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Preface

Data sharing and dissemination play a key role in our information society. Not
only do they prove to be advantageous to the involved parties, but they can also
be fruitful to the society at large: for instance, new treatments for rare diseases
can be discovered with real clinical trials shared by hospitals and pharmaceutical
companies. The advancements in the Information and Communication Technology
(ICT) make the process of releasing a data collection simpler than ever. The
availability of novel computing paradigms, such as data outsourcing and cloud
computing, makes scalable, reliable, and fast infrastructures a dream come true at
reasonable costs. As a natural consequence of this scenario, data owners often rely
on external servers for releasing their data collections, thus delegating the burden
of data storage and management to the service provider. Unfortunately, the price to
be paid is in terms of unprecedented privacy and security risks. Data collections
often include sensitive information, not intended for disclosure, that should be
properly protected. The problem of protecting privacy in data release has been
under the attention of the research and development communities for a long time.
However, the richness of released data, the large number of available sources, and
the emerging outsourcing/cloud scenarios raise novel problems, not addressed by
traditional approaches, which call for enhanced solutions.

In this book, we propose a comprehensive approach for protecting sensitive
information when large collections of data are publicly or selectively released by
their owners. In a nutshell, this requires protecting data explicitly included in the
release, as well as protecting information not explicitly released but that could be
exposed by the release, and ensuring that access to released data be allowed only to
authorized parties according to the data owners’ policies. More specifically, these
three aspects translate to three requirements, addressed by this book, which can be
summarized as follows. The first requirement is the protection of data explicitly
included in a release. While intuitive, this requirement is complicated by the fact
that privacy-enhancing techniques should not prevent recipients from performing
legitimate analysis on the released data but, on the contrary, should ensure sufficient
visibility over non sensitive information. We therefore propose a solution, based
on a novel formulation of the fragmentation approach, that vertically fragments
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viii Preface

a data collection so to satisfy requirements for both information protection and
visibility, and we complement it with an effective technique for enriching the
utility of the released data. The second requirement is the protection of data not
explicitly included in a release. As a matter of fact, even a collection of non sensitive
data might enable recipients to infer (possibly sensitive) information not explicitly
disclosed but that somehow depends on the released information (e.g., the release
of the treatment with which a patient is being cared can leak information about
his/her disease). To address this requirement, starting from a real case study, we
propose a solution for counteracting the inference of sensitive information that
can be drawn observing peculiar value distributions in a released data collection.
The third requirement is access control enforcement. Available solutions fall short
in emerging computing paradigms for a variety of reasons. Traditional access
control mechanisms are in fact typically based on a reference monitor mediating
access requests, and do not fit outsourcing/cloud scenarios where neither data
owners are willing nor cloud providers are trusted, to enforce the authorization
policy. Recent solutions applicable to outsourcing scenarios assume outsourced
data to be read-only and cannot easily manage (dynamic) write authorizations. We
therefore propose an approach for efficiently supporting grant and revoke of write
authorizations, building upon the selective encryption approach, and we also define
a subscription-based authorization policy, to fit real-world scenarios where users
pay for a service and access the resources made available during their subscriptions.

The main contributions of this book can therefore be summarized as follows.

• With respect to the protection of data explicitly included in a release, our original
results are: (1) a novel modeling of the fragmentation problem; (2) an efficient
technique for computing a fragmentation, based on reduced Ordered Binary
Decision Diagrams (OBDDs) to formulate the conditions that a fragmentation
must satisfy; (3) the computation of a minimal fragmentation not fragmenting
data more than necessary, with the definition of both an exact and a heuristics
algorithm providing faster computational time while well approximating the
exact solutions; (4) the definition of loose associations, a sanitized form of the
sensitive associations broken by fragmentation, specifically designed to operate
on arbitrary fragmentations; and (5) the definition of a heuristic algorithm for the
computation of arbitrary loose associations, experimentally proved to enhance
precision of queries executed over different fragments.

• With respect to the protection of data not explicitly included in a release,
our original results are: (1) the definition of a novel and unresolved inference
scenario, raised from a real case study where data items are incrementally
released upon request; (2) the definition of several metrics to assess the inference
exposure due to a data release, based upon the concepts of mutual information,
Kullback–Leibler distance between distributions, Pearson’s cumulative statistic,
and Dixon’s coefficient; (3) the identification of a safe release with respect to
a given inference channel; and (4) the definition of the controls to be enforced
to guarantee that no sensitive information be leaked releasing non sensitive data
items.
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Preface ix

• With respect to the access control enforcement, our original results are: (1) the
management of dynamic write authorizations, by defining a solution based on
selective encryption for efficiently and effectively supporting grant and revoke of
write authorizations; (2) the definition of an effective technique to guarantee data
integrity, so to allow the data owner and the users to verify that modifications to a
resource have been produced only by authorized users; and (3) the modeling and
enforcement of a subscription-based authorization policy, to support scenarios
where both the set of users and the set of resources change frequently over time,
and users’ authorizations to access resources are based on their subscriptions.

Milan, Italy Giovanni Livraga
November 2014
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Chapter 1
Introduction

Private companies, public organizations and final users are more and more releasing,
sharing, and disseminating their data, to take reciprocal advantage of the great
benefits they can obtain by making their data available, publicly or selectively, to
others. Unfortunately, these benefits come at the price of unprecedented privacy
risks: large collections of data often include sensitive information, possibly related
to users, which should be properly protected. The availability of effective means for
protecting data against privacy violations is then emerging as one of the key issues
to be addressed in such an open and collaborative scenario.

In this book, we define a comprehensive approach for protecting sensitive
information when large collections of data are publicly or selectively released by
their owners. In the remainder of this chapter, we discuss the motivations behind the
work, our objectives and our contributions. We finally illustrate the outline of the
book.

1.1 Motivation

The advancements in the Information and Communication Technology (ICT) have
revolutionized our lives in a way that was unthinkable until few years ago. We
live in the Globalization era, where everything we need to do is available within
“one mouse click”. Global infrastructure, digital infrastructure, digital society are
only few examples of terms used to refer to our society. The term that better
represents our society is however information society (or information age) since
information plays a key role in the daily life activities of everyone. Every time we
browse Internet, perform online transactions, fill in forms to, for example, pay bills,
taxes or participate in online games, and spend our time in online social networks,
information about us is collected, stored, and analyzed. At the same time, public and
private organizations need to share and disseminate their information, also due to the

© Springer International Publishing Switzerland 2015
G. Livraga, Protecting Privacy in Data Release, Advances in Information
Security 57, DOI 10.1007/978-3-319-16109-9_1
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2 1 Introduction

benefits that such information sharing brings to them and to their end users. Such
advantages are easy to understand: as an example, consider how medical research
can advance, to the benefits of the entire humanity, thanks to hospitals sharing
health information about their patients with pharmaceutical companies to the aim
of improving known treatments–or even discovering new ones–based on real-world
clinical trials. As another example, public, private, and governmental organizations
might disclose or share their data collections for research or statistical purposes,
for providing services more efficiently and effectively, or because forced by laws
and regulations. Medical, financial, census or demographic, and scientific data are
only few examples of information whose release and exchange can be fruitful to
the involved parties and the society at large. The process of releasing a collection
of data can be either public (i.e., data are published and restrictions are enforced
neither on accessing nor on using them) or selective (i.e., different portions of the
released collection can be accessed by different parties). The emerging paradigms
of data outsourcing and cloud computing indeed facilitate data release. Giving
to users and companies the opportunity to benefit from the lower costs, higher
availability, and larger elasticity that are offered by the rapidly growing market of
cloud providers, data owners can easily release large data collections without the
burden of further managing them. As witnessed, for example, by the seemingly
never-ending success of services like Amazon S3 and EC2, enjoying the benefits
of the highly scalable, reliable, fast, and inexpensive infrastructure such providers
offer, users and companies are more and more resorting to honest-but-curious
external servers (i.e., trusted for managing data but not for accessing their content)
to store their data and make them available to others.

The complexity and variety of our information society introduce however new
risks, and pose new research challenges. The vast amount of personal (possibly
user-generated) data collected, stored, and processed, the unclear data ownership,
and the lack of control of the users on their own data are creating unprecedented
risks of privacy breaches. The problem of properly protecting the privacy of the
users is clearly not new and has received considerable attention from the research
and industrial communities. In the past, the restricted access to information and
its expensive processing represented a basic form of protection that does not hold
anymore: with the rate at which technology is developing, it is now becoming easier
and easier to access huge amounts of data by using, for example, portable devices
(e.g., PDAs, mobile phones) and ubiquitous network resources. Moreover, the
advancements of the ICT make us available powerful techniques and technological
resources for analyzing and correlating data coming from different sources, and
resorting to cloud/outsourcing solutions makes data owners inevitably lose direct
control over their own data.

Considering that large collections of data often include sensitive information,
whose confidentiality must be safeguarded, it is clear that the protection of data
against improper disclosure is a key factor in our information society, and yet
a problem far from having a well-defined solution. The efforts of the scientific
community in this direction, and the media coverage on privacy issues, testify how
data protection is a sine-qua-non condition for our society to fully enjoy the benefits
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of data sharing and dissemination. However, serious privacy incidents can be right
behind the corner: two well-known examples of privacy violations are the America
OnLine (AOL) and Netflix incidents [7, 85]. AOL is an Internet services and media
company that in 2006 released around 20 millions of search records of 650,000 of its
customers. To protect the privacy of its customers, AOL de-identified such records
by substituting personal identifiers with numerical identifiers, which were therefore
released together with the term(s) used for the search, the timestamp, whether the
user clicked on a result, and the corresponding visited website. With these data, two
reporters of the New York Times newspaper were able to identify AOL customer
no. 4417749 as Thelma Arnold, a 62 years old widow living in Lilburn [7]. In the
same year, the on-line movies renting service Netflix publicly released 100 millions
records, showing the ratings given by 500,000 users to the movies they rented. The
records were released within the “Netflix Prize” competition that offered $1 million
to anyone who could improve the algorithm used by Netflix to suggest movies
to its customers based on their previous ratings. Also in this case, records were
de-identified by replacing personal identifiers with numerical identifiers. However,
some researchers were able to de-anonymize the data by comparing the Netflix
data against publicly available ratings on the Internet Movie Database (IMDb). For
instance, the release of her movie preferences damaged a lesbian mother since she
was re-identified, and her sexual orientation disclosed against her own will [85].

1.2 Objectives

There are mainly three key aspects to be considered when designing a system for
ensuring that no sensitive information be leaked when releasing a data collection, as
briefly outlined in the following.

• Protection of data explicitly involved in a release. Large data collections often-
times include sensitive data that should be protected (e.g., medical information
about diseases suffered from patients, financial details about the income of
employees, personal information of individuals such as religious, sexual, or polit-
ical preferences). However, protecting privacy of sensitive information should
not prevent recipients from performing legitimate analysis on the released data.
In other words, privacy-enhancing techniques should balance between privacy
protection, on one hand, and information visibility, on the other hand. Recent
proposals considering confidentiality and visibility constraints (i.e., requirements
on privacy and visibility) have put forward the promising idea of computing
vertical fragments over the original data structure so that all the constraints are
satisfied. To further enrich the utility of the released data, fragments can be
complemented with a sanitized form of the broken sensitive associations among
attributes. To ensure proper protection to data privacy, while maximizing the
visibility over non sensitive information, it is therefore necessary to define novel
formulations of the fragmentation problem, to efficiently and effectively satisfy
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confidentiality and visibility constraints. Also, it is important to enrich the utility
of released data, independently from the number of released fragments.

• Protection of data not explicitly involved in a release. The release of non
sensitive data (and thus the exclusion of sensitive data from the release), in
some scenarios, might only at a first sight be a safe approach to protect data
confidentiality. In fact, sensitive information that is not published, and should
remain protected, may become indirectly available when it is somehow related
to, and deducible from, released non sensitive data (as an example, the release of
the treatment with which a patient is being cared reduces the uncertainty about
the possible disease she suffers from, due to the correlation existing between
an illness and its treatments). Such a problem has been extensively studied
in multilevel database management systems, with solutions that however do
not fit the data release scenario. Some attempts have recently been done in
this context offering solutions to block or limit the exposure of sensitive or
private information. However, new scenarios of data publication, coupled with
the richness of published data and the large number of available data sources,
raise novel problems that still need to be addressed. It is therefore of primary
importance the design of novel privacy-preserving techniques able to capture,
and protect, sensitive information not explicitly included in a release that might
be exposed as consequence of the release itself.

• Access control enforcement. When the data release process is selective, besides
protecting data privacy, another requirement is that of implementing an access
control mechanism, to ensure that users can access only the data allowed by the
access policy. Traditional access control architectures are based on the presence
of a trusted component, called reference monitor, in charge of enforcing the
policy defined by the data owner. However, as already mentioned, users and
companies are more and more resorting to cloud storage systems to make their
data selectively available to others. In these scenarios, unfortunately, neither the
data owner is willing, nor the cloud storage server is trusted, to enforce the access
control policy. Existing solutions for access control enforcement in outsourcing
scenarios have mainly focused on read access restrictions, while few efforts have
been devoted to the management of write privileges, which becomes a key factor
in emerging applicative scenarios (e.g., document sharing) where the data owner
may wish to grant other users the privilege to modify some of her resources. In
addition, we need to consider the proliferation of subscription-based services,
where users dynamically join and leave the system, and access resources based
on their subscriptions. We need therefore to re-consider the current understanding
of how access control is enforced in outsourcing scenarios, to take into account
both the management of write privileges and dynamic subscription-based access
policies.

This book focuses on the three high-level objectives mentioned above, to the aim
of defining a comprehensive solution to protect data privacy in release scenarios. In
the remainder of this chapter, we discuss in more details the specific contributions
of this work.
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1.3 Contributions of the Book

This book addresses the problems related to privacy and security when a data owner
wants to (publicly or selectively) release a large collection of data. The specific
contributions of the book focus on the three privacy and security aspects illustrated
above, that is, the protection of data explicitly involved in a release, the protection of
data not explicitly involved but possibly exposed by a release, and the enforcement
of access restrictions. In the remainder of this section, we illustrate the contributions
in more details.

1.3.1 Protection of Data Explicitly Involved in a Release

The first contribution of this book is related to the protection of the privacy of
data explicitly included in a release, while satisfying the needs for information
availability of the recipients [29, 30, 42, 45]. The original contribution of our work
can be summarized as follows.

Problem Modeling Data release must find a good balance between the need for
making certain information available to others, and the equally strong need to
ensure proper protection to sensitive information. The (vertical) fragmentation of
the original data collection can effectively satisfy both confidentiality constraints,
modeling the need for protecting confidential information, and visibility constraints,
modeling the need for information of data recipients [3, 27, 28, 38]. In this book, we
build upon the fragmentation approach to define our privacy-enhancing technique
for protecting information confidentiality in data release, while satisfying visibility
constraints. The peculiarity of our solution consists of a novel modeling of the
fragmentation problem, which exploits the representation of confidentiality and
visibility constraints as Boolean formulas and that interprets fragments as truth
assignments over the Boolean variables representing the attributes in the original
relation. This modeling is at the basis of the definition of an efficient solution to the
fragmentation problem.

Efficient Fragmentation Computation Thanks to the Boolean formulation of the
problem, the computation of a fragmentation that satisfies a set of confidentiality
and visibility constraints can rely on the efficiency with which Boolean formulas
are represented and manipulated. To this aim, we take advantage of reduced
Ordered Binary Decision Diagrams (OBDDs), a canonical form for representing
and efficiently manipulating Boolean formulas [80]. OBDDs are used in practical
applications more often than other classical representations of Boolean formulas
because they have a canonical form that uniquely characterizes a given function,
and because operations on Boolean formulas can be performed efficiently in
time and space [68]. We take advantage of our OBDDs-based formulation to
efficiently formulate the correctness conditions that a fragmentation must satisfy.
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The efficiency of our proposed OBDDs-based approach is testified by the promising
experimental results illustrated in this book.

Minimality Given a set of confidentiality and visibility constraints, our goal is that
of computing a fragmentation that does not split attributes among fragments when
it is not necessary for satisfying confidentiality constraints. The rationale is that
maintaining a set of attributes in the same fragment releases, besides their values,
also their associations. Therefore, the utility of released data for final recipients is
higher when releasing a fragmentation composed of fewer fragments, since they also
provide recipients with visibility over associations among attributes. To this aim, we
define an exact algorithm for computing a minimal fragmentation (i.e., composed
of the minimum number of fragments). In addition, we define a heuristic algorithm
that, as proved by our experimental results, provides faster computational time while
well approximating the minimal fragmentations computed by the exact algorithm.

Extended Loose Associations To enrich the utility of the published fragments, it
is possible to complement them with loose associations, a sanitized form of the
sensitive associations broken by fragmentation [38]. The original definition of loose
associations however considers fragmentations composed of two fragments only.
If a fragmentation is composed of more than two fragments, the naive approach
of releasing multiple associations between the different pairs of fragments can
potentially expose sensitive associations, as we show in this book. To this aim, we
define loose associations that operate among an arbitrary set of fragments. After
illustrating the privacy risks related to publishing multiple loose associations, we
describe an approach for supporting the more general case of publishing a single
loose association among an arbitrary set of fragments. By defining a heuristic
algorithm to compute safe loose associations and analyzing experimental results,
which prove the efficacy of the approach in terms of more precise responses to
queries posed by users, we provide a general solution, applicable to real-world
scenarios to further fulfill the needs of data recipients while not compromising on
data privacy.

1.3.2 Protection of Data Not Explicitly Involved in a Release

The second contribution of this book is the definition of a technique for capturing
and counteracting the privacy risks that the release of a collection of non sensitive
data can cause. Sensitive information, despite not appearing in the released dataset,
might in fact be derived observing peculiar distribution of the values of the released
data [13, 14]. The original contribution of our work can be summarized as follows.

Inference Model We identify and model a novel inference scenario, raised from
a real case study that needed consideration where data items are incrementally
released upon request. We address a specific problem related to inferences arising
from the dependency of sensitive (not released) information referred to some entities
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on other (released) properties regarding such entities. In particular, we are concerned
with the possible inferences that can be drawn by observing the distribution of
values of non sensitive information associated with these entities. Such a problem
of sensitive information derivation becomes more serious as the amount of released
data increases, since external observations will tend to be more representative of the
real situations and the confidence in the external observations will increase.

Inference Metrics We introduce several metrics to assess the inference exposure
due to a data release. Our metrics are based on the concepts of mutual information,
which has been widely used in several security areas ranging from the definition of
distinguishers for differential side-channel analysis (e.g., [8, 17, 57, 105]) to data-
hiding and watermarking security (e.g., [20]), and of distance between the expected
and the observed distribution of values of non sensitive information. More precisely,
we evaluate the inference exposure as the mutual information, the Kullback-Leibler
distance between distributions, the Pearson’s cumulative statistic, and the Dixon’s
coefficient that, as proved by our experimental results, particularly fit our scenario.

Release Regulation Based on the identified metrics, we formally define a safe
release with respect to the modeled inference channels. We also describe the
controls to be enforced in a scenario where data items are released one at a time,
upon request. The process is regulated so that the release of data to the external
world be safe with respect to inferences. Our experimental results evaluate the
inference exposure (computed as the mutual information, Kullback-Leibler distance
between distributions, Pearson’s cumulative statistic, or Dixon’s coefficient), and the
information loss (i.e., the number of requests not fulfilled) caused by our privacy
protection technique, and compare the results obtained adopting the different
metrics, identifying pros and cons of the proposed metrics, and of their (possible)
joint adoption.

1.3.3 Access Control Enforcement

The third and last contribution of this book is a solution for enforcing write access
restrictions and a subscription-based access control policy in data release scenarios.
To fit the emerging cloud computing paradigm, we align our scenario to the current
trend toward data outsourcing, and we assume the owner to rely on honest-but-
curious external storage servers to selectively share her data. According to this,
our techniques are based on selective encryption, so that released resources self-
enforce the access restrictions [40, 41]. The original contribution of our work can
be summarized as follows.

Dynamic Write Authorizations Traditional solutions for access control enforce-
ment in outsourcing scenarios assume data to be read-only, implying write autho-
rizations to be a specific privilege of the owner. Such an assumption can result
restrictive in several scenarios where the data owner outsourcing the data to an
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external server may also want to authorize other users to write and update the
outsourced resources (e.g., document sharing scenarios). We address this limitation
by proposing an approach for efficiently and effectively supporting grant and revoke
of write authorizations. Our solution nicely complements existing techniques for
access control enforcement in outsourcing scenarios, providing a general solution,
applicable to scenarios where read and write authorizations can dynamically change
over time. Our solution relies on selective encryption for enforcing read and write
access restrictions having efficiency and manageability as primary goal, and results
appealing for its efficiency and flexibility, as it avoids expensive re-keying and re-
encryption operations.

Data Integrity When managing write authorizations, providing the data owner
with a means for verifying that the server and users are behaving properly (i.e.,
they do not tamper with resources) has a double advantage: (1) it allows detecting
resource tampering, due to the server not performing the required access control
or directly tampering with resources, and (2) it discourages improper behavior
by the server and by the users since they know that their improper behavior can
be easily detected, and their updates recognized as invalid and discarded. We
therefore complement our solution with an integrity check technique to verify that
modifications to a resource have been produced only by authorized users. Our
solution is based on HMAC functions, and allows both the data owned and the users
to detect misbehavior (or laziness) by the server as well as misbehavior by users that
can happen with the help of the server (not enforcing the required controls since it is
either colluding with the user herself or just behaving lazily) or without the help of
the server (if the user improperly acquires write privilege for a resource by others).

Subscription-Based Policy Traditional solutions for access control enforcement
over outsourced data cannot easily support a scenario where both the set of
users who can access a resource and the set of resources change frequently over
time. Therefore, they do not fit emerging real-world scenarios where users pay
for a service and then can freely access the resources made available during
their subscriptions such as, for instance, movie rental services. In fact, to access
resources also after the expiration of their subscriptions, users should download
the resources for which they are authorized to their local machine. To address
this limitation, we complement our selective encryption-based solution with the
definition of a subscription-based authorization policy. Our solution avoids the
burden of downloading resources to the users, allowing them to maintain the right
to access such resources without the worry that they will lose this right after the
expiration of their subscriptions. Our proposal to enforce the subscription-based
authorization policy relies once again on selective encryption, to guarantee both
continuous data availability, and forward and backward protection requirements,
meaning that users can access resources released neither before the beginning of
their subscriptions, nor after their expiration.
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1.4 Organization of the Book

In this chapter, we discussed the motivations behind the work proposed in this book,
and we illustrated our high-level objectives and main contributions. The remaining
chapters are organized as follows.

Chapter 2 presents the state of the art techniques available for counteracting
privacy and security issues arising in data release scenarios. It focuses on the
context of privacy-preserving data publishing, inference control, and access control
enforcement in outsourcing scenarios.

Chapter 3 illustrates our fragmentation-based solution for protecting data privacy
while ensuring adequate information visibility in data release scenarios. We provide
both a heuristic and an exact algorithm for computing a minimal fragmentation,
based on a novel OBDDs-based formulation. By providing experimental results
comparing the execution time and the fragmentations returned by the exact and
heuristic algorithms, we show that the heuristic algorithm has low computation cost
and determines a fragmentation close to optimum. To further enrich the utility of the
released fragments, we propose to release loose associations among fragmentations
composed of arbitrary sets of fragments. Experimental results witness how our
solution allows for more precise query answers.

Chapter 4 focuses on the problem of sensitive information leakage deriving from
the release of a collection of non sensitive data. The chapter illustrates our model
capturing this inference problem, where sensitive information is characterized by
peculiar value distributions of non sensitive released data. It then describes how,
leveraging on different statistical metrics applied on released data, the data owner
can counteract possible inferences that an observer might otherwise draw. Finally,
it also shows the results of an experimental evaluation of our solution, showing
its efficacy and discussing the applicability of the different metrics in different
scenarios.

Chapter 5 addresses the problem of enforcing access restrictions in data release in
cloud/outsourcing scenarios. It first extends selective encryption approaches to the
support of write privileges, proposing a technique able to efficiently enforce updates
in the write access policy. It then illustrates a subscription-based authorization
policy, also enforced by means of selective encryption.

