
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

PROFESSIONAL JAVA® EE DESIGN PATTERNS

INTRODUCTION . xxv

▸ PART I INTRODUCTION TO JAVA EE DESIGN PATTERNS

CHAPTER 1 A Brief Overview of Design Patterns . 3

CHAPTER 2 The Basics of Java EE . 13

▸ PART II IMPLEMENTING DESIGN PATTERNS IN JAVA EE

CHAPTER 3 Façade Pattern . 25

CHAPTER 4 Singleton Pattern . 33

CHAPTER 5 Dependency Injection and CDI . 49

CHAPTER 6 Factory Pattern . 63

CHAPTER 7 Decorator Pattern . 83

CHAPTER 8 Aspect‐Oriented Programming (Interceptors) 97

CHAPTER 9 Asynchronous . 113

CHAPTER 10 Timer Service . 127

CHAPTER 11 Observer Pattern . 139

CHAPTER 12 Data Access Pattern . 153

CHAPTER 13 RESTful Web Services . 165

CHAPTER 14 Model View Controller Pattern . 183

CHAPTER 15 Other Patterns in Java EE . 195

▸ PART III SUMMARY

CHAPTER 16 Design Patterns: The Good, the Bad, and the Ugly 209

INDEX . 215

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

PROFESSIONAL

Java® EE Design Patterns

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

PROFESSIOONNAALL

Java® EE Design Patterns

Murat Yener
Alex Theedom

www.allitebooks.com

http://www.allitebooks.org

Professional Java® EE Design Patterns

Published by

John Wiley & Sons, Inc.

10475 Crosspoint Boulevard

Indianapolis, IN 46256

www.wiley.com

Copyright © 2015 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-84341-3

ISBN: 978-1-118-84358-1 (ebk)

ISBN: 978-1-118-84345-1 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,

electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108

of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization

through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,

MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the

Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)

748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with

respect to the accuracy or completeness of the contents of this work and specii cally disclaim all warranties, including

without limitation warranties of i tness for a particular purpose. No warranty may be created or extended by sales or

promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work

is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional

services. If professional assistance is required, the services of a competent professional person should be sought. Neither

the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is

referred to in this work as a citation and/or a potential source of further information does not mean that the author or the

publisher endorses the information the organization or Web site may provide or recommendations it may make. Further,

readers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this

work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the

United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with

standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media

such as a CD or DVD that is not included in the version you purchased, you may download this material at http://

booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2014946684

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are

trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its afi liates, in the United States and other

countries, and may not be used without written permission. Java is a registered trademark of Oracle America, Inc. All

other trademarks are the property of their respective owners. John Wiley & Sons, Inc., is not associated with any product

or vendor mentioned in this book.

www.allitebooks.com

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://booksupport.wiley.com
http://www.wiley.com
http://www.allitebooks.org

To Nilay and all my family (Semra and

Musfata Yener), for all your support and time I needed

to write this book.

—Murat

To Mariu, for all your support and encouragement.

—Alex

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

ABOUT THE AUTHORS

MURAT YENER is a code geek and open source committer, working at Intel New Devices Group as

an Android developer. He has extensive experience with developing Java, web frameworks, JavaEE,

and OSGi applications, in addition to teaching courses and mentoring. Murat is an Eclipse commit-

ter and one of the initial committers of the Eclipse Libra project, he is currently working on building

native and Hybrid mobile apps with HTML5 and mGWT.

Murat has been a user group leader at GDG Istanbul since 2009, organizing, participating, and

speaking at events. He is also a regular speaker at JavaOne, EclipseCon, and Devoxx conferences.

Linkedin—www.linkedin.com/in/muratyener

twitter—@yenerm

blog—www.devchronicles.com

ALEX THEEDOM is a Senior Java Developer at Indigo Code Collective indigocodecollective.com

(part of the E-scape Group) where he played a pivotal role in the architectural design and develop-

ment of a microservice based, custom built lottery and instant win game platform.

Prior to that, he developed ATM software for an international Spanish bank and code quality analy-

sis software for a software consultancy.

Alex is experienced with Java web application development in a diverse range of i elds including

i nance, e-learning, lottery and software development. His passion for development has taken him to

projects throughout Europe and beyond. He is a blogger at alextheedom.com and can be found help-

ing fellow problem solvers in online forums.

Linkedin—www.linkedin.com/in/alextheedom

Twitter—@alextheedom

Blog—www.alextheedom.com

http://www.linkedin.com/in/muratyener
http://www.devchronicles.com
http://www.linkedin.com/in/alextheedom
http://www.alextheedom.com

ABOUT THE TECHNICAL EDITOR

MOHAMED SANAULLA is a Software Developer with over five years of professional experience

developing software. He is currently working for India’s largest e-Commerce establishment and

is also a moderator on the JavaRanch Forums. When he is not working on his PC, he is busy

tending to his cute little daughter. He shares his experiments and thoughts on software devel-

opment at http://blog.sanaulla.info.

http://blog.sanaulla.info

ASSOCIATE PUBLISHER

Jim Minatel

PROJECT EDITOR

Adaobi Obi Tulton

TECHNICAL EDITOR

Mohamed Sanaulla

PRODUCTION MANAGER

Kathleen Wisor

COPY EDITOR

Karen A. Gill

MANAGER OF CONTENT DEVELOPMENT

AND ASSEMBLY

Mary Beth Wakei eld

MARKETING DIRECTOR

David Mayhew

MARKETING MANAGER

Carrie Sherrill

PROFESSIONAL TECHNOLOGY AND

STRATEGY DIRECTOR

Barry Pruett

BUSINESS MANAGER

Amy Knies

PROJECT COORDINATOR, COVER

Patrick Redmond

PROOFREADER

Nancy Carrasco

INDEXER

John Sleeva

COVER DESIGNER

Wiley

COVER IMAGE

© iStock.com/pavlen

BACKGROUND

© PhotoAlto Images/Fotosearch

CREDITS

ACKNOWLEDGMENTS

AS MY COAUTHOR Alex always says, we wanted to write a book we would like to own and read for

ourselves. To begin with, I want to thank Alex for all his patience, hard work, and great knowledge.

Without him, this book wouldn’t be nearly as good.

I am grateful to Mary James, our former acquisitions editor, who contacted me about writing a

book on Spring but listened to my ideas that formed the basis of this book. Without her support and

guidance, this book wouldn’t have become a reality. No words would be enough to thank Adaobi

Obi Tulton, who patiently worked on all the details while keeping most of the schedule stresses

away from us. And thanks, of course, to everyone at Wrox/Wiley who got this book on the shelves.

Thanks, also, to Reza Rahman for all his encouragement.

I must thank three important people who had a huge impact on where I am in my professional life in

terms of software.

First, thanks to my dad, Mustafa Yener, for buying me my i rst computer, a C64, at an early age

while I was asking for slot cars. That computer is where I wrote my very i rst codes.

Second, thanks to my thesis advisor, Prof. Mahir Vardar, whom I owe all the early guidance I

needed to start my career.

Finally, thanks to my life-time mentor and friend (also my ex-boss) Naci Dai, who taught me almost

anything I know about being a professional software developer.

—Murat

WE ARE VERY PROUD of this, our i rst book, and hope that you will get as much from reading it as

we have writing it. We approached writing this with the perspective that it should be the kind of

book we would buy if we hadn’t written it. We have achieved that.

However, this book would not have been possible without the dedication, patience, and understand-

ing of the many others who have contributed directly and indirectly to its creation. We would like

to acknowledge the contributions made by the dedicated and experienced team at Wiley Publishing.

They have stuck with us through thick and thin and believed that it was all possible. We would like

to give special thanks to Mary James, our acquisitions editor, whose support made this book a real-

ity. Thanks also to Adaobi Obi Tulton, whose patience and gentle nudges kept us on our toes and

whose attention to detail saved us from tripping over ourselves. I would like to thank my coauthor,

Murat Yener, for his inspiration and sense of humor that makes this book unique; and i nally, but

not least, I would like to thank my wife, Maria Eugenia García García, for her total support and

understanding while writing this book. Thank you.

—Alex

CONTENTS

FOREWORD xxiii

INTRODUCTION xxv

PART I: INTRODUCTION TO JAVA EE DESIGN PATTERNS

CHAPTER 1: A BRIEF OVERVIEW OF DESIGN PATTERNS 3

What Is a Design Pattern? 4
How Patterns Were Discovered and Why We Need Them 5

Patterns in the Real World 5

Design Pattern Basics 6
Enterprise Patterns 7

Java to Enterprise Java 7

The Emergence of Enterprise Java Patterns 8

Design Patterns Versus Enterprise Patterns 8

Plain Old Design Patterns Meet Java EE 9

When Patterns Become Anti‐Patterns 10

Summary 10
Notes 10

CHAPTER 2: THE BASICS OF JAVA EE 13

Multitier Architecture 14
The Client Tier 15
The Middle Tier 16

Web Layer 16

Business Layer 16

The EIS Tier 18
Java EE Servers 18
The Java EE Web Proi le 18
Core Principles of Java EE 19
Convention over Coni guration 19
Context and Dependency Injection 20
Interceptors 21
Summary 22
Exercises 22

xviii

CONTENTS

PART II: IMPLEMENTING DESIGN PATTERNS IN JAVA EE

CHAPTER 3: FAÇADE PATTERN 25

What Is a Façade? 26
Façade Class Diagram 27

Implementing the Façade Pattern in Plain Code 27
Implementing the Façade Pattern in Java EE 29

Façade with Stateless Beans 29

Façade with Stateful Bean 31

Where and When to Use the Façade Pattern 31
Summary 31
Exercises 32
Notes 32

CHAPTER 4: SINGLETON PATTERN 33

What Is a Singleton? 34
Singleton Class Diagram 34

Implementing the Singleton Pattern in Plain Code 35
Implementing the Singleton Pattern in Java EE 38

Singleton Beans 39

Using Singletons at Startup 39

Determining Startup Order 40

Managing Concurrency 42

Where and When to Use the Singleton Pattern 45
Summary 46
Exercises 46
Notes 47

CHAPTER 5: DEPENDENCY INJECTION AND CDI 49

What Is Dependency Injection? 50
Implementing DI in Plain Code 50
Implementing DI in Java EE 53

The @Named Annotation 54

Context and Dependency Injection (CDI) 55

CDI Versus EJB 56

CDI Beans 56

The @Inject Annotation 57

Contexts and Scope 57

Naming and EL 58

CDI Beans for Backing JSF 58

Qualii ers 59

Alternatives 59

www.allitebooks.com

http://www.allitebooks.org

xix

CONTENTS

Stereotypes 60

Other Patterns via CDI 60

Summary 61
Exercises 61
Notes 62

CHAPTER 6: FACTORY PATTERN 63

What Is a Factory? 64
Factory Method 64

Implementing the Factory Method in Plain Code 66

Abstract Factory 68
Implementing the Abstract Factory in Plain Code 69

Implementing the Factory Pattern in Java EE 70
Harness the Power of CDI 76

Where and When to Use the Factory Patterns 80
Summary 80
Exercises 81
Notes 81

CHAPTER 7: DECORATOR PATTERN 83

What Is a Decorator? 84
Decorator Class Diagram 85

Implementing the Decorator Pattern in Plain Code 86
Implementing the Decorator Pattern in Java EE 89

Decorators Without XML Coni guration 94

Where and When to Use the Decorator Pattern 94
Summary 95
Exercises 96
Notes 96

CHAPTER 8: ASPECT‐ORIENTED PROGRAMMING
(INTERCEPTORS) 97

What Is Aspect‐Oriented Programming? 98
Implementing AOP in Plain Code 100
Aspects in Java EE, Interceptors 102

Interceptor Life Cycle 105

Default‐Level Interceptors 106

Interceptor Order 107

CDI Interceptors 109

Where and When to Use Interceptors 111
Summary 112
Notes 112

xx

CONTENTS

CHAPTER 9: ASYNCHRONOUS 113

What Is Asynchronous Programming? 114
Asynchronous Pattern 114

Implementing Asynchronous Pattern in Plain Code 116
Asynchronous Programming in Java EE 118

Asynchronous Beans 118

Asynchronous Servlets 120

Where and When to Use Asynchronous Programming 124
Summary 125
Exercises 125
Notes 126

CHAPTER 10: TIMER SERVICE 127

What Is the Timer Service? 127
Implementing a Timer in Java EE 130

Automatic Timers 130

Programmatic Timers 131

Timer Expression 134

Transactions 136

Summary 137
Exercises 137
Notes 138

CHAPTER 11: OBSERVER PATTERN 139

What Is an Observer? 139
Description 140

Observer Class Diagram 141

Implementing the Observer Pattern in Plain Code 142
Implementing the Observer Pattern in Java EE 144
Where and When to Use the Observer Pattern 149
Summary 150
Exercises 151
Notes 151

CHAPTER 12: DATA ACCESS PATTERN 153

What Is a Data Access Pattern? 154
Data Access Class Diagram 154

Overview of the Data Access Pattern 155
Data Transfer Object Pattern 155

xxi

CONTENTS

Java Persistence Architecture API and Object Relational Mapping 156

Implementing the Data Access Pattern in Java EE 157
Type‐Safe DAO Implementation 162

Where and When to Use the Data Access Pattern 163
Summary 163
Exercises 163
Notes 163

CHAPTER 13: RESTFUL WEB SERVICES 165

What Is REST? 166
The Six Constraints of REST 167

Client‐Server 167

Uniform Interface 167

Stateless 168

Cacheable 168

Layered System 168

Code on Demand 168

Richardson Maturity Model of REST API 168
Level 0: The Swamp of POX (Plain Old XML) 169

Level 1: Resources 169

Level 2: HTTP Verbs 169

Level 3: Hypermedia Controls 169

Designing a RESTful API 169
Resource Naming 170

Nouns Not Verbs 170

Self‐Descriptive 170

Plural Not Singular 171

HTTP Methods 171

Get 171

Post 171

Put 172

Delete 172

Rest in Action 172
The users noun 172s

The topics noun and the s posts noun 173s

Implementing REST in Java EE 175
HATEOAS 178
Where and When to Use REST 180
Summary 181
Exercises 181
Notes 182

xxii

CONTENTS

CHAPTER 14: MODEL VIEW CONTROLLER PATTERN 183

What Is the MVC Design Pattern? 184
MVC Types 185

Implementing the MVC Pattern in Plain Code 186
Implementing the MVC Pattern in Java EE 190
The FacesServlet 190
MVC Using the FacesServlet 190
Where and When to Use the MVC Pattern 193
Summary 193
Exercises 193
Note 193

CHAPTER 15: OTHER PATTERNS IN JAVA EE 195

What Are WebSockets? 195
What Is Message‐Orientated Middleware 198
What Is the Microservice Architecture? 199

Monolithic Architecture 199

Scalability 200

Decomposing into Services 201

Microservice Benei ts 202

Nothing in Life Is Free 203

Conclusions 204

Finally, Some Anti‐Patterns 204
Uber Class 204

Lasagna Architecture 204

Mr. Colombus 205

Friends with Benei ts 205

Bleeding Edge 205

Utilityman 206

Notes 206

PART III: SUMMARY

CHAPTER 16: DESIGN PATTERNS: THE GOOD,THE BAD,
AND THE UGLY 209

The Good: Patterns for Success 209
The Bad: Over and Misuse of Patterns 211
…and The Ugly 212
Summary 214
Notes 214

INDEX 215

 FOREWORD

Ignorant men raise questions that wise men answered a thousand years ago

—Johann Wolfgang von Goethe

Design patterns are our link to the past and the future. They make up a foundational language

that represents well understood solutions to common problems that talented engineers before

us have added to our collective knowledge base. Design patterns or blueprints exist in every

engineering i eld in one way or another. Software development is no different. Indeed, design

patterns are probably our most tangible link to engineering rather than the more organic

and less regimented world of the artisan or craftsman. The art and science of design patterns

was brought to the world of software engineering—and more specii cally to enterprise

Java—by the seminal Gang of Four (GoF) book. They have been with us ever since through

our adventures in J2EE, Spring, and now modern lightweight Java EE. This is for very good

reasons. Server-side Java developers tend to write the type of mission critical applications

that need to stand the test of time and hence benei t the most from the discipline that design

patterns represent.

It really takes a special kind of person to write a book on design patterns, let alone a book on

how to utilize design patterns in Java EE applications. You require not only basic knowledge

of APIs and the patterns themselves, but deep insight that can only come with hard-earned

experience, as well as an innate ability to explain complex concepts elegantly. I am glad Java

EE now has Murat and Alex to accomplish the mighty feat.

This book fuli lls a much needed gap and i lls it well. It is also very good that the book is on

the cutting edge and covers Java EE 7 and not just Java EE 6 or Java EE 5. In fact many of the

design patterns covered, like Singleton, Factory, Model-View-Controller (MVC), Decorator,

and Observer, are now incorporated right into the Java EE platform. Others like Facade, Data

Access Object (DAO), and Data Transfer Object (DTO) i t elegantly on top. Murat and Alex

tackle each pattern, explain its pragmatic motivation, and discuss how it i ts into Java EE.

It is an honor and a privilege to write a small opening part of this very important book that I

hope will become a very useful part of every good Java EE developer’s bookshelf. I hope you

enjoy the book, and that it helps you write better, more satisfying enterprise Java applications.

M. Reza Rahman

Java EE/GlassFish Evangelist

Oracle Corporation

 INTRODUCTION

 THIS BOOK DISCUSSES THE CLASSIC DESIGN PATTERNS that were i rst mentioned in the famous

book by the GoF1 and updates them specii cally for Java EE 6 and 7.

 In every chapter we describe the traditional implementation of each pattern and then show how to

implement it using Java EE‐specii c semantics.

 We use full code examples to demonstrate both the traditional and Java EE implementations and

color each chapter with real‐life stories that show the use (or misuse) of the pattern.

 We investigate the pros and cons of each pattern and examine their usages. Each chapter i nishes

with some exercises that challenge your understanding of the pattern in Java EE.

 WHO THIS BOOK IS FOR

 This book is for everyone with any level of experience. It covers almost everything about a pattern,

from how it is referred to in other books, to code on basic Java implementation, to Java EE imple-

mentation, and i nally real life examples of how and when to use a specii c pattern. It also has real

life war stories that talk about good and bad practices.

 Having some basic knowledge of design patterns and Java EE will aid you as you read this book.

 If you are already experienced with patterns and basic Java implementations, you may prefer to

jump into Java EE implementations. Refreshing your memory and knowledge of design patterns

could prove helpful.

 WHAT THIS BOOK COVERS

 This book covers all classical design patterns that Java EE offers as part of standard implementa-

tion, besides some new patterns. The coverage goes back to Java EE5 and is up to date for the latest

version available, which is Java EE 7.

 We hope this book will be a reference you will keep on your shelf for a long time.

 HOW THIS BOOK IS STRUCTURED

 Each chapter focuses on a design pattern. If the pattern is classical, a simple Java implementation

is given after the explanation of the pattern. Each chapter offers war stories telling a good or bad

real life example about the pattern focused on/in the chapter. The war story is followed by a Java

EE implementation, example, and explanation. Each code sample given can be run by itself. Finally,

each chapter ends with when and how to use the pattern effectively.

xxvi

INTRODUCTION

 WHAT YOU NEED TO USE THIS BOOK

Any modern computer with an operating system that has a Java Virtual Machine (JVM) implemen-

tation is sufi cient to run the samples given in this book. For ease of coding, you need an integrated

development environment (IDE) of your own choice. The sample can run on any popular modern

IDEs including Eclipse, NetBeans, and IntelliJ.

You need the Java Development Kit (JDK) for Java EE7 to be able to compile and run the code

samples, but some of the code samples would also work on previous Java EE JDKs.

You can use any Java EE7–compliant application server to run the samples. We ran all the code

samples on Glassi sh, which is the reference implementation server, and TomEE, which is the Java

EE version of the popular Java web server Tomcat. You can use any server, but because Glassi sh is

the reference implementation, you might want to try it for the samples.

To run the samples in this book, you need the following:

➤ An operating system that has a JDK for Java EE7, such as Linux, Mac OS X, or Windows

➤ Java EE 7 JDK

➤ An IDE of your choice, such as Eclipse for Java EE Developers, NetBeans, or IntelliJ

➤ Java EE 7–compliant application server such as GlassFish or TomEE

The source code for the samples is available for download from the Wrox website at:

www.wrox.com/go/projavaeedesignpatterns

 MOTIVATION FOR WRITING

In November 2011, after having a debate on Java EE versus Spring for a project, I went back to

my desk and wrote a blog post titled “Java EE 6 and the Ewoks,”2 which became popular pretty

quickly. The story was based on the TV show How I Met Your Mother . In this show, Barney, who isrr

the playboy character, introduced a theory that was focused on Ewoks, the teddy bear–like creatures

introduced in Episode VI of Star Wars . Fans have mixed feelings on Ewoks.

According to Barney, those born before May 25, 1973, when Return of the Jedi was released, think

Ewoks are childish and simply hate them. However, those born after that date i nd Ewoks cute

because they remind them of teddy bears.

Now back to my story. Engaging in a debate with a customer about Java EE versus Spring made me

realize that it’s similar to the Ewok theory. Those who are old enough to have used J2EE 1.4 (EJB

1.0/2.0/2.1) in corporate projects had a slow, unproductive development environment with RAM‐

eating and buggy IDEs and servers taking several minutes to boot. The architecture was over engi-

neered and probably failed, resulting in a migration to Spring. Those users tended to hate Java EE

with a passion, no matter what version they used. The release of Java EE 5 was underrated and did

not really impress anyone.

http://www.wrox.com/go/projavaeedesignpatterns

xxvii

INTRODUCTION

 Java EE will never be J2EE again. It is now open, has a large community and reshapes itself by

assimilating good ideas from frameworks such as Spring and Hibernate. The i rst great change was

the architecture and style of coding. Enterprise JavaBeans (EJB) followed the lightweight Plain Old

Java Object (POJO) model, almost unusable entity beans were replaced with Java Persistence API

(JPA), REST and Web Services became standard and integral parts of the run time, and annotations

replaced XML coni guration. Still, some might argue that Java EE 5 was not ready for the huge shift

because it was not as mature as Spring, and the development environment was still not responsive

enough. Using Spring on Tomcat instead of EJBs and Java EE 5 on an application server greatly

increased the development productivity, but Java EE 5 was still a big step forward towards design-

ing, leveraging, and architecting the Enterprise Java platform from scratch.

 This shift was followed by Java EE 6 and 7, which used the same principles and ideas as Java EE 5.

Java EE is a great choice for development, but the debate was not over, thanks to the Ewok theory.

 It was a hot August day when I i rst got a call from Wrox/Wiley about whether I would be interested

in writing a Spring book. I was experienced and coni dent with implementing and developing in

Spring, but there were already tons of books written about it, which made it hard to see the value in

writing a new one.

 Besides, I was using Java EE more than ever since version 6 had been released. Considering the

Spring versus Java EE debates, my blog posts, and the Ewoks, I felt like writing about Java EE.

However, just like Spring, there were many great Java EE books that I admired. I always had the

feeling that some properties of Java EE were underrated. Java EE has great built‐in implementations

of design patterns with simple use of annotations.

 The classic patterns listed in the GoF book were used extensively in almost all languages, frame-

works, and platforms. J2EE was no exception and neither was Java EE. Actually Java EE took a

bold step in providing default implementations for many of those patterns, but still even most of the

experienced developers underestimated the value of those out of the box implementations.

 I had been blogging about those patterns for almost a year, so I decided to present a counteroffer to

write a book on the “classic” design patterns in Java EE. As you are reading this book now, you may

guess the feedback was positive.

 This book i lls the gap between the Java EE platform with the classic design patterns from the GoF

book as well as talking about new patterns. This way we did not write just another Java EE book

but a catalogue for design patterns in Java EE.

 I started blogging, writing and giving talks on design patterns in Java EE to extend my knowledge

and experience on a platform I really believed in, so the best thing about writing this book for me

was that I had the chance to write about something I was really passionate about. Although my blog

had simpler examples, I was already using it as a reference when I needed, so writing a book, which

is more formally and properly formatted while still following the same idea was a great opportunity.

 Every chapter that my coauthor Alex and I wrote had the same goal: Write content that we would

like to read ourselves. The result is a book that we both want to keep as a reference.

 We hope that you enjoy reading this book as much as we enjoyed writing it.

xxviii

INTRODUCTION

 CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of

conventions throughout the book.

 NOTE Notes indicates notes, tips, hints, tricks, or asides to the current discussion.

As for styles in the text:

➤ We highlight new terms and important words when we introduce them.t

➤ We show keyboard strokes like this: Ctrl+A.

➤ We show i le names, URLs, and code within the text like so: persistence.properties .

➤ We present code in two different ways:

 We use a monofont type with no highlighting for most code examples.
We use bold to emphasize code that is particularly important in the present
context or to show changes from a previous code snippet.

 SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code man-

ually or to use the source code i les that accompany the book. All the source code used in this book

is available for download at www.wrox.com . Specii cally for this book, the code download is on the

Download Code tab at:

www.wrox.com/go/projavaeedesignpatterns

You can also search for the book at www.wrox.com by ISBN (978‐1‐118‐84341‐3) to i nd the

code. A complete list of code downloads for all current Wrox books is available at www.wrox.com/

dynamic/books/download.aspx .

Each chapter starts with introducing a basic Java implementation of the pattern, if there is any.

Next, the chapter lists a Java EE implementation of the pattern that can only compile and run on the

Java EE JDK and a Java EE–compliant application server.

Most of the code on www.wrox.com is compressed in .ZIP, .RAR, or a similar archive format appro-

priate to the platform. Once you download the code, just decompress it with an appropriate com-

pression tool.

www.allitebooks.com

http://www.wrox.com
http://www.wrox.com/go/projavaeedesignpatterns
http://www.wrox.com
http://www.wrox.com/dynamic/books/download.aspx
http://www.wrox.com
http://www.wrox.com/dynamic/books/download.aspx
http://www.allitebooks.org

xxix

INTRODUCTION

 ERRATA

 We make every effort to ensure that there are no errors in the text or in the code. However, no one

is perfect, and mistakes do occur. If you i nd an error in one of our books, like a spelling mistake

or a faulty piece of code, we would be very grateful for your feedback. By sending in errata, you

may save another reader hours of frustration. At the same time, you will be helping us provide even

higher quality information.

 To i nd the errata page for this book, go to:

 www.wrox.com/go/projavaeedesignpatterns

 Then click the Errata link. On this page, you can view all errata that has been submitted for this

book and posted by Wrox editors.

 If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport

.shtml and complete the form there to send us the error you have found. We’ll check the information

and, if appropriate, post a message to the book’s errata page and i x the problem in subsequent edi-

tions of the book.

 P2P.WROX.COM

 For author and peer discussion, join the P2P forums at http://p2p.wrox.com . The forums are a

web‐based system for you to post messages relating to Wrox books and related technologies and

interact with other readers and technology users. The forums offer a subscription feature to e‐mail

you topics of interest of your choosing when new posts are made. Wrox authors, editors, other

industry experts, and your fellow readers are present on these forums.

 At http://p2p.wrox.com , you will i nd a number of different forums that will help you, not only as

you read this book, but also as you develop your own applications. To join the forums, just follow

these steps:

1. Go to http://p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join, as well as any optional information you wish to

provide, and click Submit.

4. You will receive an e‐mail with information describing how to verify your account and com-

plete the joining process.

 NOTE You can read messages in the forums without joining P2P, but in order to
post your own messages, you must join.

http://www.wrox.com/go/projavaeedesignpatterns
http://www.wrox.com/contact/techsupport.shtml
http://p2p.wrox.com
http://p2p.wrox.com
http://p2p.wrox.com
http://www.wrox.com/contact/techsupport.shtml

Once you join, you can post new messages and respond to messages that other users post. You can

read messages at any time on the web. If you would like to have new messages from a particular

forum e‐mailed to you, click the Subscribe to This Forum icon by the forum name in the forum

listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to

questions about how the forum software works, as well as many common questions specii c to P2P

and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

 CONTACT THE AUTHORS

If you have any questions regarding the contents of this book, the code, or any other related matter

you can contact the authors directly on their blogs and via Twitter.

Murat Yener:

➤ Blog— devchronicles.com

➤ Twitter— @yenerm

Alex Theedom :

➤ Blog— alextheedom.com

➤ Twitter— @alextheedom

 NOTES

1. Design Patterns: Elements of Reusable Object‐Oriented Software (Addison‐Wesley, 1994):
Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides.

2. Java EE 6 and the Ewoks:
http://www.devchronicles.com/2011/11/javaee6‐and‐ewoks.html.

http://www.devchronicles.com/2011/11/javaee6%E2%80%90and%E2%80%90ewoks.html

PROFESSIONAL

Java® EE Design Patterns

 PART I

Design Patterns

▸ CHAPTER 1 : A Brief Overview of Design Patterns

▸ CHAPTER 2 : The Basics of Java EE

 WHAT’S IN THIS CHAPTER?

➤ An overview of design patterns

➤ A short history about design patterns and why they are important

➤ The use of design patterns in the real world

➤ The history and evolution of Java Enterprise Edition

➤ The emergence of enterprise patterns

➤ How these design patterns have evolved in the enterprise

environment

➤ Why and how patterns become anti‐patterns

 This book is aimed at bridging the gap between the traditional implementation of design pat-

terns in the Java SE environment and their implementation in Java EE.

 If you are new to design patterns, this book will help you get up to speed quickly as each chap-

ter introduces the design pattern in a simple‐to‐understand way with plenty of working code

examples.

 If you are already familiar with design patterns and their implementation but are not familiar

with their implementation in the Java EE environment, this book is perfect for you. Each chap-

ter bridges the gap between the traditional implementation and the new, often easier, imple-

mentation in Java EE.

 If you are an expert in Java, this book will act as a solid reference to Java EE and Java SE

implementations of the most common design patterns.

 1

4 ❘ CHAPTER 1 A BRIEF OVERVIEW OF DESIGN PATTERNS

 This book focuses on the most common Java EE design patterns and demonstrates how they are

implemented in the Java EE universe. Each chapter introduces a different pattern by explaining its

purpose and discussing its use. Then it demonstrates how the pattern is implemented in Java SE and

gives a detailed description of how it works. From there, the book demonstrates how the pattern is

now implemented in Java EE and discusses its most common usage, its benei ts, and its pitfalls. All

explanations are accompanied by detailed code examples, all of which can be downloaded from

the website accompanying this book. At the end of each chapter, you’ll i nd a i nal discussion and

summary that rounds up all you have read in the chapter. There are even some interesting and some-

times challenging exercises for you to do that will test your understanding of the patterns covered in

the chapter.

 WHAT IS A DESIGN PATTERN?

 Design patterns are “descriptions of communicating objects and classes that are

customized to solve a general design problem in a particular context.”

—Gang of Four

 Design patterns offer solutions to common application design problems. In object‐oriented pro-

gramming, design patterns are normally targeted at solving the problems associated with object

creation and interaction, rather than the large‐scale problems faced by the overall software architec-

ture. They provide generalized solutions in the form of boilerplates that can be applied to real‐life

problems.

 Usually design patterns are visualized using a class diagram, showing the behaviors and relations

between classes. A typical class diagram looks like Figure 1-1 .

 Figure 1-1 shows the inheritance relationship between three classes. The subclasses

CheckingAccount and SavingsAccount inherit from their abstract parent class BankAccount .

owner : String
balance : Dollars

deposit (amount : Dollars)
withdrawal (amount : Dollars)

annualInterestRate : PercentageinsuficientFundsFee : Dollars

processCheck (checkToProcess : Check)
withdrawal (amount : Dollars)

depositMonthlyInterest()
withdrawal (amount : Dollars)

BankAccount

SavingsAccountCheckingAccount

 FIGURE 1-1: A class diagram showing inheritance

What Is a Design Pattern? ❘ 5

 Such a diagram is followed by an implementation in Java showing

the simplest implementation. An example of the singleton pattern,

which will be described in later chapters, is shown in Figure 1-2 .

 And here is an example of its simplest implementation.

 public enum MySingletonEnum {
 INSTANCE;

 public void doSomethingInteresting(){}
}

 How Patterns Were Discovered and Why We Need Them
 Design patterns have been a hot topic since the famous Gang of Four (GoF, made up of Erich Gamma,

Richard Helm, Ralph Johnson, and John Vlissides) wrote the book Design Patterns: Elements of

Reusable Object‐Oriented Software ,1 i nally giving developers around the world tried and tested solu-

tions to the commonest software engineering problems. This important book describes various devel-

opment techniques and their pitfalls and provides 23 object‐oriented programming design patterns.

These patterns are divided into three categories: creational, structural, and behavioral.

 But why? Why did we suddenly realize we needed design patterns so much?

 The decision was not that sudden. Object‐oriented programming emerged in the 1980s, and several

languages that built on this new idea shortly followed. Smalltalk, C++, and Objective C are some of

the few languages that are still prevalent today. They have brought their own problems, though, and

unlike the development of procedural programming, this time the shift was too fast to see what was

working and what was not.

 Although design patterns have solved many issues (such as spaghetti code) that software engineers

have with procedural programming languages like C and COBOL, object‐oriented languages have

introduced their own set of issues. C++ has advanced quickly, and because of its complexity, it has

driven many developers into i elds of bugs such as memory leaks, poor object design, unsafe use of

memory, and unmaintainable legacy code.

 However, most of the problems developers have experienced have followed the same patterns,

and it’s not beyond reason to suggest that someone somewhere has already solved the issues. Back

when object‐oriented programming emerged, it was still a pre‐Internet world, and it was hard to

share experiences with the masses. That’s why it took a while until the GoF formed a collection of

patterns to well‐known recurring problems.

 Patterns in the Real World
 Design patterns are ini nitely useful and proven solutions to problems you will inevitably face. Not

only do they impart years of collective knowledge and experience, design patterns offer a good

vocabulary between developers and shine a light on many problems.

 However, design patterns are not a magic wand; they do not offer an out‐of‐the‐box implementa-

tion like a framework or a tool set. Unnecessary use of design patterns, just because they sound cool

or you want to impress your boss, can result in a sophisticated and overly engineered system that

Singleton

– instance: Singleton

– Singleton ()

+ getInstance () : Singleton

 FIGURE 1-2: The singleton

pattern class diagram

6 ❘ CHAPTER 1 A BRIEF OVERVIEW OF DESIGN PATTERNS

doesn’t solve any problems but instead introduces bugs, inefi cient design, low performance, and

maintenance issues. Most patterns can solve problems in design, provide reliable solutions to known

problems, and allow developers to communicate in a common idiom across languages. Patterns

really should only be used when problems are likely to occur.

Design patterns were originally classii ed into three groups:

➤ Creational patterns —Patterns that control object creation, initialization, and class selection.

Singleton (Chapter 4 , “Singleton Pattern”) and factory (Chapter 6 , “Factory Pattern”) are

examples from this group.

➤ Behavioral patterns —Patterns that control communication, messaging, and interaction between

objects. The observer (Chapter 11 , “Observer Pattern”) is an example from this group.

➤ Structural patterns —Patterns that organize relationships between classes and objects, provid-

ing guidelines for combining and using related objects together to achieve desired behaviors.

The decorator pattern (Chapter 7 , “Decorator Pattern”) is a good example of a pattern from

this group.

Design patterns offer a common dictionary between developers. Developers can use them to com-

municate in a much simpler way without having to reinvent the wheel for every problem. Want to

show your buddy how you are planning to add dynamic behavior at run time? No more step‐by‐step

drawings or misunderstandings. It’s plain and simple; you just utter a few words: “Let’s use a deco-

rator pattern to address this problem!” Your friend will know what you are talking about immedi-

ately, no further explanation needed. If you already know what a pattern is and use it in a right

context, you are well on your way to developing a durable and maintainable application.

 SUGGESTED READING

 It’s strongly suggested that you read Design Patterns: Elements of Reusable

Object‐Oriented Software by Erich Gamma, Richard Helm, Ralph Johnson, and

John Vlissides (Addison‐Wesley, 1995) or Head First Design Patterns by Eric

Freeman, Elisabeth Robson, Bert Bates, and Kathy Sierra (O’Reilly, 2004). Both

are great companions to this book and are invaluable guides for learning design

patterns.

DESIGN PATTERN BASICS

One key point regarding design patterns is that overuse or unnecessary use can be troublesome. As

soon as some developers learn new patterns, they show a great desire to use them whenever they

can. However, doing so often results in their project being bloated with singletons or overwrapping

via façades or unnecessarily complex decorators. Design patterns are answers to problems, so unless

there is a problem or a chance for a problem to appear, there is no point implementing a pattern.

To give an example, using the decorator pattern just because there is a slim chance that an object’s

behavior might change in the feature introduces development complexity today and a maintenance

nightmare in the future.

www.allitebooks.com

http://www.allitebooks.org

Enterprise Patterns ❘ 7

 ENTERPRISE PATTERNS

 Java 1.0 quickly became popular after it was released in early 1996. The timing was perfect for

the introduction of a new language that would remove the complexity of memory management,

pointers, and the syntax of C/C++. Java offered a gradual learning curve that allowed many

developers to adopt it quickly and to start programming in Java. However, there was something

else that accelerated the shift: applets. An applet is a small application that runs in a website in

a separate process from the web browser and adds functionality to the website that would not

be possible with HTML and CSS alone. An example would be an interactive graph or streaming

video feed.

 With the rapid growth of the Internet, static web pages soon became archaic and uninteresting. The

web user wanted a better, faster, and more beautiful suri ng experience. Along came applets, which

offered unbelievable interactivity, effects, and action to the then‐static World Wide Web. Soon,

dancing Duke (the symbol of Java) became the trend among modern websites. However, nothing

remains still for long on the Internet. Users wanted even more, yet applets failed miserably at adapt-

ing to those wants, so they did not maintain their popularity.

 Nevertheless, applets were the driving force behind the Java platform’s fast adaptation and popular-

ity. Today (as this book is written) Java is still among the two most popular programming languages

in the world.2

 Java to Enterprise Java
 Following the release of the Standard Edition of Java, IBM introduced Enterprise JavaBeans (EJB)

in 1997, which was adopted by Sun in 1999 and formed part of the Enterprise Java Platform (J2EE)

1.2. In 1998 and prior to the release of J2EE,3 Sun released a professional version of Java labeled

JPE. However, it wasn’t until after EJB was released that vendors and developers became interested

in adopting enterprise Java. With the release of J2EE 1.3 in 2001, Java became a key player in the

enterprise world, and its position was sealed with the release of J2EE 1.4 in 2003.

 Version 1.4 was one of the greatest milestones in Java’s history. It was widely adopted and main-

tained its popularity for many years even though new versions were released. Vendors and corpo-

rations were slow to adopt the newer versions, even though many had reasons to complain about

J2EE1.4. Using it was like driving a monster truck to the shops instead of a family sedan. It was

dei nitely powerful, but it was simply too complicated and bloated with XML i les, and neither the

frameworks nor the containers were lightweight.

 Yet J2EE became the most popular enterprise development platform. It had a set of features that

made it a great choice for enterprise development.

➤ Portability —The JVM let Java code run on any operating system. Developers could develop

on Windows, test on Linux, but go into production on a UNIX system.

➤ Security —J2EE offered its own role‐based security model.

➤ Transactions —J2EE offered built‐in transactions.

➤ Language features from J2SE —J2SE offered easy syntax, garbage collection, and great object‐

oriented programming features.

8 ❘ CHAPTER 1 A BRIEF OVERVIEW OF DESIGN PATTERNS

However, J2EE was not perfect. Soon enough, the complex structure of the platform with its heavy

use of XML coni gurations created the perfect problem‐ridden environment.

The Emergence of Enterprise Java Patterns
The complex programming models of J2EE soon led many projects into deep waters. Applications

developed with J2EE technologies tended to contain excessive amounts of “plumbing” code such as JNDI

lookup code, XML coni guration i les, and try/catch blocks that acquired and released JDBC resources.

Writing and maintaining such code proved a major drain on resources and was the source of many bugs

and performance issues. The EJB component model aimed to reduce complexity when implementing

business logic, but it did not succeed in this aim. The model was simply too complex and often overused.

After just a few years from the i rst release at the JavaOne conference in 2000, Deepak Alur, John

Crupi, and Dan Malks gave a talk titled “Prototyping Patterns for the J2EE Platform,” which

introduced several patterns targeted at common problems experienced in the design of J2EE

applications. This talk would become a book. The following year, they published a book called

Core J2EE Patterns: Best Practices and Design Strategies .4 In addition to the 15 already well‐known

patterns, the authors introduced 6 new J2EE design patterns. The new patterns included Context

Object and Application Controller for the Presentation tier, Application Service and Business Object

for the Business tier, and Domain Store and Web Service Broker for the Integration tier.

Some of those patterns evolved from the “classic” GoF patterns, whereas others were new and

addressed the l aws of J2EE. In the following years, several projects and frameworks such as Apache

Camel were released that made the life of enterprise developers easier. Even some, led by Rod

Johnson,5 made a bold step by moving away from J2EE and releasing the Spring Framework. Spring

soon became popular, and its popularity inl uenced great changes in the new programming model

behind Java EE. Today most of those patterns are still valid and in use. However, some are obsolete

and no longer required thanks to the simplii ed programming model of Java EE.

Design Patterns Versus Enterprise Patterns
Enterprise patterns differ from design patterns in that enterprise patterns target enterprise software

and its problems, which greatly differ from the problems of desktop applications. A new approach,

Service Oriented Architecture (SOA), introduced several principals to follow when building well‐

organized, reusable enterprise software. Don Box’s6 four tenets of SOA formed the basis of these

fundamental principles. That set of principles addressed common needs of enterprise projects.

However, “classical” patterns still have something to offer. With the release of Java EE 5, Enterprise

Java was back in the spotlight, something that third‐party frameworks such as Spring and Struts

had hogged for too long. The release of Java EE 6 was an even greater step forward and made the

platform more competitive.

 DON BOX’S FOUR TENETS OF SOA

 1. Boundaries are explicit. 2. Services are autonomous. 3. Services share schema

and contract, not class. 4. Service compatibility is determined based on policy.

Enterprise Patterns ❘ 9

 Today in Java EE 7, most “classic” design patterns described in the GoF book are embedded in

the platform ready to be used “out of the box.” Unlike the J2EE era, most of these patterns can be

implemented via annotations and without the need for convoluted XML coni guration. This is a

huge leap forward and offers the developer a simplii ed programming model.

 Although there are several great books on design patterns and the new features of Java EE, there

seems to be a missing link on how those patterns are implemented in Java EE.

 Plain Old Design Patterns Meet Java EE
 Even from day zero, Java has been friendly toward design patterns. Some of the patterns have a

built‐in implementation that is ready to use, such as the observer pattern in Java SE. Java itself also

uses many design patterns; for example, the singleton pattern is used in the system and runtime

classes, and comparators are a great example of the implementation of the strategy pattern.

 The tradition has continued with Enterprise Java, but especially Java EE, which has built‐in imple-

mentations of many of the patterns described in the GoF book. Most of these patterns can be

enabled and used with simple and easy‐to‐use annotations. So instead of looking at class diagrams

and writing boiler plate code, any developer with experience can enable a pattern with just a few

lines of code. Magical? Well, not quite. Because the Java EE run time has a more sophisticated

design, it can offer many capabilities, relying on the power of the underlying platform. Most of the

functionality that those patterns need would not be available without Java EE’s superset of features

such as EJB and Context and Dependency Injection (CDI). The Java EE container does most of the

work for you as it adds many embedded services and functionality to the server. The drawback is

that it has resulted in a heavyweight server runtime environment, especially compared to basic web

servers such as Apache Tomcat. However, this has improved, and the latest runtime builds on Java

EE 7 are more lightweight.

 Still, why do people continue to need design patterns in enterprise applications? Well, patterns are

needed now more than ever before. Most of the enterprise applications are built for corporations by

different teams of developers, and different parts need to be reused often. Unlike solving a common

problem pattern on your own or in a small team, your solutions are now exposed to the whole corpo-

ration and beyond to potentially the whole world (if your project is open source). It is easy to introduce

a poorly designed application and let it become a corporate tradition or development strategy. Because

libraries, utility classes, and application programming interfaces (APIs) are exposed to more develop-

ers, it has become even harder to break compatibility and make radical changes. Changing one return

type or even adding a new method to an interface may break all projects relying on that piece of code.

 It is clear that enterprise software development requires a higher level of discipline and coordination

between developer teams. Design patterns are a good way to approach this problem. However, most

enterprise developers still do not make good use of classical design patterns even though they have

been in Java EE since version 5.0. Although enterprise patterns can solve many issues, the original

design patterns continue to have much to offer. They are well worn and proven solutions, they have

stood the test of time, and they have been implemented in almost all object‐oriented languages.

 Finally, because most of those patterns are already integrated in the Java EE platform, there is no

need to write the full implementation code. Some may require a little XML coni guration, but most

of the patterns can be implemented by applying an annotation to the class, method, or member

10 ❘ CHAPTER 1 A BRIEF OVERVIEW OF DESIGN PATTERNS

variable. Want to create a singleton? Just add the @Singleton annotation to the top of your class

i le. Need to implement the factory pattern? Just add the @Produces annotation, and the method

will become the factory of the given return type.

 Java EE also sets the standards. The @Inject annotation serves as a default implementation and can

be mixed and matched with almost any other framework (the Spring Framework) because they use

the same annotation.

 When Patterns Become Anti‐Patterns
 Design patterns represent collected wisdom, but this doesn’t mean you have to use them all the

time. Just like the famous American psychologist Abraham Maslow 7 so aptly stated, “If the only

tool you have is a hammer, you tend to see every problem as a nail.” If you try to address all prob-

lems with only the patterns you know, they simply won’t i t, or worse, they’ll i t badly and cause

more problems. Even more, unnecessary use of patterns tends to overcomplicate the system and

result in poor performance. Just because you like the decorator pattern does not mean you need to

implement the pattern on every object. Patterns work best when the conditions and the problems

require their use.

 SUMMARY

 Java and design patterns have had a long journey to arrive at where they are now. Once they were

separate, with no knowledge of each other, but now they are together, to be forever integrated in the

Java Enterprise Edition. To understand this intimate paring, you must know their history. Already

you have discovered the roots of your favorite couple and how they found each other. You’ve read

about J2EE’s rocky beginnings and how the GoF gave light to 23 design patterns. You’ve seen how

frameworks like Spring came up behind Java and took over and how the reinvented Java EE is now

i ghting back and gaining ground. The knowledge contained in this book will prepare you to tackle

with coni dence the majority of the design issue that you will face during your development career.

You can rest easy knowing that the years of struggle the Java Enterprise Edition has endured com-

bined with the inherent wisdom of design patterns have resulted in an endurably strong and l exible

programming language and environment.

 Enjoy this invaluable guide to design patterns in Java EE, and use the wisdom gained here in every

project you’re involved in.

 NOTES

 1. Design Patterns: Elements of Reusable Object‐Oriented Software (Addison‐Wesley, 1994):
Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides.

 2. According to the TIOBE index, Java appears at number two after C: http://www.tiobe.com/
index.php/content/paperinfo/tpci/index.html .

 3. Before version 5, Java EE used to be called J2EE. From this point J2EE will be used to refer to
pre‐Java EE 5.

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

Notes ❘ 11

 4. Core J2EE Patterns: Best Practices and Design Strategies (Prentice Hall 2003, 2nd Edition):
Deepak Alur, Dan Malks, John Crupi.

 5. Rod Johnson (@springrod) is an Australian computer specialist who created thed

Spring Framework and cofounded SpringSource. http://en.wikipedia.org/wiki/
Rod_Johnson_(programmer) .

 6. Don Box (@donbox) is a distinguished engineer: x http://en.wikipedia.org/wiki/Don_Box .
 7. Abraham Maslow (1908–1970) American Psychologist.

http://en.wikipedia.org/wiki/Rod_Johnson_(programmer)
http://en.wikipedia.org/wiki/Don_Box
http://en.wikipedia.org/wiki/Rod_Johnson_(programmer)

 WHAT’S IN THIS CHAPTER?

➤ Introduction to the core concepts of Java EE

➤ Discussion of the multitier structure of an enterprise application

➤ Explanation of Java EE–compliant servers and the web proi le

➤ Convention over coni guration overview

➤ Content Dependency Injection overview

➤ Interceptor overview

 WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

 The wrox.com code download for this chapter is found at www.wrox.com/go/

projavaeedesignpatterns on the Download Code tab. The code is in the Chapter 02

download and individually named according to the names throughout the chapter.

 The Java EE programming model has been simplii ed substantially since J2EE. Annotations

have replaced the XML descriptors i les, convention over coni guration have replaced the

tedious manual coni guration, and dependency injection hides the creation and lookup of

resources. Developers need to reconsider their approach to design and coding.

 The development of Java EE enterprise applications has gotten easier. All that you need

is a POJO (Plain Old Java Object) annotated with some metadata and, depending on the

annotation used, the POJO becomes an Enterprise JavaBeans (EJB, stateful or stateless), a

servlet, a JSF backing bean, a persistence entity, a singleton, or a REST web service. You can

optionally declare many of these services using XML in a deployment descriptor.

 Listing 2‐1 shows how to make a POJO into a singleton bean that is instantiated

and initialized at start‐up and then managed by the container simply by adding the

 2

http://www.wrox.com/go/projavaeedesignpatterns
http://www.wrox.com/go/projavaeedesignpatterns

14 ❘ CHAPTER 2 THE BASICS OF JAVA EE

@Singleton and @Startup annotations to the class and @PostConstruct to the initialization

method. See Chapter 4 , “Singleton Pattern,” for a detailed explanation of the use of these

annotations.

 LISTING 2‐1: POJO becomes a container‐managed singleton bean with the addition
of some annotations

 package com.devchronicles.singleton;

 import java.util.HashMap;
 import java.util.Map;
 import javax.annotation.PostConstruct;
 import javax.ejb.Singleton;
 import javax.ejb.Startup;

 @Startup
 @Singleton
 public class CacheSingletonBean {

 private Map<Integer, String> myCache;

 @PostConstruct
 public void start(){
 myCache = new HashMap<Integer, String>();
 }

 public void addUser(Integer id, String name){
 myCache.put(id, name);
 }

 public String getName(Integer id){
 return myCache.get(id);
 }
 }

 The aim of Java EE has not changed; it continues to recognize the requirement that developers and

enterprises have for distributed and transactional applications that harness speed, security, and

reliability. The Java EE platform is designed to make the production of large‐scale, multitiered

applications easier, more reliable, and more secure.

 MULTITIER ARCHITECTURE

 The architecture of a Java EE application is separated into tiers: the Client tier, the Middle tier

(which consists of the Web layer and the Business layer), and the Enterprise Information Systems

(EIS) tier. Each tier has unique responsibilities and utilizes different Java EE technologies. The

segregation of an application into distinct tiers brings greater l exibility and adaptability. You have

the choice of adding or modifying just a specii c layer rather than refactoring the entire application.

Each tier is physically separate and located on different machines. And in the case of a web

application, the Client tier is distributed globally.

The Client Tier ❘ 15

 THE CLIENT TIER

 The Client tier is usually a browser that connects to the Java EE server via Hypertext Transfer

Protocol (HTTP), although it can be any application on any machine as long as it behaves as a client

in a server‐client relationship. The client application sends a request to the server for a resource;

the server then processes the request and returns a response. This is usually the extent of the

relationship between the client and the server.

