
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Professional android Wearables

introduction . xix

 ▸ Part i concePts

chaPter 1 Introduction to Android Wearables . 3

chaPter 2 The Internet of Things . 11

chaPter 3 Platforms and Technology . 19

 ▸ Part ii basic building blocks

chaPter 4 Notiications on Small Screens . 29

chaPter 5 Developing Wear Apps . 49

chaPter 6 Voice Input . 79

chaPter 7 Pushing Data . 105

chaPter 8 Location-Based Services on Android Wear 127

 ▸ Part iii Projects

chaPter 9 Android Wear as Activity Tracker . 141

chaPter 10 Smartwatch as Input . 167

chaPter 11 Build Your Own Glass . 185

index . 209

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

PrOfeSSIONAL

android™ Wearables

David Cuartielles Ruiz
Andreas Göransson

www.allitebooks.com

http://www.allitebooks.org

Professional Android™ Wearables

Published by

John Wiley & Sons, Inc.

10475 Crosspoint Boulevard

Indianapolis, IN 46256

www.wiley.com

Copyright © 2015 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-98685-1

ISBN: 978-1-118-98686-8 (ebk)

ISBN: 978-1-118-98687-5 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,

electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108

of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization

through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,

MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to

the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax

(201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with

respect to the accuracy or completeness of the contents of this work and speciically disclaim all warranties, including

without limitation warranties of itness for a particular purpose. No warranty may be created or extended by sales or

promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work

is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional

services. If professional assistance is required, the services of a competent professional person should be sought. Neither

the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is

referred to in this work as a citation and/or a potential source of further information does not mean that the author or the

publisher endorses the information the organization or Web site may provide or recommendations it may make. Further,

readers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this

work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the

United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with

standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media

such as a CD or DVD that is not included in the version you purchased, you may download this material at http://
booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2014948539

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are

trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its afiliates, in the United States and other

countries, and may not be used without written permission. Android is a trademark of Google, Inc. All other trademarks

are the property of their respective owners. John Wiley & Sons, Inc., is not associated with any product or vendor

mentioned in this book.

www.allitebooks.com

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://booksupport.wiley.com
http://www.wiley.com
http://www.allitebooks.org

To Bobbie, my very patient 7-year-old daughter,

for the time that writing this book took away from

building robots with her.

—David Cuartielles Ruiz

To YOU, for reading this book. I hope you’ll have fun

with Android Wear!

—Andreas Göransson

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

about the authors

david cuartielles is one of the founders of the Arduino platform. He also is a lecturer at Malmö

University and other universities in Europe, where he teaches interaction designers and artists how

to use technology as a tool in their creative process. David is very active in helping change how

technology is taught at secondary schools and high schools around the world. He collaborates

with several foundations (Intel, Telefonica, La Caixa, and AECID) to acquaint teachers with new

technologies. His main research areas are the Internet of Things, wearables, and educational tools.

He has coauthored a couple of books (two of them for Wrox), a series of dissemination articles for

magazines on electronics, and several academic papers.

andreas göransson is a designer, author, teacher, researcher, and maker who works at Malmö

University within many subjects and disciplines. Holding a BSc in interaction design, he strayed

from that path a long time ago and got into the world of technology and programming. He is an

open source advocate who loves to solve problems large and small. He has contributed to projects

such as Arduino. He frequently attends conferences around the world as a listener and speaker. He

enjoys exploring new airports.

about the technical editor

erik hellman currently lives in Stockholm, Sweden, where he works as a

Senior Android Engineer at Spotify. He has a long experience in the ield of

mobile development, starting with the early versions of Java ME and later

working as the lead architect for Sony Ericsson and Sony Mobile on their

Android projects. Due to his vast experience with Android, Erik is also part

of the Google Developer Experts where he helps Google teach about their

platform. Erik is the author of the book Android Programming: Pushing the

Limits and can often be found speaking at various developer conferences

across Europe. He spends his free time traveling with his wife, reading every sci-i book he can get

his hands on, and experimenting with electronics and food.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

acQuisitions editor

Mariann Barsolo

Project editor

Christina Haviland

technical editor

Erik Hellman

Production editor

Dassi Zeidel

coPY editor

Gayle Johnson

manager of content develoPment

and assemblY

Mary Beth Wakeield

marketing director

David Mayhew

marketing manager

Carrie Sherrill

Professional technologY & strategY

director

Barry Pruett

business manager

Amy Knies

associate Publisher

Jim Minatel

Project coordinator, cover

Patrick Redmond

Proofreader

Sarah Kaikini, Word One New York

indexer

John Sleeva

cover designer

Wiley

cover image

© iStock.com/dolgachov

credits

acknoWledgments

this book wouldn’t have been possible without my coauthor, Andreas, whom I have seen grow

into an excellent programmer, capable of doing almost anything related to code. Thanks as well

to Sergio Villalobos from LG’s marketing department in Mexico, who gave us access to a real

smartwatch while it was still impossible to get one in Sweden. To the unknown engineer at LG who

kindly gave his watch to Sergio to give to us. To Troed Sångberg at Sony in Sweden who got us a

Sony SmartWatch 3 to test the inal chapters in the book. To Pontus Stalin at inUse for some other

tools that also came in handy. To my whole team at Arduino Verkstad, who gave me emotional

support just by being there—especially Mr. Duffy, who took some of the pictures for the book.

Finally, to Laura, who made everything possible by helping in the day-to-day while I was writing.

—David Cuartielles Ruiz

thanks first to mY coauthor, friend, mentor, and former teacher for dragging me into this

exciting world of tech! Who knows what I would have been doing today if I hadn’t been introduced

to The Lab at K3?

Also, a big thank you to the staff at Wiley for their support and vigilant efforts in producing this

book. Thanks to Chris Haviland for her help and extreme patience with me and David since the

beginning of this project. Also, I’d like to thank Bob Elliott for giving us the opportunity to work

on one more book together; it’s been an adventure, just like the irst time. Erik Hellman and Jonas

Bengtsson deserve a big thanks for helping us nail the technical side of the book.

A huge thank-you to Sergio Villalobos at LG for lending us a Wear device when none was available

in Sweden. It deinitely made this book much easier to write. Also, Troed Sångberg at Sony played

a major part in inishing this book when he lent us a SmartWatch 3 to work on the newly released

GPS libraries. Without these devices it would have been impossible to complete the book.

Finally, I’d like to extend my gratitude to friends and family for their patience during this time, and

to Tony and Fernando for their support and fun conversations around all of our projects. Finally, I’d

like to thank Katya for being an inspiration to me and for making me want to work twice as hard.

—Andreas Göransson

contents

INTRODUCTION xix

Part i: concePts

chaPter 1: introduction to android Wearables 3

The Wearable revolution 3
Dismantling the Computer: The Cyborg Dream 4
Software everywhere 5
fashion is More than Ski Jackets 6
fitness 6
Time 7
Glasses 8
Summary 9
recommended reading 10

chaPter 2: the internet of things 11

How Wearables relate to IoT 11
The Promise of Connectivity 12

Cisco’s Vision 13

Big Data 13

Connected Devices in the Home 14
Connected Devices on the Go 15
Wireless Sensor Networks 16

A Scenario of Use of WSN 16

Bluetooth Versus ZigBee 17

Smart Cities 17
Summary 18
recommended reading 18

chaPter 3: Platforms and technologY 19

Android Wear 19
Installing the Wear SDK 20
Working with the Android Wear emulator 20
Working with a real Wear‐Enabled Device 22
Kick‐starting Your Wear Development 24

xiv

ContEnts

Distributing Wear Apps on Google Play 25
summary 26

Part ii: basic building blocks

chaPter 4: notifications on small screens 29

About notiications 29
Pre‐Wear Notiication API 30

Wear Notiications 30

Building notiications 32
The Simple Notiication 33

Adding a Large Icon 34

Big Text Notiication 35

Big Picture Notiication 36

Updating a Notiication 38

Adding Pages to Your Notiications 38

Adding Actions to Your Notiications 39

Adding a Standard Action 39

Adding Multiple Actions 41

Adding Wear‐Only Actions 41

Adding an Action without the Extra Page 42

Extra Options 43

Hiding the Application Icon 43

Moving the Notiication 44

Setting the Scroll to the Bottom 44

Removing a Notiication 45

stacking notiications 45
summary 48
Recommended Reading 48

chaPter 5: develoPing Wear aPPs 49

the Wear sDK 49
Design Considerations 49

Wearable UI Library 50

Creating the Wear Project 51
Editing the Gradle Files 55

Loading Layouts 56

Using WatchViewStub 56

Using InsetActivity 58

xv

ContEnts

Building the User Interface 61
Adding Text to Your User Interface 61

CardFrame 61

CardScrollView 62

CardFragment 63

Displaying Images 66

Loading a Static Image 67

Adding a Progress Update 68

Handling Lists in Wear 69

Using WearableListView 69

The 2D Picker 72

Providing Positive Feedback 74
Starting the Success Feedback 75

Starting the Open‐on‐Phone Animation 76

Starting the Failure Feedback 76

summary 77
Recommended Reading 77

chaPter 6: voice inPut 79

talking to Your Wrist 79
types of Voice Interaction 80
Using system‐Provided Voice Commands 82

Just Launch an App 84

Hack an Existing Intent to Launch Your App 85

Launch Your App with Voice the “Right” Way 85

the Wear APIs 85
Data API 86

Message API 86

Node API 86

Answering to notiications: Capturing Your Voice into an App 86
Creating a Simple App Sending a Notiication 87

Creating Your Empty Project 87

Modifying the Gradle File 90

Modifying the App’s Layout 91

Adding the Right Callback Function 93

Getting Your App to Receive a Voice Command 95

Revising the Callback Function 95

Adding a Broadcast Receiver 97

Modifying the App’s Layout to Include a Text Field 98

Adding the New Class to the Manifest File 99

xvi

ContEnts

Adding the Reply String to the Strings File 100

How It Works 100

Showing the Answer on the App’s Screen 101

summary 103
Recommended Reading 104

chaPter 7: Pushing data 105

Checking the Example 106
Phone’s MyActivityPhone.java 107

Phone’s AndroidManifest.xml 111

Wearable’s MyActivityWear.java 112

Wearable’s AndroidManifest.xml 114

Wearable’s Listener 115

Making Your Google API Client from scratch 116
Start with a Clean Project 117

The Phone’s MyActivityPhone.java 117

The Phone’s AndroidManifest.xml 119

The Phone’s DataLayerListenerService 120

MyActivityWear.java 121

Wear’s Android Manifest File 124

The Listener on the Wearable’s Side 124

The Final Result 125

summary 126
Recommended Reading 126

chaPter 8: location-based services on android Wear 127

Changing How Location Works 127
Accessing the Current Location 128

Enabling GPS support 128

Using the New APIs 128

Determining GPS Availability 131

Requesting the Last Known Location 131

Requesting Location Updates 132

Being Picky About Location Updates 134

Showing Your Street Address 135

Testing Geocoder Availability 135

Getting the Current Address for a Location 135

summary 137
Recommended Reading 137

xvii

ContEnts

Part iii: Projects

chaPter 9: android Wear as activitY tracker 141

What Are Activity trackers? 141
Wear as an Activity tracker 142

Step Detector 142

Step Counter 143

Building the WalkKeeper App 143
Calculating Calories 143

Creating the Project 145

Selecting Gender 145

Selecting Weight 150

Selecting Height 152

The WalkKeeper Activity 154

Building the User Interface 154

Connecting the User Interface 155

Getting the Stored Settings 157

Reading the Sensor Data 158

Calculating and Updating the User Interface 160

Keeping the Activity Open 162

Improvements 165
summary 165

chaPter 10: smartWatch as inPut 167

Android Wear as a Game Controller 167
A Note on Sensors 168

Detecting Gestures 169

Building the Dice Game 169
Creating the Project 169

Designing a User Interface 169

Android Wear GUI 170

Mobile GUI 171

Accessing Sensors 173

Generating the Die Value 175

Connecting to Mobile 176

The Mobile Connection 176

The Wear Connection 178

Keeping the Screen On 182

the Dice Game 182
Improvements 182

xviii

ContEnts

summary 183
Recommended Reading 183

chaPter 11: build Your oWn glass 185

Augmented Reality and Virtual Reality 186
Augmented Reality 186

Google Glass 187

Virtual Reality 188

VR on a Phone 189

Building Your own Glasses 190
Lenses 190

The Simplest Box Possible 191

the simplest App 193
The cardboard.jar Library 193

Looking at the Code 194

The Glasses’ MyActivityPhone.java 194

The Glasses’ AndroidManifest.xml 196

A Couple More Classes 197

Getting Your Cardboard to Talk to Your Smartwatch 200

Start from the Previous Project 200

The Phone’s MyActivityPhone.java 200

The Phone’s AndroidManifest.xml 202

The Phone’s DataLayerListenerService 203

MyActivityWear.java 204

The Wear Android Manifest File 207

The Final Result 207

summary 207

INDEX 209

www.allitebooks.com

http://www.allitebooks.org

introduction

Wearables is an exciting ield. It has existed commercially for more than a decade in the form of

watches, headsets, clothes, activity trackers, and cameras. But only in the last few years have we

seen devices so tiny and complex that we can truly call them wearable.

Google launched its Glass technology in 2012 with an impressive demo, showcasing not just how

tiny the device is, but also all the functionality compressed into it. In 2014 Google continued on

this path of wearable devices with its Android Wear SDK, which presents a new way of thinking

about wearable devices. It is no longer a standalone device that can talk to your phone or computer;

it is a device that extends your phone. This presents a unique new way of thinking about your

personal devices. The phone is your primary device, and you can extend it with new functionality

by connecting wearable devices to it.

Wearables is a ield we’ve been researching for half a decade now, developing our own wearable

devices that connect to personal devices for full functionality and connectivity. We’ve seen the

possibilities in the ield, and Android Wear can help us achieve them.

This book is a hands-on guide to wearables, with a focus on the Android Wear SDK. You will learn

about the Android Wear SDK by building small sample programs—examples that can easily be

implemented in larger applications. This book covers all the basic functionality of Android Wear.

Who this book is for

This book is for anyone who wants to dive into wearables in general and Android Wear application

development in particular. The information in this book covers the major parts of the new and

exciting platform called Android Wear.

This book works well both as a reference for the experienced Android developer and as an

introductory guide if you’ve recently started your adventures in Android. You should have at least

some understanding of Android’s basic components to fully grasp the content of this book.

If you’ve never worked with any kind of wearable device, you may enjoy Chapter 1, which

introduces the topics of wearable research and history, and Chapter 2, which introduces the closely

related ield of the Internet of Things (IoT).

If you’re an inexperienced Android developer eager to get started coding, Chapter 3 may be a good

starting point for instructions on setting up your development environment and test-running your

irst Android Wear app.

If you’re an experienced Android developer, you might want to start with Chapters 4 through 8

which discuss the new Android Wear APIs in detail.

Chapters 9, 10, and 11 exemplify Android Wear development in three simple projects that you can

use as starting points for your own ideas. Before doing so, you should read Part II.

xx

IntRoDUCtIon

What this book covers

The book is divided into three parts, Part I offers basic theory about wearables and the related ield

of the Internet of Things in an easily digested way. Part II will give you a foundation in Googles

Wearable platform, Android Wear, and Part III contains three easy-to-build projects.

Chapter 1 introduces the history of and research into wearables. Chapter 2 introduces the closely

related ield of the Internet of Things. Chapter 3 covers installing your development environment

and preparing devices and emulators before you compile and run your irst Android Wear

application—Recipe Assistant.

Chapters 4 through 8 provide detailed reviews of the different APIs introduced with Android Wear,

including notiications, Wear UIs, communicating with mobile apps, voice interactions and location-

based services.

Chapters 9, 10, and 11 describe building wearable applications and projects that include Android Wear.

Android Wear is an area that is in constant motion, much like Android was in its infancy. Therefore,

the technologies used for developing Android Wear change often. We used the latest versions, but

you may see some discrepancies with your development environment.

hoW this book is structured

The chapters stand on their own and therefore can be read in any order. But we’ve structured this

book in a logical fashion to help introduce the wearable novice to this exciting ield.

The more experienced Android developer who has a good understanding of wearable technology

can start with Chapter 4. That chapter and the ones after it discuss the details of the new Wear-

speciic APIs using basic examples.

When you’ve read Chapters 4 through 8, you’re ready to start developing your own application

ideas. Or you can get inspiration from the sample projects in Chapters 9 through 11.

What You need to use this book

To run the examples found in this book, you must have a working development environment for

Android Wear. For this you need an updated Java Development Kit, the SDK, and the development

tools. It’s highly recommended that you download Android Studio, because it contains the Wear-

speciic helper dialogs and makes development easier.

The examples in this book have been tested on Windows, Mac, and Linux computers. You can

download the tools for all three systems from the Android website.

Although a real Android Wear device is recommended, you do not need one for most of the

examples in this book. You may ind that the examples in Chapters 9, 10, and 11 do not work well

on an emulator.

xxi

IntRoDUCtIon

The source code for the examples is available for download from the Wrox website at:

www.wrox.com/go/androidwearables

conventions

To help you get the most from the text and keep track of what’s happening, this book uses a number

of conventions.

Warning Warnings hold important, not-to-be-forgotten information that is
relevant to the surrounding text.

note This books also contains notes, tips, hints, tricks, and asides to the cur-
rent discussion.

As for styles in the text:

 ➤ We highlight new terms and important words when we introduce them.

 ➤ We show keyboard strokes like this: Ctrl+A.

 ➤ We show ilenames, URLs, and code within the text like this: persistence.properties.

 ➤ We present code in two different ways:

We use a monofont type with no highlighting for most code examples.
We use bold to emphasize code that is particularly important in the present
context or to show changes from a previous code snippet.

source code

As you work through the examples in this book, you can type in all the code manually, or you

can use the accompanying source code iles. All the source code used in this book is available for

download at www.wrox.com. The code downloads for this book are on the Download Code tab at:

www.wrox.com/go/androidwearables

Chapters that have companion code iles are noted as such at the beginning of the chapter. The code

iles are named according to the code listing numbers throughout the chapter.

You can also search for this book at www.wrox.com by ISBN (this book’s ISBN is 978-1-1189-8685-1)

to ind the code. A complete list of code downloads for all current Wrox books is available at

www.wrox.com/dynamic/books/download.aspx.

http://www.wrox.com/go/androidwearables
http://www.wrox.com
http://www.wrox.com/go/androidwearables
http://www.wrox.com
http://www.wrox.com/dynamic/books/download.aspx

xxii

IntRoDUCtIon

Most of the code on www.wrox.com is compressed in a .zip ile, a .rar archive, or a similar archive

format appropriate to the platform. After you download the code, just decompress it with an

appropriate decompression tool. Alternatively, you can go to the main Wrox code download page

at www.wrox.com/dynamic/books/download.aspx to see the code available for this book and all

other Wrox books.

errata

We have made every effort to ensure that the text and code contain no errors. However, no one is

perfect, and mistakes do occur. If you ind an error in one of our books, such as a misspelling or

faulty piece of code, we would be grateful for your feedback. By sending in errata, you may save

another reader hours of frustration, and at the same time, you will help us provide even higher-

quality information.

To ind the errata page for this book, go to,

www.wrox.com/go/androidwearables

and click the Errata link. On this page you can view all the errors that have been submitted for this

book and posted by Wrox editors.

If you don’t spot “your” error on the book’s errata page, go to www.wrox.com/contact/

techsupport.shtml and complete the form there to send us the error you found. We’ll check the

information and, if appropriate, post a message to the book’s errata page and ix the problem in

subsequent editions.

P2P.Wrox.com

For author and peer discussion, join the P2P forums at http://p2p.wrox.com. The forums are

a web-based system for you to post messages about Wrox books and related technologies and to

interact with other readers and technology users. The forums offer a subscription feature that

e-mails you topics of interest when new posts are made to the forums. Wrox authors, editors, other

industry experts, and your fellow readers are present on these forums. The forums will help you

not only as you read this book, but also as you develop your own applications. To join the forums,

follow these steps:

 1. Go to http://p2p.wrox.com, and click the Register link.

 2. Read the terms of use, and click Agree.

note Because many books have similar titles, you may ind it easiest to search
by ISBN.

http://www.wrox.com
http://www.wrox.com/dynamic/books/download.aspx
http://www.wrox.com/go/androidwearables
http://www.wrox.com/contact/techsupport.shtml
http://p2p.wrox.com
http://p2p.wrox.com
http://www.wrox.com/contact/techsupport.shtml

xxiii

IntRoDUCtIon

 3. Complete the required information to join, as well as any optional information you want to

provide, and click Submit.

 4. You receive an e-mail describing how to verify your account and complete the joining

process.

note You can read messages in the forums without joining P2P, but to post
messages, you must join.

After you join, you can post new messages and respond to messages other users post. You can read

messages at any time. If you would like to have new messages from a particular forum e-mailed to

you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information on how to use the Wrox P2P, read the P2P FAQs. You’ll ind answers to

questions about how the forum software works, as well as answers to many common questions

speciic to P2P and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

PART I

concepts

 ▸ chaPter 1: Introduction to Android Wearables

 ▸ chaPter 2: the Internet of things

 ▸ chaPter 3: Platforms and technology

Introduction to Android
Wearables

What’s in this chaPter?

 ➤ Wearable technology deined

 ➤ A brief history of user interfaces

 ➤ Categories of wearable devices

the Wearable revolution

Wearable technology is the next big thing in the world of connected devices. It is made of sensors

and actuators so close to your skin that they can literally monitor your vital signs, with so much

computing power they can make on‐the‐spot suggestions on health habits, so connected they

can notify you about the important things to do today by mining data from your calendars

and e‐mails, and so ubiquitous they can remind you of tasks from your wrist, or overlaying

information right in front of your eyes.

Wearables are small‐yet‐powerful computers that it in your pocket or mounted on top of your

glasses. They hang from a key ring, and your kids have them in their shoes to indicate the way

back home via vibrations.

These concepts aren’t science iction, but are current technologies that allow for this and more.

Lighter devices with smaller screens and different use patterns, like the smartwatches, increase

battery life. One‐touch user interfaces (also known as zero UIs) will help you navigate through

complex menus in ways you never imagined.

As you will see later, there are different categories of wearables. Google has launched three

different APIs exploring them: Wear for smartwatches, Fit for itness devices, and Glass for

their smart glasses. Not all companies are jumping into these three categories in the same way,

and not all of them are willing to commit to open standards.

1

4 ❘ CHAPtER 1 IntroductIon to AndroId WeArAbles

The terms “wearable technology,” “wearable devices,” and “wearables” all

refer to electronic technologies or computers that are incorporated into items of

clothing and accessories which can comfortably be worn on the body.

Kiana Tehrani and Andrew Michael

The latest shift in technology is getting everyone within the tech industry to notice wearables. The

preceding deinition of what a “wearable” actually is leaves much room for interpretation. It its

everything from iPod controls embedded in the sleeve of your ski jacket to intelligent shoes that tell

you which direction to turn when you reach an intersection.

The wearable revolution we are witnessing is the result of an extreme miniaturization of

technology, the development of more eficient batteries, and the broadening of the communication

infrastructure. Thanks to advancements in technology, we can carry in our pocket as much

computing power as a stationary computer had in the late 1990s. And because of communication

capabilities, we can take advantage of much more computing power residing in the cloud.

In this post‐PC era, many people will never use a computer in the same way we are using it to write

this book or to develop applications for the devices described in it. The next generation might access

the web from only mobile browsers. A Bloomberg report from 2010 predicted that 36 percent of

Indonesia’s population would be able to access the Internet in four years, with only 15 percent doing

so from a PC. Many of them will start using wearable computers as peripherals to their mobile

devices in a much more natural way than we can anticipate.

This chapter gives you an overview of the history of wearable computing and also introduces current

trends. Wearables are becoming part of our everyday lives, harvesting data about our whereabouts,

health condition, and interests. This chapter introduces the ecosystem of wearables and explains

how the different pieces of the puzzle connect.

dismantling the comPuter: the cYborg dream

Steve Mann, a tenured professor in the Department of Electrical and Computer Engineering at the

University of Toronto, is considered the father of wearable computing. Mann, a PhD from MIT, has

published more than 200 articles and books on topics ranging from algorithms for the treatment

and analysis of digital images to his everyday experiences as a cyborg.

In the early years of wearable computing, Mann used to dismantle computers and make them into

wearable devices. He realized that the interaction paradigm for the wearable computer couldn’t be

the same as that for a PC. Imagine yourself carrying the motherboard and hard drive in different

vest pockets, with the heavy battery hanging from your belt, and, as input mechanisms, a camera

with added intelligence and a one‐button interface. For output, you would wear goggles reproducing

an augmented reality (AR) version of audible feedback and what the camera ilms.

Because he needed to place the technology closer to the body, Mann had to further evolve user

interfaces (UIs). Early computers used a command‐line interface (CLI); later they used a graphical

user interface (GUI). Mann coined the term natural user interface (NUI), which would become the

bread and butter of many human‐computer interaction (HCI) researchers.

www.allitebooks.com

http://www.allitebooks.org

software Everywhere ❘ 5

Mann started by taking apart a computer and looking at ways to enhance human cognition by

adding layers of AR to what he was seeing. Along with learning how technology could merge with

the body without being intrusive, he invented one‐button interaction, wearable glasses, and other

things that are the essence of contemporary wearable devices.

softWare everYWhere

Neil Harbisson was the irst person allowed to pose for his passport photo as a cyborg. In 2004 he was

implanted with a device called an eyeborg, which translates colors into auditory stimuli to make up

for his color blindness. The eyeborg lets him perceive ultraviolet and infrared light, which the human

eye cannot see. From a purely software point of view, this is very different from the general‐purpose

computer Mann designed. It is instead a single‐purpose machine: It enhances Harbisson’s eyesight.

In the same way that a multipurpose machine lets you change the software for a different use,

Harbisson believes that what makes him a cyborg is actually the software. He explained in a 2011

interview that it’s not the union between the eyeborg and his head that converts him into a cyborg,

but the union between the software and his brain.

When it comes to code, most wearable devices follow the model of embedded computing. The

weapon of choice is usually nano‐power processors with specially written software to command the

devices’ sensors, actuators, and communication. This is closer to Harbisson’s augmentation machine

than to Mann’s general‐purpose machine.

This book is all about software in wearables. We will look at which hooks different devices offer

to connect them to Android phones and tablets. Some devices, like the original Sony SmartWatch,

have a speciic software development kit (SDK) to create applications to be executed in the device

and offer an API to allow the watch to talk to an app in a phone. Most of the health bracelets on

the market (such as Fitbit, Jawbone, and Nike FuelBand) follow this approach. Sometimes they

don’t even offer an open API of any kind to allow developers to write their own applications for the

device.

Other gadgets, such as Google Glass and the Vuzix glasses (discussed in the section “Glasses”), run

their own lavor of Android’s OS. In that case, developers are supposed to create applications that

can take advantage of the device’s speciic features.

We can see two main lines of work for developers. Either they write speciic apps for devices that

run the Android OS, or they write apps on phones and tablets that talk to APIs offered by a certain

gadget via Bluetooth or WiFi.

In an attempt to standardize the API between gadgets and the Android OS, Google is launching

Android Wear, a version of the Android OS speciic to the wearable realm. The idea is to create

an operating system for wearables that can easily sync with other Android devices. In that way,

Android Wear will offer app developers a simple way to operate rich notiications more than a

full‐ledged system to create applications.

Some players that came earlier than others to the wearable business—like Sony —seemed unin-

terested in Android Wear, and were willing to stick with its own SDK to create apps for its

SmartWatch ecosystem. But with the arrival of Wear 2.0, the second revision of Android Wear, Sony

announced that the 3rd generation of the Sony SmartWatch will also be an Android Wear device.

6 ❘ CHAPtER 1 IntroductIon to AndroId WeArAbles

fashion is more than ski jackets

Wearables offer more than computation power and technical advancement. They are objects we

carry with us every day, and they are fashion statements. To succeed as products, wearables have to

be desirable. Fashion plays a huge role in this.

The reason for the title of this section is that one of the irst applications in the ield of wearable

technology was an iPod controller embedded in the sleeve of ski jackets. These so‐called soft buttons

are a version of the tactile switches on many contemporary printed circuit boards (PCBs). They are

made of soft materials such as conductive fabrics, foams, and threads.

Fashion, as a creative endeavor, is extremely important in the development of wearable technology

as we know it today. Beyond the simplistic approach offered by the ski jacket, we ind designers

trying to look at conductive materials with different eyes. A good example is the collaboration

between Hussein Chalayan and Moritz Waldemeyer in 2007 that resulted in a collection of robotic

dresses. These dresses use electromechanical parts to change their shape as the models walk down

the runway. Making small, on‐the‐ly modiications to the surface of one garment in particular

causes it to change into the style of a dress from the ’40s, ’50s, or ’60s. These dresses are designed

for the runway, not mainstream consumers, but they show how far it is possible to push technology,

embedding motors and sensors in minimal space.

A piece closer to the topic of this book is the T‐shirt OS project created by design couple

CuteCircuit. Their T‐shirt with 1,024 pixels arranged in a 32‐by‐32 grid can display nearly

anything. It can show notiications coming from your mobile device, and it also has an

accelerometer, camera, microphone, and speakers. You control it using a mobile phone app. Besides

shirts, CuteCircuit have embedded LEDs in dresses and the leather jackets musical group U2 wore

during one of their tours.

In a sense, the garment is an extension of the phone, almost like a smartwatch. But because of its

wearable nature, it makes people behave differently. Suppose your T‐shirt displayed your heart rate

as you walked down the street. Don’t you think you would try to move in a way that your shirt

wouldn’t tell others how out of shape you are?

Another aspect of wearable technology is that, because we wear it all the time, we forget we are

carrying it, and then it makes us change our behavior and relationships to others.

Currently, only the garments mentioned here run Android or Android Wear. For the time being, the

kinds of gadgets we can focus on are smartwatches, glasses, bracelets, and other activity trackers.

But we believe that in a couple of years, more products like CuteCircuit’s T‐shirt will make it to the

mass market, and we will see people programming their clothes.

fitness

Activity bands, or itness trackers, are devices that help you keep track of your daily physical

effort. Typically, these devices communicate with your phone via an app that lets you do basic

coniguration on them and load data from the speciic sensors on the band. Examples of this

category of device are Fitbit, SmartBand, Jawbone, Fuel, and Misit. And new products continue to

be created.

time ❘ 7

Most of these bands work through APIs, a series of callback functions that can be accessed via

Bluetooth to get information about the sensors, alarms, and so on. The way software is constructed

within these activity bands makes them pretty simple.

A strict deinition of wearable computing requires the devices part of this categorization to be repro-

grammable; they must be adjustable to different use scenarios. In other words, a wearable computer

is a general‐purpose machine that people wear close to their bodies. However, the deinition has

softened over time. New types of devices, such as activity bands, are not truly reprogrammable but

offer APIs that let you use them as part of a bigger system.

One of the most direct applications of activity bands is improving health conditions, mostly on the

preventive side of the issue. More complex sensors and smart uses of existing sensors such as accel-

erometers let you gather all sorts of information in an instant: temperature, pulse, blood pressure,

galvanic skin resistance, steps walked in the last 24 hours. Even if no commercial band is yet ready to

diagnose anything, the potential of the preventive‐medicine applications of these wearables is endless.

time

Smartphones pushed watches out of our lives. The most basic function of the watch, showing the

time, became superluous when mobile phones included that function. During the last couple of

years, technology manufacturers have realized that adding connectivity to the watch, thus making it

a smart device, was the added value the watch needed to be hyped again.

We have seen how giants such as Samsung, LG, and Sony have started looding the market with

watches that are nothing but an extension of phones or tablets. Most smartwatches offer an

interface to our cloud that doesn’t require us to take something out of our pocket all the time.

Android Wear, the new SDK by Google, basically offers an easy way to create software for smart-

watches from vendors that are ready to follow some speciications. Watches are powerful com-

putational units, including touch screens, sensors, a microphone, and a camera. The production

of software for each of these devices used to require downloading the respective SDK from the

manufacturer and writing code for the device under the manufacturer’s terms. Android Wear tries

to make things easier for app developers, so that they need to deal with only a single way to write

applications for watches.

everYthing can be hacked

As mentioned earlier, smartwatches, activity bands, and other wearable garments

correspond pretty well to the embedded computer model. In essence, they are a

small computer running a special‐state machine that allows them to run some sub‐

applications on top.

Considering that nowadays most development tools for microcontrollers offer

open source equivalents, it is possible with a little effort to create alternative‐state

machines or even SDKs for a wearable device.

continues

8 ❘ CHAPtER 1 IntroductIon to AndroId WeArAbles

glasses

Visual augmentation is probably the most interesting kind of wearable. It merges ields such as com-

puter vision and augmented reality into something useful for everyday life.

In 1981, Steve Mann created the EyeTap. Worn in front of the eye, it acts as a camera to record what

the wearer sees and also superimposes computer‐generated imagery on the scene. This artifact is a true

ancestor to Google Glass that has been through several iterations. It even comes in waterproof versions.

As a matter of fact, Mann is one of the main critics of the design of Google Glass. As the inventor

of one of the most advanced display technologies, he has created his own opportunities by becoming

In the summer of 2013, Arduino Verkstad, the Swedish ofice of the Arduino open

source project, was challenged by Sony’s design ofice to hack the Sony SmartWatch

version 1.

Thanks to some initial hints about the peripherals contained in the SmartWatch, the

Arduino developers put together a version of their software tools to reprogram

the SmartWatch. Figure 1-1 shows the SmartWatch running self‐made code using the

Arduino IDE.

Hacking is not the focus of this book. We want to focus on standard methods of

producing code for Android wearables. We want to teach you how to create apps

that can later be deployed in many devices at once.

continued

figure 1-1: Sony SmartWatch v1 hacked to be programmed using the Arduino IDE by

Arduino Verkstad (image by Asier Arranz)

summary ❘ 9

chief scientist of Meta, a company developing a wearable computer with 15 times the display size

of Google Glass. He is pushing for a new HCI paradigm called zero user interface (ZUI), in which

the user will be able to interact manually with holograms projected by the AR glasses. It looks as

though these SpaceGlasses will not run Android but their own 3D operating system.

In a way, this seems to be the paradigm of 3D interaction with interpersonal space. Oblong, another

U.S.‐based company, has been developing an NUI in which users interact with the space around

them and have their actions recorded by an array of infrared cameras. John Underkofler, chief

scientist at Oblong, designed the famous UI for the movie Minority Report. Oblong’s irst series of

products are based on Minority Report’s UI and use state‐of‐the‐art technology. However, as stated

on Oblong’s website, its main discovery is not the gestural interface, a type of NUI, but a new type

of OS that can support multiple users, devices, and screens and that is strongly networked.

A detailed discussion of the products from Meta and Oblong is outside the scope of this book.

Although they are technologically interesting, their realization doesn’t involve Android. However,

they are worth mentioning because they explore the same kinds of user interfaces we will develop in

this book using other devices that connect to the Android OS.

A third company, Vuzix, has created a set of AR glasses that support features that are relevant to

us: notiications, cue cards, and voice commands. (These three topics are covered in Part II, and the

Vuzix glasses are covered in Chapter 11.) This piece of technology is an Android device in itself.

Unlike other smart devices that run their own embedded code and offer Android‐friendly APIs

to Android phones and tablets, the Vuzix glasses run Android as their OS. It is possible to create

applications for them using standard development tools.

Project Glass is Google’s approach to this category of wearable devices. It’s currently unclear

whether Glass will become part of the Android Wear SDK or if it will remain a separate Android

device, just as the Vuzix glasses do. Glass and Vuzix are similar, although Vuzix focuses much more

on the professional application sector, with its suite of AR applications.

summarY

This chapter has introduced the concept of wearable computing. It included a basic timeline of how

the ield has evolved over the last 30 years.

Wearable computing is a not‐so‐new computing paradigm that is about to transform the way we use

technology as much as tablets did only a few years ago. Technology is now mature enough to force

smart devices out of our pockets and onto our wrists in the form of bracelets and watches, or in

front of our eyes as augmented reality glasses.

Technology vendors look at ways to make money out these new trends and offer new chipsets, APIs,

innovative battery systems, etc. Google has igured out how to incorporate a lot of the research

done in the ield over the last decades into a series of software APIs to explore the communication

between wearable devices and their surroundings in an easy way. This book will be mostly about

getting different devices we carry on us to talk to each other, share information and trigger events.

Chapter 2 will invite you to look into the current paradigm of connected devices: the Internet of

Things.

10 ❘ CHAPtER 1 IntroductIon to AndroId WeArAbles

recommended reading

Interview with Neil Harbisson at http://www.ara.cat/premium/societat/No‐blancs‐negres‐
tots‐taronges_0_411558847.html

Moritz Waldemeyer online portfolio at http://www.waldemeyer.com/hussein‐chalayan‐
111‐robotic‐dresses

Kiana Tehrani and Andrew Michael. “Wearable Technology and Wearable Devices: Everything You
Need to Know.” March 2014. Wearable Devices Magazine, WearableDevices.com.

The Jakarta Globe website at http://www.thejakartaglobe.com/archive/internet‐users‐in‐
indonesia‐to‐triple‐by‐2015‐report/

http://www.ara.cat/premium/societat/No-blancs-negres-tots-taronges_0_411558847.html
http://www.waldemeyer.com/hussein%E2%80%90chalayan%E2%80%90111%E2%80%90robotic%E2%80%90dresses
http://www.waldemeyer.com/hussein%E2%80%90chalayan%E2%80%90111%E2%80%90robotic%E2%80%90dresses
http://www.thejakartaglobe.com/archive/internet-users-in-indonesia-to-triple-by-2015-report/
http://www.ara.cat/premium/societat/No-blancs-negres-tots-taronges_0_411558847.html
http://www.thejakartaglobe.com/archive/internet-users-in-indonesia-to-triple-by-2015-report/

the Internet of things

What’s in this chaPter?

 ➤ The Internet of Things and the Internet of Everything

 ➤ The 2020 vision: 50 billion connected devices

 ➤ Categories of devices

The Internet of Things (IoT) is a concept that states that everything that can be connected

will be connected. This computing paradigm evolved from both ubiquitous computing and

pervasive computing. IoT has three basic rules:

 1. Connectivity is key. Objects will connect to each other either directly or through other

devices using many technologies. Connectivity implies over the air (OTA) updates.

Suppose a series of embedded devices in the home required irmware upgrades. If they

didn’t follow an OTA strategy, you would have to run a cable to each one to change

their basic coniguration.

 2. Each device will have a unique identiier to distinguish it from others via software.

Technologies such as IPv6 allow devices to have searchable identiiers (IP numbers)

within the group, but internally the devices need a unique identiier to distinguish them

from the rest.

 3. Communication devices should provide encryption so that users can hide information

as needed.

hoW Wearables relate to iot

Wearable devices play an important role in this vision. They are IoT devices in the sense that

they are always connected to the Internet, even if it is through a device such as a phone or tab-

let. Many people already own or plan to purchase wearables for itness or medical reasons.

2

12 ❘ CHAPtER 2 the Internet of thIngs

Eventually wearables will become essential work tools. Imagine factory workers wearing bracelets

that report their vital statistics as well as information about their environment. Imagine workers

processing food using gloves that analyze the food’s quality at the chemical level. Imagine police

oficers wearing glasses that display information about passing vehicles. Imagine nurses wearing

rings that monitor patients’ blood pressure and upload the information to their chart.

Warning The future of wearables goes hand in hand with the future of IoT. You
could say that one informs the other and that one couldn’t exist without the other.

the Promise of connectivitY

In February 2011, communications technology company Ericsson published a whitepaper describing

the company’s vision of 50 billion connected devices by the year 2020. Connected technology will

reach many ields. It will cause more disruption in some ields than others, as shown in Figure 2-1.

This igure is based on a memo from Cisco presented in January 2014.

figure 2-1: Information and communication technologies (ICT) disruptive potential versus

speed of uptake by ield of application (source: Cisco)

the Promise of Connectivity ❘ 13

Connectivity is one of the most important topics discussed in this book. Only networks that allow

for exponential scalability will make it possible. The decrease in cost per gigabyte of transfer is also

an important factor in the explosion of connected technologies. This vision goes beyond smart living

and game technologies. It can be applied to every ield of our lives.

cisco’s vision
Ericsson’s report was the beginning of a war of numbers. Cisco estimated that by 2020 the world

population will be 7.6 billion, compared to the current 7.2 billion. Ericsson suggested that, despite

this relatively slow population growth, the number of connected devices will increase from the

current 12.5 billion to as many as 50 billion. If you think about simple home devices that can

be connected, such as electric meters and smoke alarms, 12.5 billion sounds too small.

An online article in Time magazine after the global consumer electronics and consumer technology

trade show CES 2014 elaborated on Cisco’s vision. It looked at market researcher IDC, which

projects that by 2020, 220 billion connected devices will be in use. Every company predicts

a different number of connected devices because each company uses a different way to deine

“connected device.”

We will say that a device is connected as soon as it can reach the Internet, even if it does so through

a third party. In this way, your refrigerator, your car, your mobile phone, your garden sensor report-

ing soil moisture, and your activity band are all connected devices. They are technological tools that

possess some computational power, that can connect to the Internet, and that can be used to read a

sensor or control an actuator (or both).

big data
Big data refers to collections of data that are so large that they cannot be computed by traditional

means. This could be due to the multiplicity of data sources to be compared or to the size of each

one of the records. Here are some examples of big data:

 ➤ The location of every mobile phone in a certain country

 ➤ The collection of all Google searches for white Americans over 25 years of age

 ➤ What products of a certain brand are bought at supermarkets in Spain by customers younger

than 40, cross‐referenced with the location of the most commonly bought products in the store

All these cases can provide interesting sets of data that, when explored carefully, could become

interesting from both a research and marketing point of view. But how are we meant to approach

the problem of all of these data sets? How will we generate them? Who will curate that data, ilter

it, and make it available?

