered.

In many cases, calling toString() isn’t an appropriate way to obtain a representation of the cell’s value,
and an example of this is the Account Balance column in the sample application. The values displayed in
that column are technically correct, but they’re not formatted in a manner that makes it obvious that they
represent currency values. However, you can easily address this by creating a custom TableCellRenderer
and assigning it responsibility for drawing the cells in that column (see Listing 7-7).

Figure 7-12. With a custom renderer, the Gender column’s contents appear as JCheckBox components
instead of text

CHAPTER 7 ■ USING SWING’S JTABLE

296

Listing 7-7. Defining a Currency Renderer

import java.text.NumberFormat;
import javax.swing.table.DefaultTableCellRenderer;

public class CurrencyRenderer extends DefaultTableCellRenderer {

 public CurrencyRenderer() {
 super();
 setHorizontalAlignment(javax.swing.SwingConstants.RIGHT);
}

 public void setValue(Object value) {
 if ((value != null) && (value instanceof Number)) {
 Number numberValue = (Number)value;
 NumberFormat formatter = NumberFormat.getCurrencyInstance();
 value = formatter.format(numberValue.doubleValue());
 }
 super.setValue(value);
 }

}

This simple class does just two things: it changes the label’s horizontal alignment during construction,
and it overrides the setValue() method defined in DefaultTableCellRenderer. Since you know that this
renderer class will be used only to render the cells containing numeric values, you can cast the cell’s value to
a Number and then format the value as a currency using Java’s NumberFormat class.

Now that you’ve created a custom renderer for the Account Balance column, you need to have the
table use the renderer when drawing the cells in that column, which you can do by explicitly assigning it
to the TableColumn as you did in the previous example. However, there’s another way to accomplish this
that’s worth mentioning and that’s more appropriate in many cases. Besides associating a renderer with a
particular column, you can also associate it with a particular type of data, and the renderer will then be used
to draw all cells in columns that contain that type of data.

When a JTable is initialized, it creates a map that defines associations between classes and renderers,
and it uses that map to select a cell renderer when drawing cells in columns for which no renderer was
explicitly set. In other words, if you haven’t explicitly assigned a renderer to a column as you did earlier,
JTable will select a renderer based upon the type of data stored in that column. It determines the column’s
data type by calling the getColumnClass() method in the TableModel, and that method returns an instance
of Class. However, the implementation of getColumnClass() in AbstractTableModel simply indicates that
all its columns contain instances of Object.

public Class<?> getColumnClass(int columnIndex) {
 return Object.class;
}

Since AbstractTableModel can’t know what kind of data its subclasses will contain, the only
assumption it can safely make is that each cell contains an instance of Object; however, in practice, the cells
will almost certainly contain instances of some subclass of Object such as Float, Date, and so on. Therefore,
if you want the table to be able to determine the specific type of data its columns contain,

CHAPTER 7 ■ USING SWING’S JTABLE

297

you must override getColumnClass() in your TableModel class. For example, since all the values in
the Account Balance column are instances of Float, you could add the following getColumnClass()
implementation to the TableValues class:

public Class<?> getColumnClass(int column) {
 Class<?> dataType = super.getColumnClass(column);
 if (column == ACCOUNT_BALANCE) {
 dataType = Float.class;
 }
 return dataType;
}

Now that the JTable is able to determine that the Account Balance column contains Float data,
you need to associate the CurrencyRenderer class with that data type, which you can easily do by calling
setDefaultRenderer().

public SimpleTableTest() {
 Container pane = getContentPane();
 pane.setLayout(new BorderLayout());
 TableValues tv = new TableValues();
 table = new JTable(tv);
 TableColumnModel tcm = table.getColumnModel();
 TableColumn tc = tcm.getColumn(TableValues.GENDER);

 tc.setCellRenderer(new GenderRenderer());
 table.setDefaultRenderer(Float.class, new CurrencyRenderer());
 JScrollPane jsp = new JScrollPane(table);
 pane.add(jsp, BorderLayout.CENTER);
}

This new addition to SimpleTableTest causes CurrencyRenderer to become the default renderer
for all columns containing Float data. Therefore, CurrencyRenderer will be used to draw the cells in the
Account Balance column because no renderer was assigned to the column and because getColumnClass()
now indicates that the column contains Float data. Figure 7-13 shows an example of how the interface will
appear when the program is executed with these modifications.

Figure 7-13. CurrencyRenderer has been associated with columns containing floating-point data

CHAPTER 7 ■ USING SWING’S JTABLE

298

At this point, you may be wondering what happens when no renderer has been explicitly assigned to a
column and no entry in the table’s class-to-renderer map matches the column’s data type. You’re correct if
you guessed that the rendering is handled by DefaultTableCellRenderer, but it’s important to understand
exactly how that occurs.

When no renderer has been explicitly assigned to a column and no entry for the column’s Class is
found in the table’s class-to-renderer map, JTable traverses the inheritance hierarchy of the column’s Class,
searching the class-to-renderer map for an entry corresponding to each superclass until it locates one.
For example, if getColumnClass() indicates that the column contains Float data but no entry for Float is
found in the class-to-renderer map, JTable next attempts to locate a map entry that corresponds to Float’s
immediate superclass, which is Number. If it also doesn’t find an entry for Number, it will attempt to retrieve an
entry for Object (Number’s immediate superclass), which will always succeed because the map automatically
contains an entry that associates Object columns with DefaultTableCellRenderer.

To summarize JTable’s behavior, the steps for locating a renderer are as follows:

 1. If a renderer has been set for the cell’s TableColumn, use that renderer.

 2. Obtain a reference to a Class instance by calling the TableModel’s
getColumnClass() method.

 3. If a renderer has been mapped to that Class, use that renderer.

 4. Obtain a reference to the Class instance of the type’s superclass, and repeat the
previous step until a match is found.

This approach provides a great deal of flexibility in assigning renderers to table cells, since it allows
you to create a renderer and have it handle rendering for columns with a specific data type, along with any
subclasses of that type.

JTable’s Default Renderers
You’ve now seen how to create custom renderers and how to associate a renderer with a given type of data.
However, it’s often not necessary to do either one, since JTable includes a number of predefined renderers
for commonly used data types, and entries for those renderers are automatically included in its class-to-
renderer map. For example, I already mentioned that an entry exists in the map that associates Object
columns with DefaultTableCellRenderer, but other, more sophisticated renderers are provided as well.
This means that if one of the predefined renderers is appropriate for your application, the only coding you
need to do is to identify your columns’ data types in an implementation of getColumnClass() so that JTable
will use the appropriate renderers. To put this to use, you’ll use JTable’s predefined renderer for instances
of java.util.Date by simply modifying TableValues so it indicates that the Date of Birth column contains
instances of Date.

public Class<?> getColumnClass(int column) {
 Class<?> dataType = super.getColumnClass(column);
 if (column == ACCOUNT_BALANCE) {
 dataType = Float.class;
 }
 else if (column == DATE_OF_BIRTH) {
 dataType = java.util.Date.class;
 }
 return dataType;
}

CHAPTER 7 ■ USING SWING’S JTABLE

299

As you saw earlier, the date values displayed by DefaultTableCellRenderer were lengthy and included
a time (since Java’s Date class represents both a date and a time). However, JTable’s predefined date
renderer produces a shorter, more appropriate representation of each date value, as shown in Figure 7-14.

In addition to java.util.Date, JTable includes predefined renderers for a number of other classes,
including the following.

java.lang.Number

This is the superclass of the numeric wrappers such as Integer, Float, Long, and so on. The renderer
that’s defined for Number is a subclass of DefaultTableCellRenderer that simply sets its alignment value
to RIGHT as you did in CurrencyRenderer. In other words, the Number renderer displays the toString()
representation of the cell values, but it displays the text adjacent to the right side of the cell instead of the
left (the default). Figure 7-15 shows an example of how this would appear if used with the Account Balance
column in the SampleTableTest class.

javax.swing.ImageIcon

The renderer associated with this class allows you to display instances of ImageIcon within a table. The
renderer is simply an instance of DefaultTableCellRenderer that takes advantage of the fact that a JLabel
can contain both text and an icon. Instead of rendering the cell by setting its text value, this renderer sets its
icon instead.

Figure 7-15. The default formatter for Number instances right-aligns the displayed values

Figure 7-14. JTable's default date renderer produces an abbreviated month

CHAPTER 7 ■ USING SWING’S JTABLE

300

java.lang.Boolean

When this renderer is used, it displays the value for the cell as a JCheckBox that’s either checked (when the
cell’s value is true) or unchecked (when the value is false). Figure 7-16 shows an example of how it would
appear if used with the Gender column SimpleTableTest.

Editing Table Cells
Although each cell in the Gender column now appears to be a JComboBox, it’s not possible to change the
gender that’s selected. In fact, none of the cells in the table is editable, and clicking them merely causes
the row to be selected. To change this behavior, you must override the isCellEditable() method,
because the implementation in DefaultTableModel always returns false. However, you can change this
easily by adding the following code to TableValues:

public boolean isCellEditable(int row, int column) {
 if (column == GENDER) {
 return true;
 }
 return false;
}

This indicates that the cells in the Gender column are now editable. However, if you click a cell in that
column intending to select a gender from a JComboBox, you may be surprised to find that nothing happens
except that the row you clicked becomes selected. If you double-click the cell, a JTextField appears that’s
initialized with the string equivalent of the cell’s Boolean value (true or false), and you can edit the data in
the text field, as shown in Figure 7-17.

Figure 7-16. Boolean values are rendered using check boxes

Figure 7-17. Double-clicking a cell causes a text field to appear

CHAPTER 7 ■ USING SWING’S JTABLE

301

You may be surprised that a text field appears when you edit the cell, because the cell seems to contain
a JComboBox, but remember that table cells don’t actually contain any components. The cells are simply
drawn by components (in other words, the renderers), and in this case, the component happens to be a
JComboBox. However, editing is a completely separate process that may or may not be handled by the same
type of component that performed the rendering. For example, the default rendering component used by
JTable is a JLabel, while the default editing component is a JTextField, which is why a text field appeared
in this case.

Regardless of which type of component is used, it may seem that the cells are finally editable, which is
partly true, but if you enter a value into one of these cells, the value you type is discarded once you complete
the editing. To understand why this occurs and what to do about it, you should be familiar with cell editors
and how JTable handles the editing of its cells.

Cell Editors
Just as cell renderers control the way that cells’ values are drawn, cell editors handle cell value editing.
Editors are slightly more complex than renderers but have many similarities to renderers.

An editor can be assigned to one or more • TableColumn instances.

An editor can be associated with one or more data types (classes) and will be used to •
display that type of data when no editor is associated with a cell’s column.

Existing visual components are used to provide editing capabilities, just as they’re •
used by renderers to draw cell values. In fact, the same type of visual component
that’s used as a cell’s renderer is often used for its editor as well. For example, a cell
might be assigned a renderer that uses a JComboBox and an editor that uses the same
component.

You can assign an editor to one or more TableColumn instances or object types using the setCellEditor()
method in TableColumn and setDefaultEditor() in JTable, respectively. However, the implementation of
the TableCellEditor interface is more complex than TableCellRenderer, and to understand the methods
defined in TableCellEditor, it’s useful to examine how editors interact with JTable instances.

When a JTable detects a mouse click over one of its cells, it calls the isCellEditable() method in the
TableModel. That method returns a value of false if the cell shouldn’t be editable, in which case processing
terminates, and no further action is taken. However, if the method returns true, then the table identifies the
cell editor for that cell and calls the editor’s isCellEditable() method as well. Although TableModel and
CellEditor both define methods called isCellEditable(), an important difference exists between the two.
Specifically, the TableModel method is passed only row and column index values, while the CellEditor
method is also passed the EventObject representing the mouse click. You can use this, for example, to check
the “click count” stored in the event. A cell must be double-clicked before it’s edited, which is exactly the
behavior observed earlier when editing the Gender column values. In other words, the isCellEditable()
method returns a value of false when the click count is 1, while it returns true if the count is greater than 1.
This behavior allows the cell editor to distinguish between a request to select the cell (a single click) and a
request to edit the cell (a double click).

The edit operation is allowed to proceed only if both isCellEditable() methods return a value of true.
When that’s the case, the editing is initiated by calling the getTableCell ➤ EditorComponent() method,
which is passed the following parameters:

A reference to the • JTable that contains the cell being edited

A reference to the cell’s current value•

A Boolean flag that indicates whether the cell is selected•

CHAPTER 7 ■ USING SWING’S JTABLE

302

The row index of the cell being edited•

The column index of the cell being edited•

If these parameters look familiar, it’s because they’re almost identical to those passed to the
getTableCellRendererComponent() method in TableCellRenderer. The only difference is that this method
isn’t passed a Boolean value indicating whether the cell has the input focus, since that’s implied because the
cell is being edited.

Before returning a reference to the component that’s responsible for handling editing, the
getTableCellEditorComponent() should prepare the editor by initializing its value appropriately so that
it matches the current cell value. For example, let’s assume you’re creating an editor that allows users to
select either Male or Female from a JComboBox that represents the Gender column value in TableValues. In
that case, you should prepare the JComboBox that performs the editing by selecting the item it contains that
corresponds to the cell’s gender value: Male if the cell’s value is true and Female if the value is false.

Once the editing component has been prepared and returned from the getTableCellEditorComponent()
method, the JTable sets the size and location of that component so it’s directly “over” the cell being edited.
This makes it appear that the cell is edited in place, when in fact, a component that supports editing (such as a
JTextField or in this case, a JComboBox) has been superimposed over the cell.

With the editing component positioned over the cell being edited, the event that originally triggered the
edit processing is posted to the editing component. For example, in the case of a JComboBox-based editor,
the same mouse event that initiated the editing is passed to the combo box, possibly causing it to display its
drop-down menu when editing starts. Finally, the CellEditor’s shouldSelectCell() method is passed the
same mouse event object, and if it returns true, the cell (and possibly others, depending upon the table’s
selection settings) is selected.

Each CellEditor is required to implement the addCellEditorListener() and
removeCellEditorListener() methods, and the CellEditorListener interface defines two methods:
editingStopped() and editingCanceled(). In practice, the only listener is usually the JTable itself,
which is notified when editing is stopped or canceled. In addition, the CellEditor must implement
the cancelCellEditing() and stopCellEditing() methods, which call the editingStopped() and
editingCanceled() methods of registered listeners.

A request to end editing can come either from the JTable that contains the cell or from the editor
component itself. For example, suppose you click one cell and begin editing its value. If you then click a
different cell, the JTable calls the stopCellEditing() method of the first cell’s editor before it initiates
editing the second cell. Alternatively, the editor component may stop the editing when some event occurs
that implies that editing is complete. For example, when using a JComboBox as an editor, if it receives an
ActionEvent message indicating that a selection was made, then it’s appropriate to terminate the edit.
Similarly, a JTextField might signal that editing has ended when it detects that the Return key was pressed.

Regardless of where the request originates to end editing, the JTable’s editingStopped() method
is called since it’s a registered CellEditorListener. Inside this method, the table calls the editor’s
getCellEditorValue() method to retrieve the cell’s new value and passes that value to the setValueAt()
method in the JTable’s TableModel. That is, it retrieves the cell’s new value from the editor and sends it to
the data model so it can be stored “permanently.”

The class in Listing 7-8 defines a component you can use to provide editing of the rows in the Gender
column defined in TableValues. It defines a subclass of JComboBox that initializes itself with Male and
Female entries and listens for changes to its state (in other words, waits for a selection to be made).

When editing is initiated for one of the cells in the Gender column, the getTableCellEditorComponent()
method is called, giving the editor a chance to initialize its state before it’s made visible. In this case, the
editor simply makes either Male or Female the selected entry based on the value stored in the cell being
edited. When the user selects an item in the JComboBox, fireEditingStopped() is called, which signals to
the table that the edit session has ended. The table will then call getCellEditorValue() to retrieve the new
value that should be stored in the cell and will pass that value to the TableModel’s setValueAt() method.

CHAPTER 7 ■ USING SWING’S JTABLE

303

Listing 7-8. An Editor for the Gender Column

import java.awt.Component;
import java.util.EventObject;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;
import javax.swing.table.*;

public class GenderEditor extends JComboBox implements TableCellEditor {

 protected EventListenerList listenerList = new EventListenerList();
 protected ChangeEvent changeEvent = new ChangeEvent(this);

 public GenderEditor() {
 super();
 addItem("Male");
 addItem("Female");
 addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 fireEditingStopped();
 }
 });
 }

 public void addCellEditorListener(CellEditorListener listener) {
 listenerList.add(CellEditorListener.class, listener);
 }

 public void removeCellEditorListener(CellEditorListener listener) {
 listenerList.remove(CellEditorListener.class, listener);
 }

 protected void fireEditingStopped() {
 CellEditorListener listener;
 Object[] listeners = listenerList.getListenerList();
 for (int i = 0; i < listeners.length; i++) {
 if (listeners[i] == CellEditorListener.class) {
 listener = (CellEditorListener)listeners[i + 1];
 listener.editingStopped(changeEvent);
 }
 }
 }

 protected void fireEditingCanceled() {
 CellEditorListener listener;
 Object[] listeners = listenerList.getListenerList();
 for (int i = 0; i < listeners.length; i++) {
 if (listeners[i] == CellEditorListener.class) {
 listener = (CellEditorListener)listeners[i + 1];
 listener.editingCanceled(changeEvent);
 }
 }
 }

CHAPTER 7 ■ USING SWING’S JTABLE

304

 public void cancelCellEditing() {
 fireEditingCanceled();
 }

 public boolean stopCellEditing() {
 fireEditingStopped();
 return true;
 }

 public boolean isCellEditable(EventObject event) {
 return true;
 }

 public boolean shouldSelectCell(EventObject event) {
 return true;
 }

 public Object getCellEditorValue() {
 return new Boolean(getSelectedIndex() == 0 ? true : false);
 }

 public Component getTableCellEditorComponent(
 JTable table, Object value, boolean isSelected, int row, int column) {
 boolean isMale = ((Boolean)value).booleanValue();
 setSelectedIndex(isMale ? 0 : 1);
 return this;
 }

}

Now that you’ve defined the editor component, you need to associate it with the Gender column,
as shown in the following code:

public SimpleTableTest() {
 Container pane = getContentPane();
 pane.setLayout(new BorderLayout());
 TableValues tv = new TableValues();
 table = new JTable(tv);
 TableColumnModel tcm = table.getColumnModel();
 TableColumn tc = tcm.getColumn(TableValues.GENDER);
 tc.setCellRenderer(new GenderRenderer());
 tc.setCellEditor(new GenderEditor());
 table.setDefaultRenderer(Float.class, new CurrencyRenderer());
 JScrollPane jsp = new JScrollPane(table);
 pane.add(jsp, BorderLayout.CENTER);
}

When this code is compiled and run, a JComboBox correctly appears, is initialized with the appropriate
gender value, and allows you to select either Male or Female, as shown in Figure 7-18.

CHAPTER 7 ■ USING SWING’S JTABLE

305

However, selecting a different value from the one already stored in the cell doesn’t result in the cell’s
value being modified. That’s because the value is never changed in the TableModel; you can do this by
implementing the setValueAt() method in the TableValues class.

public void setValueAt(Object value, int row, int column) {
 values[row][column] = value;
}

DefaultCellEditor

It’s not necessary in every case to build a completely new cell editor. In fact, the DefaultCellEditor class allows
you to easily create editor components using a JCheckBox, JComboBox, or JTextField. All that’s necessary is to
create an instance of DefaultCellEditor and pass it an instance of one of these three components. However,
the DefaultCellEditor isn’t very flexible, and you’ll often need to create your own editor as in this case.

Table Selection Settings
From a selection perspective, JTable is a two-dimensional component: each selected cell has both a row
and a column index. In contrast, JList selections are one-dimensional, since only a row index value is
associated with each cell. Because of its two-dimensional nature, a JTable’s selection information can’t
be maintained by a single ListSelectionModel, because that interface supports only one-dimensional
selection information. To address this issue, JTable uses two DefaultListSelectionModel instances.

One that’s maintained directly by the • JTable itself for row selection information

Another that’s maintained through the • TableColumnModel for column selections

I mentioned earlier that when a cell is selected, other cells might also become selected, depending upon
the table’s selection settings. In fact, the JTable component is flexible in terms of the types of selections
that can be made and supports a number of different settings related to selection behavior. To manage its
selection behavior, JTable uses the ListSelectionModel interface and its DefaultListSelectionModel
implementation.

Row selections: If enabled, row selection mode indicates that when a cell is
selected, all other cells in its row should become selected as well. This is the
default behavior for a JTable, where an entire row is selected when a single cell
in that row was clicked. JTable provides accessor and mutator methods called
getRowSelectionAllowed() and setRowSelectionAllowed(), respectively, and
these methods allow you to query and enable or disable row selection mode.

Figure 7-18. Changing the cell editor causes a JComboBox to appear when the cell is edited

CHAPTER 7 ■ USING SWING’S JTABLE

306

Column selections: Just as JTable supports a row selection mode, it also
supports a column selection mode, where selecting one cell causes all cells
in its column to become selected. The getColumnSelectionAllowed() and
setColumnSelectionAllowed() accessor and mutator methods allow you to
query and modify this mode.

Cell selections: In cell selection mode, selecting a cell doesn’t cause any other
cells in the table to become selected. The getCellSelectionEnabled() and
setCellSelectionEnabled() methods query and modify the cell selection mode
for a JTable. Enabling cell selection mode effectively disables the row and column
selection modes.

Combining Row, Column, and Cell Selection Modes
You can use the row and column selection modes together so that clicking a cell causes all other cells in the
same row or column to be selected. However, enabling cell selection mode overrides the row and column
selection modes, causing them to be ignored as if they were both disabled. For example, suppose you create
the following code segment:

JTable table;
.
.
.
table.setRowSelectionAllowed(true);
table.setColumnSelectionAllowed(true);
table.setCellSelectionEnabled(true);

As long as cell selection mode is enabled, the row and column selection modes are effectively disabled,
and only cell selections are allowed. Therefore, although there are three selection settings, there are only
four meaningful combinations of those three settings.

Only row selection mode is enabled.•

Only column selection mode is enabled.•

Cell selection mode is enabled (the other two are ignored).•

All three (row, column, and cell) selection modes are disabled.•

In this last case, the behavior is what you’d probably expect; with all three modes disabled, no cells can
be selected.

List Selection Modes
When some type of cell selection occurs, one or both of the ListSelectionModel instances are updated to
reflect the selection(s) made (the specific changes to those models will depend on the selection mode or
modes enabled). By default, each model can maintain multiple value ranges (or intervals). For example,
given the selections shown in Figure 7-19, the selection model that’s responsible for recording row selections
might record that items 0 through 1 and items 3 through 4 are selected (a total of four rows).

CHAPTER 7 ■ USING SWING’S JTABLE

307

To select two intervals like this, perform the following steps:

 1. Click the top row.

 2. Press and hold down the Shift key, and click the second row. At this point, the
first range (0 through 1) of rows has been selected.

 3. Release the Shift key, press and hold down the Ctrl key, and click the fourth row.

 4. Release the Ctrl key, press and hold down the Shift key, and click the last
row—the second range of rows (3 through 4) has now been selected.

As you can see, holding down the Shift key while making a selection indicates you want to select the
second in a pair of values that defines a range of values (e.g., a set of consecutive rows). Holding down the
Ctrl key while making a selection indicates that any previous selections shouldn’t be cleared before making
another selection. An alternative approach to using the Shift key to select a range of values is to drag the
mouse (in other words, press and hold down the left mouse button while moving the cursor) from one cell to
another. For example, in this case, you could click a cell in the top row and drag the mouse to the second row
to select the first range of rows.

This example illustrates the default mode, known as multiple-interval selection, which is one of three modes
that the ListSelectionModel supports. The other two modes are single-interval selection and single selection.

As its name implies, single-interval selection mode allows a model to maintain a single interval instead
of multiple intervals. For example, if you repeat the previous steps with single-interval selection, the first
range of values (rows 0 through 1) becomes deselected when you attempt to select the second interval
(rows 3 through 4).

In single-selection mode, a ListSelectionModel allows only a single item to be selected, and no
range of items is allowed. Any attempt to select another item will cause the previously selected item to be
deselected. For example, when you enable column selection mode in conjunction with single-selection
mode, you can select only a single column at a time.

As mentioned earlier, each JTable maintains two ListSelectionModel instances and provides a
setSelectionMode() method that sets the selection mode for both instances. Each selection mode is
represented by a constant value defined in ListSelectionModel.

• MULTIPLE_INTERVAL_SELECTION

• SINGLE_INTERVAL_SELECTION

• SINGLE_SELECTION

Figure 7-19. In this example, two sets of rows are selected: the two top and the two bottom rows

CHAPTER 7 ■ USING SWING’S JTABLE

308

Note, however, that JTable doesn’t provide a getSelectionMode() method; to determine the current
mode, you must retrieve that information from one of the ListSelectionModel instances, as illustrated in
the following code:

JTable table;
.
.
.
int oldSelectionMode = table.getSelectionModel().getSelectionMode();
table.setSelectionMode(ListSelectionModel.SINGLE_INTERVAL_SELECT);

Selection Mode Combinations
As mentioned earlier, five combinations of row, column, and cell selection modes are available. In addition,
three ListSelectionModel modes are available, which results in 15 combinations. Although this provides
you with a great deal of flexibility in how table cells are selected, it also results in a somewhat confusing
array of choices. However, by temporarily making the following modifications to SimpleTableTest, you can
select the table and list selection modes used, which allows you to experiment with the behavior of different
combinations, as shown in Listing 7-9.

Listing 7-9. Selection Mode Testing

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.table.*;
import javax.swing.border.*;

public class SimpleTableTest extends JFrame {

 private JTable table;

 public static void main(String[] args) {
 SimpleTableTest stt = new SimpleTableTest();
 stt.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 stt.setSize(400, 200);
 stt.setVisible(true);
 }

 public SimpleTableTest() {
 Container pane = getContentPane();
 pane.setLayout(new BorderLayout());
 TableValues tv = new TableValues();
 table = new JTable(tv);
 TableColumnModel tcm = table.getColumnModel();
 TableColumn tc = tcm.getColumn(TableValues.GENDER);
 tc.setCellRenderer(new GenderRenderer());
 tc.setCellEditor(new GenderEditor());
 table.setDefaultRenderer(Float.class, new CurrencyRenderer());
 JScrollPane jsp = new JScrollPane(table);
 pane.add(jsp, BorderLayout.CENTER);

CHAPTER 7 ■ USING SWING’S JTABLE

309

 JPanel outerPanel = new JPanel();
 outerPanel.setLayout(new GridLayout(1, 2, 0, 0));
 JPanel innerPanel = new JPanel();
 innerPanel.setLayout(new FlowLayout());
 JCheckBox modeBox = new JCheckBox("Row", true);
 modeBox.addItemListener(new ItemListener() {
 public void itemStateChanged(ItemEvent event) {
 JCheckBox box = (JCheckBox)(event.getSource());
 table.setRowSelectionAllowed(box.isSelected());
 }
 });
 innerPanel.add(modeBox);
 modeBox = new JCheckBox("Column");
 modeBox.addItemListener(new ItemListener() {
 public void itemStateChanged(ItemEvent event) {
 JCheckBox box = (JCheckBox)(event.getSource());
 table.setColumnSelectionAllowed(box.isSelected());
 }
 });
 innerPanel.add(modeBox);
 modeBox = new JCheckBox("Cell");
 modeBox.addItemListener(new ItemListener() {
 public void itemStateChanged(ItemEvent event) {
 JCheckBox box = (JCheckBox)(event.getSource());
 table.setCellSelectionEnabled(box.isSelected());
 }
 });
 innerPanel.add(modeBox);

 BevelBorder bb = new BevelBorder(BevelBorder.RAISED);
 TitledBorder tb = new TitledBorder(bb, "Table Selection Types");
 innerPanel.setBorder(tb);
 outerPanel.add(innerPanel);
 innerPanel = new JPanel();
 innerPanel.setLayout(new FlowLayout());
 JComboBox listModes = new JComboBox();
 listModes.addItem("Single Selection");
 listModes.addItem("Single Interval Selection");
 listModes.addItem("Multiple Interval Selections");
 listModes.setSelectedIndex(2);
 listModes.addItemListener(new ItemListener() {
 public void itemStateChanged(ItemEvent event) {
 JComboBox box = (JComboBox)(event.getSource());
 int index = box.getSelectedIndex();
 switch (index) {
 case 0:
 table.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);
 break;
 case 1:
 table.setSelectionMode(ListSelectionModel.SINGLE_INTERVAL_SELECTION);
 break;

CHAPTER 7 ■ USING SWING’S JTABLE

310

 case 2:
 table.setSelectionMode(ListSelectionModel.MULTIPLE_INTERVAL_SELECTION);
 break;
 }
 }
 });
 innerPanel.add(listModes);
 bb = new BevelBorder(BevelBorder.RAISED);
 tb = new TitledBorder(bb, "List Selection Modes");
 innerPanel.setBorder(tb);
 outerPanel.add(innerPanel);

 pane.add(outerPanel, BorderLayout.SOUTH);
 }
}

As shown in Figure 7-20, this code adds a pair of panels to the bottom of the SimpleTableTest interface.
The panel on the left allows you to enable and disable row, column, and cell selections, while the panel on
the right contains a JComboBox that allows you to choose a selection mode. The selections you make in the
check boxes and the combo box are detected and used to update the selection state of the JTable, which
provides you with the ability to experiment with different selection modes.

Figure 7-20. This testing utility allows you to graphically control the selection settings in a table to see how
those changes affect its appearance

Setting Selections Programmatically
In addition to user-generated events that change which cells are selected within a table, it’s also possible
to set and query a JTable’s selections programmatically; Table 7-1 describes the methods available for
doing so.

CHAPTER 7 ■ USING SWING’S JTABLE

311

Table 7-1. Cell Selection Methods

Method Behavior

getSelectedRowCount() Returns the number of rows in the table that are currently selected.

getSelectedRows() Returns an array of integers, each one representing the index value of a
currently selected row in the table.

getSelectedRow() Returns an integer index value that identifies the first row (the row
closest to the top of the table) that’s selected. This is useful when only a
single row can be selected.

setRowSelectionInterval
(int index0, int index1)

Each row within the range of values (inclusive) is selected. Any rows
not in that range that were selected prior to this method call are
deselected.

addRowSelectionInterval
(int index0, int index1)

Each row within the range of values (inclusive) is selected.

getSelectedColumnCount() Returns the number of columns in the table that are currently selected.

getSelectedColumns() Returns an array of integers, each one representing the index value of a
currently selected column in the table.

getSelectedColumn() Returns an integer index value that identifies the first column (the row
closest to the left side of the table) that’s selected. This is useful only
when a single column can be selected.

setColumnSelectionInterval
(int index0, int index1)

Each column within the range of values (inclusive) is selected. Any
columns not in that range that were selected prior to this method call
are deselected.

addColumnSelectionInterval() Two integer values are passed to this method, and each column within
the range of values (inclusive) is selected.

All these methods are defined in JTable, but each of them delegates the request to a
ListSelectionModel. Specifically, the row selection method calls are delegated to the model maintained
by the JTable itself (the row model), while the column selection calls are handled by the selection model
maintained by the table’s TableColumnModel implementation.

Table Headers
Early in the chapter we saw that adding a JTable to a JScrollPane results in the appearance of a header
above each column and that a user can dynamically resize columns using mouse drags that begin at the right
edge of the header of the column to be sorted. In fact, that ability to resize columns dynamically is only part
of the functionality supported by JTable headers. For example, you can dynamically change the order of the
columns within a JTable by dragging the column’s header left or right to reposition the column.

In reality, the functions just described aren’t provided by the JTable class itself but by a support class
defined in the javax.swing.table package created for the purpose of providing a robust table header—
specifically, the JTableHeader class. The table header is created for you automatically when the table is
added to a scroll pane and it’s rarely necessary for you to access the header directly, but it is accessible
through the getTableHeader() method defined in JTable.

CHAPTER 7 ■ USING SWING’S JTABLE

312

In some ways the design of JTableHeader is similar to that of JTable. For example, the header above
each column in the table is considered a “cell” that’s drawn by a TableCellRenderer and just as with
the data cells within the table you can customize the appearance of header cells by creating and using a
custom renderer. You can assign a header renderer to a single column by using the setHeaderRenderer()
method in TableColumn, but if no renderer has been explicitly assigned to the column using that
method the JTableHeader’s default renderer will be used, which can also be set and retrieved using the
setDefaultRenderer() and getDefaultRenderer() methods, respectively. We won’t cover an example of
how to do so because the technique is identical to the one we already examined that’s used for data cells.

Multiline Column Headers
Notice that the “Account Balance” column header doesn’t quite fit within the space provided for the column
and is truncated with ellipses (...) to indicate that the entire text is not displayed. This is a fairly common
problem, especially when the column header is long or the data within the column doesn’t require much
space and as a consequence you decide to make the column narrow.

An easy solution to this problem is to use a multiline column header, which can be done by wrapping
the column name into HTML elements and inserting a break (
) element where you’d like a line break to
occur. Following is an example of how this would appear in the code:

public final static String[] columnNames = {
 "First Name", "Last Name", "Date of Birth", "<html>Account
Balance</html>",
 "Gender"
};

By default the table header is only tall enough to display one line of text, so to ensure that it can display
two lines you should also include code like the following that increases the header’s preferred height:

JTableHeader header = table.getTableHeader();
header.setPreferredSize(new Dimension(
 header.getPreferredSize().width, header.getPreferredSize().height * 2));

With these two changes made, running the sample application produces a window like the one shown
in Figure 7-21.

Figure 7-21. An example of a multiline table header

CHAPTER 7 ■ USING SWING’S JTABLE

313

Adding Table Header Tool Tips
Assuming that we want to define a custom JTable subclass that can display a different tool tip for each
column we can begin by defining a class like the one shown in Listing 7-10.

Listing 7-10. A JTable Subclass That Maintains a Mapping of Column Names to Tool Tips

import java.util.*;
import javax.swing.*;

public class ToolTipTable extends JTable {

 private final Map<String, String> columnTips = new HashMap<String, String>();

 public ToolTipTable(TableValues model) {
 super(model);
 }

 public void setColumnToolTip(String columnName, String toolTipText) {
 columnTips.put(columnName, toolTipText);
 }

 public String getColumnToolTip(String columnName) {
 return columnTips.get(columnName);
 }

}

This table defines a collection in which it stores a mapping between column names and tool tips.
Now what’s needed is to create the code that will actually cause a tool tip to be displayed. Because the table
header is a separate component we can simply create a MouseListener that is notified whenever mouse
movement occurs over the header. That listener will need to determine which column the cursor is over,
retrieve the appropriate tool tip for that column, and set the header’s tool tip text to that value as shown in
Listing 7-11.

Listing 7-11. Selecting and Assigning a Tool Tip

import java.awt.event.*;
import java.util.*;
import javax.swing.*;
import javax.swing.table.*;

public class ToolTipTable extends JTable {

 private final Map<String, String> columnTips = new HashMap<String, String>();

 public ToolTipTable(TableValues model) {
 super(model);
 createToolTipListener();
 }

CHAPTER 7 ■ USING SWING’S JTABLE

314

 private void createToolTipListener() {
 JTableHeader header = getTableHeader();
 header.addMouseMotionListener(new MouseAdapter() {
 public void mouseMoved(MouseEvent event) {
 JTableHeader source = (JTableHeader)(event.getSource());
 int viewIndex = source.columnAtPoint(event.getPoint());
 String columnName = getColumnName(viewIndex);
 String toolTipText = getColumnToolTip(columnName);
 source.setToolTipText(toolTipText);
 }
 });
 }

 public void setColumnToolTip(String columnName, String toolTipText) {
 columnTips.put(columnName, toolTipText);
 }

 public String getColumnToolTip(String columnName) {
 return columnTips.get(columnName);
 }

}

Finally, we’ll need to update our program to specify the name of the column or columns for which we
want a tool tip displayed. For this example we’ll just assign a tool tip to the “Date of Birth” column as shown
in Listing 7-12.

Listing 7-12. Setting the Tool Tip Text for one of the Table’s Columns

public class SimpleTableTest extends JFrame {

 private ToolTipTable table;

 public static void main(String[] args) {
 SimpleTableTest stt = new SimpleTableTest();
 stt.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 stt.setSize(400, 200);
 stt.setVisible(true);
 }

 public SimpleTableTest() {
 Container pane = getContentPane();
 pane.setLayout(new BorderLayout());
 TableValues tv = new TableValues();
 table = new ToolTipTable(tv);
 table.setColumnToolTip("Date of Birth", "Date on which the person was born");

If you compile and run this code, you’ll find that it displays the tool tip only when the cursor hovers over
the “Account Balance” column as illustrated in Figure 7-22.

CHAPTER 7 ■ USING SWING’S JTABLE

315

Creating Row Headers
For many displays, column headers are sufficient, but you’ll sometimes want to create row headers for
the data in a JTable. As it turns out, this is easy to do, since the JScrollPane provides not only a viewport
for column headers but also one for row headers. Unlike the column header viewport, the row viewport is
empty by default, but it’s trivial to create your own header and have it displayed.

You can use the class in Listing 7-13 as a row header; it’s simply a JTable that displays a single column
with the index value (starting at 1 instead of 0) of each row displayed in that column. The class is very simple,
and in fact, much of its code exists simply to make minor adjustments to its appearance and behavior, such
as preventing its cells from being selected.

Listing 7-13. Row Header Component

import javax.swing.*;
import javax.swing.table.*;

public class RowNumberHeader extends JTable {

 private JTable mainTable;

 public RowNumberHeader(JTable table) {
 super();
 mainTable = table;
 setModel(new RowNumberTableModel());
 setPreferredScrollableViewportSize(getMinimumSize());
 setRowSelectionAllowed(false);
 JComponent renderer = (JComponent)getDefaultRenderer(Object.class);
 LookAndFeel.installColorsAndFont(renderer,
 "TableHeader.background",
 "TableHeader.foreground",
 "TableHeader.font");
 LookAndFeel.installBorder(this, "TableHeader.cellBorder");
 }

 public int getRowHeight(int row) {
 return mainTable.getRowHeight();
 }

Figure 7-22. Displaying a tool tip for a table header column

CHAPTER 7 ■ USING SWING’S JTABLE

316

 class RowNumberTableModel extends AbstractTableModel {

 public int getRowCount() {
 return mainTable.getModel().getRowCount();
 }

 public int getColumnCount() {
 return 1;
 }

 public Object getValueAt(int row, int column) {
 return new Integer(row + 1);
 }

 }

}

After defining this class, you can use it by making a temporary change to the SimpleTableTest class
(see Listing 7-14).

Listing 7-14. Using the Row Header Component

public SimpleTableTest() {
 Container pane = getContentPane();
 pane.setLayout(new BorderLayout());
 TableValues tv = new TableValues();
 table = new JTable(tv);
 table.setRowSelectionAllowed(false);
 table.setColumnSelectionAllowed(true);
 TableColumnModel tcm = table.getColumnModel();
 TableColumn tc = tcm.getColumn(TableValues.GENDER);
 tc.setCellRenderer(new GenderRenderer());
 tc.setCellEditor(new GenderEditor());
 MultiLineHeaderRenderer mlhr = new MultiLineHeaderRenderer();
 tc = tcm.getColumn(TableValues.ACCOUNT_BALANCE);
 tc.setHeaderRenderer(mlhr);
 JTableHeaderToolTips jthtt =
 new JTableHeaderToolTips(table.getColumnModel());
 jthtt.setToolTips(new String[] {"Customer's First Name",
 "Customer's Last Name", "Customer's Date of Birth",
 "Customer's Account Balance", "Customer's Gender"});
 table.setTableHeader(jthtt);
 table.setDefaultRenderer(Float.class, new CurrencyRenderer());
 JScrollPane jsp = new JScrollPane(table);
 JViewport jvp = new JViewport();
 jvp.setView(new RowNumberHeader(table));
 jsp.setRowHeader(jvp);
 pane.add(jsp, BorderLayout.CENTER);
 addHeaderListener();
}

CHAPTER 7 ■ USING SWING’S JTABLE

317

When executed, each table row includes a number on the left side, as shown in Figure 7-23.

Frozen Columns

In addition to displaying row headers, it’s sometimes desirable to “freeze” one or more columns in the table
so they’re visible even when the user scrolls right or left horizontally. For example, in the case of this data,
it might be desirable to freeze the first column (First Name) so it’s always visible. You can do this, but it’s
slightly more complex than creating simple row labels.

The steps are as follows:

 1. Create a JTable that you’ll call the main table, and enclose it in a JScrollPane.
This table will display the nonfrozen data.

 2. Create a second JTable that you’ll call the header table, and add it to a
JScrollPane as well. This table should use the same TableModel as the main
table but will display the frozen column(s).

 3. Create an empty TableColumnModel that will later be assigned to the header table.

 4. Remove the TableColumn instances from the main table’s TableColumnModel
for each column to be frozen, and add them to the column model created in the
previous step.

 5. Assign the column model that now contains the frozen TableColumn instances to
the header table using setColumnModel().

 6. The JScrollPane that contains the header table should now also contain a
JTableHeader in its column header viewport. Obtain a reference to it, and move
it to the upper-left corner of the JScrollPane that contains the main table. You
can do this using the scroll pane’s setCorner() method.

 7. Set the header table’s preferred scrollable viewport width so it’s just large enough
to display the frozen columns. Its default width is 450, which is usually larger
than necessary.

In effect, to freeze columns, you split the JTable into two separate tables, display the table containing
the frozen columns as the JScrollPane’s row header, and move that table’s column headers to the upper-left
corner of the outer scroll pane. Listing 7-15 shows how to implement this behavior.

Figure 7-23. Although column headers are used more frequently, it’s sometimes also helpful to use row
headers, such as in this case where each row is numbered

CHAPTER 7 ■ USING SWING’S JTABLE

318

Listing 7-15. A Frozen Column Header Component

import java.awt.*;
import javax.swing.*;
import javax.swing.table.*;

public class FrozenColumnHeader extends JScrollPane {

 private JTable mainTable;
 private JTable headerTable;
 private int columnCount;

 public FrozenColumnHeader(JTable table, int columns) {
 super();
 mainTable = table;
 headerTable = new JTable(mainTable.getModel());
 getViewport().setView(headerTable);
 columnCount = columns;
 }

 public void addNotify() {
 TableColumn column;
 super.addNotify();
 TableColumnModel mainModel = mainTable.getColumnModel();
 TableColumnModel headerModel = new DefaultTableColumnModel();
 int frozenWidth = 0;
 for (int i = 0; i < columnCount; i++) {
 column = mainModel.getColumn(0);
 mainModel.removeColumn(column);
 headerModel.addColumn(column);
 frozenWidth += column.getPreferredWidth() + headerModel.getColumnMargin();
 }
 headerTable.setColumnModel(headerModel);
 Component columnHeader = getColumnHeader().getView();
 getColumnHeader().setView(null);
 JScrollPane mainScrollPane = (JScrollPane)SwingUtilities.getAncestorOfClass(
 JScrollPane.class, mainTable);
 mainScrollPane.setCorner(JScrollPane.UPPER_LEFT_CORNER, columnHeader);
 headerTable.setPreferredScrollableViewportSize(
 new Dimension(frozenWidth, 0));
 }
}

You can use this class by creating an instance of it and passing a reference to a JTable to the constructor,

along with the number of columns from that table to freeze. For example, the following modification to
SimpleTableTest causes the First Name column to be frozen (see Listing 7-16):

CHAPTER 7 ■ USING SWING’S JTABLE

319

Listing 7-16. Integrating the Frozen Column Header into a Table

public SimpleTableTest() {
 Container pane = getContentPane();
 pane.setLayout(new BorderLayout());
 TableValues tv = new TableValues();
 table = new JTable(tv);
 table.setRowSelectionAllowed(false);
 table.setColumnSelectionAllowed(true);
 TableColumnModel tcm = table.getColumnModel();
 TableColumn tc = tcm.getColumn(TableValues.GENDER);
 tc.setCellRenderer(new GenderRenderer());
 tc.setCellEditor(new GenderEditor());
 MultiLineHeaderRenderer mlhr = new MultiLineHeaderRenderer();
 tc = tcm.getColumn(TableValues.ACCOUNT_BALANCE);
 tc.setHeaderRenderer(mlhr);
 JTableHeaderToolTips jthtt =
 new JTableHeaderToolTips(table.getColumnModel());
 jthtt.setToolTips(new String[] {"Customer's First Name",
 "Customer's Last Name", "Customer's Date of Birth",
 "Customer's Account Balance", "Customer's Gender"});
 table.setTableHeader(jthtt);
 table.setDefaultRenderer(Float.class, new CurrencyRenderer());
 JScrollPane jsp = new JScrollPane(table);
 JViewport jvp = new JViewport();
 jvp.setView(new FrozenColumnHeader(table, 1));
 // The following line isn't necessary but is done
 // to illustrate that the "frozen" columns remain
 // visible even when the main table is scrolled
 table.setAutoResizeMode(JTable.AUTO_RESIZE_OFF);
 jsp.setRowHeader(jvp);
 pane.add(jsp, BorderLayout.CENTER);
 addHeaderListener();
}

When you execute this code, you can resize the frame so it’s too narrow to display all the columns in
the table. However, regardless of which portion of the table is displayed, the “frozen” column on the left will
remain visible, as shown in Figure 7-24.

Figure 7-24. Frozen column headers are useful when the table data is wider than can be displayed

CHAPTER 7 ■ USING SWING’S JTABLE

320

Although this example illustrates how to freeze a single column, you can apply this same technique if
you want to freeze multiple columns. You can also use this approach to freeze rows of data simply by adding
a table containing the rows to the JScrollPane’s column header viewport.

Sorting Table Rows
When displaying information in a JTable, you’ll sometimes want to sort the rows in the table based on
the values in one or more of the columns. Since sorting is a slow and potentially complex task, it’s best to
have the data sorted by some external application. For example, if you’re displaying data from a relational
database, you can have the database present the rows to you in sorted order by indicating that fact in the
SELECT statement you issue. However, you’ll often want to allow the user to determine which column should
be used for sorting and whether to sort in ascending or descending order, and since Java 6 the JTable class
has included built-in support for sorting.

To enable table sorting you can simply add the following line of code to your class that creates the table:

table.setAutoCreateRowSorter(true);

As its name implies, this method tells the table to create a row sorter that will cause the rows to be
sorted. You can see the results of this by clicking one of the columns in the test application, which will result
in the appearance of an arrow button in the header cell you clicked as shown in Figure 7-25.

Figure 7-25. An arrow appears to indicate the sort order; an up arrow indicates an ascending sort

Clicking the same column header a second time will toggle the sort order so that it changes to a
descending sort, and clicking a different header cell will cause the table data to be re-sorted using an
ascending sort of that column’s data, and so on.

This approach works fine when you want the user to select a single column, but what about the case
where you want to have the table sorted by default without any action on the part of the user? The column
header clicking is supported by a programmatic interface included in the JTable class that allows the caller
to specify which column(s) should be used for sorting and, for each one of the columns, the sort order
(ascending or descending). Specifically, the TableRowSorter class defined in the javax.swing.table package
encapsulates the sorting preferences. TableRowSorter is a generic type that expects you to indicate the
TableModel implementation that you intend to use it with, though you can usually just specify TableModel
itself. It does require you to provide, either on construction or later via its setModel() method, a reference to
the model containing the data to be sorted. In this case we’ll provide a reference to our TableValues model
and specify that as the model class.

TableRowSorter<TableValues> sorter = new TableRowSorter<TableValues>(tv);

CHAPTER 7 ■ USING SWING’S JTABLE

321

The next step is to indicate the columns on which to sort and, for each one, the sort order. This is done
using the column’s index along with an instance of the SortOrder enumeration defined in javax.swing,
with the column index/sort order pair stored in an instance of SortKey, which is an inner class defined in
the RowSorter class. In the following code we indicate that sorting should be done using the values in the
second column in descending order and when two rows in that column contain the same value they should
be further sorted in descending order based on the third column’s value:

RowSorter.SortKey key1 = new RowSorter.SortKey(1, SortOrder.DESCENDING);
RowSorter.SortKey key2 = new RowSorter.SortKey(2, SortOrder.DESCENDING);
java.util.List<RowSorter.SortKey> sortKeys = java.util.Arrays.asList(key1, key2);

Now that we’ve created our instance of TableRowSorter and created a list containing the sort
keys, we can set that list of keys in the sorter object and tell the table to use that sorter to determine the
order of its rows. The complete code is shown next and should replace the previously described call to
setAutoCreateRowSorter().

TableRowSorter<TableValues> sorter = new TableRowSorter<TableValues>(tv);
TableRowSorter.SortKey key1 = new TableRowSorter.SortKey(1, SortOrder.DESCENDING);
TableRowSorter.SortKey key2 = new TableRowSorter.SortKey(2, SortOrder.DESCENDING);
java.util.List<RowSorter.SortKey> sortKeys = java.util.Arrays.asList(key1, key2);
sorter.setSortKeys(sortKeys);
table.setRowSorter(sorter);

Once these changes are made and the sample program run, it displays the table with its data sorted
using the second and third column values as shown in Figure 7-26.

Figure 7-26. A table with its rows sorted programmatically

Adding and Removing Table Rows
In all the examples you’ve seen so far, no JTable data was changed, added, or removed programmatically.
However, you’ll sometimes want to dynamically change the data in a JTable after it’s displayed, and all that’s
necessary is to make the changes to your TableModel and then notify its listeners (in other words, the JTable
instance) that the data was modified.

For example, Listing 7-17 provides a simple one-column table and a text field that allows you to add
lines of text to the table.

CHAPTER 7 ■ USING SWING’S JTABLE

322

Listing 7-17. Adding Table Rows

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;
import javax.swing.table.*;
import java.util.Vector;

public class RowAdder extends JFrame {

 private SimpleModel tableData;
 private JTable table;
 private JTextField textField;

 public static void main(String[] args) {
 RowAdder ra = new RowAdder();
 ra.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 ra.setSize(400, 300);
 ra.setVisible(true);
 }

 public RowAdder() {
 Container pane = getContentPane();
 pane.setLayout(new BorderLayout());
 tableData = new SimpleModel();
 table = new JTable(tableData);
 table.getColumnModel().getColumn(0).setPreferredWidth(300);
 JScrollPane jsp = new JScrollPane(table);
 pane.add(jsp, BorderLayout.CENTER);
 textField = new JTextField();
 textField.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 addLineToTable();
 }
 });
 pane.add(textField, BorderLayout.SOUTH);
 }

 private void addLineToTable() {
 tableData.addText(textField.getText());
 textField.setText("");
 }

 class SimpleModel extends AbstractTableModel {

 private Vector textData = new Vector();

 public void addText(String text) {
 textData.addElement(text);
 fireTableDataChanged();
 }

CHAPTER 7 ■ USING SWING’S JTABLE

323

 public int getRowCount() {
 return textData.size();
 }

 public int getColumnCount() {
 return 1;
 }

 public Object getValueAt(int row, int column) {
 return textData.elementAt(row);
 }

 }

}

This code creates a JTable and allows you to enter text in a text field and press the Return key to add
that text to the table, as shown in Figure 7-27.

Figure 7-27. This simplistic interface illustrates how rows can be added to a table dynamically

When that occurs, the data is added to the TableModel, and the fireTableDataChanged()
method is called. That method is provided by AbstractTableModel as a convenience, but even if your
TableModel isn’t a subclass of AbstractTableModel, it’s still trivial to refresh the table display when
your data changes. All that’s necessary is to construct an instance of TableModelEvent and pass it as the
parameter to the tableChanged() method of all listeners that registered with the TableModel through its
addTableModelListener() method. The following code segment illustrates how to do this:

private EventListenerList listenerList = new EventListenerList();
.
.
.
public void notifyListenersOfDataChange() {
 TableModelEvent event = new TableModelEvent(this);
 Object[] listeners = listenerList.getListenerList();

CHAPTER 7 ■ USING SWING’S JTABLE

324

 for (int i = 0; i < listeners.length; i++) {
 if (listeners[i] == TableModelListener.class) {
 TableModelListener listener = (TableModelListener)(listeners[i + 1]);
 listener.tableChanged(event);
 }
 }
}

This code illustrates how easily you can notify listeners (in practice, usually a single JTable instance) of
a change to a TableModel’s data. However, as mentioned, AbstractTableModel implements this functionality
for you. It also includes a number of fireTable() methods that create a TableModelEvent containing
information about specifically what type of change (insert, update, or delete) occurred, along with the
rows and columns that were affected by the change. You can use those methods to cause your table to be
refreshed when you have made insertions, updates, or deletions to the data in the table’s model.

Displaying a Particular Table Row
In the RowAdder class just defined, a row is added to the table each time the Return key is pressed in a text
field. The first dozen or so rows appear immediately in the table, but eventually, there’s not enough room
to display all the table rows, and a vertical scrollbar appears. At that point, since new rows are added to the
end of the table, they won’t be visible unless you manually scroll to the bottom of the table. However, when
you’re adding data to a table like this, it’s often helpful to scroll the table automatically so that it always shows
the most recently added row. You can do this by accessing the JViewport instance that’s associated with the
table’s scroll pane and changing the view position so that the bottom row appears at the scroll pane. You can
easily modify the RowAdder class previously defined to perform this operation, as shown in Listing 7-18.

Listing 7-18. Scrolling to a Particular Row

public RowAdder() {
 Container pane = getContentPane();
 pane.setLayout(new BorderLayout());
 tableData = new SimpleModel();
 table = new JTable(tableData);
 table.getColumnModel().getColumn(0).setPreferredWidth(300);
 table.addComponentListener(new TableScroller());
 JScrollPane jsp = new JScrollPane(table);
 pane.add(jsp, BorderLayout.CENTER);
 textField = new JTextField();
 textField.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 addLineToTable();
 }
 });
 pane.add(textField, BorderLayout.SOUTH);
}
class TableScroller extends ComponentAdapter {

 public void componentResized(ComponentEvent event) {
 int lastRow = tableData.getRowCount() - 1;
 int cellTop = table.getCellRect(lastRow, 0, true).y;

CHAPTER 7 ■ USING SWING’S JTABLE

325

 JScrollPane jsp = (JScrollPane)SwingUtilities.getAncestorOfClass(
 JScrollPane.class, table);
 JViewport jvp = jsp.getViewport();
 int portHeight = jvp.getSize().height;
 int position = cellTop - (portHeight - table.getRowHeight() -
 table.getRowMargin());
 if (position >= 0) {
 jvp.setViewPosition(new Point(0, position));
 }
 }
}

The componentResized() method obtains the last row’s size and coordinates by calling the table’s
getCellRect() method. It then uses the row’s vertical position, the size of the viewport, and the height of the
row to adjust the view position so the last row is displayed at the bottom of the table. By using functionality
similar to this, you can ensure that any given table row is visible, such as in this case where a new row was
added to the table and should be displayed.

Summary
In this chapter, you examined the functionality provided by JTable and how it provides those capabilities.
Specifically, I discussed the following:

How to create a • TableModel

Column resizing modes•

How to render and edit table cells•

Selection modes•

• JTableHeader and how it can provide an improved user interface

How to create numbered rows and frozen columns•

How to implement sorting•

How to handle dynamic updates to the table data•

327

CHAPTER 8

Using Swing’s JTree

The JTree component defined in the javax.swing package is commonly used to display hierarchical data
such as the contents of a file system. Even if you’ve never used JTree before, you’ve almost certainly seen a
component like the one that appears on the left side of the Windows Explorer application (see Figure 8-1).

This chapter describes how to use JTree and illustrates how to provide some functionality that’s often
needed. Specifically, in this chapter I’ll cover the following:

Understanding the terminology related to tree structures and the data they display•

Using • JTree’s support classes and interfaces

Constructing and manipulating the data model associated with a tree•

Figure 8-1. Windows Explorer represents the relationships between a set of disks and directories

CHAPTER 8 ■ USING SWING’S JTREE

328

Controlling how the items in a tree are drawn (rendered) and edited•

Selecting items in a tree and detecting when selections change•

Controlling which portions of a tree’s data are displayed (expanded) or concealed •
(collapsed)

JTree Terminology
Before discussing how to use JTree, I’ll define the terminology that describes the different parts of a tree and
its behavior. Each item that’s displayed in the tree is referred to as a node, and every JTree contains a single
root node that resides at the top of the node hierarchy (see Figure 8-2).

Each node is either a branch node or a leaf node, although the exact meanings of those terms can vary.
Leaf node can refer to a node that doesn’t contain other nodes, or it can refer to a node that can’t contain
other nodes. Branch node similarly can mean a node that does contain other nodes or one that can contain
other nodes. In other words, a node that doesn’t contain other nodes can be described as either a leaf node
or a branch node; I discuss the variation in meaning in more detail later.

When a branch node does contain other nodes, it’s said to be the parent of those nodes, and they’re
referred to as children of that branch and siblings of one another. In Figure 8-2, the Adam node is the parent
of Cain, Abel, and Seth, and those three are likewise children of Adam and siblings of one another. Since the
parent-child relationship is relative (it describes one node’s relationship to another), a single node can be
both a parent and a child. For example, Seth is both a parent (relative to Enos) and a child (relative to Adam).

All nodes that are contained by a branch node either directly or indirectly are referred to as the branch’s
descendents, and the branch itself is likewise referred to as an ancestor of its descendents. In Figure 8-2, the
Adam node is the ancestor of all other nodes in the tree, and those nodes are all descendents of Adam.
A closely related concept is that of a subtree, which is simply a tree node and all of its descendents, since that
collection of nodes effectively forms a separate “tree within the tree.”

The JTree component normally allows a parent node to be displayed in one of two states: with its
children visible or with its children concealed. When a node’s children are visible, that node is expanded; a
collapsed node is one for which its descendents are concealed. It’s normally possible for you to toggle this
state by clicking the node’s handle, which is a small image that appears to the left of the node. Figure 8-3
shows two instances of JTree that contain the same data, but two of the three nonroot nodes (colors and
food) in the left tree are expanded, while all three of those in the right tree are collapsed. Note that the
appearance of the handle varies slightly based upon the state (expanded or collapsed) of the node with
which it’s associated.

Figure 8-2. Each row of the tree is referred to as a node, and a tree typically displays a top root node

CHAPTER 8 ■ USING SWING’S JTREE

329

When a node is collapsed, all of its descendents are hidden, because those nodes can’t be seen, while
a node for which all ancestors are expanded is considered viewable. The term viewable correctly implies
that a node is eligible to be seen but not that it’s currently visible. The reason for this distinction is that like
JTable components, JTree instances often contain too much data to be able to display all of their nodes
simultaneously, and for that reason, trees are often contained inside instances of JScrollPane. Only when
a node is actually visible is it considered displayed, which means the node lies within the portion of the tree
that’s currently visible in the JScrollPane.

Creating a JTree
Creating a JTree instance is easy to do (see Listing 8-1), and many different constructors are provided,
although the no-argument constructor populates the tree with dummy data like that shown in Figure 8-3.
Several others accept a list of items in the form of an object array, Vector, or Hashtable.

Listing 8-1. Creating a New JTree

import javax.swing.*;

public class SimpleTreeTest extends JFrame {

 public static void main(String[] args) {
 SimpleTreeTest stt = new SimpleTreeTest();
 stt.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 stt.setSize(250, 250);
 stt.setVisible(true);
 }
 public SimpleTreeTest() {
 Object[] genealogy = {"Jeff", "Joseph", "Pearl", "Owen", "Sarah",
 "John"};

Figure 8-3. A collapsed tree node is one that has descendents that aren’t displayed, and the appearance of the
node’s handle indicates when it’s collapsed

CHAPTER 8 ■ USING SWING’S JTREE

330

 JTree tree = new JTree(genealogy);
 JScrollPane jsp = new JScrollPane(tree);
 getContentPane().add(jsp);
 }

}

This results in a display like the one shown in Figure 8-4.

It may appear at first glance that there’s no root node or that each of the six nodes in the array passed to
the JTree constructor is somehow a root node. In reality, this constructor produces a JTree instance that has
a concealed root node, and each of the objects in the array parameter is made a child of that invisible root.
To view the root node, add a line of code that calls the setRootVisible() method.

public SimpleTreeTest() {
 Object[] genealogy = {"Jeff", "Joseph", "Pearl", "Owen", "Sarah",
 "John"};
 JTree tree = new JTree(genealogy);
 tree.setRootVisible(true);
 JScrollPane jsp = new JScrollPane(tree);
 getContentPane().add(jsp);
}

This results in a display like the one shown in Figure 8-5.

Here the node values are all instances of the String class, but you can use any type of object as a node.
JTree’s default behavior is to display the value returned by each object’s toString() method, which in this
case is simply the String value itself.

Figure 8-4. A simple tree with six sibling nodes visible

Figure 8-5. In this example, the root node appears because you’ve explicitly indicated it should be displayed

CHAPTER 8 ■ USING SWING’S JTREE

331

In this example, each of the six nodes is assumed to be a leaf node since there are no children defined,
but it’s possible to use this technique to create more complex tree structures. For example, you could add a
second level of nodes by modifying the following code:

public SimpleTreeTest() {
 Object[] genealogy = {"Jeff", "Joseph", "Pearl", "Owen", "Sarah",
 "John"};
 genealogy[0] = new Object[] {"Jerry", "Selma", "Joe", "Evelyn"};
 JTree tree = new JTree(genealogy);
 tree.setRootVisible(true);
 JScrollPane jsp = new JScrollPane(tree);
 getContentPane().add(jsp);
}

This modification changed the first element in the genealogy array from a String into another array,
and when this code is compiled and executed, it produces a tree like the one shown in Figure 8-6.

Although this figure displays the data in a way that’s largely appropriate, the toString() method of the
second object array returns a value ([Ljava.lang.Object;@2701e) that’s not meaningful. You can address
this problem in several ways, but one easy way is to use either Vector or Hashtable instead of an array
and override the object’s toString() method so it returns the desired value. The following code segment
illustrates how you can do this:

public SimpleTreeTest() {
 Object[] genealogy = {"Jeff", "Joseph", "Pearl", "Owen", "Sarah",
 "John"};
 java.util.Vector v = new java.util.Vector() {
 public String toString() {
 return "Jeff";
 }
 };
 v.addElement("Jerry");
 v.addElement("Selma");
 v.addElement("Joe");
 v.addElement("Evelyn");
 genealogy[0] = v;

Figure 8-6. Defining a node as an array results in the array elements being represented as children within
the tree

CHAPTER 8 ■ USING SWING’S JTREE

332

 JTree tree = new JTree(genealogy);
 tree.setRootVisible(true);
 JScrollPane jsp = new JScrollPane(tree);
 getContentPane().add(jsp);
}

Note ■ Overriding the toString() method of a collection like Vector is generally a very poor programming

practice and isn’t really a good solution to this problem. A better approach to this type of problem is provided by

using the classes defined in Swing for representing tree nodes that we’ll examine shortly.

As expected, this modified version of the code displays the name Jeff for the first child node’s label
instead of the cryptic value returned by the Object array (see Figure 8-7).

However, this approach is less than ideal, and as you’ll see later in this chapter, the classes and
interfaces in the javax.swing.tree package provide a better way to define the nodes in a tree and their
parent-child relationships. Prior to that discussion, it’s useful to examine the TreeModel interface, which
defines the methods that are invoked by JTree to retrieve the data it displays.

TreeModel
Like other Swing components, an instance of the JTree class defined in javax.swing represents the
component view, and some other object represents the model. In other words, the model is the object that
encapsulates the data to be displayed, and the view (a JTree instance) is the visual representation of that
data. For a class to serve as a JTree model, it must implement TreeModel, an interface that’s defined in the
javax.swing.tree package. I describe each of the methods defined in TreeModel next, although you won’t
normally call these methods yourself. Instead, an instance of JTree typically uses them to obtain the data it
displays.

Figure 8-7. By changing the value returned by an object’s toString() method, you can control what’s
displayed for that object when it’s part of a tree

CHAPTER 8 ■ USING SWING’S JTREE

333

addTreeModelListener(), removeTreeModelListener()

An instance of a TreeModelListener implementation is passed to these methods, which are used to add and
remove listeners to and from a list of objects that want to be notified of changes to the tree data. Each listener
is notified when a node is added or removed from the tree and when the tree’s structure otherwise changes.
In practice, the only registered listener of a given TreeModel instance will be the JTree instance associated
with the model, and by registering as a listener, the tree can be notified of changes to the data it displays.

getRoot()

This method returns the object representing the tree’s root node. In the previous examples, a root node was
constructed automatically, and the objects in the array or Vector passed to the JTree constructor were made
children of that root node. In most cases, however, you’ll construct your own root node, add children to it,
and pass it to a JTree constructor.

getChildCount()

An object representing one of the previously identified tree nodes (the root node or one of its descendents) is
passed to this method, which returns an integer value that identifies the number of children associated with
that node.

getChild()

An object representing one of the previously identified tree nodes is passed to this method along with an
integer index value, and a reference to the appropriate child node is returned. The specific node returned
is based on the value of the index parameter and corresponds to the child’s position within its parent’s list
of children. For example, if the index value is 0, the first child node (the one that appears directly below its
parent) is returned, and a value of 1 returns the second child node, and so on. In the following code segment,
the third child of the node represented by parent is returned:

TreeModel model;
Object childNode, parentNode;
.
.
.

Object childNode = model.getChild(parentNode, 2);

getIndexOfChild()

This method provides functionality that’s essentially the opposite of that provided by getChild(). While
getChild() returns a child node given an index, getIndexOfChild() returns the index associated with a
specific child node. Two parameters representing tree nodes are passed to this method: one that’s a parent
and another representing one of that parent’s children; getIndexOfChild() returns an integer that identifies
the child’s position within the parent’s list of children. For example, if getIndexOfChild() is called and
passed a reference to a node that’s the third child of the specified parent node, it returns a value of 2. If a
parent-child relationship doesn’t exist between the two nodes, a value of -1 is returned.

CHAPTER 8 ■ USING SWING’S JTREE

334

isLeaf()

This method is passed an object that has previously been identified by the TreeModel as one of the
nodes in the tree, and it should return a Boolean value of true if that object represents a leaf node. As
mentioned earlier, it’s possible for leaf node to refer either to a node that can’t have children or to one
that simply doesn’t currently have children, which is why it’s necessary to define both this method and
getChildCount(). Depending upon which definition of leaf node is applied, it may or may not be possible to
identify leaf nodes based solely upon a node’s child count.

valueForPathChanged()

This method is passed an instance of TreePath and an Object representing the new value that’s to be
associated with the node identified by the TreePath and is called when the node’s value has changed. For
example, when the editing of a tree node is completed and the new value should be saved, this method is
called to cause the TreeModel to update its data accordingly. I discuss TreePath, which identifies a specific
node within the tree, in the section “TreePath,” later in this chapter.

Creating Tree Nodes
Now that you’ve seen how TreeModel encapsulates the data displayed in a JTree, you’ll examine the
interfaces and class provided in the javax.swing.tree package that allow you to easily create and
manipulate tree nodes. The class most commonly used to represent a tree node is DefaultMutableTree, an
implementation of the MutableTreeNode interface, which is in turn a subinterface of TreeNode. Although
you won’t often find it necessary to create your own TreeNode or MutableTreeNode implementations, a
familiarity with those interfaces and some knowledge of how they can be implemented is helpful when
using JTree.

TreeNode

One point that should be apparent from the description of TreeModel is that a model is responsible for
providing information, such as whether a given node is a leaf or a branch and such as a list of each node’s
children. Although it might be technically possible to store that information in the TreeModel itself, doing so
is difficult and complex at best. A better approach is to allow each node to maintain its own information, and
TreeNode provides an interface that a TreeModel can use to retrieve the data from the node. In fact, of the
seven TreeNode methods, four of them map directly to methods in TreeModel. The DefaultTreeModel class
described in the section of that name, later in this chapter, takes advantage of that by supporting only objects
that implement TreeNode, allowing it to delegate responsibility for the four methods listed in Table 8-1 to the
nodes themselves.

Table 8-1. TreeNode Methods

TreeModel Method Corresponding Method in TreeNode

getChild() getChildAt()

getChildCount() getChildCount()

getIndexOfChild() getIndex()

isLeaf() isLeaf()

CHAPTER 8 ■ USING SWING’S JTREE

335

Although the names vary slightly in two cases, the only difference between the parameter lists of the
methods in a pair is the presence or absence of an Object that represents the node for which the information
should be provided. For example, the TreeModel’s getChildCount() method accepts a single Object
parameter that identifies the parent node for which the child count should be returned.

public int getChildCount(Object parent);

In contrast, the getChildCount() method in TreeNode is defined to return the child count of the object
for which the method is called (the this object), so no identifying node parameter is required.

public int getChildCount();

Since all nodes in a DefaultTreeModel must be instances of TreeNode, the implementation of
getChildCount() in that model implementation is trivial.

public class DefaultTreeModel implements TreeModel {

 public int getChildCount(Object parent) {
 return ((TreeNode)parent).getChildCount();
 }
 // ...

getChildCount()

This method returns an integer value that identifies the number of children that the node has, and it’s called
by the method of the same name in TreeModel.

getChildAt()

A single integer index value is passed to getChildAt(), and it returns the TreeNode corresponding to the
child node at the specified index. For example, a parent’s first child corresponds to a value of 0, the second
to a value of 1, and so on. A TreeModel can use this method to delegate responsibility for identifying a child’s
index by calling getChildAt() from the getChild() method in the TreeModel implementation.

getIndex()

The functionality of this method is essentially the opposite of that found in getChildAt(), and although
getChildAt() returns a TreeNode given an index, this method is passed a TreeNode and returns that node’s
index. By calling this method from the getIndexOfChild() method in TreeModel, a model can delegate
responsibility for that function to the node itself.

children()

This method returns an instance of java.util.Enumeration containing the TreeNode objects that are the
children of this node.

CHAPTER 8 ■ USING SWING’S JTREE

336

getParent()

This method returns a reference to the TreeNode that’s the parent of this node, unless this node represents
the root node, in which case getParent() returns a value of null.

isLeaf()

This method should return a value of true if the node represents a leaf node or false if it represents a
branch node. JTree’s normal behavior is to display an icon for leaf nodes that’s different from the one it
displays for branch nodes, and this method determines which icon is associated with the node.

getAllowsChildren()

As its name implies, this method returns a Boolean value that indicates whether the node is eligible to have
children. If the node supports children, it should return a value of true, while nodes that don’t support
children should return false.

Nodes Without Children: Leaf or Branch?
As previously mentioned, you can use the terms leaf and branch in one of the following two ways:

Leaf nodes are those that don’t have any children, while branch nodes are those that •
do have children.

Alternatively, leaf nodes are those that can’t have children, while branch nodes are •
those that can, which may include some nodes without children.

This ambiguity can be confusing, and it may seem unnecessarily so, but the reason for this vagueness is
that you may want the first meaning to apply in some cases and the second to apply in others. For example,
suppose you’re using JTree to display genealogy/lineage information (a “family tree”). In that situation, it’s
probably reasonable to apply the first set of definitions to the JTree: leaf nodes represent individuals who
don’t (or didn’t) have any children, while branch nodes are people who do (or did) have children. However,
let’s also consider the case where you’re using a JTree to represent the contents of a file system. In that case,
you’d probably want each directory displayed as a branch node, even if the directory doesn’t contain any
children (files or other directories). In other words, empty directories should be represented by the same
icon as those that aren’t empty, meaning that the node type (leaf or branch) should be determined by a
node’s ability to contain children instead of whether it actually does.

You’ve probably guessed that JTree supports both sets of definitions, which is indeed the case, but
you may be wondering how to control which one is used. It’s ultimately the responsibility of the TreeModel
to make that determination, since its isLeaf() method is responsible for classifying a node as a leaf or
branch. The TreeModel can determine which value should be returned from that method, or it can delegate
responsibility to the node itself. For example, if you’ve created a TreeModel implementation that contains
a set of objects that all implement TreeNode, you could implement the model’s isLeaf() method in many
ways. For example, the following implementation simply leaves it up to each node to determine whether the
node is a branch of a leaf node:

public class MyTreeModel implements TreeModel {

 public boolean isLeaf(Object node) {
 return ((TreeNode)node).isLeaf();
 }
 // ...

CHAPTER 8 ■ USING SWING’S JTREE

337

You’ll more commonly want the model itself to determine whether a node is a leaf or a branch so all
the nodes in the tree are classified consistently. The following implementation uses the first definition given
earlier, returning true from isLeaf() if the node doesn’t have any children or false if it does have children:

public boolean isLeaf(Object node) {
 return ((TreeNode)node).getChildCount() == 0;
}

Similarly, the following implementation uses the second definition of a leaf node, returning true from
isLeaf() if the node is capable of having children (regardless of whether it currently does have children):

public boolean isLeaf(Object node) {
 return ((TreeNode)node).getAllowsChildren();
}

Another approach is to create a TreeModel that can use either definition. For example, you might
create an implementation such as the following one that allows you to set a Boolean value called
asksAllowsChildren. When that value is true, the node’s getAllowsChildren() method determines
whether the node is a leaf or branch node (using the second definition). However, when the value of
asksAllowsChildren is false, the node’s type (leaf or branch) is determined by the presence or absence of
children (the first definition).

public class MyTreeModel implements TreeModel {

 private boolean asksAllowsChildren;

 public void setAsksAllowsChildren(boolean asks) {

 asksAllowsChildren = asks;
 }

 public boolean isLeaf(Object node) {
 boolean result;
 TreeNode treenode = (TreeNode)node;
 if (asksAllowsChildren) {
 result = treenode.getAllowsChildren();
 }
 else {
 result = (treenode.getChildCount() == 0);
 }
 return result;
 }

 // ...

The previous approach is similar to that used by DefaultTreeModel, which is the only TreeModel
implementation supplied with Swing. In fact, the only difference is that instead of calling the TreeNode’s
getChildCount() method if asksAllowChildren is false, DefaultTreeModel calls the node’s isLeaf()
method. When using DefaultTreeModel, therefore, choosing a definition of leaf and branch is as easy as
calling setAsksAllowsChildren(). The default behavior is to classify all nodes without children as leaf
nodes, but by passing a value of true to setAsksAllowsChildren(), you can cause the alternate definition to
be used instead.

CHAPTER 8 ■ USING SWING’S JTREE

338

MutableTreeNode
I gave some examples at the beginning of this chapter to show how to create a JTree, and in those cases, a
single object instance (a String) represented both a node and the value associated with that node. As you’ve
seen, however, it can be helpful to create a class that implements TreeNode, in which case it’s necessary to
separate the value associated with a node from the class that implements TreeNode.

For example, you couldn’t create a subclass of java.lang.String that implements TreeNode because
String is a final class, and even if possible, it wouldn’t be desirable from an object-oriented design
standpoint. A better solution is to create an interface that extends TreeNode and adds support for a user
object, which is simply a value that’s associated with the node, and MutableTreeNode does just that. The
Mutable portion of this interface’s name indicates it defines methods that can be called to modify the state
of the node, specifically its parent, its list of child nodes, and the associated user object value. The following
sections describe the methods defined in MutableTreeNode; I give examples in each case of how you might
implement the method.

setUserObject()

Use setUserObject() to specify the value of the user object for this node. A single Object parameter is
passed to this method, and a class that implements this interface should normally save a reference to that
object. You can do this with a simple mutator method, as follows:

public class MyMutableTreeNode implements MutableTreeNode {

 private Object userObject;

 public void setUserObject(Object value) {
 userObject = value;
 }

setParent()

You should use setParent() to store a reference to the node’s parent, passing it a reference to a
MutableTreeNode. A class that implements this interface will typically choose to save a reference to the
parent node, as in the following code:

public class MyMutableTreeNode implements MutableTreeNode {

 private MutableTreeNode parent;

 public void setParent(MutableTreeNode newParent) {
 parent = newParent;
 }

CHAPTER 8 ■ USING SWING’S JTREE

339

remove()

This overloaded method has two versions: one that’s passed an integer index value that identifies the child
to be removed and another that’s passed a reference to the MutableTreeNode to be removed. When called,
remove() should set the child node’s parent to null and remove the child from this parent node’s list of child
nodes, as in the following code:

public class MyMutableTreeNode implements MutableTreeNode {

 private java.util.Vector children = new java.util.Vector();

 public void remove(MutableTreeNode child) {
 remove(children.indexOf(child));
 }

 public void remove(int index) {
 MutableTreeNode child = (MutableTreeNode)(children.remove(
 index));
 child.setParent(null);
 }

removeFromParent()

As its name suggests, this method is responsible for removing the node from its parent; the following is an
example of how you can implement this:

public class MyMutableTreeNode implements MutableTreeNode {

 private java.util.Vector children = new java.util.Vector();

 public void removeFromParent() {
 // Obtain a reference to this node's parent
 MutableTreeNode parent = (MutableTreeNode)getParent();
 // If it has a parent, remove it from that parent node first
 if (parent != null) {
 parent.remove(child);
 }
 }

insert()

Two parameters are passed to this method: a reference to an instance of MutableTreeNode and an index
value that identifies where the node should be inserted relative to the parent node’s existing children. For
example, if the index value is 0, the node being inserted is made the first child of this node, and the index
values of the other children are incremented by 1.

CHAPTER 8 ■ USING SWING’S JTREE

340

If you create your own implementation of MutableTreeNode, you should ensure that the setParent()
method of the node being inserted is called and passed a reference to this node, as shown in the following
sample code. You should also ensure that the node being added is removed from any parent to which it had
previously been assigned so that the child isn’t referenced by more than one parent. The following is an
example of how you can implement this:

public class MyMutableTreeNode implements MutableTreeNode {

 private java.util.Vector children = new java.util.Vector();

 public void insert(MutableTreeNode child, int index) {
 // If node has a parent, remove it from that parent first
 child.removeFromParent();
 // Insert the child into the list at the specified location
 children.insertElementAt(child, index);
 // Now set its parent to this node
 child.setParent(this);
 }

DefaultMutableTreeNode
It should be obvious from the descriptions of the methods in TreeNode and MutableTreeNode that it’s easy
to create your own implementations of those interfaces. As mentioned earlier, however, it’s rarely necessary
to do so because the javax.swing.tree package also includes DefaultMutableTreeNode, and the behavior
of this class is appropriate for most applications. In addition to its many methods, DefaultMutableTreeNode
contains four fields, although each of them exists solely to support the implementation of the TreeNode and
MutableTreeNode methods.

A reference to a parent • MutableTreeNode, the value of which is returned by
getParent().

A collection of child nodes that are all instances of • MutableTreeNode. The child
nodes are accessible through a variety of methods, including children(),
getChildAt(), and many others.

A reference to a user object that’s accessible through the • getUserObject() and
setUserObject() accessor and mutator methods. As mentioned earlier, the user
object allows you to associate a value with a node, and you can use any type of
Object; note, however, that the reference to the user object is transient, which means
the user object will not be marshaled along with the node that references whether
the node is serialized.

A flag named • allowsChildren that you can use to specify whether this node is
allowed to have children. That flag is accessible through the getAllowsChildren()
and setAllowsChildren() methods.

Creating DefaultMutableTreeNode Instances
You can create and use instances of DefaultMutableTreeNode easily, and only three constructors are
defined. One constructor accepts no parameters, another expects a user object (Object) value, and the third
allows you to specify a user object and a Boolean value that indicates whether the node allows children to be

CHAPTER 8 ■ USING SWING’S JTREE

341

added. The first two constructors result in an instance that allows children, so to create a node with an initial
user object value of “Hello” that accepts children, you could use the following code:

DefaultMutableTreeNode node = new DefaultMutableTreeNode("Hello");

It’s equally simple to add children to a node, since in addition to the insert() method defined in
MutableTreeNode, DefaultMutableTreeNode also includes a method called add(), which appends the
specified node to the end of the list of children.

DefaultMutableTreeNode parent = new DefaultMutableTreeNode("Adam");
DefaultMutableTreeNode child = new DefaultMutableTreeNode("Cain");
parent.add(child);

Note that before a node is added as a child of some other node, it’s first removed from the child list of
any existing parent it may have. For example, suppose you execute the following code:

DefaultMutableTreeNode parent = new DefaultMutableTreeNode("Adam");
DefaultMutableTreeNode child = new DefaultMutableTreeNode("Cain");
parent.add(child);
DefaultMutableTreeNode otherParent = new DefaultMutableTreeNode("Eve");
otherParent.add(child);

The first three lines shown are identical to those of the previous code segment, so they obviously will
produce the same results. However, when otherParent’s add() method is called, the child node will first be
removed from its existing parent (in other words, Adam), and only then will it be added to otherParent’s list
of children. This behavior ensures that a child node only ever has a single parent and that no parent node
has references to children that have been added to some other parent.

Using DefaultMutableTreeNode
DefaultMutableTreeNode contains many methods in addition to those needed to implement the TreeNode
and MutableTreeNode interfaces, and most of the methods have names that should be self-explanatory. For
example, getFirstChild() and getLastChild() return references to the node’s first and last child nodes,
respectively. In fact, most methods in DefaultMutableTreeNode retrieve some node or group of nodes that
has some relationship to the node for which the method is called. Some of the remaining methods (such as
isNodeXXX()) determine whether some specific type of relationship exists between this node and another.
For example, isNodeRelated() is passed a reference to a TreeNode and returns a value of true if any type of
relationship exists between that node and the one for which the method is called. In other words, it returns
true if the two nodes are contained within the same tree.

Although the purpose of most of the methods should be obvious from their names, others may be less
intuitive; in the following sections, I describe some of the methods likely to fall into the latter category.

getLevel(), getDepth()

A node’s level refers to the number of parent nodes that must be traversed to reach the root node, and a
node’s depth represents the maximum number of levels that currently exist below the node. In other words,
the level value is derived by counting the number of levels that must be traveled “up” the tree until the root
node is reached. In contrast, the depth is the maximum number of levels that can be traversed “down” the
tree from that node.

CHAPTER 8 ■ USING SWING’S JTREE

342

For each node in the fully expanded tree in Figure 8-8, the level and depth of each node in the tree are
shown in Table 8-2.

getSharedAncestor()

To use this method, you must pass a reference to another DefaultMutableTreeNode, and
getSharedAncestor() returns a reference to the first node that’s a common ancestor of that parameter node
and the one for which this method was called. For example, if a reference to the Persian node in the previous
tree is passed to the getSharedAncestor() method of the Alligators node (or vice versa), a reference to the
Animals node is returned.

Table 8-2. Levels and Depths in Figure 8-8

Node Name Level Depth

Living Things 0 4

Animals 1 3

Mammals 2 2

Dogs 3 0

Cats 3 1

Siamese 4 0

Persian 4 0

Reptiles 2 1

Alligators 3 0

Snakes 3 0

Plants 1 1

Flowers 2 0

Trees 2 0

Figure 8-8. A sample tree that’s used to illustrate levels and depths within a tree’s nodes

CHAPTER 8 ■ USING SWING’S JTREE

343

getPath(), getUserObjectPath()

When you call the getPath() method, it returns an array of TreeNode objects that represent the nodes that
must be traversed from the root node to reach the node for which the method is called. For example, if this
method is called for the Reptiles node in the previous tree, it will return references to three nodes: Living
Things, Animals, and Reptiles. Note that the first entry in the array is always the root node, and the last is
always the node for which this method was called.

The getUserObjectPath() method is similar to getPath(), but instead of returning references to the
TreeNode objects, it instead returns an Object array representing the user object associated with each node
in the path. If the path includes nodes that haven’t been assigned user object values, null values will appear
in the appropriate places within the array returned by getUserObjectPath().

pathFromAncestorEnumeration()

To use this method, you must pass it a TreeNode representing an ancestor of the node for which the
method is called. Like getPath(), this method returns a list of nodes, but it has two differences. First,
pathsFromAncestorEnumeration() returns an Enumeration instead of an array; second, the list of nodes
begins with the ancestor you identified instead of the tree’s root node. Therefore, the first node in the list will
always be the ancestor node parameter, and the last node will (as in the case of getPath()) always be the
node against which the method was invoked.

For example, if you call pathFromAncestorEnumeration() for the Siamese node in the previous tree and
pass it a reference to the Mammals node, it will return an enumeration containing references to three nodes:
Mammals, Cats, and Siamese (in that order).

This method throws an IllegalArgumentException if the node passed to it isn’t an ancestor of the node
against which the method is invoked. Therefore, you should be prepared to handle the exception, or you
should ensure that the argument node is indeed an ancestor before calling this method.

Obtaining a List of Nodes
The last four DefaultMutableTreeNode methods you’ll examine all obtain a list of the nodes in a tree or the
subtree defined by the node for which the method is invoked. For example, if you call one of these methods
for the root node shown in the previous tree, it will return a list that contains an entry for each of the nodes
in the tree. However, if you call the method for the Reptiles node, the list will contain entries only for the
Reptiles, Alligators, and Snakes nodes.

Since these four methods all return an Enumeration containing a node and all its descendent nodes,
the obvious question is, how do these methods differ? As you might expect, the difference is in the order in
which the nodes occur in the list that’s returned.

depthFirstEnumeration(), postorderEnumeration()

These two methods are effectively synonyms for one another, since they both produce the same results,
returning a list generated using a depth-first, or postorder, traversal of the appropriate tree nodes. When a
node is being processed using this approach, it’s first examined to determine whether it has any children.
If it does, each child is processed before the parent node is added to the list, and this behavior is repeated
recursively until a node is reached that doesn’t have children. A parent is added to the list that’s being built
only after any child nodes have been processed, and it’s that behavior that gives postorder traversal its name.
Since children are added before their parents, the node for which this method is called is always the last
node in the list returned.

CHAPTER 8 ■ USING SWING’S JTREE

344

To illustrate this technique, let’s assume you call depthFirstEnumeration() or
postorderEnumeration() for the Cats node shown in the previous tree. Since that node has two children,
they will be processed before the Cats node is added to the list, and since those two children don’t have any
descendents, they’re simply added to the list without additional recursive calls. Once the two child nodes
have been processed, the parent Cats node is added to the list, and an Enumeration is returned that contains
references to the three nodes in the following order:

Siamese•

Persian•

Cats•

Figure 8-9 shows the sequence in which the nodes are traversed.

Similarly, if one of these methods is called for the Mammals node, the Dog node will be the first in
the list, because it’s the first node found that doesn’t have any children. After that, the next three nodes
processed will be the same ones added to the list in the previous example, and finally the Mammals node
itself is added, resulting in the following entries in the list returned:

Dogs•

Siamese•

Persian•

Cats•

Mammals•

Figure 8-9. With depth-first enumeration, the children are processed before their parents

CHAPTER 8 ■ USING SWING’S JTREE

345

Figure 8-10 represents the sequence graphically.

Since these two methods (depthFirstEnumeration() and postorderEnumeration()) produce the same
results, which one you should use is largely a matter of personal preference. For instance, you may find it
easier to remember that this technique involves processing nodes in a depth-first order, in which case you
might be more inclined to use depthFirstEnumeration().

breadthFirstEnumeration()

This type of enumeration is easier to visualize, since it traverses the nodes in order of their level, and nodes
that are at the same level are listed in order from top to bottom. For example, if you call this method for
the Animals node of the previous tree, it first adds that node to the list, since it’s the top node. The next
two nodes added are Mammals and Reptiles (which are both children of Animals) followed by Dogs,
Cats, Alligators, Snakes, and finally Siamese and Persian. In other words, this method starts with the node
specified and works its way through the tree from the closest descendents to the most distant ones. The
name is derived from the fact that this technique results in the tree’s breadth/width being traversed before
its depth when the tree is visualized with the root node at the top and the most distant descendents at the
bottom. Figure 8-11 shows a visual representation of this sequence.