 Java EE works within the realm of the Middle tier, although it touches both the Client and the EIS

tiers. The Middle tier receives requests from the Client tier application. The Middle tier’s Web layer

processes the request and prepares a response, which it sends back to the Client tier, whereas the

Business layer applies the business logic before persisting it in the EIS tier. Within the Middle tier,

there is l uid communication between the layers and the EIS tier, while preparing the response to the

Client tier. A multitier architecture can be represented visually, as in Figure 2-1 .

Web Container

EJB Container

JSP/JSP Servlet EL/JSTL

EJB

Web Layer

Business
Layer

Java EE Server

Client Tier
Browser

Client
App

Client Machine

Database Database
EIS Tier

Database Server

Web Sockets

Middle Tier

 FIGURE 2-1: Multitier architecture showing the interaction between tiers

 NOTE The Client tier is often referred to as the Presentation tier.

16 ❘ CHAPTER 2 THE BASICS OF JAVA EE

 THE MIDDLE TIER

 The Java EE server sits on the Middle tier and provides two logical containers: the web container

and the EJB container. These containers roughly correspond to the Web layer and the Business layer,

respectively. Each layer has distinct but sometimes overlapping responsibilities.

 The MVC pattern is commonly used to clearly separate the view generation responsibilities of the

Web layer from the data modeling responsibilities of the Business layer. Chapter 14 , “Model Viewer

Controller Pattern,” discusses in detail how to implement this separation of concerns.

 Web Layer
 The Web layer manages the interactions between the Client tier and the Business layer.

 The Web layer receives a request for a resource from the Client tier. The request may include data

that the user inputted, such as a username and password or sign‐up information. The request is

processed and, if necessary, an interaction between the Web layer and the Business layer takes place.

The response is dynamically prepared in one of several forms (usually in the form of a HyperText

Markup Language [HTML] web page for a response originating from a browser) and sent to the

client.

 The Web layer maintains the user’s states in a session and may even perform some business logic and

temporarily persist data in memory.

 The technologies that are typically used in the Web layer relate to the management of the

interactions between the Client tier and the Middle tier and the construction of the response.

Serlvets control the web l ow and manage interactions while JavaServer Pages (JSP), Expression

Language (EL), and JavaServer Pages Standard Tag Library (JSTL) prepare the response to the

client. This is just a snapshot of the technologies that you can use in the Web layer. For a complete

list, see Figure 2-2 .

 In Java EE 7, four new technologies were added to the EE universe: WebSockets, Concurrency

Utilities, Batch, and JSON‐P. You can use all but WebSockets in both layers.

 Business Layer
 The Business layer executes business logic that resolves business problems or satisi es a particular

business need within the business domain.

 Normally, this would involve data that has been retrieved from the database in the EIS tier or

collected from the client. In a banking domain, a transaction fee might be applied to a transaction

amount and sent to the client via the Web layer for the client to coni rm the transaction. In an

e‐commerce domain, a different tax rate might be applied to a product depending on the physical

location of the client before being passed to the Web layer, and the web page would be rendered

according to this info.

 The Business layer is where the core logic of the business application resides. Business logic is

wrapped up in the EJB, and the data used by the business logic is retrieved from the EIS tier via

Java Persistence API (JPA), Java Transaction API (JTA), and Java Database Connectivity (JDBC).

www.allitebooks.com

http://www.allitebooks.org

The Middle Tier ❘ 17

It is common to request and modify data via web services that use JAX‐RS and JAX‐WS. (See

Chapter 13 , “REST,” for more on this topic.) This is just a snapshot of the technologies that you can

use in the web layer. For a complete list, see Figure 2-2 .

JSR Reference Optional

New in
Java
EE7 Web Container EJB Container

Java API for WebSocket JSR 356

Java API for JSON Processing JSR 353

Java Servlet 3.1 JSR 340

JavaServer Faces 2.2 JSR 344

Expression Language 3.0 JSR 341

JavaServer Pages 2.3 JSR 245

Standard Tag Library for JavaServer Pages (JSTL) 1.2 JSR 52

Batch Applications for the Java Platform JSR 352

Concurrency Utilities for Java EE 1.0 JSR 236

Contexts and Dependency Injection for Java 1.1 JSR 346

Dependency Injection for Java 1.0 JSR 330

Bean Validation 1.1 JSR 349

Enterprise JavaBeans 3.2 (except for EJB entity
beans and associated EJB QL, which have been
made optional) JSR 345 1 1

Managed Beans 1.0 JSR-316

Interceptors 1.2 JSR 318

Java EE Connector Architecture 1.7 JSR 322

Java Persistence 2.1 JSR 338

Common Annotations for the Java Platform 1.2 JSR 250

Java Message Service API 2.0 JSR 343

Java Transaction API (JTA) 1.2 JSR 907

JavaMail 1.5 JSR 919

Java API for RESTful Web Services (JAX-RS) 2.0 JSR 339

Implementing Enterprise Web Services 1.4 JSR 109

Java API for XML-Based Web Services (JAX-WS) 2.2 JSR 224

Web Services Metadata for the Java Platform JSR 181

Java API for XML-Based RPC (JAX-RPC) 1.1 JSR 101

Java API for XML Registries (JAXR) 1.0 JSR 93

Java Authentication Service Provider Interface for
Containers 1.1 JSR 196

Java Authorization Contract for Containers 1.5 JSR 115

Java EE Application Deployment 1.2 JSR 88

J2EE Management 1.1 JSR 77

Debugging Support for Other Languages 1.0 JSR 45

Java Architecture for XML Binding (JAXB) 2.2 JSR 222

Full Product
Requirements 2

Web Proile3

1. Enterprise JavaBeans (EJB) 3.2 Lite

2. Source: Java Platform, Enterprise Edition 7 (Java EE 7), JSR 342, EE.9.7 Full Java EE Product Requirements

3. Source: Java Platform, Enterprise Edition 7 (Java EE 7), Web Profile Specification, JSR 342, WP.2.1 Required

Components

 FIGURE 2-2: Technology used in the Web and Business layers

 NOTE The Middle tier is often referred to as the Logic tier, Data Access tier,
and Application tier.

18 ❘ CHAPTER 2 THE BASICS OF JAVA EE

 JAVA EE SERVERS

 As you have seen, the Middle tier hosts the Java EE server, which provides the Java EE functionality

needed for an enterprise application.

 Java EE is based on 30 standards, called Java Specii cation Requests (JSRs) (http://www.oracle

.com/technetwork/java/javaee/tech/index.html). These requests go through the Java

Community Process (JCP) before they can become accepted as part of the Java EE universe. The JCP

is an open process in which anyone can participate and give feedback on JSRs or even submit their

own JSR (https://www.jcp.org/en/home/index).

 These specii cations are bundled together and represent the technologies that a server application

must implement to be able to claim that it is Java EE compliant.

 Additionally, Oracle requires that the server application passes the Technology

Compatibility Kit (TCK). This is a nontrivial test suite that checks that the application

server behaves as the specii cation requires. This ensures that if you develop your application

following the Java EE specii cations, you will be able to deploy and execute it on any Java EE

application.

 At the time of writing, three application servers have been certii ed fully compatible with Java

EE 7. They are GlassFish Server Open Source Edition 4.0 (http://glassfish.java.net),

Wildl y 8.0.0 (http://wildfly.org), and TMAX JEUS 8 (http://tmaxsoft.com/product/jeus/

certification/). Eleven application servers are Java EE 6 compatible (http://en.wikipedia

.org/wiki/Java_Platform,_Enterprise_Edition#Java_EE_6_certified).

 THE JAVA EE WEB PROFILE

 The Java EE web proi le is a subset of technologies that comprise the most appropriate

technologies required for the development of web‐based enterprise applications. The proi le

reduces the size and complexity of the platform to just the technologies required for the

development of a modern web application. The web proi le is a complete stack comprising

technologies related to workl ow and core functionality (Servlet), presentation (JSF and JSP),

business logic (EJB lite), transactions (JTA), persistence (JPA), the new WebSocket, and much

more. It omits a lot of enterprise‐related technologies such as the Concurrency Utilities, Java

 THE EIS TIER

 The EIS tier consists of data storage units, often in the form of databases, but they can be any

resource that provides data. It may be an antiquated legacy system or a i le system.

 NOTE The EIS tier is often referred to as the Data tier, Persistence tier, and
Integration tier.

http://www.oracle.com/technetwork/java/javaee/tech/index.html
http://www.oracle.com/technetwork/java/javaee/tech/index.html
https://www.jcp.org/en/home/index
http://glassfish.java.net
http://wildfly.org
http://tmaxsoft.com/product/jeus/certification/
http://tmaxsoft.com/product/jeus/certification/
http://en.wikipedia.org/wiki/Java_Platform,_Enterprise_Edition#Java_EE_6_certified
http://en.wikipedia.org/wiki/Java_Platform,_Enterprise_Edition#Java_EE_6_certified

Convention over Coni guration ❘ 19

Message Services, JAX‐RPC, JAXR, and JAX‐WS. See Figure 2-2 for a complete rundown of the

technologies included in the web proi le.

 CORE PRINCIPLES OF JAVA EE

 The core principles of Java EE include a number of design paradigms and patterns that are essential

to the way you develop enterprise applications. At the center of Java EE is the design paradigm of

convention over coni guration: a way to simplify the development of enterprise applications without

losing l exibility and obscuring its code’s purpose. It is not a new idea and has been a part of other

frameworks including Grails, Ruby on Rails, and Spring Boot for some time—in some cases for

nearly a decade. Thankfully, it has made its way into the heart of Java EE, where it helps others

write beautiful code.

 Java EE makes good use of its component model, which includes the components Entities,

JavaBeans, EJBs, Managed Beans, Servlets, SOAP, and RESTful web services. All these components

can be “injectable” dependencies; the container manages, in some way, their life cycle (from

instantiation to destruction)—whether they are bound to a context or not—and their decoupling

from dependent components via dependency injection.

 A loosely coupled application allows for extensibility: Old classes can be swapped with new ones

with no requirement to change the dependent class. Dependency injection decouples an object from

its dependencies, whereas interceptors decouple business concerns from technical and cross‐cutting

concerns. Such technological concerns would be performance and logging, and a cross‐cutting

concern would be security.

 CONVENTION OVER CONFIGURATION

 All class names should start with a capital letter as part of convention. It’s not obligatory; the class

will still compile if it starts with a lowercase letter, but starting with a capital letter makes the code

easier to read and maintain. When setting up a project in an IDE, you only need to specify the type

of the project and its name for the most appropriate directory structure to be created; the most

common application programming interfaces (APIs) to be imported; and the default i les such as

web.xml, index.jsp, etc. to be created with appropriate default settings for ease of development. You

do all of this based on agreed convention.

 The amount of work you have to do and the decisions you have to make as a developer are

substantially reduced when you rely on convention. You don’t specify any coni guration that is

considered conventional; you are required to specify only the unconventional. This has a signii cant

effect. With just a few annotations on a POJO, you can do away with a lot of your ugly XML

deployment descriptors and application coni guration i les. As you have seen in Listing 2‐1, you need

to apply just three annotations to make a POJO into a singleton bean that will be instantiated and

initialized at start‐up and then managed by the container.

 NOTE Convention over coni guration is also known as coding by convention.

20 ❘ CHAPTER 2 THE BASICS OF JAVA EE

 CONTEXT AND DEPENDENCY INJECTION

 Dependency injection is a design pattern (see Chapter 5 , “Dependency Injection and CDI”) that

decouples the relationship between a component and its dependencies. It does this by injecting the

dependency into an object rather than the object creating the dependency by using the new keyword. w

By removing the creation of the dependency from the object and delegating that responsibility to the

container, you can swap out the dependency for another compatible object at compile time and run time.

 Beans that the container manages are called Context and Dependency Injection (CDI)‐managed beans

and are instantiated when the container starts up. All POJOs that have a default constructor and are not

created using the new keyword are CDI beans that are injected into an object based on type matching. w

To be injected, the receiving object must declare a i eld, constructor, or method using the @Inject

annotation. Then the type of the declared object is used to determine which dependency to inject.

 In Listing 2‐2, you have a POJO that has a default constructor and therefore will be managed as

a CDI bean, and in Listing 2‐3, you inject the managed bean. The container knows to inject the

Message bean based on its type. The container manages only one CDI bean of type Message , so this

is the bean it injects.

 LISTING 2‐2: Dependency injection example—Dependency

 package com.devchronicles.basicsofjavaee;

 public class Message {

 public String getMessage(){
 return "Hello World!!";
 }

 }

 LISTING 2‐3: Dependency injection example—Receiver

 package com.devchronicles.basicsofjavaee;

 import javax.inject.Inject;

 public class Service {

@Inject
private Message message;

 public void showMessage(){
 System.out.println(message.getMessage());
 }
 }

 An inquiring mind might ask: What happens if the container is managing more than one bean of

type Message ? For this to be true, Message would have to be an interface that has more than one

concrete implementation. This is where it becomes more interesting . There are several strategies

Interceptors ❘ 21

that you can employ to resolve these types of ambiguities. You will encounter several of these during

the course of this book. If curiosity has gotten the better of you, skip to Chapter 5 .

 Context is the distinguishing feature between EJBs and CDI‐managed beans. CDI beans exist

within a dei ned context; EJBs do not. CDI beans are created within the context of a scope; they

exist for the life of the scope and are destroyed when the scope i nishes. There are four scopes

that are annotated as follows: @ApplicationScope , @ConversationScope , @SessionScope , and

@RequestScope . The CDI container controls the life of a bean based on the bean’s dei ned scope.

For example, a bean annotated with @SessionScope exists for as long as the HTTP session is alive;

at the end the scope, the bean is destroyed and marked for garbage collection. This behavior is

in contrast to that of EJBs, which are not bound to a scope. This means that you must explicitly

remove the bean by calling a method annotated by the @Remove annotation.

INTERCEPTORS

 Most applications have concerns that don’t comfortably i t into the core concern of the application

logic but cannot be cleanly separated from the application’s design or implementation. These

concerns are cross‐cutting and affect different parts of the application. They are often responsible

for duplicate code and interdependencies that make the system less extensible. The implementation

of these noncore concerns as interceptors allows them to be decoupled from the core concern. You

do this by logically separating their implementation and intercepting method calls to the core and

invoking the appropriate method.

 You implement interceptors using the annotation @Interceptors followed by the class name of the

crossing‐cutting concern. In Listing 2‐4, the setValue method is intercepted upon its invocation by

the LoggerInterceptor.class .

 LISTING 2‐4: Core method intercepted by logger interceptor

 @Interceptors(LoggerInterceptor.class)
 public void setValues(Integer value, String name) {
 this.value = value;
 this.name = name;

 }

 The logger interceptor can access the intercepted method’s parameters and perform the cross‐cutting

logic before returning to fully execute the intercepted method.

 In Listing 2-5, the logger interceptor accesses the parameters of the setValues method and logs

them to the system logger.

 LISTING 2‐5: The logger interceptor

 @AroundInvoke
 public logger(InvocationContext ic) throws Exception {
 Object[] params = ic.getParameters();
 logger.warning("Parameters passed: " + params);
 }

22 ❘ CHAPTER 2 THE BASICS OF JAVA EE

 You can dei ne interceptors in the business code and in the deployment descriptor i les. This aspect of

interceptors and much more is discussed in Chapter 8 , “Aspect-Oriented Programming (Interceptors).”

 SUMMARY

 In this chapter, you have seen a brief summary of Java EE and the history of the current principles

of it.

 You have discovered how the architecture should be layered properly in a Java EE project. We

also provide a long JSR compatibility list to help you determine which container best suits your

project. Finally the chapter focused on Core Principles of Java EE by presenting convention over

coni guration and giving a brief summary of CDI.

 Next, we will be ready to move on to each pattern, focusing on their implementations and

providing specii c examples.

EXERCISES

1. Think about a banking application where you need to integrate into the mainframe back end
and provide services for web, mobile, and native desktop clients.

2. Think about implementing the web application for the project you designed in the i rst step.
Which layer should host the web application?

3. After a long debate, the bank you are working for decided to move away from the mainframe,
asking you to design a substitute system. What parts of the current project will be impacted?

PART II

in Java EE

▸ CHAPTER 3: Façade Pattern

▸ CHAPTER 4: Singleton Pattern

▸ CHAPTER 5: Dependency Injection and CDI

▸ CHAPTER 6: Factory Pattern

▸▸ CHAPTER 7CHAPTER 7: D t P tt Decorator Pattern

▸ CHAPTER 8: Aspect-Oriented Programming (Interceptors)

▸ CHAPTER 9: Asynchronous

▸ CHAPTER 10: Timer Service

▸ CHAPTER 11: Observer Pattern

▸ CHAPTER 12: Data Access Pattern

▸ CHAPTER 13: RESTful Web Services

▸ CHAPTER 14: Model Viewer Controller Pattern

▸ CHAPTER 15: Other Patterns in Java EE

 3
 WHAT’S IN THIS CHAPTER?

➤ An introduction to the intent of the façade pattern

➤ A brief discussion of the benei ts that the pattern brings

➤ Three ways that the pattern can be implemented: POJO, stateless,

and stateful session bean façade

➤ The important differences between the stateful and the stateless

session bean façade

➤ When and where to use this pattern

➤ Warnings about its use and potential pitfalls

 WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

 The wrox.com code downloads for this chapter are found at www.wrox.com/go/

projavaeedesignpatterns on the Download Code tab. The code is in the Chapter 03

download and individually named according to the names throughout the chapter.

 The façade pattern is one of the structural design patterns described in the GoF 1 book. The

intent behind it is to encapsulate complicated business logic in a higher‐level interface that

makes access to a subsystem easier to use. This is often done by grouping related method calls

and invoking them sequentially from one method.

 From a higher‐level view, every API can be considered an implementation of the façade pattern

since they provide a simple interface which hides its complexity. Any call to an API’s method

results in the invocation of many other methods from a subsystem hidden behind it. An

example of a façade would be the javax.servlet.http.HttpSession interface. This hides the

complicated logic associated with maintaining the session while exposing its functionality via

a handful of simple‐to‐use methods.

http://www.wrox.com/go/projavaeedesignpatterns
http://www.wrox.com/go/projavaeedesignpatterns

26 ❘ CHAPTER 3 FAÇADE PATTERN

WHAT IS A FAÇADE?

The GoF1 book describes this pattern as “providing a unii ed interface to a set of interfaces in a

subsystem.” Head First Design Patterns2 gives the same explanation and points out that, while

hiding the complexity of the subsystem, the façade pattern offers the full power of the subsystem via

an easier‐to‐use interface.

To give a basic real‐world example of how the façade pattern works, imagine a washing machine

with only two wash modes: heavily soiled and lightly soiled. For each mode, the washing machine

must execute a predei ned set of operations: set water temperature, heat water, set duration of wash

cycle, set duration of spin cycle, add detergent, add bleach, add fabric softener, and so on. Each

mode requires a different set of washing instructions (different amounts of detergent, higher or

lower temperature, longer or shorter spin durations, and so on).

The simple interface provides two wash modes that hide the complicated logic of selecting the

appropriate water temperature, the duration of the spin and wash cycle, and the different methods

for adding detergent, bleach, or fabric softener. The user of the washing machine does not have

to think about the complicated logic of how to wash the clothes (decide the temperature, cycle

duration, and so on). The only decision the user must make is whether the clothes are heavily soiled

or lightly soiled. This is in essence the façade pattern applied to a washing machine design. Later on

in this chapter, you will see an implementation of this use case.

The façade pattern is commonly implemented for the following purposes and situations:

➤ Provide a simple and unii ed access to a legacy back‐end system.

➤ Create a public API to classes, such as a driver.

➤ Offer coarse‐grained access to available services. Services are combined, such as in the

washing machine example.

➤ Reduce network calls. The façade makes many calls to the subsystem, while the remote client

makes only one call to the façade.

➤ To encapsulate l ow and inner details of an app for security and simplicity.

 NOTE Façades are sometimes implemented as singleton abstract factories.

 WAR STORY

 In the early dark days of J2EE, I was working as a junior developer for a huge

banking application where we implemented almost all the J2EE design patterns.

All Enterprise JavaBeans (EJB) were wrapped by a façade, and every service EJB

using that façade was wrapped with another façade. We also had interfaces for the

façades to ensure we didn’t break the API. In J2EE, EJB needs a local and remote

interface, so writing one EJB meant writing four interfaces and two classes. We

www.allitebooks.com

http://www.allitebooks.org

Implementing the Façade Pattern in Plain Code ❘ 27

 Façade Class Diagram
 As can be seen in the class diagram in Figure 3-1 , the façade pattern provides a simple interface to

an underlying system. It encapsulates the complicated granular logic.

accesses

accessesaccesses

<<EJBSession>>

SessionFacade

<<SessionEJB>>

BusinessSession

<<EntityEJB>>

BusinessEntity

DataAccessObject

Client
BusinessObject

1..*

 FIGURE 3-1 Class diagram of the façade pattern

didn’t have spaghetti code, but we had more layers than a meat lasagna. We were

quite happy in our little world—that was, until other teams started to use our core

services. Very soon, both the performance of the system and our ability to handle

change requests started to suffer.

 We contracted a famous and expensive consultant from one of our server vendors

to analyze our system. He had a few meetings, spent some time browsing our code

base, and concluded that some refactoring was in order, so he deleted all façades

and related interfaces. The result was that we had less code to maintain and much

better performance, so everyone was happy. The moral of this story is to use

patterns—even the simple ones—sparingly and only when you need them, and

dei nitely don’t show off your knowledge of patterns.

 IMPLEMENTING THE FAÇADE PATTERN IN PLAIN CODE

 Implementing the façade pattern isn’t complicated. It doesn’t enforce a strict structure or rule set.

Any method that provides easy access to a complicated l ow could be considered an implementation

of the façade pattern.

 Now you’ll implement the washing machine example given in the introduction as shown in

Listing 3-1. You need two methods— heavilySoiled and lightlySoiled —that represent the two

washing modes. All complicated work (the selection of water temperature, spin cycle duration,

decision to add bleach or not) is performed in methods invoked from within the façade.

28 ❘ CHAPTER 3 FAÇADE PATTERN

 LISTING 3‐1: Implementation of the washing machine analogy

 public class WashingMachine {

 public void heavilySoiled() {
 setWaterTemperature(100);
 setWashCycleDuration(90);
 setSpinCycleDuration(10);
 addDetergent();
 addBleach();
 addFabricSoftener();
 heatWater();
 startWash();
 }

 public void lightlySoiled() {
 setWaterTemperature(40);
 setWashCycleDuration(20);
 setSpinCycleDuration(10);
 addDetergent();
 heatWater();
 startWash();
 }
 }

 // to use the façade
 new WashingMachine().lightlySoiled();

 If you want to use this functionality, just invoke the façade’s lightlySoilded or heavilySoilded

method and let it do the complicated logic of washing the clothes. All complicated logic is kept

hidden by the façade and exposed via its two methods.

 The implementation of the methods is decoupled from the client. This decoupling allows the

implementation to change without affecting any change in the way the client accesses the washing

services. The client knows nothing about the implementation of these methods, and it doesn’t care.

All that it is interested in is obtaining the service it requires.

 This example demonstrates one of many of the benei ts of the façade pattern. This book does not go

into detail about the benei ts of the façade pattern, so what follows is a brief summary of the most

important ones:

➤ A reduction in coupling because the client knows nothing about the subsystem

➤ Increased maintainability and manageability when changes are required

➤ Reuse of functionality because it encourages the reuse of controls and i ne‐grained logic

➤ Consistency of service execution by invoking the same method consistently from one

invocation to the next

➤ Reduction in business logic complexity by grouping related methods and invoking them from

one method invocation

Implementing the Façade Pattern in Java EE ❘ 29

➤ Centralization of security and transaction control management

➤ Testable and mockable pattern implementations

 NOTE You may see this implementation referred to as the POJO façade to
distinguish it from the stateful and stateless implementations that you will see
later in this chapter.

 IMPLEMENTING THE FAÇADE PATTERN IN JAVA EE

 Unlike many other patterns described in this book, Java EE does not offer a built‐in implementation

of this method. Nevertheless, it is straightforward to implement using stateful or stateless EJB. Using

EJB offers the advantage of easy access to other EJB that the façade might require.

 Façade with Stateless Beans
 To demonstrate this implementation, assume that you have three EJBs as shown in Listing 3‐2 with

distinct but related functionality: CustomerService , LoanService , and AccountService .

 LISTING 3‐2: Code for three EJBs that form the subsystem to the façade

 package com.devchronicles.facade;

 import javax.ejb.Stateless;

 @Stateless
 public class CustomerService {

 public long getCustomer(int sessionID) {
 // get logged in customer id
 return 100005L;
 }

 public boolean checkId(long x) {
 // check if customer id is valid
 return true;
 }
 }

 package com.devchronicles.facade;

 import javax.ejb.Stateless;

 @Stateless
 public class LoanService {
 public boolean checkCreditRating(long id, double amount) {
 // check if customer is eligible for the amount
 return true;
 }

continues

30 ❘ CHAPTER 3 FAÇADE PATTERN

 }

 package com.devchronicles.facade;

 import javax.ejb.Stateless;

 @Stateless
 public class AccountService {

 public boolean getLoan(double amount) {
 // check if bank vault has enough
 return true;
 }

 public boolean setCustomerBalance(long id, double amount) {
 // set new customer balance
 return true;
 }

 }

 You can group these service EJB in a logical collection of related functionality to form an

implementation of the façade pattern, such as in Listing 3‐3.

 LISTING 3‐3: Implementation of the stateless façade

 package com.devchronicles.facade;

 import javax.ejb.Stateless;
 import javax.inject.Inject;

 @Stateless
 public class BankServiceFacade {

 @Inject
 CustomerService customerService;

 @Inject
 LoanService loanService;

 @Inject
 AccountService accountService;

 public boolean getLoan(int sessionId, double amount) {
 boolean result = false;
 long id = customerService.getCustomer(sessionId);

 if(customerService.checkId(id)){
 if(loanService.checkCreditRating(id, amount)){
 if(accountService.getLoan(amount)){
 result = accountService.setCustomerBalance(id, amount);
 }
 }
 }
 return result;
 }
 }

LISTING 3-2 (continued)

Summary ❘ 31

 A façade can invoke other façades in other subsystems, which in turn encapsulate their own logic

and l ow. This shows one of the benei ts of using façades: a simplii ed hierarchy of method calls.

There’s one façade for each subsystem, and these subsystems communicate with each other via the

façades.

 Façade with Stateful Bean
 The same bean can be implemented as a stateful session bean or even as a singleton bean as long as

it hides some complicated logic and exposes an easy‐to‐use interface to the client. The only change is

the addition of the @Stateful annotation, which marks the bean a stateful EJB.

 In J2EE (pre 5.0), the use of the façade pattern was encouraged in the implementation of the session

façade pattern. However, even in the simplii ed approach of Java EE, façades still have their place

when control and encapsulation of the workl ow are required.

 WHERE AND WHEN TO USE THE FAÇADE PATTERN

 The façade pattern should be used to encapsulate complicated (business) logic at a high level and

provide a cleaner single point of access via an API.

 Whenever you are in the position to provide an interface or an API to someone, think i rst about

the complexity of the logic and the changes that might occur. The façade pattern does a good job of

providing a clean API while hiding the parts subject to change.

 However, unnecessarily wrapping methods in a façade is bad practice and adds unnecessary layers.

Premature encapsulation could result in too many invocations and layers that don’t add value.

 When implementing the session façade, you must determine if the use case requires state to be

maintained. A use case that invokes only one method of the façade to receive the service that it

needs is considered nonconversational, so there is no need to save the conversational state between

one method invocation and the next. You should implement this façade as a stateless session bean.

 On the other hand, if the conversational state must be maintained between method invocations, the

most appropriate way to implement the façade is as a stateful session bean.

 You must be careful in the use of the stateful session façade because it ties up server resources until

the client that provoked the conversation releases them or times out. This could mean that, for the

majority of the time the stateful session bean façade is bound to the client, it is doing nothing; it’s

just maintaining state and using resources. And, unlike stateless session bean façades, it cannot be

reused and shared between other clients because each request creates a new instance of the stateless

façade, maintaining the state for that client’s session.

 So take care when using this pattern. Analyze the use case and make appropriate decisions.

 SUMMARY

 You can implement the façade pattern as a POJO, a stateless session bean, or a stateful session bean.

The various ways to implement the façade pattern solve different problems for different use case

scenarios. But the variety of implementations does not distract from its principle intent: providing a

high‐level simple interface to a more complicated subsystem.

32 ❘ CHAPTER 3 FAÇADE PATTERN

 Take care when deciding to implement the façade as a stateful session bean to ensure that it will not

cause resource consumption issues.

 A well‐designed application makes good use of the façade pattern to encapsulate complicated logic

and decouple subsystems from clients; however, the premature and overuse of the façade pattern can

lead to a more complicated system with multiple layers.

 The session façade pattern is akin to the boundary in the entity‐control‐boundary architectural

pattern, and it is related to the adapter and wrapper patterns.

 EXERCISES

1. List some public API implementations of the façade pattern and explain how they hide the
complicated logic of the subsystem.

2. Develop a façade that hides the complicated logic of an order and payment system.

3. Encapsulate method invocations to the two subsystems—payment and order—in just two
methods.

4. Develop the façade as a singleton.

 NOTES

 1. Design Patterns: Elements of Reusable Object‐Oriented Software (Addison‐Wesley, 1994):
Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides.

 2. Head First Design Patterns (O’Reilly, 2004): Eric Freeman, Elisabeth Robson, Bert Bates,
Kathy Sierra.

 WHAT’S IN THIS CHAPTER?

➤ The different ways that a developer can implement the singleton

design pattern, besides its common usage and pitfalls

➤ The problems that using static members and methods causes in

multithreaded environments

➤ The advances that were made in Java 5 SE with the introduction of the

enum type and how it can be used to create thread‐safe singletons

➤ The use of the @Singleton annotation in Java EE and how this has

radically changed the way the singleton pattern is implemented in

session beans

➤ The use of BEAN‐ and CONTAINER‐managed concurrency and how

the @LockType annotation controls access to business methods

➤ The main issues that have dogged the singleton pattern and why it

is considered an anti‐pattern that has fallen out of favor

 WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

 The wrox.com code download for this chapter is found at www.wrox.com/go/

projavaeedesignpatterns on the Download Code tab. The code is in the Chapter 04

download and individually named according to the names throughout the chapter.

 The singleton pattern is one of the easiest, most well‐known design patterns, but it has fallen out

of fashion. Some even consider it as an anti‐pattern, which will be discussed later in this chapter.

However, enterprise frameworks such as Spring make heavy use of it, and Java EE offers an

elegant and easy‐to‐use implementation. In this chapter, you will see why singletons are needed,

why they fell out of fashion, how they can be useful in Java EE applications, and how you can

implement them.

 4

http://www.wrox.com/go/projavaeedesignpatterns
http://www.wrox.com/go/projavaeedesignpatterns

34 ❘ CHAPTER 4 SINGLETON PATTERN

 The singleton pattern is one of the creational patterns described in the GoF1 book. A singleton

class guarantees the production of only one instance of its own type. Having only one instance

can be useful in several cases, such as with global access and when caching expensive resources;

however, it may introduce some problems of race conditions if the singleton is used in a multithread

environment. Because most programming languages do not provide a built‐in mechanism to create

singletons, developers must code their own implementations.

 However, Java EE has a built‐in mechanism that gives the developer a simple way to create a

singleton via the addition of an annotation to the class.

 WHAT IS A SINGLETON?

 According to GoF, the singleton pattern is used to “ensure a class only has one instance, and provide

a global point of access to it.” Head First Design Patterns2 offers the same explanation and points.

Singletons are often used in combination with factory patterns (discussed in Chapter 6 , “Factory Pattern”).

 Singletons are commonly used for the following purposes and situations:

➤ To access shared data across the whole application domain, such as coni guration data

➤ To load and cache expensive resources only once, allowing global shared access and improve

performance

➤ To create an application logger instance, because normally only one is required

➤ To manage objects within a class implementing the factory pattern

➤ To create a façade object, because normally only one is necessary

➤ To lazily create static classes, since singletons can be lazily instantiated

 Spring uses singletons when creating beans (by default, Spring beans are singletons), and Java EE

uses singletons internally, such as in the service locator. Java SE also uses the singleton pattern in the

implementation of the runtime class. So singletons are dei nitely helpful if you use them in the right

context.

 Nevertheless, the aggressive use of the singleton pattern may mean unnecessarily caching resources

and not letting the garbage collector reclaim objects and free valuable memory resources. It also may

mean you do not really use the advantages of object creation and inheritance. An unusually high

usage of singletons is considered a sign of poor object‐oriented design, which may cause memory and

performance issues. Another problem is that singletons are not great

when it comes to unit testing. Later, this chapter discusses in more

detail the issues surrounding the use of the singleton pattern.

 Singleton Class Diagram
 As you can see from the class diagram in Figure 4-1 , the singleton

pattern is based on a single class that holds a reference to the only

instance of itself while controlling its creation and its access via the

single getter method.

– instance: Singleton

– Singleton ()

+ getInstance () : Singleton

Singleton

 FIGURE 4-1 The singleton

pattern class diagram

What Is a Singleton? ❘ 35

 Implementing the Singleton Pattern in Plain Code
 Because you need to guarantee that singletons serve only one instance, the i rst thing to do is

control the object’s creation. You can do this easily by making the constructor invisible to the

outer world.

 package com.devchronicles.singleton;

 public class MySingleton {

 private MySingleton() {
 // Implemetation code here.
 }
 }

 Next, you need a method that creates the instance or returns it if the instance was already created.

Because an instance of MySingleton does not yet exist, you must mark the creation method as static

to allow access via the class name; for example: MySingleton.getInstance() .

 At comment 1 in Listing 4‐1, you test the creation of the singleton and create it if it does not exist;

otherwise, you return the instance that was created in a previous call to the getInstance() method.

Each subsequent calls returns the previously created MySingleton object instance. The code might

appear to be functioning, but it is actually buggy and not complete. Because the object creation

method is not atomic, it is prone to error in race conditions. It allows more than one instance of the

singleton to be created in a multithreaded environment.

 LISTING 4‐1: Simple implementation of the singleton pattern

 package com.devchronicles.singleton;

 public class MySingleton {
 private static MySingleton instance;

 private MySingleton() {}

 public static MySingleton getInstance() {
 if (instance==null){ // 1
 instance=new MySingleton();
 }
 return instance;
 }
 }

 To i x the race condition problem, you need to acquire a lock and not release it until the instance

is returned. In Java, you can implement the locking mechanism via the synchronized keyword, as

shown in Listing 4‐2.

36 ❘ CHAPTER 4 SINGLETON PATTERN

 LISTING 4‐2: Synchronizing the singleton for thread safety

 package com.devchronicles.singleton;

 public class MySingleton {

 private static MySingleton instance;

 private MySingleton() {}

 public static synchronized MySingleton getInstance() {
 if (instance==null){
 instance=new MySingleton();
 }
 return instance;
 }
 }

 Another approach is to create the singleton instance at the same time you load the class, as shown in

Listing 4‐3. This prevents needing to synchronize the creation of the singleton instance and creates

the singleton object once the JVM has loaded all the classes (and therefore before a class can call

the getInstance() method). This occurs because static members and blocks are executed when the

class is loaded.

 LISTING 4‐3: Creating the singleton object at the time of class loading

 package com.devchronicles.singleton;

 public class MySingleton {

private final static MySingleton instance=new MySingleton();

 private MySingleton() {}

public static MySingleton getInstance() {
return instance;

}
 }

 Another approach is to use a static block, as shown in Listing 4‐4. However, this leads to lazy

initialization because the static block is invoked before the constructor is called.

 LISTING 4‐4: Creating the singleton object in a static block

 package com.devchronicles.singleton;

 public class MySingleton {

private static MySingleton instance=null;

static {
instance=new MySingleton();

}

www.allitebooks.com

http://www.allitebooks.org

What Is a Singleton? ❘ 37

 private MySingleton() {}

 public static MySingleton getInstance() {
 return instance;
 }
 }

 Double‐checked locking is another highly popular mechanism to create singletons. It is considered

more secure than other methods because it checks the instance of the singleton once before locking

on the singleton class and again before the creation of the object. Listing 4‐5 shows this method.

 LISTING 4‐5: Implementing the double‐checked locking

 package com.devchronicles.singleton;

 public class MySingleton {

 private volatile MySingleton instance;

 private MySingleton() {}

 public MySingleton getInstance() {
 if (instance == null) { // 1

synchronized (MySingleton.class) {
if (instance == null) { // 2

instance = new MySingleton();
}

}
}
return instance;

 }
 }

 The getInstance() method checks the private MySingleton instance member twice (once at comment

1 and then again at comment 2) for being null before creating and assigning a MySingleton instance.

 However, none of those approaches is 100 percent safe. For example, the Java Rel ection API allows

developers to change the access modii er of the constructor to Public, thus exposing the singleton to

the possibility of re‐creation.

 The best way to create singletons in Java is by using the enum type, which was introduced in Java 5

and is shown in Listing 4‐6. This approach is also heavily advocated by Joshua Bloch in his book

Effective Java .3 Enum types are singletons by nature, so JVM handles most of the work required to

create a singleton. Thus, by using an enum type, you free yourself from the task of synchronizing

object creation and provision and avoid problems associated with initialization.

 LISTING 4‐6: Enum type implementation of the singleton pattern

 package com.devchronicles.singleton;

 public enum MySingletonEnum {
 INSTANCE;
 public void doSomethingInteresting(){}
 }

38 ❘ CHAPTER 4 SINGLETON PATTERN

In this example, a reference to the instance of the singleton object is obtained by the following:

MySingletonEnum mse = MySingletonEnum.INSTANCE;

Once you have the singleton’s reference, you can call any of its methods like so:

mse.doSomethingInteresting(); .

 WAR STORY

 Several years ago, a close friend of mine who owned a small software company

asked my help to interview a candidate. Because I always i nd software job

interviews great engineer‐to‐engineer experience, I didn’t hesitate to jump at the

opportunity. The candidate had only a few years of job experience but graduated

from a good university and was dei nitely sharp. We had a long chat about Java,

JPA, Spring, and other well‐known Java frameworks. He was eager to learn and try

new stuff and handled all questions calmly.

 After about an hour, the interview was i nished, but we continued to talk

casually. I asked him about the books he had recently read, and his reply was

Head First Design Patterns . I inquired about which pattern he found most

interesting or simply wanted to talk about. Not surprisingly, it was the singleton

pattern. This made my spider senses tingle. The candidate thought the singleton

pattern was simple and easy to implement, so it would be a safe topic. The truth

was, it wasn’t. If he had chosen another pattern such as the decorator, I would not

have had the opportunity to dive into the more advanced topics of this seemingly

simple pattern.

 I then asked the candidate how he would implement a singleton. He responded

with the classic private constructor method, which clearly showed he hadn’t read

Effective Java and had no clue about the enum type singleton. Later I asked, “What

if I used rel ection to change the access level of the constructor back to public?”

He was surprised, but I could clearly see from his eyes that he was more interested

in going back home and trying this out. He couldn’t come up with a solution, but

he also didn’t make up a nonsense response. He was busier digesting and thinking

about the rel ection idea.

 This job candidate may have missed the right answer, but he showed he was

passionate and eager to learn. He was hired and became one of the best developers

I have ever worked with.

IMPLEMENTING THE SINGLETON PATTERN IN JAVA EE

All the code examples so far have demonstrated the use of singletons within the context of Java SE.

Although you can use them in Java EE, there is a more elegant and easy‐to‐use approach: singleton

beans.

Implementing the Singleton Pattern in Java EE ❘ 39

 Singleton Beans
 In Chapter 2 , “The Basics of Java EE,” you saw the use of stateless and stateful session beans via

a simple annotation coni guration. Luckily, singletons offer a similar approach. Just by adding

the @Singleton annotation to a class, you can turn it into a singleton bean as shown in Listing 4‐7.

 LISTING 4‐7: The implementations of the singleton pattern using @singleton

 package com.devchronicles.singleton;

 import java.util.HashMap;
 import java.util.Map;
 import javax.annotation.PostConstruct;
 import javax.ejb.Singleton;
 import java.util.logging.Logger;

 @Singleton
 public class CacheSingletonBean {

 private Map<Integer, String> myCache;

 @PostConstruct
 public void start(){
 Logger.getLogger("MyGlobalLogger").info("Started!");
 myCache = new HashMap<Integer, String>();
 }

 public void addUser(Integer id, String name){
 myCache.put(id, name);
 }

 public String getName(Integer id){
 return myCache.get(id);
 }
 }

 With the simple use of annotations, Java EE does not need a coni guration XML i le. You may

see a beans.xml i le in the project, but most of the time it remains empty. You only need it for

starting the Context and Dependency Injection (CDI) container. The @Singleton annotation

marks the class as a singleton EJB, and the container handles creation and usage of the single

instance.

 If you execute this bean code on your server, you will not see logger output from the singleton

because the method annotated with @PostConstruct has not been invoked. Why is that?

 Using Singletons at Startup
 Singletons in Java EE are initialized lazily by default. This might suit most situations: allowing the

instance to be created only when it is needed and accessed for the i rst time. However, you may

want to create the instance at startup to allow access to the singleton without delay, especially if it’s

40 ❘ CHAPTER 4 SINGLETON PATTERN

expensive to create the instance or it’s guaranteed that you will need the bean from the start of the

application. To ensure that the instance is created at startup, use the @Startup annotation on the

class as shown in Listing 4‐8.

 LISTING 4‐8: Invoking the singleton at startup

 package com.devchronicles.singleton;

 import java.util.HashMap;
 import java.util.Map;
 import javax.annotation.PostConstruct;
 import javax.ejb.Singleton;
 import javax.ejb.Startup;
 import java.util.logging.Logger;

@Startup
 @Singleton
 public class CacheSingletonBean {

 private Map<Integer, String> myCache;

 @PostConstruct
 public void start(){
 Logger.getLogger("MyGlobalLogger").info("Started!");
 myCache = new HashMap<Integer, String>();
 }

 public void addUser(Integer id, String name){
 myCache.put(id, name);
 }

 public String getName(Integer id){
 return myCache.get(id);
 }
 }

 If you relaunch your server, the post construct method is invoked because the singleton is now

created at server startup. The logger should now receive the message Started!.

 Determining Startup Order
 This may bring up another question. What if the singleton you have just created depends on

another resource? How do you wait for the other resource to be ready? Although this may look

like a corner case, it dei nitely is not. Think about a singleton, which loads and caches some

messages from the database. This may look trivial, but even basic read‐only database access may

be dependent on other services. What if the connection pool is created by another singleton or,

better yet, what if the logging depends on another singleton? Java EE offers a simple annotation

to i x this situation. You can use the @DependsOn annotation and pass it the name of the bean on

which the class depends (see Listing 4‐9). Now you can easily determine the starting order of the

singletons.

Implementing the Singleton Pattern in Java EE ❘ 41

 LISTING 4‐9: Specifying startup order using @depends annotation

 package com.devchronicles.singleton;

 import java.util.HashMap;
 import java.util.Map;
 import javax.annotation.PostConstruct;
 import javax.ejb.Singleton;
 import javax.ejb.Startup;
 import javax.ejb.DependsOn;
 import javax.ejb.EJB;

 @Startup
@DependsOn("MyLoggingBean")
 @Singleton
 public class CacheSingletonBean {

 private Map<Integer, String> myCache;

 @EJB
 MyLoggingBean loggingBean;

 @PostConstruct
 public void start(){
 loggingBean.logInfo("Started!");
 myCache = new HashMap<Integer, String>();
 }

 public void addUser(Integer id, String name){
 myCache.put(id, name);
 }

 public String getName(Integer id){
 return myCache.get(id);
 }
 }

 Next let’s create another singleton bean (Listing 4‐10), which the previous bean already referenced.

 LISTING 4‐10: Specifying startup order

 package com.devchronicles.singleton;

 import javax.annotation.PostConstruct;
 import javax.ejb.Singleton;
 import javax.ejb.Startup;
 import java.util.logging.Logger;

 @Startup
 @Singleton

continues

42 ❘ CHAPTER 4 SINGLETON PATTERN

 public class MyLoggingBean {

 private Logger logger;

 @PostConstruct
 public void start(){
 logger = Logger.getLogger("MyGlobalLogger");
 logger.info("Well, I started first!!!");
 }

 public void logInfo(String msg){
 logger.info(msg);
 }
 }

 Here you can also use the @PostConstruct annotation to test that your bean has been created and

its life cycle has begun. Methods annotated with @PostConstruct are invoked on newly constructed

beans after all dependency injection has been done and before the i rst business method is invoked.

Of course, in real life, you need to use singleton beans inside other beans. Later chapters will focus

more on integration and access of EJB and whether they should be singletons.

 The preceding example beans run when the server is started. CacheSingletonBean waits to

run because it depends on MyLoggingBean initialization. The logger output is similar to the

following:

> Well, I started first!!!

> Started!

 Your singleton bean might depend on the initialization of a sequence of other beans. In this case,

you can specify multiple beans in the @DependsOn . The following singleton bean depends on

MyLoggingBean and MyInitializationBean :

 @Startup
@DependsOn({"MyLoggingBean","MyInitializationBean"})
 @Singleton
 public class CacheSingletonBean {
 // Implementation code here.
 }

 The order in which MyLoggingBean and MyInitializationBean are initialized is determined by

their own @DependsOn annotations. If neither bean explicitly depends on the other, the beans are

initialized by the container in an unspecii ed order.

 Managing Concurrency
 The most important problem you’ll face is concurrency. With the Java EE implementation, you

no longer need to worry about the creation of the bean, but you may still need to be careful about

method access because your singleton will be exposed in a concurrent environment. Java EE, again,

solves this issue with annotations.

LISTING 4‐10: (continued)

Implementing the Singleton Pattern in Java EE ❘ 43

 Java EE offers two types of concurrency management: container‐managed concurrency and

bean‐managed concurrency . In container‐managed concurrency, the container is responsible for y

handling anything related to read and write access, whereas bean‐managed concurrency expects

the developer to handle concurrency using traditional Java methods such as synchronization. You

can enable bean‐managed concurrency via the ConcurrencyManagementType.BEAN annotation.

 Java EE uses container‐managed concurrency by default, but you can explicitly declare it with the

ConcurrencyManagementType.CONTAINER annotation:

 @Startup
 @DependsOn("MyLoggingBean")
@ConcurrencyManagement(ConcurrencyManagementType.CONTAINER)
 @Singleton
 public class CacheSingletonBean {
 // Implementation code here.
 }

 Now you’ll get back to the example and use the @Lock annotations to control the access. See Listing 4‐11.

 LISTING 4‐11: Managing concurrency using @locktype

 package com.devchronicles.singleton;

 import java.util.HashMap;
 import java.util.Map;
 import javax.annotation.PostConstruct;
 import javax.ejb.ConcurrencyManagement;
 import javax.ejb.ConcurrencyManagementType;
 import javax.ejb.DependsOn;
 import javax.ejb.EJB;
 import javax.ejb.Lock;
 import javax.ejb.LockType;
 import javax.ejb.Singleton;
 import javax.ejb.Startup;

 @Startup
 @DependsOn("MyLoggingBean")
@ConcurrencyManagement(ConcurrencyManagementType.CONTAINER)
 @Singleton
 public class CacheSingletonBean {

 private Map<Integer, String> myCache;

 @EJB
 MyLoggingBean loggingBean;

 @PostConstruct
 public void start(){
 loggingBean.logInfo("Started!");
 myCache = new HashMap<Integer, String>();
 }

continues

44 ❘ CHAPTER 4 SINGLETON PATTERN

@Lock(LockType.WRITE)
 public void addUser(Integer id, String name){
 myCache.put(id, name);
 }

@Lock(LockType.READ)
 public String getName(Integer id){
 return myCache.get(id);
 }
 }

 Two lock types control access to the bean’s business methods: @Lock(LockType.WRITE) , which locks

the bean to other clients while the method is being invoked, and @Lock(LockType.READ) , which

allows concurrent access to the method and does not lock the bean to other clients. Methods that

affect change to data are usually annotated with WRITE access to prevent access to the data as it

updates. In this example, the addUser() method is annotated with the WRITE lock type so that if any

client calls the getName() method, it has to wait until the addUser() method returns before it can

complete its call. This may result in the container throwing a ConcurrentAccessTimeoutException

if the addUser() method does not complete in the specii ed timeout period. You can coni gure the

timeout period via an annotation, which you will see an example of in Listing 4‐12.

 You can set the LockType annotation at the class level. It applies to all business methods that don’t

explicitly coni gure their own LockType . Because the default LockType is WRITE , it is normally

sufi cient to coni gure just the methods that require concurrent access.

 LISTING 4‐12: Dei ning the singleton’s concurrent timeout access

 import java.util.logging.Logger;
 import javax.annotation.PostConstruct;
 import javax.ejb.Singleton;
 import javax.ejb.Startup;
 import javax.ejb.DependsOn;
 import javax.ejb.ConcurrencyManagement;
 import javax.ejb.ConcurrencyManagementType;
 import javax.ejb.AccessTimeout;
 import java.util.Map;
 import javax.ejb.EJB;
 import java.util.HashMap;
 import javax.ejb.Lock;
 import javax.ejb.LockType;
 import java.util.concurrent.TimeUnit;

 @Startup
 @DependsOn("MyLoggingBean")
 @ConcurrencyManagement(ConcurrencyManagementType.CONTAINER)
 @Singleton
@AccessTimeout(value=120000) // default in milliseconds

LISTING 4‐11: (continued)

Where and When to Use the Singleton Pattern ❘ 45

 public class CacheSingletonBean {

 private Map<Integer, String> myCache;

 @EJB
 MyLoggingBean loggingBean;

 @PostConstruct
 public void start(){
 loggingBean.logInfo("Started!");
 myCache = new HashMap<Integer, String>();
 }

@AccessTimeout(value=30, unit=TimeUnit.SECONDS)
 @Lock(LockType.WRITE)
 public void addUser(Integer id, String name){
 myCache.put(id, name);
 }

 @Lock(LockType.READ)
 public String getName(Integer id){
 return myCache.get(id);
 }
 }

 The @AccessTimeout annotation can have different TimeUnit constants, such as

NANOSECONDS , MICROSECONDS , MILLISECONDS , and SECONDS . If no TimeUnit value

is given, the value is interpreted as milliseconds by default. You can also place this

annotation at the class level and apply it to all methods that don’t explicitly dei ne an access

timeout annotation.

 WHERE AND WHEN TO USE THE SINGLETON PATTERN

 As a rule of thumb, heavy use of singletons may be a sign of misuse. You should use singletons

where it makes sense, such as caching frequently accessed but expensive‐to‐load data, sharing data

for global access, or using single point of contact purposes (such as logging).

 Creating and caching unnecessary resources has a negative impact on memory, CPU resources,

and initial startup, so handle singletons with care when using them for caching data. However,

singletons can be quite handy and can be coni gured easily in a Java EE container. For serious

caching solutions, consider a framework such as the widely used Ehcache (http://www.ehcache

.org/) or Apache’s distributed caching system Java Caching System (http://commons.apache

.org/proper/commons‐jcs/).

 You can use a singleton to control access to back‐end systems that are not thread safe or have

licensing issues. Using the LockType.WRITE annotation on methods allows sequential access to

such systems in which multiple concurrent access would cause problems with performance or

licensing.

http://www.ehcache.org/
http://www.ehcache.org/
http://commons.apache.org/proper/commons%E2%80%90jcs/%00%00
http://commons.apache.org/proper/commons%E2%80%90jcs/%00%00

46 ❘ CHAPTER 4 SINGLETON PATTERN

 SUMMARY

 It has been briel y mentioned that the singleton pattern has fallen out of favor to the point in

which many developers and architects now consider it an anti‐pattern. The singleton pattern’s

unpopularity extends from problems caused by its overuse and abuse and its evident shortcomings

in multithreaded applications.