Cisco brings to the conversation the idea that the amount of data generated in this globally

connected network, which some people call the Internet of Everything (IoE), will be so big that

we will need distributed computation closer to the data sources. It will be virtually impossible to

process all the data sent to the cloud. Think about the number of sensors and actuators in a car. It

would be impossible for all the cars in the world to report all that data to the cloud. The systems

will have more embedded intelligence and will share only meaningful data.

14 ❘ CHAPtER 2 the Internet of thIngs

Silicon vendors such as Qualcomm, Atmel, Intel, Broadcom, ST, and Texas Instruments are trying to

produce the best platforms to stay always on and always connected. Those handling the spectrum,

such as AT&T, Telefonica, and Vodafone, have their own way of understanding where the value of

IoT lies. The following sections discuss different applications of IoT beyond wearable computing.

connected devices in the home

In the home, it makes sense to connect security and safety devices. An IP security camera that

streams to the Internet, a smoke alarm, and a burglar alarm are perfect examples. Other examples

include anything dedicated to measuring and accounting for how you use resources, such as your

electric, water, and gas meters. They all have a clear application; being connected brings an added

level of service. Other machines in your home also can beneit from being connected.

Suppose you buy an induction stove. This type of stove is probably the most complex piece of engi-

neering in your kitchen. It contains multiple processors that regulate radio waves that heat metallic

materials. Besides having all the typical intelligence of any device in the home, these appliances run

small neural networks to, for example, determine whether the pot on the stove is made of steel or

aluminum. The latter is much less eficient at transferring heat. Therefore, the stove will refuse to

heat an aluminum pot. Many of these operations require dedicated microchips (ASICs) instead of

general‐purpose processors like the ones commanding your microwave. As a result, an induction

stove ends up being more expensive than almost anything else in your kitchen.

Currently, the price of adding something as simple as a WiFi or Bluetooth modem to your stove is

nothing compared to the appliance’s cost. But other devices, such as a water heater or an inexpensive

coffeemaker, are much less expensive, so the price of connecting them to the Internet might not be worth

it. If there were a good reason to connect such appliances, we probably would have done so already.

The SandS project, which stands for social and smart, is a series of pilot projects undertaken

by the European Commission in which intelligent home appliances connect to the Internet. The

project, which started near the end of 2012, has brought together researchers from seven European

institutions and companies, working to build connected washing machines, ovens, refrigerators,

bread‐baking machines, and other appliances.

If you need help programming your washing machine to remove a strawberry stain from a shirt, you

can tell the system to look for appropriate cleaning “recipes” in the SandS cloud service. It translates

a natural‐language request such as “Remove strawberry stain from white shirt” into a piece of XML

that gives you the best recipe for your speciic machine. The program then is automatically down-

loaded to your machine, leaving it ready to run.

Another example is the more complex activity of baking. It is a long process that requires adjusting

the temperature as you go, or the direction of the heat (from the top or bottom, with or without

ventilation). Again, the technical “recipe” could be downloaded from the cloud to the oven.

This process is what the SandS project is experimenting with, and this is what the connected home

could be like if the researchers behind the project succeed. However, remember that, even if your

coffeemaker is connected to the Internet (see Figure 2-2), you still need to put in water and coffee

grounds. And even if your washing machine downloads “recipes” from the cloud, you still need to

put the clothes in.

www.allitebooks.com

http://www.allitebooks.org

Connected Devices on the Go ❘ 15

connected devices on the go

What we call the on the go (OTG) category of IoT devices refers to devices that people can either

wear or carry as they move. This group is composed of mostly small, lightweight gadgets that it in

our pockets. They are usually not connected directly to the Internet, but to our smartphones or tab-

lets. Some of them are wearables, but that is not their deining characteristic.

OTG sensors are already common. They create small networks with your smartphone, mostly via

Bluetooth. Examples include the famous Nike+® or any pedometer that tells your phone how far

you’ve walked. There are also luggage tags that report whether your suitcase made it to the baggage

claim area at the airport. Pacemakers that can be read via radio also fall into this category. Any

ultraportable device that runs on batteries and acts as an extra input to your phone or tablet is an

OTG device.

Information extracted from OTG devices can be shared via the Internet. Your health habits can be

sent directly to your doctor. You may want to share your running records with friends living far

away.

OTG actuators are still in their infancy. It isn’t that technology isn’t ready, but that we haven’t really

found a use for it. Some examples from the worlds of product and fashion design could be classiied

as OTG actuators. For example, a mini Segway for Android phones can transform your phone into

a small, two‐wheeled robot. T‐shirts with lat LED displays pulse to the music sent by your tablet.

Many of the new wearables, like some of the interactive rings announced during 2014, include

nine‐axis accelerometer sensors and tiny vibrators to give the users physical feedback.

figure 2-2: Connected coffeemaker for the SandS EU research project (source: Arduino)

16 ❘ CHAPtER 2 the Internet of thIngs

Bluetooth and near ield communication are the most relevant technologies in the OTG category of

IoT devices. They create piconets of devices that move with you. In essence, each of us is like a small

walking version of the Internet. As explained in the section “Cisco’s Vision,” our phones and tablets

are the gateway to the Internet, making that small bubble of wireless sensor information loating

around us available to others.

Wireless sensor netWorks

The OTG category describes the emergent ield of technologies that aren’t necessarily wearable but

that are at least easily portable. A much more clearly deined category within IoT has been around

for some time—the one dedicated to wireless sensor networks (WSNs). This ield, which has existed

for years, is devoted to creating smart networks that can be deployed quickly to monitor buildings,

measure environmental data in farm ields, track farm animal activity, or simply collect data about

your home.

The main characteristic of WSNs is that they use wireless technology to cover a certain area. One

of their most relevant aspects is that they are meshed. In other words, it is possible to extend the

network by simply adding new nodes to it. Information is automatically routed from one node to

the next until it reaches the gateway that in turn connects to the Internet. Figure 2-3 illustrates this

functionality.

Gateway

Node

figure 2-3: Mesh network architecture

a scenario of use of Wsn
A typical WSN scenario is a network that monitors patients in a hospital. Most hospitals were

built some time ago. Therefore, it is not easy to make these buildings “smart.” A simple way to do

so would be to install a WSN to monitor something like the room temperature in different areas,

informing the building’s maintenance staff if the heating or air-conditioning systems aren’t working.

smart Cities ❘ 17

Another example would be to monitor patients to keep them from leaving their rooms when they

shouldn’t. All this information can be sent to a central system, where the data can be visualized.

Deploying a network like this one the traditional way would be complicated. On the other hand,

using WSN to cover the whole hospital would be as simple as adding sensors to the corridors and

rooms. By doing so, you could build a mesh network that you can grow as much as needed.

As you can imagine, this way of transferring data does not support high speeds, because the data

packages make multiple jumps between devices before reaching their destination. But it is good

enough for scenarios like the ones described here.

bluetooth versus Zigbee
Both ZigBee and the latest version of Bluetooth can deploy mesh networks. Meshed networks

have been implemented over WiFi, but not many vendors support it. ZigBee and Bluetooth were

speciically designed with this “meshed network” scenario in mind.

ZigBee and Bluetooth operate in the same part of the open radio frequency spectrum (around

2.4GHz, a band where anyone can transmit without having to request special permissions from the

authorities) and handle multiple channels in a similar way. Unlike WiFi, they take tiny portions of

the spectrum and transmit for short periods of time. Then they jump to a different channel to con-

tinue transmitting there. This technique is called frequency hopping and allows technologies to be

combined.

In this way, even if you have a WiFi network on 2.4GHz, you can also have a series of Bluetooth or

ZigBee devices on the same portion of the spectrum. Bluetooth takes larger portions of the signal

space but at lower energy averages, whereas ZigBee devices take smaller fractions of the spectrum

but use more energy. The average interference of Bluetooth or ZigBee on WiFi can be cleaned eas-

ily via software. At the same time, the noise produced by WiFi on the others is too far below the

threshold to be noticed.

Both ZigBee and Bluetooth are low‐power techniques. Sensors running on either of these technologies

can run on coin batteries for years if their refresh rate is low (a couple of times per minute).

Bluetooth has been around longer than ZigBee and is available in most mobile devices and laptops.

This makes it likely to win in the long run. However, Bluetooth’s mesh capabilities have only been

available for about a year. This means that some companies have already invested in deploying

ZigBee networks. Therefore, it is hard to know at this point which one will be used more in the

future within WSNs.

One of the best possible uses of WSNs are smart cities, as described in the next section.

smart cities

Most people live in cities, allowing them to share resources eficiently through infrastructure such as

water utilities and highways. Infrastructure also helps residents get access to human resources such

as doctors, education, and meeting other people for recreation.

What makes a city “smart” is its ability to connect the infrastructure to a network so that services

can be created to better inform citizens about the availability of resources. An example is the public

18 ❘ CHAPtER 2 the Internet of thIngs

transportation system. If the buses report their locations, intelligent bus stops will know when the

next bus is expected. Another example is detecting amounts of nighttime trafic to decide how many

streetlights are needed to keep the streets safe while keeping energy consumption low. Rental cars

could act as a moving sensor network to report trafic jams or even pollution levels.

As you can see, the possibilities are endless. The question with smart cities is whether data gathered

by public systems should be made public. If it isn’t, this is usually because sharing the data requires

infrastructure. If the data is made public, individuals and companies could study it and use it to

propose changes or new services.

summarY

This chapter introduced the Internet of Things and the relationship of this ield to wearable

technology. You read about the vision of a connected future as interpreted by different companies.

You learned terms such as the Internet of Everything, big data, and smart cities.

All of these topics are related in some way. For example, it is hard to imagine a scenario where you

would have smart devices but not be part of a smart city infrastructure. The main vision to keep in

mind is that there will be a network of automatically connected devices—this is part of IoT evolving

from the Machine to Machine (M2M) business. At the same time there will be a network of

personal devices that are connected, and the wearable devices fall within this category. It is like

having a cloud of devices in parallel to a cloud of people.

The next chapter introduces the software tools (SDK) needed to write code for wearable devices

running Android. Get closer to an Internet connection, because you will need to download some

software!

recommended reading

“More than 50 billion connected devices.” Whitepaper by Ericsson. February 2011.
http://david.cuartielles.com/files/2014/2011_Ericsson‐More‐than‐50‐billion‐

connected‐devices.pdf

Tim Bajarin. “The next big thing for tech: the Internet of Everything.” Time. January 13, 2014.
http://time.com/539/the‐next‐big‐thing‐for‐tech‐the‐internet‐of‐everything/

http://david.cuartielles.com/files/2014/2011_Ericsson%E2%80%90More%E2%80%90than%E2%80%9050%E2%80%90billion%E2%80%90connected%E2%80%90devices.pdf
http://david.cuartielles.com/files/2014/2011_Ericsson%E2%80%90More%E2%80%90than%E2%80%9050%E2%80%90billion%E2%80%90connected%E2%80%90devices.pdf
http://david.cuartielles.com/files/2014/2011_Ericsson%E2%80%90More%E2%80%90than%E2%80%9050%E2%80%90billion%E2%80%90connected%E2%80%90devices.pdf
http://time.com/539/the-next-big-thing-for-tech-the-internet-of-everything/

Platforms and technology

What’s in this chaPter?

 ➤ Installing the Android Wear SDK

 ➤ Working with emulators and real devices

 ➤ Connecting the Android Wear Preview App to your Wear emulator

 ➤ Importing and running your irst Android Wear project

Wrox.com code doWnloads for this chaPter

The wrox.com code downloads for this chapter are found at www.wrox.com/go/

androidwearables on the Download Code tab. The code is in the Chapter 3 download and

the ilename is Listing_3‐1.gradle.

android Wear

Android Wear is Google’s attempt to bring order to a market that historically has been

fairly scattered. Looking at recent releases in the smartwatch and wearables category for

the mass market, you’ll notice that most device manufacturers, such as Samsung and Sony,

use proprietary tools and libraries. This puts third‐party developers like you and me in an

awkward position. We have to either support just one system, such as Samsung’s Tizen, or

build more‐complex applications that use SDKs from multiple device vendors.

Most Android Wear devices are designed as an extension to a standard Android smartphone,

providing new forms of interaction and more direct feedback from your Wear‐enabled

Android apps by using specially designed notiications and apps.

3

http://www.wrox.com/go/androidwearables
http://www.wrox.com/go/androidwearables

20 ❘ ChaPTer 3 PlAtforms And technology

installing the Wear sdk

Before you can start developing for Android Wear you need to make sure your development

environment is set up to support it. The following are requirements for developing for Android Wear:

 ➤ Android Studio, at least version 0.8.0, is almost a requirement when developing for Android

Wear. Of course you can use other IDEs as well, but Android Studio comes with a set of

Wear‐speciic tools and starter kits that make getting started with Wear a breeze.

 ➤ An Android SDK that has support for Android Wear; the irst version that supports Wear is

4.4W (API 20).

 ➤ The Android Support Repository version 4 or version 13 (which happens to include the

changes in version 4).

 ➤ A mobile phone running at least Android 4.3 (API 18).

You should also go ahead and install the appropriate Android Wear System Image, in most

cases this is the Intel x86 Atom, and create an emulator. A good practice is creating at least two

emulators, one for the rectangular screen and one of the circular screen.

Working With the android Wear emulator

Android Wear comes in two screen conigurations, rectangular and round. You should set up

one emulator for each coniguration. Go ahead and create an emulator for both the Round screen

(Figure 3-1) and the Rectangular screen (Figure 3-2).

figure 3-1: Round Android Wear emulator figure 3-2: Square Android Wear emulator

Working with the android Wear emulator ❘ 21

Because the Android Wear device is an extension to your normal Android device, you also need a

connection to your normal phone to receive notiications. Google’s Android Wear App connects to

your Emulator.

You can download the Android Wear App from https://play.google.com/store/apps/

details?id=com.google.android.wearable.app.

After you’ve installed the Android Wear App, you see the screen shown in Figure 3-3.

The Android Wear App works as a bridge between your real Android device (or a second emulator).

Setting up a connection between your real Android device and the Wear emulator is easy, but you

need some familiarity with the Android Debug Bridge (ADB).

note It’s a good idea to keep the hardware keyboard available for Wear emula-
tors even though a real device has no keyboard. The idea is to mimic the voice
input that is unavailable on an emulator.

figure 3-3: The Android Wear App screen

https://play.google.com/store/apps/details?id=com.google.android.wearable.app
https://play.google.com/store/apps/details?id=com.google.android.wearable.app

22 ❘ ChaPTer 3 PlAtforms And technology

To set up the connection, follow these steps:

 1. Start your Wear emulator.

 2. Connect your Android device to your computer.

 3. Verify that both devices are properly connected to the ADB by typing adb devices.

 4. With the Android Wear App running, type adb ‐d forward tcp:5601 tcp:5601.

 5. Press the Connect button on your Android device. If the connection is successful, you should

see the screen shown in Figure 3-4.

Working With a real Wear‐enabled device

There are currently two different Android Wear devices available: the LG G Watch and the Samsung

Gear Live, and they both use square screens. Motorola has announced a round watch which will be

available soon.

android debug bridge

If you’re using Android Studio on a Windows machine, you should ind your

adb tool under C:\Users\username\AppData\Local\Android\android‐studio\sdk\

platform‐tools. To access the adb tool, follow these steps:

 1. Open the command prompt.

 2. Type cd C:\Users\username\AppData\Local\Android\android‐studio\sdk\

platform‐tools.

 3. If you run adb.exe, you should see a list of possible commands.

 4. To list all the connected Android devices (including Wear emulators), run adb

.exe devices.

To get better acquainted with the ADB command set, visit http://developer

.android.com/tools/help/adb.html#commandsummary and review all the

commands. This chapter focuses on the port forward command.

note You can see all the available devices at https://play.google.com/
store/devices. If you don’t see any Wear devices on that website, don’t be
alarmed—Android Wear is still only available in a limited number of countries.
Sweden, where I live, is not on that list yet.

http://developer.android.com/tools/help/adb.html#commandsummary
https://play.google.com/store/devices
http://developer.android.com/tools/help/adb.html#commandsummary
https://play.google.com/store/devices

Working with a real Wear‐enabled Device ❘ 23

To work with either of these devices during development you irst need to pair the Wear device to

your Android Phone. But irst, lets become a developer!

 1. Tap the screen on your Wear device once.

 2. Instead of asking Wear to do something for you, scroll down to select Settings.

 3. Again, scroll down and select About.

 4. Find the row that says Build number and start tapping it like your life depended on it.

 5. Eventually (after 7 or so taps) the device surrenders to your persistence and grants you

developer permissions.

 6. Go back by swiping to the right, then open the Developer options.

 7. Enable both ADB debugging and Debug over Bluetooth.

figure 3-4: Successful connection between the

Wear emulator and an Android device

24 ❘ ChaPTer 3 PlAtforms And technology

With the Wear connected and having allowed USB debugging for your computer, you’re all set! Just

remember to select the correct device when uploading apps from Android Studio—you shouldn’t

install mobile apps on the Wear, or Wear apps on the mobile.

If you prefer to limit the amount of cables on your desk you can choose to debug over Bluetooth.

Enable the setting for Bluetooth debugging in your Wear companion app.

 1. With the companion app open, open the menu and select Settings.

 2. Connect the mobile phone to your computer over ADB and enter adb forward tcp:4444

localabstract:/adb‐hub and adb connect localhost:4444.

 3. If you were successful the status in the companion app should list both the host and the

target as connected.

kick‐starting Your Wear develoPment

Now that your Android device and your Wear emulator are connected, your next step is diving

straight into development.

Download the sample applications for Android 4.4W using the SDK Manager. Let’s install one of

them to test the connection using the following steps:

 1. Find your Android SDK location.

 2. Navigate to the samples directory.

Now it’s time to connect your Wear device to your development environment; when you connect

your Wear device to your computer you’ll get the typical “Allow USB Debugging” dialog, but you’ll

get it on the phone instead of the Wear device, as shown in Figure 3-5.

figure 3-5: Allow USB Debugging on Wear

www.allitebooks.com

http://www.allitebooks.org

Distributing Wear apps on Google Play ❘ 25

If everything goes well, you should see the view shown

in Figure 3-6.

Select one of the recipes. You should see the

walk-through start on your Wear emulator. Figure 3-7

shows the irst step in the beef brisket chili recipe.

A common misconception when developing Wear

apps is that you should install apps straight to the

Wear device. This is not the intended worklow when

developing for Wear. You should avoid installing apps

straight to the emulator, because the result may cause

undocumented behavior.

distributing Wear aPPs on
google PlaY

Installing apps directly on the Wear device is only

available when developing through the ADB tool. If

you want to distribute an app for Wear devices on

Google Play, you will need to package this inside a

standard app.

When installing an app with a wearable component

from Google Play, the app is automatically pushed

from your phone to the Wear device.

 3. You should ind an application called Recipe Assistant, which is a simple app providing step‐

by‐step cooking instructions. Remember the path.

 4. Open Android Studio.

 5. Select File ➢ Import Project.

 6. Navigate to the RecipeAssistant project folder, and click OK.

 7. Select Run ➢ Run.

Warning When importing the sample application, you may have issues
regarding a wrong version of Android Build Tools. To ix this, open the build
.gradle ile and change the buildToolsVersion to the build tools installed on
your system. For me this is 20.

figure 3-6: Recipe Assistant

26 ❘ ChaPTer 3 PlAtforms And technology

For this to work you need to package the application properly before you release it on Google Play.

The following steps quickly describe how to package your Wear app for Google Play:

 1. Open the mobile build.gradle ile and add the wearApp to your dependencies, if it’s not

already added (code ilename: Listing_3‐1.gradle).

listing 3‐1: adding the wearapp dependency

{
 compile fileTree(dir: 'libs', include: ['*.jar'])
 wearApp project(':wear')
 compile 'com.google.android.gms:play-services-wearable:+
}

 2. From the Build menu, select Generate Signed APK and follow the instructions.

 3. Log into your Google Play Developer Console and publish your new Wear‐enabled app.

summarY

This chapter has introduced the Android Wear system, its ideas, and its position within the Android

ecosystem. You also kick‐started your development by creating a Wear emulator and connected it

to the Android Wear App. If you have a real Wear device, you probably also tested connecting that

device to your real phone. You inished this chapter by installing your irst Android Wear‐enabled

app to your phone and making sure it connected to your emulator properly. Finally, you looked at

special considerations for distributing Wear‐enabled applications on Google Play.

Coming up in Chapter 4, you’ll learn about building notiications tailored speciically for Android

Wear.

figure 3-7: Steps 1 through 3 of preparing beef brisket chili

PART II

basic building blocks

 ▸ chaPter 4: Notiications on Small Screens

 ▸ chaPter 5: Developing Wear Apps

 ▸ chaPter 6: Voice Input

 ▸ chaPter 7: Pushing Data

 ▸ chaPter 8: Location-Based Services on Android Wear

Notiications on Small Screens

What’s in this chaPter?

 ➤ Notiication overview

 ➤ How to build notiications

 ➤ How to build Wear‐enabled notiications

Wrox.com code doWnloads for this chaPter

The wrox.com code downloads for this chapter are found at www.wrox.com/go/

androidwearables on the Download Code tab. The code is in the Chapter 4 download and

the iles are named according to the Listing numbers noted throughout the chapter.

about notifications

Notiications are one of two essential ways of telling the user what is currently going on. Since

its release, Android has seen the Notiications grow from displaying simple messages onscreen

to becoming core interactive elements of the Android app.

Starting somewhere around Android version 4.1, you could build large custom notiications

with multiple optional actions that link directly to your underlying application. This makes

interactions with your application short and simple. Your users no longer need to open your

application to interact with it.

With Android Wear, Google has kept this strategy. Notiications play a large role in how

the user interacts with your application, through what Google calls microinteractions. Each

notiication in Wear can consist of many subnotiications called pages. Each page is a small

part of the whole notiication experience, such as information, interactions, or feedback.

4

http://www.wrox.com/go/androidwearables
http://www.wrox.com/go/androidwearables

30 ❘ ChaPTer 4 notIfIcAtIons on smAll screens

Pre‐Wear notiication api
Since Android 3.0 (or API 11, depending on your preference), you have been able to use the

Notification.Builder class to create notiications. Table 4-1 describes some of the options used

most frequently to build notiications for Android handheld devices.

taBle 4-1: Notiication Options for Handheld Devices

method desCription required?

setContent(RemoteViews) Selects a custom layout object using a

RemoteViews object, similar to a normal View

object. In Wear these RemoteViews simply

show the notiication’s content, ignoring any

custom layout you may have created.

No

setContentInfo(CharSequence) Conveys a minor piece of extra information,

such as the number of new messages in your

app

No

setContentIntent(CharSequence) Sets a speciic action to take when the user

clicks your notiication

No

setContentText(CharSequence) Sets a detailed message for your notiication No

setContentTitle(CharSequence) Sets the title of your notiication No

setLargeIcon(Bitmap) Sets a large icon for your notiication No

setPriority(int) Sets the priority for your notiication and tells

the system how to display or not display your

notiication

No

setSmallIcon(int) Sets the small icon that should be displayed in

the status bar when your notiication is active

Yes

setStyle(Notification.Style) Let’s you further customize your notiication

with predeined styles

No

setWhen(long) Sets a timestamp that is important to your

notiication, such as when a message was sent

or received

No

As the table shows, only one item is required to show a notiication—the small icon. Everything else

is (technically) optional. A message and title are highly recommended. The same requirements are

true for Wear notiications.

Wear notiications
Notiications on Wear devices work much like notiications on handheld devices. However, instead

of presenting all notiications in a ListView, Wear takes a different approach. It uses a GridView, as

shown in Figure 4-1. In this Wear startup tutorial, each card or notiication takes up a full screen.

Navigating the grid is easy using swipe gestures.

about Notiications ❘ 31

As Figure 4-1 also shows, each notiication can consist of multiple messages. In Android each of

these is called a page and can be either purely informative or an action the user can take from

the watch. Examples include instantly replying to a message and opening an application on the

handheld device.

figure 4-1: Wear navigation

32 ❘ ChaPTer 4 notIfIcAtIons on smAll screens

You use wearable features by instantiating the WearableExtender class, applying each feature you

want your notiication to have, and then extending the Notification.Builder instance with the

new Wear‐speciic features. This process is detailed in Listing 4‐1.

listing 4‐1: applying Wear‐speciic features to your notiications

NotificationCompat.WearableExtender wearFeatures = new
 NotificationCompat.WearableExtender();

Notification notification = new NotificationCompat.Builder(this)
 .setContentTitle("My first notification")
 .setContentText("My first wear notification!")
 .extend(wearFeatures)
 .build();

You’ll read more details on all the new wearable features as you progress through the chapter,

building all the different types of notiications available in Wear.

Building notifiCations

There is no tangible difference between displaying notiications in Android Mobile or

Android Wear. The only difference is the classes you use. As you know, you can use the

NotificationManager class to launch notiications on handheld devices. However, it is always

recommended that you use NotificationManagerCompat instead of the NotificationManager

as it provides support on older devices as well as receives bug‐ixes and updates that don’t require

irmware updates. Since Wear introduces new features for the Wear‐enabled notiications, you need

Wear notiications use the standard API but also add extra features for Wear‐speciic notiications

through the NotificationCompat.WearableExtender class. Table 4-2 describes some of the new

wearable notiication features.

taBle 4-2: New Features in Wear Notiications

method desCription required?

addAction(Action) Lets you add actions that are accessible only on

Wear devices

No

addPage(Notification) Adds extra pages to your main notiication No

setBackground(Bitmap) Lets you add a background image for the Wear

notiication

No

setContentAction(int) Lets you link an action directly to the notiication No

setGravity(int) Sets the notiication’s location on the screen No

setHintHideIcon(boolean) Hides the application icon for the Wear notiication No

Building Notiications ❘ 33

to use the NotificationsManagerCompat class found in the support libraries (v4 or above). Listing

4‐2 shows how to acquire the handle for the new NotificationManagerCompat service.

listing 4‐2: Storing a reference to the NotificationManager

public class MyActivity extends Activity {

 NotificationManagerCompat mNotificationManager;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_my);

 mNotificationManager = NotificationManagerCompat.from(this);
 }
}

To show a notiication you use the notify(int, Notification) method from the

NotificationManagerCompat handle, passing a unique ID (and optionally a tag as well) of the

notiication you want to show and the notiication itself. Listing 4‐3 and Listing 4‐4 demonstrate this.

listing 4‐3: Showing a notiication with a unique identiier

int NOTIFICATION_ID = 1;

mNotificationManager.notify(NOTIFICATION_ID, notification);

listing 4‐4: Showing a notiication with a unique tag and identiier

String NOTIFICATION_TAG = "My notification";
int NOTIFICATION_ID = 1;

mNotificationManager.notify(NOTIFICATION_TAG, NOTIFICATION_ID, notification);

If you need different kinds of notiications in your app, use multiple notiication identiiers to

separate each notiication. If you’re using tags, it’s suficient to change the combination of tag and

identiier.

the simple notiication
Building the most basic notiication is easy. You pass the notiication’s core information to the

NotificationCompat.Builder class and launch it using NotificationManagerCompat. The core

information is the small icon, the content title, and the content text. Anything more is just icing on

the cake.

34 ❘ ChaPTer 4 notIfIcAtIons on smAll screens

adding a large icon
Wear notiications draw the application’s icon, deined in AndroidManifest.xml, in the upper‐right

corner of the notiication. So far you’ve seen the standard droid icon being used. To change this to

something more intriguing, you need to add a new icon to your application. Listing 4‐6 shows how

to add a custom icon to your manifest.

Listing 4‐5 shows how to build the simple notiication.

listing 4‐5: The basic notiication

Notification notification = new NotificationCompat.Builder(this)
 .setSmallIcon(R.drawable.wrox_logo_small)
 .setContentTitle("My notification")
 .setContentText("My first wear notification!")
 .build();

This notiication is generally used to display short messages that never stack.

It is not generally used to notify users about new e‐mails or chat messages.

Figure 4-2 shows the simple notiication.

note You’ll notice that in the examples I tend to use the standard Android
icons. I do this because it’s easy and the launcher icon ic_launcher.png is
automatically created for you when you make a new project in both Eclipse and
Android Studio. When building a “live” project, you should use a custom icon
that follows the icon design guidelines. For example, the notiication icon must
be 24‐by‐24 dp and use only lat white color. Read more about the icon design
guidelines at http://developer.android.com/design/style/iconography
.html.

figure 4-2: Basic text

notiication

Warning If the notiication doesn’t show up on your device or emulator,
be sure to enable notiication access for Android Wear. On your mobile, open
Settings and navigate to Sound & Notiications ➢ Notiication Access and select
Android Wear from the list.

You need to have the Wear Companion app installed. You can find it at

https://play.google.com/store/apps/details?id=com.google.android

.wearable.app. You must be logged in to your Google Play account to access

this app.

www.allitebooks.com

http://developer.android.com/design/style/iconography.html
https://play.google.com/store/apps/details?id=com.google.android.wearable.app
http://developer.android.com/design/style/iconography.html
https://play.google.com/store/apps/details?id=com.google.android.wearable.app
http://www.allitebooks.org

Building Notiications ❘ 35

listing 4‐6: Adding a custom icon to your Wear notiications

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.wrox.wear.chapter4">

 <application
 android:allowBackup="true"
 android:icon="@drawable/wrox_logo_big"
 android:label="@string/app_name"
 android:theme="@style/AppTheme">
 <activity
 android:name=".MyActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>

 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>
</manifest>

This example uses the Wrox logotype as the application icon, as shown

in Figure 4-3. When selecting your icon, you should consider the Android

design guidelines.

You may have noticed that the color changes when you switch the application

icon. Wear does this automatically to adjust your notiications background if

you haven’t set it manually.

Big Text Notiication

If you want to build a notiication where a larger message is displayed, such

as the irst few lines of a chat message, use the NotificationCompat

.BigTextStyle()class. This gives you the option of setting long text and a

summary, as shown in Figure 4-4. Android automatically adjusts the amount

of space for your notiication. You may notice that the notiication can grow

larger than the space available on the tiny screen. Therefore, be careful not to

build notiications that are too large.

Listing 4‐7 shows how to use the BigTextStyle class for Wear notiications.

listing 4‐7: Showing long text in a notiication

NotificationCompat.Style style = new NotificationCompat.BigTextStyle()
 .setBigContentTitle("My big title")
 .setSummaryText("My summary")

figure 4-3: Using

the Wrox logotype

for Wear notiications

figure 4-4: Big text

notiication

continues

http://schemas.android.com/apk/res/android

36 ❘ ChaPTer 4 notIfIcAtIons on smAll screens

 .bigText("Lorem ipsum dolor sit amet, consectetur adipiscing elit. " +
 "Integer tristique fringilla neque ornare convallis. Sed aliquam, " +
 "diam in elementum aliquet, odio massa adipiscing ligula, " +
 "at pretium justo velit et arcu.");

Notification notification = new NotificationCompat.Builder(this)
 .setSmallIcon(R.drawable.wrox_logo_small)
 .setContentTitle("Content title")
 .setContentText("Content text")
 .setStyle(style)
 .build();

You probably noticed that the number of

details in the notiication don’t change

when the new style is applied. For example,

the content text is overwritten by the

BigTextStyle values. The summary is

also hidden on the Wear device. However,

on the mobile device these details remain

visible, as shown in Figure 4-5. Wear hides

as much information as possible to keep the

notiications easy to read at a glance.

Don’t forget to include this data when

building your notiications. It is still used for

large notiications that are collapsed on your

mobile device, as shown in Figure 4-6.

figure 4-5: Big text notiication on mobile

figure 4-6: Big text notiication, collapsed

Big picture notiication
Similar to the extended text notiication, the large image notiication uses a special style called

NotificationCompat.BigPictureStyle to build. Figure 4-7 shows an example of the large image

notiication.

listing 4‐7: (continued)

Building Notiications ❘ 37

When building the large image notiication, be sure to

use an image that is the proper size. An image that is

too small might not ill the entire notiication space,

and an image that is too big may take too long to

load and cause your application to be unresponsive.

On Wear devices the big picture is used as both a

background and a new page for the notiication. The

summary is, again, not used on Wear devices but is

displayed on mobile.

Listing 4‐8 shows how to build a simple notiication

with a large image.

listing 4‐8: Including large images in notiications

NotificationCompat.Style style = new NotificationCompat.BigPictureStyle()
 .setBigContentTitle("Balloons!")
 .setSummaryText("My summary")
 .bigPicture(BitmapFactory.decodeResource(getResources(), R.drawable.balloons));

Notification notification = new NotificationCompat.Builder(this)
 .setSmallIcon(R.drawable.wrox_logo_small)
 .setContentTitle("Balloons!")
 .setContentText("Content text")
 .setStyle(style)
 .build();

You can achieve a similar effect in Wear only by using the WearableExtender feature

setBackground(). The difference is that setting the background works with all notiications, not

just the BigPictureStyle notiication. Listing 4‐9 shows how to do this.

listing 4‐9: Setting the background for your notiication

NotificationCompat.WearableExtender extender = new NotificationCompat
 .WearableExtender()
 .setBackground(BitmapFactory.decodeResource(getResources(),
 R.drawable.balloons));

Notification notification = new NotificationCompat.Builder(this)
 .setSmallIcon(R.drawable.wrox_logo_small)
 .setContentTitle("Background notification")
 .setContentText("Using a custom background for a normal notification")
 .extend(extender)
 .build();

figure 4-7: Big picture notiication

38 ❘ ChaPTer 4 notIfIcAtIons on smAll screens

updating a notiication
When you want to update the information in a notiication, you need the unique identiier and

tag, depending on how you launched the notiication. If the unique identiier already exists for

your package, the system knows to update that notiication. If the unique identiier doesn’t exist,

the system launches a new notiication. Listing 4‐10 shows how to create and update a simple

notiication.

listing 4‐10: Updating a notiication

Notification notification = new NotificationCompat.Builder(this)
 .setSmallIcon(R.drawable.wrox_logo_small)
 .setContentTitle("A simple notification")
 .setContentText("A short text")
 .build();

mNotificationManager.notify(NOTIFICATION_ID, notification);

Handler handler = new Handler();
handler.postDelayed(new Runnable() {
 @Override
 public void run() {
 Notification updatedNotif = new NotificationCompat.Builder(MyActivity.this)
 .setSmallIcon(R.drawable.wrox_logo_small)
 .setContentTitle("A simple notification")
 .setContentText("An updated, slightly longer, text")
 .build();

 mNotificationManager.notify(NOTIFICATION_ID, updatedNotif);
 }
}, 5000);

This example creates a new notiication and then

launches it. Then it uses the feature postDelayed()

in the handler to update the same notiication after

5 seconds. Figure 4-8 shows the notiication before
and after the update.

adding pages to Your notiications
Pages are a core part of Wear notiications. These are notiications that exist to the right of the
initial notiication. They are visible only to the Wear device, so be sure to plan the content of each
page carefully.

To build the multipage notiication, you need a list of pages (actually, they’re notiications, but
they’re called pages). Then you need the WearableExtender to add the list of pages to your
notiication. Listing 4‐11 shows how to add multiple pages to a notiication.

figure 4-8: Updating a notiication

Building Notiications ❘ 39

listin 4‐11: Adding multiple pages to your notiication

List<Notification> pages = new ArrayList<Notification>();
for(int i = 1; i <= 3; i++){
 Notification notification = new NotificationCompat.Builder(this)
 .setContentTitle("Page " + i)
 .setContentText("Text for page " + i)
 .build();
 pages.add(notification);
}

NotificationCompat.WearableExtender extender = new NotificationCompat
 .WearableExtender()
 .addPages(pages);

Notification notification = new NotificationCompat.Builder(this)
 .setSmallIcon(R.drawable.wrox_logo_small)
 .setContentTitle("Multi page notification")
 .setContentText("This is the first of many pages")
 .extend(extender)
 .build();

Figure 4-9 shows the resulting notiication structure.

figure 4-9: A simple multipage notiication

adding actions to Your notiications
When tapping a notiication, you always have the option of performing an action, usually opening
the application. Wear is no different. You have at least two ways to add actions to your notiications
in Wear.

Adding a Standard Action

To have your notiication, open the linked activity for your app on your mobile. Listing 4‐12 shows
how to add a standard action to your notiication.

40 ❘ ChaPTer 4 notIfIcAtIons on smAll screens

listing 4‐12: Standard open action

Intent action = new Intent(this, MyActivity.class);

PendingIntent pendingIntent = PendingIntent.getActivity(this, 0, action,
 PendingIntent.FLAG_UPDATE_CURRENT);

Notification notification = new NotificationCompat.Builder(this)
 .setSmallIcon(R.drawable.wrox_logo_small)
 .setContentTitle("Standard action")
 .setContentText("This is the standard action notification")
 .setContentIntent(pendingIntent)
 .build();

Notice that the action appears on a separate action
page on the Wear device, as shown in Figure 4-10.

You can avoid launching multiple instances of your
activity by setting the launch mode to single top.
Listing 4‐13 shows how to edit your manifest to allow
only one instance of your activity.

listing 4‐13: Setting activity launch mode to single top

. . .
<activity
 android:name=".MyActivity"
 android:label="@string/app_name"
 android:launchMode="singleTop">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>

 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
</activity>
. . .

figure 4-10: Adding a standard action to

Wear notiications

note Using the launch mode single top for your main activity as done here
is not the recommended way of preventing the creation of multiple instances.
Instead, you should create a separate Activity that handles whatever action
your notiication is pointing to, or deal with this in Activity.onNewIntent().

Building Notiications ❘ 41

Adding Multiple Actions

Adding more actions is just as easy as setting the content intent. The difference is you can set the
desired icon and text to go along with them. Listing 4‐14 shows how to add two actions—one to
open the application, and another to open the standard dialer.

listing 4‐14: Adding multiple actions

 Intent act1 = new Intent(this, MyActivity.class);

 PendingIntent pendingIntent1 = PendingIntent.getActivity(this, 0, act1,
 PendingIntent.FLAG_UPDATE_CURRENT);

 Intent act2 = new Intent(Intent.ACTION_DIAL);

 PendingIntent pendingIntent2 = PendingIntent.getActivity(this, 0,
 act2, PendingIntent.FLAG_UPDATE_CURRENT);

 Notification notification = new NotificationCompat.Builder(this)
 .setSmallIcon(R.drawable.wrox_logo_small)
 .setContentTitle("Action notification")
 .setContentText("This notification has multiple actions")
 .addAction(R.drawable.wrox_logo_big, "Open app", pendingIntent1)
 .addAction(R.drawable.ic_launcher, "Call the droid", pendingIntent2)
 .build();

These actions display on both the handheld and the Wear device. If you want to add actions that
display on only Wear devices, keep reading.

Adding Wear‐Only Actions

To display actions on only the Wear device, you use the WearableExtender class and then add
actions to the extender, as shown in Listing 4‐15.

listing 4‐15: Adding Wear‐only actions

Intent act1 = new Intent(this, MyActivity.class);

PendingIntent pendingIntent1 = PendingIntent.getActivity(this, 0, act1,
 PendingIntent.FLAG_UPDATE_CURRENT);

NotificationCompat.Action action1 = new NotificationCompat.Action.Builder(R
 .drawable.wrox_logo_big, "Open app", pendingIntent1)
 .build();

Intent act2 = new Intent(Intent.ACTION_DIAL);

PendingIntent pendingIntent2 = PendingIntent.getActivity(this, 0,
 act2, PendingIntent.FLAG_UPDATE_CURRENT);

NotificationCompat.Action action2 = new NotificationCompat.Action.Builder(R

continues

42 ❘ ChaPTer 4 notIfIcAtIons on smAll screens

 .drawable.ic_launcher, "Call the droid", pendingIntent2)
 .build();

NotificationCompat.WearableExtender extender = new NotificationCompat
 .WearableExtender()
 .addAction(action1)
 .addAction(action2);

Notification notification = new NotificationCompat.Builder(this)
 .setSmallIcon(R.drawable.wrox_logo_small)
 .setContentTitle("Action notification")
 .setContentText("This notification has wear-only actions")
 .extend(extender)
 .build();

The result is a normal notiication on handheld devices. Wear devices, however, display actions,
each on a separate page, as shown in Figure 4-11.

figure 4-11: Standard actions on Wear notiications

adding an action without the extra Page

In some cases you might want to add an action directly to your notiication instead of creating another
page for the action. You do this by deining which of the notiication’s actions should be connected
directly to the notiication content. This works for both normal actions and Wear‐only actions.

Wear irst checks to see if any wearable actions have been added. If so, it uses that list. If no
wearable actions exist for the notiication, Wear uses the standard list of actions. When the action is
added to the notiication content, Wear no longer creates an extra page for that action. Figure 4-12
shows the resulting notiication.

figure 4-12: Interactive Wear notiication

listing 4‐15: (continued)

Building Notiications ❘ 43

Listing 4‐16 shows how to add actions to the content of a Wear notiication.

listing 4‐16: Adding content action to Wear notiications

Intent act1 = new Intent(this, MyActivity.class);

PendingIntent pendingIntent1 = PendingIntent.getActivity(this, 0, act1,
 PendingIntent.FLAG_UPDATE_CURRENT);

Intent act2 = new Intent(Intent.ACTION_DIAL);

PendingIntent pendingIntent2 = PendingIntent.getActivity(this, 0,
 act2, PendingIntent.FLAG_UPDATE_CURRENT);

NotificationCompat.WearableExtender ext = new NotificationCompat
 .WearableExtender()
 .setContentAction(1);

Notification notification = new NotificationCompat.Builder(this)
 .setSmallIcon(R.drawable.wrox_logo_small)
 .setContentTitle("Action notification")
 .setContentText("This notification is clickable")
 .addAction(R.drawable.wrox_logo_big, "Open app", pendingIntent1)
 .addAction(R.drawable.ic_launcher, "Call the droid", pendingIntent2)
 .extend(ext)
 .build();

extra options
Wear includes other options that help you add detail to and customize your
notiications.