Chapter 6 summarizes the contributions of this book, provides our final remarks,
and outlines directions for future works.



Chapter 2
Related Work

This chapter illustrates research proposals related to this book, which are mainly
devoted to the protection of data and user privacy and to the enforcement of access
restrictions in data release scenarios. We will discuss recent proposals for private
data publishing based on syntactic and semantic privacy definitions, as well as
techniques exploiting data fragmentation and solutions for counteracting inferential
disclosure of sensitive information. We will then illustrate available techniques for
enforcing access control in outsourcing scenarios, with particular attention to the
recently proposed strategy of selective encryption.

The remainder of this chapter is organized as follows. Section 2.1 presents
syntactic data protection techniques. Section 2.2 illustrates recent semantic data
protection techniques. Section 2.3 discusses fragmentation-based approaches for
privacy protection. Section 2.4 presents techniques developed for counteract-
ing inferential disclosure of sensitive information. Section 2.5 discusses recent
approaches for enforcing access control in data release in outsourcing/cloud sce-
narios. Finally, Sect. 2.6 concludes the chapter.

2.1 Syntactic Data Protection Techniques

In this section, we present some of the most important data protection techniques
applicable in data release scenarios based on a syntactic privacy requirement.

Basic Concepts and Assumptions Syntactic data protection techniques aim at
satisfying a syntactic privacy requirement, such as “each release of data must be
indistinguishably related to no less than a certain number of individuals in the
population”. These techniques assume data to be released to be in the form of
a microdata table (i.e., a table containing detailed information related to specific
respondents) defined on a set of attributes that can be classified as: identifiers
(attributes that uniquely identify a respondent, such as SSN); quasi-identifiers
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(QI, attributes that, in combination, can be linked with external information to
reduce the uncertainty over the identities to which data refer, such as DoB, Sex,
and ZIP); and confidential and non-confidential attributes. Data privacy is protected
by applying microdata protection techniques on the QI, typically guaranteeing data
truthfulness [55], while not modifying the sensitive attributes. Syntactic techniques
can counteract either identity disclosure, protecting respondents’ identities, or
attribute disclosure protecting respondents’ sensitive information.

Syntactic data protection techniques are based on the assumption that the
release of a microdata table can put at risk only the privacy of those individuals
contributing to the data collection. The first step for protecting their privacy consists
in removing (or encrypting) explicit identifiers before releasing the table. However,
a de-identified microdata table does not provide any guarantee of anonymity, since
the quasi-identifier can still be linked to publicly available information to re-identify
respondents. A study performed on 2000 U.S. Census data showed that 63 % of
the U.S. population can be uniquely identified combining their gender, ZIP code,
and complete date of birth [59]. As an example, consider the de-identified table
in Fig. 2.1a, including the medical information of a set of hospitalized patients,
and the list of teachers in Sacramento made available by the local schools in
Fig. 2.1b. Quasi-identifying attributes DoB, Sex, and ZIP can be exploited for
linking the tuples in the medical table with the teachers’ list, possibly re-identifying
individuals and revealing their illnesses. In this example, the de-identified medical
data include only one male patient, born on 1958/07/09 and living in 94232 area.

SSN Name DoB Sex ZIP Disease

1970/09/02 M 94152 Hepatitis
1970/09/20 F 94143 Cardiomyopathy
1970/09/12 F 94148 Eczema
1970/09/05 M 94155 Pneumonia
1960/08/01 F 94154 Stroke
1960/08/02 F 94153 Stroke
1960/08/10 M 94140 Stroke
1960/08/20 M 94141 Stroke
1970/08/07 F 94141 High Cholesterol
1970/08/05 F 94142 Erythema
1958/07/09 M 94232 Diabetes
1970/08/25 M 94153 High Cholesterol
1970/08/30 M 94156 Angina Pectoris
1960/09/02 M 94147 Hepatitis
1960/09/05 M 94145 Flu
1960/09/10 F 94158 Angina Pectoris
1960/09/30 F 94159 Cardiomyopathy

a

Name Address City ZIP DoB Sex Course School

· · · · · · · · · · · · · · · · · · · · · · · ·
John Doe 100 Park Ave. Sacramento 94232 58/07/09 male Maths High School

· · · · · · · · · · · · · · · · · · · · · · · ·

b

Fig. 2.1 An example of de-identified microdata table (a) and of publicly available non de-
identified dataset (b)
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This combination, if unique in the external world as well, uniquely identifies
the corresponding tuple as pertaining to John Doe, 100 Park Ave., Sacramento,
revealing that he suffers from diabetes.

In the following, we present syntactic data protection techniques developed for
counteracting identity and attribute disclosure in data release. We first describe
the k-anonymity proposal [94], one of the most popular syntactic privacy def-
initions developed for protecting a released dataset against identity disclosure.
We then present solutions that protect released data against attribute disclosure,
and overview some enhancements to traditional syntactic techniques introduced to
remove assumptions characterizing traditional approaches.

k-Anonymity Samarati [94] proposes the k-anonymity approach, enforcing
the well-known protection requirement, typically applied by statistical agencies,
demanding that any released information should be indistinguishably related to
no less than a certain number of respondents. Since re-identification is assumed to
occur exploiting quasi-identifying attributes only, this general requirement has been
translated into the k-anonymity requirement: Each release of data must be such
that every combination of values of quasi-identifiers can be indistinctly matched
to at least k respondents [94]. As each respondent is assumed to be represented
by at most one tuple in the released table and vice-versa (i.e. each tuple includes
information related to one respondent only), a microdata table satisfies the k-
anonymity requirement if and only if: (1) each tuple in the released table cannot be
related to less than k individuals in the population; and (2) each individual in the
population cannot be related to less than k tuples in the table.

To verify whether a microdata table satisfies the k-anonymity requirement, the
data holder should know in advance any possible external source of information that
an observer could exploit for re-identification. Since this assumption is unfeasible
in practice, the k-anonymity requirement is enforced by taking a safe approach and
requiring each respondent to be indistinguishable from at least k � 1 respondents
of the table itself. A table is therefore said to be k-anonymous if each combination
of values of the quasi-identifier appears with either zero or at least k occurrences
in the released table. For instance, the table in Fig. 2.1a is 1-anonymous if
we assume the quasi-identifier to be composed of DoB, Sex, and ZIP, since
different combinations of values appear only once in the table. The definition of
k-anonymous table represents a sufficient (but not necessary) condition for the
k-anonymity requirement. In fact, since each combination of values of quasi-
identifying attributes appears with at least k occurrences: (1) each respondent cannot
be associated with less than k tuples in the released table; and (2) each tuple in the
released table cannot be related to less than k respondents in the population.

k-Anonymity is typically achieved by applying generalization and suppression
over quasi-identifying attributes, while leaving sensitive and non sensitive attributes
unchanged. Generalization substitutes the original values with more general values.
For instance, the date of birth can be generalized by removing the day, or the day and
the month of birth. Suppression consists in removing information from the micro-
data table. The combination of generalization and suppression has the advantage
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of reducing the amount of generalization required to satisfy k-anonymity, thus
releasing more precise (although non-complete) information. Intuitively, if a limited
number of outliers (i.e., quasi-identifying values with less than k occurrences in the
table) would force a large amount of generalization to satisfy k-anonymity, these
outliers can be more conveniently removed from the table, improving the quality
of released data. For instance, consider the table in Fig. 2.1a and assume that the
quasi-identifier is composed of attribute ZIP only. Since there is only one person
living in 94232 area (11th tuple), attribute ZIP should be generalized removing the
last three digits to guarantee 4-anonymity. However, if the 11th tuple in the table is
suppressed, 4-anonymity can be achieved by generalizing the ZIP code removing
only the last digit.

The approaches proposed in the literature to enforce k-anonymity can be
classified on the basis of the granularity at which generalization and suppression
operate [24]. More precisely, generalization can be applied at the cell level
(substituting the cell value with a more general value) or at the attribute level
(generalizing all the cells in the column). Suppression can be applied at the cell,
attribute, or tuple level (removing a single cell, a column, or a row, respectively).
Most of the solutions adopt attribute generalization and tuple suppression [9, 69, 94].
Figure 2.2 reports a 4-anonymous version of the table in Fig. 2.1a, obtained adopting
attribute-level generalization (attributes DoB, Sex, and ZIP have been generalized
by hiding the day of birth, the sex, and the last two digits of the ZIP code,
respectively) and tuple-level suppression (the 11th tuple related to John Doe has
been removed). Note that symbol � represents any value in the attribute domain.
Solutions adopting cell generalization have recently been investigated, since they
cause a reduced information loss with respect to attribute generalization [70]. These
approaches have however the drawback of producing tables where the values in
the cells of the same column may be heterogeneous (e.g., some tuples report the
complete date of birth, while other tuples only report the year of birth).

Regardless of the different level at which generalization and suppression are
applied to enforce k-anonymity, information loss is inevitable due to the reduction
in the details of the released data. To minimize the loss of information (and

Fig. 2.2 An example
of 4-anonymous table

SSN Name DoB Sex ZIP Disease

1970/09/** * 941** Hepatitis
1970/09/** * 941** Cardiomyopathy
1970/09/** * 941** Eczema
1970/09/** * 941** Pneumonia
1960/08/** * 941** Stroke
1960/08/** * 941** Stroke
1960/08/** * 941** Stroke
1960/08/** * 941** Stroke
1970/08/** * 941** High Cholesterol
1970/08/** * 941** Erythema
1970/08/** * 941** High Cholesterol
1970/08/** * 941** Angina Pectoris
1960/09/** * 941** Hepatitis
1960/09/** * 941** Flu
1960/09/** * 941** Angina Pectoris
1960/09/** * 941** Cardiomyopathy
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maximize the utility of released data for final recipients), it is necessary to compute a
k-anonymous table that minimizes generalization and suppression. The computation
of an optimal k-anonymous table is however NP-hard. Therefore, both exact and
heuristic algorithms have been proposed [24].

`-Diversity Two attacks that may lead to attribute disclosure in a k-anonymous
table are the homogeneity attack [75, 94] and the external knowledge attack [75].

• Homogeneity attack. The homogeneity attack occurs when, in a k-anonymous
table, all the tuples in an equivalence class (i.e., all the tuples with the same value
for the quasi-identifier) assume also the same value for the sensitive attribute.
If a data recipient knows the quasi-identifier value of an individual represented
in the microdata table, she can identify the equivalence class representing the
target respondent, and then infer the value of her sensitive attribute. For instance,
consider the 4-anonymous table in Fig. 2.2 and suppose that Alice knows that her
friend Gary is a male, born on 1960/08/10 and living in 94140 area. Since all the
tuples in the equivalence class with quasi-identifier h1960/08/**,*,941**i have
Stroke as a value for attribute Disease, Alice can infer that Gary had a stroke.

• External knowledge attack. The external knowledge attack occurs when the data
recipient can reduce her uncertainty about the value of the sensitive attribute
of a target respondent, exploiting some additional (external) knowledge about
the respondent. As an example, consider the 4-anonymous table in Fig. 2.2 and
suppose that Alice knows that her friend Ilary is a female, living in 94141 area and
born on 1970/08/07. Observing the 4-anonymous table, Alice can infer that Ilary
suffers from either High Cholesterol, Erythema, or Angina Pectoris. Suppose
now that Alice sees Ilary running in the park every day. Since a person suffering
from Angina Pectoris does not run every day, Alice can infer that Ilary suffers
from High Cholesterol or Erythema.

Machanavajjhala et al. [75] propose the definition of `-diversity to counteract
homogeneity and external knowledge attacks, by requiring the presence of at least `

well-represented values for the sensitive attribute in each equivalence class. Several
definitions for “well-represented” values have been proposed. A straightforward
approach is to consider ` values well-represented if they are different. Therefore,
the simplest formulation of `-diversity requires that each equivalence class be
associated with at least ` different values for the sensitive attribute. For instance,
consider the 4-anonymous and 3-diverse table in Fig. 2.3 and suppose that Alice
knows that her neighbor Ilary is a female, living in 94141 area and born on
1970/08/07. Observing the table in Fig. 2.3, Alice can infer that Ilary suffers from
either Cardiomyopathy, Eczema, High Cholesterol, or Erythema. Since Alice knows
that Ilary goes running every day, Alice can exclude the fact that Ilary suffers from
Cardiomyopathy, but she cannot precisely determine whether Ilary suffers from
Eczema, High Cholesterol, or Erythema.

The problem of computing an `-diverse table minimizing the loss of information
caused by generalization and suppression is computationally hard. It is interesting
to note that any algorithm proposed to compute a k-anonymous table that minimizes
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Fig. 2.3 An example
of 4-anonymous and
3-diverse table

SSN Name DoB Sex ZIP Disease

1970/**/** M 9415* High Cholesterol
1970/**/** M 9415* Angina Pectoris
1970/**/** M 9415* Hepatitis
1970/**/** M 9415* Pneumonia
1970/**/** F 9414* Cardiomyopathy
1970/**/** F 9414* Eczema
1970/**/** F 9414* High Cholesterol
1970/**/** F 9414* Erythema
1960/**/** F 9415* Stroke
1960/**/** F 9415* Stroke
1960/**/** F 9415* Angina Pectoris
1960/**/** F 9415* Cardiomyopathy
1960/**/** M 9414* Stroke
1960/**/** M 9414* Stroke
1960/**/** M 9414* Hepatitis
1960/**/** M 9414* Flu

loss of information can be adapted to guarantee also `-diversity, controlling if the
condition on the diversity of the sensitive attribute values is satisfied by all the
equivalence classes [75].

t-Closeness Although `-diversity represents a first step in counteracting attribute
disclosure, this solution may still produce a table that is vulnerable to privacy
breaches caused by skewness and similarity attacks [72].

• Skewness attack. The skewness attack exploits the possible difference in the
frequency distribution of the sensitive attribute values within an equivalence
class, with respect to the frequency distribution of sensitive attribute values in
the population (or in the released microdata table). In fact, differences in these
distributions highlight changes in the probability with which a respondent in the
equivalence class is associated with a specific sensitive value. As an example,
consider the 3-diverse table in Fig. 2.3 and suppose that Alice knows that her
friend Gary is a male living in 94140 area and born on 1960/08/10. In the
equivalence class with quasi-identifier h1960/**/**,M,9414*i, two out of four
tuples have value Stroke for attribute Disease. Alice can infer that Gary had
a stroke with probability 50 %, compared to a probability of 12.5 % of the
respondents of the released table.

• Similarity attack. The similarity attack occurs when, in an `-diverse table, the
values for the sensitive attribute associated with the tuples in an equivalence class
are semantically similar, although syntactically different. For instance, consider
the 3-diverse table in Fig. 2.3 and suppose that Alice knows that her friend Olivia
is a female, living in 94158 area, and born on 1960/09/10. In the equivalence
class with quasi-identifier h1960/**/**,F,9415*i, attribute Disease assumes
values Stroke, Angina Pectoris, and Cardiomyopathy. As a consequence, Alice
can discover that Olivia suffers from a cardiovascular disease.

Li et al. [72] propose the definition of t-closeness to counteract skewness and
similarity attacks, requiring that the frequency distribution of the sensitive values in
each equivalence class be close (i.e., with distance smaller than a fixed threshold t)
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to that in the released microdata table. In this way, the skewness attack has no effect
since the knowledge of the quasi-identifier value for a target respondent does not
change the probability for a malicious recipient of correctly guessing the sensitive
value associated with the respondent. t-Closeness reduces also the effectiveness
of the similarity attack, because the presence of semantically similar values in an
equivalence class can only be due to the presence, with similar relative frequencies,
of the same values in the microdata table.

The enforcement of t-closeness requires to evaluate the distance between the
frequency distribution of the sensitive attribute values in the released table and in
each equivalence class. Such distance can be computed adopting different metrics,
such as the Earth Mover Distance used by t-closeness [72].

Other Approaches k-Anonymity, `-diversity, and t-closeness are based on some
restrictive assumptions that make them not always suitable for specific scenarios.
Some of these (limiting) assumptions can be summarized as follows: (1) each
respondent is represented by a single tuple in the microdata table; (2) all data to be
released are stored in a single table; (3) once released, data are not further modified;
(4) all the data that need to be released are available to the data holder before their
release; (5) the same degree of privacy is guaranteed to all data respondents; (6)
the released microdata table has a single quasi-identifier, known in advance; and (7)
no external knowledge (except for that behind linking attacks counteracted by k-
anonymity) is available to recipients. Recently, the scientific community has started
to extend the pioneering techniques illustrated so far in this chapter removing these
assumptions, proposing solutions specifically tailored for supporting, among other
scenarios: (1) multiple tuples per respondent (e.g., [101, 107]); (2) release of multi-
ple tables (e.g., [86, 107]); (3) data republication (e.g., [113]); (4) continuous data
release (e.g., [71, 109, 118]); (5) personalized privacy preferences (e.g., [56, 112]);
(6) multiple and/or non-predefined quasi-identifiers (e.g., [89, 101]); (7) adversarial
external knowledge (e.g., [21, 76, 79]). Figure 2.4 summarizes some notable solution
recently proposed to extend the definitions of k-anonymity, `-diversity, and t-
closeness removing the above-illustrated assumptions.

2.2 Semantic Data Protection Techniques

In this section, we present some of the most important data protection techniques
applicable in data release scenarios based on a semantic privacy requirement.

Basic Concepts and Assumptions Semantic techniques satisfy a semantic privacy
requirement [50, 67] that must be enforced by the mechanism chosen for releasing
the data, such as “the result of an analysis carried out on a released dataset
must be insensitive to the insertion or deletion of a tuple in the dataset”. These
protection techniques have recently been proposed to protect the privacy of both
data respondents and individuals who are not included in data undergoing release.
To illustrate, consider the release of a dataset that can be used to compute the average
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Fig. 2.4 Syntactic
techniques removing
traditional assumptions

Assumption Available techniques
multiple tuples (X,Y )-Privacy [112]

km-Anonymity [106]per respondent

multiple tables
(X,Y )-Privacy [112]
MultiR k-anonymity [90]

microdata
m-Invariance [117]

re-publication

data streams
Correlation tracking [76]
Stream k-anonymity [122]
-Eligibility [113]

personalized privacy (αi,βi)-Closeness [58]
preferences Personalized privacy [116]

multiple
Butterfly [93]

quasi-identifiers
non-predefined

km-Anonymity [106]
quasi-identifiers

external knowledge
Privacy Skyline [21]
ε -Privacy [79]
(c,k)-Safety [83]

amount of taxes annually paid by the citizens of Sacramento for each profession,
and suppose that this information was not publicly available before the release.
Assume that Alice knows that the taxes paid by Bob are 1,000$ less than the average
taxes paid by teachers living in Sacramento. Although this piece of information
alone does not permit Alice to gain any information about the taxes paid by Bob,
if combined with the released dataset, it allows Alice to infer the taxes paid by
Bob. Note that this leakage does not depend on whether Bob is represented in the
released dataset. Differently from syntactic techniques, semantic data protection
approaches typically guarantee data protection by adding noise to the released data.
Noise addition perturbs the original content of the dataset, thus achieving privacy at
the price of data truthfulness.

Semantic techniques operate in both the non-interactive scenario (i.e., consisting
in the release of a privacy-preserving data collection), and the interactive scenario
(i.e., consisting in evaluating queries over a private data collection managed by
the data holder, without revealing any sensitive information). In the first scenario,
protection techniques are used to compute a privacy-preserving dataset, which is
representative of the original data collection. In the latter scenario, protection tech-
niques are used to guarantee that the query result (also when possibly combined with
other results collected by data recipients) cannot be exploited to gain information
that should be kept secret.

In this section we illustrate the differential privacy approach [50], a recent
semantic data protection technique, and present some relaxed definitions and
enhanced formulations proposed to address specific data release scenarios.
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Differential Privacy One of the first definitions of privacy states that anything
that can be learned about a respondent from the statistical database should be
learnable without access to the database [33]. Although originally stated for
statistical databases, this definition is also well suited for data release scenario.
Unfortunately, only an empty dataset can guarantee absolute protection against
information leakage [50] since, besides exposing the privacy of data respondents,
the release of a microdata table may also compromise the privacy of individuals who
are not represented by a tuple in the released table (as illustrated in the beginning of
this section).

Dwork [50] proposes differential privacy to guarantee that the release of a
microdata table does not disclose sensitive information about any individual who
may or may not be represented by a tuple in the table. Differential privacy aims at
releasing a dataset that allows data recipients to learn properties about the population
as a whole, while protecting the privacy of single individuals. The semantic privacy
guarantee provided by differential privacy is that the probability that a malicious
recipient correctly infers the sensitive attribute value associated with a target
respondent is not affected by the presence/absence of the corresponding tuple in
the released table. Formally, given two datasets T and T 0 differing only for one
tuple, an arbitrary randomized function K (typically, the release function) satisfies
�-differential privacy if and only if P.K .T / 2 S/ � exp.�/ � P.K .T 0/ 2 S/,
where S is a subset of the possible outputs of function K and � is a public
privacy parameter. Intuitively, the released dataset satisfies �-differential privacy
if the removal (insertion, respectively) of one tuple from (into, respectively) the
dataset does not significantly affect the result of the evaluation of function K .
As an example, consider an insurance company that consults a medical dataset to
decide whether an individual is eligible for an insurance contract. If differential
privacy is satisfied, the presence or absence of the tuple representing the individual
in the dataset does not significantly affect the final decision taken by the insurance
company. It is important to note that the external knowledge that an adversary
may possess cannot be exploited for breaching the privacy of individuals. In fact,
the knowledge that the recipient gains looking at the released dataset is bounded
by the multiplicative factor exp.�/, for any individual either represented or not
in the released microdata table. In other words, the probability of observing a
result in S for the evaluation of function K over T is close to the probability
of observing a result in S for the evaluation of function K over T 0 (i.e., the
difference between P.K .T / 2 S/ and P.K .T 0/ 2 S/ is negligible). Note that the
definition of �-differential privacy does not depend on the computational resources
of adversaries, and therefore it protects a data release against computationally-
unbounded adversaries.

The techniques proposed to enforce the �-differential privacy definition tradi-
tionally add noise to the released data. The magnitude of the noise is computed
as a function of the difference that the insertion/removal of one respondent
may cause on the result of the evaluation of function K . Differential privacy
can be enforced in both the interactive and non-interactive scenarios, possibly
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adopting different approaches for noise addition [50, 53]. In the interactive scenario,
�-differential privacy is ensured by adding random noise to the query results
evaluated on the original dataset [52]. The typical distribution considered for
the random noise is Laplace distribution Lap(�.f /=�) with probability density
function P.x/ D exp.�jxj=b/=2b, where b D �.f /=� and �.f / is the maximum
difference between the query result evaluated over T and over T 0 (which, for
example, is equal to 1 for count queries, since T and T 0 differ for at most one
tuple). In the non-interactive scenario, the data holder typically releases a frequency
matrix, with a dimension for each attribute and an entry in each dimension for each
value in the attribute domain. The value of a cell in the matrix is obtained counting
the tuples in the table that assume, for each attribute, the value represented by the
entry associated with the cell. Since each cell in the frequency matrix is the result
of the evaluation of a count query on the original dataset, the techniques proposed
to guarantee �-differential privacy in the interactive scenario can also be adopted to
protect the entries of the released frequency matrix (i.e., to protect the result of the
count queries).

Extending Differential Privacy The original definition of �-differential privacy is
strict and imposes very tight constraints on the data that can be released. However,
there are different scenarios where an increased flexibility, to be achieved at the
price of a relaxed privacy requirement, may be accepted by the data holder to
provide data recipients with information of higher interest. Examples of extended
techniques, relaxing the original definition of �-differential privacy, are (�,ı)-
differential privacy [51] and computational differential privacy [83].

The definition of differential privacy has also been specifically refined to address
peculiar data release scenarios. Figure 2.5 summarizes some recent refinements of
differential privacy, which have been proposed for managing the release of the result
of count queries, synthetic data, and sparse frequency matrices. In the figure, the
considered refinements have been classified according to the scenario in which they
operate (i.e., interactive, non-interactive, or both), and the goal they achieve in data
release.