 Programmers have overused and abused the singleton pattern because it is a simple pattern to

implement. So every class becomes a singleton. This has presented a nightmare for developers who

must maintain the code, and it has become an even greater challenge for those who have to refactor

the singletons into object‐orientated code when it is discovered that more than one instance of a

singleton class is required.

 The use of singleton classes has made testability more complicated because global states need to be

instantiated to run a simple unit test. Furthermore, singletons have made tests less deterministic

because these states might change, affecting the outcome of the tests.

 You have seen in the code examples the numerous difi culties that singletons pose in multithread

environments. It was difi cult to create a singleton that was guaranteed thread safe before Java SE 5

and the introduction of the enum type.

 However, with the advances made in Java EE, the problem of thread‐safe singletons has largely been

resolved with the @Singleton annotation and container control concurrency.

 The container controls the creation of the singleton and ensures that no business method is called

before the @PostContrust completes. The container also controls the concurrency of access to

the bean via the @ConcurrencyManagement annotation, and its associated @LockType annotation

allows i ne‐grain access control over each method.

 By no means has every problem of the singleton been resolved. There could still be problems

in multinode environments if the bean is used to access back‐end non‐thread‐safe resources.

Bottlenecks and tight coupling of classes could be additional problems.

 Even though the singleton pattern has suffered from abuse and overuse by developers,

leading to its eventual relegation to an anti‐pattern, it has nevertheless matured

substantially since it was introduced by GoF and should be reconsidered as a valuable and viable

design pattern.

 EXERCISES

1. Design a web page hit counter with two methods: one method that increments the count, and
one method that gets the latest count. Ensure that it is thread safe by dei ning the appropri-
ate lock types.

2. Design a simple cache that stores a list of books for a library management application. The
data should be loaded into the cache on application startup. Add methods to retrieve books
based on different criteria, such as ISBN, author, and genre.

Notes ❘ 47

3. Design a complex cache that reads data from a database at startup. The data retrieval
methods should query the cache i rst, and if the requested data is not found, the bean
should query the database. If the data requested is found in the database, it should be
stored in the cache.

4. Add to exercise 3 a mechanism that deletes infrequently accessed data from the cache
and updates out‐of‐date data. Ensure that the entire life cycle of the cache is appropriately
managed.

 NOTES

 1. Design Patterns: Elements of Reusable Object‐Oriented Software (Addison‐Wesley, 1994):
Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides.

 2. Head First Design Patterns (O’Reilly, 2004): Eric Freeman, Elisabeth Robson, Bert Bates,
Kathy Sierra.

 3. Effective Java (Addison‐Wesley, 2008): Joshua Bloch.

 WHAT’S IN THIS CHAPTER?

➤ Introduction to dependency injection

➤ Why DI is important in Java EE

➤ How to implement DI in plain code

➤ How DI is implemented in Java EE

➤ Introduction to Content Dependency Injection

➤ Key differences between CDI and EJB containers

 WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

 The wrox.com code download for this chapter is found at www.wrox.com/go/

projavaeedesignpatterns on the Download Code tab. The code is in the Chapter 05

download and individually named according to the names throughout the chapter.

 Dependency injection (DI) is one of the few well‐known and accepted design patterns that

was not listed in the book by the Gang of Four. t 1 Today, it has been used widely in modern

programming languages both internally and as a best practice to promote loose coupling.

 J2EE was designed to handle the most complex systems but failed miserably by

overcomplicating the development of even the simpler systems. The original design of

J2EE relied on heavyweight complexity and tight coupling, which led to the popularity of

frameworks such as Spring and Pico container. In 2004, Martin Fowler published an article

on the inversion of control containers and the dependency of the injection pattern. 2 Most

vendors did not support and encourage developers to use the J2EE container. However,

soon the lightweight containers took over, they became ofi cially supported and, even more,

Spring became the unofi cial de facto standard and led to the redesign of Enterprise Java from

scratch.

 5

http://www.wrox.com/go/projavaeedesignpatterns
http://www.wrox.com/go/projavaeedesignpatterns

50 ❘ CHAPTER 5 DEPENDENCY INJECTION AND CDI

 WHAT IS DEPENDENCY INJECTION?

 The dependency injection pattern is based on the idea of inverting the control. Instead of creating

hard dependencies and creating new objects either with the new keyword or lookups, you inject the

needed resource into the destination object. This approach has many benei ts:

➤ The client does need not to be aware of the different implementations of the injected

resources, making design changes easier.

➤ Unit testing using mock objects is much easier to implement.

➤ Coni guration can be externalized, reducing the impact of changes.

➤ A loosely coupled architecture allows pluggable structures.

 The basic idea behind DI is to change the place where objects are created and to use an injector to

inject the specii c implementations to the destination objects at the right moment. This may sound

like an implementation of the factory pattern (see Chapter 6 , “Factory Pattern”), but the whole

concept is much more than simple object creation. Inversion of Control (IoC) changes the whole

wiring between objects and lets the injector do the work (most of the time magically). Instead

of calling a factory to provide an implementation to the caller, the injector works proactively to

determine when a destination object needs the target object and performs the injection in the

appropriate way.

 IMPLEMENTING DI IN PLAIN CODE

 Java did not offer a standard DI implementation out of the Enterprise JavaBeans (EJB) container

until the introduction of Context and Dependency Injection (CDI). Although there are various DI

frameworks, such as Spring and Guice, it is not difi cult to code a basic implementation.

 The simplest implementation of DI is a factory that creates the dependency on request via a

getInstance() method. Now you’ll implement an example that shows how to do this in plain code.

 The simple DI implementation should separate the resolution of dependencies from the behavior of

the class. This means a class should have specii c functionality without dei ning how it obtains a

reference to the classes it depends on. This decouples object creation from where the object is used:

the essence of DI.

 You will start by looking at an example in Listings 5‐1, 5‐2, 5‐3 and 5‐4 that is highly coupled, and

refactor it to use your home‐grown DI.

 LISTING 5‐1: UserService class that creates a new dependency in the constructor

 package com.devchronicale.di;

 class UserService {

 private UserDataRepository udr;

 UserService() {
 this.udr = new UserDataRepositoryImpl();

Implementing DI in Plain Code ❘ 51

 }

 public void persistUser(User user) {
 udr.save(user);
 }
 }

 LISTING 5‐2: UserDataRepository interface

 package com.devchronicale.di;

 public interface UserDataRepository {
 public void save(User user);
 }

 LISTING 5‐3: Concrete implementation of the UserDataRepository

 package com.devchronicale.di;

 public class UserDataRepositoryImpl implements UserDataRepository {
 @Override
 public void save(User user) {
 // Persistence code here
 }
 }

 LISTING 5‐4: User class

 package com.devchronicale.di;

 public class User {
 // User Specific Code Here
 }

 In Listing 5‐1, the UserService class provides business logic services for user management, such as

persisting the user to the database. In this example, the object creation is done in the constructor.

This couples the business logic (the class’s behavior) to the object creation.

 You’ll refactor this example by taking the object creation out of your class and putting it in a factory.

 In Listing 5‐5, an implementation of the UserDataRepository is created and passed to the

constructor of the UserService class. You change the constructor of the UserService class to accept

this new parameter.

 LISTING 5‐5: UserServiceFactory that creates UserService objects

 package com.devchronicale.di;

 public class UserServiceFactory {
 public UserService getInstance(){
 return new UserService(new UserDataRepositoryImpl());
 }
 }

52 ❘ CHAPTER 5 DEPENDENCY INJECTION AND CDI

In Listing 5‐6, the UserService constructor asks for an instance of the UserDataRepository

to be “injected” into the constructor. The UserService class is decoupled from the

UserDataReposityImpl class. The factory is now responsible for the creation of the object and

“injects” the implementation into the constructor of the UserService . You have successfully

separated the business logic from object creation.

 LISTING 5‐6: The refactored UserService class

 package com.devchronicale.di;

 class UserService {

 private UserDataRepository udr;

 UserService(UserDataRepository udr) {
 this.udr = udr;
 }

 public void persistUser(User user) {
 udr.save(user);
 }
 }

 WAR STORY

 When I was given the task of writing an Android application, I decided to research

Dependency Injection Frameworks for mobiles. As a software developer with

Enterprise Development experience, this seemed like the right route to take. The

Android user interface (UI) system was already reliant on a DI‐like structure that

bound XML‐based UI components to Java code, so it seemed wise to implement a

fully functioning DI framework to achieve blown functionality.

 I worked on a beautiful architecture in which all objects and resources were

wired together. The injection worked like a charm; however, the application did

not. The app start‐up took much longer than similar apps, and the navigation

was not so smooth either. We all believed DI was a must‐have to achieve loose

coupling and well‐organized code, so we looked for problems in other areas.

We mastered sleek, lightweight UI and asynchronous background tasks so we

wouldn’t lock the app and to minimize the work done on start‐up, but nothing

really worked.

 It soon dawned on us that the root of the problem was the DI framework. It was

searching for all injection resources and references, while the app was starting and

trying to perform all the wiring at the beginning of the app’s life cycle. This might

be a good idea on a server start‐up, which has many users, few restarts, and huge

amounts of memory. But it wasn’t a good idea on a mobile device, where we had a

single user, many restarts, and limited memory.

Implementing DI in Java EE ❘ 53

 Our solution was to hard‐wire the resources. Even though this gave us an “uglier”

app, the app started up in lightning speed, solving our performance issue.

 The moral of this story is not that DI is a bad pattern to implement on mobile

devices but that a poor implementation of DI (whether on a mobile device or not) in

the wrong context can cause huge problems.

 IMPLEMENTING DI IN JAVA EE

 J2EE did not offer DI out of the box until Java EE 5. Instead, in J2EE, beans and resources were

accessed using Java Naming and Directory Interface (JNDI) context lookups. This approach caused

hard‐wiring and relied on a heavyweight server‐based container, which made testing almost harder

than writing the actual code.

 With the release of Java EE 5 and EJB 3, DI became an integral part of the Enterprise Java platform.

To get rid of XML‐based coni guration, several annotations were introduced to perform injection:

➤ @Resource (JSR250) is for injecting data sources, Java Message Service (JMS), URL, mail,

and environment variables.

➤ @EJB (JSR220) is for injecting EJB.

➤ @WebServiceRef is for injecting web services.

 With the release of Java EE 6, CDI, and EJB 3.1, DI became a much more capable, and thus more

interesting, topic in Java EE.

 In EJB 3.1, an interface was no longer mandatory for EJBs. Also, a new EJB web proi le was

introduced that offers a simplii ed lighter EJB container. A new and improved injection annotation

@Inject was introduced (JSR229 and JSR330), which also provided a common interface for

injection between other DI frameworks in the Java realm.

 The @Inject annotation DI is type safe because it injects a dependency based on the type of the

object reference. If you were to refactor the code in Listing 5‐1, you would remove the constructor

and add an @Inject annotation to the UserDataRepository i eld. The code would look something

like Listing 5‐7.

 LISTING 5‐7: The refactored UserService class using @Inject

 package com.devchronicale.di;

 import javax.inject.Inject;

 class UserService {

 @Inject
continues

54 ❘ CHAPTER 5 DEPENDENCY INJECTION AND CDI

LISTING 5‐7: (continued)

 private UserDataRepository udr;

 public void persistUser(User user) {
 udr.save(user);
 }
 }

 The CDI container constructs a single UserDataRepositoryImpl instance as a container managed

bean and injects it anywhere it i nds @Inject annotating a i eld of type UserDataRepository. y

 You can inject a container‐managed bean into constructors, methods, and i elds, regardless of the

access modii er, although i elds must not be i nal, and the method must not be abstract.

 Some important questions arise. What happens if there is more than one implementation of the

UserDataRepository interface? How does the CDI container identify the correct implementation

to inject? To disambiguate the concrete implementations of the UserDataRepository interface, you

can annotate the concrete class using a developer‐dei ned qualii er.

 Imagine having two implementations of the UserDataRepository interface: one for a Mongo DB

collection (a document based database) and another for a MySQL database (relational database).

You would have to create two qualii ers (one for the Mongo implementation and another for the

MySQL implementation), the concrete class would be annotated at the class level with the relevant

qualii er, and in the class in which the UserDataRepository is to be injected, a i eld would be

annotated with the same qualii er.

 If you refactor the UserService class in Listing 5‐7 to use the Mongo implementation of the

UserDataRepository , you would add y @Mongo to the udr i eld as follows:

 @Inject @Mongo
private UserDataRepository udr;

 The use of qualii ers is discussed in more depth below and in Chapter 6 .

 The @Named Annotation
 Another great achievement was the introduction of the @Named annotation instead of String

qualii ers. Ambiguities in EJB dependencies were resolved by using a String in the beanName

attribute of the @EJB annotation that specii ed the implementation to be injected:

@EJB(beanName="UserDataRepository") . The @Name annotation also supports disambiguation

with the use of a String attribute. In Listing 5‐8, the Mongo implementation of the

UserDataRepository is injected into the udr i eld.

 LISTING 5‐8: The @Named annotation used to disambiguate

 package com.devchronicale.di;

 import javax.inject.Inject;

Implementing DI in Java EE ❘ 55

 import javax.inject.Named;

 class UserService {

@Inject
 @Named("UserDataRepositoryMongo")
 private UserDataRepository udr;

 public void persistUser(User user) {
 udr.save(user);
 }
 }

 An explicit annotation of the Mongo implementation is required by a corresponding @Named annotation

appropriately named. In Listing 5‐9, the Mongo implementation of the UserDataRepository interface y

is annotated with the same String name as that used to disambiguate the injected implementation in

Listing 5‐8.

 LISTING 5‐9: The concrete implementation requires an @Named annotation

 package com.devchronicale.di;

 import javax.inject.Named;

@Named("UserDataRepositoryMongo")
 public class UserDataRepositoryMongo implements UserDataRepository {

 @Override
 public void save(User user) {
 // Persistence code here
 }
 }

 The use of Strings to identify dependencies is legacy because it is not type safe and is discouraged

in the CDI specii cation JSR‐299. However, there is a use of the @Named annotation that avoids the

need to use String identii ers at the point of injection.

 @Inject @Named
 private UserDataRepository UserDataRepositoryMongo;

 In Listing 5‐9, the name of the implementation to inject is inferred from the name of the i eld

UserDataRepositoryMongo . What is effectively happening is that @Named is being replaced by

@Named("UserDataRepositoryMongo") .

Context and Dependency Injection (CDI)
 Context and Dependency Injection (CDI) brought full‐l edged dependency injection and context

support to the Java EE platform, which used to be EJB specii c and far more limited. After EJB 3

was introduced, JBoss introduced Seam (a web application framework), which had become quite

popular, by supporting direct interaction between JavaServer Faces (JSF) and JavaBeans as well as

EJB. The success of Seam led to the design of JSR299, WebBeans. Just as Hibernate, a famous Java

Persistance Framework, inspired Java Persistence API (JPA) standardization, Seam inspired and

formed the core implementation of CDI.

56 ❘ CHAPTER 5 DEPENDENCY INJECTION AND CDI

 CDI can work with any Plain Old Java Object (POJO) by instantiating and injecting objects into

each other. The following types of objects are injectable:

➤ POJOs

➤ Enterprise resources such as data source and queues

➤ Remote EJB references

➤ Session beans

➤ EntityManager objects

➤ Web services references

➤ Producer i elds and objects returned by producer methods

 CDI Versus EJB
 Although CDI and EJB seem to be rivals, they work in harmony. CDI can work alone without an

EJB container. Actually, CDI can power a desktop application or any web application that doesn’t

rely on the EJB container. CDI provides the factory and injection to any JavaBean.

 However, EJBs still require the EJB container. Even the simplii ed architecture of EJBs is more

complex than POJOs, so EJBs still need the EJB container. The EJB container provides additional

services such as security, transactions, and concurrency that EJBs need.

 Simply put, the CDI container is a lighter, powerful, but less functional container for POJOs. Still,

both containers are so well integrated that CDI annotations can act as a gateway and standard

interface to interact with the EJB container. For example, the @Inject annotation can work with

either POJOs or EJBs and can inject any combination of each by invoking the right container to

handle the job.

 CDI Beans
 A container managed bean is little more than a POJO that conforms to some simple rules:

➤ It must have a no‐argument constructor, or the constructor must declare an @Inject

annotation.

➤ The class must be a top‐level concrete class or must be annotated with @Decorate ; it cannot

be a nonstatic inner class.

➤ It cannot be dei ned as an EJB.

➤ If the bean is dei ned as a managed bean by another Java EE technology, such as the JSF

technology, it will also be managed by the container.

 Any class conforming to these requirements will be instantiated and managed by the container and

is injectable. No special annotation is required to dei ne the class as a managed bean.

 The container looks for bean‐inside‐bean archives. There are two types of bean archives: explicit

and implicit. An explicit archive contains a bean.xml deployment descriptor, which is normally

Implementing DI in Java EE ❘ 57

empty. The CDI scans the classes in the archive looking for any class that conforms to the bean

requirements detailed earlier and manages and injects any such class that is not annotated with

@Vetoed. This annotation excludes that class from being managed by the container.

 In some cases, it may not be desirable to allow the container to manage any conformant bean it

i nds. If you want to restrict what the CDI container considers to be a managed bean, you can dei ne

the bean‐discovery‐mode property in the bean.xml deployment descriptor. Listing 5‐10 shows a

snippet of the bean.xml i le that dei nes the bean‐discovery‐mode property as ALL .

 LISTING 5‐10: The bean discovery mode is set in the bean.xml

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
 http://xmlns.jcp.org/xml/ns/javaee/beans_1_1.xsd"
 version="1.1" bean‐discovery‐mode="all">
 ...
 </beans>

 The bean‐discovery‐mode property can take one of three values: ALL , NONE , or ANNOTATED . The

ALL property instructs the CDI container to manage all beans that it i nds in the archive. This is the

default. The NONE property means that the CDI container will manage no beans, and the ANNOTATED

property makes the archive behave like an implicit archive. In this case, the container scans for

beans with annotated scope types.

 An implicit bean archive does not contain a bean.xml deployment descriptor. This signals to the

CDI container that the container should only manage beans with a scope. Further details about

scoped beans are discussed later in the section, “Contexts and Scope.”

 The @Inject Annotation
 The @Inject annotation and its capabilities have already been covered. Before CDI in Java EE was

introduced, each DI framework offered its own way of injecting resources. When the Java EE CDI

container was released to work alongside the EJB container, @Inject annotation became a unique

and abstract interface for almost all inject operations. The @Inject annotation lets you use any

appropriate container or DI framework referenced for the case.

 Contexts and Scope
 Context is the difference between EJBs and CDI containers. Each CDI bean’s life cycle is bound to a

context scope. The CDI offers four different scopes:

➤ @RequestScoped —Duration is a user’s HTTP request.

➤ @SessionScoped —Duration is a user’s HTTP session.

➤ @ApplicationScoped —State is shared across all users for the duration of the application.

➤ @ConversationScoped —Scope duration is controlled by the developer.

http://xmlns.jcp.org/xml/ns/javaee
http://www.w3.org/2001/XMLSchema-instance
http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/beans_1_1.xsd

58 ❘ CHAPTER 5 DEPENDENCY INJECTION AND CDI

 A bean annotated with a scope holds state for the duration of the scope and shares that state with

any client that runs in the same scope. For example, a bean in the request scope holds state for the

lifetime of the HTTP request, and a bean with session scope holds state for the lifetime of the HTTP

session. The scoped bean is automatically created when it is needed and destroyed when the context

in which it takes part i nishes.

 The scope annotations are often used to give scope to beans that are used via Expression Language

(EL) in Facelet pages.

 Naming and EL
 A bean annotated with @Named is accessible through EL. By default, the name used in the

expression is the name of the class with the i rst letter in lowercase. To refer to getter methods

that start with get or is , omit the get or is part of the method name. Listing 5‐11 shows an

example.

 LISTING 5‐11: The @Named annotation makes a bean visible to EL

 package com.devchronicale.di;

 import javax.enterprise.context.RequestScoped;
 import javax.inject.Named;

 @Named // Defining that this is a managed bean
 @RequestScoped // Defines the scope
 public class User {

 private String fullName;

 public String getFullName(){
 return this .fullName;
 }

 // some methods not included for brevity
 }

 This is a simple implementation of a named bean that returns a String when the getFullName()

method is called. In a Facelets page, you would refer to this method as user.fullname .

 <h:form id="user">
 <p><h:outputText value="#{user.fullname}"/></p>
 </h:form>

 CDI Beans for Backing JSF
 As in the previous example, CDI Beans can serve as backing beans for JSF pages. You can access

named beans via the name of the bean with a lowercased i rst letter. You can access Getter/Setter

i elds and methods within JSF pages using Java conventions. Details of JSF go beyond the scope of

this book, but Listing 5‐11 demonstrates a basic usage of CDI Beans with JSF.

Implementing DI in Java EE ❘ 59

 Qualii ers
 This section looks at how you would construct the qualii er classes.

 In Listing 5‐12, you create a qualii er named Mongo that you can use to annotate i elds. If you want

to use this annotation on a METHOD , a PARAMETER , or a class/interface (TYPE), you can add it to theE

@Target annotation.

 LISTING 5‐12: Create a custom qualii er named @Mongo

 package com.devchronicale.di;

 import static java.lang.annotation.ElementType. FIELD ;
 import static java.lang.annotation.RetentionPolicy. RUNTIME ;

 import java.lang.annotation.Retention;
 import java.lang.annotation.Target;

 import javax.inject.Qualifier;

 @Qualifier
 @Retention(RUNTIME)
 @Target({FIELD})
 public @interface Mongo {}

 The discussion regarding the varied use of annotations continues in more depth in Chapter 6 .

 Alternatives
 In the examples so far, you learned how you can disambiguate between two distinct

implementations of the UserDataRepository interface by using qualii ers. You normally make this

choice of implementation at development time by changing the source code. However, you can also

make this choice at deployment time by using the @Alternative annotation and some coni guration

in the bean.xml deployment descriptor.

 Adapting the examples so far, you annotate the two implementations of the UserDataRepository

interface with @Alternative and add some coni guration XML to the bean.xml i le. This is where

you decide which implementation to inject.

@Alternative
 public class UserDataRepositoryMongo implements UserDataRepository {...}

@Alternative
 public class UserDataRepositoryMySQL implements UserDataRepository {...}

 The implementation that you use in the application is declared in the bean.xml i le:

 <beans ...>
 <alternatives>
 <class> com.devchronicale.di.UserDataRepositoryMongo </class>
 </alternatives>
 </beans>

60 ❘ CHAPTER 5 DEPENDENCY INJECTION AND CDI

 Alternatives are often used during the testing phase of development to create mock

objects.

 Stereotypes
 You can think of stereotypes as templates that dei ne the characteristics of a specii c functionality

of a bean type. For example, a bean that is used at the model layer of an Model View Controller

(MVC) application requires certain annotations to perform its function. These would include the

following:

 @Named
 @RequestScoped
 @Stereotype
 @Target({TYPE, METHOD, FIELD})
 @Retention(RUNTIME)

 Only @Named and @RequestScoped are enough to dei ne a Model bean. Others are required to

create an annotation called @Model .

 You could apply these annotations on every bean that requires them, or you could dei ne a

stereotype called @Model and apply only that to the beans. The latter makes your code much easier

to read and maintain.

 To create a stereotype, you dei ne a new annotation and apply the required annotations as in

Listing 5‐13.

 LISTING 5‐13: Stereotype annotation

 @Named
 @RequestScoped
 @Stereotype
 @Target({TYPE, METHOD, FIELD})
 @Retention(RUNTIME)
 public @interface Model {}

 Any bean annotated with @Model has a request scope (@RequestScoped) and is visible to EL d

(@Named). Luckily, the CDI container that comes with this stereotype has already been dei ned.d

 A typical use of the stereotype annotation is to combine with alternative annotation so you have a

way to annotate mock objects.

 Other Patterns via CDI
 CDI unleashed a great power to Java EE developers. CDI goes beyond being just a simple DI

framework by making the implementation of all those patterns possible with minimal code.

 The chapters that follow dive deep into details of these patterns; however, to whet your appetite,

here’s a brief introduction to these CDI‐powered patterns.

 Chapter 7 , “Decorator Pattern,” covers the decorator pattern. Decorators wrap a target object to

dynamically add new responsibilities at run time. Each decorator can be wrapped by another, which

Summary ❘ 61

allows for a theoretically unlimited number of decorated target objects at run time. The decorator

pattern uses the @Decorator and the @Delegate annotations. You must specify the decoration order

in beans.xml .

 The factory pattern is covered in Chapter 6 . Factories minimize the usage of the new keyword and

can encapsulate the initialization process and different concrete implementations. The factory

pattern uses the @Produces annotation to mark producer methods. Target object can inject or

observe the produced objects.

 The observer pattern and events are addressed in Chapter 11 , “Observer Pattern.” The observer

pattern changes the direction of a message, thus the order of caller and the callee. With the help

of the observer pattern, instead of aggressively checking a resource, an object can subscribe to

the changes on the resource. The observer pattern in Java EE uses the @Observes annotation and

events. The target observer(s) can observe any i red event.

 Aspects and interceptors are the focus of Chapter 8 , “Aspect‐Oriented Programming (Interceptors).”

They let you change execution l ow at run time. Any aspect or interceptor can be marked to cut the

execution and kick in at the given point. This approach enables dynamic changes even on a large

code base.

 SUMMARY

 In this chapter, you have seen the concept of dependency injection in Java EE. The dependency

injection concept lets us build loosely coupled systems easier than one can ever imagine. We have

seen how dependency injection allows us to eliminate the use of a new keyword, thus, manual object

creation.

 We also focused on CDI, which unleashes a huge potential by leveraging a whole new container.

With the help of CDI, dependency injection can be applied to any object and many patterns that are

discussed in this book are easy to implement.

EXERCISES

1. Design a service class which will return some string to the client.

2. Implement a i le reader and inject it to the service you developed before.

3. This time implement an object which reads the html content as a string from a i xed URL.

4. Think about what you need to refactor in the service class to be able to inject both data

providers with the same reference.

5. Is there a way to dynamically inject each implementation depending on different circumstances?

For example can you make sure the i le reader is injected during development but the http

reader is used during production?

62 ❘ CHAPTER 5 DEPENDENCY INJECTION AND CDI

 NOTES

 1. Design Patterns: Elements of Reusable Object‐Oriented Software (Addison‐Wesley, 1994):
Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides.

 2. Inversion of Control Containers and the Dependency Injection Pattern (Martin Fowler, 2004):
http://martinfowler.com/articles/injection.html.

http://martinfowler.com/articles/injection.html

 WHAT’S IN THIS CHAPTER?

➤ What the factory pattern is and why you need it

➤ How to implement the various l avors of the factory pattern: the

factory method and the abstract factory

➤ How to implement the factory pattern in Java EE using the

@Producers and @Inject annotations

➤ How to create custom annotations and the @Qualii er to

disambiguate concrete implementations

 WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

 The wrox.com code download for this chapter is found at www.wrox.com/go/

projavaeedesignpatterns on the Download Code tab. The code is in the Chapter 06

download and individually named according to the names throughout the chapter.

 The factory design pattern is one of the widely used core design patterns in modern

programming languages. It is used not only by web and application developers, but by the

developers of run times and frameworks such as Java and Spring.

 The factory pattern has two variations: the factory method and the abstract factory. The

intent of these patterns is the same: to provide an interface for creating families of related or

dependent objects without specifying their concrete classes. This chapter introduces you to

both of these variations and shows you examples of how to implement them.

 You will see how the factory pattern has been implemented in Java SE, how that differs from

its implementation in Java EE, and how it takes advantage of context dependency injection.

 6

http://www.wrox.com/go/projavaeedesignpatterns
http://www.wrox.com/go/projavaeedesignpatterns

64 ❘ CHAPTER 6 FACTORY PATTERN

WHAT IS A FACTORY?

As one of the creational patterns, the factory’s purpose is to create objects. The creational logic is

encapsulated within the factory and either provides a method that returns a newly created object

(factory method pattern) or delegates the creation of the object to a subclass (abstract factory

pattern). In both cases, the creation of the object is abstracted away from where it will be used.

The client need not be aware of the different implementations of the interface or class. The client

only needs to know the factory (factory method or abstract factory) to use to get an instance of one

of the implementations of the interface. Clients are decoupled from the creation of the objects.

The decoupling occurs as the result of applying the dependency inversion principle and brings many

practical advantages, of which the most important is the decoupling of higher‐level classes from

lower‐level classes. This decoupling allows the implementation of the concrete classes to be changed

without affecting the client, thus reducing coupling between classes and increasing l exibility.

The factory pattern gives us the opportunity to decouple object creation from the underlying system

by encapsulating the code responsible for creating the objects. This approach simplii es our life when

it comes to refactoring as we now have a single point where the refactoring changes happen.

Often the factory itself is implemented as a singleton or as a static class because normally only one

instance of the factory is required. This centralizes factory object creation, allowing for greater

organization and maintainability of source code and the reduction of errors when changes and

updates are made.

 NOTE Dependency Inversion Principle:

 1. High‐level modules should not depend on low‐level modules. Both should
depend on abstractions.

 2. Abstractions should not depend on details. Details should depend on
abstractions. 1

In Java EE, dependency injection is employed to deliver the decoupling of higher‐level classes from

lower‐level classes when implementing the factory pattern. The combined use of the @Producers

and @Inject annotations makes their implementation relatively simple.

FACTORY METHOD

The GoF2 book describes the factory method pattern as such: “Dei nes an interface for creating an

object, but lets subclasses decide which class to instantiate.” Head First Design Patterns3 adds that

the “factory method lets a class defer instantiation to subclasses.”

Factories minimize the usage of the new keyword and can encapsulate the initialization process and

the different concrete implementations. The ability to centralize those needs minimizes the effect of

adding or removing concrete classes to the system and the effects of concrete class dependencies.

The factory method class diagram is shown in Figure 6-1 .

Factory Method ❘ 65

 FIGURE 6-1: The class diagram shows the structure of the factory method pattern.

You can see how the object creation is encapsulated in the subclasses.

product =

creator.FactoryMethod()

Client

ProductA ProductB

Creator

product: IProduct

<<interface>>

IProduct

+FactoryMethod(): Product

 WAR STORY

 At one time, I was developing a desktop application with a friend. At the beginning,

we were not sure if we needed a full‐blown database or not. This was long before

no‐SQL and document‐based data stores, so our only option was to use XML.

Nevertheless, we were not sure if XML i les would be sufi cient to store the data.

Meanwhile, we had already started developing the application and needed a

concrete persistence implementation to save data. Because we wanted the l exibility

to change the system from using XML to using SQL, we decided to create all the

data access objects (DAOs) via the implementation of the factory pattern. This

way we could easily switch from XML to SQL or vice versa. Within a few weeks,

we realized that we really underestimated the data needs of the system. XML was

dei nitely an adequate solution and was now out of question, so we were stuck with

an SQL‐based database for the rest of the project. In the end, we didn’t really use

our DAO factory.

 However, as we were completing the application, our clients asked for a demo

platform. It was not enough to demonstrate the capabilities of the application and

let them play for a day or two. They wanted more time to evaluate the application.

This meant we needed to install a functioning application on the network to allow

the clients time to properly evaluate the application and see that it rocked. We

didn’t want to install the full application because there was no way to ensure that

the client wouldn’t make a copy, and we dei nitely didn’t want to build a demo

application from scratch. Suddenly, I came up with a brilliant idea. The demo

application needed to persist the data in order to function sufi ciently, so that the

client could evaluate it, but not enough that the client could make a pirate copy of

the application. The idea was to temporarily store the data in memory. If we could

continues

66 ❘ CHAPTER 6 FACTORY PATTERN

Implementing the Factory Method in Plain Code
The factory method does not have boilerplate code for its implementation. Listings 6‐1 to 6‐6 show

implementations of the factory pattern using a DrinksMachine that dispenses different types of

drinks depending on the implementation of its subclasses.

 LISTING 6‐1: DrinksMachine abstract class extended by concrete implementations

 public abstract class DrinksMachine {

 public abstract Drink dispenseDrink();

 public String displayMessage(){
 return "Thank for your custom.";
 }
 }

 LISTING 6‐2: CoffeeMachine implementation of the DrinksMachine abstract class

 public class CoffeeMachine extends DrinksMachine {

 public Drink dispenseDrink() {
 return new Coffee();
 }
 }

easily change our DAOs to an in‐memory data store instead of persisting the data

in a database, we could leave the clients to try the demo version for as long as they

wanted. (Without a persistent data store, the application would make no sense at

all!) Because we already had the DAO factory, we only needed to implement the in‐

memory DAO classes and tweak the factory code to return them when our database

was not present.

 The result was so successful that I implemented another factory to control print

jobs to print to a nonformatted text i le instead of the real printer for the demo

version. These changes that took advantage of the factory pattern meant that we

could easily leave clients to evaluate our application for as long as they wanted and,

because the clients could not print formatted copies and persist i nancial data, the

application was useless in production.

 Designing the system using factories was not a huge win at i rst but was a life saver

in the end. Design patterns tend to address future problems if they are used in the

right context.

continued

Factory Method ❘ 67

 LISTING 6‐3: SoftDrinksMachine implementation of the DrinksMachine abstract class

 public class SoftDrinksMachine extends DrinksMachine {

 public Drink dispenseDrink() {
 return new SoftDrink();
 }
 }

 LISTING 6‐4: The Drink interface

 public interface Drink {}

 LISTING 6‐5: SoftDrink implementation of the Drink interface

 public class SoftDrink implements Drink {
 SoftDrink() {
 System.out.println("Soft drink");
 }
 }

 LISTING 6‐6: Coffee implementation of the Drink interface

 public class Coffee implements Drink {

 Coffee() {
 System.out.println("Coffee");
 }
 }

 This implementation shows how the subclasses of the DrinksMachine abstract class determine the

drink that is dispensed. This allows any implementation of the DrinksMachine class to dispense

any object of the Drink type. Each subclass of the DrinksMachine ’s abstract class determines which

drinks are dispensed.

 This is a simple implementation in which the dispenseDrink method dispenses only one type of drink.

A more illustrative example would show the dispenseDrink method receiving the name of a drink and

then constructing and returning the requested drink object. Listing 6‐7 shows how to achieve this.

 LISTING 6‐7: CoffeeType enum

 public enum CoffeeType {EXPRESSO, LATTE}

 public Drink dispenseDrink(CoffeeType type) {

 Drink coffee = null;

 switch (type) {
continues

68 ❘ CHAPTER 6 FACTORY PATTERN

LISTING 6‐7: (continued)

 case EXPRESSO: coffee = new Expresso();
 case LATTE: coffee = new Latte();
 }

 return coffee;
 }

 For brevity, this chapter shows only a code snippet of the enum type CoffeeType that dei nes the

type of coffee and the dispenseDrink method of the concrete Coffee class.

 ABSTRACT FACTORY

 The factory method pattern is straightforward and useful to implement, but in more complex systems,

you need to organize it. This problem leads you to a new pattern called the abstract factory pattern.

 The abstract factory pattern is described in both the GoF book and Head First Design Patterns as

“provides an interface for creating families of related or dependent objects without specifying their

concrete classes.”

 What abstract factories offer is the encapsulation of a group of factories and control over how the

client accesses them. This chapter does not go into all the details of how to implement abstract

factories but instead offers a brief introduction for basic understanding.

 The abstract factory class diagram is shown in Figure 6-2 .

 FIGURE 6-2: As can be seen in the class diagram, you can use the abstract factory pattern to group existing

factories and encapsulate how you access them.

ClientAbstractFactory

ConcreteFactory1 ConcreteFactory2

CreateProductA()

CreateProductB()

CreateProductA()

CreateProductB()

CreateProductA()

CreateProductB()

ProductA2

ProductB2 ProductB1

ProductA1

AbstractProductB

AbstractProductA

Abstract Factory ❘ 69

 Implementing the Abstract Factory in Plain Code
 To demonstrate the abstract factory design pattern, this chapter extends the drinks machine

example by adding a factory that produces two different types of drinks machine: basic and

gourmet.

 The “families of related or dependent objects” that the abstract factory creates are the coffee

machine and the soft drinks machine. You must create an interface for the factories to implement. In

Listing 6‐8, you create the AbstractDrinksMachineFactory interface.

 LISTING 6‐8: Interface for the abstract factory

 public interface AbstractDrinksMachineFactory {
 public DrinksMachine createCoffeeMachine();
 public DrinksMachine createSoftDrinksMachine();
 }

 The concrete implementations of this interface are the GourmetDrinksMachineFactory and the

BasicDrinksMachineFactory classes. For brevity, only the GourmetDrinksMachineFactory is

shown in Listing 6‐9.

 LISTING 6‐9: Implementation of the AbstractDrinksMachineFactory

 public class GourmetDrinksMachineFactory implements AbstractDrinksMachineFactory{

 public DrinksMachine createCoffeeMachine() {
 return new GourmetCoffeeMachine();
 }

 public DrinksMachine createSoftDrinksMachine() {
 return new GourmetSoftDrinksMachine();
 }

 }

 Each factory implements the abstract factory’s create method in a different way and, depending

on which factory is instantiated, a different implementation of a coffee and soft drinks machine is

created.

 AbstractDrinksMachineFactory factory = new GourmetDrinksMachineFactory();
 DrinksMachine CoffeeMachine = factory.createCoffeeMachine();
 CoffeeMachine.dispenseDrink(CoffeeType.EXPRESSO);

 This shows a GourmetDrinksMachineFactory being instantiated. Its coffee machine’s

creation method is invoked to create the coffee machine object that this implementation requires.

 The full code for this implementation is in the Chapter 06 download.

70 ❘ CHAPTER 6 FACTORY PATTERN

 IMPLEMENTING THE FACTORY PATTERN IN JAVA EE

 The factory pattern is not tricky to implement, as you have seen in the preceding examples.

Java EE offers a simple and elegant way to implement the factory pattern via annotations and

dependency injection. In the Java EE world, you use the @Produces annotation to create an object,

and you use @Inject to inject the created object (or resource) where it’s required. The simplest

implementation in Java EE of the factory method follows in Listing 6‐10.

 LISTING 6‐10: Simple implementation of the factory method using producer methods

 package com.devchronicles.producer;
 import javax.enterprise.inject.Produces;

 public class EventProducer {

 @Produces
 public String getMessage(){
 return "Hello World";
 }

 }

 The getMessage method is annotated with @Produces and results in String objects containing

the text Hello World . Although the type produced in this example is a string, you can produce

anything you need, including interfaces, classes, primitive data types, Java array types, and core

Java types.

 To use the produced object, you need to inject the same type into the class where you are going to

use it, as demonstrated in Listing 6‐11.

 LISTING 6‐11: Injecting a string created by the factory

 package com.devchronicles.factory;

 import javax.ejb.Stateless;
 import javax.ejb.TransactionAttribute;
 import javax.ejb.TransactionAttributeType;
 import javax.inject.Inject;

 @Stateless
 @TransactionAttribute(TransactionAttributeType.REQUIRED)
 public class EventService {

 @Inject
 private String message;

 public void startService(){
 System.out.println("Start service call " + message);
 }
 }

Implementing the Factory Pattern in Java EE ❘ 71

 When you run and invoke the startService method, the string value in the producer method

is injected into the message member of EventService and printed to the console. This is the

simplest possible implementation of the factory pattern in Java EE. However, it raises one

important question: How does the Context Dependency Injection (CDI) container know that

it must inject the string produced by the getMessage method into the message member of

EventService ?

 The answer: The CDI container relies on types to determine where to inject the produced type. In

this example, the produced type is a string, as is the injected type. So it matches the produced type

with the inject type and injects it.

 You might argue that in a real system, you need to produce and inject different instances of the same

object type. How does the CDI container know where to inject each produced type? It does this by

using an annotation coni guration called a qualii er. rr

 In real‐world projects, you probably want to return different object types instead of a simple string

so that you can create different objects by type.

 LISTING 6‐12: MessageA bean

 package com.devchronicles.factory;

@Alternative
 public class MessageA {

 private String message;

 public String getMessage(){
 return message;
 }

 public void setMessage(String message){
 this.message = message;
 }

 }

 LISTING 6‐13: MessageB bean

 package com.devchronicles.factory;

@Alternative
 public class MessageB {
 private String message;

 public String getMessage(){
 return message;
 }

 public void setMessage(String message){
 this.message = message;
 }
 }

72 ❘ CHAPTER 6 FACTORY PATTERN

 LISTING 6‐14: Factory implementation that creates message beans

 package com.devchronicles.factory;

 import javax.enterprise.inject.Produces;

 public class EventProducer {

 @Produces
 public MessageA messageAFactory(){
 return new MessageA();
 }

 @Produces
 public MessageB messageBFactory(){
 return new MessageB();
 }

 }

 In this example, you have created two beans: MessageA in Listing 6-12 and A MessageB in Listing 6-13.

You have annotated them with @Alternative , which disables them so that the container does not

attempt to inject their instances when it i nds a matching injection point. You annotate them so the

factory in Listing 6-14 will produce the instances. If you didn’t annotate, the container would throw

an exception while loading the application. It would read something like this:

CDI deployment failure:WELD‐001409 Ambiguous dependencies for type [MessageA] . The

ambiguity is caused by the two instances of MessageA that are created: one by the container and theA

other by the @Produces method. The container doesn’t know which instance to inject into the message

member of the EventService . You will see a way to resolve this ambiguity later in the chapter.

 LISTING 6‐15: Injecting the beans created by the factory using the @Inject annotation

 package com.devchronicles.factory;

 import javax.ejb.Stateless;
 import javax.ejb.TransactionAttribute;
 import javax.ejb.TransactionAttributeType;
 import javax.enterprise.event.Event;
 import javax.inject.Inject;

 @Stateless
 @TransactionAttribute(TransactionAttributeType.REQUIRED)
 public class EventService {

@Inject
private MessageA messageA;

@Inject
private MessageB messageB;

 public void startService(){

 messageA.setMessage("This is message A");

Implementing the Factory Pattern in Java EE ❘ 73

 messageB.setMessage("This is message B");

 System.out.println("Start service call " + messageA.getMessage());
 System.out.println("Start service call " + messageB.getMessage());

 }
 }

 In the EventService class shown in Listing 6-15, the containers inject the two beans produced by

the factory into the messageA and A messageB member variables of the EventService class. You can

use these objects as you would normally.

 An alternative implementation is to use the @Qualifier and @interface annotations to mark the

type you want to inject. The example that follows uses custom annotations to create two qualii ers:

@LongMessage in Listing 6-16 and @ShortMessage in Listing 6-17.

 LISTING 6‐16: ShortMessage qualii er

@Qualifier
 @Retention(RetentionPolicy.RUNTIME)
 @Target({ElementType.METHOD, ElementType.FIELD})
 public @interface ShortMessage {}

 LISTING 6‐17: LongMessage qualii er

@Qualifier
 @Retention(RetentionPolicy.RUNTIME)
 @Target({ElementType.METHOD, ElementType.FIELD})
 public @interface LongMessage {}

 You use these qualii ers to annotate the producer methods as shown in Listing 6-18 and their

matching injection points as shown in Listing 6-19.

 LISTING 6‐18: Using the qualii ers to disambiguate the beans

 public class EventProducer {

 @Produces @ShortMessage
 private MessageA messageAFactory(){
 return new MessageA();
 }

 @Produces @LongMessage
 private MessageB messageBFactory(){
 return new MessageB();
 }

 }

74 ❘ CHAPTER 6 FACTORY PATTERN

 LISTING 6‐19: Injecting the created beans using qualii ers to disambiguate

 @TransactionAttribute(TransactionAttributeType.REQUIRED)
 public class ClientMessage {

 @Inject @ShortMessage
 private MessageA messageA;

 @Inject @LongMessage
 private MessageB messageB;

 public void doEvent(){
 messageA.setMessage("This is a long email message.");
 messageB.setMessage("This is a short SMS message.");
 System.out.println(messageA.getMessage());
 System.out.println(messageB.getMessage());
 }
 }

 The @Target annotation specii ed on the qualii er interface determines where you can use the

qualii er. The values can be one or all of the following— TYPE , METHOD , FIELD, and PARAMETER —and

their meanings are self‐explanatory.

 Alternatively, you can achieve the same implementation via the use of an enum type dei ned in the

@interface class, Listing 6-20 shows this implementation.

 LISTING 6‐20: Custom annotation type

 @Qualifier
 @Retention(RetentionPolicy.RUNTIME)
 @Target({ElementType.METHOD})
 public @interface MyEvent {
 Type value();
 enum Type{ LOGGING , MESSAGE }
 }

 With the help of this custom annotation, you can use different methods to create string objects

marked with your annotation. In Listing 6-21 strings are produced by the messageAFactory and

the messageBFactory methods.

 LISTING 6‐21: Using the custom annotations to disambiguate the beans

 public class EventProducer {

@Produces
@MyEvent(MyEvent.Type.LOGGING)

 public String messageAFactory(){
 return "A message";
 }

@Produces

Implementing the Factory Pattern in Java EE ❘ 75

 @MyEvent(MyEvent.Type.MESSAGE)
 public String messageBFactory(){
 return "Another message";
 }

 }

 You use these annotations to annotate the producer methods and their matching injection points as

shown in Listing 6-22.

 LISTING 6‐22: Injecting the created beans using custom annotations to disambiguate

 package com.devchronicles.observer;

 import javax.ejb.Stateless;
 import javax.ejb.TransactionAttribute;
 import javax.ejb.TransactionAttributeType;
 import javax.enterprise.event.Event;
 import javax.inject.Inject;

 @Stateless
 @TransactionAttribute(TransactionAttributeType.REQUIRED)
 public class EventService {

 @Inject
@MyEvent(MyEvent.Type.LOGGING)

 private String messageA;

 @Inject
@MyEvent(MyEvent.Type.MESSAGE)

 private String messageB;

 public void startService(){
 System.out.println("Start service call " + messageA);
 System.out.println("Start service call " + messageB);
 }

 }

 A simpler approach would be to use the @Named annotation rather than creating your own

annotation type. This is implemented as in Listing 6‐23.

 LISTING 6‐23: Using @Named annotations to disambiguate

 package com.devchronicles.factory;
 import javax.enterprise.inject.Produces;

 public class EventProducer {

 @Produces
 @Named("Logging")
 public String messageAFactory(){

continues

76 ❘ CHAPTER 6 FACTORY PATTERN

LISTING 6‐23: (continued)

 return "A message";
 }

 @Produces
@Named("Message")

 public String messageBFactory(){
 return "Another message";
 }

 }

 You use @Name to annotate the producer methods and their matching injection points, as shown in

Listing 6‐24.

 LISTING 6‐24: Injecting using @Named annotations

 @Stateless
 @TransactionAttribute(TransactionAttributeType.REQUIRED)
 public class EventServiceName {

 @Inject
@Named("Logging")

 private String messageA;

 @Inject
@Named("Message")

 private String messageB;

 public void startService(){
 System.out.println("Start service call " + messageA);
 System.out.println("Start service call " + messageB);
 }

 }

 Although this appears simpler than creating your own annotation type, in complicated systems, it

may not be a wise or a type‐safe choice. The named annotation works with the String provided in

quotes and is far from being type safe. The compiler can’t warn you of potential bugs.

 Harness the Power of CDI
 If your application has multiple implementations of an interface and you want to implement

a factory pattern to produce the required instances of these objects, you are going to have

a factory class with multiple methods annotated with the @Produces annotation. This will

become verbose and difi cult to maintain. Fortunately, Java EE provides a solution in the form

of the @Any annotation and the imaginative use of enum types, annotation literals, and the

Instance class.

Implementing the Factory Pattern in Java EE ❘ 77

 What would take many tens if not hundreds of lines of code to produce each instance, you

can accomplish in just four lines of code. You can achieve this by collecting all instances of a

particular interface implementation and selecting the one you want to use by using the @Any

annotation.

 The @Any annotation instructs the container that all beans implementing the given interface should

be injected at that injection point. In the listing below the code private Instance<MessageType> ,

messages injects instances of all dependencies that implement the MessageType interface into the

member variable messages .

 Once all dependencies have been injected, you need a way to distinguish between them and

select the one you want to use. This is where the use of annotation literals and enum types

comes into play. In the listings that follow, you dei ne an @Message qualii er and the enum

literals SHORT and LONG . These distinguish between the implementations of the MessageType

interface.

 To select the dependency, compare it with the enum type of the qualii er of each implementation by

creating an AnnotationLiteral of the type you are searching for, retrieve it, and return it to the

client.

 Now you’ll see how this is implemented in code. You will use the example of a factory that produces

ShortMessage and LongMessage objects, each implementing the Message interface annotated as

either SHORT or LONG .

 LISTING 6‐25: MessageType interface

 public interface MessageType {
 public String getMessage();
 public void setMessage(String message);
 }

 LISTING 6‐26: ShortMessage implementation of message interface

@Message(Message.Type.SHORT)
 @Dependent
 public class ShortMessage implements MessageType {

 private String message;

 @Override
 public String getMessage() {
 return message;
 }

 @Override
 public void setMessage(String message) {
 this.message = message;
 }
 }

78 ❘ CHAPTER 6 FACTORY PATTERN

 LISTING 6‐27: LongMessage implementation of message interface

@Message(Message.Type.LONG)
 @Dependent
 public class LongMessage implements MessageType {

 private String message;

 @Override
 public String getMessage() {
 return message;
 }

 @Override
 public void setMessage(String message) {
 this.message = message;
 }
 }

 Each concrete implementation of the MessageType interface, as shown in Listing 6-25, is annotated

with an @Message qualii er denoting the message type as either Message.Type.SHORT or Message

.Type.LONG as implemented in Listing 6-26 and Listing 6-27 respectively. The @Message qualii er is

implemented in the same manner, as can be seen is Listing 6-28, as the qualii er used in the Custom

Annotation Type example shown earlier.

 LISTING 6‐28: Custom message annotation

 @Qualifier
 @Retention(RetentionPolicy.RUNTIME)
 @Target({ElementType.FIELD, ElementType.TYPE})
 public @interface Message {
 Type value();
 enum Type{ SHORT , LONG }
 }

 To create the annotation literal that you use to make the comparison between the type you want

and the type of the dependency, you extend the abstract class AnnotationLiteral and implement

Message as the custom message qualii er. Listing 6-29 shows how this is done.

 LISTING 6‐29: Annotation literal used to retrieve required message type

 public class MessageLiteral extends AnnotationLiteral<Message> implements Message {

 private static final long serialVersionUID = 1L;
 private Type type;

 public MessageLiteral(Type type) {
 this.type = type;

Implementing the Factory Pattern in Java EE ❘ 79

 }

 public Type value() {
 return type;
 }

 }

 Now that you have all the parts of the puzzle, you can put it together in the MessageFactory class

shown in Listing 6-30.

 LISTING 6‐30: The Factory implementation

 @Dependent
 public class MessageFactory {

 @Inject
@Any

 private Instance<MessageType> messages;

 public MessageType getMessage(Message.Type type) {
 MessageLiteral literal = new MessageLiteral(type);
 Instance<MessageType> typeMessages = messages.select(literal);
 return typeMessages.get();
 }

 }

 In the factory class, all dependencies that implement the MessageType interface are injected into

the member variable messages . Then, from the method getMessage , you use the Message.Type

parameter to create a new MessageLiteral that you use to select the MessageType implementation

that you want from messages , which in turn is returned to the client.

 The client injects the factory and calls the getMessage method passing in the Message.Type that it

requires, as can be seen in Listing 6-31.