Figure 8-10. A more complex example of how depth-first enumeration works

CHAPTER 8 ■ USING SWING’S JTREE

346

preorderEnumeration()

This technique most closely resembles the depthFirstEnumeration()/postorderEnumeration() methods
described previously, but each parent is added to the list before its children are processed recursively
instead of afterward. The resulting order of the nodes is the same order that they appear from top to bottom
in the JTree. In the case of the previous tree, calling preorderEnumeration() for the root node causes the
nodes to appear in the list in the following order:

Living Things•

Animals•

Mammals•

Dogs•

Cats•

Siamese•

Persian•

Reptiles•

Alligators•

Snakes•

Plants•

Flowers•

Trees•

Figure 8-11. Breadth-first enumeration traverses a set of nodes based on their level

CHAPTER 8 ■ USING SWING’S JTREE

347

TreePath
When working with a Vector or an array of values, you can reference each value by using its index, as
illustrated in the following code segment where the second value in a Vector and third value in an array are
printed:

Vector v;
Object[] array;
// ...

System.out.println(v.elementAt(1));
System.out.println(array[2]);

You can use this simple index approach for an array or Vector, because those objects represent linear
(one-dimensional) data structures. In other words, each value is assigned a position that can be uniquely
identified by a simple whole number (0, 1, 2, 3, etc.). However, the hierarchical structure of nodes in a JTree
makes it somewhat more difficult to define a technique for identifying a particular node within the tree.

JTree does use index values to identify visible nodes within a tree, assigning each node a value based
on its vertical position within the tree. The root node is always at the top of the tree, so its position (when it’s
visible) corresponds to an index value of 0, and each node below it is assigned a unique value, as shown in
Figure 8-12.

Although some of the methods in JTree allow you to reference nodes in this manner, you should keep
in mind that a node’s index value depends upon the state of the tree.

To illustrate this point, suppose that the previous tree is partially collapsed so the children of the Jeff
node aren’t visible. As Figure 8-13 shows, most of the visible rows’ index values have changed, which shows
that a given index can’t be relied upon to consistently identify a particular node.

Figure 8-12. A node’s index corresponds to its vertical location within the tree given the current state
(collapsed or expanded) of the tree’s nodes

CHAPTER 8 ■ USING SWING’S JTREE

348

In addition, adding or deleting nodes or even changing the position of a node within the tree can cause
a node’s index value to change. Therefore, you should use index values only to refer to the node at a given
vertical position within the tree, not as a means of identifying a specific node. For that purpose, you should
use an instance of TreePath, which is a class defined in the javax.swing.tree package.

As its name implies, a TreePath encapsulates a node’s path, which is simply a list of nodes that must
be traversed (usually starting from the root node) to reach the node identified by the path. For example, you
could construct the TreePath associated with the soccer node in Figure 8-14 by creating a three-element
array containing references to the JTree, sports, and soccer nodes, in that order.

As you saw earlier, you can use the getPath() method in DefaultMutableTreeNode to obtain such an
array, and you can use it to create an instance of TreePath using the following code:

DefaultMutableTreeNode myNode;
// ...

// This code assumes that the node has been added to the tree
TreePath path = new TreePath(myNode.getPath());

Figure 8-13. Note that the index value for each child of the Jeff node has changed as a result of the parent
being collapsed

Figure 8-14. To reach the soccer node shown in this tree, you’d need to traverse the JTree, sports, and soccer
nodes

CHAPTER 8 ■ USING SWING’S JTREE

349

Unlike an index value, a path can always be used to identify a specific node regardless of which
portions of a tree are collapsed or expanded. For that reason, most of the methods in JTree that perform
some operation related to a specific node allow you to identify that node through a TreePath. Some
JTree methods are overloaded, providing one implementation that allows you to specify a TreePath and
another that allows you to specify an index value that identifies a visible node based on its vertical position
(as described previously). In general, you should use the TreePath implementation instead of the index
implementation, since TreePath values are less sensitive to changes in the tree’s state.

TreeModelListener
TreeModelListener is an interface that can be implemented by classes that will register as listeners of
TreeModel events, such as the addition, deletion, or modification of nodes in the model. In practice, the
only listener registered with a model is usually the JTree that uses the model, and it uses this interface to
receive notification of changes to the data it displays. Only four methods are defined in TreeModelListener;
I describe them in the next sections.

treeNodesChanged()
This method is called when one or more of the nodes within the model have experienced a state change
(e.g., the user object value associated with the node changes). Note that this method shouldn’t be called to
notify listeners of structural changes to the tree (an insertion, deletion, or change in the position of nodes)
because other TreeModelListener methods offer that functionality.

treeNodesInserted()
The treeNodesInserted() method is called for each registered listener after nodes have been inserted into
the tree.

treeNodesRemoved()
Just as treeNodesInserted() is called after nodes have been added to the model/tree, this method is called
after nodes have been removed. This method is called only one time for each removal, even if a node with
descendents is removed, which effectively means multiple nodes have been eliminated from the tree.

treeStructureChanged()
When this method is called, it indicates that a significant change (in other words, something more complex
than the simple addition, modification, or deletion of nodes) was made to the tree or to some portion of the
tree below a particular node. For example, treeStructureChanged() may be called if the current root node
is replaced with a different one, which results in the entire tree structure being replaced.

TreeModelEvent
Each of the methods defined in TreeModelListener is passed a reference to a TreeModelEvent object that
can be used to obtain information about the source and nature of the event that occurred. The following
sections describe the methods defined in TreeModelEvent, and each one includes an explanation of when
and how to use the methods.

CHAPTER 8 ■ USING SWING’S JTREE

350

getTreePath(), getPath()
These methods identify the parent node of the nodes that have been modified, inserted, or deleted. When
getTreePath() is called, it returns an instance of TreePath that identifies the parent of the affected nodes,
while getPath() returns the array of Object values that are encapsulated by the TreePath. In other
words, these methods provide essentially the same information in two different forms.

getChildren()
Just as getPath() and getTreePath() identify the parent of the nodes that were inserted, updated, or
deleted, this method can obtain references to the specific nodes that triggered the event. It returns an array
of Object values, and each entry in the array represents one of the nodes that was modified, added, or
removed.

getChildIndices()
You can use this method within calls to treeNodesChanged(), treeNodesRemoved(), and
treeNodesInserted() to identify the nodes that were changed, removed, or inserted. An array of integer
values is returned, and each integer represents the index into a parent’s list of children. In the case of a
deletion, the index identifies the position that the node held in the parent’s list before the node was deleted;
when an update or insertion has occurred, the index represents the node’s current position. For example,
if the second and fourth children of some node are modified, this method returns an int array with two
elements: the first with a value of 1 and the second entry with a value of 3.

DefaultTreeModel
The DefaultTreeModel class defined in javax.swing.tree is the only TreeModel implementation supplied
with Java, but it’s easy to use and is appropriate for most applications. However, it supports only those nodes
that are instances of DefaultMutableTreeNode, so you must ensure your nodes are all instances of that class
or create your own TreeModel implementation.

It’s easy to create an instance of DefaultTreeModel, although you won’t normally do so explicitly but
will instead allow a JTree to create one automatically. For example, the code segments at the beginning of
this chapter that created String arrays and passed them to a JTree constructor resulted in the creation of a
DefaultTreeModel. To access a JTree’s existing model, simply call its getModel() method, which returns an
instance of TreeModel that you can cast to DefaultTreeModel (or some other class) if you know which type
of model is being used.

If you want to create a model, simply use the constructor that accepts an instance of a TreeNode as in
the following example, and that node will be used as the root node of your tree. Once the model has been
created, it can be passed to a JTree constructor or specified as the model of an existing tree by calling the
JTree’s setModel() method.

TreeNode myRoot;
JTree myTree;
// ...

DefaultTreeModel myModel = new DefaultTreeModel(myRoot);
myTree = new JTree(myModel);

CHAPTER 8 ■ USING SWING’S JTREE

351

Alternatively, the following JTree setModel() works:

TreeNode myRoot;
JTree myTree = new JTree();
// ...

DefaultTreeModel myModel = new DefaultTreeModel(myRoot);
myTree.setModel(myModel);

In addition to implementing the TreeModel methods, DefaultTreeModel also provides pairs of methods
that make it easy for you to modify the structure of the tree and to notify listeners of changes. Each pair
consists of a method that performs the modification (e.g., inserting a node) and another method that creates
an appropriate TreeModelEvent and notifies any registered listeners of the modification. Table 8-3 describes
those methods.

Table 8-3. TreeModel Methods

Update Method Notification Method Typical Use

setRoot() nodeStructureChanged() Setting a new root node

valueForPathChanged() nodesChanged() Modifying a node’s
value

insertNodeInto() nodesWereInserted() Inserting a node

removeNodeFromParent() nodesWereRemoved() Deleting a node

It’s not necessary for you to invoke both methods when you make a change to the tree’s structure, since
each of the update methods listed in Table 8-3 will call the corresponding notification method for you.
However, if you make changes to a node (modify its value, insert or delete children, etc.) directly instead
of through the model’s update method, you should call the appropriate notification method. For example,
suppose you want to insert several nodes into the tree and you have a reference to the parent to which they
should be added. You can use the insertNodeInto() method (which is the preferred approach), or you can
perform the insertion “manually” and then call the notification method. The following example illustrates
how to use insertNodeInto() given an array of nodes to be inserted:

MutableTreeNode parentNode;
MutableTreeNode[] childrenToAdd;
JTree tree;
// ...

DefaultTreeModel model = (DefaultTreeModel)(tree.getModel());
for (int i = 0; i < childrenToAdd.length; i++) {
 model.insertNodeInto(childrenToAdd[i], parentNode, i);
}

This is a convenient approach because it prevents you from having to construct your own
TreeModelEvent object and explicitly request that registered listeners be notified. However, one problem
with this approach is that it will generate a separate TreeModelListener notification for each node inserted,

CHAPTER 8 ■ USING SWING’S JTREE

352

which can be undesirable from a performance standpoint if you’re inserting a larger number of nodes. In
that case, it may be preferable to perform the insertions directly and then request that a notification be sent,
as in the following segment:

MutableTreeNode parentNode;
MutableTreeNode[] childrenToAdd;
JTree tree;
// ...

DefaultTreeModel model = (DefaultTreeModel)(tree.getModel());
int[] indices = new int[childrenToAdd.length];
for (int i = 0; i < childrenToAdd.length; i++) {
 parentNode.insert(childrenToAdd[i], i);
 indices[i] = i;
}
model.nodesWereInserted(parentNode, indices);

Although this example illustrates only how insertNodeInto() and nodesWereInserted() are used, the
other methods function essentially the same way. For example, valueForPathChanged() simply sets the user
object of the node you identify with a TreePath and then calls the nodeChanged() method (which in turn
calls nodesChanged() to notify listeners that the node changed). In most cases, these notification methods
will simply cause the JTree to refresh its appearance so it reflects the modified state of its TreeModel.

Another DefaultTreeModel method worth mentioning is reload(), which is overloaded with two
implementations: one that doesn’t accept any parameters and another that accepts a single TreeNode
reference. Like setRoot(), the reload() methods call nodeStructureChanged(), and these methods are
useful when the tree or some portion of it has changed significantly. However, reload() also causes all
nodes with children to be collapsed, so you shouldn’t call it if you want to maintain the visual state of your
JTree.

Rendering Tree Nodes
Responsibility for drawing the nodes within a tree (also sometimes called cells) is assigned to an
implementation of TreeCellRenderer, an interface defined in javax.swing.tree. That interface defines
a single getTreeCellRendererComponent() method, which is responsible for preparing and returning a
Component that’s used to draw the cell. In other words, for each visible node in a JTree, the paint() method
of the renderer associated with the tree is used to draw the node. TreeCellRenderer implementations
often extend an existing visual component (e.g., JLabel), which allows the renderer to be created easily.
For example, a renderer is easy to create by extending JLabel because that class already contains painting/
rendering logic that’s appropriate in many cases for displaying tree nodes.

When called, the getTreeCellRendererComponent() method is passed the following parameters:

A reference to the • JTree with which the node is associated

An • Object representing the node’s value

A Boolean value that indicates whether the node is currently selected•

A Boolean value that indicates whether the node is currently expanded•

A Boolean value that indicates whether the node is a leaf•

An integer that identifies the node’s vertical position within the tree•

A Boolean value that indicates whether the node currently has the input focus•

CHAPTER 8 ■ USING SWING’S JTREE

353

Before getTreeCellRendererComponent() returns a reference to the renderer, it should first use the
previous parameter values to modify the state of the component appropriately. At a minimum, you should
use the parameter representing the node’s value to initialize the renderer component so it displays that value
when its paint() method is called. You’ll also typically want to initialize the component based on the state
of the node being rendered, such as using different background colors to identify selected nodes as opposed
to those that aren’t selected.

By default, JTree instances create and use an instance of DefaultTreeCellRenderer, which is a
subclass of JLabel. When its getTreeCellRendererComponent() method is called, this class first converts
the node’s value into a String by passing a reference to the value to the tree’s convertValueToText()
method. That method simply calls the value object’s toString() method and returns the result (see
Figure 8-15), although you can modify that behavior by creating your own JTree subclass and overriding
convertValueToText().

Once the DefaultTreeCellRender has obtained a text representation of the node’s value, it sets
foreground and background colors appropriately based upon whether the node is selected and then
obtains an icon. The specific icon displayed is based upon whether the node is a leaf or a branch and, if a
branch, whether it’s currently expanded or contracted. If you prefer to use icons other than those provided
with the active look and feel, you can modify the appropriate properties in a DefaultTreeCellRenderer.
Accessor and mutator methods are provided for each of the properties listed in Table 8-4, and you can easily
customize a JTree’s appearance through these methods.

Figure 8-15. The classes and methods used by default to render the nodes in a tree

CHAPTER 8 ■ USING SWING’S JTREE

354

For example, suppose you want to use your own icon for leaf nodes instead of the default icon. To do
so, you simply need to obtain a reference to the DefaultTreeCellRenderer and call the appropriate mutator
method, as shown in the following code:

javax.swing.JTree myTree;
javax.swing.Icon myCustomLeafIcon =
 new ImageIcon("D:/brett/temp/myicon.gif");
// ...

DefaultTreeCellRenderer renderer =
 (DefaultTreeCellRenderer)(myTree.getCellRenderer());
renderer.setLeafIcon(myCustomLeafIcon);

Creating a Custom Renderer
Although the DefaultTreeCellRenderer class is appropriate in many cases, you’ll sometimes need to create
a custom renderer when you want to display node(s) in a manner that’s not possible when using the default
renderer. Creating a custom renderer for use with a JTree is easy to do, and the process is almost identical to
that used for creating renderers for JTable cells. Simply create an implementation of TreeCellRenderer, and
specify that the JTree should use that renderer to draw its nodes. For example, let’s suppose you’ve defined a
class similar to the one in Listing 8-2 that encapsulates a true/false test question and the answer given to it.

Listing 8-2. True and False Q&A

public class TrueFalseQuestion {

 private final String question;
 private boolean answer;

 public TrueFalseQuestion(String quest) {
 question = quest;
 }

Table 8-4. JTree Appearance Methods

DefaultTreeCellRenderer Property Description

backgroundNonSelectionColor Background color used when node not selected

backgroundSelectionColor Background color used when node is selected

borderSelectionColor Color used to draw the component’s border

leafIcon Icon used for leaf nodes

closedIcon Icon used for collapsed branch nodes

openIcon Icon used for expanded branch nodes

textNonSelectionColor Text color used when node not selected

textSelectionColor Text color used when node is selected

CHAPTER 8 ■ USING SWING’S JTREE

355

 public String getQuestion() {
 return question;
 }

 public boolean getAnswer() {
 return answer;
 }

 public void setAnswer(boolean ans) {
 answer = ans;
 }

 public String toString() {
 return question + " = " + answer;
 }

}

Since this class encapsulates a single immutable (unchangeable) String value and a mutable Boolean
value, it’s an ideal candidate to be rendered by a JCheckBox. Let’s further assume you want to create a user
interface that displays a group of these objects in a JTree. You could attempt to do so using the default
renderer with code like that shown in Listing 8-3.

Listing 8-3. Using the Default Renderer in a Sample Final Exam

import javax.swing.*;
import javax.swing.tree.*;

public class TreeTest extends JFrame {

 private final static String[] questions = {
 "Green Kryptonite is only deadly " +
 "to beings from Krypton with superpowers",
 "Red Kryptonite’s effects are permanent",
 "Gold Kryptonite permanently enhances superpowers",
 "Blue Kryptonite affects only Bizarros",
 "White Kryptonite affects only marine life",
 "Jewel Kryptonite was formed from Krypton’s " +
 "Jewel Mountains"};

 public static void main(String[] args) {
 TreeTest tt = new TreeTest();
 tt.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 tt.setSize(500, 200);
 tt.setVisible(true);
 }

 public TreeTest() {
 super("Smallville University Final Exam");
 JTree tree = new JTree(getRootNode());
 JScrollPane jsp = new JScrollPane(tree);
 getContentPane().add(jsp);
 }

CHAPTER 8 ■ USING SWING’S JTREE

356

 private MutableTreeNode getRootNode() {
 DefaultMutableTreeNode root, child;
 TrueFalseQuestion question;
 root = new DefaultMutableTreeNode(
 "Kryptonite Questions -- Check all " +
 "of the following that are true " +
 "statements");
 for (int i = 0; i < questions.length; i++) {
 question = new TrueFalseQuestion(questions[i]);
 child = new DefaultMutableTreeNode(question);
 root.add(child);
 }
 return root;
 }
}

In this case, however, the display won’t produce the desired results (see Figure 8-16).

As described earlier, the default renderer is a JLabel that renders a node’s value by displaying its text
representation (the String returned by the object’s toString() method) and an appropriate icon. In this
case, the test questions should be represented by instances of JCheckBox, and no icons should appear.
You can accomplish this by simply creating a TreeCellRenderer implementation that extends JCheckBox,
but you’ll instead extend the existing DefaultTreeCellRenderer. The reason for this is that it’s not
appropriate to render all tree nodes as check boxes, only those that are instances of TrueFalseQuestion.
For example, the Kryptonite Questions branch node should continue to be rendered as a label, but its
children (which are instances of TrueFalseQuestion) should be rendered as check boxes. By extending
DefaultTreeCellRenderer, you can create a class that handles TrueFalseQuestion nodes but delegates
rendering responsibilities to its superclass for other node types.

Listing 8-4 does just that: it examines the value parameter passed to getTreeCell➥RendererComponent(),
and if that value doesn’t encapsulate a TrueFalseQuestion instance, it allows the superclass code to
render the node. If, on the other hand, the node is a TrueFalseQuestion, the text and selection status of a
JCheckBox are updated appropriately, and that component is allowed to perform the rendering operation.

Figure 8-16. The instances of TrueFalseQuestion are represented visually using their toString() values

CHAPTER 8 ■ USING SWING’S JTREE

357

Listing 8-4. JTree Example Rendering Operation

import java.awt.*;
import javax.swing.*;
import javax.swing.tree.*;

public class QuestionCellRenderer extends DefaultTreeCellRenderer {

 private JCheckBox questionRenderer = new JCheckBox();

 public Component getTreeCellRendererComponent(JTree tree,
 Object value, boolean selected, boolean expanded,
 boolean leaf, int row, boolean hasFocus) {
 if (value instanceof DefaultMutableTreeNode) {
 DefaultMutableTreeNode node =
 (DefaultMutableTreeNode)value;
 Object userObject = node.getUserObject();
 if (userObject instanceof TrueFalseQuestion) {
 TrueFalseQuestion question =
 (TrueFalseQuestion)userObject;
 prepareQuestionRenderer(question, selected);
 return questionRenderer;
 }
 }
 return super.getTreeCellRendererComponent(tree, value,
 selected, expanded, leaf, row, hasFocus);
 }

 private void prepareQuestionRenderer(TrueFalseQuestion tfq,
 boolean selected) {
 questionRenderer.setText(tfq.getQuestion());
 questionRenderer.setSelected(tfq.getAnswer());
 if (selected) {
 questionRenderer.setForeground(
 getTextSelectionColor());
 questionRenderer.setBackground(
 getBackgroundSelectionColor());
 }
 else {
 questionRenderer.setForeground(
 getTextNonSelectionColor());
 questionRenderer.setBackground(
 getBackgroundNonSelectionColor());
 }
 }

}

CHAPTER 8 ■ USING SWING’S JTREE

358

To use this renderer, simply create an instance of it and assign that object to the JTree. The following is
an example of how to do this, showing a modified version of the TreeTest constructor defined earlier:

public TreeTest() {
 super("Smallville University Final Exam");
 JTree tree = new JTree(getRootNode());
 QuestionCellRenderer renderer = new QuestionCellRenderer();
 tree.setCellRenderer(renderer);
 JScrollPane jsp = new JScrollPane(tree);
 getContentPane().add(jsp);
}

When this code is compiled and executed, it renders the TrueFalseQuestion objects as instances of
JCheckBox, as illustrated in Figure 8-17.

At this point, the tree’s appearance is appropriate, but its behavior isn’t. If you attempt to check one of
the boxes that appear in the frame, nothing will happen, which is because JTree doesn’t allow you to edit its
cells by default. However, you can control that behavior by calling the tree’s setEditable() method.

public TreeTest() {
 super("Smallville University Final Exam");
 JTree tree = new JTree(getRootNode());
 QuestionCellRenderer renderer = new QuestionCellRenderer();
 tree.setCellRenderer(renderer);
 tree.setEditable(true);
 JScrollPane jsp = new JScrollPane(tree);
 getContentPane().add(jsp);
}

After making this change, you’ll be able to initiate editing of a node’s value by clicking the node three
times or by clicking, once, a node that’s already selected. However, when you attempt to edit a node, the
results will probably not be what you expect. Instead of the JCheckBox’s state changing, a text representation
of the TrueFalseQuestion appears in a JTextBox; it will remain there until you press Enter to complete
the edit. To understand why this occurs and how to provide more appropriate behavior, it’s necessary to
understand the editing mechanism used by instances of JTree.

Figure 8-17. Displaying the questions next to check boxes that indicate the user’s answer is much more
appealing and intuitive

CHAPTER 8 ■ USING SWING’S JTREE

359

Editing Tree Nodes
Tree cell editing is conceptually similar to rendering, although some important differences exist. Just as a
renderer is associated with each JTree, a TreeCellEditor is also assigned to every tree. TreeCellEditor
is an interface defined in javax.swing.tree and is a subclass of the CellEditor interface (which is also
the superinterface of the TableCellEditor interface used by JTable instances). Figure 8-18 illustrates
the relationships between these interfaces and classes, as well as the DefaultCellEditor class discussed
in a moment.

By default, each JTree creates and uses an instance of DefaultTreeCellEditor to manage the editing
of its nodes, although you can create your own TreeCellEditor implementation or create a subclass of
DefaultTreeCellEditor. Just as a tree’s renderer provides a method that returns a rendering component,
each TreeCellEditor provides a getTreeCellEditorComponent() method that returns an editing
component. In addition, just as the DefaultTreeCellRenderer is a JLabel subclass that displays each node’s
value as a text string, the DefaultTreeCellEditor uses a JTextField to allow editing of those values. Before
describing the behavior of the DefaultTreeCellEditor class, it’s helpful to understand how a determination
is made that a tree node/cell should be edited.

When a JTree is created, it uses a subclass of BasicTreeUI (defined in javax.swing. plaf.basic) to
provide the tree’s appearance. The BasicTreeUI creates listeners that will be notified of events that occur
such as mouse clicks, since those events can trigger behavior such as the selection or editing of a tree node.
When a mouse click event is detected by the listener and the click occurred over a node, the BasicTreeUI’s
startEditing() method is called, which is responsible for determining whether the mouse click should
cause editing to begin. If so, editing is initiated, and startEditing() returns a value of true. On the other
hand, if startEditing() determines that the mouse event shouldn’t cause an edit to be performed, it
returns a value of false, which will cause the BasicTreeUI’s selectPathForEvent() to be invoked, allowing
the mouse event to be interpreted as a request to select the node instead of a request to begin editing it. In
other words, the tree first attempts to interpret a mouse click as an attempt to edit a node and then as an
attempt to select the node.

Figure 8-18. The relationships between the classes and interfaces involved in editing tree and table cells

CHAPTER 8 ■ USING SWING’S JTREE

360

When deciding whether the mouse event should cause an edit operation to occur, BasicTreeUI’s
startEditing() method first determines whether the tree considers the cell eligible for editing by calling
the JTree’s isPathEditable() method. That method returns the value of the Boolean flag called editable,
which is controlled by the setEditable() method in JTree that you used earlier to allow tree nodes to be
edited. As you’ll see later, you can control whether individual nodes are editable by creating a JTree subclass
that overrides isPathEditable(). You can use this approach when you want to allow only some of the tree’s
nodes to be edited, as opposed to the previous technique, which makes all nodes eligible for editing.

Assuming that the JTree allows its nodes to be edited, the startEditing() method in BasicTreeUI next
calls the cell editor’s getTreeCellEditorComponent() method and then its isCellEditable() method. If the
cell editor also gives its permission to initiate editing (in other words, its isCellEditable() method returns
true), the editor component is added to the JTree at the position of the node being edited, and editing is
allowed to begin. Figure 8-19 shows most of the behavior just described.

When it’s determined that the editing of a cell should end, the CellEditor’s stopCellEditing() or
cancelCellEditing() method is called. For editing to be stopped means that changes made during the edit
session should be saved; canceling an edit means to discard any changes and restore the node’s value to
its original state. In the case of a JTextField-based editor, for example, editing ends when the Enter key is
pressed (which generates an ActionEvent for the text field), when a node other than the one being edited
is selected with the mouse, or when the Escape key is pressed. The first scenario described (when the Enter
key is pressed) causes editing to be stopped, and the other two are examples of how editing can be canceled.
In other words, pressing the Enter key causes your changes to be saved, while selecting a different node or
pressing Escape causes them to be discarded.

Figure 8-19. Editing a tree cell involves a somewhat complex sequence of events

CHAPTER 8 ■ USING SWING’S JTREE

361

When editing ends (in other words, is stopped or canceled), the editor component is removed from the
JTree and the editor’s getCellEditorValue() method is called to retrieve the node’s new value. That value
is then passed to the valueForPathChanged() method of the TreeModel associated with the JTree, causing
the value returned by the editor to be propagated to the model (in other words, the modified value is saved
in the tree’s data model).

Now that you understand how cell editing occurs, I can return to the topic of the
DefaultTreeCellEditor class mentioned earlier.

DefaultTreeCellEditor and DefaultCellEditor
Previously you saw that the DefaultTreeCellRenderer class serves as both the TreeCellRenderer
implementation and the renderer component, which it does by implementing TreeCellRenderer and
by extending JLabel, respectively. In contrast, although DefaultTreeCellEditor does implement
TreeCellEditor, it’s not the editing component. (It doesn’t extend JTextField.) Instead, it maintains
a reference to another object that handles the editing, specifically an instance of DefaultCellEditor.
DefaultCellEditor implements both TreeCellEditor and TableCellEditor, and it’s used by JTable in
addition to JTree as the default cell editor component.

In fact, you can use DefaultCellEditor by itself to perform tree cell editing without any involvement
from DefaultTreeCellEditor. To illustrate this, simply compile and execute code like the following segment
that creates a new tree and sets its editor to a new instance of DefaultCellEditor that uses a JTextField for
editing:

JTree tree = new JTree();
// ...

tree.setCellEditor(new DefaultCellEditor(new JTextField()));
tree.setEditable(true);

When this code executes, you can edit a tree node by double-clicking it, which causes the JTextField to
appear in the node’s location (see Figure 8-20).

Figure 8-20. Double-clicking a tree cell with editing enabled causes a text field to appear in which the cell’s
text representation is displayed and can be edited

CHAPTER 8 ■ USING SWING’S JTREE

362

The problem with this behavior that DefaultTreeCellEditor is designed to address is that the editing
component (in this case, the JTextField) covers all the node’s display area including its icon. Notice, for
example, that no icon is displayed for the node being edited (baseball). Recall that by default nodes are
rendered by a JLabel (which includes both an icon and a text area) but are edited by a JTextField (which
doesn’t support icons). DefaultTreeCellEditor overcomes this problem by creating an editing container
that consists of an icon extracted from the TreeCellRenderer and the editing component itself (e.g., a
JTextField).

In addition to providing a single class that can be used for both table and tree editing,
DefaultCellEditor allows you to perform the editing with a JTextField, JComboBox, or JCheckBox. In
addition, since mouse clicks are the traditional way of initiating the edit of a cell, DefaultCellEditor
maintains a value that you can set to control the number of clicks required to begin an edit operation. For
example, setting the value to 2 makes it necessary for the user to double-click a cell to initiate an edit session.
This allows you to easily distinguish between a request to select a cell (in other words, a single click) and a
request to edit (a double click).

DefaultTreeCellEditor Behavior
Continuing the discussion of DefaultTreeCellEditor, recall that its isCellEditable() method is
called by the BasicTreeUI to determine whether editing should begin. When DefaultTreeCellEditor’s
isCellEditable() method is called, it in turn calls the implementation of isCellEditable() in the
DefaultCellEditor to which it maintains a reference. The DefaultCellEditor will return a value of true
if the click count associated with the mouse event is at least as great as the number of clicks it has been
programmed to require and will return false otherwise. If it does return false, the DefaultTreeCellEditor
will likewise return that value, and editing won’t be started, although the JTree sets the click count to 1, so
this method will normally always return true.

Once the DefaultTreeCellEditor has queried the DefaultCellEditor to determine whether editing
should be started, it next checks for a special case: three or more mouse clicks. When this occurs, it
triggers an “immediate edit” that causes editing of the node to begin immediately. Finally, if you single-
click a node that’s already selected, a timer is started, and a “delayed edit” will occur 1.2 seconds later
as long as you don’t select a different node before that time elapses. Stated simply, the behavior of a
DefaultTreeCellEditor is such that a “triple click” (three quick, successive mouse clicks) causes editing to
begin immediately, while a single click of an already selected node causes editing to begin 1.2 seconds later.

Creating a Custom Editor
You’ll now create a custom editor that you can use to edit TrueFalseQuestion nodes that are rendered by
the QuestionCellRenderer class defined earlier. It’s appropriate in some cases to use one type of component
for drawing nodes and a different type for editing their values (e.g., a JLabel for rendering and a JTextField
for editing). In this case, however, JCheckBox is an appropriate choice for both rendering and editing, so this
custom editor class will use a JCheckBox just as the previously defined custom renderer class did.

Before creating the custom editor, an obvious question that must be answered is which existing class
(if any) should be used as the superclass. Although DefaultTreeCellEditor might seem like an obvious
choice, it’s moderately complex and is somewhat coupled to the use of a JTextField for editing. In contrast,
DefaultCellEditor is more generic and includes a constructor that accepts a single parameter representing

CHAPTER 8 ■ USING SWING’S JTREE

363

the JCheckBox to be used for editing. Therefore, you can begin the implementation of the custom editor class
by extending DefaultCellEditor and providing a no-argument constructor that creates a new JCheckBox
and passes it to the superclass constructor:

import java.awt.*;
import javax.swing.*;
import javax.swing.tree.*;

public class QuestionCellEditor extends DefaultCellEditor {

 public QuestionCellEditor() {
 super(new JCheckBox());
 }

 // More methods and member variables here ...
}

Since DefaultCellEditor already implements TreeCellEditor, it’s not necessary to explicitly specify
that interface in QuestionCellEditor, but it’s necessary to override the getTreeCellEditorComponent()
method. Although DefaultCellEditor already supports the use of a JCheckBox instance for editing, it
assumes that the value being edited is a Boolean value. In this case, however, the value being edited is an
instance of TrueFalseQuestion, and getTreeCellEditorComponent() must be implemented accordingly.
Doing so is very much like implementing getTreeCellRendererComponent() in a renderer class.
Specifically, all you must do is initialize the component used for editing so it will contain the appropriate
initial value when it’s made visible to the user. For the QuestionCellEditor class, this means setting the
JCheckBox’s text and selection state values to match the question and answer values encapsulated by the
TrueFalseQuestion object. Note that the TrueFalseQuestion instance is encapsulated within an instance of
DefaultMutableTreeNode when it’s passed to getTreeCellEditorComponent(), and it’s the responsibility of
getQuestionFromValue() to extract it.

private TrueFalseQuestion question;

public Component getTreeCellEditorComponent(JTree tree, Object value,
 boolean selected, boolean expanded, boolean leaf,
 int row) {
 JCheckBox editor = null;
 question = getQuestionFromValue(value);
 if (question != null) {
 editor = (JCheckBox)(super.getComponent());
 editor.setText(question.getQuestion());
 editor.setSelected(question.getAnswer());
 }
 return editor;
}

CHAPTER 8 ■ USING SWING’S JTREE

364

public static TrueFalseQuestion getQuestionFromValue(
 Object value) {
 if (value instanceof DefaultMutableTreeNode) {
 DefaultMutableTreeNode node =
 (DefaultMutableTreeNode)value;
 Object userObject = node.getUserObject();
 if (userObject instanceof TrueFalseQuestion) {
 return (TrueFalseQuestion)userObject;
 }
 }
 return null;
}

The only other change you must make to this class is to override the getCellEditorValue()
method. That method is called when editing is completed so that the modified value can be stored in the
TreeModel associated with the tree. In this case, the object being edited was a TrueFalseQuestion, so
getCellEditorValue() should return an instance of that class. Since a reference to the object being edited
is maintained in QuestionCellEditor, it can simply update that object based on the results of the edit and
return a reference to it from getCellEditorValue(). However, it would be equally valid to create a new
instance of TrueFalseQuestion and return a reference to that object instead.

public Object getCellEditorValue() {
 JCheckBox editor = (JCheckBox)(super.getComponent());
 question.setAnswer(editor.isSelected());
 return question;
}

Since the TrueFalseQuestion object passed to getTreeCellEditorComponent() is encapsulated
within a DefaultMutableTreeNode, you might have expected it to also be necessary to return a
DefaultMutableTreeNode from getCellEditorValue(). However, this isn’t required because the
DefaultTreeModel class automatically encapsulates the objects passed to its valueForPathChanged()
method inside instances of DefaultMutableTreeNode. In other words, the value object passed to
getTreeCellEditorComponent() is normally a DefaultMutableTreeNode that encapsulates the “real”
data (the user object), but you shouldn’t wrap data in a DefaultMutableTreeNode before returning it from
getCellEditorValue().

Finally, with the editor class defined, you can create an instance of it, assign that object responsibility
for the editing of a JTree’s nodes, and enable the nodes for editing:

public TreeTest() {
 super("Smallville University Final Exam");
 JTree tree = new JTree(getRootNode());
 QuestionCellRenderer renderer = new QuestionCellRenderer();
 tree.setCellRenderer(renderer);
 QuestionCellEditor editor = new QuestionCellEditor();
 tree.setCellEditor(editor);
 tree.setEditable(true);
 JScrollPane jsp = new JScrollPane(tree);
 getContentPane().add(jsp);
}

CHAPTER 8 ■ USING SWING’S JTREE

365

Unfortunately, a problem exists with this code: because it enables editing for all cells and because the
root node doesn’t represent a TrueFalseQuestion, an exception will occur if you attempt to edit that node.

Limiting Edits to Certain Nodes
To complete this application, you may want to allow some nodes to be edited while preventing others
from being modified. In the case of the TreeTest application, simply setting the JTree’s editable
property to true will allow all nodes to be edited, including the header/root node that’s simply a String
instead of TrueFalseQuestion. As mentioned earlier, a node’s ability to be edited is controlled by the
isPathEditable() method in JTree, and by creating a subclass and overriding that method, you can modify
the default behavior. The following code segment does just that, returning a value of true for nodes that
represent TrueFalseQuestion instances and false for all other nodes:

public TreeTest() {
 super("Smallville University Final Exam");
 JTree tree = new JTree(getRootNode()) {
 public boolean isPathEditable(TreePath path) {
 Object comp = path.getLastPathComponent();
 if (comp instanceof DefaultMutableTreeNode) {
 DefaultMutableTreeNode node =
 (DefaultMutableTreeNode)comp;
 Object userObject = node.getUserObject();
 if (userObject instanceof TrueFalseQuestion) {
 return true;
 }
 }
 return false;
 }
 };
 QuestionCellRenderer renderer = new QuestionCellRenderer();
 tree.setCellRenderer(renderer);
 QuestionCellEditor editor = new QuestionCellEditor();
 tree.setCellEditor(editor);
 tree.setEditable(true);
 JScrollPane jsp = new JScrollPane(tree);
 getContentPane().add(jsp);
}

Customizing Branch Node Handles
When customizing the nodes’ appearance earlier, you may have noticed that creating a custom renderer had
no effect upon the handle icons used to indicate whether branch nodes are expanded or collapsed. That’s
because the handle icon is drawn by the tree’s user interface (UI) object instead of the cell renderer. For a
JTree, that object is a subclass of BasicTreeUI (such as the MetalTreeUI class, which is used when the Java
or Metal look and feel is active), and BasicTreeUI maintains two icons: one for collapsed branch nodes and
another for expanded nodes.

CHAPTER 8 ■ USING SWING’S JTREE

366

You have two ways to modify these icons; the approach you take will depend upon whether you
want to modify them for all JTree instances or for a single instance. To modify them for a single JTree
instance, obtain a reference to the instance of BasicTreeUI that’s associated with the tree and call its
setCollapsedIcon() and setExpandedIcon() methods as follows:

import javax.swing.plaf.basic.*;
// ...
javax.swing.Icon customExpandedIcon;
javax.swing.Icon customCollapsedIcon;
// ...

JTree myTree = new JTree();
// Obtain a reference to the BasicTreeUI used by this tree
BasicTreeUI ui = (BasicTreeUI)(myTree.getUI());
// Now set the icons it uses for branch node handles
ui.setExpandedIcon(customExpandedIcon);
ui.setCollapsedIcon(customCollapsedIcon);

If, on the other hand, you want to change the icons for all instances of JTree, you can use the
UIManager’s put() method. When a new BasicTreeUI is created, it retrieves the pair of icons maintained by
the UIManager, so by changing those two icons, you’ll effectively be changing the icons used by each new
JTree instance that’s created. The following code illustrates how you can do this:

javax.swing.Icon customExpandedIcon;
javax.swing.Icon customCollapsedIcon;
// ...

UIManager.put("Tree.expandedIcon", customExpandedIcon);
UIManager.put("Tree.collapsedIcon", customCollapsedIcon);

It’s also possible to eliminate the handle icons completely by creating a BasicTreeUI subclass that
returns false from its shouldPaintExpandControlMethod(). As its name implies, that method’s purpose
is to determine whether a handle icon should be displayed at all. It’s normally used to prevent handles
from being displayed next to leaf nodes and the root node, which doesn’t display a handle unless you call
the JTree’s setShowsRootHandles() method and pass it a value of true. Here, however, you can create an
implementation of shouldPaintExpandControlMethod() that always returns false, which prevents handles
from appearing next to any of the nodes. The easiest way to override the method is to create an anonymous
inner class as follows, where the appropriate BasicTreeUIClass is extended:

JTree myTree = new JTree();
javax.swing.plaf.metal.MetalTreeUI customUI =
 new javax.swing.plaf.metal.MetalTreeUI() {
 private boolean shouldPaintExpandControl(TreePath path, int row,
 boolean isExpanded, boolean wasExpanded, boolean leaf) {
 return false;
 }
};
myTree.setUI(customUI);

CHAPTER 8 ■ USING SWING’S JTREE

367

As Figure 8-21 shows, this code causes the branch nodes within the tree to be drawn without handles,
although the nodes can still be expanded and collapsed by double-clicking them (if editing isn’t enabled) or
by using the right and left arrow keys.

Line Style with the Java/Metal Look and Feel
All the examples shown in this chapter so far have used the Java (or Metal) look and feel, but Figure 8-22
and Figure 8-23 illustrate how JTree instances are drawn when using the Motif and Windows look and feels,
respectively.

Figure 8-23. A JTree drawn using the Windows look and feel

Figure 8-21. It’s possible and occasionally desirable to eliminate the node handles completely

Figure 8-22. A JTree drawn using the Motif look and feel

CHAPTER 8 ■ USING SWING’S JTREE

368

As these figures show, the Java look and feel is the only one that doesn’t draw lines between the nodes
in a JTree, although it’s possible to modify this behavior. To do so, call the JTree’s putClientProperty()
method to modify the JTree.lineStyle property as follows, specifying one of three line styles: None (the
default), Angled, or Horizontal:

JTree myTree = new JTree();
myTree.putClientProperty("JTree.lineStyle", "Angled");

The Angled style draws lines between the parent nodes and their children, and the Horizontal style
results in a line being drawn above each node that has children. Figure 8-24 and Figure 8-25 illustrate the
Angled and Horizontal styles, respectively.

Note that this technique works only with the Java/Metal look and feel, and you can’t use it to modify the
lines drawn between nodes with the Motif or Windows look and feels.

Node Selection
Many applications allow users to select one or more nodes within a JTree for some purpose. For example,
suppose you want users to be able to select nodes graphically using only a mouse so that they can perform
some operation (such as deletion from the tree) on the selected nodes. It’s easy to make selections when
using JTree; you can do this by simply moving the cursor over the node you want to select and pressing the
left mouse button. As illustrated in Figure 8-26, DefaultTreeCellRenderer highlights selected nodes by
rendering them with colors that are different from those used for unselected nodes.

Figure 8-24. An example of the Angled line style

Figure 8-25. An example of the Horizontal line style

CHAPTER 8 ■ USING SWING’S JTREE

369

The selection of a JTree’s nodes is controlled by an implementation of TreeSelectionModel, and the
DefaultTreeSelectionModel class is used by default. Although it’s possible to create your own selection
model implementation, you’ll rarely have any reason to do so, since DefaultTreeSelectionModel is flexible.
In any case, you can specify which model should be used or retrieve a reference to the existing model using
the setSelectionModel() and getSelectionModel() methods defined in JTree. If you want to prevent any
tree nodes from being selected, simply pass a null value to setSelectionModel(), as shown in the following
code segment:

JTree myTree = new JTree();
// The following code will prevent the user from selecting nodes in the tree
myTree.setSelectionModel(null);

Selection Modes
TreeSelectionModel supports three selection modes, each of which is represented by a constant value
defined in that interface. The following are those constants and the behavior associated with each one:

• SINGLE_TREE_SELECTION: When this selection mode is active, only a single node
can be selected at any given time. Each time you select a node, any node that was
previously selected becomes deselected.

• CONTIGUOUS_TREE_SELECTION: This mode allows you to define a single range of nodes
(a set of “contiguous” nodes), and all the nodes within that range become selected.

• DISCONTIGUOUS_TREE_SELECTION: With this selection mode, which is the default, no
restrictions exist on how many nodes can be selected or on where the nodes that are
selected must be positioned relative to one another. Any group of nodes within the
tree can be selected at any time.

To set the selection mode, simply call the TreeSelectionModel’s setSelectionMode() method, passing
it the value of one of the three constants defined previously. For example, to set the selection mode for a
given JTree, you could use code such as the following:

JTree myTree = new JTree();
TreeSelectionModel model = myTree.getSelectionModel();
model.setSelectionMode(TreeSelectionModel.CONTIGUOUS_TREE_SELECTION);

For the most part, the selection modes are simple and easy to understand, but I’ll briefly illustrate
how contiguous selections work. As mentioned, a contiguous selection is simply a group of adjacent (or
contiguous) nodes. Given the tree shown in Figure 8-27, suppose you want to select all the nodes in the tree
beginning with February and ending with October.

Figure 8-26. How a JTree appears when the basketball and soccer nodes are highlighted

CHAPTER 8 ■ USING SWING’S JTREE

370

One way of doing this is to press and hold down the Ctrl key while clicking each node separately, but a
quicker way is to select the appropriate range of nodes. For example, you might first click the February node
and then press and hold down the Shift key while clicking the October node, resulting in the desired range
of nodes being selected, as shown in Figure 8-28. In this case, the February node is referred to as the anchor
selection, since it’s the first node used to define the range of contiguous nodes, and the October node is
referred to as the lead selection.

I should make two important points concerning the behavior of JTree and DefaultSelectionModel and
which nodes are selected when you use the mouse in this manner. First, selecting a branch node such as the
colors, sports, or food nodes in Figure 8-29 won’t cause that node’s children to be selected.

Figure 8-27. You’ll often want to select a range of nodes

Figure 8-28. The anchor selection (February in this case) is the first node in a range selected, and the lead
selection (October) is the node at the opposite end of the selection range

CHAPTER 8 ■ USING SWING’S JTREE

371

Second, be aware that mouse-initiated selections apply only to viewable nodes, recalling that a viewable
node is one for which all ancestors are expanded. To illustrate this point, suppose you select a range of nodes
displayed by the tree in Figure 8-30 by first selecting yellow and then hot dogs. This will result in exactly four
nodes being selected: yellow, sports, food, and hot dogs. Note that although the sports node is selected, its
children remain unselected, which you can see by expanding that node (see Figure 8-31) and noting that its
children aren’t selected.

Figure 8-29. Selecting a node with children doesn’t cause those child nodes to also be selected

Figure 8-30. In this example, the children of the sports node aren’t considered to be selected because their
parent is collapsed

CHAPTER 8 ■ USING SWING’S JTREE

372

TreeSelectionListener
You’ll sometimes want to be notified when tree selection changes have been made, and by creating an
instance of TreeSelectionListener and registering it with the JTree, you can receive such notification.
This interface defines a single valueChanged() method that’s called when the selection state of one or
more nodes has changed. In other words, registered listeners are notified when unselected nodes become
selected, as well as when selected nodes become unselected. For example, to create a listener using an
anonymous inner class, you could write code similar to the following:

import javax.swing.event.*;
// ...
JTree myTree = new JTree();
myTree.addTreeSelectionListener(new TreeSelectionListener() {
 public void valueChanged(TreeSelectionEvent event) {
 // Add code here to handle selection changes
 }
});

TreeSelectionEvent
As the previous code segment illustrates, the valueChanged() method defined in TreeSelectionListener is
passed an instance of TreeSelectionEvent. You can use the following methods in TreeSelectionEvent to
obtain information that describes the type of selection change that occurred and to determine which nodes
were involved in the change.

Figure 8-31. Expanding the selected node reveals that its children weren’t selected as part of the range
selection

CHAPTER 8 ■ USING SWING’S JTREE

373

getPaths(), getPath()
You can use these methods to determine which path or paths were involved in the selection change that
occurred. The getPaths() method returns an array of TreePath objects, each of which identifies a node
that experienced a selection state change. The getPath() method returns a single TreePath object and
is provided as a convenience for those times when you’re using SINGLE_TREE_SELECTION mode and need
to obtain a reference only to a single TreePath object. If you’re using either of the other selection modes,
getPath() returns the first path in the array that’s provided by getPaths().

isAddedPath()
This overloaded method has three implementations, each of which returns a Boolean value that indicates
whether some specific node/path became selected (as opposed to deselected). One implementation accepts
a TreePath that should be equal to one of those returned by getPaths(), and another accepts an integer
index value that should be greater than zero and less than the number of paths returned by getPaths().
In both cases, the parameter value identifies a specific node/path for which the selection state changed,
and this method returns a value of true if the node was selected or false if it was deselected. The third
implementation of isAddedPath() doesn’t accept parameters, and like getPath(), it’s provided as a
convenience for cases where only a single path can be selected at any given time.

getNewLeadSelectionPath(), getOldLeadSelectionPath()
Each of these methods returns a reference to a TreeNode representing the new (after the selection state
change occurs) and old (before the change occurs) lead selection paths. In most cases, your application
won’t need to be concerned with lead (or anchor) paths, so these methods aren’t normally used.

Selection Methods in JTree
While the methods defined in TreeSelectionEvent are useful for identifying nodes that are newly selected
or deselected, you’ll often want to retrieve a list of all selected nodes. In addition, it’s often desirable to select
nodes programmatically, and JTree contains methods that allow you to do all these things. For example,
getSelectionPaths() returns an array of TreePath objects that identifies all paths/nodes that are currently
selected, and setSelectionPaths() allows your code to specify which paths should be selected. If you want
to identify paths using their index (vertical position) values instead of TreeNode instances, you can use the
getSelectionRows() and setSelectionInterval() methods instead.

Listing 8-5 provides an example of how you can use getSelectionPaths() to create an application that
displays a pop-up menu that can be used to delete the currently selected nodes, as illustrated in Figure 8-32.

This application displays a JTree and adds a MouseListener that will cause a JPopupMenu to appear
when a right mouse click occurs. If the user activates the Delete menu item in that pop-up menu, the
deleteSelectedItems() method is called, which deletes the currently selected nodes from the tree.

Listing 8-5. JTree Pop-up Menu: Delete Select/Use Example

import java.awt.event.*;
import javax.swing.*;
import javax.swing.tree.*;

public class DeleteNodes extends JFrame {

 private JTree tree;

CHAPTER 8 ■ USING SWING’S JTREE

374

 public static void main(String[] args) {
 DeleteNodes dn = new DeleteNodes(new JTree());
 dn.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 dn.setSize(400, 300);
 dn.setVisible(true);
 }

 public DeleteNodes(JTree jt) {
 super("Node Selection");
 tree = jt;
 getContentPane().add(tree);
 tree.addMouseListener(new MouseAdapter() {
 public void mousePressed(MouseEvent event) {
 if (((event.getModifiers() &
 InputEvent.BUTTON3_MASK)
 != 0) &&
 (tree.getSelectionCount() > 0)) {
 showMenu(event.getX(), event.getY());
 }
 }
 });
 }

 private void showMenu(int x, int y) {
 JPopupMenu popup = new JPopupMenu();
 JMenuItem mi = new JMenuItem("Delete");
 TreePath path = tree.getSelectionPath();
 Object node = path.getLastPathComponent();
 if (node == tree.getModel().getRoot()) {
 mi.setEnabled(false);
 }
 popup.add(mi);
 mi.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 deleteSelectedItems();
 }
 });
 popup.show(tree, x, y);
 }

 private void deleteSelectedItems() {
 DefaultMutableTreeNode node;
 DefaultTreeModel model =
 (DefaultTreeModel)(tree.getModel());
 TreePath[] paths = tree.getSelectionPaths();
 for (int i = 0; i < paths.length; i++) {
 node = (DefaultMutableTreeNode)(
 paths[i].getLastPathComponent());
 model.removeNodeFromParent(node);
 }
 }
}

CHAPTER 8 ■ USING SWING’S JTREE

375

Notice that this application is designed to allow you to perform the deletion only when the root node is
not one of the nodes selected, which is necessary because DefaultTreeModel requires the presence of a root
node. If you select the root node and then press the right mouse button, the pop-up menu will still appear,
but the Delete menu item will be disabled, preventing you from performing the operation.

Collapsing and Expanding Nodes
In most cases, you’ll leave the responsibility for collapsing and expanding nodes to the user, who will do
so graphically with the mouse. However, sometimes it’s convenient or necessary to expand or collapse
nodes programmatically, which you can do easily. To do so, use the expandPath() and collapsePath()
methods or the expandRow() and collapseRow() methods defined in JTree. As their names imply, the first
pair of methods requires that you specify a TreePath parameter that identifies the node to be expanded or
collapsed. In contrast, the second pair allows you to identify the node by specifying its position index (an
integer value representing its vertical position within the tree).

For example, say you have the tree shown in Figure 8-33.

Figure 8-32. You’ll often want to allow users to perform operations on the selected node(s) in a tree, and
getSelectionPaths() can be helpful when doing this

Figure 8-33. You can collapse and expand tree nodes programatically easily using the methods provided
in JTree

CHAPTER 8 ■ USING SWING’S JTREE

376

To collapse the sports node, you can execute the following code:

JTree myTree = new JTree();
// ...
myTree.collapseRow(2);

Similarly, to expand the food node, you can execute the following statement:

myTree.expandRow(7);

Detecting Collapses and Expansions
In addition to being able to expand and collapse nodes programmatically, it’s also sometimes useful to be
notified when those operations occur. Fortunately, JTree supports two types of listeners that allow you to
receive such notifications, one of which notifies you before the operation occurs and another that notifies
listeners after the change has occurred.

TreeExpansionListener
By implementing this interface, you can create an object that can register with a JTree to receive
notifications after one of the tree’s nodes has been expanded or collapsed. TreeExpansionListener defines
two methods, both of which are passed instances of TreeExpansionEvent. That event class provides a single
getPath() method that returns an instance of TreePath to identify the node that was expanded or collapsed.

To register an object so it will receive these notifications, simply call JTree’s
addTreeExpansionListener() method, passing a reference to the object that implements
TreeExpansionListener. You can also use the tree’s removeTreeExpansionListener() to prevent the
listener from receiving further notifications.

treeCollapsed()

This method is called for all registered listeners after one of the tree’s nodes has been collapsed. You can use
the TreeExpansionEvent parameter’s getPath() method to obtain access to a TreePath object that identifies
the node that was collapsed.

treeExpanded()

This method is called for all registered listeners after one of the tree’s nodes has been expanded. You can use
the TreeExpansionEvent parameter’s getPath() method to obtain access to a TreePath object that identifies
the node that was expanded.

TreeWillExpandListener
Like TreeExpansionListener, this interface creates listeners that will be notified of requests to collapse and
expand nodes. However, as its name implies, this interface identifies listeners that are notified of
those operations before they occur instead of afterward. This allows you to populate a tree’s data in an
“on-demand” fashion, creating a node’s children (and loading the data associated with those children)
only when the node is about to be expanded and its children displayed. In addition, this interface allows
you to actually prevent (or “veto”) the pending operation by throwing an exception from the notification

CHAPTER 8 ■ USING SWING’S JTREE

377

method. To do so, create and throw an instance of the ExpandVetoException class defined in the javax.
swing.tree package. That class provides two constructors, both of which require that you pass a reference to
a TreeExpansionEvent object. One of the two constructors also allows you to specify an error message that
will be passed to the exception object’s constructor and used as its message text.

The following code illustrates how you can implement a TreeWillExpandListener using an anonymous
inner class, and this listener will allow all expansions but prevent/veto all attempts to collapse the tree’s
nodes.

import javax.swing.event.*;
// ...
JTree myTree = new JTree();
myTree.addTreeWillExpandListener(new TreeWillExpandListener() {
 public void treeWillExpand(TreeExpansionEvent event)
 throws ExpandVetoException {
 System.out.println("Expanding path " + event.getPath());
 }

 public void treeWillCollapse(TreeExpansionEvent event)
 throws ExpandVetoException {
 throw new ExpandVetoException(event, "Collapses not allowed");
 }
});

Note that it’s never necessary for you to handle an ExpandVetoException, even if an expansion or
collapse operation you initiate programmatically (through JTree’s collapseXXX() and expandXXX()
methods) is vetoed. However, if you want your code to determine whether the operation was successful, the
expandXXX() or collapseXXX() call can be followed by a call to JTree’s isExpanded() or isCollapsed()
methods. Those return Boolean values that will allow you to determine whether the node’s expansion state
matches what it should be if the requested operation succeeded; following is an example of how you can use
them:

JTree myTree;
TreePath somePath;
// ...

myTree.expandPath(somePath);
if (myTree.isExpanded(somePath)) {
 System.out.println("Expansion succeeded");
}
else {
 System.out.println("Expansion failed");
}

treeWillExpand()

This method is called for all registered listeners before one of the tree’s nodes is expanded. You can use the
TreeExpansionEvent parameter’s getPath() method to obtain access to a TreePath object that identifies
the node that will be expanded, and throwing an ExpandVetoException from this method will prevent the
expansion from occurring.

CHAPTER 8 ■ USING SWING’S JTREE

378

treeWillCollapse()

This method is called for all registered listeners before one of the tree’s nodes is collapsed. You can use the
TreeExpansionEvent parameter’s getPath() method to obtain access to a TreePath object that identifies
the node that will be collapsed, and throwing an ExpandVetoException from this method will prevent the
collapse from occurring.

Summary
I covered the following in this chapter:

Terminology related to tree structures and the data they display•

• JTree’s support classes and interfaces

How to construct and manipulate the data model associated with a tree•

How to control how the items in a tree are drawn (rendered) and edited•

How to select items in a tree and detect when selections change•

How to control which portions of a tree’s data are displayed (expanded) or concealed •
(collapsed)

379

CHAPTER 9

Adding Cut-and-Paste Functionality

Cut-and-paste functionality is extremely useful because it allows you to transfer data between user interface
components and even between different applications. In general, cut-and-paste operations are performed
on components that support the concept of a selection, and the operations are initiated by the keyboard and
performed for the component that currently has the input focus.

Some Swing components include built-in support for cut-and-paste and as a result you’ll often
be able to use cut-and-paste operations within your application without writing any extra code.
However, it’s still helpful to be familiar with the API (application programming interface) for situations
where it’s needed, such as when you need to create a custom Swing component. For example, in this
chapter you’ll see how to create a component that can edit images; cut, copy, and paste operations are
essential in such an application. Although the data transfer API simplifies implementing this as much
as possible; adding cut-and-paste support to a component that doesn’t already support it is a nontrivial
exercise and isn’t well-documented. To understand how to perform cut-and-paste operations, you’ll
examine the following topics:

Clipboards and their relevance to cut-and-paste operations•

The classes and interfaces Java provides that support these operations•

How to cut, copy, and paste various data types•

Even if you don’t intend to provide cut-and-paste functions, it’s still a good idea to understand how to
implement them, particularly if your application needs to support drag-and-drop operations. Chapter 10
covers Java’s drag-and-drop capabilities, but much of the information covered here is relevant to that
discussion as well.

The package containing the classes and interfaces related to cut-and-paste operations is fairly
small, and the number of classes and interfaces that are really important is even smaller. In fact, the
ones shown in Figure 9-1 are the ones you’ll primarily need to be concerned with if you implement
cut-and-paste support.

http://dx.doi.org/10.1007/9781484206423_10

CHAPTER 9 ■ ADDING CUT-AND-PASTE FUNCTIONALITY

380

Clipboards: Where Cut and Copied Data Is Stored
Usually when you cut or copy data from an application and then terminate the application, the data you
extracted can still be pasted to some other location. For example, if you copy text from a word processor,
you’ll be able to paste that text to another application even after the word processor is no longer running.
As you might expect, that’s possible because the data is copied to a location outside the application from
which it was extracted. The resource provided for that purpose is called a clipboard, and in Java, a clipboard
is represented by an instance of the Clipboard class defined in java.awt.datatransfer. Although you can
create your own instances of Clipboard in Java, you won’t usually need or want to do so. Instead, you’ll use
the system clipboard that represents the underlying operating system’s clipboard, and you can obtain a
reference to it through an instance of Toolkit.

The Toolkit class defined in java.awt provides a variety of utility functions related to user interface
behavior. You can access an instance of Toolkit by calling the getToolkit() method in Component,
as follows:

JButton btn = new JButton("Hello");
Toolkit tk = btn.getToolkit();

or by using the static getDefaultToolkit() method defined in Toolkit.

Toolkit tk = Toolkit.getDefaultToolkit();.

Once you’ve obtained a reference to a Toolkit, you can access the system clipboard by calling
getSystemClipboard().

Clipboard scb = Toolkit.getDefaultToolkit().getSystemClipboard();

<< interface>>

ClipboardOwner

<< interface>>

Transferable

<< interface>>

FlavorTable

<< interface>>

FlavorMap

SystemFlavorMap

DataFlavor

Clipboard

Figure 9-1. The classes and interfaces relevant to implementing cut-and-paste support in Java

CHAPTER 9 ■ ADDING CUT-AND-PASTE FUNCTIONALITY

381

Using the System Clipboard
The system clipboard should theoretically allow you to cut or copy data from a Java application and paste
that data into a Java or non-Java application, but, unfortunately, it isn’t that simple. The way in which data
is stored often isn’t as simple as you might expect it to be based upon its visual representation. For example,
documents created by an application such as Microsoft Word may appear to contain simple text information
that can be easily transferred from that application to, for example, a Swing component such as JTextField.
In reality, though, the document probably contains formatting and other information that’s not visible and
that may not be transferable in any meaningful way to another application. In addition, an application such
as Microsoft Word can take advantage of operating system–specific features that aren’t supported in a Java
application that’s supposed to run correctly on any platform that supports Java. Finally, clipboard transfers
are also complicated by the numerous character sets that are available and used. (However, this limitation at
least is usually reasonably simple to overcome.)

The main point to keep in mind is simply that not every data type can be transferred between Java and
native applications. Some of the most important types can be transferred, though, and later in this chapter
you’ll see what kinds of data you can safely store in the clipboard from a Java application. First, however,
you’ll examine Clipboard and the classes associated with it.

Using Clipboard
The Clipboard class includes three methods: getContents(), setContents(), and getName(). You’ll rarely
have any reason to access the clipboard’s name, so the only two methods of interest are setContents()
and getContents(). As their names imply, those methods set and retrieve the clipboard’s contents, so you’ll
use setContents() for cut/copy operations and getContents() when pasting data.

setContents()

The setContents() method is passed two parameters:

A reference to an implementation of the • Transferable interface

A reference to an implementation of the • ClipboardOwner interface

The Transferable parameter represents the data you want to store in the clipboard, while the
ClipboardOwner is an object that should be notified when the data being stored is later overwritten.

getContents()

This method returns an instance of Transferable to the caller, and that object represents the contents of the
clipboard. If the clipboard is empty or contains a type of data that Java can’t process, getContents() returns
a null value.

Using Transferable
To store data in the clipboard, you must wrap it in an instance of a Transferable implementation, and
data is similarly encapsulated when you read it from the clipboard. In addition to serving as a container for
clipboard data, a Transferable implementation provides methods that allow you to determine the type of
data it contains.

CHAPTER 9 ■ ADDING CUT-AND-PASTE FUNCTIONALITY

382

Many different applications can store data in the clipboard, and these applications use many different
data formats. For example, information cut or copied from a text editor is very different from data stored
by an application that allows you to edit image files. In addition, the image editor’s data is probably not
meaningful to the text editor, and vice versa. As you might expect, when information is stored in the
clipboard, the type of data it represents is recorded as well. This allows an application to determine whether
the data represents a type that it’s able to process, and if so, the user may be able to paste the data into that
application.

In many cases, it’s oversimplifying matters to associate data with a single, specific type, because
information can often be represented in more than one way. If you create an instance of Java’s Integer
wrapper class, you’ll normally think of it as an Integer object, and rightly so. However, if you examine the
API documentation for Integer, you’ll see it has a large number of methods that allow you to extract the
value it encapsulates in many different forms. For example, you can call the intValue(), longValue(),
and floatValue() methods to obtain a reference to an int, long, or float primitive instead of an Integer.
In addition, you can call toString() to obtain a String representation of the numeric value, as well as
toBinaryString(), toHexString(), and so on. The point is that even this simple piece of information can be
retrieved in many different (but equally valid) forms, and that’s often true of data in the clipboard as well.

This is why one of the responsibilities of a Transferable implementation is to identify the different
formats in which the data it encapsulates can be retrieved. Each type is represented by an instance of
DataFlavor, which you’ll examine in detail shortly. First, however, you’ll look at Transferable’s methods
and then at the ClipboardOwner interface.

getTransferDataFlavors()

This method returns an array of DataFlavor objects that identify the different data formats (“flavors”) that
are supported by Transferable. For example, if you cut or copy text from a StyledDocument in Java, it may
be possible to read the clipboard contents in more than one format. One flavor could represent text with its
style information (colors, fonts, etc.) intact, and that representation might be used to insert the text into a
StyledDocument. However, to allow the text to be pasted into a JTextField, you’d use a flavor that represents
the text data stripped of its style information.

The DataFlavor instances returned by getTransferDataFlavors() are ordered based on which format
provides the most detailed (or “richest”) version of the data. This allows an application to select the best
flavor by identifying the first one in the list that it can accept. In the previous example, the flavor representing
styled text would appear first in the list, since it provides the most detailed representation of the data in the
clipboard.

isDataFlavorSupported()

You can use this method to determine whether a specific DataFlavor is supported by Transferable.
It accepts a DataFlavor as a parameter and returns a boolean value of true if the specified flavor is
supported.

When isDataFlavorSupported() is called, it should compare the DataFlavor that was passed as
a parameter to the flavors in the list of those it supports. In other words, if the DataFlavor parameter is
equal to one of the flavors that would be returned by getTransferDataFlavors(), this method should
return true.

Note that when comparing DataFlavor instances, you should be sure to use the equals() method
instead of the equality (==) operator. It’s usually not important whether two DataFlavor references point to
the same object instance. Instead, your code should establish whether two instances describe the same type
of data, and you can determine that using DataFlavor’s implementation of the equals() method.

CHAPTER 9 ■ ADDING CUT-AND-PASTE FUNCTIONALITY

383

getTransferData()

This method returns the data encapsulated by Transferable, and as you might expect, an instance of
DataFlavor must be specified as a parameter. If that parameter represents a flavor that’s not supported, an
UnsupportedFlavorException is thrown. Otherwise, the data is returned to the caller in the requested format.

Note that you must also declare java.io.IOException as a checked exception that can be thrown by
this method.

Using ClipboardOwner
In addition to Transferable, an instance of a ClipboardOwner implementation is passed as a parameter to
the setContents() method. The ClipboardOwner interface defines a single lostOwnership() method that’s
called when the data being stored in the clipboard is later overwritten by another call to setContents(). In
other words, the ClipboardOwner object is temporarily registered as a listener of the clipboard data, and that
owner will receive a notification when the clipboard is next modified.

You’re free to use the ClipboardOwner in any way that’s helpful, but you often won’t need to take any
action when data you stored in the clipboard has been overwritten. When that’s the case, you can pass a
null value to setContents() for the ClipboardOwner, or you can implement a “dummy” lostOwnership()
method that contains no code. However, as you’ll see, ClipboardOwner can sometimes play an important
role in maintaining clipboard data.

The StringSelection class defined in java.awt.datatransfer implements both Transferable and
ClipboardOwner, and it allows you to store and retrieve text data. Although Java’s data transfer API may
appear somewhat complex, it’s easy to cut and paste text. For example, the following code segment stores
“Hello” in the clipboard using the StringSelection class:

Clipboard cb = Toolkit.getDefaultToolkit().getSystemClipboard();
StringSelection ss = new StringSelection("Hello");
cb.setContents(ss, ss);

Note that in this case, the StringSelection instance was used for both parameter values passed to the
setContents() method. That’s possible because StringSelection implements both the Transferable and
ClipboardOwner interfaces (although its lostOwnership() method currently doesn’t contain any code).

When you encapsulate data in Transferable and store that Transferable in the clipboard, you
shouldn’t modify the data until after lostOwnership() is called. Java’s data transfer specification allows
a “lazy data model” to be used, which means that calling setContents() may or may not result in the
data being copied from Transferable into the clipboard. In some cases, the data isn’t retrieved until a
request is made to read the contents of the clipboard, so you should leave the data intact, at least until
lostOwnership() is called.

For example, suppose your application uses a Transferable interface that encapsulates an array of
integer values, and an instance of that class is stored in the clipboard. For the original data to be accessible,
the values in the array must remain unchanged even after you call the setContents() method. Only when
the ClipboardOwner’s lostOwnership() notification occurs can your application safely make changes to the
array. Later in the chapter, you’ll see how you can design your code with this behavior in mind. However, you
should be aware that if your application terminates before you retrieve the data it stored in the clipboard, the
information won’t be available to other applications via the clipboard.

CHAPTER 9 ■ ADDING CUT-AND-PASTE FUNCTIONALITY

384

Using DataFlavor
As mentioned earlier, an instance of DataFlavor identifies a specific type of data supported by a Transferable
implementation. DataFlavor defines three properties that are used to describe the data type:

• A human-readable name: The human-readable name is provided as a convenience,
and its use is optional. It does allow you to associate a user-friendly name with a data
flavor, so you may choose to use it in your application.

• A representation class: A DataFlavor’s representation class identifies the type of
Java object returned from Transferable when its getContents() method is passed a
reference to that DataFlavor. The representation class is maintained in DataFlavor
as an instance of java.lang.Class.

• A Multipurpose Internet Mail Extensions (MIME) type: The third property stored
in a DataFlavor is a MIME type, which is represented as a String value.

Introducing MIME Types

If you only ever needed to transfer data between Java applications, then the representation class maintained
in DataFlavor would be sufficient to describe the type of data in the clipboard. For example, if you were to
store text information in the clipboard, you could associate the data with the java.lang.String class, but
that association would be meaningful only to Java programs.

However, to transfer data between Java and non-Java applications, it’s necessary to assign each data
type a name that’s not specific to Java. In addition, since Java applications can run on many platforms, the
data type’s name shouldn’t be tied to a particular application or platform. In other words, what’s needed is a
set of platform-independent, language-neutral names that are associated with different types of data
(text, graphics, audio, etc.). Fortunately, such names have already been defined and are used by DataFlavor.

MIME is an Internet standard that allows different types of data to be embedded within electronic mail
documents. This is accomplished partly through the definition of content types (or simply, MIME types),
which are names associated with commonly used data types.

A MIME type consists of a top-level media type that describes the general category of the data and a
subtype that defines a more specific type of data, with the two types separated by a forward slash (/).
For example, simple character data with no attributes (such as font, color, or formatting information) is
defined as text/plain. Other top-level types include image, audio, video, and application, so some examples
of other MIME types are image/gif, image/jpeg, text/html, and video/mpeg. A large number of data types
are registered with the Internet Assigned Numbers Authority (IANA), including those just mentioned.
Applications that read and write those data types are encouraged to use and recognize the MIME types, and
a process exists for registering a new MIME type when one doesn’t already exist.

You can also define custom MIME types for your application to use, in which case you should use a
top-level type of application. You can use any subtype name you’d like, but it should begin with “x-” to
indicate that it’s an unregistered type. Finally, application/octet-stream is a generic type to describe binary
data of an unknown format.

In addition to the type and subtype, a MIME type can include additional parameters that describe the
data. For example, while text/plain might seem adequate to identify simple text data, the issue is complicated
by the existence of a large number of different character sets. To address this, you can use parameters to
provide an even more detailed description of the type of data a MIME type represents. A parameter consists of
a type/value pair separated by an equal (=) sign, and parameters are delimited by semicolon (;) characters.
For example, the following MIME types describe three varieties of text data:

text/plain; charset=unicode•

text/plain; charset=ascii•

text/plain; charset=iso-8859-1•

CHAPTER 9 ■ ADDING CUT-AND-PASTE FUNCTIONALITY

385

Creating an Instance of DataFlavor

You can create a new DataFlavor using the constructor that takes a single String parameter representing
a MIME type. For example, the following creates an instance of DataFlavor that represents Rich Text
Format (RTF) data:

DataFlavor rtfFlavor = new DataFlavor("text/rtf; charset=ascii");

When you use this constructor, the representation class for the DataFlavor is set to
java.io.InputStream, which has a special significance with respect to transferable data. A variation
of this constructor is also provided that allows you to specify the human-readable name that should be
assigned to the DataFlavor. If you want to assign the name, you can use that constructor, or you can call the
setHumanPresentableName() method after the DataFlavor has been created.

Depending upon the type of data contained within your application, you may sometimes want to store
an instance of a serializable Java object in the clipboard instead of raw data, and a different constructor
is provided for that purpose. It requires you to pass an instance of java.lang.Class that identifies the
representation class and a String that identifies the human-readable name, as follows:

DataFlavor myFlavor = new DataFlavor(MySerial.class, "A class I created");

When you use this constructor, the MIME type for the DataFlavor is set to application/x-java-
serialized-object. Since a serialized Java object is meaningful only to a Java Virtual Machine (JVM), this type
of DataFlavor is useful only when transferring information between Java applications.

You’ve now looked at the two categories of DataFlavor instances: those that are associated with a particular
MIME type and those that are related to a particular Java class. When creating your own DataFlavor, the type of
flavor you create will depend on the type of data being cut and pasted, as well as the type of applications involved
in the transfer. For example, if you intend to cut and paste data only between Java applications, you should define
flavors that are class-based and use serialized object instances. However, if you intend to transfer between Java
and non-Java (or “native”) applications, you should use a MIME-based DataFlavor that has a representation
class of InputStream. Doing so allows the JVM to transfer the clipboard data to a native application as a stream of
binary data that conforms to some agreed-upon protocol (in other words, a MIME type).

Storing and Retrieving Serialized Java Objects
To illustrate how to store and retrieve serialized Java objects, I’ll now show you how to create a crude
image-editing application. The application will allow you to select portions of an image and cut, copy, or
paste selections to and from the clipboard.

The ImageEditor class displays the contents of an image file in a JFrame and allows you to select a
rectangular portion of the image by dragging the mouse. The selected area is identified by a brightly colored
rectangle that’s drawn as the mouse is dragged.

Once you’ve selected a portion of the image, you can right-click to display a pop-up menu that allows
you to cut or copy the selection (see Figure 9-2).

CHAPTER 9 ■ ADDING CUT-AND-PASTE FUNCTIONALITY

386

Listing 9-1 provides this functionality (although the performCut(), performCopy(), and
performPaste() methods aren’t complete yet). Specifically, this application uses an ImageIcon and a JLabel
to display the contents of an image file, and it listens for mouse events, drawing a selection square around
the selected area as the mouse is dragged. In addition, it creates a pop-up menu that’s displayed when the
right mouse button is pressed.

Listing 9-1. Cut/Copy Functionality

import java.awt.*;
import java.awt.datatransfer.*;
import java.awt.event.*;
import java.awt.image.*;
import javax.swing.*;

public class ImageEditor extends JPanel {

 public final static int LINE_WIDTH = 2;

 private ImageIcon icon;
 private Point start = new Point(0, 0);
 private Point finish = new Point(0, 0);
 private Point pastePoint;

 private JPopupMenu popupMenu;
 private AbstractAction cutAction;
 private AbstractAction copyAction;
 private AbstractAction pasteAction;

Figure 9-2. Image-editing applications typically allow you to cut or copy one portion of an image and paste it
somewhere else

CHAPTER 9 ■ ADDING CUT-AND-PASTE FUNCTIONALITY

387

 public static void main(String[] args) {
 if (args.length == 0) {
 System.out.println("You must specify the name of an image file");
 return;
 }
 ImageEditor editor = new ImageEditor(args[0]);
 JFrame f = new JFrame(args[0]);
 f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 f.setContentPane(editor);
 f.setSize(400, 300);
 f.setVisible(true);
 }

 public ImageEditor(String name) {
 super();
 buildPopupMenu();
 setBackground(Color.black);
 setLayout(new GridLayout(1, 1, 0, 0));
 icon = new ImageIcon(name);
 JLabel label = new JLabel(icon);
 label.setHorizontalAlignment(SwingConstants.LEFT);
 label.setVerticalAlignment(SwingConstants.TOP);
 label.addMouseListener(new MouseAdapter() {
 public void mousePressed(MouseEvent event) {
 handleMouseDown(event);
 }
 });
 label.addMouseMotionListener(new MouseMotionAdapter() {
 public void mouseDragged(MouseEvent event) {
 handleMouseDrag(event);
 }
 });
 JScrollPane jsp = new JScrollPane(label);
 add(jsp);
 }

 private void handleMouseDown(MouseEvent event) {
 if ((event.getModifiers() & InputEvent.BUTTON1_MASK) != 0) {
 start = event.getPoint();
 finish = event.getPoint();
 }
 else if ((event.getModifiers() & InputEvent.BUTTON3_MASK) != 0) {
 displayPopupMenu(event.getPoint());
 pastePoint = event.getPoint();
 }
 }

 private void handleMouseDrag(MouseEvent event) {
 finish = event.getPoint();
 repaint();
 }

CHAPTER 9 ■ ADDING CUT-AND-PASTE FUNCTIONALITY

388

 private void buildPopupMenu() {
 popupMenu = new JPopupMenu();
 copyAction = new AbstractAction("Copy") {
 public void actionPerformed(ActionEvent event) {
 performCopy();
 }
 };
 popupMenu.add(copyAction);
 cutAction = new AbstractAction("Cut") {
 public void actionPerformed(ActionEvent event) {
 performCut();
 }
 };
 popupMenu.add(cutAction);
 pasteAction = new AbstractAction("Paste") {
 public void actionPerformed(ActionEvent event) {
 performPaste();
 }
 };
 popupMenu.add(pasteAction);
 }

 private void displayPopupMenu(Point p) {
 Clipboard cb = getToolkit().getSystemClipboard();
 Transferable t = cb.getContents(this);
 boolean isSelected = !(start.equals(finish));
 cutAction.setEnabled(isSelected);
 copyAction.setEnabled(isSelected);
 popupMenu.show(this, p.x, p.y);
 }

 private void performCopy() {
 }

 private void performCut() {
 }

 private void performPaste() {
 }

 private Rectangle getSelectedArea() {
 int width = finish.x - start.x;
 int height = finish.y - start.y;
 return new Rectangle(start.x, start.y, width, height);
 }

 private int[] getPixels(Rectangle area) {
 int[] pixels = new int[area.width * area.height];
 PixelGrabber pg = new PixelGrabber(icon.getImage(), area.x,
 area.y, area.width,
 area.height, pixels, 0,
 area.width);

CHAPTER 9 ■ ADDING CUT-AND-PASTE FUNCTIONALITY

389

 try {
 pg.grabPixels();
 } catch (Exception e) {};
 return pixels;
 }

 private void setPixels(int[] newPixels, Rectangle area) {
 int pixel;
 Image image = icon.getImage();
 int imageWidth = icon.getIconWidth();
 int imageHeight = icon.getIconHeight();
 int[] oldPixels = new int[imageWidth * imageHeight];
 PixelGrabber pg = new PixelGrabber(image, 0, 0, imageWidth,
 imageHeight, oldPixels, 0,
 imageWidth);
 try {
 pg.grabPixels();
 } catch (Exception e) {};
 for (int y = 0; y < area.height; y++) {
 if (imageHeight <= area.y + y) {
 break;
 }
 for (int x = 0; x < area.width; x++) {
 if (imageWidth <= area.x + x) {
 break;
 }
 oldPixels[((area.y + y) * imageWidth) + area.x + x] =
 newPixels[(area.width * y) + x];
 }
 }
 MemoryImageSource mis = new MemoryImageSource(imageWidth,
 imageHeight, oldPixels, 0, imageWidth);
 icon.setImage(createImage(mis));
 repaint();
 }

 public void paint(Graphics g) {
 super.paint(g);
 int width = finish.x - start.x;
 int height = finish.y - start.y;
 if ((width > 0) && (height > 0)) {
 g.setColor(Color.blue);
 for (int i = 0; i < LINE_WIDTH; i++) {
 g.drawRect(start.x + i, start.y + i, width, height);
 }
 }
 }

}

CHAPTER 9 ■ ADDING CUT-AND-PASTE FUNCTIONALITY

390

To support the cut-and-paste operations, you must define a Java class that can be used to encapsulate
a portion of the image that’s cut or copied. In addition, it’s necessary to define an implementation of
Transferable that can be stored in and retrieved from the clipboard. Although these two functions could
easily be combined in a single class, we’ll implement them separately to provide a more cohesive design for
the application.

The ImageData class defined in Listing 9-2 can store part of an image that’s cut or copied, along with the
width and height of that area. Note that it implements the Serializable interface, which allows instances of
ImageData to be serialized.

Listing 9-2. ImageData

public class ImageData implements java.io.Serializable {

 private int width;
 private int height;
 private int[] pixelData;

 public ImageData(int width, int height, int[] pixels) {
 this.width = width;
 this.height = height;
 pixelData = pixels;
 }

 public int getWidth() {
 return width;
 }

 public int getHeight() {
 return height;
 }

 public int[] getPixelData() {
 return pixelData;
 }

}

The next task is to define the Transferable implementation that can store image data in the clipboard.
You’ll also have this class implement ClipboardOwner so it can be notified when its data is no longer stored
in the clipboard. In this case, however, the lostOwnership() implementation doesn’t do anything when
that occurs.

import java.awt.datatransfer.*;

public class ImageSelection implements Transferable, ClipboardOwner {

 public void lostOwnership(Clipboard cb, Transferable t) {}

}

CHAPTER 9 ■ ADDING CUT-AND-PASTE FUNCTIONALITY

391

Since ImageSelection encapsulates an instance of ImageData, a constructor should be defined that
accepts an ImageData object and stores a reference to the object.

import java.awt.datatransfer.*;

public class ImageSelection implements Transferable, ClipboardOwner {

 private ImageData imageData;

 public ImageSelection(ImageData data) {
 imageData = data;
 }

 public void lostOwnership(Clipboard cb, Transferable t) {
 }

}

In addition, it’s necessary for ImageSelection to identify the data formats it supports. To provide that
capability, define a single DataFlavor with a representation class of ImageData and a MIME type of application/
x-java-serialized-object. In other words, this flavor represents serialized ImageData instances.

import java.awt.datatransfer.*;

public class ImageSelection implements Transferable, ClipboardOwner {

 private ImageData imageData;

 public final static DataFlavor IMAGE_DATA_FLAVOR =
 new DataFlavor (ImageData.class, "Image Data");

 public ImageSelection(ImageData data) {
 imageData = data;
 }

 public void lostOwnership(Clipboard cb, Transferable t) {
 }

}

Although the DataFlavor was defined inside the Transferable class in this case, you may or may not
choose to use this approach when creating your own Transferable implementations. The issue of where to
define a DataFlavor is strictly one of good object-oriented design and has no effect on the flavor’s usability.

To complete the ImageSelection class, you must implement the Transferable methods. First write the
code for getTransferDataFlavors(), which you can do by defining a static array of DataFlavor objects and
returning a reference to that array.

import java.awt.datatransfer.*;

public class ImageSelection implements Transferable, ClipboardOwner {

 private ImageData imageData;

 public final static DataFlavor IMAGE_DATA_FLAVOR =
 new DataFlavor (ImageData.class, "Image Data");

CHAPTER 9 ■ ADDING CUT-AND-PASTE FUNCTIONALITY

392

 private final static DataFlavor [] flavors = {
 IMAGE_DATA_FLAVOR
 };

 public ImageSelection(ImageData data) {
 imageData = data;
 }

 public DataFlavor [] getTransferDataFlavors() {
 return flavors;
 }

 public void lostOwnership(Clipboard cb, Transferable t) {
 }

}

The isDataFlavorSupported() method is equally simple, and all that’s necessary is to loop through the
flavors in the array and compare each one to the parameter value.

import java.awt.datatransfer.*;

public class ImageSelection implements Transferable, ClipboardOwner {

 private ImageData imageData;

 public final static DataFlavor IMAGE_DATA_FLAVOR =
 new DataFlavor (ImageData.class, "Image Data");

 private final static DataFlavor [] flavors = {
 IMAGE_DATA_FLAVOR
 };

 public ImageSelection(ImageData data) {
 imageData = data;
 }

 public DataFlavor [] getTransferDataFlavors() {
 return flavors;
 }

 public boolean isDataFlavorSupported(DataFlavor flavor) {
 for (int i = 0; i < flavors.length; i++) {
 if (flavor.equals(flavors[i])) {
 return true;
 }
 }
 return false;
 }

 public void lostOwnership(Clipboard cb, Transferable t) {}

}

CHAPTER 9 ■ ADDING CUT-AND-PASTE FUNCTIONALITY

393

Finally, getTransferData() must be implemented, which is responsible for returning data in the
requested flavor. In this case, only IMAGE_DATA_FLAVOR is supported, and that flavor can be provided simply
by returning a reference to the encapsulated data object.

import java.awt.datatransfer.*;

public class ImageSelection implements Transferable, ClipboardOwner {

 private ImageData imageData;

 public final static DataFlavor IMAGE_DATA_FLAVOR =
 new DataFlavor (ImageData.class, "Image Data");

 private final static DataFlavor [] flavors = {
 IMAGE_DATA_FLAVOR
 };

 public ImageSelection(ImageData data) {
 imageData = data;
 }

 public Object getTransferData(DataFlavor flavor)
 throws java.io.IOException, UnsupportedFlavorException {
 if (flavor.equals(IMAGE_DATA_FLAVOR)) {
 return imageData;
 }
 throw new UnsupportedFlavorException(flavor);
 }

 public DataFlavor [] getTransferDataFlavors() {
 return flavors;
 }

 public boolean isDataFlavorSupported(DataFlavor flavor) {
 for (int i = 0; i < flavors.length; i++) {
 if (flavor.equals(flavors[i])) {
 return true;
 }
 }
 return false;
 }

 public void lostOwnership(Clipboard cb, Transferable t) {}

}

Now that the Transferable implementation is complete, all that’s left is to write the code in
ImageEditor to perform the cut, copy, and paste operations. Since most of the needed functionality is
already present, you have very little work to do.

CHAPTER 9 ■ ADDING CUT-AND-PASTE FUNCTIONALITY

394

In the case of the performCopy() method, you can create an instance of ImageSelection and store it in
the clipboard using the setContents() method, as follows:

private void performCopy() {
 Rectangle r = getSelectedArea();
 int[] pixels = getPixels(r);
 ImageData data = new ImageData(r.width, r.height, pixels);
 ImageSelection selection = new ImageSelection(data);
 Clipboard cb = getToolkit().getSystemClipboard();
 cb.setContents(selection, selection);
}

The cut operation is almost identical but has one additional step. After the image data is copied to the
clipboard, the pixels that were copied are set to zero in the original image (in other words, they’re “removed”
from the image).

private void performCut() {
 Rectangle r = getSelectedArea();
 int[] pixels = getPixels(r);
 ImageData data = new ImageData(r.width, r.height, pixels);
 ImageSelection selection = new ImageSelection(data);
 Clipboard cb = getToolkit().getSystemClipboard();
 cb.setContents(selection, selection);
 for (int i = 0; i < pixels.length; i++) {
 pixels[i] = 0;
 }
 setPixels(pixels, r);
}

Finally, you can complete the performPaste() method. It must obtain a reference to the Transferable
implementation stored in the clipboard (if any), ensure that the data can be retrieved in the supported
format, and overwrite a portion of the image with that data.

private void performPaste() {
 Clipboard cb = getToolkit().getSystemClipboard();
 try {
 Transferable t = cb.getContents(this);
 if (t.isDataFlavorSupported(
 ImageSelection.IMAGE_DATA_FLAVOR)) {
 ImageData data = (ImageData)(t.getTransferData(
 ImageSelection.IMAGE_DATA_FLAVOR));
 Rectangle area = new Rectangle(start.x, start.y,
 data.getWidth(), data.getHeight());
 int[] pixels = data.getPixelData();
 setPixels(pixels, area);
 }
 }
 catch (Exception e) {
 JOptionPane.showMessageDialog(this,
 "Unable to paste clipboard data");
 }
}

CHAPTER 9 ■ ADDING CUT-AND-PASTE FUNCTIONALITY

395

Finally, you can also make a minor change to ImageEditor that causes the Paste menu item to be
disabled when the clipboard doesn’t contain the supported data flavor.

private void displayPopupMenu(Point p) {
 Clipboard cb = getToolkit().getSystemClipboard();
 Transferable t = cb.getContents(this);
 boolean isSelected = !(start.equals(finish));
 cutAction.setEnabled(isSelected);
 copyAction.setEnabled(isSelected);
 boolean canPaste = ((t != null) &&
 (t.isDataFlavorSupported(
 ImageSelection.IMAGE_DATA_FLAVOR)));
 pasteAction.setEnabled(canPaste);
 popupMenu.show(this, p.x, p.y);
}

To execute this application, compile and run it, specifying the name of a GIF or JPEG file as the first
command-line parameter. For example,

java ImageEditor ProJava3.gif

To select an area of the image to cut or paste, move the mouse to the upper-left corner of the region,

and press and hold the left mouse button. As you drag the cursor, a brightly colored rectangle appears that
identifies the selected area. Once you make a selection, you can right-click to access a JPopupMenu with Cut,
Copy, and Paste menu items as shown in Figure 9-3.

Figure 9-3. Once you’ve cut or copied a selection onto the clipboard you’ll be able to paste it back using the
sample application

CHAPTER 9 ■ ADDING CUT-AND-PASTE FUNCTIONALITY

396

The pasted selection will overwrite a rectangular section of the image corresponding to the pointer
location as illustrated in Figure 9-4.