Solution Objective
Scenario

interactive non interactive

matrix mechanism [75]
minimize noise addition,
consistent query answers ×

Privlet [118]
reduce error in the result of
range-count queries × ×

universal histogram [65]
satisfy consistency constraints
in different query results ×

diff. private synthetic data [123]
preserve statistical characteristics
of synthetic datasets ×

data summaries [32]
reduce time in computing
frequency matrices ×

Fig. 2.5 Semantic techniques for specific release scenarios
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2.3 Data Fragmentation and Privacy-Preserving Associations

The adoption of generalization and suppression (syntactic data protection
techniques) results in tables that are less complete and less detailed than the original
microdata tables. On the other hand, exploiting noise addition (semantic data
protection techniques) perturbs the original data, compromising their truthfulness.
An alternative approach that permits the release of the exact distribution of the quasi-
identifier values and does not compromise data truthfulness, while guaranteeing to
preserve the privacy of the respondents, is based on fragmentation. In a nutshell,
fragmentation consists in splitting the original microdata table in vertical fragments,
such that the attributes composing the quasi-identifier and the sensitive attribute
(or, more generally, attributes that should not be visible in association) are not
represented in the same fragment. To prevent the possibility of reconstructing
the sensitive associations broken by fragmentation, fragments should clearly be
disjoint, meaning that no recipient can compute their join. Several strategies have
been proposed in the literature for defining a fragmentation whose fragments
cannot be joined. For instance, the two can keep a secret approach [3] assumes the
existence of two non-communicating servers storing a pair of fragments defined
over the original data collection. Since collusion among servers can compromise
the protection of sensitive data, Ciriani et al. [23, 26, 28] propose a joint adoption
of fragmentation and encryption to possibly store multiple fragments on the same
server. The departing from encryption approach [27] is based on the assumption that
the data owner is willing to store a limited portion of the data to protect sensitive
associations among them.

In this section, we illustrate Anatomy [111] and loose associations [38], two
notable solutions adopting a fragmentation-based approach to protect privacy in data
release while aiming at releasing useful information to the recipients.

Anatomy Xiao and Tao [111] first proposed a group-based approach to guarantee
`-diversity in microdata release, to avoid resorting to generalization. Anatomy first
partitions the tuples in the microdata table in groups that satisfy the `-diversity
principle (i.e., each group includes at least ` well-represented values for the sensitive
attribute). Each group is then associated with a unique group identifier and the
microdata table is split into two fragments, F1 and F2, including the attributes
composing the quasi-identifier and the sensitive attribute, respectively. For each
tuple, both F1 and F2 report the identifier of the group to which it belongs. For
simplicity, each group in the fragment storing the sensitive attribute has a tuple for
each sensitive value appearing in the group, and reports the frequency with which
the value is represented in the group. For instance, consider the microdata table
in Fig. 2.6a and assume that the data holder is interested in releasing a 3-diverse
table. Figure 2.6b illustrates the two fragments F1 and F2 obtained by partitioning
the tuples in the table in Fig. 2.6a in groups that satisfy 3-diversity. Although a
malicious recipient may know the quasi-identifier value of a target respondent,
she can only infer that the respondent belongs to one group (say, g1) in F1, and
that the sensitive value of the target respondent is one of the values in the group
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DoB Sex ZIP Disease

1950/06/02 F 94141 H1N1
1950/06/20 M 94132 Gastritis
1950/06/12 M 94137 Dyspepsia
1950/06/05 F 94144 Pneumonia
1940/04/01 M 94143 Peptic Ulcer
1940/04/02 M 94142 Peptic Ulcer
1940/04/10 F 94139 Peptic Ulcer
1940/04/20 F 94130 Peptic Ulcer
1940/06/07 M 94130 Broken Leg
1940/06/05 M 94131 Short Breath
1940/06/25 F 94142 Broken Leg
1940/06/30 F 94145 Stomach Cancer
1950/05/02 F 94136 H1N1
1950/05/05 F 94134 Flu
1950/05/10 M 94147 Stomach Cancer
1950/05/30 M 94148 Gastritis

a F1

DoB Sex ZIP GroupID

1940/04/01 M 94143 1
1940/04/02 M 94142 1
1940/06/07 M 94130 1
1940/06/05 M 94131 1
1950/06/02 F 94141 2
1950/06/05 F 94144 2
1950/05/02 F 94136 2
1950/05/05 F 94134 2
1940/04/10 F 94139 3
1940/04/20 F 94130 3
1940/06/25 F 94142 3
1940/06/30 F 94145 3
1950/06/20 M 94132 4
1950/06/12 M 94137 4
1950/05/10 M 94147 4
1950/05/30 M 94148 4

F2

GroupID Disease Count

1 Peptic Ulcer 2
1 Broken Leg 1
1 Short Breath 1

2 H1N1 2
2 Pneumonia 1
2 Flu 1

3 Peptic Ulcer 2
3 Broken Leg 1
3 Stomach Cancer 1

4 Gastritis 2
4 Dyspepsia 1
4 Stomach Cancer 1

b

Fig. 2.6 An example of microdata table (a) and of two fragments F1 and F2 (b) satisfying 3-
diversity obtained adopting the Anatomy approach

in F2 that is in relation with g1. To illustrate, assume that Alice knows that her
friend Barbara is a female living in 94139 area and born on 1940/04/10. Alice can
easily infer that her friend is represented by the ninth tuple of table F1 in Fig. 2.6b.
However, since the tuples in the third group of F1 are in relation with the tuples
in the third group of F2 in Fig. 2.6b, Alice can only infer that Barbara suffers from
either Peptic Ulcer, Broken Leg, or Stomach Cancer. Note that the privacy guarantee
offered by Anatomy is exactly the same offered by traditional generalization-based
approaches. In fact, a malicious data recipient cannot associate less than ` different
sensitive values with each respondent in the released table. However, by releasing
the exact distribution of the values of the attributes composing the quasi-identifier,
the evaluation of aggregate queries can be more precise [111].

Loose Associations Building on a similar idea, De Capitani di Vimercati et
al. [38] propose a more flexible solution, called loose associations, to guarantee
privacy in data publication without adopting generalization. Loose associations
have been proposed to protect generic sensitive associations among the attributes
in a data collection. For instance, consider the microdata table in Fig. 2.6a
and suppose that attributes SSN, Name, and Treatment are also represented
in the table. A possible set of sensitive associations defined among attributes
fSSN,Name,DoB, Sex,ZIP,Disease,Treatmentg could include: (1) both the
associations between the values of attributes SSN and Disease, and between
the values of Name and Disease; (2) the association between the values of
quasi-identifying attributes DoB, Sex, ZIP and the values of sensitive attribute
Disease; (3) the association between the values of attributes Disease and
Treatment. Given a set of sensitive associations defined among the attributes
included in a microdata table, they are broken by publishing a set of different
fragments. It is easy to see that the problem of protecting the association of a
sensitive attribute with the respondents’ quasi-identifier, tackled by Anatomy, can
be modeled through the definition of a sensitive association among the sensitive
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attribute and quasi-identifying attributes. Like Anatomy, the original microdata table
can then be split in different fragments in such a way that the sensitive attribute is
not stored together with all the attributes composing the quasi-identifier. It is in
fact sufficient to store a subset of the quasi-identifying attributes in a fragment F1,
and all the other quasi-identifying attributes in another fragment F2, together with
the sensitive attribute. For instance, consider the microdata table in Fig. 2.6a. A
fragmentation that would protect against identity and attribute disclosures could be
composed of the following two fragments: F1(DoB,Sex,ZIP) and F2(Disease).
Note that a fragmentation is not unique: F1(DoB,Sex) and F2(ZIP,Disease) is
another solution that still protects the association between the sensitive attribute and
the quasi-identifier (as well as the other sensitive associations mentioned above).

To provide the data recipient with some information on the associations in
the original relation broken by fragmentation, provided a given privacy degree
of the association is respected, in [38] the authors propose to publish a loose
association between the tuples composing F1 and F2. The tuples in F1 and in F2

are independently partitioned in groups of size at least k1 and k2, respectively. Each
group in F1 and in F2 is then associated with a different group identifier. For each
tuple, both F1 and F2 report the identifier of the group to which the tuple belongs.
The group-level relationships between the tuples in F1 and in F2 are represented by
an additional table A that includes, for each tuple t in the original microdata table,
a tuple modeling the relationship between the group where t appears in F1 and the
group where t appears in F2. For instance, Fig. 2.7a represents two fragments F1

and F2 for the microdata table in Fig. 2.6a. Both the fragments have been partitioned
into groups of 2 tuples each and the lines between the tuples in F1 and F2 represent
their relationships in the original microdata table. Figure 2.7b illustrates the three
relations, F1, A, and F2 that are released instead of the original microdata. It is easy
to see that, even if a malicious recipient knows the quasi-identifier of a respondent,
she can only identify the tuple related to the target respondent in F1, but not the
corresponding Disease in F2. For instance, assume that Alice knows that her

1950/06/02 F 94141
1950/06/20 M 94132

1950/06/12 M 94137
1950/06/05 F 94144

1940/04/01 M 94143
1940/06/07 M 94130

1940/04/10 F 94139
1940/06/30 F 94145

1940/04/02 M 94142
1940/06/05 M 94131

1940/06/25 F 94142
1940/04/20 F 94130

1950/05/02 F 94136
1950/05/05 F 94134

1950/05/10 M 94147
1950/05/30 M 94148

• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •

Peptic Ulcer
H1N1
Gastritis
Dyspepsia
Peptic Ulcer
Pneumonia
Broken Leg
Stomach Cancer
Peptic Ulcer
H1N1
Short Breath
Broken Leg
Peptic Ulcer
Stomach Cancer
Flu
Gastritis

a
F1

DoB Sex ZIP G1

1950/06/02 F 94141 dsz1
1950/06/20 M 94132 dsz1
1950/06/12 M 94137 dsz2
1950/06/05 F 94144 dsz2
1940/04/01 M 94143 dsz3
1940/04/02 M 94142 dsz5
1940/04/10 F 94139 dsz4
1940/04/20 F 94130 dsz6
1940/06/07 M 94130 dsz3
1940/06/05 M 94131 dsz5
1940/06/25 F 94142 dsz6
1940/06/30 F 94145 dsz4
1950/05/02 F 94136 dsz7
1950/05/05 F 94134 dsz7
1950/05/10 M 94147 dsz8
1950/05/30 M 94148 dsz8

A12

G1 G2

dsz1 d1
dsz1 d2
dsz2 d2
dsz2 d3
dsz3 d1
dsz3 d4
dsz4 d5
dsz4 d4
dsz5 d3
dsz5 d6
dsz6 d7
dsz6 d6
dsz7 d5
dsz7 d8
dsz8 d7
dsz8 d8

F2

G2

H1N1 d1
Gastritis d2
Dyspepsia d2
Pneumonia d3
Peptic Ulcer d1
Peptic Ulcer d3
Peptic Ulcer d5
Peptic Ulcer d7
Broken Leg d4
Short Breath d6
Broken Leg d6
Stomach Cancer d4
H1N1 d5
Flu d8
Stomach Cancer d7
Gastritis d8

b
Disease

Fig. 2.7 An example of a 4-loose association (a) and released relations F1, A12, and F2 (b) defined
on the microdata in Fig. 2.6a
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friend Barbara is a female living in 94139 area and born on 1940/04/10. By looking
at the released tables, Alice discovers that her friend is represented by the seventh
tuple in F1, which belongs to group dsz4. However, since group dsz4 is associated
in A with two different groups in F2 (i.e., d4 and d5) Alice cannot identify the
illness Barbara suffers from, since it could be either Peptic Ulcer, Broken Leg,
Stomach Cancer, or H1N1. It is easy to see that also the other sensitive associations
mentioned above are not exposed by the release of the loose association.

The partitioning of the tuples in the two fragments should be carefully designed
to guarantee an adequate protection degree. In fact, a loose association enjoys a
degree k of protection if every tuple in A indistinguishably corresponds to at least
k distinct associations among tuples in the two fragments (i.e., it could have been
generated starting from k different tuples in the microdata table). The release of F1,
F2, and A satisfies k-looseness, with k � k1 � k2, if for each group g1 in F1 (group
g2 in F2, respectively), the union of the tuples in all the groups with which g1 (g2,
respectively) is associated in A is a set of at least k different tuples. Figure 2.7b
represents an example of a 4-loose association. This implies that it is not possible,
for a malicious data recipient, to associate with each quasi-identifier value in F1 less
than 4 different diseases in F2.

We note that loose associations are limited to the consideration of fragmentations
composed of a single pair of fragments. In Chap. 3, besides proposing a novel and
efficient fragmentation strategy operating in the multiple fragments scenario, we
also extend the loose association definition to operate on arbitrary sets of fragments.

2.4 Inference Control

Inference problems have been extensively studied in the context of multilevel
database systems (e.g., [34, 66, 74, 78]). Most inference research addresses detection
of inference channels within a stored database or at query processing time. In
the first case, inference channels are removed by upgrading selected schema
components or redesigning the schema (e.g., [91]). In the second case, database
transactions are evaluated to determine whether they lead to illegal inferences and,
if so, deny the query (e.g., [58, 63, 84, 98]).

One of the first attempts to deal with inference channels is that of Hinke [62],
proposing an approach based on the construction of a semantic relationship graph
among data, in order to locate inference channels in the system. The nodes of the
graph are the data items, while the edges of the graph are the relationships between
data. If the graph includes two nodes with more than one path linking them, among
which a user is cleared to follow only one, then an inference channel is detected.
The generic definition of an arc in the graph, representing an arbitrary ‘semantic
relationship’, requires a security analyst to manually check whether the path is
really exploitable by an attacker. When, after the manual analysis, a discovered arc
is proved to be a real inference channel, the next step is to raise the security level
of one of the edges of the path leading to the channel. Smith [98] refines Hinke’s
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work [62] on semantical relationships graphs, allowing users to express different
types of relationships. In this approach a number of possible types of data items and
relationships between them is identified. Every relationship can be labeled with a
security level. Thuraisingham [102] proposes a more general logic-based framework
dealing with inference problems.

In recent years, many other proposals have been presented to deal with inference
channels, aiming to a general and strong formulation of the problem in order
to find formal and automated models and frameworks to provide protection [18,
34, 36, 47, 64, 77]. Hinke and Delugach [47, 63–65] propose a solution for an
automated analysis of inferences in general purpose databases, addressing the
representation of external knowledge as well. The proposed method is based on
a graph representation to locate inference channels, representing the knowledge
needed for the problem, such as data items, relationships between them, domain
knowledge and data sensitivity. The basic idea is that there is an inference channel if
there exists a path going from a low-level piece of information to a high-level one in
the graph representing the system. Brodsky et al. [18] adopt logic-based techniques
to identify inference channels, and propose a way to represent the database and
domain knowledge. In their proposal, they present a security framework called
DiMon (Disclosure Monitor), built upon an access control model based on a
security lattice. Their proposal can be applied in data-dependent mode as well
as in data-independent mode (i.e., depending on the actual data values or not).
Another approach is the one proposed by Dawson et al. [34], focusing on the
problem of classifying existing databases. The information is classified by enforcing
explicit data classification as well as inference and association constraints. The
computed classification is guaranteed to be optimal, that is, it ensures satisfaction
of the constraints (free from inference) and guarantees that the information is not
overclassified. The approach is not limited to specific forms of security lattices,
but security classes (security labels) can be taken from any generic lattice. This
proposal allows the definition of lower bound security constraints, whose aim is
to prevent unauthorized downward information flows, and the definition of upper
bound security constraints, whose aim is to set an upper limit for the security level
of an attribute, for visibility purposes.

All the solutions mentioned so far operate in the multilevel database scenario.
Some solutions have recently been designed to deal with inference channels in data
publishing scenarios. These more recent proposals aim, for example, at destroying
the correlation between two disjoint and pre-defined subsets of attributes before their
publication [100]. The solution in [108] instead aims at guaranteeing k-anonymity
when publicly releasing a microdata table, assuming that the adversarial knowledge
includes functional dependencies among attributes. The first solution investigating
privacy breaches that data dependencies may cause to fragmented data considers the
non-communicating servers scenario [15]. The authors specifically analyze how the
possible a-priori knowledge of dependencies among the data may cause violations to
confidentiality constraints, when data are stored at two non-communicating servers.
The authors propose a solution for computing a safe fragmentation w.r.t. inference
channels exploiting an integer programming approach. A different analysis of the
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privacy risks possibly caused by inferences based on observers’ knowledge has
been illustrated in [16], where the authors prove that, for solutions that depart
from encryption, no information can be inferred by an adversary who knows
Equality and Tuple Generating Dependencies (which include both functional and
join dependencies).

Despite the above-mentioned attempts to define solutions to counteract inferen-
tial disclosure in data publishing, some scenarios remain unsolved and need further
consideration. In Chap. 4, we consider a scenario where data are incrementally
released and sensitive (non released) information depend on (and can therefore
be inferred from) non sensitive released data. We propose a model capturing and
a solution counteracting this inference problem, where sensitive information is
characterized by peculiar value distributions of non sensitive released data.

2.5 Access Control in Data Outsourcing

When the data release process is selective, different users may have different access
privileges on the released data. Traditional access control architectures are based on
the presence of a trusted component, called reference monitor, that is in charge of
enforcing the access control policy defined by the data owner. However, as already
mentioned, users and companies are more and more resorting to cloud storage
systems to make their data and resources selectively available to others. In these
scenarios, unfortunately, neither the data owner (for efficiency reasons) nor the cloud
server storing the data (for privacy reasons) can enforce the access control policy.

In this section we illustrate two approaches, based on selective encryption
and attribute-based encryption respectively, recently proposed for enforcing access
control in cloud/outsourcing scenarios.

2.5.1 Selective Encryption

One of the solutions recently investigated to provide access control enforcement to
outsourced data without relying on the cloud provider and/or on the data owner is
based on selective encryption. The intuition is, given a relation R to be outsourced, to
use different encryption keys for different tuples and to selectively distribute these
keys to authorized users. Each user can decrypt and have visibility over subsets
of tuples, depending on the keys she knows. The authorization policy regulating
which users can read which tuples is defined by the data owner before outsourcing
R (e.g., [37, 40]). The authorization policy can be represented as an binary access
matrix M with a row for each user u, and a column for each tuple t , where:
M [ui ,tj ] D 1 iff ui can access tj ; M [ui ,tj ] D 0 otherwise. To illustrate, consider the
relation in Fig. 2.8a. Figure 2.8b illustrates an example of access matrix regulating
access to the tuples in the relation by users A, B , C , and D. The j th column of the
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SSN Name ZIP MarStatus Illness
t1 123456789 Ann 22010 single gastritis
t2 234567891 Barbara 24027 divorced neuralgia
t3 345678912 Carl 22010 married gastritis
t4 456789123 Daniel 20100 married gastritis
t5 567891234 Emma 21048 single neuralgia
t6 678912345 Fred 23013 married hypertension
t7 789123456 Gary 22010 widow gastritis
t8 891234567 Harry 24027 widow hypertension

t1 t2 t3 t4 t5 t6 t7 t8
A 1 1 0 1 1 1 1 0
B 1 1 1 1 1 0 0 0
C 1 1 1 0 1 1 0 0
D 0 0 0 1 1 1 0 1

a b

Fig. 2.8 An example of relation (a) and of related access matrix (b)

matrix represents the access control list acl.tj / of tuple tj , for each j D 1; : : : ; jRj.
As an example, with reference to the matrix in Fig. 2.8b, acl.t1/ D ABC . Since the
storing server is not trusted to access the plaintext data the owner wants to outsource,
tuples are encrypted before being stored according to an encryption policy, which
translates and reflects the authorization policy. The encryption policy, which defines
and regulates the set of keys used to encrypt tuples and manages the key distribution
to the users, must be equivalent to the authorization policy, meaning that they must
authorize each user to access the same subset of tuples.

The first attempt to enforce access control through selective encryption was
aimed at protecting access to XML documents (e.g., [81]). Different authorizations
for different portions of the XML document, defined by the document creator, are
enforced by using different keys to encrypt portions of the document regulated by
different authorizations. Each user of the system is then communicated the set of
keys used for encrypting the document portions she is authorized to access. More
recent selective encryption approaches rely on key derivation techniques to reduce
the key management overhead at both the data owner and users side (e.g., [37]).
These solutions aim at defining a translation of the authorization policy into an
equivalent encryption policy that guarantees that each user has to manage only
one key and that each tuple is encrypted with only one key. To fulfill these two
requirements, selective encryption approaches rely on key derivation techniques that
permit to compute the value of an encryption key kj starting from the knowledge of
another key ki and (possibly) a piece of publicly available information. To determine
which keys can be derived from which other key, key derivation methods require the
preliminary definition of a key derivation hierarchy. A key derivation hierarchy can
be graphically represented as a graph with a vertex vi for each key ki in the system
and an edge (vi ,vj ) from key ki to key kj iff kj can be directly derived from ki . Note
that key derivation can be applied in chain, meaning that key kj can be computed
starting from key ki if there exists a path (of arbitrary length) from vi to vj in the
key derivation hierarchy.

A key derivation hierarchy can have different forms, as follows.

• Chain of vertices (e.g., [96]): the key kj associated with a vertex is computed
by applying a one-way function to the key ki of its predecessor in the chain. No
public information is needed.
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• Tree hierarchy (e.g., [97]): the key kj associated with a vertex is computed by
applying a one-way function to the key ki of its direct ancestor and a publicly
available label lj associated with kj . Public labels are necessary to guarantee
that different children of the same node in the tree have different keys.

• DAG hierarchy (e.g., [4–6, 32, 46]): keys in the hierarchy can have more than
one direct ancestor. The derivation process is therefore based on techniques that
assign a piece of publicly available information, called token, to edge in the key
derivation hierarchy [5, 6]. Given two keys ki and kj , and the public label lj
of kj , token di;j allows for the computation of kj from ki and lj . Token di;j is
computed as di;j D kj ˚f (ki ,lj ), where ˚ is the bitwise XOR operator, and f is
a deterministic cryptographic function. By means of di;j , all users knowing (or
able to derive) key ki can also derive key kj .

Each of the proposed key derivation hierarchies has advantages and disad-
vantages. However, adopting token-based key derivation seems to best fit the
outsourcing scenario since it minimizes the need of re-encryption and/or key re-
distribution in case of updates to the authorization policy (for more details, see
Chap. 5).

To satisfy the desiderata of limiting the key management overhead, De Capitani
di Vimercati et al. [37] propose to adopt the set containment relationship � over
the set U of users to define a DAG key derivation hierarchy suited for access
control enforcement. Such a hierarchy has a vertex for each of the elements of the
power-set of U , and a path from vi to vj iff the set of users represented by vi is a
subset of that represented by vj . The correct enforcement of the authorization policy
defined by the data owner is guaranteed iff: (1) each user ui is communicated the key
associated with the vertex vi representing it; and (2) each tuple tj is encrypted with
the key associated with the set of users in acl.tj /. With this strategy, each user has
to manage one key only, and each tuple is encrypted with one key only. Moreover,
tuples characterized by the same access control list are encrypted with the same key.
For instance, Fig. 2.9a illustrates the key derivation hierarchy induced by the set
U D {A,B ,C ,D} of users and the subset containment relationship over it (in the
figure, vertices are labeled with the set of users they represent). Figures 2.9b and c
illustrate the keys assigned to users in the system and the keys used to encrypt the
tuples in the relation in Fig. 2.8a, respectively. The encryption policy in the figure
enforces the access control policy in Fig. 2.8b as each user can derive, from her own
key, the keys of the vertices to which she belongs and hence decrypt the tuples she
is authorized to read. For instance, user C can derive the keys used to encrypt tuples
t1, t2, t3, t5, and t6, and then access their content. Since, as previously mentioned, a
path represents a set of tokens, it is easy to see that the encryption policy induced by
such a key derivation hierarchy is equivalent to the authorization policy defined by
the data owner: each tuple can be decrypted and accessed by all and only the users
in its access control list.