 LISTING 6‐31: Client using the Factory implementation

 @TransactionAttribute(TransactionAttributeType.REQUIRED)
 @ApplicationScoped
 public class Client {

 @Inject
 MessageFactory mf;

 public void doMessage(){
 MessageType m = mf.getMessage(Message.Type.SHORT);
 m.setMessage("This is a short message");

continues

80 ❘ CHAPTER 6 FACTORY PATTERN

 System.out.println(m.getMessage());

 m = mf.getMessage(Message.Type.LONG);
 m.setMessage("This is a long message");
 System.out.println(m.getMessage());
 }
 }

 This chapter has deviated quite substantially from the original GoF implementation of the factory

pattern. In fact, you could argue that this is not really a true factory pattern implementation but

rather a select and inject pattern. Nevertheless, the new and dynamic functionality of CDI allows

you to be creative in the way you implement traditional patterns and improve on classic design.

 WHERE AND WHEN TO USE THE FACTORY PATTERNS

 The traditional implementation of the factory pattern has changed substantially since the GoF i rst

espoused its usage.

 Abstract factories are considered an effective way to hide object creation, especially if the creation

is complex. And the more complex the object creation, the more justii able is the use of a factory to

create the object. If it is important that objects are created in a consistent manner and their creation

is strictly controlled, you should consider an implementation of the factory pattern.

 However, in the brave new world of the CDI environment, where the container instantiates managed

objects, the use of an abstract factory is arguably moot. Your best attempt to implement the factory

pattern uses the @Produce annotation that still allows you to hide complicated creational logic in

the producer method and inject the resulting object into the client.

 Alternatively, you can harness the power of the CDI environment and let the container create the

objects and then select the instantiation you want to use from a pool of similar objects. However,

you are limited to simple objects that can be instantiated satisfactorily by calling the default

constructor.

 SUMMARY

 In this chapter, you have seen how to implement the various l avors of the factory pattern in a

non‐CDI environment. And in a CDI environment, you have seen how producer methods and the

@Inject annotation have radically changed the way you implement and use the factory pattern in

Java EE.

 You have discovered how to harness the power of the container’s automatic instantiation of bean

objects and how to select and use them in your code.

 Hopefully, you have no doubt that the implementation of the factory pattern in a Java EE is

substantially more elegant and by far the simpler and cleaner way to generate objects.

LISTING 6‐31: (continued)

Notes ❘ 81

EXERCISES

 1. Create a vehicle factory that produces different types of cars and vans by using the abstract

factory pattern.

 2. Implement that same vehicle factory as in the previous exercise but use @Produce , qualii ers,

and enum types.

 3. By harnessing the power of the CDI container, implement a way to have multiple objects of the

same type and to select the type you require based on type‐safe logic.

 NOTES

 1. Wikipedia.org: http://en.wikipedia.org/wiki/Dependency_inversion_principle .
 2. Design Patterns: Elements of Reusable Object‐Oriented Software (Addison‐Wesley, 1994):

Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides.
 3. Head First Design Patterns (O’Reilly, 2004): Eric Freeman, Elisabeth Robson, Bert Bates,

Kathy Sierra.

http://en.wikipedia.org/wiki/Dependency_inversion_principle

 WHAT’S IN THIS CHAPTER?

➤ How to implement the decorator pattern in plain code

➤ How the decorator pattern solved a real‐life dilemma

➤ How to implement the decorator pattern using the @Decorator

and @Delegate annotations

➤ How to make the decorator pattern pluggable via the deployment

descriptors

➤ How to use qualii ers to gain i ne‐grain control over how

decorators are used

 WROX.COM CODE DOWNLOAD FOR THIS CHAPTER

 The wrox.com code download for this chapter is found at www.wrox.com/go/

projavaeedesignpatterns on the Download Code tab. The code is in the Chapter 07

download and individually named according to the names throughout the chapter.

 The GoF 1 book describes the decorator pattern as “Attach additional responsibilities to an

object dynamically” and gives a Graphical User Interface Toolkit as an example. This is an

excellent real‐world example because adding new styles or behaviors to a user interface (UI)

toolkit is the perfect job for the decorator pattern.

 The Head First Design Patterns2 book gives a coffee shop as an example of different options

such as whip cream being added to the product. The addition of each new condiment wraps

the beverage object and adds new behavior to the description and price. This example has been

the best‐i t solution since the authors had a similar real‐life experience. See the next War Story.

 The decorator pattern relies on component and decorator objects, which implement the same

interface. The decorator has an instance variable that implements the same interface so it can

 7

http://www.wrox.com/go/projavaeedesignpatterns
http://www.wrox.com/go/projavaeedesignpatterns

84 ❘ CHAPTER 7 DECORATOR PATTERN

wrap either a component object or another decorator. Sharing the same interface allows decorators

to decorate the base component or another decorator. With a proper implementation, it is simple

to call all relevant function implementations in order from the last decorator to the inner target

component object. In most cases, it should not be difi cult to adapt an existing system to use the

decorator pattern.

WHAT IS A DECORATOR?

The decorator pattern is one of the structural patterns described in the book of GoF . Its purpose

is to wrap a target object so that you can dynamically add new responsibilities at run time. Each

decorator can wrap another one, which allows for a theoretically unlimited number of decorating of

target objects.

Although this runtime behavior is much more l exible than inheritance via subclassing, it introduces

a level of complexity to concrete subclassing as it makes it more difi cult to determine the types and

behaviors of objects prior to executing the application.

Decorators are used in almost all languages and all platforms, from the UI to the back end.

Most frameworks and run times use the decorator pattern to add l exibility and runtime–specii c

behavior.

In Java EE, you implement the decorator pattern without boilerplate code. However, unlike the

majority of the patterns in this book, you often add XML coni guration to the bean.xml .

 WAR STORY

 Several years ago, we won a contract to complete a food and drinks ordering and

payment system for a company that then provided it as a point of sale (POS) service

to its clients. 3 These clients were restaurants, cafés, and bars. We had no knowledge

of the domain, so we made some reasonable assumptions based on the limited

knowledge and information we had at the time. Luckily, most assumptions worked

out well.

 One of our design rules was that if an add‐on option changes the price of a

product, it should be added as a new product. So if the restaurant serves extra

portions for an additional price, a new item should be added to the menu.

However, if an option like extra cheese was free, that information could be added

as a side note to the order.

 This rule had worked well for every client until one day we met with a café owner

whose business operated slightly differently. The café was focused on selling

deserts, but it also offered pizza as a savory option. Pizza was the only meal item

on the whole menu. Because the café didn’t specialize in pizza, it did not offer

set pizzas but instead let its customers create their own pizzas from a long list of

toppings, and it charged for each topping. This was quite a sensible way for the

café to offer its customers pizza because only a few of its customers would want

What Is a Decorator? ❘ 85

to eat pizza. However, it was catastrophic for our system because of our design

rule: If an add‐on option changes the price of a product, it should be added as a

new product. Because each topping had a different price, we needed to calculate

all the combinations of toppings and enter a new pizza to the menu for each

combination.

 As you know, n! algorithms grow large quickly, which in this case would have

resulted in a long list of pizzas after only a few combinations. Because this was

not acceptable, we suggested to the client that he enter several pizzas with a i xed

number of toppings (1 topping, 2 topping, 3 topping), and he could add a note to

the order to record the customer’s choice of topping. With this solution, we could

shorten the list from n! to n.

 Still, this solution was not really reasonable. Because the system was already

up and running, we needed to i nd a way to i x it without breaking other parts.

We needed a way to add functionality at run time. We needed to “decorate” the

existing pizza object with toppings. Clearly, the answer was to implement the

decorator pattern. And that is what we did. Each topping the customer chose

wrapped the pizza object in a similar way to the example used in the Head First

Design Patterns book.

 Decorator Class Diagram
 As is seen in the class diagram in Figure 7-1 , the decorator pattern introduces some boilerplate code

to an existing class hierarchy. The pattern introduces a shared interface between the target class and

the decorator. The decorator must have a reference to an instance of this interface.

 FIGURE 7-1: Class diagram of the decorator pattern

Component

DecoratorConcreteComponent

ConcreteDecorator

+ operation()

+ operation()

+ operation()

– component
+ operation()

86 ❘ CHAPTER 7 DECORATOR PATTERN

 IMPLEMENTING THE DECORATOR PATTERN IN PLAIN CODE

 If the classes are in the design stage, the addition of decorators shouldn’t be too much of an issue.

However, if the decorator is to be implemented in an existing system, you might need to refactor some

classes. For example, the target class should implement the same interface that the decorator implements.

 This chapter demonstrates the use of the decorator pattern using a simplii ed POS system for a pizza

restaurant. Each pizza can be “decorated” with extra toppings, such as double cheese and free chili.

 First, you will create the Order interface, which is implemented by the Pizza class and by the

decorator’s Extra abstract class. The Extra class is extended by the extra toppings classes:

DoubleExtra , NoCostExtra , and RegularExtra .

 You’ll start by creating the Order interface in Listing 7‐1.

 LISTING: 7‐1: The Order interface

 public interface Order {
 public double getPrice();
 public String getLabel();
 }

 In Listing 7‐2, you’ll create the class that represents a pizza (Four Seasons, Margarita, Hawaiian,

and so on) on the menu. This is the target object to be decorated.

 LISTING: 7‐2: The class to be decorated implements the Order interface

 public class Pizza implements Order {

 private String label;
 private double price;

 public Pizza(String label, double price){
 this.label=label;
 this.price=price;
 }

 public double getPrice(){
 return this.price;
 }

 public String getLabel(){
 return this.label;
 }
 }

 The following code creates a Four Seasons pizza.

 Order fourSeasonsPizza = new Pizza("Four Seasons Pizza", 10);

 Next, you need to create the decorators that will decorate the pizza with extra toppings.

Use an abstract class so that the concrete classes do not have to implement all the business

Implementing the Decorator Pattern in Plain Code ❘ 87

methods of an interface. An abstract decorator will create a blueprint that other decorators can

extend.

 Perhaps you have different topping types (cheese, chili, pineapple, and so on). Imagine that the

customer wants to order the meal a little spicier, and the restaurant will not charge for that extra

topping. So you need a decorator that does not add to the price of the pizza but provides proper

labeling (that extra chili has been requested). Also, the customer may ask for two extra portions

of cheese, and if the system prints “cheese” twice, the chef may think it is a bug and add only one

portion of cheese. So you need another concrete decorator to allow for proper labeling of double

toppings. Listing 7‐3 accomplishes your goals.

 LISTING 7‐3: The abstract decorator that adds extra toppings

 public abstract class Extra implements Order {

 protected Order order;
 protected String label;
 protected double price;

 public Extra(String label, double price, Order order) {
 this.label=label;
 this.price=price;
 this.order=order;
 }

 // Price can be a big issue, so delegate this to concrete implementation
 public abstract double getPrice();

 // Should be okay to provide standard labeling
 public String getLabel() {
 return order.getLabel()+", "+this.label;
 }
 }

 Now that you have the abstract decorator, you can add specii c behaviors and create concrete

decorators. You’ll start with the RegularExtra decorator, which adds a charge and a label to the

target object (the pizza). Because the labeling function is already provided by the abstract decorator

and inherited by all subclasses that extend it, you only need to implement the pricing functionality.

Listing 7‐4 takes care of that.

 LISTING 7‐4: The decorator that adds extra toppings

 public class RegularExtra extends Extra {

 public RegularExtra(String label, double price, Order order) {
 super(label, price, order);
 }

 public Double getPrice() {
 return this.price+order.getPrice();
 }
 }

88 ❘ CHAPTER 7 DECORATOR PATTERN

 Next, you need to create the NoCostDecorator , which modii es the r label string but does not add to

the cost of the pizza. See Listing 7‐5.

 LISTING 7‐5: The decorator that adds extra toppings at no cost

 public class NoCostExtra extends Extra {

 public NoCostExtra(String label, double price, Order order) {
 super(label, price, order);
 }

 public Double getPrice() {
 return order.getPrice();
 }
 }

 Finally, in Listing 7‐6, you implement the DoubleExtra decorator to avoid printing the topping

twice on the label. The decorator doubles the price and adds the keyword double in front of the

target label.

 LISTING 7‐6: The decorator that adds double toppings

 public class DoubleExtra extends Extra {

 public DoubleExtra(String label, double price, Order order) {
 super(label, price, order);
 }

 public Double getPrice() {
 return (this.price*2)+order.getPrice();
 }

 public String getLabel() {
 return order.getLabel()+ ", Double " + this.label;
 }
 }

 Now that the decorator pattern has been implemented to add extra toppings to your pizza, you can

test your implementation.

 Order fourSeasonsPizza = new Pizza("Four Seasons Pizza", 10);
 fourSeasonsPizza = new RegularExtra("Pepperoni", 4, fourSeasonsPizza);
 fourSeasonsPizza = new DoubleExtra("Mozzarella", 2, fourSeasonsPizza);
 fourSeasonsPizza = new NoCostExtra("Chili", 2, fourSeasonsPizza);

 System.out.println(fourSeasonsPizza.getPrice());
 System.out.println(fourSeasonsPizza.getLabel());

 The output in the console will be as follows:

 18.0
 Pizza, Pepperoni, Double Mozzarella, Chili

Implementing the Decorator Pattern in Java EE ❘ 89

 But wait! There is a potential bug! Chili is not free if you order it as a side dish, but the chef is happy to

offer it free on a pizza. You need to make sure the system accounts for those differences. Just imagine

that these values and labels come from a database. What would you do to create different behaviors

for chili? One option might be to create two chili objects: one labeled as “with pizza.” Clearly, this

would be a hack, leaving a backdoor open for any waiter to order free chili for his friends. Another

option would be to create an additional constructor method in the abstract class that does not take a

price parameter. Any decorator that does not charge for extras could implement this.

 IMPLEMENTING THE DECORATOR PATTERN IN JAVA EE

 Unlike most other patterns described in this book, you implement the decorator pattern by

declaring the decorator classes in the bean.xml deployment descriptor (except when annotated

with @Priority ; see the following section“Decorators Without XML Coni guration”). Luckily, this

coni guration is simple and gives you the advantage of pluggability and control over the order in

which the decorators are invoked.

 The decorator implementation in Java EE introduces two new annotations: @Decorator and

@Delegate . @Decorator annotates the decorator class, and @Delegate annotates the delegate

injection point where the class to be decorated is injected.

 You will use the example of a shop that wants to discount some of its products. It will use a

decorator to apply this discount to the regular retail price. In Listing 7‐7, you start by creating the

interface that you will use to connect the decorator with the object you want to decorate.

 LISTING 7‐7: The Product interface

 public interface Product {
 public void setLabel(String label);
 public void setPrice(double price);
 public String getLabel();
 public double getPrice();
 public String generateLabel();
 }

 The interface introduces the generateLabel method, which the decorator implements to add its

discounting behavior. In Listing 7‐8, you create the Table class. It is the product that you want to be

decorated; therefore, it implements the Product interface.

 LISTING 7‐8: The class to be decorated implements the Product interface

 public class Table implements Product {

 private String label = "Dining Table";
 private double price = 100.00;

 public void setLabel(String label) {
 this.label = label;

continues

90 ❘ CHAPTER 7 DECORATOR PATTERN

 }

 public void setPrice(double price) {
 this.price = price;
 }

 public String getLabel() {
 return label;
 }

 public double getPrice() {
 return price;
 }

 public String generateLabel() {
 return price + ", " + label;
 }

 }

 You create the PriceDiscountDecorator decorator by implementing the Product interface. This class

implements the generateLabel method and adds its discounting behavior. The decorator reduces the

price of a product by 50 percent and adds the text “(Discounted)” to the product’s label.

 To enable the container to identify this class as a decorator, you must annotate it with @Decorator . r

The delegate injection point (the instance that will be decorated) is annotated with @Delegate and

must be an injected i eld, an initializer method parameter, or a bean constructor method parameter.

The delegate type must be the interface implemented by the classes that you want to be decorated—

in this case, Product . The CDI container injects any available instance of the Product interface into

the product member variable as shown in Listing 7‐9.

 LISTING 7‐9: The PriceDiscountDecorator decorator

@Decorator
 public class PriceDiscountDecorator implements Product {

@Any
@Inject

 @Delegate
 private Product product;

 public String generateLabel() {
 product.setPrice(product.getPrice() * 0.5);
 product.setLabel(product.getLabel() + " (Discounted)");
 return product.generateLabel();
 }

 // Not all methods shown
 }

 Finally, you must declare the decorator in bean.xml . Although most of the coni guration has already

been done via annotations, you still need to add some XML coni guration to make the decorator

LISTING 7-8 (continued)

Implementing the Decorator Pattern in Java EE ❘ 91

work. The coni guration might seem disappointing because you have already annotated your

decorator; nevertheless, the coni guration is simple and necessary so that you can dei ne the order of

execution of the decorators (if more than one). Add the following lines to beans.xml :

 <decorators>
 <class>com.devchronicles.decorator.PriceDiscountDecorator </class>
 </decorators>

 Your work is done. You can now use your decorator.

@Any
@Inject
Product product;

 public void createPriceList(){
 System.out.println("Label: " + product.generateLabel());
 }

 An instance of Table is injected into the Product member variable, and the generateLabel method

is called. The output to the console will be as follows:

 Label: 12.5, Dining Table (Discounted)

 When a call is made to the generateLabel method of any Product instance, the container

intercepts it. The call is delegated to the appropriate method of the PriceDiscountDecorator

decorator, where it discounts the product’s price and passes the call onto the original destination by

calling the generateLabel method of the Table object.

 A call chain is set up that includes all the decorators that are declared to decorate classes that

implement the Product interface. The order in which the decorators are called is determined by the

order in which they are declared in the bean.xml deployment descriptor.

 You are going to see this in action in Listing 7‐10, where you dei ne another decorator. You create

the BlackFridayDiscountDecorator decorator, implement the Product interface, and add the

@Decorator and @Delegate annotations.

 LISTING 7‐10: The BlackFridayDecorator decorator

 @Decorator
 public class BlackFridayDiscountDecorator extends AbstractDiscountDecorator {

 @Any
 @Inject
 @Delegate
 private Product product;

 public String generateLabel() {
 product.setPrice(product.getPrice() * 0.25);
 product.setLabel(product.getLabel());
 return product.generateLabel();
 }

 // Not all methods shown

 }

92 ❘ CHAPTER 7 DECORATOR PATTERN

 You must add the decorators to the bean.xml archive in the order that you want them to be invoked.

Here, you declare that the PriceDiscountDecorator decorator should be invoked before the

BlackFridayDiscountDecorator decorator.

 <decorators>
 <class>com.devchronicles.decorator.PriceDiscountDecorator</class>
 <class>com.devchronicles.decorator.BlackFridayDiscountDecorator </class>
 </decorators>

 When the generateLabel method is invoked, a call chain is set up that includes the two

decorators. The call to generateLabel is intercepted and delegated to the generateLabel method

of the PriceDiscountDecorator. It calls r getPrice , which will be intercepted and delegated to

the getPrice method of BlackFridayDiscountDecorator, which in turn calls the getPrice

method of its injected Product object. (This is the same instance that you injected into the

PriceDiscountDecorator decorator.) This invocation is not intercepted because there are no

more decorators declared for this interface, and it calls the getPrice method in the Table object.

Once this call has i nished, it returns down the call stack to the i rst getPrice method. This is

called returning the price of the Table . The decorator reduces the price by 50 percent and calls the

setPrice method. This call is delegated up the call chain until it reaches the Table object, where the

new price is set. Then the call returns down the call chain.

 The getLabel method is called and creates a call chain similar to that of the getPrice method.

 Finally, the generateLabel method is invoked and intercepted by the

BlackFridayDiscountDecorator decorator. The price is discounted by a further 25 percent, and a

call chain similar to that set up by the PriceDiscountDecorator decorator is initiated.

 The output to the console follows:

 Label: 6.25, Dining Table (Discounted)

 For the chain to continue unbroken, the generateLabel method must delegate to the

generateLabel method of the delegate injected instance; otherwise, the chain is broken and only

the i rst decorator is invoked.

 All classes that implement the same interface as the one implemented by the delegate injection

point are decorated, but only if those decorators are declared in bean.xml . This has two major

implications:

➤ Decorators can be enabled and disabled at deployment time by editing the bean.xml i le.

This gives great l exibility over when and which decorators are invoked. For example, you

can implement a price discount decorator only for the duration of the sales period and

disable it when the period comes to an end. The l exibility of the deployment descriptor

declaration means that this decorator can be easily enabled again if debugging information is

later required.

➤ A decorator is automatically applied to classes that implement the same interface. This is

efi cient at the time of adding new classes because they are decorated with no additional

coding. However, this could prove inconvenient if there is a requirement that not all classes

of the same type are decorated. Luckily, there is a solution to this situation that involves

using qualii ers to annotate only those classes that should be decorated.

Implementing the Decorator Pattern in Java EE ❘ 93

 To not decorate all classes of the same type, you need to create a custom qualii er and annotate

the delegate injection point and the classes that you want decorated. You’ll create a Plate product

that implements the Product interface. Only this product must be discounted. To implement this

requirement, you annotate it with a custom qualii er, thus excluding the other product from being

decorated.

 You create a custom qualii er and call it @ClearanceSale .

 @Qualifier
 @Retention(RUNTIME)
 @Target({FIELD, PARAMETER, TYPE})
 public @interface ClearanceSale {}

 In Listing 7‐11, you create the new implementation of the Product interface and annotate it with

your custom qualii er.

 LISTING 7‐11: Class to be decorated is annotated with custom qualii er

@ClearanceSale
 public class Plate implements Product {

 private String label = "Plate";
 private double price = 50.00;

 public void setLabel(String label) {
 this.label = label;
 }

 public void setPrice(double price) {
 this.price = price;
 }

 public String getLabel() {
 return label;
 }

 public double getPrice() {
 return price;
 }

 public String generateLabel() {
 return price + ", " + label;
 }
 }

 Finally, you annotate the delegate injection point in the decorator that you want to invoke. In this

case, choose the PriceDiscountDecorator decorator.

@ClearanceSale
 @Any
 @Inject
 @Delegate
 private Product product;

94 ❘ CHAPTER 7 DECORATOR PATTERN

 Only classes that are annotated with @ClearanceSale and implement the Product interface are

injected into the delegate injection point of the PriceDiscountDecorator decorator; therefore,

only your Plate class will be decorated. A delegate injection point can have as many qualii ers as is

required, and it will only be bound to beans with the same qualii er.

 Decorators Without XML Coni guration
 At deployment time, the CDI container scans all the JAR and WAR i les in the application looking

for bean.xml deployment descriptors. For those that it i nds, it processes each one in turn, making

the appropriate coni gurations. When it meets the <decorator/> descriptor, it enables the decorators

for the archive in which the bean.xml i le was found. It does not enable them for the whole

application. This is a problem for developers who want the decorators to apply to all classes that

implement the same interface regardless of where they are in the application. Since CDI 1.1, 4 it has

been possible to enable decorators for the entire application by annotating the decorator class with

@Priority and an Interceptor.Priority value. Here is an example of how to enable your two

decorators for the whole application.

@Priority(Interceptor.Priority.APPLICATION)
 @Decorator
 public class PriceDiscountDecorator extends AbstractDiscountDecorator

@Priority(Interceptor.Priority.APPLICATION+10)
 @Decorator
 public class BlackFridayDiscountDecorator extends AbstractDiscountDecorator

 Decorators annotated with a lower value priority are called i rst. In the preceding example,

PriceDiscountDecorator is invoked before BlackFridayDiscountDecorator. r

 Decorators annotated with @Priority are called before decorators in the deployment descriptor. If

a decorator is enabled in both, it is called twice. This may lead to undesirable results, so you need to

ensure that decorators are enabled in only one way.

 WHERE AND WHEN TO USE THE DECORATOR PATTERN

 The decorator pattern dynamically adds behavior to an object at run time or when it is not possible

or advisable to use subclassing (perhaps because it would create multiple subclasses). The pizza

restaurant example shows how to add behavior to a pizza object at run time based on choices the

customer made.

 The functionality of an application programming interface (API) can be extended and

improved by wrapping it in a decorator. Data streams are often decorated in this way. java

.io.BufferedInputStream is a good example of a decorator wrapping a lower‐level API and adding

functionality to buffer an input stream.

 In Java EE, decorators are implemented via Context Dependency Injection (CDI). You can use

decorators to add new business behavior or any other functionality that can be wrapped around the

Summary ❘ 95

original object. However, this design should be well documented and clearly implemented to allow

for better maintainability.

 The pluggability of decorators declared in the deployment descriptor makes it easy to enable and

disable decorators without recompiling and redeploying. In a hot deployment environment, the

server does not need to be restarted for the changes to the bean.xml to take effect. This makes

it extremely easy to change the behavior of an application in a production environment with no

interruption to service.

 Qualii er use provides a i ner grain of control over the execution of decorators than enabling/

disabling them in the bean.xml deployment descriptor. You can use qualii ers to exclude

certain implementations of an interface from being decorated or to apply different decorators to

implementations of the same interface.

 A decorator intercepts calls only to certain Java types. It is aware of all the semantics of that

interface and can implement business logic. This makes it perfect for modeling business concerns

that are identii able for a certain interface type.

 Decorators are often contrasted with interceptors. Interceptors intercept invocations of any Java

type, but they are not semantically aware and therefore are not a suitable tool for modeling business

concerns. Interceptors are used to implement cross‐cutting concerns such as logging, security, and

auditing that are not related to business logic.

 The heavy use of decorators may introduce runtime bugs, a harder‐to‐understand code base, and a

loss to the advantage of strongly typed static polymorphism. It may also introduce additional test

cases. However, decorators can provide almost unlimited extensibility and a great interface for

future implementations without breaking old code.

 SUMMARY

 In this chapter, you have seen how the implementation of the decorator pattern in Java EE is almost

unrecognizable from its pre‐Java EE ancestor. The object to be decorated is instantiated and injected

by the container, and the decorators to be applied are determined by declarations made in the

bean.xml deployment descriptor or via the strategic use of custom qualii ers.

 The use of annotations and dependency injection has reduced the number of lines of code you must

produce to implement a decorator solution and made it easier to introduce additional new classes,

which are automatically decorated by virtue of the interface they implement.

 You have seen how the decorator pattern has evolved into what is effectively a pluggable pattern that

can be enabled and disabled while the application is in production with no loss to service. However,

it maintains its original design principle of adding behavior or responsibilities to the objects it

decorates.

96 ❘ CHAPTER 7 DECORATOR PATTERN

 EXERCISES

1. Extend the shop example given earlier by adding more discount decorators and introducing
more qualii ers to gain i ner control over which decorators are invoked for which concrete
implementations.

2. Implement the decorator pattern on an existing API to add new functionality.
For example: java.io.FileInputStream.

3. Create a decorator that adds behavior to a bank account system such that when the client
withdraws more than a certain amount of cash, an SMS text message is sent to the client
advising of the withdrawal.

 NOTES

 1. Design Patterns: Elements of Reusable Object‐Oriented Software (Addison‐Wesley, 1994):
Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides.

 2. Head First Design Patterns (O’Reilly, 2004): Eric Freeman, Elisabeth Robson, Bert Bates,
Kathy Sierra.

 3. Pyro: http://muse.com.tr/pyro.html.
 4. CDI Specii cations 1.1: http://docs.jboss.org/cdi/spec/1.1/cdi‐spec

.html#decorators.

http://muse.com.tr/pyro.html
http://docs.jboss.org/cdi/spec/1.1/cdi%E2%80%90spec.html#decorators
http://docs.jboss.org/cdi/spec/1.1/cdi%E2%80%90spec.html#decorators

 WHAT’S IN THIS CHAPTER?

➤ Introduction to aspect‐oriented programming

➤ Aspects in Java

➤ Using servlet i lters as aspects

➤ Aspects in Java EE, interceptors

➤ EJB interceptors versus CDI interceptors

 WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

 The wrox.com code download for this chapter is found at www.wrox.com/go/

projavaeedesignpatterns on the Download Code tab. The code is in the Chapter 08

download and individually named according to the names throughout the chapter.

 Aspect‐oriented programming (AOP) is not a new concept. Its place in Java and third‐party

frameworks was secured from the early days of enterprise development. Despite this, it was

not one of the classical design patterns listed in the GOF 1 book.

 AOP introduced a new concept and paradigm to programming. The idea relies on basing the

code execution order on aspects. Each aspect intercepts the program’s execution and adds its

own behavior before continuing with the call.

 Aspects act like magic, adding further logic and behavior to the code at run time. However,

this also brings an ambiguous and hard‐to‐follow code execution order that can often result in

almost undebuggable code. AOP has many followers and fans, besides many haters.

 Luckily, Java EE has a nice and clean implementation that can be helpful if it’s used in the

right way and context.

 8

http://www.wrox.com/go/projavaeedesignpatterns
http://www.wrox.com/go/projavaeedesignpatterns

98 ❘ CHAPTER 8 ASPECT‐ORIENTED PROGRAMMING (INTERCEPTORS)

WHAT IS ASPECT‐ORIENTED PROGRAMMING?

Aspect‐oriented programming (AOP) aims to add behavior to existing code or applications to solveg

common concerns. It is fairly normal to receive a new logging or security request in the middle of

the development cycle. Such requests may consume a huge amount of time in refactoring existing

code even though the logging code is a bunch of repetitive lines. Such common concerns, whether

they appear in the middle of the development cycle or in the design phase of the project, are called

cross‐cutting concerns and can be addressed with AOP.

AOP became a popular programming paradigm during the past decade. Although Java did not

offer a full‐l edged out‐of‐the‐box solution, some well‐implemented third‐party frameworks offered

AOP. AspectJ and Spring are widely accepted and have been used for a long time in Java‐based

projects. Java also had a similar but more basic approach with servlet i lters, although it is limited

to web requests. With servlet i lters, any request or response can be intercepted, and any additional

behavior can be added.

 Java EE adopted AOP and introduced the interceptor concept. Each update to Java EE brought new

functionalities and unleashed the full potential of AOP to the Java EE platform.

AOP is not classii ed as a design pattern but is accepted as a programming paradigm. Neither

the GOF book nor Head First Design Patterns2 discusses aspects. However, if either one did, an

appropriate description would be “Provides a way to change execution behavior at run time (or

compile time) to address cross‐cutting concerns in the existing code base.”

AOP relies on code injection during compile time or run time to add the desired behavior or

functionality to each point of an existing code base that matches the given injection criteria.

Frameworks that perform compile‐time injection usually out‐perform, but they produce class i les

that do not match the source code line by line because of the injected code. Runtime injection does

not modify the source or class i les and performs injection by intercepting calls and executing the

desired code before or after the original execution order.

AOP can prove to be useful if it is necessary to add a repetitive action, such as logging or security,

to a code base. The aspects can be turned on or off depending on the environment or phase of the

project. Aspects can dynamically add the desired behavior to running code. They dynamically

decorate the method calls just as the decorator pattern decorates objects.

 WAR STORY

 We had just i nished development of a web application and were completing the

i nal phase before going live. After completing functionality and user acceptance

tests, we needed to submit the application to security trials. A team of security

experts was hired to test our system for vulnerabilities. Because the application

before ours was hacked and leaked important data, the security testing was taken

very seriously.

What Is Aspect‐Oriented Programming? ❘ 99

 We were pretty coni dent about our application, so we all grabbed some popcorn

and watched the test phases. After a huge set of successful tests, one i nally failed.

The security guys had managed to capture the Hypertext Transfer Protocol (HTTP)

request and change some parameters to get a response from the application. The

issue was not huge because the middle tier had its own authorization system.

Nevertheless, the tweaked request could access an authorized response.

 To summarize, the client should call several services to access a resource. Let’s say

service A returns some IDs and Service B could be called with the IDs returned

from Service A. Similarly, Service C could be called with one of the IDs returned

from Service B. This means that an intruder could capture and insert a random B

ID, which the user was authorized to query but didn’t. In such a case, the client

would bypass the standard call l ow and access a resource.

 Because the accessed information was a resource that the user authorized, the issue

was not huge. Still, it was reported as a security l aw that bypassed regular l ow;

this got attention.

 The application was already completed and tested, and we didn’t really want to

refactor the application. Instead, we came up with a brilliant idea: Because in each

request the client needs to use an ID from the previous response, we could capture

all returned IDs. If the requested ID was from the list of queried IDs, we could

easily let it go or invalidate the session and force the user to log in again.

 The idea was simple but effective, yet we didn’t know how to implement it with

minimal change. Because everything we wanted to do related to web requests,

intercepting and validating them seemed like a good idea. Luckily, Java already

offered a built‐in solution, and we didn’t need to use a fancy third‐party

framework.

 The solution was to implement a servlet i lter. This would cache the requested

IDs in the response and check whether the next request had a valid ID from the

list. We only needed to add a class i le that acted as the servlet i lter and an XML

dei nition to put the servlet i lter into action. The solution was pluggable and

could be integrated with no problem. Also, it came with an option to turn it off in

development environments.

 The system not only passed all security tests, but it went beyond expectations. We

could easily log and extract statistical data from request/response pairs. Best of all,

the solution did not have an impact on the overall architecture and complexity of

the system.

 AOP can be a great tool to encapsulate common nonbusiness concerns. However, AOP can also

be confusing if it adds behavior to business logic. Such implementations cause decentralized,

distributed, and hard‐to‐test‐and‐debug business logic. The resulting code would be hard to

maintain.

100 ❘ CHAPTER 8 ASPECT‐ORIENTED PROGRAMMING (INTERCEPTORS)

 IMPLEMENTING AOP IN PLAIN CODE

 Java SE does not offer out‐of‐the‐box support for AOP. You can achieve plain AOP by using third‐

party frameworks such as AspectJ or Spring. Such frameworks used to depend on XML‐only

coni guration; however, you can now achieve AOP through the use of annotations. Implementation and

coni guration of both frameworks are beyond the scope of this book, but they have a proven record

and can easily be implemented. They both provide a valid alternative to the Java EE implementation.

 However, Java web applications have the advantage of using servlets to intercept the request or the

response, which works similarly to aspects. To implement a servlet i lter, create a new class i le and

implement the servlet i lter interface. Then provide an implementation of the doFilter () method, as

shown in Listing 8‐1.

 LISTING 8‐1: Simple implementation of a servlet i lter

 package com.devchronicles.interceptor.filter;

 import java.io.IOException;
 import java.util.ArrayList;
 import java.util.List;

 import javax.servlet.Filter;
 import javax.servlet.FilterChain;
 import javax.servlet.FilterConfig;
 import javax.servlet.ServletException;
 import javax.servlet.ServletRequest;
 import javax.servlet.ServletResponse;
 import javax.servlet.http.HttpServletRequest;
 import javax.servlet.http.HttpServletResponse;

 public class SecurityFilter implements Filter {

 @SuppressWarnings("unused")
 private FilterConfig filterConfig = null;

 @Override
 public void doFilter(ServletRequest request, ServletResponse response,
 FilterChain filterChain) throws IOException, ServletException {
 Log.info(((HttpServletRequest) request).getRemoteAddr());
 //perform some security check
 }

 @Override
 public void init(FilterConfig filterConfig) throws ServletException {
 this.filterConfig = filterConfig;
 }

 }

 The web container needs the coni guration shown in Listing 8‐2 to activate the servlet i lter on given

uniform resource locators (URLs). This is placed in the web application’s web.xml i le.

Implementing AOP in Plain Code ❘ 101

 LISTING 8‐2: Dei ne the Servlet Filter

 <?xml version= "1.0" encoding="UTF‐8" ?>

 <web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:web="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd" version="2.5">

<filter>
 <filter‐name>LineSsoFilter</filter‐name>
 <filter‐class>com.devchronicles.interceptor.filter</filter‐class>
</filter>

<filter‐mapping>
 <filter‐name>SecurityFilter</filter‐name>
 <url‐pattern>/*</url‐pattern>
 </filter‐mapping>

 </web-app>

 It is even easier to implement i lters using Servlet 3.0 like in Listing 8‐3 because it uses annotations

and does not need XML coni guration.

 LISTING 8‐3: Simple implementation of a servlet i lter in Servlet 3.0

 package com.devchronicles.interceptor.filter;

 import java.io.IOException;
 import java.util.ArrayList;
 import java.util.List;

 import javax.servlet.ServletException;
 import javax.servlet.ServletRequest;
 import javax.servlet.ServletResponse;
 import javax.servlet.http.HttpServletRequest;
 import javax.servlet.http.HttpServletResponse;

 import javax.servlet.Filter;
 import javax.servlet.annotation.WebFilter;
 import javax.servlet.annotation.WebInitParam;

@WebFilter(filterName = "TimeOfDayFilter", urlPatterns = {"/*"})
 public class SecurityFilter implements Filter {

 @Override
public void doFilter(ServletRequest request, ServletResponse response,
 FilterChain filterChain) throws IOException, ServletException {
 Log.info(((HttpServletRequest) request).getRemoteAddr());
 //perform some security check
 }

 }

http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd

102 ❘ CHAPTER 8 ASPECT‐ORIENTED PROGRAMMING (INTERCEPTORS)

 Servlet i lters are easy‐to‐implement tools, but they’re also powerful. However, the functionality

is still limited to client server web requests. To intercept other method calls or to i ne‐tune the

interception, you need a much more sophisticated approach.

 ASPECTS IN JAVA EE, INTERCEPTORS

 J2EE did not offer an out‐of‐the‐box AOP solution but worked in harmony with third‐party

frameworks. Java EE 5 introduced interceptors, which resulted in an easy‐to‐use built‐in aspect

approach. However, the interceptor concept was limited to Enterprise JavaBeans (EJB) until Context

and Dependency Injection (CDI) was introduced.

 Interceptors in Java EE work in a similar way to aspects. Each interceptor addresses the concern

and hosts the code block that contains the functionality to be added. The target to be decorated is

called an advice . Each call to an advice within the scope of the interceptor is intercepted. The exact

location of the aspect to be executed is called the pointcut. t

 Basic Java EE interceptors can only work on EJBs. Imagine an application consisting of hundreds

of EJBs. The whole application can be coni gured to log all EJB calls by deploying an interceptor

targeting all those EJBs.

 Implementing interceptors in Java EE is straightforward. The i rst step is to create a new interceptor

class and annotate it with the @Interceptor annotation. This class hosts the advice code. Any

method annotated with @AroundInvoke is executed at the pointcut. However, there are some syntax

rules regarding the pointcut method signature:

➤ Any pointcut method must return an object of type Object and have a parameter of type

InvocationContext .

➤ Throw an exception.

 You can use the InvocationContext parameter to access information about the current context as

seen in Listing 8‐4.

 LISTING 8‐4: Simple implementation of an interceptor

 package com.devchronicles.interceptor;

 import javax.interceptor.AroundInvoke;
 import javax.interceptor.InvocationContext;

@Interceptor
 public class SecurityInterceptor {

 @AroundInvoke
 public Object doSecurityCheck(InvocationContext context) throws Exception{

 //Do some security checks!

 Logger.getLogger("SecurityLog")

Aspects in Java EE, Interceptors ❘ 103

.info(context.getMethod().getName()+ "is accessed!");

 return context.proceed();
 }
 }

 To put the interceptor class into action, you must annotate the target advice with the

@Interceptors annotation as in Listing 8‐5. The @Interceptors annotation would only be used in

an EJB or MDB (Message Driven Bean).

 LISTING 8‐5: Simple implementation of target advice

 package com.devchronicles.interceptor;

 import javax.ejb.Stateless;
 import javax.ejb.TransactionAttribute;
 import javax.ejb.TransactionAttributeType;
 import javax.enterprise.event.Event;
 import javax.inject.Inject;
 import javax.interceptor.Interceptors;

@Interceptors(SecurityInterceptor.class)
 @Stateless
 @TransactionAttribute(TransactionAttributeType.REQUIRED)
 public class SomeBusinessService {

 public void startService(){
 //Complex business logic
 Logger.getLogger("AppLog").info("done...");
 }

 public void startAnotherService(){
 //Complex business logic
 Logger.getLogger("AppLog").info("done again...");
 }
 }

 The Interceptors annotation is l exible. You can also use it at both the class and the method

levels. The Interceptors annotation also supports multiple interceptor inputs, which enable

multiple interceptors on the target advice. Listing 8‐5 uses class‐level interceptors, which means

that the Security interceptor will intercept either of the service calls. If you do not want the

interceptor to cover all method calls in the class, you can use method‐level annotations, as

shown in Listing 8‐6.

 LISTING 8‐6: Implementation of class‐level interceptors

 package com.devchronicles.interceptor;

 import javax.ejb.Stateless;
 import javax.ejb.TransactionAttribute;

continues

104 ❘ CHAPTER 8 ASPECT‐ORIENTED PROGRAMMING (INTERCEPTORS)

 import javax.ejb.TransactionAttributeType;
 import javax.enterprise.event.Event;
 import javax.inject.Inject;
 import javax.interceptor.Interceptors;

 @Stateless
 @TransactionAttribute(TransactionAttributeType.REQUIRED)
 public class SomeBusinessService {

 @Interceptors(SecurityInterceptor.class)
 public void startService(){
 //Complex business logic
 Logger.getLogger("AppLog").info("done...");
 }

 public void startAnotherService(){
 //Complex business logic
 Logger.getLogger("AppLog").info("done again...");
 }
 }

 This time only calls to the startService() method are intercepted, unlike in Listing 8‐5, in which

all methods of the class were intercepted. You should annotate each method separately.

 Using @Interceptor , r @Interceptors with @AroundInvoke unleashes a powerful tool that

solves cross‐cutting concerns in an AOP approach. Yet interceptors offer easy annotation‐based

implementation with no boilerplate code.

 You can use the InvocationContext interface to extract information about the context or interact

with the advice context. Following are some of the more useful methods:

DESCRIPTION

public Object getTarget(); Return to the target advice.

public Method getMethod(); Return the executed method from the advice.

public Object[] getParameters(); Access target advice method’s parameters.

public void setParameters(Object[]); Set target advice method’s parameters.

public java.util.Map<String,Object>

getContextData();
Access context data.

public Object proceed() throws

Exception;
Continue execution.

 In Listing 8‐7, you can access the method name. Also, you can check whether the interceptor had

authorized the access before; if it has not, you can authorize the user for that method.

LISTING 8-6 (continued)

Aspects in Java EE, Interceptors ❘ 105

 LISTING 8‐7: Accessing information in the InvocationContext

 package com.devchronicles.interceptor;

 import javax.interceptor.AroundInvoke;
 import javax.interceptor.InvocationContext;

 @Interceptor
 public class SecurityInterceptor {

 @AroundInvoke
 public Object doSecurityCheck(InvocationContext context) throws Exception{

 //Do some security checks!
Logger.getLogger("SecurityLog") .info(context.getMethod()

.getName()+ "is accessed!");
String user = context.getContextData.get("user");

 if (user==null){
user=(String)context.getParameters()[0];

 context.getContextData.put("user", user)’
 }

 return context.proceed();
 }

 }

Interceptor Life Cycle
 You can capture the interceptor’s life-cycle phases easily with the help of life-cycle annotations.

Unlike extending and overriding, using life-cycle annotations hooks any function to the appropriate

phase. The available life-cycle annotations are @PostConstruct , @PrePassivate , @PostActivate ,

and @PreDestroy . Listing 8‐8 shows how to hook up using interceptor life-cycle methods.y

 LISTING 8‐8: Hooking the interceptor’s life-cycle phases

 package com.devchronicles.interceptor;

 import javax.interceptor.AroundInvoke;
 import javax.interceptor.InvocationContext;

 @Interceptor
 public class SecurityInterceptor {

 @AroundInvoke
 public Object doSecurityCheck(InvocationContext context)

throws Exception{
 //Do some security checks!
 Logger.getLogger("Security Log").info(context.getMethod()

 .getName()+ "is accessed!");

continues

106 ❘ CHAPTER 8 ASPECT‐ORIENTED PROGRAMMING (INTERCEPTORS)

 String user = context.getContextData.get("user");
 if (user==null){
 user=(String)context.getParameters()[0];
 context.getContextData.put("user", user)’
 }

 return context.proceed();
 }

 @PostConstruct
 public void onStart(){
 Logger.getLogger("SecurityLog").info("Activating");
 }

 @PreDestroy
 public void onShutdown(){
 Logger.getLogger("SecurityLog").info("Deactivating");
 }
}

 Because the hooks rely on annotations, method names do not make a difference; you can use any name.

 Default‐Level Interceptors
 Marking the target advice with Interceptors annotation provides an easy implementation and setup, but

the nature of AOP usually asks for more. Most scenarios require the interceptor to perform its operation

targeting all advices. Imagine adding interceptors for logging or security—targeting only a subset of EJB

wouldn’t work. Also, annotating each EJB can become cumbersome and can easily lead to human error.

 Java EE offers default‐level interceptors to target all or subsets of EJB matching the naming scheme

provided. Unlike in the previous example, to implement default‐level interceptors, you need XML

coni guration:

 <ejb-jar...>
 <interceptors>
 <interceptor>

 <interceptor‐class>
 com.devchronicles.SecurityInterceptor
 </interceptor‐class>
 </interceptor>

 </interceptors>
 <assembly-descriptor>
 <interceptor-binding>

<ejb‐name>*</ejb‐name>
 <interceptor‐class>
 <interceptor‐class>
 com.devchronicles.SecurityInterceptor
 </interceptor‐class>
 </interceptor‐class>

 </interceptor-binding>
 </assembly-descriptor>
 </ejb-jar>

LISTING 8-8 (continued)

Aspects in Java EE, Interceptors ❘ 107

 The i rst part of the XML i le lists the interceptors; then the interceptor bindings need to be

declared. This is done in the assembly description part, which can accept a wildcard (*) that applies

to all or a specii c name to create the binding between the interceptors and the EJB. The order of the

interceptors listed also determines the execution order. The interceptors listed in the EJB‐JAR i le

apply only to EJB in the same module.

 Interceptor Order
 If more than one interceptor has been defined for an advice, the order of the execution will

be from the most general to the most specific case. This means that default‐level interceptors

will be executed before class‐level interceptors, which will be followed by method‐level

interceptors.

 This behavior is expected; nevertheless, the order of same‐level interceptors can be a bit more

confusing. If there is more than one default‐level interceptor, the order in the EJB‐JAR i le

determines the order of the execution of the interceptors.

 <ejb-jar...>
 <interceptors>
 <interceptor>
 <interceptor-class>
 com.devchronicles.SecurityInterceptor
 </interceptor-class>

<interceptor‐class>
 com.devchronicles.AnotherInterceptor
 </interceptor‐class>

 </interceptor>
 </interceptors>
 <assembly-descriptor>
 <interceptor-binding>
 <ejb-name>OrderBean</ejb-name>
 <interceptor-order>
 <interceptor-class>
 com.devchronicles.SecurityInterceptor
 </interceptor-class>
 </interceptor-order>

<interceptor‐class>
 com.devchronicles.AnotherInterceptor
 </interceptor‐class>

 </interceptor-binding>
 </assembly-descriptor>
 </ejb-jar>

 When there is more than one class‐level interceptor, the interceptors follow the order in which they

are listed in the @Interceptors annotation:

 @Interceptors(SecurityInterceptor.class, AnotherInterceptor.class)
@Stateless
@TransactionAttribute(TransactionAttributeType.REQUIRED)
public class SomeBusinessService {
 public void startService(){
 // ...

108 ❘ CHAPTER 8 ASPECT‐ORIENTED PROGRAMMING (INTERCEPTORS)

 Finally, if more than one method‐level interceptor is present, again, the interceptors follow the order

they are listed in the @Interceptors annotation:

 @Stateless
@TransactionAttribute(TransactionAttributeType.REQUIRED)
public class SomeBusinessService {
 @Interceptors(SecurityInterceptor.class, AnotherInterceptor.class)
 public void startService(){
 // ...

 If you need to tweak the default ordering, you can do so by custom coni guration within the EJB‐

JAR XML. The following overrides the interceptor order and provides a custom ordering:

 <ejb-jar...>
 <interceptors>
 <interceptor>
 <interceptor-class>
 com.devchronicles.SecurityInterceptor
 </interceptor-class>
 </interceptor>
 </interceptors>
 <assembly-descriptor>
 <interceptor-binding>
 <ejb-name>OrderBean</ejb-name>
 <interceptor-order>
 <interceptor-class>
 com.devchronicles.SecurityInterceptor
 </interceptor-class>
 </interceptor-order>
 <interceptor-class>
 com.devchronicles.AnotherInterceptor
 </interceptor-class>

 <method>
 <method‐name>startService</method‐name>
 </method>

 </interceptor-binding>
 </assembly-descriptor>
 </ejb-jar>

 There might be exceptional cases in which the interceptors need to be disabled. You can disable

interceptors with annotations as seen in Listing 8‐9. Java EE offers two different annotations to

disable default and class‐level interceptors separately.

 LISTING 8‐9: Disabling the interceptors

 package com.devchronicles.interceptor;

 import javax.ejb.Stateless;
import javax.ejb.TransactionAttribute;
import javax.ejb.TransactionAttributeType;
import javax.enterprise.event.Event;
import javax.inject.Inject;

Aspects in Java EE, Interceptors ❘ 109

import javax.interceptor.Interceptors;

@ExcludeDefaultInterceptors
@ExcludeClassInterceptors
@Stateless
@TransactionAttribute(TransactionAttributeType.REQUIRED)
public class SomeBusinessService {

 public void startService(){
 //Complex business logic
 Logger.getLogger("AppLog").info("done...");
 }

 public void startAnotherService(){
 //Complex business logic
 Logger.getLogger("AppLog").info("done again...");
 }
}

 Still, the example given is only valid in EJB and MDBs, which may not be enough for all cases.

Thanks to CDI, it is not hard to achieve more.

 CDI Interceptors
 Before CDI, interceptors were applicable only for EJB and MDBs. CDI unleashed a huge power and

transformed interceptors into an AOP‐capable feature that works on any object.

 Implementing CDI interceptors is straightforward and quite l exible. First, you need to specify a

binding. A binding is a custom annotation annotated with @InterceptorBinding .

 @InterceptorBinding
 @Target({TYPE, METHOD})
 @Retention(RUNTIME)
 public @interface Secure {}

 The @InterceptorBinding is used to bind interceptors with the target code. Next, you can

implement and annotate the interceptor with the custom binding. CDI interceptors are implemented

the same way as the EJB interceptors, the only signii cant difference being the use of the binding

annotation which can be seen in Listing 8‐10

 LISTING 8‐10: Binding an Interceptor with @Secure

 package com.devchronicles.interceptor;

import javax.interceptor.AroundInvoke;
import javax.interceptor.InvocationContext;

@Secure
 @Interceptor
public class SecurityInterceptor {

 @AroundInvoke

 public Object doSecurityCheck(InvocationContext context) throws Exception{

continues

110 ❘ CHAPTER 8 ASPECT‐ORIENTED PROGRAMMING (INTERCEPTORS)

 //Do some security checks!
 Logger.getLogger(" SecurityLog").info(context.getMethod()

 .getName()+ "is accessed!");
 String user = context.getContextData.get("user");

 if (user == null){

 user = (String)context.getParameters()[0];
 context.getContextData.put("user", user)’
 }

 return context.proceed();

 }

 @PostConstruct
 public void onStart(){
 Logger.getLogger("SecurityLog").info("Activating");
 }

 @PreDestroy
 public void onShutdown(){
 Logger.getLogger("SecurityLog").info("Deactivating");
 }
}

 Just like the EJB interceptors, the @Interceptor annotation needs to be used to promote the class

i le to an interceptor. The @Secure annotation binds the interceptor. Finally, the @AroundInvoke

annotation marks the method to be executed during intercepted calls.