Figure 9-4. Pasting overwrites a portion of the image with the data copied to the clipboard

Although we only created a very crude application, it does illustrate that Java’s cut-and-paste facility is
capable of performing the same operations as a native program.

Transferring Between Java and Native Applications
So far, you’ve looked only at storing Java objects in the clipboard. However, in some cases, it’s useful to be
able to transfer data between Java and non-Java applications.

It might seem that Java’s MIME-based approach to identifying the content type of a Transferable’s
data would make it easy to transfer data between Java and non-Java applications. However, this isn’t the
case, primarily because each operating system’s clipboard supports its own proprietary data types instead of
standard MIME types. For example, Windows defines the CF_TEXT, CF_DIB, and CF_HDROP clipboard types for
text, bitmap (image), and file selection data, respectively.

Although native clipboards don’t use MIME types, it’s possible in some cases to define a mapping
between a native platform’s clipboard type and a MIME type. In fact, that’s exactly what occurs when you
use the StringSelection class provided with Java. When you call the setContents() method to store a
StringSelection in the clipboard, the text is automatically converted to an appropriate native clipboard
format (e.g., CF_TEXT) so that it’s readable by non-Java applications. Similarly, when getContents() is called,
the data is translated from the native format, such as CF_TEXT, into a String encapsulated by an instance of
StringSelection. In the future, other Transferable types may exist that are translated automatically for you
this way, but text data is the only type currently supported for clipboard operations.

In Java 1.2, StringSelection supported two flavors, both of which are represented by constants
defined in DataFlavor: stringFlavor and plainTextFlavor. While stringFlavor is used to transfer
serialized String instances between Java programs, plainTextFlavor was created for text transfers between
Java and non-Java applications. However, because of problems in the design and implementation of
StringSelection, plainTextFlavor was deprecated in Java 1.3, so you should avoid using it.

CHAPTER 9 ■ ADDING CUT-AND-PASTE FUNCTIONALITY

397

Writing Arbitrary Binary Data
To store binary data in the clipboard, you must define a DataFlavor that represents the MIME type
associated with the data and that has a representation class of InputStream. A Transferable that supports
the flavor should provide an InputStream that returns a stream of bytes in the appropriate format for the
MIME type.

Normally when you write binary data to the clipboard, it will be necessary to write it using a format that
one or more other applications are able to interpret. In some cases, you can do this through a codec, which
is software that performs data conversions between two or more formats. For example, Sun provides a codec
with the Java 2D API that allows you to convert data representing a JPEG image to and from an instance of
Java’s BufferedImage class.

I’ll now show how to modify the ImageSelection class so that it supports an additional DataFlavor
representing the image/jpeg MIME type (see Listing 9-3). When that flavor is requested on a call to
getTransferData(), an InputStream is returned that can be used to read a stream of bytes in JPEG format.

Listing 9-3. Enhancing ImageSelection

import java.awt.*;
import java.awt.datatransfer.*;
import java.awt.image.*;
import java.io.*;
import com.sun.image.codec.jpeg.*;

public class ImageSelection implements Transferable, ClipboardOwner{

 private ImageData imageData;

 public final static DataFlavor IMAGE_DATA_FLAVOR =
 new DataFlavor (ImageData.class, "Image Data");

 public final static DataFlavor JPEG_MIME_FLAVOR =
 new DataFlavor ("image/jpeg", "JPEG Image Data");

 private final static DataFlavor [] flavors = {
 JPEG_MIME_FLAVOR, IMAGE_DATA_FLAVOR
 };

 public ImageSelection(ImageData data) {
 imageData = data;
 }

 public Object getTransferData(DataFlavor flavor)
 throws java.io.IOException, UnsupportedFlavorException {
 if (flavor.equals(IMAGE_DATA_FLAVOR)) {
 return imageData;
 } else if (flavor.equals(JPEG_MIME_FLAVOR)) {
 return getJPEGInputStream();
 }
 throw new UnsupportedFlavorException(flavor);
 }

CHAPTER 9 ■ ADDING CUT-AND-PASTE FUNCTIONALITY

398

 private InputStream getJPEGInputStream() throws IOException {
 int width = imageData.getWidth();
 int height = imageData.getHeight();
 MemoryImageSource mis = new MemoryImageSource(width, height,
 imageData.getPixelData(), 0, width);
 BufferedImage bi =
 new BufferedImage(width, height, BufferedImage.TYPE_3BYTE_BGR);
 Graphics2D g2d = bi.createGraphics();
 Image img = Toolkit.getDefaultToolkit().createImage(mis);
 g2d.drawImage(img, 0, 0, null);
 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 JPEGImageEncoder jie = JPEGCodec.createJPEGEncoder(baos);
 jie.encode(bi);
 baos.close();
 return new ByteArrayInputStream(baos.toByteArray());
 }

 public DataFlavor [] getTransferDataFlavors() {
 return flavors;
 }

 public boolean isDataFlavorSupported(DataFlavor flavor) {
 for (int i = 0; i < flavors.length; i++) {
 if (flavor.equals(flavors[i])) {
 return true;
 }
 }
 return false;
 }

 public void lostOwnership(Clipboard cb, Transferable t) {}

}

Note that, in this example, the binary data corresponds to a specific MIME format, that of a JPEG image.
If you want to write binary data that doesn’t correspond to an existing MIME type, you can create a custom
type (e.g., application/x-mybinary) or simply use the generic application/octet-stream type.

Once the problems with Java’s data transfer API have been resolved, you’ll be able to transfer data
between Java and non-Java applications by storing the data as a stream of binary data as I did in this
example. In the meantime, however, you can test the functionality added to ImageSelection by adding
a pop-up menu item to ImageEditor. That menu item should allow you to retrieve the contents of the
clipboard as a stream of JPEG data and save the data to a disk file. In other words, you can cut or copy a
portion of an image and save the selection to disk as a new JPEG file by making the following changes. To do
this, first define an AbstractAction that corresponds to the new menu item.

private JPopupMenu popupMenu;
private AbstractAction cutAction;
private AbstractAction copyAction;
private AbstractAction pasteAction;
private AbstractAction saveAction;

CHAPTER 9 ■ ADDING CUT-AND-PASTE FUNCTIONALITY

399

Next, add a new menu item to the pop-up menu.

private void buildPopupMenu() {
 popupMenu = new JPopupMenu();
 copyAction = new AbstractAction("Copy") {
 public void actionPerformed(ActionEvent event) {
 performCopy();
 }
 };
 popupMenu.add(copyAction);
 cutAction = new AbstractAction("Cut") {
 public void actionPerformed(ActionEvent event) {
 performCut();
 }
 };
 popupMenu.add(cutAction);
 pasteAction = new AbstractAction("Paste") {
 public void actionPerformed(ActionEvent event) {
 performPaste();
 }
 };
 popupMenu.add(pasteAction);
 saveAction = new AbstractAction("Save") {
 public void actionPerformed(ActionEvent event) {
 performSave();
 }
 };
 popupMenu.add(saveAction);

}

Finally, implement the method that will perform the save operation, and update the code that sets the
state of the menu items so the Save menu item is enabled only when there’s data in the clipboard.

private void displayPopupMenu(Point p) {
 Clipboard cb = getToolkit().getSystemClipboard();
 Transferable t = cb.getContents(this);
 boolean isSelected = !(start.equals(finish));
 cutAction.setEnabled(isSelected);
 copyAction.setEnabled(isSelected);
 boolean canPaste = ((t != null) &&
 (t.isDataFlavorSupported(
 ImageSelection.IMAGE_DATA_FLAVOR)));
 pasteAction.setEnabled(canPaste);
 saveAction.setEnabled(canPaste);
 popupMenu.show(this, p.x, p.y);
}

CHAPTER 9 ■ ADDING CUT-AND-PASTE FUNCTIONALITY

400

private void performSave() {
 JFileChooser jfc = new JFileChooser();
 jfc.showSaveDialog(this);
 java.io.File f = jfc.getSelectedFile();
 Clipboard cb = getToolkit().getSystemClipboard();
 Transferable t = cb.getContents(this);
 DataFlavor flavor = ImageSelection.JPEG_MIME_FLAVOR;
 if ((!(f == null)) && (!(t == null))
 && (t.isDataFlavorSupported(flavor))) {
 try {
 java.io.FileOutputStream fos =
 new java.io.FileOutputStream(f);
 java.io.InputStream is =
 (java.io.InputStream) (t.getTransferData(flavor));
 int value = is.read();
 while (value != -1) {
 fos.write((byte) value);
 value = is.read();
 }
 fos.close();
 is.close();
 } catch (Exception e) {}
 }
}

Add a new menu item to the pop-up menu.

private void displayPopupMenu(Point p) {
 JPopupMenu jpm = new JPopupMenu();
 jpm.add(new AbstractAction("Copy") {
 public void actionPerformed(ActionEvent event) {
 performCopy();
 }
 });
 jpm.add(new AbstractAction("Cut") {
 public void actionPerformed(ActionEvent event) {
 performCut();
 }
 });
 jpm.add(new AbstractAction("Paste") {
 public void actionPerformed(ActionEvent event) {
 performPaste();
 }
 });
 jpm.add(new AbstractAction("Save") {
 public void actionPerformed(ActionEvent event) {
 performSave();
 }
 });
 jpm.show(this, p.x, p.y);
}

CHAPTER 9 ■ ADDING CUT-AND-PASTE FUNCTIONALITY

401

And add the code to actually perform the operation.

private void performSave() {
 JFileChooser jfc = new JFileChooser();
 jfc.showSaveDialog(this);
 java.io.File f = jfc.getSelectedFile();
 Clipboard cb = getToolkit().getSystemClipboard();
 Transferable t = cb.getContents(this);
 DataFlavor flavor = ImageSelection.JPEG_MIME_FLAVOR;
 if ((!(f == null)) && (!(t == null))
 && (t.isDataFlavorSupported(flavor))) {
 try {
 java.io.FileOutputStream fos =
 new java.io.FileOutputStream(f);
 java.io.InputStream is =
 (java.io.InputStream) (t.getTransferData(flavor));
 int value = is.read();
 while (value != -1) {
 fos.write((byte) value);
 value = is.read();
 }
 fos.close();
 is.close();
 } catch (Exception e) {}
 }
}

Summary
In this chapter, you examined Java’s cut-and-paste capabilities and learned how to use them in conjunction
with the clipboard.

403

CHAPTER 10

Adding Drag-and-Drop
Functionality

In a drag-and-drop operation, data is moved (dragged) from one location and stored (dropped) in another.
For example, most operating systems provide a utility similar to Windows Explorer, which allows you to
perform drag-and-drop operations on a list of available files. Drag-and-drop functionality provides an
intuitive visual representation of moving or copying data from one location to another and is an important
part of most modern operating systems. Many applications use it in a variety of ways, so it’s helpful to be
familiar with the functionality that’s available in Java.

The standard Swing components come with drag-and-drop support already built in, and, in most cases,
it’s completely functional and behaves in a way that’s intuitive and consistent with what you’d expect. As
we’ll see in the section “TransferHandler,” though, the nature of some components makes it impossible
to define and implement behavior that’s appropriate for all or even most applications. As a result, those
few Swing components where this is the case—specifically, JList, JTable, and JTree—provide only partial
support for drag-and-drop, but you have the option of extending that support and tailoring the additional
functionality to the needs of your application. The majority of this chapter describes how to provide
drag-and-drop support for a custom component that initially doesn’t support it at all, and an understanding
of how to implement that support is helpful if you do need to provide extended capabilities for one of the
three components just mentioned.

Most of the classes associated with drag-and-drop functionality are defined in the java.awt.dnd
package, but some parts of the data transfer API defined in java.awt.datatransfer are also used. The
classes defined in java.awt.dnd may seem complex and confusing, but the truth is that it’s not difficult to
add drag-and-drop capabilities to your applications. In fact, once the data to be dragged is wrapped in a
Transferable, you usually won’t have much more code to write.

The Transferable interface in the java.awt.datatransfer package serves the same purpose in a
drag-and-drop operation that it does when used to cut and paste. Specifically, a Transferable encapsulates
the data that’s dragged and provides DataFlavor instances that identify the formats in which the data can be
retrieved.

In this chapter, you’ll examine the following issues:

The fundamental concepts associated with drag-and-drop operations•

How to add drag support to components so they can be used to initiate drag-and-•
drop operations

How to add drop support to components so they can be used to terminate drag-and-•
drop operations

CHAPTER 10 ■ ADDING DRAG-AND-DROP FUNCTIONALITY

404

Issues related to different types of transfers (e.g., those between Java and native •
applications, as opposed to transferring within a single Java Virtual Machine, or JVM)

How to implement autoscroll support for drop targets contained within a scroll pane•

Issues related to transferring text data between Java and native applications•

Introducing Drag-and-Drop Operation Types
Just as cut, copy, and paste functions are collectively referred to as cut and paste, the phrase drag and
drop refers to several different operations. In a move operation, the data that’s dragged is removed from
its original location and stored in some other location. A copy operation is similar to a move, except that
the original data remains intact and a copy of it is created and stored in the drop location. Finally, a link or
reference operation results in the creation of a representation of or a reference to the original data.
For example, the terminology varies across platforms, but most operating systems allow you to create file
shortcuts or aliases.

The way in which drag-and-drop operations start and end varies from one operating system to the
next, because each platform defines its own set of gestures for those purposes. Those gestures are usually a
combination of mouse button and key presses, and the buttons and keys involved are referred to as modifiers.

For example, on Windows, you can initiate a move operation by clicking and then dragging the cursor
(in other words, moving the mouse with the left button still pressed). You initiate a copy operation by
performing the same steps while also holding down the Ctrl key. Finally, a link operation requires you to
press and hold down both the Shift and Ctrl keys while dragging the mouse. In each case, the object that’s
dragged is usually either the component that was underneath the cursor when the left button was initially
pressed or some data item that the component represents.

When the appropriate drag gestures have been performed, the drag operation is initiated by an object
called a drag source, and the drop is handled by an object called a drop target. You’ll write code to control
the behavior of the drag source and drop target, and that code can take any action that’s appropriate for the
application. In some cases, your code may choose to perform an operation (copy, move, or link) other than
the one associated with the user’s gestures. For example, if a Windows user requests a copy operation by
pressing the Ctrl key while dragging, your application might choose to perform a move instead if the copy
operation isn’t appropriate in the context of that application.

The individual drag-and-drop operations (and some combinations) are represented by int values
defined in the DnDConstants class. Specifically, those constants are as follows:

• ACTION_MOVE

• ACTION_COPY

• ACTION_REFERENCE

• ACTION_LINK

• ACTION_COPY_OR_MOVE

Reference and link are synonyms for the same operation, so their associated constants are assigned
the same value. The ACTION_COPY_OR_MOVE constant is provided as a convenience since it represents a
commonly used combination.

CHAPTER 10 ■ ADDING DRAG-AND-DROP FUNCTIONALITY

405

Using the Predefined Cursors
During drag-and-drop operations, it’s common practice to provide visual feedback to the user concerning
the state of the operation, and one way you can do this is through the cursor that’s displayed. A pair of
cursors exists for each of the three operation types, and those cursors are accessible through constants
defined in DragSource. Each pair includes a drop cursor that’s normally displayed when the cursor is over
a component that can accept a drop and a no-drop cursor when the cursor is over components that can’t
accept a drop (see Table 10-1).

Table 10-1. Cursor Constants Defined in DragSource

Action Drop Cursor No-Drop Cursor

Move DefaultMoveDrop DefaultMoveNoDrop

Copy DefaultCopyDrop DefaultCopyNoDrop

Link DefaultLinkDrop DefaultLinkNoDrop

You won’t normally find it necessary to use these constants, because in most cases, Java’s drag-and-
drop facility will change the cursor for you automatically to reflect the status of the drag-and-drop operation.
In general, the only time you need to select one of these cursors is when initiating a drag event, in which case
you’ll specify the initial cursor that should be displayed.

Performing File Selection Drops from Native Applications
In Chapter 9, you saw that each DataFlavor contains a MIME type used to identify the specific data format
the flavor represents. However, each operating system defines its own proprietary data types, and to transfer
data between a Java and native application, a DataFlavor’s MIME type must be mapped to an equivalent
native type. For example, to transfer text information between Java and native Windows applications, Java
automatically converts a StringSelection in the clipboard to the CF_TEXT type, and vice versa.

While text information is the type of data most commonly involved in cut-and-paste operations, file
selections represent the most frequently used data type in drag-and-drop operations.

In the same way that Java provides an automatic conversion of clipboard text data, it also performs
a translation that allows you to drag and drop file selections between Java and native applications. Those
selections are represented by a Transferable that supports a DataFlavor with a MIME type of application/
x-java-file-list and a representation class of java.util.List. The List object returned by this type of
Transferable contains a collection of java.io.File objects that identify the files selected. If you drop files
from a native application onto a Java program, Java automatically creates an instance of java.util.List
containing File objects and wraps that list in a Transferable.

Adding Drop Support
Although it might seem more logical to begin with support for dragging, we’ll first cover how to handle drops
in Java. Drop support is somewhat easier to implement, and this approach provides a good opportunity to
illustrate how Java can accept data that’s dropped from a native application, such as Windows Explorer.

To demonstrate how to implement drop support we’ll show how to create a subclass of JPanel
called ImageViewer that accepts image file selection drops (see Figure 10-1). For each file that’s dropped,
ImageViewer creates an ImageIcon and displays the icon in a JLabel.

http://dx.doi.org/10.1007/9781484206423_9

CHAPTER 10 ■ ADDING DRAG-AND-DROP FUNCTIONALITY

406

Listing 10-1 represents the initial implementation of ImageViewer. The getLabelFromFile() method
is passed an instance of File and attempts to use that file to create and return a JLabel. Since you
want to be able to add JLabel instances to any point in the container, ImageViewer doesn’t use a layout
manager. Therefore, it’s necessary to explicitly set the size and position of each component added, and
addNewComponent() provides that.

Listing 10-1. ImageViewer

import java.awt.*;
import java.awt.datatransfer.*;
import java.awt.dnd.*;
import java.io.*;
import javax.swing.*;

public class ImageViewer extends JPanel {

 public static void main(String[] args) {
 JFrame f = new JFrame("ImageViewer");
 f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 f.setContentPane(new ImageViewer());
 f.setSize(400, 300);
 f.setVisible(true);
 }

 public ImageViewer() {
 super();
 setLayout(null);
 }

 private JLabel getLabelFromFile(File f) {
 ImageIcon icon = new ImageIcon(f.getAbsolutePath());
 JLabel label = new JLabel(icon);
 label.setText(f.getName());

Figure 10-1. The ImageViewer application

CHAPTER 10 ■ ADDING DRAG-AND-DROP FUNCTIONALITY

407

 label.setHorizontalTextPosition(JLabel.CENTER);
 label.setVerticalTextPosition(JLabel.BOTTOM);
 return label;
 }

 private void addNewComponent(Component comp, Point location) {
 comp.setLocation(location);
 comp.setSize(comp.getPreferredSize());
 add(comp);
 repaint();
 }

}

With the basic functionality implemented, you can begin to add drop support to the custom
component, and the first step in doing so is to associate it with a drop target.

DropTarget

Before you can perform drops on a Component, you must create an instance of DropTarget and associate it
with the component, which can be done in several different ways. However, the easiest approach in most
cases is to provide a reference to the component when you create the DropTarget. Once it has been created,
you can enable and disable a DropTarget by calling its setActive() method, and its state can be queried
using isActive().

The DropTarget receives notification of events related to the drag-and-drop operation and provides
support for a single listener that’s also notified of those events. To handle drops, you must define a
DropTargetListener implementation and associate it with a DropTarget just as you did for the drop
component.

DropTargetListener

A DropTargetListener has two primary responsibilities: providing drag-under effects during a drag-and-
drop operation and handling the recipient’s side of a drop when it occurs. Drag-under effects are changes
made to the drop component’s appearance that provide feedback to the user during the drag operation.
For example, if you create a DropTargetListener for use with a JTable, you might implement code that
highlights the cell underneath the cursor as it moves across the table. We’ll see an example of this later in the
chapter, but for now, drag-under effects are an advanced topic and in practice are often not needed.

In addition to the drag-under effects, a DropTargetListener is responsible for handling the drop
operation, which typically involves storing a copy of or a reference to the data that’s dropped. How and
where the data is stored is application-specific and usually depends on the operation type (move, copy,
or link), the type of data dropped, and the type of component onto which it’s dropped. In the case of
ImageViewer, the DropTargetListener uses the file selections to create JLabel instances, and the labels are
added to the panel at the drop location.

ImageViewer contains an inner class, shown in Listing 10-2, which provides an implementation of
DropTargetListener. We’ll cover each of the five methods defined in DropTargetListener in detail in this
chapter, but in many cases, you’ll need to write code only for drop(), which (as its name implies) is called
when a drop occurs. To use this inner class, insert it into the ImageViewer class after the addNewComponent()
method.

CHAPTER 10 ■ ADDING DRAG-AND-DROP FUNCTIONALITY

408

Listing 10-2. Providing an Implementation of DropTargetListener

class MyDropListener implements DropTargetListener {

 public void dragEnter(DropTargetDragEvent event) {
 }

 public void dragExit(DropTargetEvent event) {
 }

 public void dragOver(DropTargetDragEvent event) {
 }

 public void dropActionChanged(DropTargetDragEvent event) {
 }

 public void drop(DropTargetDropEvent event) {
 }

}

It’s now possible to create a DropTarget, which you’ll do using a constructor that’s passed a reference to
the drop component (in other words, the ImageViewer instance), the operations the target supports, and a
reference to a DropTargetListener.

public ImageViewer() {
 super();
 setLayout(null);
 DropTarget dt = new DropTarget(this,
 DnDConstants.ACTION_COPY_OR_MOVE,
 new MyDropListener());
}

Events Passed to DropTargetListener Methods

Now that you’ve created the DropTarget, it’s necessary to complete the implementation of the methods
within MyDropListener. To better understand how those methods are used, you need to examine the event
objects that are passed to them.

DropTargetEvent

This is the superclass of the DropTargetDragEvent and DropTargetDropEvent classes discussed next, and
an instance of this class is passed to dragExit(). However, DropTargetEvent doesn’t define any methods or
properties you’ll normally use.

DropTargetDragEvent

An instance of DropTargetDragEvent is passed to the dragEnter(), dragOver(), and dropActionChanged()
methods. DropTargetDragEvent allows those methods to identify the type of data being dragged, as well as
the specific location of the cursor and other information regarding the current operation. In addition, this
event object provides methods that allow the drag operation to be accepted or rejected, and I discuss the
reasons for doing so and consequences of those actions later.

CHAPTER 10 ■ ADDING DRAG-AND-DROP FUNCTIONALITY

409

getCurrentDataFlavors(), getCurrentDataFlavorsAsList(), isDataFlavorSupported()

These methods allow you to determine which DataFlavor(s) can be used to transfer data if
a drop occurs. While getCurrentDataFlavors() returns an array of DataFlavor instances,
getCurrentDataFlavorsAsList() returns a java.util.List containing the valid flavors. When
you need to determine whether the data can be retrieved using a specific flavor, you should use
isDataFlavorSupported(). That method returns a boolean value of true if the flavor you pass to it as a
parameter is supported.

These methods are often used by a DropTargetListener to determine whether the data being dragged
can be represented in a form that the drop target can process. If not, it’s common for the drop target to reject
the drag operation, the implications of which are discussed later.

getLocation()

You can use this method to determine where the cursor was located when the event occurred. An instance
of java.awt.Point is returned that identifies the cursor’s position within the component across which it’s
being dragged, and the position is relative to the component’s origin (coordinates 0, 0).

This method is most commonly used to provide drag-under effects. For example, if data is dragged
across a JTable, the drop target may use the cursor’s location to determine which table cell is underneath
the cursor and select or highlight that cell appropriately.

getSourceActions()

A drop target may need to determine what operations are supported by the drag source, and this method
makes it possible to obtain that information.

acceptDrag()

This method indicates that the drop target is prepared to accept a drop, and you should specify the operation
type that the target will perform if a drop does occur. That type should be one of the types supported by the
drag source, which can be identified by calling getSourceActions().

You’re not required to call this method within the DropTargetListener methods. However, you should
call acceptDrag() if your drop target wants to perform an operation other than the one selected by the user.

rejectDrag()

A call to rejectDrag() indicates that your drop target isn’t prepared to accept a drop, and the reasons for
that can vary from one application to the next. A drag is often rejected when the type of data being dragged
can’t be processed by the drop target or when the cursor is over an area of the component that can’t accept
drops. For example, ImageViewer rejects drags when the data being dragged can’t be retrieved using the
javaFileListFlavor data flavor.

getDropAction()

This method identifies the operation type that the user currently has selected and returns an int value that
corresponds to one of the action constants defined in DragSource: ACTION_MOVE, ACTION_COPY, or ACTION_
LINK/ACTION_REFERENCE.

If your drop target can support more than one type of operation, it normally should use this method to
select the operation that the user requested.

CHAPTER 10 ■ ADDING DRAG-AND-DROP FUNCTIONALITY

410

DropTargetDropEvent

An instance of DropTargetDropEvent is passed to the drop() method when a drop occurs. Many of the
methods in this class are identical in name and function to those in DropTargetDragEvent, so I’ll discuss
only those that are unique to DropTargetDropEvent.

acceptDrop()

This method is essentially the same as acceptDrag() and indicates to the caller which operation is to be
performed on the data that’s transferred. This method should be called before the data is accessed using
getTransferable(), or that call may fail.

rejectDrop()

You should call this method if your drop target can’t perform the requested operation.

getTransferable()

This method can be called to retrieve a Transferable that encapsulates the data that was dropped. Note that
it should be called only after your drop target has invoked acceptDrop().

isLocalTransfer()

Use this method to find out if the drag-and-drop operation has taken place within a single JVM (in other
words, when this is a local transfer). It’s sometimes important to distinguish local from remote transfers, and
I describe the reasons for doing so in detail later in this chapter.

dropComplete()

Once your drop processing is finished, you should call the dropComplete() method to signal the completion
of the drop operation. A parameter value of true indicates that the transfer was successful; false indicates it
wasn’t.

Drag Sessions

Several of the methods in DropTargetListener are called as a result of cursor movement, and to accurately
determine when they’re invoked, it’s necessary to identify what we’ll call a drag session. A drag session
begins when the cursor enters the component’s display area and ends when it exits the display area or
when a drop occurs. In most cases, only one drag session occurs per component in a single drag-and-drop
operation. However, the user may choose to repeatedly move the cursor over a component and then away
from it for some reason. In general, you won’t need to concern yourself with drag sessions, but the concept is
relevant to some of the DropTargetListener behavior described next.

Rejecting Drags and Drops

When your drop target wants to indicate that it won’t accept a drop, it can call rejectDrag() from within the
dragEnter(), dragOver(), and dropActionChanged() methods. When a drag is rejected, the cursor changes
to a no-drop cursor, and if a drop occurs during that drag session, it’s ignored (in other words, the drop()
method isn’t called).

CHAPTER 10 ■ ADDING DRAG-AND-DROP FUNCTIONALITY

411

Note that a drag rejection is effective only for the current drag session, and if the cursor exits and
reenters the component’s display area, any previous rejection is effectively canceled. This isn’t a problem
in most cases, because the same conditions that caused your code to reject the drag in one drag session
normally will still exist in another. However, you should realize that rejecting a drag doesn’t permanently
prevent the drop from completing.

It’s also important to know that rejecting a drag doesn’t prevent further DropTargetListener
notifications. For example, if you reject a drag operation from the dragEnter() method, dragOver() will still
be called as the cursor moves over the component, and dragExit() will be called when the cursor exits the
component area. As you’ll see later, it’s even possible to accept a drag after you’ve rejected a previous one in
the same drag session.

Given the choice between rejecting a drop request or rejecting a drag operation and preventing the drop
request from occurring, you may be wondering which you should choose. In most cases, it’s appropriate to
reject the drag operation, because you’ll usually know at that time (in other words, before the drop actually
occurs) whether you intend to allow the drop to take place. However, sometimes the state of the drop target
may change while the drag is taking place, which in turn may affect its ability to accept the drop. In other
words, if you can’t be certain whether a drop target will accept the drop until it actually occurs, you should
accept the drag requests and reject the drop if necessary.

DropTargetListener Methods

Now that you’ve examined the event objects that are passed to the DropTargetListener methods, you’ll see
when those methods are called and how you should use them.

dragEnter()

During a drag-and-drop operation, this method is called when the cursor enters the display area of the
component associated with the DropTarget. You may want to use this method to initiate drag-under effects
for the component, or you may choose to accept or reject the drag operation. ImageViewer uses dragEnter()
to reject the drag operation when the data being dragged isn’t a list of files.

public void dragEnter(DropTargetDragEvent event) {
 if (event.isDataFlavorSupported(
 DataFlavor.javaFileListFlavor)) {
 return;
 }
 event.rejectDrag();
}

dragOver()

This method is passed an instance of DropTargetDragEvent and is called when the cursor moves after it has
previously entered the display area of the drop component. If you’re providing drag-under effects, you may
need to update them each time dragOver() is called. However, if you’re not providing drag-under effects,
you won’t need to implement this method, which is the case with the ImageViewer application.

dragExit()

An instance of DropTargetEvent is passed to this method, which is called when the cursor exits the display
area of the drop component. If you’re providing drag-under effects, you normally should discontinue them
when dragExit() is invoked. As with dragOver(), you won’t normally implement this method if you’re not
providing drag-under support.

CHAPTER 10 ■ ADDING DRAG-AND-DROP FUNCTIONALITY

412

drop()

This method is called when a drop occurs, and it’s responsible for accepting or rejecting the drop and for
processing the dropped data. When a drop takes place over an instance of ImageViewer, for example, the file
selections that were dropped must be converted into JLabel instances and added to the container, as shown
in Listing 10-3.

Listing 10-3. Handling Drop Operations

import java.awt.*;
import java.awt.datatransfer.*;
import java.awt.dnd.*;
import java.io.*;
import javax.swing.*;

public class ImageViewer extends JPanel {

 public static void main(String[] args) {
 JFrame f = new JFrame("ImageViewer");
 f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 f.setContentPane(new ImageViewer());
 f.setSize(400, 300);
 f.setVisible(true);
 }

 public ImageViewer() {
 super();
 setLayout(null);
 DropTarget dt = new DropTarget(this,
 DnDConstants.ACTION_COPY_OR_MOVE,
 new MyDropListener());
 }

 private JLabel getLabelFromFile(File f) {
 ImageIcon icon = new ImageIcon(f.getAbsolutePath());
 JLabel label = new JLabel(icon);
 label.setText(f.getName());
 label.setHorizontalTextPosition(JLabel.CENTER);
 label.setVerticalTextPosition(JLabel.BOTTOM);
 return label;
 }

 private void addNewComponent(Component comp, Point location) {
 comp.setLocation(location);
 comp.setSize(comp.getPreferredSize());
 add(comp);
 repaint();
 }

CHAPTER 10 ■ ADDING DRAG-AND-DROP FUNCTIONALITY

413

 class MyDropListener implements DropTargetListener {

 public void dragEnter(DropTargetDragEvent event) {
 if (event.isDataFlavorSupported(
 DataFlavor.javaFileListFlavor)) {
 return;
 }
 event.rejectDrag();
 }

 public void dragExit(DropTargetEvent event) {
 }

 public void dragOver(DropTargetDragEvent event) {
 }

 public void dropActionChanged(DropTargetDragEvent event) {
 }

 public void drop(DropTargetDropEvent event) {
 if (event.isDataFlavorSupported(
 DataFlavor.javaFileListFlavor)) try {
 event.acceptDrop(DnDConstants.ACTION_COPY);
 Transferable t = event.getTransferable();
 java.util.List list = (java.util.List)(
 t.getTransferData(
 DataFlavor.javaFileListFlavor));
 java.util.Iterator i = list.iterator();
 while (i.hasNext()) {
 JLabel label = getLabelFromFile(
 (File)(i.next()));
 addNewComponent(label, event.getLocation());
 }
 event.dropComplete(true);
 } catch (Exception e) {
 event.dropComplete(false);
 }
 }

 }

}

The first action this drop() implementation takes is to determine whether javaFileListFlavor can
be used to retrieve the data. That test isn’t really needed because a similar test was already performed in
dragEnter(), and drop() won’t be called if the drag was rejected. However, I’ll leave the code in place
because I’ll later show how to modify ImageViewer to accept an additional DataFlavor. When you make
that change, the drop() method must distinguish between the two flavors so that it can handle each of them
differently.

CHAPTER 10 ■ ADDING DRAG-AND-DROP FUNCTIONALITY

414

After the data type has been verified, acceptDrop() is called and is passed the type of operation to be
performed. As you may recall, the drop target is able to support both move and copy (ACTION_COPY_OR_MOVE)
operations, but a single operation should be specified when calling acceptDrop(). In many cases, the
copy and move operations are handled the same way by a drop target, but it’s still important to select the
appropriate operation. That’s because the drag source is notified of which operation was selected, and the
drag source processing often varies based on that selection.

After accepting the drop operation, the method shown in Listing 10-3 retrieves the Transferable data,
extracts the file list from it, creates a JLabel for each file, and adds the labels to the container. Once the data
has been successfully retrieved and processed, dropComplete() is called and is passed a parameter value of
true, indicating that the drop was successful.

In addition to identifying the type of operation accepted by the drop target, a drag source is also able to
determine whether the drop operation completed successfully. That information is needed so that the drag
source can take appropriate action based on the outcome of the drop. For example, if a move operation was
requested and the drop was successful, the drag source often must remove the dragged data from its original
location.

dropActionChanged()

Earlier you saw that the type of operation to perform is determined by the status of keyboard and mouse
modifier buttons. However, it’s possible for the user to change the selected drop action after a drag has been
initiated by changing the state of those modifiers. For example, if you begin a copy operation on Windows
and then release the Ctrl key while dragging the data, you’ve effectively changed the requested drop action.
When such a change does occur, this method is called to notify the DropTargetListener of the modification.
You’ll need to implement this method only if your application needs to take some action when the drop
action changes, which isn’t the case with ImageViewer.

Drop Enabling ImageViewer

You’ve now created all the code that’s necessary to allow ImageViewer to display image files that are dropped
on it. If you compile and run this application, you’ll be able to drop image file selections onto the window.
For example, once this application’s user interface appears, you should start Windows Explorer (or a similar
application) and use that application to drag GIF and JPEG files and drop them into the frame created by
ImageViewer, as shown in Figure 10-2.

CHAPTER 10 ■ ADDING DRAG-AND-DROP FUNCTIONALITY

415

Adding Drag Support
Now that ImageViewer is able to process file selection drops, we’ll see how to add drag support so that it’s
possible to drag and drop the JLabel objects that were created. Once that’s done, it will be possible to move
the labels around within a single ImageViewer and to move a label from one instance of ImageViewer to
another.

Defining a Transferable

Before data can be dragged, it must be wrapped in a Transferable implementation, just as you did in the
previous chapter for cut-and-paste operations. To support the Transferable implementation for JLabel
instances, you’ll first define a DataFlavor that describes the type of data encapsulated by the Transferable.

public class ImageViewer extends JPanel {

 public final static DataFlavor LABEL_FLAVOR =
 new DataFlavor(JLabel.class, "Label Instances");

Figure 10-2. Dragging an image file from a native window and dropping it onto the application to display it

CHAPTER 10 ■ ADDING DRAG-AND-DROP FUNCTIONALITY

416

The DataFlavor constructor used here allows you to create flavors that describe serialized Java objects,
and this data flavor’s MIME type is set to application/x-java-serialized-object accordingly. JLabel
instances are serializable because Component (which JLabel inherits from) implements the Serializable
interface.

With the DataFlavor defined, you can create a Transferable implementation, which in this case is
defined as an inner class of ImageViewer named LabelSelection, as shown in Listing 10-4.

Listing 10-4. LabelSelection

class LabelSelection implements Transferable {

 private DataFlavor[] flavors = {
 LABEL_FLAVOR
 };

 private JLabel label;

 public LabelSelection(JLabel lbl) {
 label = lbl;
 }

 public DataFlavor[] getTransferDataFlavors() {
 return flavors;
 }

 public boolean isDataFlavorSupported(DataFlavor flavor) {
 for (int i = 0; i < flavors.length; i++) {
 if (flavors[i].equals(flavor)) {
 return true;
 }
 }
 return false;
 }

 public Object getTransferData(DataFlavor flavor)
 throws UnsupportedFlavorException, IOException {
 if (flavor.equals(LABEL_FLAVOR)) {
 return label;
 }
 throw new UnsupportedFlavorException(flavor);
 }

}

Now that you’ve created a Transferable that encapsulates a JLabel, you can write the code that
initiates a drag operation.

CHAPTER 10 ■ ADDING DRAG-AND-DROP FUNCTIONALITY

417

Obtaining a Drag Source

Earlier you saw that an instance of DropTarget is created for each component that should be able to receive
drops. In contrast, an application normally has only one drag source. That’s because although many drop
targets can exist simultaneously, only one drag operation can be in progress at any given time since you have
only one mouse with which to control an operation.

As you might expect, a drag source in Java is represented by an instance of the DragSource class, and a
singleton instance of that class is accessible through the static getDefaultDragSource() method.

DragSource source = DragSource.getDefaultDragSource();

As you’ll see, DragSource and DropTarget have many similarities, and one of those similarities is that,
like DropTarget, a DragSource can support a listener.

In the case of ImageViewer, you want to be able to drag each JLabel that’s added to the container.
To accomplish this, you’ll first modify the addNewComponent() method so that the default drag source is
accessed each time a JLabel is added.

private void addNewComponent(Component comp, Point location) {
 DragSource source = DragSource.getDefaultDragSource();
 comp.setLocation(location);
 comp.setSize(comp.getPreferredSize());
 add(comp);
 repaint();
}

At this point, it may not be obvious what to do with the DragSource. No DragSource constructor
exists to which you can pass a reference to the label being added, and an addDragSourceListener()
method isn’t available. Instead, your application should register a listener indirectly by creating a
DragGestureRecognizer.

Drag Gesture Recognizers

The gestures used to initiate drag-and-drop operations can vary from one operating system to the next. For
example, a move operation is initiated on Windows by clicking and then dragging the cursor. However, other
operating systems may use different key/button combinations to initiate the same operation.

Ideally, a Java application should be able to recognize the gestures that are appropriate for the platform
on which it’s running, but at the same time, an application shouldn’t contain code that’s specific to any one
platform. DragGestureRecognizer allows you to satisfy both requirements by providing a level of abstraction
between your application and the recognition of gestures that should initiate a drag-and-drop operation.

Just as you create a DropTarget for each component that can accept drops, it’s necessary to create a
DragGestureRecognizer for each component that can be used to initiate a drag. The parameters passed
to the DragGestureRecognizer constructor are similar to those passed to a DropTarget: a Component
instance, the operations supported, and a listener. In this case, however, the listener is an implementation of
DragGestureListener.

private void addNewComponent(Component comp, Point location) {
 DragSource source = DragSource.getDefaultDragSource();
 source.createDefaultDragGestureRecognizer(comp,
 DnDConstants.ACTION_COPY_OR_MOVE,
 new MyGestureListener());

CHAPTER 10 ■ ADDING DRAG-AND-DROP FUNCTIONALITY

418

 comp.setLocation(location);
 comp.setSize(comp.getPreferredSize());
 add(comp);
 repaint();
}

class MyGestureListener implements DragGestureListener {

 public void dragGestureRecognized(DragGestureEvent event) {}

}

Although you can create your own DragGestureRecognizer class, you’ll rarely have a reason to
do so. Instead, you’ll normally obtain an instance of the default DragGestureRecognizer class that’s
provided by the singleton DragSource. When you do so, the DragGestureRecognizer registers itself as a
listener of the component’s events so that it can determine when a drag operation should be started. It
accomplishes this by monitoring the component events, and when it detects that the user has taken the
appropriate action(s) to begin dragging, it sends a notification to the DragGestureListener by calling its
dragGestureRecognized() method.

DragGestureListener

The DragGestureListener interface defines a single method that’s called when a DragGestureRecognizer
determines that a drag operation has been requested.

dragGestureRecognized()

This method is called when a DragGestureRecognizer determines that the user has requested
a drag operation using the standard gestures for the current platform. It’s the responsibility of
dragGestureRecognized() to initiate the drag operation once it has determined that the drag should be
allowed to take place.

Many times, such as in the ImageViewer application, the drag can be allowed to start unconditionally
when dragGestureRecognized() is called. However, if the drag component is a more sophisticated control
such as a JTable or JTree, you may want to be more selective. In the case of a JTree, you might allow the
user to drag nodes around within the tree but allow only certain nodes to be dragged (e.g., only leaf nodes).
In that case, you might ignore gestures that occur over nodes that can’t be dragged, or you may display an
error message when the user attempts to drag an ineligible node.

DragGestureEvent

Among other things, an instance of DragGestureEvent describes the events that were detected by the
DragGestureRecognizer. A number of methods within DragGestureEvent allow you to access the
InputEvent objects that describe those events, although there’s almost never a reason for you to do so. In
fact, if you create code that’s dependent upon platform-specific event information, you’ll have defeated the
purpose of using a DragGestureRecognizer.

In many cases, the only method you’ll use in DragGestureEvent is startDrag(). However, some other
methods can be helpful, and I’ll cover each of them briefly.

CHAPTER 10 ■ ADDING DRAG-AND-DROP FUNCTIONALITY

419

getComponent()

This method returns a reference to the component associated with the DragGestureRecognizer. In the case
of ImageViewer, this is an instance of JLabel.

getDragAction()

The specific operation type requested (move, copy, or link/reference) is returned by this method. It’s
represented as an int value and will be one of the following: ACTION_MOVE, ACTION_COPY, or ACTION_LINK
(which is equivalent to ACTION_REFERENCE).

getDragOrigin()

You can use this method to determine where the cursor was located when the drag was started. It returns an
instance of java.awt.Point that identifies the cursor’s position relative to the component origin (in other
words, coordinates 0, 0).

getDragSource()

This returns a reference to the DragSource that created the DragGestureRecognizer.

getSourceAsDragGestureRecognizer()

This method returns a reference to the DragGestureRecognizer.

startDrag()

In many cases, startDrag() is the only method you’ll call from your dragGestureRecognized()
implementation, and as its name implies, it initiates the drag operation. The parameters you can specify
when calling startDrag() are as follows:

The initial • Cursor to display during the operation.

An image used to visually represent the data while it’s being dragged. Some •
operating systems (including Windows) don’t support drag images and will ignore
this parameter value. To determine whether drag image support is available, your
application can call the static isDragImageSupported() method in DragSource.

The location (represented by an instance of • java.awt.Point) relative to the cursor’s
“hotspot” where the drag image will be displayed if it’s supported.

A • Transferable that encapsulates the data to be moved, copied, or linked.

An instance of a • DragSourceListener implementation that’s used to track the
progress of the operation and to perform tasks that are the responsibility of the
initiator of the operation.

The startDrag() method has two implementations, one of which accepts all five of the parameters just
described. However, you’ll use the simpler version that allows the drag image and coordinate parameters to
be omitted. Listing 10-5 is a partial listing of the modified ImageViewer class.

CHAPTER 10 ■ ADDING DRAG-AND-DROP FUNCTIONALITY

420

Listing 10-5. Modified ImageViewer Class (Partial Listing)

public class ImageViewer extends JPanel {

 public final static DataFlavor LABEL_FLAVOR =
 new DataFlavor(JLabel.class, "Label Instances");

 private DragSourceListener sourceListener;
 private JLabel draggedComponent;

 public static void main(String[] args) {
 JFrame f = new JFrame("ImageViewer");
 f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 f.setContentPane(new ImageViewer());
 f.setSize(400, 300);
 f.setVisible(true);
 }

 public ImageViewer() {
 super();
 setLayout(null);
 DropTarget dt = new DropTarget(this,
 DnDConstants.ACTION_COPY_OR_MOVE,
 new MyDropListener());
 sourceListener = new MySourceListener();
 }

 private JLabel getLabelFromFile(File f) {
 ImageIcon icon = new ImageIcon(f.getAbsolutePath());
 JLabel label = new JLabel(icon);
 label.setText(f.getName());
 label.setHorizontalTextPosition(JLabel.CENTER);
 label.setVerticalTextPosition(JLabel.BOTTOM);
 return label;
 }

 private void addNewComponent(Component comp, Point location) {
 DragSource source = DragSource.getDefaultDragSource();
 source.createDefaultDragGestureRecognizer(comp,
 DnDConstants.ACTION_COPY_OR_MOVE,
 new MyGestureListener());
 comp.setLocation(location);
 comp.setSize(comp.getPreferredSize());
 add(comp);
 repaint();
 }

class MyGestureListener implements DragGestureListener {

 public void dragGestureRecognized(DragGestureEvent event) {
 Cursor cursor = null;
 draggedComponent = (JLabel)(event.getComponent());

CHAPTER 10 ■ ADDING DRAG-AND-DROP FUNCTIONALITY

421

 switch (event.getDragAction()) {
 case DnDConstants.ACTION_MOVE:
 cursor = DragSource.DefaultMoveDrop;
 break;
 case DnDConstants.ACTION_COPY:
 cursor = DragSource.DefaultCopyDrop;
 break;
 case DnDConstants.ACTION_LINK:
 cursor = DragSource.DefaultLinkDrop;
 break;
 }
 event.startDrag(cursor,
 new LabelSelection(draggedComponent),
 sourceListener);
 }
}

class MySourceListener implements DragSourceListener {

 public void dragEnter(DragSourceDragEvent event) {};
 public void dragExit(DragSourceEvent event) {};
 public void dragOver(DragSourceDragEvent event) {};
 public void dropActionChanged(DragSourceDragEvent event) {};
 public void dragDropEnd(DragSourceDropEvent event) {};
}

The dragGestureRecognized() method defined here selects an appropriate cursor based on the
operation type. The cursor types defined here have "no-drop" counterparts that you can use instead if you
want to indicate that a drop is not allowed to occur over the source component, which is often the case.

The second parameter passed to startDrag() in Listing 10-5 is an instance of the LabelSelection class
that was defined earlier. That class implements Transferable and maintains a reference to the JLabel that
will be dragged.

Finally, startDrag() is passed as a reference to a DragSourceListener that can be used to
track the drag operation. In most cases, it’s possible to use a single DragSourceListener for all the
DragGestureRecognizers since only a single drag-and-drop operation can be in progress at any
given time. Note that in this case we provided an implementation for each of the methods defined in
DragSourceListener. A better option—and one that we’ll use in the remainder of the chapter—is to extend
DragSourceAdapter and implement only the methods where some custom logic is needed. That adapter
class, like the others defined in Swing, is provided as a convenience and includes "stub" implementations
of each of the methods defined in the interface. Those implementations are essentially just empty methods
and the sole purpose of the adapter class is to allow you to create simpler implementations of the interface.

You’ve now done everything that’s necessary to begin the drag operation. At this point, all that’s left is
to handle the drop, and most of the code necessary to do so is similar to code you’ve already written. In fact,
simply add another block of code, shown in Listing 10-6, to the existing drop() method so that it can process
Transferable instances that encapsulate labels.

CHAPTER 10 ■ ADDING DRAG-AND-DROP FUNCTIONALITY

422

Listing 10-6. Handling the Drop Operation

public void drop(DropTargetDropEvent event) {
 if (event.isDataFlavorSupported(DataFlavor.javaFileListFlavor)) {
 try {
 event.acceptDrop(DnDConstants.ACTION_COPY);
 Transferable t = event.getTransferable();
 java.util.List list = (java.util.List)
 (t.getTransferData(DataFlavor.javaFileListFlavor));
 java.util.Iterator i = list.iterator();
 while (i.hasNext()) {
 JLabel label = getLabelFromFile((File)(i.next()));
 addNewComponent(label, event.getLocation());
 }
 event.dropComplete(true);
 } catch (Exception e) {
 event.dropComplete(false);
 }
 } else if (event.isDataFlavorSupported(LABEL_FLAVOR)) {
 try {
 event.acceptDrop(DnDConstants.ACTION_MOVE);
 Transferable t = event.getTransferable();
 JLabel label = (JLabel)(t.getTransferData(LABEL_FLAVOR));
 addNewComponent(label, event.getLocation());
 event.dropComplete(true);
 } catch (Exception e) {
 event.dropComplete(false);
 }
 }
}

As you may recall, the original implementation of MyDropListener’s dragEnter() method rejects drags
when the data can’t be accessed using javaFileListFlavor. However, since you now also provide support
for LABEL_FLAVOR, you should modify the dragEnter() method to allow that flavor as well.

class MyDropListener implements DropTargetListener {

 public void dragEnter(DropTargetDragEvent event) {
 if ((event.isDataFlavorSupported(
 DataFlavor.javaFileListFlavor)) ||
 (event.isDataFlavorSupported(
 LABEL_FLAVOR))) {
 return;
 }
 event.rejectDrag();
}

At this point, ImageViewer supports both drag-and-drop operations; however, if you execute the
application in its current state, you’ll see that something is still missing. Each time you drag and drop a
JLabel, the original remains intact, and a duplicate of it appears at the drop location, as shown in Figure 10-3.

CHAPTER 10 ■ ADDING DRAG-AND-DROP FUNCTIONALITY

423

This occurs despite the fact that the move operation is selected by the drop target. To understand why
this happens, it’s necessary to understand why the object serialization facility is used to transfer Java objects.

An object reference is meaningful only within the JVM in which it exists, so an object can’t really be
moved when data is dragged from one JVM instance and dropped onto another. However, it’s possible
to create a copy of an object by sending a representation of it to the target JVM, which can then create a
duplicate. That’s exactly what Java’s object serialization provides and is the reason why it’s necessary for
the drag source to delete the original JLabel. Serialized objects are never really moved but are copied, so to
simulate a move in a drag-and-drop operation, the original object must be deleted after its copy is created.

Later you’ll see how you can transfer an object reference when a drag-and-drop operation occurs within
a single JVM instance. However, any time you use a DataFlavor with a MIME type of application/x-java-
serialized-object, your drop target receives a copy of the original object instead of a reference to it.

We’ve now established why the drag source in ImageViewer must delete the original label after it’s
dropped, but you haven’t yet implemented any code to do so. To identify the appropriate place for that
logic, it’s necessary to be familiar with the DragSourceListener interface, its methods, and the event objects
passed to those methods.

DragSourceListener

The drag source has two primary responsibilities: removing the source data from its previous location in a
move operation and providing drag-over effects. As you may recall, drag-under effects are provided by the
drop target and are used to modify the appearance of the drop component. In contrast, drag-over effects are
related to the cursor’s appearance and are provided by the drag source. For example, when a drag occurs
over a component that can’t accept a drop, the drag source is responsible for displaying a no-drop cursor.

You won’t normally find it necessary to provide drag-over effects because in most cases the appropriate
cursor appears automatically. If you move the cursor over a component that’s not able to accept the drop
or if a drag is rejected, a no-drop cursor appears. However, sometimes you may want to customize the
appearance of the cursor so that it’s different from what’s displayed by default.

To change the cursor, you must obtain a reference to the DragSourceContext using the
getDragSourceContext() defined in DragSourceEvent and inherited by its subclasses. Once you have a
DragSourceContext reference, you can call the setCursor() method as follows:

public void dragOver(DragSourceDragEvent event) {
 // Normally some condition logic would go here
 DragSourceContext dsc = event.getDragSourceContext();
 dsc.setCursor(DragSource.DefaultCopyNoDrop);
}

Figure 10-3. Incomplete drag-and-drop implementation

CHAPTER 10 ■ ADDING DRAG-AND-DROP FUNCTIONALITY

424

Now that you’ve seen what the DragSourceListener interface is responsible for, you’ll examine each of
the methods it defines.

dragEnter()

This method is called when the cursor enters the display area of a drop component, and you may remember
that a method by this same name is defined in the DropTargetListener interface. When the cursor enters a
drop component’s display area, the drop target’s dragEnter() method is called first, followed by that of the
drag source. However, that latter call occurs only if the first drop target’s dragEnter() method doesn’t reject
the drag operation.

dragOver()

This method is called when the cursor is moved after it has previously entered the drop component’s display
area. A method by the same name is defined in DropTargetListener, and this one is called only after that
one has executed. In other words, dragOver() is first called for the drop target and then called for the drag
source. However, if the drop target rejects the operation, the drag source’s method isn’t called.

dragExit()

This method is called when the cursor exits the display area of a drop component.

dropActionChanged()

A call to dropActionChanged() indicates that the status of a modifier used to select the drop action (e.g., the
Ctrl or Shift key) has changed. A method with the same name as this one is defined in DropTargetListener,
and this one is called only after that one has executed. In other words, dropActionChanged() is first called
for the drop target and then called for the drag source. However, if the drop target rejects the operation, the
drag source’s method isn’t called.

dragDropEnd()

After a drop has occurred and the DropTargetListener’s drop() method is invoked, dragDropEnd() is called
to notify the drag source that the drop has completed. As you’ll see shortly, the event object passed to this
method allows it to determine the type of operation selected by the drop target and to determine the value
specified when the drop target called dropComplete(). In other words, this method can determine whether
the drop completed successfully.

Since this method is called once the drop has completed and because it allows you to determine the
final status of the operation, you should use dragDropEnd() to perform the DragSourceListener’s
cleanup-related tasks.

CHAPTER 10 ■ ADDING DRAG-AND-DROP FUNCTIONALITY

425

Event Objects Passed to DragSourceListener Methods

Now that you’ve learned about the methods defined by DragSourceListener, it’s appropriate to examine the
event objects passed to those methods.

DragSourceEvent

This is the superclass of the DragSourceDragEvent and DragSourceDropEvent classes defined next. However,
DragSourceEvent doesn’t provide any methods you’ll use.

DragSourceDragEvent

An instance of DragSourceDragEvent class is passed to the dragEnter(), dragOver(), and
dropActionChanged() methods. Unlike a drop target, a drag source can’t accept or reject a drag, so the
methods provided by this event object are purely informational.

getTargetActions()

This method identifies the intersection of the actions supported by the drag source and those supported by
the drop target. For example, suppose that the drag source supports move, copy, and link operations, but
the drop target supports only move and link. In that case, the value returned by getTargetActions() would
equal the combined values of the ACTION_MOVE and ACTION_LINK constants. In other words, this method
identifies the operations that both the drag source and the drop target support.

getUserAction()

The operation requested by the user is identified by this method and is based on the current state of the
modifier keys and buttons.

getDropAction()

This identifies the effective drop action, which is defined as the intersection of the target actions and the
current user action. If the user has selected an action that the drag source or the drop target doesn’t support,
this value will be equal to the ACTION_NONE constant defined in DnDConstants.

getGestureModifiers()

You can use this method to determine the state of the modifiers that determine the type of operation
requested. For example, this value identifies the state of the mouse buttons and the Shift, Alt, and Ctrl keys.
For more information on how to interpret the value returned by this method, see the modifier constants
defined in java.awt.event.InputEvent.

DragSourceDropEvent

An instance of this class is passed to dragDropEnd(), which is called after the drop has been processed by the
drop target.

getDropAction()

You can use this method to determine which operation the drop target selected. In other words, this
identifies the action specified when the DropTargetListener’s drop() method called acceptDrop().

CHAPTER 10 ■ ADDING DRAG-AND-DROP FUNCTIONALITY

426

You’ll normally use this value to determine what action your DragSourceListener should take. If a
move operation was selected, the data that was dropped usually must be removed from its original location
by the drag source.

getDropSuccess()

While the getDropAction() method identifies the action selected by the drop target, this method provides
an indication of the value specified by the target when dropComplete() was called. In other words, this
method returns a value of true if the drop completed successfully or false otherwise.

Drag Source Handling of Drop Completion

Now that we’ve reviewed the events and methods associated with DragSourceListener, it should be
obvious how to fix the problem with ImageViewer that was identified earlier. When a JLabel is moved, the
drag source is responsible for removing the label from its original location, and that should be done in the
dragDropEnd() method.

Listing 10-7 highlights the modifications to dragDropEnd(). Note that most of the cleanup performed
in that method depends upon both the successful completion of the drop and the type of operation selected
by the drop target. If the target selects an operation other than ACTION_MOVE, the original JLabel component
won’t be removed. Also note that as mentioned earlier this implementation extends DragSourceAdapter
instead of simply implementing DragSourceListener and creating an implementation for every one of its
methods.

Listing 10-7. Updating the dragDropEnd() Method

class MySourceListener extends DragSourceAdapter {

 public void dragDropEnd(DragSourceDropEvent event) {
 if ((event.getDropSuccess())
 && (event.getDropAction() == DnDConstants.ACTION_MOVE)) {
 remove(draggedComponent);
 repaint();
 }
 draggedComponent = null;
 }
}

Performing Local Transfers
When dragging and dropping Java objects, as ImageViewer now allows you to do, you’ll encounter
two categories of transfer operations. In a local transfer, the drag source and drop target (and the data
transferred) reside in a single JVM instance, while a remote transfer involves moving data from one JVM
instance to a different one.

The DataFlavor used by ImageViewer has a representation class of JLabel, and its MIME type defaults
to application/x-java-serialized-object. As mentioned earlier, using that MIME type always results
in the drop target receiving a copy of the original object instead of a reference to it, even in a local transfer.
However, it’s sometimes desirable in local transfers to pass a reference to the original data instead of a
copy. For example, you might want to do so if the data can’t be serialized or if you want to improve the
performance of local transfers, since serialization can be relatively slow. To illustrate how to pass object
references, you’ll now see how to modify ImageViewer to do so when a local transfer takes place.

CHAPTER 10 ■ ADDING DRAG-AND-DROP FUNCTIONALITY

427

Introducing Local Object Data Flavors

To perform reference transfers, you must define a DataFlavor that has a representation class corresponding
to the type of object to be transferred, which in this case is JLabel. In addition, the flavor’s MIME type
should be set to the javaJVMLocalObjectMimeType string constant defined in DataFlavor. However, it may
not be immediately obvious how to create a flavor that fulfills these two requirements.

You saw earlier that DataFlavor provides two types of constructors: one that allows you to specify the
flavor’s MIME type and another that allows you to identify its representation class. In this case, you want to
specify both items, but there doesn’t appear to be a constructor that allows you to do so. In addition, there
are no mutator methods for either the MIME type or the representation class, so it’s not possible to modify
those values after construction.

In fact, it’s possible to specify both values using the DataFlavor constructor that accepts a MIME type
String. You can do this by specifying the representation class as a parameter that’s appended to the MIME
type, as follows:

public class ImageViewer extends JPanel {

 public final static DataFlavor LABEL_FLAVOR =
 new DataFlavor(JLabel.class, "Label Instances");

 public final static DataFlavor LOCAL_LABEL_FLAVOR = new DataFlavor(
 DataFlavor.javaJVMLocalObjectMimeType +
 "; class=javax.swing.JLabel", "Local Label");

The LOCAL_LABEL_FLAVOR will be created with a MIME type of application/x-java-jvm-local-
objectref (the value stored in javaJVMLocalObjectMimeType), a representation class of JLabel, and a
human-readable name of “Local Label.”

Since this new DataFlavor will be used with LabelSelection to transfer JLabel references, it’s necessary
to update LabelSelection appropriately. In addition to adding LOCAL_LABEL_FLAVOR to the list of flavors
supported by LabelSelection, you must create a block of code in getTransferData(), as shown in Listing 10-8.

Listing 10-8. Supporting the Local Label Flavor

class LabelSelection implements Transferable {

 private DataFlavor[] flavors = {LABEL_FLAVOR, LOCAL_LABEL_FLAVOR};

 private JLabel label;

 public LabelSelection(JLabel lbl) {
 label = lbl;
 }

 public DataFlavor[] getTransferDataFlavors() {
 return flavors;
 }

 public boolean isDataFlavorSupported(DataFlavor flavor) {
 for (int i = 0; i < flavors.length; i++) {
 if (flavors[i].equals(flavor)) return true;
 }
 return false;
 }

CHAPTER 10 ■ ADDING DRAG-AND-DROP FUNCTIONALITY

428

 public Object getTransferData(DataFlavor flavor) throws
 UnsupportedFlavorException, IOException {
 if (flavor.equals(LABEL_FLAVOR)) {
 return label;
 }
 else if (flavor.equals(LOCAL_LABEL_FLAVOR)) {
 return label;
 }
 throw new UnsupportedFlavorException(flavor);
 }

}

It may seem strange that the code in getTransferData() is the same for LABEL_FLAVOR and LOCAL_
LABEL_FLAVOR. After all, LABEL_FLAVOR is used to retrieve a serialized copy of the object, while LOCAL_
LABEL_FLAVOR is intended to provide a reference to the original object. The reason that this code will work
as expected is that Java’s drag-and-drop facility treats the application/x-java-serialized-object MIME
type used by LABEL_FLAVOR as a special case. When data is retrieved using that type, the drag-and-drop
facility ensures that a serialized copy of the object is returned, even in a local transfer. In other words, if you
use application/x-java-serialized-object, you always get a copy of the data and never a reference to
the original when calling getTransferData(). In contrast, when other MIME types are used (e.g., LOCAL_
LABEL_FLAVOR), no special processing occurs, and getTransferData() is allowed to return a reference to the
original object.

Handling the Reference Transfer

Now that we’ve defined a DataFlavor for transferring object references and added support for it to the
Transferable implementation, it’s easy to modify ImageViewer to support reference transfers. All that’s needed
is a change to the drop() method so that it uses the new LOCAL_LABEL_FLAVOR when possible (see Listing 10-9).

Listing 10-9. Reference Transfer Support

public void drop(DropTargetDropEvent event) {
 if (event.isDataFlavorSupported(DataFlavor.javaFileListFlavor)) {
 try {
 event.acceptDrop(DnDConstants.ACTION_COPY);
 Transferable t = event.getTransferable();
 java.util.List list = (java.util.List)
 (t.getTransferData(DataFlavor.javaFileListFlavor));
 java.util.Iterator i = list.iterator();
 while (i.hasNext()) {
 JLabel label = getLabelFromFile((File)(i.next()));
 addNewComponent(label, event.getLocation());
 }
 event.dropComplete(true);
 } catch (Exception e) {
 event.dropComplete(false);
 }
 } else if (event.isDataFlavorSupported(LABEL_FLAVOR)) {
 try {
 event.acceptDrop(DnDConstants.ACTION_MOVE);

CHAPTER 10 ■ ADDING DRAG-AND-DROP FUNCTIONALITY

429

 Transferable t = event.getTransferable();
 boolean doLocal = (event.isLocalTransfer() &&
 (t.isDataFlavorSupported(LOCAL_LABEL_FLAVOR)));
 DataFlavor flavor = (doLocal ? LOCAL_LABEL_FLAVOR : LABEL_FLAVOR);
 JLabel label = (JLabel)(t.getTransferData(flavor));
 addNewComponent(label, event.getLocation());
 event.dropComplete(true);
 } catch (Exception e) {
 event.dropComplete(false);
 }
 }
}

You’ve now made several changes to ImageViewer that should allow it to correctly process reference
transfers. However, if you run the application and try to drag and drop JLabel instances within a single
ImageViewer application, you may be surprised by the results. Instead of moving to the drop location, the
labels disappear from the panel when they’re dropped.

You may recall that the DropTargetListener’s drop() method is called when the drop occurs, and
that method adds the label that’s dropped to the ImageViewer container. Once drop() has executed, the
DragSourceListener’s dragDropEnd() method is called to allow the drag source to remove the original data,
as follows:

public void dragDropEnd(DragSourceDropEvent event) {
 if ((event.getDropSuccess()) &&
 (event.getDropAction() ==
 DnDConstants.ACTION_MOVE)) {
 remove(draggedComponent);
 repaint();
 }
 draggedComponent = null;
}

In this case, the drop target adds the dropped label to its new container, and the drag source removes it
from its old container. In a local transfer using ImageViewer, the “old” and “new” containers are actually the
same object, but that fact isn’t relevant to the problem. What is important, however, is the order in which the
drag source and drop target processing takes place.

Since drop() is called before dragDropEnd(), the component is added to its new container before being
removed from the old one. When it’s added, logic in the java.awt.Container class causes the label to be
removed from its old container, which is done to ensure that a Component can only ever reside within a single
parent container at any given time. After drop() completes, dragDropEnd() is called and, being unaware that
the label was already removed from its old container, proceeds to remove the component from its container.
The result of this second removal is the effective deletion of the label, since no more references to it exist.

It might seem that one way to address this problem is to have the drag source determine the type of
transfer (local or remote) and handle the drop differently for each type. For example, the drag source could
be designed so that it doesn’t remove the JLabel from its parent container when a local transfer takes
place. Unfortunately, the DragSourceDropEvent object passed to dragDropEnd() provides just two items of
information: the type of operation selected by the drop target and an indication of the success or failure of
the transfer. Therefore, a drag source can’t distinguish local transfers from remote transfers.

On the other hand, the drop target can distinguish between local and remote transfers, and that
capability provides a solution to this problem. Since the drag source removes only the label from its old
container when a move occurs, you can address the problem by changing the drop target so that it selects an
operation other than move.

CHAPTER 10 ■ ADDING DRAG-AND-DROP FUNCTIONALITY

430

Performing Link/Reference Operations
It has been mentioned that Java’s drag-and-drop support defines a link or reference operation in addition
to move and copy. However, the purpose of the link/reference operation may not be obvious, since there’s
no consistent meaning associated with the terms link or reference. Although move and copy mean the same
thing on all platforms, Windows may define a reference operation that’s completely different from the Solaris
reference operation.

Since the meaning of the reference operation is vague, you shouldn’t use it to drag and drop data
between Java and native applications; however, when transferring data between Java applications, the
link/reference operation has been assigned a specific meaning. In the context of a local transfer, the
reference operation is used to transfer a reference to some object, just as ImageViewer is now capable
of doing. Similarly, when you’re performing remote transfers between Java applications, the data that’s
transferred should be some representation of the original object but not a copy of it. For example, you might
pass a reference to a remote object defined using Java’s Remote Method Invocation (RMI) facilities if the data
that’s being dragged represents some remote resource.

Given this definition of the reference operation, you can make a small change to ImageViewer that
accomplishes two things. First, it correctly identifies a local transfer within ImageViewer as a reference
operation instead of a move. Second, it prevents the drag source from incorrectly deleting the component
that’s dragged in a local transfer, as shown in Listing 10-10.

Listing 10-10. Handling Local Transfers

public void drop(DropTargetDropEvent event) {
 if (event.isDataFlavorSupported(DataFlavor.javaFileListFlavor)) {
 try {
 event.acceptDrop(DnDConstants.ACTION_COPY);
 Transferable t = event.getTransferable();
 java.util.List list = (java.util.List)
 (t.getTransferData(DataFlavor.javaFileListFlavor));
 java.util.Iterator i = list.iterator();
 while (i.hasNext()) {
 JLabel label = getLabelFromFile((File)(i.next()));
 addNewComponent(label, event.getLocation());
 }
 event.dropComplete(true);
 } catch (Exception e) {
 event.dropComplete(false);
 }
 } else if (event.isDataFlavorSupported(LABEL_FLAVOR)) {
 try {
 int operation = (event.isLocalTransfer()
 ? DnDConstants.ACTION_REFERENCE
 : DnDConstants.ACTION_MOVE);
 event.acceptDrop(operation);
 Transferable t = event.getTransferable();
 boolean doLocal = (event.isLocalTransfer() &&
 (t.isDataFlavorSupported(LOCAL_LABEL_FLAVOR)));
 DataFlavor flavor = (doLocal ? LOCAL_LABEL_FLAVOR : LABEL_FLAVOR);
 JLabel label = (JLabel)(t.getTransferData(flavor));

CHAPTER 10 ■ ADDING DRAG-AND-DROP FUNCTIONALITY

431

 addNewComponent(label, event.getLocation());
 event.dropComplete(true);
 } catch (Exception e) {
 event.dropComplete(false);
 }
 }
}

Local transfers have other implications that you must consider as well, including how to support
the copy operation. That operation is easy to support in a remote transfer because the drop target always
receives a copy of the data, but for local transfers, you need some way to create a copy of the data that’s
dropped. Some classes simplify this for you by overriding the clone() method defined in java.lang.Object,
but many (including JLabel) don’t.

Transferring Between Java and Native Applications
You’ve already seen that it’s possible to drop file selections made from a native application into a Java
application. Those selections are represented by a Transferable that returns an instance of java.util.
List, and that list contains java.io.File objects that identify the files selected. In reality, of course, the
native platform doesn’t use any Java classes when it allows users to make file selections. However, Java’s
drag-and-drop facility automatically converts the native type (e.g., CF_HDROP on Windows) into a form that
your Java application can use easily, just as the clipboard facility does with text data.

In some cases, you may want to transfer data between a Java application and a native application in a
format that isn’t converted automatically (e.g., image data). However, for your application to perform some
sort of processing of data dropped from a native application, it usually must convert the information into a
more convenient format. For example, if Device Independent Bitmap (DIB) data is dragged from a native
Windows application and dropped onto your Java program, you’ll probably want to convert the information
to a more usable format such as an instance of java.awt.Image. Similarly, when dragging data from a Java
application and dropping onto a native application, it’s necessary to provide the information in a format that
the native program can process (e.g., DIB). In Chapter 9, an application was created that could convert pixel
data from an instance of Image into a JPEG-compatible byte string using a codec that’s provided with the
Java 2D API.

Once you’re able to perform data conversions, you must complete one other task before you can
drag and drop that type of data between Java and native applications. Specifically, you must define the
mapping between the MIME type you’ll use and the corresponding platform-specific data type; you define
the mapping by adding an entry to the flavormap.properties file. That file is located in the /jre/lib/
subdirectory of your JDK/JRE (Java Development Kit/Java Runtime Environment) installation.

If you edit the file, you’ll see entries for some of the data types that can already be transferred between
Java and native applications, such as file selections (HDROP on Windows) and text. The format for entries in
flavormap.properties is as follows:

NATIVE=MIME Type

NATIVE is the name of the native data type you intend to use (e.g., HDROP), and MIME Type is the MIME

type that a compatible DataFlavor encapsulates. For example, to add an entry for DIB data, you could
specify the following entry:

DIB=image/x-win-bmp; class=java.io.InputStream

http://dx.doi.org/10.1007/9781484206423_9

CHAPTER 10 ■ ADDING DRAG-AND-DROP FUNCTIONALITY

432

With this entry added to the file, you’ll be able to drag and drop DIB information between Java and
non-Java applications. When you drop DIB information onto a Java application, it’s automatically wrapped
in a Transferable that returns an InputStream, and you can use that stream to read the raw DIB data. To
support the dragging of DIB data from a Java application to a Windows program, you must first define a
DataFlavor that uses the previous MIME type, as in the following example:

DataFlavor DIBFlavor = new DataFlavor("image/x-win-bmp", "DIB Data");

Note that it’s not necessary to identify the representation class as InputStream, since the DataFlavor

constructor used here selects that value by default.
The next step is to create a Transferable that supports this flavor by returning an InputStream that

produces a sequence of bytes conforming to the DIB format. Converting data between the DIB and Java
image formats is a nontrivial exercise and is beyond the scope of this book.

The FlavorMap interface in java.awt.datatransfer defines a mapping between native data types and
MIME types. A default map is created using the entries in flavormap.properties, and that map is accessible
through the SystemFlavorMap class. When performing drag-and-drop operations, you can specify the map
that should be used to translate data types, but if you don’t do so, the default map is used instead.

When you drag Transferable data from a Java application and drop it onto a native program, the MIME
types that the Transferable supports are extracted from its DataFlavor list. For each MIME type that has a
matching entry in the FlavorMap, a corresponding native type is identified to the native application, which
uses that information to process the data that’s dropped.

A similar conversion takes place when you drag data from a native application and drop it onto a
Java program. In that case, Java’s drag-and-drop facility wraps the data from the native application in
a Transferable and provides a DataFlavor for each native type corresponding to a MIME type in the
FlavorMap.

Transferring Text Data
In Chapter 9, on cut-and-paste operations, you saw that text information can be transferred with minimal
effort using the clipboard facility and the StringSelection class that implements Transferable.
Unfortunately, dragging and dropping text information is somewhat more complex.

Before exploring the issues involved in the transfer of text information, let’s briefly review
StringSelection. You may recall that it encapsulates a String and is able to return the text in one of
two flavors, each of which is represented by a constant in DataFlavor. The stringFlavor constant has a
representation class of java.lang.String, has a MIME type of application/x-java-serialized-object,
and represents a serialized String object. That flavor can be used to transfer text between only Java
applications since a serialized Java object isn’t meaningful to a native application.

In contrast, the plainTextFlavor was specifically intended to provide the ability to transfer text data
between Java and native applications and has a representation class of java.io.InputStream and a MIME
type of text/plain. In other words, passing this flavor to a StringSelection’s getTransferData() method
should return an InputStream that produces a stream of text data.

Transferring Text Between Java and Native Applications
Transferring text data between Java and native applications is more complicated than transfers within
Java, mostly because no single character set is used on all platforms, or even by all applications on a single
platform. For example, Java applications maintain text information using Unicode, but native applications
can and frequently do use other character sets, such as ASCII and ISO 8859-1. Therefore, it’s often necessary
to perform conversions when transferring text data between Java and native applications.

http://dx.doi.org/10.1007/9781484206423_9

CHAPTER 10 ■ ADDING DRAG-AND-DROP FUNCTIONALITY

433

In Chapter 9, you saw that it’s possible to transfer text data between Java and native applications using
the clipboard (in other words, cutting and pasting), and it wasn’t necessary to perform any sort of character
set conversions. In reality, they’re performed but are handled automatically and transparently by Java’s
clipboard facility. In contrast, you’re responsible for performing such conversions when transferring text
using drag-and-drop operations.

Transferring Text from Java to Native Applications

If you wrap text data in a StringSelection and drag it over a native application, the application will
probably not accept a drop of that data. That’s because most applications can’t process either of the two
flavors supported by StringSelection (in other words, stringFlavor and plainTextFlavor). It shouldn’t
be surprising that native applications can’t accept stringFlavor data, because that flavor represents an
instance of a serialized Java object. However, you might expect that plainTextFlavor could be used since it
has a MIME type of text/plain.

To understand why plainTextFlavor can’t be used in a Java-to-native transfer of text information, it’s
necessary to review the definition of that flavor, which is as follows:

text/plain; class=java.io.InputStream; charset=unicode

As you can see, plainTextFlavor represents an InputStream that returns a sequence of bytes

representing Unicode character data. Unfortunately, this prevents it from being used by programs that
can’t process Unicode data and is the reason most native applications won’t allow you to drop text that’s
encapsulated in an instance of StringSelection.

Note that because it fails when used with StringSelection and since it can’t be used to transfer data
from Java to native applications, the plainTextFlavor constant defined in DataFlavor is deprecated, so you
should avoid using it.

Transferring Text from Native Applications to Java

As mentioned earlier, dragging data from a native program and dropping it onto a Java application causes
the data to be wrapped in a generic Transferable object. That object will also contain a list of DataFlavor
instances that were created by mapping native types to MIME types using the entries in a FlavorMap.

In the case of text data transfers, the DataFlavor will normally have a MIME type of text/plain and
includes a parameter that identifies the character set associated with the data. For example:

text/plain; charset=ascii
text/plain; charset=iso-8859-1

As these definitions imply, the InputStream provided by the Transferable will produce a stream of

bytes representing the text information as it was stored by the native application. For example, in the case
of the first definition listed previously, the InputStream would return a sequence of ASCII characters.
Therefore, if your application needs to process the information as an instance of String, the data must first
be converted from ASCII to Unicode.

The DataFlavor class includes a method that makes it easy for you to perform character set
conversions. The getReaderForText() method requires that you pass a Transferable instance as a
parameter, and it returns an appropriate subclass of java.io.Reader that will convert the native character
data into Unicode.

http://dx.doi.org/10.1007/9781484206423_9

CHAPTER 10 ■ ADDING DRAG-AND-DROP FUNCTIONALITY

434

When handling text data that was dropped from a native application, you can use getReaderForText()
to convert the data into a String using code similar to that shown in Listing 10-11.

Listing 10-11. Using getReaderForText()

public void drop(DropTargetDropEvent event) {
 StringBuffer result = new StringBuffer();
 event.acceptDrop(DnDConstants.ACTION_COPY);
 DataFlavor[] flavors = event.getCurrentDataFlavors();
 Transferable t = event.getTransferable();
 try {
 Reader r = flavors[0].getReaderForText(t);
 int nextChar = r.read();
 while (nextChar != -1) {
 result.append((char)nextChar);
 nextChar = r.read();
 }
 event.dropComplete(true);
 } catch (Exception e) {
 event.dropComplete(false);
 }
 System.out.println("String ‘" + result + "‘ was dropped");
}

Creating a New Transferable for Text Data
As you’ve seen, StringSelection has some significant limitations when used in drag-and-drop operations.
Specifically, it often can’t be used to transfer text data from Java to non-Java applications because it can
provide the data only as a stream of Unicode characters. In addition, transfers from one Java application to
another fail if the recipient attempts to use plainTextFlavor, which StringSelection claims to support.

The easiest way to address these problems is to create a new Transferable that provides the ability to
transfer text data but that doesn’t have the limitations of StringSelection. The TextSelection class shown
in Listing 10-12 fulfills those requirements.

Listing 10-12. TextSelection Source Code

import java.awt.datatransfer.*;
import java.io.*;

public class TextSelection implements Transferable {

 private String text;

 public final static DataFlavor UNICODE_FLAVOR = new DataFlavor(
 "text/plain; charset=unicode; " +
 "class=java.io.InputStream", "Unicode Text");
 public final static DataFlavor LATIN1_FLAVOR = new DataFlavor(
 "text/plain; charset=iso-8859-1; " +
 "class=java.io.InputStream", "Latin-1 Text");

CHAPTER 10 ■ ADDING DRAG-AND-DROP FUNCTIONALITY

435

 public final static DataFlavor ASCII_FLAVOR = new DataFlavor(
 "text/plain; charset=ascii; " +
 "class=java.io.InputStream", "ASCII Text");

 public static DataFlavor[] SUPPORTED_FLAVORS = {DataFlavor.stringFlavor,
 UNICODE_FLAVOR, LATIN1_FLAVOR, ASCII_FLAVOR};

 public TextSelection(String selection) {
 text = selection;
 }

 public DataFlavor[] getTransferDataFlavors() {
 return SUPPORTED_FLAVORS;
 }

 public boolean isDataFlavorSupported(DataFlavor flavor) {
 for (int i = 0; i < SUPPORTED_FLAVORS.length; i++) {
 if (SUPPORTED_FLAVORS[i].equals(flavor)) return true;
 }
 return false;
 }
 public Object getTransferData(DataFlavor flavor) throws
 IOException, UnsupportedFlavorException {
 if (flavor.equals(DataFlavor.stringFlavor)) {
 return text;
 }
 else if ((flavor.isMimeTypeEqual("text/plain")) &&
 (flavor.getRepresentationClass().equals(
 java.io.InputStream.class))) try {
 String encoding = flavor.getParameter("charset");
 if ((encoding != null) && (encoding.length() > 0)) {
 return new ByteArrayInputStream(
 text.getBytes(encoding));
 }
 return new ByteArrayInputStream(text.getBytes());
 } catch (Exception e) {};
 throw new UnsupportedFlavorException(flavor);
 }

}

You can use this class when you want to drag text from a Java application to a native application; to do
so, simply encapsulate the String in an instance of TextSelection by passing it to the constructor
as follows:

String transferText;
.
.
.
TextSelection ts = new TextSelection(transferText);

CHAPTER 10 ■ ADDING DRAG-AND-DROP FUNCTIONALITY

436

In other words, you can use this class in the same way you’d use Java’s StringSelection, but it doesn’t
have the limitations that exist with that class.

The only part of this class that might require explanation is the getTransferData() method,
specifically, the code block that returns a ByteArrayInputStream. However, it’s easy to understand when you
know that getBytes() provides functionality that’s essentially the opposite of what StringReader was used
for earlier. In other words, while StringReader converts native character data to Unicode, getBytes() can
be used to convert Unicode text into some other format, such as ASCII or ISO-8859-1.

Depending upon the platform and applications you’re using, you may find it necessary to include
additional DataFlavor definitions in TextSelection for it to function properly.

Customizing Standard Component Behavior
As mentioned at the beginning of this chapter, drag-and-drop behavior is already built in to the Swing
components you’d expect to already have it. For example, you can drag and drop text from and into text
components such as JTextField and JTextArea and likewise files can be dragged from and dropped
into JFileChooser instances. The reason this support can be built in, though, is because in each case it’s
intuitively obvious what kind of data can be dropped (e.g., text in the case of a text component), what should
happen when that data is dropped (it should be inserted), and how that action affects the component’s state
(the caret follows the pointer during the drag and the insertion occurs at the caret’s location at the time of
the drop). In the cases of the JTable, JTree, and JList components, though, it’s much less clear how drag
and drop—and especially the drop—should behave because those components can support essentially any
type of data. In addition, the way that they’re used by applications is highly customizable and varies from
one application to the next.

As an example of how it’s impossible to define one universal set of appropriate drag-and-drop
behaviors let’s consider the JList, which is arguably the simplest of the three component types. A JList
instance is typically used to represent a read-only list from which zero or more selections can be made.
Dragging from such a list seems reasonable, and in fact drag support is already built in, but what about
dropping? If drop support is built in, what should be the default behavior as the pointer moves over a list and
when the drop occurs? Should the list item under the pointer be selected to indicate that it will be replaced
by the drop, or should the space between list items be highlighted to indicate that an insertion will occur
upon dropping the source data? As this illustrates, the drag-and-drop behavior that should be provided
tends to be very application specific.

Fortunately, the Swing components were designed with this type of customization in mind and by
taking advantage of that design you can implement the behavior that’s appropriate for your application.

TransferHandler
At the heart of Swing’s built-in support for drag-and-drop operations is the TransferHandler class that you
can use to customize the behavior to meet the needs of your application. TransferHandler is defined in the
javax.swing package and JComponent includes the getTransferHandler() and setTransferHandler()
methods that you can use to assign a TransferHandler instances to a component, so every Swing
component class inherits those methods.

As you’d expect, the Swing components that include predefined drag-and-drop support already
have a TransferHandler subclass assigned to them upon creation, including the three types that don’t
automatically provide support for drop operations. You might also expect that to extend the drag-and-
drop support for a JList, for example, you could simply extend the JList-specific implementation
of TransferHandler and add the appropriate drop support, but unfortunately that’s not the case. The
TransferHandler implementations are defined inside the code associated with a particular look and
feel, which is necessary and appropriate because drag-and-drop behavior can vary across look-and-feel
implementations. Even if you were willing to tie your customized drag-and-drop behavior to a single specific

CHAPTER 10 ■ ADDING DRAG-AND-DROP FUNCTIONALITY

437

look and feel, you couldn’t do so easily because the TransferHandler subclasses aren’t public. In other
words, you can’t define a CustomListTransferHandler that extends the ListTransferHandler defined
by the basic look and feel because that class isn’t accessible by your code. Fortunately, defining a custom
implementation of TransferHandler isn’t difficult and we’ll see an example of how it can be done.

Dropping Images on a JTable

To illustrate how to use the TransferHandler class to provide a customized implementation of drop support
for a JTable we’ll create a simple application that allows files to be dropped on a JTable. For each file that’s
dropped a row will be appended to the table displaying the location of the file that was dropped and—if the
file represents an image format the Java application can process—will also display the dimensions (width
and height) of the image the file represents. Figure 10-4 shows an example of how the application’s user
interface will appear. In this example four files have already been dropped on the table, three of which are
image files and one of which is not.

Figure 10-4. A simple application that allows files to be dropped on a JTable and inserts rows, optionally
displaying the dimensions of each image file

We’ll begin by defining a simple Swing application that includes JTable, AbstractTableModel, and
DefaultTableCellRenderer subclasses to support the basic user interface as shown in Listing 10-13. It
also includes an IconData class that encapsulates a File and, optionally, a Dimension representing the
image size if the file does represent an image. Finally, it includes an ImageTableColumn enumeration for
encapsulating information about the columns supported by the table.

Listing 10-13. JTable and AbstractTableModel Subclasses That Display File Name and Icon Dimension
Columns

import java.awt.Component;
import java.awt.Dimension;
import java.io.File;
import java.util.ArrayList;
import java.util.List;

import javax.swing.DropMode;
import javax.swing.ImageIcon;
import javax.swing.JTable;
import javax.swing.ListSelectionModel;
import javax.swing.table.AbstractTableModel;
import javax.swing.table.DefaultTableCellRenderer;
import javax.swing.table.TableColumn;
import javax.swing.table.TableColumnModel;

CHAPTER 10 ■ ADDING DRAG-AND-DROP FUNCTIONALITY

438

public class ImageTable extends JTable {

 private static final int PREFERRED_WIDTH = 300;
 private static final int PREFERRED_HEIGHT = 100;

 private static final Dimension PREFERRED_SIZE =
 new Dimension(PREFERRED_WIDTH, PREFERRED_HEIGHT);

 private static final int DIMENSIONS_COLUMN_WIDTH = 60;

 public ImageTable() {
 super(new ImageTableModel());
 initialize();
 }

 private void initialize() {
 setPreferredScrollableViewportSize(PREFERRED_SIZE);
 setDragEnabled(true);
 setDropMode(DropMode.INSERT_ROWS);
 setSelectionMode(ListSelectionModel.SINGLE_SELECTION);
 updateColumnSize();
 }

 private void updateColumnSize() {
 TableColumnModel columns = getColumnModel();
 int dimensionIndex = ImageTableModel.ImageTableColumn.DIMENSIONS.ordinal();
 TableColumn column = columns.getColumn(dimensionIndex);
 column.setMaxWidth(DIMENSIONS_COLUMN_WIDTH);
 }

 @Override
 protected void createDefaultRenderers() {
 super.createDefaultRenderers();
 setDefaultRenderer(Dimension.class, new DimensionRenderer());
 }

 public void addImageIcon(File file, ImageIcon icon) {
 ImageTableModel model = (ImageTableModel)(getModel());
 model.addImageIcon(file, icon);
 }

 static class ImageTableModel extends AbstractTableModel {

 private final List<IconData> iconList = new ArrayList<>();

 public ImageTableModel() {
 super();
 }

CHAPTER 10 ■ ADDING DRAG-AND-DROP FUNCTIONALITY

439

 public void addImageIcon(File file, ImageIcon icon) {
 IconData data = new IconData(file, icon);
 List<IconData> list = getIconList();
 int newRowIndex = list.size();
 list.add(data);
 fireTableRowsInserted(newRowIndex, newRowIndex);
 }

 @Override
 public int getColumnCount() {
 return ImageTableColumn.values().length;
 }

 @Override
 public Class<?> getColumnClass(int columnIndex) {
 ImageTableColumn column = getColumn(columnIndex);
 Class<?> type = column.getColumnClass();
 return type;
 }

 @Override
 public String getColumnName(int columnIndex) {
 ImageTableColumn column = getColumn(columnIndex);
 String name = column.getColumnName();
 return name;
 }

 @Override
 public Object getValueAt(int rowIndex, int columnIndex) {
 Object value;

 IconData data = getIconData(rowIndex);
 ImageTableColumn column = getColumn(columnIndex);
 switch (column) {
 case FILE:
 value = data.getFile();
 break;
 case DIMENSIONS:
 value = data.getIconDimension();
 break;
 default:
 throw new Error("Unsupported column: " + column);
 }

 return value;
 }

 private ImageTableColumn getColumn(int columnIndex) {
 ImageTableColumn[] columns = ImageTableColumn.values();
 ImageTableColumn column = columns[columnIndex];
 return column;
 }

CHAPTER 10 ■ ADDING DRAG-AND-DROP FUNCTIONALITY

440

 @Override
 public int getRowCount() {
 List<IconData> list = getIconList();
 int count = list.size();
 return count;
 }

 private IconData getIconData(int rowIndex) {
 List<IconData> list = getIconList();
 IconData data = list.get(rowIndex);
 return data;
 }

 private List<IconData> getIconList() {
 return this.iconList;
 }

 enum ImageTableColumn {

 FILE (File.class , "File"),
 DIMENSIONS(Dimension.class, "Size"),
 ;

 private final Class<?> columnClass;
 private final String columnName;

 private ImageTableColumn(Class<?> type, String name) {
 this.columnClass = type;
 this.columnName = name;
 }

 public Class<?> getColumnClass() {
 return this.columnClass;
 }

 public String getColumnName() {
 return this.columnName;
 }

 }

 class IconData {

 private final File file;
 private final ImageIcon imageIcon;

 public IconData(File file, ImageIcon icon) {
 super();
 this.file = file;
 this.imageIcon = icon;
 }

CHAPTER 10 ■ ADDING DRAG-AND-DROP FUNCTIONALITY

441

 public File getFile() {
 return this.file;
 }

 public Dimension getIconDimension() {
 ImageIcon icon = getImageIcon();
 Dimension dimension = (icon != null)
 ? new Dimension(icon.getIconWidth(), icon.getIconHeight()) : null;
 return dimension;
 }

 public ImageIcon getImageIcon() {
 return this.imageIcon;
 }

 }

 }

 class DimensionRenderer extends DefaultTableCellRenderer {

 public DimensionRenderer() {
 super();
 }

 @Override
 public Component getTableCellRendererComponent(
 JTable table, Object value, boolean isSelected, boolean hasFocus, int row, int column) {
 Object renderValue = value;
 if (renderValue instanceof Dimension) {
 Dimension dimension = (Dimension)renderValue;
 renderValue = dimension.width + " x " + dimension.height;
 }
 Component component = super.getTableCellRendererComponent(
 table, renderValue, isSelected, hasFocus, row, column);
 return component;
 }
 }

}

Next we’ll define a simple subclass of JFrame that creates and displays an instance of the ImageTable
class just defined as shown in Listing 10-14.