Even though this approach correctly enforces an authorization policy and enjoys
ease of implementation, it defines more keys and more tokens than necessary. Since
tokens are stored in a publicly available token catalog at the server side, when a user
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AB

A AC ABC

B AD ABD ABCD

C BC ACD

D BD BCD

CD

user key

A kA
B kB
C kC
D kD

tuple key

t1 kABC
t2 kABC
t3 kBC
t4 kABD
t5 kABCD
t6 kACD
t7 kA
t8 kD

a

b c

Fig. 2.9 An example of encryption policy equivalent to the access control policy in Fig. 2.8b

u wants to access a tuple t she needs to interact with the server to visit the path in
the key derivation hierarchy from the vertex representing u to the vertex representing
acl.t/. Therefore, keeping the number of tokens low increases the efficiency of the
derivation process (and the response time to users). The problem of minimizing
the number of tokens, while guaranteeing equivalence between the authorization
and the encryption policies, is however NP-hard (it can be reduced to the set cover
problem) [37]. It is however interesting to note that: (1) the vertices needed for
correctly enforcing an authorization policy are only those representing singleton
sets of users (corresponding to user keys) and the access control lists of the tuples
(corresponding to keys used to encrypt tuples) in R; (2) when two or more vertices
have more than two common direct ancestors, the insertion of a vertex representing
the set of users corresponding to these ancestors reduces the total number of tokens.
Elaborating on these two intuitions to reduce the number of tokens of the system,
in [37] the authors propose a heuristic approach, proved to efficiently provide good
results, to define a key derivation hierarchy.

2.5.2 Policy Updates

In case of changes to the authorization policy, the encryption policy must be updated
accordingly, to guarantee that equivalence is preserved. Since the key used to
encrypt each tuple t in R depends on the set of users who can access it, it might
be necessary to re-encrypt the tuples involved in the policy update with a different
key that only the users in its new access control lists know or can derive. A trivial
approach to enforce a grant/revoke operation on tuple t requires the data owner to:
(1) download the encrypted version of t from the server; (2) decrypt it; (3) update
the key derivation hierarchy if it does not include a vertex representing the new set of
users in acl.t/; (4) encrypt t with the key k0 associated with the vertex representing
acl.t/; (5) upload the new encrypted version of t on the server; and (6) possibly



30 2 Related Work

update the public catalog containing the tokens. This approach, while effective and
correctly enforcing authorization updates, leaves the burden to manage the update at
the data owner’s side. Also, re-encryption operations are computationally expensive.
To limit the data owner’s overhead, De Capitani di Vimercati et al. [37] propose an
over-encryption approach, adopting two layers of encryption to partially delegate to
the server the management of grant and revoke operations. Each layer has its key
derivation hierarchy, defined on a different set of keys.

• The Base Encryption Layer (BEL) is applied by the data owner before storing
the dataset at the server, and encrypts each tuple according to the authorization
policy existing at initialization time. In case of policy updates, the BEL is only
updated by possibly inserting tokens in the public catalog (i.e., edges in the key
derivation hierarchy).

• The Surface Encryption Layer (SEL) is applied by the server over the tuples
that have already been encrypted by the data owner at the BEL. It dynamically
enforces the authorization policy updates by possibly re-encrypting tuples and
changing the SEL key derivation hierarchy to correctly reflect the updates.

Intuitively, with the over-encryption approach, a user can access a tuple t only
if she knows both the keys used to encrypt t at BEL and the key used to encrypt
it at SEL. At initialization time, the key derivation hierarchies and the encryption
of resources at BEL and SEL coincide, but they immediately change and become
different at each policy update. Grant and revoke operations operate as follows.

• Grant. When user u is granted access to tuple t , she needs to know the key used to
encrypt t at both BEL and SEL. Hence, the data owner adds a token in the BEL
key derivation hierarchy from the vertex representing u to the vertex whose key
is used to encrypt t (i.e., to the vertex representing acl.t/ at initialization time).
The owner then asks the server to update the key derivation hierarchy at SEL
and to possibly re-encrypt tuples. Tuple t in fact needs to be encrypted, at SEL,
with the key of the vertex representing acl.t/[{u} (which is possibly inserted
into the hierarchy). Besides t, also other tuples may need to be re-encrypted
at SEL to guarantee the correct enforcement of the policy update. In fact, the
tuples that are encrypted with the same key as t at BEL and that user u is not
allowed to read must be encrypted at SEL with a key that u does not know (and
cannot derive). The data owner must then make sure that each tuple ti sharing
the BEL encryption key with t are encrypted at SEL with the key of the vertex
representing acl.ti /.

• Revoke. When user u loses the privilege of accessing tuple t , the data owner
simply asks the server to re-encrypt (at SEL) the tuple with the key associated
with the set acl.t/n{u} of users. If the vertex representing this group of users is
not represented in the SEL key derivation hierarchy, the server first updates the
hierarchy inserting the new vertex, and then re-encrypts the tuple.

Since the management of (re-)encryption operations at the SEL is delegated to
the server, there is the risk of collusions with a user. In fact, by combining their
knowledge, a user and the server can possibly decrypt tuples that neither the server
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nor the user can access. Collusion represents a risk to the correct enforcement of the
authorization policy, but this risk is limited, well defined, and can be reduced at the
price of using a higher number of keys at BEL.

2.5.3 Alternative Approaches

An alternative solution to selective encryption for access control enforcement is
represented by Attribute-Based Encryption (ABE [60]). ABE is a particular type
of public-key encryption that regulates access to tuples on the basis of descriptive
attributes, associated with tuples and/or users, and on policies defined over them
regulating access to the data. ABE can be implemented either as Ciphertext-Policy
ABE (CP-ABE [110]) or as Key-Policy ABE (KP-ABE [60]), depending on how
attributes and authorization policies are associated with tuples and/or users. Both
the strategies have been recently widely investigated, and several solutions have
been proposed in the literature, as briefly illustrated in the following.

• CP-ABE associates with each user u a key and a set of attributes describing her.
Each tuple t in R is encrypted using a key k, associated with an access structure
modeling the access control policy regulating accesses to the tuple content. The
access structure associated with tuple t represents the sets of attributes that
users must possess to derive the key k used to encrypt t (and then to decrypt
and read the tuple content). Graphically, an access structure is a tree whose
leaves represent attributes and whose internal nodes represent logic gates, such
as conjunctions and disjunctions. For instance, suppose that access to a tuple
of a relation should be granted only to doctors specialized in neurology or
cardiology. Figure 2.10 illustrates the access structure associated with such tuple,
representing the Boolean formula (role D ‘doctor’) ^ (specialty D ‘cardiology’
_ specialty D ‘neurology’). A user u can access a tuple t only if the set of
attributes associated with her key satisfies the access policy regulating access to t

(similarly to traditional role-based access control). Although CP-ABE effectively
and efficiently enforce access control policies, one of the main concerns in the
wide adoption of this technique is related with the management of attribute
revocation. In fact, when a user loses one of her attributes, she should not

∧

∨ role: doctor

specialty: cardiology specialty: neurology

Fig. 2.10 An example of access structure
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be able to access tuples that require the revoked attribute for the access. The
trivial approach to manage this update is computationally expensive as it implies
re-encryption. Yang et al. [115] address this problem proposing an efficient
encryption scheme able to manage attribute revocation, ensuring the satisfaction
of both backward security (i.e., a revoked user cannot decrypt the tuples requiring
the attribute revoked to the user) and forward security (i.e., a newly joined user
with sufficient attributes can access all the tuples outsourced before her join).
Zhiguo et al. [106] define instead a hierarchical attribute-based solution based
on CP-ASBE, an extended version of CP-ABE in which attributes associated
with users are organized in a recursive set structure, and propose a flexible and
scalable approach to support user revocation.

• KP-ABE associates, in contrast to CP-ABE, access structures with users’ keys
and sets of attributes with tuples. User u can decrypt tuple t if the attributes
associated with t satisfy the access structure of the user. To minimize the
overhead cause by asymmetric encryption, the tuple content can be encrypted
with a symmetric key. Access to the symmetric key k used to encrypt t is then
protected through KP-ABE [116]. Only authorized users can remove the KP-
ABE encryption layer to retrieve the symmetric key use to encrypt tuples and
access their content. This solution also supports policy updates, and couples
ABE with proxy re-encryption to delegate to the storing server most of the re-
encryption operations necessary to enforce policy updates.

All the solutions described in this section, be them based on selective encryption
or on ABE, focus only on the enforcement of read access privileges and do not
support restrictions on write operations, which are assumed to be an exclusive
privilege of the data owner. In the literature, few works have addressed this
issue. Raykova et al. [92] adopt selective encryption to enforce the data owner’s
authorization policy on outsourced data, relying on asymmetric encryption to
enforce both read and write privileges and defining two key derivation hierarchies:
one for private keys (to enforce read privileges) and one for public keys (to enforce
write privileges). This solution also proposes to replicate resources and perform
updates on a different copy of the data, to prevent unauthorized write operations
from destroying valuable data content. De Capitani di Vimercati et al. [39] adopt
selective encryption and write tags to enforce static write privileges on outsourced
data. Zhao et al. [117] combine CP-ABE and Attribute-Based Signature (ABS)
techniques to enforce read and write access privileges, respectively. This approach,
although effective, has the disadvantage of requiring the presence of a trusted party
for correct policy enforcement. Ruj et al. [93] investigate a similar approach based
on the combined use of ABE and ABS for supporting both read and write privileges.
This solution has the advantage over the approach in [117] of being suited also to
distributed scenarios. All these approaches, however, do not address the problem
of efficiently supporting changes to the authorization policy, which may require
expensive data re-encryption operations. In Chap. 5, we propose an access control
solution, based on selective encryption, able to efficiently enforce updates in the
write access policy, and we complement it with an effective data integrity control
mechanism and a subscription-based authorization policy.
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2.6 Chapter Summary

The needs for privacy protection and access control enforcement in data release
scenarios have recently been widely recognized by the research community, which
have proposed different models and techniques to ensure appropriate protection of
sensitive information not intended for disclosure. In this chapter, we illustrated some
of these well-known approaches, focusing on data protection techniques (syntactic,
semantic and fragmentation-based), on solutions for counteracting inferential dis-
closure of sensitive information not explicitly included in the release, and on recent
access control mechanisms suited to cloud/outsourcing scenarios. In the remainder
of this book, we will study more in depth the fragmentation-based approach for
preserving privacy in data release, proposing a novel model of the problem and
also illustrating a possible way to enhance the utility of the released data to the
recipients. We will then consider a novel, unsolved scenario of inferential disclosure
by proposing a model characterizing the problem and a solution for counteracting
possible privacy breaches. Finally, we will focus on access control enforcement and,
leveraging on the selective encryption approach, we will define a flexible access
control model that both enforces dynamic write privileges, and supports novel
subscription-based scenarios.



Chapter 3
Enforcing Confidentiality and Visibility
Constraints

The most straightforward understanding of, and the first requirement for, protecting
privacy when releasing a data collection is indeed the protection of the sensitive data
included in the release. However, privacy protection should not prevent recipients
from performing legitimate analysis on the released dataset, and should ensure
adequate visibility over non sensitive information. In this chapter, we illustrate
a solution allowing a data owner to publicly release a dataset while satisfying
confidentiality and visibility constraints over the data, expressing requirements
for information protection and release, respectively, by releasing vertical views
(fragments) over the original dataset. We translate the problem of computing a
fragmentation composed of the minimum number of fragments into the problem of
computing a maximum weighted clique over a fragmentation graph. The fragmenta-
tion graph models fragments, efficiently computed using Ordered Binary Decision
Diagrams (OBDDs), which satisfy all the confidentiality constraints and a subset of
the visibility constraints defined in the system. To further enrich the utility of the
released fragments, our solution complements them with loose associations (i.e., a
sanitized form of the sensitive associations broken by fragmentation), specifically
extended to safely operate on multiple fragments. We define an exact and a
heuristic algorithm for computing a minimal and a locally minimal fragmentation,
respectively, and a heuristic algorithm to efficiently compute a safe loose association

Part of this chapter is reprinted from Journal of Computer Security, vol. 20, no. 5: V. Ciriani, S. De
Capitani di Vimercati, S. Foresti, G. Livraga, and P. Samarati, “An OBDD Approach to Enforce
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Vimercati, S. Foresti, S. Jajodia, G. Livraga, S. Paraboschi, and P. Samarati, “Loose Associations
to Increase Utility in Data Publishing”, pp. 59–88 [45], c�2015, with permission from IOS Press.
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among multiple fragments. We also prove the effectiveness of our proposals by
means of extensive experimental evaluations.

3.1 Introduction

Information sharing and dissemination are typically selective processes. While on
one side, there is a need-or demand-for making certain information available to
others, there is on the other side an equally strong need to ensure proper protection
of sensitive information. It is therefore important to provide data holders with means
to express and enforce possible constraints over their data, modeling the need for
information of the data recipients (visibility constraints) and the need for protecting
confidential information against improper disclosures (confidentiality constraints).

Recent proposals considering confidentiality and visibility constraints have put
forward the idea of computing vertical fragments over the original data structure
(typically a relation) so that all constraints are satisfied [3, 27, 28, 38]. While such
proposals have been introduced as a way of departing from data encryption when
relying on external servers for data storage, data fragmentation results appealing
also in data release scenarios. In fact (regardless of whether the data owner relies
on external service providers for data management), data fragments can be seen
as different (vertical) views that a data holder can release to external parties to
satisfy their demand for information, while at the same time guaranteeing that
confidential information is not disclosed. The problem of computing data views
taking into consideration both privacy needs and visibility requirements makes
however the data fragmentation problem far from trivial. In particular, ensuring
some meaningful form of minimality of the fragments to be released (to the aim of
avoiding unnecessary fragmentation of attributes), makes the problem NP-hard [38].

To further enrich the utility of the released fragments, a data owner can
complement them with loose associations [38], which permit to partially reconstruct
the association between sub-tuples in fragments, while not precisely disclosing the
association among attribute values that are considered sensitive. Loose associations
partition the tuples in fragments in groups and release the associations between
sub-tuples in fragments at the granularity of group (instead of the precise tuple-
level association). Loose associations can then be used for evaluating aggregate
queries, with limited errors in the result, and for data mining. The existing approach
operates under the assumption that a fragmentation includes two fragments only, and
produces a single loose association between this pair of fragments. A fragmentation
may however include an arbitrary number of fragments, and the definition of a loose
associations should then consider the presence of multiple fragments.

The contributions of this chapter are multi-fold. First, we propose a new model-
ing of the fragmentation problem that exploits the representation of confidentiality
and visibility constraints as Boolean formulas, and of fragments as truth assignments
over Boolean variables corresponding to attributes in the original relation. In this
way, the computation of a fragmentation that satisfies the given constraints relies on
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the efficiency with which Boolean formulas are represented and manipulated. Since
the classical methods for operating on Boolean formulas are impractical for large-
scale problems, we adopt reduced Ordered Binary Decision Diagrams (OBDDs),
which are a canonical form for representing and efficiently manipulating Boolean
formulas [80]. OBDDs are used in practical applications more often than other
classical representations of Boolean formulas because they have a canonical form
that uniquely characterizes a given function, and because operations on Boolean
formulas can be performed quite efficiently in time and space [68]. The size of
an OBDD does not directly depend on the size of the corresponding formula
and even though, in the worst case, it could be exponential in the number of
variables in the formula, the majority of Boolean formulas can be represented by
compact OBDDs. Our approach then transforms all the inputs of the fragmentation
problem into Boolean formulas, and takes advantage of their representation through
OBDDs to process different constraints simultaneously and to easily check whether
a fragmentation satisfies all the given confidentiality and visibility constraints. Our
solution is based on a graph modeling of the fragmentation problem that permits
to reformulate it as the (NP-hard) problem of computing a maximum weighted
clique. Based on this modeling, we then define an exact and a heuristic algorithm
for computing a fragmentation composed of the minimum number of fragments.
We formally analyze the correctness and computational complexity of both our
exact and heuristic algorithms and present a set of experiments for assessing their
efficiency (in terms of computational time) and the effectiveness of the heuristics (in
terms of number of fragments of the computed fragmentation). The experimental
results prove that our heuristics, while providing faster computational time, well
approximates the minimal fragmentations computed by the exact algorithm. We
also propose to adopt loose associations to further enrich the utility of the released
fragments. We first show that the direct adoption of loose associations to generic
fragmentations composed of more than two fragments opens the door to harmful
privacy breaches. Moved by this consideration, we then propose a solution for the
definition of loose associations among arbitrary sets of fragments, and define a
heuristic algorithm for computing safe loose associations. The experimental results
prove that our approach is effective in allowing for more accurate responses to the
queries posed by users and operating on fragmentations.

By proposing two efficient techniques for fragmenting a dataset, and a general
method to enrich the utility of the computed fragmentation not limited to any
specific number of fragments, we make a further step toward the realization of
concrete privacy-enhancing techniques, easily applicable in real-world scenarios to
balance privacy needs of data owners and visibility needs of data recipients.

3.1.1 Chapter Outline

The remainder of this chapter is organized as follows. Section 3.2 introduces
confidentiality and visibility constraints, and describes the fragmentation problem.
Section 3.3 presents our modeling of the problem, defining OBDDs corresponding



38 3 Enforcing Confidentiality and Visibility Constraints

to constraints, and illustrating how the truth assignments that satisfy the constraints
can be composed for computing a solution to the fragmentation problem. Section 3.4
uses the truth assignments extracted from OBDDs and their relationships to
reformulate the fragmentation problem in terms of the maximum weighted clique
problem over a fragmentation graph. Section 3.5 describes an exact algorithm for
computing a minimal fragmentation, based on the graph modeling of the problem.
Section 3.6 illustrates a heuristic approach that computes a locally minimal fragmen-
tation by iteratively building a clique. Section 3.7 presents the experimental results
comparing the exact and heuristic algorithms. Section 3.8 introduces the concept of
loose association, and illustrates the privacy risks caused by the release of multiple
loose associations over fragmentations composed of more than two fragments.
Section 3.9 presents our definition of loose association, taking into account an
arbitrary number of fragments. This section also introduces the properties that need
to be guaranteed to ensure that a loose association satisfies a given privacy degree,
and provides some observations on loose associations. Section 3.10 discusses
the utility of loose associations in terms of providing better response to queries.
Section 3.11 illustrates our heuristic algorithm for the computation of a loose
association. Section 3.12 presents our experimental analysis, on synthetic as well
as on real datasets, showing the efficiency of our approach and the utility provided
in query execution. Finally, Sect. 3.13 gives our final remarks and concludes the
chapter.

3.2 Preliminary Concepts

We consider a scenario where, consistently with other proposals (e.g., [3, 28, 38,
94]), the data undergoing possible external release are represented with a single
relation r over a relation schema R(a1; : : : ; an), and there are no dependencies
among the attributes in R. We use standard notations of relational database theory
and, when clear from the context, we use R to denote either the relation schema
R or the set {a1; : : : ; an} of attributes in R. We consider two kinds of constraints
on data: confidentiality constraints, imposing restrictions on the (joint) visibility of
values of attributes in R, and visibility constraints, expressing requirements on data
views [28, 38].

Definition 3.1 (Confidentiality Constraint). Given a relation schema R.a1; : : : ;

an/, a confidentiality constraint c over R is a subset of {a1; : : : ; an}.

Confidentiality constraints state that the values of an attribute (singleton constraint)
or the associations among the values of a given set of attributes (association
constraint) are sensitive and should not be visible. More precisely, a singleton
constraint {a} states that the values of attribute a should not be visible. An
association constraint {ai1 ; : : : ; aim } states that the values of attributes ai1 ; : : : ; aim

should not be visible in association. For instance, Fig. 3.1b illustrates one singleton
(c1) and four association (c2; : : : ; c5) constraints for relation PATIENTS in Fig. 3.1a.
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a

b c

Fig. 3.1 Example of relation (a) and of confidentiality (b) and visibility constraints (c) over it

The satisfaction of a confidentiality constraint ci clearly implies the satisfaction of
any confidentiality constraint cj such that ci�cj , making cj redundant. A set C
of confidentiality constraints is well defined if 8ci ,cj 2C , i ¤ j , ci 6�cj , that is,
C does not contain redundant constraints. Note that, while previous approaches
assume that a pre-processing phase removes redundant constraints from C , the
solution proposed in this chapter implicitly transforms C into a well defined set
of confidentiality constraints (see Sect. 3.3).

Visibility constraints are defined as follows.

Definition 3.2 (Visibility Constraint). Given a relation schema R.a1; : : : ; an/, a
visibility constraint v over R is a monotonic Boolean formula over attributes in R.

Intuitively, a visibility constraint imposes the release of an attribute or the joint
release of a set of attributes. Visibility constraint v=a states that the values of
attribute a must be visible. Visibility constraint v=vi ^vj states that vi and vj

must be jointly visible (e.g., constraint v2 in Fig. 3.1c requires the joint release
of attributes Job and InsRate since the associations between their values must
be visible). Visibility constraint v=vi _vj states that at least one between vi and vj

must be visible (e.g., constraint v1 in Fig. 3.1c requires that the values of attribute
Name or the association between the values of attributes Birth and ZIP be
released). Note that negations are not used in the definition of visibility constraints
since they model requirements of non-visibility, which are already captured by
confidentiality constraints.

Confidentiality and visibility constraints can be enforced by partitioning (frag-
menting) attributes in R in different sets (fragments). A fragmentation of relation R
is a set of fragments, as formally captured by the following definition.
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Definition 3.3 (Fragmentation). Given a relation schema R.a1; : : : ; an/, a frag-
mentation F of R is a set fF1; : : : ; Flg of fragments, where each fragment Fi ,
i D 1; : : : ; l , is a subset of fa1; : : : ; ang.

Consistently with the proposal in [38], a fragmentation is not required to be
complete, that is, it does not need to include all the attributes of the original relation.
If the data holder is interested in releasing all the (non sensitive) attributes in
R [3, 27], it is sufficient to include an additional visibility constraint v=a for each
attribute a2R such that there does not exist a constraint c2C with c={a}. Given a
relation R, a set C of confidentiality constraints, and a set V of visibility constraints,
a fragmentationF of R is correct if it satisfies: (1) all the confidentiality constraints
in C , and (2) all the visibility constraints in V . Formally, a correct fragmentation is
defined as follows.

Definition 3.4 (Correct Fragmentation). Given a relation schema R.a1; : : : ; an/,
a set C of confidentiality constraints over R, and a set V of visibility constraints
over R, a fragmentation F of R is correct with respect to C and V iff:

1. 8c2C , 8F2F W c 6�F .confidentiality/;
2. 8v2V , 9F2F W F satisfies v .visibility/;
3. 8Fi ,Fj 2F , i ¤ j W Fi \Fj D ; .unlinkability/.

Condition 1 ensures that neither sensitive attributes nor sensitive associations are
visible in a fragment. Condition 2 ensures that all the visibility constraints are
satisfied. Condition 3 ensures that fragments do not have common attributes and
therefore that association constraints cannot be violated by joining fragments. We
note that singleton constraints can be satisfied only by not releasing the involved
sensitive attributes. Association constraints can be satisfied either by not releasing at
least one of the attributes in each constraint, or by distributing the attributes among
different (unlinkable) fragments. Visibility constraints are satisfied by ensuring that
each constraint is satisfied by at least one fragment. Figure 3.2 illustrates an example
of correct fragmentation of relation PATIENTS in Fig. 3.1a with respect to the
confidentiality and visibility constraints in Fig. 3.1b and in Fig. 3.1c, respectively.

Given a set of confidentiality and visibility constraints, we are interested in
a fragmentation that does not split attributes among fragments when it is not
necessary for satisfying confidentiality constraints. The rationale is that maintaining
a set of attributes in the same fragment releases, besides their values, also their
associations. The utility of released data for final recipients is higher when releasing
a fragmentation composed of fewer fragments, since they also have visibility of

Fig. 3.2 Example of
fragmentation of relation
PATIENTS in Fig. 3.1a
satisfying the constraints in
Figs. 3.1b and c

F1

Birth ZIP Disease
74/01/17 24201 diabetes
49/02/21 24223 stomach ulcer
55/10/01 25273 hearth attack
68/12/29 26134 gastritis
81/10/02 24343 asthma

F2

Job InsRate
nurse 5K
clerk 9K
manager 7K
lawyer 8K
chef 6K
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the associations among the attributes. Our goal is then to compute a minimal
fragmentation, that is, a fragmentation with the minimum number of fragments.
Formally, the problem of computing a minimal fragmentation is defined as follows.