 The next step is to implement the annotation on an advice, as shown in Listing 8‐11.

 LISTING 8‐11: Implementing the @Secure on an advice

 package com.devchronicles.interceptor;

 import javax.interceptor.Interceptors;

@Secure
public class SomeBusinessBean {

 public void startService(){
 //Complex business logic
 Logger.getLogger("AppLog").info("done...");
 }

 public void startAnotherService(){
 //Complex business logic
 Logger.getLogger("AppLog").info("done again...");
 }
}

LISTING 8-10 (continued)

Where and When to Use Interceptors ❘ 111

 CDI interceptors require one additional step of declaring the interceptors in the beans.xml i le.

This is one of the rare cases in which you need to use XML coni guration; it’s used to determine the

execution order of the interceptors.

 Interceptor bindings can include other interceptor bindings that wrap multiple bindings together.

The CDI container is not started if the beans.xml i le is missing:

 <beans xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=" http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/beans_1_0.xsd">
 <interceptors>
 <class> com.devchronicles.interceptor.SecurityInterceptor</class>
 <class> com.devchronicles.interceptor.SomeOtherInterceptor</class>
 </interceptors>
 </beans>

 Although the declaration order of the binding annotations may imply a sense of execution order, in

reality it has no effect. The execution order of the interceptor depends on the declaration order in

the beans.xml i le.

 Mixing CDI and EJB interceptors may create ambiguity in the ordering. As a rule, EJB interceptors

execute before CDI interceptors do.

 Intercepting methods creates complexity, but creating multiple bindings and mixing

CDI and EBJ interceptors brings this complexity to the next level. Complex interceptor

structures may expose a complex application architecture for developers who are not familiar

with the code.

 WHERE AND WHEN TO USE INTERCEPTORS

 AOP is a popular programming paradigm that can help to implement and encapsulate cross‐cutting

concerns. In many cases, AOP can really shine. Logging, auditing, security, and other repeating

nonbusiness behavior are good candidates.

 Interceptors in Java EE are powerful tools that allow you to implement AOP without the need for

a third‐party framework. With the introduction of CDI interceptors, Java EE has become more

complete and capable. Implementing an interceptor may require some XML coni guration, unlike

other patterns listed in this book. However, the coni guration is only limited to provide ordering,

which other patterns such as decorators may also require.

 Interceptors can address many cross‐cutting concerns. They provide a clean implementation while

encapsulating the common concern. However, interceptors can be troublesome if they change

business behavior. If this happens, the business logic is distributed between the class and the

interceptor. The business method becomes unreadable and misleading because it doesn’t expose

the whole logic. Additionally, it unnecessarily complicates the architecture and application l ow.

Besides, debugging is almost impossible and complicated.

 Readability and self‐documenting code is an important aim, and misuse of interceptors can cause

great harm if it consists of business logic. However, using interceptors for nonbusiness and repeating

behavior can simplify the business methods and help greatly.

http://java.sun.com/xml/ns/javaee
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/beans_1_0.xsd

112 ❘ CHAPTER 8 ASPECT‐ORIENTED PROGRAMMING (INTERCEPTORS)

 As a general rule, avoid using interceptors for injecting business logic or changing the execution

behavior. Interceptors are great when you need repetitive work that covers some methods or classes.

 SUMMARY

 AOP is a popular subject that has many supporters but also many enemies. As expected, it is not

a panacea that solves all problems. Aspects can greatly reduce code readability and complicate the

overall application l ow if not used properly.

 However, aspects can be magical tools that implement additional behavior to the existing code

base with minimal effort. You can easily turn them on or off depending on the running time

environment. For example, you can turn off a logging aspect during development and put it into

action in the test environment.

 Java EE offers simple interceptors that support annotations and need little XML coni guration,

except in special cases. You can use interceptors both in EJB and MDB contexts either at the class

or the method levels. You can also declare interceptors at a default level, which targets all EJBs

matching the given criteria. The default level and ordering needs some coni guration to be done in

the EJB‐JAR XML i le.

 CDI adds great extensibility and functionality to interceptors. You can easily customize CDI

interceptors and use them in a cleaner way with the @InterceptorBinding annotation. You can use

interceptor bindings to wrap other interceptor bindings, forming a chain of interceptors to execute.

CDI interceptors do need minimal XML coni guration to help the CDI container determine the

execution order.

 EJB and CDI interceptors work alone or together in harmony. They offer all the functionality

needed to implement AOP without a third‐party framework.

 The proper use of interceptors creates beautifully crafted applications with magical execution l ow.

When it is time to decide to implement interceptors, make sure they don’t change business l ow and

contain application logic.

 NOTES

 1. Design Patterns: Elements of Reusable Object‐Oriented Software (Addison‐Wesley, 1994):
Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides.

 2. Head First Design Patterns (O’Reilly, 2004): Eric Freeman, Elisabeth Robson, Bert Bates,
Kathy Sierra.

 WHAT’S IN THIS CHAPTER?

➤ Introduction to asynchronous programming

➤ What is asynchronous programming

➤ Asynchronous programming using threads

➤ Using asynchronous programming in beans

➤ Asynchronous programming in servlets

➤ When and where to best use asynchronous techniques

 WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

 The wrox.com code download for this chapter is found at www.wrox.com/go/

projavaeedesignpatterns on the Download Code tab. The code is in the Chapter 09

download and individually named according to the names throughout the chapter.

 Although asynchronous programming is not always listed as a design pattern, it has been

a popular and important programming model for the past decade. The asynchronous

programming model relies on multithreading and executing the given functionality in a

separate thread. Not only do multithreaded environments and programming languages take

advantage of asynchronous programming techniques, but single‐threaded platforms, such

as the popular server‐side JavaScript platform NodeJS, make good use of asynchronous

programming principles.

 9

 NOTE The asynchronous pattern is also referred to as nonblocking method
execution because the invoked method does not block the caller.

http://www.wrox.com/go/projavaeedesignpatterns
http://www.wrox.com/go/projavaeedesignpatterns

114 ❘ CHAPTER 9 ASYNCHRONOUS

 Java was designed to support multiple threads from its start. However, it failed to provide a simple

approach to making asynchronous calls. The Future<T> interface, which was introduced in Java 5,

was Java’s i rst attempt at implementing asynchronous programming, but it was cumbersome

and tricky to use. Subsequent versions of Java introduced the @Asynchronous annotation. The

asynchronous servlet provided a much better set of tools to aid in asynchronous programming.

WHAT IS ASYNCHRONOUS PROGRAMMING?

The asynchronous programming pattern is a special and well‐integrated case of multiple threads.

Due to the nature of threads, multithreading models tend to need notii cation systems and depend

on boilerplate code to initiate threads.

Asynchronous calls are used even in single‐threaded environments like Node.JS. Almost all user

interface (UI) frameworks use asynchronous execution to keep UI active and responsive. The i rst

“A” of AJAX, 1 which powered the Web 2.0 movement, stands for asynchronous.

However, asynchronous programming can be useful in places other than user interfaces, typically

on the sever side. Neither J2SE nor J2EE offered a built‐in easy implementation for asynchronous

programming. With Java 5, the Concurrency Framework, based on JSR166, was released. JSR166

included many utilities that made asynchronous programming possible, easier, and better controlled.

The Future<V> interface also provided a way to help developers to implement asynchronous

method execution.

Meanwhile, Spring offered asynchronous method calls, which are enabled with annotations.

Java EE did not include such a convenient solution until version 6.0. The @Asynchronous

annotation was introduced with Java EE 6 and offered an easy way to implement asynchronous

method execution.

Asynchronous Pattern
Asynchronous programming is not listed as a design pattern in either the GoF2 book or in the Head

First Design Patterns3 book. If it was, its description might be “Provides a way to invoke a method

without blocking the invoker.”

The nature of method execution is to block the caller until the called method i nishes its execution.

This behavior is straightforward and expected but may not be desired in all cases. Almost all UI

frameworks and web platforms rely on nonblocking requests.

 WAR STORY

 I was given the task of developing the customer services web portal for

a telecommunications company. We had implemented a detailed logging

infrastructure while developing the portal. We did not log to a database to ensure

What Is Asynchronous Programming? ❘ 115

 The asynchronous pattern relies on the i re and forget approach where an operation is done in

parallel or in a way not blocking the executor thread, and the result is checked when it is ready.

Usually the asynchronous approach makes use of parallel execution. It may not be accurately

rel ected with a class diagram but may be better shown with a l ow diagram. Figure 9-1

demonstrates several asynchronous execution l ows.

that the logging was fast and failsafe in moments when the database was not

available. We were successful in developing a system that had fast response times

and was reliable. We were pleased with what we had achieved.

 Then we were asked to log each user’s actions to a database table along with some

specii c user‐related data. The database we were asked to use had a reputation for

being slow and for regularly crashing and restarting. This was bad news for our

fast and reliable logging system. We now had to refactor our system, taking into

consideration the unreliability of the database. Imagine what would happen if a

user interaction was being logged at the same time the database went down. The

synchronous call to the logging system would block the response to the user until

it either regained connection or timed out. The user would have to wait, which was

unacceptable.

 We did not want the user to wait for the database to respond and expose a database

error to the front end, especially considering that we were only logging statistics.

After implementing and testing all the DAO classes, we added the @Asynchronous

annotation and prepared to go live.

 As usual, we were coni dent in our well‐tested deployment package, so we decided

to go home to sleep rather than spending the night with the server administrators

who were doing the deployment. The next morning we received an e‐mail advising

us that the application was live.

 Soon we discovered that our server’s log i les were full of errors, showing that the

database connection had been unavailable. We contacted the server administrators

and quickly discovered that the database admins had forgotten to create the log

tables in the live database. The tables were quickly created, and all was well until

the database started to suffer from performance‐related issues and had frequent

server restarts (as was expected given its reputation).

 Our application had failed to persist some noncritical logs but never faltered in its

performance. Every time there was a problem with the database and the logging

failed, the user had already i nished what he was doing and didn’t notice that

the logging had failed, thanks to the use of asynchronously calling the logging

functionality.

 Asynchronous programming is a great tool to use when separating tasks that do

not need to interact with each other.

116 ❘ CHAPTER 9 ASYNCHRONOUS

 IMPLEMENTING ASYNCHRONOUS PATTERN
IN PLAIN CODE

 Java has supported threads that you can easily use for asynchronous code execution from its initial

design:

 public class AsyncRunnable implements Runnable {

 public void run() {
 System.out.println("Running!");
 }
 }

 To execute the Runnable class, initialize it in a thread and invoke the run method by calling the

start() method on the newly created thread:

 (new Thread(new AsyncRunnable())).start();

 Although the preceding example is the preferred way to start a thread process, another approach is

to extend the thread class and override the run() method:

 public class AsyncThread extends Thread {

 public void run() {
 System.out.println("Running!");
 }

 }

 To execute the class, instantiate it and then call the start() method:

 (new HelloThread()).start();

perform
security
check

perform
asynchronous

work

make
data

available

display
response

perform
asynchronous

work

request
some data

async low

classic asynchronous request/response low

 FIGURE 9-1: Asynchronous l ow diagram

Implementing Asynchronous Pattern in Plain Code ❘ 117

 Two essential operations are commonly used when dealing with threads: sleep() and join() . Both

operations throw an InterruptedException .

 The sleep() method lets the thread sleep for a specii ed period, given in milliseconds. The following

code snippet puts the current thread into the sleep state for one second:

 Thread.sleep(1000);

 The join() method makes one thread wait for another thread’s execution to i nish. Consider a

thread, t1, that needs a resource from another thread, t2. To make t1 wait for t2 to i nish, join t1 to

t2, as shown in the following code snippet:

 t2.join();

 One of the most well‐known and widely used approaches to programming asynchronously in Java

is using the Future<V> interface. This interface enables the use of a proxy object, which offers a

reference for the future object. Because the concurrency framework does not offer annotation‐

based support for asynchronous execution, the Future interface is mostly coupled with an

ExecutorService , which is part of the concurrency framework.

 The following example uses an executor service to complete a task while it returns a reference to the

Future interface with the appropriate generic type:

 ExecutorService executor = Executors.newSingleThreadExecutor();

 Future<String> reference = executor.submit(
 new Callable<String>() {
 public String call() {
 return "Hello!!";
 }
 }
);
 //..
 if (reference.isDone())
 System.out.println(reference.get());

 The FutureTask class is an implementation of the Future<T> interface, which implements the

runnable interface and can be executed directly:

 FutureTask<String> reference = new FutureTask<String>(
 new Callable<String>() {
 public String call() {
 return "Hello!!";
 }
 }
);

 executor.execute(reference);

 You can cancel this execution by calling the cancel(boolean mayInterruptIfRunning) method.

If the mayInterruptIfRunning parameter is set to true , calls to the method SessionContext

.wasCancelled() return true . Otherwise, a call to the SessionContext.wasCancelled() method

returns false . To check the status of cancelation, you can use the isCancelled() method, which

returns tru e if a cancelation is successful.

118 ❘ CHAPTER 9 ASYNCHRONOUS

 The concurrency framework JSR‐133 offers great tools for threads and concurrent

programming, such as BlockingQueues . These topics are beyond the scope of this chapter.

See the book Java Concurrency in Practice 4 for further reading. The Fork/Join Framework,

which was introduced in Java 7, also offers a huge change in favor of asynchronous and parallel

programming in Java.

 ASYNCHRONOUS PROGRAMMING IN JAVA EE

 Because J2EE failed to offer built‐in support for the asynchronous programming paradigms

(except for Timer), third‐party frameworks, such as Spring and Quartz, stepped in to i ll this gap.

This dei cit was corrected in Java EE 5; it was the i rst Java version to support the asynchronous

programming pattern out of the box.

 Asynchronous Beans
 Java EE supports asynchronous programming in several ways. The simplest way to

implement the asynchronous pattern in Java EE is, not surprisingly, via the application

of an annotation. Annotating a method with @Asynchronous is enough to advise the Java

EE container to asynchronously execute the invoked method in a separate thread. To see

the asynchronous annotation in action, go back to the singleton logging bean example in

Chapter 4 , “Singleton Pattern” and add the asynchronous annotation to change its default behavior.

Listing 9-1 shows an example of an asynchronous bean.

 LISTING 9‐1: An example of an asynchronous bean

 package com.devchronicles.asynchronous;

 import javax.annotation.PostConstruct;
 import javax.ejb.Singleton;
 import javax.ejb.Startup;
 import java.util.logging.Logger;
 import javax.ejb.Asynchronous;

 @Startup
 @Singleton
 public class MyLoggingBean {

 private Logger logger;

 @PostConstruct
 public void start(){
 logger = Logger.getLogger("MyGlobalLogger");
 logger.info("Well, I started first!!!");
 }

 public void logInfo(String msg){

Asynchronous Programming in Java EE ❘ 119

 logger.info(msg);
 }

 @Asynchronous
 public void logAsync(String msg){
 logger.info(msg);
 }
 }

 The logAsync() method, unlike its logInfo() counterpart, is executed asynchronously. To observe

asynchronous behavior, add Thread.sleep() calls:

 public void logInfo(String msg) {
 logger.info(“Entering sync log”);

 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {}

 logger.info(msg);
}

 @Asynchronous
public void logAsync(String msg {
 logger.info(“Entering async log”);

 try {
 Thread.sleep(13000);
 } catch (InterruptedException e) {}

 logger.info(msg);
}

 Finally, create a new bean to call both functions in order, as shown in Listing 9‐2.

 LISTING 9‐2: Refactor of Listing 9.1 to include both functions

 package com.devchronicles.asynchronous;

 import javax.annotation.PostConstruct;
 import javax.ejb.Singleton;
 import javax.ejb.Startup;

 @Startup
 @Singleton
 public class TestLogging {

 @EJB
 MyLoggingBean logBean;

 @PostConstruct continues

120 ❘ CHAPTER 9 ASYNCHRONOUS

 public void testLoggers(){

 System.out.println("call async");
 logBean.logAsync("Log Async");

 System.out.println("call sync");
 logBean.logInfo("Log Sync");

 System.out.println("finished");

 }
 }

 A typical console output would be as follows:

 > call async

 > Entering async log

 > call sync

 > Entering sync log

 > Log Sync

 > finished

 > Log Async

 After you execute the testLoggers() method, call the logAsync() and logSync() methods. Both

methods let their execution thread sleep for the given length of time. As can be seen from the

console output, the async() method was called and went into a long sleep but did not lock the

execution of the sync() method. The sync() method sleeps for a while but returns control to the

caller method and prints finished . Finally, the async() method wakes up and i nishes logging by

printing Log Async to the console.

 This example clearly shows that the asynchronous call does not stop the caller thread, nor does it stop

the sync() method. However, when the sync() method goes into the sleep state, the caller method

waits until the sleep ends. The @Asynchronous annotation is an easy way to implement asynchronous

behavior and can be added to almost any method at any time during and after development.

 Asynchronous Servlets
 So far, you have seen that you can convert any method of a bean to an asynchronous method. Now

you’ll look at how to make a servlet act asynchronously. Without asynchronous support in servlets,

it is hard to respond to the asynchronous web challenge.

 The Servlet 3.0 specii cation (JSR 315) made huge improvements to the Java web application

programming interfaces (APIs). With JSR 315, the servlet specii cation was updated (after a long

wait) to support an asynchronous execution model, easy coni guration, pluggability, and other

minor enhancements.

LISTING 9-2: (continued)

Asynchronous Programming in Java EE ❘ 121

 Asynchronous servlets rely on a basic improvement in Hypertext Transfer Protocol (HTTP) 1.1,

which enabled persistent connections. In HTTP 1.0, each connection is used to send and receive

only a single request and response couple; however, HTTP 1.1 allowed web applications to keep

the connection alive and to send multiple requests. On a standard implementation, the Java back

end would need a separate thread constantly attached to the HTTP connection. However, Java

nonblocking I/O (NIO) APIs recycle threads between active requests, thanks to the new NIO

capability. Today all web servers compatible with the Servlet 3.0 specii cation have built‐in support

for Java NIO. Why do you need such behavior from servlets? The nature of back‐end systems

involves lengthy operations such as connecting to other servers, performing complex calculations,

and making transactional database operations. However, the nature of web pages requires quite the

opposite. Web users expect fast response times and a functional UI even if back‐end operations are

completed. AJAX addressed this issue for the browser and started the Web 2.0 revolution.

 Servlet 3.0 introduced the startAsync() method, which enabled asynchronous operations.

Listing 9‐3 shows an example.

 LISTING 9‐3: An example of the startAsync() method

 package com.devchronicles.asynchronous;

 import java.io.*;
 import javax.servlet.*;
 import javax.servlet.annotation.*;
 import javax.servlet.http.*;

 @WebServlet(urlPatterns={"/async"}, asyncSupported=true)
 public class AsyncServlet extends HttpServlet {

 @Override
protected void doGet(HttpServletRequest req, HttpServletResponse res)
 throws IOException, ServletException {

 final AsyncContext asyncContext = req.startAsync();
 final String data;

 asyncContext.addListener(new AsyncListener() {

 @Override
 public void onComplete(AsyncEvent event) throws IOException {
 AsyncContext asyncContext = event.getAsyncContext();
 asyncContext().getWriter().println(data);
 }

 @Override
 public void onTimeout(AsyncEvent event) throws IOException {
 // Code not shown for brevity
 }

 @Override
 public void onError(AsyncEvent event) throws IOException {
 // Code not shown for brevity
 }

continues

122 ❘ CHAPTER 9 ASYNCHRONOUS

 @Override
 public void onStartAsync(AsyncEvent event) throws IOException {
 // Code not shown for brevity
 }
 });

 new Thread() {
 @Override
 public void run() {
 asyncContext.complete();
 }
 }.start();

 res.getWriter().write("Results:");
 //Read data from database
 data = "Queried data…";
 //sleep thread for some time…
 }
 }

 This servlet prints Results: and later prints retrieved data from the database, which is a simple string

in this scenario. You need to initialize a separate thread. AsyncListener’s onComplete method is

executed only when the execution completes. Several other life cycle methods exist in the AsyncListener:

➤ onStartAsync —executes when the asynchronous context starts

➤ onTimeOut —executes only if a timeout occurs

➤ onError —executes only if an error is received

 The Servlet 3.1 specii cation provided an easier way to implement asynchronous servlets by

using managed thread pools and the executor service. The example in Listing 9‐4 uses a

ManagedThreadFactory to create a new thread.

 LISTING 9‐4: An example that uses ManagedThreadFactory

 package com.devchronicles.asynchronous;

 import java.io.*;
import javax.servlet.*;
import javax.servlet.annotation.*;
import javax.servlet.http.*;

@WebServlet(urlPatterns="/async", asyncSupported=true)
public class AsyncServlet extends HttpServlet {

 @Resource
 private ManagedThreadFactory factory;

 @Override

LISTING 9-3: (continued)

Asynchronous Programming in Java EE ❘ 123

 protected void doGet(HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException {

 final AsyncContext asyncContext = req.startAsync();
 final PrintWriter writer = res.getWriter();

 Thread thread = factory.newThread(new Runnable() {

 @Override
 public void run() {
 writer.println("Complete!");
 asyncContext.complete();
 }
 });

 thread.start();
 }
}

 This example creates a new thread that hosts the time‐consuming process and i nally calls a

complete function from asyncContext . ManagedThreadFactory serves as an available thread from

the pool that you need to start explicitly.

 Another approach is to submit the asynchronous runnable to ManagedExecutorService instead

of creating and starting the thread in the servlet. Delegating threading issues to ExecutorService

provides cleaner code, as you’ll see in Listing 9‐5.

 LISTING 9‐5: An example that delegates to the ExecutorService

 package com.devchronicles.asynchronous;

 import java.io.*;
import javax.servlet.*;
import javax.servlet.annotation.*;
import javax.servlet.http.*;

 @WebServlet(urlPatterns="/async", asyncSupported=true)
public class AsyncServlet extends HttpServlet {

 @Resource
 private ManagedExecutorService executor;

 @Override
 protected void doGet(HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException {

 final AsyncContext asyncContext = req.startAsync();
 final PrintWriter writer = res.getWriter();

 executor.submit(new Runnable() {
 @Override

continues

124 ❘ CHAPTER 9 ASYNCHRONOUS

LISTING 9-5: (continued)

 public void run() {
 writer.println("Complete!");
 asyncContext.complete();
 }
 });
 }
}

 Although it’s just one line less than the previous listing, Listing 9‐5 delegates the creation and starting

of the thread to the ExecutorService and only deals with servlet‐specii c code.

 Asynchronous servlets are easier to understand and code and have an immediate effect on runtime

behavior because it directly switches to the asynchronous execution model. Asynchronous servlets

provide a clean implementation without a lot of boilerplate code.

 WHERE AND WHEN TO USE ASYNCHRONOUS
PROGRAMMING

 You can use the asynchronous pattern almost anywhere where it is required to return a response

before all the execution is complete. This approach can vary from executing the less important

functions of the application asynchronously, such as logging or keeping the user informed about a

time‐consuming operation. Asynchronous programming makes the critical execution path shorter

while delegating subtasks to other threads. The result is better response times.

 Asynchronous annotation is a simple way to implement asynchronous methods or convert existing

ones. Each method marked with the asynchronous annotation runs in a separate thread without

locking the current thread’s execution. This behavior is a perfect match for conditions that do not

affect the main execution cycle but need to be performed on the back end. Examples include logging

and maintenance resources.

 You can use asynchronous servlets in almost all modern web apps. Asynchronous servlets provide

nonblocking asynchronous behavior without a special need for AJAX. Asynchronous servlets can help

when a server‐based push operation is needed, such as updating information or delivering a message.

 Because each asynchronous execution requires a new thread, the Java Virtual Machine (JVM) needs

to perform more context switches as more asynchronous methods are implemented. A large number

of context switches cause thread starvation and result in poorer performance than a synchronous

implementation.

 Imagine that you are reading one book. Between reads, you must remember the story, the

characters, and the last page you’ve read. If you’re reading two books at the same time, you may

i nish the second shorter book without needing to i nish the longer one you started. The time spent

changing context from one book to the other is acceptable.

 Reading six books in parallel would be challenging. It may require so many context changes that

you may not be able to i nish any of the books in the expected time and end up changing from one

book to the other without making much progress in any of them.

Summary ❘ 125

 Asynchronous programming radically modii es the execution order and therefore debugging.

Because debugging relies on suspending the execution and then stepping line by line through it,

it is more difi cult to understand the execution behavior and to mimic what is really happening.

The JVM determines the execution order of threads at run time. It is almost impossible to

simulate the same behavior because of very different available resources on test and development

environments. If you don’t need it, asynchronous execution adds undesired complexity.

 Threading and asynchronous execution can be a great tool only if used properly without

starving resources. It is a good idea to run nonblocking parts asynchronously, but not on

every method.

 SUMMARY

 In the age of multicores and web 2.0, asynchronous programming uses computing resources,

delegates nonblocking tasks, and results in faster and more responsive user interfaces. Even if your

application does not implement the asynchronous pattern, most application servers and JVMs use

asynchronous execution internally via thread pools for many operations. Using those available

threads and resources greatly affects your application’s efi ciency and responsiveness.

 Threading has been a i rst‐class citizen from the early days of Java, but using threads to run

asynchronous tasks was complicated and wasn’t always safe in server‐managed containers. With the

release of the Concurrency Framework, Java unleashed a huge set of tools into the hands of Java

developers.

 Java EE followed this trend by providing an easy‐to‐use and implement annotation‐based

asynchronous programming model. Adding the @Asynchronous annotation tells the container to

execute the function asynchronously.

 The servlet API introduced important changes in release 3.0 and further improvements in release

3.1. The new servlet API uses the new nonblocking Java I/O to support asynchronous web

programming in an efi cient way. Although previous approaches needed a request/response couple to

be bound to a thread, the new model can use or release threads using the internal thread pool that

the container provides.

 Today Java EE offers all the needed tools to run asynchronous code without the need for a third‐

party framework such as Spring or Quartz. This makes the asynchronous pattern a great tool to

implement if you want to execute nonblocking code asynchronously with almost no boilerplate code.

EXERCISES

1. Create an implementation of a session bean that has an asynchronous method.

2. Develop simple functionality that uses asynchronous methodology to persist application log
data to a database.

3. Use the asynchronous feature of Servlet 3.0 to design an asynchronous web service.

126 ❘ CHAPTER 9 ASYNCHRONOUS

 NOTES

 1. “AJAX (Asynchronous JavaScript and XML): A New Approach to Web
Applications.” Jessie James Garret. http://www.adaptivepath.com/ideas/
ajax‐new‐approach‐web‐applications/.

 2. Design Patterns: Elements of Reusable Object‐Oriented Software (Addison‐Wesley, 1994):
Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides.

 3. Head First Design Patterns (O’Reilly, 2004): Eric Freeman, Elisabeth Robson, Bert Bates,
Kathy Sierra.

 4. Java Concurrency in Practice (Addison‐Wesley Professional, 2006): Brian Goetz, David
Holmes, Doug Lea, Tim Peierls, Joshua Bloch.

http://www.adaptivepath.com/ideas/ajax%E2%80%90new%E2%80%90approach%E2%80%90web%E2%80%90applications/
http://www.adaptivepath.com/ideas/ajax%E2%80%90new%E2%80%90approach%E2%80%90web%E2%80%90applications/

 WHAT’S IN THIS CHAPTER?

➤ Advancements made in the timer service

➤ Automatic timers

➤ Programmatic timers

➤ Setting the schedule with schedule expressions

➤ Timers and transactions

 WROX.COM CODE DOWNLOAD FOR THIS CHAPTER

 The wrox.com code download for this chapter is found at www.wrox.com/go/

projavaeedesignpatterns on the Download Code tab. The code is in the Chapter 10

download and individually named according to the names throughout the chapter.

 Business applications need to perform tasks based on either calendar events or a timed

schedule, whether it is to generate weekly user activity reports, repopulate a cache, or send a

client a reminder e-mail. There are many use case scenarios. The timer service enables you to

program timer events at specii c times or regular intervals.

 This chapter shows you how to coni gure the timer service using both automatic and

programmatic techniques and how to schedule tasks using the cron‐like schedule expressions.

WHAT IS THE TIMER SERVICE?

 Can you imagine needing to wake up every morning to check the clock to see if it is time to

get up? Probably not. Even before the invention of the alarm clock, people used sunlight or

roosters to wake up. But roosters and the sun are not customizable. This lack of customization

 10

http://www.wrox.com/go/projavaeedesignpatterns
http://www.wrox.com/go/projavaeedesignpatterns

128 ❘ CHAPTER 10 TIMER SERVICE

led to the invention of one of the most important devices of modern life: the alarm clock. Today

even basic cell phones and i tness trackers offer alarms that you can adjust to different times and

different days and even offer snooze options.

For a long time, neither Java SE nor Java EE offered a built‐in solution for time‐based operations.

This lack of support was i lled with community‐led open source.

Traditionally, timer‐based tasks would have been scheduled using a third‐party tool such as

Quartz, 1 but such a tool tends to be tricky to use. Third‐party tools require you to download

and install a library, implement interfaces, and coni gure XML i les. They’re anything but

straightforward.

Fortunately for you and partly because of the difi culty faced by developers trying to use

third‐party libraries, a scheduling facility was introduced into the EJB 2.1 specii cation.

This timer service satisi ed the simplest use case scenarios. And for those complicated cases, there was

still Quartz. Indeed, Quartz almost became the de facto standard of time‐based operations in Java.

There is no default implementation for timers in Java SE. You can use Quartz in both Java SE

and Java EE, but Quartz usage is a separate topic beyond this book. So this chapter skips the Java

implementation and moves on to Java EE.

Advancements were made in the EJB 3.2 specii cation (the latest release) to the timer service.

Introduced were the @Schedule and @Schedules annotations and cron‐like calendar expressions.

Now all but the most exceptional use case scenarios are satisi ed. The timer service runs in the

container as a service and registers Enterprise JavaBeans (EJB) for callbacks. It tracks the timers that

exist and their schedules, and it even takes care of persisting the timer in case a server shuts down or

crashes. The only thing the developer needs to do now is schedule the timer.

The timer service has been through a long development cycle. An overview of the advancements is

summarized in Table 10-1 .

 TABLE 10-1: Timer Service Development

VERSION DEVELOPMENT

EJB 2.1 Java 1.4

(November 2003)

The ejbTimer implements the TimedObject interface.

The TimerService is accessed through the EJBContext method.

The business logic must be in the ejbTimeout method.

EJB 3.0 Java 5

(May 2006)

The TimerService object is injected via direct injection using the

annotation @Resource .

The business logic must be placed in a method annotated with @Timeout .

Schedule set by specifying a date, duration, or ScheduleExpression

object or an XML coni guration i le.

Referred to as programmatic timers in Java EE 6.

What Is the Timer Service? ❘ 129

EJB 3.1 Java 6

(December 2009)

The container sets the TimerService object automatically; no injection is

required.

The business logic must be placed in a method annotated with @Schedule

or @Schedules .

The schedule is set in the annotations attributes and bycalendar‐based

EJB timer expressions.

EJB 3.2 Java 7

(June 2013)

This extended the EJB Lite group to include the nonpersistent EJB timer

service.

Includes enhancements to the TimerService API that allows access to all

active timers in the EJB module.

Restrictions on Timer and TimerHandle that obliged references to be

used only inside a bean have been removed.

 WAR STORY

 Recently, I was brought in to consult on a web project that was suffering from

intermittent performance issues. These issues had only appeared recently—just as

the site’s visitor numbers started to accelerate.

 The developers had chosen to use a No‐SQL database to persist GPS data regarding

the location of the site’s visitors. This was a good decision because this particular

No‐SQL data store was adept at geospatial queries.

 Queries were regularly run against the database, which collated data from the

location collection and aggregated it to generate reports. These reports generated

daily visitor statistics and were executed every day by a junior staff member.

 After some investigating, I discovered that the performance issues the application

was having coincided with the time the reports were being run. The extra hit to

the database caused by running the reports was responsible for the deterioration in

performance.

 The solution was quite simple. Run the reports when the database was experiencing

lower use. After reviewing the database usage reports, I determined that the

optimal time to run the reports was 03:00 GMT. Clearly, I couldn't ask the junior

member of the staff to start work at 3:00 in the morning, so I decided to automate

the generation of the reports and coni gured the timerservice to launch the report

generation.

 Many tasks are best run in off hours for the same reason as spelled out here.

Repopulating data caches is a common example of a heavy process that should be

run when the effect on site performance is minimal.

130 ❘ CHAPTER 10 TIMER SERVICE

IMPLEMENTING A TIMER IN JAVA EE

There are two types of timers in Java EE 7: automatic and programmatic. Automatic timers are set

upon the deployment of an enterprise Java bean (EJB) that contains a method annotated with either

@Schedule(...) or @Schedule(...). The annotated method is invoked by the container’s scheduler

at the specii ed times, or time intervals dei ned within the arguments of the annotations. Such

methods are referred to as callback methods. The timer starts ticking as soon as the EJB is deployed.

A programmatic timer is set at run time by a method called from within the business logic. The time

can be coni gured on the l y and invoked at anytime (or not at all). The timer start ticking when the

programming logic determines that it should start.

Automatic Timers
The container invokes any method appropriately annotated with @Schedule and applies the

schedule coni guration specii ed in the annotation’s attributes. The attributes of the annotation are

set following the calendar‐based timer attributes in the “Timer Expression” section that follows.

Here is a simple example:

 @Schedule(second="*/1", minute="*", hour="*")
 public void executeTask(){
 System.out.println("Task performed");
 }

In this code snippet, the method executeTask is annotated @Schedule ; this indicates to the

container to set a timer upon deployment based on the time values specii ed in the annotations

attributes. In this example the container invokes the executeTask method once every second.

By default, all timers are persisted and restored after a server shutdown or crash. If you set the

optional attribute persistent to false , the timer is reset on server restart. You can set two additional

attributes: info and timezone . If you set timezone , that time zone is respected when executing the

timer; otherwise, the server time zone is used. The info attribute allows a developer to provide a

description of the time that you can retrieve by calling the getInfo method of the Timer interface.

 @Schedule(hour = "23", minute = "59", timezone = "CET",
 info = "Generates nightly
report")
 public void executeTask(){
 System.out.println("Task performed");
 }

 TIMER SERVICE IMPLEMENTATION

 The EJB container implements the timer service. An enterprise bean can access this

service in three ways: by means of dependency injection, through the EJBContext

interface, or through lookup in the Java Naming and Directory Interface (JNDI)

namespace. This book only examines the way by means of dependency injection,

because it's the newest and most efi cient.

Implementing a Timer in Java EE ❘ 131

 In the preceding code snippet, the executeTask method is invoked at 23:59 Central European

time regardless of the time zone of the server on which it is deployed. A call to the method getInfo

returns the text Generates nightly report .

 You can coni gure more complex timers using @Schedules (note the pluralization) with multiple

timer expressions.

 @Schedules({
 @Schedule(dayOfMonth = "1"),
 @Schedule(dayOfWeek = "Mon,Tue,Wed,Thu,Fri", hour = "8")
 })
 public void executeTask() {
 System.out.println("Task performed");
 }

 This timer i res on the i rst of every month and every work day at 08:00. Listing 10‐1 shows a

complete example of an automatic timer.

 LISTING 10‐1: The simplest implementation of an automatic timer

 package com.devchronicles.timer;

 import javax.ejb.Schedule;
 import javax.ejb.Schedules;

 public class PeriodicTimer {

 @Schedules({
 @Schedule(dayOfMonth = "1"),
 @Schedule(dayOfWeek = "Mon,Tue,Wed,Thu,Fri", hour = "8")
 })
 public void executeTask() {
 System.out.println("Task performed");
 }

 }

 One drawback of the automatic timer is that its schedule is set at deployment time and

cannot be changed while the application is executing. Fortunately, there is a solution to

this situation in the form of the programmatic timer, which you can set at any moment during

run time.

 Programmatic Timers
 Programmatic timers are created at run time by invoking one of the create methods of the

TimerService interface. Here is a simple example:

 public void setTimer(){
 timerService.createTimer(30000, "New timer");
 }

132 ❘ CHAPTER 10 TIMER SERVICE

 When the application code invokes the setTimer method, it creates a single‐action timer that

calls a “timeout” method in the same bean after the specii ed duration of 30,000 milliseconds.

A “timeout” method is identii ed by the annotation @Timeout and must conform to certain

requirements. It must not throw exceptions or return a value. It’s also exempt from needing to take

a parameter, but if it does, it must be of type javax.ejb.Time . There can be only one “timeout”

method.

 @Timeout
 public void performTask() {
 System.out.println("Simple Task performed");
 }

 The Context Dependency Injection (CDI) container injects a reference to the TimerService

into an instance variable annotated @Resource . Here the container injects the instance variable

timerService .

 @Resource
 TimerService timerService;

 If you put together the previous three code snippets into a single bean and the application code

calls the setTimer method, you create a timer that, after 30 seconds, calls the “timeout” method

performTask . Listing 10‐2 shows the simplest possible implementation of the programmatic timer

in Java EE 7.

 LISTING 10‐2: The simplest implementation of a programmatic timer

 package com.devchronicles.timer;

 import javax.annotation.Resource;
 import javax.ejb.Timeout;
 import javax.ejb.TimerService;

 public class SimpleProgrammaticTimer {

 @Resource
 TimerService timerService;

 public void setTimer(){
 timerService.createTimer(30000, "New timer");
 }

 @Timeout
 public void performTask() {
 System.out.println("Simple Task performed");
 }
 }

 There are four timer creation methods in the TimerService interface with ten signatures.

Table 10-2 shows an example of each one:

Implementing a Timer in Java EE ❘ 133

 All methods apart from the createCalendarTimer method can take as the i rst parameter either

duration in milliseconds or a date. This sets up the point at which the timer is triggered. Here is an

example:

 SimpleDateFormat formatter = new SimpleDateFormat("dd/MM/yyyy ‘at’ HH:mm");
 Date date = formatter.parse("26/01/2015 at 17:56");
 timerService.createSingleActionTimer(date, new TimerConfig());

 In this code snippet, the “timeout” method is triggered at 17:56 on January 26, 2015.

 If a scheduled timer is required, you can use the createCalendarTimer method. This method takes

a ScheduleExpression object in which a schedule is set using the values described in the “Timer

Expression” section that follows.

 ScheduleExpression expression = new ScheduleExpression();
 expression.second("*/10").minute("*").hour("*");
 timerService.createCalendarTimer(expression);

 In this code snippet, the schedule is set to trigger every ten seconds of every minute of every hour.

 All the creation methods return a Timer object that represents the timer. This object has the method

getHandle , which returns a serializable handle to the timer. The handle object can be persisted in a

database or memory.

 Later you can retrieve the handle object and return a reference to the timer by invoking the

getTimer method. With this object in hand, you can retrieve useful information about the timer.

 It’s easy to obtain information about the behavior of the timer. You can retrieve details regarding

the timer’s schedule by calling the method getSchedule . This returns a ScheduleExpression object

that has a getter method for each attribute. For example, getMinute() returns the value set for the

minute attribute. The getNextTimeout method gets the point when the timer i res next, whereas the

method getTimeRemaining returns the milliseconds before the timer expires.

 The isCalendarTimer method returns true if the timer was set by constructing a

ScheduleExpression object. You must call it before the getSchedule method to determine if

 TABLE 10-2: Examples of the Four Timer Creation Methods

METHOD EXAMPLE

createIntervalTimer(new Date(), 10000,

new TimerConfig());
This creates a timer that i res at the given date

and then every ten seconds thereafter.

createSingleActionTimer(1000, new

TimerConfig());
This creates a timer that i res after one second.

createTimer(30000, "Created new

programmatic timer");
This creates a timer that i res after 30 seconds.

createCalendarTimer(new

ScheduleExpression().second("*/10").

minute("*").hour("*"));

This creates a timer that i res every ten

seconds.

134 ❘ CHAPTER 10 TIMER SERVICE

 It’s worth noting that the default value for the time attributes is 0 (zero) and for the non‐numerical

values it is * (asterisk).

 This table has been appropriated from the Oracle’s Java EE 7 tutorial.2 The syntax is cron‐like

and should be familiar to most programmers. There are a few interesting characteristics worth

pointing out.

the timer was set this way; otherwise, isCalendarTimer throws an IllegalStateException

exception.

 You can determine information about the timer’s persistent state by using the isPersistent

method. Similarly, you can obtain information about the time by calling the getInfo method.

 Timers are automatically cancelled when they expire. The container cancels the single‐event timers,

and you can cancel scheduled timers by calling the cancel method on the Timer object.

 Timer Expression
 Both programmatic and automatic timers can use calendar‐based timer attributes. Table 10-3 shows

the range of timer attributes that are used to set the timers. For automatic calendar‐based timers,

you set the calendar attributes in the annotation, whereas programmatic calendar‐based timers use

methods of the ScheduleExpression class to set the calendar attribute values.

 TABLE 10-3: Calendar‐Based Expressions

ATTRIBUTE DESCRIPTION PERMITTED VALUES

second One or more seconds within a

minute

0 through 59

minute One or more minutes within an

hour

0 through 59

hour One or more hours within a day 0 through 23

dayOfWeek One or more days within a week 0 through 7 (0 and 7 refer to Sunday)

Sun through Sat

dayOfMonth One or more days within a month 1 through 31

–7 through –1 (days from end of month)

Last

1st, 2nd, 3rd ‐ nth

Sun through Sat

month One or more months within a

year

1 through 12

Jan through Dec

year A particular calendar year 2014, 2015, etc.

Implementing a Timer in Java EE ❘ 135

 New in the EJB 3.2 implementation is an enhancement to the timer service API that allows access to

all active timers in the EJB module. These include both programmatically and automatically created

timers.

 LISTING 10‐3: All timers can be retrieved and manipulated

 package com.devchronicles.timer;

 import java.util.Collection;
 import javax.annotation.PostConstruct;
 import javax.annotation.Resource;
 import javax.ejb.Singleton;
 import javax.ejb.Startup;

 The asterisk character is a placeholder for all possible values for the given attribute. For example,

to set a schedule to trigger every hour, you would use the expression hour="*" for annotation‐

coni gured timers. For programmatic timers, you would invoke the method hour("*") on an instance

of the ScheduleExpression class.

 You can express values for each attribute as a list or a range. For example, the expression

dayOfMonth="1, 15, last" sets the timer to trigger on the i rst, i fteenth, and last day of every

month, whereas the expression hour="8‐18" represents every hour from 08:00 until 18:00.

 You can specify intervals and augment them with a starting point. The expression hour="8/1"

 triggers every hour starting from 08:00, whereas the expression hour="*/12" triggers every

12 hours. However, you can only set intervals for seconds, minutes, and hour attributes.

 Table 10-4 offers a few examples of the calendar‐based schedule in action.

 TABLE 10-4: Examples of Expressions in Action

Expression Action

Second="10" Every ten seconds

 hour = "2", Every two hours

 minute = "15" Every 15 minutes

 dayOfWeek="Mon, Fri" Every Monday and Friday at midnight

dayOfWeek="0‐7", hour="8" Every day at 8 a.m.

dayOfMonth="‐7" Five days before the end of every month at midnight

dayOfMonth="1st Mon", hour="22" First Monday of every month at 10 p.m.

Month="Mar", dayOfMonth="15" The 15th of the following March

year="2015", month="May" May 1, 2015 at midnight

continues

136 ❘ CHAPTER 10 TIMER SERVICE

 import javax.ejb.Timer;
 import javax.ejb.TimerService;

 @Singleton
 @Startup
 public class AllTimers {

 @Resource
 TimerService timerService;

 @PostConstruct
 public void manageTimer(){

 Collection<Timer> timers = timerService.getAllTimers();

 for(Timer t : timers){
 System.out.println("Timer Info: " + t.getInfo());
 System.out.println("Time Remaining: " + t.getTimeRemaining());
 t.cancel();
 }
 }
 }

 In Listing 10‐3, the bean is instantiated at start‐up, and the manageTimer method is called. You

retrieve a collection of all the active timers and iterate over the collection, printing out the timer info

and the number of milliseconds that will elapse before the next scheduled timer expiration. Finally,

you cancel the timer.

 Transactions
 Beans create timers within a transaction that the container manages. If this transaction is rolled

back, so is the timer. If this transaction is rolled back then the timer is also rolled back. This means

that its creation is rolled back and if it were canceled the cancellation would be undone and the

timer reinstated. In listing 10‐4 we show an example of a timer method marked with a transaction

annotation.

 LISTING 10‐4: A timer can set a transaction attribute

 package com.devchronicles.timer;

 import javax.annotation.Resource;
 import javax.ejb.Timeout;
 import javax.ejb.TimerService;

 public class SimpleProgramaticTimer {

 @Resource

LISTING 10-3: (continued)

Summary ❘ 137

 TimerService timerService;

 public void setTimer(){
 ScheduleExpression expression = new ScheduleExpression();
 expression.second("*/10").minute("*").hour("*");
 timer = timerService.createCalendarTimer(

new ScheduleExpression().second("*/10").minute("*").hour("*"));
 }

 @Timeout
@TransactionAttribute(TransactionAttributeType.REQUIRED)

 public void performTask() {
 System.out.println("Simple Task performed");
 }
 }

 Beans that use container‐managed transactions set the transitions attribute on the method annotated

@Timeout . Transactions are designated Required or RequiresNew . The transaction is started beforew

the method is called. If the transaction is rolled back, the @Timeout method is called again.

SUMMARY

 In this chapter, you have seen how to create automatic and programmatic timers and how they

behave within a transaction. Timers can be quite useful when a cron‐like job needs to run without

disturbing the main business logic. You can see examples of timers in many projects and in almost

all programming languages. The automatic timer is created by annotating a method with either

@Schedule or @Schedules and hard‐coding timer values as attributes of the annotations by

declaring them in the ejb‐jar.xml deployment descriptor. Programmatic timers are created by the

application code and can change their values at run time.

 The timer type you choose to solve your problem will depend largely on whether the frequency

of the event will change based on business logic (client services) or technical requirements

(repopulating a cache). The latter would best be served with a programmatic timer, whereas the

former would benei t most from an automatic timer.

 Timers are persisted by default to guard against server shutdowns and crashes and can be serialized

in a database and later retrieved. Timers take part in a transaction and are fully rolled back with the

transaction. It became a little easier to manage timers in EJB 3.2; you can retrieve all active timers

in a collection and call timer methods on each instance.

 With the new achievements on Java EE, timers became solid and capable, leaving most third‐party

frameworks obsolete.

EXERCISES

1. Write a cache that repopulates a map from a database. Set the timer service to i re at 3 a.m.,
calling the repopulate method of the cache.

2. Develop a programmatic timer that sends a notii cation to a client when his subscription is up
for renewal.

138 ❘ CHAPTER 10 TIMER SERVICE

 NOTES

 1. Quartz Job Scheduler: http://www.quartz‐scheduler.org/ .
 2. Oracle’s Java EE 7 tutorial: http://docs.oracle.com/javaee/7/tutorial/doc/ejb‐

basicexamples004.htm#GIQLY .

http://www.quartz%E2%80%90scheduler.org/
http://docs.oracle.com/javaee/7/tutorial/doc/ejb-basicexamples004.htm#GIQLY
http://docs.oracle.com/javaee/7/tutorial/doc/ejb-basicexamples004.htm#GIQLY

 WHAT’S IN THIS CHAPTER?

➤ How to implement the observer pattern in plain code

➤ How the observer pattern works in the real world

➤ How to implement the observer pattern using @Observes and

Event i ring

➤ How to use qualii ers to gain i ne‐grain control over observers

➤ How to implement transaction‐sensitive observers and rollbacks

 WROX.COM CODE DOWNLOAD FOR THIS CHAPTER

 The wrox.com code download for this chapter is found at www.wrox.com/go/

projavaeedesignpatterns on the Download Code tab. The code is in the Chapter 11

download and individually named according to the names throughout the chapter.

 The observer pattern is one of the most widely used and accepted design patterns in

modern programming languages, software, and user interface (UI) frameworks. Most

programming languages use observers within their internal application programming

interfaces (APIs), and Java is no exception. But Java EE goes further than most and provides

a default implementation of the observer pattern, so developers can use this pattern without

implementing it from scratch. This chapter focuses on Java’s default implementation of the

observer pattern: where it is used, how observers are implemented via annotations in Java EE,

and how observers can be made transaction sensitive.

WHAT IS AN OBSERVER?

 The idea behind the observer pattern is that an object that changes its state can inform other

objects that a change has occurred. In the language of the design pattern, the object that

 11

http://www.wrox.com/go/projavaeedesignpatterns
http://www.wrox.com/go/projavaeedesignpatterns

140 ❘ CHAPTER 11 OBSERVER PATTERN

changes its state is called the subject , whereas those objects that receive notii cation of the changet

are called the observers . The relationship is one to many, with the subject having many observers.

Imagine a chat application that automatically refreshes every second so it can check for new

messages. Also imagine that it has a chat room feature allowing many people to chat together. Each

of these chat clients regularly checks with the server to see if there has been a new message posted

by one of the other clients. As you can imagine, this is not very performance friendly. Would it not

make much more sense if the newly sent message was “pushed” to all subscribed clients? It would

certainly be more efi cient. The observer pattern can solve this problem. Here, the observer would

be the chat server, and each client would be a subject. The server would be registered with each

client, and when the client posts a new message (a change in state of the subject), the subject would

call a method on the server to notify it of the new message. Then the server would call a method on

all its registered clients and send the message to each one.

 NOTE The observer pattern is also referred to as the Hollywood principle ,
whose motto is “don’t call us; we’ll call you.” This is not surprising; most
Hollywood agents would prefer to call clients for a new role rather than being
hounded by clients calling them. This system works well because there’s never a
perfect time to call an agent to check about an available job. You’ll likely either
miss out on a job if jobs arrive more frequently than you’re calling, or you’ll be
seen as obnoxious if you’re calling more often than jobs arrive.

 With the help of the observer pattern, an agent calls appropriate clients just as a
new job opens, without losing time or wasting resources.

Description
The GoF1 book states that the observer pattern “dei nes a one‐to‐many dependency between objects

so that when one object changes state, all its dependents are notii ed and updated automatically.”

The Head First Design Patterns2 book gives the example of a weather monitoring application

that sends a notice when temperatures change. The observer pattern is based on the principle of

inheritance and is one of the behavioral design patterns.

To be an observer, each concrete observer implementation needs to share a similar interface. The

subject lets each observer add itself to a registry. When the subject changes, the observer calls each

subject’s registered implementation to notify the observer about the changes.

This is an efi cient implementation because only one call happens for each observer at the time

of the change. A naive solution such as regularly checking the subject may produce an unlimited

number of calls from different observers even though there had been no change to the object

observed.

The observer pattern is not that different from a news subscription. Objects that want to subscribe

to changes on another object register themselves to receive news of those changes. Rather than

checking the target object, these objects are called when there is a change.

What Is an Observer? ❘ 141

 UI Frameworks are another place where observers are heavily used, although this is more related

to desktop applications, not enterprise applications. In the context of UI frameworks, the observer

pattern is often referred to as the listener pattern. Essentially, these patterns are the same. Button

click listeners, drag drop handlers, and value change listeners all rely on an implementation of the

observer pattern.

 Almost all web frameworks are built on the model‐view‐controller pattern, which also uses the

observer pattern internally. See Chapter 14 , “Model View Controller Pattern,” for more details.