CHAPTER 10 ■ ADDING DRAG-AND-DROP FUNCTIONALITY

442

Listing 10-14. A Simple JFrame Subclass That Creates and Displays an Instance of ImageTable

import java.awt.Container;
import java.awt.GridBagConstraints;
import java.awt.GridBagLayout;

import javax.swing.JFrame;
import javax.swing.JScrollPane;

public class DragTestFrame extends JFrame
{

 private final ImageTable imageTable = new ImageTable();

 public static void main(String[] args) {
 DragTestFrame frame = new DragTestFrame();
 frame.setVisible(true);
 }

 public DragTestFrame() {
 super();
 initialize();
 }

 private void initialize() {
 setTitle("Test");
 buildLayout();
 pack();
 setLocationRelativeTo(null);
 setDefaultCloseOperation(DISPOSE_ON_CLOSE);
 }

 private void buildLayout() {
 GridBagConstraints constraints = new GridBagConstraints();
 Container pane = getContentPane();
 pane.setLayout(new GridBagLayout());
 ImageTable table = getImageTable();
 JScrollPane scrollPane = new JScrollPane(table);
 constraints.weightx = 1;
 constraints.weighty = 1;
 constraints.fill = GridBagConstraints.BOTH;
 pane.add(scrollPane, constraints);
 }

 private ImageTable getImageTable() {
 return this.imageTable;
 }

}

Again, this just allows us to display a table but doesn’t implement any support for dropping data
on the table. To begin implementing drop support let’s first define a subclass of TransferHandler called
ImageTableTransferHandler as shown in Listing 10-15.

CHAPTER 10 ■ ADDING DRAG-AND-DROP FUNCTIONALITY

443

Listing 10-15. Initial Implementation of a TransferHandler Subclass That Supports Dropping Images on
ImageTable Instances

import javax.swing.TransferHandler;

public class ImageTableTransferHandler extends TransferHandler {

 public ImageTableTransferHandler() {
 super();
 }

}

Now that our TransferHandler class exists, we can assign an instance of it to each ImageTable that’s
created by calling the setTransferHandler() class mentioned earlier that’s defined in the JComponent class.
We’ll add a new line to the initialize() method as shown in Listing 10-16.

Listing 10-16. Creating an Instance of the ImageTableTransferHandler and Using It for Transfers That
Occur for ImageTable Instances

private void initialize() {
 setPreferredScrollableViewportSize(PREFERRED_SIZE);
 setDragEnabled(true);
 setDropMode(DropMode.INSERT_ROWS);
 setSelectionMode(ListSelectionModel.SINGLE_SELECTION);
 updateColumnSize();
 setTransferHandler(new ImageTableTransferHandler());
}

Our ImageTableTransferHandler class is just a shell at this point and doesn’t override any of the
behavior it inherits from the TransferHandler class, but now we can begin to implement the custom
behavior we want. We’ll start by overriding the canImport() method to have it display a message whenever
it’s called in order to better understand how it’s used. Listing 10-17 shows an example of how it might appear.

Listing 10-17. Implementation of the canImport() Method That Simply Displays a Message Using Standard
Output

@Override
public boolean canImport(TransferHandler.TransferSupport support) {
 System.out.println("Checking to see if we can perform an import...");
 return false;
}

The canImport() method is called during the drag over the component, which in this case will be an
ImageTable, and as its name implies it’s responsible for indicating whether the component can "import"
(accept a drop for) the source data. We’ve currently hard-coded it to always return false, so if you run the
application with this implementation and drag files over an ImageTable you’ll see a no-drop cursor appear.
The more interesting aspect of its behavior, though, is that the message you probably expected to see is never
sent to standard output. The reason for this is that an empty JTable like our ImageTable class with no rows
by default has a height of 0, so in effect its size is zero and no drag (or drop) ever occurs over it. The content

CHAPTER 10 ■ ADDING DRAG-AND-DROP FUNCTIONALITY

444

you see that appears to be part of the table is actually just the table’s header (a JTableHeader instance) and
the portion below that is occupied by the JScrollPane that contains the table. In other words, the drag never
occurs over the table because the table itself isn’t visible in the user interface. The easiest solution to this is to
use the setFillsViewportHeight() method defined in JTable that—as its name implies—causes the table
to fill the viewport in which it’s contained even if there aren’t enough rows to occupy that space, and we can
add this to the initialize() method just as we did the call to assign the custom TransferHandler.

setTransferHandler(new ImageTableTransferHandler());
setFillsViewportHeight(true);

Now if you rerun the sample application you’ll see the message defined earlier being sent to standard
output as you drag a file over the ImageTable.

Note ■ The canImport() method is overloaded in TransferHandler, and the other implementation accepts

a JComponent and an array of DataFlavor instances as arguments. Although that other implementation isn’t

technically deprecated, you should use the one shown here that takes a single instance of the TransferSup-

port inner class defined in TransferHandler.

Now that we have a stub implementation of canImport(), what code should really go there? We
should check to see if the source of the drag-and-drop operation supports the operation supported by the
ImageTable and that the type of data to be dropped is one that’s supported. Specifically, we’ll support the
LINK operation since that’s conceptually the most logical one for adding a table entry that is effectively a
link to a file, and for the type of data supported we’ve already determined that files should be dropped. As a
result, we can complete the implementation of canImport() as shown in Listing 10-18.

Listing 10-18. Completed Implementation of canImport()

@Override
public boolean canImport(TransferHandler.TransferSupport support) {
 boolean importAllowed = isLinkActionSupportedBySource(support)
 && isFileListDataFlavorAvailable(support);
 if (importAllowed) {
 support.setDropAction(LINK);
 }
 return importAllowed;
}

private boolean isLinkActionSupportedBySource(TransferHandler.TransferSupport support) {
 return ((support.getSourceDropActions() & LINK) != 0);
}

private boolean isFileListDataFlavorAvailable(TransferHandler.TransferSupport support) {
 boolean fileListFlavorAvailable = false;
 DataFlavor[] flavors = support.getDataFlavors();

CHAPTER 10 ■ ADDING DRAG-AND-DROP FUNCTIONALITY

445

 for (DataFlavor flavor : flavors) {
 if (DataFlavor.javaFileListFlavor.equals(flavor)) {
 fileListFlavorAvailable = true;
 break;
 }
 }
 return fileListFlavorAvailable;
}

With this implemented the pointer correctly changes to indicate that a drop is possible whenever you
drag files over the ImageTable, but attempting to perform the drop has no effect on the table’s content.
To handle the drop action and update the table data we need to also override the importData() method
inherited from TransferHandler. That method is called whenever the user indicates that the drop should
occur and is used to update the component over which the drop occurs appropriately. In this case the
appropriate behavior is for the files dropped to be added to the table and for those files that represent images
to have their dimensions shown in the table along with the file. An example of how this can be implemented
appears in Listing 10-19. It gets a collection of File instances from the Transferable passed as a parameter,
then attempts to create an ImageIcon from each of the files and adds the File and ImageIcon (if one was
successfully created) to the table in order to display a new entry.

Listing 10-19. An Implementation of importData()

@Override
public boolean importData(JComponent component, Transferable transferable) {
 ImageIcon icon;
 List<File> fileList;

 boolean importOccurred = false;
 ImageTable table = (ImageTable)component;
 if (table != null) {
 fileList = getFileList(transferable);
 for (File file : fileList) {
 icon = createImageIcon(file);
 table.addImageIcon(file, icon);
 }
 }
 return importOccurred;
}

@SuppressWarnings("unchecked")
private List<File> getFileList(Transferable transferable) {
 List<File> fileList;
 try {
 fileList = (List<File>)(transferable.getTransferData(DataFlavor.javaFileListFlavor));
 }
 catch (Exception e) {
 throw new Error("Unable to get transfer data");
 }

 return fileList;
}

CHAPTER 10 ■ ADDING DRAG-AND-DROP FUNCTIONALITY

446

private ImageIcon createImageIcon(File file) {
 ImageIcon icon;

 try {
 URL url = file.toURI().toURL();
 icon = new ImageIcon(url);
 if ((icon.getIconWidth() <= 0) || (icon.getIconHeight() <= 0)) {
 icon = null;
 }
 }
 catch (Exception e) {
 icon = null;
 }

 return icon;
}

With these additions made the sample program behaves as expected, allowing you to drop files on the
table, at which point it will display the file dropped and, optionally, the size of the icon when appropriate.
The complete implementation of ImageTransferHandler appears in Listing 10-20.

Listing 10-20. Complete Implementation of the ImageTransferHandler Class

import java.awt.Component;
import java.awt.datatransfer.DataFlavor;
import java.awt.datatransfer.Transferable;
import java.io.File;
import java.net.URL;
import java.util.List;

import javax.swing.ImageIcon;
import javax.swing.JComponent;
import javax.swing.TransferHandler;

public class ImageTableTransferHandler extends TransferHandler {

 public ImageTableTransferHandler() {
 super();
 }

 @Override
 public boolean canImport(TransferHandler.TransferSupport support) {
 boolean importAllowed = isLinkActionSupportedBySource(support)
 && isFileListDataFlavorAvailable(support);
 if (importAllowed) {
 support.setDropAction(LINK);
 }
 return importAllowed;
 }

 private boolean isLinkActionSupportedBySource(TransferHandler.TransferSupport support) {
 return ((support.getSourceDropActions() & LINK) != 0);
 }

CHAPTER 10 ■ ADDING DRAG-AND-DROP FUNCTIONALITY

447

 private boolean isFileListDataFlavorAvailable(TransferHandler.TransferSupport support) {
 boolean fileListFlavorAvailable = false;
 DataFlavor[] flavors = support.getDataFlavors();
 for (DataFlavor flavor : flavors) {
 if (DataFlavor.javaFileListFlavor.equals(flavor)) {
 fileListFlavorAvailable = true;
 break;
 }
 }
 return fileListFlavorAvailable;
 }

 @Override
 public boolean importData(JComponent component, Transferable transferable) {
 ImageIcon icon;
 List<File> fileList;

 boolean importOccurred = false;
 ImageTable table = (ImageTable)component;
 if (table != null) {
 fileList = getFileList(transferable);
 for (File file : fileList) {
 icon = createImageIcon(file);
 table.addImageIcon(file, icon);
 }
 }
 return importOccurred;
 }

 @SuppressWarnings("unchecked")
 private List<File> getFileList(Transferable transferable) {
 List<File> fileList;

 try {
 fileList = (List<File>)(transferable.getTransferData(DataFlavor.javaFileListFlavor));
 }
 catch (Exception e) {
 throw new Error("Unable to get transfer data");
 }

 return fileList;
 }

 private ImageIcon createImageIcon(File file) {
 ImageIcon icon;

CHAPTER 10 ■ ADDING DRAG-AND-DROP FUNCTIONALITY

448

 try {
 URL url = file.toURI().toURL();
 icon = new ImageIcon(url);
 if ((icon.getIconWidth() <= 0) || (icon.getIconHeight() <= 0)) {
 icon = null;
 }
 }
 catch (Exception e) {
 icon = null;
 }

 return icon;
 }

}

Although we didn’t customize the drag behavior for the table, you can do this using the techniques
discussed in the previous sections of this chapter in order to fully override the default behavior for a class.
Also, although this example focused on JTable behavior, the techniques are essentially identical when
implementing drag-and-drop support for JList and JTree instances.

Summary
In this chapter, we covered issues related to Java’s drag-and-drop support, including the following:

The fundamental concepts associated with drag-and-drop operations•

How to add drag support to components so they can be used to initiate drag-and-•
drop operations

How to add drop support to components so they can be used to terminate drag-and-•
drop operations

Issues related to different types of transfers (e.g., those between Java and native •
applications, as opposed to a transfer within a single JVM)

Issues related to the transfer of text data between Java and native applications•

How to implement a custom • TransferHandler class in order to customize the drag-
and-drop behavior for standard Swing components

449

CHAPTER 11

Printing

Java matured very quickly in most respects after it was first introduced, but for a long time printing was
one of Java’s weakest points. In fact, Java 1.0 didn’t offer any support for printing at all. Java 1.1 included a
class called PrintJob in the java.awt package, but the printing capabilities supported by that class were
somewhat crude and unreliable. When Java 1.2 (or “Java 2”) was introduced, it included a completely
separate mechanism (the Java 2D printing API) for printing designed around PrinterJob and other classes
and interfaces defined in the new java.awt.print package. This rendered the PrintJob-based printing
mechanism (also known as AWT printing) largely obsolete, although PrintJob has never been deprecated
and is still technically a supported class.

Additional changes were made in Java 1.3 when PrintJob’s capabilities expanded to allow the setting of
job and page attributes using the appropriately named JobAttributes and PageAttributes classes within
the java.awt package. With the release of Java 1.3, the printing capabilities were reasonably robust, but
some problems still existed in addition to the confusion associated with having two completely separate
printing facilities. For one thing, both facilities used an implementation of the java.awt.Graphics class for
rendering the content to be printed, which meant anything that needed to be printed had to be rendered
as a graphical image. In addition, the newer and generally more robust PrinterJob facility provided only
limited support for setting attributes associated with the job. Finally, neither facility provided a way to
programmatically select the target printer.

The biggest change in Java’s printing capabilities to date came with the release of Java 1.4, when the
Java print service API (application programming interface) was introduced. This third implementation
of printing support in Java addressed the limitations that were just described using an implementation of
the PrintService and DocPrintJob interfaces defined in the javax.print package. Because this new API
represents a superset of the functionality defined by the two older printing facilities, it’s the one you should
normally use and will be the focus of this chapter.

At a high level, the steps involved in using the Java print service API are straightforward.

 1. Locate print services (printers), optionally limiting the list of those returned to
the ones that support the capabilities your application needs. Print services are
represented as instances of PrintService implementations.

 2. Create a print job by calling the createPrintJob() method defined in
the PrintService interface. The print job is represented by an instance of
DocPrintJob.

 3. Create an implementation of the Doc interface that describes the data
you want to print. You also have the option of creating an instance of
PrintRequestAttributeSet that describes the printing options you want.

 4. Initiate printing by calling the print() method defined in the DocPrintJob
interface, specifying the Doc you created in the previous step and the
PrintRequestAttributeSet or a null value.

CHAPTER 11 ■ PRINTING

450

You’ll now examine each of these steps and see how to achieve them.

Note ■ Within this chapter I’ll use the terms printer and print service interchangeably because in most

cases a print service is nothing more than a representation of a physical printer. The more generic print service

reflects the fact that the output can theoretically be sent to something other than a printer. For example, a print

service might not print the output at all but instead write it to a disk file. In other words, all printers are

represented by a print service, but not every print service necessarily corresponds to a physical printer.

In practice, though, it’s likely you’ll almost always send your content to a printer, which is why I’ll sometimes

use the simpler printer term instead of the more technically accurate print service.

Locating Print Services
You locate a printer using one of three static methods defined in the PrintServiceLookup class. The simplest
of the three methods is lookupDefaultPrintService(), and as its name implies, it returns a reference to the
service that represents your default printer.

PrintService service = PrintServiceLookup.lookupDefaultPrintService();

Although this method is simple and convenient, using it to select which printer to send output to means
you’re implicitly assuming that the user’s default printer will always be able to support the capabilities
your application needs in order to be able to print its output correctly. In practice, you’ll typically want
to select only those printers that are able to handle the type of data you want to print and that support
the features your application needs, such as color or two-sided printing. To retrieve the list of all defined
printers or to retrieve a list that’s limited to printers supporting certain capabilities, you’ll want to use
one of two other static methods defined in PrintServiceLookup: either lookupPrintServices() or
lookupMultiDocPrintServices().

The lookupPrintServices() method accepts two parameters: an instance of DocFlavor and an
instance of some implementation of the AttributeSet interface. As you’ll see shortly, you can use both of
these to limit the list of printers returned by the method, but lookupPrintServices() allows you to specify
a null value for either or both of the two parameters. By specifying a null value for both parameters, you’re
effectively requesting that the method return a PrintService instance for every printer that’s available.
At this point, you haven’t really examined the methods defined in PrintService, but one of them is the
getName() method, which returns a String representing the name of the printer. You can display a list of all
printers available on your system by compiling and running code like that shown in Listing 11-1.

Listing 11-1. Displaying the Available Print Services

PrintService[] services = PrintServiceLookup.lookupPrintServices(null, null);
for (int i = 0; i < services.length; i++) {
 System.out.println(services[i].getName());
}

For example, if you have access to printers named Alpha, Beta, and Gamma that are attached to a server
named PrintServer, running the previous code produces the following output:

\\PrintServer\Alpha
\\PrintServer\Beta
\\PrintServer\Gamma

CHAPTER 11 ■ PRINTING

451

Now let’s examine the parameters you can pass to the lookupPrintServices() method and see how
they allow you to limit the printers returned to those with only certain capabilities.

DocFlavor
The first parameter you can specify on a call to lookupPrintServices() is an instance of the DocFlavor
class, which describes the type of data to be printed and how that data is stored. In most cases, it won’t be
necessary for you to create a new instance of DocFlavor because Java includes many predefined instances,
allowing you to simply pass a reference to one of those instances to lookupPrintServices(). However, let’s
look at the DocFlavor constructor and methods to understand how an instance is used by a print service.

The two arguments required when creating an instance of DocFlavor are both String instances, with
one representing a MIME type and the other being the name of a representation class. As you might expect
from the discussion in Chapter 9, the MIME type is used by a DocFlavor to describe the type of data to be
printed. For example, if you’re printing a GIF file, you’ll need to use a DocFlavor that has a MIME type of
image/gif. Similarly, you might use a MIME type of text/plain if you’re printing text information or text/html
for an HTML document.

Representation Class

While the MIME type describes the type of data to be printed, the representation class describes how that
data is to be made available to the print service. DocFlavor includes seven static inner classes, with each one
corresponding to a representation class and each one corresponding to a different way of encapsulating the
data that’s to be printed.

Table 11-1 shows the names of the static inner classes defined within DocFlavor and their
corresponding representation classes. Note that aside from SERVICE_FORMATTED (which I’ll discuss in detail
later), each one is described as being associated with either “binary” or “character” data. In reality, the
distinction is somewhat artificial because character data is really just a specialized form of binary data,
in this case referring to binary data that contains only human-readable characters and perhaps some
formatting characters such as tabs, carriage returns, and so on. However, the distinction is important
because character-oriented representation classes aren’t appropriate for storing the binary data that’s
to be printed. For example, you wouldn’t store a representation of a GIF image in a character array or a
String, and you wouldn’t make it accessible through a Reader implementation. On the other hand, because
“character” data is just a specialized type of binary data, it’s entirely appropriate to store text information in a
byte array or make it accessible through an InputStream or via a URL.

Table 11-1. DocFlavor’s Predefined Representation Classes

Inner Class Name Representation Class Data Type

BYTE_ARRAY [B (byte[]) Binary

CHAR_ARRAY [C (char[]) Character

INPUT_STREAM java.io.InputStream Binary

READER java.io.Reader Character

SERVICE_FORMATTED java.awt.print.Pageable or java.awt.print.Printable Other

STRING java.lang.String Character

URL java.net.URL Binary

http://dx.doi.org/10.1007/9781484206423_9

CHAPTER 11 ■ PRINTING

452

Each of these static inner classes defined within DocFlavor corresponds to a particular representation
class, but remember that I said each DocFlavor instance encapsulates both a representation class and a
MIME type that identifies the type of data to be printed. To access an instance of DocFlavor that corresponds
to both the representation class and the MIME type of the content you want to print, you’ll need to
reference an inner class within one of the inner classes listed in Table 11-1. For example, let’s suppose you
want to print a GIF file that’s available on the Web through a URL. In this case, the obvious choice for the
representation class is java.net.URL, which is associated with the static class named URL defined within
DocFlavor. If you browse the documentation for that inner class, you’ll find that it defines a number of
static inner classes, each one corresponding to a particular MIME type representing data types commonly
supported by printers. Table 11-2 shows the inner classes defined within DocFlavor.URL and their
corresponding MIME types.

Table 11-2. The DocFlavor.URL Inner Classes

Static Inner Class MIME Type

AUTOSENSE application/octet-stream

GIF image/gif

JPEG image/jpeg

PCL application/vnd-hp.PCL

PDF application/pdf

PNG image/png

POSTSCRIPT application/postscript

TEXT_HTML_HOST text/html

TEXT_HTML_US_ASCII text/html;charset=us-ascii

TEXT_HTML_UTF_16 text/html;charset=utf-16

TEXT_HTML_UTF_16BE text/html;charset=utf-16be

TEXT_HTML_UTF_16LE text/html;charset=utf-16le

TEXT_HTML_UTF_8 text/html;charset=utf-8

TEXT_PLAIN_HOST text/plain

TEXT_PLAIN_US_ASCII text/plain;charset=us-ascii

TEXT_PLAIN_UTF_16 text/plain;charset=utf-16

TEXT_PLAIN_UTF_16BE text/plain;charset=utf-16be

TEXT_PLAIN_UTF_16LE text/plain;charset=utf-16le

TEXT_PLAIN_UTF_8 text/plain;charset=utf-8

Because you’ll print a GIF image that’s available through a URL, you can access an appropriate
DocFlavor instance using the following code:

DocFlavor flavor = DocFlavor.URL.GIF;

This code creates a reference to the static instance of DocFlavor that has a representation class of
java.net.URL and a MIME type of image/gif.

CHAPTER 11 ■ PRINTING

453

The classes listed in Table 11-2 are defined within the DocFlavor.URL class, but what about the other six
inner classes defined within DocFlavor? Again, I’ll defer a discussion of SERVICE_FORMATTED until later, but
as for the classes associated with binary data types, all three (BYTE_ARRAY, INPUT_STREAM, and URL) include
inner classes with the names shown in Table 11-2. So, for example, if you had loaded the GIF data into a byte
array, you might instead choose to use code like the following:

DocFlavor flavor = DocFlavor.BYTE_ARRAY.GIF;

Just as the three DocFlavor inner classes associated with binary data types include their own inner classes,
the three associated with character data types include a different set of inner classes, as shown in Table 11-3.

Table 11-3. CHAR_ARRAY, READER, and STRING

Static Inner Class MIME Type

TEXT_HTML text/html;charset=utf-16

TEXT_PLAIN text/plain;charset=utf-16

So, for example, if you wanted to print plain-text data that’s stored in an instance of String, you could
use code like the following:

DocFlavor flavor = DocFlavor.STRING.TEXT_PLAIN;

Similarly, if the text data represented an HTML document and you wanted to have the data printed as it
would appear within a web browser, you could use the following:

DocFlavor flavor = DocFlavor.STRING.TEXT_HTML;

To summarize, the DocFlavor encapsulates the following two pieces of information:

Where the data is located/how it's accessed, such as via a URL, a byte array, or a •
String instance.

The type of thing the data represents, such as a GIF image, plain text, or an HTML •
document.

Choosing the Right Printer
Remember that the discussion of DocFlavor began with a desire to make sure the printer you use actually
supports the type of data that’s to be printed and the delivery mechanism (representation class) you intend
to use. This might seem like an unnecessary step, but in reality you may be surprised at which document
types a given printer supports. For example, the text-oriented types just described might seem as though
they’d be the simplest ones to support, so if your application is printing plain or HTML text, you might be
tempted to simply select the first available print service and send the output to that printer. As it turns out,
though, many printers don’t support the text-based representation classes, and if you attempt to send output
to a printer that doesn’t support the DocFlavor you select, an exception will be thrown like the following:

Exception in thread "main" sun.print.PrintJobFlavorException: invalid flavor
 at sun.print.Win32PrintJob.print(Win32PrintJob.java:290)
 at PrintTest.main(PrintTest.java:11)

CHAPTER 11 ■ PRINTING

454

Now that you’ve seen how to obtain a reference to a DocFlavor and I’ve discussed the importance
of selecting a printer that supports the selected flavor, I’ll show how you can use it to make sure you use a
printer that supports the flavor you need. As I discussed earlier, the lookupPrintServices() allows you to
specify a DocFlavor as its first argument, and if you specify a non-null value, the method will return only the
PrintService instances that correspond to printers that support the specified DocFlavor. For example, the
following code will retrieve an array that identifies all printers on your system that can print GIF images that
are referenced via a URL:

DocFlavor flavor = DocFlavor.URL.GIF;
PrintService[] services = PrintServiceLookup.lookupPrintServices(flavor, null);

Alternatively, if your application has already retrieved a reference to a PrintService and you want to
determine whether it supports a particular flavor, you can call the isDocFlavorSupported() method. In the
code segment in Listing 11-2, a reference to the default printer is obtained, and an error message will be
displayed if it’s not able to print a GIF image retrieved via a URL.

Listing 11-2. Checking the Default Printer for GIF Support via URL

PrintService service = PrintServiceLookup.lookupDefaultPrintService();
DocFlavor flavor = DocFlavor.URL.GIF;
if (!service.isDocFlavorSupported(flavor)) {
 System.err.println("The printer does not support the appropriate DocFlavor");
}

AttributeSet
As you’ve now seen, a DocFlavor describes the data to be printed and can be used to ensure that a PrintService
supports the corresponding type of data. However, your application may also need to select a printer based
upon the features that the printer supports. For example, if you’re printing a graph that uses different colors to
convey information, you might want to see if a given service supports color printing and, if not, either prevent
the printer from being used or render a representation of the graph that doesn’t rely on colors.

Characteristics such as the ability to print in color, to print on both sides of a page, or to use different
orientations (portrait or landscape) are referred to as a printer’s attributes, and the javax.print.attribute
package contains many classes and interfaces you can use to describe those attributes. One of those
interfaces is AttributeSet, which was mentioned earlier as the second parameter that can be specified on
a call to lookupPrintServices(). As you might expect, an implementation of AttributeSet represents a
collection of attributes, and specifying a non-null value on the call to lookupPrintServices() will result
in only print services being returned that support those attributes. In other words, if you specify both a
DocFlavor and an AttributeSet on a call to lookupPrintServices(), the method will return only those
printers that support both the specified flavor and the appropriate attributes.

Attribute
Given that an AttributeSet is a collection of attributes, the obvious question is, how do you go about
specifying the attribute values that should make up that collection? The javax.print.attribute package
also includes an interface named Attribute, and as you’ll see shortly, you create the collection of
attributes by adding instances of Attribute to an AttributeSet by calling the add() method. Reviewing
the documentation for the Attribute interface reveals that a large number of implementations are defined
within the javax.print.attribute.standard package, and it’s those classes you’ll use. Before you see how
that’s done, it’s helpful to review the other interfaces in the javax.print.attribute package along with
their implementations.

CHAPTER 11 ■ PRINTING

455

Attribute Roles
So far I’ve described attributes as capabilities of a print service, and while that’s largely true, it’s really
something of an oversimplification, at least in terms of how Java supports attributes. For each different
attribute, Java associates it with one or more “role,” and the attribute is valid only in the context of the role(s)
with which it’s assigned. In other words, attributes are used in various places within the Java print service
and not every attribute is valid within every context.

To better understand this, consider the OrientationRequested and ColorSupported
implementations of Attribute that are defined within the javax.print.attribute.standard package.
The OrientationRequested attribute is one you can specify when creating a document to be printed and
allows you to specify the orientation (such as portrait or landscape) that should be used when printing
the document. In contrast, ColorSupported is an attribute that can be returned when you call the
getAttributes() method of the PrintService interface. In other words, OrientationRequested is an
attribute you use to pass information to the print service, and ColorSupported is one that the print service
uses to provide you with information about the printer’s abilities. You can’t specify ColorSupported as
an attribute when creating a document to be printed because the printer’s ability to print in color isn’t
something your application is able to control.

Interfaces and Implementations
When you first look at the interfaces and classes defined in the javax.print.attribute package, it may
appear to present a confusing list of choices when it comes to the interfaces and classes defined there.
Aside from the Attribute and AttributeSet interfaces and the HashAttributeSet class that implements
AttributeSet, the javax.print.attribute package has four sets of subinterfaces and classes, as shown in
Table 11-4 and Figure 11-1.

Table 11-4. Interfaces and Classes Defined Within the javax.print.attribute Package

Attribute Subinterface AttributeSet Subinterface AttributeSet Subclass

DocAttribute DocAttributeSet HashDocAttributeSet

PrintJobAttribute PrintJobAttributeSet HashPrintJobAttributeSet

PrintRequestAttribute PrintRequestAttributeSet HashPrintRequestAttributeSet

PrintServiceAttribute PrintServiceAttributeSet HashPrintServiceAttributeSet

CHAPTER 11 ■ PRINTING

456

So, why do you need all these various interfaces and implementations, particularly since the more
generalized Attribute, AttributeSet, and HashAttributeSet are provided? The answer is that these
specializations are defined to ensure that only the appropriate attributes are used within the role(s) where
they’re valid. For example, I mentioned that one place where you can use attributes is when creating a
document that’s to be printed and that some attributes such as ColorSupported aren’t valid within that
context. When creating such a document, you’ll use the DocAttributeSet interface (or, specifically, its
HashDocAttributeSet implementation), and the implementation will allow you to add only attributes that
implement the DocAttribute interface. The four different types of roles are as follows:

• Doc: Specified when creating a document that’s to be printed to describe how the
document should be printed

• PrintJob: Attributes returned from the print job to describe the state of the job

• PrintRequest: Attributes passed to the print job when a request is made to initiate
printing

• PrintService: Returned by a PrintService to describe the capabilities of the service

To see how this works, let’s create an instance of a DocAttributeSet and then attempt to set both the
OrientationRequested and ColorSupported attributes for that AttributeSet. The HashDocAttributeSet
defines a no-argument constructor, so you can create an instance easily as follows:

DocAttributeSet attrs = new HashDocAttributeSet();

Now that you’ve created the AttributeSet, you can call its add() method and pass to it instances of
Attribute implementations. If you examine the documentation for the OrientationRequested class, you’ll
see it includes references to a number of static OrientationRequest instances with each one corresponding

Figure 11-1. The class hierarchy of a portion of the javax.print.attribute package

CHAPTER 11 ■ PRINTING

457

to a document orientation such as portrait or landscape. To specify the orientation you want, all you need to
do is pass a reference to the appropriate static instance to the add() method as follows:

DocAttributeSet attrs = new HashDocAttributeSet();
attrs.add(OrientationRequested.PORTRAIT);

The ColorSupported class is slightly different but equally simple to use, and it defines two static
instances: one that indicates that color printing is supported and another that indicates it’s not supported.
You can attempt to add a ColorSupported attribute to the DocAttributeSet with code like the following:

DocAttributeSet attrs = new HashDocAttributeSet();
attrs.add(OrientationRequested.PORTRAIT);
attrs.add(ColorSupported.SUPPORTED);

As mentioned earlier, it’s not appropriate to specify whether to support color printing because this isn’t
something an application is allowed to control. In other words, the ColorSupported attribute isn’t valid
within the context of a set of document attributes, and as a result, attempting to run the previous code will
cause a ClassCastException to be thrown when it attempts to add the ColorSupported attribute.

To understand how this works, remember that each AttributeSet subinterface (in this case,
DocAttributeSet) has a corresponding Attribute subinterface (DocAttribute) and an implementation
class (HashDocAttributeSet). When an attempt is made to add an attribute, the implementation class tries
to cast the Attribute parameter to the corresponding subinterface type, which in turn ensures that only
attributes appropriate for that context can be added successfully.

In this case, the add() method of HashDocAttributeSet is first called with an instance of
OrientationRequested, and it successfully casts that object to a DocAttribute, because as Figure 11-2
shows, OrientationRequested implements that interface. In contrast, however, passing an instance of
ColorSupported fails because ColorSupported doesn’t implement DocAttribute.

Figure 11-2. The class hierarchy of a portion of the javax.print.attribute package

As this example illustrates, the four different groups of interfaces and classes shown in Table 11-4
ensure that only the appropriate attributes are used within the appropriate context. Notice that a great
deal of overlap occurs between roles and the various attributes, so many of the attributes are associated
with more than one role. For example, many of the attributes implement both PrintJobAttribute and
PrintRequestAttribute because many of the attributes that are maintained and provided to you by a
print job correspond to attributes you can specify when you request that printing be initiated. You can, for
instance, both specify the job name by adding it to a PrintRequestAttributeSet and retrieve the name of
the job during printing by retrieving it from a PrintJobAttributeSet. As a result, the JobName attribute class
implements both PrintRequestAttribute and PrintJobAttribute.

CHAPTER 11 ■ PRINTING

458

AttributeSet and HashAttributeSet

You’ve now seen why the four groups of subclasses exist, but what about the base AttributeSet interface
and the HashAttributeSet superclass? AttributeSet/HashAttributeSet is used in situations where
you can’t assume that only attributes associated with a single role will need to be stored in a collection.
Remember that earlier in the chapter I mentioned that the lookupPrintServices() method allows you to
specify an AttributeSet parameter that will limit which print services are returned. On the surface it might
appear that it would be better to require that an instance of PrintServiceAttributeSet be specified, but
many of the attributes you might want to use don’t implement PrintServiceAttribute.

Let’s assume you want the lookupPrintServices() method to retrieve only services that support
both color printing and landscape printing. Those attributes correspond to the ColorSupported and
OrientationRequested attributes, respectively, but notice that those two attribute classes don’t share a
common role: ColorSupported is a PrintServiceAttribute, and OrientationRequested is associated with
all three of the other roles (Doc, PrintRequest, and PrintJob), as shown in Figure 11-2. What this means is
that there’s no single role-specific AttributeSet interface/class that can contain both a ColorSupported
attribute and a Sides attribute.

The way to create an AttributeSet that contains both an OrientationRequested and a
ColorSupported instance is to simply use an instance of the generic HashAttributeSet. Unlike its
subclasses, it doesn’t limit you to adding attributes associated with a particular role, so you can successfully
execute the following code:

AttributeSet attrs = new HashAttributeSet();
attrs.add(ColorSupported.SUPPORTED);
attrs.add(OrientationRequested.LANDSCAPE);
PrintService[] services = PrintServiceLookup.lookupPrintServices(null, attrs);

Printer Selection via User Interface
Up to this point, I’ve assumed that the printer to be used would be selected programmatically by the
application. In practice, however, it’s more common to simply display a dialog and allow the user to select
which printer to use when printing the output. Fortunately, Java makes it easy to do just that by using the
static printDialog() method in the ServiceUI class defined within the javax.print package.

Aside from the location of the dialog to be displayed, the only parameter values that must be specified
on the call to printDialog() are the following:

An array of • PrintService instances from which the user can choose.

The default • PrintService.

An instance of • PrintRequestAttributeSet. This is used to populate the dialog that’s
displayed, and it returns any changes that were made by the user before the dialog
was dismissed.

To illustrate how this works, you can use the following simple code segment to display a print dialog:

PrintService[] services = PrintServiceLookup.lookupPrintServices(null, null);
PrintService svc = PrintServiceLookup.lookupDefaultPrintService();
PrintRequestAttributeSet attrs = new HashPrintRequestAttributeSet();
PrintService selection = ServiceUI.printDialog(
 null, 100, 100, services, svc, null, attrs);

When run, the code produces a dialog like the one shown in Figure 11-3.

CHAPTER 11 ■ PRINTING

459

As this code illustrates, the value returned from the printDialog() method is an instance of
PrintService that identifies which printer the user selected or null if the user canceled the printer dialog.
In addition, the PrintRequestAttributeSet is updated to reflect any changes made by the user through the
dialog, such as the number of copies to be printed.

By using the printDialog() method, you can allow the user to select which printer his or her output
will be sent to, providing the kind of functionality that users have come to expect from professional
applications.

Creating a Print Job
This is the simplest step involved in printing, because once you’ve obtained a reference to a PrintService,
all you need to do is call its createPrintJob() method as follows:

PrintService service;
.
.
.
DocPrintJob job = service.createPrintJob();

As indicated in the code, the value returned from createPrintJob() is an instance of DocPrintJob, an
object that allows you to control and monitor the status of the printing operation. To initiate printing, you’ll
call the DocPrintJob object’s print() method, but before you do so you’ll need to define the document to be
printed and optionally a PrintRequestAttributeSet. You’ve already seen how to construct and populate an
AttributeSet, so I won’t review that step; instead, you’ll see how you go about defining the document to be
printed.

Figure 11-3. The printer dialog

CHAPTER 11 ■ PRINTING

460

Defining the Document to Print
The next step in printing is to define the document that’s to be printed, which is done by creating an instance
of an implementation of the Doc interface defined in the javax.print package. Each instance of Doc has two
mandatory attributes and an optional one.

An • Object that represents the data to be printed

An instance of • DocFlavor that describes the type of data to print

An optional • DocAttributeSet containing attributes to use when printing the
document

Reviewing the documentation for the Doc interface reveals that the javax.print package includes an
implementation of the interface named SimpleDoc, which has a constructor that takes three arguments
that match the three attributes described previously. To see how to construct an instance of SimpleDoc,
let’s assume you want to print two copies of a GIF image that’s stored at http://upload.wikimedia.org/
wikipedia/en/e/eb/Apress-logo.png.

All that’s needed to construct a SimpleDoc instance that describes the document to be printed is to
create a URL (uniform resource locator) that points to the image, obtain a reference to the appropriate
DocFlavor, and pass those two objects to the SimpleDoc constructor as follows:

URL url = new URL(
 "http://upload.wikimedia.org/wikipedia/en/e/eb/Apress-logo.png");
DocFlavor flavor = DocFlavor.URL.GIF;
SimpleDoc doc = new SimpleDoc(url, flavor, null);

Initiating Printing
The final step involved in printing is to call the DocPrintJob’s print() method, passing it the Doc object
that describes the data to be printed and optionally an instance of PrintRequestAttributeSet. For the
sake of simplicity, I’ll assume the default printer supports the flavor and attributes you need, in which case
you could use the code shown in Listing 11-3 to print two copies of the GIF file referenced in the previous
example.

Listing 11-3. Printing Two Copies of an Image File

PrintService service = PrintServiceLookup.lookupDefaultPrintService();
DocPrintJob job = service.createPrintJob();
URL url = new URL(
 " http://upload.wikimedia.org/wikipedia/en/e/eb/Apress-logo.png");
DocFlavor flavor = DocFlavor.URL.GIF;
Doc doc = new SimpleDoc(url, flavor, null);
PrintRequestAttributeSet attrs = new HashPrintRequestAttributeSet();
attrs.add(new Copies(2));
job.print(doc, attrs);

Note that in some cases printing is performed asynchronously, in which case the call to print() may
return before printing has actually completed. If your application needs to know the status of the print job,
you should use a PrintJobListener to monitor its status, as described next.

http://upload.wikimedia.org/wikipedia/en/e/eb/Apress-logo.png
http://upload.wikimedia.org/wikipedia/en/e/eb/Apress-logo.png
http://upload.wikimedia.org/wikipedia/en/e/eb/Apress-logo.png

CHAPTER 11 ■ PRINTING

461

Monitoring and Controlling a Print Job
To monitor the status of a print job, you can create an implementation of PrintJobListener and
register it as a listener by calling the addPrintJobListener() method defined within DocPrintJob.
PrintJobListener is defined within the javax.print.event package, and it defines a number of
methods that are called to indicate various changes related to the state of the print job, such as when data
transfer completes and when the job has failed or requires attention. Although their names are largely
self-explanatory, the methods defined within PrintJobListener are listed in Table 11-5 along with a
description of when each one is called.

If you’re interested only in a subset of these methods, you may find it convenient to use the
PrintJobAdapter implementation class that provides “stub” implementations for each of the methods listed
in Table 11-5. In other words, it defines methods that don’t do anything when those methods are called, and
by overriding only the method(s) that are of interest to your application, you can quickly and easily define
your own PrintJobListener implementation as shown in Listing 11-4.

Listing 11-4. Using a PrintJobListener Implementation

PrintService service = PrintServiceLookup.lookupDefaultPrintService();
DocPrintJob job = service.createPrintJob();
job.addPrintJobListener(new PrintJobAdapter() {
 public void printDataTransferCompleted(PrintJobEvent event) {
 System.out.println("Data transfer is complete");
 }
 public void printJobNoMoreEvents(PrintJobEvent event) {
 System.out.println("No more events will be received");
 }
});

Monitoring Attribute Changes
Aside from monitoring the status of the print job itself, it’s also sometimes helpful to monitor
changes to the attributes that may change during printing. For example, let’s suppose your
application is printing a multipage document, and it wants to provide the user with some kind

Table 11-5. Methods Defined Within the PrintJobListener Interface

Method Description

printDataTransferCompleted() Data has been successfully transmitted from the
client to the print service.

printJobCanceled() The print job was canceled.

printJobCompleted() The job has completed.

printJobFailed() The print job has failed and must be resubmitted for
the document to be printed successfully.

printJobNoMoreEvents() No more calls to any of the methods in this interface
will be called for this print job.

printJobRequiresAttention() An error has occurred that may be recoverable, such
as the printer running out of paper.

CHAPTER 11 ■ PRINTING

462

of indication of which page is currently being printed. You can accomplish this by registering a
PrintJobAttributeListener with the DocPrintJob and optionally by specifying which attributes
are of interest to your application.

The process of registering a PrintJobAttributeListener is similar to the approach you just saw for
registering a PrintJobListener and is done using the addPrintJobAttributeListener() method defined
in DocPrintJob. One important difference, however, is that addPrintJobAttributeListener() accepts
not only a PrintJobAttributeListener but also an optional instance of PrintJobAttributeSet that can
be used to specify which attributes are of interest to the listener. By registering an attribute listener, you’re
indicating you want the listener to be notified of changes to the attributes associated with the print job. If
you specify a null value for the PrintJobAttributeSet parameter, the listener will be notified of all attribute
changes. However, if you specify a non-null value, the listener will be notified only of attributes that are
included in the PrintJobAttributeSet you specify.

To see an example of this, let’s create and use an instance of PrintJobAttributeListener to monitor
which page is currently being printed. The first step is to create the implementation, which can be done as
shown in Listing 11-5. Notice that PrintJobAttributeListener defines only a single attributeUpdate()
method that must be implemented.

Listing 11-5. Retrieving and Displaying an Attribute Value

PrintJobAttributeListener listener = new PrintJobAttributeListener() {
 public void attributeUpdate(PrintJobAttributeEvent event) {
 PrintJobAttributeSet attrSet = event.getAttributes();
 Attribute attr = attrSet.get(JobMediaSheetsCompleted.class);
 if (attr != null) {
 JobMediaSheetsCompleted sheets = (JobMediaSheetsCompleted)attr;
 System.out.println("Finished printing page " + sheets.getValue());
 }
 }
};

Within the attributeUpdate() method, you first retrieve the PrintJobAttributeSet that encapsulates
the attribute(s) being reported as having changed. Once that’s done, you can attempt to retrieve from the set
the specific attribute you’re interested in, and if it’s found within the set, you cast it to the appropriate class
and display a message indicating which page has finished printing.

Once the PrintJobAttributeListener implementation has been created, you can easily register it as a
listener using code like that in the following bold line:

PrintService service = PrintServiceLookup.lookupDefaultPrintService();
DocPrintJob job = service.createPrintJob();
job.addPrintJobAttributeListener(listener, null);

In this case, you specified a null value for the second parameter, which will result in the
attributeUpdate() method being called when the value of any attribute changes. Alternatively, you could
construct an instance of PrintJobAttributeSet, populate it with the specific type of attribute you want to
monitor, and specify that set when adding the listener, as follows:

PrintJobAttributeSet attrs = new HashPrintJobAttributeSet();
attrs.add(new JobMediaSheetsCompleted(0));
PrintService service = PrintServiceLookup.lookupDefaultPrintService();
DocPrintJob job = service.createPrintJob();
job.addPrintJobAttributeListener(listener, attrs);

CHAPTER 11 ■ PRINTING

463

With this modification, the attributeUpdate() method will be called only when or if the
JobMediaSheetsCompleted attribute changes for the print job.

When using attribute listeners, it’s important to remember that not all attributes will be supported by all
print services. If the print service you’re using doesn’t support the JobMediaSheetsCompleted attribute, then
the code you’ve just created won’t do anything because that attribute will never be updated.

Canceling a Print Job
You’ve now seen how to initiate and monitor the status of a print job, but what if the user wants to cancel
the job before it has completed? Well, it’s important to mention that like many of the other capabilities
I’ve discussed, the ability to cancel a print job will vary from one print service to the next, so you shouldn’t
assume a print job can be canceled. However, the Java print service API includes an interface called
CancelablePrintJob that extends DocPrintJob, and if the print job that’s created by the print service
implements CancelablePrintJob, you can call its cancel() method to cancel the job. Following is an
example of how to accomplish this:

if (job instanceof CancelablePrintJob) {
 CancelablePrintJob cancelable = (CancelablePrintJob)job;
 cancelable.cancel();
}

Introducing Service-Formatted Printing
All the printing you’ve been doing so far is referred to by the Java print service API as client formatted, but
earlier in the chapter I mentioned an alternative approach called service formatted. Since your application
code represents the “client,” you might expect service-formatted printing to be easier because the name
implies that the print service will do more of the (formatting) work. In reality, though, using service-
formatted printing means your code has more control over formatting, and in this case more control means
additional complexity.

So, what exactly is service-formatted printing? It’s really just a way of integrating the Java print service
API we’ve been using with the older Java 2D printing API that was first introduced in Java 1.3. Java’s 2D
printing works by passing an instance of Graphics to your application when a page is to be printed and
allowing your application to draw the output that should appear on the printed page.

A Graphics object is a representation of a hardware device onto which graphics can be drawn, such as
a monitor or printer, and it includes methods such as drawImage(), drawLine(), and drawRect() that allow
you to draw images, lines, and rectangles, respectively, on the corresponding device. Graphics instances
are most commonly used to have components draw themselves onto a computer monitor, but in this case
the Graphics object represents a printer, and the same logic that’s used to draw a component onto a screen
can be used to print that component. In other words, your application can use the Java 2D printing API to
have AWT and Swing components draw (or render) themselves onto a printed page using the same logic
they normally use to draw themselves within a window displayed on your monitor. This is particularly useful
for creating What-You-See-Is-What-You-Get (WYSIWYG) printouts, but it can also be helpful when creating
more customized output.

To use service-formatted printing, you’ll need to choose from one of the three variations that are
supported: PAGEABLE, PRINTABLE, or RENDERABLE_IMAGE. The first two are based upon the Pageable
and Printable interfaces defined within the java.print package, and the third is related to the
RenderableImage class defined within the java.awt.image.renderable package. To understand how these
are used, let’s begin by looking at some of the concepts related to how 2D printing works.

CHAPTER 11 ■ PRINTING

464

Java’s 2D printing API supports a resolution of 72 dots per inch (DPI), which means each pixel you draw
onto a Graphics object will occupy 1/72nd of an inch (approximately 0.3528 millimeters) on the printed
page. That unit of measure (in other words, 1/72nd of an inch) is called a point and is used by the 2D printing
facility to represent locations and size values. So, for example, a sheet of letter-sized (8.5 inches wide and
11 inches long) paper is 612 (8.5 * 72 = 612) points wide and 792 (11 * 72 = 792) points long. Based on this
information, it might seem that you could produce printed output up to 612 points wide and 792 points long
on letter-sized paper. However, most printers are physically capable of printing only onto a subset (although
normally a very large one) of the total area available on the paper or other media used in printing. That
subset is represented as a rectangular area known as the printable area, and as you’ll see later, it’s particularly
important to keep this in mind when using service-formatted printing. The portions of a page that are
unusable (which I’ll call the hardware margins) vary from one model of printer to the next, but the shaded
area in Figure 11-4 provides an example of the area that may be unavailable. The darker color represents the
hardware margins, the lighter color represents user-specified margin settings, and the white rectangle in the
center represents the area available for printing.

Note ■ Although I refer in this chapter to printing on “paper” and Java even defines a class by that name,

the generic term media is really more appropriate because many printers support printing to things other than

paper (e.g., transparencies).

Figure 11-4. Hardware margins, user-specified margins, and the printable area

CHAPTER 11 ■ PRINTING

465

Hardware margins aren’t normally a serious limitation because most applications use margin sizes
that are greater than those imposed upon them by the hardware. For example, you might want to have
1-inch margins on each side of a printed text document to improve readability, so Figure 11-4 shows the
approximate area of a letter-sized page that’s available with margins of that size. The area inside the margins
available for printing is known as the imageable area, and you’ll need to take the size and position of that
area into consideration during printing.

Support Classes
To understand how to use the 2D printing API, it’s helpful to review the classes that support it. Specifically,
you’ll examine the Paper, PageFormat, and Book classes and the Printable and Pageable interfaces.
Table 11-6 describes these classes and interfaces.

Figure 11-5 illustrates the relationship between the Java 2D printing API support classes.

Paper

The java.awt.print.Paper class encapsulates two pieces of information: the physical size of the paper
you’re printing on and the size and position of the imageable area. Paper includes a single no-argument
constructor that initializes its properties to correspond to U.S. letter-sized paper with 1-inch margins on each
side (top, left, bottom, and right) of the page.

Table 11-6. Some Interfaces and Classes Defined in the Java 2D Printing API

Name Type Description

Paper Class Describes the physical characteristics of a given type of paper

PageFormat Class Describes the size and orientation of a page that’s to be printed

Printable Interface Represents a single printable page

Pageable Interface Represents a collection of printable pages

Book Class A convenient implementation of the Pageable interface

Figure 11-5. The relationship between the Java 2D printing API support classes

CHAPTER 11 ■ PRINTING

466

It’s actually somewhat misleading to suggest that instances of Paper maintain margin information
because in reality they don’t, at least not explicitly. However, margin sizes can be derived using the paper
size and imageable area information. For example, if the imageable area is located 144 points from the
left edge of the paper, the paper effectively has a 2-inch (144 / 72 = 2) left margin. The right margin can be
similarly calculated by subtracting the width of the imageable area and the width of the left margin from the
total width of the paper.

For the most part, the methods defined in Paper are simple accessor and mutator methods that allow
you to reference the encapsulated information.

getWidth(), getHeight(), setSize()

These methods allow you to modify and query the physical dimensions of the paper. Those values are
maintained as double primitives that identify the paper size in points. For example, since Paper’s values
default to those of a letter-sized piece of paper, the initial width value of a Paper instance is 612 (8.5 * 72 = 612),
and the initial height is 792 (11 * 72 = 792).

setImageableArea(), getImageableX(), getImageableY(),
getImageableWidth(), getImageableHeight()

These methods allow you to modify and query the size and location of the imageable area. The
setImageableArea() method requires four double parameter values: X position, Y position, width, and
height of the paper’s imageable area. For example, to set the imageable area for a letter-sized piece of paper
that should have 1-inch left and right margins and 1.5-inch top and bottom margins, you could use the code
that appears in Listing 11-6.

Listing 11-6. Calculating and Specifying the Values for 1-Inch Margins

double paperWidth = 8.5 * 72;
double paperHeight = 11 * 72;
double xMargin = 1.0 * 72;
double yMargin = 1.5 * 72;
double areaWidth = paperWidth - (xMargin * 2);
double areaHeight = paperHeight - (yMargin * 2);
Paper p = new Paper();
p.setImageableArea(xMargin, yMargin, areaWidth, areaHeight);

Note that these are point values, so the margin sizes must be converted from inches to points before
calling setImageableArea().

clone()

Paper implements the Cloneable interface and overrides the clone() method inherited from java.lang.
Object. This allows you to easily create copies of a Paper object.

CHAPTER 11 ■ PRINTING

467

Using Paper with Alternative Paper Sizes

As you saw previously, it’s easy to set the imageable area size for an instance of Paper. Similarly, you’ll
sometimes want to adjust the paper size and margins to correspond to some type of paper other than U.S.
letter size. For example, you could use the code shown in Listing 11-7 to create an instance of Paper that
will be used to print to A4-sized pages (210 millimeters wide and 297 millimeters long) with 25-millimeter
margins around each edge.

Listing 11-7. Calculating Margins for a Less Common Size of Paper

Paper paperA4 = new Paper();
double inchesPerMillimeter = 0.0394;
double widthInInches = inchesPerMillimeter * 210;
double heightInInches = inchesPerMillimeter * 297;
double marginSizeInInches = inchesPerMillimeter * 25;
double widthInPoints = widthInInches * 72;
double heightInPoints = heightInInches * 72;
double marginSizeInPoints = marginSizeInInches * 72;
double availableWidth = widthInPoints - (marginSizeInPoints * 2);
double availableHeight = heightInPoints - (marginSizeInPoints * 2);
paperA4.setImageableArea(marginSizeInPoints, marginSizeInPoints,
 availableWidth, availableHeight);

PageFormat

While Paper describes the physical attributes of the paper used in printing, the PageFormat class describes
the logical characteristics of one or more printed pages. Depending upon the orientation (portrait or
landscape) used when printing, the physical attribute values may be identical to the logical attributes.

An instance of PageFormat is passed to the print() method when it’s called so the Printable
implementation can determine the size and location of the imageable area on the page and confine its
rendering to that region accordingly.

setOrientation(), getOrientation()

These methods allow you to modify and query the orientation value for the page(s) printed using this
PageFormat object. The orientation is maintained as an int value that corresponds to one of the following
constants defined in PageFormat: PORTRAIT, LANDSCAPE, or REVERSE_LANDSCAPE.

getPaper(), setPaper()

PageFormat maintains a reference to a Paper object, and these methods allow you to obtain a copy of that
object and to replace it. The default Paper object corresponds to U.S. letter-sized paper with 1-inch margins
on each side.

It’s important to understand that getPaper() returns a copy of the PageFormat’s Paper object instead of
a reference to the original.

CHAPTER 11 ■ PRINTING

468

Therefore, if you want to modify the paper’s size or imageable area values, you must call getPaper(),
modify the object returned, and then call setPaper() to update the PageFormat’s reference. The following is
an example of this:

PageFormat pf = new PageFormat();
Paper p = pf.getPaper();
p.setImageableArea(0, 0, p.getWidth(), p.getHeight());
pf.setPaper(p);

getMatrix()

This method returns a matrix that can rotate an image appropriately so its orientation is correct when it’s
printed. However, such rotations are performed automatically and transparently based on the orientation
value you select, so you won’t normally use this method directly.

getWidth(), getHeight()

These methods return the logical size of the paper, as opposed to the physical size returned by the methods
of the same name in Paper. The physical size identifies the actual size of the paper and always produces the
same value for a certain type of paper (e.g., U.S. letter size). On the other hand, the logical size represents the
paper size that’s adjusted based on the selected orientation. If you use portrait orientation, the logical width
and height are the same as the physical width and height. However, if you select landscape orientation,
you’ve effectively rotated the paper, although in reality the data itself is logically rotated before it’s printed.
When either LANDSCAPE or REVERSE_LANDSCAPE is specified for the orientation value, the paper’s logical width
equals its physical height, and its logical height equals its physical width.

getImageableX(), getImageableY(), getImageableWidth(),
getImageableHeight()

In much the same way that getWidth() and getHeight() translate the physical paper size into a logical size,
these methods convert Paper’s imageable area values based on the selected orientation.

clone()

This method is overridden from the Object implementation to allow you to easily create copies of a
PageFormat instance.

Printable

Printable defines a single print() method that’s called when a page should be rendered and is passed
a reference to a Graphics object that represents the page being rendered. If you’re already familiar with
Graphics, it’s probably because an instance is passed to the print() method of AWT and Swing components
when they’re displayed as part of a user interface. As you may suspect, because components are already
able to render themselves onto a Graphics object, it’s easy to print them; you’ll see how to do so later in the
chapter.

CHAPTER 11 ■ PRINTING

469

print()

This method is called one or more times during printing so the Printable implementation can render
a page of output. Three parameter values are passed to print() that allow it perform the rendering
appropriately.

A • Graphics object representing the page being rendered.

A • PageFormat object that describes the logical characteristics of the paper onto
which printing will occur.

An integer value that identifies the page to render. This is necessary because a single •
Printable instance may be responsible for printing multiple pages.

Some printer jobs produce output that’s easy to render, and other times jobs may be complex and
involve a large number of rendering operations. For the more complicated printer jobs, it may not be
practical to determine in advance how many pages will be printed. For that reason, print() is required to
return a value that indicates whether it was able to render the requested page. The value should correspond
to one of two constants defined in Printable: PAGE_EXISTS if the page was successfully rendered or
NO_SUCH_PAGE if the Printable couldn’t render the requested page. When you identify a Printable
implementation to PrinterJob and initiate printing, the print() method is called repeatedly until it returns
a value of NO_SUCH_PAGE. Therefore, you’d typically include logic similar to that in Listing 11-8 in your
print() method to cause the print job to end after printing a single page.

Listing 11-8. Terminating a Print Job Using NO_SUCH_PAGE

public int print(Graphics g, PageFormat pageFormat, int pageNumber) {
 if (pageNumber == 0) {
 // Rendering logic would normally go here
 return Printable.PAGE_EXISTS;
 }
 else {
 return Printable.NO_SUCH_PAGE;
 }
}

In effect, your print() method is responsible for identifying the printing equivalent of an “end-of-file”
condition, and until it does so, PrinterJob will continue to print pages rendered by your Printable.

Note ■ The page number passed to print() is zero-indexed, meaning that a value of 0 represents the first

page, 1 represents the second page, and so on.

Sample Printing Application
It’s now possible to create a simple printing application using the classes described previously. The
application shown in Listing 11-9 requires the user to specify the name of an image (e.g., a GIF or JPEG)
file as the first command-line parameter, and the constructor uses that file to create an instance of
java.awt.Image. Although this example illustrates only how to print an image, it’s just as easy to print Swing
components.

CHAPTER 11 ■ PRINTING

470

Listing 11-9. Simple Printing Application

import java.awt.*;
import java.awt.print.*;
import javax.print.*;
import javax.print.attribute.*;
import javax.print.attribute.standard.*;
import javax.swing.ImageIcon;

public class ImagePrint {

 protected ImageIcon printImage;

 public static void main(String[] args) throws Exception {
 ImagePrint ip = new ImagePrint(args[0]);
 ip.performPrint();
 System.exit(0);
 }

 public ImagePrint(String fileName) {
 printImage = new javax.swing.ImageIcon(fileName);
 }

 private void performPrint() throws Exception {
 // Remaining code goes here ...
 }

}

To print the loaded image, you must define an implementation of Printable that will print the image.
In this case, an inner class provides the Printable implementation shown in Listing 11-10; the print()
method is implemented as outlined a moment ago and simply uses the Graphics class’s drawImage()
method to print the image specified on the command line.

Listing 11-10. Drawing an Image on a Page Using a Graphics Object

class MyPrintable implements Printable {

 public int print(Graphics g, PageFormat pf, int pageIndex) {
 if (pageIndex == 0) {
 g.drawImage(printImage.getImage(), 0, 0, null);
 return Printable.PAGE_EXISTS;
 }
 return Printable.NO_SUCH_PAGE;
 }

}

Finally, you can obtain a reference to the default print service, create a DocPrintJob, and use it to
initiate printing as implemented in Listing 11-11.

CHAPTER 11 ■ PRINTING

471

Listing 11-11. Creating and using a DocPrintJob

public void performPrint() throws Exception {
 PrintService service = PrintServiceLookup.lookupDefaultPrintService();
 DocPrintJob job = service.createPrintJob();
 DocFlavor flavor = DocFlavor.SERVICE_FORMATTED.PRINTABLE;
 SimpleDoc doc = new SimpleDoc(new MyPrintable(), flavor, null);
 job.print(doc, null);
}

If you compile and execute this application, you may be somewhat surprised by the results. Instead of
the image being printed inside the imageable area, it’s aligned at the upper-left corner of the page, and a
section is missing from both the top and left sides of the image (see Figure 11-6). This occurs because the
Graphics object passed to print() is “clipped” to prevent you from drawing outside the imageable area even
though the origin (coordinates 0, 0) of the Graphics object corresponds to the upper-left edge of the paper.

You can partially solve this issue by reducing the margins and therefore increasing the imageable area, but
that doesn’t eliminate the problem because the portion of the image outside the hardware margins would still
be clipped. A better solution to this problem is to change the coordinates specified on the call to drawImage().
However, an even better solution is to adjust the Graphics object’s origin so it corresponds to the corner of the
imageable area, instead of the corner of the page. You can do this using translate() as shown in Listing 11-12,

Figure 11-6. By default the drawing is done relative to the upper-left corner of the paper even if a portion of
the image falls outside the imageable area

CHAPTER 11 ■ PRINTING

472

which causes all subsequent drawing operations to be offset by the specified number of pixels. Conceptually,
you may find it easier to think of translate() as moving the rendered output down and/or to the right when
positive translation values are specified or moving up and to the left for negative values.

Listing 11-12. Displaying the Available Print Services

public int print(Graphics g, PageFormat pf, int pageIndex) {
 g.translate((int)(pf.getImageableX()),
 (int)(pf.getImageableY()));
 if (pageIndex == 0) {
 g.drawImage(printImage.getImage(), 0, 0, null);
 return Printable.PAGE_EXISTS;
 }
 return Printable.NO_SUCH_PAGE;
}

If you make this modification and execute the ImagePrint application, the upper-left portion of the
image will be aligned with the upper-left corner of the imageable area, preventing it from being clipped on
the top or left sides (see Figure 11-7).

Figure 11-7. By using the translate() method, you can perform your drawing as if the upper-left corner of
the imageable area corresponds to the coordinates 0, 0

CHAPTER 11 ■ PRINTING

473

Scaling

Up to this point, I haven’t made any assumptions about the Graphics object passed to the print() method,
but in fact it will always be an instance of Graphics2D, which means it supports the capabilities defined
within that class associated with the Java 2D API for graphics and imaging. To take advantage of the
Graphics2D methods, simply cast the Graphics object as follows:

public int print(Graphics g, PageFormat pf, int page) {
 Graphics2D g2d = (Graphics2D)g;

Note ■ Part of the reason the Java 2D printing API is useful is because you have almost complete control

over how the printed output appears. However, another reason that it’s worthwhile is because it allows you to

use the powerful Java 2D API for graphics and imaging.

One of the capabilities provided by Graphics2D is the ability to perform scaling, which changes the size
of the output you render. For example, suppose you modify the scale factor so it renders your output at half
its normal size. In that case, an image that’s 100 pixels wide and 50 pixels in height will be only 50 pixels wide
and 25 in height when rendered and printed. In other words, scaling allows you to shrink or enlarge your
output, and you can use this technique to ensure that your data will fit on a printed page.

When you set a scale factor for a Graphics2D object, you normally should use the same value for both
the width and the height. This causes your output to have the same proportions it’d have if it hadn’t been
scaled, while using two different scale values will distort your output. For example, if you’re rendering a
square but you use one value to scale the width and a different value to scale the height, the shape will be
rendered as a rectangle instead of a square.

You’ll typically select a scale factor by calculating the value that can be used to make the output as large
as possible while still fitting within a single page, and the calculations for doing so are simple. For example,
let’s suppose you want to print an image that doesn’t fit onto a single page like the one shown in Figure 11-8.

To print the entire image on a single page, you could make the changes shown in Listing 11-13 to
ImagePrint to ensure that the image being printed fits exactly within the imageable area.

Listing 11-13. Scaling an Image to Fill the Entire Page

public int print(Graphics g, PageFormat pf, int pageIndex) {
 Graphics2D g2d = (Graphics2D)g;
 g.translate((int)(pf.getImageableX()),
 (int)(pf.getImageableY()));
 if (pageIndex == 0) {
 double pageWidth = pf.getImageableWidth();
 double pageHeight = pf.getImageableHeight();
 double imageWidth = printImage.getIconWidth();
 double imageHeight = printImage.getIconHeight();
 // Find out what scale factor should be applied
 // to make the image's width small enough to
 // fit on the page
 double scaleX = pageWidth / imageWidth;
 // Now do the same for the height
 double scaleY = pageHeight / imageHeight;
 // Pick the smaller of the two values so that

CHAPTER 11 ■ PRINTING

474

 // the image is as large as possible while
 // not exceeding either the page's width or
 // its height
 double scaleFactor = Math.min(scaleX, scaleY);
 // Now set the scale factor
 g2d.scale(scaleFactor, scaleFactor);
 g.drawImage(printImage.getImage(), 0, 0, null);
 return Printable.PAGE_EXISTS;
 }
 return Printable.NO_SUCH_PAGE;
 }

With this change made, the image is scaled so it fits exactly within the imageable area, as shown in
Figure 11-9. A complete discussion of the Java 2D graphics and imaging API is beyond the scope of this
chapter, but by using it along with the Java 2D printing API, you can create professionally formatted output.

Figure 11-8. The image is too large to be printed on a single page, so the right and bottom portions of it are
clipped outside the imageable area

CHAPTER 11 ■ PRINTING

475

Other Support Classes

Although Printable is perhaps the most important interface for you to be familiar with, you may also find it
helpful to familiarize yourself with the Pageable interface and the Book implementation of that interface, so
I’ll close this chapter by briefly reviewing them.

Pageable

In the section “Introducing Service-Formatted Printing,” I mentioned that service-formatted printing
supports an interface called Pageable, and that interface is useful when your application needs to print
multiple pages, particularly when those pages have different formatting needs. The Pageable interface
defines a set of methods that can be used to create a collection of Printable/PageFormat pairs, with each
pair corresponding to a printed page.

getPrintable()

Given a page number, this method returns the Printable implementation responsible for rendering
the page.

Figure 11-9. Scaling lets you take advantage of the imageable area without having a portion of your
output clipped

CHAPTER 11 ■ PRINTING

476

getPageFormat()

Given a page number, this method returns the PageFormat that describes the logical characteristics of
the page.

getNumberOfPages()

This method should return an int value that identifies the number of pages encapsulated by this Pageable
object. Sometimes, however, it may not be possible to provide the page count before the printing occurs. In
that case, you should return the UNKNOWN_NUMBER_OF_PAGES constant defined in Pageable.

Book

Book is an implementation of the Pageable interface and defines methods that allow you to add pairs of
Printable/PageFormat objects to the collection. In addition to the three methods defined in the Pageable
interface, Book implements the methods described next.

append()

This overloaded method has two implementations, although both of them require a Printable parameter
and a PageFormat parameter. One implementation assumes that the Printable/PageFormat pair will be
used to print a single page, and the other implementation allows you to specify the number of pages that the
pair should render. For example, if you’ve already initialized a number of Printable and PageFormat objects,
you could use code similar to that in Listing 11-14 to encapsulate those objects in an instance of Book.

Listing 11-14. Appending Pages to a Book Instance

Printable myPrintable1, myPrintable2, myPrintable3;
PageFormat myFormat1, myFormat2, myFormat3;
// ...
Book myBook = new Book();
myBook.append(myPrintable1, myFormat1);
myBook.append(myPrintable2, myFormat2, 5);
myBook.append(myPrintable3, myFormat3);

This code segment creates a Book that can print seven pages. The first page will be rendered by
myPrintable1, the next five rendered by myPrintable2, and the last page by myPrintable3. When a
particular page is to be rendered, the print() method of the associated Printable object is called and is
passed a reference to the PageFormat object that was added to the book along with the Printable.

setPage()

While append() adds a Printable/PageFormat pair to the end of the Book’s list, this method stores a pair at a
specific page location. For example,

Book myBook = new Book();
MyBook.append(myPrintable1, myFormat1, 5);
MyBook.setPage(2, myPrintable2, myFormat2);

This code segment initializes a Book that can print five pages, with myPrintable1 and myFormat1 used for
pages 1, 2, 4, and 5 and myPrintable2 and myFormat2 used for page 3. As is the case with the print() method,
the page index values specified on setPage() calls are zero-indexed, meaning that the first page corresponds
to a value of 0, so the parameter 2 in the previous arguments to setPage() refers to the third page.

CHAPTER 11 ■ PRINTING

477

RenderableImage

As its name implies, the RenderableImage interface defined in the java.awt.image.renderable package
represents an image that can have operations such as rotation or cropping applied to it in a resolution-
independent manner. If your application works with an instance of RenderableImage, you can specify an
instance of this class as the object to be printed, as shown in Listing 11-15.

Listing 11-15. Using a RenderableImage Implementation

RenderableImage image;
.
.
.
PrintService service = PrintServiceLookup.lookupDefaultPrintService();
DocPrintJob job = service.createPrintJob();
DocFlavor flavor = DocFlavor.SERVICE_FORMATTED.RENDERABLE_IMAGE;
SimpleDoc doc = new SimpleDoc(image, flavor, null);
job.print(doc, null);

Summary
In this chapter, I covered the following:

A brief history of Java’s printing capabilities•

How to find print services•

How to limit which services are returned by specifying document flavors and •
attributes

How to initiate client-formatted printing•

How to create and control a print job•

How to monitor a print job•

How to use service-formatted printing•

The basics of the Java 2D printing API•

479

CHAPTER 12

Introducing JDBC

When your application creates or uses large amounts of data, it’s usually necessary for that information to
be stored in a database. Although there has been significant growth in the use of NoSQL databases in recent
years, the most widely used type of database is still a relational database, and some examples of relational
database products are Oracle, DB2, Sybase, MySQL, and Microsoft SQL Server. A relational database product
is sometimes referred to as a relational database management system (RDBMS, or simply DBMS), while a
database usually refers to a collection of data managed by a DBMS.

Java’s support for relational databases is provided through the Java Database Connectivity (JDBC)
API (application programming interface) that’s largely contained in the java.sql package and consists of
some interfaces and a handful of simple classes. Just as Java programs are intended to work on many different
platforms, JDBC is designed to allow your application to communicate with many different database systems.

Using JDBC is simple, and you need to take only a few steps to add database functionality to your
application. The steps involved are as follows:

 1. Select/obtain a JDBC driver and add the driver code to your CLASSPATH just as
you would any other third-party library.

 2. Obtain a database connection using DriverManager or a DataSource and a URL
that’s appropriate for the driver you’re using.

 3. Create a Statement or an instance of one of its subinterfaces (in other words,
PreparedStatement or CallableStatement), and use it to execute SQL
commands.

For example, the code shown in Listing 12-1 uses a JDBC driver to connect to an Oracle database,
performs a query, and sends the data returned by that query to standard output.

Listing 12-1. JDBC Example

String userid = "bspell";
String password = "brett";
// Get a connection
Co nnection conn = DriverManager.getConnection("jdbc:oracle:thin:@oraserver:1521:projava ",
userid, password);

// Create a statement for executing SQL
Statement stmt = conn.createStatement();
// Execute a query / SELECT statement
ResultSet resultSet = stmt.executeQuery("SELECT * FROM TEST_TABLE");
ResultSetMetaData rsmd = resultSet.getMetaData();
// Find out how many columns were returned by the query
int count = rsmd.getColumnCount();

CHAPTER 12 ■ INTRODUCING JDBC

480

// Loop until all rows have been processed
while (resultSet.next()) {
 // Loop until all columns in current row have been processed
 for (int i = 1; i <= count; i++) {
 // Print out the current value
 System.out.print(resultSet.getObject(i));
 // Put a comma between each value
 if (i < count) {
 System.out.println(",");
 }
 }
 // Start the next row's values on a new line
 System.out.println("");
}
// Close the database objects
resultSet.close();
stmt.close();
conn.close();

In this chapter, you’ll examine each of the following topics related to using JDBC:

Selecting and obtaining driver types•

Obtaining a connection to a database•

Executing SQL statements and stored procedures•

Understanding data types defined in JDBC and how they relate to “native” types•

Managing transactions•

Implementing database connection pooling•

Processing errors and warnings generated by JDBC functions•

Debugging guidelines for database applications•

SQL Standards and JDBC Versions
Providing a single interface to many DBMS products is difficult because each product supports a unique
collection of features and data types. For example, while SQL Server supports a Boolean data type, Oracle
doesn’t; however, you can simulate Boolean data using numeric fields. Even when two DBMS products
provide the same functionality, the way you use that functionality on one DBMS can be very different from
the way it’s used on the other. Fortunately, JDBC provides a layer of abstraction between your application
and the specific details of how to perform a particular task.

Variation between DBMS products has been limited somewhat by organizations that have established
standards for Structured Query Language (SQL). The most widely adopted and well-known standard is the
SQL2 standard (also known as SQL92), although a more recent standard called SQL3 has emerged. SQL3 is
partly an attempt to address what’s perceived as a serious limitation of SQL2: its lack of support for object-
oriented concepts. When SQL2 was designed, object-oriented programming wasn’t yet widely adopted, and
the result is that SQL as defined by SQL2 is poorly suited to object persistence. In fact, an entire category
of products has emerged to address this problem using technology called object-relational mapping; you’ll
examine that topic in more detail in the next chapter.

CHAPTER 12 ■ INTRODUCING JDBC

481

The JDBC 1.x API specification defined functionality based on the SQL2/SQL92 standard, and support
for that specification was included in the Java 1.1 core classes and defined within the java.sql package.
When the JDBC 2.0 specification was released, it included some functionality that was expected to be used
primarily on application servers and that wasn’t originally intended to be included in the Standard Edition
of Java. As a result, the JDBC 2.x functionality included changes to the “core” java.sql package and also
defined a new javax.sql “standard extension” package that contained classes related to the newly defined
server functionality. Eventually, however, the javax.sql package became part of the Java Standard Edition,
so you’ll now find both java.sql and javax.sql if you examine the documentation for that edition.

As you read this chapter, an important point to be aware of is that the features available to your
application will depend upon which implementation of JDBC you’re using. For example, if you’re using
an implementation of the JDBC 3.0 API, you won’t be able to use features that were added in the 4.0
specification. For that reason, it’s obviously desirable to pick an implementation of the latest specification,
but that’s not always possible depending upon which database you’re using. When writing your application,
you should ensure you use only those JDBC features that will be available to you, and the way to determine
this is to find out which JDBC driver (explained next) you’ll be using and consult its documentation to learn
which API specification it supports.

JDBC Drivers
The most important part of the java.sql package is its collection of interfaces, because they define how your
application interacts with a relational database. One of those interfaces is Driver, and it includes a method
that’s used to obtain database connections, so in a sense Driver is the starting point for an application’s
use of JDBC. In reality, you'll rarely, if ever, use Driver directly, but instead you’ll rely on other classes and
interfaces that provide an additional layer of abstraction around the creation of a database connection. Even
so, the phrase JDBC driver is used to refer to a library of classes that includes a Driver implementation and
the other classes—usually a large number of them—that provide support for JDBC operations to one or
more types of DBMS. A JDBC driver is usually packaged as a ZIP or JAR file, and you can obtain drivers from
a variety of sources.

Most DBMS vendors supply at least one driver for use with their own database, usually at no cost.
However, third parties also sell drivers, and those often provide better performance and/or reliability
than the database vendor implementations. Note that it’s not necessary for a driver to support all features
defined in the JDBC specification for the driver to be considered JDBC-compliant, although most drivers
do support most features. If there’s a specific feature your application needs, you should test the driver in
advance before choosing it or contact the vendor that supplies the driver before purchasing it to ensure that
it supports the desired functionality.

Like any other third-party library, a JDBC driver that you obtain for use within your application must be
added to your CLASSPATH when the application is executed. For example, if you’ve downloaded a driver that’s
packaged as a ZIP file called ojdbc7.jar stored in the C:/brett/temp directory, you could use the following
statement to execute an application called MyDatabaseApp and include the driver in your CLASSPATH:

java –classpath=C:/brett/temp/ojdbc7.jar MyDatabaseApp

Driver Types
JDBC drivers are divided into four categories, or types, based on how they connect to the database. Each
category has unique advantages and disadvantages, and it’s common for driver vendors to provide more
than one type of JDBC driver for a database. For example, Oracle provides both a type-2 and a type-4 driver
for its namesake DBMS.

CHAPTER 12 ■ INTRODUCING JDBC

482

Type 1: Connection Through an ODBC Data Source

Microsoft’s Open Database Connectivity (ODBC) is conceptually similar to JDBC and is widely used to
provide relational database connectivity. In fact, ODBC is provided with the Windows operating system, and
you can define an ODBC data source through the Data Sources dialog box, as shown in Figure 12-1.

A data source is simply a way of associating a name with a particular database, and when creating a new
data source, you must select the ODBC driver used to access the database, as shown in Figure 12-2.

The first type of JDBC driver we’ll look at, called a type-1 driver, provides JDBC access to a database by
connecting to it through an ODBC data source instead of by connecting directly to the database. To create
a connection using a type-1 driver you specify the name of a data source and the driver will connect to
the data source you specified. Subsequent JDBC operations are then performed by calling the equivalent
function in the ODBC driver and converting the results returned from those functions into their Java
equivalents.

Figure 12-1. Windows allows you to list the ODBC data sources defined on your system

Figure 12-2. To define a new data source, you must first select the type to create

CHAPTER 12 ■ INTRODUCING JDBC

483

For many years the Java core classes include a type-1 driver commonly referred to as the JDBC-ODBC
bridge driver. Although the driver wasn’t very robust in terms of features it was useful for performing simple
tests and for developing small applications. It was particularly useful in the early days of Java when few JDBC
drivers (but many ODBC drivers) were available, because it allowed Java applications to connect to any
database for which an ODBC driver was present. Now, though, there are probably even more JDBC drivers
than ODBC drivers to choose from, and presumably as a result of its greatly reduced usefulness, Oracle
removed the bridge driver from Java effective in Java 8.

In practice, type-1 drivers were never considered an ideal solution for database connectivity and the
bridge driver had long been described as a “transitional” technology. Besides the obvious disadvantage of
needing two different database drivers (one JDBC and one ODBC) to be present, this design is inherently
slower than one that communicates directly with a database and is largely a Windows-centric solution
because ODBC is primarily focused on providing database access to Windows applications.

Type 2: Connection Through Native Client Networking Code

Most DBMS products provide a client interface that allows you to interact with the database server.
For example, Oracle provides the SQL*Plus application that allows you to connect to a database, issue SQL
statements, and view the results of those statements (the rows returned from a query). However, before you
can use SQL*Plus, you must install Oracle’s networking software that allows a client to communicate with
the database server.

A type-2 JDBC driver includes both Java and native code, and it communicates with the client-side
network software of a particular DBMS. It provides better performance than a type-1 driver does, but it can
make distributing your application more difficult since you must ensure that each client has the networking
software installed.

Type 3: Connection Through Middleware

This type of driver is written entirely in Java, and it sends database requests to a server component. Those
requests are transmitted using a protocol that’s not specific to any database, and the server component is
responsible for converting it into the appropriate format before forwarding the request to a particular DBMS.

A type-3 driver has the disadvantage of requiring a server-side component, but it does allow you to
change the DBMS being used on the server without affecting your client code.

Type 4: Direct Connection to DBMS

A type-4 driver is written entirely in Java, and it communicates directly with a DBMS server using the
appropriate protocol for that type of server. For example, in the case of Oracle’s type-4 driver, a socket
connection is opened between the JDBC application and the database server.

This type of driver is easy to use because the only component needed is the driver itself, which can
easily be packaged with a Java application. No other client- or server-side software is required, which
simplifies distributing your application.

Table 12-1 summarizes the advantages and disadvantages of the various driver types.

CHAPTER 12 ■ INTRODUCING JDBC

484

Obtaining a Database Connection
As mentioned earlier, you can use an implementation of the Driver interface to obtain a database
connection, although you shouldn’t call the methods in that class directly. Instead, you should request a
connection from the DriverManager singleton through its static getConnection() methods.

When you call getConnection(), DriverManager passes the parameter values specified to each
registered driver until it finds one that’s able to establish a connection using those values. Since the inclusion
of JDBC 4.0 in Java 6 all JDBC drivers on the class path have been loaded automatically, although in earlier
versions of Java it was necessary to explicitly instantiate the Driver implementation class, which in turn
would cause it to register itself with the DriverManager class. For example, in an earlier version of Java you
would need to include a line like the following:

new oracle.jdbc.driver.OracleDriver();

or as follows:

Class.forName("oracle.jdbc.driver.OracleDriver");

Alternatively, you could have drivers loaded automatically by setting the value of the jdbc.drivers
system property when starting a Java Virtual Machine (JVM). The jdbc.drivers property specified
the names of the Driver classes to be loaded and was set using the –D option available on most JVM
implementations. The following command executes the main() method of the Java class named Test after
loading an Oracle driver. Multiple drivers could be specified by separating the fully qualified Driver class
names (the package and class names) with the colon (:) character:

java –Djdbc.drivers=oracle.jdbc.driver.OracleDriver Test

JDBC URL Formats
At a minimum, you must specify a JDBC URL when calling getConnection(), although a user ID and
password are usually also needed. The URL identifies the specific database you want to connect to, while
the user ID and password provide the authentication information that the database may require before a
connection can be created.

Table 12-1. Advantages and Disadvantages of Each Driver Type

Driver Type Advantages Disadvantages

1 Allows Java program code to use any
database that provides an ODBC driver

Performance may not be as good as a driver of a
different type.

2 Performance is generally very good Uses native code and is therefore platform-
dependent.

3 Platform-independent Requires both a client and a corresponding server
implementation.

4 Platform-independent Performance may not be as good as a driver of a
different type.

CHAPTER 12 ■ INTRODUCING JDBC

485

The JDBC URL isn’t a traditional URL that can be represented by an instance of java.net.URL but is
a String value that identifies a particular JDBC driver and database. The general format of a JDBC URL is
jdbc:<subprotocol>:<subname>, where the values of <subprotocol> and <subname> vary based on the
database you want to connect to and the driver being used. One of the simplest examples of a URL format
is that of the previously mentioned bridge driver, where the subprotocol would simply be “odbc” and the
subname would be the name of the ODBC data source. For example, to connect to an ODBC data source
named projava, you would specify the URL as jdbc:odbc:projava. In practice, JDBC URLs are usually
slightly more complex than that. For example, Oracle’s type-4 (or thin-client as Oracle refers to it) driver
requires you to create a <subname> that includes three items:

The host name of the machine that the DBMS server is running on•

The port number that it uses to listen for incoming connections•

The name of the database to which you want to connect•

To use Oracle’s thin-client driver to connect to the database projava maintained on a server named
oraserve that uses port 1521, you’d specify the following URL:

jdbc:oracle:thin:@oraserver:1521:projava

Keep in mind that the URL isn’t just vendor-specific but driver-specific. For example, besides the
thin-client driver mentioned, Oracle also offers a type-2 (or OCI), and to connect to the same database with
that driver, you’d instead use the following URL:

jdbc:oracle:oci8:@projava

Since the format of the URL is driver-specific, you should review the documentation associated with the
driver you’re using to determine the correct format of a URL.

Connection
A database connection is represented in JDBC by an instance of the Connection class, and as you might
expect, an instance of that class is returned by DriverManager’s getConnection() methods. The following
code illustrates how to obtain a database connection:

String url = "jdbc:oracle:thin:@oraserver:1521:projava";
Connection connect = DriverManager.getConnection(url, "bspell", "brett");

Obtaining Connections from a DataSource (2.x Optional Package)
The technique just described for obtaining a database connection is easy to use, but it does have one
drawback. Since you must load a driver and construct a driver- and database-specific URL, this approach
causes your application to be tightly coupled to a specific driver and database. Although there are ways to
address those weaknesses, no standard solution was defined until JDBC 2.x, when the DataSource interface
was introduced as part of the optional package.

A DataSource is simply a class that provides a layer of abstraction between your application and the
information needed to connect to a database. That information may include the “identity” of the Driver
class, the information needed to construct a valid URL, and a user ID and password. Like DriverManager,
DataSource provides getConnection() methods that can be used to obtain database connections.

CHAPTER 12 ■ INTRODUCING JDBC

486

DataSource implementations are widely used by application servers to provide the ability to connect
to a database through a combination of JDBC and the Java Naming and Directory Interface (JNDI). JNDI is
an API that defines methods used to associate names with resources and provide access to those resources
through a directory. In this case, the resource would be a DataSource that’s able to obtain a connection to a
particular database; the following is an example of how JNDI and the DataSource might be used:

Context ctx = new InitialContext();
DataSource source = (DataSource)(ctx.lookup("jdbc/projava"));
Connection connect = source.getConnection();

With this approach, your application code is coupled only to the name assigned to the database
(projava) instead of to a particular driver and URL. In fact, this technique allows both the driver and the
information used to connect to the database to be modified without requiring any changes to your source
code. So, for example, if you've deployed a web application to an application server and that application
uses a database connection, you can change the connection information if necessary without making any
changes to the web application code.

DatabaseMetaData
The DatabaseMetaData interface defines a large number of methods that allow you to identify the
capabilities of the DBMS and the JDBC driver, as well as allowing you to obtain a description of the contents
of the database. For example, you can retrieve the list of schemas defined in the database, the tables within
each schema, the columns within each table, and the characteristics of those columns, such as their size and
data types. In addition, you can use DatabaseMetaData to identify primary and foreign keys, indices, and
many other items.

In general, the methods in DatabaseMetaData fall into one of two categories: those for describing
features and functionality and those that describe the contents of the database.

The methods that describe database features and functionality typically return a boolean, an int, or a
String; some examples include the following:

• supportsOuterJoins() returns a boolean that indicates whether the database
supports outer joins.

• getMaxConnections() returns an int that identifies the maximum number of
simultaneous connections that can be open to the database.

• getDatabaseProductName() returns the name of the DBMS product.

In contrast, the methods that describe the contents of the database do so by returning an
implementation of ResultSet, an interface described later in the chapter that’s normally used in JDBC to
represent the results of a query. Examples of this category of method include getSchemas(), which returns
a list of schemas defined in the database, and getTables(), which as its name implies returns a list of the
tables defined.

Once you’ve successfully connected to the database, it’s possible to obtain a reference to an instance of
DatabaseMetaData using code similar to the following:

Connection connect = DriverManager.getConnection(url, "bspell", "brett");
DatabaseMetaData metaData = connect.getMetaData();

As Figure 12-3 shows, the DatabaseBrowser application in Listing 12-2 allows you to browse the
tables in a database, and you accomplish this by using DatabaseMetaData to dynamically identify the
accessible tables.