Problem 3.1 (Minimal Fragmentation). Given a relation schema R.a1; : : : ; an/, a
set C of confidentiality constraints over R, and a set V of visibility constraints over
R, determine (if it exists) a fragmentation F=fF1; : : : ; Flg of R such that:

1. F is a correct fragmentation of R with respect to C and V .Definition 3.4/;
2. ÀF 0 such that: (1) F 0 is a correct fragmentation of R with respect to C and V ,

and (2) F 0 is composed of fewer fragments than F .

The problem of computing a minimal fragmentation is NP-hard, since the minimum
hypergraph coloring problem reduces to it in polynomial time [38]. We therefore
adopt a definition of locally minimal fragmentation, which can be computed with
an efficient heuristic. Such a definition is based on the following dominance
relationship between the fragmentations of relation R.

Definition 3.5 (Dominance Relationship). Given a relation schema R.a1; : : : ; an/

and two fragmentations F i and F j of R with
S

F2F i
F D S

F2F j
F, F i dom-

inates F j , denoted F i �F j , iff F i ¤F j , and 8Fj 2F j , 9Fi 2F i such that
Fj � Fi , and 8Fi 2F i , 9{Fjh

,. . . ,Fjl
} 2F j such that Fjh

[. . . [Fjl
D Fi .

Definition 3.5 states that given two fragmentations F i and F j defined on the
same set of attributes, F i dominates F j if F i can be obtained by merging two (or
more) fragments in F j . We note that fragmentations defined on different subsets of
attributes in relation R cannot be compared with respect to the dominance relation-
ship. As an example, consider relation PATIENTS in Fig. 3.1a, and fragmentation
F 1 = {{Birth,ZIP,Disease}, {Job,InsRate}} in Fig. 3.2. F 1 dominates
fragmentation F 2 = {{Birth,ZIP}, {Disease}, {Job,InsRate}} since F 1

can be obtained by merging fragments {Birth,ZIP} and {Disease} in F 2.
A locally minimal fragmentation is defined as a correct fragmentation whose

fragments cannot be merged without violating any confidentiality constraint (i.e., a
locally minimal fragmentation cannot be dominated by a correct fragmentation).
Note that all the visibility constraints satisfied by a fragmentation F are also
satisfied by any fragmentation F 0 dominating it. The problem of computing a
locally minimal fragmentation is formally defined as follows.

Problem 3.2 (Locally Minimal Fragmentation). Given a relation schema
R.a1; : : : ; an/, a set C of confidentiality constraints over R, and a set V of visibility
constraints over R, determine (if it exists) a fragmentation F D fF1; : : : ; Flg of R
such that:

1. F is a correct fragmentation of R with respect to C and V .Definition 3.4/;
2. ÀF 0 such that: (1) F 0 is a correct fragmentation of R with respect to C and V ,

and (2) F 0�F .
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For instance, the fragmentation in Fig. 3.2 is locally minimal since merging F1

with F2 would violate confidentiality constraint c5.
It is important to note that a locally minimal fragmentation may not be a minimal

fragmentation, while a minimal fragmentation is also a locally minimal fragmenta-
tion. For instance, consider relation PATIENTS in Fig. 3.1a and the confidentiality
and visibility constraints over it in Fig. 3.1b and in Fig. 3.1c, respectively. Fragmen-
tation F = {{Name}, {Race,Disease},{Job,InsRate}} represents a locally
minimal, but not a minimal, fragmentation for relation PATIENTS. Fragmentation
F 0 D {{Birth,ZIP,Disease}, {Job,InsRate}} in Fig. 3.2 is both locally
minimal and minimal since there does not exist a correct fragmentation of relation
PATIENTS composed of one fragment only.

3.3 OBDD-Based Modeling of the Fragmentation Problem

We model the fragmentation problem as the problem of managing a set of Boolean
formulas that are conveniently represented through reduced and Ordered Binary
Decision Diagrams (OBDDs) [19]. OBDDs allow us to efficiently manipulate
confidentiality and visibility constraints, and to easily compute a minimal (Sect. 3.5)
or locally minimal (Sect. 3.6) fragmentation.

3.3.1 OBDD Representation of Constraints

In our modeling, attributes in R are interpreted as Boolean variables. Visibility
constraints have already been defined as Boolean formulas (Definition 3.2). Each
confidentiality constraint in C can be represented as the conjunction of the variables
corresponding to the attributes in the constraint. For instance, Fig. 3.3 represents the
Boolean interpretation of the relation schema (i.e., the set B of Boolean variables),
and of the constraints over it in Fig. 3.1.

Fig. 3.3 Boolean interpretation of the relation schema and of the confidentiality and visibility
constraints in Fig. 3.1
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c1 c2 c3 c4 c5

SSN Name∧InsRate Name∧Disease Birth∧Race∧ZIP Job∧Disease

Fig. 3.4 OBDDs representing the confidentiality constraints in Fig. 3.3

We use OBDDs as an effective and efficient approach for representing and
manipulating Boolean formulas. An OBDD represents a Boolean formula as a
rooted directed acyclic graph with two leaf nodes labeled 1 (true) and 0 (false),
respectively, corresponding to the truth values of the formula. Each internal node in
the graph represents a Boolean variable in the formula and has two outgoing edges,
labeled 1 and 0, representing the assignment of values 1 and 0, respectively, to the
variable. The variables occur in the same order on all the paths of the graph. Also,
to guarantee a compact representation of the Boolean formula, the subgraphs rooted
at the two direct descendants of each internal node in the graph are disjoint, and
pairs of subgraphs rooted at two different nodes are not isomorphic. Figures 3.4
and 3.5 illustrate the OBDDs of the Boolean formulas in Fig. 3.3 that model the
confidentiality and visibility constraints in Fig. 3.1b and in Fig. 3.1c, respectively.
For simplicity, in these figures and in the following, attributes are denoted with
their initials, edges labeled 1 are represented by solid lines, and edges labeled 0
are represented by dashed lines. A truth assignment to the Boolean variables in a
formula corresponds to a path from the root to one of the two leaf nodes of the
OBDD of the formula. The outgoing edge of a node in the path is the value assigned
to the variable represented by the node. For instance, in the OBDD of v1 in Fig. 3.5,
the path traversing nodes N, B, Z, and 1 represents truth assignment [ND 0, BD 1,
ZD 1] since the edge in the path outgoing from node N is labeled 0, and the edges in
the path outgoing from nodes B and Z are labeled 1. We call one-paths (zero-paths,
respectively) all the paths of an OBDD that reach leaf node 1 (0, respectively), which
correspond to the assignments that satisfy (do not satisfy, respectively) the formula.
For instance, path N, B, Z, and 1 is a one-path of the OBDD of v1 in Fig. 3.5.
Variables in the formula that do not occur in a path from the root to a leaf node
are called don’t care variables, since their values do not influence the truth value
of the formula. For instance, with respect to one-path N and 1 of the OBDD of v1

in Fig. 3.5, B and Z are don’t care variables. In the remainder of the chapter, we
use ‘-’ as value for the don’t care variables. If there is at least a don’t care variable
in a truth assignment, this assignment is partial (in contrast to complete), since not
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v1 v2 v3

Name∨(Birth∧ZIP) Job∧InsRate Disease∧(Birth∨Race)

Fig. 3.5 OBDDs representing the visibility constraints in Fig. 3.3

all the variables in the formula have a value associated with them. We note that
a partial truth assignment with k don’t care variables is a compact representation
of a set of 2k complete truth assignments obtained by assigning to the don’t care
variables value 1 or 0. A complete truth assignment is implicitly represented by a
partial truth assignment if, for each Boolean variable a in the formula, either a is a
don’t care variable for the partial truth assignment or the two truth assignments set
a to the same value. For instance, the OBDD of v1 in Fig. 3.5 has two one-paths,
corresponding to truth assignments [N=1, B=-, Z=-] and [N=0, B=1, Z=1]. Partial
truth assignment [N=1, B=-, Z=-] is a compact representation for [N=1, B=0, Z=0],
[N=1, B=0, Z=1], [N=1, B=1, Z=0], and [N=1, B=1, Z=1].

3.3.2 Truth Assignments

In the Boolean modeling of the fragmentation problem, a fragment F 2F can be
interpreted as a complete truth assignment, denoted IF , over the set B of Boolean
variables. Function IF assigns value 1 to each variable corresponding to an attribute
in F, and value 0 to all the other variables in B. A fragmentation is then represented
by a set of complete truth assignments, which is formally defined as follows.

Definition 3.6 (Set of Truth Assignments). Given a set B of Boolean variables, a
set I of truth assignments is a set fI1; : : : ; Ilg of functions such that Ii:B ! {0,1},
i D 1; : : : ; l .

With a slight abuse of notation, we use I to denote also the list of truth
values assigned by I to variables in B. For instance, fragmentation F in Fig. 3.2
corresponds to the set I D {IF1

,IF2
} of truth assignments, with IF1

D [SD 0, ND 0,
BD 1, RD 0, ZD 1, JD 0, ID 0, DD 1] and IF2

D [SD 0, ND 0, BD 0, RD 0,
ZD 0, JD 1, ID 1, DD 0]. Given a Boolean formula f , defined over Boolean
variables B, and a truth assignment I , I (f ) denotes the result of the evaluation
of f with respect to truth assignment I . A set I of truth assignments corresponds
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to a correct fragmentation (Definition 3.4) if it satisfies all the confidentiality and
visibility constraints and each Boolean variable is set to 1 by at most one truth
assignment in I , as formally defined in the following.

Definition 3.7 (Correct Set of Truth Assignments). Given a set B of Boolean
variables, a set C of confidentiality constraints over B, and a set V of visibility
constraints over B, a set I of truth assignments is correct with respect to C and
V iff:

1. 8c 2 C , 8I 2 I : I.c/ D 0 .confidentiality/;
2. 8v2V , 9I 2 I : I.v/ D 1 .visibility/;
3. 8Ii,Ij2 I ; i ¤ j , 8a 2 B with Ii.a/ D 1: Ij.a/ D 0 .unlinkability/.

Condition 1 ensures that the evaluation of any confidentiality constraint with
respect to any truth assignment is false (i.e., all fragments satisfy confidentiality
constraints). Condition 2 ensures that, for each visibility constraint, there is at least
one truth assignment that makes the visibility constraint true (i.e., every visibility
constraint is satisfied by at least one fragment). Condition 3 ensures that there is at
most one truth assignment that sets a variable to true (i.e., fragments do not have
common attributes). It is immediate to see that a set of truth assignments is correct
with respect to C and V iff the corresponding fragmentation is correct with respect
to C and V (i.e., Definition 3.7 is equivalent to Definition 3.4). OBDDs representing
confidentiality and visibility constraints can be used to efficiently verify if a set I
of truth assignments satisfies Condition 1 and Condition 2 in Definition 3.2: (1)
each assignment I2I must correspond to a zero-path in all the OBDDs of the con-
fidentiality constraints; and (2) for each visibility constraint, at least one assignment
I2I must correspond to a one-path in the OBDD of the constraint. We also note
that Condition 3 in Definition 3.2 can be efficiently verified by simply comparing
the truth value assigned to each variable by the truth assignments in I . For instance,
consider the OBDDs of confidentiality and visibility constraints in Figs. 3.4 and 3.5,
respectively, and the set I D fIF1

; IF2
g, with IF1

D [SD 0, ND 0, BD 1, RD 0,
ZD 1, JD 0, ID 0, DD 1] and IF2

D [SD 0, ND 0, BD 0, RD 0, ZD 0, JD 1,
ID 1, DD 0], representing the fragmentation in Fig. 3.2. I is correct, since: (1) IF1

and IF2
correspond to zero-paths of the OBDDs of the confidentiality constraints

(confidentiality); (2) IF1
corresponds to a one-path of the OBDDs of v1 and v3, and

IF2
corresponds to a one-path of the OBDD of v2 (visibility); and (3) each variable

in B is set to 1 by at most one assignment between IF1
and IF2

(unlinkability).
Problem 3.1 (minimal fragmentation) can be reformulated as the problem of

computing a correct set of truth assignments composed of the minimum number
of truth assignments, which is formally defined as follows.

Problem 3.3 (Minimal Set of Truth Assignments). Given a set B of Boolean
variables, a set C of confidentiality constraints over B, and a set V of visibility
constraints over B, determine (if it exists) a set I of truth assignments such that:

1. I is a correct set of truth assignments .Definition 3.7/;
2. ÀI 0 such that: (1) I 0 is a correct set of truth assignments, and (2) I 0 is

composed of fewer truth assignments than I .
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Analogously, the problem of computing a locally minimal fragmentation (Prob-
lem 3.2) can be reformulated as the problem of computing a correct set I of truth
assignments such that no pair of truth assignments Ii and Ij in I can be combined
producing a new assignment Iij such that 8a 2 B; Iij.a/ D Ii.a/_Ij.a/; and all the
confidentiality constraints are satisfied. This condition can be formally formulated
by first translating the dominance relationship between fragmentations into an
equivalent dominance relationship between sets of truth assignments as follow.

Definition 3.8 (Dominance Relationship). Given a set B of Boolean variables
and two sets of truth assignments Ii and Ij overB, Ii dominates Ij, denoted Ii �
Ij, iff Ii ¤Ij and 8 Ij 2Ij, 9 Ii 2Ii such that 8 a 2B, with Ij.a/ D 1, Ii.a/ D
1 and 8 Ii 2Ii, 9 {Ijh ,. . . ,Ijl } 2Ij such that 8 a 2B; Ii.a/ D Ijh .a/ _ : : : _ Ijl.a/.

The problem of computing a locally minimal fragmentation (Problem 3.2) can now
be formally defined as the problem of computing a locally minimal set of truth
assignments.

Problem 3.4 (Locally Minimal Set of Truth Assignments). Given a set B of
Boolean variables, a set C of confidentiality constraints over B, and a set V of
visibility constraints over B, determine .if it exists/ a set I of truth assignments
such that:

1. I is a correct set of truth assignments .Definition 3.7/;
2. ÀI 0 such that: (1) I 0 is a correct set of truth assignments, and (2) I 0�I .

Our approach to solve the minimal and locally minimal set of truth assignments
problems uses properties of the OBDDs to efficiently check if a set of truth
assignments is correct. In principle, a set of truth assignments should be checked
for correctness against each confidentiality constraint and each visibility constraint.
We can cut down on such controls by noting that if a truth assignment I does not
make true any confidentiality constraint, Boolean formula c1_. . . _cm evaluates to
false with respect to I . Also, if truth assignment I makes true at least one of the
confidentiality constraints in C , Boolean formula c1_. . . _cm evaluates to true with
respect to I . In other words, we can check all the confidentiality constraints together
in a single step. Formally, this observation is expressed as follows.

Observation 1 Given a set B D fa1; : : : ; ang of Boolean variables, a set C D
fc1; : : : ; cmg of confidentiality constraints over B, and a truth assignment I:

8ci 2 C , I.ci / D 0 ” I.c1 _ : : : _ cm/ D 0.

To verify whether a truth assignment I satisfies the given confidentiality
constraints, we can then simply check if I corresponds to a zero-path of the OBDD
representing the disjunction of confidentiality constraints. For instance, consider
the confidentiality constraints in Fig. 3.3, the OBDD representing their disjunction
in Fig. 3.6, and truth assignment IF1

D [SD 0, ND 0, BD 1, RD 0, ZD 1, JD 0,
ID 0, DD 1], representing fragment F1 in Fig. 3.2. IF1

corresponds to a zero-path
of the OBDD in Fig. 3.6, implying that IF1

does not violate any confidentiality
constraint.
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Fig. 3.6 OBDD representing
the disjunction of the
confidentiality constraints
in Fig. 3.3

For each visibility constraint v, a correct set of truth assignments must include at
least a truth assignment I satisfying v, while not violating confidentiality constraints
(i.e., I (v) D 1 and I (c1_. . . _cm) D 0). This is equivalent to say that Boolean
formula v^:(c1_. . . _cm) with respect to truth assignment I evaluates to true, as
formally observed in the following.

Observation 2 Given a set B D fa1; : : : ; ang of Boolean variables, a set C D
fc1; : : : ; cmg of confidentiality constraints over B, a visibility constraint v over B,
and a truth assignment I :

I.v/ D 1 and I.c1 _ : : : _ cm/ D 0 ” I.v ^ :.c1 _ : : : _ cm// D 1.

In other words, the set of one-paths of the OBDD of formula vi ^:(c1_. . . _cm)
represents in a compact way all and only the truth assignments that satisfy vi and
that do not violate any confidentiality constraint. In the following, we will use Oi

to denote the OBDD of Boolean formula vi ^:(c1_. . . _cm), and Pvi to denote
the set of one-paths in Oi , which can represent both complete and partial truth
assignments. For instance, consider the confidentiality and visibility constraints
in Figs. 3.4 and 3.5, respectively. Figure 3.7 illustrates the OBDDs of formulas
vi ^:(c1_. . . _c5), i D 1; : : : ; 3, along with their one-paths. Note that all the
variables in B not appearing in formula vi ^:(c1_. . . _cm) are considered as don’t
care variables for the one-paths in Oi , i D 1; : : : ; k.
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v1∧¬(c1∨c2∨c3∨c4∨c5) v2∧¬(c1∨c2∨c3∨c4∨c5) v3∧¬(c1∨c2∨c3∨c4∨c5)

S N B R Z J I D
0 1 0 - - - 0 0
0 0 1 0 1 0 - -
0 1 1 0 - - 0 0
0 0 1 0 1 1 - 0
0 1 1 1 0 - 0 0

S N B R Z J I D
0 0 0 - - 1 1 0
0 0 1 0 - 1 1 0
0 0 1 1 0 1 1 0

S N B R Z J I D
0 0 0 1 - 0 - 1
0 0 1 0 - 0 - 1
0 0 1 1 0 0 - 1

Fig. 3.7 OBDDs representing the composition of each visibility constraint in Fig. 3.5 with the
negated disjunction of the confidentiality constraints in Fig. 3.4, and their one-paths

To satisfy Condition 1 (confidentiality) and Condition 2 (visibility) in Def-
inition 3.7, a set of truth assignments must include, for each v2V , at least a
complete truth assignment implicitly represented by a (partial) truth assignment
corresponding to a one-path in Pv . However, not all the sets of truth assignments
that include at least one complete truth assignment implicitly represented by a
(partial) truth assignment in Pv , for each v 2 V , are correct, since they may
violate Condition 3 in Definition 3.7 (unlinkability). In the following, we discuss
how to combine truth assignments in Pv1 ; : : : ;Pvk

to compute a correct set of
truth assignments.
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3.3.3 Comparison of Assignments

Goal of our approach is to compute a correct set of truth assignments that solves
either the minimal or the locally minimal fragmentation problem. To this purpose,
we first introduce the concepts of linkable and mergeable truth assignments.

Definition 3.9 (Linkable Truth Assignments). Given two assignments Ii and Ij

over Boolean variables B, we say that Ii and Ij are linkable, denoted Ii $ Ij, iff
9a 2 B W Ii.a/ D Ij.a/ D 1.

According to Definition 3.9, two assignments are linkable iff there is a Boolean
variable in B such that the truth value of the variable is set to 1 by the two
given assignments, that is, the fragments corresponding to them have an attribute
in common. For instance, assignments [SD 0, ND 0, BD 1, RD 0, ZD 1, JD 0,
ID -, DD -] and [SD 0, ND 0, BD 1, RD 0, ZD -, JD 0, ID -, DD 1] are linkable
since they both assign 1 to variable Birth. In the following, we will use the term
disjoint, and notation Ii 6$Ij, to refer to two truth assignments Ii and Ij that are not
linkable. For instance, assignments [SD 0, ND 0, BD 0, RD -, ZD -, JD 1, ID 1,
DD 0] and [SD 0, ND 1, BD 0, RD -, ZD -, JD -, ID 0, DD 0] are disjoint. Note
that variables with value 0 and - do not have any impact on the linkability of two
truth assignments.

Definition 3.10 (Mergeable Truth Assignments). Given two assignments Ii and
Ij over Boolean variables B, we say that Ii and Ij are mergeable, denoted Ii • Ij,
iff Àa s.t. Ii.a/ D 1 and Ij.a/ D 0, or viceversa.

According to Definition 3.10, two truth assignments are mergeable iff the truth
value of each variable a in B in the two assignments is not in contrast, where
being in contrast for variable a means that a is assigned 1 by one assignment
and is assigned 0 by the other one. For instance, the two assignments [SD 0,
ND 0, BD 1, RD 0, ZD 1, JD 0, ID -, DD -] and [SD 0, ND 0, BD 1, RD 0,
ZD -, JD 0, ID -, DD 1] are mergeable. While these two assignments are also
linkable, linkability and mergeability are two independent properties and none of
them implies the other. For instance, assignments [SD 0, ND 0, BD 1, RD 0, ZD 1,
JD 0, ID -, DD -] and [SD 0, ND 0, BD 1, RD 0, ZD -, JD 1, ID 1, DD 0] are
linkable (Birth is set to 1 by both assignments) but not mergeable (there is a
conflict on variable Job), while [SD 0, ND 0, BD 1, RD 0, ZD 1, JD -, ID -,
DD -] and [SD 0, ND 0, BD -, RD 0, ZD -, JD 1, ID 1, DD 0] are mergeable
but not linkable.

It is interesting to note that the sets of complete truth assignments implicitly
represented by mergeable partial truth assignments are overlapping (i.e., they
have assignments in common), and that a complete truth assignment cannot be
represented by two different partial truth assignments with variables in contrast.
This is equivalent to say that two partial truth assignments are mergeable only if
they represent at least a common complete truth assignment, as formally observed
in the following.
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Fig. 3.8 Assignment
merging operator

0 1 -

0 0 n.a. 0
1 n.a. 1 1
- 0 1 -

Observation 3 Given a set B D fa1; : : : ; ang of Boolean variables and two truth
assignments Ii and Ij over B:

Ii•Ij ” 9Ik s.t. 8a 2 B, Ik.a/ D Ii.a/ or Ii.a/ D -,
and Ik.a/ D Ij.a/ or Ij.a/ D -.

For instance, consider mergeable truth assignments [SD 0, ND 0, BD 1, RD 0,
ZD 1, JD 0, ID -, DD -] and [SD 0, ND 0, BD 1, RD 0, ZD -, JD 0, ID -, DD
1]. They both implicitly represent the following two complete truth assignments:
[SD 0, ND 0, BD 1, RD 0, ZD 1, JD 0, ID 0, DD 1] and [SD 0, ND 0, BD 1,
RD 0, ZD 1, JD 0, ID 1, DD 1].

Mergeable (partial) assignments can be composed (merged) according to oper-
ator ˇ in Fig. 3.8. Merging truth assignments Ii and Ij results in a new truth
assignment Iij, where the truth value of a variable coincides with its truth value in the
assignment in which it does not appear as a don’t care variable. If a variable appears
as a don’t care variable in both Ii and Ij, then its value in the new assignment remains
don’t care. The result of the composition of Ii with Ij represents in a compact form
all the complete truth assignments implicitly represented by both Ii and Ij. Note that
if Ii and Ij are two (partial) truth assignments in the set Pvi and Pvj , respectively,
then Iij=IiˇIj represents a set of complete truth assignments that satisfies all the
confidentiality constraints and both vi and vj . For instance, with reference to the
example in Fig. 3.7, [SD 0, ND 0, BD 1, RD 0, ZD 1, JD 0, ID -, DD -] is a
one-path in Pv1 and [SD 0,ND 0, BD 1, RD 0, ZD -, JD 0, ID -, DD 1] is a one-
path in Pv3 . These two assignments are mergeable and the result of their merging
computed through operator ˇ is [SD 0, ND 0, BD 1, RD 0, ZD 1, JD 0, ID -,
DD 1], which implicitly represents two complete truth assignments (differing for
the value of I) that satisfy both v1 and v3 and that do not violate any confidentiality
constraint. Also, we note that no pair of one-paths in Pv is mergeable since they
are two distinct one-paths of the same OBDD, and therefore differ by at least one
edge, meaning that they are in conflict on at least one variable.