Hiding the Application Icon

If you want to hide the application icon that usually is found in the top‐right
corner of your Wear notiications, you can do so using the WearableExtender
class. Figure 4-13 shows a Wear notiication without an icon.

Listing 4‐17 shows how to hide the application icon.

listing 4‐17: Hiding the application icon

NotificationCompat.WearableExtender extender = new NotificationCompat
 .WearableExtender()
 .setHintHideIcon(true);

Notification notification = new NotificationCompat.Builder(this)
 .setSmallIcon(R.drawable.wrox_logo_small)
 .setContentTitle("Hidden icon")
 .setContentText("The icon should be hidden on Wear")
 .extend(extender)
 .build();

figure 4-13: Hidden

icon for Wear

notiications

44 ❘ ChaPTer 4 notIfIcAtIons on smAll screens

Moving the Notiication

You can also move the notiication on the Wear screen using the setGravity() method. Table 4-3
shows the options for Wear notiications.

taBle 4-3: Gravity Options for Wear Notiications

option desCription

Gravity.BOTTOM Places the notiication at the bottom of its parent container. This is the

default option.

Gravity.

CENTER_VERTICAL
Places the notiication in the middle of the parent container. This does not

affect the horizontal alignment, because notiications always take up the full

width of the Wear display.

Gravity.TOP Places the notiication at the top of its parent container.

Listing 4‐18 shows how to set the gravity to Gravity.TOP for your notiication.

listing 4‐18: Moving the notiication to the top

NotificationCompat.WearableExtender extender = new NotificationCompat
 .WearableExtender()
 .setGravity(Gravity.TOP);

Notification notification = new NotificationCompat.Builder(this)
 .setSmallIcon(R.drawable.wrox_logo_small)
 .setContentTitle("At the top")
 .setContentText("This should be placed at the top")
 .extend(extender)
 .build();

This example should give you a result similar to the one shown in
Figure 4-14.

Setting the Scroll to the Bottom

For long text notiications, you can also let the user start
reading at the end of the text instead of the beginning. Use the
setStartScrollBottom() method, as shown in Listing 4‐19. The
default value is false.

listing 4‐19: Scrolling from the bottom

NotificationCompat.Style style = new NotificationCompat.BigTextStyle()
 .setBigContentTitle("My big title")
 .setSummaryText("My summary")
 .bigText("Lorem ipsum dolor sit amet, consectetur adipiscing elit. " +
 "Integer tristique fringilla neque ornare convallis. Sed aliquam, " +
 "diam in elementum aliquet, odio massa adipiscing ligula, " +
 "at pretium justo velit et arcu.");

figure 4-14: A notiication

that sticks to the top of the

screen

www.allitebooks.com

http://www.allitebooks.org

Stacking Notiications ❘ 45

NotificationCompat.WearableExtender extender = new NotificationCompat
 .WearableExtender()
 .setStartScrollBottom(true);

Notification notification = new NotificationCompat.Builder(this)
 .setSmallIcon(R.drawable.wrox_logo_small)
 .setContentTitle("Content title")
 .setContentText("Content text")
 .setStyle(style)
 .extend(extender)
 .build();

removing a notiication
You have two ways to remove a notiication. You can refer to the notiication’s unique identiier, or you
can combine a unique identiier and a tag. Listing 4‐20 and Listing 4‐21 show how to remove notiications.

listing 4‐20: removing a notiication by identiier

mNotificationManager.cancel(NOTIFICATION_ID);

listing 4‐21: removing a notiication by tag and identiier

mNotificationManager.cancel(NOTIFICATION_TAG, NOTIFICATION_ID);

staCking notifiCations

You also can group notiications in a stack, rather than a collection of pages. This is useful when
you have several similar notiications that don’t necessarily belong to the same message. For
example, if you have multiple e‐mail conversations, you may want to stack the notiications to show
that the user has multiple e‐mails waiting.

Listing 4‐22 shows how to create a simple stack of notiications.

listing 4‐22: Stacking notiications

String MY_STACK = "my_custom_stack";

for(int i = 0; i < 3; i++){
 Notification notification = new NotificationCompat.Builder(this)
 .setSmallIcon(R.drawable.wrox_logo_small)
 .setContentTitle("Title " + i)
 .setContentText("Content for " + i)
 .setGroup(MY_STACK)
 .build();

 mNotificationManager.notify(NOTIFICATION_ID + i, notification);
}

46 ❘ ChaPTer 4 notIfIcAtIons on smAll screens

This example creates three notiications in a loop; attaches them to the same group, called
MY_STACK; and then displays them one after the other. You can attach more notiications to the same
group later by reusing the stack name.

Remember that the notiication identiier is unique to the notiication.
If you use the same identiier for multiple notiications, the system
creates only one notiication. In essence, the stack contains just one
notiication if you don’t change the identiier.

Figure 4-15 shows the resulting stack of notiications built by
Listing 4‐22. The stack is sorted before the notiication is launched.
If you want to use different sorting for your stack, you can use the
setSortKey() method, as shown in Listing 4‐23.

listing 4‐23: Sorting the stacked notiications

String MY_STACK = "my_custom_stack";

for(int i = 3; i >= 0; i--) {
 Notification notification = new NotificationCompat.Builder(this)
 .setSmallIcon(R.drawable.wrox_logo_small)
 .setContentTitle("Title " + i)
 .setContentText("Content for " + i)
 .setGroup(MY_STACK)
 .setSortKey(Integer.toString(i))
 .build();

 mNotificationManager.notify(NOTIFICATION_ID + i, notification);
}

This example sorts on the notiication’s index. However, you can use
any string to sort these notiications. You could use the sender’s name
or the message’s length, or perhaps a custom priority string for a
To-Do application. Figure 4-16 shows the stacked notiications sorted
by a custom key.

By default, the stacked notiication doesn’t appear on a normal
handheld device, so it’s important that you provide a summary
notiication to be displayed on those devices. Listing 4‐24 shows a
simple summary notiication.

listing 4‐24: Summary of stacked notiications

String MY_STACK = "my_custom_stack";

int index = 0;

// Create summary notifications for handheld
NotificationCompat.InboxStyle list = new NotificationCompat.InboxStyle();

figure 4-15: Default sorted

stack of notiications

figure 4-16: Custom-sorted

stack of notiications

Stacking Notiications ❘ 47

for(index = 1; index <= 3; index++){
 Notification notification = new NotificationCompat.Builder(this)
 .setSmallIcon(R.drawable.wrox_logo_small)
 .setContentTitle("Title " + index)
 .setContentText("Content for " + index)
 .setGroup(MY_STACK)
 .build();

 // For the handheld summary
 list.addLine("Title " + index);

 mNotificationManager.notify(NOTIFICATION_ID + index, notification);
}

list.setBigContentTitle(index + " new notifications")
 .setSummaryText("Many notifications . . .");

Notification stackedWithSummary = new NotificationCompat.Builder(this)
 .setSmallIcon(R.drawable.wrox_logo_small)
 .setContentTitle(index + " new notifications")
 .setLargeIcon(BitmapFactory.decodeResource(getResources(),
 R.drawable.wrox_logo_big))
 .setStyle(list)
 .setGroup(MY_STACK)
 .setGroupSummary(true)
 .build();

The resulting summary notiication should look like Figure 4-17.

figure 4-17: Handheld summary for stacked notiications

48 ❘ ChaPTer 4 notIfIcAtIons on smAll screens

summarY

This chapter has introduced the most commonly used notiication features ported to a Wear device.
You explored the new features that Wear has introduced to notiications, including Wear‐speciic
actions, stacked notiications, and pages. You also learned that some of the standard notiication
APIs do not apply on Wear devices because of how users interact with the new form factor of Wear
devices. You should keep this in mind when designing your applications experience—you probably
want a similar look and feel for your app regardless of what kind of device the user has.

The next chapter dives further into the Wear APIs, discussing how to create custom Wear‐enabled
activities and applications.

reCommended reading

UI Patterns for Android Wear, http://developer.android.com/design/wear/patterns.html.

http://developer.android.com/design/wear/patterns.html

Developing Wear apps

What’s in this Chapter?

 ➤ Notes on designing for Android Wear

 ➤ Creating Android Wear projects

 ➤ Using the new Android Wear Views

 ➤ Working with round and rectangular screens

 ➤ Working with lists on small screens

 ➤ Adding feedback to your Android Wear app

Wrox.Com Code doWnloads for this Chapter

The wrox.com code downloads for this chapter are found at www.wrox.com/go/
androidwearables on the Download Code tab. The code is in the Chapter 5 download and
the ilenames correspond to the code listing numbers noted throughout the chapter.

the Wear sdk

Unlike notiications, Wear apps behave (almost) like normal Android apps. They are built
using a native SDK called Wear SDK, and they run in separate processes on the wearable
device, making them completely standalone from your phone. Even though the behavior is
similar, you should keep a few points in mind when developing apps for Wear.

design Considerations
The irst thing you should consider is the connectivity of your Wear device. It has no built‐in
connectivity options such as WiFi or USB for you to use when building your apps. Accessing

5

http://www.wrox.com/go/androidwearables
http://www.wrox.com/go/androidwearables

50 ❘ ChaPTer 5 develoPIng WeAr APPs

the Internet on your Wear apps is impossible without an attached phone. But this is not a major
problem, because you need to build a companion app (or, rather, a master app) for your Wear app.
Without it you can’t distribute your new Wear app on Google Play.

Google has published a number of general guidelines that you should keep in mind when
creating your Wear app. For example, all Wear interactions should fall into one of two categories
that Google calls suggest and demand. This means that everything found on Wear should be
contextually connected. Everything you create for Wear, whether a notiication or native running
app, should interrupt only if absolutely necessary, and it should quickly provide a correct answer
depending on the user’s context.

A continuation of this rule of thumb is that you should create apps that don’t require focused
attention from your users. They should be able to quickly get the gist of what your app is trying
to tell them. Or your apps should promptly suggest actions. Google calls this making the app
glanceable.

A reasonable goal when creating Wear apps, or notiications, is that your users should interact
with the device for only a few seconds. If they have to spend more time than that, your app could
probably be more optimized and streamlined. Always try to focus your app on doing only one
thing, and try to do that one thing as quickly as possible by helping the user in any way you can. For
example, you can highlight the most plausible action.

A good strategy when helping your users complete actions quickly on such a small screen is to use
simple gestures and interactions. Always avoid using complicated or detailed interactions. If users
ind your app dificult to interact with while on the move, you should redesign the user interface.

Wearable ui library
With the introduction of Wear, Google added a number of new classes and UI widgets that help
you create apps that follow Wear’s design guidelines—and those of other small screens. Table 5-1
summarizes the new widgets.

All of these classes can be found in the android.support.wearable.view package.

taBle 5-1: New Classes and UI Widgets in Wear

Widget name descriPtion

CardFragment A fragment that holds a scrollable card. By default the card layout

includes a title, descriptive text, and an optional icon. You can also

build your own custom layout for this fragment.

CardFrame Creates a frame with a white background and rounded corners

for its contents. This is useful if you want your app to have a more

detailed background—rather than the standard black—while the

content remains readable.

CardScrollView A container for one CardFrame that makes it scrollable.

Appropriate for cards that hold more text.

Creating the Wear Project ❘ 51

Widget name desCription

CircledImageView The standard widget for including images in Wear. It has an

optional circle that you can give some style. An optional border on

the circle supports progress. You can use it for countdowns in your

app or to show progress.

ConfirmationActivity A helper class for creating attractive animations as feedback for

user actions.

CrossfadeDrawable Lets you fade between two different drawables, creating a nice

effect for your UI.

DelayedConfirmationView A subclass to CircledImageview, with the added functionality of

performing an action after a set period of time. Often used before

you send an action to the mobile so that the user has time to

cancel the action if needed.

DismissOverlayView A simple view for adding interactions to dismiss your activity.

FragmentGridPagerAdapter A page adapter that handles fragments. Used together with

GridViewPager.

GridPagerAdapter Another adapter for GridViewPager. This one is not for

fragments.

GridViewPager A two‐dimensional grid of pages that allows the user to scroll in

both dimensions.

InsetActivity An activity with built‐in support for detecting screen types on

Wear devices. A good alternative to using WatchViewStub.

WatchViewStub One of the most important additions in Wear. Use it to detect the

device’s screen type—round or square—and then load the correct

layout for that device.

WearableListView A list view implementation that is optimized for very small screens.

WearableListView.Adapter An adapter for WearableListView. This is an abstract class, which

means you need to subclass it when working with lists.

Creating the Wear projeCt

When working with Android Wear you need to have Android Studio version 0.8.0 or later installed
to have access to the Wear‐speciic worklow and dialogs.

Follow these steps to create your new Android Wear project:

 1. Click New Project in the Android Studio startup dialog, as shown in Figure 5-1.

52 ❘ ChaPTer 5 develoPIng WeAr APPs

 2. Enter the correct information for your app. I’m calling mine “Chapter 5” and using the
Company Domain wrox.wiley.com, as shown in Figure 5-2. Then click Next or press Alt+N.

 3. As shown in Figure 5-3, select Phone and Tablet API 21. Also select Wear API 20. Then click
Next.

 4. Choose Blank Activity to add a blank activity to your mobile, as shown in Figure 5-4, and
click Next twice to accept the default parameters.

 5. Choose Blank Wear Activity, as shown in Figure 5-5. By default this is a standard activity
with WatchViewStub as the main layout ile. Click Next.

 6. Notice in Figure 5-6 that Android Studio creates two layouts, round_activity_my and
rect_activity_my. Leave them as they are for now. To create your new Mobile + Wear app,
click Finish.

figure 5-1: New project startup

Creating the Wear Project ❘ 53

figure 5-2: Entering project information

figure 5-3: Select form factors and API levels for your app

54 ❘ ChaPTer 5 develoPIng WeAr APPs

figure 5-4: Add a blank phone activity

figure 5-5: Add a blank Wear activity

Creating the Wear Project ❘ 55

You should now have an Android Studio project that has two application structures within it called
mobile and wear. Let’s review some of the news introduced by Android Wear in the project.

editing the gradle files
Open the mobile gradle ile and scroll down to the dependencies. They should look something like
Listing 5‐1.

listing 5‐1: Project dependencies for mobile

dependencies {
 compile fileTree(dir: 'libs', include: ['*.jar'])
 wearApp project(':wear')
 compile 'com.google.android.gms:play‐services‐wearable:+'
}

Notice the dependencies. These two lines are not present in normal Android app projects. The irst
line speciies that this particular Android app has a Wear component that is located in the wear
folder.

The second line includes the Google Play services repository as part of the project. This part is
optional. You may remove it if you don’t plan on using any of the new Wear‐speciic features such as
data sync between the two devices.

figure 5-6: Edit the properties for your Wear activity and layouts

56 ❘ ChaPTer 5 develoPIng WeAr APPs

If you open the Wear gradle ile and look at the dependencies, they should look something like
Listing 5‐2.

listing 5‐2: Project dependencies for Wear

dependencies {
 compile fileTree(dir: 'libs', include: ['*.jar'])
 compile 'com.google.android.support:wearable:+'
 compile 'com.google.android.gms:play‐services‐wearable:+'
}

You’ll notice that this project also has two new dependencies speciic to Android Wear. First is the
wearable support repository, which adds all the new Wear components (see Table 5-1) to the project.
The second is the play services repository, which is also optional in the Wear project. If you don’t plan
on using any of the functionalities in the Google Play services repository, you may remove this line.

To use the new Wear notiications in your apps, you should also add the support repository to your
dependencies. This project doesn’t need it, however, so leave it out for now.

Since Android Wear comes in two different screen shapes, you need to plan your app for both
shapes using at least two different layouts.

loading layouts
You have two ways to load the correct layout in Android Wear projects. The default method
is to use a normal activity and load a layout with WatchViewStub. The second way is to use
InsetActivity.

Using WatchViewStub

WatchViewStub is a smart UI widget that can detect the device’s screen shape. Listing 5‐3 shows the
default main layout. Notice the attributes called rectLayout and roundLayout.

listing 5‐3: Selecting different layouts for different shapes

<?xml version="1.0" encoding="utf-8"?>
<android.support.wearable.view.WatchViewStub
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:id=@+id/watch_view_stub"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 app:rectLayout="@layout/rect_activity_my"
 app:roundLayout="@layout/round_activity_my"
 tools:context=".MyActivity"
 tools:deviceIds="wear">
</android.support.wearable.view.WatchViewStub>

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res-auto
http://schemas.android.com/tools

Creating the Wear Project ❘ 57

The attributes found in the tools namespace are merely for convenience and helping you when you
design the app. They are stripped when the application is packaged.

tools namespaCe

For more information on using the tools attributes, see http://tools.android
.com/tech‐docs/tools‐attributes.

When you design your actual layouts, you should always use the same components. It’s critical to
use identical ids when you work with WatchViewStub.

To get a reference to a UI widget in your layout, you listen for the onLayoutInflated event on the
WatchViewStub root. Listing 5‐4 shows how to add the listener.

listing 5‐4: Listening for the onLayoutInlated event

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_my);
 final WatchViewStub stub = (WatchViewStub) findViewById(R.id.watch_view_stub);
 stub.setOnLayoutInflatedListener(new WatchViewStub.OnLayoutInflatedListener() {
 @Override
 public void onLayoutInflated(WatchViewStub stub) {
 }
 });
}

When you’ve attached the listener, you can safely load references to the UI widgets, as shown in
Listing 5‐5.

listing 5‐5: Loading references to your UI widgets

Button mButton;

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_my);
 final WatchViewStub stub = (WatchViewStub) findViewById(R.id.watch_view_stub);
 stub.setOnLayoutInflatedListener(new WatchViewStub.OnLayoutInflatedListener() {
 @Override
 public void onLayoutInflated(WatchViewStub stub) {
 mButton = (Button) stub.findViewById(R.id.button);
 }
 });
}

http://tools.android.com/tech%E2%80%90docs/tools%E2%80%90attributes
http://tools.android.com/tech%E2%80%90docs/tools%E2%80%90attributes

58 ❘ ChApter 5 develoPIng WeAr APPs

This example shows the importance of having identical ids in the layouts for round screens and
rectangular screens. The alternative way of loading layouts in Wear is a bit more lenient when it
comes to ids.

Using InsetActivity

When using InsetActivity, you don’t need the extra initial layout component, WatchViewStub.
Instead of selecting the correct layout in XML, you load the correct layout directly in your activity.
Listing 5‐6 shows how to create InsetActivity.

listing 5‐6: Creating InsetActivity

public class MyActivity extends InsetActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 }

 @Override
 public void onReadyForContent() {
 if(isRound()){
 setContentView(R.layout.round_activity_my);
 }else{
 setContentView(R.layout.rect_activity_my);
 }
 }
}

The beneit of InsetActivity is that you may use completely different layouts for different screens.
You don’t need to make sure that they match in widgets or widget ids.

The biggest catch of InsetActivity is the loading of the content view. It must be loaded in the life-
cycle method onReadyForContent(). Only in this method does the app know with certainty which
screen type the device has. You may then load the correct layout depending on the type of screen the
device has—round or rectangular. Using the isRound() method, you can select the correct layout to
load as content view.

Loading references in InsetActivity is identical to loading references in any normal Android
app. Using findViewById() in the activity, as shown in Listing 5‐7, lets you load the correct widget.
You’re not required to use identical ids, unlike with WatchViewStub. But doing so is recommended
so that you avoid duplicate code.

listing 5‐7: Loading views with different ids depending on layout

public class MyActivity extends InsetActivity {

 private TextView rectText, roundText;

Creating the Wear project ❘ 59

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 }

 @Override
 public void onReadyForContent() {
 if(isRound()){
 setContentView(R.layout.round_activity_my);
 rectText = (TextView) findViewById(R.id.rectText);
 }else{
 setContentView(R.layout.rect_activity_my);
 roundText = (TextView) findViewById(R.id.roundText);
 }
 }
}

I prefer to use a third method for loading the user interface to keep the life-cycle method clean.
Doing so also ensures that the two screen types present the same information and enable the same
interactions. Listing 5‐8 shows how I usually organize my InsetActivity.

listing 5‐8: Loading the user interface in a separate method

public class MyActivity extends InsetActivity {

 private TextView mTextView;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 }

 @Override
 public void onReadyForContent() {
 if(isRound()){
 setContentView(R.layout.round_activity_my);
 }else{
 setContentView(R.layout.rect_activity_my);
 }
 loadUi();
 }

 private void loadUi() {
 mTextView = (TextView) findViewById(R.id.myText);
 mTextView.setText("Hello InsetActivity");
 }
}

Figure 5-7 shows the application running on both screen types.

60 ❘ ChApter 5 develoPIng WeAr APPs

Another cool function that InsetActivity provides is the exit button. Tapping the screen displays a
typical exit application button, as shown in Figure 5-8.

figure 5-7: InsetActivity running on both screen types

figure 5-8: The exit app button as shown on a round device

Now that you know about some of the basic differences between the Wear app and the mobile app
in terms of project structure, let’s explore Wear’s user interface widgets.

Building the User Interface ❘ 61

Building the user interfaCe

When working with Wear‐speciic UI widgets, it’s important to add another namespace to your
layouts. Without it, adding Wear attributes to views would be impossible. Listing 5‐9 shows how to
add the Wear namespace.

listing 5‐9: Adding the XML namespace for Wear

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 xmlns:wear="http://schemas.android.com/apk/res‐auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 tools:context=".MyActivity"
 tools:deviceIds="wear_square">
 . . .
</RelativeLayout>

adding text to Your user interface
Working with text in Android Wear isn’t so different from normal Android apps. Technically
speaking, it’s not the text component that changes; it’s how you should design apps containing text
in Wear that changes. Remember that context is important to both notiications and apps. Most
often the context is provided with a visual background image and an application icon. Presenting
textual information over an image may become a bit messy. Therefore, we strongly recommend that
you use a frame of some sort that makes the text more legible.

Luckily Google provides several new classes for dealing with this problem—CardFrame,
CardScrollView, and CardFragment.

CardFrame

The most basic of the three components for displaying text, CardFrame is a simple white card with
rounded edges and an optional icon. Listing 5‐10 shows how to wrap a simple TextView within a
CardFrame.

listing 5‐10: Adding a CardFrame to your layout

<android.support.wearable.view.CardFrame
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/view"

continues

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools
http://schemas.android.com/apk/res%E2%80%90auto

62 ❘ ChApter 5 develoPIng WeAr APPs

 android:layout_centerVertical="true"
 android:layout_centerHorizontal="true">

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="R.strings.newtext"
 android:id="@+id/myText"
 android:layout_centerVertical="true"
 android:layout_centerHorizontal="true"/>

</android.support.wearable.view.CardFrame>

The result is a simple frame around our TextView, as
shown in Figure 5-9. It has rounded corners and a drop
shadow, which is dificult to see in these igures. I promise
it’s there.

CardFrame doesn’t give you many other options
when it comes to customizing your UI. This is where
CardScrollView comes in handy.

CardScrollView

CardScrollView is basically a container for a single
CardFrame with the added option of adding scroll
functionality to the card in two directions, up and down. You
also can set the card’s anchor edge to either top or bottom.

CardScrollView can hold only one CardFrame at a time,
as shown in Listing 5‐11.

listing 5‐11: the CardScrollView layout

<android.support.wearable.view.CardScrollView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/myScrollView"
 android:layout_centerVertical="true"
 android:layout_centerHorizontal="true">

 <android.support.wearable.view.CardFrame
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/myCardFrame"
 android:layout_centerVertical="true"
 android:layout_centerHorizontal="true">

 <TextView

figure 5-9: CardFrame

listing 5‐10: (continued)

Building the User Interface ❘ 63

 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/lipsum"
 android:textColor="#000"
 android:id="@+id/myText"
 android:layout_centerVertical="true"
 android:layout_centerHorizontal="true"/>

 </android.support.wearable.view.CardFrame>
</android.support.wearable.view.CardScrollView>

Table 5-2 lists the properties you can change for CardScrollView. None of these parameters can be
set in XML.

taBle 5-2: CardScrollView Properties

ProPertY descriPtion method

Expansion enabled Allows or disallows CardFrame from

being taller than the screen height.

setExpansionEnabled(Boolean)

Expansion direction The direction in which the child

CardFrame expands. When the card is

taller than the screen, this edge is also

faded to indicate that it is scrollable.

setExpansionDirection(int)

This value can be either

CardFrame.EXPAND_UP or

CardFrame.EXPAND_DOWN

Expansion factor Sets the expansion factor. setExpansionFactor(float)

Card gravity Sets the edge that the CardFrame

child anchors to when the content is

shorter than the screen’s height.

setCardGravity(int)This value

can be either Gravity.TOP or

Gravity.BOTTOM

CardFragment

CardFragment is the best option for displaying text (or any other framed content, for that matter)
on Wear devices. It combines CardFrame and CardScrollView and includes an icon as well.

CardFragment comes with two handy static builder methods. If the default layout doesn’t suit your
needs, you can simply extend CardFragment and load your own layout. Listing 5‐12 shows how to
create a simple card using the builder methods.

listing 5‐12: Building a card using CardFragment builder methods

CardFragment myCard = CardFragment.create("My card", "A longer description",
 R.drawable.ic_launcher);

getFragmentManager().beginTransaction().replace(R.id.container, myCard,
 "myCard").commit();

Because this is a fragment, you need to adjust your layout slightly to create a container for your
CardFragment. Figure 5-10 shows the resulting simple card.

64 ❘ ChApter 5 develoPIng WeAr APPs

Using your own custom layout for the CardFragment class is simple. Just extend the CardFragment
class and override the onCreateContentView() method. Listing 5‐13 shows our custom card layout
with three TextViews.

listing 5‐13: the custom card layout

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textAppearance="?android:attr/textAppearanceLarge"
 android:text="Large Text"
 android:id="@+id/textView1"/>

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textAppearance="?android:attr/textAppearanceMedium"

figure 5-10: The basic CardFragment

http://schemas.android.com/apk/res/android

Building the User Interface ❘ 65

 android:text="Medium Text"
 android:id="@+id/textView2"
 />

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textAppearance="?android:attr/textAppearanceSmall"
 android:text="Small Text"
 android:id="@+id/textView3"/>
</LinearLayout>

Listing 5‐14 shows how to load this custom layout in our own card class.

listing 5‐14: Loading the custom layout in our custom card

public class MyCard extends CardFragment {

 TextView mTextView1, mTextView2, mTextView3;

 @Override
 public View onCreateContentView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 View root = inflater.inflate(R.layout.custom_card, container, false);

 mTextView1 = (TextView) root.findViewById(R.id.textView1);
 mTextView2 = (TextView) root.findViewById(R.id.textView2);
 mTextView3 = (TextView) root.findViewById(R.id.textView3);

 return root;
 }
}

Showing this custom card is as easy as loading your custom fragment into the container, as shown in
Listing 5‐15.

listing 5‐15: Loading the custom card fragment

MyCard myCard = new MyCard();

getFragmentManager().beginTransaction().replace(R.id.container, myCard,
 "myCard").commit();

Figure 5-11 shows the resulting card.

66 ❘ ChApter 5 develoPIng WeAr APPs

Table 5-3 shows some of the available properties for CardFragment.

figure 5-11: The custom CardFragment

table 5-3: CardFragment Properties

ProPertY descriPtion

Scroll position With the methods scrollToTop() and scrollToBottom() you can scroll the

card contents to the very top and very bottom of the card.

Card gravity Sets the card’s anchor edge. Can be either Gravity.TOP or Gravity

.BOTTOM.

Expansion direction Selects in which direction the card expands. Can be either CardFragment

.EXPAND_UP or CardFragment.EXPAND_DOWN.

Expansion state With the method setExpansionEnabled(), you can allow or disallow the

expansion for this CardFragment.

Expansion factor Sets the card’s allowed height. It’s adjusted in multiples of the parent

container. 1.5 means that CardFragment will be at most 1.5 times the height

of its container.

displaying images
Images in Android Wear are used slightly differently than in normal Android apps. I like to
categorize them into two groups: context images and action images.

Context images are your backgrounds; they provide context for the card currently displayed. It
could be a photo of a contact who just sent you a message. Action images are part of the interactions

Building the User Interface ❘ 67

in Wear. All action images in Wear are loaded with the new CircledImageView, which has special
properties related to Wear user interfaces.

Loading a Static Image

The simplest image to load in Wear is the static image. Listing 5‐16 is the simplest example of the
image with a circled background.

listing 5‐16: the basic CircledImageView

<?xml version="1.0" encoding="utf-8"?>

<RelativeLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:wear="http://schemas.android.com/apk/res‐auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <android.support.wearable.view.CircledImageView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/view"
 android:layout_centerVertical="true"
 android:layout_centerHorizontal="true"
 android:src="@drawable/ic_launcher"
 wear:circle_radius="50dp"
 wear:circle_color="#f063c7"/>

</RelativeLayout>

This layout should render a result similar to that shown in Figure 5-12.

figure 5-12: The basic CircledImageView

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res%E2%80%90auto

68 ❘ ChApter 5 develoPIng WeAr APPs

Adding a progress Update

With the simple images in Wear, you need to use the limited
amount of space wisely. A neat thing about CircledImageView
is the optional progress bar—or countdown timer, depending
on how you use it. Imagine a download is under way, and you
want to show it on the watch’s user interface. You’d probably
create an AsyncTask, and, in the onProgressUpdate() method,
you’d update the progress of CircledImageView, as shown in
Figure 5-13.

To build the progress bar shown in Figure 5-13, you start by
setting the color and weight of the circle border, as shown in
Listing 5‐17.

listing 5‐17: Setting the border information

<?xml version="1.0" encoding="utf-8"?>

<RelativeLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:wear="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <android.support.wearable.view.CircledImageView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/circledImageView"
 android:layout_centerVertical="true"
 android:layout_centerHorizontal="true"
 android:src="@drawable/ic_launcher"
 wear:circle_radius="50dp"
 wear:circle_color="#f063c7"
 wear:circle_border_color="#00cc99"
 wear:circle_border_width="10dp"/>

</RelativeLayout>

To update the progress bar, you use the setProgress() method, as shown in Listing 5‐18. The
example isn’t quite as complex as the scenario presented earlier, but it should give you a good idea of
how to work with the circular progress bar.

listing 5‐18: enabling the progress bar

CircledImageView mCircledImageView = (CircledImageView) findViewById(R.id
 .circledImageView);
mCircledImageView.setProgress(0.6f);

Table 5-4 lists all the possible attributes for the CircledImageView class.

figure 5-13: The progress

bar at 60%

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res-auto

Building the User Interface ❘ 69

handling lists in Wear
Just like in standard Android apps, the list is one of the most important aspects of a user interface.
In Wear the lists have changed to be easier to interact with while you’re on the move.

You have two options when dealing with lists in Android Wear: WearableListView and GridView.

Using WearableListView

WearableListView is optimized for small screens. It scrolls vertically and has a snapping effect. To
add WearableListView to your project, you need three things: the layout, the adapter, and the data.
Let’s start with the layout of the list (Listing 5‐19).

listing 5‐19: Creating the list row layout

<?xml version="1.0" encoding="utf-8"?>

<RelativeLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:wear="http://schemas.android.com/apk/res‐auto"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="wrap_content">

 <android.support.wearable.view.CircledImageView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/row_image"
 android:src="@drawable/ic_launcher"
 wear:circle_radius="20dp"
 wear:circle_color="#00cc99"
 android:layout_centerVertical="true"
 android:layout_alignParentStart="true"/>

table 5-4: CircledImageView Attributes

xml attribute descriPtion

circle_color Deines the circle’s background color. In the layout ile you can use normal

RGB values. In Java you use the Color class. This property is required if

you want the circle background to be displayed.

circle_radius Sets the size of the background circle. Without it the circle is invisible.

circle_border_color Sets the border’s color. The circle’s border is also the optional progress bar.

circle_border_width Set the border’s stroke weight. This is required if you want the border to

show.

circle_padding Sets the border’s padding.

continues

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res%E2%80%90auto

70 ❘ ChApter 5 develoPIng WeAr APPs

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textAppearance="?android:attr/textAppearanceLarge"
 android:text="Large Text"
 android:id="@+id/row_text"
 android:layout_gravity="center_horizontal"
 android:layout_toEndOf="@+id/view"
 android:layout_centerVertical="true"
 android:layout_centerHorizontal="true"/>
</RelativeLayout>

The WearableListView.Adapter class is slightly different from what you’re probably used to
in standard Android. It’s an abstract class, which means you need to create a subclass. It has
three methods you need to work with: onCreateViewHolder(), onBindViewHolder(), and
getItemCount(). Listing 5‐20 shows a simple example of how to use them.

listing 5‐20: Building the list adapter

public class MyAdapter extends WearableListView.Adapter {

 Context mContext;
 LayoutInflater mLayoutInflater;
 String[] listData;

 public MyAdapter(Context context, String[] data) {
 mContext = context;
 mLayoutInflater = LayoutInflater.from(context);
 listData = data;
 }

 @Override
 public WearableListView.ViewHolder onCreateViewHolder(ViewGroup viewGroup,
 int type) {
 return new WearableListView.ViewHolder(mLayoutInflater.inflate(R.layout
 .my_listitem, null));
 }

 @Override
 public void onBindViewHolder(WearableListView.ViewHolder viewHolder, int pos) {
 TextView text = (TextView) viewHolder.itemView.findViewById(R.id.row_text);
 text.setText(listData[pos]);
 viewHolder.itemView.setTag("item" + pos);
 }

 @Override
 public int getItemCount() {
 return listData.length;
 }
}

listing 5‐19: (continued)

Building the User Interface ❘ 71

figure 5-14: The list view

with custom row layout

In Wear the adapter has become much simpler than it was in standard Android. For one thing, you
don’t need to build your own holders anymore—which is something I occasionally forget. In the
method onCreateViewHolder() you simply inlate a layout for your row. The returning view is the

ViewHolder for your list.

onBindViewHolder() is where you link your data to the respective UI widgets inside your layout ile.

Finally, you return the length of your list data in the getItemCount() method. Where you store your

data is up to you. In this example I chose to pass it as a reference to the constructor of the adapter.

When it’s time to put your list to the test, all you need is three lines of code, as shown in

Listing 5‐21, the data (in this example a String array), the list, and the adapter.

listing 5‐21: putting it all together

String[] data = {"Item 1", "Item 2", "Item 3", "Item 4", "Item 5"};
WearableListView list = (WearableListView) findViewById(R.id.listview);
list.setAdapter(new MyAdapter(this, data));

Figure 5-14 shows the list in all its glory.

Of course, you also can add click actions to your WearableListView, just like you can with any

other View. Use the special ClickListener interface located in the WearableListView class, as

shown in Listing 5‐22.

listing 5‐22: Making the ClickListener class

private class MyListListener implements WearableListView.ClickListener {

 @Override
 public void onClick(WearableListView.ViewHolder viewHolder) {
 Toast.makeText(MyActivity.this, "Clicked on: " + viewHolder.itemView
 .getTag(), Toast.LENGTH_LONG).show();
 }

continues

72 ❘ ChApter 5 develoPIng WeAr APPs

 @Override
 public void onTopEmptyRegionClick() {
 }
}

Then simply attach the listener to your list, as shown in Listing 5‐23.

listing 5‐23: Attaching a listener

String[] data = {"Item 1", "Item 2", "Item 3", "Item 4", "Item 5"};
WearableListView list = (WearableListView) findViewById(R.id.listview);
list.setAdapter(new MyAdapter(this, data));
list.setClickListener(new MyListListener());

As you’ve seen, WearableListView is very handy. It gives you a list that follows the general
guidelines for Wear apps and is very easy to implement. You also have alternatives such as
GridViewPager, also known as 2D Picker.

the 2D picker

Much like the list, the grid consists of a layout, an adapter, and data. But the big difference is the
data. In a normal list it’s one‐dimensional, but in grid view its two‐dimensional—the user can scroll
in both dimensions freely. This example uses CardFragment to quickly produce pages, but you can
create your own page layout too.

Start by creating your adapter. It should inherit from the GridPagerAdapter class, as shown in
Listing 5‐24.

listing 5‐24: Creating the grid adapter

public class MyGridAdapter extends FragmentGridPagerAdapter {

 String[][] mData;

 public MyGridAdapter(FragmentManager fm, String[][] data) {
 super(fm);
 mData = data;
 }

 @Override
 public Fragment getFragment(int row, int col) {
 CardFragment fragment = CardFragment.create("A page", "Page " + row + "," +
 "" + col);
 return fragment;
 }

listing 5‐22: (continued)

Building the User Interface ❘ 73

 @Override
 public int getRowCount() {
 return mData.length;
 }

 @Override
 public int getColumnCount(int row) {
 return mData[row].length;
 }
}

When the Adapter is ready, the next step is to add a GridViewPager to your layout, as shown in
Listing 5‐25.

listing 5‐25: Building your app layout

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <android.support.wearable.view.GridViewPager
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:id="@+id/grid"/>
</LinearLayout>

Finally, glue it all together in your activity, as shown in Listing 5‐26.

listing 5‐26: Composing the 2D picker

GridViewPager pager = (GridViewPager) findViewById(R.id.grid);
String[][] data = {
 {"Row 1, col 1", "Row 1, col 2", "Row 1, col 3"},
 {"Row 2, col 1", "Row 2, col 2", "Row 2, col 3"},
 {"Row 3, col 1", "Row 3, col 2", "Row 3, col 3"}};
pager.setAdapter(new MyGridAdapter(getFragmentManager(), data));

Your result should resemble Figure 5-15.

http://schemas.android.com/apk/res/android

74 ❘ ChApter 5 develoPIng WeAr APPs

providing positive feedBaCk

A key feature of Wear is feedback. It’s critical that you give your users clear and timely feedback
within the short period of time that you have their attention. Google provides three kinds of
basic animation feedback that you can use as necessary. All of them are launched using the
ConfirmationActivity class:

 ➤ The conirmation animation is a green check box that disappears by itself. It is often used to
show that something was done for you on the phone, such as adding an event to a calendar
or taking a note. The idea is that the user doesn’t have to open the phone and verify that the
item was added.

 ➤ Open‐on‐phone shows an animated check box that indicates that something was sent to the
phone. It’s a hint that the user should review the action on the phone.

 ➤ The action‐failed animation—the sad cloud—stays onscreen until the user actively removes it
and attempts to complete the action again.

To use ConfirmationActivity, you create a subclass and add it to your manifest. Then you start
the activity with the correct parameters. You have beautiful animations that run smoothly on your
users’ Wear device. Listing 5‐27 shows how to subclass ConfirmationActivity.

figure 5-15: The 2D Picker

providing positive Feedback ❘ 75

starting the success feedback
Listing 5‐29 shows how to start the success animation.

listing 5‐29: Starting the success conirmation

Intent success = new Intent(MyActivity.this, MyConfirmations.class);
success.putExtra(ConfirmationActivity.EXTRA_ANIMATION_TYPE,
 ConfirmationActivity.SUCCESS_ANIMATION);
success.putExtra(ConfirmationActivity.EXTRA_MESSAGE, "This is OK!");
startActivity(success);

listing 5‐27: Creating a subclass of ConirmationActivity

public class MyConfirmations extends ConfirmationActivity {
}

Add your new activity to your AndroidManifest.xml ile, as shown in Listing 5‐28.

listing 5‐28: Adding your conirmation activity to the manifest

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.wiley.wrox.chapter5">
 <uses-feature android:name="android.hardware.type.watch"/>
 <application
 android:allowBackup="true"
 android:icon=@drawable/ic_launcher"
 android:label=@string/app_name"
 android:theme=@android:style/Theme.DeviceDefault">
 . . .
 <activity android:name=".MyConfirmations"/>
 </application>

</manifest>

After you have registered the class for your app, it must be started with the correct settings.
Table 5-5 lists the extra information you need to pass with the intent.

table 5-5: Extra information for ConirmationActivity

field descriPtion

EXTRA_ANIMATION_TYPE The type of the animation. Can be either FAILURE_ANIMATION, OPEN_

ON_PHONE_ANIMATION, or SUCCESS_ANIMATION.

EXTRA_MESSAGE A short text message to display along with the animation.

http://schemas.android.com/apk/res/android
mailto:theme=@android:style/Theme.DeviceDefault

76 ❘ ChApter 5 develoPIng WeAr APPs

Figure 5-16 shows the success animation in all its glory.

figure 5-16: The success animation

figure 5-17: The open‐on‐phone animation

starting the open‐on‐Phone animation
Starting the open‐on‐phone animation is no different, as shown in Listing 5‐30.

listing 5‐30: Starting the open‐on‐phone animation

phone.putExtra(ConfirmationActivity.EXTRA_ANIMATION_TYPE,
 ConfirmationActivity.OPEN_ON_PHONE_ANIMATION);
phone.putExtra(ConfirmationActivity.EXTRA_MESSAGE, "Check your phone!");
startActivity(phone);

This animation is slightly different, as shown in Figure 5-17.

starting the failure feedback
The failure feedback is almost identical to the other two; only the type is different. See Listing 5‐31.

recommended reading ❘ 77

listing 5‐31: Starting the failure animation

Intent fail = new Intent(this, MyConfirmations.class);
fail.putExtra(ConfirmationActivity.EXTRA_ANIMATION_TYPE,
 ConfirmationActivity.FAILURE_ANIMATION);
fail.putExtra(ConfirmationActivity.EXTRA_MESSAGE, "Not OK!");
startActivity(fail);

Your result should look like Figure 5-18. Note that the failure animation stays until the user clicks it
away.

figure 5-18: The failure animation

summarY

This chapter has described the new UI widgets available in Android Wear. You learned how to build
apps using some of these new classes.