CHAPTER 12 ■ INTRODUCING JDBC

487

Listing 12-2. DatabaseBrowser Application

import java.awt.*;
import java.awt.event.*;
import java.sql.*;
import java.util.ArrayList;
import java.util.List;
import javax.swing.*;
import javax.swing.table.*;

public class DatabaseBrowser extends JFrame {

 private Connection connection;
 private JComboBox catalogBox;
 private JComboBox schemaBox;
 private JComboBox tableBox;
 private JTable table;

 public static void main(String[] args) throws Exception {
 DatabaseBrowser browser = new DatabaseBrowser();
 }

Figure 12-3. The DatabaseBrowser application allows you to browse the information in a database

CHAPTER 12 ■ INTRODUCING JDBC

488

 public DatabaseBrowser() throws Exception {
 super("Database Browser");
 ConnectionDialog dialog = new ConnectionDialog(this);
 connection = dialog.getConnection();
 buildFrameLayout();
 setSize(600, 450);
 setVisible(true);
 }

 private void buildFrameLayout() {
 Container pane = getContentPane();
 pane.add(getSelectionPanel(), BorderLayout.NORTH);
 table = new JTable();
 table.setAutoResizeMode(JTable.AUTO_RESIZE_OFF);
 refreshTable();
 pane.add(new JScrollPane(table), BorderLayout.CENTER);
 pane.add(getFrameButtonPanel(), BorderLayout.SOUTH);
 }

 private JPanel getSelectionPanel() {
 JLabel label;
 JPanel panel = new JPanel();
 panel.setLayout(new GridBagLayout());
 GridBagConstraints constraints = new GridBagConstraints();
 constraints.gridy = 0;
 constraints.insets = new Insets(5, 10, 5, 10);
 label = new JLabel("Catalog", JLabel.RIGHT);
 panel.add(label, constraints);
 label = new JLabel("Schema", JLabel.RIGHT);
 panel.add(label, constraints);
 label = new JLabel("Table", JLabel.RIGHT);
 panel.add(label, constraints);

 constraints.gridy = 1;
 catalogBox = new JComboBox();
 populateCatalogBox();
 panel.add(catalogBox, constraints);
 schemaBox = new JComboBox();
 populateSchemaBox();
 panel.add(schemaBox, constraints);
 tableBox = new JComboBox();
 populateTableBox();
 panel.add(tableBox, constraints);

 catalogBox.addItemListener(new ItemListener() {
 public void itemStateChanged(ItemEvent event) {
 String newCatalog = (String)(
 catalogBox.getSelectedItem());
 try {
 connection.setCatalog(newCatalog);
 } catch (Exception e) {};

CHAPTER 12 ■ INTRODUCING JDBC

489

 populateSchemaBox();
 populateTableBox();
 refreshTable();
 }
 });

 schemaBox.addItemListener(new ItemListener() {
 public void itemStateChanged(ItemEvent event) {
 populateTableBox();
 refreshTable();
 }
 });

 tableBox.addItemListener(new ItemListener() {
 public void itemStateChanged(ItemEvent event) {
 refreshTable();
 }
 });
 return panel;
 }

 private void populateCatalogBox() {
 try {
 DatabaseMetaData metaData = connection.getMetaData();
 ResultSet resultSet = metaData.getCatalogs();
 List values = new ArrayList();
 while (resultSet.next()) {
 values.add (resultSet.getString(1));
 }
 resultSet.close();
 catalogBox.setModel(new DefaultComboBoxModel(values.toArray()));
 catalogBox.setSelectedItem(connection.getCatalog());
 catalogBox.setEnabled(values.size() > 0);
 } catch (Exception e) {
 catalogBox.setEnabled(false);
 }
 }

 private void populateSchemaBox() {
 try {
 DatabaseMetaData metaData = connection.getMetaData();
 ResultSet resultSet = metaData.getSchemas();
 List values = new ArrayList();
 while (resultSet.next()) {
 values.add (resultSet.getString(1));
 }
 resultSet.close();
 schemaBox.setModel(new DefaultComboBoxModel(values.toArray()));
 schemaBox.setEnabled(values.size() > 0);
 } catch (Exception e) {
 schemaBox.setEnabled(false);
 }
 }

CHAPTER 12 ■ INTRODUCING JDBC

490

 private void populateTableBox() {
 try {
 String[] types = {"TABLE"};
 String catalog = connection.getCatalog();
 String schema = (String)(schemaBox.getSelectedItem());
 DatabaseMetaData metaData = connection.getMetaData();
 ResultSet resultSet = metaData.getTables(catalog, schema, null,
 types);
 List values = new ArrayList();
 while (resultSet.next()) {
 values.add(resultSet.getString(3));
 }
 resultSet.close();
 tableBox.setModel(new DefaultComboBoxModel(values.toArray()));
 tableBox.setEnabled(values.size() > 0);
 } catch (Exception e) {
 tableBox.setEnabled(false);
 }
 }

 private JPanel getFrameButtonPanel() {
 JPanel panel = new JPanel();
 JButton button = new JButton("Exit");
 button.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 System.exit(0);
 }
 });
 panel.add(button);
 return panel;
 }

 private void refreshTable() {
 String catalog = (catalogBox.isEnabled() ?
 catalogBox.getSelectedItem().toString() :
 null);
 String schema = (schemaBox.isEnabled() ?
 schemaBox.getSelectedItem().toString() :
 null);
 String tableName = (String)tableBox.getSelectedItem();
 if (tableName == null) {
 table.setModel(new DefaultTableModel());
 return;
 }
 String selectTable = (schema == null ? "" : schema + ".") +
 tableName;
 if (selectTable.indexOf(' ') > 0) {
 selectTable = "\"" + selectTable + "\"";
 }

CHAPTER 12 ■ INTRODUCING JDBC

491

 try {
 Statement stmt = connection.createStatement();
 ResultSet resultSet = stmt.executeQuery("SELECT * FROM " +
 selectTable);
 table.setModel(new ResultSetTableModel(resultSet));
 } catch (Exception e) {};
 }

 class ConnectionDialog extends JDialog {

 private JTextField useridField;
 private JTextField passwordField;
 private JTextField urlField;

 private boolean canceled;
 private Connection connect;

 public ConnectionDialog(JFrame f) {
 super(f, "Connect To Database", true);
 buildDialogLayout();
 setSize(300, 200);
 }

 public Connection getConnection() {
 setVisible(true);
 return connect;
 }

 private void buildDialogLayout() {
 JLabel label;

 Container pane = getContentPane();
 pane.setLayout(new GridBagLayout());
 GridBagConstraints constraints = new GridBagConstraints();
 constraints.anchor = GridBagConstraints.WEST;
 constraints.insets = new Insets(5, 10, 5, 10);

 constraints.gridx = 0;
 constraints.gridy = 0;
 label = new JLabel("Userid:", JLabel.LEFT);
 pane.add(label, constraints);

 constraints.gridy++;
 label = new JLabel("Password:", JLabel.LEFT);
 pane.add(label, constraints);

 constraints.gridy++;
 label = new JLabel("URL:", JLabel.LEFT);
 pane.add(label, constraints);

CHAPTER 12 ■ INTRODUCING JDBC

492

 constraints.gridx = 1;
 constraints.gridy = 0;

 useridField = new JTextField(10);
 pane.add(useridField, constraints);

 constraints.gridy++;
 passwordField = new JTextField(10);
 pane.add(passwordField, constraints);

 constraints.gridy++;
 urlField = new JTextField(15);
 pane.add(urlField, constraints);

 constraints.gridx = 0;
 constraints.gridy = 3;
 constraints.gridwidth = GridBagConstraints.REMAINDER;
 constraints.anchor = GridBagConstraints.CENTER;
 pane.add(getButtonPanel(), constraints);
 }

 private JPanel getButtonPanel() {
 JPanel panel = new JPanel();
 JButton btn = new JButton("Ok");
 btn.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 onDialogOk();
 }
 });
 panel.add(btn);
 btn = new JButton("Cancel");
 btn.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 onDialogCancel();
 }
 });
 panel.add(btn);
 return panel;
 }

 private void onDialogOk() {
 if (attemptConnection()) {
 setVisible(false);
 }
 }

 private void onDialogCancel() {
 System.exit(0);
 }

CHAPTER 12 ■ INTRODUCING JDBC

493

 private boolean attemptConnection() {
 try {
 connect = DriverManager.getConnection(
 urlField.getText(),
 useridField.getText(),
 passwordField.getText());
 return true;
 } catch (Exception e) {
 JOptionPane.showMessageDialog(this,
 "Error connecting to " +
 "database: " + e.getMessage());
 }
 return false;
 }

}

class ResultSetTableModel extends AbstractTableModel {

 private List columnHeaders;
 private List tableData;

 public ResultSetTableModel(ResultSet resultSet)
 throws SQLException {
 List rowData;
 ResultSetMetaData rsmd = resultSet.getMetaData();
 int count = rsmd.getColumnCount();
 columnHeaders = new ArrayList(count);
 tableData = new ArrayList();
 for (int i = 1; i <= count; i++) {
 columnHeaders.add(rsmd.getColumnName(i));
 }
 while (resultSet.next()) {
 rowData = new ArrayList(count);
 for (int i = 1; i <= count; i++) {
 rowData.add(resultSet.getObject(i));
 }
 tableData.add(rowData);
 }
 }

 public int getColumnCount() {
 return columnHeaders.size();
 }

 public int getRowCount() {
 return tableData.size();
 }

CHAPTER 12 ■ INTRODUCING JDBC

494

 public Object getValueAt(int row, int column) {
 List rowData = (List)(tableData.get(row));
 return rowData.get(column);
 }

 public boolean isCellEditable(int row, int column) {
 return false;
 }

 public String getColumnName(int column) {
 return (String)(columnHeaders.get(column));
 }

 }

}

Statement
Once you’ve obtained a database connection through DriverManager or through a DataSource, you can
create a Statement object. A Statement allows you to execute SQL commands, and you can create an
instance of Statement by calling Connection’s createStatement() method:

Connection connect = DriverManager.getConnection("jdbc:odbc:projava");
Statement stmt = connect.createStatement();

The Statement interface defines four methods for executing SQL commands, and the specific methods
used will depend upon the type of statements you’re executing and the type of results returned by those
statements.

You can reuse a single instance of Statement repeatedly to execute SQL statements, and simple
applications usually need to create only one Statement. However, each instance allows only a single SQL
command to be active at any given time, so you may sometimes need to create multiple Statement objects.
For example, if your application needs to perform a query while the results of a previous query are still being
processed, the two queries must be issued from different Statement instances.

executeUpdate()

This method allows you to execute most Data Manipulation Language (DML) statements (INSERT, UPDATE,
and DELETE) and Data Definition Language (DDL) statements (CREATE TABLE, CREATE VIEW, etc.). It accepts
a single String parameter that represents the SQL statement to be executed and returns an integer value
identifying the number of rows that were modified by the statement. The following are examples of how to
use executeUpdate():

Statement stmt = connect.createStatement();
int rowsChanged = stmt.executeUpdate(
 "UPDATE MYTABLE SET ACCTSTATUS = 0 WHERE CUSTID = 123");
rowsChanged = stmt.executeUpdate(
 "UPDATE HERTABLE SET ACCTBAL = 0 WHERE CUSTID = 123");

For DDL commands, a value of zero is always returned by executeUpdate().

CHAPTER 12 ■ INTRODUCING JDBC

495

executeQuery()

When you want to perform a query (issue a SELECT statement), you can do so using the executeQuery()
method. This method requires a String parameter representing the statement to be executed, and it returns
a ResultSet that can be used to process the results of the query.

ResultSet resultSet = stmt.executeQuery("SELECT * FROM MYTABLE");

I’ll provide a detailed description of how to use ResultSet later in this chapter.

execute()

In some unusual cases, a single SQL statement can return multiple update counts or ResultSet instances,
and you should use this method when you expect that to be the case. Like executeUpdate() and
executeQuery(), this method is passed a String parameter representing the statement to be executed, but
execute() returns a Boolean value instead of an int or a ResultSet. That value identifies the data type of
the first return value and will be true if the first value is a ResultSet or false if it’s an integer.

You can iterate through the return values by calling getMoreResults(), which returns a Boolean value
with the same meaning as the value returned by execute(). ResultSet instances and integer update
counts can be retrieved from the queue using getResultSet() and getUpdateCount(), respectively, but
when getUpdateCount() returns a value of -1, the end of the result queue has been reached.

addBatch(), executeBatch()

The executeUpdate() method described previously is simple and easy to use but has one disadvantage:
each SQL statement executed is immediately sent to the database. While that isn’t a problem as long as a
small number of updates are being executed, it can result in poor performance when making many changes
to a database. The DBMS server and the client application typically reside on different machines, which
means that each invocation of executeUpdate() will incur the overhead associated with a network call. That
overhead is usually substantial, and it’s much more efficient to transfer a large amount of data in a single
network call than it is to transfer smaller amounts of data using many calls.

The addBatch() method can be called multiple times for a Statement and allows you to create a group
(or batch) of update (INSERT, UPDATE, DELETE) statements. Once you’ve added the statements you want to
include in the batch, executeBatch() will send those statements to the DBMS using a single network call,
and the results are returned as an array of int values. Since batch updates greatly reduce network overhead,
they can significantly improve an application’s performance. Following is a simple example of how to use
batch updates:

Statement stmt = connect.createStatement();
stmt.addBatch("UPDATE MYTABLE SET STATUS = 5 WHERE CUSTID = 123");
stmt.addBatch("UPDATE HISTABLE SET FIRSTNAME = 'John' WHERE CUSTID = 456");
int[] results = stmt.executeBatch();

When all the updates in a batch complete normally, executeBatch() returns an array of integer
values, and there will be an array element for each update statement. Like the integer value returned by
executeUpdate(), each integer identifies the number of rows the statement changed or will be -2 if that
number couldn’t be determined.

A JDBC driver may or may not continue executing batch update statements after one of them fails.
When an error does occur, a BatchUpdateException is thrown that can be used to retrieve the integer
values for the statements that were executed. If the driver continued to execute updates after a failure,

CHAPTER 12 ■ INTRODUCING JDBC

496

the BatchUpdateException’s getUpdateCounts() method will return an array of integers for every
statement in the batch, including a count value of -3 as the array element for a statement that wasn’t
executed successfully. If the driver stopped executing statements once a failure occurred, the integer array
will contain only count values for the statements prior to the one that failed. Regardless of the outcome,
the list of SQL commands in the Statement’s batch is cleared once executeBatch() completes. You can
also clear the list of statements without executing them by calling the clearBatch() method.

PreparedStatement

When you call one of Statement’s execute() methods, the SQL statement specified is “compiled” by the
JDBC driver before being sent to the DBMS. In many cases, you’ll want to execute multiple statements that
are similar and may differ only by a single parameter value. For example, you might execute SQL statements
like the following:

Statement stmt = connect.createStatement();
stmt.executeUpdate(
 "UPDATE MYTABLE SET FNAME = 'Jacob' WHERE CUSTID = 123");
stmt.executeUpdate(
 "UPDATE MYTABLE SET FNAME = 'Jordan' WHERE CUSTID = 456");
stmt.executeUpdate(
 "UPDATE MYTABLE SET FNAME = 'Jeffery' WHERE CUSTID = 789");

Compiling each SQL statement can result in poor performance if a large number of statements are
executed. However, this example illustrates the usefulness of PreparedStatement, which is a subclass
of Statement. PreparedStatement allows you to compile a statement one time and use substitution
parameters to modify the final SQL statement that’s executed. In this case, for example, you might create a
PreparedStatement using code like the following:

PreparedStatement pstmt = connect.prepareStatement(
 "UPDATE MYTABLE SET FNAME = ? WHERE CUSTID = ?");

The two question marks (?) in the statement represent substitution parameters, and you can use the
setXXX() methods defined in PreparedStatement to specify values for those fields. For example, the code in
Listing 12-3 is functionally equivalent to the group of statements used earlier.

Listing 12-3. Using a PreparedStatement

PreparedStatement pstmt = connect.prepareStatement(
 "UPDATE MYTABLE SET FNAME = ? WHERE CUSTID = ?");

pstmt.setString(1, "Jacob");
pstmt.setInt(2, 123);
pstmt.executeUpdate();

pstmt.setString(1, "Jordan");
pstmt.setInt(2, 456);
pstmt.executeUpdate();

pstmt.setString(1, "Jeffery");
pstmt.setInt(2, 789);
pstmt.executeUpdate();

CHAPTER 12 ■ INTRODUCING JDBC

497

This approach is much more efficient because the statement is compiled only once, but it’s executed
several times.

Note that the substitution field index values are one-based instead of zero-based, meaning that the first
question mark corresponds to field 1, the second to field 2, and so on.

Another advantage of using a PreparedStatement instead of a Statement is that it partially insulates
your application from the details of creating a valid SQL statement. For example, suppose you attempt to
execute the following code:

Statement stmt = connect.createStatement();
String insertText = "This won't work";
String sqlText = "UPDATE MYTABLE SET FNAME = '" + insertText + "' " +
 "WHERE CUSTID = 123");
stmt.executeUpdate(sqlText);

The SQL statement that’s constructed in the code segment listed previously will fail because of the
embedded single quote/apostrophe character in the word won’t. In other words, the SQL statement will
contain the following text:

UPDATE MYTABLE SET FNAME = 'This won't work' WHERE CUSTID = 123

It’s possible to solve this problem (and use a Statement) by changing each embedded apostrophe
into a pair of apostrophes. However, that approach is moderately complex and requires you to perform a
conversion on any string that may have embedded apostrophes before using the string in a SQL statement.

A related problem occurs when embedding date values in a SQL statement, since each DBMS can define
its own date format. For example, the following statement may be valid for one DBMS but not another:

UPDATE ACCTINFO SET DATEOFSALE = '09-FEB-2001' WHERE ACCTNUM = 456

A third problem occurs when you want to store binary data in a database. SQL supports text, numeric,
and date information but doesn’t define a way for you to embed a series of byte values in a SQL statement.

Fortunately, PreparedStatement provides an easy solution for all three of these problems. Instead of
embedding the data value directly inside the SQL statement, you can simply define a substitution parameter
and use a setXXX() method to store the appropriate value. When you do so, the JDBC driver assumes
responsibility for creating a valid SQL statement, which insulates your application from the details of
embedding a particular type of data. For example, you can store a String value (with or without embedded
quotation marks) in a PreparedStatement using code like the following:

String insertText = "This won't work";
PreparedStatement pstmt = connect.prepareStatement(
 "UPDATE MYTABLE SET FNAME = ? " +
 "WHERE CUSTID = 123");
pstmt.setString(1, insertText);
pstmt.executeUpdate();

CHAPTER 12 ■ INTRODUCING JDBC

498

You can specify a Date value the same way, as illustrated next. Note, however, that an instance of
java.util.Date must first be converted into an instance of java.sql.Date.

java.util.Date dateValue = new java.util.Date();
java.sql.Date sqlDate = new java.sql.Date(dateValue.getTime());
PreparedStatement pstmt = connect.prepareStatement(
 "UPDATE ACCTINFO SET DATEOFSALE = ? " +
 "WHERE ACCTNUM = 456");
pstmt.setDate(1, sqlDate);
pstmt.executeUpdate();

Finally, an array of byte values can be stored by encapsulating them in a ByteArrayInputStream and
storing a reference to that stream using setBinaryStream().

byte[] pixelValues;
// ...
PreparedStatement pstmt = connect.prepareStatement(
 "UPDATE APPIMAGES SET IMAGEDATA = ? " +
 "WHERE IMAGEID = 789");
ByteArrayInputStream bais = new ByteArrayInputStream(pixelValues);
pstmt.setBinaryStream(1, bais, pixelValues.length);

CallableStatement

CallableStatement is a subclass of PreparedStatement, and this class allows you to execute stored
procedures, or programs stored inside a database. Stored procedures are usually written in a proprietary
language such as Oracle’s PL/SQL, and they typically contain a combination of SQL statements and
structured programming instructions. The following is the simplest version of a stored procedure call, where
myProcedure is a stored procedure that performs a query:

String procedureCall = "{call myProcedure}";
CallableStatement cstmt = connect.prepareCall(procedureCall);
ResultSet resultSet = cstmt.executeQuery();

Note that the string used to call the stored procedure is enclosed in braces. This is done because the
syntax for calling stored procedures isn’t a standard part of SQL, so JDBC supports these calls through its
escape syntax. The escape syntax is used for nonstandard SQL extensions that are supported by JDBC, and it
indicates to the driver that the escape text must be converted into a form that’s appropriate for the DBMS.

Like Java methods, stored procedures may allow you to pass parameter values (in stored procedure
terminology, an IN parameter) and may provide a return value (or result parameter). Unlike Java methods,
however, stored procedures can return multiple values through OUT parameters, and a parameter can
be an IN parameter, an OUT parameter, or both (INOUT). Parameters are identified by question marks in
CallableStatement commands the same way that substitution fields are identified for PreparedStatement
commands. For example, to call myProcedure and indicate that it returns a result parameter, you could
execute the following:

String procedureCall = "{?= call myProcedure}";

CHAPTER 12 ■ INTRODUCING JDBC

499

You can specify IN and OUT parameters inside parentheses as illustrated in the following example, where
three parameters are specified for myProcedure:

String procedureCall = "{?= call myProcedure(?, ?, ?)}";

Before calling a stored procedure, you must provide a value for each IN parameter and identify the type
of data that will be returned by each OUT parameter. You provide a value for an IN parameter in the same way
as you set values for PreparedStatement instances—using the setXXX()methods.

String procedureCall = "{?= call myProcedure(?, ?, ?)}";
CallableStatement cstmt = connect.prepareCall(procedureCall);
cstmt.setString(2, "Hello");
cstmt.setInt(3, 123);
cstmt.setBoolean(4, true);

Identifying the type of data returned by each OUT parameter is equally simple; you do so using
CallableStatement’s registerOutParameter() method. When calling that method, you must specify the
index of the parameter and an integer value that corresponds to one of the data types defined in java.sql.
Types, which is described next. In Listing 12-4, the result parameter is expected to return a numeric value,
and the second of the three IN parameters is also declared as an OUT (or more accurately, as an INOUT)
parameter that returns character data.

Listing 12-4. Registering Output Parameters

Connection connect = null;
String procedureCall = "{?= call myProcedure(?, ?, ?)}";
CallableStatement cstmt = connect.prepareCall(procedureCall);
cstmt.setString(2, "Hello");
cstmt.setInt(3, 123);
cstmt.setBoolean(4, true);
cstmt.registerOutParameter(1, Types.NUMERIC);
cstmt.registerOutParameter(3, Types.VARCHAR);

Once the stored procedure has been executed, you can retrieve values from the result, OUT, and INOUT
parameters using the getXXX() methods defined in CallableStatement (see Listing 12-5).

Listing 12-5. Retrieving Values Returned by a Stored Procedure

String procedureCall = "{?= call myProcedure(?, ?, ?)}";
CallableStatement cstmt = connect.prepareCall(procedureCall);
cstmt.setString(2, "Hello");
cstmt.setInt(3, 123);
cstmt.setBoolean(4, true);
cstmt.registerOutParameter(1, Types.NUMERIC);
cstmt.registerOutParameter(3, Types.VARCHAR);
cstmt.execute();
java.math.BigDecimal bd = cstmt.getBigDecimal(1);
String str = cstmt.getString(3);

CHAPTER 12 ■ INTRODUCING JDBC

500

Named Parameters

In all the code examples you’ve seen so far, a position index identified which parameter to set or retrieve.
However, JDBC supports the ability to reference parameters by name, allowing you to create code that’s
more readable, as follows:

cstmt.setString("Greeting", "Hello");
cstmt.setInt("CustNumber", 123);
cstmt.setBoolean("Registered", true);

Keep in mind that, like many JDBC features, support for named parameters isn't universal across JDBC
drivers. If you plan to use them you should first consult the documentation for the driver you intend to use to
verify that it does include support for named parameters.

ParameterMetaData
Just as the DatabaseMetaData provides metadata about the database, an instance of ParameterMetaData
describes the parameters associated with a PreparedStatement. You can use this information to dynamically
obtain information about the types of data associated with the parameters in a PreparedStatement, and
Listing 12-6 illustrates an example of how you can use it to display the data type name associated with the
underlying database column.

Listing 12-6. Displaying a Database Column’s Data Type Name

PreparedStatement pstmt;
// ...
ParameterMetaData pmd = pstmt.getParameterMetaData();
int count = pmd.getParameterCount();
for (int i = 1; i <= count; i++) {
 System.out.println("Parameter " + i +
 " is associated with a column of type " + pmd.getColumnTypeName(i);
}

Note that ParameterMetaData is also available for implementations of CallableStatement, which is a
subinterface of PreparedStatement, and ParameterMetaData also allows you to determine the mode
(IN, OUT, or INOUT) of each parameter.

JDBC Data Types
SQL defines a number of standard data types, and those types are represented in Java by integer constants
defined in the java.sql.Types class. As indicated in Table 12-2, JDBC defines a mapping between each SQL
data type and a Java class that’s able to encapsulate values of that type. The table lists each SQL type/Types
constant, its associated Java class, and an indication of the release in which the type was introduced.

CHAPTER 12 ■ INTRODUCING JDBC

501

Table 12-2. SQL Type/Types Constant

SQL Type/Types Constant Associated Java Type JDBC Version

ARRAY java.sql.Array 2.x

BIGINT long 1.x

BINARY byte[] 1.x

BIT boolean 1.x

BLOB java.sql.Blob 2.x

BOOLEAN boolean 3.x

CHAR String 1.x

CLOB java.sql.Clob 2.x

DATALINK java.net.URL 3.x

DATE java.sql.Date 1.x

DECIMAL java.math.BigDecimal 1.x

DISTINCT (See the section “DISTINCT.”) 2.x

DOUBLE double 1.x

FLOAT double 1.x

INTEGER int 1.x

JAVA_OBJECT (See the section “JAVA_OBJECT.”) 2.x

LONGVARBINARY byte[] 1.x

LONGVARCHAR String 1.x

NCLOB java.sql.NClob 4.x

NULL null 1.x

NUMERIC java.math.BigDecimal 1.x

OTHER (See the section “OTHER.”) 1.x

REAL float 1.x

REF java.sql.Ref 2.x

ROWID java.sql.RowId 4.x

SMALLINT short 1.x

SQLXML java.sql.SQLXML 4.x

STRUCT java.sql.Struct 2.x

TIME java.sql.Time 1.x

TIMESTAMP java.sql.Timestamp 1.x

TINYINT byte 1.x

VARBINARY byte[] 1.x

VARCHAR String 1.x

CHAPTER 12 ■ INTRODUCING JDBC

502

Most of these types should be self-explanatory, but some that may not be are described next.

ARRAY
Most database columns can contain only a single value of a simple data type in each row. However, the
SQL3 standard provides support for an ARRAY type that allows you to define columns that contain an array of
values in each row.

To store an array in a database column, you can use code like the following:

String[] names = {"Jacob", "Jordan", "Jeffery"};
PreparedStatement ps = connect.prepareStatement(
 "UPDATE NAMETABLE SET NAMECOL = ? WHERE EMPLOYEE = 123");
ps.setObject(1, names);
ps.executeUpdate();

To read an array of values from a database row, you can use the getArray() method in ResultSet
(see Listing 12-7).

Listing 12-7. Retrieving an Array of Values from a ResultSet

String[] names;
Statement stmt = connect.createStatement();
ResultSet resultSet = stmt.executeQuery(
 "SELECT * FROM NAMETABLE WHERE EMPLOYEE = 123");
if (resultSet.next()) {
 Array sqlArray = resultSet.getArray("NAMECOL");
 names = (String[])(sqlArray.getArray());
 for (int i = 0; i < names.length; i++) {
 System.out.println(names[i]);
 }
}

Alternatively, you can use the getResultSet() method defined in Array instead of getArray().
The following code segment will produce the same output as the one shown previously, but it retrieves the
values through a ResultSet instead of an array of String instances:

Listing 12-8. Retrieving an Array via the getResultSet() Method in Array

Statement stmt = connect.createStatement();
ResultSet resultSet = stmt.executeQuery(
 "SELECT * FROM NAMETABLE WHERE EMPLOYEE = 123");
if (resultSet.next()) {
 Array sqlArray = resultSet.getArray("NAMECOL");
 ResultSet arraySet = sqlArray.getResultSet();
 while (arraySet.next()) {
 System.out.println(arraySet.getObject(2));
 }
}

CHAPTER 12 ■ INTRODUCING JDBC

503

BLOB, CLOB
When you perform a query and access a value stored in a table row, you normally must retrieve the entire
value. For example, if you perform a query that returns table rows containing character data, the full-text
value is returned when you call getString() or getObject(). That behavior is acceptable in most cases,
but it can be a problem when reading data from columns that contain extremely large values. For example,
if a column contains binary data that represents a large audio or video “clip,” it may be undesirable or even
impossible to read the entire clip into memory at one time because of its size.

SQL3 defines the Binary Large Object (BLOB) and Character Large Object (CLOB) types that are
represented by the Blob and Clob interfaces in java.sql. These new types allow you to retrieve and update
specific portions of a database column’s value instead of requiring that the entire value be read into memory.
In addition, the Blob and Clob interfaces define methods that allow you to search for a particular sequence
of byte values (for BLOBs) or characters (for CLOBs) without first retrieving the data you’re searching against
from the database. For example, the following code performs a query, obtains a Clob from the ResultSet,
and searches for Pro Java Programming in the text stored in the database. If that string is found, up to 100
characters are read from the database starting at the position where the search text was located.

ResultSet resultSet = stmt.executeQuery(
 "SELECT * FROM MYBOOK WHERE TEXTID = 123");
Clob myClob = resultSet.getClob("CHAPTERTEXT");
long index = myClob.position("Pro Java Programming", 0);
if (index != -1) {
 String theText = myClob.getSubString(index, 100);
}

DATALINK
The JDBC 3.0 specification introduced this data type, and it’s used to represent a URL. A URL can be stored
as a parameter in a PreparedStatement using the setURL() method and can be retrieved from a query using
the getURL() methods defined within ResultSet, as follows:

Connection conn;
URL url;
// . . .
PreparedStatement pstmt = conn.prepareStatement(
 "DELETE FROM FAVORITE WHERE BROWSER_HISTORY = ?");
pstmt.setURL(1, url);

DATE, TIME, TIMESTAMP
The DATE type defined by SQL represents a date (day, month, and year) value only, TIME represents a time
(hours, minutes, and seconds) only, and TIMESTAMP is a combination of a date and a time. Each of these is
represented by a java.util.Date subclass defined in java.sql such as the java.sql.Timestamp class.

The java.util.Date class couldn’t be used directly to represent a TIMESTAMP because SQL’s definition
of that type requires that it support nanosecond values, while java.util.Date supports nothing smaller
than milliseconds.

CHAPTER 12 ■ INTRODUCING JDBC

504

DISTINCT
SQL3 supports user-defined types (UDTs) that allow users to define new data types based on existing types.
A distinct data type is a UDT that’s based on a single existing SQL data type. For example, you might want to
create a new type to represent the two-character language codes used by Java’s Locale object, which can be
accomplished with the following SQL command:

CREATE TYPE LANGUAGECODE AS CHAR(2);

Once a distinct type has been created, it can be used when defining the columns that make up
tables within the database. You can retrieve the value of a distinct data type from a ResultSet by using
the getXXX() method that’s appropriate for the underlying type. In this case, for example, you’d use
getString() to retrieve the value stored in a LANGUAGECODE column.

STRUCT
Structured types are similar to distinct types, but structured types allow you to create more complex data
types. Although conceptually similar to classes, a SQL structured type contains only data, while classes
typically contain both data and logic. For example, suppose you have a Java class like the following:

public class Student {

 public String name;
 public int studentID;
 public java.util.Date dateOfBirth;
 public float testScore;

}

In practice, this class would normally contain accessor and mutator methods for its properties,
although those are omitted here for the sake of simplicity. In any case, given this Student class, an equivalent
structured type could be created using a SQL command similar to the following:

CREATE TYPE STUDENT {
 STUDENTNAME VARCHAR(20),
 STUDENTID NUMERIC(10),
 DATEOFBIRTH DATE,
 TESTSCORE NUMERIC(5, 2)
}

Once a structured type has been created, it can be used when defining the columns that make up
database tables.

Since they’re conceptually similar to classes, structured types can be useful for providing object
persistence.

CHAPTER 12 ■ INTRODUCING JDBC

505

REF
Just as SQL3’s structured types are similar to classes, its new REF type provides functionality similar to that of
an object reference, and a SQL3-compliant DBMS will allow you to create columns containing references to
structured type instances. For example, if you define the STUDENT structured type described previously, you
can define table columns that contain references to instances of STUDENT.

Although conceptually similar to one another, an instance of SQL’s REF type doesn’t map directly to a
Java object reference. You can’t, for example, create an instance of the Student class and store a reference
to that object in a database. It’s possible to obtain access to a REF using the ResultSet’s getRef() method
that returns an instance of java.sql.Ref. However, Ref doesn’t currently provide any useful functionality.
Intuitively, you might expect a Ref to allow you to access the values stored in the structured type/object
instance, but that isn’t the case. To access those values, you must perform a query/SELECT and specify the
Ref value in a WHERE clause just as you would a traditional primary key.

JAVA_OBJECT
A DBMS may provide direct support for storing Java objects in the database, and this type identifies columns
that contain some type of Java object.

OTHER
This value represents columns that have a type that the JDBC driver was unable to map to a known SQL type.

ResultSet
An instance of ResultSet is returned from executeQuery(), and one or more instances may be returned
from execute(). A ResultSet is a representation of the data returned by your query, and it allows you to
process the results one row at a time. Before you can process a row, you must move the ResultSet’s cursor
(pointer) to that row, and the row that’s pointed to by the cursor is called the current row. When a ResultSet
is created, the cursor is initially positioned before the first row.

You should be aware that the data returned by your query isn’t usually stored in the ResultSet object.
In most cases, the data remains on the database server and only when the cursor moves to a particular row is
that row read from the server and cached by the ResultSet. This allows you to perform queries that return a
much larger volume of data than can be cached in your machine’s memory.

Instances of ResultSet are sometimes returned by methods in java.sql when no query has been
issued explicitly. For example, some of the methods defined in DatabaseMetaData return data in the form of
a ResultSet, as previously illustrated in the DatabaseBrowser application in Listing 12-2.

It’s helpful to review some ResultSet properties before describing the methods defined in that
interface, because its properties determine which of a ResultSet’s methods you’re able to use for a
particular instance and how they function.

Forward-Only vs. Scrollable (Scrollability Type)
Scrollability describes the type of cursor movement that’s allowed, and a forward-only ResultSet allows
the cursor to be moved forward only one row at a time using the next() method. However, with a scrollable
ResultSet, you can use a variety of methods to position the cursor. It can be moved forward or backward,
and it can be moved in those directions by any number of rows. In addition, it’s possible to move the cursor
to a specific row (in other words, to use absolute instead of relative positioning), including the first and last
rows in the ResultSet.

CHAPTER 12 ■ INTRODUCING JDBC

506

Early versions of JDBC only supported the next() method, with the other cursor positioning methods
added to ResultSet as part of the JDBC 2.x enhancements. However, even if a JDBC driver is compliant with
the 2.x specification, it may not allow you to create a scrollable ResultSet.

You can determine which ResultSet types are supported by calling the supports ResultSetType()
method in DatabaseMetaData.

Read-Only vs. Updatable (Concurrency Mode)
ResultSet defines a large number of getXXX() methods that allow you to read column values from the
current row (getString(), getFloat(), etc.), and it includes a corresponding updateXXX() method for
each getXXX(). While it’s always possible to call the read/get methods, a ResultSet’s concurrency mode
determines whether you can use the write/update methods. As its name implies, a read-only ResultSet
allows you only to read the data, while an updatable ResultSet allows you both to read the data and to
modify it through the ResultSet.

The updateXXX() methods were added to ResultSet as part of the enhanced functionality of JDBC 2.x,
but even some JDBC 2.x–compliant drivers may not support updatable result sets.

However, your application can determine which concurrency modes are supported by calling the
supportsResultSetConcurrency() method in DatabaseMetaData.

Update Sensitivity
While you’re using a ResultSet to process the results of a query, it’s usually possible for other users/
applications to modify the rows in the database that were returned by your query. Update sensitivity
indicates whether the ResultSet will reflect changes that are made to the underlying data after the
ResultSet is created. Those updates are known as “changes by others” to distinguish them from changes
made to the data using an updatable ResultSet’s updateXXX() methods. If you call a getXXX() method to
read data from the current row, a sensitive ResultSet will return the data stored in the underlying database
even if the data was changed by another user after the ResultSet was created. However, an insensitive
ResultSet doesn’t detect such changes and may return outdated information.

Update sensitivity doesn’t imply that a ResultSet is sensitive to all types of changes. For example,
a ResultSet might be sensitive to row deletions but not to row updates or insertions. In addition, a
ResultSet’s sensitivity to “changes by others” can be different from its sensitivity to its own changes
(modifications to the data made through the updateXXX() methods). However, DatabaseMetaData provides
methods that allow you to determine which types of changes are visible for a given ResultSet type.

Holdability
In some cases, you’ll use a particular database connection to make changes to data while referencing the
data in a ResultSet that was created using that same connection, but this may not always be possible.
That’s because some implementations will automatically close any open ResultSet instances when the
commit() method is called for the Connection used to create those ResultSets. However, you may be able
to control this behavior by specifying the cursor holdability you need when creating a Statement (or one of
its subinterfaces) implementation. In other words, holdability describes the ability of a ResultSet to remain
open even when changes are committed for the underlying Connection.

CHAPTER 12 ■ INTRODUCING JDBC

507

Selecting ResultSet Properties
To set the scrollability, concurrency, and sensitivity properties, you must specify the appropriate values
when creating a Statement. The code segments shown earlier used the createStatement() method that
doesn’t accept any parameter values, but another version of createStatement() allows you to specify two
integer values representing ResultSet properties.

int resultSetType, resultSetConcurrency;
// ...
Statement stmt = connect.createStatement(resultSetType,
 resultSetConcurrency);

The resultSetType parameter represents a combination of the scrollability and sensitivity properties,
and it should be assigned one of the following constants defined in ResultSet: TYPE_FORWARD_ONLY,
TYPE_SCROLL_INSENSITIVE, or TYPE_SCROLL_SENSITIVE.

The resultSetConcurrency value represents the concurrency mode for ResultSet instances created by
this statement and should be assigned the value of either CONCUR_READ_ONLY or CONCUR_UPDATABLE.

You can use these constants and the createStatement() method shown previously to create a
Statement that will produce ResultSet instances with the desired properties. For example, you can use
code similar to the following to create a Statement and request that the ResultSet instances it creates be
scrollable, sensitive to others’ changes, and updatable.

Statement stmt = connect.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
 ResultSet.CONCUR_UPDATABLE);

Note that if you specify a type of ResultSet that’s not supported by the driver, it won’t generate an error
when createStatement() is called.

Instead, the Statement will produce ResultSet instances that match the type you requested as closely
as possible. In this case, for example, if the driver supports updatable ResultSet instances but not scrolling,
it will create forward-only instances that are updatable.

You may also be able to denote the desired holdability by specifying a third parameter as in the
following example and specifying either the HOLD_CURSORS_OVER_COMMIT or the CLOSE_CURSORS_AT_COMMIT
constant defined in ResultSet:

Statement stmt = connect.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
 ResultSet.CONCUR_UPDATABLE),
 ResultSet.HOLD_CURSORS_OVER_COMMIT

Performance Hints
For drivers that support it, you can provide information that may improve the performance of a ResultSet.
As mentioned earlier, a row is normally retrieved from the database only after it becomes the ResultSet’s
current row, but JDBC allows buffering or prefetching of rows by a ResultSet.

The fetch size specifies the number of rows that the ResultSet should retrieve from the database each
time it needs to read new rows, and that value is set using the setFetchSize() method. In other words,
when the driver is capable of buffering database records, this value identifies the maximum number of
records that should be buffered. For example, suppose you execute the following code:

ResultSet resultSet = stmt.executeQuery("SELECT * FROM MYTABLE");
resultSet.setFetchSize(10);

CHAPTER 12 ■ INTRODUCING JDBC

508

If you execute the ResultSet’s next() method, it should retrieve ten records from the database and
store them in a buffer. As your application executes the next() method again to process more records,
the ResultSet won’t request more data from the database until all ten of the original records have been
processed. Once that occurs, the ResultSet will retrieve up to ten more records, and the process will be
repeated. Just as performing updates in a batch improved performance by reducing network calls, this type
of record buffering can improve performance for the same reason.

You can also suggest a fetch direction to the driver, and doing so may improve its performance by
identifying the direction in which you plan to process the records in a ResultSet. You specify the fetch
direction using the setFetchDirection() method, and that method requires an integer parameter value
that should be equal to FETCH_FORWARD or to FETCH_REVERSE, both of which are constants defined in
ResultSet.

Note that the fetch size and fetch direction settings are described as hints because the driver may
choose to ignore one or both of those values. In fact, a driver may not even support prefetching/buffering of
rows at all.

Using ResultSet
Almost all the methods defined in ResultSet fall into one of three categories: cursor positioning, data
retrieval, and data modification.

Cursor Positioning

The positioning methods allow you to change the position of the cursor so you can select which row to
process. As mentioned earlier, JDBC originally only supported the next() method, which moves the cursor
forward one row, and even some newer drivers may not support scrollable ResultSet instances.

The next() method doesn’t accept any parameter values and returns a Boolean value that indicates
whether another row was found. In other words, the value returned from next() is the ResultSet equivalent
of an end-of-file indicator. If it returns true, the cursor points to a valid row that can be processed, but if it
returns false, the cursor has moved beyond the last row in the ResultSet.

The following code segment shows how to iterate through the rows in a ResultSet using next():

ResultSet resultSet = stmt.executeQuery("SELECT * FROM MYTABLE");
while (resultSet.next()) {
 // Process the current row here
}

The other positioning methods mentioned earlier aren’t described in detail here, but they’re equally
simple to use and allow you to move the cursor to any row in the ResultSet. You can use relative positioning
to move the cursor forward or back a specified number of rows, or you can use absolute positioning to move
the cursor to a specific row. For example, to move the cursor back five rows from its current position, you
could execute the following code:

ResultSet resultSet;
// ...
resultSet.relative(-5);

In addition, positioning methods are provided that move the cursor to (or before) the first row in the
ResultSet and to (or after) the last row.

CHAPTER 12 ■ INTRODUCING JDBC

509

Data Retrieval

The getXXX() methods defined in ResultSet allow you to retrieve data from the current row, and the
specific method used determines the type of value returned. For example, getBytes() returns an array
of bytes, getString() returns a String instance, getInt() an int value, and so on. In most cases you’ll
know in advance which data type is stored in a particular column, but if you don’t know, you may want to
use the getObject() method. When getObject() is called, it returns an Object that’s appropriate for the
type of data stored in the column, such as a String for character data, a byte array for raw binary data, an
appropriate wrapper object for primitive types (e.g., a BigDecimal for numeric data), and so on.

Two implementations are provided for each data retrieval getXXX() method defined in ResultSet:
one that accepts an integer parameter and another that requires a String. The integer value represents the
position within the ResultSet of the column from which the data should be retrieved and is one-based. For
example, to retrieve a String value from the second column, you could use code similar to the following:

ResultSet resultSet;
// ...
String columnValue = resultSet.getString(2);

The getXXX() methods that accept a String parameter require that the String be equal to the name of
one of the columns in the ResultSet.

ResultSet resultSet;
// ...
String columnValue = resultSet.getString("FIRSTNAME");

Note that some drivers may not allow you to retrieve a column’s value more than once and/or require
that you must access the columns in left-to-right order. If your application’s design makes it necessary to
access the data repeatedly, you may need to read the data from the ResultSet and cache it in memory to
allow your code to function properly.

Data Modification

When a ResultSet is updatable, you can use its updateXXX() methods to modify the data in the current row,
while insertRow() and deleteRow() insert a new row and delete the current row, respectively.

The updateXXX() methods are similar to the getXXX() in that you can specify either a column’s name
or its index in the ResultSet. For example, to update the third column with a float value, you could execute
code like the following:

ResultSet resultSet;
// ...
resultSet.updateFloat(3, 123.45f);

Modifications you make to the ResultSet’s data aren’t immediately propagated to the underlying
database.

Calling updateRow() causes any changes made to the current row to be saved, while
cancelRowUpdates() causes your changes to be discarded.

The refreshRow() method also causes any updates to be discarded, but there’s an important difference
between it and cancelRowUpdates(). While cancelRowUpdates() causes the row’s original values to be
restored, refreshRow() actually rereads the row from the database. This can be useful if the information may
have changed in a way that can affect the behavior of your application.

CHAPTER 12 ■ INTRODUCING JDBC

510

Determining the Number of Rows Returned

You’ll often want to determine the number of rows returned by a query before processing the ResultSet
data, and since version 2.x JDBC has provided an easy way to determine the number of rows encapsulated by
a ResultSet but only when the ResultSet is scrollable. Specifically, you can use the last() method defined
in JDBC 2.x to move the cursor to the last row in the ResultSet and then call getRow() to retrieve the index
of the current row (see Listing 12-9 for an example).

Listing 12-9. Determining the Number of Records Returned by a Query

int recordCount;
Statement stmt = connect.createStatement();
// Get the data
ResultSet resultSet = stmt.executeQuery(
 "SELECT COUNT(*) FROM EMPLOYEE WHERE SALARY < 50000");
// Move the cursor to the last row
resultSet.last();
// Get the current row's index (i.e., the number of rows in the ResultSet)
recordCount = resultSet.getRow();
// Restore the cursor to its previous position
resultSet.beforeFirst();

Retrieving Automatically Generated Keys

In many cases, the data you want to store doesn’t inherently include a value that can be used as the primary
key in a database table. For example, let’s suppose you’re creating an application that will store information
about the customers of a business and you need some sort of unique identifier for each customer. You
could require that each customer provide an existing unique identifier such as a Social Security number
or a driver’s license number, but you have no guarantee that each customer will have either one or will
know it and be willing to provide it. As a result, it’s often better to use an identifier that’s meaningful only
within your database and that’s unique within that context; for this reason, most database systems support
the concept of an autogenerated key. In most cases, this is simply a number (usually an integer) that’s
automatically incremented each time a new record is added to the table, and you can allow this number to
be automatically created and used as the record’s primary key.

The only problem with autogenerated keys is that because they’re not assigned by your application,
there’s no way for your code to know in advance what key has been assigned to a given record. For example,
let’s suppose you create a class like the one in Listing 12-10 that describes a Customer as having a unique
identifier and a name.

Listing 12-10. A Sample Customer Class That Encapsulates a Name and Identifier

public class Customer {

 private int customerID;
 private String name;

 public int getCustomerID() {
 }

 public void setCustomerID(int id) {
 customerID = id;
 }

CHAPTER 12 ■ INTRODUCING JDBC

511

 public String getName() {
 return name;
 }

 public void setName(String nm) {
 name = nm;
 }

}

Now let’s also assume you’ve created a database table that includes an autogenerated key for the
customer identifier and that you’ve created a method that can add a newly created Customer.

public void addNew(Customer customer, Connection conn) throws SQLException {
 PreparedStatement pstmt = conn.prepareStatement(
 "INSERT INTO CUSTOMER (NAME) VALUES (?)");
 pstmt.setString(1, customer.getName());
 pstmt.executeUpdate();
 pstmt.close();
}

The problem is that after executing this code you now have an instance of Customer in memory
that doesn’t contain the unique identifier that was created when the record was added to the database.
Fortunately, JDBC 3.0 defines a way to retrieve autogenerated keys like the customer identifier, which is
done by calling the getGeneratedKeys() method defined in the Statement interface. That method returns a
ResultSet that contains a row for each autogenerated key and can be used to update the Customer object:

pstmt.executeUpdate();
ResultSet resultSet = pstmt.getGeneratedKeys();
if (resultSet.next()) {
 int customerID = resultSet.getInt(1);
 customer.setCustomerID(customerID);
}

ResultSetMetaData
As described earlier, DatabaseMetaData can determine the capabilities of the DBMS and the JDBC driver,
as well as examine the contents of the database. Similarly, ResultSetMetaData can obtain information that
describes the columns returned by a query, such as each column’s name and the type of data it contains.
ResultSetMetaData can also determine the number of columns returned by a query, so you could use a
code segment like the one in Listing 12-11 to display the column names and values returned by a query.

Listing 12-11. Accessing the Meta Data of a ResultSet

public void printResultSet(ResultSet resultSet) throws SQLException {
 ResultSetMetaData rsmd = resultSet.getMetaData();
 int count = rsmd.getColumnCount();
 for (int i = 0; i < count; i++) {
 System.out.print((i == 0 ? "" : "\t") +
 rsmd.getColumnName(i + 1));
 }

CHAPTER 12 ■ INTRODUCING JDBC

512

 System.out.println();
 while (resultSet.next()) {
 for (int i = 0; i < count; i++) {
 System.out.print((i == 0 ? "" : "\t") +
 resultSet.getObject(i + 1));
 }
 System.out.println();
 }
}

RowSet
ResultSet instances are by nature somewhat limited in terms of how they can be used, but the RowSet
interface that extends ResultSet adds an additional layer of flexibility to ResultSet instances and their
supported behavior. For example, a RowSet can provide scrollability and updatability behavior even if
you're using a JDBC driver that doesn't support these features, and RowSet implementations also provide
a JavaBeans-style notification mechanism that allows the registration of listeners that will be notified of
changes to the associated ResultSet/RowSet, such as cursor movement and changes to the underlying data.

There are two varieties of RowSet implementation: connected and disconnected. As the names imply,
a connected RowSet is one that uses a database connection to dynamically provide access to the underlying
data, while a disconnected RowSet does not use a database connection but instead maintains the data in
memory.

There are five different interfaces that directly or indirectly extend RowSet, with each interface providing
different functionality.

JdbcRowSet
This is an implementation of connected RowSet—in fact, the only interface representing a connected
implementation—that provides the basic RowSet functionality described earlier, specifically, JavaBeans-style
event notifications and a scrollable and updatable representation of the underlying ResultSet data.

The concrete implementation of this interface is the JdbcRowSetImpl class, which you can initialize in
one of two ways:

By passing an already-created • ResultSet instance to the JdbcRowSetImpl construct
that accepts a single ResultSet parameter.

By providing a • Connection or the information needed to create one (URL, user
name, and password) along with a SQL query that the JdbcRowSetImpl will use to
create a ResultSet.

An example of this second approach is shown in the code that follows, where a Connection instance is
passed to the constructor and a query is specified by calling the setCommand() method defined in RowSet:

Connection connection;
// . . .
JdbcRowSet rowSet = new JdbcRowSetImpl(connection);
rowSet.setCommand("SELECT * FROM TEST_SCORE");

CHAPTER 12 ■ INTRODUCING JDBC

513

It’s also possible to assign parameter values as you would with a PreparedStatement, so you could limit
the results of the query with code like that shown next.

JdbcRowSet rowSet = new JdbcRowSetImpl(connection);
rowSet.setCommand("SELECT * FROM TEST_SCORE WHERE STUDENT_ID = ?");
rowSet.setInt(1, 12345); // Return only the record(s) where the student ID is 12345

Once you've initialized the JdbcRowSet, you must call the execute() method to indicate that it should
perform the assigned query as shown next.

JdbcRowSet rowSet = new JdbcRowSetImpl(connection);
rowSet.setCommand("SELECT * FROM TEST_SCORE WHERE STUDENT_ID = ?");
rowSet.setInt(1, 12345); // Return only the record(s) where the student ID is 12345
rowSet.execute();

At this point you can use the RowSet just as you would a ResultSet, but with the additional functionality
provided by the RowSet interface.

CachedRowSet
In contrast to JdbcRowSet which represents a connected RowSet, the CachedRowSet interface represents an
implementation of a disconnected RowSet. As with JdbcRowSet for which there's a JdbcRowSetImpl class,
the CachedRowSet has a corresponding CachedRowSetImpl class, though unlike JdbcRowSetImpl there is no
CachedRowSetImpl constructor that accepts an existing ResultSet. Instead, you must provide a Connection
or the information needed to create a connection to the JdbcRowSetImpl object and then call its execute()
method, at which point it will connect to the database, execute a query, and load all of the data into memory.

In addition to the base CachedRowSet interface, JDBC also includes three interfaces that directly or
indirectly extend CachedRowSet: WebRowSet, FilteredRowSet, and JoinRowSet, and Table 12-3 identifies and
describes these interfaces.

Table 12-3. RowSet Interfaces That Extend CachedRowSet

Name Extends Functionality Provided

WebRowSet CachedRowSet Ability to serialize and de-serialize the ResultSet data as an XML
document.

FilteredRowSet WebRowSet Filter the records in the ResultSet based on a Predicate
implementation.

JoinRowSet WebRowSet Combine two or more RowSet instances as if a join query had been
performed.

In summary, RowSet implementations allow you to do things that you wouldn't ordinarily be able to do
with the results of a database query, and they can be very useful when your application needs the additional
functionality defined by one of these interfaces.

CHAPTER 12 ■ INTRODUCING JDBC

514

Transactions
Applications often need to make related changes to more than one database table, and it’s usually important
that either all of the changes succeed or none of them do. The classic example of this is an application that
transfers money from one bank account to another, perhaps from a savings account to a checking account,
or vice versa (see Listing 12-12). If the two account balances are stored in separate tables, it’s necessary to
issue two UPDATE statements: one that subtracts the appropriate amount from the first table and another that
adds the appropriate amount to the second table.

Listing 12-12. Banking Application

import java.sql.*;

public class TransTest {

 private String url = "jdbc:odbc:banktest";
 private String userid = "bspell";
 private String password = "brett";

 public void transferFunds(float transferAmount, int accountNumber,
 String fromTable, String toTable) throws SQLException,
 InvalidTransferException {
 Statement stmt = null;
 ResultSet resultSet = null;
 Connection conn = DriverManager.getConnection(url, userid,
 password);
 try {
 stmt = conn.createStatement();
 resultSet = stmt.executeQuery("SELECT BALANCE FROM " + fromTable +
 " WHERE ACCOUNTID = " + accountNumber);
 resultSet.next();
 float fromBalance = resultSet.getFloat(1);
 if (fromBalance < transferAmount) {
 throw new InvalidTransferException("Insufficient funds available");
 }
 resultSet.close();
 resultSet = stmt.executeQuery("SELECT BALANCE FROM " + toTable +
 " WHERE ACCOUNTID = " + accountNumber);
 resultSet.next();
 float toBalance = resultSet.getFloat(1);
 fromBalance -= transferAmount;
 toBalance += transferAmount;
 stmt.executeUpdate("UPDATE " + fromTable + " SET BALANCE = " +
 fromBalance + " WHERE ACCOUNTID = " + accountNumber);
 stmt.executeUpdate("UPDATE " + toTable + " SET BALANCE = " +
 toBalance + " WHERE ACCOUNTID = " + accountNumber);
 } finally {
 if (resultSet != null) resultSet.close();
 if (stmt != null) stmt.close();
 conn.close();
 }
 }

CHAPTER 12 ■ INTRODUCING JDBC

515

 class InvalidTransferException extends Exception {

 public InvalidTransferException(String message) {
 super(message);
 }

 }

}

Unfortunately, this code has a potential problem. It’s possible for the application to be interrupted
after it has deducted the transfer amount from the checking account but before that amount is added to
the savings account balance. If such an interruption does occur, the customer will lose money, which isn’t
desirable for the customer. Similarly, if the order of the updates is reversed and an interruption occurs, the
customer’s accounts will collectively contain more money than they did before the transfer was initiated,
and that outcome is even less desirable for the bank.

A transaction is a collection of related updates that should either fail or succeed as a group. Updates that
are part of a transaction are issued in the same way that nontransactional updates are issued, and there’s
no batch-like facility in JDBC for defining the updates in a transaction. However, methods are available
that allow you to define the beginning and end of a transaction, and you must use those methods to make
updates part of a transaction.

At any point during a transaction, you can end the transaction and discard (or roll back) the changes
that have occurred, which you’ll frequently do if one of the updates generates an error. However, if the
updates all complete successfully, you’ll normally end the transaction and save (or commit) the changes that
were made.

When using JDBC, it’s not necessary to explicitly identify the start of a transaction because all updates
are considered part of a transaction. However, a commit operation is performed by default after each update,
which effectively disables transaction processing since a transaction is useful only when it includes multiple
updates. You can disable the default behavior (and enable transactions) by passing a value of false to the
setAutoCommit() method in Connection.

Connection also defines commit() and rollback() methods that end the current transaction and
save or discard the changes that were part of the transaction. Note that only a single transaction can be
active for a Connection at any given time, so if your application needs to have multiple transactions active
simultaneously, you must obtain a connection for each transaction.

You can easily update the class shown in Listing 12-13 to use transactions to ensure that either both
balances are updated or neither one is changed.

Listing 12-13. The Modified Banking Application

import java.sql.*;

public class TransTest {

 private String url = "jdbc:odbc:banktest";
 private String userid = "bspell";
 private String password = "brett";

 public void transferFunds(float transferAmount, int accountNumber,
 String fromTable, String toTable) throws SQLException,
 InvalidTransferException {
 Statement stmt = null;
 ResultSet resultSet = null;

CHAPTER 12 ■ INTRODUCING JDBC

516

 Connection conn = DriverManager.getConnection(url, userid,
 password);
 conn.setAutoCommit(false);
 try {
 stmt = conn.createStatement();
 resultSet = stmt.executeQuery("SELECT BALANCE FROM " + fromTable +
 " WHERE ACCOUNTID = " + accountNumber);
 resultSet.next();
 float fromBalance = resultSet.getFloat(1);
 if (fromBalance < transferAmount) {
 throw new InvalidTransferException("Insufficient funds available");
 }
 resultSet.close();
 resultSet = stmt.executeQuery("SELECT BALANCE FROM " + toTable +
 " WHERE ACCOUNTID = " + accountNumber);
 resultSet.next();
 float toBalance = resultSet.getFloat(1);
 fromBalance -= transferAmount;
 toBalance += transferAmount;
 stmt.executeUpdate("UPDATE " + fromTable + " SET BALANCE = " +
 fromBalance + " WHERE ACCOUNTID = " + accountNumber);
 stmt.executeUpdate("UPDATE " + toTable + " SET BALANCE = " +
 toBalance + " WHERE ACCOUNTID = " + accountNumber);
 conn.commit();
 } catch (SQLException sqle) {
 conn.rollback();
 throw sqle;
 } finally {
 if (resultSet != null) resultSet.close();
 if (stmt != null) stmt.close();
 conn.close();
 }
}
 class InvalidTransferException extends Exception {

 public InvalidTransferException(String message) {
 super(message);
 }
 }
}

Note that this code differs from the original implementation in two ways. First, it disables the
autocommit feature so that the first account update won’t be permanently saved until/unless commit()
is called explicitly. Second, it intercepts any SQLException before it’s returned to the caller and performs
a rollback() on the connection, which will ensure that the data in the database is restored to its original
condition when an error occurs. This is important to do because the second update might fail even though
the first one had succeeded.

CHAPTER 12 ■ INTRODUCING JDBC

517

Savepoints
When discussing the rollback() method and its effect on a transaction, I’ve so far assumed that calling the
method will cause all changes to be canceled for the transaction, and in the examples you’ve seen that’s
indeed what happens. However, JDBC 3.0 added support for a new concept called savepoints that allows you
to designate a particular transaction state to which you can roll back without canceling all changes made
since the beginning of the transaction.

To understand how this can be useful and see how it’s done, let’s assume you’re saving two sets of
changes to a database within a single transaction:

Connection conn;
// ...
performFirstUpdate(conn);
performSecondUpdate(conn);
conn.commit();

Assuming that an error occurs during the second set of updates, your options are to either commit all
the work that has been done or roll back all the work. However, let’s suppose in certain circumstances you
want to roll back only the changes made in the second set of updates when an error occurs while they’re
being processed. If you’re using a JDBC driver that supports savepoints, you can create a savepoint before
starting the second set of updates and roll back only the changes made in that set if an error occurs.
An example of this appears in Listing 12-14.

Listing 12-14. An Example of How a Savepoint Can Be Used in a JDBC Application

Connection conn;
Savepoint savepoint = null;
// ...
try {
 performFirstUpdate(conn);
 savepoint = conn.setSavepoint();
 performSecondUpdate(conn);
 conn.commit();
}
catch (SQLException sqle) {
 if (savepoint != null) {
 conn.rollback(savepoint);
 }
 else {
 conn.rollback();
 }
}

Note that you can have more than one savepoint per transaction, and you can associate a name with
each one, allowing you to roll back by specifying that name instead of by providing a reference to the specific
Savepoint:

Savepoint sp1 = conn.setSavepoint("first");
// ...
Savepoint sp2 = conn.setSavepoint("second");
// ...
conn.rollback("first");

CHAPTER 12 ■ INTRODUCING JDBC

518

Read-Only Transactions
Up to this point, I’ve discussed transactions only in the context of update operations. While they’re often
most useful when performing updates, transactions can be used with query operations as well. For example,
issuing a SELECT statement twice within the same transaction should result in the query returning the same
results the second time as it did originally, even if the underlying data is modified between the two queries.
In other words, transactions can be used with query operations to ensure that they return consistent results.

It’s important to realize that regardless of the type of SQL statements used, transaction support is
provided by the DBMS and not by the JDBC driver. In addition, depending upon how the DBMS implements
transaction support, a number of problems can occur when multiple transactions access the same data; the
following sections describe those problems. Later, I’ll show how you can avoid these scenarios, or at least
select which ones your application will allow to occur.

Dirty Reads

A dirty read occurs when a table row is modified as part of one transaction and a second transaction
performs a query that returns the modified row despite that the modification hasn’t been committed. This
behavior is inappropriate since the first transaction may choose to roll back the update, in which case the
second transaction has effectively read invalid (or “dirty”) data.

Nonrepeatable Reads

As mentioned, performing the same query multiple times in a single transaction should produce the same
results each time. In some cases, however, the updates or deletions made by one transaction can affect
the query results of another transaction. For example, suppose that transaction A performs a query that
returns ten rows, after which transaction B deletes one of those rows from the database. If transaction A then
executes the same query and only nine rows are returned, a nonrepeatable read has occurred.

Phantom Reads

This type of problem is similar to the nonrepeatable read but is related to rows that are inserted. For
example, suppose that transaction A performs a query that returns five rows, after which transaction B
inserts a new row that meets the criteria specified by transaction A. If A then reissues the query and sees the
newly inserted row, a phantom read has occurred.

Transaction Isolation Levels

Many applications don’t support multiple transactions and won’t experience the problems just described.
However, for some database-intensive applications where the integrity of the data is important, it’s necessary
to eliminate these problems or at least control which ones can occur. Most DBMS products provide some
degree of control over these problems, and they usually do so through data locking. Locking is a technique
that makes some or all of the data in a table unavailable while it’s being read or updated by a transaction.
If other transactions attempt to access locked data, their requests will fail, or more frequently, they will be
made to wait until the transaction that caused the lock to occur has ended.

In the simplest case, an entire table can be locked as long as its data is referenced by an active transaction,
which will prevent any of the three problems just described from occurring. However, that approach has the
disadvantage of making the table’s data unavailable to other applications for what could be a large amount
of time, and that behavior may be unacceptable. In other words, you should avoid dirty reads, nonrepeatable
reads, and phantom reads but only by sacrificing accessibility to the data to some extent.

CHAPTER 12 ■ INTRODUCING JDBC

519

In practice, the ideal balance between data integrity and data accessibility varies from one application
to another. Some applications are more concerned with accessibility to the data, others are primarily
concerned with data integrity, and still others may seek a “middle ground” between the two extremes.
Since application needs vary, transaction isolation levels are provided to allow an application to select an
appropriate balance between accessibility and transaction integrity.

Four transaction isolation levels exist, and each one is represented in JDBC by a constant defined in
Connection. A given DBMS product may not support all four levels, but you can determine which ones are
supported using the supportsTransactionIsolationLevel() method defined in DatabaseMetaData.

Table 12-4 describes the four isolation levels, with the first one representing maximum accessibility and
minimum data integrity and the last one representing the opposite extreme.

The default isolation level that’s in effect will vary from one DBMS product to the next, although you
can determine which one is active for a given Connection by calling its getTransactionIsolationLevel()
method. That method returns an integer value equal to one of the four constants that represent the different
isolation levels.

Setting a Connection’s Transaction Isolation Level

Once you’ve selected an appropriate isolation level and ensured that it’s available with the DBMS your
application uses, you can easily specify the desired level by calling the setTransactionIsolation() method
in Connection.

connect.setTransactionIsolation(Connection.TRANSACTION_REPEATABLE_READ);

Table 12-5 lists the isolation levels and identifies which types of problems can occur with each one.

Table 12-4. Four Transaction Isolation Levels

Isolation Level Description

Read Uncommitted This transaction isolation level is represented by the TRANSACTION_READ_UNCOMMITTED
constant, and it allows dirty, nonrepeatable, and phantom reads to occur.

Read Committed This level is represented by TRANSACTION_READ_COMMITTED, and it allows only
nonrepeatable and phantom reads to occur; dirty reads are prevented.

Repeatable Read This level is represented by TRANSACTION_REPEATABLE_READ and allows only
phantom reads to occur while preventing dirty and nonrepeatable reads.

Serializable Dirty, nonrepeatable, and phantom reads are all prevented from occurring when
this level is used, which is represented by the TRANSACTION_SERIALIZABLE constant.

Table 12-5. Potential Problems Associated with Each Isolation Level

Isolation Level Dirty Nonrepeatable Phantom

Read Uncommitted Allowed Allowed Allowed

Read Committed Prevented Allowed Allowed

Repeatable Read Prevented Prevented Allowed

Serializable Prevented Prevented Prevented

CHAPTER 12 ■ INTRODUCING JDBC

520

Distributed Transactions

The transaction capabilities discussed up to this point are applicable to changes made to tables in a single
database. In some cases, however, you may want to make related changes to tables stored in databases
residing on different machines, perhaps involving two completely different DBMS products. For example,
you might want to make an update to an Oracle database on one server and a Sybase database on a different
machine and need those updates to be made as a single unit. That type of operation is known as a distributed
transaction and is supported in Java through the Java Transaction API (JTA) and Java Transaction Service
(JTS). However, a detailed discussion of distributed transactions is beyond the scope of this book.

Connection Pooling
Creating a database connection is a relatively slow process, and if an application repeatedly opens and
closes many connections, it may have a serious negative impact on the speed of the application and thus
on its value. However, you can improve performance by using connection pooling, a technique that allows
existing connections to be reused.

A connection pool manager can be implemented as part of a JDBC driver or as a separate component
if the driver doesn’t support pooling. The JDBC 2.x optional package includes interfaces used to perform
connection pooling and partially describes how a connection pool manager should be implemented.
If the driver you’re using supports JDBC 2.x–style connection pooling, you can get an instance of a
PooledConnection from a DataSource by calling the getPooledConnection() method. Once you’ve done so,
you can obtain a database connection by calling the PooledConnection object’s getConnection() method as
shown in Listing 12-15.

Listing 12-15. Using a Pooled Connection Data Source

String url = "jdbc:oracle:thin:@myserver:1521:mydata";
String userid = "bspell";
String password = "brett";
OracleConnectionPoolDataSource ocpds = new OracleConnectionPoolDataSource();
ocpds.setURL(url);
ocpds.setUser(userid);
ocpds.setPassword(password);
PooledConnection pool = ocpds.getPooledConnection();
// . . .
Connection conn = pool.getConnection();

When a database connection is requested from a pool manager, the manager attempts to provide
one from its pool of existing connections, but if that pool is empty, a new connection is created and
returned instead. Once an application has finished using a connection, the connection is returned to the
pool manager instead of being closed, which allows the manager to avoid the overhead of creating a new
connection the next time one is needed.

This description is somewhat misleading because it implies that a true database connection is returned
by the pool manager and that the application using the connection is aware of and cooperates with the
pool manager by “giving back” connections. In reality, the manager returns a proxy object that maintains
a reference to a real database connection created by a JDBC driver. Most of the proxy’s methods simply
delegate their functionality to the real connection, but the proxy’s close() method returns the real database
connection to the pool manager instead of closing the connection. Listing 12-16 illustrates how such a proxy
might be implemented.

CHAPTER 12 ■ INTRODUCING JDBC

521

Listing 12-16. Implementing a Proxy

import java.sql.*;

public class ProxyConnection implements Connection {

 private Connection realConnection;

 public ProxyConnection(Connection connect) {
 realConnection = connect;
 }

 public void clearWarnings() throws SQLException {
 realConnection.clearWarnings();
 }

 public void close() throws SQLException {
 // Don't close the real connection. Return it to the pool
 // manager instead. This example assumes the existence of
 // a class named PoolManager that's responsible for connection
 // pool management.
 PoolManager.connectionClosed(realConnection);
 }

 public void commit() throws SQLException {
 realConnection.commit();
 }

 public Statement createStatement() throws SQLException {
 return realConnection.createStatement();
 }

 // etc.

In other words, the proxy object maintains a reference to a “real” Connection and intercepts the calls
that are made. This design makes connection pooling transparent to your application, because a pooled
connection behaves the same way that a nonpooled connection does.

Pooling Properties
Just as you saw earlier that JDBC defines some standard property names that are commonly used across
DataSource implementations, the JDBC 3.0 specification includes definitions of properties that are
commonly used in connection pooling (see Table 12-6). In most cases, these properties should be set only
through a configuration file, but the definition of these standard names makes it more likely that you can
(if necessary) replace one JDBC driver with another without having to change your configuration options.

CHAPTER 12 ■ INTRODUCING JDBC

522

Errors and Warnings
Errors can occur for many reasons when performing database operations, and most of the methods defined
in the java.sql package can throw SQLException, which is described next.

SQLException
Like other Exception subclasses, SQLException includes a message that describes the nature of the error,
and it can be retrieved by calling getMessage(). However, SQLException also provides other properties you
may find helpful, and the methods used to access them are described next.

getNextException(), setNextException()

These methods allow you to modify or retrieve the reference to the next instance of SQLException in a
chain of exceptions. Multiple errors can occur during a single operation in some cases, and this chaining
technique allows an instance of SQLException to be created for each error.

getErrorCode()

This method returns an integer value that describes the error, although the meaning of that value is driver-
specific. To interpret the meaning of this value, you should consult the documentation associated with the
driver and/or the DBMS.

getSQLState()

The SQLState value is a five-character String that identifies the nature of the error that occurred. This value
is defined by the X/OPEN SQL standard and is common to all DBMS implementations that have adopted
the standard. Since the SQLState provides a specific indication of the type of problem that occurred, your
application may be able to use it to recover from an error or otherwise handle (or ignore) it appropriately.

Table 12-6. Pooling Properties

Property Description

initialPoolSize Number of database connections that should be created when a connection pool is
created.

minPoolSize Minimum number of database connections that the pool should contain. If 0,
connections will only be created when they are requested.

maxPoolSize Maximum number of database connections that the pool should contain. A value of
0 means that there isn’t a maximum number that can be available in the pool.

maxIdleTime Number of seconds that a connection can remain unused in the pool before it’s
closed. A value of 0 means that unused connections should never be closed.

maxStatements Maximum number of statements that the pool should be allowed to cache.

propertyCycle Number of seconds that should elapse between attempts to enforce the behavior
associated with other properties.

CHAPTER 12 ■ INTRODUCING JDBC

523

The SQLState consists of two parts: the first two characters, which are unfortunately called the class,
and the last three characters, known as the subclass. A class effectively identifies a high-level type of error,
while a subclass identifies a more specific error. Classes and subclasses can be either standard (defined
as part of the X/OPEN specification) or implementation-defined (specific to a particular DBMS product).
Standard classes and subclasses begin with one of the characters 0–4 or A–H. Subsequent characters and the
first character of an implementation-defined class or subclass can be any letter or digit (0–9, A–Z).

Table 12-7 lists some standard classes and subclasses, along with the associated condition (description
of the class) or subcondition (description of the subclass). Note that some classes don’t have subclasses
because the class itself is sufficient to describe in detail the type of problem that occurred.

Table 12-7. SQL State Values

Class Condition Subclass Subcondition

00 Successful 000

01 Warning 000

001 Cursor operation conflict

002 Disconnect error

003 Null value eliminated in set function

004 String data right truncation

005 Insufficient itemdescriptor areas

006 Privilege not revoked

007 Privilege not granted

008 Implicit zero-bit padding

009 Search condition too long for schema

00A Query expression too long for schema

02 No data 000

07 Dynamic SQL error 000

001 using clause doesn’t match parameters

002 using clause doesn’t match target

003 Cursor specification cannot be executed

004 using clause required for parameters

005 Prepared statement, not a cursor spec

006 Restricted data type attribute violation

007 using clause required for result fields

008 Invalid descriptor count

009 Invalid descriptor index

(continued)

CHAPTER 12 ■ INTRODUCING JDBC

524

Class Condition Subclass Subcondition

08 Connection exception 000

001 Client unable to establish connection

002 Connection name already in use

003 Connection doesn’t exist

004 Server rejected connection request

006 Connection failure

007 Transaction resolution unknown

0A Feature not supported 000

001 Multiple server transactions

21 Cardinality violation 000

22 Data exception 000

001 String data right truncation

002 Null value without indicator

003 Numeric value out of range

005 Assignment error

007 Invalid DATETIME format

008 DATETIME field overflow

009 Invalid time zone displacement value

011 Substring error

012 Division by zero

015 Interval field overflow

018 Invalid character value for cast

019 Invalid escape character

021 Character not supported

022 Indicator overflow

023 Invalid parameter value

024 Unterminated C string

025 Invalid escape sequence

026 String data length mismatch

027 Trim error

23 Integrity constraint violation 000

24 Invalid cursor state 000

Table 12-7. (continued)

(continued)

CHAPTER 12 ■ INTRODUCING JDBC

525

Class Condition Subclass Subcondition

25 Invalid transaction state 000

26 Invalid SQL statement name 000

27 Triggered data change Violation 000

28 Invalid authorization specification 000

2A Syntax error or access rule violation
in SQL statement

000

2B Dependent privilege descriptors
still exist

000

2C Invalid character set name 000

2D Invalid transaction termination 000

2E Invalid connection name 000

33 Invalid SQL descriptor name 000

34 Invalid cursor name 000

35 Invalid condition number 000

37 Syntax error or access rule violat
ion in dynamic SQL statement

000

3C Ambiguous cursor name 000

3D Invalid catalog name 000

3F Invalid schema name 000

40 Transaction rollback 000

42 Syntax error or access rule violation 000

44 Check option violation 000

HZ Remote database access 000

Table 12-7. (continued)

SQLWarning
SQLException is somewhat unusual in that it’s used by JDBC in two different ways. First, as previously noted,
it can be thrown by many of the java.sql methods, and in that way it’s similar to other exception classes.
However, many types of errors can occur that aren’t critical and that won’t cause your application’s execution
to be interrupted. For example, if you read a floating-point value into an integer field using the ResultSet’s
getInt() method, you may lose a portion of the original value. That type of problem may be of interest to your
application but in many cases should be ignored, so it doesn’t result in an exception being thrown. Instead,
an instance of SQLWarning (a subclass of SQLException) is created and appended to a list maintained by the
object that generated the warning, which in this example would be a ResultSet. Connection, Statement, and
ResultSet can all generate warnings, and each of those classes provides a getWarnings() method accordingly.
That method returns the first SQLWarning instance in the object’s list, and the list effectively serves as an

CHAPTER 12 ■ INTRODUCING JDBC

526

error log. In other words, when any event generates a warning, an instance of SQLWarning is quietly
(without being thrown or otherwise interrupting your application) added to the list of warnings maintained
for the object that generated it. In addition to the getWarnings() methods, Connection, Statement, and
ResultSet each provide a clearWarnings() method that can be used to remove all warnings currently chained.

Debugging
JDBC provides a logging facility that driver classes can use to display diagnostic information. For example,
the driver may generate a message each time one of its classes’ methods is called, and/or it may display the
SQL statements that are actually sent to the DBMS. Those statements are sometimes different from the ones
your code specifies, because the driver often modifies statements before forwarding them to the database,
such as when it fills in the parameter values specified for a PreparedStatement. In addition, the message log
may contain SQL statements that were issued by the driver itself that don’t correspond to any statements
explicitly executed by your application.

This logging facility first appeared in JDBC 1.x and can be used by passing a reference to a PrintStream
to the static setLogStream() method in DriverManager. For example, you might execute the following code
to have the messages sent to standard output:

DriverManager.setLogStream(System.out);

In JDBC 2.x, the setLogStream() method was deprecated and replaced by setLogWriter(), which is
passed an instance of PrintWriter. The following code creates an instance of PrintWriter using System.out
and calls setLogWriter() to direct messages to standard output:

OutputStreamWriter osw = new OutputStreamWriter(System.out);
PrintWriter pw = new PrintWriter(osw);
DriverManager.setLogWriter(pw);

Following is an example of the output that may be produced by this code:

Fetching (SQLFetch), hStmt=5312212
End of result set (SQL_NO_DATA)
Free statement (SQLFreeStmt), hStmt=5312212, fOption=1
*Connection.createStatement
Allocating Statement Handle (SQLAllocStmt), hDbc=5311148
hStmt=5312212
Registering Statement sun.jdbc.odbc.JdbcOdbcStatement@63cb330d
*Statement.executeQuery (SELECT * FROM Attribute)
*Statement.execute (SELECT * FROM Attribute)
Free statement (SQLFreeStmt), hStmt=5312212, fOption=0
Executing (SQLExecDirect), hStmt=5312212, szSqlStr=SELECT * FROM Attribute
Number of result columns (SQLNumResultCols), hStmt=5312212
value=8
Number of result columns (SQLNumResultCols), hStmt=5312212
value=8
*ResultSet.getMetaData
*ResultSetMetaData.getColumnName (1)
Column attributes (SQLColAttributes), hStmt=5312212, icol=1, type=1
value (String)=AttributeKey

CHAPTER 12 ■ INTRODUCING JDBC

527

Releasing Resources
One of the characteristics of Java that makes it easy to use is its automatic garbage collection. In most cases,
it’s acceptable to release a resource simply by eliminating references to the object that represents it, and the
same is true to some degree of database resources (for instance, instances of Connection, Statement, and
ResultSet). For example, if you create a connection to a database, you can release it by simply dereferencing
it as follows:

String url = "jdbc:oracle:thin:@oraserver:1521:projava";
Connection connect = DriverManager.getConnection(url, "bspell", "brett");
// ...
connect = null;

Although this approach should eventually result in the connection being closed, that won’t occur until
the garbage collector reclaims the Connection object. However, the garbage collector may never run, and
even if it does, this code could result in the connection remaining open (but unused) for a long time. To
avoid this problem, you should always explicitly release database resources by calling the close() method
that’s defined in Connection, Statement, and ResultSet:

String url = "jdbc:oracle:thin:@oraserver:1521:projava";
Connection connect = DriverManager.getConnection(url, "bspell", "brett");
// ...
connect.close();
connect = null;

Not only will failure to explicitly release resources prevent other applications from using those
resources, but it may also degrade the performance of your application if a large number of connections are
created. It’s particularly important to close connections when connection pooling is in use, since a failure
to do so will usually prevent the Connection from being returned to the pool manager until the garbage
collector runs.

With this in mind, it's often worthwhile to take advantage of the try-with-resources feature that was
introduced in Java 7, which can help ensure that JDBC artifacts like Connection, Statement, and ResultSet
instances are closed appropriately even if an exception occurs during processing. Listing 12-17 shows an
example of how this can be done.

Listing 12-17. Using Try-with-Resources to Ensure That JDBC Artifacts Are Closed When No Longer Used

try
(
 Connection conn = DriverManager.getConnection(
 "jdbc:oracle:thin:@oraserver:1521:projava ", userid, password);
 Statement stmt = conn.createStatement();
 ResultSet resultSet = stmt.executeQuery("SELECT * FROM TEST_TABLE");
)
{
 while (resultSet.next()) {
 // Process ResultSet data here
 }
}

CHAPTER 12 ■ INTRODUCING JDBC

528

The Connection, Statement, and ResultSet interfaces all extend AutoCloseable, which is the interface
that identifies resources that will be closed automatically when used in a try-with-resources block like the
one in Listing 12-17 and using this approach allows you to avoid using multiple nested try/finally blocks
to ensure that the database resources your application creates are closed appropriately.

Summary
In this chapter, you looked at each of the following topics:

Selecting and obtaining a driver•

Obtaining a connection to a database•

Executing SQL statements and stored procedures•

Understanding the data types defined in JDBC and how they relate to “native” types•

Managing transactions•

Implementing database connection pooling•

Processing errors and warnings generated by JDBC functions•

Debugging guidelines for database applications•

529

CHAPTER 13

Internationalizing Your
Applications

Occasionally software applications are used by only a small number of people within a limited geographic
area, but it has become increasingly common for an application to be used by many people in different
parts of the world. In some cases, it’s possible to require all your application’s users to understand a single
language and use the same symbols and formatting for items such as dates, times, and numeric values.
However, most users prefer to work with the language and formatting conventions they’re most comfortable
with, and by taking that into consideration when designing your application, you can accommodate
their wishes.

Modifying or designing an application so it supports more than one language and set of formatting
conventions is known as internationalization (or i18n, because 18 characters appear between the i and the n).
As evidenced by its use of Unicode, Java was designed with internationalization in mind, and it provides a
number of classes that make it easy to internationalize your applications.

Closely related to internationalization is localization, which is the process of ensuring that an
application will function appropriately when used in a particular region of the world. The most obvious
step you must take to localize an application is to ensure that it displays text in the user’s native language.
This requires you to provide a translation for each text item that can be written or displayed by the
application, and Java doesn’t provide any facilities for automatically translating messages. However, it
does provide an easy way for you to define collections of text messages, with each collection representing
a particular language, and Java makes it easy for your application to select the appropriate translation of a
text item. Where internationalization aims to create applications that can support more than one language,
localization provides the extra language support for internationalized applications.

In addition to providing a translation for each message, an internationalized application should also
display information using the appropriate symbols and conventions when formatting information such
as dates, times, and numeric values. For example, the mm/dd/yy (two-digit month, day, and year) format
for dates is appropriate for most users in the United States but isn’t commonly used in other countries.
Similarly, numeric values are represented in different ways in different parts of the world, especially
currency values.

Just as an internationalized application must customize the output it produces, it must also handle user
input appropriately. If a user is allowed to enter text that represents a number, the application must be able
to parse the text and convert it into a numeric type (say, a double or long value). In addition, a date that was
entered by the user will typically need to be converted into an instance of a class such as java.util.Date
before it can be used or stored by the application. It’s also sometimes necessary to parse text and isolate
individual sentences, lines, words, or characters in the text, which is a complex task to perform for some
languages.

CHAPTER 13 ■ INTERNATIONALIZING YOUR APPLICATIONS

530

In some cases, a user’s language can be implicitly identified based on the user’s location. For example, a
user in the United States or United Kingdom can reasonably be expected to prefer English messages. In other
cases, two or more languages may be commonly used in the same country, such as in Canada where both
English and French are widely spoken. However, even if two different users share the same language, you
can’t assume they also share the same formatting conventions for dates, times, and numeric values.

To be able to internationalize your applications, you’ll need to know about the following topics:

Locales•

Resource bundles•

Formatting and parsing•

Locales
As just mentioned, a user’s country can’t always be used to select the language that an application should
use, and a language isn’t sufficient to determine the formatting conventions for dates, times, and numeric
values. However, it’s usually true that a region can be defined that has one dominant language and set
of formatting conventions, and that region can be defined by geographic, political, or simply cultural
boundaries. Java’s Locale class identifies such a region, and each instance of Locale contains property
values that include the following:

A language code represented by a • String value that corresponds to one of the codes
defined by the ISO-639 standard. You can find various information—including a list
of language codes—on the Library of Congress web site at www.loc.gov/standards/
iso639-2/.

Similarly, the country code is a • String that’s assigned the value of an ISO-3166
country identifier, a list of which is available at www.chemie.fu-berlin.de/diverse/
doc/ISO_3166.html.

The variant value is optional and can be omitted, but it may be useful in some cases.•

As shown in Table 13-1, the ISO-639 standard defines both two- and three-character language codes.
The two-character code is the older representation but the three-character codes are available for a larger
number of languages.

Table 13-1. Sample List of ISO-639 Language Codes,
Including One for Which There Is No Two-Character Code

Language ISO-639-1 ISO-639-2

English en eng

French fr fra

German de deu

Spanish es spa

Coptic cop

http://www.loc.gov/standards/iso639-2/
http://www.loc.gov/standards/iso639-2/
http://D:\\Sadam\\2015\\XML\\Apr\\20-4-2015\\Spell\\XML\\Chapter13\\www.chemie.fu-berlin.de\\diverse\\doc\\ISO_3166.html
http://D:\\Sadam\\2015\\XML\\Apr\\20-4-2015\\Spell\\XML\\Chapter13\\www.chemie.fu-berlin.de\\diverse\\doc\\ISO_3166.html

CHAPTER 13 ■ INTERNATIONALIZING YOUR APPLICATIONS

531

Similarly, ISO-3166 offers more than one way of representing a country. Specifically, there are both
two- and three-character alpha representations, along with a three-digit numeric code for each country
as shown in Table 13-2. Notice that the language codes are represented using lower case while the country
codes are uppercase.

The Locale class requires you to use the two-character language code where one is defined or, if none is
defined, the three-character code, and for the country code you should use the two-character code. Locale
does technically support an alternative representation for a region, specifically, the UN M.49 standard, but
that is a newer standard and is less often used than the ISO-3166 codes.

The java.util.Locale class itself doesn’t provide much functionality that’s useful for internationalization,
but an instance of Locale can be passed to some methods defined in Java’s core classes, and those methods
will produce the results appropriate for that Locale. For example, java.text.NumberFormat provides a
getNumberInstance() factory method that creates an object that can be used to format numeric values.
If you pass an instance of Locale to the factory method, it will return an object that formats numeric values
in a manner that’s appropriate for the Locale you specified. Most of those methods that accept a Locale
parameter have a counterpart that doesn’t accept such a parameter, and those that don’t use the default
Locale. The default Locale is simply a static instance of Locale that’s selected for you based on your
operating system settings, and you can query and modify the default through the static getDefault() and
setDefault() methods in the Locale class.

Although you can create an instance of Locale, some instances are provided for you as predefined
constants in the Locale class. Some of those constants represent a Locale with only a language specified
(for example, Locale.ENGLISH, Locale.FRENCH, and Locale.GERMAN), while others represent both a
language and a country (for example, Locale.US, Locale.FRANCE, and Locale.GERMANY). In addition to
those constants, Java includes the information needed to support a large number of locales; you can obtain
an array of those supported by calling the getAvailableLocales() method. For each Locale identified by
that method, Java provides the ability to display dates, times, and numeric values using the conventions
appropriate for that Locale. In addition, Java provides the ability to parse and compare String instances that
consist of characters used in the Locale.

To create a Locale, you must use either the constructor that accepts country and language codes or the
constructor that accepts those values in addition to a variant. For example, to create a Locale for Spanish
used in the United States, you could use the following:

Locale cajunFrenchLocale = new Locale("es", "US");

In addition to allowing you to access its country, language, and variant values, each Locale provides a
getDisplayName() method that returns the name of the locale. By default, the method returns a name in the
language appropriate for the user’s default locale. As with many other methods, though, getDisplayName()

Table 13-2. Sample List of ISO-3166 Country Codes

Country Alpha-2 Alpha-3 Numeric-3

United States US USA 840

Canada CA CAN 124

United Kingdom GB GBR 826

France FR FRA 250

Germany DE DEU 276

CHAPTER 13 ■ INTERNATIONALIZING YOUR APPLICATIONS

532

allows you to explicitly specify a Locale. If you do so, the name returned will be a string that’s appropriate for
display in the Locale specified. For example, suppose your default locale is set to Locale.US and you execute
the following line of code:

System.out.println(Locale.US.getDisplayName());

When you do so, the output will appear as follows:

English (United States)

However, you could instead choose to display the Locale’s name in a form that’s appropriate for a user
in France using code like the following:

System.out.println(Locale.US.getDisplayName(Locale.FRANCE));

Executing this code will produce the following output:

anglais (États-Unis)

Many times, you’ll want to display a representation of a Locale using the language that’s associated with
that instance, which you can do with code similar to this:

Locale someLocale;
// Assign a reference to an instance of Locale to the variable just defined
// . . .
System.out.println(someLocale.getDisplayName(someLocale));

Resource Bundles
Perhaps the most obvious step you must take to internationalize an application is to store the text it displays
in an external location. For example, suppose you have the following trivial application:

public class Hardcoded {
 public static void main(String[] args) {
 System.out.println("The number of arguments entered is " +
 args.length);
 }
}

This small program can’t be made to support more than one language or locale without modifying
the source code, because the message text is embedded (or hard-coded) within the source. However, Java’s
resource bundles allow you to store strings, image files, or any other type of resource in files outside your
application’s source code.