3.4 Graph Modeling of the Minimal Fragmentation Problem

To compute a correct set I of truth assignments (i.e., 8vi 2 V , I includes at least
one complete truth assignment implicitly represented by a one-path in Pvi , and
each pair of truth assignments in I is disjoint), we propose to model the one-paths
of Pvi , for each vi 2V , and their relationships described in Sect. 3.3.3 through a
fragmentation graph. We then translate the problem of computing a minimal set of
truth assignments into the equivalent problem of computing a maximum weighted
clique of the fragmentation graph.
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A fragmentation graph is an undirected graph that implicitly represents all the
truth assignments that may belong to a correct set of truth assignments as they satisfy
all the confidentiality constraints and an arbitrary subset of visibility constraints.
Edges in a fragmentation graph connect truth assignments that could appear together
in a correct set of truth assignments. The fragmentation graph has therefore a node
for each partial truth assignment in the set Pˇ obtained from the closure of P
under operator ˇ, where P = Pv1 [. . . [Pvk

is the set of one-paths extracted
from the OBDDs representing vi ^:(c1_. . . _cm), i D 1; : : : ; k (see Sect. 3.3).
Note that each truth assignment in Pvi is explicitly associated with visibility
constraint vi . The rationale is that the truth assignments in Pvi satisfy at least
vi , while not violating the confidentiality constraints. Set Pˇ includes both the
truth assignments in P and the truth assignments resulting from the merging of any
subset of mergeable one-paths in P . The merging of two (partial) truth assignments
Ii and Ij generates a (partial) truth assignment Iij that is associated with a set of
visibility constraints computed as the set-theoretic union of those associated with
Ii and Ij. We have therefore the guarantee that Pˇ contains all the (partial) truth
assignments that represent fragments satisfying all the confidentiality constraints
and a subset of the visibility constraints. Each node in the fragmentation graph is
modeled as a pair hI ,V i, where I is a truth assignment in Pˇ and V is the set of
the visibility constraints associated with I . Note that a complete truth assignment
that satisfies a set {vi ,. . . ,vj }�V of visibility constraints is represented by 2n � 1

nodes in the fragmentation graph, with n D jfvi ; : : : ; vj gj, one for each subset of
{vi ,. . . ,vj }. Clearly, the set of nodes in the graph implicitly representing I may
also represent other (different) truth assignments. The edges of the fragmentation
graph connect nodes that represent disjoint truth assignments associated with non-
overlapping sets of visibility constraints. Note that we add these edges because if
there exist two nodes ni and nj representing two disjoint partial truth assignments
with overlapping sets of visibility constraints, by construction, Pˇ must include
also a node nk that represents a partial truth assignment that is mergeable with
the truth assignment represented by ni (nj , respectively) and is associated with
a set of visibility constraints non-overlapping with the set of visibility constraints
associated with nj (ni , respectively). The fragmentation graph therefore has an edge
connecting node nk with node nj , thus making the edge between nodes ni and nj

redundant. A fragmentation graph is formally defined as follows.

Definition 3.11 (Fragmentation Graph). Given a set B D fa1; : : : ; ang of
Boolean variables, a set C D fc1; : : : ;cmg of confidentiality constraints overB, a set
V D fv1; : : : ; vkg of visibility constraints over B, and a set P=Pv1 [. . . [Pvk

of
one-paths in O1; : : : ; Ok , a fragmentation graph is an undirected graph GF .NF ; EF /

where:

• NF = {hI,V i: I2Pˇ ^ V �V ^ 8v2V , I.v/=1}, with Pˇ the closure of P
under ˇ;

• EF = {.ni ,nj /: ni ,nj 2NF ^ ni .I 6$nj .I ^ ni .V \nj .V =;}, with ni .I the truth
assignment represented by node ni , and ni .V the set of visibility constraints
associated with ni .I .
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snbRZJId,{v2} snbRZjID,{v3}

snBrZJId,{v2} snBrZjID,{v3}

snBRzJId,{v2} snBRzjID,{v3}

snBrZJId,{v1,v2} sNbRZJid,{v1} snBrZjID,{v1} sNBrZJid,{v1} snBrZJId,{v1} sNBRzJid,{v1} snBrZjID,{v1,v3}

Fig. 3.9 Fragmentation graph representing the one-paths extracted from the OBDDs in Fig. 3.7
and their closure under operator ˇ

Note that nodes with sets of visibility constraints that have at least one visibility
constraint in common are not connected by an edge in GF since, in a correct set
of truth assignments, it is sufficient that each visibility constraint is satisfied by
one assignment. In fact, the release of multiple assignments satisfying the same
visibility constraint may imply the release of unnecessary fragments, that is, of a
fragmentation which is not minimal. Figure 3.9 illustrates the fragmentation graph
resulting from the ˇ-closure on Pv1 , Pv2 , Pv3 in Fig. 3.7. In this figure and in
the following, for readability purposes, we denote truth assignments by reporting
attribute initials with a different notation, depending on the truth value assigned
to the corresponding variable. More precisely, variables set to 1 are represented in
uppercase and boldface (e.g., A), variables set to 0 are represented in lowercase
(e.g., a), and variables set to - are represented in uppercase (e.g., A).

We note that a clique in GF that includes, for each v2V , at least a node n

such that v2n.V (i.e., n.I is associated with v and satisfies it), represents a correct
set I of truth assignments (Definition 3.7). In fact, by definition of fragmentation
graph, the nodes in the clique represent a set of disjoint (and possibly partial) truth
assignments (Condition 3) such that each of them satisfies all the confidentiality
constraints (Condition 1). Also, each visibility constraint v2V is satisfied by at least
one of the truth assignments in the clique, the one represented by node n with v2n.V
(Condition 2). Analogously, each correct set I of truth assignments is implicitly
represented by a clique in GF , and the same clique may represent more than one
correct set of truth assignments. A correct set I of truth assignments is composed
of complete truth assignments only, while the nodes in the fragmentation graph
may represent partial truth assignments. Given a clique in the fragmentation graph,
don’t care variables in the truth assignments represented by the nodes in the clique
must be set to either 0 or 1 to obtain one of the correct sets of truth assignments
represented by the clique, with the restriction that no variable can assume value 1 in
more than one fragment. Hence, we conveniently set all the don’t care variables to
0. For instance, nodes hsnBrZjID,{v1,v3}i and hsnbRZJId,{v2}i form a clique for
the fragmentation graph in Fig. 3.9 such that the corresponding assignments satisfy
all the confidentiality and visibility constraints in Fig. 3.3. This clique corresponds
to the set of truth assignments I D {[SD 0, ND 0, BD 1, RD 0, ZD 1, JD 0,
ID 0, DD 1], [SD 0, ND 0, BD 0, RD 0, ZD 0, JD 1, ID 1, DD 0]}. We note
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that the clique also implicitly represents I D {[SD 0, ND 0, BD 1, RD 0, ZD 1,
JD 0, ID 0, DD 1], [SD 0, ND 0, BD 0, RD 1, ZD 0, JD 1, ID 1, DD 0]}.

The problem of computing a correct set I of truth assignments can now be
reformulated as the problem of computing a clique C of the fragmentation graph
GF such that

S
n2C n:V DV . We are interested in computing a minimal set of

truth assignments (Problem 3.3), which corresponds to a clique of the fragmentation
graph that satisfies all the confidentiality and visibility constraints while minimizing
the number of nodes composing it. The problem of computing a minimal set of truth
assignments (Problem 3.3), or equivalently the problem of computing a minimal
fragmentation (Problem 3.1), is then translated into the problem of computing a
maximum weighted clique for the fragmentation graph, where a weight function
w assigns a weight to the nodes of the graph so to model our minimization
requirement. The maximum weighted clique problem has been widely studied in
the literature and is formulated as follows [87, 88].

Problem 3.5 (Maximum Weighted Clique). Given a weighted undirected graph
G.N; E; w/, with w W N ! R

C, determine a subset C �N of nodes in N such
that:

1. 8ni ,nj 2C , .ni ,nj / 2E .C is a clique/;
2. ÀC 0 � N such that: (1) C 0 is a clique, and (2)

P
n2C 0 w.n/>

P
n2C w.n/ .C

has maximum weight/.

To reformulate the minimal set of truth assignments problem into the maximum
weighted clique problem, we define the weight function w in a way that satisfies the
following three properties, which guarantee the equivalence between a maximum
weighted clique in GF (if it exists) and a minimal set of truth assignments.

1. Monotonicity of w with respect to the number of visibility constraints: given two
cliques, the one associated with a higher number of visibility constraints has
higher weight.

2. Anti-monotonicity of w with respect to the number of nodes: given two cliques
associated with the same number of visibility constraints, the one composed of
fewer nodes has higher weight.

3. Equivalence of solutions: cliques associated with the same number of visibility
constraints and composed of the same number of nodes have the same weight.

A weight function that satisfies all the properties above is w W NF ! N
C with

w.n/D .jV j � jn:V j/ � 1, where jV j is the number of visibility constraints, n is a
node in NF , and jn:V j is the number of visibility constraints associated with n. The
weight of a set N 0

F � NF of nodes is the sum of the weights of the nodes composing
it, that is, w.N 0

F /D P
n2N 0

F
w.n/. We first prove that our weight function satisfies the

properties above, and then we show that such properties guarantee the equivalence
between the minimum set of truth assignments problem and the maximum weighted
clique problem.
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Property 3.1 (Weight Function). Given a fragmentation graph GF .NF ; EF /, a
weight function w W NF ! N

C with w.n/D .jV j � jn:V j/ � 1, and two cliques
of GF , Ci D fni1 ; : : : ; nix g and Cj D fnj1; : : : ; njy g, the following conditions hold:

1.
Px

kD1 jnik :V j >
Py

kD1 jnjk
:V j H) w.Ci/>w.Cj / .monotonicity of w with

respect to the number of visibility constraints/;
2.

Px
kD1 jnik :V j D Py

kD1 jnjk
:V j and x < y H) w.Ci/>w.Cj / .anti-

monotonicity of w with respect to the number of nodes/;
3.

Px
kD1 jnik :V j D Py

kD1 jnjk
:V j and x D y H) w.Ci /=w.Cj / .equivalence of

solutions/.

Proof. 1. Let us assume, by contradiction, that w.Ci /�w.Cj /, that is
Px

kD1 w.nik /

� Py

kD1 w.njk
/. Since w.n/ = .jV j � jn:V j/ � 1, the above equation can

be rewritten as
Px

kD1.jV j � jnik :V j � 1/ � Py

kD1.jV j � jnjk
:V j � 1/, which

is equivalent to jV j � Px
kD1 jnik :V j � x � jV j � Py

kD1 jnjk
:V j � y. This

equation can be rewritten as jV j � .
Px

kD1 jnik :V j � Py

kD1 jnjk
:V j/ � x C y

� 0. Since, by assumption,
Px

kD1 jnik :V j >
Py

kD1 jnjk
:V j, we have that

jV j � .
Px

kD1 jnik :V j � Py

kD1 jnjk
:V j/ is greater than jV j. Also, 1 � x � jV j

and 1 � y � jV j. As a consequence, considering the worst case scenario,Px
kD1 jnik :V j � Py

kD1 jnjk
:V j D 1, x D jV j, and y D 1, the equation becomes

jV j � jV j C 1 � 0, which is a contradiction proving the monotonicity of w with
respect to the number of visibility constraints.

2. Let us now assume, by contradiction, that w.Ci /�w.Cj /, that is jV j �Px
kD1 jnik :V j�x � jV j�Py

kD1 jnjk
:V j�y. Since by assumption

Px
kD1 jnik :V j DPy

kD1 jnjk
:V j, the above inequality holds only if x > y, which contradicts our

hypothesis and proves the anti-monotonicity of w with respect to the number of
nodes.

3. Let us now assume, by contradiction, that w.Ci /¤w.Cj /, that is jV j �Px
kD1 jnik :V j � x ¤ jV j � Py

kD1 jnjk
:V j � y. Since by assumptionPx

kD1 jnik :V j D Py

kD1 jnjk
:V j, the above inequality holds only if x ¤ y,

which contradicts our hypothesis and proves the equivalence of solutions. �
To illustrate Property 3.1, consider the fragmentation graph in Fig. 3.9, and the

cliques: C1 D {hsnBrZjID,{v1,v3}i, hsnbRZJId,{v2}i}, C2 D {hsNbRZJid,{v1}i,
hsnbRZJId,{v2}i}, C3 D {hsNbRZJid,{v1}i, hsnbRZJId,{v2}i, hsnbRZjID,{v3}i},
and C4 D {hsnBrZJId,{v1,v2}i, hsnbRZjID,{v3}i}, with weight w.C1/ D 7,
w.C2/ D 4, w.C3/ D 6, and w.C4/ D 7, respectively. According to the monotonicity
of the weight function with respect to the number of visibility constraints, w.C1/ D 7
> w.C2/ D 4 since the nodes in C1 are associated with three visibility constraints,
while the nodes in C2 are associated with two constraints only. According to
the anti-monotonicity of the weight function with respect to the number of nodes,
w.C1/ D 7 > w.C3/ D 6 although C1 (composed of two nodes) and C3 (composed of
three nodes) are associated with all the visibility constraints in Fig. 3.3. According
to the equivalence of solutions, w.C1/ D w.C4/ D 7 since the nodes in C1 and in C4

are associated with all the visibility constraints, and C1 and C4 are composed of two
nodes.
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Given a fragmentation graph GF , a clique C of GF represents a correct set
of truth assignments iff C is associated with all the visibility constraints in V . It
is interesting to note that, according to the definition of weight function w of the
fragmentation graph GF as w.n/=.jV j � jn:V j/ � 1, C is associated with (and then
satisfy) all the visibility constraints only if the weight of C is higher than or equal
to jV j � .jV j � 1/. Formally, this property can be formulated as follow.

Property 3.2. Given a fragmentation graph GF .NF ; EF /, a weight function w W
NF ! N

C, with w.n/ D .jV j � jn:V j/ � 1, and a clique C of GF :

8v2V , 9n2C s.t. v2n.V ” w.C /� jV j � .jV j � 1/.

Proof. The weight of a clique C ={n1,. . . ,ni } is computed as:
Pi

j D1.jV j�jnj :V j�1/

D jV j �Pi
j D1 jnj :V j� i . Since, by hypothesis, C includes a node associated with v

for each visibility constraint v2V then
Pi

j D1 jnj :V j D jV j and therefore w.C / D
jV j�jV j�i . In the worst case, each node in the clique is associated with one visibility
constraint and the clique is then composed of jV j nodes. The weight of the clique
is then w.C / D jV j � jV j � jV j D jV j � .jV j � 1/. Therefore, by Property 3.1, all
cliques of GF associated with less than jV j visibility constraints have weight lower
than jV j � .jV j � 1/. �

Property 3.2 guarantees that it is sufficient to check if the weight of the maximum
weighted clique of GF is higher than or equal to jV j � .jV j � 1/ to determine
whether a correct set of truth assignments exists for the considered instance of
the problem. To illustrate, consider the fragmentation graph in Fig. 3.9. Clique C1

D {hsNbRZJid,{v1}i, hsnbRZJId,{v2}i} is associated with two out of the three
visibility constraints in V , and has weight 2C2 = 4, which is lower than 3�(3�1) D 6.
Clique C2 D {hsNbRZJid,{v1}i, hsnbRZJId,{v2}i, hsnbRZjID,{v3}i} is associated
with all the visibility constraints, and has weight 2 C 2 C 2 D 6.

We now formally prove that Properties 3.1 and 3.2 discussed above guarantee
that the problem of computing a minimal set of truth assignments (Problem 3.3)
is equivalent to the problem of computing a maximum weighted clique of a
fragmentation graph with weight at least jV j � .jV j � 1/.

Theorem 3.1 (Problem Equivalence). The minimal set of truth assignments prob-
lem .Problem 3.3/ is equivalent to the problem of determining a maximum weighted
clique of weight at least jV j � .jV j � 1/ of the fragmentation graph GF .NF ,EF /

.Definition 3.11/, with weight function w W NF ! N
C s.t. w.n/=.jV j � jn:V j/ � 1.

Proof. The proof of this theorem immediately follows from Properties 3.1 and 3.2.
Indeed, the maximum weighted clique C = {n1,. . . ,ni } of the fragmentation
graph GF satisfies the maximum number of visibility constraints, according to the
monotonicity of w with respect to the number of visibility constraints associated
with the nodes in C . If there are different cliques in GF associated with the same
number of visibility constraints, C is the one composed of the minimum number of
nodes, according to the anti-monotonicity of w with respect to the number of nodes.
Let us now suppose that the set of nodes composing the clique C having maximum
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weight is associated with all the visibility constraints. Property 3.2 guarantees that
w.C / is, in the worst case, equal to jV j � .jV j � 1/. �

Since the minimal set of truth assignments problem and the minimal fragmenta-
tion problem are equivalent, the minimal fragmentation problem is also equivalent to
the maximum weighted clique problem on the fragmentation graph with the weight
function defined above.

In the following section, we will present an algorithm for computing a minimal
set of truth assignments, exploiting the equivalence proved by Theorem 3.1. In
Sect. 3.6, we will introduce a heuristic algorithm for computing a locally minimal
set of truth assignments.

3.5 Computing a Minimal Set of Truth Assignments

The algorithm we propose for computing a minimal set of truth assignments (see
Fig. 3.10) takes as input a set B D fa1; : : : ; ang of Boolean variables (representing
the attributes in R), a set C D fc1; : : : ; cmg of confidentiality constraints, a set
V D fv1; : : : ; vkg of visibility constraints, and executes the following three steps:
(1) it computes the set of one-paths of the OBDDs representing Boolean formulas
vi ^:(c1_. . . _cm), i D 1; : : : ; k; (2) it builds the fragmentation graph; (3) it
determines a maximum weighted clique of the fragmentation graph, and checks if
the clique represents a correct set of truth assignments. In the following, we describe
these steps more in details.

Step 1: Compute One-Paths For each visibility constraint vi 2V , the algorithm
defines the OBDD Oi representing Boolean formula vi ^:(c1_. . . _cm). Then, it
extracts from Oi the set Pvi of one-paths (lines 1–4), i D 1; : : : ; k. If, for a given
Oi , the set Pvi is empty, vi cannot be satisfied without violating the confidentiality
constraints and therefore the algorithm terminates, returning an empty set of truth
assignments (line 5).

Step 2: Build the Fragmentation Graph The algorithm first builds an undirected
weighted graph G(N , M [D, w) such that for each truth assignment I in Pvi ,
i D 1; : : : ; k, there is a node n 2 N , with n.I =I , n.V ={vi }, and n.weight =
.jV j � jn:V j/ � 1 (lines 10–14). Then, for each pair of nodes ni and nj in N , the
algorithm inserts edge (ni ,nj ) in M if ni and nj represent a pair of mergeable truth
assignments that are associated with non-overlapping sets of visibility constraints.
This edge indicates that the one-paths represented by ni and nj can be merged,
thus obtaining a truth assignment associated with both the visibility constraints
in ni .V and in nj .V (lines 20–22). Edge (ni ,nj ) is inserted in D if ni and
nj represent two disjoint truth assignments associated with non-overlapping sets
of visibility constraints. In this case, edge (ni ,nj ) indicates that the one-paths
represented by ni and nj can belong to the same correct set of truth assignments,
and that these one-paths guarantee the satisfaction of different subsets of visibility
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Fig. 3.10 Algorithm that computes a minimal set of truth assignments
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constraints (lines 23–25). Note however that, as already discussed in Sect. 3.11, the
truth assignments associated with ni and nj may also satisfy additional (possibly
overlapping) visibility constraints that are not explicitly associated with them. If ni

and the nodes to which it is connected do not satisfy all the visibility constraints in
V , ni cannot belong to any maximum weighted clique representing a correct set of
truth assignments. In fact, a clique is a solution of the fragmentation problem only
when, for each visibility constraint v in V , there is a node in the clique such that v

is associated with such a node. For this reason, the algorithm removes ni from G

(lines 26–29).
The algorithm then transforms the graph G representing the one-paths in P D

Pv1[ : : : [Pvk
into a fragmentation graph by computing the closure of P (i.e.,

the nodes in N ) under merging operator ˇ. To this end, the algorithm creates a
copy M 0 of the set M of edges and initializes M to the empty set (lines 31–32).
Then, the algorithm iteratively extracts an edge (ni ,nj ) from M 0, and determines
a new node nij such that nij .I =ni .Iˇnj .I and nij .V =ni .V [nj .V (lines 34–36).
The weight nij .weight is set to jV j � jnij :V j � 1 (see Sect. 3.4), thus reflecting the
number of visibility constraints associated with the node (line 37). Before inserting
nij in G, the algorithm checks if nij satisfies all the visibility constraints (line 38).
If this is the case, nij represents a maximum weighted clique for G. Isol is then
set to nij .I , don’t care variables are set to 0, and the algorithm terminates returning
Isol (lines 39–41). Otherwise, node nij is inserted in G, and the algorithm checks if
nodes adjacent either to ni or to nj are also adjacent (with a mergeable or disjoint
edge) to nij , thus possibly inserting in M or in D the corresponding edges (lines
42–46). Note that the algorithm needs only to check nij against the nodes in N that
are mergeable/disjoint with ni .I or nj .I , since satisfying any of these conditions is
a precondition for being mergeable/disjoint with nij .I . When the set M 0 of edges
is empty, the algorithm checks whether there are nodes in N that can be removed
from G since they cannot belong to any maximum weighted clique (lines 47–51).
The algorithm then iteratively repeats the process of removing edges from M (i.e.,
it creates a copy M 0 of M and inserts new nodes and edges in N , M , and D,
respectively) until the set M of edges is empty, that is, no edge is inserted in M

during the process of merging nodes connected through the edges in M 0 (i.e., until
G is a fragmentation graph).

Step 3: Compute a Maximum Weighted Clique The algorithm exploits a known
algorithm [87] to compute a maximum weighted clique of the fragmentation graph
(line 53). Function FindMaxWeightedClique takes the fragmentation graph as
input and returns a maximum weighted clique. If the weight of the clique is lower
than jV j � .jV j � 1/, the considered instance of the problem does not admit a correct
set of truth assignments (line 54). Otherwise, if w.C / is at least jV j � .jV j � 1/, the
one-paths represented by the nodes in C are inserted in Isol, don’t care variables
are set to 0 (lines 56–59), and Isol is returned (line 60).

Example 3.1. Consider relation PATIENTS and the confidentiality and visibility
constraints over it in Fig. 3.1. The execution of the algorithm in Fig. 3.10 proceeds
as follows.
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1) Compute one-paths. The algorithm builds O1, O2, and O3 in Fig. 3.7, representing
formula vi ^:.c1_. . . _c5/, i D 1; 2; 3, and extracts their one-paths, which are
listed in Fig. 3.7.