This chapter also introduced design principles for very small screens and gave you some points to
keep in mind when building apps with Android Wear.

The next chapter explores how to add connectivity to Android Wear apps.

recommended reading

Creative Vision for Android Wear, https://developer.android.com/design/wear/creative‐
vision.html.

Design Principles for Wear, https://developer.android.com/design/wear/principles.html.
UI Patterns for Wear, https://developer.android.com/design/wear/patterns.html.
Style for Wear, https://developer.android.com/design/wear/style.html.

https://developer.android.com/design/wear/creative-vision.html
https://developer.android.com/design/wear/principles.html
https://developer.android.com/design/wear/patterns.html
https://developer.android.com/design/wear/style.html
https://developer.android.com/design/wear/creative-vision.html

Voice Input

What’s in this Chapter?

 ➤ Types of voice interaction

 ➤ Overview of the Wear APIs

 ➤ Using predeined Wear voice actions

 ➤ Using your own commands

Wrox.Com Code doWnloads for this Chapter

The code downloads for this chapter are found at www.wrox.com/go/androidwearables on
the Download Code tab. The code is in the Chapter 6 download and the iles are individually
named according to the listing numbers noted throughout the chapter.

talking to Your Wrist

[…] the phone is like your brain; it’s controlling your TV or driving your

car […]

— Justin Koh, Android Wear developer, Google I/O 2014

Do you remember Dick Tracy, the comic‐strip detective who had a two‐way wrist radio he

used to talk to his boss at the police station? It is as if Android Wear is trying to re‐create that

vision of the future from almost 70 years ago.

Thirty‐six years later, David Hasselhoff, playing the character Michael Knight, talked to his

intelligent car, KITT, using a wristwatch on which he would get voice‐generated answers

from the car. According to some fan sites, the watch Hasselhoff wore was a modiication of

6

http://www.wrox.com/go/androidwearables

80 ❘ ChApter 6 voIce InPut

a Star Wars-branded watch manufactured by Bradley for the U.S. (I recommend that you search
for images of both characters and their watches. We could not include any due to copyright
restrictions.)

Android Wear offers half the communication capabilities of Dick’s and Michael’s radio watches.
You can dictate commands to your Wear device, but it has no sound‐playing capabilities. None of
the existing Wear‐enabled devices currently has any speakers or sound output. This is a forthcoming
feature and will make it possible to stream audio via Buetooth toward external speakers.

On the other hand, all of them can be commanded via voice in multiple ways. This chapter introduces
different types of voice input. The code listings give you basic information on how to use the different
types of voice input. Check the chapter downloads for full code examples.

tYpes of voiCe interaCtion

There are different types of voice interaction. You could give your smartwatch simple commands,
and it could recognize a series of predeined commands by comparing the sound input to a table of
existing recordings to provide you with immediate feedback.

Or the device could transfer the stream of audio, once digitized, to the smartphone or tablet it
is connected to for the other device to operate a voice recognition algorithm. Sending the voice
information to, for example, a cloud service for remote storage or treatment would fall into the same
category. In essence it is the same case where the smartwatch sends the data to a different system for
it to deal with it.

note During the Google I/O conference in 2014, the lecture “Android Wear:
The Developer’s Perspective” covered topics concerning Android Wear. The
audience posed several questions about the use of voice interaction.

Watching that video at http://youtu.be/sha_w3_5c2c can help you
understand some of the principles behind the use of voice commands. The Q&A
session begins two‐thirds of the way through the video.

Finally, the smartwatch (or any other Wear‐enabled device) could simply use voice interaction to
react to a notiication coming from the phone or tablet. This interaction pattern is slightly different,
because the smartwatch pushes commands or data toward the device it’s paired to. In this case, the
phone expects an answer in textual form that will be entered via voice. The screen real estate isn’t
optimized for a virtual keyboard.

It’s not that easy to conceptually understand these cases by reading Android’s documentation site.
Table 6-1 shows all the possibilities for the use of voice within Android Wear to help you choose the
one you need for your project. In this chapter you’ll get to try all of them.

Each interaction mode requires a different set of commands on the phone’s Android application
package (APK) and the Wear device’s APK to get both programs to work in sync. The only
exception is the last case—running commands without a connected device.

http://youtu.be/sha_w3_5c2c

types of Voice Interaction ❘ 81

It is possible to enhance existing apps using voice input. Apps created prior to the launch of Wear
cannot be used with voice commands unless they are remade to include the proper intents on the
APK on the phone and the APK on the smartwatch. In other words, if you want your existing app
to include voice interaction using Wear, you must do the following:

 1. Add the proper intents on the phone’s APK so that it can, for example, be ready to take text
input via the watch’s voice recognition system.

 2. Create an APK for the watch that allows data entry via voice when requested.

The Wear SDK has been created to make this integration seamless. Adding voice input takes
just a couple keystrokes. But remember that even if the technology allows you to, for example,
make every text input ield in your application Wear‐enabled, you still need to ensure that the
interaction pattern makes sense.

taBle 6-1: Types of Voice Interaction

interaction descriPtion

Send a command to the

host

The Wear device computes a voice recognition operation and sends a

command to the host device. In the oficial documentation, this is called

app‐provided voice capabilities.

Send a text to the host The Wear device captures the audio and pushes it through its codec to

produce a stream of bytes of audio that can be sent to the host device.

Respond to a query from

the host

When a notiication arrives, it is possible to get a set of predeined

answers to which the user can simply answer using voice.

Respond to a query from

the host in a text

When a notiication arrives from, for example, an e‐mail, it is possible to

answer by talking into the Wear device and to get the speech transcribed

into a text to send as an answer.

Execute simple system

commands

The Wear device computes a voice recognition operation based on a

series of predeined intents. In the oficial documentation, this is called

system‐provided voice capabilities.

note Quoting Justin Koh, one of the Android Wear developers shown in the
video mentioned earlier: “Voice is an array of bytes. Make sure you have the
right codecs.”

In other words, if you plan to use your Wear device as a remote microphone,
make sure the speciic device you want your app to run on can encode and
decode the digital audio in the right format.

The codec compresses the raw audio data to make it lighter. At the other end, the
device receiving the stream needs a compatible codec to decompress the audio.

For an overview on the supported media formats within Android see https://
developer.android.com/guide/appendix/media‐formats.html.

https://developer.android.com/guide/appendix/media%E2%80%90formats.html
https://developer.android.com/guide/appendix/media%E2%80%90formats.html

82 ❘ ChApter 6 voIce InPut

taBle 6-2: Predeined Voice Intents According to the Oficial Wear Documentation

name

samPle

Phrases intent (values of the constant)

action

categorY/

mime-tYPe extras

Call a

car/taxi

“OK, Google,

get me a taxi.”

“OK, Google,

call me a car.”

com.google.

android.gms.

actions.RESERVE_

TAXI_RESERVATION

Take a

note

“OK, Google,

take a note.”

“OK, Google,

note to self.”

android.intent.

action.SEND

com.google

.android

.voicesearch.

SELF_NOTE

android.content

.Intent.EXTRA_TEXT

A string with note body

Set alarm “OK, Google,

set an alarm

for 8 a.m.”

“OK, Google,

wake me up at

6 tomorrow.”

android.intent.

action.SET_ALARM

android.provider

.AlarmClock.EXTRA_HOUR

An integer with the hour

of the alarm

android.provider

.AlarmClock

.EXTRA_MINUTES

An integer with the

minute of the alarm

(These two extras are

optional. Either neither or

both are provided.)

Set timer “OK, Google,

set a timer for

10 minutes.”

android.intent.

action.SET_TIMER

android.provider

.AlarmClock.

EXTRA_LENGTH

An integer in the range of

1 to 86,400 (the number

of seconds in 24 hours)

representing the length of

the timer

using sYstem‐Provided voice commands

The Android Wear platform provides several voice intents that are based on simple user actions.
Table 6-2 lists the actions you can use. When you use voice commands, all your sentences need to
start with “OK, Google.” This phrase is unique enough for the Wear device not to be triggered
randomly.

Using System‐Provided Voice Commands ❘ 83

name

sample

phrases intent (values of the Constant)

aCtion

CategorY/

mime-tYpe extras

Start/

Stop a

bike ride

“OK, Google,

start cycling.”

“OK, Google,

start my bike

ride.”

“OK, Google,

stop cycling.”

vnd.google.

fitness.TRACK

vnd.google.

fitness.

activity/biking

actionStatus

A string with the value

ActiveActionStatus

when starting and

CompletedActionStatus

when stopping

Start/stop

a run

“OK, Google,

track my run.”

“OK, Google,

start running.”

“OK, Google,

stop running.”

vnd.google.

fitness.TRACK

vnd.google.

fitness.

activity/running

actionStatus

A string with the value

ActiveActionStatus

when starting and

CompletedActionStatus

when stopping

Start/stop

a workout

“OK, Google,

start a

workout.”

“OK, Google,

track my

workout.”

“OK,

Google, stop

workout.”

vnd.google.

fitness.TRACK

vnd.google.

fitness.

activity/other

actionStatus

A string with the value

ActiveActionStatus

when starting and

CompletedActionStatus

when stopping

Show

heart rate

“OK, Google,

what’s my

heart rate?”

“OK, Google,

what’s my

bpm?”

vnd.google.

fitness.VIEW

vnd.google.

fitness.data_

type/com.google.

heart_rate.bpm

Show

step

count

“OK, Google,

how many

steps have I

taken?”

“OK, Google,

what’s my

step count?”

vnd.google.

fitness.VIEW

vnd.google.

fitness.data_

type/com.google.

step_count.

cumulative

84 ❘ ChApter 6 voIce InPut

aBout intents

Intents allow you to launch an activity in another application by describing a
simple action to be performed (such as “edit picture” or “view map”) in an Intent
object. This type of intent speciies an action and provides some data with which to
perform it. It is therefore called implicit intent.

When calling startActivity() or startActivityForResult() as an implicit
intent, the system resolves the intent to an application that can handle the intent
and starts its corresponding activity. If more than one application could handle
the intent, the system would present the user with a dialog from which to pick
an app.

You can read more about intents at http://developer.android.com/guide/
components/intents‐filters.html.

just launch an app
Try the capabilities of your smartwatch. Note that you cannot do so by using an emulator connected
to a phone over the USB. According to different reports, it is not possible to use voice commands
from the emulator to trigger events on the phone. This will not work for either system‐predeined
commands or app‐predeined ones.

note The current emulator does not support voice actions via the keyboard,
even though the text appears on the display. This is the standard test procedure
(using the keyboard to issue voice commands), because the emulator cannot use
the microphone in your PC.

Therefore, if you want to start an app you launched in your emulator, you must
do the following:

 1. Click the display.

 2. Click the red G.

 3. Go to the Start menu and choose the app from there.

You can also quickly start the application using something like this from your
development machine:

adb shell am start ‐n com.example.android.test/.TestActivity

To launch an app, just talk to your Wear device. Say, “OK, Google, start HelloWorld.” If you still
have your irst application installed on the device, it should launch.

http://developer.android.com/guide/components/intents-filters.html
http://developer.android.com/guide/components/intents-filters.html

the Wear ApIs ❘ 85

hack an existing intent to launch Your app
As hinted earlier, when talking about intents, it is possible to “hijack” an existing intent to launch
your own application. You just need to modify the AndroidManifest.xml ile to your app so that it
is listed as one of the possible actions to take upon the arrival of the intents deined in Table 6-2.
Remember that it is possible to hack any intent within Android. Listing 6‐1 shows the ilter you need
to add to the activity you want to launch in your manifest ile to get it to be triggered with the call
of a timer. For example, you could launch your HelloWorld app when telling your smartwatch “OK,
Google, set a timer for 10 minutes.”

listing 6‐1: Intent ilter to enable launching your app when setting a timer

<intent-filter>
 <action android:name="android.intent.action.SET_TIMER"/>
 <category android:name="android.intent.category.DEFAULT"/>
</intent-filter>

launch Your app with voice the “right” Way
Besides trying to take over an existing intent in your smartwatch, you also can use a
different way in your wearable’s AndroidManifest.xml ile to get the system to call your app
when saying “OK, Google, start myApp.” By default your app’s android:name attribute to
the activity tag is .MyActivity. (If you are looking at the downloadable example for this
chapter, it is .MyActivityWearable.) As shown in Listing 6‐2, just add a second activity
called StartRunActivity with the proper intent ilter, install the app on your watch, and it
should work.

listing 6‐2: Activity to enable launching your app via voice

<activity android:name="StartRunActivity" android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
</activity>

the Wear aPis

The wearable services within Wear consist of three APIs that help the application software on the
phone or tablet easily communicate with the Wear device: the data API, the message API, and the
node API. Each takes care of different parts of the information exchange between devices.

All can be called from both the phone app and the wearable one, and all your data can be used on
both sides. WearableListenerService implements all the listeners for the different APIs.

86 ❘ ChApter 6 voIce InPut

Using voice as an input, in any of the forms explained in Table 6-1, requires the devices to
communicate with each other. Therefore, understanding the role of each API is important at this point.

data api
The data API lets you put data on a sort of virtual cache shared among the connected devices. You don’t
need to worry about anything but putting the data into storage and taking it from there at either side.

This is convenient when dealing with images, because you don’t have to send them repeatedly, thus
saving battery life.

message api
The message API sends byte arrays between the devices. Suppose you are capturing voice on the
watch and sending it, after it is digitized, to the phone. As long as you push your audio information
as a byte array, you can get direct access to the message API and send the information directly.

node api
The node API checks when nodes enter the connection range. This function can be used to discover
whether the phone is present. After a while it should be straightforward to simply put the device to
sleep if too much time has passed since the last connection was detected.

ansWering to notifiCations: Capturing Your voiCe
into an app

In the following section you will write an example in which voice plays a big role. In this case
you will start by creating a new project with apps for both a phone and a Wear device. Chapter
5 showed you how to create a new project from scratch involving both a mobile and a Wear
device. This chapter gets you a little further. Its aim is getting you up and running with a hybrid
development system using a phone and a Wear emulator that talk to each other.

It is possible to run almost any kind of scenario between emulators and real devices, knowing the
limitations of launching applications or triggering intents. In these two examples you will experiment
with a phone running Android’s version of KitKat (which should work on any later version) and an
emulator of a Wear smartwatch. In this way you can send events from one to the other.

note Remember the basic usage of the emulator as soon as it is up and
running and as soon as your phone is connected to your computer:

 ➤ You need to link the emulator with the phone using adb. The command to do
so is adb ‐s <phone_ID> forward tcp:5601 tcp:5601.

 ➤ To get the phone’s identiication number, issue the command adb devices
and copy the proper id from there.

If you disconnect the phone or reboot the emulator, you need to reissue this command.

Answering to Notiications: Capturing Your Voice into an App ❘ 87

Notiications including an action to input text, such as replying to an e‐mail, should normally
launch an activity on the Wear device to input the text. As mentioned earlier, Wear devices—
currently smartwatches—have little space for displaying a keyboard, so you can let users dictate a
reply or provide predeined text messages using RemoteInput.

In this irst case you will make a wear and a phone app that communicate with each other. When
launched, the phone application sends a request (in the form of a notiication) for a voice answer on
the Wear device.

This gets the Wear device to show a query for a voice answer onscreen. The user is prompted to talk
to the device. The answer is captured by RemoteInput, and the wear application displays the result
onscreen while it sends it back to the phone application. Finally, the phone application shows the
result on a text ield.

The following sections show how this simple application is made.

Creating a simple app sending a notiication
Chapter 4 explored the different types of notiications on a Wear device. This time you will use
the simplest one, a button running on your phone’s screen, to trigger an event on the smartwatch
emulator.

Creating Your Empty Project

Follow these steps to create your new Android Wear project:

 1. Click New Project in the Android Studio startup dialog or on the menu, and enter the correct
information for your app, as shown in Figure 6-1. I’m calling my app SimpleNotiication and
placing it in the com.wiley.wrox.chapter6.simplenotiication package. Click Next or press
Alt+N to continue.

figure 6-1: Enter project information

88 ❘ ChApter 6 voIce InPut

 3. Choose Blank Activity to add a blank activity to your mobile, as shown in Figure 6-3, and
click Next twice to accept the default parameters.

 2. As shown in Figure 6-2, I selected Phone and Tablet API 19 to match the speciic version
of the Android OS on my phone. You should choose the one that matches your own phone.
I also chose Wear API 20. Then click Next.

figure 6-2: Select form factors and API levels for your app

figure 6-3: Add a blank phone activity

 4. Choose a name for the activity, as shown in Figure 6-4. I chose not to use the default one this
time to make it simpler in the editor window when multiple tabs are open. I call the activity
MyActivityPhone and the layout activity_my_phone.

Answering to Notiications: Capturing Your Voice into an App ❘ 89

 6. Notice in Figure 6-6 that Android Studio creates two layouts, round_activity_my_wear and
rect_activity_my_wear. For consistency, I named the activity MyActivityWear and the layout
activity_my_wear. To create your new Mobile + Wear app, click Finish.

You should now have an Android Studio project that has two application structures within it called
mobile and wear.

 5. Choose Blank Wear Activity, as shown in Figure 6-5. By default this is a standard activity
with WatchViewStub as the main layout ile. Click Next.

figure 6-4: Choose a name for the activity

figure 6-5: Add a blank Wear activity

90 ❘ ChApter 6 voIce InPut

Modifying the Gradle File

The gradle ile for the mobile app needs to include a reference to a series of dependencies needed for
this app bundle to compile properly. Listing 6‐3 shows the ile with the new code highlighted.

listing 6‐3: Adding dependencies

apply plugin: 'com.android.application'

android {
 compileSdkVersion 20
 buildToolsVersion "20.0.0"

 defaultConfig {
 applicationId "com.wiley.wrox.chapter6.simplenotification"
 minSdkVersion 19
 targetSdkVersion 20
 versionCode 1
 versionName "1.0"
 }
 buildTypes {
 release {
 runProguard false
 proguardFiles getDefaultProguardFile('proguard-android.txt'),
 'proguard-rules.pro'
 }
 }
}

dependencies {
 compile fileTree(dir: 'libs', include: ['*.jar'])

figure 6-6: Edit the properties for your Wear activity and layouts

Answering to Notiications: Capturing Your Voice into an App ❘ 91

 wearApp project(':wear')
 compile 'com.google.android.gms:play-services-wearable:+'

 compile 'com.android.support:support‐v4:20.0+'
}

Modifying the App’s Layout

By default the app comes with a simple layout featuring the default icon for apps as well as the
classic “Hello world!” message, as shown in Figure 6-7.

A good way to continue is to add a button to send notiications to the Wear device when pressed,
as well as to add the classic Wrox logotype to the application. To implement this modiication,
you need to add some code to the activity_my_phone.xml deinition ile. Listing 6‐4 highlights
the changes I decided to implement in this case. I just added code to implement a button with the
callback function simpleNotification. Figure 6-8 shows the result.

figure 6-7: The default layout of the

mobile app on the simulator

figure 6-8: An app with an extra

button on the simulator

92 ❘ ChApter 6 voIce InPut

listing 6‐5: Changes to the original AndroidManifest.xml ile

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.wiley.wrox.chapter6.simplenotification" >

 <application
 android:allowBackup="true"

listing 6‐4: Changes on the layout from the original ile

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:paddingBottom="@dimen/activity_vertical_margin"
 tools:context=".MyActivityPhone">

 <TextView
 android:id="@+id/textView"
 android:text="@string/hello_world"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

 <Button
 style="?android:attr/buttonStyleSmall"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Simple Notification"
 android:id="@+id/button"
 android:onClick="simpleNotification"
 android:layout_below="@+id/textView"
 android:layout_centerHorizontal="true"
 android:layout_marginTop="22dp" />
</RelativeLayout>

To change the logotype, you need to add Wrox’s logotype to the resources folder to a subfolder
called drawable‐xxhdpi. That will let you access it from within the AndroidManifest.xml ile for
your phone. Listing 6‐5 shows the modiications on the default manifest ile to include the new
logotype as well as assign a launch mode.

note There are four different ways to start an Android application (or launch
mode). The singleTop option creates an application that will try to respond to
the intents registered for it from the same instance of the activity, rather than
making new instances of the same application in case it happens to be at the top
of the activity stack. You can read more about this at http://developer
.android.com/guide/topics/manifest/activity‐element.html.

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools
http://developer.android.com/guide/topics/manifest/activity-element.html
http://schemas.android.com/apk/res/android
http://developer.android.com/guide/topics/manifest/activity-element.html

Answering to Notiications: Capturing Your Voice into an App ❘ 93

Adding the Right Callback Function

Adding the callback function is not a big deal in this case. Listing 6‐6 highlights the additions you
need to make to the default source code for it to run.

 android:icon="@drawable‐xxhdpi/wrox_logo_big"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >
 <activity
 android:name=".MyActivityPhone"
 android:label="@string/app_name"
 android:launchMode="singleTop" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

</manifest>

Figure 6-9 shows the app with the new image.

figure 6-9: App with the Wrox logo

94 ❘ ChApter 6 voIce InPut

listing 6‐6: Changes to the original MyActivityphone.java ile

package com.wiley.wrox.chapter6.simplenotification;

import android.app.Activity;
import android.os.Bundle;
import android.view.Menu;
import android.view.MenuItem;
import android.app.Notification;
import android.support.v4.app.NotificationCompat;
import android.support.v4.app.NotificationManagerCompat;
import android.view.View;

public class MyActivityPhone extends Activity {

 private final static NOTIFICATION_ID = 6; // Use chapter number as ID
 private NotificationManagerCompat mNotificationManager;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_my_phone);

 mNotificationManager = NotificationManagerCompat.from(this);
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 // Inflate the menu; this adds items to the action bar if it is present.
 getMenuInflater().inflate(R.menu.my_activity_phone, menu);
 return true;
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 // Handle action bar item clicks here. The action bar will
 // automatically handle clicks on the Home/Up button, so long
 // as you specify a parent activity in AndroidManifest.xml.
 int id = item.getItemId();
 if (id == R.id.action_settings) {
 return true;
 }
 return super.onOptionsItemSelected(item);
 }
 public void simpleNotification(View v) {
 Notification notification = new NotificationCompat.Builder(this)
 .setSmallIcon(R.drawable.wrox_logo_small)
 .setContentTitle("My notification")
 .setContentText("My first wear notification!")
 .build();

 notif(notification);

Answering to Notiications: Capturing Your Voice into an App ❘ 95

 }

 private void notif(Notification n) {
 mNotificationManager.notify(NOTIFICATION_ID, n);
 }
}

After this code has been uploaded to a phone, when the button is clicked, the
smartwatch simulator should capture the event with its default coniguration.
In other words, we haven’t yet uploaded an app to the watch to do anything in
conjunction with the handheld.

Figure 6-10 shows the notiication to the watch on the simulator.

This SimpleNotiication app is a good way to play around with the voice capabilities
on the watch. It allows you to trigger voice input response requests when the
notiication is issued. This is very helpful for testing your new Wear‐based apps.

getting Your app to receive a voice Command
Given the previous SimpleNotiication example, you will next
build an application that requests an action from the user. The
idea is that the answer is input via voice. Because the simulator
has no voice input capabilities, you will use the keyboard to
type your answers.

In this case, you will create an app for your handheld device
that will be an improvement to the previous one. Below the
button to send the notiication, you will add a text box to
capture the response from the user.

Figure 6-11 shows this new addition to the app.

When declaring the intent for the Wear device to issue its
answer, you will use the RemoteInput class. This class tells the
smartwatch to be ready to reply to the notiication using voice
as an input. The watch has everything that is needed for it to
answer. In other words, you just need to make a phone app
and not a Wear app in this case.

Revising the Callback Function

The callback function needs to include all the code related to
the RemoteInput call. Listing 6‐7 shows this new function
added to the SimpleNotiication app you worked with
earlier. The new notiication callback function is called
voiceNotification(), which means I have removed the
previous one.

figure 6-10:
Notiication

sent to the

smartwatch

simulator

figure 6-11: Text ield added to

the UI

96 ❘ ChApter 6 voIce InPut

listing 6‐7: Changes to the MyActivityphone.java ile

package com.wiley.wrox.chapter6.simplenotification;
public class MyActivityPhone extends Activity {
 private final static NOTIFICATION_ID = 6; // Use chapter number as ID
 private NotificationManagerCompat mNotificationManager;

 public static final String EXTRA_MESSAGE = "extra_message";
 public static final String ACTION_DEMAND = "action_demand";
 public static final String EXTRA_VOICE_REPLY = "extra_voice_reply";

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_my_phone);

 mNotificationManager = NotificationManagerCompat.from(this);
 }
[…]
 public void voiceNotification(View v) {

 Log.v("wrox", "Handheld sent notification");

 // Create the intent and pending intent for the notification
 Intent replyIntent = new Intent(this, DemandIntentReceiver.class)
 .putExtra(EXTRA_MESSAGE, "Reply selected.")
 .setAction(ACTION_DEMAND);
 PendingIntent replyPendingIntent =
 PendingIntent.getBroadcast(this.getApplicationContext(), 0,
 replyIntent, PendingIntent.FLAG_UPDATE_CURRENT);

 // Create the remote input
 String replyLabel = getResources().getString(R.string.reply_label);
 RemoteInput remoteInput = new RemoteInput.Builder(EXTRA_VOICE_REPLY)
 .setLabel(replyLabel)
 .build();

 // Create the reply action and add the remote input
 NotificationCompat.Action action =
 new NotificationCompat.Action.Builder(R.drawable.wrox_logo_small,
 getString(R.string.reply_label), replyPendingIntent)
 .addRemoteInput(remoteInput)
 .build();

 // Create the notification
 Notification replyNotification = new NotificationCompat.Builder(this)
 .setSmallIcon(android.R.drawable.ic_btn_speak_now)
 .setContentTitle("Voice to handheld")
 .setContentText("Left‐swipe and do a voice reply")
 .extend(new NotificationCompat.WearableExtender().addAction(action))
 .build();

 // Issue the notification
 notif(replyNotification);

Answering to Notiications: Capturing Your Voice into an App ❘ 97

 }

 private void notif(Notification n) {
 mNotificationManager.notify(NOTIFICATION_ID, n);
 }
}

You will notice the three strings deined at the beginning of the class. Those are needed when
creating the intent that we will use to capture the data coming back from the smartwatch. An intent
has four parameters:

 ➤ The context of the activity: this in this case

 ➤ The class the intent refers to: DemandIntentReceiver

 ➤ Extra information to add details to the intent

 ➤ The type of action

Both the extra information and the type of action are user‐deined. You need to deine a string that
will contain the value for those. This is how the broadcast receiver (which we will deine next) can
ilter the data coming in.

Adding a Broadcast Receiver

We will capture the response from the Wear device by listening to a broadcast it will issue through
the intent: new Intent(this, DemandIntentReceiver.class). To do this, just add a new class to
your project. In the irst location you could just log the incoming data to logcat. In a later iteration
of the code you could populate the text ield on the app with the data coming from the smartwatch.
This new class is shown in Listing 6‐8.

listing 6‐8: the new DemandIntentReceiver.java ile

package com.wiley.wrox.chapter6.simplenotification;

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.os.Bundle;
import android.support.v4.app.RemoteInput;
import android.util.Log;

public class DemandIntentReceiver extends BroadcastReceiver {

 @Override
 public void onReceive(Context context, Intent intent) {
 Log.v("wrox", "got data");

 Bundle remoteInput = RemoteInput.getResultsFromIntent(intent);

 CharSequence reply =

continues

98 ❘ ChApter 6 voIce InPut

 remoteInput.getCharSequence(MyActivityPhone.EXTRA_VOICE_REPLY);
 if(reply != null){

 Log.v("wrox", "User reply from wearable: " + reply);
 }
 }
}

At this level, we are basically getting everything that comes to the broadcast receiver and just
capturing EXTRA _ VOICE _ REPLY. It is possible to use the other ilters deined in the app to
separate the data from other broadcasts that are happening. However, doing so is not necessary
at this point. Check the provided code examples for Chapter 6 to see yet another iteration of
DemandIntentReceiver.java.

Modifying the App’s Layout to Include a text Field

To get the app ready to show the data received from the Wear device on the screen, you need to add
a text ield to the layout, as shown in Listing 6‐9. You will also notice that here you need to change
the name to the notiication’s callback function on the button’s deinition.

listing 6‐9: Changes to activity_my_phone.xml

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:paddingBottom="@dimen/activity_vertical_margin"
 tools:context=".MyActivityPhone">

 <TextView
 android:id="@+id/textView"
 android:text="@string/hello_world"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

 <Button
 style="?android:attr/buttonStyleSmall"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Simple Notification"
 android:id="@+id/button"
 android:onClick="voiceNotification"
 android:layout_below="@+id/textView"
 android:layout_centerHorizontal="true"

listing 6-8 (continued)

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools

Answering to Notiications: Capturing Your Voice into an App ❘ 99

listing 6‐10: Changes to the phone’s AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.wiley.wrox.chapter6.simplenotification" >

 <application
 android:allowBackup="true"
 android:icon="@drawable-xxhdpi/wrox_logo_big"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >
 <activity
 android:name=".MyActivityPhone"
 android:label="@string/app_name"
 android:launchMode="singleTop" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>

 android:layout_marginTop="22dp" />

 <EditText
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/reply_text"
 android:layout_below="@+id/button"
 android:layout_marginTop="22dp"
 android:layout_alignParentStart="true"
 android:layout_alignEnd="@+id/button"
 android:text="answer" />

</RelativeLayout>

Adding the new Class to the Manifest File

The new class has to be added to the manifest ile within a receiver tag so that the program launches
the receiver the way it should. Listing 6‐10 shows the additions to the manifest ile.

note When adding components to your code through Android Studio’s UI,
the entries to the manifest ile will be done automatically. A good reading
introducing this feature, as well as some of the other advantages behind
Android Studio, can be found at: http://www.airpair.com/android/
android‐studio‐vs‐eclipse.

continues

http://www.airpair.com/android/android%E2%80%90studio%E2%80%90vs%E2%80%90eclipse
http://schemas.android.com/apk/res/android
http://www.airpair.com/android/android%E2%80%90studio%E2%80%90vs%E2%80%90eclipse

100 ❘ ChApter 6 voIce InPut

 </activity>

 <receiver android:name=".DemandIntentReceiver" android:exported="false">
 <intent‐filter>
 <action android:name=
 "com.wiley.wrox.chapter6.simplenotification.ACTION_DEMAND"/>
 </intent‐filter>
 </receiver>

 </application>

 <meta-data android:name="com.google.android.gms.version" android:value=
 "@integer/google_play_services_version" />

</manifest>

Adding the reply String to the Strings File

We have added a new text ield to the app. This requires a label. The name should be added as part
of the strings.xml ile in the resources folder. Listing 6‐11 shows the new addition.

listing 6‐11: Modiication to strings.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>

 <string name="app_name">SimpleNotification</string>
 <string name="hello_world">Hello world!</string>
 <string name="action_settings">Settings</string>
 <string name="reply_label">Voice reply</string>

</resources>

How It Works

Launch the app on your phone in parallel to the simulator. When you
click the phone’s notiication button, the simulator shows the actual
notiication inviting you to swipe to the left and reply via voice, as
shown in Figure 6-12.

After you swipe, you get a button you can use to reply to the
notiication, as shown in Figure 6-13.

If you click that icon, the voice input screen appears for you to type in
your voice command. Figure 6-14 shows the input screen on the Wear
device. Just type something (I assume you are using the emulator, just
like I did, and therefore need to type irst) and press Enter.

listing 6-10 (continued)

figure 6-13:
Reply button

figure 6-12:
Wear

notiication

inviting you

to enter a

voice reply

Answering to Notiications: Capturing Your Voice into an App ❘ 101

Figure 6-15 shows the screen after you enter the data.

The broadcast receiver does the rest by showing the information you entered on the logcat. If you
ilter the incoming data with “wrox” as a ilter, you should see the following three lines (to simplify,
I took out the timestamps):

16199/com.wiley.wrox.chapter6.simplenotification V/wrox: Handheld sent notification

16199/com.[…].simplenotification V/wrox: got data

16199/com.[…].simplenotification V/wrox: User reply from wearable: hola

showing the Answer on the App’s screen

Finally, you want to show the data you got from the Wear device on the app’s screen. This is done by
adding a LocalBroadcastManager to the main activity. Broadcast receivers exist for short periods
of time (they are automatically killed by the operating system after a few seconds), therefore it is
not possible to modify the UI on the main activity from them. The technique I recommend using
to inform the UI of the arrival of data from the wearable is to add another receiver in the main
activity and register it for an intent that will be produced by the DemandIntentReceiver class
after getting valid data from the smartwatch. This implies making a couple of changes to both the
DemandIntentReceiver.java ile, but also to the MyActivityPhone.java ile. Listing 6‐12 shows
how to improve the broadcast receiver to add the received text to the ield on the app.

listing 6‐12: Modiication to DemandIntentReceiver.java

@Override
public void onReceive(Context context, Intent intent) {
 Log.v("wrox", "got data");

 Bundle remoteInput = RemoteInput.getResultsFromIntent(intent);

 if (remoteInput.getCharSequence(
 MyActivityPhone.EXTRA_VOICE_REPLY) != null) {
 CharSequence reply =
 remoteInput.getCharSequence(MyActivityPhone.EXTRA_VOICE_REPLY);

 Log.v("wrox", "User reply from wearable: " + reply);

 Intent localIntent = new Intent("simplenotification.localIntent");
 localIntent.putExtra("result", reply.toString());

figure 6-14:
Reply button

figure 6-15:
Wear device

sending back

data

continues

102 ❘ ChApter 6 voIce InPut

 LocalBroadcastManager.getInstance(context)
 .sendBroadcast(localIntent);
 }
}

Listing 6‐13 includes the additions to make to MyActivityPhone.java for it to register a
LocalBroadcastReceiver handler and capture the intents carrying the information coming from the
wearable after being proxied by the other Broadcast. This operation might seem redundant, it is possible to
make an inner class to the main activity capable of receiving the broadcasts from the wearable. However,
this way allows you to easily get the code to grow in the form of new classes contained in external iles.

listing 6‐13: Modiications to MyActivityPhone.java

BroadcastReceiver mResultReceiver;
 […]
@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_my_phone);

 mResultReceiver = createBroadcastReceiver();
 LocalBroadcastManager.getInstance(this).registerReceiver(
 mResultReceiver,
 new IntentFilter("simplenotification.localIntent"));

 mNotificationManager = NotificationManagerCompat.from(this);
}
[…]
private void updateTextField(String text) {
 ((TextView)findViewById(R.id.reply_text)).setText(text);
}

private void notif(Notification n) {
 mNotificationManager.notify(NOTIFICATION_ID, n);
}

@Override
protected void onDestroy() {
 if (mResultReceiver != null) {
 LocalBroadcastManager.getInstance(this)
 .unregisterReceiver(mResultReceiver);
 }
 super.onDestroy();
}

private BroadcastReceiver createBroadcastReceiver() {
 return new BroadcastReceiver() {

listing 6-12 (continued)

Summary ❘ 103

 @Override
 public void onReceive(Context context, Intent intent) {
 updateTextField(intent.getStringExtra("result"));
 }
 };
}

Figure 6-16 shows the app on the phone after the data is retrieved and displayed on the designated
text ield.

figure 6-16: Phone app showing the text

summarY

This chapter was an overview of the power of using voice as an input to Wear devices. You can
use different types of voice inputs. This chapter used “free speech” input, where you talk to your
smartwatch as an answer to a notiication sent from the phone.

You went through a step‐by‐step example to see how you can build your own voice‐based apps
starting from a default project created by Android Studio.

You also saw how to launch your existing apps using the voice command “OK, Google,
YourAppName.”

104 ❘ ChApter 6 voIce InPut

There is a lot more you can do with voice. I recommend you take a look at the suggested readings as
a way to continue your exploration.

In the next chapter you’ll see how to extend the basic voice example created in this chapter to send
your commands to the net and back.

reCommended reading

Read more about voice inputs as notiications, on the oficial Android documentation at https://
developer.android.com/training/wearables/notifications/voice‐input.html.

https://developer.android.com/training/wearables/notifications/voice%E2%80%90input.html
https://developer.android.com/training/wearables/notifications/voice%E2%80%90input.html

pushing Data

What’s in this Chapter?

 ➤ Understanding the Data API

 ➤ Connecting to the Google Play services

 ➤ Sending images from handheld to wearable

 ➤ Using broadcasts or timers to refresh the UI

Wrox.Com Code doWnloads for this Chapter

The code downloads for this chapter are found at www.wrox.com/go/androidwearables on
the Download Code tab. The code is in the Chapter 7 download and the ilenames are those
noted throughout the chapter.

Chapter 6 introduced the three APIs that handle all communication between your phone
and your Wear device. This chapter is devoted to the Wearable Data Layer API. This set of
methods and classes is part of Google Play services.

The API consists of a set of data objects and listeners that notify your apps of different events.
Table 7-1 lists the available data objects.

7

http://www.wrox.com/go/androidwearables

106 ❘ ChApter 7 PushIng dAtA

In this chapter you will experiment with different types of data transfers between devices. Doing so
requires building a client to access the Google Play services. This client will provide a common entry
point to all the services and will manage the network connection between the user’s device and each
Google service.

CheCking the example

Start by taking a look at the example that comes with the Android SDK 20 called DataLayer. Most
likely, this example will be replicated in later releases of the SDK, so you should have a version of
it available no matter which version of the Wear‐enabled SDK you’re using. It shows how different
types of data can be moved back and forth between devices.

This example lets you take a picture with your phone’s camera and send the picture to the
smartwatch. Figure 7-1 explains how this works in the form of a diagram.

I have refactored the example so that it is made in the same way as the examples in the
rest of the book. In the Chapter 7 code downloads folder, decompress the ile named
chapter7 _ SimpleWearableData.zip and open it in Android Studio. Once you have it
running on your handheld and either your emulator or your watch, you can take a picture
with your phone and send it to the Wear device’s screen. You will also see a lot of information
overlaid on top. Figure 7-2 shows the app running on a phone.

note These APIs are specially designed for communication between handhelds
and wearables. These are the APIs you should use to set up communication
channels for your devices to talk to each other. Other methods, such as opening
low‐level sockets, should not be used at all for Wear devices.

taBle 7-1: Data Objects in the Data API

object descriPtion

DataItem Sets up shared data storage between the devices with automatic syncing.

MessageApi Sends ire‐and‐forget‐type commands, such as controlling and

starting an intent on the wearable from the handheld or controlling a

phone app from the wearable. Delivers an error when the devices are

disconnected or the message if they are connected.

Asset Sends binary blobs of data, such as images. Attached to data items,

the system handles the transfer automatically. Minimizes Bluetooth

bandwidth by caching large assets to avoid retransmission.

WearableListenerService Used with services. Listens to data layer events.

DataListener Used with foreground services. Listens to data layer events when the

activity is in the foreground.

Checking the example ❘ 107

The interaction performed was to take a picture with the phone after
pressing the button on the app’s UI and then to send it to the wearable
device. Unlike other examples, such as those in Chapter 6, in this case we
have a running wearable app that waits to receive data from the phone
and then displays it onscreen. Figure 7-3 is the result on an emulator for a
squared Wear device.

The Wearable Data Layer API is useful when a chunk of information (such
as an image or sound) needs to be transferred from one device to another.
You need to make your own app for your smartwatch, because the amount of
data to be transferred starts to become signiicant. Notiications aren’t good
for this. They offer a basic way to get simple information from one device to
another and to gather an answer to a simple query. The default software on
your Android Wear device won’t meet all your needs—or will it?

Since the whole codebase for this app is fairly large, we’ll look at some code snippets from this
example to understand how it works. Later you will perform the inverse operation of building such
a program from scratch, which will help you better understand the minimal setup needed to make a
distributed application between your Wear device and your phone or tablet.

phone’s myactivityphone.java
In this class you ind a series of hints on what the application does. I have chosen a couple of code
snippets and highlighted the most relevant aspects. Listing 7‐1 shows that we are choosing to use the
camera in the application and that when the class is created, the app builds a Google API client.

figure 7-1: Diagram of the data transmission example

figure 7-2: The Data

transmission app on

a phone

figure 7-3:

The Data

transmission app

on a wearable

108 ❘ ChApter 7 PushIng dAtA

listing 7‐1: Main Activity’s onCreate method for the phone (ilename: /mobile/src/main/
java/. . ./MyActivityPhone.java)

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 mHandler = new Handler();
 LOGD(TAG, "onCreate");
 mCameraSupported =
 getPackageManager().hasSystemFeature(
 PackageManager.FEATURE_CAMERA);
 setContentView(R.layout.activity_my_phone);
 setupViews();

 // Stores DataItems received by the local broadcaster
 // from the paired watch.
 mDataItemListAdapter = new DataItemAdapter(this,

 android.R.layout.simple_list_item_1);
 mDataItemList.setAdapter(mDataItemListAdapter);

 mGeneratorExecutor = new ScheduledThreadPoolExecutor(1);

 mGoogleApiClient = new GoogleApiClient.Builder(this)
 .addApi(Wearable.API)
 .addConnectionCallbacks(this)
 .addOnConnectionFailedListener(this)
 .build();
}

That Google API client implements listeners for all three APIs that are involved in the
communication between devices: Data, Message, and Node. Listing 7‐2 shows the override method
that adds the listeners for all three APIs at once.

listing 7‐2: Main Activity’s onConnected method for the phone (ilename: /mobile/src/
main/java/. . ./MyActivityPhone.java) onConnected())

@Override //ConnectionCallbacks
public void onConnected(Bundle connectionHint) {
 LOGD(TAG, "Google API Client was connected");
 mResolvingError = false;
 mStartActivityBtn.setEnabled(true);
 mSendPhotoBtn.setEnabled(mCameraSupported);
 Wearable.DataApi.addListener(mGoogleApiClient, this);
 Wearable.MessageApi.addListener(mGoogleApiClient, this);
 Wearable.NodeApi.addListener(mGoogleApiClient, this);
}

The application, as mentioned earlier, takes a picture with the camera. It calls whatever camera
applications you have installed, lets you choose one, and “intercepts” the result of that operation
to include it in your app. It takes only a thumbnail, because the biggest image you can show on
your Wear device is 320 by 320 pixels. Listing 7‐3 shows the main methods responsible for this

Checking the example ❘ 109

action. I have highlighted the lines that better describe this idea of launching the activity of taking a
picture, resizing it, and sending it to the watch.

listing 7‐3: Actions related to sending a picture to the wearable (ilename: /mobile/src/
main/java/. . ./MyActivityPhone.java)

/**
 * Dispatches an {@link android.content.Intent} to take a photo. Result
 * will be returned in onActivityResult().
 */
private void dispatchTakePictureIntent() {
 Intent takePictureIntent = new Intent(MediaStore.ACTION_IMAGE_CAPTURE);
 if (takePictureIntent.resolveActivity(getPackageManager()) != null) {
 startActivityForResult(takePictureIntent, REQUEST_IMAGE_CAPTURE);
 }
}
/**
 * Builds an {@link com.google.android.gms.wearable.Asset} from a bitmap.
 * The image that we get back from the camera in "data" is a thumbnail
 * size. Typically, your image should not exceed 320x320, and if you want
 * to have zoom and parallax effect in your app, limit the size of your
 * image to 640x400. Resize your image before transferring to your

 * wearable device.