Specifically, the java.util.ResourceBundle class allows you to create a separate resource bundle for each
Locale you want to support in your code and have the appropriate bundle selected dynamically at runtime.

A ResourceBundle is a class that encapsulates a set of resources, each of which is associated with a
unique key value that’s an instance of java.lang.String. To access a particular resource, you simply obtain
a reference to the ResourceBundle and call its getObject() method, passing a reference to the String that

CHAPTER 13 ■ INTERNATIONALIZING YOUR APPLICATIONS

533

identifies the resource to which you want to obtain a reference. Resources will often be text information that
has been localized but can be any object that’s needed to internationalize your application. Since instances
of String are the most common type of data stored in and retrieved from instances of ResourceBundle, a
getString() method is provided in addition to getObject(). The getString() method simply casts the
resource you retrieve to a String object.

Note that the resource keys are case-sensitive, so when calling getObject() or getString(), you must
ensure the String you specify is capitalized appropriately. If you specify a key that isn’t an exact match for a
resource defined in the ResourceBundle, a MissingResourceException is thrown.

Once an appropriate ResourceBundle has been created, which you’ll see how to do shortly, the
Hardcoded application shown previously could be easily modified to remove the embedded message text as
follows:

import java.util.*;

public class Hardcoded {

 public static void main(String[] args) {
 ResourceBundle myBundle = ResourceBundle.getBundle(
 "MyResources");
// System.out.println("The number of arguments entered is " +
// args.length);
 String msg = myBundle.getString("MsgText");
 System.out.println(msg + args.length);
 }
}

In this case, a resource bundle named MyResources was created that contains a resource with a key of
MsgText. This modified application loads the resource bundle, obtains a reference to the MsgText resource,
casts it to a String, and uses that text to produce its output. With this modified design, you can make the
Hardcoded application support more than one Locale, and it will display the message text in the appropriate
language for each one.

In the previous example, no Locale was specified on the call to getBundle(), but a different
implementation of that method allows you to do so. For example, if you wanted to load the ResourceBundle
containing Canadian French messages, you could use code like the following:

ResourceBundle myBundle = ResourceBundle.getBundle(
 "MyResources", Locale.CANADA_FRENCH);

When you call its getBundle() method, ResourceBundle attempts to load each class file with a variation
of the name that was specified. It first looks for classes with the explicitly specified Locale values (in other
words, language, country, and variant codes) appended to the name and then to classes with the default
Locale’s values. For example, if the default Locale is Locale.US in this case, getBundle() will load each of
the following files if they exist:

MyResources_fr_CA.class
MyResources_fr.class
MyResources_en_US.class
MyResources_en.class
MyResources.class

CHAPTER 13 ■ INTERNATIONALIZING YOUR APPLICATIONS

534

Note that getBundle() also attempts to use the variant name if one is specified, but in this case, both
the default (Locale.US) and the explicitly specified instance (Locale.CANADA_FRENCH) have a variant that’s
set to the empty string (""). In other words, the search order used when loading a ResourceBundle file can
be summarized by the following list. In this list, (1) represents the explicitly specified Locale, (2) represents
the default locale, and basename represents the String argument passed to getBundle().

basename_language(1)_country(1)_variant(1).class
basename_language(1)_country(1).class
basename_language(1).class
basename_language(2)_country(2)_variant(2).class
basename_language(2)_country(2).class
basename_language(2).class
basename.class

As you’ll see shortly, there’s an important reason why calling getBundle() loads each of these classes
if they exist instead of simply loading the first one that’s found.

Creating a ResourceBundle
ResourceBundle is an abstract class, and although you can create your own direct subclass, you don’t need
to normally do so. Instead, you’ll create a subclass of either ListResourceBundle or PropertyResourceBundle,
which are convenience classes provided with Java that make it easier for you to create a ResourceBundle.
If you’re going to be using images or other objects in your ResourceBundle, then a ListResourceBundle is
the one to use, while the PropertyResourceBundle is a better choice for use with text.

ListResourceBundle

Creating a subclass of ListResourceBundle is simple; you need to implement only a single getContents()
method that returns a two-dimensional array of key/resource pairs.

To learn how to create a ListResourceBundle subclass, suppose you want to internationalize
the application shown in Listing 13-1 that displays a dialog and requests the user to click the button
corresponding to the correct answer. Figure 13-1 shows the application in action.

Listing 13-1. JavaQuestion Application

import java.util.*;
import javax.swing.*;

public class JavaQuestion {

 public static void main(String[] args) {
 ImageIcon flagIcon = new ImageIcon("flags/unitedstates.gif");
 String[] options = {"Yes", "No"};
 JOptionPane pane = new JOptionPane(

CHAPTER 13 ■ INTERNATIONALIZING YOUR APPLICATIONS

535

 "Is Java an object-oriented programming language?",
 JOptionPane.QUESTION_MESSAGE, 0, flagIcon, options);
 JDialog dlg = pane.createDialog(null, "Java Question");
 dlg.setModal(true);
 dlg.setVisible(true);
 String selection = (String)(pane.getValue());
 boolean selectedYes = (selection == options[0]);
 }
}

As shown in Listing 13-1, this code uses four text resources and an ImageIcon that should be localized
based on the default Locale, and a ResourceBundle named MyResources can easily be created like the one
in Listing 13-2. As you can see, this class simply defines each resource and maps it to a String key, while the
getContents() method returns a reference to the array containing the key/value pairs.

Listing 13-2. Returning the Contents of a ListResourceBundle

import java.util.*;
import javax.swing.*;

public class MyResources extends ListResourceBundle {

 private static Object[][] resources = {
 {"WhatIsJava", "What is Java?"},
 {"JavaIsLang", "Is Java an object-oriented " +
 "programming language"},
 {"LabelYes", "Yes"},
 {"LabelNo", "No"},
 {"FlagIcon", new ImageIcon("flags/unitedstates.gif")}
 };

 public Object[][] getContents() {
 return resources;
 }

}

Figure 13-1. The JavaQuestion application displays an icon and prompts the user to answer a question

CHAPTER 13 ■ INTERNATIONALIZING YOUR APPLICATIONS

536

If the application that uses these resources is intended to also be used by German-speaking people, you
could create an equivalent ResourceBundle called MyResources_de as shown in Listing 13-3.

Listing 13-3. A ListResourceBundle Containing Resources for the German Language

import java.util.*;
import javax.swing.*;

public class MyResources_de extends ListResourceBundle {

 private static Object[][] resources = {
 {"WhatIsJava", "Was ist Java?"},
 {"JavaIsLang", "Ist Java eine objektorientierte " +
 "Programmiersprache?"},
 {"LabelYes", "Ja"},
 {"LabelNo", "Nein"},
 {"FlagIcon", new ImageIcon("flags/germany.gif")}
 };

 public Object[][] getContents() {
 return resources;
 }
}

This definition of a German-language ResourceBundle illustrates an important point. Although it may
be possible for all German-speaking users to share the text in this bundle, it’s not appropriate for them to
share the same flag icon, since the German language is spoken in more than one country. It wouldn’t be
correct, for example, to display Germany’s flag for a user in Switzerland, although it might be appropriate to
use the same text resources for both. Fortunately, Java’s internationalization capabilities were designed to
easily address this problem.

As mentioned earlier, getBundle() creates a ResourceBundle for each of the variations it finds for the
specified bundle name. In this case, both MyResources_de.class and MyResources.class will be loaded if
a German Locale (for example, Locale.GERMAN or Locale.GERMANY) is the default or is specified explicitly
when getBundle() is called. In addition, the bundles are arranged in a logical hierarchy, and if you request
a resource that isn’t found in the “lowest” bundle, the hierarchy will be searched until a bundle is found
that does contain the resource. In this case, for example, if you request a resource that isn’t defined in
MyResources_de.class but is defined in MyResources.class, the value from MyResources will be returned.

You can take advantage of this behavior by defining only the resources in a “lower” bundle that
should be different from those in a “higher” bundle. For example, to address the issue described earlier
of the German flag being returned for Swiss users, it’s possible to simply define a new German Swiss
(MyResources_de_CH) bundle, like the one in Listing 13-4.

CHAPTER 13 ■ INTERNATIONALIZING YOUR APPLICATIONS

537

Listing 13-4. An Additional Resource Bundle Specifically Targeted at German as Spoken in Switzerland

import java.util.*;
import javax.swing.*;

public class MyResources_de_CH extends ListResourceBundle {

 private static Object[][] resources = {
 {"FlagIcon", new ImageIcon("flags/switzerland.gif")}
 };

 public Object[][] getContents() {
 return resources;
 }
}

When a Swiss German bundle is used, the FlagIcon resource will be retrieved from that bundle. Other
resources, such as the message text items, will effectively be “inherited” from the MyResources_de bundle
because they aren’t defined in MyResources_de_CH (see Figure 13-2).

With the base (MyResources), German (MyResources_de), and Swiss German (MyResources_de_CH)
bundle classes created, you can modify the JavaQuestion application to retrieve its resources from a
ResourceBundle (see Listing 13-5 for an example of how this can be accomplished).

Listing 13-5. Using the Resource Bundles with the Sample Application

import java.util.*;
import javax.swing.*;

public class JavaQuestion {

 private static ResourceBundle resources =
 ResourceBundle.getBundle("MyResources");

 public static void main(String[] args) {
 ImageIcon flagIcon = (ImageIcon)(resources.getObject(
 "FlagIcon"));
 String[] options =
 {resources.getString("LabelYes"), resources.getString("LabelNo")};
 JOptionPane pane = new JOptionPane(

Figure 13-2. Modifying the application to produce different results depending upon which bundle’s
resources are used

CHAPTER 13 ■ INTERNATIONALIZING YOUR APPLICATIONS

538

 resources.getString("JavaIsLang"),
 JOptionPane.QUESTION_MESSAGE,
 0, flagIcon, options);
 JDialog dlg = pane.createDialog(null,
 resources.getString("WhatIsJava"));
 dlg.setModal(true);
 dlg.setVisible(true);
 String selection = (String)(pane.getValue());
 boolean selectedYes = (selection == options[0]);
 }
}

PropertyResourceBundle

The ListResourceBundle in the previous example included an ImageIcon, but in practice, your bundles will
often contain only text data. In addition, it’s somewhat inconvenient to recompile a ListResourceBundle
class each time a new resource is added, updated, or deleted. However, in addition to the
ListResourceBundle, Java also includes the PropertyResourceBundle, and it provides a more convenient
way to package text resources.

Specifically, you can create a properties file, which is a flat file containing key/value pairs, with a pair on
each line and the key and value separated by an equal (=) sign. For example, you could create a properties
file containing the previously defined German messages.

WhatIsJava=Was ist Java?
JavaIsLang=Java ist eine objektorientierte Programmiersprache
LabelYes=Ja
LabelNo=Nein

Unlike ListResourceBundle, you don’t need to define a new Java class to use a PropertyResourceBundle.
Instead, you create a file with a .properties extension and add property information to it like that shown
previously. When you call getBundle(), it will search for properties files in addition to ResourceBundle
subclasses, and getBundle() will automatically create a PropertyResourceBundle when it finds a
.properties file. If it doesn’t find a match after searching, it will go to the base filename if available.
For example, with these messages stored in a file named ResourceTest_de.properties, you could access
them using the following code:

ResourceBundle bundle = ResourceBundle.getBundle(
 "ResourceTest", Locale.GERMAN);

Locale-Sensitive Formatting and Parsing
Creating localized messages is only one of the tasks you must perform to internationalize your applications.
You must also ensure that dates, times, and numeric values are formatted appropriately for the Locale when
displayed, and your applications must be able to parse these data types correctly when they’re entered by a
user. For example, if you provide a text field that allows a user to enter a date value, you’ll typically want to
convert the text entered in that field into an instance of a class used to represent a date, such as java.util.Date
or one of the classes that are part of the new Date and Time API (application programming interface).

CHAPTER 13 ■ INTERNATIONALIZING YOUR APPLICATIONS

539

The Date and Time API introduced in Java 8 is the preferred mechanism for representing and
manipulating date and time values and we already saw in Chapter 3 how to perform those operations.
However, if you’re using an earlier version of Java or you need to maintain code based on one of those
versions it can be helpful to be familiar with how to perform date processing using the older classes, and this
section provides that information.

Java provides the ability to format and parse date, time, and numeric values by creating instances of
java.text.NumberFormat (for numeric values) and java.text.DateFormat (for dates and times). Both of
those classes provide factory methods that allow you to obtain a formatter for a specified Locale or for the
default Locale. For example, the following five lines of code obtain formatters that use the default Locale’s
date, time, numeric, currency, and percent conventions, respectively:

DateFormat dateFormatter = DateFormat.getDateInstance();
DateFormat timeFormatter = DateFormat.getTimeInstance();
NumberFormat numberFormatter = NumberFormat.getNumberInstance();
NumberFormat currencyFormatter = NumberFormat.getCurrencyInstance();
NumberFormat percentFormatter = NumberFormat.getPercentInstance();

These Format objects actually provide two types of functionality. First, they allow you to convert the
value of a Java object or primitive (for example, an instance of Date or a long value) into a text string that’s
formatted according to the conventions of the appropriate Locale. Second, they allow you to perform
the opposite type of conversion, where a string (perhaps one entered by your application’s user) can be
converted into an appropriate object or primitive type. For example, DateFormat converts java.util.Date
instances into text and can convert a text representation of a date into an instance of Date.

Formatting and Parsing Dates
Date values are represented differently in various locales, even in those that use the same language. As noted
earlier, the mm/dd/yy format is the most commonly used format in the United States, but much of the rest
of the world (including other English-speaking regions) uses dd/mm/yy instead.

Even within a single Locale, different date formats are often used. For example, each of the following
represents a format in which a date might be displayed in the United States:

03/19/00
March 19, 2000
Sunday, March 19, 2000

To obtain a reference to a DateFormat object that can be used to format and parse dates, you can call
the static getDateInstance() method in the DateFormat class. When calling getDateInstance(), you can
specify a Locale, and if you don’t do so, a DateFormat object is returned that will format dates based on the
conventions of your default Locale. In addition, getDateInstance() allows you to specify a style, which
is an integer value that’s equal to one of four constants defined in DateFormat: SHORT, MEDIUM, LONG, or
FULL. The style value indicates how detailed a description of the date will be produced by the DateFormat
instance. For example, SHORT generates brief strings (for example, “03/19/00”), while MEDIUM, LONG, and
FULL each provide increasingly more detailed date representations (for example, FULL generates
“Sunday, March 19, 2000”). In the following sections, you’ll get to see by example what effect each of these
constants has on the output.

http://dx.doi.org/10.1007/9781484206423_3

CHAPTER 13 ■ INTERNATIONALIZING YOUR APPLICATIONS

540

Formatting Dates

Once you’ve created an instance of DateFormat, you can use it to convert the value of a java.util.Date
instance into a text string by calling the DateFormat’s format() method. The following code segment creates
a LONG-style DateFormat that will use the conventions that are appropriate for the predefined FRANCE Locale
and uses the Dateformat object to display the current date:

DateFormat formatter = DateFormat.getDateInstance(DateFormat.LONG,
 Locale.FRANCE);
System.out.println(formatter.format(new java.util.Date()));

Running this code segment will produce the following output line:

19 mars 2000

If you’d like to see the various formats that are included for the version of Java you’re using, you could
write an application that uses the static getAvailableLocales() method defined in Locale to display the
various formats for a given date using each Locale (see Figure 13-3).

Figure 13-3. Some of the many different date formats associated with various locales

CHAPTER 13 ■ INTERNATIONALIZING YOUR APPLICATIONS

541

Parsing Dates

Just as you’ll want your application to display dates according to the local conventions, you’ll also want
it to be able to convert a date string entered by a user into an instance of java.util.Date. To convert a
string representation of a date into an instance of Date, simply create an instance of DateFormat and use its
parse() method as follows:

public static void main(String[] args) throws ParseException {
 DateFormat formatter = DateFormat.getDateInstance(DateFormat.SHORT);
 java.util.Date dateValue = formatter.parse(args[0]);
}

Note that a ParseException is thrown if the date string passed to the parse() method doesn’t represent
a valid date as defined by the appropriate Locale’s formatting conventions. There will also potentially be an
ArrayIndexOutOfBoundsException thrown if no argument is provided.

Parsing and DateFormat’s Leniency Mode

As mentioned earlier, you can use instances of DateFormat to convert String representations of date and time
values into instances of Date. For example, the application in Listing 13-6 converts the first command-line
parameter into a Date value using the SHORT form of the default Locale’s date-formatting conventions:

Listing 13-6. A Simple Application That Uses a DateFormat for Parsing Date Text

import java.text.*;
import java.util.Date;

public class DateTest {

 public static void main(String[] args) throws ParseException {
 DateFormat formatter = DateFormat.getDateInstance(DateFormat.SHORT);
 Date theDate = formatter.parse(args[0]);
 System.out.println(theDate);
 }
}

In most cases, entering an invalid date string will result in the parse() method throwing a
ParseException. However, in some versions of Java, you can enter text that doesn’t represent a valid date
without an exception being thrown. For example, you might execute the following application while using
the Java 1.1 core classes:

java DateTest 02/09/hello

Depending upon the version of Java you’re using, the invalid date (“02/09/hello”) may incorrectly
produce the following results:

Mon Feb 09 00:00:00 CST 0001

CHAPTER 13 ■ INTERNATIONALIZING YOUR APPLICATIONS

542

In this case, the invalid year (“hello”) was converted to a value of 0001. This occurs because the
DateFormat’s leniency mode is enabled, which causes it to attempt to “guess” what date the String was
intended to represent.

In most cases, you’ll want DateFormat’s parse() method to both convert and validate the date that
was entered. In other words, the main purpose of parse() is to convert a String into a Date, but it’s also
responsible for ensuring that the text it converts represents a valid date. However, the previous code segment
may fail to correctly notify your application (by throwing a ParseException) that the date was invalid.
To ensure it does so, you can call the setLenient() method as in Listing 13-7, specifying that lenient parsing
of dates should be disabled.

Listing 13-7. Enabling Lenient Parsing in the Sample Application

import java.text.*;
import java.util.Date;

public class DateTest {

 public static void main(String[] args) throws ParseException {
 DateFormat formatter = DateFormat.getDateInstance(DateFormat.SHORT);
 formatter.setLenient(false);
 Date theDate = formatter.parse(args[0]);
 System.out.println(theDate);
 }
}

Formatting and Parsing Times
If you want to format and/or parse time values instead of dates, you can use the getTimeInstance() factory
method defined in DateFormat as in the following code segment:

DateFormat formatter = DateFormat.getTimeInstance();

Like getDateInstance(), the getTimeInstance() method allows you to specify a style (and optionally a
Locale); Figure 13-4 shows some of the combinations.

CHAPTER 13 ■ INTERNATIONALIZING YOUR APPLICATIONS

543

Formatting and Parsing Numeric Values
While DateFormat allows you to format and parse date and time values, NumberFormat allows you to format
and parse numeric values. In this context, numeric values refers collectively to plain numeric values as well
as currency and percentage values, although a different factory method is provided for each of the three
types. To obtain a reference to a formatter/parser for plain numeric data, use the getNumberInstance()
method in NumberFormat. As with DateFormat, you can specify a Locale, but NumberFormat doesn’t support
different styles.

NumberFormat provides format() methods that can be passed either a long value or a double value, so
you can pass any numeric primitive type to those methods for formatting. For example, given the following
code segment:

NumberFormat formatter = NumberFormat.getNumberInstance(Locale.US);
System.out.println(formatter.format(123456.78));

Figure 13-4. Previewing how the current time is displayed using various combinations of format and locale

CHAPTER 13 ■ INTERNATIONALIZING YOUR APPLICATIONS

544

executing the code will produce the following output:

123,456.78

There isn’t as much variation in the way that numbers are formatted around the world as there is
variation in how dates and times are displayed, but there are some differences. For example, the United
States and many other countries use the period (.) to represent the decimal point and commas (,) or a
space to separate every three characters to the left of the decimal. However, other countries (for example,
Germany) reverse the meaning of these two characters, using the comma to represent the decimal point and
the period as the digit separator. For example, suppose you modify the previous code segment as follows:

NumberFormat formatter = NumberFormat.getNumberInstance(Locale.GERMANY);
System.out.println(formatter.format(123456.78));

Executing this code will produce the following output:

123.456,78

Like DateFormat instances, NumberFormat objects can be used for both formatting and parsing, and
while DateFormat’s parse() method returns an instance of java.util.Date, NumberFormat’s parse()
returns an instance of java.lang.Number. However, Number provides convenience methods that allow you
to retrieve the encapsulated value as any primitive type, so it’s easy to convert a numeric String into a given
type. For example, you could use the following code segment to convert the first command-line parameter
into an int value:

public static void main(String[] args) throws ParseException {
 NumberFormat formatter = NumberFormat.getNumberInstance();
 int value = formatter.parse(args[0]).intValue();
}

With Locale set to GERMANY, this code will take the figure “123,45” and return “123” as a result. As with
DateFormat, NumberFormat’s parse() method will throw a ParseException if the string that’s parsed doesn’t
represent a valid number.

NumberFormat Example

Although the conventions used for percentage and plain numeric values don’t vary much from one Locale
to the next, the conventions used for currency values vary widely (see Figure 13-5).

CHAPTER 13 ■ INTERNATIONALIZING YOUR APPLICATIONS

545

MessageFormat
The ResourceBundle class provides a convenient way to encapsulate messages, but it’s often necessary to
insert strings inside those messages before displaying them. For example, suppose you want to display a
message describing the number of users who are logged into an application. You might display a message
like the following one, changing the integer at the beginning of the message to display the appropriate
numeric value:

10 users are currently logged on.

Figure 13-5. Previewing how a currency value is displayed using various combinations of format and locale

CHAPTER 13 ■ INTERNATIONALIZING YOUR APPLICATIONS

546

On the surface, it may seem you can simply define the non-numeric portion of the text in a message and
append it to the number of users. For example:

ResourceBundle bundle;
int userCount;
// ...
// The ResourceBundle includes a CurrentUsers key that's associated with
// the message shown below:
//
// users are currently logged on.
//
String msgText = (String)(bundle.getObject("CurrentUsers"));
System.out.println(userCount + msgText);

The problem with this approach is that when the “users are currently logged on,” text is translated
to another language; thus it may not be grammatically correct to simply append the message text to the
numeric value. For example, the equivalent message in Spanish is as follows:

Entran a 10 utilizadores actualmente.

One way of addressing this is to break the message into two segments: one that represents the text
that should precede the numeric value and the other containing the text that follows it. In the English
ResourceBundle, the text that precedes the value would be empty, while the Spanish version would be
assigned an “Entran a” value. However, that approach would require you to define multiple resources for
each message that contains substitution parameters (for example, the numeric value). Splitting a single
message into multiple resources would make your code more confusing and make the ResourceBundle file
maintenance (in other words, updating and deleting messages) more tedious and error-prone. Fortunately,
Java provides the java.text.MessageFormat class that allows you to format messages with substitution
parameters. It does this by allowing you to format strings into pattern strings at the places you specify in
your code.

To use MessageFormat, simply create an instance using the constructor that accepts a single String
parameter. That String should represent message text with substitution parameters identified by numeric
values in braces, as follows:

{0} users are currently logged on.

To format this message properly, you must construct an array of objects and pass that array to the
format() method of the MessageFormat you created. When you do so, the substitution parameter values
embedded in the message text will be replaced by a String representation of the corresponding object in the
array. In this case, only a single substitution parameter has a value of 0, so you can construct an array that
contains a single object representing the number of users logged on.

Object[] values = {new Integer(userCount)};

The 0 value in the message identifies the index of the array element that should be placed in the
substitution field, which in this case is an Integer representing the user count.

CHAPTER 13 ■ INTERNATIONALIZING YOUR APPLICATIONS

547

You can pass the array of values to the format() method, and it will produce a String representing
the message text with the substitution parameter values embedded within it. For example, suppose you’ve
defined a properties file like the following one that’s suitable for use by a PropertyResourceBundle:

CurrentUsers={0} users are currently logged on.

To format this text with the substitution parameter, simply create an instance of MessageFormat and call

its format() method, passing an array of objects that should be used for the substitution parameters. In this
case, a single parameter is specified, so the array needs to contain only a single Object, and any additional
instances are ignored.

ResourceBundle bundle = ResourceBundle.getBundle("FormatMessages");
int userCount;
// ...
// The ResourceBundle includes a CurrentUsers key that's associated with
// the message shown below:
//
// users are currently logged on.
//
String msgText = (String)(bundle.getObject("CurrentUsers"));
MessageFormat msgFormat = new MessageFormat(msgText);
Object[] values = {new Integer(userCount)};
System.out.println(msgFormat.format(values));

If the value of userCount is 15, the previous code segment will produce the following output:

15 users are currently logged on.

Since it allows you to dynamically construct messages based on their substitution parameters,
MessageFormat allows you to avoid creating code that’s specific to a Locale. For example, when a Spanish
equivalent of the ResourceBundle is created, the substitution parameter can simply be moved to the
appropriate location within the message.

Entran a {0} utilizadores actualmente.

In effect, MessageFormat shifts the responsibility for creating grammatically correct output from the Java
programmer to the person who provides message translation.

I used a single substitution parameter in this example, but it’s equally simple to specify multiple parameters
when using MessageFormat. For example, you might want to create a message with the following text:

$123.40 was deposited at 10:49 AM on March 21, 2000.

In this case, a currency value, date, and time are included in the message output, and the date and time
should be derived from a single instance of java.util.Date. To accomplish this, you might initially create a
message like the following:

Deposit={0} was deposited at {1} on {1}.

CHAPTER 13 ■ INTERNATIONALIZING YOUR APPLICATIONS

548

Note that the second object in the array is referenced twice in this message, and in fact, MessageFormat
allows you to use an object as many times as you want. In addition, it has no requirement that you must use
each object in the array within the message, so it’s valid for the array to contain extraneous objects. In this
example, there’s no reason to add elements to the array that aren’t used in the message, but in practice, you
may want to format() an array that’s used for other purposes within your application.

Given the message defined previously, you could create code like that in Listing 13-8 to display the
message.

Listing 13-8. An Example of Using MessageFormat

ResourceBundle bundle = ResourceBundle.getBundle("FormatMessages");
float depositAmount = 123.4f;
// ...
String msgText = (String)(bundle.getObject("Deposit"));
MessageFormat msgFormat = new MessageFormat(msgText);
Object[] values = {new Float(depositAmount), new java.util.Date()};
System.out.println(msgFormat.format(values));

However, executing this code doesn’t produce the desired results but instead produces output similar to
the following:

123.4 was deposited at 3/21/00 10:49 AM on 3/21/00 10:49 AM.

This occurs because the message text defined earlier doesn’t contain any information that specifies how
the data should be formatted. When you don’t do so, the default Locale’s formatting styles for numbers and
date/time values are used. However, MessageFormat allows you to provide information within the message
text that describes how the values should be formatted. For example, you could make the following changes
to display the first parameter as a currency value, the second parameter as a SHORT-style time, and the third
as a LONG-style date:

Deposit={0,number,currency} was deposited at {1,time,short} on {1,date,long}.

Making this modification to the message text results in the output being correctly formatted.

$123.40 was deposited at 10:49 AM on March 21, 2000.

The second item you can specify in the substitution field is referred to as the element format and must
be one of the following: time, date, number, or choice. The third item is the element style and must be short,
medium, long, or full for date/time values or currency, percent, or integer for numeric values. The choice
element format is useful when the message text that should be displayed is dependent upon the value of the
substitution parameter; I’ll describe how to use choice later in this chapter.

Specifying a Locale
When you create an instance of MessageFormat, it uses the default Locale to format the substitution values
using instances of DateFormat, NumberFormat, and ChoiceFormat. For example, if the default Locale is equal
to Locale.US, date and time values are formatted using US formatting conventions, but you can change
the Locale used by a MessageFormat instance by calling its setLocale() method. However, once you’ve
modified the Locale, you must reapply the message pattern, using applyPattern() as in Listing 13-9.

CHAPTER 13 ■ INTERNATIONALIZING YOUR APPLICATIONS

549

Listing 13-9. Using a Locale with MessageFormat

ResourceBundle bundle = ResourceBundle.getBundle("FormatMessages");
float depositAmount = 123.4f;
// ...
String msgText = (String)(bundle.getObject("Deposit"));
MessageFormat msgFormat = new MessageFormat(msgText);
msgFormat.setLocale(Locale.FRANCE);
msgFormat.applyPattern(msgFormat.toPattern());
Object[] values = {new Float(depositAmount), new java.util.Date()};
System.out.println(msgFormat.format(values));

This code displays the same message shown earlier, but it uses French currency and date/time
formatting conventions as follows:

F123,40 was deposited at 10:49 AM on mars 21, 2000.

Specifying a Format Object
When you specify a Date object as a parameter, MessageFormat creates an instance of DateFormat that it
uses to convert the Date’s value to a String. Similarly, numeric values are formatted using instances of
NumberFormat that are constructed automatically.

In most cases, it’s appropriate to allow MessageFormat to construct DateFormat, NumberFormat, and
ChoiceFormat objects for you. However, you’ll sometimes want to construct one explicitly and have it used
by MessageFormat. For example, you might want to change the previous code so it displays dates using
Italian formatting standards while still allowing other fields to be formatted using the default Locale.
To accomplish this, you could use the setFormat() method as in Listing 13-10.

Listing 13-10. Calling the setFormat() Method for a MessageFormat

ResourceBundle bundle = ResourceBundle.getBundle("FormatMessages");
float depositAmount = 123.4f;
// ...
String msgText = (String)(bundle.getObject("Deposit"));
MessageFormat msgFormat = new MessageFormat(msgText);
DateFormat timeFormat = DateFormat.getTimeInstance(
 DateFormat.LONG, Locale.ITALY);
msgFormat.setFormat(1, timeFormat);
DateFormat dateFormat = DateFormat.getDateInstance(
 DateFormat.LONG, Locale.ITALY);
msgFormat.setFormat(2, dateFormat);
Object[] values = {new Float(depositAmount), new java.util.Date()};
System.out.println(msgFormat.format(values));

If your default Locale is equal to Locale.US, the output from this code segment will appear as follows:

$123.40 was deposited at 9.46.22 CST on 22 marzo 2000.

CHAPTER 13 ■ INTERNATIONALIZING YOUR APPLICATIONS

550

Note that the index value specified on setFormat() corresponds to the index of a substitution field, not
a substitution value. In other words, that index identifies the zero-based location of the substitution field
within the message, where the first field corresponds to a value of 0, the second to a value of 1, and so on.
Don’t confuse this with the values within the substitution fields themselves (for example, {0}, {1}, and so on),
which represent indices into the array of parameter values.

In addition to the setFormat() method, MessageFormat also provides setFormats(), which allows you
to specify an array of Format objects (for example, instances of NumberFormat or DateFormat). For example,
the code segment in Listing 13-11 shows the same output as the previous one, but it uses a slightly different
approach. It retrieves the array of Format objects built by the MessageFormat instance and overrides the
second and third substitution formats with instances that use the Locale for Italy.

Listing 13-11. Using the setFormats() Method to Set Multiple Formats in One Invocation

ResourceBundle bundle = ResourceBundle.getBundle("FormatMessages");
float depositAmount = 123.4f;
// ...
String msgText = (String)(bundle.getObject("Deposit"));
MessageFormat msgFormat = new MessageFormat(msgText);
Format[] formats = msgFormat.getFormats();
formats[1] = DateFormat.getTimeInstance(
 DateFormat.LONG, Locale.ITALY);
formats[2] = DateFormat.getDateInstance(
 DateFormat.LONG, Locale.ITALY);
msgFormat.setFormats(formats);
Object[] values = {new Float(depositAmount), new java.util.Date()};
System.out.println(msgFormat.format(values));

ChoiceFormat
When creating a message that contains a numeric value, it’s often not sufficient to simply insert the number
into the message, because the text may be grammatically incorrect for some values. For example, the
message described earlier that identifies the number of logged-on users can display each of the following:

0 users are currently logged on.
1 users are currently logged on.
2 users are currently logged on.

Notice that the message produced when a single user is logged on (“1 users are currently logged on.”) is
grammatically incorrect. In addition, a better message when there are zero users would be “No users are currently
logged on.” Attempting to produce these results by modifying the Java source code would result in the same type
of Locale-specific coding that appeared earlier, but the ChoiceFormat class provides a solution to this problem.

To create an instance of ChoiceFormat, you can use the constructor that accepts two parameters: an
array of double values in ascending order and an array of String instances. When you call ChoiceFormat’s
format() method and pass it an instance of a numeric wrapper class (for example, Integer, Float, Byte,
and so on), it returns one of the String values from the array based on the value of that numeric object.
For example, suppose you create a ChoiceFormat using the following code:

double[] limits = {0d, 1d, 2d};
String[] values = {"x < 1", "1 <= x < 2", "x >= 2"};
ChoiceFormat cf = new ChoiceFormat(limits, values);

CHAPTER 13 ■ INTERNATIONALIZING YOUR APPLICATIONS

551

This ChoiceFormat defines three ranges of numbers: less than one, between one and two, and greater
than or equal to two. Note that the first value in the list (in this case, zero) is effectively ignored with respect
to defining ranges, but you must include it and ensure that it’s less than the second value. Given this
ChoiceFormat, you can call its format() method and pass it instances of a Number subclass such as Integer.
Passing a value that’s less than one will cause the first String to be printed, while a value greater than or
equal to one but less than two causes the second value to be printed. Finally, values greater than or equal to
two cause the third message to be printed. For example, you might execute code like the following:

System.out.println(cf.format(new Integer(0)));
System.out.println(cf.format(new Integer(1)));
System.out.println(cf.format(new Integer(2)));

Compiling and executing this output will produce the following results:

x < 1
1 <= x < 2
x >= 2

As you may suspect, you can use ChoiceFormat to resolve the problem with the value of a substitution
parameter affecting the appropriate grammar in a message. For example, you could write the code in
Listing 13-12 to generate the appropriate output based on the number of users who are logged on.

Listing 13-12. Using a ChoiceFormat to Handle Variations Based on a Numeric Value

ResourceBundle bundle = ResourceBundle.getBundle("FormatMessages");
int userCount;
// ...
// The ResourceBundle includes a CurrentUsers key that's associated with
// the message shown below:
//
// {0} currently logged on.
//
Integer countValue = new Integer(userCount);
String msgText = (String)(bundle.getObject("CurrentUsers"));
double[] borderValues = {0d, 1d, 2d};
String[] descriptions = {"No users are", "One user is", "{0} users are"};
ChoiceFormat choice = new ChoiceFormat(borderValues, descriptions);
Object[] values = {choice.format(countValue)};
MessageFormat msgFormat = new MessageFormat(msgText);
msgFormat.applyPattern(msgFormat.format(values));
values[0] = countValue;
System.out.println(msgFormat.format(values));

This code segment first creates a ChoiceFormat that contains the String that’s appropriate for the
number of logged-on users. It then uses MessageFormat to add that String to the message stored in the
ResourceBundle and finally uses MessageFormat again to insert the number of users (when that number is
greater than 1).

Besides being somewhat confusing, this code has another serious drawback: portions of the message
text are embedded within it. This is a problem that ResourceBundle and MessageFormat are intended to
eliminate. Fortunately, MessageFormat provides a way to use ChoiceFormat objects without creating them
directly as was done here. Just as it’s possible to specify an element format for date, time, and numeric values

CHAPTER 13 ■ INTERNATIONALIZING YOUR APPLICATIONS

552

(in other words, DateFormat and NumberFormat instances), it’s also possible to specify one for ChoiceFormat
values. To do so, you simply specify choice for the element format and create an element style that
represents the limit values and the String that corresponds to each one as follows:

CurrentUsers=
 {0,choice,0#No users are|1#One user is|2#{0} users are} currently logged on.

Notice that a substitution parameter with an index of zero appears in two places in this message. It’s
used first at the beginning of the message, where it identifies the choice value, and again within the third
and final message that can be produced by the choice. In each case, that parameter represents the number
of users who are logged on, and it’s first used by the choice to select which of its three text strings should be
used. For example, if there are ten users logged on, MessageFormat uses the choice to create the following
intermediate message:

{0} users are currently logged on.

Once the choice has been processed, MessageFormat will perform its normal processing that causes the
number of users to be inserted into the message to produce the following correct output:

10 users are currently logged on.

To use this new message, you can simplify the previous code segment as shown in Listing 13-13.

Listing 13-13. Using ChoiceFormat Implicitly by Embedding It Within the Message Pattern

ResourceBundle bundle = ResourceBundle.getBundle("FormatMessages");
int userCount;
// ...
String myText = (String)(bundle.getObject("CurrentUsers"));
MessageFormat mf = new MessageFormat(myText);
Object[] vals = {new Integer(userCount)};
System.out.println(mf.format(vals));

By implicitly using ChoiceFormat this way, you can ensure your messages are grammatically correct
while still maintaining the separation of message text from application code.

Using Formatter and String’s format() Method
An alternative to using MessageFormat is to use the static format() method defined in the String class,
which provides functionality that’s similar to what MessageFormat offers. In reality, String.format() is
just a convenience method that uses the Formatter class defined in the java.util package. Although the
functionality is similar to that of MessageFormat, the Formatter approach is based on conventions long used
in the C programming language’s printf() function.

CHAPTER 13 ■ INTERNATIONALIZING YOUR APPLICATIONS

553

The MessageFormat and Formatter classes use very different notation but provide very similar
functionality, although Formatter is slightly more flexible and arguably easier to use. For example, if you
want to format text with a single String substitution parameter value you can use code like the following:

String pattern = "My name is %s";
System.out.println(String.format(pattern, "John"));

Executing this produces the following output:

My name is John

Similar to the how the MessageFormat.format() method is used, the static String.format() method
accepts a pattern and zero or more argument values which—again like with MessageFormat—are specified
as varargs. The most obvious difference is how the substitution field is specified, specifically in this case
with “%s”. The percent (%) sign identifies a substitution field, while the “s” indicates how the value should
be formatted and is referred to as the “conversion” value. One important difference between this approach
and that of MessageFormat is that MessageFormat requires you to specify the position of the argument that
should be used to fill in the substitution parameter. With Formatter you can omit the position value, which
will cause it to use the argument that corresponds to position of the substitution field. In other words, the
first argument will be displayed in the first substitution field, the second argument in the second field, etc.
To better illustrate this let’s assume that you want to display both a first and last name, in which case you can
use code like the following:

String pattern = "Hello there %s %s";
System.out.println(String.format(pattern, "John", "Smith"));

Executing this code will produce the following output:

My name is John Smith

Note that the percent sign and the conversion value are the only two parts of a specifier that are
required. As we’ll see, other values can be included to provide additional customization with respect to how
the formatting is done, but the first character in a substitution field must begin with the percent sign and end
with a conversion character.

As mentioned earlier, Formatter does allow you to specify the index of the argument that should be used
to fill in a substitution field just as is required when using MessageFormat, though so far we’ve omitted the
index values. To specify which argument should be used just embed an integer value immediately after
the percent sign and follow it with a dollar sign ($), and the corresponding argument will be used instead
of the one that corresponds to the placement of the field. For example, we can use the following code to display
the last name and then the first name even though they appear in the opposite order in the argument list:

String pattern = "Hello there %2$s, %1$s";
System.out.println(String.format(pattern, "John", "Smith"));

Executing this code produces the following output:

Hello there Smith, John

CHAPTER 13 ■ INTERNATIONALIZING YOUR APPLICATIONS

554

As this example implies, the “s” conversion generates a String representation of the value by calling the
toString() method of the argument specified. In the previous examples both the arguments were already
String instances and calling toString() for a String object results in that object simply returning a result
to itself. To illustrate this point you can create and run the following code, which creates a Date object and
then sends two identical lines to standard output—one the result of calling the Date object’s toString()
method directly and another by calling String.format() with the Date passed as an argument and the “s”
conversion specified:

Date date = new Date(0l);
System.out.println(date);
System.out.println(String.format("%s", date));

The following is the output generated by running this code on a system configured for use in the
United States:

Wed Dec 31 18:00:00 CST 1969

Wed Dec 31 18:00:00 CST 1969

As you’d expect, there’s a conversion type specifically for date/time values, specifically, the “t”
conversion, and it can be combined with additional characters referred to as “suffix characters” to output
only a specific component of a date such as the date’s hours, minutes, seconds, day of the week, and so on.
For example, to send the current day of the week to standard output you could use code like the following
which uses the “a” suffix character to display the abbreviated name (“Sun,” “Mon,” “Tue,” etc.) of the
specified Date’s day of the week:

Date date = new Date(0l);
System.out.println(String.format("%ta", date));

Running this code sends “Wed” to standard output. Alternatively, you can display the full name of
the day of the week by using the “A” suffix character instead, and the following code displays “Wednesday”
instead of “Wed”:

Date date = new Date(0l);
System.out.println(String.format("%tA", date));

This lowercase/uppercase variation is also supported for display abbreviated (two-digit) or full
(four-digit) year values using the “y” and “Y” suffix characters, respectively, as well as the abbreviated or full
month name through “b” and “B.” In other cases, however, there’s no relationship between the lower- and
uppercase versions of a suffix character. For example, “M” represents the minutes within the hour (00-59)
while “m” represents the month formatted as a two-digit value.

On the other hand, the majority of the conversion characters do support the use of an uppercase
equivalent and this does have a consistent meaning: use of an uppercase character indicates that the
generated text should be converted to uppercase. So, for example, running the following code will generate
“WEDNESDAY” instead of “Wednesday” because the uppercase “T” indicates that the generated text is to be
in all caps:

Date date = new Date(0l);
System.out.println(String.format("%TA", date));

An uppercase variant of the conversion character is supported for all conversion types that potentially
generate alphabetic characters, so, for example, instead of the “s” conversion character we used earlier you
could specify “S” to indicate that the alpha characters generated should all be uppercase.

CHAPTER 13 ■ INTERNATIONALIZING YOUR APPLICATIONS

555

In general, the conversion types are categorized by the type of argument object supported. For example,
the “d,” “o,” and “x” conversion types support “integral” (Byte, Short, Integer, Long, and BigInteger)
arguments and format them as decimal, octal, or hexadecimal values, respectively. Similarly, the “e,” “f,” “g,”
and “a” conversion types accept floating point (Float, Double, and BigDecimal) argument types and format
them in various different ways.

Two unique conversion types worth mentioning are the “%” and “n” values. The “%” conversion type
essentially represents an “escape” usage of the percent sign (%). In other words, if you need to embed that
symbol in your output you can easily do so by embedding two sequential occurrences of the character as
follows:

System.out.println(String.format("I support you %d%%!", 100));

Running this code produces the following output:

I support you 100%!

The “n” conversion type is a convenient way of embedding in the output the line separator character
or sequence of characters used by the platform on which the code is running. For example, Windows uses
a carriage return + linefeed combination to represent a line separator, while most other systems use the
linefeed by itself to indicate a line break.

One place where using “%n” can be helpful is in the case of another convenience method that uses
Formatter, specifically the printf() methods added to the PrintStream class. An instance of PrintStream
is used to represent standard output and standard error, so the you can abbreviate statements like the ones
used earlier by calling printf() instead of println().

System.out.printf("I support you %d%%!", 100);

Note, however, that printf() is more like the print() method—and unlike println()—in that it
doesn’t append line separator text to the output. What this means is that if you want your output to appear
on a line by itself you’ll typically need to explicitly insert a line separator, and this is where the “n” conversion
comes in handy. To have System.out.printf() behave more like System.out.println(), just include “%n”
at the end of the formatter pattern as follows:

System.out.printf("I support you %d%%!%n", 100);

Like MessageFormat, Formatter also provides the ability to create custom formats for substitution
parameter values. For example, when using a floating point value as an argument you might want to specify
the exact number of digits that should be displayed to the right of the decimal point. This value is referred to
as the “precision” and can be accomplished by using code like the following:

Float value = 123.456F;
System.out.printf("%.2f%n", value);

Running this code will produce the following output:

123.45

CHAPTER 13 ■ INTERNATIONALIZING YOUR APPLICATIONS

556

You can also specify a value that indicates exactly how wide the formatted value should be, and this
value is referred to as the width. As you might expect, the width is specified before the period (.) character
in contrast to the precision that we just specified after it. For example, to produce a string that’s exactly eight
characters long you could use the following:

Float value = 123.456F;
System.out.printf("%8.2f%n", value);

Running this code produces the following, with two blank spaces preceding the numeric text:

123.45

For additional custom you can take advantage of Formatter’s flags, which largely are used to support
further customization of numeric output. For example, if you want the padding on the left to be done using
zeroes instead of spaces you could use the “0” flag that indicates this as shown here.

System.out.printf("%8.2f%n", value);

Running this now generates output similar to that in the previous example, but with a pair of leading
zeroes instead of spaces.

00123.45

Other flags indicate that negative numbers should be enclosed in parentheses, whether a sign (+/-)
should be displayed, and so on.

Now that we’ve discussed different ways of formatting data that’s to be displayed for the user, it’s helpful
to consider how internationalization can be supported by doing essentially the opposite: processing data
that has been entered by a user or some external system.

Parsing Text Data
You’ll often find it necessary to parse text information that has been entered by a user. For example, you
may need to split text across multiple lines if it’s displayed in a component that’s too narrow to display the
string on a single line. In other cases, you may want to identify each word or sentence that was entered or
simply process each character. These are all relatively easy operations to perform in English, but some other
languages have complex rules that govern what’s considered a sentence or a word. Even identifying a single
character can be complex, particularly in some Asian languages, because a single logical character in one
of those languages can be represented by a sequence of multiple Unicode characters. Fortunately, Java
provides the BreakIterator class that can be used to parse text using the rules for a given Locale.

BreakIterator
To use a BreakIterator, you must obtain an instance of the appropriate type from one of the factory
methods that are defined; those methods are getCharacterInstance(), getWordInstance(),
getLineInstance(), and getSentenceInstance(). Two implementations of each of those methods are
provided: one that accepts a Locale parameter and another that uses the default Locale.

CHAPTER 13 ■ INTERNATIONALIZING YOUR APPLICATIONS

557

Once you’ve obtained a BreakIterator, you must identify the String that’s to be parsed by calling
the setText() method. The BreakIterator works by maintaining an index value in the text, and when you
call a method to locate the next break position, that index is adjusted appropriately. The next() method
moves the index to the next boundary in the text field and returns the position of that boundary or a value
of BreakIterator.DONE when no more boundaries can be found. For example, the code segment in
Listing 13-14 shows how you can identify sentence boundaries using a BreakIterator.

Listing 13-14. An Example of How to Use BreakIterator

BreakIterator bi = BreakIterator.getSentenceInstance();
String sent = "This is a sentence! Is this a sentence too? " +
 "This is the last sentence.";
bi.setText(sent);
int lastIndex = bi.first();
int currentIndex = bi.next();
while (currentIndex != BreakIterator.DONE) {
 System.out.println(sent.substring(lastIndex, currentIndex));
 lastIndex = currentIndex;
 currentIndex = bi.next();
}

If you compile and execute this code, it will produce the following output:

This is a sentence!
Is this a sentence too?
This is the last sentence.

Note that BreakIterator provides methods for moving both forward and backward through a string to
identify its boundaries, although you’ll typically process them in a forward direction as was done here. You
should also be aware that the whitespace characters (spaces in this example) are grouped with the sentence
they follow. For example, the first two sentences shown previously will each include a trailing space, since a
space is included in the sample text between each of the three sentences.

Character Iteration

As mentioned earlier, identifying each character in a String is trivial in some languages but not in others.
For example, characters with accents such as the ä and ë characters that represent one logical character can
be represented by two “physical” characters: the base character (for example, a or e) followed by a diacritical
mark (¨). By using BreakIterator, you can identify each individual logical character within a String,
regardless of how it’s stored.

CHAPTER 13 ■ INTERNATIONALIZING YOUR APPLICATIONS

558

Word Iteration

Although relatively simple for English text, identifying word boundaries can be complex in some languages,
but BreakIterator allows you to do so easily. When using a word iterator, boundaries are identified on each
side of punctuation characters as well as around the words themselves. For example, the following sentence
will be broken into eight separate pieces:

This is a test.

The eight pieces that a word iterator will identify are the four words within the sentence, the three
whitespace regions (in other words, the space characters) between those words, and the period at the end of
the sentence.

Line Iteration

Line iteration is useful when you need to find an appropriate location within a String where the text can
be split across lines. For example, you might do so if implementing word wrap behavior like that found
in JTextArea, where a single word isn’t allowed to span multiple lines. In the case of English text, line
boundaries occur at spaces and at hyphens, since it’s considered acceptable to split a hyphenated word
across two lines.

Sentence Iteration

As illustrated earlier, this type of BreakIterator allows you to identify the beginning and end of sentences.

BreakIterator Example

Listing 13-15 provides an application that allows you to test the behavior of the various types of
BreakIterator. It produces a user interface like the one shown in Figure 13-6, which allows you to select
a Locale and a BreakIterator type (character, word, line, or sentence), enter some text, and have the text
parsed by a BreakIterator.

CHAPTER 13 ■ INTERNATIONALIZING YOUR APPLICATIONS

559

When the text is parsed by pressing the Refresh button, the boundaries identified by the BreakIterator
are used to add the separate pieces of text to a JList, allowing you to scroll to view all of the parsed items.
Listing 13-15 provides the full text of this code.

Listing 13-15. Testing BreakIterator

import java.awt.*;
import java.awt.event.*;
import java.text.*;
import java.util.*;
import javax.swing.*;

public class IteratorTest extends JPanel {

 private JComboBox localeButton;

 private JTextArea textArea;

 private JRadioButton charButton;
 private JRadioButton wordButton;
 private JRadioButton lineButton;
 private JRadioButton sentButton;

 private JLabel countLabel;
 private JButton refreshButton;

Figure 13-6. BreakIterator contains sophisticated logic for identifying sentence breaks

CHAPTER 13 ■ INTERNATIONALIZING YOUR APPLICATIONS

560

 private JList itemList;
 // Create a window for the Iterator test
 // and make sure that later components will fit
 public static void main(String[] args) {
 JFrame f = new JFrame("Iterator Test");
 f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 f.setContentPane(new IteratorTest());
 f.pack();
 f.setVisible(true);
 }

 public IteratorTest() {
 buildLayout();
 refreshDisplay();
 }

 private void buildLayout() {
 setLayout(new GridBagLayout());
 GridBagConstraints gbc = new GridBagConstraints();

 // Set up the contents of the Locale combo box
 gbc.gridx = 0;
 gbc.gridy = 0;
 localeButton = new JComboBox(Locale.getAvailableLocales());
 localeButton.setRenderer(new LocaleListCellRenderer());
 localeButton.setSelectedItem(Locale.getDefault());
 add(localeButton, gbc);

 gbc.gridwidth = GridBagConstraints.REMAINDER;
 gbc.fill = GridBagConstraints.BOTH;
 gbc.weightx = 1;

 // Set up the input area panel
 gbc.gridy++;
 gbc.weighty = 1;
 textArea = new JTextArea(5, 20);
 textArea.setLineWrap(true);
 textArea.setWrapStyleWord(true);
 JScrollPane jsp = new JScrollPane(textArea,
 JScrollPane.VERTICAL_SCROLLBAR_AS_NEEDED,
 JScrollPane.HORIZONTAL_SCROLLBAR_NEVER);
 add(jsp, gbc);

 // Add a panel for the choice buttons
 gbc.gridy++;
 gbc.weighty = 0;
 add(getTypePanel(), gbc);

CHAPTER 13 ■ INTERNATIONALIZING YOUR APPLICATIONS

561

 // Add a panel for the refresh button and the count label
 gbc.gridy++;
 add(getCountPanel(), gbc);

 // Add a panel for the parsed output
 gbc.gridy++;
 gbc.weighty = 1;
 itemList = new JList();
 add(new JScrollPane(itemList), gbc);
 }

 // Create the panel for the choice buttons
 private JPanel getTypePanel() {
 JPanel panel = new JPanel();
 panel.setLayout(new GridLayout(2, 2, 20, 0));
 charButton = new JRadioButton("Character", true);
 panel.add(charButton);
 wordButton = new JRadioButton("Word");
 panel.add(wordButton);
 lineButton = new JRadioButton("Line");
 panel.add(lineButton);
 sentButton = new JRadioButton("Sentence");
 panel.add(sentButton);

 // Add the buttons to a group
 ButtonGroup group = new ButtonGroup();
 group.add(charButton);
 group.add(wordButton);
 group.add(lineButton);
 group.add(sentButton);
 return panel;
 }

 // Create a panel for the refresh button and the count label
 private JPanel getCountPanel() {
 JPanel panel = new JPanel();
 JLabel label = new JLabel("Count:", JLabel.RIGHT);
 panel.add(label);
 countLabel = new JLabel("", JLabel.LEFT);
 Dimension size = panel.getPreferredSize();
 size.width = Math.min(size.width, 100);
 countLabel.setPreferredSize(size);
 panel.add(countLabel);

CHAPTER 13 ■ INTERNATIONALIZING YOUR APPLICATIONS

562

 // Add the refresh button
 refreshButton = new JButton("Refresh");
 refreshButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 refreshDisplay();
 }
 });
 panel.add(refreshButton);
 return panel;
 }

 private void refreshDisplay() {
 int startIndex, nextIndex;
 Vector items = new Vector();
 // Get the input text
 String msgText = textArea.getText();
 // Set the locale and prepare the iterator
 Locale locale = (Locale)(localeButton.getSelectedItem());
 BreakIterator iterator = null;
 // Work out which button is selected and set the iterator
 if (charButton.isSelected()) {
 iterator = BreakIterator.getCharacterInstance(locale);
 }
 else if (wordButton.isSelected()) {
 iterator = BreakIterator.getWordInstance(locale);
 }
 else if (lineButton.isSelected()) {
 iterator = BreakIterator.getLineInstance(locale);
 }
 else if (sentButton.isSelected()) {
 iterator = BreakIterator.getSentenceInstance(locale);
 }
 iterator.setText(msgText);
 startIndex = iterator.first();
 nextIndex = iterator.next();

 // Find the breaks in the input text
 // and add the substrings for output
 while (nextIndex != BreakIterator.DONE) {
 items.addElement(msgText.substring(startIndex, nextIndex));
 startIndex = nextIndex;
 nextIndex = iterator.next();
 }
 countLabel.setText(Integer.toString(items.size()));
 itemList.setListData(items); // Output the parsed input
 }

 // Combo box to select the available locales
 class LocaleListCellRenderer extends DefaultListCellRenderer {
 public Component getListCellRendererComponent(
 JList list, Object value, int index,

CHAPTER 13 ■ INTERNATIONALIZING YOUR APPLICATIONS

563

 boolean isSelected, boolean hasFocus) {
 Locale locale = (Locale)(value);
 return super.getListCellRendererComponent(
 list, locale.getDisplayName(),
 index, isSelected, hasFocus);
 }
 }
}

Text Comparisons and Sorting
It’s sometimes necessary for your application to compare instances of String to one another, such as
when the text items in a collection are being sorted. For example, you might want to sort a list of names
alphabetically, which you’d accomplish by comparing the names to one another.

Although Java’s String class provides compareTo() and compareToIgnoreCase() methods, those
methods may not return the correct results when comparing non-ASCII characters. As with parsing, the
rules that govern String comparisons are simple in some cases but not in others. Fortunately, the java.text
package includes the Collator class that can be used to perform Locale-specific comparisons of strings,
and you can obtain an instance of Collator by calling the getInstance() method. Like many of the other
methods related to internationalization, two implementations of getInstance() are available: one that
accepts a Locale argument and another that doesn’t. The no-argument version returns a Collator that’s
appropriate for the default Locale, while the implementation that accepts a Locale parameter returns a
Collator that sorts based on the conventions of the specified Locale.

Once you’ve obtained a reference to a Collator object for the appropriate Locale, you can call the
compare() method that accepts two String parameters and returns an int value. The return value indicates
the relative value of the first string to the second, as shown in Table 13-3.

Table 13-3. Values Returned by the compare() Method Defined in Collator

Relative Values of the String Parameters Value Returned by compare()

First string less than the second string Less than zero

First string equal to the second string Zero

First string greater than the second string Greater than zero

CHAPTER 13 ■ INTERNATIONALIZING YOUR APPLICATIONS

564

The following code segments illustrate how to perform a comparison that will work correctly regardless
of the user’s Locale:

String first, second;
// ...
Collator coll = Collator.getInstance();
int result = coll.compare(first, second);
if (result < 0) {
 System.out.println("First String is less than second");
}
else if (result == 0) {
 System.out.println("First String is equal to the second");
}
else if (result > 0) {
 System.out.println("First String is greater than the second");
}

Sorting the objects in a java.util.List implementation is even easier, since the Collections class
in java.util provides a static sort() method you can use. For example, if you create a Vector containing
String values and you want to sort those values, you can pass that Vector as a parameter to the sort()
method in Collections. The only requirements for using sort() are that each object in the List must
implement the java.lang.Comparable interface (which is true of most wrapper classes) and that a
comparison between any two of the elements is meaningful. In general, for a comparison to be meaningful,
the two elements must be instances of the same type of object.

By default, the sort() method in Collections sorts using the rules for the default Locale. However, you
can create a Collator instance and pass that to the sort() method along with the List implementation to
have the items in the list sorted according to the Locale associated with your Collator object. For example,
if your default Locale isn’t equal to Locale.JAPAN but the text to be sorted was entered by a Japanese user,
you could use code such as the following to ensure that the sorting is performed correctly:

// This Vector will contain the items to be sorted
Vector textItems;
// ...
Collator coll = Collator.getInstance(Locale.JAPAN);
Collections.sort(textItems, coll);

Collator Strength
Sorting is sometimes not as simple as it may appear, even when sorting English text that contains only
simple Latin characters. For example, depending upon the circumstances, it may or may not be the case
that “hello” should be considered equal to “Hello”; in addition, for languages where characters can be
used with or without an accent (for example, “pêche” vs. “péché”), it may or may not be desirable to
consider the presence or absence of accents when comparing String values. Fortunately, the Collator
class allows you to select a strength value that determines which type of differences between characters
(if any) will be ignored.

The four strength values supported by Collator are represented by constants defined in that class:
PRIMARY, SECONDARY, TERTIARY, and IDENTICAL. These constants define how closely two characters
must match one another for them to be considered equal. Although the specific rules for making that
determination are Locale-specific, some generalizations can be made. For example, it’s commonly the
case that a primary difference means that two characters represent different letters of the alphabet, and the
difference between A and B is primary, but the difference between A and a isn’t. A secondary difference

CHAPTER 13 ■ INTERNATIONALIZING YOUR APPLICATIONS

565

between two characters indicates that their accents are different or that one has an accent while the other
doesn’t. For instance, the difference between é and ê is considered a secondary difference. Finally, a
tertiary difference in this case refers to the case of the letter, such as when comparing e to E. As described
in Table 13-4, the four constants defined in Collator allow you to specify how closely two characters must
match one another for them to be considered equal.

IDENTICAL differs from TERTIARY in that it differentiates between precomposed characters with accents
and combined characters with accents. By setting the strength of a Collator, you can control how items are
sorted; the following is an example of how to set the strength:

Collator coll = Collator.getInstance();
coll.setStrength(Collator.PRIMARY);

Decomposition Mode
The Collator class also supports a decomposition mode that determines how composed characters are
handled by the Collator instance. Examples of composed characters are those that contain accents,
which are usually broken down (or decomposed) for comparison operations. For example, the é character
in “péché” would be decomposed into two characters: the base letter (lowercase e) followed by the acute
character (´). In other words, when it’s decomposed, “péché” is seven characters long instead of five, and the
purpose of this decomposition is to ensure that the result of a comparison is correct.

Depending upon the language being used, it may or may not be necessary for Collator to perform
decomposition. For example, decomposition isn’t necessary at all when comparing only English text. Since
decomposition causes comparison operations to run more slowly, you may choose to disable decomposition
entirely if you’re certain your application will only ever compare String values that don’t require it.

If your application can be used with languages that require some level of decomposition, you
must choose between canonical decomposition (the default value for instances of Collator) and full
decomposition. Canonical decomposition is appropriate for most languages and will provide correct
comparisons for all canonical variants defined in the Unicode 2.0 standard. However, if your application
supports Katakana characters, for example, you may find it necessary to use full decomposition despite
its relatively slow performance. For information on which character sets require full decomposition, you
should visit the Unicode home page at www.unicode.org/. (Katakana characters are traditional Japanese
handwriting.)

Table 13-4. Collator Strengths and Types of Differences

Collator Constant Type of Differences Considered Significant

PRIMARY Primary

SECONDARY Primary and secondary

TERTIARY Primary, secondary, and tertiary

IDENTICAL All

http://D:\\Sadam\\2015\\XML\\Apr\\20-4-2015\\Spell\\XML\\Chapter13\\www.unicode.org\\

CHAPTER 13 ■ INTERNATIONALIZING YOUR APPLICATIONS

566

Each of the composition modes is represented by a constant defined in Collator, and you can modify
and query a Collator’s mode using the setDecomposition() and getDecomposition() methods. The three
constants representing composition modes are NO_DECOMPOSITION, CANONICAL_DECOMPOSITION, and FULL_
DECOMPOSITION; the following is an example of how to use them:

Collator coll;
String first, second;
// ...
// We may be comparing Katakana characters
coll.setDecomposition(Collator.FULL_DECOMPOSITION);
int result = coll.compare(first, second);

Internationalizing an Application
You’ll now briefly examine the steps you must take to internationalize an existing application. In this case,
the application is a simple program that allows the user to maintain a collection of instances of the Person
class shown in Listing 13-16.

Listing 13-16. Person Class

import java.util.Date;

public class Person implements java.io.Serializable {

 private String firstName;
 private String lastName;
 private String address;
 private Date dateOfBirth;

 public Person(String fn, String ln, String addr, Date dob) {
 super();
 setFirstName(fn);
 setLastName(ln);
 setAddress(addr);
 setDateOfBirth(dob);
 }

 public Person() {
 this(null, null, null, null);
 }

 public void setFirstName(String fn) {
 firstName = fn;
 }

 public String getFirstName() {
 return firstName;
 }

CHAPTER 13 ■ INTERNATIONALIZING YOUR APPLICATIONS

567

 public void setLastName(String ln) {
 lastName = ln;
 }

 public String getLastName() {
 return lastName;
 }

 public void setAddress(String addr) {
 address = addr;
 }

 public String getAddress() {
 return address;
 }

 public void setDateOfBirth(Date dob) {
 dateOfBirth = dob;
 }

 public Date getDateOfBirth() {
 return dateOfBirth;
 }
}

As shown in Figure 13-7, the EditPersonList application allows entries to be added, updated, and
deleted, and it stores those entries in a disk file named people.ser. Listing 13-17 shows the code for the
EditPersonList application.

Figure 13-7. A simple application that allows data to be edited and stored

CHAPTER 13 ■ INTERNATIONALIZING YOUR APPLICATIONS

568

Listing 13-17. EditPersonList Application

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.text.*;
import java.util.*;
import javax.swing.*;

public class EditPersonList extends JFrame {

 private Vector personList;
 private int currentIndex;

 private JButton addButton;
 private JButton deleteButton;
 private JButton clearButton;

 private JButton nextButton;
 private JButton previousButton;

 private PersonPanel personPanel;

 public static void main(String[] args) throws Exception {
 EditPersonList epl = new EditPersonList("Edit List");
 epl.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 epl.setVisible(true);
 }

 public EditPersonList(String title) throws Exception {
 super(title);
 buildLayout();
 File f = new File("people.ser");
 if (f.exists()) {
 FileInputStream fis = new FileInputStream(f);
 ObjectInputStream ois = new ObjectInputStream(fis);
 personList = (Vector)(ois.readObject());
 }
 else {
 personList = new Vector();
 }
 currentIndex = 0;
 displayCurrentPerson();
 pack();
 }

 private void buildLayout() {
 Container pane = getContentPane();
 personPanel = new PersonPanel();
 pane.add(personPanel, BorderLayout.CENTER);
 pane.add(getButtonPanel(), BorderLayout.SOUTH);
 }

CHAPTER 13 ■ INTERNATIONALIZING YOUR APPLICATIONS

569

 private JPanel getButtonPanel() {
 JPanel panel = new JPanel();
 panel.setLayout(new GridLayout(1, 5, 10, 0));
 addButton = new JButton("Add");
 panel.add(addButton);
 clearButton = new JButton("Clear");
 panel.add(clearButton);
 deleteButton = new JButton("Delete");
 panel.add(deleteButton);

 nextButton = new JButton("Next");
 panel.add(nextButton);
 previousButton = new JButton("Previous");
 panel.add(previousButton);

 addButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 Person p = new Person();
 if (personPanel.updatePerson(p)) {
 personList.addElement(p);
 currentIndex = personList.size() - 1;
 displayCurrentPerson();
 }
 savePersonList();
 }
 });

 clearButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 personPanel.clear();
 }
 });

 deleteButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 personList.removeElementAt(currentIndex);
 if (currentIndex >= personList.size()) {
 currentIndex = personList.size() - 1;
 }
 savePersonList();
 displayCurrentPerson();
 }
 });

 nextButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 currentIndex++;
 displayCurrentPerson();
 }
 });

CHAPTER 13 ■ INTERNATIONALIZING YOUR APPLICATIONS

570

 previousButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 currentIndex--;
 displayCurrentPerson();
 }
 });

 return panel;
 }

 private void displayCurrentPerson() {
 if ((currentIndex >= 0) && (currentIndex < personList.size())) {
 personPanel.displayPerson((Person)
 (personList.elementAt(currentIndex)));
 }
 else {
 personPanel.clear();
 }
 previousButton.setEnabled(currentIndex > 0);
 nextButton.setEnabled(currentIndex < personList.size() - 1);
 }

 private void savePersonList() {
 File f = new File("people.ser");
 try {
 FileOutputStream fos = new FileOutputStream(f);
 ObjectOutputStream oos = new ObjectOutputStream(fos);
 oos.writeObject(personList);
 oos.close();
 } catch (IOException ioe) {};
 }

 class PersonPanel extends JPanel {
 private JTextField firstNameField;
 private JTextField lastNameField;
 private JTextField addressField;
 private JTextField dobField;

 public PersonPanel() {
 buildLayout();
 }

 private void buildLayout() {
 JLabel label;
 setLayout(new GridBagLayout());
 GridBagConstraints gbc = new GridBagConstraints();
 gbc.weightx = 1;
 gbc.fill = GridBagConstraints.HORIZONTAL;
 gbc.insets = new Insets(5, 10, 5, 10);

CHAPTER 13 ■ INTERNATIONALIZING YOUR APPLICATIONS

571

 gbc.gridy = 0;
 label = new JLabel("First name:", JLabel.LEFT);
 add(label, gbc);

 firstNameField = new JTextField(10);
 add(firstNameField, gbc);

 label = new JLabel("Last name:", JLabel.LEFT);
 add(label, gbc);

 lastNameField = new JTextField(10);
 add(lastNameField, gbc);

 gbc.gridy++;
 label = new JLabel("Address:", JLabel.LEFT);
 add(label, gbc);

 gbc.gridwidth = GridBagConstraints.REMAINDER;
 addressField = new JTextField(10);
 add(addressField, gbc);

 gbc.gridwidth = 1;
 gbc.gridy++;
 label = new JLabel("Date of Birth:", JLabel.LEFT);
 add(label, gbc);

 dobField = new JTextField(10);
 add(dobField, gbc);
 }

 public void clear() {
 firstNameField.setText("");
 lastNameField.setText("");
 addressField.setText("");
 dobField.setText("");
 }

 public void displayPerson(Person p) {
 firstNameField.setText(p.getFirstName());
 lastNameField.setText(p.getLastName());
 addressField.setText(p.getAddress());
 DateFormat formatter = DateFormat.getDateInstance(DateFormat.SHORT);
 dobField.setText(formatter.format(p.getDateOfBirth()));
 }

CHAPTER 13 ■ INTERNATIONALIZING YOUR APPLICATIONS

572

 public boolean updatePerson(Person p) {
 String firstName = firstNameField.getText();
 String lastName = lastNameField.getText();
 String address = addressField.getText();
 Date dateOfBirth = null;
 DateFormat parser = DateFormat.getDateInstance(DateFormat.SHORT);
 try {
 dateOfBirth = parser.parse(dobField.getText());
 }
 catch (ParseException pe) {
 JOptionPane.showMessageDialog(this, pe.getMessage(),
 "Invalid Date",
 JOptionPane.ERROR_MESSAGE);
 return false;
 }
 p.setFirstName(firstName);
 p.setLastName(lastName);
 p.setAddress(address);
 p.setDateOfBirth(dateOfBirth);
 return true;
 }
 }
}

No String comparisons are performed in this class, and the only parsing operation occurs when a
String entered by the user is converted into a Date instance. Therefore, you can internationalize this class
simply by removing the Locale-specific text that’s embedded within it. Specifically, those strings are the
JFrame’s title, the JOptionPane’s title, the JButton labels, and the text displayed within the user interface
panel (PersonPanel).

Although a String is specified for the name of the file that’s used to store the People instances, that
name isn’t visible to users of the application and doesn’t need to be stored in the ResourceBundle.

Since all the resources that must be isolated from the source code are text strings, you can create a
PropertyResourceBundle like the following one named PeopleResources.properties:

FrameTitle=Edit List
Button_Label_Add=Add
Button_Label_Clear=Clear
Button_Label_Delete=Delete
Button_Label_Next=Next
Button_Label_Previous=Previous
Label_Text_FirstName=First name:
Label_Text_LastName=Last name:
Label_Text_Address=Address:
Label_Text_DOB=Date of Birth:
Dialog_Title_Invalid_Date=Invalid Date
Menu_Locale=Locale

CHAPTER 13 ■ INTERNATIONALIZING YOUR APPLICATIONS

573

Although you can use any identifiers/keys you find appropriate, it’s usually helpful to use names that
describe how the resource is used (for example, Button_XXX for button labels, Label_XXX for JLabel text,
and so on). This can provide an intuitive clue that helps you to determine how and/or where a particular
resource is used within your application.

With a file defined that contains the resources, it’s easy to modify the EditPersonList class so that it
uses the external resources instead of embedding the messages (see Listing 13-18).

Listing 13-18. EditPersonList Class

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.text.*;
import java.util.*;
import javax.swing.*;

public class EditPersonList extends JFrame {

 private Vector personList;
 private int currentIndex;

 private JButton addButton;
 private JButton deleteButton;
 private JButton clearButton;

 private JButton nextButton;
 private JButton previousButton;

 private PersonPanel personPanel;

 private static ResourceBundle resources =
 ResourceBundle.getBundle("PeopleResources");

 public static void main(String[] args) throws Exception {
 EditPersonList epl = new EditPersonList(resources.getString("FrameTitle"));
 epl.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 epl.setVisible(true);
 }

 public EditPersonList(String title) throws Exception {
 super(title);
 buildLayout();
 File f = new File("people.ser");
 if (f.exists()) {
 FileInputStream fis = new FileInputStream(f);
 ObjectInputStream ois = new ObjectInputStream(fis);
 personList = (Vector)(ois.readObject());
 }

CHAPTER 13 ■ INTERNATIONALIZING YOUR APPLICATIONS

574

 else {
 personList = new Vector();
 }
 currentIndex = 0;
 displayCurrentPerson();
 pack();
 }

 private void buildLayout() {
 Container pane = getContentPane();
 personPanel = new PersonPanel();
 pane.add(personPanel, BorderLayout.CENTER);
 pane.add(getButtonPanel(), BorderLayout.SOUTH);
 }

 private JPanel getButtonPanel() {
 JPanel panel = new JPanel();
 panel.setLayout(new GridLayout(1, 5, 10, 0));

 addButton = new JButton(resources.getString("Button_Label_Add"));
 panel.add(addButton);
 clearButton = new JButton(resources.getString("Button_Label_Clear"));
 panel.add(clearButton);
 deleteButton = new JButton(resources.getString("Button_Label_Delete"));
 panel.add(deleteButton);

 nextButton = new JButton(resources.getString("Button_Label_Next"));
 panel.add(nextButton);
 previousButton = new JButton(resources.getString("Button_Label_Previous"));
 panel.add(previousButton);

 addButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 Person p = new Person();
 if (personPanel.updatePerson(p)) {
 personList.addElement(p);
 currentIndex = personList.size() - 1;
 displayCurrentPerson();
 }
 savePersonList();
 }
 });

 clearButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 personPanel.clear();
 }
 });

CHAPTER 13 ■ INTERNATIONALIZING YOUR APPLICATIONS

575

 deleteButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 personList.removeElementAt(currentIndex);
 if (currentIndex >= personList.size()) {
 currentIndex = personList.size() - 1;
 }
 savePersonList();
 displayCurrentPerson();
 }
 });

 nextButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 currentIndex++;
 displayCurrentPerson();
 }
 });

 previousButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 currentIndex--;
 displayCurrentPerson();
 }
 });

 return panel;
 }

 private void displayCurrentPerson() {
 if ((currentIndex >= 0) && (currentIndex < personList.size())) {
 personPanel.displayPerson((Person)
 (personList.elementAt(currentIndex)));
 }
 else {
 personPanel.clear();
 }
 previousButton.setEnabled(currentIndex > 0);
 nextButton.setEnabled(currentIndex < personList.size() - 1);
 }

 private void savePersonList() {
 File f = new File("people.ser");
 try {
 FileOutputStream fos = new FileOutputStream(f);
 ObjectOutputStream oos = new ObjectOutputStream(fos);
 oos.writeObject(personList);
 oos.close();
 } catch (IOException ioe) {};
 }

CHAPTER 13 ■ INTERNATIONALIZING YOUR APPLICATIONS

576

 class PersonPanel extends JPanel {
 private JTextField firstNameField;
 private JTextField lastNameField;
 private JTextField addressField;
 private JTextField dobField;

 public PersonPanel() {
 buildLayout();
 }

 private void buildLayout() {
 JLabel label;
 setLayout(new GridBagLayout());
 GridBagConstraints gbc = new GridBagConstraints();
 gbc.weightx = 1;
 gbc.fill = GridBagConstraints.HORIZONTAL;
 gbc.insets = new Insets(5, 10, 5, 10);

 gbc.gridy = 0;
 label = new JLabel(resources.getString(
 "Label_Text_FirstName"), JLabel.LEFT);
 add(label, gbc);

 firstNameField = new JTextField(10);
 add(firstNameField, gbc);

 label = new JLabel(resources.getString(
 "Label_Text_LastName"), JLabel.LEFT);
 add(label, gbc);

 lastNameField = new JTextField(10);
 add(lastNameField, gbc);

 gbc.gridy++;
 label = new JLabel(resources.getString(
 "Label_Text_Address"), JLabel.LEFT);
 add(label, gbc);

 gbc.gridwidth = GridBagConstraints.REMAINDER;
 addressField = new JTextField(10);
 add(addressField, gbc);
 gbc.gridwidth = 1;
 gbc.gridy++;
 label = new JLabel(resources.getString(
 "Label_Text_DOB"), JLabel.LEFT);
 add(label, gbc);

 dobField = new JTextField(10);
 add(dobField, gbc);
 }

CHAPTER 13 ■ INTERNATIONALIZING YOUR APPLICATIONS

577

 public void clear() {
 firstNameField.setText("");
 lastNameField.setText("");
 addressField.setText("");
 dobField.setText("");
 }

 public void displayPerson(Person p) {
 firstNameField.setText(p.getFirstName());
 lastNameField.setText(p.getLastName());
 addressField.setText(p.getAddress());
 DateFormat formatter = DateFormat.getDateInstance(DateFormat.SHORT);
 dobField.setText(formatter.format(p.getDateOfBirth()));
 }

 public boolean updatePerson(Person p) {
 String firstName = firstNameField.getText();
 String lastName = lastNameField.getText();
 String address = addressField.getText();
 Date dateOfBirth = null;
 DateFormat parser = DateFormat.getDateInstance(DateFormat.SHORT);
 try {
 dateOfBirth = parser.parse(dobField.getText());
 }
 catch (ParseException pe) {
 JOptionPane.showMessageDialog(this, pe.getMessage(),
 resources.getString("Dialog_Title_Invalid_Date"),
 JOptionPane.ERROR_MESSAGE);
 return false;
 }
 p.setFirstName(firstName);
 p.setLastName(lastName);
 p.setAddress(address);
 p.setDateOfBirth(dateOfBirth);
 return true;
 }
 }
}

Changing the Locale at Runtime
In many cases, it’s acceptable to always use the default Locale or to require the user to select a Locale when
logging on and use that Locale for the duration of the user’s session. However, you’ll sometimes want to
allow users to change their Locale preference while the application is running. Although providing this
capability requires more work, it’s usually not technically difficult to do so. Normally all that’s necessary is
to provide methods that will update the user interface components when the Locale selection changes. For
example, you can change the EditPersonList application as shown in Listing 13-19 to provide a menu with
one JRadioButtonMenuItem for English and another for German. When you click one of those buttons, the
ResourceBundle is reloaded based on the selection and the messages are updated as shown in Figure 13-8.

CHAPTER 13 ■ INTERNATIONALIZING YOUR APPLICATIONS

578

Listing 13-19. Modified EditPersonList Application

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.text.*;
import java.util.*;
import javax.swing.*;

public class EditPersonList extends JFrame {

 private Vector personList;
 private int currentIndex;

 private JButton addButton;
 private JButton deleteButton;
 private JButton clearButton;

 private JButton nextButton;
 private JButton previousButton;

 private PersonPanel personPanel;

 private JMenu localeMenu;

 private static ResourceBundle resources =
 ResourceBundle.getBundle("PeopleResources");

 public static void main(String[] args) throws Exception {
 EditPersonList epl = new EditPersonList(resources.getString("FrameTitle"));
 epl.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 epl.setVisible(true);
 }

 public EditPersonList(String title) throws Exception {
 super(title);
 buildLayout();
 File f = new File("people.ser");
 if (f.exists()) {
 FileInputStream fis = new FileInputStream(f);
 ObjectInputStream ois = new ObjectInputStream(fis);
 personList = (Vector)(ois.readObject());
 }
 else {
 personList = new Vector();
 }
 currentIndex = 0;
 displayCurrentPerson();
 pack();
 }

CHAPTER 13 ■ INTERNATIONALIZING YOUR APPLICATIONS

579

 private void buildLayout() {
 JMenuItem menuItem;

 Container pane = getContentPane();
 personPanel = new PersonPanel();
 pane.add(personPanel, BorderLayout.CENTER);
 pane.add(getButtonPanel(), BorderLayout.SOUTH);

 JMenuBar jmb = new JMenuBar();
 localeMenu = new JMenu(resources.getString("Menu_Locale"));
 jmb.add(localeMenu);

 ButtonGroup group = new ButtonGroup();

 menuItem = new JRadioButtonMenuItem(
 Locale.ENGLISH.getDisplayName(Locale.ENGLISH), true);
 localeMenu.add(menuItem);
 menuItem.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 resources = ResourceBundle.getBundle(
 "PeopleResources", Locale.ENGLISH);
 updateLabels();
 pack();
 }
 });
 group.add(menuItem);

 menuItem = new JRadioButtonMenuItem(
 Locale.GERMAN.getDisplayName(Locale.GERMAN));
 localeMenu.add(menuItem);

 menuItem.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 resources = ResourceBundle.getBundle(
 "PeopleResources", Locale.GERMAN);
 updateLabels();
 pack();
 }
 });
 group.add(menuItem);

 setJMenuBar(jmb);
 }

 private JPanel getButtonPanel() {
 JPanel panel = new JPanel();
 panel.setLayout(new GridLayout(1, 5, 10, 0));

CHAPTER 13 ■ INTERNATIONALIZING YOUR APPLICATIONS

580

 addButton = new JButton(resources.getString("Button_Label_Add"));
 panel.add(addButton);
 clearButton = new JButton(resources.getString("Button_Label_Clear"));
 panel.add(clearButton);
 deleteButton = new JButton(resources.getString("Button_Label_Delete"));
 panel.add(deleteButton);

 nextButton = new JButton(resources.getString("Button_Label_Next"));
 panel.add(nextButton);
 previousButton = new JButton(resources.getString("Button_Label_Previous"));
 panel.add(previousButton);

 addButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 Person p = new Person();
 if (personPanel.updatePerson(p)) {
 personList.addElement(p);
 currentIndex = personList.size() - 1;
 displayCurrentPerson();
 }
 savePersonList();
 }
 });

 clearButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 personPanel.clear();
 }
 });

 deleteButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 personList.removeElementAt(currentIndex);
 if (currentIndex >= personList.size()) {
 currentIndex = personList.size() - 1;
 }
 savePersonList();
 displayCurrentPerson();
 }
 });

 nextButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 currentIndex++;
 displayCurrentPerson();
 }
 });

CHAPTER 13 ■ INTERNATIONALIZING YOUR APPLICATIONS

581

 previousButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 currentIndex--;
 displayCurrentPerson();
 }
 });

 return panel;
 }

 private void displayCurrentPerson() {
 if ((currentIndex >= 0) && (currentIndex < personList.size())) {
 personPanel.displayPerson((Person)
 (personList.elementAt(currentIndex)));
 }
 else {
 personPanel.clear();
 }
 previousButton.setEnabled(currentIndex > 0);
 nextButton.setEnabled(currentIndex < personList.size() - 1);
 }

 private void savePersonList() {
 File f = new File("people.ser");
 try {
 FileOutputStream fos = new FileOutputStream(f);
 ObjectOutputStream oos = new ObjectOutputStream(fos);
 oos.writeObject(personList);
 oos.close();
 } catch (IOException ioe) {};
 }

 private void updateLabels() {
 setTitle(resources.getString("FrameTitle"));
 personPanel.updateLabelText();
 localeMenu.setText(resources.getString("Menu_Locale"));
 addButton.setText(resources.getString("Button_Label_Add"));
 clearButton.setText(resources.getString("Button_Label_Clear"));
 deleteButton.setText(resources.getString("Button_Label_Delete"));
 nextButton.setText(resources.getString("Button_Label_Next"));
 previousButton.setText(resources.getString(
 "Button_Label_Previous"));
 }

 class PersonPanel extends JPanel {
 private JTextField firstNameField;
 private JTextField lastNameField;
 private JTextField addressField;
 private JTextField dobField;

CHAPTER 13 ■ INTERNATIONALIZING YOUR APPLICATIONS

582

 private JLabel firstNameLabel;
 private JLabel lastNameLabel;
 private JLabel addressLabel;
 private JLabel dateOfBirthLabel;

 public PersonPanel() {
 buildLayout();
 }

 private void buildLayout() {
// JLabel label;
 setLayout(new GridBagLayout());
 GridBagConstraints gbc = new GridBagConstraints();
 gbc.weightx = 1;
 gbc.fill = GridBagConstraints.HORIZONTAL;
 gbc.insets = new Insets(5, 10, 5, 10);

 gbc.gridy = 0;
 firstNameLabel = new JLabel(resources.getString(
 "Label_Text_FirstName"), JLabel.LEFT);
 add(firstNameLabel, gbc);

 firstNameField = new JTextField(10);
 add(firstNameField, gbc);
 lastNameLabel = new JLabel(resources.getString(
 "Label_Text_LastName"), JLabel.LEFT);
 add(lastNameLabel, gbc);

 lastNameField = new JTextField(10);
 add(lastNameField, gbc);

 gbc.gridy++;
 addressLabel = new JLabel(resources.getString(
 "Label_Text_Address"), JLabel.LEFT);
 add(addressLabel, gbc);

 gbc.gridwidth = GridBagConstraints.REMAINDER;
 addressField = new JTextField(10);
 add(addressField, gbc);

 gbc.gridwidth = 1;
 gbc.gridy++;
 dateOfBirthLabel = new JLabel(resources.getString(
 "Label_Text_DOB"), JLabel.LEFT);
 add(dateOfBirthLabel, gbc);

 dobField = new JTextField(10);
 add(dobField, gbc);
 }

CHAPTER 13 ■ INTERNATIONALIZING YOUR APPLICATIONS

583

 public void clear() {
 firstNameField.setText("");
 lastNameField.setText("");
 addressField.setText("");
 dobField.setText("");
 }

 public void displayPerson(Person p) {
 firstNameField.setText(p.getFirstName());
 lastNameField.setText(p.getLastName());
 addressField.setText(p.getAddress());
 DateFormat formatter = DateFormat.getDateInstance(DateFormat.SHORT);
 dobField.setText(formatter.format(p.getDateOfBirth()));
 }

 public boolean updatePerson(Person p) {
 String firstName = firstNameField.getText();
 String lastName = lastNameField.getText();
 String address = addressField.getText();
 Date dateOfBirth = null;
 DateFormat parser = DateFormat.getDateInstance(DateFormat.SHORT);
 try {
 dateOfBirth = parser.parse(dobField.getText());
 }
 catch (ParseException pe) {
 JOptionPane.showMessageDialog(this, pe.getMessage(),
 resources.getString("Dialog_Title_Invalid_Date"),
 JOptionPane.ERROR_MESSAGE);
 return false;
 }
 p.setFirstName(firstName);
 p.setLastName(lastName);
 p.setAddress(address);
 p.setDateOfBirth(dateOfBirth);
 return true;
 }

 public void updateLabelText() {
 firstNameLabel.setText(resources.getString("Label_Text_FirstName"));
 lastNameLabel.setText(resources.getString("Label_Text_LastName"));
 addressLabel.setText(resources.getString("Label_Text_Address"));
 dateOfBirthLabel.setText(resources.getString("Label_Text_DOB"));
 }

 }
}

CHAPTER 13 ■ INTERNATIONALIZING YOUR APPLICATIONS

584

Notice that the main difference between this modified version of EditPersonList and the previous
implementation is the presence of methods that update the displayed text. In addition, JLabel instances that
were defined locally within a method are assigned to class-level instance variables so that the labels can be
modified when the Locale changes.

For this modified EditPersonList class to work, you should also define a file that contains the German
language equivalent of the English text defined earlier. The following is an example of this, which could be
stored in a file called PeopleResources_de.properties:

FrameTitle=Redigieren Sie Liste
Button_Label_Add=Einsetzen
Button_Label_Clear=L\u00F6schen
Button_Label_Delete=L\u00F6schung
Button_Label_Next=Zun\u00E4chst
Button_Label_Previous=Vorhergehend
Label_Text_FirstName=Vorname:
Label_Text_LastName=Letzer Name:
Label_Text_Address=Adresse:
Label_Text_DOB=Geburtsdatum:
Dialog_Title_Invalid_Date=Unzul\u00E4ssiges Datum
Menu_Locale=Locale

native2ascii
As the previous example illustrates, you can embed characters with a PropertyResourceBundle file just as
with a Java source code file: using \unnnn, where nnnn is the hexadecimal value of the Unicode character
you want to define. In fact, this may be the only way you can enter characters that aren’t included in the
character set supported by your keyboard. The problem with this approach is that it’s not convenient if a
user whose keyboard supports the characters is editing the file. For example, a German user editing the
PeopleResources_de.properties file defined previously would probably prefer to enter the accented
character directly instead of entering each character’s Unicode value.