2) Build the fragmentation graph. The algorithm inserts in G a node for every
one-path in Pv1 , Pv2 , and Pv3 .see Fig. 3.11a/. Figure 3.11b shows the
graph obtained connecting the nodes in Fig. 3.11a that represent mergeable
truth assignments .dotted edges/ and disjoint truth assignments .continuous
edges/. Nodes hsNBRzJid,{v1}i and hsnBRzJId,{v2}i in Fig. 3.11a do not
appear in the graph in Fig. 3.11b since they neither are associated with v3

nor could be connected with a node that is associated with v3, and therefore
cannot be part of a clique. The algorithm then computes the closure of the
nodes in G. It first merges nodes hsnBrZJId,{v1}i and hsnBrZJId,{v2}i,
inserts the resulting node hsnBrZJId,{v1,v2}i in N , and checks if it can
be connected by an edge in D with node hsnbRZjID,{v3}i and/or with
node hsNbRZJid,{v1}i .the nodes adjacent to the merged nodes/. Since
hsnBrZJId,{v1,v2}i and hsnbRZjID,{v3}i represent disjoint assignments and
are associated with non-overlapping sets of visibility constraints, the algorithm
inserts edge .hsnBrZJId,{v1,v2}i,hsnbRZjID,{v3}i/ in D, while it does not
insert the edge connecting hsnBrZJId,{v1,v2}i with hsNbRZJid,{v1}i since v1 is
associated with both nodes. The resulting graph is illustrated in Fig. 3.11c, where
the new node is doubly circled. Nodes hsnBrZjID,{v1}i and hsnBrZjID,{v3}i are
then merged. The algorithm then inserts the resulting node hsnBrZjID,{v1,v3}i
in N , and edge .hsnBrZjID,{v1,v3}i, hsnbRZJId,{v2}i/ in D. Figure 3.11d
illustrates the resulting graph, where the new node is doubly circled. Since there
are no more mergeable edges in M , the algorithm checks whether there are
nodes in N that can possibly be removed from G. Node hsnBrZJId,{v1}i is only
connected with a node associated with v3 and has no connections with nodes
associated with v2, and therefore it is removed from G. Figure 3.11d illustrates
the resulting fragmentation graph.

3) Compute a maximum weighted clique. Once the fragmentation graph has been
built, the algorithm calls function FindMaxWeightClique that returns one of the
two maximum weighted cliques in G, C ={hsnBrZjID,{v1,v3}i,hsnbRZJId,{v2}i}.
The weight of this clique is w.C / D 7 and is higher than threshold
jV j � .jV j � 1/ D 6. Therefore, C represents a solution to the minimal set
of truth assignments problem. The algorithm extracts from C the corresponding
set of truth assignments, and the don’t care variables are set to 0, thus obtaining
Isol D {ŒS=0, ND 0, BD 1, RD 0, ZD 1, JD 0, ID 0, DD 1�, ŒSD 0, ND 0,
BD 0, RD 0, ZD 0, JD 1, ID 1, DD 0�} that is finally returned. We note
that this set of truth assignments corresponds to the minimal fragmentation
F D {{Birth,ZIP,Disease}, {Job,InsRate}} in Fig. 3.2.

The correctness and complexity of the algorithm in Fig. 3.10 are stated by the
following theorems.
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Fig. 3.11 Example of the execution of the algorithm in Fig. 3.10 with the inputs in Fig. 3.3
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Theorem 3.2 (Correctness of the Exact Algorithm). Given a set B of Boolean
variables, a set C of confidentiality constraints over B, and a set V of visibility
constraints over B, the algorithm in Fig. 3.10 terminates and computes (if it exists)
a minimal set of truth assignments.

Proof. To prove the correctness of the algorithm in Fig. 3.10, we have to show that
(1) it terminates; (2) it computes a correct set of truth assignments; (3) if there exists
a correct set I of truth assignments with respect to C and V , the algorithm finds
it; and (4) it computes a minimal set of truth assignments.

Termination Since the number of confidentiality and visibility constraints is finite,
the for each loop in Step 1 terminates. The first two for each loops in Step 2 (line 10
and line 16, respectively) terminate since for each v2V the set Pv of one-paths is
finite, and N includes at most one node for each one-path in Pv1 [. . . [Pvk

. The
while loop in Step 2 (line 30) terminates since the number of nodes that it inserts in
N is finite. In fact, let nij be a node obtained through the combination of ni and nj ,
which are nodes connected by a mergeable edge: (1) nij is inserted in N only if N

does not include a node n associated with a truth assignment and a set of visibility
constraints equal to those of node nij (N is a set); (2) nij is adjacent to neither ni

nor nj ; and (3) edge (ni ,nj )2M is removed from M when node nij is inserted in
N . Therefore, at each iteration of the while loop, at most one node is inserted in
N , an edge is removed from M , and a limited number of edges is inserted in M .
Since the number of Boolean variables in B and of visibility constraints in V is
finite, the number of possible nodes generated by merging nodes in N is finite. As a
consequence, the while loop terminates. Function FindMaxWeightClique in Step 3
(line 53) terminates since it exploits a classical algorithm for finding a maximum
weight clique. The last for each loop in Step 3 (line 56) terminates since C is a
subset of N , which is a finite set of nodes.

Correctness of the Set of Truth Assignments Isol is correct iff it satisfies the
conditions in Definition 3.7.

1. 8c 2 C , 8I 2 Isol: I.c/ D 0 .confidentiality/. In the last for each loop of Step 3
(line 56), the algorithm extracts Isol from the clique C computed by function
FindMaxWeightClique (the don’t care variables in the truth assignments repre-
sented by the nodes in C are set to 0). Since function FindMaxWeightClique
does not modify the truth assignments represented by the nodes in the graph
received as input, Isol does not violate confidentiality constraints iff the nodes in
the fragmentation graph resulting from Step 2 represent truth assignments that do
not violate confidentiality constraints. Each node in G either represents a truth
assignment I2Pvi or a truth assignment resulting from the composition of a
subset of one-paths in Pv1 [. . . [Pvk

under operator ˇ. In the first case, I rep-
resents a one-path in the OBDD modeling Boolean formula v^:(c1_. . . _cm),
v2V , and therefore it satisfies all the confidentiality constraints. In the second
case, I represents in a compact way the complete truth assignments implicitly
represented by the composed assignments. Since the assignments composed to
generate I satisfy all the confidentiality constraints, also I satisfies all of them.



62 3 Enforcing Confidentiality and Visibility Constraints

2. 8v2V , 9I 2 Isol: I.v/ D 1 .visibility/. In Step 3, the algorithm checks if
the clique C computed by function FindMaxWeightClique has weight at least
jV j � .jV j � 1/, which is equivalent to check if 8v2V , 9n2C such that v2n.V
as proved by Property 3.2. If the weight of the clique C is greater than or equal
to jV j � .jV j � 1/, the algorithm computes a solution Isol obtained by setting to
0 all the don’t care variables in the truth assignments represented by the nodes in
C . Therefore Isol satisfies all the visibility constraints.

3. 8Ii,Ij2 Isol; i ¤ j , 8a 2 B s.t. Ii.a/ D 1: Ij.a/ D 0 .unlinkability/. In the
last for each loop of Step 3 (line 56), the algorithm extracts Isol from the clique
C computed by function FindMaxWeightClique by setting to 0 all the don’t
care variables in the truth assignments represented by the nodes in the clique.
Since function FindMaxWeightClique does not modify the graph received as
input, Isol satisfies unlinkability iff C is a clique and G includes only edges
connecting nodes representing unlinkable truth assignments. Since the while
loop in Step 2 of the algorithm (line 30) removes all the edges in M connecting
nodes representing mergeable truth assignments, the graph G given as input to
the FindMaxWeightClique function includes only edges in D, which connect
nodes representing disjoint truth assignments. Any pair of nodes in C is then
connected by an edge in D (i.e., nodes in C represent unlinkable assignments).

Completeness Suppose by contradiction that there exists a correct set I of truth
assignments and that our algorithm returns an empty solution. The algorithm returns
an empty solution only if FindMaxWeightClique returns a clique for which at
least one visibility constraint in V remains unsatisfied (line 54). Since function
FindMaxWeightClique implements a known algorithm for the maximum weighted
clique problem and according to Theorem 3.1, the function returns a clique that does
not satisfy all the visibility constraints only if a clique representing a correct set of
truth assignments does not exists in G. However, since we assume that I is a correct
set of truth assignments, I has to be represented by a clique in G.

Suppose now by contradiction that I is not represented by a clique in G.
Each I2I satisfies all the confidentiality constraints and at least one visibility
constraint (otherwise I could be removed from I preserving its correctness). Let
vi1 ,: : :,vik ,2V be the visibility constraints satisfied by I . By construction of the
OBDDs Oi1 ; : : : ; Oik , Pi1 ; : : : ;Pik must contain at least one one-path Ii1 ; : : : ; Iik
that implicitly represents I . Since, by Observation 3, truth assignments are merge-
able only if they represent at least a common complete truth assignment, Ii1 ; : : : ; Iik
are mergeable (they all implicitly represent I ). For each I2I and for each subset
V � {vi1 ,: : :,vik } of visibility constraints satisfied by I , the fragmentation graph
computed by our algorithm will then include a node n implicitly representing I ,
with n.V =V . Since I is a correct set of truth assignments, there is at least a
complete truth assignment I2I that satisfies v for each v2V . Therefore, V can be
partitioned in non-empty and non-overlapping subsets Vi , i D 1; : : : ; jI j, such that
each Ii2I is associated with Vi and Vi includes only visibility constraints satisfied
by Ii. As a consequence, there exists a set N of nodes in G with a node ni for each
Ii2I such that ni implicitly represents Ii and ni is associated with the set Vi of
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visibility constraints. For each pair Ii,Ij2I , Ii and Ij are neither mergeable nor in
conflict. As a consequence, nodes ni and nj in N implicitly representing Ii and Ij,
respectively, are not in conflict (i.e., they do not associate conflicting values to the
same variable) and are then connected by an edge in D. Therefore, N is a clique for
G that implicitly represents I , thus contradicting the initial hypothesis.

Minimality Suppose by contradiction that the algorithm computes a correct set
I of k truth assignments and that there exists a correct set I 0 of k0 < k

truth assignments. We prove that, if I 0 exists, the set I of truth assignments
computed by our algorithm includes k0 truth assignments. In the last for each loop
of Step 3 (line 56), the algorithm extracts I from the clique C of maximum
weight in G computed by function FindMaxWeightClique by setting to 0 all
the don’t care variables in the truth assignments represented by the nodes in
the clique. According to the anti-monotonicity of the weight function w with
respect to the number of nodes (Property 3.1), C is the clique satisfying all the
visibility constraints composed of the minimum number k of nodes. Since function
FindMaxWeightClique implements a known algorithm for the maximum weighted
clique problem, there cannot exist a clique C 0 of G satisfying all the visibility
constraints and composed of k0 < k nodes. In other words, there cannot exist a
correct set I 0 of k0 < k truth assignments, where for each I2I 0 there exists a
node n in G such that n.I implicitly represents I . However, since we assume that
I0 is a correct set of truth assignments, I 0 has to be represented by a clique in G.

Suppose now by contradiction that I 0 is not represented by a clique in G. Let
I be a complete truth assignment in I 0. Since I 0 is correct, I satisfies all the
confidentiality constraints. Moreover, I is associated with (and then satisfies) at least
one visibility constraint, otherwise I could be removed from I 0 preserving its cor-
rectness, thus contradicting the hypothesis of minimality of I 0. Let vi1 ,: : :,vik ,2V
be the visibility constraints associated with I . By construction of the OBDDs
Oi1 ; : : : ; Oik , Pi1 ; : : : ;Pik must contain at least one one-path Ii1 ; : : : ; Iik that
implicitly represents I . Since, by Observation 3, truth assignments are mergeable
only if they represent at least a common complete truth assignment, Ii1 ; : : : ; Iik are
mergeable (they all implicitly represent I ). The truth assignment I 0 obtained as
Ii1 ˇ : : : ˇ Iik implicitly represents I . As a consequence, the fragmentation graph
computed by our algorithm will include a node n with n.I =I 0 and n.V ={vi1 ,: : :,vik }
that implicitly represents I . This is true for each complete truth assignment I2 I 0.
Therefore, G includes a clique that implicitly represents I 0 and composed of
k0 nodes. As a consequence, the clique computed by our algorithm implicitly
represents I 0. This contradicts the original hypothesis that our algorithm computes
a set of truth assignments that is not minimal. �

Theorem 3.3 (Complexity of the Exact Algorithm). Given a set B of Boolean
variables, a set C of confidentiality constraints over B, and a set V of visibility con-
straints over B, the complexity of the algorithm in Fig. 3.10 is O.2

Q
v2V jPv j�jBj C

.jV jCjC j/2jBj/ in time, where Pv is the set of one-paths of the OBDD representing
v^:.c1_. . . _cm/.
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Proof. The construction of the OBDDs in Step 1 can be, in the worst case,
exponential in the number of variables in the formula they represent, that is,
O.2jBj/. Therefore, the construction of the OBDDs representing the confidentiality
constraints in C , the visibility constraints in V , and their combination has computa-
tional complexity O..jV jC jC j/2jBj/. The construction of the fragmentation graph
in Step 2 requires to compute the closure of the set Pv1 [. . . [Pvk

under operator
ˇ since nodes in G represent, in the worst case, all the truth assignments in Pˇ.
To this purpose, the algorithm inserts edges in M and in D, connecting pairs of
nodes representing mergeable or disjoint truth assignments, respectively, that are
associated with non-overlapping sets of visibility constraints. The cost of inserting
edges in G is then O.

Q
v2V jPvj � jBj/ since the cost of evaluating if two truth

assignments are mergeable or disjoint is linear in the number of Boolean variables
composing the truth assignments. Since for each edge in M the algorithm inserts a
node in G, which can only be connected to the nodes adjacent to the incident nodes
of the removed edge, the overall cost of building G is O.

Q
v2V jPvj � jBj/. Also,

G includes at most O.
Q

v2V jPvj/ nodes. Function FindMaxWeightClique has
exponential cost in the number of nodes of the input graph (i.e., O.2

Q
v2V jPv j�jBj/)

since the maximum weighted clique problem is NP-hard. The last for each loop
in Step 3 (line 56) has computational complexity O.jC j � jBj/, since it scans all
the nodes in C to set to 0 the don’t care variables in the truth assignments they
represent. The cost of this loop is however dominated by the cost of the previous
steps of the algorithm. The computational complexity of the algorithm is therefore
O.2

Q
v2V jPv j�jBj C .jV j C jC j/2jBj/. �

The computational cost of the algorithm is obtained as the sum of the cost
of building the OBDDs, which is O..jV j C jC j/2jBj/, and of the cost of deter-
mining Isol by building the fragmentation graph and searching for its maximum
weighted clique, which is O.2

Q
v2V jPv j�jBj/. We note that the computational cost

of the construction of the OBDDs is exponential in the worst case, but in the
majority of real-world applications OBDD-based approaches are computationally
efficient [19, 68].

3.6 Computing a Locally Minimal Set of Truth Assignments

Since the problem of computing a minimal set of truth assignments is NP-hard, the
computational complexity of any algorithm that finds a solution to the problem is
exponential in the size of the input. In this section, we therefore propose a heuristic
algorithm that computes a locally minimal set of truth assignments (Problem 3.4)
with a limited computational effort. The algorithm exploits Theorem 3.1 to take
advantage of the graph modeling of the problem but does not explicitly create
the fragmentation graph. The idea consists in using the relationships between the
one-paths extracted from the OBDDs representing confidentiality and visibility
constraints to iteratively build a clique. The algorithm does not compute the closure
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of the one-paths in Pv1 [. . . [Pvk
under operator ˇ, but composes them when

necessary. It then starts from an empty clique C and, at each iteration, tries to insert
in C a node n (possibly composing it with nodes in C ) that is associated with a
visibility constraint that is not associated with any node already in C . The algorithm
terminates when it finds a clique C of weight at least jV j � .jV j � 1/.

Figure 3.12 illustrates the pseudocode of the algorithm that takes as input a
set B D fa1; : : : ; ang of Boolean variables (representing the attributes in R), a
set C D fc1; : : : ; cmg of confidentiality constraints, and a set V D fv1; : : : ; vkg
of visibility constraints and computes, if it exists, a locally minimal set of truth
assignments. The algorithm executes four steps: (1) it extracts the set of one-paths
from the OBDDs representing Boolean formulas vi ^:(c1_. . . _cm), i D 1; : : : ; k;
(2) it creates a node for each of these one-paths; (3) it iteratively builds a clique of the
fragmentation graph; (4) it combines the one-paths represented by the nodes in the
clique, if this combination does not violate confidentiality constraints, to minimize
the number of assignments in the computed set. In the following, we describe these
steps more in details.

Step 1: Compute One-Paths Like for the exact algorithm (Sect. 3.5, step 1), for
each vi 2V the algorithm extracts from the OBDD Oi representing Boolean formula
vi ^:(c1_. . . _cm) the set Pvi of one-paths (lines 2–4). If, for a given Oi , the set
Pvi is empty, the algorithm terminates and returns an empty solution (line 5).

Step 2: Generate Nodes Representing One-Paths The algorithm inserts a node
n=hI ,{v}i in graph G for each one-path I2Pv1 [. . . [Pvk

. Unlike the exact
algorithm, it does not explicitly insert the edges in G connecting pairs of nodes
that represent mergeable and disjoint truth assignments. In contrast, it implicitly
considers these relationships in the building process of a clique. The algorithm then
partitions nodes in G according to the visibility constraint associated with them, and
orders the obtained sets of nodes Ni , i D 1; : : : ; jV j, by increasing cardinality (lines
10–13). The reason for this ordering is to consider first the visibility constraints that
can be satisfied by a smaller set of truth assignments (represented by a smaller set
of nodes in the graph). Nodes in Ni , i D 1; : : : ; jV j, are ordered by decreasing
number of don’t care variables in the truth assignments they represent (lines 14–
15). The intuition is that nodes representing truth assignments with a higher number
of don’t care variables implicitly represent a larger set of complete truth assignments
(where don’t care variables can be set to either 0 or 1) and therefore they impose
less constraints on subsequent choices of the nodes that can be inserted in a clique
with them. Indeed, as already noted in Sect. 3.3.3, don’t care variables do not affect
the linkability or the mergeability of truth assignments.

Step 3: Build a Clique for the Fragmentation Graph The algorithm iteratively
builds a clique by calling recursive function DefineClique (line 17). Function
DefineClique receives as input a clique C of the fragmentation graph and an
integer number i, 1 � i � k, indicating that C either includes a node in Nj ,
j D 1; : : : ; .i � 1/, or a node resulting from the combination of a node in Nj

with another node in Nl , with l < j (i.e., C includes a node n such that v2n.V ,
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Fig. 3.12 Algorithm that computes a locally minimal set of truth assignments
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for each visibility constraint v associated with the nodes in N1; : : : ; Nj ). For each
node nj in Ni , function DefineClique verifies whether nj can be inserted in C ,
that is, if: (1) for each node n in C , n.I and nj .I are disjoint; or (2) nj .I is
mergeable with a subset of the truth assignments represented by the nodes in C

and the resulting truth assignment is disjoint from all the other truth assignments
represented by nodes in C . To efficiently check if nj satisfies one of the conditions
above, the function first identifies the set LinkableNodes of nodes in C representing
truth assignments linkable with nj .I (line 33). For each nl in LinkableNodes, if
nl .I is mergeable with n.I (with n initialized to nj ), n.I is set to n.Iˇnl .I , and
n.V is set to n.V [nl .V (lines 37–39). If nl .I is linkable but not mergeable with
n.I , n cannot be part of clique C since nl .I and n.I are not disjoint (line 39).
We note that nodes in C representing truth assignments that are mergeable and
disjoint to nj .I are not combined in a unique node. In fact, by composing a pair
of disjoint truth assignments, the algorithm would discard, without evaluation, all
the correct solutions where the two truth assignments are represented by distinct
nodes. If all the nodes in LinkableNodes can be combined with nj (i.e., the one-
paths they represent are all mergeable), the algorithm then determines a new clique
C 0 obtained by removing LinkableNodes from C and inserting n in C 0 (lines 40–
41). If i=jV j, C 0 satisfies all the visibility constraints, has a weight at least equal
to jV j � .jV j � 1/, and is returned (line 42). Otherwise, function DefineClique is
recursively called with C 0 and i C 1 as input (line 43). If the clique resulting from
this recursive call is not empty, it represents a correct set of truth assignments and is
therefore returned (line 44). If no node in Ni can be inserted in C , an empty clique
is returned and the algorithm looks for a different clique of the fragmentation graph.

Step 4: Minimize the Number of Assignments The clique C computed by
function DefineClique may represent a correct set of truth assignments that is not
locally minimal. In fact, it may include one-paths that can be combined without
violating confidentiality constraints. Every pair of nodes in C is then checked
and their truth assignments are ORed whenever they can be combined without
violating confidentiality constraints (i.e., the algorithm performs the union of the
corresponding fragments). To this purpose, the algorithm first assigns value 0 to
don’t care variables in the truth assignments represented by the nodes in C (line
20). Then, it iteratively extracts a node ni from C , assigns ni .I to Ii and, for each
nj in C , it checks if Ii can be composed with one-path Ij, with Ij = nj .I without
violating confidentiality constraints (lines 21–28). If this is the case, Ii is set to Ii_Ij,
and nj is removed from C . When the algorithm has checked if Ii can be combined
with all the one-paths represented by nodes in C , it inserts Ii in Isol (line 29). It
is important to note that the algorithm does not check if Ii can be combined with
the truth assignments already in Isol. In fact, all the truth assignments in Isol have
already been checked against all the assignments in C , and therefore also against Ii.
Finally, the algorithm returns Isol (line 30).

Example 3.2. Consider relation PATIENTS and the confidentiality and visibility
constraints over it in Fig. 3.1. The execution of the algorithm in Fig. 3.12 proceeds
as follows.
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a b

Fig. 3.13 Example of the execution of the algorithm in Fig. 3.12 with the inputs in Fig. 3.3

1) Compute one-paths. The algorithm first builds O1, O2, and O3 in Fig. 3.7,
representing vi ^ :.c1_. . . _c5/, i D 1; 2; 3, and extracts their one-paths,
which are listed in Fig. 3.7.

2) Generate nodes representing one-paths. The algorithm creates a node for each
one-path in Pv1 , Pv2 , and Pv3 , obtaining the set N of nodes illustrated
in Fig. 3.13a. The algorithm partitions N in three sets N 1, N 2, and N 3

depending on the visibility constraint associated with each node in N , and
orders these sets by increasing cardinality .i.e., jN1j � jN2j � jN3j/. N 1

includes the nodes associated with v2, N 2 includes the nodes associated with
v3, and N 3 includes the nodes associated with v1. The nodes in N 1, N 2,
and N 3 are then ordered by decreasing number of don’t care variables, as
illustrated in Fig. 3.13a.

3–4) Build a clique for the fragmentation graph and minimize the number
of assignments. Figure 3.13b illustrates the recursive calls to function
DefineClique showing for each execution: the value of input parameters C

and i; the candidate node nj in N i to insert in C ; its relationships with nodes
already in C ; and the computed clique C 0. The clique finally returned by the
function includes three nodes: C D {hsNbRZJid,{v1}i, hsnbRZJId,{v2}i,
hsnbRZjId,{v3}i}, which cannot be further combined without violating
confidentiality constraints. The corresponding set of truth assignments is
Isol D {ŒSD 0, ND 1, BD 0, RD 0, ZD 0, JD 0, ID 0, DD 0�, ŒSD 0,
ND 0, BD 0, RD 0, ZD 0, JD 1, ID 1, DD 0�, ŒSD 0, ND 0, BD 0,
RD 1, ZD 0, JD 0, ID 0, DD 1�}, which corresponds to locally minimal
fragmentation F D {{Name}, {Job,InsRate}, {Race,Disease}}. We
note that this fragmentation is not minimal, since there exists at least a correct
fragmentation composed of two fragments .Example 3.1/.

The correctness and complexity of the algorithm in Fig. 3.12 are stated by the
following theorems.

Theorem 3.4 (Correctness of the Heuristic Algorithm). Given a set B of
Boolean variables, a set C of confidentiality constraints over B, and a set V
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of visibility constraints over B, the algorithm in Fig. 3.12 terminates and computes
(if it exists) a locally minimal set of truth assignments.

Proof. To prove the correctness of the algorithm in Fig. 3.12, we need to prove that:
(1) it terminates; (2) it computes a correct set of truth assignments; (3) if there exists
a correct set I of truth assignments with respect to C and V , the algorithm finds
it; and (4) it computes a locally minimal set of truth assignments.