 */
private static Asset toAsset(Bitmap bitmap) {
 ByteArrayOutputStream byteStream = null;
 try {
 byteStream = new ByteArrayOutputStream();
 bitmap.compress(Bitmap.CompressFormat.PNG, 100, byteStream);
 return Asset.createFromBytes(byteStream.toByteArray());
 } finally {
 if (null != byteStream) {
 try {
 byteStream.close();
 } catch (IOException e) {
 // ignore
 }
 }
 }
}

/**
 * Sends the asset that was created from the photo we took by adding it

 * to the Data Item store.
 */
private void sendPhoto(Asset asset) {
 PutDataMapRequest dataMap = PutDataMapRequest.create(IMAGE_PATH);
 dataMap.getDataMap().putAsset(IMAGE_KEY, asset);
 dataMap.getDataMap().putLong("time", new Date().getTime());

continues

110 ❘ ChApter 7 PushIng dAtA

 PutDataRequest request = dataMap.asPutDataRequest();
 Wearable.DataApi.putDataItem(mGoogleApiClient, request)
 .setResultCallback(new ResultCallback<DataItemResult>() {
 @Override
 public void onResult(DataItemResult dataItemResult) {
 LOGD(TAG, "Sending image was successful: " +
 dataItemResult.getStatus().isSuccess());
 }
 });

}

public void onTakePhotoClick(View view) {
 dispatchTakePictureIntent();
}

public void onSendPhotoClick(View view) {
 if (null != mImageBitmap && mGoogleApiClient.isConnected()) {
 sendPhoto(toAsset(mImageBitmap));
 }
}

Even if the Node API is not the main aim of this chapter, it is worth showing the methods that deal
with the connection between the smartwatch and the handheld. Thanks to this API, it’s easy to
look for existing wearables and send remote requests to start the activity. Listing 7‐4 displays the
methods and asynchronous class that check whether the watch is connected and ire up the activity
remotely.

listing 7‐4: Use of the Node ApI to ire the activity on the phone (ilename:
MainActivityPhone.java)

private Collection<String> getNodes() {
 HashSet<String> results = new HashSet<String>();
 NodeApi.GetConnectedNodesResult nodes =
 Wearable.NodeApi.getConnectedNodes(mGoogleApiClient).await();

 for (Node node : nodes.getNodes()) {
 results.add(node.getId());
 }

 return results;
}

private void sendStartActivityMessage(String node) {
 Wearable.MessageApi.sendMessage(
 mGoogleApiClient, node, START_ACTIVITY_PATH,

 new byte[0]).setResultCallback(
 new ResultCallback<SendMessageResult>() {

listing 7‐3: (continued)

Checking the example ❘ 111

 @Override
 public void onResult(SendMessageResult sendMessageResult) {
 if (!sendMessageResult.getStatus().isSuccess()) {
 Log.e(TAG, "Failed to send msg with status code: "
 + sendMessageResult.getStatus().getStatusCode());
 }
 }
 }
);
}

private class StartWearableActivityTask extends AsyncTask<Void, Void, Void> {

 @Override
 protected Void doInBackground(Void… args) {
 Collection<String> nodes = getNodes();
 for (String node : nodes) {
 sendStartActivityMessage(node);
 }
 return null;
 }
}

/** Sends an RPC to start a fullscreen Activity on the wearable. */
public void onStartWearableActivityClick(View view) {
 LOGD(TAG, "Generating RPC");

 // Trigger an AsyncTask that will query for a list of connected
 // nodes and send a "start-activity" message to each connected node.
 new StartWearableActivityTask().execute();
}

phone’s androidmanifest.xml
Note the following in the phone’s manifest ile which is shown in Listing 7‐5.

 ➤ A uses‐feature tag that speciies the use of the camera

 ➤ A meta‐data tag that registers a key‐value pair regarding the use of the Google Play services
API

listing 7‐5: phone’s manifest ile (ilename: /mobile/src/main/AndroidManifest.xml)

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.wiley.wrox.chapter7.simplewearabledata" >

 <uses-feature android:name=
 "android.hardware.camera" android:required="false" />

 <application
 android:allowBackup="true"
 android:icon="@drawable/ic_launcher"

continues

http://schemas.android.com/apk/res/android

112 ❘ ChApter 7 PushIng dAtA

 android:label="@string/app_name"
 android:theme="@style/AppTheme" >

 <meta-data
 android:name="com.google.android.gms.version"
 android:value="@integer/google_play_services_version" />

 <activity
 android:name=".MyActivityPhone"
 android:label="@string/app_name"
 android:launchMode="singleTask" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

</manifest>

listing 7‐5: (continued)

 note As explained at http://developer.android.com/guide/topics/
media/camera.html#manifest, you don’t need to declare the use of the camera in
the manifest ile for your app using a uses‐permission tag. The application itself
isn’t using the camera, but is launching an intent for a different app to capture a
picture.

At the same time, since the app will use the camera, but not as a hard requirement
(if the camera is unavailable, that should not stop the app from working), the
uses‐feature tag is needed, with the speciic value of android:required="false".

Sometimes you need to set up some app coniguration information that has to be
available across multiple classes. One example is storing API keys, version num-
bers, and so on. One way to store this information is by using the meta‐data node
within the AndroidManifest.xml ile.

This ield can be used to store data of multiple types, like booleans, loats, ints,
or strings. It can be accessed from your code using the Bundle method for your
data type.

Wearable’s myactivityWear.java
You will notice, when reading the Android Wear application in depth, that the program structure is
very similar to the one for the handheld. A whole series of methods handle communication between
both devices, initializing the three APIs, and so on.

http://developer.android.com/guide/topics/media/camera.html#manifest
http://developer.android.com/guide/topics/media/camera.html#manifest

Checking the example ❘ 113

In essence, the application on the smartwatch does three things:

 ➤ It shows a simple text when the phone’s app hasn’t been launched yet and/or the devices
aren’t connected to each other.

 ➤ When the phone captures a new image and sends it to the wearable, the application shows
this image as a background picture.

 ➤ The application displays a series of status messages over the image. These messages come
from the Node API or the Message API.

Listing 7‐6 is an excerpt of the whole class. It focuses on the code that handles the arrival of the
asset—the image in this case—the code that handles the shared data storage, and the code that
handles how the wearable app displays it onscreen.

listing 7‐6: Wearable application (ilename: /wear/src/main/java/. . ./MyActivityWear.java)

@Override
public void onDataChanged(DataEventBuffer dataEvents) {
 Log.d(TAG, "onDataChanged(): " + dataEvents);

 final List<DataEvent> events = FreezableUtils.freezeIterable(dataEvents);
 dataEvents.close();
 for (DataEvent event : events) {
 if (event.getType() == DataEvent.TYPE_CHANGED) {
 String path = event.getDataItem().getUri().getPath();
 if (DataLayerListenerService.IMAGE_PATH.equals(path)) {
 DataMapItem dataMapItem =

 DataMapItem.fromDataItem(event.getDataItem());
 Asset photo = dataMapItem.getDataMap()
 .getAsset(DataLayerListenerService.IMAGE_KEY);
 final Bitmap bitmap =

 loadBitmapFromAsset(mGoogleApiClient, photo);
 mHandler.post(new Runnable() {
 @Override
 public void run() {
 Log.d(TAG, "Setting background image..");
 mLayout.setBackground(new BitmapDrawable(getResources(),

 bitmap));
 }
 });

 } else if (DataLayerListenerService.COUNT_PATH.equals(path)) {
 Log.d(TAG, "Data Changed for COUNT_PATH");
 generateEvent("DataItem Changed",

 event.getDataItem().toString());
 } else {

continues

114 ❘ ChApter 7 PushIng dAtA

 Log.d(TAG, "Unrecognized path: " + path);
 }

 } else if (event.getType() == DataEvent.TYPE_DELETED) {
 generateEvent("DataItem Deleted", event.getDataItem().toString());
 } else {
 generateEvent("Unknown data event type",

 "Type = " + event.getType());
 }
 }
}
/**
 * Extracts {@link android.graphics.Bitmap} data from the
 * {@link com.google.android.gms.wearable.Asset}
 */
private Bitmap loadBitmapFromAsset(GoogleApiClient apiClient, Asset asset) {
 if (asset == null) {
 throw new IllegalArgumentException("Asset must be non-null");
 }

 InputStream assetInputStream = Wearable.DataApi.getFdForAsset(
 apiClient, asset).await().getInputStream();

 if (assetInputStream == null) {
 Log.w(TAG, "Requested an unknown Asset.");
 return null;
 }
 return BitmapFactory.decodeStream(assetInputStream);
}

Wearable’s androidmanifest.xml
The manifest ile for the wearable contains a couple of relevant things, as shown in Listing 7‐7. First,
you see how the Google Play services API has been declared in the same way as in the manifest ile
for the phone’s app.

Second, a class is launched as a service in parallel to the main class. This class, called
DataLayerListenerService, waits for events coming from the handheld. There is a better
description of that class in the following section.

Finally, the intent‐filter named com.wiley.wrox.chapter7.simplewearabledata.EXAMPLE
launches the app remotely.

listing 7‐7: Wearable’s manifest ile (ilename: /wear/src/main/AndroidManifest.xml)

[…]
<meta-data
 android:name="com.google.android.gms.version"
 android:value="@integer/google_play_services_version" />

listing 7‐6: (continued)

Checking the example ❘ 115

<service
 android:name=".DataLayerListenerService" >
 <intent-filter>
 <action android:name="com.google.android.gms.wearable.BIND_LISTENER" />
 </intent-filter>
</service>

<activity
 android:name=".MyActivityWear"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 <intent-filter>
 <action android:name=
 "com.wiley.wrox.chapter7.simplewearabledata.EXAMPLE"/>
 <category android:name="android.intent.category.DEFAULT"/>
 </intent-filter>
</activity>
[…]

Wearable’s listener
This example separates the wearable code into two classes—for clarity and because they perform
two different tasks. The main activity changes the UI upon arrival of new background images or
data that is worth pushing to the screen. The DataLayerListenerService is just that—a service
running in the background that waits for events coming from the handheld app that it can report to
the main class.

Listing 7‐8 shows the two main methods in the service: onDataChanged and onMessageReceived.
Note that the second one can launch the main class, as highlighted in the code.

listing 7‐8: Wearable’s listener class (ilename: /wear/src/main/java/. . ./
DataLayerListenerService.java)

@Override
public void onDataChanged(DataEventBuffer dataEvents) {
 LOGD(TAG, "onDataChanged: " + dataEvents);
 final List<DataEvent> events = FreezableUtils.freezeIterable(dataEvents);
 dataEvents.close();
 if(!mGoogleApiClient.isConnected()) {
 ConnectionResult connectionResult = mGoogleApiClient
 .blockingConnect(30, TimeUnit.SECONDS);
 if (!connectionResult.isSuccess()) {
 Log.e(TAG, "DataLayerListenerService failed to connect to

continues

116 ❘ ChApter 7 PushIng dAtA

 GoogleApiClient.");
 return;
 }
 }

 // Loop through the events and send a message back to the node
 // that created the data item.
 for (DataEvent event : events) {
 Uri uri = event.getDataItem().getUri();
 String path = uri.getPath();
 if (COUNT_PATH.equals(path)) {
 // Get the node id of the node that created the data item
 // from the host portion of the uri.
 String nodeId = uri.getHost();
 // Set the data of the message to be the bytes of the Uri.
 byte[] payload = uri.toString().getBytes();

 // Send the rpc
 Wearable.MessageApi.sendMessage(mGoogleApiClient, nodeId,

 DATA_ITEM_RECEIVED_PATH, payload);
 }
 }
}

@Override
public void onMessageReceived(MessageEvent messageEvent) {
 LOGD(TAG, "onMessageReceived: " + messageEvent);

 // Check to see if the message is to start an activity
 if (messageEvent.getPath().equals(START_ACTIVITY_PATH)) {
 Intent startIntent = new Intent(this, MyActivityWear.class);
 startIntent.addFlags(Intent.FLAG_ACTIVITY_NEW_TASK);
 startActivity(startIntent);
 }
}

making Your google api Client from sCratCh

After you have checked the basic example from the Android Wear developers on how to get the
phone app and the one on the watch to talk to each other, you will wonder how to make this from
scratch. Let’s build the scaffolding for a minimal application that you could expand for whatever
use you’re interested in.

A good implementation of a client to Google’s API should be able to connect to one or more Google
Play services synchronously or asynchronously and handle connection failures.

Next you will build two apps that will be connected through Google Play services. You will do the
equivalent of having two sockets open between the phone and the watch. One will send a value to

listing 7‐8: (continued)

Making Your Google ApI Client from Scratch ❘ 117

change the color of the watch’s screen. The other will tell the handheld about the coordinates of the
last touch on the watch’s screen.

Consider the following points when dealing with such a scenario:

 ➤ How will you handle communication between devices? In this case we are using the Data
API. You might consider it not to be optimal in this situation. Because we will send small
amounts of data, the Message API probably would have been more suitable for this example.
But because the aim is to show an example that is easy to expand, the Data API is more ver-
satile and therefore is the one I chose.

 ➤ How will you update the information on the devices’ screens? This was covered in Chapter 6,
where we used BroadcastReceiver to listen to the arrival of digitized voice from the watch
and a LocalBroadcastManager to capture the data into the UI. This time you will apply that
same technique to the wearable and not only to the phone.

When it comes to the code’s structure, you will have two classes for each device. One will be
dedicated to the UI, and the other will run as a service, to listen to the changes in the data storage.
When a change occurs, the service on the phone will tell the UI which new values it can use. The
process will be the same for the wearable.

start with a Clean project
The irst step is to create the API client by starting from a clean Android Wear project with code
for both the handheld and the Wear device. In this case, a couple objects of the class DataItem
are shared between both devices. One ield represents the watch’s background color, and the other
represents the coordinates of the last location where the user touched the screen.

This is probably one of the shortest examples you can ind on how to establish bidirectional
communication between the handheld and the watch. It has many anchor points where you can
easily add your own code.

The following sections examine each program that is part of this example. The code iles can be
downloaded from the Chapter 7 download folder.

the phone’s myactivityphone.java
On MyActivityPhone.java, as I have uploaded it to the Wrox server, you will ind some interesting things:

 ➤ The declaration of a Google API client to start sharing data between devices, with overrides
to control the possibility of the connectivity’s being lost or not even started.

 ➤ A local broadcast manager that will be registered at the onCreate()method. It refreshes the
text on the UI’s label upon data arrival.

 ➤ The method syncDataItem(), which sends a new random color using the ilter PHONE2WEAR
to the watch every time someone presses the button on the UI. I used two different types of
data within the Data API: an int for the color and a String to send a simple text indicating
how many times the button has been pressed.

118 ❘ ChApter 7 PushIng dAtA

Listing 7‐9 shows how to implement the Google API client from scratch.

listing 7‐9: Main activity on the phone app (ilename: /mobile/src/main/java/. . ./
MyActivityPhone.java)

package com.wiley.wrox.chapter7.wearabledatafromscratch;

import […]

public class MyActivityPhone extends Activity {

 private GoogleApiClient mGoogleApiClient;
 private int mColorCount = 0;
 private BroadcastReceiver mResultReceiver;
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_my_phone);

 mGoogleApiClient = new GoogleApiClient.Builder(this)
 .addConnectionCallbacks(new GoogleApiClient.ConnectionCallbacks() {
 @Override
 public void onConnected(Bundle connectionHint) {
 Log.v("wrox‐mobile", "Connection established");
 }
 @Override
 public void onConnectionSuspended(int cause) {
 Log.v("wrox‐mobile", "Connection suspended");
 }
 })
 .addOnConnectionFailedListener(new
GoogleApiClient.OnConnectionFailedListener() {
 @Override
 public void onConnectionFailed(ConnectionResult result) {
 Log.v("wrox‐mobile", "Connection failed");
 }
 })
 .addApi(Wearable.API)
 .build();
 mGoogleApiClient.connect();

 mResultReceiver = createBroadcastReceiver();
 LocalBroadcastManager.getInstance(this).registerReceiver(
 mResultReceiver,
 new IntentFilter("phone.localIntent"));

 }

[…]

Making Your Google ApI Client from Scratch ❘ 119

 public void syncDataItem(View view) {
 if(mGoogleApiClient==null)
 return;

 int r = (int) (255 * Math.random());
 int g = (int) (255 * Math.random());
 int b = (int) (255 * Math.random());

 final PutDataMapRequest putRequest =
PutDataMapRequest.create("/PHONE2WEAR");
 final DataMap map = putRequest.getDataMap();
 map.putInt("color", Color.rgb(r,g,b));
 map.putString("colorChanges", "Amount of changes: " + mColorCount++);
 Wearable.DataApi.putDataItem(mGoogleApiClient,
putRequest.asPutDataRequest());

 Log.v("wrox‐mobile", "Handheld sent new random color to watch");
 Log.v("wrox‐mobile", "color:" + r + ", " + g + ", " + b);
 Log.v("wrox‐mobile", "iteration:" + mColorCount);
 }

 private void updateTextField(String text) {
 Log.v("wrox-mobile", "Arrived text:" + text);
 ((TextView)findViewById(R.id.reply_text)).setText(text);
 }

 @Override
 protected void onDestroy() {
 if (mResultReceiver != null) {
 LocalBroadcastManager.getInstance(this)
 .unregisterReceiver(mResultReceiver);
 }
 super.onDestroy();
 }

 private BroadcastReceiver createBroadcastReceiver() {
 return new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {
 updateTextField(intent.getStringExtra("result"));
 }
 };
 }

}

the phone’s androidmanifest.xml
Listing 7‐10 shows the manifest ile for the phone. I’ve highlighted the service declaration. Together
with the metadata tag declaring the use of the Google Play services API, these are the two changes
needed for the service to boot when the app launches and for the combo to use the Google API to
talk to the other device.

120 ❘ ChApter 7 PushIng dAtA

listing 7‐10: Full manifest ile (ilename: /mobile/src/main/AndroidManifest.xml)

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.wiley.wrox.chapter7.wearabledatafromscratch" >

 <application
 android:allowBackup="true"
 android:icon="@drawable/wrox_logo_big"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >
 <activity
 android:name=".MyActivityPhone"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

 <service android:name=".DataLayerListenerServicePhone" >
 <intent-filter>
 <action android:name=
 "com.google.android.gms.wearable.BIND_LISTENER" />
 </intent-filter>
 </service>

 <meta-data android:name="com.google.android.gms.version"
 android:value="@integer/google_play_services_version" />

 </application>
</manifest>

the Phone’s datalayerlistenerservice
DataLayerListenerService is launched on the phone after the app launches. When the phone
registers an event of any of the shared data objects changing, the listener is triggered. In this case it
ilters by WEAR2PHONE. This object, as deined in MyActivityWear.java (check the source code later in
the chapter), carries two loat numbers—the x‐coordinate and the y‐coordinate of the last time the
screen was touched.

In Listing 7‐11 you can see the listener service in the phone that will be waiting for the wearable
device to make changes on the shared data object.

listing 7‐11: Listener on the phone (ilename: /mobile/src/main/java/. . ./
DataLayerListenerServicePhone.java)

public class DataLayerListenerServicePhone extends WearableListenerService {

 @Override

http://schemas.android.com/apk/res/android

Making Your Google ApI Client from Scratch ❘ 121

myactivityWear.java
The activity on the watch is very similar to the one on the phone. Just take a look at Listing 7‐12,
a snippet of the main class running on the phone. You will see that it is more or less the same
application as on the phone, with these differences:

 ➤ In this case the data is sent as WEAR2PHONE.

 ➤ The property we are changing in this case is the background color—a combo of the
setActivityBackgroundColor() and setBackgroundColor() methods.

 ➤ touchListener is implemented within the method dedicated to the layout. Because the
listener is responsible for detecting touches and sending them, all the needed code is added
there, inline.

 public void onDataChanged(DataEventBuffer dataEvents) {
 super.onDataChanged(dataEvents);

 Log.v("wrox-mobile", "Data arrived");

 final List<DataEvent> events = FreezableUtils.freezeIterable(dataEvents);
 for(DataEvent event : events) {
 final Uri uri = event.getDataItem().getUri();
 final String path = uri!=null ? uri.getPath() : null;
 if("/WEAR2PHONE".equals(path)) {
 final DataMap map = DataMapItem
 .fromDataItem(event.getDataItem()).getDataMap();
 // read your values from map:
 float X = map.getFloat("touchX");
 float Y = map.getFloat("touchY");
 String reply = "Touched X=" + X + ", Y=" + Y;
 Log.v("wrox-mobile", reply);
 Intent localIntent = new Intent("phone.localIntent");
 localIntent.putExtra("result", reply);
 LocalBroadcastManager.getInstance(this)
 .sendBroadcast(localIntent);
 }
 }
 }

}

 note You don’t need a Wear device to test these apps. As you will see later
in this chapter, I used the emulator for the watch. To simulate touches on the
screen, simply use the mouse pointer and click over the interface.

122 ❘ ChApter 7 PushIng dAtA

listing 7‐12: Main activity class on the wearable (ilename: /wear/src/main/
java/. . .MainActivityWear.java)

package com.wiley.wrox.chapter7.wearabledatafromscratch;

import […]

public class MyActivityWear extends Activity {

 private GoogleApiClient mGoogleApiClient;
 private TextView mTextView;
 private int mColor;
 private BroadcastReceiver mResultReceiver;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_my_wear);

 mGoogleApiClient = new GoogleApiClient.Builder(this)
 .addConnectionCallbacks(new GoogleApiClient
 .ConnectionCallbacks() {
 @Override
 public void onConnected(Bundle connectionHint) {
 Log.v("wrox‐wear", "Connection established");
 }
 @Override
 public void onConnectionSuspended(int cause) {
 Log.v("wrox‐wear", "Connection suspended");
 }
 })
 .addOnConnectionFailedListener(new GoogleApiClient
 .OnConnectionFailedListener() {
 @Override
 public void onConnectionFailed(ConnectionResult result) {
 Log.v("wrox‐wear", "Connection failed");
 }
 })
 .addApi(Wearable.API)
 .build();
 mGoogleApiClient.connect();

 final WatchViewStub stub = (WatchViewStub)
 findViewById(R.id.watch_view_stub);
 stub.setOnLayoutInflatedListener(new
 WatchViewStub.OnLayoutInflatedListener() {
 @Override
 public void onLayoutInflated(WatchViewStub stub) {
 mTextView = (TextView) stub.findViewById(R.id.text);

 stub.setOnTouchListener(new View.OnTouchListener() {
 @Override
 public boolean onTouch(View view, MotionEvent event) {

Making Your Google ApI Client from Scratch ❘ 123

 String s = "X=" + event.getX();
 s += ", Y=" + event.getY();
 Log.v("wrox‐wear", s);

 if(mGoogleApiClient==null)
 return false;

 final PutDataMapRequest putRequest =
 PutDataMapRequest.create("/WEAR2PHONE");
 final DataMap map = putRequest.getDataMap();
 map.putFloat("touchX", event.getX());
 map.putFloat("touchY", event.getY());
 Wearable.DataApi.putDataItem(mGoogleApiClient,
 putRequest.asPutDataRequest());

 return false;
 }
 });
 }
 });

 mResultReceiver = createBroadcastReceiver();
 LocalBroadcastManager.getInstance(this).registerReceiver(
 mResultReceiver,
 new IntentFilter("wearable.localIntent"));
 }

 private void setBackgroundColor(int color) {
 Log.v("wrox-wear", "Arrived color:" + color);
 final WatchViewStub stub = (WatchViewStub)
 findViewById(R.id.watch_view_stub);
 stub.setBackgroundColor(color);
 }

 @Override
 protected void onDestroy() {
 if (mResultReceiver != null) {
 LocalBroadcastManager.getInstance(this)
 .unregisterReceiver(mResultReceiver);
 }
 super.onDestroy();
 }

 private BroadcastReceiver createBroadcastReceiver() {
 return new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {
 setBackgroundColor(
intent.getIntExtra("result"));
 }
 };
 }
}

124 ❘ ChApter 7 PushIng dAtA

Wear’s android manifest file
Listing 7‐13 shows that there is almost no difference between the manifest ile for the wearable and
the one for the handheld.

listing 7‐13: Main activity class on the wearable (ilename: /wear/src/main/
AndroidManifest.xml)

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.wiley.wrox.chapter7.wearabledatafromscratch" >

 <uses-feature android:name="android.hardware.type.watch" />

 <application
 android:allowBackup="true"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@android:style/Theme.DeviceDefault" >
 <activity
 android:name=".MyActivityWear"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

 <service android:name=".DataLayerListenerServiceWear" >
 <intent-filter>
 <action android:name=
 "com.google.android.gms.wearable.BIND_LISTENER" />
 </intent-filter>
 </service>

 <meta-data android:name="com.google.android.gms.version"
 android:value="@integer/google_play_services_version" />
 </application>

</manifest>

the listener on the Wearable’s side
Listing 7‐14 shows the last piece of the puzzle.

listing 7‐14: Wearable’s listener (ilename: /wear/src/main/java/. . ./
DataLayerListenerServiceWear.java)

public class DataLayerListenerServiceWear extends WearableListenerService {

 @Override

http://schemas.android.com/apk/res/android
mailto:theme="@android:style/Theme.DeviceDefault

Making Your Google ApI Client from Scratch ❘ 125

 public void onDataChanged(DataEventBuffer dataEvents) {
 super.onDataChanged(dataEvents);

 Log.v("wrox-wear", "Data arrived");

 final List<DataEvent> events = FreezableUtils
 .freezeIterable(dataEvents);
 for(DataEvent event : events) {
 final Uri uri = event.getDataItem().getUri();
 final String path = uri!=null ? uri.getPath() : null;
 if("/PHONE2WEAR".equals(path)) {
 final DataMap map = DataMapItem
 .fromDataItem(event.getDataItem()).getDataMap();
 // read your values from map:
 int color = map.getInt("color");
 Log.v("wrox-wear", "Color received: " + color);

 Intent localIntent = new Intent("wearable.localIntent");
 localIntent.putExtra("result", color);
 LocalBroadcastManager.getInstance(this)
 .sendBroadcast(localIntent);

 String colorChanges = map.getString("colorChanges");
 Log.v("wrox-wear", colorChanges);
 }
 }
 }
}

the final result
I haven’t focused on showing the layout for either of the
applications. I recommend you check the full example on the
book’s downloads under chapter7 _ WearableDataFromScratch

.zip. There you will ind all the code used here, ready for you to
copy and start experimenting with in your own applications.

The expected result on your side should be something like what
is shown in the next two igures. Figure 7-4 is a screenshot of
the activity on my phone. Figure 7-5 is a screenshot of the watch
after the button on the phone’s UI is pressed and the watch’s
screen is touched.

figure 7-4: The Data transmission

app on a phone

figure 7-5: The watch after

the screen changes color

126 ❘ ChApter 7 PushIng dAtA

summarY

This chapter has shown you how to run the basic Wearable API communication example provided
by Google in the Android Wear SDK. You have learned how to make your own simple, bidirectional
app ecosystem so that you can share data records between apps on different devices.

Remember that the way to communicate between your handheld and your watch is Google Play
services.

In the next chapter you’ll explore how to stream audio over Bluetooth.

reCommended reading

Visit the following documentation sites from the Android Wear project for further reference:
•	 https://developer.android.com/training/wearables/data‐layer/accessing.html

•	 https://developer.android.com/training/wearables/data‐layer/data‐items

.html

https://developer.android.com/training/wearables/data-layer/accessing.html
https://developer.android.com/training/wearables/data-layer/data-items.html
https://developer.android.com/training/wearables/data-layer/data-items.html

Location‐Based services on
Android Wear

What’s in this Chapter?

 ➤ Introduction to the new location services

 ➤ Accessing your location

 ➤ Showing your street address

 ➤ Detecting activity patterns

Wrox.Com Code doWnloads for this Chapter

The wrox.com code downloads for this chapter are found at www.wrox.com/go/
androidwearables on the Download Code tab. The code is in the Chapter 8 download, and
the iles are named according to the listing numbers noted throughout the chapter.

Changing hoW loCation Works

With the release of the updated Android Wear system in late October 2014, using a
global positioning system (GPS) in your Wear apps became technically possible. The Sony
SmartWatch 3, the irst device that sported the required hardware, was released in late
November.

Because the Wear devices are often connected to a master device, the phone, there is always
the possibility of accessing the phone’s sensor data. This possibility has forced Google to
review how the GPS libraries work on Wear. Previously you would ask the Android system
(android.location) for the most suitable location provider according to your speciic
requirements. In Wear you instead use the newer Google Services location API (gms.location)
to access the location services.

8

http://www.wrox.com/go/androidwearables
http://www.wrox.com/go/androidwearables

128 ❘ ChApter 8 locAtIon‐Based services on android Wear

Apart from handling location updates in Android Wear, the Google Play location API gives
you a handful of other interesting features, including detecting your user’s physical activity,
such as walking or running. It also has helper classes for interacting with geographic areas
(geofences).

accessing the Current location
To access anything location‐based in Android Wear, you need to use the FusedLocationProvider
class, which selects the most appropriate GPS provider on your device(s). This new API is much
simpler in terms of readable code. It’s also more power‐eficient, because it considers other apps’
location update requests.

Another feature of FusedLocationProvider is the combination of multiple GPS sensors. Because
your Wear device may or may not have a GPS sensor built in, the system needs a way to igure out
which sensor is the best option for your needs. In most cases when the Wear device is connected
to your phone, it chooses to read updates directly from the phone instead, thereby saving battery
on the Wear device. If the phone and Wear device are not connected, the system requests updates
directly from the built‐in GPS sensor.

enabling GpS support

Start by requesting permission to use the location services. There are two levels available:
ACCESS_FINE_LOCATION and ACCESS_COARSE_LOCATION. If you want to use the GPS radio you’ll
need to add the ACCESS_FINE_LOCATION location. Open the manifest and add the lines shown in
Listing 8‐1.

listing 8‐1: requesting GpS permission

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.wiley.wrox.myapplication" >

 <uses-feature android:name="android.hardware.type.watch" />

 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
 . . .

</manifest>

Using the New ApIs

Before you can access FusedLocationProvider, you need to establish a connection using
GoogleApiClient. Connect to the Wear activity in your onCreate method using the code shown in
Listing 8‐2.

When you’re working with location through Google Services, the same rules apply as with any other
API. Use ConnectionCallbacks to get information about your connection attempt status, and
handle failed connection attempts in OnConnectionFailedListener.

http://schemas.android.com/apk/res/android

Changing how Location Works ❘ 129

listing 8‐2: Creating GoogleApiClient

package com.wiley.wrox.gpsproject;

import android.app.Activity;
import android.os.Bundle;
import android.support.wearable.view.WatchViewStub;
import android.widget.TextView;

import com.google.android.gms.common.api.GoogleApiClient;
import com.google.android.gms.location.LocationServices;

public class WearActivity extends Activity {

 private TextView mTextView;

 private GoogleApiClient mApiClient;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_wear);
 final WatchViewStub stub = (WatchViewStub) findViewById(R.id.watch_view_stub);
 stub.setOnLayoutInflatedListener(new WatchViewStub.OnLayoutInflatedListener() {
 @Override
 public void onLayoutInflated(WatchViewStub stub) {
 mTextView = (TextView) stub.findViewById(R.id.text);
 }
 });

 mApiClient = new GoogleApiClient.Builder(this)
 .addApi(LocationServices.API)
 .addConnectionCallbacks(mConnectionListener)
 .addOnConnectionFailedListener(mConnectionFailedListener)
 .build();
 }

 @Override
 protected void onResume() {
 super.onResume();
 }

 @Override
 protected void onPause() {
 super.onPause();
 }

}

Add the connection callbacks, and then request a connection to Google Services from within the
onResume life-cycle method, as shown in Listing 8‐3. Don’t forget to also add the disconnect call in
onPause.

130 ❘ ChApter 8 locAtIon‐Based services on android Wear

listing 8‐3: Adding the callbacks and connecting

package com.wiley.wrox.gpsproject;

import android.app.Activity;
import android.location.Location;
import android.os.Bundle;
import android.support.wearable.view.WatchViewStub;
import android.widget.TextView;

import com.google.android.gms.common.ConnectionResult;
import com.google.android.gms.common.api.GoogleApiClient;
import com.google.android.gms.location.LocationServices;

public class WearActivity extends Activity {

 private TextView mTextView;

 private GoogleApiClient mApiClient;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_wear);
 final WatchViewStub stub = (WatchViewStub) findViewById(R.id.watch_view_stub);
 stub.setOnLayoutInflatedListener(new WatchViewStub.OnLayoutInflatedListener() {
 @Override
 public void onLayoutInflated(WatchViewStub stub) {
 mTextView = (TextView) stub.findViewById(R.id.text);
 }
 });

 mApiClient = new GoogleApiClient.Builder(this)
 .addApi(LocationServices.API)
 .addApi(Wearable.API)
 .addConnectionCallbacks(mConnectionListener)
 .addOnConnectionFailedListener(mConnectionFailedListener)
 .build();
 }

 @Override
 protected void onResume() {
 super.onResume();
 mApiClient.connect();
 }

 @Override
 protected void onPause() {
 super.onPause();
 mApiClient.disconnect();
 }

 private GoogleApiClient.ConnectionCallbacks mConnectionListener = new
 GoogleApiClient.ConnectionCallbacks() {

Changing how Location Works ❘ 131

 @Override
 public void onConnected(Bundle bundle) {
 }

 @Override
 public void onConnectionSuspended(int i) {
 }
 };

 private GoogleApiClient.OnConnectionFailedListener mConnectionFailedListener =
 new GoogleApiClient.OnConnectionFailedListener() {
 @Override
 public void onConnectionFailed(ConnectionResult connectionResult) {
 }
 };
}

Determining GpS Availability

Although connecting to the Google Services Client is no problem, suppose the Wear device has no
built‐in GPS. Listing 8‐4 shows how to check for support for GPS.

listing 8‐4: Detecting if a device has a GpS sensor

private boolean hasGpsSupport(){
 return getPackageManager().hasSystemFeature(PackageManager
 .FEATURE_LOCATION_GPS);
}

This is, of course, also possible by using the uses‐feature element in your application manifest,
effectively limiting what devices can install your application.

requesting the Last Known Location

To request the last known location, you use the FusedLocationApi class. You can ind it within
LocationServices, as shown in Listing 8‐5. Make sure to call this only when the device has
connected to Google Services.

listing 8‐5: Getting the last known location

private GoogleApiClient.ConnectionCallbacks mConnectionListener = new
 GoogleApiClient.ConnectionCallbacks() {
 @Override
 public void onConnected(Bundle bundle) {
 Location loc = LocationServices.FusedLocationApi.getLastLocation
 (mApiClient);
 if (loc != null) {
 mTextView.setText(loc.getLatitude() + ", " + loc.getLongitude());

continues

132 ❘ ChApter 8 locAtIon‐Based services on android Wear

 }
 }

 @Override
 public void onConnectionSuspended(int i) {
 }
 };

This particular call may throw a NullPointerException and cause the app to crash sometimes. It all
depends on the current state of the GPS. This is because LocationService still has not received an
updated location. There are two ways to deal with this problem. Either you wait with the request for
the latest update, or you register a LocationListener for a single location update. The second option
may be a bit more secure, because it never delivers a null value. However, it also may never deliver a
value at all. In that case you should set an expiration for your request (as described in Table 8-1).

listing 8‐5: (continued)

taBle 8-1: Location Request Options

option description

Priority Describes the general urgency of your location updates. You can choose from

PRIORITY_HIGH_ACCURACY, PRIORITY_BALANCED_POWER_ACCURACY, PRIORITY_LOW_

POWER, and PRIORITY_NO_POWER. HIGH is the most accurate, BALANCED is “block”‐level

accuracy, LOW POWER is “city”‐level accuracy, and NO POWER is as good as possible

without consuming any power.

Expiration Sets the expiration of the location. There are two methods for setting the expiration.

setExpirationDuration(long) sets the amount of time the request lives, and

setExpirationTime(long) sets the exact expiration time since the device booted.

Interval Sets the desired rate (in milliseconds) for location updates. You should consider this a

wish, not a promise. Sometimes you may not receive any updates.

Fastest

interval

Sets the limit of how fast your app receives location updates. Unlike the normal

interval, this value is exact, meaning your app can receive updates faster than the

GPS provides them. This can be handy when you want to receive many updates while

still conserving power.

Number of

updates

Deines the number of location updates you want your app to receive. When using

this setting, you should also be sure to set the expiration time of your request. If you

don’t, your request might live forever, consuming valuable battery power.

Smallest

displacement

Sets the minimum distance between location updates in meters. The default value is

0.

requesting Location Updates

Sometimes it’s not enough to have just one location update. You may need more frequent updates on
the location. In those cases you use LocationListener. Listing 8‐6 shows how to attach a listener
and request periodic updates.

Changing how Location Works ❘ 133

listing 8‐6: requesting periodic location updates

package com.wiley.wrox.gpsproject;

import android.app.Activity;
import android.content.pm.PackageManager;
import android.location.Location;
import android.os.Bundle;
import android.support.wearable.view.WatchViewStub;
import android.widget.TextView;

import com.google.android.gms.common.ConnectionResult;
import com.google.android.gms.common.api.GoogleApiClient;
import com.google.android.gms.location.LocationListener;
import com.google.android.gms.location.LocationRequest;
import com.google.android.gms.location.LocationServices;

public class WearActivity extends Activity {

 private TextView mTextView;

 private GoogleApiClient mApiClient;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_wear);
 final WatchViewStub stub = (WatchViewStub) findViewById(R.id.watch_view_stub);
 stub.setOnLayoutInflatedListener(new WatchViewStub.OnLayoutInflatedListener() {
 @Override
 public void onLayoutInflated(WatchViewStub stub) {
 mTextView = (TextView) stub.findViewById(R.id.text);
 }
 });

 mApiClient = new GoogleApiClient.Builder(this)
 .addApi(LocationServices.API)
 .addConnectionCallbacks(mConnectionListener)
 .addOnConnectionFailedListener(mConnectionFailedListener)
 .build();
 }

 @Override
 protected void onResume() {
 super.onResume();
 mApiClient.connect();
 }

 @Override
 protected void onPause() {
 super.onPause();
 LocationServices.FusedLocationApi.removeLocationUpdates(mApiClient,
 mLocationListener);
 mApiClient.disconnect();

134 ❘ ChApter 8 locAtIon‐Based services on android Wear

 }

 private GoogleApiClient.ConnectionCallbacks mConnectionListener = new
 GoogleApiClient.ConnectionCallbacks() {
 @Override
 public void onConnected(Bundle bundle) {
 LocationRequest request = LocationRequest.create();
 LocationServices.FusedLocationApi.requestLocationUpdates(mApiClient, request,
 mLocationListener);
 }

 @Override
 public void onConnectionSuspended(int i) {
 }
 };

 private GoogleApiClient.OnConnectionFailedListener mConnectionFailedListener =
 new GoogleApiClient.OnConnectionFailedListener() {
 @Override
 public void onConnectionFailed(ConnectionResult connectionResult) {
 }
 };

 private LocationListener mLocationListener = new LocationListener() {
 @Override
 public void onLocationChanged(Location location) {
 mTextView.setText(location.getLatitude() + ", " + location.getLongitude());
 }
 };
}

When either the request for the latest location or the request for
periodic location updates returns a location, your app should look
something like Figure 8-1.

Being picky About Location Updates

Requesting a default location update works just ine, but in most
cases you may want to be pickier about how you request your
updates. If you request updates too seldom, your app may not be as
functional as you want. If you request too often, the battery life may
be signiicantly reduced. Neither option is good.

To make more sense of your location updates, you can set multiple
options, as shown in Table 8-1.