 WAR STORY

 For a long time, part of my daily job has been to mentor interns and fresh

graduates. This war story goes back to a talented intern I had the chance to work

with. This bright electronics graduate had more experience with hardware and

structural programming than object‐oriented languages; therefore, she had little

knowledge of design patterns. She had just completed a successful Arduino‐based

project. 3

 We started developing an Android application that used Android’s built‐in face

detection feature to detect whether the user was in front of the device. Coming

from an Arduino project, the intern’s i rst approach was to create a loop to query

the camera and see if it had detected a new face. This loop was running in the main

application thread, so it was blocking on the application.

 After realizing that she had locked the UI thread, she decided to create a separate

thread to perform the face detection job. She was using the “if the only tool you

have is a hammer, every problem looks like a nail” approach.4 We chatted for a

while about how the Arduino application was structured. On the Arduino, the

whole application was a loop that we wanted to keep running until we stopped

it, and all program features were handled in that loop. However, our Android

application had a different structure. The application needed to be informed of

when there was a face detected rather than querying the camera to see if a face had

been detected. Once this graduate understood how observers work, she didn’t have

much difi culty implementing the pattern because the Android system was already

built on the observer pattern. All she needed to do was add the appropriate listener

class and perform whatever function she needed when a face was detected.

 Observer Class Diagram
 As can be seen from Figure 11-1 , the observer pattern introduces an Observer interface that all

concrete observers must implement. This interface has just one method that is called by the subject

to notify the observers that there has been a change in state. Each subject holds a list of registered

observers and calls the notifyObservers method to inform the registered observers about any

updates or changes in the subject. It has methods for registering and unregistering observers.

142 ❘ CHAPTER 11 OBSERVER PATTERN

 IMPLEMENTING THE OBSERVER PATTERN IN PLAIN CODE

 Java provides an out‐of‐the‐box implementation of the observer pattern. By implementing the

Observer interface and extending the Observable class, developers can easily implement the

observer pattern.

 The i rst thing you need to do is create a class that extends the Observable class. In Listing 11‐1,

a news agency informs several types of subscribers when a new story is published. The subscriber

may introduce its own behavior after receiving an update. Listing 11‐2 provides an interface for

publishing the observable class.

 LISTING: 11‐1: The news agency implementing the observable interface

 package com.devchronicles.observer;

 import java.util.ArrayList;
 import java.util.List;
 import java.util.Observable;
 import java.util.Observer;

 public class NewsAgency extends Observable implements Publisher {

 private List<Observer> channels = new ArrayList<>();

 public void addNews(String newsItem) {
 notifyObservers(newsItem);
 }

 public void notifyObservers(String newsItem) {
 for (Observer outlet : this.channels) {
 outlet.update(this, newsItem);
 }

 FIGURE 11-1: Class diagram of the observer pattern

Observer

ConcreteObserverA ConcreteObserverB

Subject

+observerCollection
+registerObserver (observer)
+unregisterObserver (observer)
+notifyObservers ()

notifyObservers ()
 for observer in observerCollection
 call observer, notify ()

+notify ()

+notify () +notify ()

Implementing the Observer Pattern in Plain Code ❘ 143

 }

 public void register(Observer outlet) {
 channels.add(outlet);
 }
 }

 LISTING: 11‐2: The Publisher interface

 package com.devchronicles.observer;

 public interface Publisher {}

 Next, you need to create the class that observes the NewsAgency for changes. This observer must

implement the Observer interface as in Listing 11‐3.

 LISTING: 11‐3: Concrete observer

 package com.devchronicles.observer;

 import java.util.Observable;
 import java.util.Observer;

 public class RadioChannel implements Observer {

 @Override
 public void update(Observable agency, Object newsItem) {
 if (agency instanceof Publisher) {
 System.out.println((String)newsItem);
 }
 }
 }

 Finally, you must register the RadioChannel observer with the NewsAgency observable and create

some news.

 // Create the observer and subject
 NewsAgency newsAgency = new NewsAgency();
 RadioChannel radioChannel = new RadioChannel();

 // Register the observer with the subject
 newsAgency.register(radioChannel);

 // Now add some news headlines
 newsAgency.addNews("Breaking news: Life found on Mars");
 newsAgency.addNews("Update: Earth invasion imminent");
 newsAgency.addNews("Just in: Hail to our new Martian overlords");

 The output in the console should be as follows:

 Breaking news: Life found on Mars
 Update: Earth invasion imminent
 Just in: Hail to our new Martian overlords

news:Life
news:Life

144 ❘ CHAPTER 11 OBSERVER PATTERN

 Notice that you can register many observers with the NewsAgency and receive updates. Perhaps a

TVChannel observer or an InternetNewsChannel observer can register to receive updates from

the NewsAgency . In addition, you can have other y Publishers (or any other type of object that

implements Observable) issue updates to any observer that wants to register itself to receive news.

These observers can check the type of the Observable and process the update according to its source.

 One signii cant drawback of implementing the observer pattern in this way is that you have to extend

the Observable class. This forces the use of a class hierarchy that might not be desirable. Because you

cannot extend more than one class in the single‐inheritance world of Java, this way of implementing

the observer pattern restricts the inheritance design. You can’t add the Observable behavior to an

existing class that already extends another superclass, thus restricting its reuse potential.

But don’t despair. You can also implement the observer pattern by “hand,” without using the

internal Observer and Observable interfaces, by following the given class diagram. However,

because this book is focused on Java EE, this implementation is left for you to play with.

IMPLEMENTING THE OBSERVER PATTERN IN JAVA EE

Although Java had built‐in support for the observer pattern from inception, Java EE offers an easier

implementation via the @Observes annotation and javax.enterprise.event.Event<T> interface. Any

method annotated with @Observes listens for events of a certain type. When it “hears” such an event,

the parameter of the observer method receives an instance of the type and then executes the method.

 The @Observes annotation lets any method listen for any event to be i red with the marked object

type. Listing 11‐4 is a simple example of a bean that i res an event of type String and another bean

that listens for events of that type from our bean.

 LISTING 11‐4: The observable service bean

 package com.devchronicles.observer;

 import javax.ejb.Stateless;
 import javax.ejb.TransactionAttribute;
 import javax.ejb.TransactionAttributeType;
 import javax.enterprise.event.Event;
 import javax.inject.Inject;

 @Stateless
 @TransactionAttribute(TransactionAttributeType.REQUIRED)
 public class EventService {

 @Inject
 private String message;

 @Inject
 Event<String> event;

 public void startService(){
 event.fire("Starting service " + message);
 }
 }

Implementing the Observer Pattern in Java EE ❘ 145

 The container injects an Event object of type String into the event instance variable of the

EventService class. This forms part of the message when the to fire String object is i red. This

instance variable Message object is a String which may be produced by a factory. (See Chapter 6 ,

“Factory Pattern,” for more information about the factory design pattern injected to the EventService

class.) To make this example work without creating a factory even simpler, you can just dei ne any

String constant to the variable called message and remove the @Inject annotation as follows.

 private String message = "produced message";

 Now the observable part is completed, so it is time to create an observer that listens for your String

events. The addition of the @Observes annotation to the method signature marks the method as an

observer of events of the type it precedes. In this case, the @Observes annotation precedes the type

String and thus listens for events of that type. The @Observes annotation followed by an object

type does the magic and lets the annotated method observe the i red event of the given type.

 In Listing 11‐5, the @Observes annotation has been added to the serviceTrace method signature,

which marks the method as an observer for String events. When an event of type String

occurs, the serviceTrace method receives the object that the event produced via its parameter.

serviceTrace can then manipulate the String object as it wants. In this case, it prints the message

to the console.

 LISTING 11‐5: The observer bean

 package com.devchronicles.observer;

 import javax.ejb.Stateless;
 import javax.enterprise.event.Observes;

 @Stateless
 public class TraceObserver {

 public void serviceTrace(@Observes String message){
 System.out.println("Service message: " + message);
 }
 }

 If you run the server and invoke the start service method, you will realize how magically a

string will be injected to the EventService class, and then a String event is i red “where it will be

coughed (observed)” by the serviceTrace method of the TraceObserver class, and a message is

printed to the console. Surprisingly, this is all that you need to implement the observer pattern in

Java EE without further coni guration.

 Although in real‐world scenarios you probably wouldn’t be i ring and observing plain strings but

rather your own objects that would be observed by their type, it is still quite easy to differentiate

between the same object types of objects and set up different observers to listen for them.

 You are now going to look at an example in which you use Qualii ers to disambiguate String

objects. You have seen how this can be effective when implementing a factory pattern that produces

different implementations of the same type of object.

146 ❘ CHAPTER 11 OBSERVER PATTERN

 In Listing 11‐6, you start with the code that disambiguates your Strings .

 LISTING 11‐6: The annotation Qualii er interface

 package com.devchronicles.observer;

 import java.lang.annotation.ElementType;
 import java.lang.annotation.Retention;
 import java.lang.annotation.RetentionPolicy;
 import java.lang.annotation.Target;
 import javax.inject.Qualifier;

 @Qualifier
 @Retention(RetentionPolicy.RUNTIME)
 @Target({ElementType.FIELD,ElementType.PARAMETER})
 public @interface MessageEvent {

 Type value();

 enum Type{ SERVICE, PARAMETER }

 The interface preceding class dei nes a MessageEvent qualii er and two enum types (SERVICE and

PARAMETER) that you will use to act as annotation to mark the strings to be i red by the event instances. R

import com.devchronicles.observer.MessageEvent.Type;

 @Stateless
 @TransactionAttribute(TransactionAttributeType.REQUIRED)
 public class EventService {

 @Inject
 private String message;

 @Inject @MessageEvent(Type.SERVICE)
 Event<String> serviceEvent;

 @Inject @MessageEvent(Type.PARAMETER)
 Event<String> parameterEvent;

 public void startService(){
 serviceEvent.fire("Starting service "+message);

parameterEvent.fire("‐d ‐p");
 }

 To use the Qualii ers , you just add the MyEvent annotation to the relevant injected instance with

the desired enum type in parenthesis. Then you later i re the events from within the startService

method, just as you did before in the previous example. The bold parts code lines are all you have

added to the previous example in the previous listing.

 Now you’ll add the annotations to the observer part. As you did before, you just have to add the

Qualii ers to the relevant @Observes annotation.

Implementing the Observer Pattern in Java EE ❘ 147

import com.devchronicles.observer.javaee.MessageEvent.Type;

 @Stateless
 public class TraceObserver {

 public void serviceTrace(
 @Observes @MessageEvent(Type.SERVICE) String message) {
 System.out.println("Service message: " + message);
 }

public void parameterTrace(
 @Observes @MessageEvent(Type.PARAMETER) String message) {

System.out.println("with parameters: " + message);
}

 Firing and observing your own object types is even simpler. The object type is unique, and it’s not

necessary to create your own annotation qualii ers; you can use the object instead.

 Observable events are transactional and are delivered in the transactional phase that you dei ne

for that event. That may be before or after the transaction has completed or after a successful or

unsuccessful transaction.

 Now you’ll see this in action. In Listing 11‐7, you dei ne three observer methods that specify a

transaction phase during which the observers listen for events of type String .

 LISTING 11‐7: The Transaction event observer

 package com.devchronicles.observer;

 import javax.enterprise.event.Observes;
 import javax.enterprise.event.TransactionPhase;

 public class TransactionEventObserver {

 public void onInProgress(@Observes String message) {
 System.out.println("In progress message: " + message);
 }

 public void onSuccess(
 @Observes(during = TransactionPhase.AFTER_SUCCESS) String message) {
 System.out.println("After success message: " + message);
 }

 public void onFailure(
 @Observes(during = TransactionPhase.AFTER_FAILURE) String message) {
 System.out.println("After failure message: " + message);
 }

 public void onCompletion(
 @Observes(during = TransactionPhase.AFTER_COMPLETION) String message) {
 System.out.println("After completion message: " + message);
 }

 }

148 ❘ CHAPTER 11 OBSERVER PATTERN

 There are i ve transitional phases: BEFORE _ COMPLETION , AFTER _ COMPLETION , AFTER _ SUCCESS ,

AFTER _ FAILURE , and the default IN _ PROGRESS . In Listing 11‐7, we have not implemented

BEFORE _ COMPLETION . In Listing 11-8 we implement a class that demonstrates event i ring in

successful and failure scenarios.

 LISTING 11‐8: Provoke success and failure scenarios

 package com.devchronicles.observer;

 import javax.annotation.Resource;
 import javax.ejb.SessionContext;
 import javax.ejb.Stateless;
 import javax.ejb.TransactionAttribute;
 import javax.ejb.TransactionAttributeType;
 import javax.enterprise.event.Event;
 import javax.inject.Inject;

 @Stateless
 @TransactionAttribute(TransactionAttributeType.REQUIRED)
 public class Children {

 @Resource
 SessionContext sc;

 @Inject
 Event<String> message;

 int[] children = new int[3];

 public void getSixthChild() {
 try {
 int sixthChild = children[5]; // Throws an IndexOutOfBounds Exception
 } catch (Exception e) {
 message.fire("Rollback event occurred.");
 System.out.println("Exception caught.");
 sc.setRollbackOnly();
 }
 }

 public void getThirdChild() {
 int thirdChild = children[2]; // Succeeds
 message.fire("Successful event");
 }

 }

 The Children class simulates a successful transaction in the getThirdChild method and an

unsuccessful transaction in the getSixthChild method by causing an IndexOutOfBoundsException .

 You’ll examine each method to see how the events are observed. The getThirdChild method i res a

String event, passes it the message Successful event , and then i nishes successfully. The output

from calling this method follows:

Where and When to Use the Observer Pattern ❘ 149

 In progress: Successful event
 After completion message: Successful event
 After success message: Successful event

 The onInProgress method is invoked immediately when the event is i red and while the transaction is

still in l ight. The other two methods—onCompletion and onSuccess —must wait until the transaction

reaches the AFTER _ COMPLETION and N AFTER _ SUCCESS phases, respectively, before they can execute. S

 Next you’ll look at the getSixthChild method, which fails by causing an

IndexOutOfBoundsException . The output that results from calling this method follows:

 In progress: Rollback event occurred.
 Exception caught.
 After completion message: Rollback event occurred.
 After failure message: Rollback event occurred.

 As before, the onInProgress method is invoked immediately, and the onCompletion and

onFailure methods must wait until the method completes. Once the onInProgress method

outputs the message Exception caught and the transaction is marked for rollback by

calling the SessionContext method setRollbackOnly , the y onInProgress method completes, and

you can execute your observers. The onCompletion method is executed, followed by the OnFailure

method.

 The setRollbackOnly method marks the current transaction for rollback, so it can never be

committed. This action triggers the transaction into the AFTER _ FAILURE phase and invokes the

onFailure method.

 Observers can also be given conditional behavior, although it’s limited to being notii ed if an

instance of the bean that dei nes the observer method already exists in the current context.

The observer method is called only if an instance exists. To dei ne an observer method as

conditional, add notifyObserver = Reception.IF _ EXISTS as an argument to the @Observes

annotation.

 import javax.enterprise.event.Reception;

 public void addMember (
 @Observes(notifyObserver = Reception.IF_EXISTS) String message){
 // Implementation code.
 }

 The default behavior is to create an instance if it does not exist.

 WHERE AND WHEN TO USE THE OBSERVER PATTERN

 The observer pattern, which can unleash huge performance gains, is an effective way to promote

loose coupling and change the direction of calling/listening.

 When designing your application or refactoring another’s code, watch out for unnecessary and time

interval‐based method executions, which can be good candidates for implementing the observer pattern.

150 ❘ CHAPTER 11 OBSERVER PATTERN

 In the Java EE realm, you can migrate existing code to the observer pattern without too much

hassle. Java EE observers are usually accompanied by dependency injection, which uses @inject ,

and factories, which use @produces .

 The observer pattern’s greatest strength, the decoupling of classes, is also its greatest weakness. As

control of the observable moves to the observer, you lose track of the application’s workl ow. Vision

becomes obscured as one event triggers another. A complicated implementation of the observer

pattern can be a nightmare to debug, so it is recommended that you keep the implementation simple.

Avoid multiple layers of observers; using just one layer (or a few) is ideal.

 To help future and present developers determine the purpose of your code, the name of an observer

should rel ect its purpose. In addition, you should incorporate the reason for the observation into

the name of its methods, expressing the purpose of the class.

 In the Java EE realm, existing code can be migrated to the observer pattern without much hassle.

Java EE observers are usually accompanied by dependency injection (@inject) and factories

(@produces). The heavy and unnecessary use of observers may introduce hard to follow and debug

systems. However, since most developers are used to observers from UI or web frameworks, they

usually have an instinct to use in the right context most of the time.

 Whenever you see a resource subject to change and callers trying to capture the data from subject,

never hesitate to use the observer pattern. Transaction‐sensitive observers offer functionality that

was not easily available in earlier versions. In the BEFORE _ COMPLETION phase, you can cancel the

current transaction by invoking the setRollbackOnly method, thus allowing nontransactional

operations to be performed within a transactional phase. If an exception is thrown, the entire

transaction can be rolled back.

 During the IN _ PROCESS phase, which spans the entire transaction, observable events can be i red

and observed immediately. This can be implemented as a type of progress monitor or logger.

 A call to an observer method blocks the event emitter and is synchronous but can be made

asynchronous by annotating the observer method @Asynchronous . (See Chapter 9 , “Asynchronous,”

for more information about how to use this annotation.) You should take care when making

observers of the BEFORE _ COMPLETION phase asynchronous because the setRollbackOnly method is

ineffective, and the transaction will not be rolled back. The asynchronous method occurs in a new

transaction.

SUMMARY

 You have seen how Java’s core observer pattern’s implementation has advanced in Java EE 7

and how it can be made sensitive to the transactional phase of the events that it observes. Its

implementation completely decouples business logic from the observer, leaving only the event type

and qualii er to connect them. This has raised the concern that vision over the relationship is lost,

although this can be mitigated by appropriately naming the class and methods and illustrating the

relationship in the class’s documentation.

 The transactional phase sensitivity has added another dimension to the observer pattern. It provides

integration between the observer methods and the transaction, allowing rollbacks to be invoked.

Notes ❘ 151

EXERCISES

1. List as many implementations of the observer pattern as you can that you would i nd in the
Java language.

2. Create an example that uses notifyObserver = Reception.IF_EXISTS as an argument to the
@Observes annotation.

3. Use the observers transitional sensitivity to monitor the progress of a transaction and log the
result of the transaction (success or failure).

 NOTES

 1. Design Patterns: Elements of Reusable Object‐Oriented Software (Addison‐Wesley, 1994):
Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides.

 2. Head First Design Patterns (O’Reilly, 2004): Eric Freeman, Elisabeth Robson, Bert Bates,
Kathy Sierra.

 3. A small hardware board for maker projects: http://www.arduino.cc.
 4. Abraham Maslow (1908–1970) American Psychologist.

http://www.arduino.cc

 12
 WHAT’S IN THIS CHAPTER?

➤ Discussion regarding the origins of the data access pattern

➤ Examination of the related data transfer object

➤ How the DAO and factory pattern work together

➤ An introduction to the JPA and ORM

➤ A simple implementation of the DAO

➤ An improved implementation using generics

➤ A discussion regarding the role of DAO in modern Java EE

 WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

 The wrox.com code download for this chapter is found at www.wrox.com/go/

projavaeedesignpatterns on the Download Code tab. The code is in the Chapter 12

download and individually named according to the names throughout the chapter.

 It is unimaginable to think of an enterprise application that does not in some way interact

with a data source. The data source may be a relational, object‐oriented or NoSQL data-

base, a Lightweight Directory Access Protocol (LDAP) repository, a i le system, a web ser-

vice, or an external system. From whatever source the data comes, the enterprise application

must interact with it and perform basic create, retrieve, update, and delete (CRUD) opera-

tions. Almost all servers use such data sources to persist sessions or long‐running processes

seamlessly.

 The way in which you use data sources can vary substantially, and their implementation

can differ widely. There are different SQL dialects, such as Postgre SQL and Oracle. The

simple objective of the data access object (DAO) pattern is to encapsulate access to the

http://www.wrox.com/go/projavaeedesignpatterns
http://www.wrox.com/go/projavaeedesignpatterns

154 ❘ CHAPTER 12 DATA ACCESS PATTERN

data source by providing an interface via which the various layers can communicate with the

data source.

 This chapter discusses the original problem that the DAO solved and its relevance in modern Java

EE applications. Also examined are the role of the related data transfer object (DTO) and how it

and the factory pattern i t together with the DAO. In addition, this chapter covers the use of the JPA

and ORM in the context of the DAO. You’ll see an implementation of the DAO and how to improve

it by using generics. Finally, you will read about the changed role of the pattern and why it is still a

valid design pattern.

 WHAT IS A DATA ACCESS PATTERN?

 The original solution that the DAO pattern proposed was dei ned in the book Core J2EE Patterns:

Best Practices and Design Strategies1 as follows:

 Use a data access object (DAO) to abstract and encapsulate all access to the data

source. The DAO manages the connection with the data source to obtain and store

data.

 The problem that was solved with the abstraction and encapsulation of the data source was to guard

against the application being dependent on the data source implementation. This decoupled the

business layer from the data source. It was thought that if the data source changed, the decoupling

would reduce or negate any impact. However, in reality, the data source rarely changed—not even

between vendors of the same source type such as between Postgre and MS SQL. It is hard to imag-

ine that a decision would be made to migrate an SQL data source to an XML l at i le system, LDAP

repository, or web service. This simply didn’t happen. So what value does the DAO pattern have in

modern Java EE? Do you really need this pattern?

 The DAO pattern is still a valuable pattern, and its original solution is still valid, although the

motivation for its implementation has changed in its emphasis. Rather than guarding against

the impact of an unlikely change in the data source type, the value is in its mockability and

testability and its use in structuring the code and keeping it clean of data access code. There is

still value in using it as a way to encapsulate legacy data storage systems and to simplify access

to complex implementations of data sources. However, these are more likely to be corner and

exceptional cases.

 The DAO pattern encapsulates CRUD operations in an interface that is implemented by a con-

crete class. This interface can be mocked and therefore easily tested, avoiding a connection to the

database. Testing is improved because writing tests using mocks is easier than integrating tests with

a live database. The DAO’s concrete implement uses low‐level APIs such as JPA and Hibernate to

perform the CRUD operations.

 Data Access Class Diagram
 Figure 12-1 shows the class diagram of the DAO, demonstrating the interaction between the

client and the DAO and the DTO. Not shown is the optional factory that produces the DAO

instance.

Overview of the Data Access Pattern ❘ 155

 FIGURE 12-1: Class diagram of the data access pattern

+ create:void
+ read:Object
+ update:void
+ delete:void

creates/uses

creates

creates

DataAccessObject DataSource

ResultSet<<TransferObject>>
Data

Client accessesuses

uses

* 1

1

1

 OVERVIEW OF THE DATA ACCESS PATTERN

 The implementation of the DAO pattern involves several components:

➤ The DAO interface

➤ The concrete implementation of the DAO interface

➤ The DAO factory

➤ The DTO

 The factory, interface, and DTO are optional components, not required components, but you will

see these two patterns used with the DAO pattern. The factory pattern is discussed in further detail

in Chapter 6 , “Factory Pattern.”

 Data Transfer Object Pattern
 The DTO carries the data retrieved from or persisted to the database across logical layers. For

example, to transfer a list of User objects retrieved from the data access layer to the web layer, the

service layer would be responsible for transferring from a DAO to a DTO.

 NOTE The DTO is also referred to as the Value Object.

 The solution that the DTO pattern proposes is dei ned in Core J2EE Patterns: Best Practices and

Design Strategies as follows:

 Use a Transfer Object to carry multiple data elements across a tier.

 The DTO reduces remote requests across the network in applications that make many method calls

to enterprise beans, resulting in improved performance. Sometimes not all the data retrieved from

the database is required on the web layer or whatever other layer requires the use of data. So the

156 ❘ CHAPTER 12 DATA ACCESS PATTERN

DTO reduces to just the essential data that the layer requests, thereby optimizing the transfer of

data across tiers. This chapter does not go into detail regarding the DTO. It’s recommended that you

read the DTO chapter in the Core J2EE Patterns: Best Practices and Design Strategies book.

 Java Persistence Architecture API and Object
Relational Mapping

 The Java Persistence API (JPA) manages the application’s interactions with the data source. It

specii es how to access, persist, and manage data between the application’s objects and the data

source. JPA itself cannot perform CRUD or other data‐related operations; it’s just a set of interfaces

and implementation requirements. However, a compliant Java EE application server must provide

support for its use.

 The JPA specii cation replaces the EJB 2.0 Container‐Managed Persistence (CMP) entity beans spec-

ii cation, which was heavyweight and complex. CMP received an adverse reaction from many in the

developer community that resulted in the wide adoption of proprietary solutions such as Hibernate

and TopLink. This prompted the development of JPA (released with EJB 3.0), which aimed to bring

together CMP, Hibernate, and TopLink and seems to have been largely successful.

 At the heart of JPA is the concept of an entity. For those of you familiar with CMP, this is what was

referred to as an entity bean . An entity is a short‐lived object that is capable of being persisted in a

database—not as a serialized object but as data. It is a Plain Old Java Object (POJO) whose mem-

bers are annotated and mapped to a i eld in the data source. To better understand how this is repre-

sented in code, you’ll go through a code snippet.

 In the following snippet, you represent a Movie entity class as a POJO that’s appropriately annotated:

 @Entity
 public class Movie {

 @Id @GeneratedValue
 private Long id;
 private String title;
 private String description;
 private Float price;
 public Movie(){}
 // For brevity, the getters and setters have been left out.

 }

 As you can see, this is a simple class with just three annotations. The @Entity class level annotations

indicate that this class should be treated as an entity class, and the @Id and @Generated annotations

mark the id member as an auto‐generated identii cation i eld. This means that when the entity is per-

sisted, the id i eld is automatically generated according to the rules of auto‐generated i elds laid down

by the data source. If the data source is a database, then all i elds in this entity are persisted to a table

called Movie . No other annotations are necessary to indicate which i elds are persisted. It is convention

over coni guration that all i elds are persisted unless otherwise annotated. This mapping is referred to

as Object Relational Mapping (ORM). It is beyond the scope of this chapter to discuss in detail JPA g

and ORM, so it is recommended that you read The Java EE 7 Tutorial: Part VIII Persistence . 2

Implementing the Data Access Pattern in Java EE ❘ 157

 IMPLEMENTING THE DATA ACCESS PATTERN IN JAVA EE

 Now you’ll go through an example to see how to implement the DAO in Java EE. You are going

to use the movie rental domain and a relational database as the data source. You’ll start by

creating a movie entity class and annotating it with appropriate JPA annotations, as shown in

Listing 12‐1.

 LISTING 12‐1: The movie entity class

 package com.devchronicles.dataaccessobject;

 import java.io.Serializable;
 import javax.persistence.Entity;
 import javax.persistence.Id;
 import javax.persistence.NamedQuery;

 @Entity
 public class Movie implements Serializable {
 private static final long serialVersionUID = -6580012241620579129L;

 @Id @GeneratedValue
 private int id;
 private String title;
 private String description;
 private int price;
 //Some runtime value which
 //does not need to be persisted
 @Transient
 private int runtimeId;

 public Movie() {}

 public int getId() {
 return this.id;
 }

 public void setId(int id) {
 this.id = id;
 }

 public String getTitle() {
 return this.title;
 }

 public void setTitle(String title) {
 this.title = title;
 }

 public String getDescription() {
 return this.description;

continues

158 ❘ CHAPTER 12 DATA ACCESS PATTERN

 }

 public void setDescription(String description) {
 this.description = description;
 }

 public int getPrice() {
 return this.price;
 }

 public void setPrice(int price) {
 this.price = price;
 }

 public int getRuntimeId() {
 return this.runtimeId;
 }

 public void setRuntimeId(int runtimeId) {
 this.runtimeId = runtimeId;
 }

 }

 The class in Listing 12‐1 is a simple POJO with appropriate JPA annotations. As briel y mentioned

earlier, the @Entity class level annotation indicates that this class should be treated as an entity class

and should be managed by the persistence provider. The entity class must have a no‐arg constructor

that has to be public or protected, although it may have other constructors. It must be a top‐level

class, which means that it cannot be an enum or an interface, and it must not be i nal. Also, none of

the persistent instance variables or setter/getter methods of the entity class can be i nal. The entity

class must implement the Serializable interface.

 You have annotated the id member with @Id and @GeneratedValue , which marks the id member as

an auto‐generated primary key. All entities must have a primary key, which can be a single member

or a combination of members.

 The primary key can be one of the following types:

➤ Primitive Java types—byte , char, short , int , long

➤ Wrapper classes of primitive Java types—Byte , Character , Short , Integer , Long

➤ Arrays of primitive or wrapper types—long[] , Long[] , and so on

➤ Java types—String , BigInteger , Date

 All members of the entity class are automatically mapped to i elds of the same name in the movie

table unless they’re annotated with @Transient . This means that the id member maps to the id

i eld in the movie table, the title member maps to the title i eld in the movie table, and so on.

 Next, in Listing 12‐2, you create the DAO interface. This should dei ne the basic CRUD methods

and any other methods that might prove useful.

LISTING 12-1 (continued)

Implementing the Data Access Pattern in Java EE ❘ 159

 LISTING 12‐2: The DAO interface

package com.devchronicles.dataaccessobject;

 import java.util.List;

 public interface MovieDAO {
 public void addMovie(Movie movie);
 public Movie getMovie(int id);
 public void deleteMovie(int id);
 public void updateMovie(Movie movie);
 public List<Movie> getAllMovies();
 }

 Now for the concrete implementation of the DAO interface shown in Listing 12‐3. Here you imple-

ment the CRUD operations. Notice that the constructor accepts an instance of the EntityManager. r

This instance is associated with a persistence context that is dei ned in persistence.xml . The

EntityManager API provides create, remove, and persistence functionality as well as the ability to

create queries. Any transient i eld would not be saved or retrieved from the database so expect the

data on the transient i eld to be reset each time the object is re-created.

 LISTING 12‐3: The implementation of the DAO interface

 package com.devchronicles.dataaccessobject;

 import java.util.List;
 import javax.persistence.EntityManager;

 public class MovieDAOImpl implements MovieDAO{

 private EntityManager em;

 public MovieDAOImpl(EntityManager em) {
 this.em = em;
 }

 @Override
 public void addMovie(Movie movie) {
 em.persist(movie);
 }

 @Override
 public Movie getMovie(int id) {
 return getAllMovies().get(id);
 }

 @Override
 public void deleteMovie(int id) {
 em.remove(getMovie(id));

continues

160 ❘ CHAPTER 12 DATA ACCESS PATTERN

 }

 @Override
 public void updateMovie(Movie movie) {
 em.merge(movie);
 }

 @Override
 public List<Movie> getAllMovies() {
 return em.createQuery("SELECT m FROM Movie m", Movie.class)
 .getResultList();
 }
 }

 In Listing 12‐4, you create the DAO factory. The EntityManager is created and injected into this

class and then passed as a constructor argument to the createMovieDAO method that creates the

DAO object. The factory pattern is discussed in more detail in Chapter 6 , so please refer to it for

more information.

 LISTING 12‐4: The DAO Factory

 package com.devchronicles.dataaccessobject;

 import javax.enterprise.context.ApplicationScoped;
 import javax.enterprise.inject.Produces;
 import javax.persistence.EntityManager;
 import javax.persistence.PersistenceContext;

 @ApplicationScoped
 public class MovieDAOFactory {

 @PersistenceContext(unitName="moviePU")
 private EntityManager em;

 @Produces
 public MovieDAO createMovieDAO() {
 return new MovieDAOImpl(em);
 }

 }

 The list of entities in your application is called a persistence unit, and the application’s persistence

unit is dei ned in the persistence.xml coni guration i le. This i le should reside in your applica-

tion’s META‐INF directory. The signii cant elements of persistence.xml follow:

➤ Persistence unit name —You can give the persistence unit a name so that you can dei ne sev-

eral persistence units and then select them at run time.

LISTING 12-3 (continued)

Implementing the Data Access Pattern in Java EE ❘ 161

➤ Persistence unit transaction type —In a Java SE application, the default transaction type is

RESOURCE_LOCAL , while in a Java EE environment, the transaction type is L JTA . This means A

that the entity manager participates in the transaction.

➤ Provider —This element identii es the class that provides the factory for creating the

EntityManager instance.

➤ Class —The entity classes used in the application should be listed in the class element.

➤ Property —Additional properties can be specii ed, such as database connection properties and

persistence provider properties like options to drop‐create new tables.

 The EntityManager is associated with a persistence context that is dei ned in the persistence.xml

in Listing 12‐5.

 LISTING 12‐5: The persistence.xml

 <?xml version="1.0" encoding="UTF-8"?>
 <persistence version="2.1"
 xmlns="http://xmlns.jcp.org/xml/ns/persistence"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/persistence
http://xmlns.jcp.org/xml/ns/persistence/persistence_2_1.xsd">
 <persistence-unit name="moviePU" transaction-type="JTA">
 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>
 <jta-data-source>jdbc/sample</jta-data-source>
 <class>com.devchronicles.dataaccessobject.Movie</class>
 </persistence-unit>
 </persistence>

 The specii c data source is dei ned in this persistence.xml i le. In this case, you have dei ned

a Derby database using the eclipse link provider. You have dei ned the transaction type as JTA

because this is a Java EE application implementation, and you have specii ed the class entity to be

com.devchronicles.dataaccessobject.Movie .

 Finally, you need to inject the DAO that you have created and use it. The client in Listing 12‐6 gets

an instance of the DAO injected and uses it to retrieve all movies.

 LISTING 12‐6: The client

 package com.devchronicles.dataaccessobject;

 import javax.ejb.Stateless;
 import javax.inject.Inject;
 import java.util.List;

 @Stateless
 public class Client {

 @Inject
continues

http://xmlns.jcp.org/xml/ns/persistence
http://www.w3.org/2001/XMLSchema-instance
http://xmlns.jcp.org/xml/ns/persistence
http://xmlns.jcp.org/xml/ns/persistence
http://xmlns.jcp.org/xml/ns/persistence/persistence_2_1.xsd

162 ❘ CHAPTER 12 DATA ACCESS PATTERN

 MovieDAO movieDAO;

 public List<Movie> getAllMovies() {
 return movieDAO.getAllMovies();
 }

 }

 The preceding implementation of the DAO is simplistic and can be improved upon in several ways.

 Type‐Safe DAO Implementation
 One way to improve upon the DAO implementation is to make the DAO interface type‐safe. This

allows a type‐safe DAO that a subinterface can implement for each entity type you want to persist.

A base DAO might look like the code in Listing 12‐7.

 LISTING 12‐7: Type‐safe base DAO

 package com.devchronicles.dataaccessobject;

 import java.util.List;

 public interface BaseDAO<E, K> {
 public void create(E entity);
 public Movie retrieve(K id);
 public void update(E entity);
 public void delete(K id);
 }

 The i rst type parameter, E , is used to represent the entity, whereas the K type parameter is usedK

as the key. A subinterface that would dei ne methods specii c to that entity could then extend the

BaseDAO interface.

 In Listing 12‐8, you create an interface that extends the BaseDAO and dei nes a method that returns

a list of all movies.

 LISTING 12‐8: Specii c movie implementation of the base DAO

 package com.devchronicles.dataaccessobject;

 import java.util.List;

 public interface MovieDAO extends BaseDAO<Movie, Integer>{

 public List<Movie> findAllMovies();

 }

 A concrete class would implement this interface and provide code for each method.

LISTING 12-6 (continued)

Notes ❘ 163

 WHERE AND WHEN TO USE THE DATA ACCESS PATTERN

 Some have argued that the DAO is no longer a useful pattern because you can easily invoke the

EntityManager directly. This is a reasonable argument because the EntityManager provides a clean

API that abstracts away the underlying data access layer. It is also reasonable to suggest that the

likelihood of a change in the data provider is remote, which makes the abstraction that the DAO

provides less purposeful. Although these arguments have merit, it is still arguable that the DAO

has its place in a well‐designed Java EE application. (The place might not be where it was originally

intended, though.)

 The value of extending the BaseDAO as shown in Listing 12‐7 for each entity type is in the extensibil-

ity of each implementation. Methods that are specii c to an entity can be written while maintaining

a common interface. You select the DAO implementation once for each entity rather than choosing

the right EntityManager method each time it is required to persist or retrieve data.

 Named queries can be located within the entity to which they relate. This keeps the queries in a logi-

cal place, making maintenance easier. The DAO allows for a uniformed and controlled data access

strategy because all access to the entity’s data is required to go via the entity’s DAO. It maintains the

principle of single responsibility because only the DAO accesses and manipulates the application’s

data.

 Don’t forget that even though it’s remote, the data source might change. If it does, you’ll be glad that

there is an abstraction on the data layer.

 SUMMARY

 The DAO has its fans and detractors. The decision of whether to use the pattern in your application

should be based on the design requirements of the application. Like all patterns, its use for use’s sake

is potentially dangerous and could cause more confusion because over abstract obscures the purpose

of the code. Ensure that you understand well the various implementations of the pattern and how it

interacts with the DTO and factory pattern.

 EXERCISES

1. Write an interface and its implementation for a movie order DAO. You can use the examples in
the text as a starting block.

2. Write a service façade and a DTO that uses the MovieDAO.

 NOTES

 1. Core J2EE Patterns: Best Practices and Design Strategies (Prentice Hall/Sun Microsystems
Press, 2003): Deepak Alur, John Crupi, and Dan Malks.

 2. The Java EE 7 Tutoria l: Part VIII Persistence .
 http://docs.oracle.com/javaee/7/tutorial/doc/ .

http://docs.oracle.com/javaee/7/tutorial/doc/

 WHAT’S IN THIS CHAPTER?

➤ What REST is and what it does

➤ The six constraints of REST

➤ The Richardson Maturity Model of a REST API

➤ How to design a RESTful API

➤ Demonstrating REST in Action

➤ How to implement REST in a Java EE

➤ HATEOAS—The highest level in the Richardson Maturity Model

 WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

 The wrox.com code download for this chapter is found at www.wrox.com/go/

projavaeedesignpatterns on the Download Code tab. The code is in the Chapter 13

download and individually named according to the names throughout the chapter.

 There is little doubt that you will have heard the term REST. What is less certain is that you

will understand exactly what it means and how it is implemented. Many people who know

nothing or very little about REST will tell you that your site must be REST “compatible” and

that, without REST, your site cannot possibly survive. REST is a buzzword to these people,

but for those who know what REST is and what benei ts it can offer, it’s much more than just

another buzzword. So what does REST really mean, and where does it come from?

 REST means REpresentational State Transfer and is an architectural style of representing and

transferring data. It consists of a set of six constraints placed on data, components, and their

interactions within a distributed hypermedia system (the Internet). It is not tied to a protocol

(although in almost all cases it is used with Hypertext Transfer Protocol [HTTP]), and it does

 13

http://www.wrox.com/go/projavaeedesignpatterns
http://www.wrox.com/go/projavaeedesignpatterns

166 ❘ CHAPTER 13 RESTFUL WEB SERVICES

not have a World Wide Web Consortium (W3C) standard. It is a set of conventions, styles, and

approaches that have been agreed upon over time by use and convention.

The term REST was coined by Roy Fielding in his 2000 doctoral dissertation titled “Architectural T

Styles and the Design of Network‐Based Software Architectures.” 1 Since then, the REST concept

has been widely adopted by developers and architects such that it has become an integral part of

many languages and frameworks. For example, Ruby provides a natural way to use RESTful routes,

and the Spring framework provides a simplii ed way to implement Hypermedia As The Engine Of

Application State (HATEOAS), which is level 3 of the Richardson Maturity Model of REST support

(more on this later).2

REST is usually referred to as an architectural approach rather than a design pattern. However,

REST was developed against common problems faced in enterprise app, which is the same idea

behind the design patterns.

WHAT IS REST?

REST means many things to many people, and discussions can become quite theoretical. This

chapter discusses it from the perspective of a developer who wants to implement a RESTful

application programming interface (API) for a forum site discussing movies.

The most practical way of thinking about REST is as a style for formatting URIs that represents

resources (data) your application can provide and resources that it can store. What is meant by

resources? In a forum website, you have many resources, such as the site’s users and the users’ posts.

These resources are represented by nouns and combined with an HTTP method to form a RESTful

uniform resource identii er (URI). For example, you can represent an account resource with the URI

/accounts and combine it with the HTTP GET method such that a request to this URI would return

all accounts. Likewise, you can represent an identii able account resource by appending the post’s

ID to the URI like so: /accounts/:id . A GET request to this URI returns the details of the account

with the given ID. Not only can you get resource representations by using a RESTful URI, you can

create resources. To do this, you would create a URI using the HTTP POST method. For example, to

create a new account resource, you would send a POST request to the URI /accounts with a payload

in the HTTP body containing the data necessary to create the resource.

As you have gathered, a URI represents a resource on a remote server, and the method of requesting

the resources (the HTTP method) implies certain actions on that resource.

It is tempting to map HTTP methods to create, retrieve, update, and delete (CRUD) actions (for

example, POST to Create and GET to Read). 3 However, this is not in the spirit of REST and does not

 IN THE WORDS OF ROY FIELDING

 REST emphasizes scalability of component interactions, generality of interfaces,

independent deployment of components, and intermediary components to reduce

interaction latency, enforce security, and encapsulate legacy systems.

The Six Constraints of REST ❘ 167

help in the understanding of resource representations. In fact, it’s more akin to a remote procedure

call (RPC) pattern implementation, which is at level 0 on the Richardson Maturity Model. You

are only interested in implementing REST at the highest level: level 3, please refer to the section,

“Richardson Maturity Model of REST API” for full details.

 A RESTful API is not about actions; it’s about nouns. These nouns represent resources. So you’ll

learn about a post resource, a user resource, and an address resource as opposed to verbs such

as getUser , r addPost , and deleteAddress . REST is different from simple object access protocol

(SOAP) and RPC, which are about the actions you want to perform on the application’s data. In a

RESTful sense, you would call a URI with an appropriate HTTP method.

 Each resource is identii ed by a URI. There may be multiple ways to refer to the same resources,

so you might be able to access the same resource from different starting points. For example, you

can obtain the resource that represents a user by accessing the user directly via the URI GET /

users/:id or by going from one user to the list of users who follow that user and then to the user

GET /user/:id1/followers/:id1 . The representation of the resource is not the actual resource

itself; it’s a representation of the resource, and it is perfectly valid for the same resource to be

represented in different ways.

 The resource representation l ow is bidirectional between client and server and represents at least

part of the resource state. When that happens, it contains just enough data to create, modify, or

delete that resource on the server.

 Resource representations are typically JavaScript Object Notation (JSON) or Extensible Markup

Language (XML), but they can be any format, including a custom representation.

 THE SIX CONSTRAINTS OF REST

 According to Roy Fielding’s dissertation, a truly RESTful architecture conforms to all but one of the

stated constraints. This group of constraints is called the REST style.

 Client‐Server
 The client‐server constraint is based on the separations of concerns principle and dei nes clearly the

separation between the client and the server. The constraint is simple and requires a client to send a

request and a server to receive that request. The server may respond to the client’s request.

 Uniform Interface
 This constraint dei nes the interface between the client and the server, stating that it should be

as generic and simple as possible. You have already learned that a resource is a representation

of the data, and the client does not have direct access to the data. This constraint dei nes how

that resource is represented by nouns and that the interface is maintained by the creator of the

actual data system. This is to ensure some degree of constancy of the interfaces over time. The

constraint does not specify that the implementation should use the HTTP protocol, but it is almost

always based on HTTP. As you have already seen, if you use the HTTP specii cation, the URI is

constructed from the resource nouns and the HTTP verbs.

168 ❘ CHAPTER 13 RESTFUL WEB SERVICES

Stateless
The server should not maintain client state. In other words, each message/request is self‐descriptive;

it has enough information or context for the server to process that message. This implies that if

there is state, it is maintained on the client side. The advantage of this constraint is that it increases

scalability, reliability, and visibility. The disadvantage is that it decreases performance because

messages need to be larger to maintain stateless communication.

Cacheable
The server responses must be cacheable. The RESTful interface should provide a mechanism for

marking messages as cacheable or noncacheable. This can be implicit, explicit, or negotiated and

allows the client to reissue a message if necessary.

Layered System
The client cannot assume direct access to the server. The response may be a cached response, or it

may retrieve the resource directly from the server. This improves scalability because there might be

software or hardware between the client and the server.

Code on Demand
This constraint dei nes a REST architecture as consisting of hierarchical layers that are limited

to communicating with their immediate neighbors. This separation of concerns simplii es the

architecture and isolates disparate and legacy components. The principle benei t you receive is an

increase in scalability because new components can be easily introduced and obsolete ones retired or

replaced. The drawback of this constraint is a reduction in the system’s performance resulting from

the increased indirection related to the multiple layer structure.

This constraint allows a client to download and execute code from the server, which enables the

server to temporarily extend the client by transferring logic. This may be in the form of a JavaScript

snippet. The code on demand constraint is the only optional one.

Violating any of these constraints (except code on demand) means that the service is not strictly

RESTful. A constraint violation does not mean the service is not a viable and useful implementation,

however.

RICHARDSON MATURITY MODEL OF REST API

You have already read about how a truly RESTful API achieves level 3 of the Richardson Maturity

Model. Now you’ll look a little deeper and examine each level on the model.

The model, developed by Leonard Richardson, attempts to classify an API according to its

adherence to the constraints imposed by REST. The more compliant your implementation, the

better it fares. There are four levels. The bottom is level 0, which designates the less compliant

implementation, and the top is level 3, which is the most compliant and therefore the most

RESTful. 4

Designing a RESTful API ❘ 169

 WAR STORY

 One of the companies I worked for had a tradition that once a team completed a

project, it presented its project to the other teams. It was at about the same time

that REST was getting popular. One of the teams decided to build a REST back

end to serve both the mobile and the web clients. We were thrilled and listened

intently to how they successfully built a beautifully designed REST back end and

how it was able to serve data for both systems. As the team’s lead started to give

technical details about the system, we realized they were maintaining the client

state on the server side. Not at all RESTful.
continues

 Level 0: The Swamp of POX (Plain Old XML)
 This model uses HTTP as a transport protocol to invoke remote interactions. It does not use the

protocol to indicate an application state; it is usually just used to tunnel requests and responses on

one URI, such as /getUser , using only one HTTP method. This is a classic example of an RPCr

model and is more akin to SOAP and XML‐RPC than REST.

 Level 1: Resources
 This is where the model starts to be able to distinguish between different resources. It will talk

to different end points because each end point represents a different resource. It uses a URI like

POST resources/123 , but it still uses just one HTTP method.

 Level 2: HTTP Verbs
 At this level, you implement full use of the HTTP verbs and combine them with your resource nouns

to provide the type of REST that has been discussed so far in this chapter. You take full advantage

of the features that HTTP offers to implement your RESTful API. However, you still have not

reached the level of a truly RESTful API.

 Level 3: Hypermedia Controls
 At this level, the model uses HATEOAS (Hypermedia As The Engine Of Application State) to direct

the application state. The objective of hypermedia controls is to advise the client of what can be

done next and to supply the URIs necessary to perform the next action. You will see how this works

and how to implement HATEOAS later in this chapter.

 DESIGNING A RESTFUL API

 A well‐designed RESTful API means a well‐dei ned uniform interface. For this, a thorough

understanding of the HTTP methods and response codes is important, and a complete knowledge

of the data structure of your application is needed. The objective is to combine them into a simple,

clean, and beautiful resource URI.

170 ❘ CHAPTER 13 RESTFUL WEB SERVICES

You will soon learn the elements that make up a URI.

Resource Naming
RESTful APIs are written for clients and should have meaning for the clients of those APIs. When

choosing nouns to name the resources, you should be familiar with the structure of the application’s

data and how your clients are likely to use them. There are no dei ned rules as to how you should

name your resources, but there are conventions that, if followed, can help you create a set of self‐

descriptive resource names that others intuitively understand.

Nouns Not Verbs
You must name the resources after nouns, not verbs or actions. The purpose of the resource name

is to represent the resource. The HTTP method describes the action to be performed. The next

section covers the HTTP method in more detail. To represent a single user resource, you would

use the noun users to represent all users and the user’s ID to identify the specii c user, like so:

users/123456 . An example of a non‐REST and badly formed URI would be users/123456/update ,

or it would include the action in a query string such as users/123456?action=update .

The nature of data is that it is hierarchical. So imagine that you want to represent all the posts

of the user with ID 123456 . You would use the noun posts to represent all posts and create the

URI users/123456/posts . Earlier, it was mentioned that the representation of the resource is

not the actual resource itself, but a representation of the resource, and the same resource can be

represented in different ways. To represent all posts by a specii ed user, you can use the URI posts/

users/123456 . Once you have a representation of a resource, you can decide what you want to do

with it by using one of the four HTTP methods. To retrieve a resource, you use the GET method, and

to create a resource, you use the POST method. More on this in the next section.

Self‐Descriptive
As you have seen, the nouns chosen should rel ect the resource they represent. Combining these

representations with identii ers makes the URI easy to interpret and intuitive to understand. If you

read a URI in combination with its HTTP method and it is not immediately obvious what resource

it represents, it has failed as a RESTful URI.

 I raised the issue and asked if that design was really following RESTful principles.

Of course, my words offended the project architect, and he started showing us the

REST API docs and how each client would work with OAuth and passing param-

eters via uniform resource locators (URLs). Nevertheless, the system was relying on

preserving the state rather than transferring it.

 Just like fashionistas, developers and system designers love trends and want to look

trendy. However, without understanding the underlying principles and determining

whether they really address your concerns and problems, you may end up being the

weird‐looking guy who wanted to be trendy but failed to fully understand the tech-

nology. In their case, they had built a representative state preserving (RESP?) back

end instead of REST.

continued

Designing a RESTful API ❘ 171

 Plural Not Singular
 Resource names should be plural because they represent collections of data. The resource name

users represents a collection of users, and the resource name posts represents a collection of posts.

The idea is that plural nouns represent a collection in the service, and the ID refers to one instance

within that collection. It may be justii able to use a singular noun if there is only one instance of that

data type in the entire application, but this is quite uncommon.

 HTTP Methods
 There are eight HTTP methods dei ned in Hypertext Transfer Protocol 1.1; however, only

four are commonly used when designing RESTful APIs. They are GET , POST , PUT , and DELETE .

These methods have specii ed meanings and usages within the context of REST. The concept

of idempotency is especially important when considering the HTTP method. The meaning of

idempotency from a RESTful API point of view is that a call repeatedly made by a client to the same

URI will always produce the same result. So making one request produces the same outcome, on the

server, as the request made multiple times. (This assumes that a different and separate operation has

not changed the resource’s state.)

 Only one of the four most commonly used methods is idempotent: GET . This means that any

resource URI that is executed with this method cannot effect change on the server. You cannot use

it to create, update, or delete a resource. The HTTP 1.1 specii cation refers to this method as safe

because it “should not have the signii cance of taking an action other than retrieval.” In the context

of REST, this method is used for getting a resource’s representation from the server. It must never be

used to make changes to data.

 The other three methods—POST , PUT , and DELETE —are not idempotent methods and are expected

to effect change on the server. You’ll learn about each method and how to use it in the context of

a forum site. You’ll also learn about the HTTP response codes (http://www.w3.org/Protocols/

rfc2616/rfc2616‐sec10.html) that can be returned, along with the responses to the client and

what they mean.

GET
 You use this method to get resource representations from the service. You should never use it

to update, delete, or create a resource. Calling it once should have the same effect as calling it

100 times. If the resource requested is successful, the representation of the resource is returned in

the body of the HTTP response in the requested data format, which commonly is either JSON or

XML. The HTTP response code returned is 200 (OK) . If the resource is not found, it should return

404 (NOT FOUND) , and if the resource request is badly formed, it should return 400 (BAD REQUEST) .