As you can see, it’s sometimes desirable to represent characters with their Unicode value but not
always. Fortunately, Java provides the native2ascii utility that allows you to convert files between these
two formats. In addition, you should use only ASCII characters when creating class names.

Figure 13-8. Dynamically changing the Locale that’s used

CHAPTER 13 ■ INTERNATIONALIZING YOUR APPLICATIONS

585

By default, native2ascii converts a file that contains “native” (in other words, non–Latin 1) characters
into a format that contains the Unicode representation of those characters, but it also allows you to
perform the reverse operation. For example, to convert the \unnnn characters in the PeopleResources_
de.properties file shown previously into their native equivalents, you could enter the following:

native2ascii –reverse PeopleResources_de.properties PeopleResources_de.native

The –reverse option indicates that native2ascii should convert Unicode (for example, \unnnn)
characters into their native equivalents, and the converted output will be stored in a file named
PeopleResources_de.native. That file will contain the converted contents of the original PeopleResources_
de.properties file.

FrameTitle=Redigieren Sie Liste
Button_Label_Add=Einsetzen
Button_Label_Clear=Löschen
Button_Label_Delete=Löschung
Button_Label_Next=Zunächst
Button_Label_Previous=Vorhergehend
Label_Text_FirstName=Vorname:
Label_Text_LastName=Letzer Name:
Label_Text_Address=Adresse:
Label_Text_DOB=Geburtsdatum:
Dialog_Title_Invalid_Date=Unzulässiges Datum
Menu_Locale=Locale

Similarly, you can reconvert this file with native characters using the following command that produces
output identical to that found in the original PeopleResources_de.properties file:

native2ascii PeopleResources_de.native PeopleResources_de.unicode

You can also use the –encoding option with native2ascii, which will cause it to use the character
encoding that you specify when performing conversions between native and Unicode values. If you do so,
you must specify the canonical name of an encoding that’s supported by Java’s InputStreamReader and
OutputStreamWriter classes.

Summary
In this chapter you looked briefly at locales and resource bundles. You learned how the formatting for dates
and currency varies with locale and how you need to keep this in mind when producing applications for an
international market.

To make your applications internationalized and localized, you used MessageFormat and ChoiceFormat
in conjunction with resource bundles. This has enabled the appropriate information to be displayed for the
locale in which the application is run.

Because characters can vary from language to language, you’ve had to learn a little about parsing
characters. BreakIterator is there to help you with this.

587

CHAPTER 14

Using XML

Although the two aren’t inherently tied together, the eXtensible Markup Language (XML) and Java are often
discussed in the same context. This chapter explains why that’s the case and provides an overview of XML,
along with a description of some of the tools available and when and how to use them. You’ll look at the
following:

What XML is and how to create an XML document•

Parsing and validating XML documents using the Document Object Model (DOM)•

Using XML namespaces to eliminate ambiguities where a document uses multiple •
Document Type Definitions (DTDs)

Transforming XML documents with eXtensible Stylesheet Language •
Transformations (XSLT)

Like the HyperText Markup Language (HTML), XML is an implementation of the Standard Generalized
Markup Language (SGML). Although SGML is extremely flexible and powerful, it’s also complex and difficult
to use, and XML is an attempt to provide most of SGML’s functionality without its complexity. The extensible
part of XML means that, unlike HTML, you’re free to define your own tags, which as you’ll see is a very
useful feature.

The following listing provides a simple example of an XML document; one of the first things you may
notice is how much it resembles HTML:

<?xml version="1.0" ?>

<book>
 <title>Pro Java Programming</title>
 272103_1_EnBrett Spell</author>
 <publisher>Apress</publisher>

 <tableOfContents showPageNumbers="Yes">
 <tocEntry>Printing</tocEntry>
 <tocEntry>Cut And Paste</tocEntry>
 <tocEntry>Drag And Drop</tocEntry>
 </tableOfContents>
</book>

Some differences between XML and HTML aren’t obvious from this example. For one, blank lines and
indentation (the whitespace) in an HTML document are largely ignored, but as you’ll see in detail later,
that’s not the case with XML. Another difference is that XML is case-sensitive, while HTML normally isn’t.

CHAPTER 14 ■ USING XML

588

XML vs. HTML
XML is much more than just an improved version of HTML, and it’s helpful, when trying to understand how
and why XML is useful, to compare it to HTML and to review some of HTML’s weaknesses. For example,
suppose you construct the following HTML document that’s similar to the previous XML document:

<html>
<center><h1>Pro Java Programming</h1></center>
<h4>Brett Spell</h4>

<h3>Table Of Contents</H3>

 Printing
 Cut and Paste
 Drag and Drop

<h4>Apress</h4>
<img src="http://www.apress.com/ApressCorporate/supplement/1/421/bcm.gif"
 alt="Cover Image" />
</html>

When viewed in a web browser, this document produces a display like the one shown in Figure 14-1.

Figure 14-1. The HTML document describes the information to be displayed and also how that information
should be formatted

http://www.apress.com/ApressCorporate/supplement/1/421/bcm.gif

CHAPTER 14 ■ USING XML

589

Although similar from a purely conceptual standpoint, an important difference emerges when you
compare the HTML document with its XML equivalent. The HTML version is a combination of data
(a book’s name, author, and publisher) and instructions called tags (<center>, <h1>, and <h4>) that describe
the relationships between the data items and how they should be displayed. In some cases, such as ,
the tag both describes the structure of the data and implicitly describes how it should be displayed. In
other words, the data in an HTML document is tightly coupled to the tags used to control how the data is
displayed; as in the case of object-oriented design, tight coupling is undesirable because it limits reusability.

For example, suppose you want to print the information contained in the previous HTML document
instead of displaying it in a web browser. One option is to produce printed output that’s similar (or identical)
to the output produced by displaying the document in a browser. However, you might instead want to create
printed documentation that has a different format from the browser display. Printed output obviously
has different characteristics from a browser display, and it may be inappropriate or impossible to use the
same characteristics in both cases. For one thing, it’s common to use a black-and-white laser printer, while
browsers normally assume they’re used with a color monitor. Therefore, using different colors to highlight
some portion of a document may be appropriate for a browser but inappropriate for printed output.
Similarly, while hyperlinks are commonly embedded in HTML documents, they’re not helpful when viewing
printed output. In the following example, the HTML document contains a reference to another chapter that
can be accessed by clicking the hyperlink text:

The DataFlavor class is covered more thoroughly in the chapter on
cut and paste.

When printing this information, it might be more appropriate to refer to a page number or perhaps to
include endnotes that describe the URLs referenced within the document (see Figure 14-2).

In addition to printing, many different media can be used for representing data besides a web browser.
You might prefer to display the data on a device with a less powerful user interface such as that provided by
a cell phone. Alternatively, you may want to display the data using an interface that’s more flexible than the
one offered by a browser, such as a Swing-based “thick-client” application interface.

The important thing to realize is that you’ll sometimes need to be able to present more than one view
of your data, but HTML makes this difficult at best. On the surface, it may seem that the data within an
HTML document could be displayed in other forms by parsing the document and converting its contents.
Unfortunately, it often isn’t practical for at least two reasons.

Because an HTML document doesn’t contain information that describes its data•

Because HTML documents aren’t required to be well-formed documents•

In the next sections, you’ll first examine the significance of having information that describes the data
(sometimes referred to as metadata) and then you’ll see what well-formed means and why it’s important.

Figure 14-2. When printing, it’s often helpful to format data differently from the way it was displayed

http://www.apress.com/projava/cutpaste.html%22%3Ecut

CHAPTER 14 ■ USING XML

590

Describing the Data
Let’s assume you attempt to create code that parses the HTML document defined earlier. To display the
data in some arbitrary format, the parsing code must be able to identify specific portions of the data within
the document such as the author, publisher, and so on. Unfortunately, this is difficult to do reliably because
no information in the document indicates that a particular piece of data represents some specific type of
information. Although a human reader might easily guess that Apress refers to the publisher, it’s not feasible
to expect a software application to make the same deduction. You could “hard-code” an application so that it
assumes that the second <h4> tag in a document identifies the book publisher, but that approach is inflexible
and unreliable. If the order of the tags changes, or if an additional <h4> tag is inserted prior to the existing ones,
the technique would no longer work correctly. In other words, scanning for <h4> tags is inappropriate because
that tag doesn’t describe the type of data that follows it; it simply describes how the data is to be displayed.

In contrast, XML describes only the data and doesn’t include tags that explicitly describe how the data
is displayed. For example, the <publisher> tag defined in the earlier sample XML document indicates what
type of data follows it without specifying how that information should appear. By building an application
that “understands” the significance of a <publisher> tag, you can create code that reliably interprets the
contents of XML documents, even if their contents change.

Well-Formed Documents
Although the HTML document defined earlier qualifies as a well-formed document, it’s not necessary
that this be true for HTML to be considered valid, at least not by most browsers. However, well-formed
documents are much easier to parse correctly and are easier for applications to represent internally.
The following list summarizes the characteristics of a well-formed document:

The document must contain an end tag for each start tag, except for empty elements •
(described in a moment).

Attribute values must be enclosed in quotes, either double or single quotes.•

Special characters used to define tags, called • markup-start characters, must be
represented by their equivalent escape sequences (described later).

The document can’t contain any overlapping tags (the most recently opened tag •
must be the first to be closed).

Unlike HTML, XML documents must always be well-formed. This means they’re easy to parse and
easy to represent in memory using collections of objects. Before learning how you can do this, however, it’s
important to understand each of the four characteristics of a well-formed document so you’ll know how to
create a valid XML document.

Matching Start and End Tags

In most cases, each start tag (for example, <html>, <center>, <h1>, and so on) in the HTML document has a
corresponding end tag (</html>, </center>, and </h1>) that identifies the tag’s effective range. Each pair of
start and end tags is collectively referred to as an element, an important term I’ll use frequently through this
chapter. However, browsers generally don’t require you to specify end tags in HTML documents; you could
omit most of the tags in the sample document without affecting how the document is displayed. This lenient
approach doesn’t have any significant advantage, however; in fact, it has the disadvantage of making HTML
documents more difficult to parse reliably. Since ease of parsing is important for its intended purpose, XML
requires that each start tag have an end tag, with the exception of empty elements.

CHAPTER 14 ■ USING XML

591

While it may appear that the tag in the HTML document violates this rule and therefore prevents
the document from being well-formed, that isn’t the case. This is an example of an empty element, or an
element for which it isn’t necessary or meaningful to put information between the start and end tags. Since
the attributes (src and alt) within the tag contain all the information needed by the element, you don’t
need to provide a corresponding tag. Instead, in XML the start tag is identified as defining an empty
element by ending it with a combination of the forward slash and a greater-than character, as shown in the
following tag. In contrast, other tags are terminated with the greater-than character only.

<img src="http://www.apress.com/ApressCorporate/supplement/1/421/bcm.gif"
 alt="Cover Image" />

Attribute Values and Quotation Marks

Some HTML tags allow you to specify attributes, where an attribute/value pair consists of an attribute name
and a value that’s assigned to the attribute, with the two separated by an equal (=) sign. For example, the
following element contains two attributes named src and alt:

<img src="http://www.apress.com/ApressCorporate/supplement/1/421/bcm.gif"
 alt="Cover Image" />

As this example illustrates, you can enclose attribute values within quotation marks, and you must
do so for each attribute value that contains embedded spaces (as in the case of the previous alt attribute).
In contrast, when the value doesn’t contain spaces, it’s not only possible to omit the quotation marks, but
excluding them is common practice. For example, the following variation of the tag (in which the
quotation marks around the src attribute’s value have been removed) is considered valid HTML:

<img src=http://www.apress.com/ApressCorporate/supplement/1/421/bcm.gif
 alt="Cover Image" />

Unfortunately, this causes those documents to be more difficult to parse, since it complicates the task of
identifying the end of an attribute value. XML documents also allow you to specify attributes, but to ensure
that the elements and their attributes can be parsed easily you must place quotation marks around each
attribute value. Therefore, while the previous tag may be valid as part of an HTML document, it isn’t
acceptable in XML.

Representing Markup-Start Characters

Some characters such as the less-than (<) sign, greater-than (>) sign, and ampersand (&) have special
meanings in the context of an XML document and can’t be used directly in the document. For example, if
you modified the Cut and Paste and Drag and Drop text from the earlier sample HTML document to read
Cut & Paste and Drag & Drop as shown in the following code, a parser will fail to process the document
correctly:

 Printing
 Cut & Paste
 Drag & Drop

http://www.apress.com/ApressCorporate/supplement/1/421/bcm.gif
http://www.apress.com/ApressCorporate/supplement/1/421/bcm.gif
http://www.apress.com/ApressCorporate/supplement/1/421/bcm.gif

CHAPTER 14 ■ USING XML

592

In fact, one of the things the ampersand is used for is to allow you to embed these special characters
into documents indirectly by providing an abbreviated name for each one that can be used in place of the
character. To use the abbreviated name, place an ampersand before the name and a semicolon after it, and
each sequence will be replaced with the character that it represents when the document is loaded. Table 14-1
lists some of the characters for which abbreviated names have been defined and the sequences you should
use to represent those characters in XML documents.

For example, if you want to embed a less-than sign in a document, you can use the < string instead
of the less-than (<) sign itself. Similarly, to embed ampersands into a document, you code & instead, as
shown in the following code:

 Printing
 Cut & Paste
 Drag & Drop

When a document containing the previous sequences loads, each occurrence of & will be replaced
with & during the processing of the document. As you’ll see, these sequences are examples of entity
references, and I’ll describe them in more detail later in this chapter.

Overlapping Elements

Two elements overlap when one element “contains” a start tag but doesn’t contain the associated end tag.
For example:

 Printing
 Cut and Paste

 Drag and Drop

Instead of the unordered list () element being contained entirely within the bold () element,
the two now overlap, and the bold property applies only to some of the items in the unordered list instead
of to all of them. Although overlapping tags are often created accidentally and are confusing at best, they’re
tolerated by most browsers. Unfortunately, they not only make parsing an HTML document more difficult
but also greatly increase the complexity involved in creating a representation of such a document.

Table 14-1. Special Characters in XML

Name Character Equivalent Sequence

Less-than sign < <

Greater-than sign > >

Apostrophe ' '

Quotation mark " "

Ampersand & &

CHAPTER 14 ■ USING XML

593

To better understand this point, suppose you’ve created a set of classes used to represent the structure
of an HTML document you’re parsing. For example, you might create a class called UnorderedList that
contains a collection of ListItem objects, and those objects might be maintained in a Vector or Hashtable.
As long as there are no overlapping tags, creating such a representation of the document’s contents and
characteristics is reasonably simple; you can do so by creating an object hierarchy, as shown in Figure 14-3.

However, when the document is modified as shown previously to contain overlapping nodes, it’s not
possible to use a hierarchical tree structure to represent its contents.

When and Why to Use XML
Now that you understand some of the deficiencies associated with HTML, you may still be wondering when
and why you’d use XML. It’s obviously easier to parse and to represent internally than HTML, but when
is it useful to take advantage of those characteristics? One use for XML that I’ve already mentioned is for
providing multiple views of data. In effect, the XML document defines the data model, and you can create
more than one view of that model based upon the needs of your application. You’ll examine this capability
in more depth later in the chapter when I discuss the eXtensible Stylesheet Language (XSL), which allows
you to transform an XML document’s content into some other form such as HTML.

Another significant application of XML is for representing data that’s to be transferred between different
applications. Since XML describes data and is easy to parse but isn’t tied to a particular programming
language, it allows you to transfer information between applications easily, even if those applications reside
on different operating systems or are written in different programming languages. In fact, it’s often said that
just as Java provides interoperability across platforms for executable code, XML provides the same type of
interoperability for data.

Figure 14-3. If a document is well-formed, the relationship between the elements is a hierarchical one, with
each descendent contained between its parent’s start and end tags

CHAPTER 14 ■ USING XML

594

An important variation of this is when businesses use XML to submit various types of electronic
documents to other businesses, including purchase orders, invoices, and so on. In the past, the preferred
technology for doing this was Electronic Document Interchange (EDI) and the X12 standards. X12 defines
a number of electronic documents and a specific format for each one, and many organizations use it.
However, those documents are somewhat inflexible and complex, and EDI hasn’t been as widely adopted
as many had predicted. In contrast, XML allows companies to easily create their own formats for electronic
documents that can be changed without requiring the company’s business partners (or a standards
organization) to first update their application code.

One other use of XML that’s worth mentioning is for creating configuration files. In the early days of
Windows, it was common for applications to create and use their own initialization (.ini) file that contained
configuration information. Although simple to implement and easy to edit, those files are somewhat
restrictive and have been largely abandoned by Windows applications in favor of the Windows registry,
which contains a hierarchical collection of configuration information, allowing each application to reference
values stored in its “branch” of the registry tree, as shown in Figure 14-4.

Figure 14-4. One of XML’s strengths is its ability to allow you to provide configuration parameters like those
found in the Windows registry

CHAPTER 14 ■ USING XML

595

Since an XML document represents a collection of hierarchical data, it’s a good candidate for the type
of configuration information that’s stored in the Windows registry. In fact, version 1.1 of the Enterprise
JavaBeans specification requires deployment descriptors to be written in XML instead of the serialized object
representation required by the 1.0 specification. A deployment descriptor is essentially a configuration file
that describes how an Enterprise JavaBean is to be used, such as which users are allowed to access the bean.
While the serialized object approach was convenient for the Enterprise JavaBeans server, it complicates how
users can edit the deployment descriptor. The advantage of using XML is that it’s both human-readable and
can be parsed easily, which means it represents a format that’s convenient for both humans and software.

Creating an XML Document
Because creating and editing XML documents can take place with simple text editor/word processor
applications, it’s easy to create a new document. Aside from the requirement that it be well-formed, there
are almost no restrictions on what an XML document must contain. However, let’s review the document that
was defined at the beginning of this chapter; it illustrates some important points.

<?xml version="1.0" ?>

<book>
 <title>Pro Java Programming</title>
 272103_1_EnBrett Spell</author>
 <publisher>Apress</publisher>

 <tableOfContents showPageNumbers="Yes">
 <tocEntry>Printing</tocEntry>
 <tocEntry>Cut and Paste</tocEntry>
 <tocEntry>Drag and Drop</tocEntry>
 </tableOfContents>

</book>

Unlike the rest of the file, the first line doesn’t describe the data in the document. Instead, it’s a
processing instruction, sometimes simply referred to as a PI; you can use processing instructions to provide
special information to applications that may process the document’s contents in some way. In this case, the
instruction identifies the file as an XML document and specifies which version of XML was used to create
the document. Although only the version attribute was specified here, the instruction actually supports two
other attributes: encoding and standalone. As its name implies, encoding indicates which character set was
used to construct the document, while standalone (which must be assigned a value of yes or no) indicates
whether the document contains references to other files. For example, a file that doesn’t contain external
references and that was created using the UTF-8 character set might contain the following instruction:

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

You’ll often see the encoding attribute used at the beginning of an XML document, but standalone is
rarely specified.

CHAPTER 14 ■ USING XML

596

Root Elements
One other point to make concerning the structure of an XML document is that it must have only one element
at the outermost level, and that element is known as the root element. In the previous document, the <book>
element contains all the other data elements, and only the <?xml> processing instruction lies outside that
element, so <book> is the root element. Since there may be only one root element, it’s not valid, for example,
to include another element at the same level in the document, as in the following listing:

<book>
 <title>Pro Java Programming</title>
...
</book>

<tableOfContents>
...
</tableOfContents>

In general, the prolog (the part of an XML document before the root element’s start tag) consists of an
optional <?xml> declaration, zero or more comments, processing instructions, and whitespace characters,
followed by an optional DTD. A DTD describes the structure to which the data should conform and is used
by validating parsers to ensure that a document is correct, but the details of defining a DTD aren’t included
in this chapter.

Components of an XML Document
Like HTML, XML allows you to use elements (with or without attributes) within the root element, and
those elements can contain text or other elements. For example, the following <tableOfContents> element
contains a showPageNumber attribute with a value of "Yes", together with three other elements, each of which
contains text data:

<tableOfContents showPageNumbers="Yes">
 <tocEntry>Printing</tocEntry>
 <tocEntry>Cut and Paste</tocEntry>
 <tocEntry>Drag and Drop</tocEntry>
</tableOfContents>

Empty tags are valid in XML, so both of the following elements are acceptable:

<exampleElement></exampleElement>
<exampleElement/>

XML also allows you to specify comments within your documents in the same way you do within
HTML.

<!-- This is a comment -->
<title>Pro Java Programming</title>
272103_1_EnBrett Spell</author>
<publisher>Apress</publisher>

CHAPTER 14 ■ USING XML

597

A similar but more powerful feature of XML is its support for CDATA (character data) sections, which are
portions of the document that are never parsed. The beginning of such a section is identified by <![CDATA[
and terminated with]]>, and everything between those character sequences is ignored by an XML parser.
For example,

<title>Pro Java Programming</title>
<![CDATA[
The <title> element identifies the title of this book. I can put open tags
without close tags (or vice versa) here because this entire block will be
ignored by XML parsers.
]]>
272103_1_EnBrett Spell</author>
<publisher>Apress</publisher>

On the surface, it may appear that a CDATA section is functionally identical to a comment, but an important
difference exists. Some parsers may examine the text in a comment block, and although the text is generally
ignored, using reserved characters (for example, <, >, and &) in a comment may cause the parser to fail.
However, the information in a CDATA block is always ignored by a parser, so you can include any information
between the <![CDATA[and]]> delimiters without affecting the parsing of the document. In fact, you can
even include text that would normally be interpreted as XML tags without being concerned about the parser
attempting to parse and validate the information.

Parsing and Validation
I’ve mentioned that one of XML’s most important features is its ability to be parsed and validated easily,
and as you might expect, Java’s core libraries include classes that allow you to perform those operations.
The classes are part of the Java API for XML Processing (JAXP) and are contained within the javax.xml
package and its subpackages, along with org.w3c.dom and org.xml.sax and their subpackages. The latter
two packages contain the specific implementations that correspond to the primary standards that have
emerged for parsing XML: DOM and the Simple API for XML (SAX). Although DOM and SAX both represent
techniques for parsing, they represent two very different approaches to doing so, and they both have their
own strengths and weaknesses.

DOM was defined by the World Wide Web Consortium (W3C) and is the more
powerful of the two technologies, allowing you to parse, validate, and update
an XML document. This is usually done by reading the entire document into
memory, where it’s maintained as a hierarchical collection of objects. By
modifying that collection of objects, you can change the structure and content of
the document in memory, after which you can save the updated document again
to some external location. In addition, DOM allows you to create an entirely new
document, which as you’ll see later is a very useful feature.

CHAPTER 14 ■ USING XML

598

In contrast, SAX was created as a result of a mailing list discussion and provides
sequential, read-only access to the document’s contents. In other words,
SAX doesn’t provide any facility for creating or modifying a document, and it
doesn’t allow you to examine an arbitrary portion of the document. (It doesn’t
provide “random access” to the document’s contents.) Instead, it allows you
to register various types of listeners with a parser, and the parser will notify
the appropriate listener for each portion of the document it processes. This
approach is sometimes referred to as event-based because it treats each portion
of the document as an event for which it sends a notification. Although some
programmers may not find this approach intuitive, SAX is simple to use and has
the advantage of not requiring that the entire document be loaded into memory at
once. While that may not be a significant advantage for smaller documents, it can
be an important factor when processing extremely large XML files.

Note that in this chapter, DOM refers to W3C’s DOM Level 2 recommendation, where a
recommendation is simply a completed standard. As of this writing, JAXP supports DOM Level 2, although
it’s likely at some point in the future to support the newer Level 3 specification. For the full details of DOM,
see www.w3.org/DOM/.

Similarly, SAX refers to version 2.0 of the SAX standard, which is the version used by JAXP’s current SAX
parser implementation, although the SAX 2.0 specification is now available at www.saxproject.org/.

Parsing with the DOM Implementation in JAXP
As described earlier, DOM is more powerful than SAX in some ways and can be more intuitive, especially
if you’re already familiar with hierarchical tree structures such as those used by Swing’s JTree component.
In fact, although no direct relationship exists between JTree and DOM, you may find it helpful to review
Chapter 7, which covers JTree, because much of the terminology defined there relating to tree structures
applies to DOM as well.

As mentioned earlier, a SAX parser scans an XML document sequentially and reports the contents of
the document through events. In contrast, a DOM parser creates a collection of objects in memory that
represents the document’s contents, and those objects are implementations of the interfaces defined in the
org.w3c.dom package (see Figure 14-5).

http://www.w3.org/DOM/
http://www.saxproject.org/
http://dx.doi.org/10.1007/9781484206423_7

CHAPTER 14 ■ USING XML

599

With a few exceptions, each interface represents some particular type of information found in an XML
document, and using a hierarchical collection of these objects, DOM is able to create a structure that mimics
the document’s contents. For example, suppose you process the following XML data with a DOM parser:

<tableOfContents showPageNumbers="Yes">
 <tocEntry>Printing</tocEntry>
 <tocEntry>Cut and Paste</tocEntry>
 <tocEntry>Drag and Drop</tocEntry>
</tableOfContents>

DOM will represent the <tableOfContents> element with an object that implements the Element
interface, and that object will contain a reference to a single Attr representing the showPageNumbers
attribute. In addition, the Element object will contain a child node for each of the <tocEntry> items, and
they in turn will each contain a single Text node representing the text between the start and end tags of
each element. Figure 14-6 illustrates this, but it omits what can be an important detail—that nodes are also
created for whitespace such as carriage returns, linefeeds, tabs, and spaces. It’s possible in many cases to
ignore the nodes that represent whitespace, although, as you’ll see later in the chapter, it’s important at other
times to realize that they may be present.

Figure 14-5. A class diagram that illustrates the relationships between the classes and interfaces used by the
DOM parser in JAXP

CHAPTER 14 ■ USING XML

600

Creating a representation of the document in this manner causes a DOM parser to use more memory
resources than a SAX parser uses, but DOM’s approach offers two advantages.

While SAX allows you to examine the document’s contents in a sequential manner •
only (from beginning to end), the DOM interfaces include methods that allow you to
navigate through the tree’s nodes in any direction. That’s possible because the nodes
are stored in memory and maintain references to one another, and you can move
from parent to child (and vice versa) and from one sibling to another.

Since the collection of objects effectively represents a copy of the parsed •
document, it allows you to make changes to the document’s contents and structure
programmatically. Once you’ve made changes or created a new document, you can
save them by converting the object structure back into an XML document.

Parsing an existing document using the JAXP implementation of DOM is extremely easy to do; you can
do this by obtaining an instance of DocumentBuilder using the following code:

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
DocumentBuilder builder = factory.newDocumentBuilder();

Once you’ve gotten a reference to a DocumentBuilder, you can parse an existing document or create a
new one easily. The DocumentBuilder class includes a number of parse() methods that accept various types
of input (a String, a File, or an InputStream) representing an XML document. As the name and return
type imply, parse() parses the document, creates a representation of it in memory, and returns a reference
to that representation to the caller in the form of a Document object. You’ll examine the Document interface
in more detail shortly, but for now it’s sufficient to recognize that it’s a representation of an XML document
that’s stored in memory. In the meantime, the following is an example of how to use parse():

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
DocumentBuilder builder = factory.newDocumentBuilder();
java.io.File xmlFile = new java.io.File("C:/brett/temp/mytest.xml");
Document doc = builder.parse(xmlFile);

Figure 14-6. An example of the heirachical nature of the elements with a DOM tree

CHAPTER 14 ■ USING XML

601

Creating a new (empty) document in memory is equally simple; you do this by calling the
newDocument() method instead of parse().

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
DocumentBuilder builder = factory.newDocumentBuilder();
Document doc = builder.newDocument();

As mentioned earlier, it’s sometimes necessary or desirable to validate a document while it’s being
parsed. Whether or not you plan to perform validation, you should keep in mind that the DocumentBuilder
can throw an exception when the parse() method is called and design your code accordingly.

You’ll now examine the various interfaces used to support the JAXP implementation of DOM, because
it’s necessary to have some familiarity with these interfaces before you can use DOM effectively.

Node

This interface is the superinterface of many of the other DOM interfaces that include the Document interface
mentioned earlier, and as you’d expect, Node defines methods that are shared by many of the different types
of objects that represent portions of an XML document.

getNodeType()

This method allows you to easily determine which type of XML document item is represented by this node.
It returns a short value corresponding to one of the constants defined in Node, which are listed in Table 14-2.

The code segment in Listing 14-1 illustrates how you can use this method to determine the type of
document item a given Node represents.

Table 14-2. Node Type Constants

Node Constant Associated Interface Name

ATTRIBUTE_NODE Attr

CDATA_SECTION_NODE CDATASection

COMMENT_NODE Comment

DOCUMENT_FRAGMENT_NODE DocumentFragment

DOCUMENT_NODE Document

DOCUMENT_TYPE_NODE DocumentType

ELEMENT_NODE Element

ENTITY_NODE Entity

ENTITY_REFERENCE_NODE EntityReference

NOTATION_NODE Notation

PROCESSING_INSTRUCTION_NODE ProcessingInstruction

TEXT_NODE Text

CHAPTER 14 ■ USING XML

602

Listing 14-1. Using getNodeType() to Provide Different Types of Processing per Node

protected void displayTree(Node node) {
 short nodeType = node.getNodeType();
 switch (nodeType) {
 case Node.DOCUMENT_NODE:
 printDocument((Document)node);
 break;
 case Node.ELEMENT_NODE:
 printElement((Element)node);
 break;
 case Node.TEXT_NODE:
 printText((Text)node);
 break;
 default:
 }
}

getNodeName()

This accessor method allows the caller to retrieve a reference to the node’s name property, although the
usage of that property varies from one Node subclass to another. For example, an Element node uses the
name property to contain the element or “tag” name (for example, book for a <book> element), while an
Attr node uses the name property to store the name of the attribute. Table 14-3 summarizes the values of
this property.

Table 14-3. getNodeName() Properties

Node Subinterface Value/Usage of nodeName Property

Document #document

Element Element/tag name

Attr Attribute name

Text #text

Comment #comment

CDATASection #cdata-section

ProcessingInstruction Instruction target

EntityReference Name of entity referenced

DocumentFragment #document-fragment

DocumentType Name of DTD as defined in <!DOCTYPE>

Entity Entity name

Notation Notation name

Note that there’s no corresponding setNodeName() method defined in Node, which is because the node’s
name is normally specified when the Node object is created and is immutable.

CHAPTER 14 ■ USING XML

603

Some of the Node subinterfaces listed in Table 14-3 define an additional accessor method that returns
the same value as getNodeName(), which provides a more intuitive way to access the value. For example, you
can call getTarget() to retrieve the instruction target of a ProcessingInstruction object instead of calling
the more generic and less intuitive getNodeName(). Table 14-4 lists these interfaces, along with the method
that returns the value stored in the node name property in each case.

getNodeValue(), setNodeValue()

Like the nodeName property, nodeValue’s usage varies from one node type to the next, and in many cases the
getNodeValue() method returns null. Table 14-5 summarizes the use of this property.

Table 14-4. Node subinterfaces with convenience methods for retrieving values

Node Subinterface Convenience Method

Element getTagName()

Attr getName()

ProcessingInstruction getTarget()

DocumentType getName()

Table 14-5. Node Value Usage

Node Subinterface Value/Usage of nodeValue Property

Document Null

Element Null

Attr Attribute value

Text Text encapsulated by the node

Comment Comment text

CDATASection Text data stored in section

ProcessingInstruction Instruction data (all text after the target)

EntityReference Null

DocumentFragment Null

DocumentType Null

Entity Null

Notation Null

Just as some of the interfaces define more intuitively named methods that allow you to access the node
name property, two of them also provide accessor/mutator pairs for the node value property. For example,
you can call setData() to update the data portion of a Processing➥ Instruction instead of calling
setNodeValue(). Table 14-6 lists the interfaces that provide this convenience and includes the names of the
relevant methods.

CHAPTER 14 ■ USING XML

604

getAttributes()

Although the majority of the methods defined in the Node interface are used by most or all of its subclasses,
this one is meaningful only for objects used to represent elements in an XML document (an Element). Since
that’s the case, I’ll provide a detailed discussion of getAttributes in the overview of the Element interface
and its methods instead of here. It returns null for other types of Node.

appendChild(), insertBefore(), removeChild(), replaceChild()

As their names imply, these methods add, replace, and remove child nodes from the node for which
the method is called. While appendChild() simply adds a new node to the end of the list of children,
insertBefore() allows you to insert a node into a specific location within the list. You’ll use these methods
when you want to modify the structure of a document that was loaded by a DOM parser.

getChildNodes(), getFirstChild(), getLastChild()

You can use these methods to obtain either a complete list of the node’s children (getChildNodes()) or
a reference to the first or last entry in the node’s list of children (getFirstChild() and getLastChild(),
respectively). The getChildNodes() method returns an object that implements the NodeList interface; this
object is similar to Java’s Vector class but is much less sophisticated. In fact, NodeList defines just two methods:
getLength(), which indicates how many objects are in the collection, and item(), which returns a reference to
one of the Node items based on an index value. For example, Listing 14-2 shows how to obtain a list of children
from a Node, uses the NodeList object to retrieve a reference to each one, and prints its String representation.

Listing 14-2. Obtaining and Using a List of Child Nodes

org.w3c.dom.Node parentNode;
org.w3c.dom.NodeList nodeList;
// ...
nodeList = parentNode.getChildNodes();
int count = nodeList.getLength();
for (int i = 0; i < count; i++) {
 node = nodeList.item(i);
 System.out.println(node.toString());
}

getNextSibling(), getPreviousSibling()

It’s sometimes useful to be able to access the siblings of a given node, and these methods allow you to do just
that. When you call getNextSibling() for a node, the method returns a reference to the sibling of the node
that appears next in their parent’s list of children, while getPreviousSibling() returns a reference to the
previous sibling. A null value is returned by getNextSibling() if this node is the last one in the parent’s list
of children or if getPreviousSibling() is called for the first child node in a list.

Table 14-6. Attribute and Processing Instruction Convenience Methods

Node Subinterface Accessor Method Mutator Method

Attr getValue() setValue()

ProcessingInstruction getData() setData()

CHAPTER 14 ■ USING XML

605

hasChildNodes()

If the node for which this method is called has any children, hasChildNodes() returns true; false indicates it
doesn’t currently have any children.

getOwnerDocument()

Each Node object is associated with a particular Document, and this method returns a reference to that
Document instance unless this Node is itself a Document, in which case it returns null.

cloneNode()

A copy of this node is returned by cloneNode(), and that copy will either be a deep copy or a shallow copy
depending upon the value of the Boolean parameter that’s passed. If you specify a value of true, a deep copy
is returned, which means that the entire subtree defined by this node is also copied and returned, while false
indicates that only this node should be copied. In other words, a shallow copy is a copy of this node only, and
a deep copy is a copy of this node and all of its descendents.

Document

As mentioned earlier, the Document interface is implemented by an object that represents an entire XML
document, and a Document is returned by the DOM parser’s parse() method. In other words, the object
returned by parse() is the starting point from which you can begin to examine (or update) the document.

getDocumentElement()

A Document object maintains a reference to the Node that represents the XML document’s root element,
and you can use this method to obtain access to that node. In fact, the first thing you’ll do after calling a
DocumentBuilder’s parse() method often will be to invoke this method on the Document object returned so
you can begin to process the elements representing the document’s content as illustrated in Listing 14-3.

Listing 14-3. Obtaining a Reference to the Root Element

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
factory.setValidating(true);
DocumentBuilder builder = factory.newDocumentBuilder();
Document doc = builder.parse(uri);
Element rootElement = (doc.getDocumentElement());

If you executed this code using the XML document defined at the beginning of this chapter, for example,
the getDocumentElement() method will return a reference to the object representing the <book> element.

getDocType()

Just as a Document represents an XML document, a DocumentType represents a DTD. Each Document can
maintain a reference to a DocumentType object, and this method allows you to access that object. If there’s
no DTD associated with the object, getDocType() returns a null value. Note that although the Level 1 DOM
specification allows you to retrieve some of a document’s DTD information, it doesn’t allow you to modify
that data or create a new DTD.

CHAPTER 14 ■ USING XML

606

createAttribute(), createCDATASection(), createComment(), createDocumentFraction(),
createElement(), createEntityReference(), createProcessingInstruction(),
createTextNode()

These all represent factory methods that allow you to create instances of the various types of nodes without
coupling your code to the JAXP-specific classes used to represent those types. In other words, by using only
interfaces and factory methods, you can create application code that’s not coupled to any particular DOM
implementation.

getElementsByTagName()

You can use this method to obtain a NodeList that encapsulates all Element nodes in the document with a
particular name or a list of all Element nodes in the document regardless of their names. To obtain a list of all
elements, pass a String value of * to getElementsByTagName(); specifying any other value causes it to return
only the elements that have a name equal to the specified string. The code in Listing 14-4 shows how you can
use this method.

Listing 14-4. Retrieving Elements with a Specific Tag Name

Document document;
NodeList list1, list2;
// ...
// Obtain a list of elements representing all of the elements in the
// document.
list1 = document.getElementsByTagName("*");
// Obtain a list of all elements with a tag/node name of "tocEntry".
list2 = document.getElementsByTagName("tocEntry");

getImplementation()

An object that implements the DOMImplementation interface is returned by getImplementation(), and that
interface defines a single hasFeature() method. That method accepts two String parameter values: the
name of a feature and a version number, and it returns true if the DOM parser that created the Document
supports the specified feature. This is intended to allow applications to query a parser’s capabilities in an
implementation-independent manner, but version 1.0.1 of the JAXP DOM parser reports that it supports
only version “1.0” of the “XML” feature.

Element

As already mentioned, this interface is used by objects that represent elements within the XML document.
As you might expect, most of the methods defined in Element provide functionality that allows you to create,
update, remove, and retrieve attribute values.

setAttribute(), setAttributeNode()

These methods allow you to add an attribute value to the element or to replace the value associated with an
existing attribute.

The setAttribute() method requires two String parameters, the first of which represents the
attribute’s name and the second of which represents its value. If an attribute with the specified name already
exists, its value is updated, but if it doesn’t already exist, a new Attr object is created and added to this
element’s list of attributes.

CHAPTER 14 ■ USING XML

607

The setAttributeNode() method works the same way, but instead of passing two String values, you
must pass it a reference to an object that implements the Attr interface. As described in a moment, that
interface is used by objects that encapsulate the name and value associated with element attributes.

getAttribute(), getAttributeNode()

Both of these methods are passed a String parameter that represents the name of an attribute, and
both of them return the value associated with the specified attribute. However, while getAttribute()
returns only a String representing the attribute’s value, getAttributeNode() returns the entire Attr
object. getAttributeNode() returns a null value if no attribute with the specified name exists, while
getAttribute() returns an empty string if the attribute can’t be found.

removeAttribute(), removeAttributeNode()

As their names imply, these methods allow you to remove an attribute from the element, and they differ only
in how they require you to identify the attribute to be removed. To use removeAttribute(), you must pass
a String representing the attribute’s name, while removeAttributeNode() requires you to specify the Attr
node object to be removed.

getTagName()

This method is provided as a convenience and is functionally identical to the getNodeName() method
inherited from the Node interface. In other words, both getTagName() and getNodeName() return a String
representing the name of the element.

normalize()

This method causes the parser to combine adjacent Text nodes that are descendents of this element, which
can make processing simpler and more efficient. In addition, some operations may be sensitive to changes
in the tree’s structure, and such changes can occur if a document is stored and reloaded without first being
normalized. For example, suppose you create two new Text nodes and add them to an element as shown in
Listing 14-5.

Listing 14-5. Creating and Appending a Pair of Text Nodes

Document document;
Text text1, text2;
Element element;
// ...
text1 = document.createTextNode("Matrix ");
text2 = document.createTextNode("Resources");
element.appendChild(text1);
element.appendChild(text2);

If you save and reload this document, it’s likely that the text that was stored in the two separate (but
adjacent) nodes just created will be stored in a single node that contains a value of Matrix Resources;
however, you can force the nodes to be merged immediately by calling the normalize() method:

element.appendChild(text1);
element.appendChild(text2);
element.normalize();

CHAPTER 14 ■ USING XML

608

getElementsByTagName()

This method performs the same task as the method of the same name in the Document interface, but the
difference is that only elements that are descendents of this one are included in the search. In other words,
instead of returning a list of all elements in the document with a particular name (or all elements in the
document when * is specified), this method returns only matching elements that are descendents of this node.

Attr

Objects that are used to represent an attribute should implement this interface, which defines methods for
accessing and modifying the attribute’s value and for retrieving its name. Note that Attr objects aren’t child
nodes of the element they describe.

getName()

Like getTagName(), this method is provided as a convenience and is functionally equivalent to getNodeName().
In other words, the implementations of getName() and getNodeName() in Attr both return a reference to a
String representing the attribute’s name.

getValue(), setValue()

This pair of accessor and mutator methods allows you to retrieve and update the value associated with an
attribute.

getSpecified()

This method returns a Boolean value that allows you to distinguish between attribute values that were
actually specified in the XML document and those that are default values specified in the document’s DTD.
A value of true is returned if the value was specified in the XML document or if the value has been set/
modified by a call to the Attr object’s setValue() method. However, if the attribute’s value was derived
from its definition in a DTD and its setValue() hasn’t been called, getSpecified() returns false. Note that
if setValue() is called, this method will return true even if the value passed to the setValue() method is the
same value that was already assigned to the attribute.

CharacterData

CharacterData is a subclass of Node, and like Node, CharacterData defines methods that are shared by other
interfaces used to represent portions of an XML document. Specifically, CharacterData is the superclass
of the Text, Comment, and CDATASection interfaces that are described in a moment. Each CharacterData
subclass encapsulates text (“character data”) information, and this interface defines methods for setting,
retrieving, and modifying that text. In fact, many of the methods described next are similar to methods
defined in Java’s StringBuffer class.

CHAPTER 14 ■ USING XML

609

getLength()

This method returns an integer value that represents the number of characters in the text string associated
with this node.

setData()

You can use this method to set the text value associated with this node by passing a reference to a String
object representing the new value.

getData(), substringData()

These methods return all (in the case of getData()) or part (substringData()) of the text associated with
this node. Both return a String value, and substringData() requires two integer parameters: one specifying
the starting index of the portion of the text to return and another representing the number of characters to
be retrieved.

appendData()

You must pass a String parameter to this method, and the characters in that String are appended to the
text data maintained by this node.

replaceData()

You can use this method in place of setData() when you want to replace only a portion of the character data
encapsulated by the node. To do so, you must pass the following parameter values:

An integer representing an index into the existing text value•

An integer representing the number of characters to be replaced•

A • String representing the data that’s to replace the specified portion of the target

For example, the code segment in Listing 14-6 illustrates how to replace the word is with was in an
object that implements CharacterData.

Listing 14-6. Replacing Data in a Text Node Using replaceData()

CharacterData charData;
// ...
charData.setData("This is a test");
// The word "is" has an index of 5 (it's the sixth character in the string)
int start = 5;
// The word "is" has a length of 2 (it's two characters long)
int length = 2;
charData.replaceData(start, length, "was");
// The following line prints "This was a test");
System.out.println(charData.getData());

CHAPTER 14 ■ USING XML

610

insertData()

The appendData() method allows you to append characters onto the end of the existing value, but you’ll
often need to insert characters at some arbitrary location other than the end. When that’s the case, you can
use this method, which requires you to pass an index value that describes where the text should be added
and a String representing the text to be inserted. For example, the following code illustrates how to add text
to the beginning of the existing value instead of at the end:

CharacterData charData;
// ...
charData.insertData(0, "This text is being inserted at the beginning");

deleteData()

When you need to delete characters from the existing node value, you can call deleteData() to do so. You
must pass two integer values to this method: one representing the position of the first character to delete and
another representing the number of characters to be deleted.

Text
This interface is one of the subinterfaces of CharacterData and is used to represent text within an XML
document. Objects that implement this interface can be added as children to an Element node to describe
the data between the element’s start and end tags. For example, suppose you create an XML document that
contains the following elements:

<outer>Java and <keyword>XML</keyword> are good</outer>

When a DOM parser processes this portion of the document, the <outer> element will contain three
child nodes in the following order:

An instance of • Text containing the first portion of the text (Java and).

An • Element representing <keyword> that in turn contains one child—a Text object
with a value of XML.

Another • Text object containing the remainder of the text (are good.).

Figure 14-7 illustrates these nodes.

CHAPTER 14 ■ USING XML

611

It’s important to realize that from a DOM parser’s perspective, there’s no difference between text that
represents meaningful information (for example, Java and) and text that represents whitespace (linefeed
and character return characters, tabs, and spaces). If you were to create an <example> element such as the
following one, it too would have three child nodes. The second child would represent the empty <myInner>
element, while the first and third children would represent the whitespace that precedes and follows that
element in the document text, respectively.

<example>
 <myInner/>
</example>

splitText()

This is the only method defined in the Text interface and is essentially the opposite of the “normalization”
operation described previously that’s available through the Element interface. In other words, while
Element’s normalize() method combines adjacent Text entries into a single entry, this method causes the
Text object to be split into two separate (but adjacent) instances of Text.

The only parameter passed to this method is an integer that indicates the position at which the Text
object’s character data should be split. The characters up to and including the character at the position you
specify will remain in the existing node, and any characters after that will be added to a new Text node. That
new node will then be inserted into the parent node’s list of children so it immediately follows the original
Text node, as shown in Figure 14-8.

Figure 14-7. A representation of how the XML data is stored internally after it’s parsed

CHAPTER 14 ■ USING XML

612

You’ll use this method when you want to insert new elements or other data between two portions of text
in an XML document. Once you’ve called splitText(), you can insert child nodes between the original Text
node and its newly created sibling.

Comment

No methods are defined in this interface, so an implementing class includes only those that are inherited
from CharacterData. As you might expect, an instance of Comment encapsulates the text specified in a
comment in an XML document. For example, the following entry results in the creation of an object that
implements Comment and that has a data value of This is a comment:

<!-- This is a comment -->

CDATASection

Just as the Comment interface encapsulates the text stored in an XML document’s comment, this interface
(which is a subclass of Text) contains the text stored in a CDATA section. If the following entry were part of an
XML document, it’d result in the creation of a CDATASection with a value of This is some text data:

<![CDATA[This is some text data]]>

ProcessingInstruction

The intuitively named ProcessingInstruction interface is implemented by objects that represent
processing instructions found in XML documents, and this interface defines the following three methods.

Figure 14-8. As its name implies, splitText() splits a text element into two elements

CHAPTER 14 ■ USING XML

613

getTarget()

As you may recall from the discussion of processing instructions and the SAX parser, the instruction target
is the text that immediately follows the first question mark (?) and precedes the whitespace or the end of the
instruction. For example, the target in the following example is myTarget:

<?myTarget doSomething moreInfo?>

getData(), setData()

The instruction data is any text information inside a processing instruction that follows the target value, and
these methods allow you to retrieve and set the instruction data associated with this node. In the processing
instruction shown previously, the instruction data is doSomething moreInfo.

EntityReference
This represents an entity reference that’s embedded within an XML document. This may be an entity that
you’ve defined inside a DTD or one of the predefined entities described earlier that are used to represent
special characters such as the less-than (<) sign, greater-than (>) sign, ampersand (&), and so on. For example,
the following code contains a sequence (&) that represents such a reference, and that sequence will be
converted into an EntityReference object when processed by a DOM parser:

<someText>I can't embed the ampersand character (&) directly</someText>

getNodeName()

This is the only method that allows you to retrieve the name of the referenced entity. For example, the
previous entry in an XML file results in the creation of an EntityReference object with a node name of amp,
so calling getNodeName() returns that String value.

DocumentFragment
No methods are defined in this interface, which doesn’t correspond to a specific portion of an XML
document, but DocumentFragment has a property that can be useful. Like all Node subclasses, it can contain
child nodes, and it can be added as a child to other nodes. However, when a DocumentFragment is added
as a child of some other node, the DocumentFragment’s children, rather than the DocumentFragment itself,
will be added. Therefore, DocumentFragment provides a convenient container object for a collection of
nodes that you want to make children of some other node (for example, when rearranging a document
or implementing cut-and-paste functionality). Using DocumentFragment avoids the overhead of using a
Document to hold the nodes.

DocumentType
This interface provides a partial representation of the DTD associated with an XML document and allows
you to access (but not update) some of the information in the DTD.

CHAPTER 14 ■ USING XML

614

getName()

Use this method to return the DTD’s name, which is the first value that appears after the DOCTYPE keyword.
For example, the name of the DTD referenced in the following code is book:

<?xml version="1.0" ?>
<!DOCTYPE book SYSTEM "./bookgram.dtd">

getEntities()

This method returns a collection of Entity objects encapsulated within a NamedNodeMap collection object;
I’ll describe the Entity interface in a moment.

You should recall the earlier discussion of the NodeList interface that’s used by classes that provide
a simplistic Vector-like functionality, which allows you to access a node based on its position within the
collection/list. NamedNodeMap provides that same functionality, but it also allows you to assign each entry
in the collection a name or “key” value that can be used to access the entry. In this case, the NamedNodeMap
represents a collection of Entity objects, and the name/key value for each one is its name. For example,
the following <!ENTITY> definition results in an Entity entry in the NamedNodeMap with a name/key of
currentYear:

<!ENTITY currentYear "2000">

getNotations()

Just as the previous getEntities() method returns a NamedNodeMap that’s a collection of Entity objects, this
one returns a NamedNodeMap representing a collection of Notation instances. Like with Entity, I’ll describe
the Notation interface in a moment.

Entity

A DOM parser uses an implementation of this interface to represent entities that are defined in a DTD.
For the three methods described next, assume that the following NOTATION and ENTITY definitions exist in
the DTD:

<!NOTATION symbols "-//W3C//ENTITIES Symbols for XHTML//EN ">
<!ENTITY HTMLsymbols SYSTEM "xhtml-symbol.ent" NDATA symbols>

getPublicId()

This method returns the public identifier of the entity, which in this case is -//W3C//ENTITIES Symbols for
XHTML//EN; a null value indicates that no public identifier was specified for the entity.

getSystemId()

This method returns the system identifier of the entity, which in this case is xhtml-symbol.ent; a null value
indicates that no system identifier is specified for the entity.

CHAPTER 14 ■ USING XML

615

getNotationName()

When called for an unparsed entity, this method returns the name of the notation associated with the entity,
which in this case is symbols. A value of null is returned by this method when called for a parsed entity.

getNodeName()

This method isn’t defined in the Entity interface but is inherited from Node and returns the name of the
entity (for example, HTMLSymbols).

Notation
This class represents a notation that’s defined in a DTD, and a collection of Notation instances can be
retrieved by calling the getNotations() method for a DocumentType object.

getPublicId()

As its name suggests, this method returns a String representing the notation’s public identifier.

getSystemId()

As its name suggests, this method returns a String representing the notation’s system identifier.

Traversing a Document with DOM
Now that you’ve examined the DOM interfaces, you’ll see how to use them to examine an XML document
and create a hierarchical collection of objects in memory. Each Element node can contain its own child
nodes that can be other Element nodes, and those children may have their own child nodes, and so on, for a
theoretically infinite number of levels, as shown in Figure 14-9.

CHAPTER 14 ■ USING XML

616

As mentioned earlier, the DocumentBuilder class includes a parse() method that returns a Document
object representing an XML document that’s stored in memory. Once you have access to the Document
object, you can call getDocumentElement() to obtain a reference to the XML document’s root element or
getDocumentType() if you intend to examine the document’s DTD. The following code segment illustrates
how you can use the JAXP classes to create a DOM parser, load and parse a document, and obtain access to
its root element:

String uri;
// ...
DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
factory.setValidating(true);
DocumentBuilder builder = factory.newDocumentBuilder();
Document doc = builder.parse(uri);
Element rootElement = doc.getDocumentElement();

As you’ve seen, the Node interface includes methods that allow you to access a node’s parent, children,
or siblings, and it’s easy to use them to navigate through a document structure.

Figure 14-9. The relationships that exist for the various interfaces used to represent a document maintained
internally by a DOM parser

CHAPTER 14 ■ USING XML

617

For example, suppose you’re given an Element node and you want to display the subtree that it represents
as it appeared in the original XML document. In other words, you not only want to examine the object structure
but also want to actually reverse the parsing process and convert the objects back into an XML document.
You can do this quite easily by creating code that traverses the tree, identifies which type of item each Node
represents, and processes the node accordingly. Listing 14-7 shows an outline of such an application.

Listing 14-7. Initial DOMTest Implementation

import javax.xml.parsers.*;
import org.w3c.dom.*;

public class DOMTest {

 public static void main(String[] args) throws Exception {
 DOMTest dt = new DOMTest(args[0]);
}

public DOMTest(String uri) throws Exception {
 DocumentBuilderFactory factory =
 DocumentBuilderFactory.newInstance();
 factory.setValidating(true);
 DocumentBuilder builder = factory.newDocumentBuilder();
 Document doc = builder.parse(uri);
 displayTree(doc.getDocumentElement());
}

protected void displayTree(Node node) {
 short nodeType = node.getNodeType();
 switch (nodeType) {
 case Node.ELEMENT_NODE:
 printElement((Element)node);
 break;
 case Node.TEXT_NODE:
 printText((Text)node);
 break;
 case Node.COMMENT_NODE:
 printComment((Comment)node);
 break;
 case Node.CDATA_SECTION_NODE:
 printCDATA((CDATASection)node);
 break;
 case Node.ENTITY_REFERENCE_NODE:
 printEntityReference((EntityReference)node);
 break;
 case Node.PROCESSING_INSTRUCTION_NODE:
 printProcessingInstruction(
 (ProcessingInstruction)node);
 break;
 default:
 }
}

CHAPTER 14 ■ USING XML

618

protected void printElement(Element node) {
 // ...
}

protected void printText(CharacterData node) {
 // ...
}

protected void printComment(Comment node) {
 // ...
}

protected void printCDATA(CDATASection node) {
 // ...
}

protected void printEntityReference(EntityReference node) {
 // ...
}

protected void printProcessingInstruction(ProcessingInstruction node) {
 // ...
}
}

Except for Element instances, each type of Node subclass object can be converted into an appropriate
text representation easily. In fact, all the previous printXXX() methods except printElement() can be
completed with a single statement that wraps the node data in an appropriate character string as shown in
Listing 14-8.

Listing 14-8. Generating Text Representations of Various Node Types

protected void printText(CharacterData node) {
 System.out.print(node.getData());
}

protected void printComment(Comment node) {
 System.out.print("<!--" + node.getData() + "-->");
}

protected void printCDATA(CDATASection node) {
 System.out.print("<![CDATA[" + node.getData() + "]]>");
}

protected void printEntityReference(EntityReference node) {
 System.out.print("&" + node.getNodeName() + ";");
}

protected void printProcessingInstruction(ProcessingInstruction node) {
 System.out.print("<?" + node.getTarget() + " " + node.getData() + "?>");
}

CHAPTER 14 ■ USING XML

619

Processing Element nodes is slightly more complex because they can have attributes and child nodes
that must be included in the output, but the start and end tags can easily be generated.

protected void printElement(Element node) {
 // ...
 System.out.print("<" + node.getNodeName());
 // ...
 System.out.print(">");
 // ...
 System.out.print("</" + node.getNodeName() + ">");
}

To include an element’s attribute values inside its start tag, you must retrieve a reference to its attribute
list by calling the getAttributes() method. After that, iterate through the list and generate output for each
one, placing quotes around its value. Listing 14-9 shows an example of how this can be done.

Listing 14-9. Embedding Elements in a Node’s Start Tag

protected void printElement(Element node) {
 Attr attr;
 System.out.print("<" + node.getNodeName());
 NamedNodeMap attrs = node.getAttributes();
 int count = attrs.getLength();
 for (int i = 0; i < count; i++) {
 attr = (Attr)(attrs.item(i));
 System.out.print(" " + attr.getName() + "=\"" + attr.getValue() +
 "\"");
 }
 System.out.print(">");
 // ...
 System.out.print("</" + node.getNodeName() + ">");
}

You must also ensure that all of an element’s child nodes are included in the generated output, but this
is even easier to accomplish. Simply obtain a reference to the list of children by calling getChildNodes() and
then call the displayTree() method for each one. This causes the entire tree structure to be processed using
preorder traversal, a term that’s described in Chapter 7, discussing JTree. Stated simply, however, it means
that a node is processed/displayed before its children instead of afterward and an example of how this can
be implemented appears in Listing 14-10.

Listing 14-10. Preorder Traversal Implementation in the printElement() Method

protected void printElement(Element node) {
 Node child;
 Attr attr;
 System.out.print("<" + node.getNodeName());
 NamedNodeMap attrs = node.getAttributes();
 int count = attrs.getLength();
 for (int i = 0; i < count; i++) {
 attr = (Attr)(attrs.item(i));
 System.out.print(" " + attr.getName() + "=\"" + attr.getValue() +
 "\"");
 }

http://dx.doi.org/10.1007/9781484206423_7

CHAPTER 14 ■ USING XML

620

 System.out.print(">");
 NodeList children = node.getChildNodes();
 count = children.getLength();
 for (int i = 0; i < count; i++) {
 child = children.item(i);
 displayTree(child);
 }
 System.out.print("</" + node.getNodeName() + ">");
}

With the printElement() method in place, you can now use the DOMTest application to print the contents
of an XML document’s root element. To do this, simply compile the code and execute it, passing a string that
represents a URI (uniform resource identifier) to the main() method as shown in the following code:

C:\brett\temp>java DOMTest file:/c:/brett/temp/booktest.xml
<book><title>Pro Java Programming</title>272103_1_EnBrett Spell</autho r><publisher>
Apress</publisher><tableOfContents showPageNumbers="Yes">
<t ocEntry>Printing</tocEntry><tocEntry>Cut and Paste</tocEntry><tocEntry>
Drag and Drop</tocEntry></tableOfContents></book>

Although this application provided a reason for you to see how to traverse a DOM tree, it really wasn’t
necessary to implement this functionality at all. That’s because the DOM implementation supplied with
the JAXP download contains toString() methods that do essentially the same thing as the printXXX()
methods. In fact, the simplified version of DOMTest in Listing 14-11 will produce the same output as the code
just created.

Listing 14-11. Displaying the Text Representation of a Document

import javax.xml.parsers.*;
import org.w3c.dom.*;

public class DOMTest2 {

 public static void main(String[] args) throws Exception {
 DOMTest2 dt = new DOMTest2s(args[0]);
 }

 public DOMTest2(String uri) throws Exception {
 DocumentBuilderFactory factory =
 DocumentBuilderFactory.newInstance();
 factory.setValidating(true);
 DocumentBuilder builder = factory.newDocumentBuilder();
 Document doc = builder.parse(uri);
 System.out.println(doc.getDocumentElement());
 }

}

It may be tempting to take advantage of this functionality if you’re using the JAXP parser, but you should
keep in mind that this behavior isn’t part of the DOM standard.

CHAPTER 14 ■ USING XML

621

Editing Documents with DOM
You can use DOM to edit a document in essentially the same way you use it to scan the document. In addition
to the methods that allow you to access node values and navigate through an object structure, DOM also
provides methods that allow you to add, modify, and delete nodes from the tree. For example, given the XML
document shown in Listing 14-12, suppose you want to assign a value of no to the showPageNumbers attribute
value in the <tableOfContents> element.

Listing 14-12. An XML Document to Be Edited

<?xml version="1.0" ?>

<book>
 <title>Pro Java Programming</title>
 272103_1_EnBrett Spell</author>
 <publisher>Apress</publisher>

 <tableOfContents showPageNumbers="yes">
 <tocEntry>Printing</tocEntry>
 <tocEntry>Cut & Paste</tocEntry>
 <tocEntry>Drag & Drop</tocEntry>
 </tableOfContents>
</book>

Once the document has been loaded into memory, the root element can be accessed and its
children searched until the <tableOfContents> element is located. After that’s done, you can use a call to
setAttribute() to set the showPageNumbers value to no, as shown in Listing 14-13.

Listing 14-13. Locating a Node and Modifying Its Value

import javax.xml.parsers.*;
import org.w3c.dom.*;

public class DOMTest3 {
 public static void main(String[] args) throws Exception {
 DOMTest3 dt = new DOMTest3(args[0]);
 }

 public DOMTest3(String uri) throws Exception {
 DocumentBuilderFactory factory =
 DocumentBuilderFactory.newInstance();
 factory.setValidating(true);
 DocumentBuilder builder = factory.newDocumentBuilder();

 Document doc = builder.parse(uri);
 Element rootElement = doc.getDocumentElement();
 NodeList children = rootElement.getChildNodes();
 Node current = null;
 int count = children.getLength();

CHAPTER 14 ■ USING XML

622

 for (int i = 0; i < count; i++) {
 current = children.item(i);
 if (current.getNodeType() == Node.ELEMENT_NODE) {
 Element element = (Element)current;
 if (element.getTagName().equalsIgnoreCase("tableOfContents")) {
 element.setAttribute("showPageNumbers", "no");
 }
 }
 }
 System.out.println(doc.getDocumentElement());
 }
}

If, on the other hand, you want to delete the <tableOfContents> tag completely instead of modifying its
attribute, you can use the removeChild() method, as shown in Listing 14-14.

Listing 14-14. Removing a Node

import javax.xml.parsers.*;
import org.w3c.dom.*;

public class DOMTest4 {

 public static void main(String[] args) throws Exception {
 DOMTest4 dt = new DOMTest4(args[0]);
 }

 public DOMTest4(String uri) throws Exception {
 DocumentBuilderFactory factory =
 DocumentBuilderFactory.newInstance();
 factory.setValidating(true);
 DocumentBuilder builder = factory.newDocumentBuilder();

 Document doc = builder.parse(uri);
 Element rootElement = doc.getDocumentElement();
 NodeList children = rootElement.getChildNodes();
 Node current = null;
 for (int i = 0; i < children.getLength(); i++) {
 current = children.item(i);
 if (current.getNodeType() == Node.ELEMENT_NODE) {
 Element element = (Element)current;
 if (element.getTagName().equalsIgnoreCase("tableOfContents")) {
 rootElement.removeChild(element);
 }
 }
 }
 System.out.println(doc.getDocumentElement());
 }
 }

CHAPTER 14 ■ USING XML

623

When removing nodes like this, keep in mind that you’re removing not only the node you specify
on the call to removeChild() but all of its descendents as well. In this case, for example, removing the
<tableOfContents> element results in the removal of the three <tocEntry> elements that are its children,
those three nodes’ children, and so on.

In other words, removeChild() effectively eliminates the entire subtree defined by the node that you
pass as a parameter value.

Creating and Adding New Nodes
Creating and adding new nodes are equally simple, since the Node interface includes methods such as
appendChild(), insertBefore(), and replaceChild(). Creating a new node is something you haven’t
done before, although you may remember that the Document interface includes factory methods that return
instances of the different types of Node objects. In most cases, these methods require a single parameter that
represents the name of the node to be created, and the following is an example of how you might create a
new Element node:

Document doc = builder.parse(uri);
// ...
Element myNewElement = doc.createElement("tocEntry");

Once the new element is created, you can call its mutator methods to modify its state, and once it’s
properly initialized, you can add it to the object structure. The following code creates a new Element
representing a <tocEntry>, creates a new Text node containing Help, makes the Text node a child of the
new Element, and inserts that element before the second child of the <tableOfContents> node, as shown in
Listing 14-15.

Listing 14-15. Adding a Node to the Tree

import javax.xml.parsers.*;
import org.w3c.dom.*;

public class DOMTest5 {

 public static void main(String[] args) throws Exception {
 DOMTest5 dt = new DOMTest5(args[0]);
 }

 public DOMTest5(String uri) throws Exception {
 DocumentBuilderFactory factory =
 DocumentBuilderFactory.newInstance();
 factory.setValidating(true);
 DocumentBuilder builder = factory.newDocumentBuilder();

 Document doc = builder.parse(uri);
 Element rootElement = doc.getDocumentElement();
 NodeList children = rootElement.getChildNodes();
 Node current = null;
 int count = children.getLength();

CHAPTER 14 ■ USING XML

624

 for (int i = 0; i < count; i++) {
 current = children.item(i);
 if (current.getNodeType() == Node.ELEMENT_NODE) {
 Element element = (Element)current;
 if (element.getTagName().equalsIgnoreCase("tableOfContents")) {
 // Get the list of <tocEntry> items
 NodeList tocitems = element.getElementsByTagName("tocEntry");
 // Obtain a reference to the second one
 Node secondChild = tocitems.item(1);
 // Create a new <tocEntry> element
 Element newTOCItem = doc.createElement("tocEntry");
 // Create a new "Help" text node
 Text newText = doc.createTextNode("Help");
 // Make it a child of the new <tocEntry> element
 // <tocEntry>Help</tocEntry>
 newTOCItem.appendChild(newText);
 // Add the new <tocEntry> element to <tableOfContents>
 element.insertBefore(newTOCItem, secondChild);
 }
 }
 }

 System.out.println(doc.getDocumentElement());
 }
}

In effect, this is equivalent to making the following addition to the original XML document:

<tableOfContents showPageNumbers="Yes">
 <tocEntry>Printing</tocEntry>
 <tocEntry>Help</tocEntry><tocEntry>Cut & Paste</tocEntry>
 <tocEntry>Drag & Drop</tocEntry>
</tableOfContents>

This illustrates an important point that may not be obvious. Although it may appear that the
original <tableOfContents> node had only three children, it has at least seven: four Text nodes
representing whitespace in addition to the three <tocEntry> Element nodes. If the tree has been
normalized (which it typically will be after it’s first constructed), there will be exactly seven child nodes.
However, it’s possible that one “section” of whitespace consists of up to two sequential Text nodes
(for example, a linefeed followed by a tab). In any case, when adding data nodes to a tree as in this
example, you may also want to add a Text node representing whitespace as well. Although whitespace
has no impact upon a parser’s ability to process the document or upon the logical organization of the
document, you want to add it for the sake of readability. In this case, you can add whitespace easily by
inserting the bold code in Listing 14-16.

CHAPTER 14 ■ USING XML

625

Listing 14-16. Adding a Whitespace Node

// ...
for (int i = 0; i < count; i++) {
 current = children.item(i);
 if (current.getNodeType() == Node.ELEMENT_NODE) {
 Element element = (Element)current;
 if (element.getTagName().equalsIgnoreCase("tableOfContents")) {
 // Get the list of <tocEntry> items
 NodeList tocitems = element.getElementsByTagName("tocEntry");
 // Obtain a reference to the second one
 Node secondChild = tocitems.item(1);
 // Create a new <tocEntry> element
 Element newTOCItem = doc.createElement("tocEntry");
 // Create a new "Help" text node
 Text newText = doc.createTextNode("Help");
 // Make it a child of the new <tocEntry> element
 // <tocEntry>Help</tocEntry>
 newTOCItem.appendChild(newText);
 // Add the new <tocEntry> element to <tableOfContents>
 element.insertBefore(newTOCItem, secondChild);
 // Create another text node containing a linefeed and
 // two tabs to use for whitespace
 newText = doc.createTextNode("\n\t\t");
 // Insert it before the new <tocEntry> we added
 element.insertBefore(newText, secondChild);
 }
 }
}
// ...

This inserts a linefeed and two tab characters after the newly inserted <tocEntry> element (before the
element that follows it) so that when converted into XML, the document’s contents will appear as shown
in the following code:

<tableOfContents showPageNumbers="Yes">
 <tocEntry>Printing</tocEntry>
 <tocEntry>Help</tocEntry>
 <tocEntry>Cut & Paste</tocEntry>
 <tocEntry>Drag & Drop</tocEntry>
</tableOfContents>

Creating a New Document
All of the Document instances you’ve used so far were created when the parse() method read and processed
an existing document, but you’ll sometimes want to create a new object collection that’s not associated with
an existing XML document. As you saw earlier, JAXP’s DocumentBuilder class contains a newDocument()
method that you can use to obtain a new (and empty) Document object and an example of its use appears in
Listing 14-17.

CHAPTER 14 ■ USING XML

626

Listing 14-17. Initial DOMTest Implementation

import javax.xml.parsers.*;
import org.w3c.dom.*;

public class DOMTest6 {

 public static void main(String[] args) throws Exception {
 DOMTest6 dt = new DOMTest6();
 }

 public DOMTest6() throws Exception {
 DocumentBuilderFactory factory =
 DocumentBuilderFactory.newInstance();
 factory.setValidating(true);
 DocumentBuilder builder = factory.newDocumentBuilder();
 Document document = builder.newDocument();

 // ...
 }

}

Once you’ve created a new Document object, the first Element child you add to it will become the
document’s root element, and you can add other nodes as described previously and as done in Listing 14-18.

Listing 14-18. Creating and Appending a Child Element to a New Document

import javax.xml.parsers.*;
import org.w3c.dom.*;

public class DOMTest6 {

public static void main(String[] args) throws Exception {
 DOMTest6 dt = new DOMTest6();
}

public DOMTest6() throws Exception {
 DocumentBuilderFactory factory =
 DocumentBuilderFactory.newInstance();
 factory.setValidating(true);
 DocumentBuilder builder = factory.newDocumentBuilder();

 Document document = builder.newDocument();
 // Create a new Element object
 Element rootElement = document.createElement("book");
 // Make it the root element of this new document
 document.appendChild(rootElement);

 System.out.println(document.getDocumentElement());
 }
}

CHAPTER 14 ■ USING XML

627

Transforming XML Documents
I’ve already pointed out that using XML allows you to separate your data from instructions that describe how
the data is displayed. However, I haven’t mentioned how to convert an XML document into some format
that’s appropriate for display, such as an HTML document. For example, you should recall that an HTML
document and a similar XML document were defined at the beginning of this chapter. Since the HTML
version contains information that describes how to format the data, it’s possible to view that document in a
browser and have it display the data appropriately. In contrast, the XML document doesn’t contain any such
display guidelines.

One option for converting an XML document into some other format is to use DOM to examine the
document’s contents and write an appropriate representation, but this can be a complex and difficult
task depending upon the size and complexity of the document. In addition, writing Java code to perform
the formatting means you must change that code when you want to change the structure of the output.
Fortunately, an alternative approach exists that makes it reasonably simple to define a set of rules that
describes how an XML document should be transformed. That alternative is XSL. XSL is a standard
created by the World Wide Web Consortium, and its purpose is to allow you to create stylesheets for XML
documents, where a stylesheet is simply a file that describes how information should be transformed.

XSL allows you to do two things that are (technically, at least) distinct from one another: rearrange the
structure of your document’s nodes and describe what output should be generated for each node. In other
words, you can convert a document from one XML grammar to another or even from one XML format to
some non-XML format such as HTML, RTF, PDF, and so on.

You’ll now see how to create an XSLT file that will transform the XML document at the beginning of
this chapter into the equivalent HTML document. First, you should create a file called booktran.xsl that
contains the following three lines. The first line is the XML declaration you’ve already seen, and the next line
is the stylesheet declaration, which identifies the namespace that will be used to refer to XSLT instructions:

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
</xsl:stylesheet>

To specify how XML data is formatted, you must create templates, which are elements containing
transformation instructions and data. In this case, for example, when a <book> element is encountered, you
want an HTML document to be generated that contains the same data found in <book> but with HTML tags
that describe how to format the data. Therefore, you can create a template like the following one that will
generate the <html> and </html> tags when <book> is encountered:

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:template match="book">
<html>
</html>
</xsl:template>

</xsl:stylesheet>

http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Transform

CHAPTER 14 ■ USING XML

628

To embed information from one of the elements, you can use the value-of instruction as shown in
the following code. This instruction generates output from the text found between the start and end tags of
the specified element. In this case, it’s used to extract the book’s title, author, and publisher from the XML
document.

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:template match="book">
<html>
<center><h1><xsl:value-of select="title"/></h1></center>
<h4><xsl:value-of select="author"/></h4>
<h4><xsl:value-of select="publisher"/></h4>
</html>
</xsl:template>

</xsl:stylesheet>

For example, given the XML document at the beginning of this chapter, the previous XSLT document
will extract the contents of the <title>, 272103_1_En, and <publisher> elements, enclosing the title within
an <h1> tag and the author and publisher within <h4> tags. To actually perform this transformation, however,
you need an XSL processor.

Performing an XSL Transformation
Like SAX and DOM, you must obtain an XSLT processor before you can use the technology, but again,
Java includes an implementation for your use. The first step in doing so is to obtain an instance of the
TransformerFactory class defined within the javax.xml.transform package.

TransformerFactory factory = TransformerFactory.newInstance();

As you might expect, a TransformerFactory returns instances of Transformer, and those instances
can be used to transform XML documents based on the instructions in a stylesheet. However, since the
Transformer relies upon the stylesheet to perform the transformation, you’re required to identify the source
of the stylesheet data when you create the Transformer. You can do this using an implementation of the
Source interface defined in javax.xml.transform; fortunately, Java provides convenient implementations
of that interface. One implementation is StreamSource, which represents a data source as a stream that
corresponds to a File, a Reader, or an InputStream. Let’s suppose the stylesheet defined previously is stored
in C:\brett\temp\styletest.xsl and you want to create a Transformer that uses it to process an XML
document. In that scenario, you could use code like that shown in the following:

File file = new File("C:/brett/temp/styletest.xsl");
Source source = new StreamSource(file);

Now that you’ve seen how to define a Source, you can easily create a Transformer using the following code:

TransformerFactory factory = TransformerFactory.newInstance();
File file = new File("C:/brett/temp/styletest.xsl");
Source source = new StreamSource(file);
Transformer transformer = factory.newTransformer(source);

http://www.w3.org/1999/XSL/Transform

CHAPTER 14 ■ USING XML

629

Finally, to perform the transformation, you need to create another Source implementation that
identifies the XML document to be transformed along with a Result implementation that identifies where
to send the transformed output. As was the case with Source, JAXP provides convenient implementations
of the Result interface, including the StreamResult class that allows output to be sent to a File, an
OutputStream, or a Writer. For example, to create a Result implementation that will send the transformed
data to standard output, you could use code like the following:

Result result = new StreamResult(System.out);

Now that you’ve seen how to create Source and Result implementations, you can easily transform
an XML document stored in C:\brett\temp\mytest.xml using a stylesheet stored in C:\brett\temp\
styletest.xsl and send it to standard output using the code in Listing 14-19.

Listing 14-19. Transforming an XML Document and Displaying It in Standard Output

TransformerFactory factory = TransformerFactory.newInstance();
File file = new File("C:/brett/temp/styletest.xsl");
Source source = new StreamSource(file);

Transformer transformer = factory.newTransformer(source);
file = new File("C:/brett/temp/mytest.xml");
source = new StreamSource(file);
Result result = new StreamResult(System.out);
transformer.transform(source, result);

Running this code with the stylesheet defined earlier and the XML document listed at the beginning of
this chapter produces the following output:

<html>
<center>
<h1>Pro Java Programming</h1>
</center>
<h4>Brett Spell</h4>
<h4>Apress</h4>
</html>

Although this example is a trivial one, XSLT provides a robust facility for performing translations. A complete
discussion of its capabilities is beyond the scope of this chapter, but you can find more information at
www.w3.org/TR/xslt/ or refer to XSLT 2.0 Programmer’s Reference by Michael Kay (Wrox Press, 2004).

Introducing XPath
Before continuing, it’s helpful to closely examine the values of the select attributes associated with the
value-of instructions you created. Although it may not be apparent, these are examples of XPath (XML Path
Language) values. XPath is an expression language used to select nodes in an XML document tree, specify
conditions for different ways of processing a node, and generate text from the tree. Here it simply provides a
way to refer to specific nodes in the XML document. XPath is a separate standard from XSL/XSLT, but as this
example illustrates, it’s used to identify document nodes referenced during transformations. Fortunately,
XPath is somewhat intuitive, since the notation used is similar to what you’re probably already accustomed
to using when referring to directories in a file system.

http://www.w3.org/TR/xslt/

CHAPTER 14 ■ USING XML

630

For example, suppose you issue the command dir . in a DOS/Windows environment. The single
period character (.) represents the current directory, so this command will list all the files in the current
directory and all its subdirectories. For example, if your current directory is C:\brett\temp, the previous
command will list all files and subdirectories contained by that directory. Similarly, issuing the command
dir xslt from that same directory will list the contents of the xslt subdirectory (C:\brett\temp\xslt).

Given these examples, you may already realize how this relates to XPath. In the template that’s defined
to handle <book> elements, the “current node” is the <book> element being processed, and a path such as
author or publisher refers to the element directly below the current one. In other words, the value-of
instruction simply includes the text found between the start and end tags of the node identified by the XPath
value. In this case, that means the <title>, 272103_1_En, and <publisher> values.

At this point, you need to add two things: the table of contents information and the publisher’s logo
image. You can easily reproduce the table of contents header using the techniques already described and
shown in Listing 14-20.

Listing 14-20. Including an Element for the Table of Contents Header

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:template match="book">
<html>
<center><h1><xsl:value-of select="title"/></h1></center>
<h4><xsl:value-of select="author"/></h4>

<h3>Table Of Contents</h3>

<h4><xsl:value-of select="publisher"/></h4>
</html>
</xsl:template>

On the other hand, including the <tocItem> entries in the output is slightly more complex because
there are several such entries and because they aren’t directly below the <book> element being processed.
That isn’t really a difficult problem to solve because XPath allows you to refer to the <tocItem> entries from
the <book> template. However, since you have multiple such entries, you must use the for-each instruction
to define a loop that will process each one of them and an example of how this can be done appears in
Listing 14-21.

Listing 14-21. Including a Loop That Will Generate an Element for Each Entry

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:template match="book">
<html>
<center><h1><xsl:value-of select="title"/></h1></center>
<h4><xsl:value-of select="author"/></h4>

<h3>Table Of Contents</H3>

http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Transform

CHAPTER 14 ■ USING XML

631

<xsl:for-each select="tableOfContents/tocEntry">
</xsl:for-each>

<h4><xsl:value-of select="publisher"/></h4>
</html>
</xsl:template>

</xsl:stylesheet>

With this loop in place, you can easily generate output for each <tocEntry> element. Note the use of the
single period (.) for the select value, which in the context of the loop refers to the value between the start and
end tags of the <tocEntry> element. An implementation of this is found in Listing 14-22.

Listing 14-22. Including a List Item for Each tocEntry Element

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:template match="book">
<html>
<center><h1><xsl:value-of select="title"/></h1></center>
<h4><xsl:value-of select="author"/></h4>

<h3>Table Of Contents</H3>

<xsl:for-each select="tableOfContents/tocEntry">
<xsl:value-of select="."/>
</xsl:for-each>

<h4><xsl:value-of select="publisher"/></h4>
</html>
</xsl:template>

</xsl:stylesheet>

Finally, you can add the tag that will display the cover image, although you have at least two
ways to accomplish this. One approach is to explicitly embed the information in the document, as shown in
Listing 14-23.

Listing 14-23. Embedding an IMG element in the Document

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:template match="book">
<html>
<center><h1><xsl:value-of select="title"/></h1></center>

http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Transform

CHAPTER 14 ■ USING XML

632

<h4><xsl:value-of select="author"/></h4>

<h3>Table Of Contents</H3>
<xsl:for-each select="tableOfContents/tocEntry">
<xsl:value-of select="."/>
</xsl:for-each>

<h4><xsl:value-of select="publisher"/></h4>

</html>
</xsl:template>

</xsl:stylesheet>

However, if you prefer to avoid explicitly identifying the file in your XSL document, you can use entity
references instead as in Listing 14-24.

Listing 14-24. Using an Entity Reference to Refer to an Image File

<?xml version="1.0"?>
<!DOCTYPE xsl:stylesheet SYSTEM "pubinfo.dtd">

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:template match="book">
<html>
<center><h1><xsl:value-of select="title"/></h1></center>
<h4><xsl:value-of select="author"/></h4>

<h3>Table Of Contents</H3>
<xsl:for-each select="tableOfContents/tocEntry">
<xsl:value-of select="."/>
</xsl:for-each>

<h4><xsl:value-of select="publisher"/></h4>

</html>
</xsl:template>

</xsl:stylesheet>

This latter approach also requires that a pubinfo.dtd file be created with the following contents:

<!-- pubinfo.dtd -->
<!ENTITY logoFile "http://www.apress.com/ApressCorporate/supplement/1/421/bcm.gif">
<!ENTITY logoText "Coverage Image">

http://www.apress.com/ApressCorporate/supplement/1/421/bcm.gif
http://www.w3.org/1999/XSL/Transform
http://www.apress.com/ApressCorporate/supplement/1/421/bcm.gif

CHAPTER 14 ■ USING XML

633

The output produced by this stylesheet is shown in Listing 14-25.

Listing 14-25. The HTML Output Generated by XSL

<html>
<center>
<h1>Pro Java Programming</h1>
</center>
<h4>Brett Spell</h4>

<h3>Table Of Contents</H3>
Printing
Cut and Paste
Drag and Drop

<h4>Apress</h4>
<img alt="Cover Image"
 src="http://www.apress.com/ApressCorporate/supplement/1/421/bcm.gif "></html>

Creating and Using Additional Templates
Although the previous approach is acceptable for a relatively simple XML document, it has one design
flaw that can be significant. Specifically, all processing takes place inside a single template, and if your
document’s structure is complex, you’ll be forced to put a large amount of code inside that template. This is
roughly equivalent to creating a large, “monolithic” method in Java or some other programming language,
where that method performs many different steps in a complex algorithm. Such a method becomes difficult
to understand and maintain, so it’s usually desirable to separate the functions by placing them in different
methods (or templates in this case). A good candidate for such a change is the code that handles the
<tableOfContents> elements and its <tocItem> subelements, since that code accounts for roughly half of
the logic inside the existing template.

You can easily create a new template that handles only <tableOfContents> elements, as shown in the
following code; it contains essentially the same instructions that were present in <book>. The only exception
is that the <tocEntry> items are referenced from a location relative to the <tableOfContents> entry instead
of the <book> element. Therefore, you must change the path used in the for-each instruction to reference
each <tocEntry> from tableOfContents/tocEntry to tocEntry. An example of how this might be done
appears in Listing 14-26.

Listing 14-26. Using a More Granular Approach to Templates

<?xml version="1.0"?>
<!DOCTYPE xsl:stylesheet SYSTEM "pubinfo.dtd">

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:template match="book">
<html>
<center><h1><xsl:value-of select="title"/></h1></center>
<h4><xsl:value-of select="author"/></h4>
<h4><xsl:value-of select="publisher"/></h4>

</html>
</xsl:template>

http://www.apress.com/ApressCorporate/supplement/1/421/bcm.gif
http://www.w3.org/1999/XSL/Transform

CHAPTER 14 ■ USING XML

634

<xsl:template match="tableOfContents">

<h3>Table Of Contents</H3>
<xsl:for-each select="tocEntry">
<xsl:value-of select="."/>
</xsl:for-each>

</xsl:template>

</xsl:stylesheet>

Although you might expect the template associated with the <tableOfContents> element to be
called automatically, that’s not the case. Only the template that handles the root element will be called
automatically, and to use any other templates, you must explicitly “call” them using the apply-templates
instruction. This instruction causes the XSLT processor to handle the specified child element(s) of
the current element and embed the results in the output being created. For example, to include the
<tableOfContents> element output between the text created for the 272103_1_En and <publisher>
elements, you need to make the modification shown in Listing 14-27.

Listing 14-27. Applying Another Template to Generate Content

<!-- ... -->

<xsl:template match="book">
<html>
<center><h1><xsl:value-of select="title"/></h1></center>
<h4><xsl:value-of select="author"/></h4>
<xsl:apply-templates select="tableOfContents"/>
<h4><xsl:value-of select="publisher"/></h4>

</html>
</xsl:template>

<!-- ... -->

This command will again generate a file booktest.html containing the content shown in Listing 14-28.

Listing 14-28. Final HTML Output Generated by the Modified XSL

<html>
<center>
<h1>Pro Java Programming</h1>
</center>
<h4>Brett Spell</h4>

<h3>Table Of Contents</H3>
Printing
Cut and Paste
Drag and Drop

<h4>Apress</h4>
<img alt="Cover Image"
 src="http://www.apress.com/ApressCorporate/supplement/1/421/bcm.gif "></html>

http://www.apress.com/ApressCorporate/supplement/1/421/bcm.gif

CHAPTER 14 ■ USING XML

635

Although the whitespace isn’t quite the same as that of the HTML document defined earlier in the
chapter, the two documents are functionally identical from a browser’s perspective.

Summary
In this chapter, you looked at the following:

What XML is and how it differs from HTML•

How an XML document is formed•

How to parse XML documents using the DOM API•

How to transform XML documents using XSLT•

The role of XPath in transformations•

637

CHAPTER 15

Adding Annotations

A very useful part of Java is its support for annotations, which are used to define what is sometimes referred
to as metadata. To understand what benefits this feature provides, it’s helpful to first realize that the
definition of metadata is “data about data.” In other words, metadata is information that describes other
data. An example of where metadata has long been used in Java is the java.sql package that contains
DatabaseMetaData, ResultSetMetaData, and the relatively new ParameterMetaData interfaces. As implied
by the definition just mentioned and by their names, these classes encapsulate data that describes a
database, a ResultSet, and parameter information, respectively. For example, ResultSetMetaData allows
you to find out how many columns are represented within a ResultSet, the data types associated with those
columns, and so on.

In contrast to the classes defined in java.sql, Java’s support for annotations allows you to include
in your source files information that describes the elements of your code such as classes, methods, and
parameters. To understand how this is useful, we’ll briefly examine another way that earlier releases of Java
supported metadata, specifically, through the @deprecated tag used by the javadoc tool. The @deprecated
tag identifies a method that programmers are discouraged from using, typically because a preferred
alternative exists that should be used instead. To illustrate how this works, let’s assume you’ve created and
compiled a class like the one in Listing 15-1. Notice that a javadoc-style comment block has been defined for
the getText() method.

Listing 15-1. A Simple Class for Retrieving Text

public class Server {

 /**
 * @deprecated Use the getText() method in the NewAndImprovedServer class
 * instead.
 */
 public String getText() {
 return "Hello world!";
 }

 public String getMoreText() {
 return "Hello galaxy!";
 }

}

CHAPTER 15 ■ ADDING ANNOTATIONS

638

As mentioned, the presence of the @deprecated tag means that programmers are discouraged from
using this method, and as this example illustrates, the tag also should contain text that tells what should be
used in place of this deprecated method. Now let’s further assume you create and compile a class like one in
Listing 15-2 that attempts to use the deprecated method.

Listing 15-2. Compiling a Class That References Another Type with a Deprecated Method

public class Client {

 public static void main(String[] args) {
 Server server = new Server();
 System.out.println(server.getText());
 }
}

Compiling this class without specifying any options will result in a warning being generated like the
following:

Note: Client.java uses or overrides a deprecated API.

Note: Recompile with –deprecation for details

Recompiling with the –deprecation option as instructed generates output like the following:

Client.java:5: warning: getText() in Server has been deprecated

 System.out.println(server.getText());

An important point to realize is that you’ll receive these deprecation warnings even if the source file
isn’t present. That’s possible because the Java compiler actually includes in the Server.class file a flag
that indicates the getText() method has been deprecated. Later, when the compiler attempts to compile
Client.java, it scans the Server.class file, notes that the method is deprecated, and generates a warning.
It’s worth pointing out that @deprecated is unique in this sense; most javadoc tags are intended to be used
only when the javadoc tool parses source code and no remnant of any other tag is included in a class file
generated by a Java compiler.

Just as it’s a good example of how metadata is useful, the @deprecated tag is also an example of why Java
needed a better way of allowing programmers to include metadata in their source files. After all, the javadoc
tags are embedded within comment blocks that could otherwise be ignored by Java compilers, and since
other tags are ignored, @deprecated amounts to a nonstandard (or at least unusual) way of using a javadoc
tag. In addition, even in the case of @deprecated where a flag is stored in the compiled class file, there’s no
trivial way for an application to determine which tags were specified. Fortunately, the annotation facility
provides an improved way of specifying metadata and for processing that data programmatically.