These options are set through an equal number of setter methods. Each setter returns a new
LocationRequest object, meaning you can chain these values as shown in Listing 8‐7.

listing 8‐7: Setting location request options

private GoogleApiClient.ConnectionCallbacks mConnectionListener = new
 GoogleApiClient.ConnectionCallbacks() {

figure 8-1: Displaying GPS

coordinates on the device

Changing how Location Works ❘ 135

 @Override
 public void onConnected(Bundle bundle) {
 LocationRequest request = LocationRequest.create()
 .setPriority(LocationRequest.PRIORITY_BALANCED_POWER_ACCURACY)
 .setExpirationDuration(2000)
 .setFastestInterval(500)
 .setInterval(2000)
 .setNumUpdates(2)
 .setSmallestDisplacement(0.5f);

 LocationServices.FusedLocationApi.requestLocationUpdates(mApiClient,
 request, mLocationListener);
 }

 @Override
 public void onConnectionSuspended(int i) {
 }
 };

This request has balanced (“block”‐level) accuracy and power consumption. It expires after
2 seconds and delivers location updates twice per second. It delivers a maximum of two location
updates, and the user must move at least half a meter before a new location update is delivered.

showing Your street address
While latitude and longitude (and any other values the location may give you) are very handy, in
some cases they’re just not good enough. Sometimes you want your locations to be in a human‐
readable format. That’s when you need to apply reverse geocoding to your location.

Luckily a service called Geocoder exists for this exact purpose. However, it’s not available on all
devices, so you must be sure to check if this service is available before you attempt to use it.

testing Geocoder Availability

Use the helper method isPresent() as shown in Listing 8‐8 to test if Geocoder is present.

listing 8‐8: testing if Geocoder is present

private LocationListener mLocationListener = new LocationListener() {
 @Override
 public void onLocationChanged(Location location) {
 if(Geocoder.isPresent()){
 }
 }
};

Getting the Current Address for a Location

Before you can translate the location to an address, you need to create the Geocoder instance.
However, because the Geocoder service is running synchronously, you should wrap this in a thread.
Listing 8‐9 shows you how.

136 ❘ ChApter 8 locAtIon‐Based services on android Wear

listing 8‐9: Creating a Geocoder instance

private LocationListener mLocationListener = new LocationListener() {
 @Override
 public void onLocationChanged(Location location) {
 if (Geocoder.isPresent()) {
 new AsyncTask<Double, Void, Address>() {
 @Override
 protected Address doInBackground(Double . . . doubles) {
 Geocoder coder = new Geocoder(WearActivity.this, Locale.getDefault());
 return null;
 }
 }.execute(location.getLatitude(), location.getLongitude());
 }
 }
};

The Geocoder object returns a list of possible addresses for the location you look up. Create a list
of Address objects, and call the method getFromLocation(double, double, int), passing the
latitude and longitude and the number of results you’re interested in. We’ll accept only a single result
this time, so pass a 1 (see Listing 8‐10).

listing 8‐10: Getting the most accurate address

private LocationListener mLocationListener = new LocationListener() {
 @Override
 public void onLocationChanged(Location location) {
 if (Geocoder.isPresent()) {
 new AsyncTask<Double, Void, Address>() {
 @Override
 protected Address doInBackground(Double . . . doubles) {
 Geocoder coder = new Geocoder(WearActivity.this, Locale.getDefault());
 List<Address> addressList = null;
 try {
 addressList = coder.getFromLocation(doubles[0], doubles[1], 1);
 if (addressList != null && addressList.size() > 0) {
 return addressList.get(0);
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
 return null;
 }
 }.execute(location.getLatitude(), location.getLongitude());
 }
 }
};

Since we’re doing the reverse geocoding outside of the UI thread, we need to be sure to post the
address when we’re back on the UI thread. Luckily AsyncTask has a method just for this called
onPostExecute().

recommended reading ❘ 137

If Geocoder is not available on your Wear device, you should use the data APIs to have the phone
look up the address.

summarY

In this chapter you explored the “new” Google location services. In particular, you tested them on
the new Android Wear platform.

You read the last known location and started reading recurring location updates with
LocationListener. You inished the chapter by looking at reverse geocoding and activity
recognition. All in all, you covered most of the location services available in Android.

This is the inal chapter in Part II of the book. Part III contains a few interesting projects that dive a
bit deeper into real‐life contexts for wearable apps.

reCommended reading

More in‐depth information about how the GPS works, http://en.wikipedia.org/wiki/
Global_Positioning_System

Android Location APIs can be found at https://developer.android.com/google/play‐
services/location.html

http://en.wikipedia.org/wiki/Global_Positioning_System
https://developer.android.com/google/play-services/location.html
http://en.wikipedia.org/wiki/Global_Positioning_System
https://developer.android.com/google/play-services/location.html

PART III

projects

 ▸ Chapter 9: Android Wear as Activity tracker

 ▸ Chapter 10: Smartwatch as Input

 ▸ Chapter 11: Build Your Own Glass

Android Wear as Activity
tracker

What’s in this Chapter?

 ➤ Introduction to activity trackers

 ➤ Working with sensors on Wear

 ➤ Displaying data on small screens

Wrox.Com Code doWnloads for this Chapter

The code downloads for this chapter are found at www.wrox.com/go/androidwearables on
the Download Code tab. The code is in the Chapter 9 download and the iles are individually
named according to the listing numbers noted throughout the chapter.

What are aCtivitY traCkers?

Activity Trackers, as their name implies, are sensors that we wear on our bodies or in our
hands to store data about our physical activities so that we can later review the statistics.
A 2009 article published in the Harvard Health Letter stated that pedometers increase
our physical activity by motivating us to achieve simple goals such as taking 10,000 steps
every day.

There are several different kinds of Activity Trackers. Some have simple functionality, and
others have more‐complex combinations of sensors. Special apps for your smartphone can do
the same things as a dedicated Activity Tracker. The past few years these devices and apps
have risen steadily in popularity among regular people. Professional athletes have used them
for quite some time. For example, an Activity Tracker can be used to collect a football player’s
statistics during games with the goal of maximizing his output on the ield.

9

http://www.wrox.com/go/androidwearables

142 ❘ ChApter 9 AndroId WeAr As ActIvIty trAcker

A number of devices are available for people who enjoy sports as a hobby, not a profession. These
include the Nike+ FuelBand, the Sony SmartBand, and the Gear Fit from Samsung. Another popular
brand is Fitbit, which has, to this author’s knowledge, three different devices aimed at different
types of practitioners. Of course, these are just a few of the available ones. Describing all their
differences is beyond the scope of this chapter. We’ll explore how to create your own basic Activity
Tracker application for Android Wear.

Wear as an aCtivitY traCker

The typical Android Wear device is basically the same as an Activity Tracker, only packaged in
a slightly different way. Android Wear devices already have the core sensors required to measure
activity. And because the device usually is connected to your phone, it can access all the phone’s
resources and sensors as well, making it a powerful—although bloated—competitor to the
dedicated devices.

In fact, Android Wear devices come packaged with a simple Activity
Tracker app called Fit, as shown in Figure 9-1. It doesn’t offer anything
near the complexity of a real Activity Tracker device, but it’s a decent
starting point if you want to become more physically active without
having to sign up for a gym membership.

The Fit app uses the new sensors introduced with Android Kit Kat
(API 19) called Step Detector and Step Counter. They’re a new breed of
power‐eficient composite sensors that use a special hardware sensor based
on an accelerometer to detect when the user has taken a step.

The new sensor is good at determining when a step has been taken. It works for walking, running,
and climbing stairs. It also attempts to ignore when you’re driving or when you’re riding a bike or
train.

step detector
The Step Detector, as its name implies, triggers when the person wearing the smartwatch takes a
step. This sensor can deliver results to the user fairly quickly. On the other hand, it has a rather high
rate of false positives, meaning it can trigger a step detection even when the user hasn’t taken a step.

This rate of false positives can be minimized by applying another new feature of Kit Kat—batching
sensor values. Batching does not remove any sensor readings, but it delivers them with some delay.
Doing so conserves power and may improve readings.

The Step Detector sensor doesn’t require any special permissions, but because it’s a sensor that
requires special hardware, it’s highly recommended that you include a uses‐feature in your
manifest if you plan on working with it. See Listing 9‐1.

listing 9‐1: Adding the uses‐feature element for the Step Detector

<uses-feature android:name="android.hardware.sensor.stepdetector" />

figure 9-1: The Fit app

Building the WalkKeeper App ❘ 143

step Counter
Much like the Step Detector, the Step Counter uses the new hardware sensor introduced in
Kit Kat. The big difference between the counter and the detector is how they work. The Step
Detector delivers uncertain values at a high pace, and the Step Counter delivers more certain values
at a low pace.

The value Step Counter delivers is the accumulated number of steps taken since the device booted
up. So if your device has been “alive” for a long time without rebooting, this value may be very
high.

Just like the Step Detector, this sensor requires special hardware. Therefore, you should add the
uses‐feature shown in Listing 9‐2.

listing 9‐2: the uses‐feature element for Step Counter

<uses-feature android:name="android.hardware.sensor.stepcounter" />

These new sensors were introduced in Kit Kat (API 19), but because you’re using them on a Wear
device (API 20, or 4.4W), you don’t need to change the minimum required SDK.

You’re now ready to begin building your own Activity Tracker using Android Wear. You’ll make a
simple app called WalkKeeper for people who enjoy walking for exercise.

note Technically, the hardware required for the steps sensors aren’t new
per se. It’s an extra, very power‐eficient processor dedicated to reading
and interpreting the data coming in from the activity sensors, such as the
accelerometer. It’s very similar to the Apple co‐processors (M7) motion
processor which was introduced with iPhone 5S.

Building the Walkkeeper app

The WalkKeeper app, while active, tracks how many calories are burned by walking, and it does so
live. First you must establish a basic algorithm for calculating how many calories are burned when
walking. This can easily become a fairly complex equation, but we’ll keep it simple in this example
and let you think about developing something more complex on your own.

Calculating Calories
You should consider several variables when calculating calories consumed by physical activities.
Height, weight, gender, and number of steps taken are all integral parts of the equation, as shown in
Table 9-1.

144 ❘ ChApter 9 AndroId WeAr As ActIvIty trAcker

taBle 9-1: Variables for Calculating Calories

variaBle letter(s) description

Stride Factor SF This is important because you’ll work a lot with averages in your app to

simplify the interface. Assume that the average woman has an average

walking stride of 0.413 times her height and that the average male has

an average stride of 0.415 times his height.

Height H This value, in centimeters, is needed to calculate the average stride

length.

Steps S This is the core of the app. The number of steps is needed to calculate

how far the user has traveled.

Weight W This value, in kilograms, is needed to calculate how many calories are

burned with each mile the user walks.

Given these variables, the equations for calculating the Stride Length (SL), in centimeters, look like this:

SL = H × SF (cm)

To get the total distance (D) travelled you use the stride length (SL) and the number of steps (S) taken
by the user. Because the stride length is in centimeters you should also convert it to kilometers:

D = SL × S × 0.00001 (km)

Here’s the equation for calculating the calories burned per distance (CBD) in kilometers:

CBD = W × 2.02 (Cal/km)

note I use a factor of 2.02 because many health websites use this value to
calculate calories burned when someone walks at an average speed. This is,
of course, a very simplistic formula, which in reality consists of many more
variables such as how fast you’re walking, how steep the path is, wind direction
and strength, and more.

Here’s the equation for calculating the total number of calories burned (TCB) based on the number
of steps the user takes:

TCB = CBD × D (Cal)

If you apply the equations for calories burned per distance (CBD) and distance (D) you’ll get the
following equation:

TCB = (W × 2.02) × (SL × S × 0.00001) (Cal)

Building the WalkKeeper App ❘ 145

Finally, apply the equation for calculation of stride length (SL) and you’ll end up with a simpliied
equation for calculating the calories burned based on your weight, height, and the number of steps
you’ve taken:

TCB = (W × 2.02) × (H × SF × S × 0.00001) (Cal)

Creating the project
Begin by creating a new project:

 1. Call it WalkKeeper and enter the company domain, wrox.wiley.com.

 2. Check both the Wear and the Phone and Tablet check boxes.

 3. Choose Blank Activity to create a blank activity for mobile, and call it WalkKeeperActivity. We
won’t actually use this activity in the example, but it’s good to have it for future developments.

 4. Choose Blank Activity to create a blank activity for Wear, and call it SelectGenderActivity.
This will be the starting activity on the Wear device.

 5. Click Finish, and open your newly created SelectGenderActivity class.

selecting gender
The irst activity we require in this application is a way to select a gender. We’ll use
WearableListView for this purpose. Open the two layouts for your SelectGenderActivity
activity—rect_activity_select_gender.xml and round_activity_select_gender.xml—and
add the WearableListView element. Listing 9‐3 shows the layout for the rectangular device. The
round layout is pretty much identical; we’re not showing it here.

listing 9‐3: Building the user interface for selecting a gender

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 tools:context=".SelectGenderActivity"
 tools:deviceIds="wear_square">

 <android.support.wearable.view.WearableListView
 android:id="@+id/list"
 android:layout_width="match_parent"
 android:layout_height="match_parent"/>
</LinearLayout>

Switch to SelectGenderActivity and load WearableListView from the layout. We’re using the
standard Activity class, so remember to use WatchViewStub.OnLayoutInflatedListener to attach
the correct UI widgets. Listing 9‐4 shows you how.

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools

146 ❘ ChApter 9 AndroId WeAr As ActIvIty trAcker

listing 9‐4: Beginning SelectGenderActivity

package com.wiley.wrox.walkkeeper;

import android.app.Activity;
import android.os.Bundle;
import android.support.wearable.view.WatchViewStub;
import android.support.wearable.view.WearableListView;

public class SelectGenderActivity extends Activity {

 private WearableListView mListView;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_select_gender);
 final WatchViewStub stub = (WatchViewStub) findViewById(R.id.watch_view_stub);
 stub.setOnLayoutInflatedListener(new WatchViewStub.OnLayoutInflatedListener() {
 @Override
 public void onLayoutInflated(WatchViewStub stub) {
 mListView = (WearableListView) stub.findViewById(R.id.list);
 }
 });
 }
}

Next we create the adapter class. In Wear, adapters are simple. Everything is included, including the
view holder pattern. So we just need to ill the adapter with the data, which is basic strings in this
case, as shown in Listing 9‐5.

listing 9‐5: Creating StringListAdapter

package com.wiley.wrox.walkkeeper;

import android.content.Context;
import android.support.wearable.view.WearableListView;
import android.view.LayoutInflater;
import android.view.ViewGroup;
import android.widget.TextView;

public class StringListAdapter extends WearableListView.Adapter {

 private String[] data;
 private LayoutInflater mLayoutInflater;

 public StringListAdapter(Context context, String[] data) {
 mLayoutInflater = LayoutInflater.from(context);
 this.data = data;
 }

 @Override
 public WearableListView.ViewHolder onCreateViewHolder(ViewGroup group, int i) {

Building the WalkKeeper App ❘ 147

 return new WearableListView.ViewHolder(mLayoutInflater.inflate(R.layout
 .stringlist_item, group, false));
 }

 @Override
 public void onBindViewHolder(WearableListView.ViewHolder viewHolder, int i) {
 TextView text = (TextView) viewHolder.itemView.findViewById(R.id
 .stringlist_item_text);
 text.setText(data[i]);
 }

 @Override
 public int getItemCount() {
 return data.length;
 }
}

You’ll notice an error. We haven’t created the layout for the list item row. Listing 9‐6 shows the
simple layout we’ll use for all the WearableListView rows in this project.

listing 9‐6: Building the list view row layout

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <TextView
 android:id="@+id/stringlist_item_text"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="..."/>
</LinearLayout>

Instantiate StringListAdapter and connect it to WearableListView in SelectGenderActivity. In
Listing 9‐7, the changes in SelectGenderActivity are highlighted.

listing 9‐7: Wrapping up SelectGenderActivity

package com.wiley.wrox.walkkeeper;

import android.app.Activity;
import android.os.Bundle;
import android.support.wearable.view.WatchViewStub;
import android.support.wearable.view.WearableListView;

public class SelectGenderActivity extends Activity {

 private String[] mData = new String[]{"\u2640 female", "\u2642 male"};
 private WearableListView mListView;

continues

http://schemas.android.com/apk/res/android

148 ❘ ChApter 9 AndroId WeAr As ActIvIty trAcker

 private StringListAdapter mAdapter;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_select_gender);
 final WatchViewStub stub = (WatchViewStub) findViewById(R.id.watch_view_stub);
 stub.setOnLayoutInflatedListener(new WatchViewStub.OnLayoutInflatedListener() {
 @Override
 public void onLayoutInflated(WatchViewStub stub) {
 mListView = (WearableListView) stub.findViewById(R.id.list);
 mAdapter = new StringListAdapter(SelectGenderActivity.this, mdata);
 mListView.setAdapter(mAdapter);
 }
 });
 }
}

You should end up with a simple list that has two items, similar to Figure 9-2.

listing 9-7 (continued)

figure 9-2: The select

gender list

Finally, attach the listener to WearableListView, and save the selected value, as shown in Listing 9‐8.

listing 9‐8: Saving the selected gender and moving to the next activity

package com.wiley.wrox.walkkeeper;

import android.app.Activity;
import android.content.SharedPreferences;
import android.os.Bundle;
import android.support.wearable.view.WatchViewStub;
import android.support.wearable.view.WearableListView;

public class SelectGenderActivity extends Activity {

 private String[] mData = new String[]{"\u2640 female", "\u2642 male"};
 private WearableListView mListView;
 private StringListAdapter mAdapter;

 @Override

Building the WalkKeeper App ❘ 149

 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_select_gender);
 final WatchViewStub stub = (WatchViewStub) findViewById(R.id.watch_view_stub);
 stub.setOnLayoutInflatedListener(new WatchViewStub.OnLayoutInflatedListener() {
 @Override
 public void onLayoutInflated(WatchViewStub stub) {
 mListView = (WearableListView) stub.findViewById(R.id.list);
 mAdapter = new StringListAdapter(SelectGenderActivity.this, mdata);
 mListView.setAdapter(mAdapter);
 mListView.setClickListener(new WearableListView.ClickListener() {
 @Override
 public void onClick(WearableListView.ViewHolder viewHolder) {
 String label = mdata[viewHolder.getPosition()];
 if (label.contains("female")) {
 saveGender("female");
 } else {
 saveGender("male");
 }
 openSelectWeightActivity();
 }

 @Override
 public void onTopEmptyRegionClick() {

 }
 });
 }
 });
 }

 private void saveGender(String gender) {
 SharedPreferences prefs = getPreferences(MODE_PRIVATE);
 SharedPreferences.Editor editor = prefs.edit();
 editor.putString("gender", gender);
 editor.apply();
 }

 private void openSelectWeightActivity() {
 // TODO: Start activity SelectWeightActivity
 }
}

You’ll soon create the activity for selecting a speciic weight. Before you create it you can create the
intent for starting that activity, as shown in Listing 9‐9.

listing 9‐9: Open the SelectWeight activity

private void openSelectWeightActivity() {
 Intent selectWeight = new Intent(this, SelectWeightActivity.class);
 startActivity(selectWeight);
 finish();
}

150 ❘ ChApter 9 AndroId WeAr As ActIvIty trAcker

selecting Weight
Create a new activity by selecting File ➢ New ➢ Activity ➢ Blank Wear Activity.

Call your new activity SelectWeightActivity, and uncheck the Launcher Activity check box before
you click Finish.

In this activity we’ll use the same setup as the previous activity, with WearableListView attached to
ClickListener. We’ll reuse the previously created StringListAdapter and layouts. Listing 9‐10
shows SelectWeightActivity in its entirety. You’ll notice we decided to go with kilograms. You
can, of course, change this. Just remember to modify how you calculate the calories later.

listing 9‐10: SelectWeightActivity

package com.wiley.wrox.walkkeeper;

import android.app.Activity;
import android.content.SharedPreferences;
import android.os.Bundle;
import android.support.wearable.view.WatchViewStub;
import android.support.wearable.view.WearableListView;

public class SelectWeightActivity extends Activity {

 private String[] mData = new String[]{"60", "65", "70", "75", "80", "85", "90"};
 private WearableListView mListView;
 private StringListAdapter mAdapter;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_select_weight);
 final WatchViewStub stub = (WatchViewStub) findViewById(R.id.watch_view_stub);
 stub.setOnLayoutInflatedListener(new WatchViewStub.OnLayoutInflatedListener() {
 @Override
 public void onLayoutInflated(WatchViewStub stub) {
 mListView = (WearableListView) stub.findViewById(R.id.list);
 mAdapter = new StringListAdapter(SelectWeightActivity.this, mdata);
 mListView.setAdapter(mAdapter);

 mListView.setClickListener(new WearableListView.ClickListener() {
 @Override
 public void onClick(WearableListView.ViewHolder viewHolder) {
 String label = mdata[viewHolder.getPosition()];
 saveWeight(Integer.parseInt(label));
 openSelectHeightActivity();
 }

 @Override
 public void onTopEmptyRegionClick() {

 }

Building the WalkKeeper App ❘ 151

 });
 }
 });
 }

 private void saveWeight(int weight) {
 SharedPreferences prefs = getPreferences(MODE_PRIVATE);
 SharedPreferences.Editor editor = prefs.edit();
 editor.putInt("W", weight);
 editor.apply();
 }

 private void openSelectHeightActivity() {
 // TODO: Start activity SelectHeightActivity
 }
}

Add WearableListView to the layouts, and you’re done with this activity. Listing 9‐11 shows the
rectangular layout version; the round layout is nearly identical.

listing 9‐11: Adding WearableListView to the Select Weight layouts

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 tools:context="com.wiley.wrox.walkkeeper.SelectWeightActivity"
 tools:deviceIds="wear_square">

 <android.support.wearable.view.WearableListView
 android:id="@+id/list"
 android:layout_width="match_parent"
 android:layout_height="match_parent"/>
</LinearLayout>

The inished Select Weight view should look something like Figure 9-3.

figure 9-3: The inished

select weight list

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools

152 ❘ ChApter 9 AndroId WeAr As ActIvIty trAcker

To open the SelectHeight activity, which is still not created, add the intent inside
openSelectHeightActivity method and call startActivity, as shown in Listing 9‐12. You’ll get an
error but that will be quickly remedied in the following section.

listing 9‐12: Start the Selectheight activity

private void openSelectHeightActivity() {
 Intent selectHeight = new Intent(this, SelectHeightActivity.class);
 startActivity(selectHeight);
 finish();
}

selecting height
The last setup step for the WalkKeeper app is the Select Height activity. Again, this is a list with a
set number of available heights.

 1. Create a new activity by selecting File ➢ New ➢ Activity ➢ Blank Wear Activity.

 2. Name the new activity SelectHeightActivity, and unselect the Launcher Activity check box.

 3. Open your new activity, and add the highlighted code shown in Listing 9‐13.

listing 9‐13: the Select height activity

package com.wiley.wrox.walkkeeper;

import android.app.Activity;
import android.content.SharedPreferences;
import android.os.Bundle;
import android.support.wearable.view.WatchViewStub;
import android.support.wearable.view.WearableListView;

public class SelectHeightActivity extends Activity {

 private String[] mData = new String[]{"160", "165", "170", "175", "180"};
 private WearableListView mListView;
 private StringListAdapter mAdapter;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_select_height);
 final WatchViewStub stub = (WatchViewStub) findViewById(R.id.watch_view_stub);
 stub.setOnLayoutInflatedListener(new WatchViewStub.OnLayoutInflatedListener() {
 @Override
 public void onLayoutInflated(WatchViewStub stub) {
 mListView = (WearableListView) stub.findViewById(R.id.list);
 mAdapter = new StringListAdapter(SelectHeightActivity.this, mdata);

Building the WalkKeeper App ❘ 153

 mListView.setAdapter(mAdapter);

 mListView.setClickListener(new WearableListView.ClickListener() {
 @Override
 public void onClick(WearableListView.ViewHolder viewHolder) {
 String label = mdata[viewHolder.getPosition()];
 saveHeight(Integer.parseInt(label));
 openWalkKeeperActivity();
 }

 @Override
 public void onTopEmptyRegionClick() {

 }
 });
 }
 });
 }

 private void saveHeight(int height) {
 SharedPreferences prefs = getPreferences(MODE_PRIVATE);
 SharedPreferences.Editor editor = prefs.edit();
 editor.putInt("H", height);
 editor.apply();
 }

 private void openWalkKeeperActivity() {
 // TODO: Open WalkKeeperActivity
 }
}

Finally, edit the layouts for the Select Height activity as shown in Listing 9‐14.

listing 9‐14: the Select height layouts

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 tools:context="com.wiley.wrox.walkkeeper.SelectHeightActivity"
 tools:deviceIds="wear_square">

 <android.support.wearable.view.WearableListView
 android:id="@+id/list"
 android:layout_width="match_parent"
 android:layout_height="match_parent"/>
</LinearLayout>

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools

154 ❘ ChApter 9 AndroId WeAr As ActIvIty trAcker

The inished Select Height activity should look like Figure 9-4.

figure 9-4: Select

Height activity

When the user is done selecting all of the preferences, it’s time to start the WalkKeeper activity
which will present the active view to the user. Listing 9‐15 shows how to create this intent.

listing 9‐15: Start the WalkKeeper activity

private void openWalkKeeperActivity() {
 Intent walkKeeper = new Intent(this, WalkKeeperActivity.class);
 startActivity(walkKeeper);
 finish();
}

the Walkkeeper activity
The inal and most important piece of the puzzle is the WalkKeeper activity, where all logic for
calculating steps taken and calories burned happens. This is also where we display the live data to
the user.

 1. Start by creating a new activity. Select File ➢ New ➢ Activity ➢ Blank Wear Activity.

 2. Name your activity WalkKeeperActivity, and uncheck the Launcher Activity check box.

Building the User Interface

On the main WalkKeeper user interface, we’ll display both the total number of steps taken during
this session and the calories burned during the stroll. Listing 9‐16 shows the entire layout with all
the TextViews we’ll use.

listing 9‐16: the WalkKeeper user interface

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools

Building the WalkKeeper App ❘ 155

 android:layout_height="match_parent"
 android:orientation="vertical"
 tools:context="com.wiley.wrox.walkkeeper.WalkKeeperActivity"
 tools:deviceIds="wear_square">

 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_weight="1"
 android:orientation="vertical">

 <TextView
 android:id="@+id/title_steps"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Steps taken:"
 android:textAppearance="?android:attr/textAppearanceLarge"/>

 <TextView
 android:id="@+id/text_steps"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="0"
 android:textAppearance="?android:attr/textAppearanceMedium"/>
 </LinearLayout>

 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_weight="1"
 android:orientation="vertical">

 <TextView
 android:id="@+id/title_calories"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Calories burned"
 android:textAppearance="?android:attr/textAppearanceLarge"/>

 <TextView
 android:id="@+id/text_calories"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="0"
 android:textAppearance="?android:attr/textAppearanceMedium"/>
 </LinearLayout>
</LinearLayout>

Connecting the User Interface

We’ve used standard activities so far in the app. However, for this activity I want to allow the user
to touch to close the app, as shown in Figure 9-5. Because of this I will let the WalkKeeperActivity
extend InsetActivity rather than Activity. This will also make us load views in a different
way—instead of using a WatchViewStub we’ll rely on the onReadyForContent() life-cycle method.

156 ❘ ChApter 9 AndroId WeAr As ActIvIty trAcker

Open WalkKeeperActivity.java and extend InsetActivity, as shown in Listing 9‐17.

listing 9‐17: extending InsetActivity

package com.wiley.wrox.walkkeeper;

import android.os.Bundle;
import android.support.wearable.activity.InsetActivity;

public class WalkKeeperActivity extends InsetActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 }

 @Override
 public void onReadyForContent() {
 if (!isRound()) {
 setContentView(R.layout.rect_activity_walk_keeper);
 } else {
 setContentView(R.layout.round_activity_walk_keeper);
 }
 }
}

Load the user interface widgets into variables to enable changing them live. See Listing 9‐18 for hints.

listing 9‐18: Loading the user interface

package com.wiley.wrox.walkkeeper;

import android.os.Bundle;
import android.support.wearable.activity.InsetActivity;
import android.widget.TextView;

public class WalkKeeperActivity extends InsetActivity {

 private TextView stepsCount, caloriesCount;

figure 9-5: The touch‐

to‐close option

Building the WalkKeeper App ❘ 157

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 }

 @Override
 public void onReadyForContent() {
 if (!isRound()) {
 setContentView(R.layout.rect_activity_walk_keeper);
 } else {
 setContentView(R.layout.round_activity_walk_keeper);
 }
 stepsCount = (TextView) findViewById(R.id.text_steps);
 caloriesCount = (TextView) findViewById(R.id.text_calories);
 }
}

Getting the Stored Settings

When we’re done with the user interface, we can move on to loading the previous saved user data—
gender, weight, and height. See Listing 9‐19 for details.

listing 9‐19: Loading the stored user data

package com.wiley.wrox.walkkeeper;

import android.content.SharedPreferences;
import android.os.Bundle;
import android.support.wearable.activity.InsetActivity;
import android.widget.TextView;

public class WalkKeeperActivity extends InsetActivity {

 private TextView stepsCount, caloriesCount;

 private String gender;
 private int W, H;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 SharedPreferences prefs = getPreferences(MODE_PRIVATE);
 gender = prefs.getString("gender", "female");
 W = prefs.getInt("W", 80);
 H = prefs.getInt("H", 180);
 }

 @Override
 public void onReadyForContent() {
 if (!isRound()) {
 setContentView(R.layout.rect_activity_walk_keeper);
 } else {
 setContentView(R.layout.round_activity_walk_keeper); continues

158 ❘ ChApter 9 AndroId WeAr As ActIvIty trAcker

 }
 stepsCount = (TextView) findViewById(R.id.text_steps);
 caloriesCount = (TextView) findViewById(R.id.text_calories);
 }

}

reading the Sensor Data

This example uses the Step Detector sensor because we want many quick readings for testing. We could
use the Step Counter sensor as well, but I’ll leave that for you to implement if you want a more accurate
reading. Add the uses‐feature element for the Step Detector sensor as shown in Listing 9‐20.

listing 9‐20: Adding uses‐feature for the Step Detector sensor

<?xml version="1.0" encoding="utf-8"?>
<manifest
 package="com.wiley.wrox.walkkeeper"
 xmlns:android="http://schemas.android.com/apk/res/android">

 <uses-feature android:name="android.hardware.type.watch"/>
 <uses-feature android:name="android.hardware.sensor.stepdetector"/>

 <application
 android:allowBackup="true"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@android:style/Theme.DeviceDefault">

 <activity
 android:name=".SelectGenderActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>

 <activity
 android:name=".SelectWeightActivity"
 android:label="@string/title_activity_select_weight">
 </activity>

 <activity
 android:name=".SelectHeightActivity"
 android:label="@string/title_activity_select_height">
 </activity>

 <activity
 android:name=".WalkKeeperActivity"

listing 9-19 (continued)

http://schemas.android.com/apk/res/android
mailto:theme="@android:style/Theme.DeviceDefault

Building the WalkKeeper App ❘ 159

 android:label="@string/title_activity_walk_keeper">
 </activity>
 </application>
</manifest>

Open WalkKeeperActivity and declare SensorManager and Sensor variables. Then load them and
attach a listener, as shown in highlights in Listing 9‐21.

listing 9‐21: Attaching the sensor to WalkKeeperActivity

package com.wiley.wrox.walkkeeper;

import android.content.SharedPreferences;
import android.hardware.Sensor;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;
import android.hardware.SensorManager;
import android.os.Bundle;
import android.support.wearable.activity.InsetActivity;
import android.widget.TextView;

public class WalkKeeperActivity extends InsetActivity {

 private TextView stepsCount, caloriesCount;

 private String gender;
 private int W, H;

 private SensorManager mSensorManager;
 private Sensor mSensor;
 private int S;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 SharedPreferences prefs = getPreferences(MODE_PRIVATE);
 gender = prefs.getString("gender", "female");
 W = prefs.getInt("W", 80);
 H = prefs.getInt("H", 180);

 mSensorManager = (SensorManager) getSystemService(SENSOR_SERVICE);
 mSensor = mSensorManager.getDefaultSensor(Sensor.TYPE_STEP_DETECTOR);
 }

 @Override
 protected void onResume() {
 super.onResume();
 mSensorManager.registerListener(mSensorEventListener, mSensor, 1000);
 }

 @Override
 protected void onPause() {
 super.onPause();

continues

160 ❘ ChApter 9 AndroId WeAr As ActIvIty trAcker

 mSensorManager.unregisterListener(mSensorEventListener);
 }

 @Override
 public void onReadyForContent() {
 if (!isRound()) {
 setContentView(R.layout.rect_activity_walk_keeper);
 } else {
 setContentView(R.layout.round_activity_walk_keeper);
 }
 stepsCount = (TextView) findViewById(R.id.text_steps);
 caloriesCount = (TextView) findViewById(R.id.text_calories);
 }

 private SensorEventListener mSensorEventListener = new SensorEventListener() {
 @Override
 public void onSensorChanged(SensorEvent sensorEvent) {
 S += (int) sensorEvent.values[0];
 }

 @Override
 public void onAccuracyChanged(Sensor sensor, int i) {
 }
 };

}

Now we’re getting the sensor values, which means we’re almost at the inish line. We just need to
calculate the calories and then update the user interface.

Calculating and Updating the User Interface

Start by calculating the calories, as shown in Listing 9‐22. Note that this example uses the metric
system. You can use the formula from equation 3 in the earlier section “Calculating Calories.”

listing 9‐22: Calculating the calories from the number of steps

package com.wiley.wrox.walkkeeper;

import android.content.SharedPreferences;
import android.hardware.Sensor;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;
import android.hardware.SensorManager;
import android.os.Bundle;
import android.support.wearable.activity.InsetActivity;
import android.widget.TextView;

public class WalkKeeperActivity extends InsetActivity {

 private static final double STRIDE_FACTOR_FEMALE = 0.413;

listing 9-21 (continued)

Building the WalkKeeper App ❘ 161

 private static final double STRIDE_FACTOR_MALE = 0.415;

 private TextView stepsCount, caloriesCount;

 private String gender;
 private int W, H;

 private SensorManager mSensorManager;
 private Sensor mSensor;
 private int S;
 private double TCB;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 SharedPreferences prefs = getPreferences(MODE_PRIVATE);
 gender = prefs.getString("gender", "male");
 W = prefs.getInt("W", 80);
 H = prefs.getInt("H", 180);

 mSensorManager = (SensorManager) getSystemService(SENSOR_SERVICE);
 mSensor = mSensorManager.getDefaultSensor(Sensor.TYPE_STEP_DETECTOR);
 }

 @Override
 protected void onResume() {
 super.onResume();
 mSensorManager.registerListener(mSensorEventListener, mSensor, 1000);
 }

 @Override
 protected void onPause() {
 super.onPause();
 mSensorManager.unregisterListener(mSensorEventListener);
 }

 @Override
 public void onReadyForContent() {
 if (!isRound()) {
 setContentView(R.layout.rect_activity_walk_keeper);
 } else {
 setContentView(R.layout.round_activity_walk_keeper);
 }
 stepsCount = (TextView) findViewById(R.id.text_steps);
 caloriesCount = (TextView) findViewById(R.id.text_calories);
 }

 private SensorEventListener mSensorEventListener = new SensorEventListener() {
 @Override
 public void onSensorChanged(SensorEvent sensorEvent) {
 S += (int) sensorEvent.values[0];
 TCB = getCalories();
 updateUserInterface();

continues

162 ❘ ChApter 9 AndroId WeAr As ActIvIty trAcker

 }

 @Override
 public void onAccuracyChanged(Sensor sensor, int i) {
 }
 };

 private double getCalories() {
 double CBD = W * 2.02;
 double D = 0;
 if (gender.equals("female")) {
 D = H * STRIDE_FACTOR_FEMALE * S * 0.00001;
 }else{
 D = H * STRIDE_FACTOR_MALE * S * 0.00001;
 }
 return CBD * D;
 }

 private void updateUserInterface(){
 if(stepsCount != null){
 stepsCount.setText(Integer.toString(S));
 }
 if(caloriesCount != null){
 caloriesCount.setText(Double.toString(TCB));
 }
 }
}

Keeping the Activity Open

As you know, Android Wear automatically closes activities after a short period. But we’ll keep the
activity running until the user actively closes it by touching the screen. This lets us avoid having to
store any state in the activity—something you can explore on your own.

Keeping the activity open in this way will drain signiicantly more battery than normal. A more
correct way of solving this problem would be using a Service that collects data and does the
calculations in the background. This way the Activity can be destroyed without losing any data.

There are multiple ways to keep the screen awake. We’ll apply a special lag during startup of the

WalkKeeper activity, as shown in Listing 9‐23.

listing 9‐23: Keeping the screen awake

package com.wiley.wrox.walkkeeper;

import android.content.SharedPreferences;
import android.hardware.Sensor;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;
import android.hardware.SensorManager;

listing 9-22 (continued)

Building the WalkKeeper App ❘ 163

import android.os.Bundle;
import android.support.wearable.activity.InsetActivity;
import android.view.WindowManager;
import android.widget.TextView;

public class WalkKeeperActivity extends InsetActivity {
 private static final double STRIDE_FACTOR_FEMALE = 0.413;
 private static final double STRIDE_FACTOR_MALE = 0.415;

 private TextView stepsCount, caloriesCount;

 private String gender;
 private int W, H;

 private SensorManager mSensorManager;
 private Sensor mSensor;
 private int S;
 private double TCB;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 SharedPreferences prefs = getPreferences(MODE_PRIVATE);
 gender = prefs.getString("gender", "male");
 W = prefs.getInt("W", 80);
 H = prefs.getInt("H", 180);

 mSensorManager = (SensorManager) getSystemService(SENSOR_SERVICE);
 mSensor = mSensorManager.getDefaultSensor(Sensor.TYPE_STEP_DETECTOR);
 }

 @Override
 protected void onResume() {
 super.onResume();
 mSensorManager.registerListener(mSensorEventListener, mSensor, 1000);
 }

 @Override
 protected void onPause() {
 super.onPause();
 mSensorManager.unregisterListener(mSensorEventListener);
 }

 @Override
 public void onReadyForContent() {
 if (!isRound()) {
 setContentView(R.layout.rect_activity_walk_keeper);
 } else {
 setContentView(R.layout.round_activity_walk_keeper);
 }

 getWindow().addFlags(WindowManager.LayoutParams.FLAG_KEEP_SCREEN_ON);

 stepsCount = (TextView) findViewById(R.id.text_steps);

continues

164 ❘ ChApter 9 AndroId WeAr As ActIvIty trAcker

 caloriesCount = (TextView) findViewById(R.id.text_calories);
 }

 private SensorEventListener mSensorEventListener = new SensorEventListener() {
 @Override
 public void onSensorChanged(SensorEvent sensorEvent) {
 S += (int) sensorEvent.values[0];
 TCB = getCalories();
 upateUserInterface();
 }

 @Override
 public void onAccuracyChanged(Sensor sensor, int i) {
 }
 };

 private double getCalories() {
 double CPD = W * 2.02;
 double D = 0;
 if (gender.equals("female")) {
 D = H * STRIDE_FACTOR_FEMALE * S * 0.00001;
 }else{
 D = H * STRIDE_FACTOR_MALE * S * 0.00001;
 }
 return CPD * D;
 }

 private void upateUserInterface(){
 if(stepsCount != null){
 stepsCount.setText(Integer.toString(S));
 }
 if(caloriesCount != null){
 caloriesCount.setText(Double.toString(TCB));
 }
 }

}

The inished WalkKeeper app should look something like Figure 9-6.

listing 9-23 (continued)

figure 9-6: The inished

WalkKeeper app

Summary ❘ 165

This is a simple demonstration of what Android Wear and the new hardware sensors available in Kit
Kat can do. There are still a million things you can, and should, do with this app before it can be
distributed on Google Play.

improvements

Here are some things you should consider improving in this project that we haven’t discussed in this
chapter:

 ➤ Move the data collection and calculations to a Service.

 ➤ Connect the app to Google Fit.

 ➤ Design a more attractive user interface that is speciically made for Wear. Remember the rule
of thumb with Wear user interfaces: They should be glanceable.

 ➤ Another thing you could improve with this app are the transitions between activities.

 ➤ Another obvious improvement is asking the user for his or her weight only once, and then
after that automatically calculating the most probable weight according to his or her activity
history.

 ➤ Last, but not least, is improving the sensor readings. You could consider not only changing
the sensors but including more sensors to expand the app’s functionality.

The inal thing you should do with this app is create the companion mobile app. This task is not
listed in the improvements because it’s not so much an improvement as it is a requirement to publish
on Google Play. You need the companion app to distribute the app!

summarY

In this chapter you’ve seen examples of use for some of the new user interface widgets introduced in
Android Wear. You also were introduced to using passive sensors in Wear apps.

The next chapter deals with active use of sensors to create interesting interactions with your Wear
device.

Smartwatch as Input

What’s in this Chapter?

 ➤ Using Wear as a game controller

 ➤ Using sensors on Android Wear

 ➤ Gesture detection with accelerometers

 ➤ Sending data between devices

Wrox.Com Code doWnloads for this Chapter

The code downloads for this chapter are found at www.wrox.com/go/androidwearables on
the Download Code tab. The code is in the Chapter 10 download and the iles are individually
named according to the listing numbers noted throughout the chapter.

android Wear as a game Controller

Chapter 9 reviewed how to use sensors on Android Wear when building a basic Activity
Tracker application. The Activity Tracker was only running on Android Wear and was not
connected to your phone in any way. This is poor design because Google requires you to at
least have a host app when publishing on Google Play.

In this chapter we’ll remedy this problem by building a simple dice game—without any
dice!—running on both devices. We will use Android Wear to create the virtual die that
will be thrown on the mobile device. We will read its accelerometer sensor and translate its
movements to the number of distinct shake gestures performed.