A well‐formed URI that you might use in your forum application could be GET users/123456/

followers , which represents all the followers of the user 123456 .

POST
 You use the POST method to create a new resource within the given context. For example, to create

a new user, you would post to the users resource the data necessary for a new user to be created.

The service takes care of creating the new resource, associating it to the context, and assigning an

http://www.w3.org/Protocols/rfc2616/rfc2616%E2%80%90sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616%E2%80%90sec10.html

172 ❘ CHAPTER 13 RESTFUL WEB SERVICES

ID. On successful creation, the HTTP response is 201 (CREATED) , and a link to the newly created

resource is returned either in the Location header of the response or in the JSON payload of the

response body. The resource representation may be returned in the response body. This is often

preferable to avoid making an additional call to the API to retrieve a representation of the data that

had been just created. This reduces the chattiness of the API.

 In addition to the HTTP response codes to a GET request, a POST can return 204 (NO CONTENT) if

the body of the request is empty. A well‐formed URI that you might use in your forum application

could be POST users , with a request body containing the new user’s details or POST users/123456/

posts to create a new post for the user 123456 from the data in the request body.

PUT
 The PUT method is most commonly used to update a known resource. The URI includes enough

information to identify the resource, such as a context and an identii er. The request body contains

the updated version of the resource, and if the update is successful, it returns the HTTP response

code 200 . A URI that updates a user’s information is PUT users/123456 . Less commonly, you can

use the PUT method to create a resource if the client creates the identii er of the resource. However,

this way of creating a resource is a little confusing. Why use a PUT when a POST works just as

well and is commonly known? An important point to note about updating a resource is that the

entire representation of the resource is passed to the service in the HTTP body request, not just the

information that has changed.

DELETE
 Surprisingly, you use this method to delete a resource from a service. The URI contains the

context and the identii er of the resource. To delete a user with the ID 123456, you use the URI

DELETE users/123456 . The response body may include a representation of the deleted resource. A

successful deletion results in a 200 (OK) HTTP response code being returned; if the resource is not

found, a 400 code is returned.

 REST IN ACTION

 You are going to design the RESTful API for a forum site using what you have learned so far.

 You start by examining the data structure of the site and identifying the data domains. The two

main domains are users and posts. Users can be further analyzed into followers, and posts are often

organized under topics. So with these domains, start thinking about the URI you need to represent

these resources.

 The users nouns

 To create a new user, you know that you must use POST and the users context, so a URI that creates

a user would look like this:

 POST /users

Rest In Action ❘ 173

 The body of the request contains all that you need to create the new user. The response includes the

URI to the representation of the user. This is a GET method request, like so: GET /users/123456 .

This requests details of the user with ID 123456.

 If you want to update the user, you need to use the PUT method like so: PUT /users/123456 .

 And if you want to delete the user, you use the DELETE method, like so: DELETE /users/123456 .

 If you want to do a batch delete, it is acceptable to pass all the IDs of the users you want to delete in

the body of a call to DELETE /users . This would be far less chatty than multiple calls to each user’s

resource.

 You might want to get all users in the service like so: GET /users . This call would, of course, be

restricted by security so that only the users that the caller is authorized to view would be returned.

 That is all for the user’s context. Now you’ll look at the follower’s . A follower is a user who follows

another user because he is interested in that person’s posts.

 To get all the followers for a given user, use the GET method, like so:

 GET /users/123456/followers

 To create a new follower of a user, you pass the ID of that follower in the body of a request to

POST /users/123456/followers . You can get the details of the follower in one of two ways:

 GET /users/123456/followers/456789

 or

 GET /users/456789

 This is an example of how you can represent a resource in two different ways. To delete a follower

of a given user, you can do this:

 DELETE /users/123456/followers/456789

 This action removes user 456789 as a follower of user 123456 but does not actually delete the user.

However, the following deletes the user:

 DELETE /users/456789

 You have read about the followers context. Now you’ll look at the topics and posts.

 The topics noun and the s posts noun s

 You have already seen how to create a user by using the POST method. The same is true when

creating a topic and a post.

 To create a topic, use:

 POST /topics

 To create a post under a topic, use:

 POST /topics/123/posts

 Note that you cannot create a post by doing this:

 POST /posts

174 ❘ CHAPTER 13 RESTFUL WEB SERVICES

 because you have no context. There is not enough information for the service to create a post

because you don’t know to which topic the post should be associated.

 To get a topic and a post, use:

 GET /topics/123

 To get a specii c post under a topic, use:

 GET /topics/123/posts/456

 or

 GET /posts/456

 To delete a topic or a post, use:

 DELETE /topics/123

 To delete a post, use:

 DELETE /topics/123/posts/456

 or

 DELETE /posts/456

 To amend a post or a topic, use can any of the following three methods:

 PUT /topics/123
 PUT /topics/123/posts/456

 or

 PUT posts/456

 Now that you have the simplest URIs and contexts dei ned, you can start to have some fun and

combine the users, topic, and post to make them more complicated.

 To retrieve a representation of all topics posted by a given user, use this:

 GET /users/123456/posts

 To get all posts under a given topic for a given user, use this:

 GET /users/123456/topics/123/posts

 To get all posts by a follower of a given user of a given topic, use this:

 GET /users/123456/followers/456789/topics/123/posts

 You can be creative with your combinations of resource. Despite the seemingly complicated nature,

you must never forget that the clients of the RESTful API use the URIs, so the URIs should be easy

to understand, and nesting should be kept to a minimum. If you feel that your URI is so complicated

that it should be accompanied by an explanation, you should consider refactoring it.

 An example of a well‐designed and thought out RESTful API has been implemented by the cloud

storage company Sugarsync (https://www.sugarsync.com/developer). I recommend that you

review their resource reference to see how they clearly dei ne the folder, address, and workspace

resources. Note how the HTTP methods are used to create, read, and delete resources.

https://www.sugarsync.com/developer

Implementing REST in Java EE ❘ 175

 IMPLEMENTING REST IN JAVA EE

 This chapter has discussed at length the theory behind a well‐designed RESTful API.

Now that you have seen how you might style the URIs, you can jump in and see how all this looks

in code.

 Java EE 7 provides some helpful annotations that make the job of constructing a RESTful API

straightforward. The most useful is the @Path annotation. This annotation dei nes the context

URI and the class or method that will process requests made on that URI. Additionally, there are

annotations for each HTTP method: @GET , @POST , @PUT , @DELETE , and so on. These annotations

mark methods that will process requests made with the stated HTTP method.

 Your application can have more than one RESTful context. To take care of this case, the

@ApplicationPath annotation takes a parameter that denotes the space in which your RESTful API

will exist. With just these two types of annotations, you have all you need to implement a simple

RESTful API.

 Now in Listing 13‐1 you’ll implement the URI GET /users .

 LISTING 13‐1: Simplest implementation of a RESTful API in Java EE

 package co.uk.devchronicles.forum;

 import javax.ws.rs.ApplicationPath;
 import javax.ws.rs.GET;
 import javax.ws.rs.Path;
 import javax.ws.rs.core.Application;

 @ApplicationPath("/")
 @Path("users")
 public class Users extends Application{

 @GET
 public String getUsers(){
 return "Here we return a representation of all users";
 }
 }

 If you have this application deployed on your local machine and your application is called

forum , you can test this URI by visiting http://localhost/forum/users . You should notice

the text message Here we return a representation of all users displayed in the browser

window.

 Note in Listing 13‐1 how you can annotate the class with the @Path annotation and pass it the

users context. The string that you pass does not have to be preceded by a forward slash or be

followed by a trailing slash. The space in which the RESTful interface will exist has been dei ned as

the root ("/") of the application. The method that is called when a GET request is made to the URI

users is annotated with the @GET annotation. In this simple example, a string is returned, but the

real goal is to send back the data retrieved for the database in a JSON or XML format along with

an HTTP status code. This is what occurs in Listing 13‐2.

http://localhost/forum/users

176 ❘ CHAPTER 13 RESTFUL WEB SERVICES

 LISTING 13‐2: Responding to the client with a JSON payload

 package co.uk.devchronicles.forum;

 import java.util.ArrayList;

 import javax.json.Json;
 import javax.json.JsonArrayBuilder;
 import javax.ws.rs.ApplicationPath;
 import javax.ws.rs.GET;
 import javax.ws.rs.Path;
 import javax.ws.rs.Produces;
 import javax.ws.rs.core.Application;
 import javax.ws.rs.core.MediaType;
 import javax.ws.rs.core.Response;

 @ApplicationPath("/")
 @Path("users")
 public class Users extends Application{

 @GET
 @Produces(MediaType.APPLICATION_JSON)
 public Response getUsers(){

 ArrayList<User> allUsers = this.findAllUsers();
 JsonArrayBuilder jsonArrayBuilder = Json.createArrayBuilder();

 for(User user : allUsers){
 jsonArrayBuilder.add(
 Json.createObjectBuilder()
 .add("id", user.getId())

.add("firstname", user.getFirstname())

.add("lastname", user.getLastname())
);
 }

 return Response.ok(jsonArrayBuilder.build()).build();
 }

 public ArrayList<User> findAllUsers(){
 ArrayList<User> allUsers = new ArrayList<>();
 allUsers.add(new User(123456, "Alex","Theedom"));
 allUsers.add(new User(456789, "Murat","Yener"));
 return allUsers;
 }

 }

 Listing 13‐2 generates a JSON object from the user data that’s in the database (for

brevity, a method is used to return the user data) and sends it back to the client with a

200 HTTP response code. The i rst thing you will notice is that the getUsers() method

Implementing REST in Java EE ❘ 177

is now annotated with @Produces(MediaType.APPLICATION _ JSON) ; this specii es the

MIME type that this method can produce and returns to the client. The javax.json.Json

and javax.json.JsonArrayBuilder classes are used to build the JSON and wrap it as a

javax.ws.rs.core.Response object before returning it to the client. If all goes well, you should

see the following output in the browser:

 [
 {"id":123456,"firstname":"Alex","lastname":"Theedom"},
 {"id":456789,"firstname":"Murat","lastname":"Yener"}
]

 So far, you have seen how to retrieve a resource representation of all users in the system, but what if

you only want one user and you know the user’s identii cation number? Well, this is just as simple.

In the URI, you pass the user’s ID number like so:

 GET /users/123456

 and in the REST controller class, you recuperate the ID number by referencing the REST path and

using a URI variable to pass the ID to the method. You annotate the method that will consume

the RESTful API call with @Path("/{id}") , and in the signature of the method, you annotate the

argument to which the ID value should be passed.

 @GET
 @Path("/{id}")
 @Produces(MediaType.APPLICATION_JSON)
 public Response getUser(@PathParam("id") String id){
 User user = this.findUser(id);
 JsonArrayBuilder jsonArrayBuilder = Json.createArrayBuilder();
 jsonArrayBuilder.add(
 Json.createObjectBuilder()
 .add("id", user.getId())

.add("firstname", user.getFirstname())

.add("lastname", user.getLastname())
);

 return Response.ok(jsonArrayBuilder.build()).build();
 }

 public User findUser(String id){
 return new User("123456", "Alex","Theedom");
 }

 As you can see in the previous code snippet, the ID string parameter is annotated with

@PathParam("id") so that the ID recuperated from the URI by the @Path("/{id}") annotation

is passed into the method. It is not necessary to include the full path of the URI in the @Path

annotation because the base URI is set in the @Path annotation on the class. All paths set on

methods are relative to the base path set on the class.

 The URI variable can be a regular expression. For example, the path annotation

@Path("/{id: [0‐9]*}") will match only IDs that are numbers. Any IDs that don’t match will result

in a 404 HTTP response being returned to the client.

178 ❘ CHAPTER 13 RESTFUL WEB SERVICES

 You have seen some simple URI constructions that consist of one resource noun and a URI variable.

How do you deal with a more complicated URI, such as GET /users/123456/followers/456789 ?

You do it in the same way as before, just with a slightly more complicated @Path and @PathParam .

 @GET
 @Path("/{user_id}/followers/{follower_id}")
 @Produces(MediaType.APPLICATION_JSON)
 public Response getUser(
 @PathParam("user_id") String user_id,
 @PathParam("follower_id") String follower_id)

 You have looked in detail at the GET HTTP method. What about the POST , PUT , and DELETE

methods? To write a method that responds to an HTTP POST request, you do almost the same as

you would with GET , but you change two elements. You annotate the method with @POST instead of

@GET and @Consumes in place of @Produces . Here’s a simple example:

 @POST
 @Consumes(MediaType.APPLICATION_JSON)
 @Path("/{user_id}/followers/")
 public Response createUser(@PathParam("user_id") String user_id, String body)

 This example works in the same way as for the GET methods, but notice that there is no explicit

mapping of the HTTP request body to a method parameter. The mapping is implicit. The content of

the HTTP body is passed to the only unannotated parameter that it i nds in the method signature.

No more than one is allowed to avoid confusion.

 The PUT and DELETE HTTP methods operate in a similar way to the POST method.

 Your URI may contain query parameters. You can retrieve these from the URI by annotating a

parameter in the method signature with @QueryParam("page") . This annotation retrieves the page

query parameter from the URI /users?page=10 .

 There are many more annotations in the JAX‐RS API that facilitate the design of a good RESTful

API. It’s recommended that you familiarize yourself with all of them.

 HATEOAS

 As has already been discussed, HATEOAS is at the highest level of REST implementation in the

Richardson Maturity Model and should be considered the nirvana of RESTfulness.

 Imagine that a client requests a resource that represents all the posts in the system that the user has

permission to view. The URI would be GET /posts , and the response, if successful, might return

with the following HTTP body:

 {
 "posts": [
 {
 "id": 71892,
 "title": "Best movie of 2015",
 "content": "I think the best movie of 2015 is the Golden Egg of Siam.",
 "links": [
 {

HATEOAS ❘ 179

 "rel": "self",
 "href": "http://localhost:8080/rest/posts/71892",
 "method": "GET"
 },
 {
 "rel": "replies",
 "href": "http://localhost:8080/rest/posts/71892/posts",
 "method": "GET"
 },
 {
 "rel": "follower",
 "href": "http://localhost:8080/rest/posts/71892/followers",
 "method": "GET"
 },
 {
 "rel": "owner",
 "href": "http://localhost:8080/rest/posts/71892/users",
 "method": "GET"
 }
]
 },
 {
 "id": 71893,
 "title": "Worst movie of 2015",
 "content": "The worst movie has gotta be Just Being Me.",
 "links": [
 {
 "rel": "self",
 "href": "http://localhost:8080/rest/posts/71893",
 "method": "GET"
 },
 {
 "rel": "owner",
 "href": "http://localhost:8080/rest/posts/71893/users",
 "method": "GET"
 }
]
 }
]
 }

 There’s a lot going on here. The response is in JSON format and is formed of one JSON object

named post that contains an array of posts:

 {
 "posts": [
 {
 ... element one in the array
 },
 {
 ... element two in the array
 }
]
 }

http://localhost:8080/rest/posts/71892
http://localhost:8080/rest/posts/71892/posts
http://localhost:8080/rest/posts/71892/followers
http://localhost:8080/rest/posts/71892/users
http://localhost:8080/rest/posts/71893
http://localhost:8080/rest/posts/71893/users

180 ❘ CHAPTER 13 RESTFUL WEB SERVICES

 In the example, there are only two elements to the array representing two posts. Each post is a

JSON object that follows the same format:

 {
 "id": 71892,
 "title": "Best movie of 2015",
 "content": "I think the best movie of 2015 is the Golden Egg of Siam.",
 }

 As can be seen from the JSON snippet it contains an ID that identii es the post resource followed

by the post’s title and content. This is the minimum that you would expect to see in a response to a

request for a post resource regardless of the maturity of the rest interface. What makes this response

special is the links element.

 "links": [
 {
 "rel": "self",
 "href": "http://localhost:8080/rest/posts/71892",
 "method": "GET"
 },
 ...
]

 This is where HATEOAS comes to life. There are three parts to each link in the link array. The rel

is the relation that the href link has to the current resource. The href is a link to more resources,

and the method is the method that must be used to obtain the resource. The rel element can have

any value and does not have to follow a convention, although it is customary for 'self' rel to refer

to a link that represents more information about the current resource. In this example, it just refers

to itself. The other links refer to other users’ responses to the post (replies or responses), the users

who follow the post (followers), and the user who posted the post (owner). Any resource that relates

to the principle post resource can be represented by a link in the link array.

 As you can see from the example, the i rst post in the array has four links in its links array, whereas

the second has only two. This is because the second post does not have users following it or any

responses.

 Providing links in this way gives the client the information it needs to navigate to further resources

and allows you to easily extend and grow the API with relatively little pain.

 A good example of a well‐designed implementation of HATEOAS is the one implemented by Paypal

.com (https://developer.paypal.com/webapps/developer/docs/integration/direct/

paypal‐rest‐payment‐hateoas‐links/) . They have used HATEOAS to allow you to build an

API that interacts with their payment system simply by following the links provide in the links

array.

 WHERE AND WHEN TO USE REST

 REST is an easy and well‐established approach that is not constrained by standards. Some may

argue that this is a distinct disadvantage when compared to SOAP, which is an industry standard

with its own well‐dei ned protocol and implementation rules. However, its ease of implementation

http://localhost:8080/rest/posts/71892
https://developer.paypal.com/webapps/developer/docs/integration/direct/paypal%E2%80%90rest%E2%80%90payment%E2%80%90hateoas%E2%80%90links/
https://developer.paypal.com/webapps/developer/docs/integration/direct/paypal%E2%80%90rest%E2%80%90payment%E2%80%90hateoas%E2%80%90links/

Summary ❘ 181

and use by others outweighs any difi culty created by a lack of a standard. Making a RESTful

resource for consumption is as simple as providing a URI, and using the HTTP protocol cross‐

language communication is easy. The common language is HTTP, the language of the web, which is

simple and understood by all.

 Bandwidth limitation situations prove no problem for REST’s lightweight approach and are

especially attractive on mobile devices. It costs little to make a request for a resource from a

RESTful API. Remember that it is just an HTTP request and that the data returned can be in any

appropriate format. The format does not have to be JSON or XML; it can be Atom Syndicate

Format (ATOM) or some custom format. The l exibility afforded by using just a simple URI to

represent a resource allows the client developer to be imaginative. You can use Asynchronous

Javascript and XML (AJAX) to call one or more URIs, perhaps from different REST providers. You

can combine the responses to these calls to provide rich content for the site’s visitors.

 If your implementation of REST uses the HTTP protocol (which it most probably will), you receive

the bonus feature of free caching. The HTTP protocol incorporates a cache as a core feature that

you can exploit in your application by setting appropriate HTTP header values.

 SUMMARY

 Your application’s REST API should be simple and intuitive for other developers to use, and it is your

responsibility as a developer to design an API that i ts the requirement of your application while ensuring

that the API’s users can access the resources required for the proper function of their application.

In this chapter we have touched upon the basics of a good RESTful API design. There are many

more considerations that we have not even mentioned, such as security, the use of query strings, and

how to provoke server side tasks.

Luckily REST is ubiquitous, and resources to help you develop a truly RESTful API are plentiful.

Just search the Internet and you will not be at a loss for articles, forums, and books devoted to the

topic of REST.

EXERCISES

1. Search the Internet for public RESTful APIs, and write some simple code that consumes them.

2. Implement the URI for the forum site detailed in the preceding text, and write a front end
client that consumes them.

3. Develop one journey through the site using a fully HATEOAS‐style approach.

182 ❘ CHAPTER 13 RESTFUL WEB SERVICES

 NOTES

 1. “Architectural Styles and the Design of Network‐Based Software Architectures,” Roy Fielding,
2000. Chapter 5 : www.ics.ucl.edu/~fielding/pubs/dissertation/rest_arch_style.htm .

 2. Leonard Richardson explained the model of RESTful maturity during a QCon talk in 2008.
www.crummy.com/writing/speaking/2008‐QCon/act3.html .

 3. The HTTP/1.1 RFC standard dei nes the following methods: OPTIONS , GET , HEAD , POST , PUT ,
DELETE , TRACE , and CONNECT .

 4. Martin Fowler provides a good overview on his website: www.martinfowler.com/article/
richardsonMaturityModel.html .

http://www.ics.ucl.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://www.crummy.com/writing/speaking/2008%E2%80%90QCon/act3.html
http://www.martinfowler.com/article/richardsonMaturityModel.html
http://www.martinfowler.com/article/richardsonMaturityModel.html

 WHAT’S IN THIS CHAPTER?

➤ An introduction to the MVC pattern

➤ The MVC pattern’s origins

➤ How to implement the MVC pattern using compound patterns

➤ Implementing the MVC pattern In Java EE

➤ When and where to use the MVC pattern

 WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

 The wrox.com code download for this chapter is found at www.wrox.com/go/

projavaeedesignpatterns on the Download Code tab. The code is in the Chapter 14

download and individually named according to the names throughout the chapter.

 The model view controller (MVC) pattern is one of the most ubiquitous architectural design

patterns in modern application development that is listed in the book from the Gang of Four.

It is built on the philosophy of separation of concerns and encapsulates the processing of

application data from the presentation of the data. Not encapsulating the processing of data

from the presentation of data leads to highly coupled systems that are hard to maintain and

extend. The separation of concerns that the MVC pattern provides makes modii cations to

both the business logic and the user interface much easier and more independent.

 The MVC pattern is not much different than buying a subscription from a cable provider and

a TV set from an electrical store. One provides the content, and the other makes sure you

view it in the right way. Neither worries about the changes in the technology on the i eld. You

can always buy a new TV set when better panels are released or subscribe to more channels

without buying new hardware.

 Developers of web applications use the MVC pattern extensively, and it is within this context

that its implementation will be discussed.

 14

http://www.wrox.com/go/projavaeedesignpatterns
http://www.wrox.com/go/projavaeedesignpatterns

184 ❘ CHAPTER 14 MODEL VIEW CONTROLLER PATTERN

WHAT IS THE MVC DESIGN PATTERN?

In MVC, the model represents the application’s data and related business logic. The model may be l

represented by one object or a complex graph of related objects. In a Java EE application, the data

is encapsulated in domain objects often deployed in an EJB module. Data is transported to and

from the database access layer in data transfer objects (DTOs) and accessed via data access objects

(DAOs). See Chapter 12 , “Data Access Pattern.”

The view is the visual representation of the data contained in the model. A subset of the model is

represented in a single view; thus, the view acts as a i lter to the model data. The user interacts with

the model data via the view’s visual representation and invokes business logic that in turn acts upon

the model data.

The controller links the view to the model and directs application l ow. It chooses which view

to render to the user in response to the user’s input and the business logic that’s processed. The

controller receives a message from the view, which it forwards to the model. The model in turn

prepares a response and sends it back to the controller where the view is chosen and sent to the user.

The MVC pattern logically spans the client and middle tier of a multitier architecture. In a Java

EE environment, the model is located in the business layer, normally in the form of an Enterprise

JavaBeans (EJB) module. The controller and view are located in the web tier. The view is likely to

be constructed from JavaServer Faces (JSF) or JavaServer Pages (JSP) with the help of Expression

Language (EL). The controller is normally a servlet that receives Hypertext Transfer Protocol

(HTTP) requests from the user. See Chapter 2 , “Basics of Java EE” for a discussion of multitier

architecture and the different application layers.

Often the MVC pattern is combined with other patterns, such as the command (or action), strategy,

composite, and observer patterns. This chapter doesn’t delve into the depths of these patterns, but it

does touch on the action pattern in the example that follows.

Even though the MVC elements of this pattern

were dei ned more than 30 years ago, they are

surprisingly relevant to their current use in a web

application.

Figure 14-1 shows the user making a request to

the controller. The controller handles the request

by updating the model and rendering a new view,

which is then sent to the user.

 FIGURE 14-1: Diagram of the model view

controller pattern

Update ViewUpdate Model

Call View

User Request

Model

Controller View

 BACKGROUND

The i rst mention of this pattern occurred before the invention of the modern‐day

Internet in a paper published by the SmallTalk programmer Trygve Reenskaug in

December 1979 while he was working at Xerox Parc.1

What Is the MVC Design Pattern? ❘ 185

 WAR STORY

 Back when JSP was all the rage and the Y2K bug had not brought on the

worldwide nuclear destruction that we had been promised, I was working for a

small web start‐up. Our start‐up was composed of just a few JSP/Java developers

and some l ash designers. We wanted to build a website portal that would serve

dynamic content that depended on the specii c needs of the client that had

contracted us.

 So we jumped into the project with 100 percent enthusiasm and developed a highly

dynamic website that displayed different features for different clients. We were truly

proud of our creation, and so were the many clients who bought our wonderful

site. In fact, we were becoming quite successful, and rather quickly, too. It seemed

that everyone was really happy with our product, and we were happy with our

success. But that happiness was short lived. As more and more clients bought our

product, the site became increasingly difi cult to manage. What we had done was

mix the business logic with the view logic, so for each new client, we had to amend

all the JSP in the site. Soon the JSP became a horrible mishmash of business and

display logic, and we ended up with unmanageable spaghetti code. It became a

nightmare, so we had no choice but to rewrite the entire application, but this time

implementing the MVC pattern.

 We did rewrite the application, and it became manageable, but only after many

late nights and a lot of weekends spent in the ofi ce. The moral of this story is

that the MVC pattern is good, not only for your application’s maintenance and

extensibility, but for your life‐work balance.

 MVC Types
 The MVC pattern comes in many different forms. The two most recognized are referred to as Type I

and Type II.

➤ MVC Type I —This type is a page‐centric approach in which the view and the controller

exist as one entity referred to as the view‐controller. With this approach, the controller logic

is implemented within the view, such as in a JSF. All the tasks that the controller performs,

including retrieving HTTP request attributes and parameters, invoking the business logic,

and managing the HTTP session, are embedded in the view using scriptlets and tag libraries.

Type I highly couples the view generation with the application l ow, making maintenance

troublesome.

➤ MVC Type II —The maintenance problems with Type I are overcome in Type II by moving

the controller logic out of the view and into a servlet, leaving the JSF to concern itself with

the rendering of the data for the view.

186 ❘ CHAPTER 14 MODEL VIEW CONTROLLER PATTERN

 ALTERNATIVE TO MVC—MEET MVP

 Sorry for the disillusion, but MVP does not stand for most valuable pattern. MVP

is the abbreviation for model view presenter, which is an alternative to model view

controller. Instead of creating a triangular relationship between controller, view,

and model like MVC, MVP offers one way of communication to each party—the

presenter takes charge of all communication between the view and model. It is

pretty popular in .NET, Silverlight, Google Web Toolkit, and Vaadin.

 FIGURE 14-2: Diagram of Spring’s MVC implementation

Handler
Mapping

Controller View

Dispatcher Servlet

HTTP Request HTTP Response

View Resolver

The principle difference between Type I and Type II is where the controller logic is located: in Type I

it is in the view, and in Type II it is in a servlet.

Many frameworks, such as Spring MVC, Struts, Grails, and Wicket, implement their own version

of the Type II MVC pattern. For example, Spring MVC includes the concept of the Dispatcher

servlet that interacts with the HTTP requests and delegates to the controller, view (and view

resolver), and handlers. Figure 14-2 shows a diagram of Spring’s implementation of the MVC

pattern.

IMPLEMENTING THE MVC PATTERN IN PLAIN CODE

You are going to implement the MVC pattern with the help of the action pattern. This pattern takes

on the responsibility of determining where to redirect the user based on the user’s request. It helps

maintain the single responsibility of the controller.

Implementing the MVC Pattern in Plain Code ❘ 187

 You’ll start with the controller class. In Listing 14‐1, you have implemented a simple controller that

responds to any HTTP GET request made to the /users/* path. The mapping of this relationship is

dei ned in the web.xml i le:

 <servlet>
 <servlet-name>FrontController</servlet-name>
 <servlet-class>com.devchronicles.mvc.plain.FrontController</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>FrontController</servlet-name>
 < url‐pattern > /users/* < /url‐pattern >
 </servlet-mapping>

 In the listing, you map the controller class com.devchronicles.mvc.plain.FrontController to

the request URL /users/* . Therefore, for every request made to this URL, it is directed to the

FrontController class for processing.

 SERVLETS 3.0

 Alternatively, you can annotate the controller class with the request URL like so:

@WebServlet({"/users/*"}). This annotation removes the need to dei ne the servlet

mapping in the web.xml .

 The doGet() method is invoked for such requests, and an Action object is retrieved from the

AbstractActionFactory , which determines the location of the view that should be returned to the user.yy

 LISTING 14‐1: The refactored UserService class

 package com.devchronicles.mvc.plain;

 import java.io.IOException;
 import javax.servlet.ServletException;
 import javax.servlet.annotation.WebServlet;
 import javax.servlet.http.HttpServlet;
 import javax.servlet.http.HttpServletRequest;
 import javax.servlet.http.HttpServletResponse;

 public class FrontController extends HttpServlet {

 protected void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {

 Actio n action =
AbstractActionFactory. getInstance ().getAction(request);

 Strin g view = action.execute(request, response);
 getServletContext().getRequestDispatcher(view).forward(request,
 response);
 }

 }

188 ❘ CHAPTER 14 MODEL VIEW CONTROLLER PATTERN

 Listing 14‐2 has two classes: AbstractActionFactory and ActionFactory . They

AbstractActionFactory class creates an instance of the ActionFactory class. The Action Factory’s

getAction method accepts an HttpServletRequest object, which contains a reference to the URI

of the requested location. The factory uses the URI to determine which Action object to return to

the controller. You maintain a map of URI request paths and Action objects in the action Map . An

Action object is chosen from the map based on the URI request path and returned to the controller.

 LISTING 14‐2: The Factory class

 package com.devchronicles.mvc.plain;

 public class AbstractActionFactory {

 private final static ActionFactory instance = new ActionFactory();

 public static ActionFactory getInstance() {
 return instance;
 }
 }

 package com.devchronicles.mvc.plain;

 import java.util.HashMap;
 import java.util.Map;
 import javax.servlet.http.HttpServletRequest;

 public class ActionFactory {

 private Map<String, Action> actions = new HashMap<>();
 private Action action;

 public ActionFactory() {
 actions.put("GET/users", new HomeAction());
 actions.put("GET/users/listusers", new ListUsersAction());
 }

 public synchronized Action getAction(HttpServletRequest request) {
 String path = request.getServletPath() + request.getPathInfo();
 String actionKey = request.getMethod() + path;
 System.out.println(actionKey);
 action = actions.get(actionKey);
 if(action == null){
 action = actions.get("GET/users");
 }

 return action;
 }
 }

 What is important in the Action object is that the concrete implementation provides an

implementation of the execute() method. This method performs business‐specii c logic required

to generate the page that the user requested. It may query a database to obtain data, perform

calculations, or generate a i le.

Implementing the MVC Pattern in Plain Code ❘ 189

 In Listing 14‐3, the ListUserAction ’s execute method constructs a list of users that it adds as

an attribute to the request object; then it returns the location of the view to render and display

to the user. The data now stored in the request object is accessed by the listuser.jsp page and

displayed.

 For brevity, a List object has been populated and returned, but in a real application, this is where

you would use EJB or other data objects that connect to a database.

 LISTING 14‐3: The Action class

 package com.devchronicles.mvc.plain;

 import java.util.ArrayList;
 import java.util.List;
 import javax.servlet.http.HttpServletRequest;
 import javax.servlet.http.HttpServletResponse;

 public class ListUsersAction implements Action {
 public String execute(HttpServletRequest request, HttpServletResponse

response) {

 List<String> userList = new ArrayList<>();
 userList.add("John Lennon");
 userList.add("Ringo Starr");
 userList.add("Paul McCartney");
 userList.add("George Harrison");
 request.setAttribute("listusers", userList);
 return "/WEB-INF/pages/listusers.jsp";
 }
 }

 The Action object returns to the controller, which receives the location of the page to which it

should dispatch the request and response objects.

 String view = action.execute(request, response);
 getServletContext().getRequestDispatcher(view).forward(request, response);

 In Listing 14‐4, the JSP accesses the page’s requestScope variable and retrieves the userList list

object created in ListUserAction . It then iterates over the collection and displays the usernames.

 LISTING 14‐4: The listuser.jsp access generates the page the user requested

 <%@ page language="java" contentType="text/html; charset=ISO-8859-1"
pageEncoding="ISO-8859-1"%>
 <%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix ="c" %>
 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
 <html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">

continues

http://java.sun.com/jsp/jstl/core
http://www.w3.org/TR/html4/loose.dtd

190 ❘ CHAPTER 14 MODEL VIEW CONTROLLER PATTERN

 <title>List of users</title>
 </head>
 <body>
 < h1 > Our users are: </h1 >
 < c:forEach items="${requestScope.listusers}" var="listusers" >

 ${listusers}
 < /c:forEach >
 </body>
 </html>

The example that’s been demonstrated is a simple implementation of the MVC pattern. You’ll continue

by looking at how you would implement the same application but using the advantages of Java EE 7.

IMPLEMENTING THE MVC PATTERN IN JAVA EE

The plain code implementation of the MVC pattern required you to write the controller logic, map

the URLs to controller classes, and write a lot of plumbing code. However, in the latest release of

Java EE, the plumbing code has been done for you. You only need to concentrate on the view and

the model. The FacesServlet takes care of the controller implementation.

THE FACESSERVLET

The FacesServlet takes control of managing user requests and delivering the view to the user. It

manages the life cycle for web applications that use JSF to construct the user interface. All user requests

go through the FacesServlet. The servlet is integral to JSF and can be coni gured if nonconventional

behavior is required. However, thanks to the concept of convention over coni guration, you will i nd that

for all but the most complex web applications, it is not necessary to change the default coni gurations.

Since JSF 2.2, you can perform the most common coni gurations by using annotation, further

reducing the need to touch the faces‐config.xml i le.

MVC USING THE FACESSERVLET

You are going to rewrite the preceding example using the FacesServlet servlet and JSF. The view

declaration language for JSF is called facelets. Facelets are the replacement for JSPs and are written

in XHTML using cascading style sheets (CSS).

 JSF includes the concept of backing beans. These are Plain Old Java Objects (POJOs)

annotated with the @Named and the @RequestScope annotations. These beans are accessible by the

LISTING 14-4 (continued)

 CONFIGURING THE FACESSERVLET

 If you do need to change the FacesServlet coni guration, you must amend the

faces‐config.xml i le.

MVC Using the FacesServlet ❘ 191

JSF page for the duration of the HTTP request. You can refer to their methods directly in the JSF. In

Listing 14‐5, you rewrite ListUsersAction.class to make it a backing bean.

 LISTING 14‐5: The ListUserAction class rewritten as a backing bean

 package com.devchronicles.mvc.javaee;

 import java.util.ArrayList;
 import java.util.List;
 import javax.enterprise.context.RequestScoped;
 import javax.inject.Named;

 @RequestScoped
 @Named
 public class ListUsersAction {

 private List<String> userList = new ArrayList<>();
 public List<String> getUserList() {
 return userList;
 }

 public String execute() {
 userList.add("John Lennon");
 userList.add("Ringo Starr");
 userList.add("Paul McCartney");
 userList.add("George Harrison");
 return "/WEB-INF/pages/listusers.xhtml";
 }
 }

 Because all backing beans are annotated with at least @Named and @RequestScope , there is a

Stereotype annotation you can use that gives it all the behavioral characteristics of a backing bean

when it’s applied. This annotation is the @Model annotation.

 Next, you need to create an index.xhtml i le. This replaces home.jsp and is called directly from the

browser. The purpose of this JSF is to call the execute method on ListUsersAction that prepares

the data for the view listusers.xhtml .

 Listing 14‐6 shows how this method is provoked.

 LISTING 14‐6: The home page to the simple MVC example

 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

 <html xmlns="http://www.w3.org/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">

 <h:head><title>Welcome</title></h:head>

 <h:body>
continues

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html

192 ❘ CHAPTER 14 MODEL VIEW CONTROLLER PATTERN

 <h1>Welcome to our site</h1>
 <h:form>
 <h2>C lick to see a <h:commandLink value="list of users"

action="#{listUsersAction.execute}"/>.</h2>
 </h:form>
 </h:body>
 </html>

 You use the h:commandLink tag and reference the backing bean and the execute() method in

the action element. The execute() method is called directly from the JSF; it generates the user

list, returns the location of the view that will render the list, and then invokes the getUserList()

method and displays the user list. Listing 14‐7 demonstrates this.

 LISTING 14‐7: The view that renders the model data

 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

 <html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:h="http://java.sun.com/jsf/html">

 <head>
 <title>List of users</title>
 </head>
 <body>
 <h1>Our users are:</h1>
 <ui:repeat value="#{listUsersAction.userList}" var="listusers">
 <h:outputText value="#{listusers}" />

 </ui:repeat>
 </body>
 </html>

 In the backing bean, the action class is referred to as listUsersAction starting in

lowercase, and the method getUserList() omits the word get . If a method starts with get , you can

omit it.

 When you deploy this application, the index.xhtml view renders the link, which when clicked will

display a list of users as follows:

 Our users are:
 John Lennon
 Ringo Starr
 Paul McCartney
 George Harrison

 You have now successfully built an MVC‐style website using the latest features of Java EE 7.

LISTING 14-6 (continued)

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/facelets
http://java.sun.com/jsf/html

Note ❘ 193

 WHERE AND WHEN TO USE THE MVC PATTERN

 The most prolii c use of the MVC pattern is in web applications, although you can use it anywhere

there is a benei t to separating the view logic from the business logic. In fact, the use of the MVC

pattern in web application architecture is so ubiquitous that any suggestion not to use it would bet

met with derision and disdain.

 There is no doubt that the two principle benei ts of using the pattern are strong. Its separation of

concerns makes for a l exible and adaptable web application, and its separation of production allows

different parts of the application to be developed virtually independently of each other. For example,

one team can work on the display logic while separately another team can work on the business

logic and domain objects.

 SUMMARY

 The MVC pattern has many commentators offering their point of view on its use, implementation,

and even validity. You will read my interpretations of this pattern and see many implementations. It

can be confusing to see the real benei ts of this pattern.

 You should go back to the essence of the MVC pattern: the separation of the display logic from

the business logic. If you implement code that stays true to this objective, you have successfully

implemented the MVC pattern.

 The concept behind a separation of presentation and business logic is to maintain a clear divide

between domain objects that model your problem and the presentation of that logic. This separation

allows the business data to be presented in any number of different ways, simultaneously and

without the need for the domain object to know anything about the way it is being displayed. It

could be displayed on the screen in a variety of formats or as Word or Excel i les.

 EXERCISES

 Develop the example in the chapter further by adding different views to display the user list.

 NOTE

 1. Professional website of Trygve M. H. Reenskaug: http://heim.ifi.uio.no/~trygver/
themes/mvc/mvc‐index.html .

http://heim.ifi.uio.no/%7Etrygver/themes/mvc/mvc%E2%80%90index.html
http://heim.ifi.uio.no/%7Etrygver/themes/mvc/mvc%E2%80%90index.html

 WHAT’S IN THIS CHAPTER?

➤ WebSockets

➤ Message‐oriented middleware

➤ Microservices versus monoliths

 WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

 The wrox.com code download for this chapter is found at www.wrox.com/go/

projavaeedesignpatterns on the Download Code tab. The code is in the Chapter 15

download and individually named according to the names throughout the chapter.

 This chapter discusses some of the things that are benei ts of Java EE and development. You

might think of this chapter as containing all the topics that are important to know but don’t i t

in any of the other chapters.

 This chapter introduces web sockets, which is an exciting new feature of Java EE. Then

it introduces message‐orientated middleware before moving on to the related topic of

microservice architecture.

 Enjoy this eclectic bag of tech goodies!

WHAT ARE WEBSOCKETS?

 WebSockets might be the most interesting improvement on the web since the introduction

of Asynchronous JavaScript And XML (AJAX). It has been popular since the emergence of

HTML5 and is supported by many web frameworks. However, it took quite a long time to

have a stable and compatible specii cation for WebSockets.

 15

http://www.wrox.com/go/projavaeedesignpatterns
http://www.wrox.com/go/projavaeedesignpatterns

196 ❘ CHAPTER 15 OTHER PATTERNS IN JAVA EE

 The Hypertext Transfer Protocol (HTTP) model was designed long before the Internet was popu-

lar, and it relied on simple specii cation and design. In the traditional HTTP model, a client opens

a connection to the back‐end server, sends an HTTP request of type 1 GET , POST , PUT , or DELETE ,

and the HTTP server returns an appropriate response. There have been several attempts to hack

and communicate over standard HTTP, such as AJAX, as well as design a new model such as

SPDY.

 The traditional HTTP model has been cumbersome for almost any application that goes beyond

the simple get‐and‐submit‐content data model. Think about a chat client, in which the partici-

pants can send messages in any order, and hundreds can be chatting at the same time. The stan-

dard request‐response approach would be too limiting for such purposes. Some early approaches

to get past this limitation were AJAX and Comet. Both relied on long polling: opening an

HTTP connection and keeping it alive (maintaining the connection open) by not i nalizing the

response.

 With WebSockets, the client can initiate a raw socket to the server and execute full‐duplex commu-

nication. WebSockets support was introduced with JSR‐356. The package javax.websocket and its

server subpackage contain all classes, interfaces, and annotations related to WebSockets.

 To implement WebSockets in Java EE, you need to create an endpoint class with the WebSocket life-

cycle methods shown in Listing 15‐1.

 LISTING 15‐1: An example of an endpoint

 package com.devchronicles.websockets;
 public class HelloEndpoint extends Endpoint {

 @Override
 public void onOpen(final Session session, EndpointConfig config) {

 session.addMessageHandler(new MessageHandler.Whole<String>() {

 @Override
 public void onMessage(String msg) {
 try {
 session.getBasicRemote().sendText("Hello " + msg);
 } catch (IOException e) { }
 }
 });
 }
 }

 The Endpoint class introduces three life-cycle methods: onOpen , onClose , and onError . At least the r

extending class needs to implement the onOpen method.

 You can deploy this endpoint in two different ways: either by coni guration or programmatically.

 To programmatically deploy the code in Listing 15-1, your application needs to invoke the following:

 ServerEndpointConfig.Builder.create(HelloEndpoint.class, "/hello").build();

What Are WebSockets? ❘ 197

 The deployed WebSocket is available from ws://<host>:<port>/<application>/hello . However, a

better way is to use annotation coni guration. Therefore, the same endpoint becomes Listing 15‐2.

 LISTING 15‐2: An example of an endpoint with annotations

 package com.devchronicles.websockets;

 @ServerEndpoint("/hello")
 public class HelloEndpoint {

 @OnMessage
 public void onMessage(Session session, String msg) {
 try {
 session.getBasicRemote().sendText("Hello " + msg);
 } catch (IOException e) { }
 }
 }

 This approach lets you use annotations and keep up with the Plain Old Java Object (POJO)

approach because you are not extending a base class. The annotated endpoint has the same life-

cycle methods as the one in Listing 15‐2, but it introduces an additional onMessage life-cycle

method. Rather than implementing onOpen and adding the onMessage handler, it’s enough to

implement an annotated onMessage method in the annotation‐based approach. You can anno-

tate several methods with @OnMessage to receive different types of data, such as String or

ByteBuffer for binary.

 The client‐side implementation of WebSockets depends on the web frameworks in use. However, a

simple JavaScript version is shown in the following snippet.

 var webSocket = new WebSocket('ws://127.0.0.1:8080/websockets/hello');
 webSocket.send("world");

 A better example is to send a complex object in JavaScript Object Notation (JSON) format, which

can be marshaled to an object, as in the following code snippet.

 var msg = {
 type: "message",
 text: "World",
 date: Date.now()
 };

 webSocket.send(JSON.stringify(msg));

 webSocket.onmessage = function(evt) { /* Expect to receive hello world */ };

 WebSockets are great for building web applications that need persistent and asynchronous messag-

ing between the client and the server. Java EE offers an easy implementation of WebSockets. They

have far more coni gurations and implementation options than discussed here. If we have sparked

your interest in WebSockets we suggest you visit Oracle’s Java EE Tutorial, 2 which explains in more

details how to program WebSockets using the Java API.

198 ❘ CHAPTER 15 OTHER PATTERNS IN JAVA EE

 WHAT IS MESSAGE‐ORIENTATED MIDDLEWARE

 The communication between components in a Java EE system is synchronous. A call chain is started

from the calling Enterprise JavaBean (EJB) to a data access object (DAO) to the entity, and so on to the

i nal target. All components of the call chain must be available and ready to receive the call, and the

calling component must wait for a response before proceeding. The success of the invocation depends

on the availability of all components. As you saw in Chapter 9 , “Asynchronous,” an invocation of an

asynchronous method does not require the calling object to wait for a response. It can continue with

the normal l ow of execution, while the asynchronous method sets up its own call chain.

 Message‐oriented middleware (MOM) provides a type of buffer between systems that allows the

communication to be delayed if a component is not up and running. Messages are delivered as soon

as all components are available. Invocations are translated into messages and sent via a messaging

system to a target component that processes the message and may respond. If the target component

is not available, the messages are queued waiting for the system to become available. When the

component is available, the messages are processed.

 At one end of the chain is a producer that translates the call into a form that can be transmitted as a

message, and at the other end is a consumer who receives the message. The consumers and produc-

ers are highly decoupled, because they don’t know anything about each other. They don’t even have

to be written in the same language or be hosted on the same network; they may even be distributed

over several external servers.

 A MOM system is composed of four players: messages, consumers, producers, and brokers.

Producers generate the messages and send them to brokers, who distribute the messages to

destinations where they’re stored until a consumer connects and processes them.

 There are two architectural implementations of MOM: point‐to‐point and publish/subscribe.

 In the point‐to‐point implementation, the producer sends a message to the destination, which is called

a queue . In the queue, the message waits for a consumer to pick it up and coni rm that it has been pro-

cessed successfully. If it has, the message is then removed from the queue. Figure 15-1 shows the pro-

ducer putting the message M1 onto the queue and then the consumer picking up the message from the

queue and processing it. In this implementation the message is only processed by one consumer.

FIGURE 15-1: Point‐to‐point implementation

Producer

M1

M1Queue Consumer

 In the publish/subscribe implementation, the destination is called a topic . A producer publishes a

message to a topic, and all consumers who subscribe to the topic receive a copy of the message. This

is shown in Figure 15-2 , where messages M1 and M2 are published to the topic T1 and consumed

by consumer C1 and C2, and message M3 is published on topic T2 and consumed by consumers C2

and C3.

What Is the Microservice Architecture? ❘ 199

 Java EE provides a convenient application programming interface (API) that deals with these

implementations and is called the Java Message Service (JMS). It is a set of interfaces that describe

the creation of messages, providers, and consumers. When implemented in an EJB container,

message‐driven beans (MDBs) act as listeners for JMS messages being invoked asynchronously.

 WHAT IS THE MICROSERVICE ARCHITECTURE?

 Over the past few years, the microservice architecture pattern has become a hotly discussed and

popular pattern. The idea behind it is to design a large distributed scalable application that consists

of small cohesive services that are able to evolve or even be completely rewritten over the life of the

application.

 This is not a new idea, and it is similar to the Service Orientated Architecture (SOA) pattern that has

been in use for a long time. The essence of the microservice is the idea that each service should be

small—perhaps as small as only a few hundred lines of code. The objective is to decompose a large,

monolithic application into much smaller applications to solve development and evolutionary problems.

 This chapter discusses the reasons for following the microservice path, its disadvantages and

benei ts, and how it compares to the more established and familiar monolithic architecture.

 Monolithic Architecture
 The most common way to develop and package a web application has always been to collect all the

resources, components, and class i les into a single Web application ARchive (WAR) or Enterprise

ARchive (EAR) i le and deploy it to a web server. A typical application for a bookstore might

include components that manage the user’s accounts, process payment, control stock, administer

customer services, and generate front‐end views. All this is developed in one monolithic application

and then packaged and deployed to a web server. Figure 15-3 shows a simplii ed representation of a

monolithic application.

 FIGURE 15-2: Publish/subscribe implementation

M1 M2

M3

M1

M2

M3

Consumer C1

M1

M3

M2 M1Consumer C2

Consumer C3

Topic T2

Topic T1

Producer

200 ❘ CHAPTER 15 OTHER PATTERNS IN JAVA EE

 The components are packaged together in a logical modular form and deployed as one single

monolithic application. It’s a simple way to develop and deploy an application because there’s

only one application to test. Integrated Development Environments (IDEs) and other development

tools are designed with the monolithic architecture in mind. Despite these benei ts of monolithic

architecture, applications built to this design are often very large.

 A small application is easy for developers to come to grips with, to understand, and maintain, but

a large monolithic application can be difi cult, especially for those developers who have recently

joined the team. They may take many weeks or months to thoroughly understand the application.

 Frequent deployments are not practical because they require the coordination of many developers

(and perhaps other departments). It may take hours or days to arrange a deployment, hindering

the testing of new features and bug i xes. A signii cant drawback to the monolithic design is that

it’s difi cult to change the technology or framework. The application was developed based on

technology decisions made at the beginning of the project. You are stuck with these decisions; if a

technology is found that solves the problem in a more elegant or performant way, it is difi cult to

start using it. Rewriting an entire application is almost never an affordable option. The monolithic

architecture pattern does not lend itself well to scalability.

 Scalability
Scalability refers to an application’s ability to grow (and shrink) as demand for its services changes

without noticeably affecting the user experience. A badly performing e‐commerce website loses

Client

Load Balancer

Data
Persistence

Store

Front-end views

(Payment view, customer
view, and so on)

Payment
Service

Stock Control
Service

Customer
Service

User
Account
Service

 FIGURE 15-3: Monolithic architecture

What Is the Microservice Architecture? ❘ 201

customers quickly, making scalability very important. The i rst go‐to solution is to scale horizontally

and duplicate the application over many servers and load balance the trafi c in a High Availability

(HA) manner, with a passive peer that becomes active if the active peer goes down. X‐axis scaling

improves the capacity and availability of the application. This option does not have development

cost implications but does result in higher hosting and maintenance expense.3

 You can scale an application along the Z‐axis. The application code is duplicated onto several

servers, similar to an X‐axis split, but in this case each server is responsible for only a frac-

tion of the data. A mechanism is put in place to route data to the appropriate server, perhaps

based on a user type or primary key. Z‐axis scaling benei ts from much the same performance

improvements as X‐axis scaling; however, it implies new development expense to rearchitect the

application.

 None of these solutions resolves the worsening application and development complexity. For this,

you need vertical scaling.

 The application can be scaled along the Y‐axis. It is decomposed into functionality, service, or

resource. The way you do this is entirely your choice and will depend on the situation, although

division by use case is common. The idea is that each decomposed part should encapsulate a small

set of related activities.

 To visualize the X‐, Y‐, and Z‐axis scaling, you draw an AKF scale cube,4 as in Figure 15-4 .

 FIGURE 15-4: The AKF cube should have X‐, Y‐, and Z‐axis scaling.

Divided
into
functionality,
service, or
resource

One monolithic
application/system

Y-axis scaling–
functional decomposition

Duplicated and
load balanced

Z-a
xis

 sc
ali

ng–

dat
a

sp
lit

X-axis scaling–horizontal
duplication

 Decomposing into Services
 The microservice approach decomposes a monolithic application along the Y‐axis into services that

satisfy a single use case or a set of related functionality. These services are then duplicated on several

servers and placed behind a load balancer, X‐axis split. The data persistence may be scaled along the

Z‐axis by sharding the data based on a primary key.