Using Annotations
As you’ll see later, the annotation facility in Java allows you to define custom annotations, but Java also
includes some predefined annotations that are useful. For example, one of the predefined annotations is a
replacement for the @deprecated tag, and the replacement is named (intuitively enough) Deprecated. To use
an annotation, simply specify it before the element you want to apply it to by putting an at (@) sign followed
by the name of the annotation. For example, to replace the @deprecated javadoc tag with the Deprecated

CHAPTER 15 ■ ADDING ANNOTATIONS

639

annotation, make the changes shown in bold in Listing 15-3 to the Server class. Note that putting the
annotation(s) on a separate line isn’t required; it’s customarily done this way to improve the readability
of the code.

Listing 15-3. Adding a @deprecated Annotation to a Method

public class Server {

 @Deprecated
 public String getText() {
 return "Hello world!";
 }

 public String getMoreText() {
 return "Hello galaxy!";
 }

}

In addition to providing a simpler and “cleaner” way of marking a deprecated method, annotations
provide several advantages, one of which is that you can apply them to a wider range of program elements.
For example, you can apply javadoc only at a package, class, or method level, but you can apply annotations
to any of the following:

• Annotations: An annotation can itself have annotations.

• Constructors and methods: This is perhaps the most common usage.

• Fields: You can apply annotations to static or instance variables defined
within a class.

• Local variables: You can apply annotations to variables defined and used
inside methods.

• Package: You can associate annotations with an entire package.

• Parameter: You can assign annotations to individual method parameters.

• Type: A class, interface, or enum definition can have annotations.

Each of the foregoing represents some kind of declaration, and prior to Java 8 declarations were the
only place where you could define annotations. As of Java 8, however, annotations can be assigned any time
a type is referenced, such as in conjunction with generics. For example, you can now define a statement like
the one following:

List<@NonNull String> names = new ArrayList<>();

The value of this may not be immediately obvious, especially given that none of Java’s predefined
annotations is valid when used this way. However, the real power of annotations lies in the fact that not
only can you define your own custom annotations but you can then write code that uses those annotations
to perform useful functions. In fact, the @NonNull annotation shown in this example is an actual custom
annotation defined and used by the FindBugs source code analysis tool to detect potential errors that Java’s
predefined annotations can’t identify.

CHAPTER 15 ■ ADDING ANNOTATIONS

640

Another advantage of annotations over javadoc comments is that it’s easy to determine
programmatically which annotations are present for a given element. Before you see how to do this,
though, you should review the API (application programming interface) documentation for the java.lang
package, specifically, the section “Annotation Types Summary.” Annotations are defined in a way that’s very
much like creating a class or an interface, and they’re included in the API documentation along with other
components.

Now that you know that annotation definitions resemble those of classes and interfaces, writing code
that refers to an annotation becomes somewhat more intuitive. For example, let’s suppose you want to write
a code segment that examines the methods defined in the Server class and displays the names of those that
are deprecated. You can write most of that code using the reflection capabilities that have long been a part of
Java, as shown in Listing 15-4.

Listing 15-4. Retrieve and Loop Through an Array That Represents the Methods in a Class

Class myClass = Server.class;
java.lang.reflect.Method[] methods = myClass.getMethods();
for (int i = 0; i < methods.length; i++) {
 // Check for annotations here
}

To see if a given annotation is present, you can use the isAnnotationPresent() method and simply
refer to the annotation using its Class object as shown in Listing 15-5.

Listing 15-5. Checking a Method for the Presence of the @deprecated Annotation

Class myClass = Server.class;
java.lang.reflect.Method[] methods = myClass.getMethods();
for (int i = 0; i < methods.length; i++) {
 if (methods[i].isAnnotationPresent(Deprecated.class)) {
 System.err.println("Method '" + methods[i].getName() + "' is deprecated");
 }
}

As this simple example illustrates, applications can easily access annotation information without
having to scan a source file or a class file. Thus the implication is that it’s easy for development tools and user
applications to take advantage of annotations in any way that’s helpful. As a Java programmer you’ll typically
include annotations in your applications but won’t need to process them yourself, so it’s sufficient to realize
that annotations provide a flexible mechanism for defining metadata that’s easy to use. In fact, annotations
are heavily used by some of the most popular frameworks associated with Java applications such as
Spring, Hibernate, and many others. Again, this usage of annotations by powerful and popular frameworks
illustrates that most of the value provided by annotations isn’t in the ones predefined by Java (though those
are useful) but lies in the ability to define and process custom annotation types.

As you may have noticed when reviewing the API documentation, Deprecated isn’t the only
annotation defined in the java.lang package but is accompanied by the intuitively named Override and
SuppressWarnings annotation types, along with the SafeVarargs and FunctionalInterface. As its name
implies, Override allows you to mark a method that’s intended to override a superclass method, while
SuppressWarnings lets you indicate to a Java compiler that it shouldn’t generate warnings for specific
elements.

CHAPTER 15 ■ ADDING ANNOTATIONS

641

Override
For an example of how to use Override, let’s assume you create a subclass of Server called AdvancedServer
and you override the getMoreText() method as in Listing 15-6.

Listing 15-6. A Subclass of the Server Class

public class AdvancedServer extends Server {

 public String getMoreText() {
 return "Hello universe!";
 }

}

If you’re wondering why it’s useful to mark a method as overriding a superclass method, consider what
would happen if you do one or more of the following:

Forget to include • extends Server in the class definition

Specify an “incorrect” method name such as • getAdditionalText() or later change
the superclass method name without also changing the overriding subclass method

Change the superclass method signature by adding an argument without an •
equivalent change in the subclass

For example, let’s suppose you make a change to the getMoreText() method defined in Server but you
forget to also modify the AdvancedServer subclass as mentioned.

public String getMoreText(String name) {
 return "Hello " + name;
}

It’s still possible to compile AdvancedServer successfully, but the getMoreText() method no longer
overrides the superclass implementation. Instead, two methods with that name can be called: one (defined
in AdvancedServer) that accepts no arguments and another (defined in Server) that accepts a single String
parameter. Assuming that this is the result of an oversight on the part of the programmer, using an instance
of AdvancedServer can produce unexpected results.

Fortunately, the Override annotation allows you to mark methods that are intended to override a
superclass implementation; you specify it on the getMoreText() method as is done in Listing 15-7.

Listing 15-7. Using the @Override Annotation

public class AdvancedServer extends Server {

 @Override
 public String getMoreText() {
 return "Hello universe!";
 }

}

CHAPTER 15 ■ ADDING ANNOTATIONS

642

Once you make this modification, attempting to compile AdvancedServer will result in an error being
generated because the getMoreText() method no longer overrides the Server implementation.

AdvancedServer.java:3 getMoreText(java.lang.String) in AdvancedServer cannot

override getMoreText(java.lang.String) in Server; overridden method is final

In other words, the Override annotation ensures that a subclass can and does override a superclass
method. Note that using this annotation won’t have any effect on the error message you receive if you try to
compile code that overrides a final method. That’s because doing so is already invalid since by definition a
final method is one that can’t be overridden.

Although you’re not required to use this annotation, doing so can reduce the number of programming errors
that go undetected at compile time by identifying methods that you expect override other methods. Without
this type of error checking, your application might wind up with code that incorrectly calls the older superclass
implementation of a method when you expect it to execute what you thought was an overriding implementation
in the subclass. This type of mistake can be difficult and time-consuming to find when testing and debugging your
code, which is why Override’s ability to bring these mistakes to your attention at compile time is so helpful.

FunctionalInterface
As described in Chapter 3, Java 8 introduced support for functional programming through the use of
Lambda expressions and a functional interface is one that has only a single unimplemented method. You
can enforce this convention at compile time by using the @FunctionalInterface annotation to indicate that
a given interface is intended to be a functional interface. If a type annotated with this value is found not to
qualify as a functional interface the compiler will issue an error message.

SuppressWarnings
As you might expect, the purpose of this annotation is to allow you to indicate that warnings should be
suppressed that would otherwise occur. For example, let’s suppose you want to be able to compile the
Client class without receiving a warning related to its use of the deprecated getText() method in Server
and without suppressing any other deprecation warnings. In that case, you could use the SuppressWarnings
annotation as in Listing 15-8.

Listing 15-8. An Example of the @SuppressWarnings Annotation’s Use

public class Client {

@SuppressWarnings(value="deprecation")
public static void main(String[] args) {
 Server server = new Server();
 System.out.println(server.getText());
}

}

http://dx.doi.org/10.1007/9781484206423_3

CHAPTER 15 ■ ADDING ANNOTATIONS

643

Elements

Notice that SuppressWarnings is very different from the previous two we looked at in that it includes
what appears to be a property assignment within a pair of parentheses. In fact, it’s a property assignment,
although in the context of annotations the properties are referred to as elements. If you review the API
documentation for SuppressWarnings, you’ll see it does indeed contain an element called value that
represents a String array; an array is used because it’s possible to specify more than one type of warning
you want to suppress. If you do want to specify multiply warning types, you should put a list of strings within
braces ({}) and separate them with commas, just as you’d do when defining a String array.

@SuppressWarnings(value={"deprecation", "fallthrough"})

However, because it’s so common for annotations to use a single element named value, a simpler
syntax is supported; the following shows an example of how you can use it:

@SuppressWarnings("deprecation")

In the case where an annotation supports multiple elements, you can specify a value for each one
by separating them with commas. For example, if you want to use an annotation named Author that had
firstName and lastName elements, you can specify something like the following:

@Author(firstName="Brett", lastName="Spell")

Given that annotations support elements, it’s easy to guess that the element defined in SuppressWarnings
specifies which type(s) of warning should be suppressed, and in this case you want to suppress deprecation
warnings. However, it’s probably less clear how you could have known what to specify for the element in
this case. After all, the API documentation for SuppressWarnings doesn’t mention deprecation or any other
value that you can or should assign to the element; it simply indicates that SuppressWarnings includes an
element named value that represents a String array.

You’ll see what meaningful values you can specify for SuppressWarnings, but before I explain this, it’s
worthwhile to make an important point related to annotations. Specifically, you should realize that the tool
that will use the annotation is responsible for dictating which values are valid for the annotation’s elements.
For example, the tool that will use SuppressWarnings is your Java source code compiler, so it’s that compiler
that will dictate which element values are useful. To get a list of the nonstandard options supported by your
compiler you can issue the following command:

javac –X

If you’re using the reference implementation of Java one of the options displayed will be the lint option.
That option is essentially the compiler-level version of SuppressWarnings, and the option values displayed
correspond to the values you can specify for the annotation’s element. As a result, one of the lines of output
generated when you issue the previous command will look like the following code. Specifying an option with
a minus (-) sign in front of it means that the corresponding type of warning should be disabled (turned off),
while specifying the version without the minus sign means that the warning type should be enabled.

-Xlint:{all, cast, deprecation, divzero, empty, unchecked, fallthrough, path, serial,
finally, overrides, -cast, -deprecation, -divzero, -empty, -unchecked, -fallthrough,
-path, -serial, -finally, -overrides, none} Enable or disable specific warnings

CHAPTER 15 ■ ADDING ANNOTATIONS

644

Note that in the case of the lint option, you can enable or disable warnings, but in the case of
SuppressWarnings, you can only disable (suppress) them. As a result, the valid choices for the annotation
are as follows:

• cast

• deprecation

• divzero

• empty

• unchecked

• fallthrough

• path

• serial

• finally

• overrides

You’ve already seen that deprecation refers to deprecation warnings and we’ll now briefly examine the
other values listed.

cast

Disables warnings related to cast operations, such as redundant casts as in the following example:

List<String> testList = new ArrayList<>();
// ...
String value = (String)(testList.get(0));

In this case the explicit cast operation isn’t needed because the List can only contain String values
and the get() call will automatically cast the returned value to a String.

deprecation

Disables the warnings that indicate the presence of a reference to a deprecated class, method, or field.
The following example uses the deprecated setHours() method defined in the java.util.Date class and
will generate a warning unless that type of warning is disabled:

Date date = new Date();
date.setHours(1);

divzero

This option corresponds to the warning generated when the compiler detects an attempt to divide by zero,
as in the following fragment:

int value = 123 / 0;

CHAPTER 15 ■ ADDING ANNOTATIONS

645

empty

The empty option controls whether the compiler warns you about an empty if block as in the following
example:

int age;
// . . .
if (age < 18);

On the other hand, it won’t warn you of empty else statements like the following:

if (age < 100) {
 System.out.println("The person is less than 100 years old");
}
else;

unchecked

To understand what causes an unchecked warning, let’s consider the code in Listing 15-9 that creates and
uses a collection without specifying the type of objects stored in the collection.

Listing 15-9. Creating and Using a Collection Without Specifying a Generic Type

import java.util.*;

public class NewTest {

 public static void main(String[] args) throws Exception {
 List list = new ArrayList();
 list.add("Hello");
 }

}

If you attempt to compile the code, you’ll see a message like the following:

Note: NewTest.java uses unchecked or unsafe operations.

Note: Recompile with –Xlint:unchecked for details

Recompiling as instructed with the –Xlint:unchecked option provides somewhat more information.
In particular, note the unchecked text that appears within the brackets ([]) in the warning message.

NewTest.java:7: warning: [unchecked] unchecked call to add(E)

as a member of the raw type java.util.List
 list.add("Hello");

CHAPTER 15 ■ ADDING ANNOTATIONS

646

This more detailed explanation at least makes it clear that the compiler failure happens because you
attempted to add a String to a List for which no type was specified. In other words, the call to add() is
“unchecked” because the compiler doesn’t know what type of object you intended to store in the List and
therefore can’t verify that adding a String is appropriate. At this point, you have several options, one of
which is to specify a type.

List<String> list = new ArrayList<String>();
list.add("Hello");

Alternatively, you could simply add a SuppressWarnings annotation to the method (or the class),
specifying unchecked for the element value.

@SuppressWarnings("unchecked")
public static void main(String[] args) throws Exception {

In many cases, however, your best option is to simply suppress the warnings at the compiler level,
which allows you to maintain your code in a state that allows it to be successfully processed by compilers
that support both Java 5 and earlier releases.

javac –Xlint:-unchecked NewTest.java

fallthrough

A fallthrough refers to a switch statement that contains a case for which no break or other statement
prevents execution from falling through to the following case, as illustrated in Listing 15-10:

Listing 15-10. An Example of “Falling Through” a Case by Omitting a Break or Other Control Flow
Instruction

switch (myValue) {
 case 1:
 doWork(); // This is a fallthrough
 case -1:
 doMoreWork();
 break;
 default:
 isZero = true;
 break;
}

Although it’s sometimes useful to deliberately code a switch statement this way, fallthroughs can also
be the result of accidentally omitting a break statement, and the SuppressWarnings annotation allows you to
control whether a fallthrough results in a warning being generated.

CHAPTER 15 ■ ADDING ANNOTATIONS

647

path

Specifying an incorrect path location when compiling or executing programs is a common source of
problems. For example, let’s say you intend to compile a class; you want to include in the classpath a JAR file
stored in the D:\java\jars directory, and you think the name of the file is dbcp.jar. In that case, you might
execute a command like the following:

javac –classpath D:\java\jars\dbcp.jar NewTest.java

Now let’s assume either that the JAR file isn’t really located in the D:\java\jars directory or that you
mistype the name on the command line. In most cases you’ll receive a compiler error if your code references
a class that’s found in the JAR file, but depending upon various factors related to your code and your
environment, it’s possible you might not receive an error. In addition, even if you do receive an error stating
that a class couldn’t be found, you might not know that the missing class was supposed to be in the dbcp.jar
file. Ideally, the compiler should tell you when you’ve specified a path entry (classpath or sourcepath) that
it can’t find, and this option is intended to allow you to control whether it does so. If your classpath or source
path includes a file or directory that doesn’t exist but you want to avoid having a warning generated, you can
use the –Xlint:-path option to prevent a warning from being issued.

serial

When you create a class that’s serializable, it’s often desirable to define a serialVersionUID for the class to
ensure appropriate compatibility across different versions of that class. The specifics of how to do this and
when it’s appropriate are outside the scope of this chapter, but you should simply understand that this value
allows you to suppress warnings related to a missing serialVersionUID.

finally

Warnings of this type indicate that a finally block exists that can’t complete normally, as in the following
code (see Listing 15-11):

Listing 15-11. A try/catch/finally Block That Can Never Return the Values from the try or catch Block

try {
 doWork();
 return 123;
}
catch (Exception e) {
 // Handle exception here
 return 456;
}
finally {
 // The following return will not be executed
 return 789;
}

The values specified in the try and catch blocks will never be returned because the code inside the
finally block will always be executed after them, with the result that the value returned by this code will
always be 789. If you want to suppress warnings related to this situation, you can specify a SuppressWarnings
annotation with finally, or you can specify the appropriate option during compilation.

CHAPTER 15 ■ ADDING ANNOTATIONS

648

overrides

This determines whether the compiler will generate warnings related to certain conditions affecting method
overriding. For example, suppose that you have one method with an array parameter.

public void doStuff(Integer[] numbers)

And then you create a subclass that has a similar (but not quite identical) method signature that uses
varargs.

public void doStuff(Integer... numbers)

In practice a vararg is treated as an array, but these two method signatures are slightly different, and
when enabled the overrides option will cause this condition to generate a warning.

Creating Custom Annotations
Java includes some useful predefined annotations, but what makes annotations potentially even more
powerful is that you can easily define your own. For example, let’s suppose you’re creating server objects
for use with Java’s Remote Method Invocation (RMI) and you want to define an annotation that would allow
you to mark a class as representing a remote object. Before you see how easy it is to do this, define a simple
remote interface like the one in Listing 15-12 for use with a server object.

Listing 15-12. A Remote Interface Definition

import java.rmi.*;

public interface Test extends Remote {

 public String getText() throws RemoteException;

}

Next, you can create a simplistic implementation of the remote interface like the one in Listing 15-13.

Listing 15-13. A Simple Remote Interface Implementation

import java.rmi.*;
import java.rmi.server.UnicastRemoteObject;

public class SimpleTest extends UnicastRemoteObject implements Test {

 public SimpleTest() throws RemoteException {
 }

 public String getText() {
 return "Hello world!";
 }

}

CHAPTER 15 ■ ADDING ANNOTATIONS

649

Now you can begin to create the annotation. Assuming you don’t need to specify any properties/elements
for the annotation, you can easily create one as shown next. Note that except for the inclusion of an at (@)
sign, the code is identical to the code you’d use to define an interface.

public @interface RemoteObject {
}

Once you’ve created and compiled this annotation definition, you can add the appropriate annotation
to the SimpleTest class.

@RemoteObject
public class SimpleTest extends UnicastRemoteObject implements Test {

Until now, you’ve marked only individual methods with annotations, but as this example illustrates, the
use of annotations isn’t limited to methods.

To continue with the example, let’s suppose you want to allow the programmer to specify the name
of the remote interface to use with the implementation class. You can easily accomplish this by adding a
String element to the RemoteObject annotation.

public @interface RemoteObject {

 public String value();
}

Once again, the most notable characteristic of the Annotation definition is how closely it resembles an
interface definition. An important difference, though, is that as mentioned earlier, it’s possible to specify a
default value for the elements. In this case, for example, you could define a default value of RemoteInterface
by making the following change to the code:

public @interface RemoteObject {

 public String value() default "RemoteInterface";

}

At this point you’ve successfully defined a new Annotation type, but it’s worthwhile to consider refining
the type further. For example, you’ve defined this annotation for the purpose of identifying classes that
represent remote objects, but what would prevent you from annotating (for example) a method or even
a parameter with this new type? In fact, with the current definition of RemoteObject, it’s entirely possible
to assign this annotation to any program construct (package, class, method, parameter, and so on) that
supports annotation, and if you modify the SimpleTest class as is done in Listing 15-14, it will compile
successfully.

Listing 15-14. Adding the Custom Annotation to a Method

import java.rmi.*;
import java.rmi.server.UnicastRemoteObject;

public class SimpleTest extends UnicastRemoteObject implements Test {

 public SimpleTest() throws RemoteException {
 }

CHAPTER 15 ■ ADDING ANNOTATIONS

650

 @RemoteObject
 public String getText() {
 return "Hello world!";
 }

}

This obviously isn’t what you wanted for the new annotation type, because it’s only meaningful to say

that a particular object is a “remote object,” so ideally it shouldn’t be possible to specify the annotation type
for a single method. Fortunately, the annotation facility allows you to control which program elements an
annotation type can be successfully applied to, which is done by annotating the annotation. To see how
this is done, you should examine the API documentation for the java.lang.annotation package, which
contains (among other things) an annotation type called Target. As the documentation indicates, Target
specifies the “kinds of program element to which an annotation type is applicable.” In other words, if you
want your custom annotation to be used only at a class level, you can use Target to enforce that behavior.

Target
Examining the documentation for Target reveals that its single element is an array of ElementType
instances, where ElementType is a type-safe enumeration that defines enumeration constants for the
supported program elements mentioned earlier that are supported by annotations. Specifically, the
supported types are those listed in Table 15-1.

Table 15-1. Enumeration Constants Defined Within ElementType

Type Description

ANNOTATION_TYPE Used to annotate other annotations (as with Target).

CONSTRUCTOR Can be used to annotate constructors.

FIELD Annotates fields (static or instance variables) within a class.

LOCAL_VARIABLE Annotation can be used with variables defined and used within methods.

METHOD Allows the annotation to be used with methods.

PACKAGE The annotation can be associated with a package.

PARAMETER Indicates that the annotation can be used with method parameters.

TYPE Can be used to annotate a class, interface, enumeration, or annotation.

TYPE_PARAMETER Supports the use of the annotation with a generic type, such as in
List<@NonNull String>.

TYPE_USE Allows the annotation to be used with any type, such as in a cast.

CHAPTER 15 ■ ADDING ANNOTATIONS

651

So how exactly do you annotate the annotation type (RemoteObject) to ensure it can’t be used with
methods or other inappropriate types? You can simply add the code highlighted in Listing 15-15 to the
annotation. Note that it’s necessary to import ElementType and Target for the file to compile successfully,
just as it would be if you were referencing them in a class or (nonannotation) interface.

Listing 15-15. Using Java’s Predefined @Target Annotation to Annotate the Custom Annotation Type

import java.lang.annotation.ElementType;
import java.lang.annotation.Target;

@Target(ElementType.TYPE)
public @interface RemoteObject {

 public String value() default "RemoteInterface";
}

After you’ve made this change and recompiled the RemoteObject annotation type, attempting to
compile the SimpleTest class with the annotated method shown earlier will generate a compiler error like
the following:

SimpleTest.java:9: annotation type not applicable to this kind of declaration
 @RemoteObject public String getText() {

One final point is worth making: since Target defines an array of ElementType values, it’s possible for

you to specify more than one type when using the Target annotation. For example, if you want to allow the
RemoteObject annotation to be used at both a class and a package level, you can change the definition to
include both types.

@Target({ElementType.TYPE, ElementType.PACKAGE})
public @interface RemoteObject {

Retention
At this point, let’s suppose you’ve created and compiled the implementation of the SimpleTest class shown
in Listing 15-16.

Listing 15-16. Another Class That Uses the @RemoteObject Annotation

import java.rmi.*;
import java.rmi.server.UnicastRemoteObject;

@RemoteObject
public class SimpleTest extends UnicastRemoteObject implements Test {

 public SimpleTest() throws RemoteException {
 }

 public String getText() {
 return "Hello world!";
 }

}

CHAPTER 15 ■ ADDING ANNOTATIONS

652

Now let’s assume you create code that attempts to examine the class in order to see what annotations
are associated with it. You did this earlier in the chapter when you wrote a code segment to examine the
Server class in order to see if it was tagged with the Deprecation annotation, so you can use similar code to
accomplish essentially the same thing here. An example of how this might appear is found in Listing 15-17.

Listing 15-17. Checking for the Presence of the RemoteObject Annotation

public class ScanTest {

 public static void main(String[] args) throws Exception {
 Class<SimpleTest> myClass = SimpleTest.class;
 if (myClass.isAnnotationPresent(RemoteObject.class)) {
 System.out.println("It is a RemoteObject");
 }
 else {
 System.out.println("It doesn't appear to be a RemoteObject!");
 }
 }

}

Surprisingly enough, running the code results in a message being displayed that indicates that
SimpleTest isn’t annotated with the RemoteObject type, even though you’ve clearly defined it as such. To
understand this, let’s go back to the earlier discussion of the javadoc tags and how @deprecated is unique in
that it’s the one tag for which information is stored in the class file as part of compilation. The other tags are
ignored by the Java compiler because it simply doesn’t care about them; only the javadoc tool performs any
processing on the other tags, and it uses the Java source code (.java) file as input, not the class files created
by the Java compiler. In other words, the @deprecated tag represents information that needs to be included
in the compiled class file, while all other javadoc tags represent information that’s useful only within the
source code.

This difference between the context in which the tags are needed is a common theme, which is why
another feature of Java’s annotation facility is that it allows you to define a retention policy for annotations.
Like Target, the Retention annotation is used to annotate other annotations, and it’s defined within the
java.lang.annotation package. It allows you to specify one of three retention policies, each of which
corresponds to an instance of the RetentionPolicy enumeration type. The three retention policies are
as follows:

• SOURCE: The annotation information is stored only within the source file, and no
remnant of it should be stored in a class file generated from that source file.

• CLASS: The annotation information is stored within the class file when the source
code is compiled, but the information isn’t loaded into memory as part of the class
definition. This is the default if you create a custom annotation but don’t specify a
retention policy.

• RUNTIME: The annotation data is stored within the class file and loaded into memory
when the class definition is loaded.

CHAPTER 15 ■ ADDING ANNOTATIONS

653

At this point it should be apparent why the ScanTest class was unable to detect the SimpleTest
annotation in the previous code example. Because you didn’t specify a retention policy for the RemoteObject
annotation, it defaulted to the CLASS policy, which means the annotation information wasn’t included in
the class information when the class definition was loaded into memory. In other words, you can detect an
annotation programmatically at runtime only if the annotation has a retention policy of RUNTIME. Otherwise,
the information will be omitted at the point when the source is compiled (with a policy of SOURCE) or when
the class is loaded (with a policy of CLASS).

Now that you know how annotation information is maintained, you can update the RemoteObject
definition as shown in Listing 15-18 if you want to allow the information to be included in the class and
runtime definition.

Listing 15-18. Defining an Annotation So That It’s Present at Runtime

import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
public @interface RemoteObject {

 public String value() default "RemoteInterface";
}

Once you’ve made this change, you should recompile the RemoteObject annotation and the SimpleTest
class. Once you’ve done so, you can rerun the ScanTest application, and it will now correctly indicate that
SimpleTest is annotated as a RemoteObject.

Documented
After making all of the changes described so far to the SimpleTest and related types, you’ll now see what
happens if you run the javadoc utility to generate documentation for SimpleTest. Viewing the generated
API documentation for SimpleTest doesn’t provide any indication that SimpleTest is annotated as a
RemoteObject even though you know it has been marked as such and that information is available in all
circumstances (in the source, in the class, and at runtime), as shown in Figure 15-1.

CHAPTER 15 ■ ADDING ANNOTATIONS

654

This is because annotations are by default not identified in the documentation generated by javadoc,
but you can change this behavior by using the Documented annotation defined in the java.lang.annotation
package. Like Target and Retention, Documented annotates other annotation types, and you can add it to
the list of annotations specified for the RemoteObject annotation type as shown in Listing 15-19.

Listing 15-19. Adding the @Documented Annotation

import java.lang.annotation.Documented;
import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

@Documented
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
public @interface RemoteObject {

 public String value() default "RemoteInterface";

}

Figure 15-1. With the current implementation of RemoteObject, no indication of its use is provided in the API
documentation created by javadoc

CHAPTER 15 ■ ADDING ANNOTATIONS

655

Once you’ve made this change and recompiled RemoteObject, rerunning the javadoc utility for the
SimpleTest class causes the API documentation to include an indication that SimpleTest is annotated as a
RemoteObject, as shown in Figure 15-2.

Inherited
You’ve now seen how to define and apply a RemoteObject annotation to a class, but you might be wondering
what happens when you create a subclass of that class. In other words, does annotating a given class
mean that its subclasses are associated with the same annotation? To find out, let’s suppose you create a
ComplexTest class that extends the SimpleTest class created earlier.

public class ComplexTest extends SimpleTest {

 public ComplexTest() throws java.rmi.RemoteException {};

}

Figure 15-2. Specifying the Documented annotation causes the javadoc tool to include in its output an
indication that the annotation was used

CHAPTER 15 ■ ADDING ANNOTATIONS

656

Now let’s assume you modify the ScanTest class defined earlier so that it examines the ComplexTest
class (instead of SimpleTest) for the presence of the RemoteObject annotation. An implementation of this is
provided in Listing 15-20.

Listing 15-20. Defining a Reference to the ComplexTest Type

public class ScanTest {

 public static void main(String[] args) throws Exception {
 Class<ComplexTest> myClass = ComplexTest.class;
 if (myClass.isAnnotationPresent(RemoteObject.class)) {
 System.out.println("It is a RemoteObject");
 }
 else {
 System.out.println("It doesn't appear to be a RemoteObject!");
 }
 }

}

If you recompile and execute this code, it will indicate that ComplexTest isn’t annotated as a
RemoteObject. As this example illustrates, an annotation by default will not be “inherited” by the subclasses
of an annotated class. In this case and many others, however, it’s entirely appropriate for subclasses to
inherit annotations, and fortunately the java.lang.annotation package contains an annotation that can
be used to address this. Specifically, the Inherited annotation can indicate that an annotation should be
inherited; the code highlighted in Listing 15-21 shows an example of how you can use it.

Listing 15-21. Defining Annotation Inheritance

import java.lang.annotation.Documented;
import java.lang.annotation.ElementType;
import java.lang.annotation.Inherited;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

@Documented
@Inherited
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
public @interface RemoteObject {

 public String value() default "remoteName";

}

If you make this change and recompile the code, the ScanTest application will indicate that
ComplexTest is indeed a remote object.

CHAPTER 15 ■ ADDING ANNOTATIONS

657

Repeatable
Although it’s typically only useful to specify an annotation once, there may be times when you want to use an
annotation multiple times in the same location, and as of Java 8 this can be allowed for a custom annotation
by specifying the Repeatable annotation when defining your custom type. Repeatable takes a single
parameter that identifies the type to be repeated, as in Listing 15-22.

Listing 15-22. Defining a Repeatable Annotation

import java.lang.annotation.ElementType;
import java.lang.annotation.Repeatable;
import java.lang.annotation.Target;

@Repeatable(CodeModification.class)
@Target({ElementType.METHOD, ElementType.TYPE})
public @interface CodeModification {
 public String programmerName();
 public String explanation();
}

Once defined, the annotation can be used repeatedly on a single element of an appropriate type, so in
this case the CodeModification annotation could be assigned to a class or method more than once.

@CodeModification(programmerName="John Smith" explanation="Updates for Java 8")
@CodeModification(programmerName=”Jane Doe” exaplanation="Bug fix")
public class DemoTest {

Replacing External Metadata
In the discussions up to this point I’ve focused on using annotations to replace metadata that’s internal to
Java source code files, such as the @deprecated tag used by javadoc. In reality, however, there are even more
cases where metadata is stored outside the source code, and those uses provide an even better opportunity
for using metadata. In fact, you’ve already seen an example of this type of “external” metadata in the case of
the SimpleTest remote object and its remote interface defined in Test. In that case you have an interface
(Test) that effectively represents metadata because its sole purpose is to identify which methods within
the implementation class can be called remotely. It’d be convenient to simply have the Java compiler
create the remote interface dynamically upon compilation by assuming that each public method within
the implementation class can be called. As long as the user is required to explicitly define and maintain the
remote interface, that file largely represents a nuisance because it requires the programmer to do extra work
initially. In addition, because its method signatures must match those of the implementation class for it to
work correctly, any changes to the implementation will need to be reflected in the remote interface. In other
words, when a programmer goes to add, change, or remove a remote method, the change must be made in
two places: the implementation class and the remote interface.

CHAPTER 15 ■ ADDING ANNOTATIONS

658

Another example that’s closely related and that illustrates work that’s even more tedious is that of
an Enterprise JavaBean (EJB). Prior to the EJB 3.0 specification creating even a simple EJB required you
to define at least four separate files, with three of these largely or entirely made up of what amounts to
metadata.

The implementation class itself•

A remote interface similar to one you’d create for an RMI server object•

A home interface that defines constructors you can use to create or retrieve an EJB •
instance

An XML-based deployment descriptor that identifies the other three classes and that •
describes how the EJB will be used

To illustrate this point, let’s create a simple EJB that does nothing but return a Hello world string. Begin
by defining the remote interface that appears in Listing 15-23.

Listing 15-23. A Simple Enterprise JavaBeans (EJB) Interface

import java.rmi.RemoteException;
import javax.ejb.EJBObject;

public interface MessageGenerator extends EJBObject {

 public String getMessage() throws RemoteException;

}

Assuming that you want to provide only a single no-argument constructor/lookup method, the home
interface is also reasonably simple to create. However, like the remote interface, it essentially represents an
unnecessarily tedious way of specifying metadata and an example of this appears in Listing 15-24.

Listing 15-24. Defining a Home Interface

import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.EJBHome;

public interface GeneratorHome extends EJBHome {
 public MessageGenerator create() throws RemoteException, CreateException;
}

Next you can create the implementation itself as is done in Listing 15-25.

Listing 15-25. An EJB Implementation Class

import javax.ejb.*;

public class SimpleMessageGenerator implements SessionBean {

 private SessionContext context;

 public SimpleMessageGenerator() {
 }

CHAPTER 15 ■ ADDING ANNOTATIONS

659

 public void ejbCreate() throws CreateException {
 }

 public void setSessionContext(SessionContext theContext) {
 context = theContext;
 }

 public void ejbActivate() {
 }

 public void ejbPassivate() {
 }

 public void ejbRemove() {
 }

 public String getMessage() {
 return "Hello world!";
 }

}

Finally, you must create the deployment descriptor as in Listing 15-26.

Listing 15-26. A Deployment Descriptor XML Document

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE ejb-jar PUBLIC
'-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 1.1//EN'
'http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd'>

<ejb-jar>
 <display-name>testejb</display-name>
 <enterprise-beans>
 <session>
 <description>Message generator bean</description>
 <display-name>Generator</display-name>
 <ejb-name>Generator</ejb-name>
 <home>GeneratorHome</home>
 <remote>MessageGenerator</remote>
 <ejb-class>SimpleMessageGenerator</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 </session>
 </enterprise-beans>
 <assembly-descriptor>
 <container-transaction>
 <method>
 <ejb-name>Generator</ejb-name>
 <method-intf>Remote</method-intf>

http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd

CHAPTER 15 ■ ADDING ANNOTATIONS

660

 <method-name>*</method-name>
 </method>
 <trans-attribute>NotSupported</trans-attribute>
 </container-transaction>
 </assembly-descriptor>
</ejb-jar>

This example is obviously a contrived one since you’re not likely to create an EJB just to return a
message, but it does reveal a weakness related to the creation of EJBs. Specifically, there’s a significant
amount of repetitive, tedious work involved in implementing even a simple bean. Some of that tedium
is related to the implementation class, but a significant portion of it is because several external files (the
home and remote interfaces and the deployment descriptor) are little more than external metadata files,
sometimes called side files.

Fortunately, since the introduction of annotations, changes to the Enterprise Edition of Java have been
made that eliminate much of the tedious work associated within defining an EJB. In fact, with EJB 3.0 or
later, you can replace the previous four files with a simplified version of the implementation class that uses
annotations as is done in Listing 15-27.

Listing 15-27. An EJB 3.0-Compliant EJB That Uses Annotations to Simplify the Definition

import javax.ejb.*;

@Remote @Stateless
public class SimpleMessageGenerator {

public SimpleMessageGenerator() {

public String getMessage() {
 return "Hello world!";
 }

}

As you can see, aside from the Remote and Stateless annotations, this file is virtually identical to a
so-called plain old Java object (POJO) and lacks the complexity of the EJB implementation class and support
files you created earlier. Not all of the simplification is because of metadata, however; other changes were
made to the EJB specification that facilitated this simplified implementation.

As previously mentioned, it isn’t just the creation of EJB specification that has benefited from the
introduction of annotations. Widely used frameworks like Spring, Hibernate, and many others have been
able to significantly reduce the time and complexity needed for their use by offering the option of adding
metadata directly to the related files as was done here instead of requiring the tedious construction of a
separate XML file.

CHAPTER 15 ■ ADDING ANNOTATIONS

661

Summary
You’ve now seen how to use annotations in Java applications and how they can be detected and processed.
You typically won’t need to write code to do such processing yourself but will simply take advantage of
behavior that’s implemented by a vendor that provides you with development tools. However, as this
example illustrates, significant potential exists for simplifying and otherwise streamlining the development
process by automating the creation and synchronization of source implementations and their related and
dependent side files.

In this chapter, you examined the following topics:

What metadata is and examples of how it has long been used within Java•

How to define metadata using both predefined and custom annotations•

How to locate metadata using Java’s reflection capabilities•

How annotations have greatly simplified the development of Enterprise JavaBeans•

663

A���������
Abstract Window Toolkit (AWT), 106
addLayoutComponent (Component, Object)

method, 273–274
addLayoutComponent (String, Component)

method, 276–277
add() method, 207
addTreeModelListener() method, 333
Annotations, 637

@deprecated tag, 638
deprecation, 652
documented, 653
ElementType instances, 650
external metadata, 657

deployment descriptor, 659
EJB interface, 658, 660
home interface, 658
side iles, 660

@FunctionalInterface, 642
inherited, 655
isAnnotationPresent() method, 640
override, 641
RemoteInterface, 649
remote interface implementation, 648
RemoteObject, 649, 651
Repeatable, 657
Retention, 651

retention policies, 652
ScanTest class, 653

SimpleTest class, 649
@SuppressWarnings, 642

cast operations, 644
deprecation, 644
divzero option, 644
elements, 643
empty option, 645
fallthrough, 646
inally block, 647
method overriding, 648
path option, 647

serial option, 647
unchecked warning, 645

target, 651
Application programming interfaces (APIs), 3
Autoboxing, 171
AUTO_RESIZE_ALL_COLUMNS, 292
AUTO_RESIZE_LAST_COLUMN, 292
AUTO_RESIZE_NEXT_COLUMN, 291
AUTO_RESIZE_OFF, 291

B���������
Binary large object (BLOB), 503
BorderLayout

add() method, 223
child component locations, 223
components, 223
display and coding, 221
getMinimumSize() method, 225
horizontal and vertical gaps, 222
resizing behavior, 224

BoxLayout
alignment values, 256
ascent and descent values, 256
constraints, 261
container size, 263
getAlignmentX() method, 255
getVerticalBox() and getHorizontalBox()

methods, 260
layout alignment calculations, 257
locations, 262
resizing size, 263
swing box class

glue component, 265
rigid areas, 263
struts, 266

widths of components, 261
breadthFirstEnumeration() method, 345
BreakIterator

character, 557
code segment, 557

Index

■INDEX

664

line, 558
sentence, 558
testing, 559
word, 558
working principles, 557

C���������
CardLayout

behavior, 211
container size, 211
locations, 211
program test, 210
sizes, 211

Cell editors
DefaultCellEditor, 305
getTableCellEditorComponent() method, 302
isCellEditable() method, 301
JComboBox, 304
points, 301
setValueAt() method, 302, 305
stopCellEditing() method, 302

Cell rendering
custom renderers

CurrencyRenderer, 297
DefaultTableCellRenderer, 298
getColumnClass() method, 296
JCheckBox, 295
JComboBox, 293
setDefaultRenderer(), 297
setValue() method, 296
SimpleTableTest, 294
TableValues class, 297
toString() method, 295

default renderers
date value, 299
java.lang.Boolean, 300
java.lang.Number, 299
javax.swing.ImageIcon, 299
TableValues, 298

getTableCellRendererComponent() method, 293
Cell selection methods, 311
Character Iteration, 557
Character large object (CLOB), 503
children() method, 335
ChoiceFormat

coding implementation, 551–552
deinition, 551
drawback, 551
instance creation, 550

Class design, 20
clone() method, 45
cohesion, 35

coupling
fontChanged() method, 26
FontListener, 27
FontPropertiesPanel, 21
refreshDisplayFont() method, 26
SampleTextFrame, 24

encapsulation, 38
equals() method, 48
inalize() method, 49
hashCode() method, 50
immutable objects, 42
toString() method, 51
visibility, 41

Clipboard
binary data, 397
ClipboardOwner implementation, 383
cut/copy functionality, 386
DataFlavor

human-readable name, 384–385
MIME type, 384
representation class, 384
setHumanPresentableName()

method, 385
deinition, 380
getContents() method, 381
getToolkit() method, 380
getTransferDataFlavors(), 382
getTransferData() method, 383
ImageData class

command-line parameter, 395
DataFlavor, 391
displayPopupMenu, 395
getTransferDataFlavors() method, 391
getTransferData() method, 393
ImageSelection, 391
isDataFlavorSupported() method, 392
lostOwnership() method, 390
performCopy() method, 394
performCut() method, 394
performPaste() method, 394

ImageEditor class, 385
isDataFlavorSupported(), 382
Java and non-Java applications, 396
setContents() method, 381
system clipboard, 381
transferable implementation, 381

Cohesion, 35
collapsePath() methods, 375
Collection classes

ArrayList class
characteristics, 176
constructors, 177
ensureCapacity() method, 177
thread safety, 177

BreakIterator (cont.)

■INDEX

665

characteristics, 198
class diagram, 165
clone() method, 199
CopyOnWriteArrayList, 195
CopyOnWriteArraySet, 195
deep copy, 199
duplicate elements, 167
EnumSet, 188
evolutions

autoboxing/unboxing, 166
diamond operator, 166
generics, 166
thread-safe class design, 166

using generics and autoboxing, 170
LinkedList, 178
list

add() method, 172
characteristics, 175
contains() method, 174
equals() method, 174–175
remove() method, 172–173
set() method, 172

ListIterator, 176
Map interface, 189

ConcurrentHashMap, 194
EnumMap, 192
getStudentID() method, 190
HashMap, 190–191
IdentityHashMap, 192
keySet() method, 191
LinkedHashMap, 192
TreeMap, 192
WeakHashMap, 193

methods, 167
Queues

ArrayBlockingQueue, 196
blocking queue, 196
ConcurrentLinkedQueue, 197
DelayQueue, 197
LinkedBlockingQueue, 197
methods, 195
PriorityQueue, 196
SynchronousQueue, 197

reference maintainence, 200
set interface

buckets, 182
characteristics, 179
constructors, 183
equals() method, 181
hashCode() method, 182
HashSet class, 183
LinkedHashSet, 183
TreeSet (see TreeSet)

shallow copy, 199
stack, 179

student information, 163
Vector, 178
without generics

intValue() method, 169
iterator() method, 168
next() method, 169

Column-oriented design, 289
Comparable vs. Comparator, 187
compare() method, 563–564
componentResized()

method, 325
Connection pooling

close() method, 520
pool manager, 520
properties, 521
proxy object, 520

Cooperative multitasking, 112
Cut-and-paste operations

classes and interfaces, 379
clipboard (see Clipboard)

D���������
Data Deinition Language (DDL), 494
Data Manipulation Language (DML), 494
Data source, 482
Date and Time API

Calendar and GregorianCalendar, 93
context, 93
Instant.now() method, 94
Joda-Time, 94
naming conventions

at() methods, 104
format() method, 100–101
from() method, 101
get() method, 102
is() method, 102
now() method, 101
of() method, 101
parse() method, 100–101
plus() and minus() methods, 103
to() methods, 104
with() method, 103

ofEpochMilli() method, 95
overview, 92
parsing and formatting

DateFormat class, 99
DateTimeFormatter class, 99
ofLocalizedDate() method, 99
ofLocalizedDateTime() method, 99
ofLocalizedTime() method, 99

temporal amounts
Duration class, 97
Period class, 98

time zones, 96

■INDEX

666

DefaultCellEditor, 361
Default methods

activate() method, 87
deactivate() method, 87
deinition, 86
forEach() method, 87

DefaultMutableTreeNode
creation, 340
getLevel() and getDepth(), 341
getPath() method, 343
getSharedAncestor() method, 342
getUserObjectPath() method, 343
pathsFromAncestorEnumeration() method, 343

DefaultTreeCellEditor, 361–362
DefaultTreeModel class, 350
depthFirstEnumeration() and

postorderEnumeration() method, 343
Device Independent Bitmap (DIB), 431
Document Object Model (DOM), 597

DocumentFragment, 613
document type, 613
DOMTest implmentation, 617
editing documents

create and add nodes, 623
newDocument() method, 625
node location, 621
removeChild() method, 622
value modiication, 621
in XML, 621

entity reference, 613
in JAXP

advantages, 600
appendChild(), 604
appendData(), 609
classes and interfaces, 598
cloneNode(), 605
Comment interface, 612
deleteData(), 610
DocumentBuilder, 600
elements, 599
getAttribute(), 604, 607
getAttributeNode(), 607
getChildNodes(), 604
getData() and substringData(), 609
getDocType(), 605
getDocumentElement(), 605
getElementsByTagName(), 606, 608
getFirstChild(), 604
getImplementation(), 606
getLastChild(), 604
getLength(), 609
getNextSibling(), 604
getNodeName(), 602
getNodeType(), 601

getNodeValue(), 603
getOwnerDocument(), 605
getPreviousSibling(), 604
getTagName(), 607
hasChildNodes(), 605
insertBefore(), 604
insertData(), 610
normalize(), 607
parse() methods, 600
ProcessingInstruction interface, 613
removeAttribute(), 607
removeAttributeNode(), 607
removeChild(), 604
replaceChild(), 604
replaceData(), 609
setAttribute(), 606
setAttributeNode(), 607
setData(), 609
setNodeValue(), 603
splitText(), 611

notation instances, 615
preorder traversal implementation, 619

Drag-and-drop operations
copy operation, 404
DataFlavor, 405

getTransferData() method, 428
LOCAL_LABEL_FLAVOR, 427
MIME type, 427

DnDConstants class, 404
drag source, 404, 405
drag support

addDragSourceListener() method, 417
addNewComponent() method, 417
DataFlavor constructor, 416
DragGestureEvent (see DragGestureEvent)
DragGestureListener, 418
DragGestureRecognizer, 417
DragSource class, 417
DragSourceListener (see DragSourceListener)
Transferable implementation, 415

drop support
DropTarget, 407
DropTargetListener (see DropTargetListener)
ImageViewer application, 405
setActive() method, 407

drop target, 404
FlavorMap interface, 432
Java and native applications, 431
java.awt.datatransfer, 403
java.awt.dnd package, 403
JList instance, 436
link/reference operation, 430
modiiers, 404
move operation, 404

■INDEX

667

reference transfer, 428
text data, transfer, 432

getReaderForText() method, 433
plainTextFlavor, 433
StringSelection, 433
TextSelection class, 434
Transferable object, 433

Transferable interface, 403
TransferHandler class

AbstractTableModel, 437
canImport() method, 443–444
DefaultTableCellRenderer, 437
getTransferHandler() method, 436
ImageTable instances, 443
ImageTransferHandler Class, 446
importData() method, 445
initialize() method, 443
JFrame, 441
JTable, 437
ListTransferHandler, 437
setFillsViewportHeight() method, 444
setTransferHandler() method, 436

DragGestureEvent
dragEnter() method, 422
dragGestureRecognized() method, 421
drop() method, 421
getComponent() method, 419
getDragAction() method, 419
getDragOrigin() method, 419
getDragSource() method, 419
getSourceAsDragGestureRecognizer()

method, 419
ImageViewer, 422
JVM instance, 423
startDrag() method, 419

DragSourceListener
dragDropEnd() method, 424, 426
dragEnter() method, 424
dragOver() method, 424
DragSourceDragEvent class

getDropAction() method, 425
getGestureModiiers() method, 425
getTargetActions() method, 425
getUserAction() method, 425

DragSourceDropEvent
getDropAction() method, 425
getDropSuccess() method, 426

DragSourceEvent class, 425
dropActionChanged() method, 424
getDragSourceContext() method, 423

DropTargetListener
acceptDrop() method, 414
addNewComponent() method, 407
dragEnter() method, 411
dragExit() method, 411
dragOver() method, 411

drag rejection, 411
drag sessions, 410
dropActionChanged() method, 414
dropComplete() method, 414
drop() method, 412
drop rejection, 411
DropTarget, 408
DropTargetDropEvent

acceptDrop() method, 410
dropComplete() method, 410
drop() method, 410
getTransferable() method, 410
isLocalTransfer() method, 410
rejectDrop() method, 410

event objects
acceptDrag() method, 409
DropTargetDragEvent class, 408
DropTargetEvent class, 408
getCurrentDataFlavorsAsList() method, 409
getCurrentDataFlavors() method, 409
getDropAction() method, 409
getLocation() method, 409
getSourceActions() method, 409
isDataFlavorSupported() method, 409
rejectDrag() method, 409

ImageViewer, 414
JLabel instances, 407

E���������
Editing tree nodes

classes and interfaces relationship, 359
complex sequence, 360
custom editor, 362
DefaultCellEditor, 361
DefaultTreeCellEditor, 361–362
getTreeCellEditorComponent() method, 359
limiting edits to certain nodes, 365
startEditing() method, 359
stopCellEditing()/cancelCellEditing()

method, 360
Electronic document interchange (EDI), 594
Enterprise JavaBean (EJB), 658
Event-based approach, 598
Event dispatch thread (EDT), 106
Exceptions

avoid exception, 74
catch exception, 68
checked exception, 62
DataFrame class, 60
DataPanel class, 61
using inally block, 69
InputValidationException, 66
InterruptedException, 62
LogonFailedException, 63
nested exceptions, 71

■INDEX

668

NullPointerException, 62–63
RuntimeException, 62
SocketException, 62
stack trace, 72
throw an exception, 60

expandPath() methods, 375
eXtensible Markup Language (XML), 587

document creation, 595–596
vs. HTML, 588

attribute values, 591
characters, 592
data representation, 589–590
hyperlinks, 589
overlapping elements, 592
quotation marks, 591
start and end tags, 590
tags, 589
well-formed documents, 590

parsing and validation
DOM, 597
in JAXP, 598
SAX, 598

template creation, 633
transformation, 627
uses, 593

eXtensible Stylesheet Language (XSL), 593

F���������
ireTableDataChanged() method, 323
ireTable() methods, 324
FlowLayout

behavior, 214
component sizes, 212
constraints, 212
constructors, 212
container size, 215
location, 212

Format() method, 547, 552
Frozen columns, 317
Functional interface methods, 86

G���������
Garbage collector, 8
Generics, 167
getAllowsChildren() method, 336–337
getAvailableLocales() method, 531, 540
getCellRect() method, 325
getChild() method, 333, 335
getChildCount() method, 333, 335
getChildIndices() method, 350
getChildren() method, 350
getColumnClass() method, 296

getColumnName() method, 286
getComponents() method, 208
getContents() method, 534
getDateInstance() method, 539
getDecomposition() method, 566
getIndex() method, 335
getIndexOfChild() method, 333
getInstance() method, 563
getLayoutAlignmentX() and

getLayoutAlignmentY(), 275
getLayoutDimensions() method, 227
getLevel() and getDepth() method, 341
getMaximumSize() method, 275
getNewLeadSelectionPath() and

getOldLeadSelectionPath(), 373
getNumberInstance() factory method, 531
getObject() method, 532
getParent() method, 336
getPath() method, 343, 350, 373
getRoot() method, 333
getSharedAncestor() method, 342
getString() method, 533
getTableCellEditorComponent() method, 302
getTableCellRendererComponent() method, 293
getTableHeader() method, 311
getTimeInstance() factory method, 542
getTreeCellEditorComponent() method, 359
getTreeCellRendererComponent() method, 352
getTreePath() method, 350
getUserObjectPath() method, 343
Glue component, 265
Graphical user interface (GUI)

add() method, 207
characteristics, 209
classes, 209
getComponents() method, 208
layoutContainer() method, 208
setLayout() method, 207
various component subclasses, 209

Greenwich Mean Time (GMT), 92
GridBagLayout

child component sizes, 252
container size, 255
creation, 228
diferences, 225
distributing extra space, 244
frame creation, 226
getLayoutDimensions() method, 227
GridBagConstraints

add() method, 229
components span multiple cells, 243
ill, 233
gridwidth, 235
gridx, 230
gridy, 230

Exceptions (cont.)

■INDEX

669

initial calculation, 243
insets, 241
ipadx, 242
relative positioning, 230
setConstraints() method, 229
types, 228
weight values, row heights and

column widths, 244
weightx, 242
weighty, 242

GridBagTester, 247
layout coding, 227
locations, 254
paintComponent() method, 227
points, 225
resizing behavior, 254
setOpaque() method, 227
weight values, 246

GridBagTester, 247
GridLayout

add(Component) method, 219
application, 216
component sizes, 219–220
getMinimumSize() method, 220
getPreferredSize() method, 220
horizontal and vertical space, 217
locations, 220
setColumns() methods, 217
setHgap() methods, 217
setRows() methods, 217
setVgap() methods, 217

Gridwidth, 235
Gridx, 230
Gridy, 230

H���������
Heap, 6

I���������
insert() method, 339
insertNodeInto() method, 351
Insets, 241
Integrated development

environment (IDE), 207
Internationalization

BreakIterator
character, 557
code segment, 557
line, 558
sentence, 558
testing, 559
Word, 558
working principles, 557

canonical decomposition, 565
ChoiceFormat (see ChoiceFormat)
collator strength, 564
compare() method, 563–564
decomposition mode, 565
deinition, 529
EditPersonList application

added, updated, and deleted, 567
external resources, 573
JLabel instances, 584
modiication, 578

formatting and parsing, 538
creation, 540
dates, 539
deinition, 539
Leniency Mode, 541–542
NumberFormat, 544–545
numeric values, 543
times, 542–543

Locales
getAvailableLocales() method, 531
getDisplayName() method, 531
getNumberInstance() factory method, 531
ISO-639 language codes, 530
ISO-3166 country codes, 531
String value, 530

native2ascii, 584–585
Person class, 566–567
Resource Bundles (see Resource bundles)
sort() method, 564

invalidateLayout(), 276
ipadx, 242
isAddedPath() method, 373
isCellEditable() method, 300–301
isLeaf() method, 334, 336
isPathEditable() method, 365
isVisible() methods, 270

J, K���������
Java

application programming interfaces
data transfer, 14
internationalization, 14
Java EE, 3
Java ME, 3
Java SE, 3
JDBC, 14
metadata, 15
printing, 14
user interface, 14

architecture, 2
class ile format, 12

access_lags item, 13
attributes_count variable, 13

■INDEX

670

constant_pool_count item, 13
ields_count variable, 13
interfaces_count parameter, 13
magic parameter, 13
major_version and minor_version

items, 13
this_class parameter, 13

compiled vs interpreted languages, 4
JVM (see Java virtual machine (JVM))
programming language, 14
threading, 14
utility tools

class disassembler, 17
compiler, 15
interpreter, 16

Java Community Process (JCP), 5, 92
Java Database Connectivity (JDBC)

connection pooling
close() method, 520
pool manager, 520
properties, 521
proxy object, 521

database connection
Connection class, 485
DatabaseBrowser application, 487
DatabaseMetaData interface, 486
DataSource interface, 485
DriverManager class, 484
JVM, 484
ParameterMetaData, 500
statement interface (see Statement interface)
URL formats, 484

database functionality, 479
data types, 500

array, 502
BLOB, 503
CLOB, 503
DATE, 503
distinct, 504
getURL() methods, 503
Java objects, 505
REF type, 505
setURL() method, 503
structured, 504
TIME, 503
TIMESTAMP, 503

debugging, 526
drivers, 481

advantages and
disadvantages, 483

client-side network, 483
DBMS server, 483
ODBC data source, 482
server-side component, 483

errors and warnings
SQLException, 522
SQLWarning, 526

Oracle database, 479
releasing resources, 527
ResultSet

autogenerated keys, 510
createStatement() method, 507
data modiication, 509
data retrieval, 509
deinition, 505
holdability, 506
next() method, 505
number of rows, determined, 510
positioning methods, 508
refreshRow() method, 509
resultSetConcurrency value, 507
resultSetType parameter, 507
setFetchDirection() method, 508
setFetchSize() method, 507
supportsResultSetConcurrency()

method, 506
update sensitivity, 506

ResultSetMetaData, 511
RowSet interface, 512–513
transaction

banking application, 514
commit() and rollback() methods, 515
data locking, 518
deinition, 515
dirty read, 518
distributed, 520
isolation levels, 519
JTA, 520
nonrepeatable read, 518
phantom read, 518
savepoints, 517
setAutoCommit() method, 515
setTransactionIsolation() method, 519

java.lang.Boolean, 300
java.lang.Number, 299
Java Runtime Environment (JRE), 2
Java Transaction API (JTA), 520
Java virtual machine (JVM), 484

bytecode execution, 10
garbage collector, 8
heap, 6
initialization method, 8, 10
linking process, 8–9
loading process, 8
method area, 7
overview, 3
reference implementations, 4
registers, 7
runtime constant pool, 7

Java (cont.)

■INDEX

671

runtime execution environment, 5
stack frame, 6

javax.swing.ImageIcon, 299
JScrollPane, 286
JTable

adding and removing table rows, 321
cell rendering

custom renderer, 293
default renderers, 298
getTableCellRendererComponent()

method, 293
column-oriented design, 289
column size

AUTO_RESIZE_ALL_COLUMNS, 292
AUTO_RESIZE_LAST_COLUMN, 292
AUTO_RESIZE_NEXT_COLUMN, 291
AUTO_RESIZE_OFF, 291

components, 281
data model

AbstractTableModel method, 283
class diagram, 283
frame smaller causes, 286
points, 282
sample code creation, 282
SimpleTableTest class, 286
TableModel implementation, 285
TableModel method, 282

editing table cells
Cell Editors, 301
isCellEditable() method, 300
text ield, 300

JScrollPane, 286
RowAdder class, 324
sorting table rows, 320
table’s auto resize mode, 289
table selection

DefaultListSelectionModel
instances, 305

list selection modes, 306
row and column selection modes, 306
selection methods, 311
selection mode combinations, 308

JTable. See Table headers
JTree

breadthFirstEnumeration(), 345
code creation, 329
collapsed tree node, 329
collapsing and expanding nodes

detecting collapses and expansions, 376
tree, 375
TreeExpansionListener, 376
TreeWillExpandListener, 376

customizing branch node handles, 365
DefaultMutableTreeNode, 340
DefaultTreeModel class, 350

depthFirstEnumeration() and
postorderEnumeration(), 343

line style, 367
modiication, 331
MutableTreeNode, 338
nodes, 336
node selection

basketball and soccer nodes, 368
getNewLeadSelectionPath() and

getOldLeadSelectionPath(), 373
getPaths() method, 373
isAddedPath(), 373
methods, 373
selection modes, 369
TreeSelectionEvent, 372
TreeSelectionListener, 372

overview, 327
postorderEnumeration() methods, 346
rendering tree nodes (see Rendering

tree nodes)
setRootVisible() method, 330
sibling nodes visible, 330
terminology, 328
toString() method, 331
tree cell editing (see Editing tree nodes)
TreeModelEvent, 349
TreeModelListener, 349
tree nodes

children() method, 335
getAllowsChildren(), 336
getChild() method, 335
getChildCount() method, 335
getIndex() method, 335
getParent() method, 336
isLeaf() method, 336
TreeNode methods, 334

TreePath, 347
Windows Explorer application, 327

JTree. See TreeModel

L���������
Lambda expressions, 81

ActionEvent command, 86
compare() method, 85
execute() method, 82, 83
run() Method, 82
sort() method, 84

layoutContainer() method, 208, 270, 278
Layout managers

add() method, 270
BorderLayout

add() method, 223
child component locations, 223
components, 223

■INDEX

672

display and coding, 221
getMinimumSize() method, 225
horizontal and vertical gaps, 222
resizing behavior, 224

BoxLayout
alignment values, 256
ascent and descent values, 256
constraints, 261
container size, 263
getAlignmentX() method, 255
getVerticalBox() and getHorizontalBox()

methods, 260
locations, 262
resizing size, 263
swing box class, 263
widths of components, 261

CardLayout, 210
combination, 267
component methods, 269
components, 207
custom layout manager, 280
FlowLayout, 211
GridLayout, 216
GUI construction

add() method, 207
characteristics, 209
classes, 209
getComponents() method, 208
layoutContainer() method, 208
setLayout() method, 207
various component subclasses, 209

integrated development environment, 207
isVisible() and setVisible() methods, 270
LayoutManager methods

addLayoutComponent (String,
Component), 276

preferredLayoutSize() method, 277
removeLayoutComponent(), 277

LayoutManager2 methods
addLayoutComponent (Component,

Object), 273
getLayoutAlignmentX() and

getLayoutAlignmentY() methods, 275
invalidateLayout(), 276
maximumLayoutSize(), 275
maximumLayoutSize() method, 277

removeLayoutComponent() method, 273
requirements, 272

Layout managers. See GridBagLayout
Lead selection, 370
Line iteration, 558
Line style, 367

ListResourceBundle
contents of, 535
JavaQuestion application, 537
MyResources_de_CH bundle, 536, 537

ListSelectionModel method, 306
Locking, 518

M���������
Map interface, 189

ConcurrentHashMap, 194
EnumMap, 192
getStudentID() method, 190
HashMap, 190–191
IdentityHashMap, 192
keySet() method, 191
LinkedHashMap, 192
TreeMap, 192
WeakHashMap, 193

maximumLayoutSize() method, 275, 277
MessageFormat

coding implementation, 548
element format, 548
element style, 548
format() method, 547, 552
Locale, 548
numeric value, 545
segments, 546
setFormat() method, 549–550
String.format() method, 552
String parameter, 546

Method design, 51
assertions, 75
code duplication, 56
enumerations, 77
exceptions (see Exceptions)
method naming, 55
passing parameters, 53
variable arguments, 59

Multiline column headers, 312
Multiple inheritance, 87
Multiple-interval selection, 307
Multipurpose Internet Mail Extensions (MIME)

type, 384
Multitasking, 105

cooperative, 112
preemptive, 112

MutableTreeNode
insert() method, 339
remove() method, 339
removeFromParent(), 339
setParent() method, 338
setUserObject() method, 338

Layout managers (cont.)

■INDEX

673

N���������
native2ascii, 584–585
next() method, 557
Node selection

basketball and soccer nodes, 368
getNewLeadSelectionPath() and

getOldLeadSelectionPath(), 373
getPaths() method, 373
isAddedPath(), 373
methods, 373
selection modes, 369
TreeSelectionEvent, 372
TreeSelectionListener, 372

NumberFormat, 544–545

O���������
Open Database Connectivity (ODBC), 482

P���������
Package design, 20
paintComponent() method, 227
pathsFromAncestorEnumeration() method, 343
postorderEnumeration() methods, 346
Preemptive multitasking, 112
preferredLayoutSize() method, 277
printf() function, 552
Printing, 449

attribute, 454
AttributeSet, 454
createPrintJob() method, 459
DocFlavor class, 451
document deinition, 460
interfaces and classes

AttributeSet subinterface, 457
ColorSupported attribute, 457
DocAttribute interface, 456
HashAttributeSet, 458
HashDocAttributeSet, 457
javax.print.attribute

package, 455, 457
lookupPrintServices() method, 458
OrientationRequested class, 456, 458

isDocFlavorSupported() method, 454
lookupPrintServices() method, 450
OrientationRequested attribute, 455
printDialog() method, 458
PrintJobListener

attributeUpdate() method, 462
cancel() method, 463
code implementation, 461
interface, 461
PrintJobAttributeListener, 462

PrintRequestAttributeSet, 460
representation class

DocFlavor encapsulation, 453
DocFlavor inner class, 452–453
DocFlavor predeined, 451
MIME type, 452

service formatted (see Service-formatted printing)
PropertyResourceBundle, 538

Q���������
Queues

ArrayBlockingQueue, 196
blocking queue, 196
ConcurrentLinkedQueue, 197
DelayQueue, 197
LinkedBlockingQueue, 197
methods, 195
PriorityQueue, 196
SynchronousQueue, 197

R���������
Race condition, 113
Read–only transcations, 518

data locking, 518
dirty read, 518
isolation levels, 519
JTA, 520
nonrepeatable read, 518
phantom read, 518
setTransactionIsolation() method, 519–520

Registers, 7
Remove() method, 339
Remote Method Invocation (RMI), 430
removeFromParent() method, 339
removeLayoutComponent(), 277
removeTreeModelListener() method, 333
Rendering tree nodes

classes and methods, 353
custom renderer

mutable Boolean value, 355
rendering operation, 356
setEditable() method, 358
toString() values, 356
TreeTest constructor, 358
TrueFalseQuestion objects, 358
true/false test, 354

getTreeCellRendererComponent()
method, 352

JTree appearance methods, 354
Resource bundles

deinition, 532
embedded/hard-coded, 532
getBundle() method, 533

■INDEX

674

ListResourceBundle
contents of, 535
JavaQuestion application, 534–535, 537
MyResources_de_CH bundle, 536, 537

MessageFormat (see MessageFormat)
PropertyResourceBundle, 538

RowAdder class, 324

S���������
Selection mode combinations, 308
Sentence iteration, 558
Service-formatted printing

book instance, 476
classes and interfaces

A4-sized pages, 467
clone() method, 466
graphics object, 469
PageFormat class, 467
PageFormat object, 469
Paper, 465
Printable, 468
print() method, 469
setImageableArea() method, 466

graphics object, 463
hardware margins, 465
imageable area, 465
pageable interface, 463, 475
printable area, 464
printable interfaces, 463
printing application

DocPrintJob, 470
drawImage() method, 470
ImagePrint application, 472
scaling, 473
swing components, 469
translate() method, 471

RenderableImage class, 463
RenderableImage interface, 477
user-speciied margin, 464

setAutoCreateRowSorter() method, 321
setBounds() method, 269
setCellEditor() method, 301
setColumns() methods, 217
setDecomposition() method, 566
setEditable() method, 358
setFormat() method, 549–550
setHgap() methods, 217
setLayout() method, 269
setLocation() method, 269
setModel() method, 320, 350
setOpaque() method, 227
setParent() method, 338
setRootVisible() method, 330

setRows() methods, 217
setSize() method, 269
setText() method, 557
setUserObject(), 338
setValue() method, 296
setVgap() methods, 217
setVisible() methods, 270
shouldSelectCell() method, 302
Simple API for XML (SAX), 598
sort() method, 564
SQLException

getErrorCode(), 522
getNextException(), 522
getSQLState(), 522
setNextException(), 522

Stack frame, 6
Standard Generalized Markup

Language (SGML), 587
startEditing() method, 359
Statement interface

addBatch() method, 495
CallableStatement, 498
executeBatch() method, 495
execute() method, 495
executeQuery() method, 495
executeUpdate() method, 494
named parameters, 500
PreparedStatement, 496

stopCellEditing()/cancelCellEditing() method, 360
stopCellEditing() method, 302
Streams API, 88

collect() method, 202
data source, 89, 201
description, 201
distinct() method, 90
explicit iteration, 89
ilteredList, 89
ilter() function, 89, 202
implicit iteration, 89
intermediate operations, 89, 201, 203
limit() method, 90
Optional class, 91
parallelStream() method, 92, 205
skip() method, 90
sort() method, 90
startsWith() method, 202
stream() method, 202
terminal operation, 89–91, 201, 204

String.format() method, 552
Structured Query Language (SQL), 480
Struts, 266
Swing-based thick-client

application interface, 589
Swing’s JTable. See JTable
Synchronized methods, 120

Resource bundles (cont.)

■INDEX

675

T���������
tableChanged() method, 323
Table headers

frozen columns, 317
getTableHeader() method, 311
multiline column headers, 312
row header creation, 315
tool tips, 313

hick-client application interface, 589
hreads

concurrency utilities, 161
controls

Resume button, 135
Sleep button, 135
Start button, 135
Stop button, 135
Suspend button, 135
wait() method, 142

cooperative multitasking, 112
creation

actionPerformed() method, 109
doInBackground() method, 109
main() method, 107
run() method, 108
SwingWorker class, 108

deprecated methods, 152
disadvantages

increased complexity, 110
resource utilization, 110
shared resources, 110
slow Startup, 109

DownloadFiles class, 127, 153
DownloadManager class, 135, 149
download process, 130
EDT

actionPerformed() method, 106
long-running function, 106
performDatabaseQuery() method, 106
sleep() method, 106

FileOutputStream, 128
interrupt() method, 147
JProgressBar, 129
main() method, 127
notify()/notifyAll(), 145
overview, 105
performDownload() method, 129, 143
preemptive multitasking, 112
problems, 116
processor voluntarily, 159
race condition, 113
resume() methods, 152
resumeDownload() method, 145
runnable thread, 124
setDaemon() method, 125

setPriority() method, 125
setSuspended() method, 142
sharedValue variable, 112
sleep() method, 138, 160
start() method, 138
startDownload() method, 138
stop() method, 146, 152
suspend() methods, 152
synchronization, 120

addStudent() method, 118
block of code, 117
deadlocks, 121
getNewInstance() method, 119
high-level synchronization, 122
lock ordering, 123
method modiier, 118
removeStudentFromList()

method, 118
StudentRoster, 118
synchronized keyword, 117

hreadGroup class, 156
activeCount() method, 157
cancelAllAndWait() method, 157
enumerate() method, 157
join() method, 157

hreadShare application, 113
uncaught exception, 159
wait() method, 145
waitForAll() method, 148
yield() method, 159

toString() method, 295, 331, 554
treeCollapsed(), 376
treeExpanded(), 376
TreeExpansionListener, 376
TreeModel

addTreeModelListener(), 333
getChild(), 333
getChildCount(), 333
getIndexOfChild(), 333
getRoot(), 333
isLeaf(), 334
removeTreeModelListener(), 333
valueForPathChanged(), 334

TreeModelEvent, 349
TreeModelListener, 349
TreeNode methods, 334
treeNodesChanged() method, 349
treeNodesInserted() method, 349
treeNodesRemoved() method, 349
TreePath, 347
TreeSelectionEvent, 372
TreeSelectionListener, 372
TreeSet

Comparable interface, 183–184
Comparator, 187

■INDEX

676

compareTo() method, 184–185
natural order, 183

treeStructureChanged()
method, 349

treeWillCollapse() method, 378
treeWillExpand() method, 377
TreeWillExpandListener, 376

U���������
Unboxing, 171
User-deined types (UDTs), 504

V���������
valueForPathChanged() method, 334

W���������
weightx, 242
weighty, 242
Word Iteration, 558

X, Y, Z���������
XML Path Language (XPath), 629
XSLT processor, 628

TreeSet (cont.)

Pro Java 8
Programming

Brett Spell

Pro Java 8 Programming

Copyright © 2015 by Brett Spell

his work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, speciically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied speciically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0642-3

ISBN-13 (electronic): 978-1-4842-0641-6

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the beneit of the trademark owner, with no intention of infringement of
the trademark.

he use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identiied as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. he publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Technical Reviewer: Chad Darby
Editorial Board: Steve Anglin, Louise Corrigan, Jonathan Gennick, Robert Hutchinson,

Michelle Lowman, James Markham, Susan McDermott, Matthew Moodie, Jefrey Pepper,
Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing, Steve Weiss

Coordinating Editor: Mark Powers
Copy Editor: Lori Jacobs
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers
at www.apress.com/9781484206423. For detailed information about how to locate your book’s source code,
go to www.apress.com/source-code/.

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781484206423
www.apress.com/source-code/

Dedicated to Shari, Ashleigh, and Kaitlin with love.

vii

Contents

About the Author ..xxiii

About the Technical Reviewer ...xxv

Acknowledgments ...xxvii

Introduction ..xxix

Chapter 1: Going Inside Java ■ ... 1

Java’s Architecture ... 2

The Java Virtual Machine ... 3

Different JVM Implementations .. 4

The JVM As a Runtime Execution Environment .. 5

The Runtime Data Areas of the JVM ... 6

The Garbage Collector .. 7

The JVM: Loading, Linking, and Initializing ... 8

Bytecode Execution .. 10

The Java Class File Format .. 12

The Java Programming Language and APIs ... 14

The Java Programming Language .. 14

The Java APIs ... 14

Java Utility Tools: Making the Most of the JVM .. 15

The Java Compiler .. 15

The Java Interpreter ... 16

The Java Class Disassembler ... 17

Summary .. 18

■ CONTENTS

viii

Chapter 2: Designing Libraries, Classes, and Methods ■ 19

Library Design .. 19

Package Design .. 20

Class Design ... 20

Loose Coupling ... 21

Strong Cohesion ... 35

Encapsulation ... 38

Immutable Objects.. 42

Overriding Object Methods ... 45

Method Design ... 51

Passing Parameters .. 53

Method Naming .. 55

Avoiding Code Duplication .. 56

Variable Arguments .. 58

Using Exceptions .. 59

Assertions ... 75

Enumerations.. 77

Summary .. 80

Chapter 3: Lambdas and Other Java 8 Features ■ .. 81

Lambda Expression Concepts .. 81

Analyzing the Example ... 84

Functional Interface Methods ... 86

Default Methods ... 86

Multiple Inheritance Ambiguity ... 87

Streams .. 88

Optional .. 91

Parallel Streams ... 91

Improved Date/Time Handling In Java 8 .. 92

Date/Time Support Before Java 8 ... 92

■ CONTENTS

ix

Date and Time API .. 94

Basic Classes .. 94

Converting Date and Time Values ... 95

Parsing and Formatting .. 99

Method Naming Conventions .. 101

Summary .. 104

Chapter 4: Using Threads in Your Applications ■ ... 105

Threading in Java ... 106

Creating Threads .. 107

Disadvantages of Using Threads .. 109

Slow Initial Startup ... 109

Resource Utilization .. 110

Increased Complexity ... 110

Sharing Resources ... 110

Thread Management .. 112

Understanding the Problem .. 116

Synchronizing the Use of Shared Resources.. 117

Nested Calls to Synchronized Methods and Code Blocks .. 120

Synchronized Blocks vs. Methods .. 120

Deadlocks ... 121

High-Level Synchronization .. 122

Lock Ordering ... 123

Thread Priorities ... 124

Daemon Threads .. 125

Adding Threads to an Application ... 127

Controlling Threads .. 135

Starting a Thread .. 138

Making a Thread “Sleep” ... 138

Suspending a Thread .. 142

■ CONTENTS

x

Resuming a Thread .. 145

Stopping a Thread .. 146

Interrupting a Thread .. 147

Completing DownloadManager .. 149

Deprecated Methods in Thread .. 152

DownloadFiles .. 153

ThreadGroup ... 156

Uncaught Exceptions .. 159

Voluntarily Relinquishing the Processor ... 159

Concurrency Utilities .. 161

Summary .. 162

Chapter 5: Using Stream APIs and Collections ■ .. 163

The Evolution of Collections ... 166

Java 2/Java 1.2 .. 166

Java 5/Java 1.5 .. 166

Java 7/Java 1.7 .. 166

Collection Classes and Interfaces .. 167

Collection .. 167

List .. 172

ListIterator .. 176

ArrayList ... 176

LinkedList ... 178

Vector ... 178

Stack... 179

Set .. 179

HashSet .. 183

Constructors ... 183

LinkedHashSet .. 183

TreeSet.. 183

■ CONTENTS

xi

EnumSet ... 188

Map ... 189

HashMap ... 191

LinkedHashMap .. 192

TreeMap .. 192

EnumMap.. 192

IdentityHashMap ... 192

WeakHashMap .. 193

ConcurrentHashMap ... 194

CopyOnWriteArrayList and CopyOnWriteArraySet ... 195

Queue ... 195

PriorityQueue .. 196

PriorityBlockingQueue .. 196

ArrayBlockingQueue ... 196

LinkedBlockingQueue ... 197

ConcurrentLinkedQueue ... 197

SynchronousQueue ... 197

DelayQueue .. 197

Tips on Using Collections ... 198

Shallow vs. Deep Copies .. 199

Referencing an Interface Instead of an Implementation .. 200

Streams API .. 201

Anatomy of a Stream .. 201

Intermediate Operation Pipelining .. 203

Some Other Intermediate Operation Methods .. 204

Terminal Operations.. 204

Parallel Streams ... 205

Summary .. 206

■ CONTENTS

xii

Chapter 6: Using Layout Managers ■ .. 207

Layout Managers and GUI Construction ... 207

CardLayout ... 210

Constructing a CardLayout ... 210

Child Component Sizes ... 211

Child Component Locations .. 211

Resizing Behavior ... 211

Container Size .. 211

FlowLayout ... 211

Constructing a FlowLayout ... 212

Constraints ... 212

Child Component Sizes ... 212

Child Component Locations .. 212

Resizing Behavior ... 214

Container Size .. 215

GridLayout .. 216

Constructing a GridLayout .. 217

Constraints ... 219

Child Component Sizes ... 219

Child Component Locations .. 220

Resizing Behavior ... 220

Container Size .. 220

BorderLayout .. 221

Constructing a BorderLayout .. 222

Constraints ... 222

Child Component Sizes ... 223

Child Component Locations .. 223

Resizing Behavior ... 224

Container Size .. 225

■ CONTENTS

xiii

GridBagLayout .. 225

Constructing a GridBagLayout .. 228

Constraints ... 228

Child Component Sizes ... 252

Child Component Locations .. 254

Resizing Behavior ... 254

Container Size .. 255

BoxLayout ... 255

Alignment Values, Ascents, and Descents .. 256

Constructing a BoxLayout ... 260

Constraints ... 261

Child Component Sizes ... 261

Child Component Locations .. 262

Resizing Behavior ... 263

Container Size .. 263

Swing’s Box Class .. 263

Guidelines for Using Layout Managers ... 266

Combining Layout Managers .. 267

Absolute Positioning Without a Layout Manager .. 269

Invisible Components ... 270

Specifying an Index When Adding a Component .. 270

Creating Your Own Layout Manager ... 272

LayoutManager2 Methods .. 273

LayoutManager Methods .. 276

Using a Custom Layout Manager .. 280

Summary .. 280

■ CONTENTS

xiv

Chapter 7: Using Swing’s JTable ■ ... 281

The Data Model .. 282

Using JScrollPane with JTable ... 286

JTable’s Column-Oriented Design .. 289

Table Resizing .. 289

Column Resizing ... 290

AUTO_RESIZE_OFF ... 291

AUTO_RESIZE_NEXT_COLUMN ... 291

AUTO_RESIZE_SUBSEQUENT_COLUMNS .. 291

AUTO_RESIZE_LAST_COLUMN ... 292

AUTO_RESIZE_ALL_COLUMNS.. 292

Cell Rendering .. 292

Creating Custom Renderers .. 293

JTable’s Default Renderers ... 298

Editing Table Cells .. 300

Cell Editors ... 301

Table Selection Settings ... 305

Combining Row, Column, and Cell Selection Modes ... 306

List Selection Modes .. 306

Selection Mode Combinations .. 308

Setting Selections Programmatically ... 310

Table Headers ... 311

Multiline Column Headers .. 312

Adding Table Header Tool Tips .. 313

Creating Row Headers .. 315

Sorting Table Rows ... 320

Adding and Removing Table Rows ... 321

Displaying a Particular Table Row .. 324

Summary .. 325

■ CONTENTS

xv

Chapter 8: Using Swing’s JTree ■ ... 327

JTree Terminology .. 328

Creating a JTree ... 329

TreeModel ... 332

Creating Tree Nodes ... 334

Nodes Without Children: Leaf or Branch? ... 336

MutableTreeNode .. 338

DefaultMutableTreeNode .. 340

Creating DefaultMutableTreeNode Instances ... 340

Using DefaultMutableTreeNode .. 341

Obtaining a List of Nodes.. 343

TreePath ... 347

TreeModelListener .. 349

treeNodesChanged() .. 349

treeNodesInserted() ... 349

treeNodesRemoved() .. 349

treeStructureChanged() .. 349

TreeModelEvent .. 349

getTreePath(), getPath() ... 350

getChildren()... 350

getChildIndices() .. 350

DefaultTreeModel ... 350

Rendering Tree Nodes .. 352

Creating a Custom Renderer .. 354

Editing Tree Nodes .. 359

DefaultTreeCellEditor and DefaultCellEditor ... 361

DefaultTreeCellEditor Behavior ... 362

Creating a Custom Editor .. 362

Limiting Edits to Certain Nodes .. 365

■ CONTENTS

xvi

Customizing Branch Node Handles .. 365

Line Style with the Java/Metal Look and Feel .. 367

Node Selection ... 368

Selection Modes ... 369

TreeSelectionListener ... 372

TreeSelectionEvent ... 372

getPaths(), getPath() .. 373

isAddedPath() ... 373

getNewLeadSelectionPath(), getOldLeadSelectionPath() .. 373

Selection Methods in JTree .. 373

Collapsing and Expanding Nodes ... 375

Detecting Collapses and Expansions .. 376

TreeExpansionListener.. 376

TreeWillExpandListener .. 376

Summary .. 378

Chapter 9: Adding Cut-and-Paste Functionality ■ .. 379

Clipboards: Where Cut and Copied Data Is Stored .. 380

Using the System Clipboard ... 381

Using Clipboard .. 381

Using Transferable .. 381

Using ClipboardOwner .. 383

Using DataFlavor .. 384

Storing and Retrieving Serialized Java Objects ... 385

Transferring Between Java and Native Applications .. 396

Writing Arbitrary Binary Data ... 397

Summary .. 401

■ CONTENTS

xvii

Chapter 10: Adding Drag-and-Drop Functionality ■ ... 403

Introducing Drag-and-Drop Operation Types .. 404

Using the Predefined Cursors ... 405

Performing File Selection Drops from Native Applications ... 405

Adding Drop Support .. 405

Adding Drag Support .. 415

Performing Local Transfers .. 426

Performing Link/Reference Operations .. 430

Transferring Between Java and Native Applications .. 431

Transferring Text Data .. 432

Transferring Text Between Java and Native Applications ... 432

Creating a New Transferable for Text Data ... 434

Customizing Standard Component Behavior .. 436

TransferHandler .. 436

Summary .. 448

Chapter 11: Printing ■ .. 449

Locating Print Services .. 450

DocFlavor .. 451

Choosing the Right Printer .. 453

AttributeSet .. 454

Attribute .. 454

Attribute Roles .. 455

Interfaces and Implementations ... 455

Printer Selection via User Interface .. 458

Creating a Print Job .. 459

Defining the Document to Print .. 460

Initiating Printing .. 460

Monitoring and Controlling a Print Job ... 461

Monitoring Attribute Changes ... 461

Canceling a Print Job .. 463

■ CONTENTS

xviii

Introducing Service-Formatted Printing ... 463

Support Classes .. 465

Sample Printing Application ... 469

Summary .. 477

Chapter 12: Introducing JDBC ■ ... 479

SQL Standards and JDBC Versions ... 480

JDBC Drivers .. 481

Driver Types .. 481

Obtaining a Database Connection .. 484

JDBC URL Formats ... 484

Connection .. 485

Obtaining Connections from a DataSource (2.x Optional Package) .. 485

DatabaseMetaData ... 486

Statement ... 494

ParameterMetaData.. 500

JDBC Data Types .. 500

ARRAY ... 502

BLOB, CLOB ... 503

DATALINK .. 503

DATE, TIME, TIMESTAMP ... 503

DISTINCT ... 504

STRUCT ... 504

REF ... 505

JAVA_OBJECT ... 505

OTHER ... 505

ResultSet .. 505

Forward-Only vs. Scrollable (Scrollability Type) ... 505

Read-Only vs. Updatable (Concurrency Mode) ... 506

Update Sensitivity ... 506

Holdability ... 506

Selecting ResultSet Properties ... 507

■ CONTENTS

xix

Performance Hints .. 507

Using ResultSet .. 508

ResultSetMetaData ... 511

RowSet ... 512

JdbcRowSet .. 512

CachedRowSet ... 513

Transactions ... 514

Savepoints .. 517

Read-Only Transactions .. 518

Connection Pooling ... 520

Pooling Properties .. 521

Errors and Warnings ... 522

SQLException .. 522

SQLWarning .. 525

Debugging .. 526

Releasing Resources .. 527

Summary .. 528

Chapter 13: Internationalizing Your Applications ■ .. 529

Locales ... 530

Resource Bundles .. 532

Creating a ResourceBundle .. 534

Locale-Sensitive Formatting and Parsing .. 538

Formatting and Parsing Dates .. 539

Formatting and Parsing Times .. 542

Formatting and Parsing Numeric Values .. 543

MessageFormat.. 545

Specifying a Locale .. 548

Specifying a Format Object .. 549

ChoiceFormat ... 550

Using Formatter and String’s format() Method .. 552

■ CONTENTS

xx

Parsing Text Data .. 556

BreakIterator ... 556

Text Comparisons and Sorting.. 563

Collator Strength ... 564

Decomposition Mode .. 565

Internationalizing an Application .. 566

Changing the Locale at Runtime .. 577

native2ascii .. 584

Summary .. 585

Chapter 14: Using XML ■ .. 587

XML vs. HTML ... 588

Describing the Data .. 590

Well-Formed Documents .. 590

When and Why to Use XML ... 593

Creating an XML Document .. 595

Root Elements .. 596

Components of an XML Document ... 596

Parsing and Validation .. 597

Parsing with the DOM Implementation in JAXP .. 598

Text ... 610

EntityReference .. 613

DocumentFragment .. 613

DocumentType .. 613

Notation .. 615

Traversing a Document with DOM .. 615

Editing Documents with DOM ... 621

Creating and Adding New Nodes .. 623

Creating a New Document .. 625

Transforming XML Documents ... 627

■ CONTENTS

xxi

Performing an XSL Transformation .. 628

Introducing XPath ... 629

Creating and Using Additional Templates ... 633

Summary .. 635

Chapter 15: Adding Annotations ■ .. 637

Using Annotations .. 638

Override .. 641

FunctionalInterface ... 642

SuppressWarnings .. 642

Creating Custom Annotations ... 648

Target .. 650

Retention .. 651

Documented ... 653

Inherited ... 655

Repeatable .. 657

Replacing External Metadata ... 657

Summary .. 661

Index ... 663

xxiii

About the Author

Brett Spell has been programming professionally in Java since 1996 and
is a Sun-certiied Java programmer, developer, and architect. Brett is the
author of numerous articles on Java development and design patterns
and he holds a bachelor’s degree in Computer Science and a master’s
degree in Security Engineering. Brett has experience in wide a variety of
industries and currently lives in Plano, Texas, with his wife, Shari, and
daughters, Ashleigh and Kaitlin.

xxv

About the Technical Reviewer

Chád (shod) Darby is an author, instructor, and speaker in the Java
development world. As a recognized authority on Java applications
and architectures, he has presented technical sessions at software
development conferences worldwide (United States, UK, India, Russia,
and Australia). In his 15 years as a professional software architect, he’s had
the opportunity to work for Blue Cross/Blue Shield, Merck, Boeing,
Red Hat, and a handful of startup companies.

Chád is a contributing author to several Java books, including
Professional Java E-Commerce (Wrox Press), Beginning Java Networking
(Wrox Press), and XML and Web Services Unleashed (Sams Publishing).
Chád has Java certiications from Sun Microsystems and IBM. He holds a
B.S. in Computer Science from Carnegie Mellon University.

Visit Chád’s blog at www.luv2code.com to view his free video tutorials
on Java. You can also follow him on Twitter @darbyluvs2code.

www.luv2code.com

xxvii

Acknowledgments

Writing or even updating a book is a grueling task, but the other folks involved in this efort did a great job
of minimizing the pain involved in updating this title. I’d like to thank everyone involved, especially Mark
Powers, Steve Anglin, and Matthew Moodie at Apress along with ChádDarby who did an excellent job of
reviewing the material and providing helpful feedback.

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Index