The value of shake gestures will then be translated into a random value on a selected die and
displayed on your game board.

10

http://www.wrox.com/go/androidwearables

168 ❘ ChApter 10 smArtWAtch As InPut

a note on sensors
Android devices have a multitude of sensors available. Even the small Android Wear device has
as many as 15 or even more, as shown in Table 10-1. Some of them are compound or composite
sensors. This means that we often have more than one choice for how to solve a sensor‐based
problem. This chapter presents just one solution to the virtual dice problem.

taBle 10-1: Sensors Available on the LG G Watch

name tYPe descriPtion

STMicro 3‐axis Tilt Sensor Software

MPL Gyroscope Hardware

MPL Raw Gyroscope Hardware

MPL Accelerometer Hardware An accelerometer sensor that includes the gravity force.

MPL Magnetic Field Hardware

MPL Raw Magnetic Field Hardware

MPL Orientation Software An older‐style sensor that has been deprecated and is

on its way out of the Android system. You should use the

Rotation Vector instead.

MPL Rotation Vector Software Gives a rotational unit vector based on the East‐North‐Up

coordinates.

MPL Game Rotation Vector Software Similar to the Rotation Vector, except that it uses

different underlying hardware. This also means that the

sensors report different values.

MPL Linear Acceleration Software An accelerometer that has the gravity already excluded.

MPL Gravity Software Reports the gravity vector in the device’s coordinate

system. Should be identical to the raw accelerometer

values when the device is resting.

MPL Signiication Motion Software A composite sensor that allows the device to fall asleep

while the sensor is still working, which is very different

from other sensors. This sensor is often used to listen for

when the user starts to walk, run, bike, or something else.

MPL Step Detector Hardware/

software

Fires a single event for every detected step the user takes

while the sensor is active. Chapter 9 covered this sensor.

MPL Step Counter Hardware/

software

Keeps track of the total number of steps the user has

taken since the device was started. It resets the number

of steps when the device is turned off or rebooted.

MPL Geomagnetic

Rotation Vector

Software Also called a magnetometer and is very similar to the

rotation vector sensor. However, where the rotation

vector uses a gyroscope, this uses the magnetometer. It

reports the same set of values as the rotation vector.

Building the Dice Game ❘ 169

detecting gestures
To understand basic gesture detection with accelerometers, irst we need to review the data the
accelerometer produces. Looking at graphs helps us understand what the motion looks like to the
computer and how values are translated over time. Figure 10-1 shows a graph of a simple shake
gesture with a Wear device attached to your wrist.

figure 10-1: The shake gesture as the computer sees it

Notice how the single shake motion in one direction has two almost‐equal forces—acceleration and
deceleration. The objective is to detect these pairs of motions to create a single shake movement.

Creating more‐complex gestures may even require “training” your device to recognize the gesture.
But this topic is beyond the scope of this chapter, so we’ll leave it to you to explore on your own.

building the dice game

In this chapter we’ll build a project using the accelerometer sensor (TYPE_ACCELEROMETER) to detect
shake gestures. We deine a shake gesture as a rapid set of motions that change direction. You can
think of the smartwatch as a simple, safe, miniature version of the Wiimote. There’s no chance you’ll
injure your spouse while playing tennis with the Wear device if you attach it to your wrist properly.

creating the Project
Begin by creating the project for our game. Enter DiceGame as the Application name, and let the
Company Domain be wrox.wiley.com. Select both the Phone and Tablet and the Wear platforms for
this app; we’ll use the smartwatch as the virtual die and the phone as the game board. Create both
the activities. Call the Phone activity MyPhoneActivity and the Wear activity MyWearActivity. Click
Finish to create the project.

designing a user interface
A game is a complex structure. Even a seemingly simple game such as Yahtzee requires a lot of logic
to handle all the possible outcomes. We won’t be doing any of that. We’ll focus solely on the game’s

170 ❘ ChApter 10 smArtWAtch As InPut

interactions—the dice throw. If you want to build a full game with all the bells and whistles, we
recommend that you visit any of the excellent game‐building tutorial websites. You’ll ind plenty of
material to dig through!

Android Wear GUI

Our interface is simple. On the Wear side we’ll use a CircledImageView as a progress indicator for
the dice throw, showing that a dice throw is in progress and also showing when we’ll force the die to
be thrown.

When the die has been thrown, we’ll let the user know that a successful throw has been made.
Listing 10‐1 shows our rectangular layout for Wear. Notice that we’ve added the XML namespace
so that we can easily set the required attributes.

listing 10‐1: the Wear layout, rect format

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 xmlns:wear="http://schemas.android.com/apk/res‐auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:background="@color/white"
 android:orientation="vertical"
 tools:context=".MyWearActivity"
 tools:deviceIds="wear_square">

 <android.support.wearable.view.CircledImageView
 android:id="@+id/progress"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 wear:circle_border_color="#33CCFF"
 wear:circle_border_width="15dp"
 wear:circle_color="@color/white"
 wear:circle_radius="80dp"
 />

</LinearLayout>

We’ll use a CountDownTimer to both animate the progress indicator on the CircledImageView and
provide a fail-safe exit for the dice throw. A player shouldn’t be allowed to shake the dice for an
eternity! Listing 10‐2 highlights the timer.

listing 10‐2: Adding the progress animation

package com.wiley.wrox.dicegame;

import android.app.Activity;
import android.os.Bundle;
import android.os.CountDownTimer;

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools
http://schemas.android.com/apk/res%E2%80%90auto

Building the Dice Game ❘ 171

import android.support.wearable.view.CircledImageView;
import android.support.wearable.view.WatchViewStub;

public class MyWearActivity extends Activity {

 private static final int MAX_SHAKE_TIME = 1000;
 private static final int COUNTDOWN_INTERVAL = 100;

 private CircledImageView mCircledImageView;

 private CountDownTimer mCountDownTimer;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_my_wear);
 final WatchViewStub stub = (WatchViewStub) findViewById(R.id.watch_view_stub);
 stub.setOnLayoutInflatedListener(new WatchViewStub.OnLayoutInflatedListener() {
 @Override
 public void onLayoutInflated(WatchViewStub stub) {
 mCircledImageView = (CircledImageView) stub.findViewById(R.id.progress);
 startTimer(); // Test the timer
 }
 });

 }

 private void startTimer() {
 if (mCountDownTimer != null)
 mCountDownTimer.cancel();

 mCountDownTimer = new CountDownTimer(MAX_SHAKE_TIME, COUNTDOWN_INTERVAL) {
 @Override
 public void onTick(long millisLeft) {
 float progress = (float) millisLeft/MAX_SHAKE_TIME;
 mCircledImageView.setProgress(progress);
 }

 @Override
 public void onFinish() {
 mCircledImageView.setProgress(1.0f);
 }
 };

 mCountDownTimer.start();
 }
}

That concludes the Wear UI. Let’s move on to the mobile’s UI, which is even simpler.

Mobile GUI

On the mobile side of things is an even more basic interface—a TextView displaying the resulting
throw. That’s it! See Listing 10‐3 for details.

172 ❘ ChApter 10 smArtWAtch As InPut

listing 10‐3: the mobile layout

<RelativeLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 tools:context=".MyPhoneActivity">

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentTop="true"
 android:layout_centerHorizontal="true"
 android:layout_marginTop="10dp"
 android:text="@string/app_name"
 android:textSize="40sp"/>

 <TextView
 android:id="@+id/result"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerInParent="true"
 android:text="0"
 android:textSize="80sp"/>

</RelativeLayout>

Before moving on to the application logic, be sure to hook up the UI widgets in the activity, as
shown in Listing 10‐4.

listing 10‐4: Connecting the Mobile UI

package com.wiley.wrox.dicegame;

import android.app.Activity;
import android.os.Bundle;
import android.widget.TextView;

public class MyPhoneActivity extends Activity {

 TextView mResult;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools

Building the Dice Game ❘ 173

 setContentView(R.layout.activity_my_phone);

 mResult = (TextView) findViewById(R.id.result);
 }

 private void setDiceValue(int value) {
 mResult.setText(Integer.toString(value));
 }
}

accessing sensors
To build this project you’ll use a library called Seismic, which is made by a company called Square.
The beauty of this library is that it’s so simple to use in comparison to building your own shake‐
detection algorithm.

To include this library, add the dependency in Listing 10‐5 to your Wear gradle ile and then sync it.

listing 10‐5: Add the Seismic dependency to your gradle ile

dependencies {
 compile fileTree(dir: 'libs', include: ['*.jar'])
 compile 'com.google.android.support:wearable:+'
 compile 'com.google.android.gms:play-services-wearable:+'
 compile 'com.squareup:seismic:1.0.0'
}

Working with Seismic is as easy as creating an instance of ShakeListener found in the Seismic
library and then passing your SensorManager to your ShakeListener. The hearShake method will
be called every time a shake is registered. In Seismic, a shake is registered when more than 75% of
the samples taken in the past 0.5 seconds are accelerating. This is shown in Listing 10‐6.

listing 10‐6: Fetching the sensor and attaching ShakeListener to it

package com.wiley.wrox.dicegame;

import android.app.Activity;
import android.hardware.SensorManager;
import com.squareup.seismic.ShakeDetector;
import android.os.Bundle;
import android.os.CountDownTimer;
import android.support.wearable.view.CircledImageView;
import android.support.wearable.view.WatchViewStub;

public class MyWearActivity extends Activity implements ShakeDetector
 .Listener {

 private static final int MAX_SHAKE_TIME = 1000;

continues

174 ❘ ChApter 10 smArtWAtch As InPut

 private static final int COUNTDOWN_INTERVAL = 100;
 private CircledImageView mCircledImageView;

 private CountDownTimer mCountDownTimer;

 private SensorManager mSensorManager;
 private ShakeDetector mShakeDetector;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_my);

 mSensorManager = (SensorManager) getSystemService(SENSOR_SERVICE);
 mShakeDetector = new ShakeDetector(this);

 final WatchViewStub stub = (WatchViewStub) findViewById(R.id.watch_view_stub);
 stub.setOnLayoutInflatedListener(new WatchViewStub.OnLayoutInflatedListener() {
 @Override
 public void onLayoutInflated(WatchViewStub stub) {
 mCircledImageView = (CircledImageView) stub.findViewById(R.id.progress);
 }
 });
 }

 @Override
 protected void onResume() {
 super.onResume();
 mShakeDetector.start(mSensorManager);
 }

 @Override
 protected void onPause() {
 super.onPause();
 mShakeDetector.stop();
 }

 private void startTimer() {
 if (mCountDownTimer != null)
 mCountDownTimer.cancel();

 mCountDownTimer = new CountDownTimer(MAX_SHAKE_TIME, COUNTDOWN_INTERVAL) {
 @Override
 public void onTick(long millisLeft) {
 float progress = (float) millisLeft / MAX_SHAKE_TIME;
 mCircledImageView.setProgress(progress);
 }

 @Override
 public void onFinish() {

listing 10-6 (continued)

Building the Dice Game ❘ 175

 mCircledImageView.setProgress(0.0f);

 // TODO: Generate die value
 }
 };

 mCountDownTimer.start();
 }

 @Override
 public void hearShake() {
 startTimer();
 }
}

At this point we have a working shake detector on our wrist. Before we can send anything to our
game board—the mobile phone—we need to read the die value from our virtual dice.

generating the die value
In this example we’ll keep the die value generation simple. A basic random function multiplied with
the maximum value of our standard six‐sided die will sufice. Listing 10‐7 shows how we generate
basic random die values.

listing 10‐7: Generating a random die value

package com.wiley.wrox.dicegame;

import android.app.Activity;
import android.hardware.SensorManager;
import com.squareup.seismic.ShakeDetector;
import android.os.Bundle;
import android.os.CountDownTimer;
import android.support.wearable.view.CircledImageView;
import android.support.wearable.view.WatchViewStub;

import java.util.Random;

public class MyWearActivity extends Activity implements ShakeDetector.Listener {

 ...

 private Random mRandom = new Random();

 private void startTimer() {
 if (mCountDownTimer != null)
 mCountDownTimer.cancel();

 mCountDownTimer = new CountDownTimer(MAX_SHAKE_TIME, COUNTDOWN_INTERVAL) {

continues

176 ❘ ChApter 10 smArtWAtch As InPut

 @Override
 public void onTick(long millisLeft) {
 float progress = (float) millisLeft / MAX_SHAKE_TIME;
 mCircledImageView.setProgress(progress);
 }

 @Override
 public void onFinish() {
 mCircledImageView.setProgress(0.0f);

 int value = generateDieValue(6);
 }
 };

 mCountDownTimer.start();
 }

 @Override
 public void hearShake() {
 startTimer();
 }

 private int generateDieValue(int sides) {
 return mRandom.nextInt(sides) + 1;
 }
}

Connecting to mobile
It’s time to turn our focus to the game board. When the board is set up and ready to receive values,
we need to set up the connection between it and our game control—the Wear device.

Just like we did in Chapter 7, we’ll use Google Services to establish a simple data connection
between our mobile and Wear devices. The connection will allow us to send simple data between
the two devices.

the Mobile Connection

Open MyPhoneActivity.java and add GoogleApiClient, as shown in Listing 10‐8.

listing 10‐8: Adding GoogleApiClient to the mobile activity

package com.wiley.wrox.dicegame;

import android.app.Activity;
import android.os.Bundle;
import android.widget.TextView;

import com.google.android.gms.common.ConnectionResult;

listing 10-7 (continued)

Building the Dice Game ❘ 177

import com.google.android.gms.common.api.GoogleApiClient;
import com.google.android.gms.wearable.MessageApi;
import com.google.android.gms.wearable.MessageEvent;
import com.google.android.gms.wearable.Wearable;

import java.nio.ByteBuffer;

public class MyPhoneActivity extends Activity {

 TextView result;

 GoogleApiClient mGoogleApiClient;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_my_phone);

 result = (TextView) findViewById(R.id.result);

 mGoogleApiClient = new GoogleApiClient.Builder(this)
 .addApi(Wearable.API)
 .addConnectionCallbacks(mConnectionCallbacks)
 .build();

 mGoogleApiClient.connect();
 }

 private void setDiceValue(int value) {
 result.setText(Integer.toString(value));
 }

 GoogleApiClient.ConnectionCallbacks mConnectionCallbacks = new
 GoogleApiClient.ConnectionCallbacks() {
 @Override
 public void onConnected(Bundle bundle) {
 Wearable.MessageApi.addListener(mGoogleApiClient, mMessageListener);
 }

 @Override
 public void onConnectionSuspended(int i) {
 }
 };

 MessageApi.MessageListener mMessageListener = new MessageApi.MessageListener() {
 @Override
 public void onMessageReceived(MessageEvent messageEvent) {
 if(messageEvent.getPath().equals("/dicegame")) {
 ByteBuffer byteBuffer = ByteBuffer.wrap(messageEvent.getData());
 final int value = byteBuffer.getInt();

 runOnUiThread(new Runnable() {
 @Override

continues

178 ❘ ChApter 10 smArtWAtch As InPut

the Wear Connection

The inal part of this connection is the Wear device. Listing 10‐9 shows how to create the
connection on the Wear end and also how to send integers over the Google Services connection by
converting them to byte arrays and then sending them as data.

listing 10‐9: Creating GoogleApiClient on Wear

package com.wiley.wrox.dicegame;

import android.app.Activity;
import android.hardware.SensorManager;
import android.os.Bundle;
import android.os.CountDownTimer;
import android.support.wearable.view.CircledImageView;
import android.support.wearable.view.WatchViewStub;

import com.google.android.gms.common.api.GoogleApiClient;
import com.google.android.gms.wearable.Node;
import com.google.android.gms.wearable.NodeApi;
import com.google.android.gms.wearable.Wearable;

import java.nio.ByteBuffer;
import java.util.List;
import java.util.Random;

public class MyWearActivity extends Activity implements ShakeDetector.Listener {

 private static final int MAX_SHAKE_TIME = 1000;
 private static final int COUNTDOWN_INTERVAL = 100;

 public void run() {
 setDiceValue(value);
 }
 });
 }
 }
 };
}

listing 10-8 (continued)

integers and bYte arraYs

In Java, the standard integer has 32 bits. Because a byte consists of 8 bits, the
integer actually has 4 bytes. This means that you need to translate the integer into
a byte array before sending it over any data connection, which usually accepts only
bytes or byte arrays.

Building the Dice Game ❘ 179

 private CircledImageView mCircledImageView;

 private CountDownTimer mCountDownTimer;

 private SensorManager mSensorManager;
 private ShakeDetector mShakeDetector;

 private Random mRandom = new Random();

 private GoogleApiClient mGoogleApiClient;
 private Node mNode;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_my);

 mSensorManager = (SensorManager) getSystemService(SENSOR_SERVICE);

 final WatchViewStub stub = (WatchViewStub) findViewById(R.id.watch_view_stub);
 stub.setOnLayoutInflatedListener(new WatchViewStub.OnLayoutInflatedListener() {
 @Override
 public void onLayoutInflated(WatchViewStub stub) {
 mCircledImageView = (CircledImageView) stub.findViewById(R.id.progress);
 }
 });

 mGoogleApiClient = new GoogleApiClient.Builder(this)
 .addApi(Wearable.API)
 .addConnectionCallbacks(mConnectionCallbacks)
 .build();

 mGoogleApiClient.connect();
 }

 @Override
 protected void onResume() {
 super.onResume();
 mShakeDetector.start(mSensorManager);
 }

 @Override
 protected void onPause() {
 super.onPause();
 mShakeDetector.stop();
 }

 private void startTimer() {
 if (mCountDownTimer != null)
 mCountDownTimer.cancel();

 mCountDownTimer = new CountDownTimer(MAX_SHAKE_TIME, COUNTDOWN_INTERVAL) {
 @Override
 public void onTick(long millisLeft) {

continues

180 ❘ ChApter 10 smArtWAtch As InPut

 float progress = (float) millisLeft / MAX_SHAKE_TIME;
 mCircledImageView.setProgress(progress);
 }

 @Override
 public void onFinish() {
 mCircledImageView.setProgress(0.0f);

 int value = generateDieValue(6);

 sendToPhone(value);
 }
 };

 mCountDownTimer.start();
 }

 @Override
 public void hearShake() {
 startTimer();
 }

 private int generateDieValue(int sides) {
 return mRandom.nextInt(sides) + 1;
 }

 GoogleApiClient.ConnectionCallbacks mConnectionCallbacks = new GoogleApiClient
 .ConnectionCallbacks() {
 @Override
 public void onConnected(Bundle bundle) {
 new Thread(new Runnable() {
 @Override
 public void run() {
 NodeApi.GetConnectedNodesResult result = Wearable.NodeApi
 .getConnectedNodes(mGoogleApiClient).await();

 List<Node> nodes = result.getNodes();
 if (nodes.size() > 0) {
 mNode = nodes.get(0);
 }
 }
 }).start();
 }

 @Override
 public void onConnectionSuspended(int i) {
 }
 };

 private void sendToPhone(final int value) {
 new Thread(new Runnable() {
 @Override

listing 10-9 (continued)

Building the Dice Game ❘ 181

 public void run() {
 if(mNode != null){
 byte[] bytes = ByteBuffer.allocate(4).putInt(value).array();

 Wearable.MessageApi.sendMessage(mGoogleApiClient, mNode.getId(),
 "/dicegame", bytes).await();
 }
 }
 }).start();
 }
}

This is just one way of sending an integer. You can also send strings and then parse those to integers
on the other end of the pipe. I prefer working with bytes rather than strings. Open MyWearActivity
.java and add the code shown in Listing 10‐10.

listing 10‐10: Keeping the screen on

package com.wiley.wrox.dicegame;

import android.app.Activity;
import android.hardware.SensorManager;
import android.os.Bundle;
import android.os.CountDownTimer;
import android.support.wearable.view.CircledImageView;
import android.support.wearable.view.WatchViewStub;
import android.view.Window;
import android.view.WindowManager;

import com.google.android.gms.common.ConnectionResult;
import com.google.android.gms.common.api.GoogleApiClient;
import com.google.android.gms.wearable.Node;
import com.google.android.gms.wearable.NodeApi;
import com.google.android.gms.wearable.Wearable;
import com.squareup.seismic.ShakeDetector;

import java.nio.ByteBuffer;
import java.util.List;
import java.util.Random;

public class MyWearActivity extends Activity implements ShakeDetector.Listener {

 private static final int MAX_SHAKE_TIME = 1000;
 private static final int COUNTDOWN_INTERVAL = 100;
 private CircledImageView mCircledImageView;

 private CountDownTimer mCountDownTimer;

 private SensorManager mSensorManager;
 private ShakeDetector mShakeDetector;

continues

182 ❘ ChApter 10 smArtWAtch As InPut

 private Random mRandom = new Random();

 private GoogleApiClient mGoogleApiClient;
 private Node mNode;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_my);

 getWindow().addFlags(WindowManager.LayoutParams.FLAG_KEEP_SCREEN_ON);

 ...
 }
 ...
}

You may have noticed that on Wear —the sender—we also created a node. The node is the recipient
when values are sent. Because we’re only sending values from Wear to mobile, and not the other way
around, only the Wear needs to have a node.

keeping the screen on
The inal tweak we’ll make is keeping the screen online even if Google doesn’t suggest it. With
games, you may be inactive while it’s your friends’ turn to roll their virtual dice. Listing 10‐10
shows how to lock the screen.

the diCe game

The inished game includes one six‐sided virtual die and a game board. Figure 10-2 shows the user
interface of the Wear app as a shake is in progress.

Figure 10-3 shows the game board. It contains only a title and a number—the value of the die.

improvements

The inished application you’ve built in this chapter is a simple dice‐rolling mechanism. It has no
other game mechanics built in, so it’s up to you to take it to the next level. Here are some things you
can do to improve the game:

 ➤ Create more intriguing game rules and logic.

 ➤ Use the number of shakes made as a seed when generating the die value. Doing so can give
you another level of control over the game and have players use tactics when shaking their die.

 ➤ Use more than one sensor for more interesting shake gesture patterns. This could include
hidden gestures that are dificult to reproduce but generate higher values.

listing 10-10 (continued)

recommended reading ❘ 183

 ➤ Improve the user interface by making it more interesting to look at.

 ➤ Most dice can’t get a value of 0, so unless you’re making a representation of a very speciic
die you should make sure to limit the possible values of the die.

summarY

In this chapter you began your journey into the exciting world of gestural interactions. You also had
another go at the Google Services APIs for sending data between your mobile and your Wear device.

In the last chapter of this book you’ll dive into another exciting realm within wearable
programming—smart glasses. You’ll get examples of how they work, what features they often have,
and how to create your own apps that run on them.

reCommended reading

Sensors Overview, http://developer.android.com/guide/topics/sensors/sensors_
overview.html.

Motion Sensor overview, http://developer.android.com/guide/topics/sensors/sensors_
motion.html.

figure 10-3: The inished mobile appfigure 10-2: The inished Wear app

http://developer.android.com/guide/topics/sensors/sensors_overview.html
http://developer.android.com/guide/topics/sensors/sensors_motion.html
http://developer.android.com/guide/topics/sensors/sensors_overview.html
http://developer.android.com/guide/topics/sensors/sensors_motion.html

Build Your Own Glass

What’s in this Chapter?

 ➤ The difference between augmented and virtual reality

 ➤ Review of different wearable glasses

 ➤ Build your own version of project Cardboard’s glasses

 ➤ Make your smartwatch talk to your DIY glasses

Wrox.Com Code doWnloads for this Chapter

The code downloads for this chapter are found at www.wrox.com/go/androidwearables on
the Download Code tab. The code is in the Chapter 11 download and the iles are individually
named according to ilenames noted throughout the chapter.

The irst two chapters put wearable computing in context. Wearable gadgets can be placed in
three main categories: watches, glasses, and itness bands.

This book has guided you through the new Wear API from Google, which falls into the
irst gadget category. Many different vendors sell itness bands. Chapter 9 discusses making
your watch into a pedometer. A whole API called Google Fit is dedicated to the interaction
between itness‐related gadgets and handhelds. Many new devices in that category will reach
the market in the coming years. Finally, Google Glass has been around since 2012. It is an
expensive and hard‐to‐get gadget. I have been unable to obtain one because I live in Sweden.

Therefore, we approached a vendor—Vuzix—that has a different approach than Google
to wearable glasses. Vuzix designs and manufactures glasses with different capabilities. Its
design is basically a fully functional mobile phone without 3G connectivity. It is intended for
developers and companies interested in creating wearable computer vision applications.

I reviewed Vuzix’s M100 Smart Glasses. This interesting product can be mounted on top
of any pair of glasses, and is intended for either the left or right eye. It runs one of the latest

11

http://www.wrox.com/go/androidwearables

186 ❘ ChApter 11 buIld your oWn glAss

versions of the Android OS. However, the SDK for this device is not free. Therefore, if on top of
having to purchase the device, you need to buy the development environment, it doesn’t feel like a
good choice for just experimenting and gaining an understanding of the technology’s possibilities.
Nevertheless, we recommend that you consider this product if you are looking for a standalone
device (it works without a handheld) to design a product to, for example, augment a certain process
in a production chain.

note For more information on Vuzix and its products, visit http://vuzix.com.

Not many vendors of wearable devices offer glasses, which makes it kind of hard to pursue what I
would love you to experiment with in this chapter. Luckily, two Google engineers realized that the
state‐of‐the‐art device for immersive experiences, the Oculus Rift, has screen‐related features that
are similar to those on a high‐end mobile phone. They designed the Google Cardboard project,
which this chapter discusses later.

augmented realitY and virtual realitY

Let’s quickly review the basic concepts related to glasses as interactive devices—speciically,
augmented reality (AR) and virtual reality (VR)—before we jump into programming your own
application for Cardboard. For just a few bucks, you will be able to build your own VR glasses and
connect them to your smartwatch.

Then you will learn how to adjust an existing application to interact with the Wear API. We will
take the basic example from the Google Cardboard project and tweak it to communicate with the
smartwatch as an input method.

augmented reality
Augmented reality implies the addition of computer‐generated layers of information to a real image.
This means that a user in front of an AR application should see the real world in front of his eyes
with an overlay generated by a different source.

AR can be achieved in two ways: through a transparent screen on top of the user’s eyes, or through
a head‐mounted display including cameras that ilm the environment in real time.

For an AR system to function, it needs to know something about the environment. It needs to know
its location, in which direction the user is looking, whether the user is moving, and so on. This kind
of information can be obtained through sensors or image analysis.

Common AR experiments use markers to determine either the user’s location or the physical
location where the system should embed the virtual image on top of the camera feed or real image.
In the past I have experimented with a library called NyARToolKit in Java to detect those markers
and to add computer‐generated shapes to the video feed captured by a webcam into a computer.

Figure 11-1 shows an AR application made with Processing by Amnon Owed. A series of cubes are
rendered overlaid on a live video feed captured by a camera. The cubes are rendered on top of a

http://vuzix.com

Augmented reality and Virtual reality ❘ 187

Google Glass has a transparent LCD that generates an overlay of information on top of whatever
the user sees. In that sense it is an AR device. The following section has more details.

Google Glass

Google Glass’s strength is that it provides the user with an overlay of information on top of whatever
he or she perceives thanks to a transparent LCD. Google Glass has some technology on board: it has a
camera, some sensors, and the capability to communicate with a handheld. Ever since it was launched
at Google I/O in June 2012, it has been the toy everyone in the tech industry wants to play with.

Regardless of its appeal, Google Glass is not a very innovative product. As mentioned in Chapter 1,
although researchers have been working on this concept since the 1980s, this is the irst time a

series of markers that have been printed on paper. When the camera captures the image, a library
dedicated to AR operations detects the different markers and exposes the geographic coordinates
for the programmer to use. In that way it is possible to add any kind of 3D‐generated graphics on
location on the image as if the 3D objects were in the real physical space.

figure 11-1: Augmented reality application (image courtesy of Amnon Owed)

note Read the full tutorial on how to generate AR applications in Processing
(which in essence is nothing but a Java IDE) at:

http://www.creativeapplications.net/processing/augmented‐reality‐

with‐processing‐tutorial‐processing/

If you want to know more about Amnon Owed’s work, visit http://amnonp5
.wordpress.com.

http://www.creativeapplications.net/processing/augmented%E2%80%90reality%E2%80%90with%E2%80%90processing%E2%80%90tutorial%E2%80%90processing/
http://www.creativeapplications.net/processing/augmented-reality-with-processing-tutorial-processing/
http://www.creativeapplications.net/processing/augmented%E2%80%90reality%E2%80%90with%E2%80%90processing%E2%80%90tutorial%E2%80%90processing/
http://amnonp5.wordpress.com
http://amnonp5.wordpress.com

188 ❘ ChApter 11 buIld your oWn glAss

company has tried to push a concept like this to the mainstream. Its designers intended Google
Glass to be a day‐to‐day device that can be used by anyone in a nonintrusive way.

Figure 11-2 shows Google Glass version 2, a device not yet available.

Project Glass has generated some
controversy. Its ubiquitous camera has
heated up the discussion about the use
of cameras in public spaces. Wearable‐
computing researcher Steve Mann
encountered this issue when he traveled
the world wearing his EyeTap device 24/7.

When designing wearable devices for
everyday life, you must take into account
the difference between what is socially
acceptable today and what will be
considered acceptable in the near future.
Issues such as data ownership and privacy
are relevant. Keep that in mind when you
create your concepts for new apps.

virtual reality
VR is quite different from AR. The content in VR can be entirely synthetic. VR starts with the idea
of having a head‐mounted display that completely covers the user’s ield of vision. It uses either a
display or some sort of projective technology to show information to the user. One example of a VR
device is Oculus Rift.

One of the main characteristics of VR is that the head‐mounted display must be divided into
two sections or one display for each eye. The latest implementations of this type of device use a
single high‐resolution display and a
series of lenses to optically split the
image in two. This is how the Oculus
Rift operates.

Figure 11-3 shows the back view of the
Oculus Rift development kit, dated
2012/2013. The device’s characteristic
shape has to do with the display at the
bottom.

The screen size of the original
Oculus Rift display was barely
1280×800 pixels. This is not that
much in comparison to the resolution
of a high‐end handheld. This fact is
what inspired Google engineers David
Coz and Damien Henry to make

figure 11-2: Google Glass (image by Mickepanhu, Creative

Commons Attribution‐ShareAlike 3.0 Unported)

figure 11-3: Oculus Rift (image courtesy of Sebastian

Stabinger, CC BY 3.0)

Augmented reality and Virtual reality ❘ 189

Currently you can purchase a DIY Google Cardboard kit at several places on the Internet. However,
I will guide you through the process of making your own and controlling it from your Wear device
instead of using the methods I mentioned: magnet plus NFC.

Cardboard—their own VR head‐mounted display using just a mobile phone, some cardboard, a
couple of lenses, and some other small parts.

Vr on a phone

It is a well‐known fact that Google employees have the opportunity to devote 20 percent of their
time to other endeavors. That is what Coz and Henry did when they came up with the idea of using
a phone and a piece of software to create a VR device.

Contemporary phones have the computing power to run real‐time OpenGL environments.
Rendering stereoscopic images makes it possible to create a pair of images to stimulate each eye
separately, creating the illusion of a real 3D image. You could use as input the images captured by
two cameras or simply generate 3D shapes within a virtual world.

The creators of Google Cardboard had the simple but brilliant idea of creating a container for the
glasses from inexpensive materials—cardboard in this case. Since the handheld is contained in
a box, it is impossible or dificult to interact with the screen. Therefore, the creators considered
two alternative input methods: near ield communication (NFC) and magnetic ields.

The Cardboard prototype includes an NFC tag that triggers the event of launching a certain app in
your phone. A strong neodymium magnet affects the magnetometer in the phone so that it can be
used as a button by measuring abrupt changes in the magnetic ield.

Figure 11-4 shows the original Google Cardboard, unfolded. The metallic disc is the magnet. The
kit includes a pair of lenses and some Velcro as a fastener.

figure 11-4: Unfolded Cardboard (image courtesy of Runner1928 Creative Commons

Attribution‐ShareAlike 4.0 International)

190 ❘ ChApter 11 buIld your oWn glAss

lenses
Cheap lenses are usually deined by their focal distance or zoom. The zoom is a multiplier that comes
from making a division between the smallest and largest focal distance for a certain magnifying
glass. The original Cardboard design recommends using a focal distance of 40mm (1.5 inches).

You can ind lenses for as little as $1 up to as much as you want to pay. Cheap lenses are commonly
deined by their zoom factor. I found a set of lenses with a 3X zoom for about $6 each at a local
hardware store (see Figure 11-6). In my case they seem to be optimal at a distance of 100mm
(4 inches) from the phone’s screen.

Building Your oWn glasses

If you checked the link I just provided, you saw that part of the fun of the Cardboard project is to
make it yourself. Since the arrival of this project in the summer of 2014, several vendors have begun
selling their own version of the kit. Prices range between $5 and $30.

To build your own, you just need some cardboard, two small and identical magnifying lenses, some
tape, and a rubber band or two. You also need your mobile phone. Don’t worry. It won’t be harmed
during this experiment.

Figure 11-5 shows me wearing my personal Cardboard glasses. I didn’t really follow the original
design from Google. It takes too many cuts, and I couldn’t ind the speciic type of lenses described
on Google’s website.

note Visit the oficial Google Cardboard project at https://cardboard
.withgoogle.com/.

figure 11-5: My personal Cardboard

https://cardboard.withgoogle.com/
https://cardboard.withgoogle.com/

Building Your Own Glasses ❘ 191

To make your glasses work properly, you will have to iddle a bit with the design I provide. If the
focal distance is not set right, you will see a double image, a blurry one, or some other effect that
will not make your experience the best one. Be ready to redo your box a couple of times; I did.

figure 11-6: Lenses

note You could visit Cardboard’s oficial website to get the original design iles
for the glasses—they are open source. Producing that design is far more complex
as it is intended to be used with a lasercutter. The design suggested here is the
Guerrilla version of Cardboard.

the simplest box Possible
This section is about making a box with tape, cardboard, and some love. I started with a cardboard
box that was 140 × 200 × 280mm (5.5 × 8 × 11 inches). I broke it open and got a knife and some
tape. You can see the design in Figure 11-7. It should not take much effort to copy this design.

The trickiest part is attaching the lenses to the box. With the type of lenses I found, I had to add
more tape to the design to make sure they wouldn’t move.

Figure 11-8 shows the inal design. I kept the lens protectors because they made it easier to attach
the lenses to the cardboard box.

192 ❘ ChApter 11 buIld your oWn glAss

figure 11-7: Box design

figure 11-8: The inal version of my Cardboard

the Simplest App ❘ 193

The goal is to add code to this app so that it uses the Wear API as an input.

the simplest app

The Cardboard documentation page offers a link to a github project that can be used to compile a
simple application called “treasure hunt” that allows you to explore all the features of the VR library.

The sample code found today is ready for Android Studio. I have made sure the application compiles
as an Android Studio workspace and made it available as a download. I created it starting from an
empty Android Wear project for handheld and smartwatch, as explained in earlier chapters.

Figure 11-9 shows what you can expect to see on your screen after you have compiled the
application and uploaded it to your handheld. This treasure hunt application was compiled using the
Android Studio project provided as a download to this chapter. You can see a cube loating on top

of a lat surface using stereoscopic projections. This is the “treasure.” You “hunt” for it by pressing

the magnet on your Cardboard.

figure 11-9: Treasure hunt app (the colors have been inverted for better visibility)

note The simplest sample app for Cardboard can be found at the Cardboard
development tutorials at https://developers.google.com/cardboard/overview.

If you want to see the github project where the original app for this project is
located, visit https://github.com/googlesamples/cardboard/.

the cardboard.jar library
The key to making the stereoscopic projection work is including in your project the VR Toolkit .jar

ile. This library is responsible for all the complex operations regarding the stereoscopic imaging and

also adds access to the sensors.

You can ind the binary version of the library at the github project mentioned in the preceding

section. You should remember to add it to your compilation path. I recommend that you start

working with the code example I created, which includes this binary already.

https://developers.google.com/cardboard/overview
https://github.com/googlesamples/cardboard/

194 ❘ ChApter 11 buIld your oWn glAss

The following sections show you briely how things work. It is not the goal of this chapter to

teach you speciically about Google Cardboard, but about integrating an existing app with
Android Wear.

looking at the Code
We will start by looking at the main activity in the program. The idea is to understand how it works
in order to ind places to patch it. The example uses the magnetometer as a button. I will later
substitute that functionality to use the smartwatch instead.

the Glasses’ MyActivityphone.java

This class conigures the use of the VR Toolkit library, as shown in Listing 11‐1.

listing 11‐1: Main Activity’s onCreate method (ilename: MyActivityPhone.java)

package com.wiley.wrox.chapter11.cardboardglass;

import android.os.Bundle;
import android.content.Context;
import android.opengl.GLES20;
import android.opengl.Matrix;
import android.os.Vibrator;
import android.util.Log;
import com.google.vrtoolkit.cardboard.*;

import javax.microedition.khronos.egl.EGLConfig;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.FloatBuffer;

public class MyActivityPhone extends CardboardActivity
 implements CardboardView.StereoRenderer {
[...]
 /**
 * Sets the view to our CardboardView and initializes the
 * transformation matrices we will use to render our scene.
 * @param savedInstanceState
 */
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_my_phone);

 CardboardView cardboardView =
 (CardboardView) findViewById(R.id.cardboard_view);
 cardboardView.setRenderer(this);

the Simplest App ❘ 195

 setCardboardView(cardboardView);

 mModelCube = new float[16];
 mCamera = new float[16];
 mView = new float[16];
 mModelViewProjection = new float[16];
 mModelView = new float[16];
 mModelFloor = new float[16];
 mHeadView = new float[16];
 mVibrator = (Vibrator) getSystemService(Context.VIBRATOR_SERVICE);

 mOverlayView = (CardboardOverlayView) findViewById(R.id.overlay);
 mOverlayView.show3DToast("Pull the magnet when you find an object.");
 }
[. . .]

I have highlighted a few things in this code:

 ➤ Notice that the VR Toolkit from Google is needed for the code to compile.

 ➤ In the overridden version of onCreate(), after setting up the view and the renderer and
initializing all the variables, the program initializes an instance of the vibrator. It gives the
user physical feedback.

 ➤ When the program starts, it projects a sentence in the 3D space: “Pull the magnet when you
ind an object.” This gives a hint of what the user is expected to do when interacting with
this application. This is one of the main aspects of our intervention in this code. We will get
rid of the magnet and use the watch instead.

Listing 11‐2 focuses on the onCardboardTrigger()method within the main class. This method is
called when the magnet detects a sudden change in the magnetic ield. With isLookingAtObject()
it checks whether the handheld has rotated to an angle so that the user is facing a loating cube—

the treasure in this game. If that is the case, a success message appears onscreen. If not, the user is

encouraged to keep searching. Regardless of whether the user inds the object, the phone vibrates.

listing 11‐2: onCardboardtrigger method (ilename: MyActivityPhone.java)

/**
 * Increment the score, hide the object, and give feedback if the
 * user pulls the magnet while looking at the object. Otherwise,
 * remind the user what to do.
 */
@Override
public void onCardboardTrigger() {
 Log.i(TAG, "onCardboardTrigger");

 if (isLookingAtObject()) {
 mScore++;
 mOverlayView.show3DToast("Found it! Look around for" +
 "another one.\nScore = " + mScore);
 hideObject();

continues

196 ❘ ChApter 11 buIld your oWn glAss

 } else {
 mOverlayView.show3DToast("Look around to find the object!");
 }
 // Always give user feedback
 mVibrator.vibrate(50);
}

Listing 11‐3 shows the isLookingAtObject() method, which happens to be part of the code and not
part of the library. It uses a series of methods belonging to the VR Toolkit library that aren’t within
the scope of this experiment. I think it is worth taking a quick look at them just to see that they
aren’t that scary.

listing 11‐3: isLookingAtObject method (ilename: MyActivityPhone.java)

/**
 * Check if user is looking at object by calculating where
 * the object is in eye-space.
 * @return
 */
private boolean isLookingAtObject() {
 float[] initVec = {0, 0, 0, 1.0f};
 float[] objPositionVec = new float[4];

 // Convert object space to camera space. Use the headView from onNewFrame.
 Matrix.multiplyMM(mModelView, 0, mHeadView, 0, mModelCube, 0);
 Matrix.multiplyMV(objPositionVec, 0, mModelView, 0, initVec, 0);

 float pitch = (float)Math.atan2(objPositionVec[1], -objPositionVec[2]);
 float yaw = (float)Math.atan2(objPositionVec[0], -objPositionVec[2]);

 Log.i(TAG, "Object position: X: " + objPositionVec[0]
 + " Y: " + objPositionVec[1] + " Z: " + objPositionVec[2]);
 Log.i(TAG, "Object Pitch: " + pitch +" Yaw: " + yaw);

 return (Math.abs(pitch) < PITCH_LIMIT) && (Math.abs(yaw) < YAW_LIMIT);
}

In essence, the code checks whether the camera angle in the 3D environment the user is navigating
is within the limits that should allow the user to see it loating over the ground. I highlighted the last

line in the method, showing the logical statement that determines whether the conditions indicate

that the user is looking at a cube.

the Glasses’ AndroidManifest.xml

Listing 11‐4 shows the manifest ile for the glasses. It highlights two different parts:

 ➤ A uses‐permission tag to allow the app to use the NFC tag reader

 ➤ A uses‐permission tag to allow the app to use the haptic feedback through the handheld’s
vibrator

listing 11‐2: (continued)

the Simplest App ❘ 197

listing 11‐4: Glasses’ manifest ile (ilename: AndroidManifest.xml)

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.wiley.wrox.chapter11.cardboardglass" >

 <uses‐permission android:name="android.permission.NFC" />
 <uses‐permission android:name="android.permission.VIBRATE" />
 <uses-feature android:glEsVersion="0x00020000" android:required="true" />

 <application
 android:allowBackup="true"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >
 <activity
 android:screenOrientation="landscape"
 android:name=".MyActivityPhone"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

</manifest>

A Couple More Classes

Two more Java iles are included in the phone’s part of the project. One handles the layout of the
information on the 3D visualization, and the other contains simple information about the 3D
objects. I will show you two code snippets to help you understand the content of those iles. You
could hack them easily to get them to do things differently.