202 ❘ CHAPTER 15 OTHER PATTERNS IN JAVA EE

 The front‐end views have been split into separate applications that access the functionality of sev-

eral back‐end services. The services have been split from the monolithic application into standalone

applications that manage their own data. You can achieve splits along the Z‐axis by sharding the

data and scaling along the X‐axis by clustering and load balancing.

 You have seen how to decompose a monolithic application into microservices and learned the

importance of scalability for the continuance of an application.

 Now you’ll look more closely at the specii c benei ts and cost of the microservice architecture.

 Microservice Benei ts
 From the development perspective, the benei ts of a microservice architecture result from the size

and agility of the small applications of which it consists. They are easy for developers to understand

and for the IDE to manage. A large application that consists of many hundreds of modules can take

considerable time to load, which negatively affects the developers’ productivity. Each microservice

application can be deployed quicker and often without the cooperation of other teams. Because each

service stands alone, local changes to code do not affect other microservices; therefore, continuous

development is possible. Each microservice can be developed by a dedicated team of developers who

manage the deployment and resource requirements of their service independently of other teams.

 The user interface (UI) is normally divorced from back‐end development; your development team

may never see a line of UI code. If you are programming to a REpresentational State Transfer

User Account
Data

Customer
Data

Stock Control
Data

Payment Data

User Account
View

Inventory View Order View

User
Account
Service

Customer
Service

Stock
Control
Service

Payment
Service

FIGURE 15-5: Y‐axis decomposition

 If you decompose the applications in Figure 15-3 along the Y‐axis, you end up with the architecture

in Figure 15-5 .

What Is the Microservice Architecture? ❘ 203

(REST) API (see Chapter 13 , “RESTful Web Services”), you are only required to honor the resource

representation contract, not to think about the way the front end will be implemented. This allows

true separation of concerns.

 From the perspective of application performance, the main benei t comes from being able to

deploy each microservice onto its own tailored environment. The resource requirements of your

microservice may differ from another, thereby allowing resource allocation to be i ne grained.

A monolithic application is deployed on one environment with shared resources.

 Fault tolerance and isolation are increased. A fault in one microservice does not affect the opera-

tions of the others, allowing the application to continue to perform. In a system that uses MOM

to communicate between services, messages destined for a failed microservice wait in the queue

until the fault is resolved and the microservice (consumer) begins to consume the messages. If the

application is scaled horizontally, there’s no break in service because one of the duplicate microser-

vices consumes the messages. In a monolithic application, such a fault could bring down the entire

application.

 Among all the benei ts attributed to the microservice architecture, the most talked about is

the ease with which you can change the technology stack. Because each microservice is small,

rewriting it is not expensive. In fact, new microservices can be written in any language, allow-

ing you to choose the most suitable language for solving the problem. Technology decisions made

at the beginning of the project do not dictate the technology that you must use throughout the

application’s life.

 Nothing in Life Is Free
 The benei ts of the microservice architecture do not come free. There are costs involved.

 The ease with which you can develop a microservice makes it easy for the number of microservices

to grow, and to grow very quickly. Fifteen microservices can easily become thirty or more, especially

when different versions of the same microservice are counted. This poses several difi culties.

 The responsibility for operations may move to the development team. With only a handful of

services to maintain, it’s not a difi cult task, but as the number of microservices grows, the task

of maintaining them increases. A signii cant investment needs to be made to ensure that the

microservices are deployed and maintained. Processes need to be automated to reduce the burden of

deploying and maintaining a large number of services. There may be a knowledge gap you need to

i ll, adding to the overall running costs.

 Cross‐cutting changes to semantics means that all microservices must update their code to keep

in sync. This can be time consuming to perform and has signii cant retesting costs. Alterations to

interface contracts and message formats can be the cause of such changes and require that all teams

work in a coordinated way. Equally, failing to change an interface or message format early on in the

project results in signii cantly greater costs as the number of microservices grows.

 Duplicated code is something that you have been taught is bad, and it is. In a microservice environ-

ment, the risk of code duplication is high. To avoid coupling and dependencies, code must some-

times be duplicated, meaning every instance of that code must be tested and maintained. You may

be able to abstract code to a share library, but this does not work in a polyglot environment.

204 ❘ CHAPTER 15 OTHER PATTERNS IN JAVA EE

 The inherent unreliability and complexity of distributed systems are duplicated in a microservice

environment. Every service may be hosted in a distributed way, communicating via networks that

suffer from latency issues, incompatible versions, unreliable providers, hardware problems, and

more. Constant monitoring of network performance is vital.

 Conclusions
 The monolithic architecture has been used for many years to develop applications and serves small

applications and development teams well. It’s easy to develop and test because IDEs are designed to

manage these types of application structures. But as you have seen, it does not scale well and hinders

development. It is difi cult to introduce new technology, and refactoring is expensive.

 Microservices decompose into logical services of related functionality. Their small size makes them

easy for developers to understand. Development and deployment are continuous. Scalability is built

into the architecture, and you are not stuck with initial technology decisions.

 FINALLY, SOME ANTI‐PATTERNS

 The purpose of this book is to i ll the gap between “classical” patterns and Java EE. You will i nd

many books discussing anti‐patterns, but there is no harm in discussing a few here.

 Anti‐patterns usually occur because of misuse of one or several patterns. A Java EE developer who

has enough experience can easily list more anti‐patterns than patterns. Here are a few that are com-

mon or that you may already have come across.

 Uber Class
 There is probably no single project without a huge class that serves many purposes and responsibili-

ties. Not only does this violate Java EE principles, but such classes override basic object‐oriented

programming (OOP) principles and must be avoided.

 Services that are overloaded with many responsibilities fall into the same category. If you are not a

big fan of OOP, that’s i ne, but if you do want to continue to write code in an OOP language, it is

best to keep your classes small and highly cohesive.

 Although many others had expressed this anti‐pattern, Reza Rahman may have i rst introduced the

name.

 Lasagna Architecture
 Java EE promoted layers starting from the early days, which may have resulted in many unnecessary

interfaces and packages. Although this pattern may look like an answer to uber class and monolithic

applications, usually it complicates things unnecessarily.

 Lasagna architecture in the OOP world is not much different from spaghetti programming in

structural programming. Too much abstraction is unnecessary and provides no help. Interfaces and

loose coupling are great tools only when you use them in the right amount, in the right context, and

only when they are needed.

Finally, Some Anti‐Patterns ❘ 205

 This anti‐pattern has been expressed by many developers with many different names, such as

Baklava Code. However, the name lasagna may have been i rst given by Adam Bien,5 who is heavily

against unnecessary use of interfaces.

 Mr. Colombus
 Almost all experienced Java EE developers want to invent or implement their own perfect solution.

Most of the time these are only attempts to abstract and provide a better interface to a common

library, such as logging or testing, where it may even go to extremes and rewrite an important

functionality that has been supported by the open source community for years, such as an Object

Relational Mapping (ORM) layer.

 Although inventing something new may look appealing, reinventing something is just a waste of

time. If you are going to write a new logging or an ORM framework, you should really have a good

reason to do it. If you don’t, you are rewriting a well‐supported mature product, and most likely

you’ll end up maintaining it and providing all the support, tests, and future development alone.

 Always make sure you have done enough literature searches on open source projects before starting

to write a framework from scratch.

 Friends with Benei ts
 One huge problem of J2EE was vendor locking. By the time J2EE 1.4 was released, most vendor

servers only worked with the same vendor’s tools and IDEs. This looked like a mutually benei cial

relationship at i rst because the vendor provided professional support for its own tools, and open

source tools and servers were left to the community to support. However, in the long term, many

J2EE developers observed how open source tools and servers provided standard behavior and com-

patibility to Java specii cations when vendors failed to do so.

 There is nothing wrong with buying professional support and services and using tools, servers, and

IDEs from vendors as long as the project is not locked to that vendor. Vendor locking may introduce

problems that are impossible to solve without new releases and patches from the vendor, whereas

building applications always make it possible to change to other vendors.

 Bleeding Edge
 Passionate developers love to use bleeding‐edge technologies. For example, WebSockets were

introduced many years ago, but they still suffer compatibility issues with old versions of browsers.

No one can argue against the joy of learning something new and implementing a bleeding‐edge

technology in a project. However, it may become cumbersome to support such projects if you are

targeting the mainstream.

 A good approach to deciding which framework or technology to use is to see how it i ts with your target

user base. If you are building a banking application for clients who may still be using Internet Explorer 6,

using WebSockets is the best choice (although most WebSockets frameworks provide fallback scenarios).

 You always need to make sure an outsource library or framework is well supported, mature, and i ts

your project before moving on.

206 ❘ CHAPTER 15 OTHER PATTERNS IN JAVA EE

 Utilityman
 Utility classes and packages are common in projects. No one can argue that you need a class to per-

form some math operations, such as rounding or converting different number types. If you do have

such utility or helper classes, you probably need to organize them with a package name of util or

helper , right? No, in reality, they just help you collect junk. Because r util and helper sound too

generic, many classes are moved into these packages. Any class that may not be categorized easily

will end up in your package. The generic name does not provide real information, so even though

those classes are not used anymore, no one would dare to remove them.

 If you have a great utility that everybody needs to use, just place it where it belongs with the cur-

rent usage and provide proper documentation. You can move it to some more generic package in the

future if needed.

 Just like lasagna, Adam Bien i rst described and named this pattern.

 NOTES

 1. The complete list of HTTP methods is: GET, POST, DELETE, PUT, PATCH, OPTION,
HEAD, TRACE and CONNECT.

 2. Oracle’s WebSocket API tutorial:
http://docs.oracle.com/javaee/7/tutorial/doc/websocket.htm .

 3. This could introduce a development cost if the system makes use of HTTP session data and
there is not a clustered solution in place for HTTP session replication.

 4. The Art of Scalability: Scalable Web Architecture, Processes, and Organizations for the
Modern Enterprise , Martin L. Abbott, Michael T. Fisher. January 1, 2009.

 5. Adam Bien. Author and Java Champion. www.adam-bien.com

http://docs.oracle.com/javaee/7/tutorial/doc/websocket.htm
http://www.adam-bien.com

 PART III

▸ CHAPTER 16 : Design Patterns: The Good, the Bad, and the Ugly

 WHAT’S IN THIS CHAPTER?

➤ The good—how design patterns can lead to success

➤ The bad—how overuse and misuse of design patterns can lead to

trouble

➤ And the ugly—how some “de‐facto” standards can lead to failure

 So far, this book has covered many of the classical design patterns from the GoF 1 book as

well as some additional patterns that may i nd their way to becoming classics in the future.

This book was written with the aim of being something that the authors would have bought

themselves if they had not written it.

 As is true with everything in life, design patterns do not always do good. They can do harm as

well by leading you into implementing an anti‐pattern. This chapter focuses on the good, the

bad, and the ugly aspects of design patterns and hopefully provides a better approach for your

heavy arsenal of patterns.

THE GOOD: PATTERNS FOR SUCCESS

 As has been mentioned many times before, design patterns are the collective wisdom and

experience of many smart developers. They unleash a great depth of experience that you can

utilize to solve many common problems that occur in software development. Even in the early

days of programming when using goto was considered legal (and acceptable), many projects

failed. One of the early important resources on software engineering and project management

was The Mythical Man‐Month written by Frederick Brooks while he was managing

development of OS360 for IBM. 2 Although the book was published in 1975, it still addresses

 16

210 ❘ CHAPTER 16 DESIGN PATTERNS: THE GOOD, THE BAD, AND THE UGLY

many concerns and problems in modern software projects. At that time, one of the i rst design

patterns in software was becoming popular: object‐oriented programming (OOP). OOP was a set of

design rules and patterns that enabled real‐life situations to be modeled in code more effectively and

easily. It simply offered a magic wand for designing, coding, and maintaining software. Smalltalk,

C++, and Objective‐C pioneered the early golden years of OOP. Although Edsger Dijkstra 3

commented that “Object‐oriented programming is an exceptionally bad idea which could only have

originated in California,” it was the i rst major shift that changed how programs were written.

However, OOP was not a silver bullet either. First, using an object‐oriented language did not really

mean using an object‐oriented approach. Developers were, and still are, allowed to write procedural

code in any object‐oriented language. Second, complex and badly designed objects being used were

at least as capable at complicating things as any non‐OOP systems.

In the early 1990s, the famous Gang of Four, Erich Gamma, Richard Helm, Ralph Johnson, and

John Vlissides, published Design Patterns: Elements of Reusable Object‐Oriented Software,

which was the i rst book to bring together a collection of solutions to common problems as design

patterns. That book covered 23 design patterns that have been referred to as classical patterns

throughout this book, and they included code examples in C++ and Smalltalk. Over the years, many

new patterns have been introduced and added to pattern catalogs by many great programmers such

as Jim Coplien. 4

However, design patterns are not language and platform dependent and can be implemented in any

software project. Design patterns solve common problems and offer a common dictionary between

developers. Instead of describing how you implemented a callback mechanism, which is only

triggered when there is a change on the resource, you can say, “Oh, we have observers on x.”

When Java was developed in the mid‐1990s, many design patterns were integrated into its run

time. Java made good use of design patterns in its internal design and exposed many patterns in the

language itself by providing a default implementation application programming interface (API).

With the release of Java EE, even more patterns were introduced, many of which were published in

the book Core J2EE Patterns : Best Practices and Design Stratgies. 5

Reading pattern catalogues and learning their use cases does increase your knowledge of many

common problems and how to solve them, even before they have appeared. This book has listed

many war stories about how a particular design pattern has affected the project. These stories are

from real‐life experiences. Reading and memorizing a pattern is no guarantee of a magic solution,

but it may give you some clues and hints about how to solve a problem when you come across a

similar difi culty or challenge. Very soon, and with experience, you will end up addressing problems

even before they have occurred by using an appropriate pattern.

Initially, the J2EE programming model relied heavily on Extensible Markup Language (XML)

coni guration and a heavyweight Enterprise JavaBeans (EJB) container. Beans needed to extend

specii c classes and implement each method to work properly. Very soon, this approach proved

not to be productive and almost became an anti‐pattern. Although Spring 6 offered a lightweight

container approach, the upcoming design of Java EE favored inline code annotations over

coni guration i les. The lightweight container and EJB based on Plain Old Java Objects (POJOs)

offered a productive and easy‐to‐test programming model. Subsequent releases of Java EE offered

many desired features, most of which have been covered throughout the book. Finally, Context and

The Bad: Over and Misuse of Patterns ❘ 211

Dependency Injection (CDI) introduced a new container with great l exible features. With the help

of CDI, you can implement many patterns, such as observer and decorator, with little hassle.

 WAR STORY

 When I was given the responsibility to work on the Eclipse Libra project, I had

limited knowledge of Eclipse plug‐ins. After reading the only available book, Eclipse:

Building Commercial‐Quality Plug‐Ins , by Dan Rubel and Eric Clayberg (Addison-

Wesley, 2008), I decided to jump into the existing codebase in the Eclipse repository.

 Very soon, I was amazed with the overall architecture of Eclipse and how the

plug‐ins were built. Design patterns such as adapter, decorator, strategy, memento,

and many others were everywhere, used in the right context, and they provided an

efi cient and clear implementation.

 Eclipse code repository is one of the best live sources for good implementation of

design patterns in a real‐world project that millions of developers use.

 THE BAD: OVER AND MISUSE OF PATTERNS

 The i rst training I received on design patterns simply blew my mind. The following month I spent

all my time reading Head First Design Patterns7 and next, of course, the GoF book. I was armed

with the knowledge of patterns and was ready to use them. As time passed by, I realized I didn’t

even need to use inheritance and could build all models and object hierarchies with decorators.

I even created a set of utility classes consisting of several singletons, some message busses for

observers, and some generic decorator and observers that I always included when I created a new

project.

 I was always proud to show my code and let others see how great and sophisticated a programmer

I was. It did not take long to realize my way of using design patterns was just over‐complicating my

code and adding too many layers during run time. Even simplifying the existing code resulted in

better performance. Complex and sophisticated code does not make you a better programmer, and

it doesn’t make the code optimized and maintainable. Engineering is the art of using the right tool at

the right place and building a system efi ciently.

 WAR STORY

 I was once asked to implement a data structure to handle transactional database

operations for a job I was applying for. I was to complete the code at home and

send it back to the company for review via e-mail. The system would be able to add

new values and perform a save operation once a commit was done. Also, the system

would be able to go back to a previous state when a rollback was executed. Little

continues

212 ❘ CHAPTER 16 DESIGN PATTERNS: THE GOOD, THE BAD, AND THE UGLY

…AND THE UGLY

Design patterns and Java EE are old pals. However, this friendship did not always work out well. As

J2EE became more accepted in the corporate world and began addressing large projects, design patterns

came to the rescue. Many of the classical patterns from GoF found their place in J2EE applications.

Enterprise patterns followed soon after to address common problems in the J2EE platform.

 J2EE gained popularity and drove many new concepts such as Service Orientated Architecture

(SOA) and Web Services. However, the complex structure of J2EE doomed many projects to fail.

J2EE beans relied on extending classes and needed a heavyweight container on which to run.

Because the beans rely on the container, the development process needed full‐blown heavyweight

servers to slow down the development and needed costly hardware to run on. Still, those enterprise

containers were slow, resulting in sluggish restarts and refreshes. Testing and unit testing was hard

to perform properly.

Besides, J2EE coni guration was heavy and relied on XML i les. Although separating the

coni guration and code seemed like a good idea, soon it turned out to be an XML hell. Heavy

coni guration was needed to create a simple bean.

As J2EE became the platform of the enterprise, consultants, architects, and vendors released

sophisticated guidelines that resulted in over‐complex, over‐architected, and overly layered

applications that were impossible to test and hard to develop (due to long restarts), debug, and

deploy.

voices in my head were screaming, “Memento!” Although I had never needed to

apply memento until that day, I knew it was a perfect match. The memento pattern

would let me commit to a save point that I could then roll back. So I set about

revising my knowledge of the memento pattern’s implementation. I created my

Caretaker , r Memento and Originator classes, placed them in an internal package,

and implemented the database logic code that uses internal memento classes.

 I was proud and coni dent about the code I delivered. Surprisingly (for me), the

company didn’t want to continue with the interview process. Maybe it was looking

for someone who would use a simple stack to push and pull values, but the code

I delivered gave me coni dence in my knowledge of design patterns, even for the

patterns I don’t use often.

 After going back over the original question years later, I realized there were

performance constraints of using minimal objects and an O(log N) runtime

performance. My code was readable, clean, and maintainable, but it failed to

address the key points that the interviewer asked in the i rst place.

 If knowing a pattern blinds you to making good decisions, design patterns do more

harm than good.

continued

. . .and The Ugly ❘ 213

 Luckily, Enterprise Java had a happy ending. The POJO and lightweight container movement led

by Rod Johnson8 gained a huge following and soon became a competitor to J2EE. Spring offered a

lightweight container and the ability to run on simple Java servers. The POJO approach was great

for testing and did not need the container most of the time, but even if the container was needed, it

was not hard to use.

 The success of Spring caused a renaissance in the Java Community Process. Java EE 5 was designed

from scratch to support POJO EJB and lighter containers. Java EE had evolved and matured.

 However, old habits and development techniques did not change overnight. Still, many developers follow

the patterns of J2EE, creating overly layered and complex applications while not using the lightweight

containers and servers. Just like the English language has changed since Shakespeare’s time, platforms

and programming languages have changed. Don’t get stuck in the past by resisting change.

 WAR STORY

 It was the early days of J2EE 1.4, and we were to implement the next generation of

banking systems. We had implemented all the best practices, patterns, guidelines,

and anything else we could i nd in books and online resources.

 Our application was heavily dependent on a particular vendor and was not

portable. We had to run the vendor integrated development environment (IDE)

and the vendor server, and this was in the age of 32 bits when Windows refused to

address more than 3GB of RAM. The server and IDE were so slow when started in

debug mode that we did not need breakpoints to stop execution.

 The vendor assured us that the production environment was going to be fast;

nevertheless, the development life cycle was like a ball and chain. We could easily

go for coffee breaks while the server restarted.

 Things got even more fun when we wanted to go live. The production environment

turned out to be as slow as the development boxes. Soon we all had the habit of

watching prod and test environment’s memory statuses.

 Finally, we hired a famous consultant to show us what we were doing wrong. He

was an old and wise guy whom we treated like Gandalf. After reviewing our code

for a few days, he asked us to delete almost all façades (we had façades for almost

every bean) and all unnecessary interfaces (again, we almost had interfaces for

interfaces). He also asked us to minimize our lasagna‐like layers by cutting down

the call hierarchy (EJB calling EJB calling EJB…).

 It was the J2EE 1.4 days with heavy vendor servers, so nothing magical happened.

Still, we gained some performance and at least achieved much readable code.

 Assuming that everything may change, developing with needs for l exibility in mind

does not offer an easier future but most probably a more crippled today.

214 ❘ CHAPTER 16 DESIGN PATTERNS: THE GOOD, THE BAD, AND THE UGLY

 SUMMARY

 Design patterns are one of the most important, challenging, and useful topics in software. No object‐

oriented programmer would be complete without proper knowledge of common design patterns.

 Good knowledge provides a great toolset for common problems you are likely to face. Java EE

takes this a step further and introduces a much easier and integrated way to use design patterns

in enterprise projects. Most patterns in Java EE have been introduced after long debates and pain,

which ensures they are well implemented and mature.

 All patterns described in this book rely on Java EE standards, so they are almost guaranteed to

work successfully.

 Still, patterns are neither silver bullets nor magic wands. If they are used extensively without reason,

they tend to overcomplicate the project. Knowing a pattern does not necessarily mean you have to

use it unless you know it i ts and solves a potential problem.

 Read and learn design patterns, and try to keep your memory fresh on where they i t and what

problems they solve. You will save many lines of code and earn respect.

 NOTES

 1. Design Patterns: Elements of Reusable Object‐Oriented Software (Addison‐Wesley, 1994):
Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides.

 2. The Mythical Man‐Month: Essays on Software Engineering (Addison‐Wesley, 1975): Frederickg
P. Brooks Jr.

 3. Edsger Wybe Dijkstra was a Dutch computer scientist who received the 1972 Turing Award for
fundamental contributions to developing programming languages.

 4. James O. Coplien is an author, lecturer, and researcher in computer science.
 5. Core J2EE Patterns: Best Practices and Design Strategies (Prentice Hall, 2003): Deepak Alur,

Dan Malks, John Crupi.
 6. A Java‐based framework that provides many features including dependency injection and

aspect‐orientated programming.
 7. Head First Design Patterns (O’Reilly, 2004): Eric Freeman, Elisabeth Robson, Bert Bates,

Kathy Sierra.
 8. Rod Johnson is an Australian computer programmer who created the Spring framework.

215

INDEX

A

abstract factory design pattern. See also factory

design pattern

class diagram, 68

implementing in plain code, 69

when to use, 80

AbstractActionFactory class, 188

AbstractDrinksMachineFactory interface, 69

@AccessTimeout annotation, 45

AccountService EJB, 29–31

ActionFactory class, 188

addUser() method, 44

advices, 102. See also AOP

context, 1040105

default-level interceptors, 106

interceptor execution order, 107–109

AFTER_COMPLETION phase, 148, 149

AFTER_FAILURE phase, 148, 150

AFTER_SUCCESS phase, 148, 149

AKF scale cube, 210

@Alternative annotation, 59, 72

Alur, Deepak, 8

AnnotationLiteral class, 77–78

annotations

@AccessTimeout, 45

@Alternative, 59, 72

@Any, 76–79

@ApplicationPath, 175

@AroundInvoke, 102, 104

@ClearanceSale, 93–94

@ConcurrencyManagement, 46

@ConversationScope, 21

@ConversationScoped, 57

@Decorator, 61, 89–94

@Delegate, 61, 89–94

@DELETE, 175

@DependsOn, 40–42

@EJB, 53, 54

@Entity, 156, 158

@GeneratedValue, 156, 158

@GET, 175–178

@Id, 156, 158

@Inject, 53–54, 56, 57, 69–76

@InterceptorBinding, 109–110, 112

@Interceptors, 21

@interface, 73, 74

life cyle annotations, 105

@Lock, 43–45

@LockType, 43–45

@LongMessage, 73–74, 77–78

method-level annotations, 103–104

@Model, 60, 191

@MyEvent, 147

@Named, 54–55, 58, 60, 75–76, 190–191

@Observes, 144–150

@Path, 175–178

@PathParam, 177–178

@POST, 175, 178

@PostActivate, 105–106

@PostConstruct, 14, 39, 42, 46, 105

@PreDestroy, 105–106

@PrePassivate, 105–106

@Produces, 69–76, 80

@PUT, 175

@Qualifier, 73

@QueryParam, 178

@Remove, 21

@RequestScope, 21, 190–191

@RequestScoped, 57, 60

216

annotations – CDI beans

annotations (continued)

@Resource, 53, 132

@Schedule, 128–131

@Schedules, 128–131

@Secure, 109–110

@SessionScope, 21

@SessionScoped, 57

@ShortMessage, 73–74, 77–78

@Singleton, 14, 39, 46

@Startup, 14, 40

@Stateful, 31

@Target, 59, 74

@Timeout, 128, 132, 137

@Transient, 158

@WebServiceRef, 53

anti-patterns, 10, 204

lasagna architecture, 204–205

uber class, 204

@Any annotation, 76–79

AOP (aspect-oriented programming), 97–112

implementing in plain code, 100–101

interceptors

CDI interceptors, 109–111

default-level, 106

implementing, 102–105

life cycle annotations, 105–106

order of execution, 107–109

when to use, 111

applets, 7

@ApplicationPath annotation, 175

Application tier, 17

archives, CDI beans, 56–57

@AroundInvoke annotation, 102, 104

aspect-oriented programming. See AOP

aspects, 61, 97, 98, 102. See also AOP

async() method, 120

asynchronous beans, 118–120

asynchronous programming, 113–126

asynchronous beans, 118–120

asynchronous servlets, 120–124

l ow diagram, 116

implementing

in Java EE, 118–124

in plain code, 116–118

overview, 113–115

when to use, 124–125

asynchronous servlets, 120–124

automatic timers, 130–131

calendar-based attributes, 134–136

implementation, 131

B

Baklava Code, 205

BaseDAO interface, 162, 163

BasicDrinksMachineFactory class, 69

Batch, 16

bean archives, 56–57

bean-managed concurrency, 43

beans.xml i le, 39, 61, 91, 110–111

BEFORE_COMPLETION phase, 148–149, 151

behavioral design patterns, 6

Bien, Andy, 205, 206

BlackFridayDiscountDecorator class, 91–94

bleeding-edge technologies, 205

Bloch, Joshua, 37

BlockingQueues, 118

Box, Don, 8

Brooks, Frederick, 209

Business layer (Middle tier), 14, 15, 16–17

C

cacheable constraint (REST), 168

calendar-based timer attributes, 134–136

callback methods, 130

CDI (Context and Dependency Injection). See also

dependency injection design pattern

vs. EJB, 56

injectable object types, 56

interceptors, 109–111

multiple interface implementations and, 76–79

CDI beans, 20–21, 56–57

archives, 56–57

backing beans for JSF pages, 58

for backing JSF, 58

naming, 58

requirements, 56

scopes, 21, 57–58

stereotypes, 60

217

Children class – Data tier

Children class, 149

class diagrams, 4–5

abstract factory pattern, 68

data access object pattern, 154–155

decorator pattern, 85

façade pattern, 27

factory pattern, 64–65

observer pattern, 141–142

singleton pattern, 34

classes

AbstractActionFactory, 188

ActionFactory, 188

AnnotationLiteral, 77–78

BasicDrinksMachineFactory, 69

BlackFridayDiscountDecorator, 91–94

Children, 149

CoffeeMachine, 66

DoubleExtra, 86, 88

DrinksMachine, 66–68

Endpoint, 196–197

EventService, 70–76, 145

FrontController, 187

FutureTask, 117

GourmetDrinksMachineFactory, 69

HelloEndpoint, 196–197

helper classes, 206

ListUserAction, 189–190, 191

MessageFactory, 79

Movie, 156, 157

MySingleton, 35–38

naming, 19

NoCostExtra, 86, 88

Observable, 142–144

Pizza, 86

Plate, 93

PriceDiscountDecorator, 90–94

qualii er classes, 59

RegularExtra, 86, 87

Runnable, 116

ScheduleExpression, 133–137

SoftDrink, 67

SoftDrinksMachine, 67

Table, 89–90

TraceObserver, 145

UserService, 50–52, 53–55, 187

UserServiceFactory, 51

utility classes, 206

@ClearanceSale annotation, 93–94

Client tier, 14–15

client-server constraint (REST), 167

CMP (Container-Managed Persistence), 156

code on demand constraint (REST), 168

coding by convention, 19

CoffeeMachine class, 66

CoffeeType enum, 67–68

component model, Java EE, 19

concurrency

Concurrency Utilities, 16, 17, 18

singleton pattern, 42–45

@ConcurrencyManagement annotation, 46

container-managed concurrency, 43, 54, 56

Container-Managed Persistence (CMP), 156

convention over coni guration, 19

@ConversationScope annotation, 21

@ConversationScoped annotation, 57

Core J2EE Patterns: Best

Practices and Design Strategies, 8

createCalendarTimer() method, 133

createIntervalTimer() method, 133

createSingleActionTimer() method, 133

createTimer() method, 133

creational design patterns, 6

cross-cutting concerns, 98, 104, 111

Crupi, John, 8

CustomerService EJB, 29–31

D

data access object (DAO) design pattern, 65–66,

153–163

class diagram, 154–155

DTOs (data transfer objects), 155–156

implementing in Java EE, 157–162

JPA (Java Persistence API), 156–158

ORM (Object Relational Mapping), 156

overview, 153–154

type-safe implementation, 162

when to use, 163

Data Access tier, 17

Data tier, 18

218

d f b h ddata transfer objects – ExecutorService () method

data transfer objects (DTOs), 155–156

dayOfMonth timer attribute, 134

dayOfWeek timer attribute, 134

debugging, and asynchronous programming, 124

decomposing monolithic applications, 201–202

@Decorator annotation, 61, 89–94

decorator design pattern, 83–96

class diagram, 85

implementing

in Java EE, 89–94

in plain code, 86–89

overview, 83–85

when to use, 94–95

@Delegate annotation, 61, 89–94

@DELETE annotation, 175

DELETE method, 171, 172, 173, 174, 178

dependency injection design pattern. See also CDI

benei ts, 50

implementing

in Java EE, 53–61

in plain code, 50–53

@Named attribute, 54–55

overview, 20–21, 49–50

@DependsOn annotation, 40–42

design patterns. See also specii c patterns

class diagrams as, 4–5

abstract factory, 68

data access object, 154–155

decorator, 85

façade, 27

factory, 64–65

observer, 141–142

singleton, 34

vs. enterprise patterns, 8–9

group classii cations, 6

history of, 5

implementing. See implementing design patterns

need for, 5

overview, 4–6

for success, 209–211

unnecessary use of, 5–6, 211–212

when to use

asynchronous programming, 124–125

data access object, 163

decorator, 94–95

façade, 31

factory, 80

interceptors, 111

model view controller, 193

observer, 150–151

REST, 180–181

singleton, 45

Design Patterns: Elements of Reusable

Object-Oriented Software, 5, 6

DI. See dependency injection design pattern

Dijkstra, Edsger, 210

Dispatcher servlet, 186

doFilter() method, 100

doGet() method, 187

double-checked locking, 37

DoubleExtra class, 86, 88

Drink interface, 67

DrinksMachine class, 66–68

DTOs (data transfer objects), 155–156

E

Eclipse, 211

Effective Java, 37, 38

Ehcache, 45

EIS (Enterprise Information Systems) tier,

14–15, 18

EJB (Enterprise JavaBeans)

vs. CDI, 56

component model, 8

containers, 15, 16, 17

context, 21

stateful beans, façade pattern, 31

stateless beans, façade pattern, 29–31

@EJB annotation, 53, 54

EL (Expression Language), 16, 17, 58, 184

Endpoint class, 196–197

Enterprise Information Systems (EIS) tier, 14–15, 18

enterprise patterns, 7–10

@Entity annotation, 156, 158

entity beans, 156

EntityManager, 159–160, 161, 163

EventService class, 70–76, 145

execute() method, 188, 192

ExecutorService, 117, 123–124

219

explicit bean archives – implementing design patterns

explicit bean archives, 56–57

Expression Language (EL), 16, 17, 58, 184

F

façade design pattern, 25–32

benei ts, 28–29

class diagram, 27

implementing

in plain code, 27–29

with stateful beans, 31

with stateless beans, 29–31

overview, 25–27

when to use, 26, 31

faces-config.xml i le, 190

FacesServlet, 190–192

factory design pattern, 63–81

abstract factory, 68

class diagram, 68

implementing in plain code, 69

factory method, 64

class diagram, 64–65

implementing in Java EE, 69–80

implementing in plain code, 66–68

overview, 63–64

when to use, 80

Fielding, Roy, 166, 167

Fork/Join Framework, 118

Fowler, Martin, 49

FrontController class, 187

Future interface, 117

FutureTask class, 117

G

@GeneratedValue annotation, 156, 158

@GET annotation, 175–178

GET method, 166–167, 171, 173–174

getFullName() method, 58

getHandle method, 133

getInfo method, 130–131

getInstance() method, 34–37

getMinute method, 133

getNextTimeout method, 133

getSchedule method, 133

getTimer method, 133

getTimeRemaining method, 133

getUserList() method, 192

getUsers() method, 176

GlassFish Server Open Source Edition 4.0, 18

GoF (Gang of Four)

GourmetDrinksMachineFactory class, 69

H

HATEOAS (Hypermedia As The Engine Of

Application State), 178–180

Head First Design Patterns, 6, 26, 34, 38, 64, 68,

85, 140

heavilySoiled method, 27–28

HelloEndpoint class, 196–197

helper classes, 206

helper package, 206

Hollywood principle, 140

home.jsp i le, 191

hour timer attribute, 134

HTTP

asynchronous servlets and, 121

methods, 171–172

REST and, 166–167

Hypermedia As The Engine Of Application State

(HATEOAS), 178–180

I

@Id annotation, 156, 158

implementing design patterns

in Java EE

asynchronous programming, 118–124

data access object, 157–162

decorator, 89–94

dependency injection, 53–61

façade, 29–31

factory, 69–80

interceptors, 102–111

model view controller, 190–192

observer, 144–150

singleton, 38–45

timer service, 130–137

WebSockets, 196–197

220

implementing design patterns – JSRs

implementing design patterns (continued)

in plain code

abstract factory, 69

aspect-oriented programming, 100–101

asynchronous, 116–118

decorator, 86–89

dependency injection, 50–53

façade, 27–29

factory, 66–68

model view controller, 186–190

observer, 142–144

singleton, 35–38

implicit bean archives, 56–57

IN_PROGRESS phase, 148

info attribute, timer service, 130–131

@Inject annotation, 53–54, 56, 57, 69–76

Integration tier, 18

@InterceptorBinding annotation, 109–110, 112

interceptors, 21–22

CDI interceptors, 109–111

default-level, 106

implementing, 102–105

life cycle annotations, 105–106

order of execution, 107–109

when to use, 111

@Interceptors annotation, 21

@interface annotation, 73, 74

interfaces

AbstractDrinksMachineFactory, 69

BaseDAO, 162, 163

Drink, 67

Future, 117

MessageType, 77–79

MovieDAO, 159–163

multiple implementations of, 76–79

Observer, 141–142, 143–144

Order, 86–89

Product, 89–94

Publisher, 143

TimedObject, 128

UserDataRepository, 51–52, 54–55, 59

InvocationContext parameter, 102, 104

isCalendarTimer method, 133–134

isPersistent method, Timer object, 134

J

Java

history of, 7–10

servlet i lters, 98, 99–101

Java API for RESTful Web Services (JAX-RS), 17,

178

Java API for XML Registries (JAXR), 17, 19

Java API for XML-Based RPC (JAX-RPC), 17, 19

Java API for XML-Based Web Services (JAX-WS),

17, 19

Java Caching System, 45

Java Community Process (JCP), 18

Java EE

component model, 19

core principles, 19

multitier architecture, 14–18

servers, 18

standards, 18

web proi le, 18–19

Java EE 7 Tutorial: Part VIII Persistence, 156

Java Message Service (JMS) API, 199

Java Naming and Directory Interface (JNDI), 53,

130

Java Persistence API (JPA), 156–158

Java Specii cation Requests. See JSRs

Java Transaction API (JTA), 16, 17, 161

JavaServer Faces (JSF), 17, 55, 184

JavaServer Pages (JSP), 16, 17, 184, 185

JAX-RPC (Java API for XML-Based RPC), 17, 19

JAX-RS (Java API for RESTful Web Services), 17,

178

JAX-WS (Java API for XML-Based Web Services),

17, 19

JAXR (Java API for XML Registries), 17, 19

JCP (Java Community Process), 18

JMS (Java Message Service) API, 199

JNDI (Java Naming and Directory Interface), 53,

130

join() method, 117

JPA (Java Persistence API), 156–158

JSF (Java Server Faces), 17, 55, 58, 184

JSP (JavaServer Pages), 16, 17, 184, 185

JSRs (Java Specii cation Requests), 17, 18

JSR133, 118

221

JTA – nouns

JSR166, 114

JSR220, 53

JSR229, 53

JSR250, 53

JSR299, 55

JSR315, 120

JSR330, 53

JTA (Java Transaction API), 16, 17, 161

L

lasagna architecture, 204–205

layered system constraint (REST), 168

levels, Richardson Maturity Model,

168–169

life cycle

AsyncListener methods, 122

CDI beans, 57

interceptors, 105–106

WebSockets methods, 196–197

lightlySoiled method, 27–28

listuser.jsp i le, 189–190

ListUserAction class, 189–190, 191

LoanService EJB, 29–31

@Lock annotation, 43–45

@LockType annotation, 43–45

logAsync() method, 119–120

logger interceptor, 21–22

Logic tier, 17

logsync() method, 120

@LongMessage annotation, 73–74, 77–78

loosely coupled applications, 19

M

Malks, Dan, 8

ManagedExecutorService, 123–124

ManagedThreadFactory, 122–123

message-oriented middleware (MOM), 198–199

MessageA bean, 71–76A

MessageB bean, 71–76

MessageEvent qualii er, 146

MessageFactory class, 79

MessageType interface, 77–79

method-level annotations, 103–104

microservice architecture, 199–204

benei ts, 202–203

costs, 203–204

scalability, 200–201

Middle tier, 14–15, 16–17

minute timer attribute, 134

@Model annotation, 60, 191

model view controller design pattern,

183–193

implementing

in Java EE, 190–192

in plain code, 186–190

overview, 183–185

types, 185–186

when to use, 193

model view presenter (MVP), 186

MOM (message-oriented middleware),

198–199

monolithic architecture, 199–200

month timer attribute, 134

Movie class, 156, 157

MovieDAO interface, 159–163

multitier architecture, 14–18

MVC. See model view controller design pattern

MVP (model view presenter), 186

@MyEvent annotation, 147

MySingleton class, 35–38

The Mythical Man-Month, 209–210

N

@Named annotation, 54–55, 58, 60, 75–76,

190–191

naming classes, 19

NoCostExtra class, 86, 88

nonblocking method execution, 113

notifyObservers method, 141, 150

nouns, REST, 166, 167

HTTP verbs and, 169

naming, 170

plural, 171

posts, 173–174

topics, 173–174

uniform interface constraint, 167

users, 172–173

222

Object Relational Mapping – Runnable class

O

Object Relational Mapping (ORM), 156, 205

object-oriented programming. See OOP

Observable class, 142–144

observer design pattern, 139–152

class diagram, 141–142

implementing

in Java EE, 144–150

in plain code, 142–144

overview, 139–141

when to use, 150–151

Observer interface, 141–142, 143–144

@Observes annotation, 144–150

onClose method, 196

onError method, 122, 196

onOpen method, 196–197

onStartAsync method, 122

onTimeout method, 122

OOP (object-oriented programming)

background, 5, 210

design patterns in, 4

lasagna architecture, 204

uber classes in, 204

Order interface, 86–89

ORM (Object Relational Mapping), 156, 205

P

@Path annotation, 175–178

@PathParam annotation, 177–178

Paypal.com, 180

Persistence tier, 18

persistence units, 160–161

persistence.xml i le, 159–161

Pizza class, 86

Plate class, 93

point-to-point MOM implementations, 198–199

pointcut, 102

@POST annotation, 175, 178

@PostActivate annotation, 105–106

@PostConstruct annotation, 14, 39, 42, 46, 105

POST method, 166, 171–172, 172–173, 178

posts noun, 173–174

@PreDestroy annotation, 105–106

@PrePassivate annotation, 105–106

Presentation tier. See Client tier

PriceDiscountDecorator class, 90–94

@Produces annotation, 69–76, 80

Product interface, 89–94

programmatic timers, 130, 131–134

calendar-based attributes, 134–136

implementation, 132

“Prototyping Patterns for the J2EE Platform”, 8

publish/subscribe MOM implementations,

198–199

Publisher interface, 143

@PUT annotation, 175

PUT method, 171, 172, 173, 174, 178

Q

@Qualifier annotation, 73

qualii er classes, 59

Quartz, 118, 125, 128

@QueryParam annotation, 178

queues, message-oriented middleware, 198

R

RadioChannel observer, 143

Rahman, Reza, 204

Reenskaug, Trygve, 184

RegularExtra class, 86, 87

@Remove annotation, 21

@RequestScope annotation, 21, 190–191

@RequestScoped annotation, 57, 60

@Resource annotation, 53, 132

REST, 165–181

constraints, 167–168

designing RESTful API, 169–174

HATEOAS, 178–180

implementing RESTful API, 175–178

nouns. See nouns, REST

overview, 165–167

Richardson Maturity Model, 168–169

when to use, 180–181

Richardson Maturity Model, 168–169

rollbacks, observer pattern, 150–151

Runnable class, 116

223

scalability – utility classes

S

scalability, 200–201

@Schedule annotation, 128–131

ScheduleExpression class, 133–137

@Schedules annotation, 128–131

scopes, CDI beans, 21, 57–58

Seam, 55

second timer attribute, 134

@Secure annotation, 109–110

Service Oriented Architecture (SOA), 8, 199, 212

servlet i lters, 98, 99–101

servlets

asynchronous servlets, 120–124

FacesServlet, 190–192

servlet i lters, 98, 99–101

@SessionScope annotation, 21

@SessionScoped annotation, 57

@ShortMessage annotation, 73–74, 77–78

@Singleton annotation, 14, 39, 46

singleton beans, 13–14, 39–42

singleton design pattern, 33–47

class diagram, 34

implementing

in Java EE, 38–45

in plain code, 35–38

overview, 33–34

when to use, 34, 45

sleep() method, 117, 119

Smalltalk, 205, 210

SOA (Service Oriented Architecture), 8, 199,

212

SoftDrink class, 67

SoftDrinksMachine class, 67

Spring, MVC implementation, 186

startAsync() method, 121–122

startService() method, 70–71, 104, 147

@Startup annotation, 14, 40

@Stateful annotation, 31

stateful EJB, façade pattern, 31

stateless constraint (REST), 168

stateless EJB, façade pattern, 29–31

stereotypes, 60

structural design patterns, 6

subjects, observer pattern, 140

Sugarsync, 174

sync() method, 120

T

Table class, 89–90

@Target annotation, 59, 74

Technology Compatibility Kit (TCK), 18

testLoggers() method, 120

TimedObject interface, 128

@Timeout annotation, 128, 132, 137

@Transient annotation, 158

timeout method, 132

timer service, 127–138

automatic timers, 130–131

calendar-based attributes, 134–136

development cycle, 128–129

implementation, 130

overview, 127–129

programmatic timers, 130, 131–134

transactions, 136–137

TimerService object, 128, 129, 131–134

timezone attribute, timer service, 130–131

TMAX JEUS 8, 18

topics noun, 173–174

topics, message-oriented middleware, 198

TraceObserver class, 145

Transaction Event Observer, 148–149

transactions

timer service, 136–137

transaction-sensitive observers, 151

type-safe DAO implementation, 162

U

uber classes, 204

uniform interface constraint (REST), 167

User class, 51

UserDataRepository interface, 51–52,

54–55, 59

users noun, 172–173

UserService class, 50–52, 53–55, 187

UserServiceFactory class, 51

util package, 206

utility classes, 206

224

web container – year timer attribute

W

web container, 15, 16, 17

Web layer (Middle tier), 14, 15, 16

web proi le, 18–19

WebBeans, 55

@WebServiceRef annotation, 53

WebSockets, 195–197

Wildl y 8.0.0, 18

X

x-axis scaling, 201–202

Y

y-axis scaling, 201–202

year timer attribute, 134

WILEY END USER LICENSE

AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook
EULA.

http://www.wiley.com/go/eula

	PROFESSIONAL Java® EE Design Patterns
	ABOUT THE AUTHORS
	ABOUT THE TECHNICAL EDITOR
	CREDITS
	ACKNOWLEDGMENTS
	CONTENTS
	FOREWORD
	INTRODUCTION
	PART I: INTRODUCTION TO JAVA EE DESIGN PATTERNS
	CHAPTER 1: A BRIEF OVERVIEW OF DESIGN PATTERNS
	What Is a Design Pattern?
	How Patterns Were Discovered and Why We Need Them
	Patterns in the Real World

	Design Pattern Basics
	Enterprise Patterns
	Java to Enterprise Java
	The Emergence of Enterprise Java Patterns
	Design Patterns Versus Enterprise Patterns
	Plain Old Design Patterns Meet Java EE
	When Patterns Become Anti-Patterns

	Summary
	Notes

	CHAPTER 2: THE BASICS OF JAVA EE
	Multitier Architecture
	The Client Tier
	The Middle Tier
	Web Layer
	Business Layer

	The EIS Tier
	Java EE Servers
	The Java EE Web Profile
	Core Principles of Java EE
	Convention over Configuration
	Context and Dependency Injection
	Interceptors
	Summary
	Exercises

	PART II: IMPLEMENTING DESIGN PATTERNS IN JAVA EE
	CHAPTER 3: FAÇADE PATTERN
	What Is a Façade?
	Façade Class Diagram

	Implementing the Façade Pattern in Plain Code
	Implementing the Façade Pattern in Java EE
	Façade with Stateless Beans
	Façade with Stateful Bean

	Where and When to Use the Façade Pattern
	Summary
	Exercises
	Notes

	CHAPTER 4: SINGLETON PATTERN
	What Is a Singleton?
	Singleton Class Diagram
	Implementing the Singleton Pattern in Plain Code

	Implementing the Singleton Pattern in Java EE
	Singleton Beans
	Using Singletons at Startup
	Determining Startup Order
	Managing Concurrency

	Where and When to Use the Singleton Pattern
	Summary
	Exercises
	Notes

	CHAPTER 5: DEPENDENCY INJECTION AND CDI
	What Is Dependency Injection?
	Implementing DI in Plain Code
	Implementing DI in Java EE
	The @Named Annotation
	Context and Dependency Injection (CDI)
	CDI Versus EJB
	CDI Beans
	The @Inject Annotation
	Contexts and Scope
	Naming and EL
	CDI Beans for Backing JSF
	Qualifiers
	Alternatives
	Stereotypes
	Other Patterns via CDI

	Summary
	Exercises
	Notes

	CHAPTER 6: FACTORY PATTERN
	What Is a Factory?
	Factory Method
	Implementing the Factory Method in Plain Code

	Abstract Factory
	Implementing the Abstract Factory in Plain Code

	Implementing the Factory Pattern in Java EE
	Harness the Power of CDI

	Where and When to Use the Factory Patterns
	Summary
	Exercises
	Notes

	CHAPTER 7: DECORATOR PATTERN
	What Is a Decorator?
	Decorator Class Diagram

	Implementing the Decorator Pattern in Plain Code
	Implementing the Decorator Pattern in Java EE
	Decorators Without XML Confi guration

	Where and When to Use the Decorator Pattern
	Summary
	Exercises
	Notes

	CHAPTER 8: ASPECT-ORIENTED PROGRAMMING (INTERCEPTORS)
	What Is Aspect-Oriented Programming?
	Implementing AOP in Plain Code
	Aspects in Java EE, Interceptors
	Interceptor Life Cycle
	Default-Level Interceptors
	Interceptor Order
	CDI Interceptors

	Where and When to Use Interceptors
	Summary
	Notes

	CHAPTER 9: ASYNCHRONOUS
	What Is Asynchronous Programming?
	Asynchronous Pattern

	Implementing Asynchronous Pattern in Plain Code
	Asynchronous Programming in Java EE
	Asynchronous Beans
	Asynchronous Servlets

	Where and When to Use Asynchronous Programming
	Summary
	Exercises
	Notes

	CHAPTER 10: TIMER SERVICE
	What Is the Timer Service?
	Implementing a Timer in Java EE
	Automatic Timers
	Programmatic Timers
	Timer Expression
	Transactions

	Summary
	Exercises
	Notes

	CHAPTER 11: OBSERVER PATTERN
	What Is an Observer?
	Description
	Observer Class Diagram

	Implementing the Observer Pattern in Plain Code
	Implementing the Observer Pattern in Java EE
	Where and When to Use the Observer Pattern
	Summary
	Exercises
	Notes

	CHAPTER 12: DATA ACCESS PATTERN
	What Is a Data Access Pattern?
	Data Access Class Diagram

	Overview of the Data Access Pattern
	Data Transfer Object Pattern
	Java Persistence Architecture API and Object Relational Mapping

	Implementing the Data Access Pattern in Java EE
	Type-Safe DAO Implementation

	Where and When to Use the Data Access Pattern
	Summary
	Exercises
	Notes

	CHAPTER 13: RESTFUL WEB SERVICES
	What Is REST?
	The Six Constraints of REST
	Client-Server
	Uniform Interface
	Stateless
	Cacheable
	Layered System
	Code on Demand

	Richardson Maturity Model of REST API
	Level 0: The Swamp of POX (Plain Old XML)
	Level 1: Resources
	Level 2: HTTP Verbs
	Level 3: Hypermedia Controls

	Designing a RESTful API
	Resource Naming
	Nouns Not Verbs
	Self-Descriptive
	Plural Not Singular
	HTTP Methods
	Get
	Post
	Put
	Delete

	Rest in Action
	The users noun
	The topics noun and the posts noun

	Implementing REST in Java EE
	HATEOAS
	Where and When to Use REST
	Summary
	Exercises
	Notes

	CHAPTER 14: MODEL VIEW CONTROLLER PATTERN
	What Is the MVC Design Pattern?
	MVC Types

	Implementing the MVC Pattern in Plain Code
	Implementing the MVC Pattern in Java EE
	The FacesServlet
	MVC Using the FacesServlet
	Where and When to Use the MVC Pattern
	Summary
	Exercises
	Note

	CHAPTER 15: OTHER PATTERNS IN JAVA EE
	What Are WebSockets?
	What Is Message-Orientated Middleware
	What Is the Microservice Architecture?
	Monolithic Architecture
	Scalability
	Decomposing into Services
	Microservice Benefits
	Nothing in Life Is Free
	Conclusions

	Finally, Some Anti-Patterns
	Uber Class
	Lasagna Architecture
	Mr. Colombus
	Friends with Benefits
	Bleeding Edge
	Utilityman

	Notes

	PART III: SUMMARY
	CHAPTER 16: DESIGN PATTERNS: THE GOOD,THE BAD, AND THE UGLY
	The Good: Patterns for Success
	The Bad: Over and Misuse of Patterns
	…and The Ugly
	Summary
	Notes

	INDEX
	Advert
	EULA