Listing 11‐5 shows an excerpt of CardboardOverlayView, a class that extends the linear layout to
include two different visualizations: one for the left eye and one for the right.

listing 11‐5: excerpt of the CardboardOverlayView class (ilename: CardboardOverlayView
.java])

package com.wiley.wrox.chapter11.cardboardglass;

import [...]

/**
 * Contains two subviews to provide a simple stereo HUD.
 */
public class CardboardOverlayView extends LinearLayout {
 private static final String TAG = CardboardOverlayView.class.getSimpleName();

continues

http://schemas.android.com/apk/res/android

198 ❘ ChApter 11 buIld your oWn glAss

 private final CardboardOverlayEyeView mLeftView;
 private final CardboardOverlayEyeView mRightView;
 private AlphaAnimation mTextFadeAnimation;

 public CardboardOverlayView(Context context, AttributeSet attrs) {
 super(context, attrs);
 setOrientation(HORIZONTAL);

 LayoutParams params = new LayoutParams(
 LayoutParams.MATCH_PARENT, LayoutParams.MATCH_PARENT, 1.0f);
 params.setMargins(0, 0, 0, 0);

 mLeftView = new CardboardOverlayEyeView(context, attrs);
 mLeftView.setLayoutParams(params);
 addView(mLeftView);

 mRightView = new CardboardOverlayEyeView(context, attrs);
 mRightView.setLayoutParams(params);
 addView(mRightView);

 // Set some reasonable defaults.
 setDepthOffset(0.016f);
 setColor(Color.rgb(150, 255, 180));
 setVisibility(View.VISIBLE);

 mTextFadeAnimation = new AlphaAnimation(1.0f, 0.0f);
 mTextFadeAnimation.setDuration(5000);
 }

 public void show3DToast(String message) {
 setText(message);
 setTextAlpha(1f);
 mTextFadeAnimation.setAnimationListener(new EndAnimationListener() {
 @Override
 public void onAnimationEnd(Animation animation) {
 setTextAlpha(0f);
 }
 });
 startAnimation(mTextFadeAnimation);
 }
[...]

I have chosen two methods in the class that I consider relevant to understanding how it works. First is the
constructor, where you can see objects that display the data for each eye. Second is the show3DToast()
method, which shows the text loating in front of your eyes while you navigate the 3D space. The rest

of the class is basically a series of methods. They handle listeners as well as how to show text. More

importantly, a helper class (not shown here) sets the layout of the canvas and text area for each eye.

Listing 11‐6 shows an excerpt of WorldLayoutData, a class containing general information about the
objects in the world. In this case, the array under the display contains information about the color of
the cubes before the user inds them. “Finding” is the action of acknowledging having found the cube.

listing 11‐5: (continued)

the Simplest App ❘ 199

listing 11‐6: excerpt of the WorldLayoutData class (ilename: WorldLayoutData.java)

public static final float[] CUBE_COLORS = new float[] {
 // front, green
 0f, 0.5273f, 0.2656f, 1.0f,
 0f, 0.5273f, 0.2656f, 1.0f,
 0f, 0.5273f, 0.2656f, 1.0f,
 0f, 0.5273f, 0.2656f, 1.0f,
 0f, 0.5273f, 0.2656f, 1.0f,
 0f, 0.5273f, 0.2656f, 1.0f,

 // right, blue
 0.0f, 0.3398f, 0.9023f, 1.0f,
 0.0f, 0.3398f, 0.9023f, 1.0f,
 0.0f, 0.3398f, 0.9023f, 1.0f,
 0.0f, 0.3398f, 0.9023f, 1.0f,
 0.0f, 0.3398f, 0.9023f, 1.0f,
 0.0f, 0.3398f, 0.9023f, 1.0f,

 // back, also green
 0f, 0.5273f, 0.2656f, 1.0f,
 0f, 0.5273f, 0.2656f, 1.0f,
 0f, 0.5273f, 0.2656f, 1.0f,
 0f, 0.5273f, 0.2656f, 1.0f,
 0f, 0.5273f, 0.2656f, 1.0f,
 0f, 0.5273f, 0.2656f, 1.0f,

 // left, also blue
 0.0f, 0.3398f, 0.9023f, 1.0f,
 0.0f, 0.3398f, 0.9023f, 1.0f,
 0.0f, 0.3398f, 0.9023f, 1.0f,
 0.0f, 0.3398f, 0.9023f, 1.0f,
 0.0f, 0.3398f, 0.9023f, 1.0f,
 0.0f, 0.3398f, 0.9023f, 1.0f,

 // top, red
 0.8359375f, 0.17578125f, 0.125f, 1.0f,
 0.8359375f, 0.17578125f, 0.125f, 1.0f,
 0.8359375f, 0.17578125f, 0.125f, 1.0f,
 0.8359375f, 0.17578125f, 0.125f, 1.0f,
 0.8359375f, 0.17578125f, 0.125f, 1.0f,
 0.8359375f, 0.17578125f, 0.125f, 1.0f,

 // bottom, also red
 0.8359375f, 0.17578125f, 0.125f, 1.0f,
 0.8359375f, 0.17578125f, 0.125f, 1.0f,
 0.8359375f, 0.17578125f, 0.125f, 1.0f,
 0.8359375f, 0.17578125f, 0.125f, 1.0f,
 0.8359375f, 0.17578125f, 0.125f, 1.0f,
 0.8359375f, 0.17578125f, 0.125f, 1.0f,
};

Once you execute this application on your Cardboard, the result you can expect will look like Figure 11-9.

200 ❘ ChApter 11 buIld your oWn glAss

getting Your Cardboard to talk to Your smartwatch
Following the code examples from Chapter 7, it should be pretty straightforward to make your
watch the input device to the app I just showed you. You import a couple of classes, modify the
manifest ile, include the Wearable API to send messages back and forth, make your own wearable
app, and hack the onCardboardTrigger()method in your phone’s main activity. Piece of cake!

Let’s do this step by step. You will build two apps that will be connected through Google Play
services. The watch displays the screen with a black background. When touched, it sends a message
to the handheld indicating this. It also toggles the color. This example is unidirectional: We will
send data from the wearable app to the phone app, but not the other way around. Implementing the
communication in the other direction is not dificult using the code examples from previous chapters.

As in Chapter 7, you must take into account two things when dealing with such a scenario:

 ➤ How will you handle communication between devices? I will try using the Data API.

 ➤ How will you update the information on the devices’ screens? Like the case explored in
Chapter 7, I will follow an event‐based approach with a thread that responds to the arrival of
data by changing the UI.

Start from the previous project

Start from the example we just inished. It contains all the code needed for building the Cardboard.
You just need to patch the MyActivityPhone class in a couple of places. The project I prepared for
you in the download area for this chapter includes a clean class for the Android Wear device.

The irst step is to create the API client. You need only one object of the class DataItem shared
between both devices, where one ield represents the event of having touched the watch’s screen.

As usual, I will provide code snippets to give you an understanding of the code. For full code
listings, check this chapter’s downloads.

the phone’s MyActivityphone.java

In MyActivityPhone.java, shown in Listing 11‐7, you have to add a couple of things:

 ➤ The declaration of a Google API client to start sharing data between devices, with overrides
to control the possibility of the connectivity’s being lost or not even started

 ➤ A local broadcast manager to capture the intents sent by the class listening to the data
arriving from the smartwatch

 listing 11‐7: Modiications to the main activity on the phone app (ilename:
MyActivityPhone.java)

[...]
private GoogleApiClient mGoogleApiClient;

private BroadcastReceiver mResultReceiver;
 [...]
@Override

the Simplest App ❘ 201

protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_my_phone);

 // declaration of the Google API client
 mGoogleApiClient = new GoogleApiClient.Builder(this)
 .addConnectionCallbacks(new GoogleApiClient.ConnectionCallbacks() {
 @Override
 public void onConnected(Bundle connectionHint) {
 Log.v(TAG, "Connection established");
 }
 @Override
 public void onConnectionSuspended(int cause) {
 Log.v(TAG, "Connection suspended");
 }
 })
 .addOnConnectionFailedListener(new
 GoogleApiClient.OnConnectionFailedListener() {
 @Override
 public void onConnectionFailed(ConnectionResult result) {
 Log.v(TAG, "Connection failed");
 }
 })
 .addApi(Wearable.API)
 .build();
 mGoogleApiClient.connect();
 mResultReceiver = createBroadcastReceiver();
 LocalBroadcastManager.getInstance(this).registerReceiver(
 mResultReceiver,
 new IntentFilter("cardboard.localIntent"));

 CardboardView cardboardView = (CardboardView)
 findViewById(R.id.cardboard_view);
 cardboardView.setRenderer(this);
 setCardboardView(cardboardView);

 mModelCube = new float[16];
 mCamera = new float[16];
 mView = new float[16];
 mModelViewProjection = new float[16];
 mModelView = new float[16];
 mModelFloor = new float[16];
 mHeadView = new float[16];
 mVibrator = (Vibrator) getSystemService(Context.VIBRATOR_SERVICE);

 mOverlayView = (CardboardOverlayView) findViewById(R.id.overlay);
 mOverlayView.show3DToast("Pull the magnet when you find an object.");
}
[...]
 private void onWearTouch() {
 Log.v(TAG, "Arrived touch event");

 if (isLookingAtObject()) {

continues

202 ❘ ChApter 11 buIld your oWn glAss

 mScore++;
 mOverlayView.show3DToast("Found it! Look around "+
 "for another one.\nScore = " + mScore);
 hideObject();
 } else {
 mOverlayView.show3DToast("Look around to find the object!");
 }
 // Always give user feedback
 mVibrator.vibrate(50);
 }

 @Override
 protected void onDestroy() {
 if (mResultReceiver != null) {
 LocalBroadcastManager.getInstance(this)
 .unregisterReceiver(mResultReceiver);
 }
 super.onDestroy();
 }

 private BroadcastReceiver createBroadcastReceiver() {
 // we are just interested in the event, the rest doesn't matter
 return new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {
 onWearTouch();
 }
 };
 }

As you can see, the basic idea is to call a method from the BroadcastReceiver and then perform
a series of actions onscreen. In this case, it adds a point to the user’s record and vibrates. On top of
that, you don’t need to sacriice the possibility of using the magnet as an input. These new methods
enhance your app without giving away anything (unless you want to do so).

the phone’s AndroidManifest.xml

The service declaration is highlighted in Listing 11‐8. This, together with the metadata tag
declaring the use of the Google Play services API, are the two changes needed for the service to
boot when the app launches and for the combo to use the Google Play Services API to talk to the
other device.

listing 11‐8: Full manifest ile (ilename: AndroidManifest.xml)

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.wiley.wrox.chapter11.cardboardglass" >

 <uses-permission android:name="android.permission.NFC" />

listing 11‐7: (continued)

http://schemas.android.com/apk/res/android

the Simplest App ❘ 203

 <uses-permission android:name="android.permission.VIBRATE" />
 <uses-feature android:glEsVersion="0x00020000" android:required="true" />

 <application
 android:allowBackup="true"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >
 <activity
 android:screenOrientation="landscape"
 android:name="MyActivityPhone"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <service android:name=
"DataLayerListenerServicePhone" >
 <intent‐filter>
 <action
android:name="com.google.android.gms.wearable.BIND_LISTENER" />
 </intent‐filter>
 </service>

 <meta‐data android:name="com.google.android.gms.version"
 android:value="@integer/google_play_services_version" />
 </application>

</manifest>

the phone’s DataLayerListenerService

DataLayerListenerService is launched on the phone after the app launches. When the phone
registers an event of any of the shared data objects changing, the listener is triggered. In this case
it ilters by WEAR2PHONE. This object, as deined in MyActivityWear.java (see the source code in the
next section), sends a boolean variable each time the screen is touched. The variable arriving from
the Wear device toggles between true and false upon data arrival as a way to show progress.

Listing 11‐9 shows the listener waiting for data to arrive from the watch. It is very similar to the one
used in the last example of Chapter 7, only that this time there is no data going back from the phone
to the watch.

listing 11‐9: Full listener on the phone (ilename: DataLayerListenerService.java)

package com.wiley.wrox.chapter11.cardboardglass;

import android.net.Uri;
import android.util.Log;

import com.google.android.gms.common.data.FreezableUtils;

continues

204 ❘ ChApter 11 buIld your oWn glAss

import com.google.android.gms.wearable.DataEvent;
import com.google.android.gms.wearable.DataEventBuffer;
import com.google.android.gms.wearable.DataMap;
import com.google.android.gms.wearable.DataMapItem;
import com.google.android.gms.wearable.WearableListenerService;

import java.util.List;

public class DataLayerListenerServicePhone extends WearableListenerService {

 private static String TAG = "wrox-mobile";
 @Override
 public void onDataChanged(DataEventBuffer dataEvents) {
 super.onDataChanged(dataEvents);

 Log.v(TAG, "Data arrived");

 final List<DataEvent> events =
 FreezableUtils.freezeIterable(dataEvents);
 for(DataEvent event : events) {
 final Uri uri = event.getDataItem().getUri();
 final String path = uri!=null ? uri.getPath() : null;
 if("/WEAR2PHONE".equals(path)) {
 final DataMap map =
 DataMapItem.fromDataItem(event.getDataItem()).getDataMap();
 // read your values from map:
 boolean touch = map.getBoolean("touch");
 String reply = "Touched:" + touch;
 Log.v(TAG, reply);
 // if there was a touch, trigger the event detection
 Intent localIntent = new Intent("cardboard.localIntent");
 localIntent.putExtra("result", touch);
 LocalBroadcastManager.getInstance(this)
 .sendBroadcast(localIntent);
 }
 }
 }
}

MyActivityWear.java

The activity on the watch (as shown on Listing 11‐10) is simple. It needs to initialize the use of the
data API and send data whenever the screen is touched. To make this easier to understand and to
give the user visual feedback, the following things happen:

 ➤ The data is sent as WEAR2PHONE.

 ➤ The background color changes at each press. If the screen was white, it turns black, and vice versa.

 ➤ touchListener is implemented within the method dedicated to the layout. That’s where the
action happens.

listing 11‐9: (continued)

the Simplest App ❘ 205

 listing 11‐10: Main activity class on the wearable (ilename: MyActivityWear.java)

package com.wiley.wrox.chapter11.cardboardglass;

import android.app.Activity;
import android.graphics.Color;
import android.os.Bundle;
import android.support.wearable.view.WatchViewStub;
import android.util.Log;
import android.view.MotionEvent;
import android.view.View;
import android.widget.TextView;

import com.google.android.gms.common.ConnectionResult;
import com.google.android.gms.common.api.GoogleApiClient;
import com.google.android.gms.wearable.DataMap;
import com.google.android.gms.wearable.PutDataMapRequest;
import com.google.android.gms.wearable.Wearable;

public class MyActivityWear extends Activity {

 private GoogleApiClient mGoogleApiClient;

 private TextView mTextView;
 private int mColor = Color.rgb(255,255,255);
 private boolean mTouch = false;
 private static final String TAG = "wrox-wear";

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_my_wear);

 mGoogleApiClient = new GoogleApiClient.Builder(this)
 .addConnectionCallbacks(new
 GoogleApiClient.ConnectionCallbacks() {
 @Override
 public void onConnected(Bundle connectionHint) {
 Log.v(TAG, "Connection established");
 }
 @Override
 public void onConnectionSuspended(int cause) {
 Log.v(TAG, "Connection suspended");
 }
 })
 .addOnConnectionFailedListener(new
 GoogleApiClient.OnConnectionFailedListener() {
 @Override
 public void onConnectionFailed(ConnectionResult result) {
 Log.v(TAG, "Connection failed");

continues

206 ❘ ChApter 11 buIld your oWn glAss

 }
 })
 .addApi(Wearable.API)
 .build();
 mGoogleApiClient.connect();

 final WatchViewStub stub = (WatchViewStub)
 findViewById(R.id.watch_view_stub);
 stub.setOnLayoutInflatedListener(new
 WatchViewStub.OnLayoutInflatedListener() {
 @Override
 public void onLayoutInflated(WatchViewStub stub) {
 mTextView = (TextView) stub.findViewById(R.id.text);

 stub.setOnTouchListener(new View.OnTouchListener() {
 @Override
 public boolean onTouch(View view, MotionEvent event) {
 Log.v(TAG, "UI touched");
 toggleBackgroundColor();

 if(mGoogleApiClient==null)
 return false;

 final PutDataMapRequest putRequest =
 PutDataMapRequest.create("/WEAR2PHONE");
 final DataMap map = putRequest.getDataMap();
 mTouch = !mTouch;
 map.putBoolean("touch", mTouch);
 Wearable.DataApi.putDataItem(mGoogleApiClient,
 putRequest.asPutDataRequest());

 return false;
 }
 });
 }
 });
 }

 private void toggleBackgroundColor(){
 if (mColor == Color.rgb(0, 0, 0))
 mColor = Color.rgb(255, 255, 255);
 else
 mColor = Color.rgb(0, 0, 0);
 setBackgroundColor(mColor);
 }

 private void setBackgroundColor(int color) {
 final WatchViewStub stub = (WatchViewStub)
 findViewById(R.id.watch_view_stub);
 stub.setBackgroundColor(color);
 }
}

listing 11‐10: (continued)

Summary ❘ 207

the Wear Android Manifest File

The only difference between the manifest ile shown in Listing 11‐11 and the default one when you
create a new project is the call to Google Play that lets the wearable talk to the handheld inside your
Cardboard glasses.

listing 11‐11: Manifest ile on the wearable (ilename: AndroidManifest.xml)

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.wiley.wrox.chapter11.cardboardglass" >

 <uses-feature android:name="android.hardware.type.watch" />

 <application
 android:allowBackup="true"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@android:style/Theme.DeviceDefault" >
 <activity
android:name=
"MyActivityWear"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

 <meta‐data android:name="com.google.android.gms.version"
 android:value="@integer/google_play_services_version" />
 </application>

</manifest>

the Final result

As usual, I recommend that you check the full example in the ile chapter11 _ CardboardGlass _

touch.zip. There you will ind all the code used for this example, ready for you to copy and start
experimenting with in your own applications.

The expected result on your side should look like Figure 11-9, which shows the activity on
my phone. When touching the screen of your wearable and being in front of a cube (it will be
highlighted in yellow), you earn a point.

summarY

You have learned how to integrate Wear into an existing block of code. In this chapter we enhanced
the functionality of an existing app by adding touch interaction through the wearable.

http://schemas.android.com/apk/res/android
mailto:theme="@android:style/Theme.DeviceDefault

208 ❘ ChApter 11 buIld your oWn glAss

You also had a chance to experiment with one of the most promising libraries of code in the world
of DIY head‐mounted displays—the VR Toolkit used to power Google Cardboard.

From a more theoretical standpoint, you were introduced to augmented reality and virtual reality.
You read about the different products you can use to build experiences for both.

209

2D Picker, 72–74

a

accelerometer sensors, 169

DiceGame example, 169–183

accessing sensors, 173–175

creating project, 169

designing UI, 169–173

establishing mobile connections, 176–182

generating die value, 175–176

improvement considerations, 182–183

locking screen, 181–182

Step Counter, 143

Step Detector, 142

ACCESS_COARSE_LOCATION, 128

ACCESS_FINE_LOCATION, 128

action-failed animation, 74, 76–77

actions, adding to notiications, 39–43

activity trackers

Fit app, 142–143

overview, 6–7, 141–142

WalkKeeper app example, 143–165

calculating calories, 143–145

creating project, 145

selecting gender, 145–149

selecting height, 152–154

selecting weight, 150–152

WalkKeeper activity, 154–165

ADB (Android Debug Bridge), 21, 22, 24, 86

addAction() method, WearableExtender

class, 32

addPage() method, WearableExtender class, 32

Allow USB Debugging dialog, 24

Android sample apps, installing, 24–25

Android Debug Bridge (ADB), 21, 22, 24, 86

AndroidManifest.xml ile

CardboardGlass example, 196–197,

202–203, 207

conirmation activity, adding, 75

existing intent, hacking to launch app, 85

SimpleNotiication example, 92–93, 99–100

SimpleWearableData example, 111–112,

114–115

WearableDataFromScratch example, 119–120,

124

animation feedback, 74–77

app-provided voice capabilities, 81

apps, Wear

developing

adding images, 66–69

adding lists, 69–74

adding text, 61–66

design considerations, 49–50

DiceGame example, 169–183

editing gradle iles, 55–56

loading layouts, 56–60

providing feedback, 74–77

sending notiications, 87–95

steps, 51–55

UI library, 50–51

WalkKeeper example, 143–165

distributing on Google Play, 25–26

installing sample apps, 24–25

launching, 84–85

packaging, 26

AR (augmented reality), 188–190

Arduino Verkstad, 8

Asset class, 106

augmented reality (AR), 186–188

index

210

big data – emulator

B

big data, 13–14

big picture notiications, 36–37

Bluetooth, 17, 24

C

cardboard.jar library, 193–194

CardboardGlass example app, 193–207

AndroidManifest.xml ile, 196–197, 202–203,

207

cardboard.jar library, 193

CardboardOverlayView class, 197–198

DataLayerListenerService class, 203–204

MyActivityPhone.java ile, 194–196, 200–202

MyActivityWear.java ile, 204–206

WorldLayoutData class, 198–199

CardboardOverlayView class, 197–198

CardFragment class, 50, 63–66

CardFrame class, 50, 61–62

CardScrollView class, 50, 62–63

Chalayan, Hussein, 6

CircledImageView class, 51, 67–69, 170–171

Cisco, vision of connectivity, 12–14

ClickListener class, 71–72

conirmation animation, 74–76

ConfirmationActivity, 51, 74–77

ConnectionCallbacks, 128

connectivity, promise of, 12–14

Coz, David, 188–189

CrossfadeDrawable class, 51

current location, accessing, 128–135

determining GPS availability, 131

establishing connection, 128–131

requesting GPS permission, 128

requesting last known location, 131–132

requesting location updates, 132–135

CuteCircuit T-shirt, 6

d

Data API, 86

available data objects, 105–106

SimpleWearableData example, 106–116

AndroidManifest.xml ile, 111–112,

114–115

MyActivityPhone.java ile, 107–111

MyActivityWear.java ile, 112–114

WearableDataFromScratch example, 116–125

AndroidManifest.xml ile, 119–120, 124

MyActivityPhone.java ile, 117–119

MyActivityWear.java ile, 121–123

DataItem class, 106, 117, 200

DataLayer example, 106–116

DataLayerListenerService class, 114–116,

120–121, 203–204

DataListener class, 106

DelayedConfirmationView class, 51

DemandIntentReceiver class, 97–98, 101–102

developer permissions, 23

developing apps

design considerations, 49–50

feedback, providing, 74–77

gradle iles, editing, 55–56

images, adding, 66–69

layouts, loading, 56–60

lists, adding, 69–74

notiication, sending, 87–95

requirements, 20

steps, 51–55

text, adding, 61–66

UI library, 50–51

DiceGame example, 169–183

accessing sensors, 173–175

creating project, 169

designing UI, 169–173

establishing mobile connections, 176–182

generating die value, 175–176

improvement considerations, 182–183

locking screen, 181–182

DismissOverlayView class, 51

distributing Wear apps on Google Play, 25–26

drawable-xxhdpi folder, 92

dresses, robotic, 6

e

emulator, 20–22

SimpleNotiication example, 86–103

211

encryption – icons

support for voice commands, 84

encryption, IoT devices, 11

Expiration, location request option, 132

EyeTap, 8, 188

f

failure animation, 74, 76–77

fashion, and wearables, 6

Fastest interval, location request option, 132

Fit app, 142–143

Fitbit, 5, 6, 142

itness devices

Fit app, 142–143

overview, 6–7, 141–142

WalkKeeper example, 143–165

calculating calories, 143–145

creating project, 145

selecting gender, 145–149

selecting height, 152–154

selecting weight, 150–152

WalkKeeper activity, 154–165

FragmentGridPagerAdapter class, 51

frequency hopping, 17

FuelBand, 5, 142

FusedLocationApi class, 131–132

FusedLocationProvider class, 128

g

Geocoder object, 135–137

gestures, 169

DiceGame example, 169–183

accessing sensors, 173–175

creating project, 169

designing UI, 169–173

establishing mobile connections, 176–182

generating die value, 175–176

improvement considerations, 182–183

locking screen, 181–182

getFromLocation() method, 136

glanceable apps, 50

glasses

augmented reality, 186–188

building your own, 190–192

EyeTap, 8

overview, 8–9

virtual reality, 188–190

Vuzix glasses, 9, 185–186

Google Cardboard, 189–192

building your own glasses, 190–192

CardboardGlass app example

AndroidManifest.xml ile, 196–197,

202–203, 207

cardboard.jar library, 193

CardboardOverlayView class, 197–198

DataLayerListenerService class, 203–204

MyActivityPhone.java ile, 194–196,

200–202

MyActivityWear.java ile, 204–206

WorldLayoutData class, 198–199

Google Glass, 8–9, 187–188. See also glasses

CardboardGlass example, 193–207

Google Play

connecting to, 116–125

distributing Wear apps, 25–26

GoogleApiClient, 128–131, 176–181

GPS. See also location-based services

determining availability, 131

requesting permission, 128

gradle iles, editing, 55–56, 90–91

GridPagerAdapter class, 51, 72–73

GridView class, 30, 31

GridViewPager class, 51, 72–74

grouping notiications, 45–47

h

hacking

intents to launch apps, 85

wearables, 7–8

Harbisson, Neil, 5

Henry, Damien, 188–189

human-computer interaction (HCI), 4, 9

i

icons

adding custom icons, 34–35

hiding app icon, 43

212

images – notiications

images

displaying, 66–69

large image notiications, 36–37

implicit intent, 84

InsetActivity class, 51, 58–60

installing

sample Android apps, 24–25

Wear SDK, 20

intents

hacking to launch apps, 85

implicit, 84

overview, 84

predeined voice intents, 82–84

Internet of Everything (IoE), 13

Internet of Things

basic rules, 11

home devices, 14–15

on the go (OTG) devices, 15–16

promise of connectivity, 12–14

smart cities, 17–18

wearables relationship to, 11–12

wireless sensor networks (WSNs),

16–17

Interval, location request option, 132

IoE (Internet of Everything), 13

IoT. See Internet of Things

isLookingAtObject() method, 196

isPresent() method, 135

j

Jawbone, 5, 6

l

last known location requests, 131–132

layouts

adding Wear namespace, 61

loading

using InsetActivity, 58–60

using WatchViewStub, 56–58

lists, adding, 69–74

location-based services

accessing current location, 128–135

reverse geocoding, 135–137

LocationListener object, 132–134

LocationRequest object, 134–135

m

Machine to Machine (M2M) business, 18

magnetometers, 168, 194

Mann, Steve, 4–5, 8–9, 188

mesh networks, 16–17

Message API, 86, 113, 117

MessageApi class, 106

microinteractions, 29

Minority Report, 9

Misit, 6

multiple actions, 41

MyActivityPhone.java ile

CardboardGlass example, 194–196, 200–202

SimpleNotiication example, 94–95, 96–97,

102–103

SimpleWearableData example, 107–111

WearableDataFromScratch example, 117–119

MyActivityWear.java ile

CardboardGlass example, 204–206

SimpleWearableData example, 112–114

WearableDataFromScratch example, 121–123

n

natural user interface (NUI), 4, 9

Nike FuelBand, 5, 142

Node API, 86, 110–111, 113

Notification.Builder class, 30, 32

NotificationCompat.Builder class, 33–34

NotificationCompat.WearableExtender class,

32

NotificationManager class, 32–33

NotificationManagerCompat class, 32–34

notiications, Wear

adding pages, 38–39

building, 32–45

adding actions, 39–43

adding large icon, 34–36

adding pages, 38–39

big picture notiications, 36–37

hiding app icon, 43

213

NUI – setStartScrollBottom () method

moving notiication, 44

removing notiication, 45

setting scroll to bottom, 44–45

simple notiication, 33–34

updating, 38

voice input example, 86–103

GridView, 30, 31

overview, 29–32

pre-Wear API, 30

showing, 33

stacking, 45–47

NUI (natural user interface), 4, 9

Number of updates, location request option, 132

NyARToolkit library, 186

o

Oculus Rift, 188

“OK, Google,” 82–85

on the go (OTG) IoT devices, 15–16

onCardboardTrigger() method, 195–196, 200

open-on-phone animation, 74, 76

OTA (over the air) updates, 11

OTG (on the go) IoT devices, 15–16

Owed, Amnon, 186, 187

p

packaging Wear apps, 26

permissions, developer, 23

piconets, 16

Priority, location request option, 132

progress bar, adding, 68–69, 170–171

Project Glass, 9

pushing data

SimpleWearableData example, 106–116

AndroidManifest.xml ile, 111–112,

114–115

MyActivityPhone.java ile, 107–111

MyActivityWear.java ile, 112–114

WearableDataFromScratch example, 116–125

AndroidManifest.xml ile, 119–120,

124

MyActivityPhone.java ile, 117–119

MyActivityWear.java ile, 121–123

r

Recipe Assistant app, 25

RemoteInput class, 87, 95–97

RemoteViews object, 30

removing Wear notiications, 45

reverse geocoding, 135–137

s

sample Android apps, installing, 24–25

SandS (social and smart) project, 14–15

screen shape. See layouts

Seismic library, 173–175

SelectGenderActivity class, 145–149

SelectHeightActivity class, 152–154

SelectWeightActivity class, 149, 150–151

sensors

DiceGame example, 169–183

Fit app, 142

GPS sensors, 128–135

LG G Watch, 168

OTG (on the go) sensors, 15

Step Counter, 143

Step Detector, 142, 158–160

wireless sensor networks, 16–17

setBackground() method, WearableExtender

class, 32, 37

setContent() method, Builder class, 30

setContentAction method, WearableExtender

class, 32

setContentInfo() method, Builder class, 30

setContentIntent() method, Builder class, 30

setContentText() method, Builder class, 30

setContentTitle() method, Builder class, 30

setGravity() method, WearableExtender class,

32, 44

setHintHideIcon() method,

WearableExtender class, 32

setLargeIcon() method, Builder class, 30

setPriority() method, Builder class, 30

setSmallIcon() method, Builder class

30

setStartScrollBottom() method, Builder

class, 44–45

214

setStyle () method – voice input

setStyle() method, Builder class, 30

setWhen() method, Builder class, 30

shake gestures, 169

DiceGame example, 169–183

accessing sensors, 173–175

creating project, 169

designing UI, 169–173

establishing mobile connections, 176–182

generating die value, 175–176

improvement considerations, 182–183

locking screen, 181–182

SimpleNotiication example app, 86–103

callback function, adding, 93–95

empty project, creating, 87–90

gradle ile, modifying, 90–91

layout, modifying, 91–93

SimpleWearableData example, 106–116

AndroidManifest.xml ile

phone’s, 111–112

wearable’s, 114–115

MyActivityPhone.java ile, 107–111

MyActivityWear.java ile, 112–114

Smallest displacement, location request option, 132

smart cities, 17–18

SmartBand, 6, 142

SmartWatch, 5, 8, 127

smartwatches

DiceGame example, 167–183

accessing sensors, 173–175

creating the project, 169

designing UI, 169–173

establishing data connection, 176–182

generating die values, 175–176

improvement suggestions, 182–183

overview, 7–8

voice input

emulator support, 84

“OK, Google,” 82–85

overview, 79–80

predeined intents, 82–84

SimpleNotiication example app, 86–103

types of, 80–81

Wear APIs, 85–86

social and smart (SandS) project, 14–15

soft buttons, 6

Sony SmartBand, 6, 142

Sony SmartWatch, 5, 8, 127

Square, Seismic library, 173–175

stacking notiications, 45–47

standard actions, 39–40

StartRunActivity activity, 85

static images, loading, 67

Step Counter sensor, 143

Step Detector sensor, 142, 158–160

StringListAdapter, 146–147, 146–148

success animation, 74–76

suggest and demand, 50

System Image, Android Wear, 20

system-provided voice capabilities, 82–84

t

T-shirt OS project, CuteCircuit, 6

treasure hunt example app, 193–207

u

UI widgets

adding Wear namespace, 61

DiceGame example app, 169–173

images, displaying, 66–69

lists, adding, 69–74

for loading layouts, 56–60

summary of, 50–51

text, adding, 61–66

WalkKeeper example app

building UI, 154–155

connecting UI, 155–157

updating UI, 160–162

Underkofler, John, 9

unique identiiers, 11

showing notiications with, 33

updating Wear notiications, 38

USB debugging, 24

v

virtual reality (VR), 188–190

voice input

emulator support, 84

215

Vr – ZigBee

“OK, Google,” 82–85

overview, 79–80

predeined intents, 82–84

receiving, 95–106

SimpleNotiication example app, 86–103

types of interaction, 80–81

Wear APIs, 85–86

VR (virtual reality), 188–190

VR Toolkit, 193, 194–196

Vuzix glasses, 9, 185–186

W

Waldemeyer, Moritz, 6

WalkKeeper example app, 143–165

calculating calories, 143–145

creating the project, 145

improvement considerations, 165

selecting

gender, 145–149

height, 152–154

weight, 150–152

WalkKeeper activity, 154–165

building the UI, 154–155

connecting the UI, 155–157

keeping open, 162–164

loading stored user data, 157–158

reading sensor data, 158–160

updating the UI, 160–162

watches. See smartwatches

WatchViewStub class, 51, 56–58

Wear

available devices, 22

connecting devices to development environment, 24

developing apps

adding images, 66–69

adding lists, 69–74

adding text, 61–66

design considerations, 49–50

developer permissions, 23

development requirements, 20

editing gradle iles, 55–56

loading layouts, 56–60

providing feedback, 74–77

sending notiication, 87–95

steps, 51–55

UI library, 50–51

distributing apps on Google Play, 25–26

emulator, 20–22

installing sample apps, 24–25

launching apps, 84–85

location-based services, 127–137

accessing current location, 128–135

reverse geocoding, 135–137

notiications

adding pages, 38–39

big picture notiications, 36–37

GridView, 30, 31

moving, 44

overview, 29–32

removing, 45

showing, 33

stacking, 45–47

updating, 38

packaging apps, 26

Wear SDK, 49–51

WearableDataFromScratch example, 116–125

AndroidManifest.xml ile, 119–120, 124

MyActivityPhone.java ile, 117–119

MyActivityWear.java ile, 121–123

WearableExtender class, 32

adding Wear-only actions, 41–42

creating multipage notiications, 38–39

hiding app icon, 43

moving notiications, 44

setting notiication background, 37

WearableListenerService class, 85, 106

WearableListView class, 51, 69–72, 145–150

wearables. See also Internet of Things

as fashion statements, 6

hacking, 7–8

overview, 3–9

relationship to IoT, 11–12

wireless sensor networks (WSNs), 16–18

WorldLayoutData class, 198–199

Z

zero user interfaces (ZUIs), 3, 9

ZigBee, 17

WILEY END USER LICENSE

AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook
EULA.

http://www.wiley.com/go/eula

	Professional Android™ Wearables
	CONTENTS
	INTRODUCTION
	PART I: CONCEPTS
	CHAPTER 1: INTRODUCTION TO ANDROID WEARABLES
	The Wearable Revolution
	Dismantling the Computer: The Cyborg Dream
	Software Everywhere
	Fashion is More than Ski Jackets
	Fitness
	Time
	Glasses
	Summary
	Recommended Reading

	CHAPTER 2: THE INTERNET OF THINGS
	How Wearables Relate to IoT
	The Promise of Connectivity
	Cisco’s Vision
	Big Data

	Connected Devices in the Home
	Connected Devices on the Go
	Wireless Sensor Networks
	A Scenario of Use of WSN
	Bluetooth Versus ZigBee

	Smart Cities
	Summary
	Recommended Reading

	CHAPTER 3: PLATFORMS AND TECHNOLOGY
	Android Wear
	Installing the Wear SDK
	Working with the Android Wear Emulator
	Working with a Real Wear-Enabled Device
	Kick-starting Your Wear Development
	Distributing Wear Apps on Google Play
	Summary

	PART II: BASIC BUILDING BLOCKS
	CHAPTER 4: NOTIFICATIONS ON SMALL SCREENS
	About Notifications
	Pre-Wear Notification API
	Wear Notifications

	Building Notifications
	The Simple Notification
	Adding a Large Icon
	Big Text Notification

	Big Picture Notification
	Updating a Notification
	Adding Pages to Your Notifications
	Adding Actions to Your Notifications
	Adding a Standard Action
	Adding Multiple Actions
	Adding Wear-Only Actions
	Adding an Action without the Extra Page

	Extra Options
	Hiding the Application Icon
	Moving the Notification
	Setting the Scroll to the Bottom

	Removing a Notification

	Stacking Notifications
	Summary
	Recommended Reading

	CHAPTER 5: DEVELOPING WEAR APPS
	The Wear SDK
	Design Considerations
	Wearable UI Library

	Creating the Wear Project
	Editing the Gradle Files
	Loading Layouts
	Using WatchViewStub
	Using InsetActivity

	Building the User Interface
	Adding Text to Your User Interface
	CardFrame
	CardScrollView
	CardFragment

	Displaying Images
	Loading a Static Image
	Adding a Progress Update

	Handling Lists in Wear
	Using WearableListView
	The 2D Picker

	Providing Positive Feedback
	Starting the Success Feedback
	Starting the Open-on-Phone Animation
	Starting the Failure Feedback

	Summary
	Recommended Reading

	CHAPTER 6: VOICE INPUT
	Talking to Your Wrist
	Types of Voice Interaction
	Using System-Provided Voice Commands
	Just Launch an App
	Hack an Existing Intent to Launch Your App
	Launch Your App with Voice the “Right” Way

	The Wear APIs
	Data API
	Message API
	Node API

	Answering to Notifications: Capturing Your Voice into an App
	Creating a Simple App Sending a Notification
	Creating Your Empty Project
	Modifying the Gradle File
	Modifying the App’s Layout
	Adding the Right Callback Function

	Getting Your App to Receive a Voice Command
	Revising the Callback Function
	Adding a Broadcast Receiver
	Modifying the App’s Layout to Include a Text Field
	Adding the New Class to the Manifest File
	Adding the Reply String to the Strings File
	How It Works
	Showing the Answer on the App’s Screen

	Summary
	Recommended Reading

	CHAPTER 7: PUSHING DATA
	Checking the Example
	Phone’s MyActivityPhone.java
	Phone’s AndroidManifest.xml
	Wearable’s MyActivityWear.java
	Wearable’s AndroidManifest.xml
	Wearable’s Listener

	Making Your Google API Client from Scratch
	Start with a Clean Project
	The Phone’s MyActivityPhone.java
	The Phone’s AndroidManifest.xml
	The Phone’s DataLayerListenerService
	MyActivityWear.java
	Wear’s Android Manifest File
	The Listener on the Wearable’s Side
	The Final Result

	Summary
	Recommended Reading

	CHAPTER 8: LOCATION-BASED SERVICES ON ANDROID WEAR
	Changing How Location Works
	Accessing the Current Location
	Enabling GPS support
	Using the New APIs
	Determining GPS Availability
	Requesting the Last Known Location
	Requesting Location Updates
	Being Picky About Location Updates

	Showing Your Street Address
	Testing Geocoder Availability
	Getting the Current Address for a Location

	Summary
	Recommended Reading

	PART III: PROJECTS
	CHAPTER 9: ANDROID WEAR AS ACTIVITY TRACKER
	What Are Activity Trackers?
	Wear as an Activity Tracker
	Step Detector
	Step Counter

	Building the WalkKeeper App
	Calculating Calories
	Creating the Project
	Selecting Gender
	Selecting Weight
	Selecting Height
	The WalkKeeper Activity
	Building the User Interface
	Connecting the User Interface
	Getting the Stored Settings
	Reading the Sensor Data
	Calculating and Updating the User Interface
	Keeping the Activity Open

	Improvements
	Summary

	CHAPTER 10: SMARTWATCH AS INPUT
	Android Wear as a Game Controller
	A Note on Sensors
	Detecting Gestures

	Building the Dice Game
	Creating the Project
	Designing a User Interface
	Android Wear GUI
	Mobile GUI

	Accessing Sensors
	Generating the Die Value
	Connecting to Mobile
	The Mobile Connection
	The Wear Connection

	Keeping the Screen On

	The Dice Game
	Improvements
	Summary
	Recommended Reading

	CHAPTER 11: BUILD YOUR OWN GLASS
	Augmented Reality and Virtual Reality
	Augmented Reality
	Google Glass

	Virtual Reality
	VR on a Phone

	Building Your Own Glasses
	Lenses
	The Simplest Box Possible

	The Simplest App
	The cardboard.jar Library
	Looking at the Code
	The Glasses’ MyActivityPhone.java
	The Glasses’ AndroidManifest.xml
	A Couple More Classes

	Getting Your Cardboard to Talk to Your Smartwatch
	Start from the Previous Project
	The Phone’s MyActivityPhone.java
	The Phone’s AndroidManifest.xml
	The Phone’s DataLayerListenerService
	MyActivityWear.java
	The Wear Android Manifest File
	The Final Result

	Summary

	INDEX
	ADVERT
	EULA