Termination Since the number of confidentiality constraints, the number of
visibility constraints, and the number of one-paths in Pv , with v2V , is finite,
the three for each loops in Step 1 (line 2) and in Step 2 (line 8 and line 14,
respectively) terminate. The recursive call to function DefineClique in Step 3
(line17) terminates when variable i is greater than or equal to jV j. We note that
at each recursive call of function DefineClique, at most one node is inserted in
C . Therefore, if function DefineClique terminates, C is a finite set. Function
DefineClique terminates because: (1) the sets Ni , i D 1; : : : ; jV j, of nodes are
finite (8vi 2V , Pvi is a finite set of one-paths); (2) LinkableNodes is a subset of
Isol; and (3) variable i increases by one at each recursive call. The for loop and the
while loop in function DefineClique (line 31 and line 36, respectively) terminate
since the clique C received as input includes at most i nodes and is therefore finite.

Correctness of the Set of Truth Assignments Isol is correct iff it satisfies the
conditions in Definition 3.7.

1. 8c 2 C , 8I 2 Isol: I.c/ D 0 .confidentiality/. The while loop in Step 4
(line 21) computes Isol (starting from the one-paths represented by nodes in C )
by trying to compose sets of truth assignments represented by nodes in C through
_ operator and explicitly checking if the result of the composition violates
confidentiality constraints. Since truth assignments are composed only if their
composition does not violate the confidentiality constraints, Isol satisfies all the
confidentiality constraints iff the truth assignments represented by nodes in the
clique C computed by function DefineClique do not violate the confidentiality
constraints. Function DefineClique inserts a node n in C if n either belongs to Ni

(i.e., it represents a one-path in Pvk
) or has been obtained by composing a set of

nodes in N1; : : : ; Nk (i.e., it represents the composition of a subset of one-paths in
Pvx ,. . . ,Pvy under operator ˇ). Since Pv represents the one-paths in the OBDD
modeling Boolean formula v^:(c1_. . . _cm), v2V , all the truth assignments in
Pv satisfy confidentiality constraints. Also, since the truth assignment resulting
from the composition of Ii and Ij under ˇ represents, in a compact way, the set
of complete truth assignments implicitly represented by both Ii and Ij, also IiˇIj

does not violate confidentiality constraints. As a consequence, each node n2C

represents a truth assignment that satisfies all the confidentiality constraints.
2. 8v2V , 9I 2 Isol: I.v/ D 1 .visibility/. Recalling that in Step 4 all the

don’t care variables in truth assignments represented by nodes in C are set to
0 (line 20), and that the algorithm computes Isol by trying to compose the
truth assignments represented by nodes in C without violating confidentiality
constraints (for each loop in line 24), Isol satisfies the visibility constraints if,
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at the end of function DefineClique, 8v2V , 9 n2C such that v2n.V . Function
DefineClique is recursively called for i D 1; : : : ; jV j and, at each recursive call,
it inserts in C a node nj 2 Ni that represents a truth assignment I in Pv . In fact,
node nj is either inserted as a new node in C , or composed with a node n already
in C . As already noted, the node resulting from the composition of nj with n is
associated with (and then satisfies) both the visibility constraints in n.V and in
nj .V . Therefore, at the end of the i -th recursive call, C is associated with (and
then satisfies) all the visibility constraints v such that v2n.V and n is a node in
Nj , with j � i . We can conclude that, at the end of the jV j-th recursive call, C

includes, for each v2V , at least a node n with v2n.V .
3. 8Ii,Ij2 Isol; i ¤ j , 8a 2 B s.t. Ii.a/ D 1: Ij.a/ D 0 .unlinkability/. Since

Step 4 sets to 0 all the don’t care variables in the truth assignments represented
by nodes in C , Isol satisfies unlinkability iff the truth assignments represented
by the nodes in C computed by function DefineClique are disjoint. Function
DefineClique tries to insert, at each iteration of the for loop (line 31), a node
nj in C . The function does not insert nj 2 Ni in C if there exists at least a
node in C that represents a truth assignment linkable but not mergeable with
nj .I , and composes nj .I with all the linkable and mergeable truth assignments
represented by a node already in C . All nodes in C therefore represent disjoint
truth assignments.

Completeness Completeness is guaranteed if recursive function DefineClique
computes, if it exists, a clique C of the fragmentation graph that satisfies all
the visibility constraints in V . Function DefineClique is recursively called for
i D 1; : : : ; jV j and, at each recursive call, it inserts in C a node nj in Ni ,
which represents a truth assignment in Pv (i.e., a truth assignment associated with
and then satisfying visibility constraint v). If there is no clique in G including
C together with a node in Ni , the function uses a back-track strategy and tries
to insert in C a different node from Ni�1. Note that two nodes are combined
(operator ˇ) by function DefineClique iff they represent linkable truth assignments
(i.e., they represent fragments with a common attribute). Indeed, a correct set of
truth assignments cannot contain two linkable truth assignments (Condition 3 in
Definition 3.7). Therefore, the composition performed in this phase is mandatory
for finding a correct set of truth assignments. Nodes representing non linkable but
mergeable truth assignments are not combined in this phase (they will be combined
by Step 4 to guarantee local minimality). Recursive function DefineClique tries all
the possible subsets of nodes in G including a node for each set Ni , i D 1; : : : ; k,
using the back-track strategy. Thus, if there exist a clique for G, it will be found by
the recursive call.

Local Minimality Isol is locally minimal iff no pair of truth assignments in
Isol can be composed through the _ operator without violating confidentiality
constraints. Isol is computed by the while loop in Step 4 (line 21), where the
algorithm tries to iteratively combine (_) the truth assignments represented by
nodes in C , after all don’t care variables have been set to 0. Such a combination
is performed only if the disjunction of the confidentiality constraints is not violated.
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As a consequence, no pair of truth assignments in Isol are combined through the _
operator without violating the confidentiality constraints. �

Theorem 3.5 (Complexity of the Heuristic Algorithm). Given a set B of
Boolean variables, a set C of confidentiality constraints over B, and a set V
of visibility constraints over B, the complexity of the algorithm in Fig. 3.12 is
O.

Q
v2V jPvj � jBj C .jV j C jC j/2jBj/ in time, where Pv is the set of one-paths

of the OBDD representing v^:.c1_. . . _cm/.

Proof. The construction of the OBDDs in Step 1 can be, in the worst case,
exponential in the number of variables in the formula they represent, that is,
O.2jBj/. Therefore, the construction of the OBDDs representing the confidentiality
constraints in C and the visibility constraints in V , and their combination have
computational complexity O..jV j C jC j/2jBj/. The cost of building a node n for
each one-path in Pv1 [. . . [Pvk

is linear in the number of one-paths. The cost
of partitioning the resulting set of nodes in sets of nodes that are associated with
the same visibility constraint and of ordering these sets by their cardinality is
O.

P
v2V jPvj C jV j log jV j/. The cost of further ordering the nodes in each set

Ni by decreasing number of don’t care variables in the one-path they represent is
O.

P
v2V .jBjjPvj C jPvj log jPvj//, since each set Ni includes jPvj nodes (one

for each one-path) and each one-path in Pv has jBj variables. The overall cost of
Step 2 is then O.jV j log jV jCjPv j P

v2V .1CjBjClog jPvj//. Recursive function
DefineClique is invoked by the algorithm in Fig. 3.12 at most

Q
v2V jPvj times,

since it needs to evaluate any possible combination of nodes (truth assignments),
including a node from each Ni (a truth assignment from each Pv , v2V ). The
comparison between two truth assignments ni .I and nj .I represented by two
nodes in G has computational complexity O.jBj/, since each Boolean variable
in B must be checked. In the worst case, each node in Ni (truth assignment in
Pv) is compared with all the nodes in Nj (truth assignments in all the other
sets of one-paths), i ¤ j . The first for each loop in Step 4 has computational
complexity O.jC j � jBj/, since it scans all the truth assignments represented by
nodes in C to set to 0 all the don’t care variables. The while loop in Step 4 has
instead computational complexity O.jC j2 � jBj/, since it compares each pair of
truth assignments represented by nodes in C . The computational complexity of the
algorithm is therefore O.

Q
v2V jPvj � jBj C .jV j C jC j/2jBj/, since the costs of

Step 2 and of Step 4 are dominated by the costs of Step 1 and of Step 3. �
We note that the computational cost of the algorithm includes, like the exact algo-

rithm, the (exponential) cost of building the OBDDs. Indeed, both the algorithms
first transform the input of the fragmentation problem into a set of one-paths, which
represents the input to the problem of computing a (maximum weighted) clique of
the fragmentation graph. The advantage of our heuristic over the exact algorithm
illustrated in Sect. 3.5 is related to the search of the clique, which is exponential in
the number of one-paths in the exact approach, and polynomial in the number of
one-paths in the heuristic approach.
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3.7 Experimental Results

The exact and heuristic algorithms presented in Sects. 3.5 and 3.6, respectively, have
been implemented as C programs to experimentally assess their behavior in terms
of execution time and quality of the solution. To efficiently manage OBDDs we
used the CUDD libraries [99], and to compute the maximum weighted clique of our
fragmentation graph we used the implementation of the algorithm described in [87].
The experiments have been carried out on a laptop equipped with Intel 2 Duo 2GHz
processor, 4 GB RAM, running Windows 7, 32 bit version.

As formally proved by Theorems 3.3 and 3.5, the computational complexity
of both the exact and heuristic algorithms depends on the number of one-paths
extracted from the OBDDs representing the constraints. As a consequence, we
compared the execution time and the quality of the solution computed by the two
algorithms varying the number of one-paths in the range between 10 and 30,000.
The configurations considered in our experiments have been obtained starting from
a relation schema composed of a number of attributes varying from 10 to 40. For
each configuration, we randomly generated sets of confidentiality and visibility
constraints. The number of confidentiality and visibility constraints varies from 5
to 25 and from 2 to 10, respectively. Each confidentiality and visibility constraint
includes a number of attributes that varies from 2 to 8 and from 2 to 4, respectively.
In line with real world scenarios, constraints include a limited number of attributes.
Also, the number of visibility constraints is lower than the number of confidentiality
constraints, since this choice reflects most real world scenarios, where the need for
privacy imposes more constraints than the need for data release.

Our experimental results evaluate three aspects: (1) the number of one-paths
extracted from the OBDDs representing the constraints; (2) the execution time of
the exact and heuristic algorithms; and (3) the quality of the solution, in terms of
number of fragments, computed by the exact and the heuristic algorithms.

Number of One-Paths One of the main advantages of OBDDs is that the number
of their one-paths is not related to the complexity of the Boolean formulas they
represent. Complex Boolean formulas expressed on a high number of variables
may therefore be characterized by an extremely low number of one-paths. We then
experimentally measure the number of one-paths of configurations with a growing
number of attributes and of confidentiality and visibility constraints. Figure 3.14
illustrates the number of one-paths characterizing configurations with a number of
attributes varying from 10 to 40 (the scale of the y-axis is logarithmic). The results
illustrated in the graph have been computed as the average of the number of one-
paths obtained with 30 simulations for each configuration, where the number of
constraints in each configuration varies as explained above. Note that the overall
number of simulations is more than 30 since we discarded the best and worst cases,
and those configurations characterized by visibility constraints that are in contrast
with confidentiality constraints (i.e., configurations that do not admit a solution).
As expected, the average number of one-paths grows more than linearly with the
number of attributes. It is however interesting to note that the number of one-paths
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Fig. 3.14 Average number of one-paths varying the number of attributes

remains considerably lower than 2jBj in all the considered configurations. This is
consistent with real world scenarios, where confidentiality constraints (visibility
constraints, respectively) involve a limited number of attributes.

Execution Time As expected from the analysis of the computational complexity of
our algorithms (see Theorems 3.3 and 3.5), the heuristic algorithm outperforms the
exact algorithm. Indeed, consistently with the fact that the minimal fragmentation
problem is NP-hard, the exact approach requires exponential time in the number
of one-paths, that is, of nodes in the fragmentation graph, which is even higher
than the number of one-paths extracted from OBDDs. We run the exact algorithm
only for configurations with at most 1,000 one-paths, since this configuration is
characterized by a fragmentation graph including more than 6,000 nodes and more
than 190,000 edges. To further confirm the exponential growth of the computational
time required by the exact algorithm, we compute the fragmentation graph also for
larger configurations (up to 5,000 one-paths, for which the computation of the frag-
mentation graph takes more than 806.99 s). Figure 3.15 compares the execution time
of our heuristic and exact algorithms (for configurations with up to 1,000 one-paths),
varying the number of one-paths represented by the OBDDs (the scale of both the
x-axis and the y-axis is logarithmic). The figure also reports the time required for
computing the fragmentation graph for configurations including between 1,000 and
5,000 one-paths, and the execution time of the heuristic algorithm for configurations
including between 5,000 and 30,000 one-paths, highlighting the benefit of the
heuristic approach that does not explicitly build the fragmentation graph.
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Fig. 3.15 Execution time of the exact and heuristic algorithms

To better understand the impact of building the OBDDs modeling the constraints
and extracting their one-paths, we measure the execution time required by this step,
which is common to the exact and heuristic algorithms. It is interesting to note
that the impact of this step on the overall execution time of both our algorithms
is negligible. In fact, it remains under 454 milliseconds in all the considered
configurations.

Quality of the Solution Figure 3.16 reports the comparison between the number
of fragments obtained by the execution of the exact and the heuristic algorithms
(the scale of the x-axis is logarithmic). The comparison shows that, in the majority
of the configurations where the comparison was possible (i.e., for configurations
with less than 1,000 one-paths), our heuristic algorithm computes a locally minimal
fragmentation that is also minimal since the fragmentations computed by the two
algorithms have the same number of fragments. Figure 3.16 reports the number
of fragments in the locally minimal fragmentations computed by the heuristic
algorithm also for configurations with a number of one-paths between 1,000 and
5,000. It is interesting to note that also for these configurations, characterized by a
considerable number of attributes and of confidentiality and visibility constraints,
the number of fragments in the locally minimal fragmentation remains limited (in
our experiments, it varies between 1 and 3 fragments). We can then conclude that
our heuristic algorithm is efficient, computes a solution close to optimum, and can
therefore be conveniently adopted in many scenarios.
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3.8 Enhancing Fragmentation with Privacy-Preserving
Associations

In the following sections we will discuss how minimal a fragmentation, possibly
computed with the algorithms we have proposed so far, can be complemented
with loose associations to enrich the utility of the released fragments. Loose
associations have been proposed in [38] for fragmentations composed of a single
pair of fragments only. In the remainder of the chapter, we first illustrate how the
publication of multiple loose associations between pairs of fragments of a generic
fragmentation can potentially expose sensitive associations, and then describe an
approach for supporting the more general case of publishing a loose association
among an arbitrary set fF1; : : : ; Fng of fragments.

3.8.1 Rationale

Fragmentation completely breaks the associations among attributes appearing in
different fragments. In fact, since attributes are assumed to be independent,1 any
tuple appearing in a fragment could have, as its corresponding part, any other tuple

1We maintain such an assumption of the original proposal to avoid complicating the treatment
with aspects not related to loose associations. Dependencies among attributes can be taken into
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appearing in another fragment. In some cases, such protection can be an overkill
and a lower uncertainty on the association could instead be preferred, to mitigate
information loss. A way to achieve this consists in publishing an association among
tuples in fragments at the level of groups of tuples (in contrast to individual tuples),
where the cardinality of the groups impacts the uncertainty over the association,
which therefore remains loose. Hence, group associations are based on grouping of
tuples in fragments, as follows.

Definition 3.12 (k-Grouping). Given a fragment Fi , its instance f i , and a set
GIDi of group identifiers, a k-grouping function over f i is a surjective function
Gi Wf i !GIDi such that 8gi 2 GIDi Wj G �1

i .gi / j� k.

A group association is the association among groups, induced by the grouping
enforced in fragments. Looseness is defined with respect to a degree k of protection
corresponding to the uncertainty of the association among tuples in groups within
the fragments (or, more correctly, among values of attributes involved in confiden-
tiality constraints whose attributes appear in the fragments). Group associations
have been introduced in [38] and defined over a pair of fragments. Given two
fragment instances, f l and f m, and a (kl ,km)-grouping over them (meaning a kl -
grouping over f l and a km-grouping over f m) group association Alm contains a
pair (Gl (t[Fl ]),Gm(t[Fm])), for each tuple t 2 r . For instance, consider Fig. 3.17c,
illustrating a fragmentation composed of two fragments of the relation in Fig. 3.17a
satisfying the constraints in Fig. 3.17b. Figure 3.18a illustrates a (2,2)-grouping over
fragments f l and f m in Fig. 3.17c, and the induced group association over them.
The group association, graphically represented by the edges among the rectangles
corresponding to groups of tuples in Fig. 3.18a, is released as a table containing the
pairs of group identifiers in Alm and by complementing fragments with a column
reporting the identifier of the group to which each tuple belongs (Fig. 3.18b). In the
following, for simplicity, given a tuple t in the original relation, we denote with l (m,
respectively) tuple t[Fl ] (t[Fm], respectively) in fragment f l (f m, respectively).

The degree of looseness guaranteed by a group association depends not only on
the uncertainty given by the cardinality of the groups, but also on the uncertainty
given by the association among attribute values for those attributes appearing
together in a confidentiality constraint c that is covered by the fragments (i.e,
c�Fl[Fm). For instance, a looseness of k D 4 for the association in Fig. 3.18
ensures that for each value of t[Fl \ c] there are at least k D 4 different values for
t[Fm \c], for each confidentiality constraint c covered by Fl and Fm. If well defined
(i.e., the groupings satisfy the properties given in [38]), a (kl ,km)-grouping ensures
the association among the fragments to be k-loose with k D kl � km, where k is the
degree of protection granted to the sensitive associations.

Note that the release of a group association between Fl and Fm may only put
at risk constraints whose attributes are all contained in the fragments (i.e., all

consideration by extending the requirement of unlinkability among fragments to include the
consideration of such dependencies (for more details, see [43]).
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a

b c

MEDICALDATA

Fig. 3.17 An example of relation (a), a set C of confidentiality constraints over it (b), and a
fragmentation that satisfies the confidentiality constraints in C (c)

confidentiality constraints c such that c � Fl [ Fm). For instance, the association in
Fig. 3.18 may put at risk only the sensitive association modeled by confidentiality
constraint c1={YoB, Edu}, and satisfies k-looseness for k D 4 (and therefore any
lower k). In fact, any value of YoB is associated with at least (exactly, in this case)
four different values of Edu and viceversa.

3.8.2 Exposure Risk

The proposal in [38] supports group associations between pairs of fragments.
Given a generic fragmentation F composed of an arbitrary number of fragments,
different group associations can be published on different fragments pairs. A simple
example shows how such a publication, while guaranteeing protection of the specific
associations released in loose form, can however expose other sensitive associations.

Consider the example in Fig. 3.19, where relation MEDICALDATA in Fig. 3.17a
has been split into three fragments FlD{Name, YoB}, FmD{Edu, ZIP}, and
FrD{Job, MarStatus, Disease}. The (2-2)-grouping over Fl and Fm, and
the (2-2)-grouping over Fm and Fr induce two 4-loose group associations: Alm

between Fl and Fm, and Amr between Fm and Fr , respectively. The looseness of
Alm guarantees protection with respect to constraint c1={YoB,Edu}, covered by
Fl and Fm, ensuring that for each value of YoB in Fl the group association provides
at least four possible values of Edu in Fm (and viceversa). The looseness of Amr
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Fig. 3.18 Graphical representation (a) and corresponding relations (b) of a 4-loose association
between fragments Fl and Fm in Fig. 3.17c

guarantees protection with respect to constraint c2={ZIP,Job}, covered by Fm and
Fr , ensuring that for each value of ZIP in Fm the group association provides at least
four possible values of Job in Fr (and viceversa). This independent definition of the
two associations does not take into consideration constraints expressing sensitive
associations among attributes that are not covered by the pairs of fragments on
which a group association is specified (c3; c4; and c5 in our example), which can
then be exposed. Consider, for example, constraint c3={Name, Disease}. Alice
(tuple l1 in f l ) is mapped to group ny1 which is associated by Alm with groups ez11
and ez12, that is, tuples m1, m3, m5, and m6 in f m. These tuples are also grouped
as ez22 and ez21, associated by Amr with groups jmd1 and jmd2, that is, tuples r1,
r3, r5, and r6 in f r . Hence, by combining the information of the two associations,
we know that l1 in f l is associated with one of these four tuples in f r . While an
uncertainty of four is guaranteed with respect to the association among tuples, such
an uncertainty is not guaranteed at the level of values, which could then expose
sensitive associations. In particular, since the disease in both r1 and r5 is Flu and the
disease in both r3 and r6 is Calculi, there are only two possible diseases associated
with Alice, each of which has 50 % probability of being the real one.

This simple example shows how group associations between pairs of fragments,
while guaranteeing protection of the associations between the attributes in each
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Fig. 3.19 Graphical representation (a) and corresponding relations (b) of a 4-loose association
Alm between Fl and Fm, and a 4-loose association Amr between Fm and Fr , with Fl , Fm , and Fr

three fragments of relation MEDICALDATA in Fig. 3.17a

pair of fragments, could indirectly expose other associations, which are not being
released in loose form. To counteract this problem, group associations should be
specified in a concerted form. In the next section, we extend and redefine group
associations and the related properties to guarantee a given looseness degree to be
enforced over an arbitrary number of associations and fragments.

3.9 Loose Associations

Our approach to ensure that the publication of different associations does not cause
improper leakage is based on the definition of a single loose association encom-
passing all the fragments on which the data owner wishes to specify associations
so to take into account all the confidentiality constraints. Any projection over this
“universal” group association will then produce different group associations, over
any arbitrary number of fragments, which are not exposed to linking attacks such as
the one illustrated in the previous section.
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3.9.1 k-Looseness

We start by identifying the constraints that are potentially exposed by the release of
group associations involving a set T of fragments, as follows.

Definition 3.13 (Relevant Constraints). Given a set T D fF1; : : : ; Fng of frag-
ments and a set C of confidentiality constraints, the set CT of relevant constraints
for T is defined as CT = {c2C Wc� F1 [ : : : [ Fn}.

Intuitively, the constraints relevant for a set of fragments are all those constraints
covered by the fragments (i.e., all confidentiality constraints that are a subset of the
union of the fragments). For instance, the only constraint among those reported in
Fig. 3.17b that is relevant for the set of fragments in Fig. 3.17c is c1; all constraints
are instead relevant for the set of fragments in Fig. 3.18.

The definition of a group association over different fragments is a natural
extension of the case with two fragments, where the association is induced
by groupings enforced within the different fragments. The consideration of the
universal group association implies that only one grouping is applied within each
fragment. Hence, given a fragmentation FD fF1; : : : ; Fng, a .k1; : : : ; kn/-grouping
is a set fG1; : : : ;Gng of grouping functions defined over fragments ff 1; : : : ; f ng (i.e.,
a set of ki -groupings over f i , i D 1; : : : ; n). Figure 3.20 illustrates a (2,2,2)-
grouping over fragments Fl D {Name, YoB}, Fm D {Edu, ZIP} and Fr D {Job,
MarStatus, Disease} of relation MEDICALDATA in Fig. 3.17a, and the induced
group association Almr .

Like for the case of two fragments, a group association permits to establishing
relationships among the tuples in the different fragments, while maintaining the
uncertainty on which tuple in each fragment is actually associated with each tuple
in another fragment. Such an uncertainty is given by the cardinality of the groupings.
The reconstruction made available by a group association, and obtained as the joins
of the fragments in F and A, generates in fact all possible combinations among the
tuples of associated groups. Let us denote with F‰A such a join. Guaranteeing k-
looseness for the sensitive associations represented by relevant constraints requires
ensuring that the reconstruction of tuples, made possible by the association among
groups, is such that: for each constraint c relevant for F and for each fragment F,
there are at least k tuples ta in F‰A such that, if ta1ŒF \ c� D : : : D takŒF \ c�,
then ta1Œc n F� ¤ : : : ¤ takŒc n F�. The k-looseness requirement must then take into
consideration not only the number of tuples in other fragments with which a tuple
can be associated but also the diversity of their values for the attributes involved
in confidentiality constraints. In fact, different tuples that have the same values for
these attributes do not provide the diversity needed to ensure k-looseness. We then
start by identifying these tuples, as follows.

Definition 3.14 (Alike). Given a fragmentation F=fF1; : : : ; Fng with its instance
ff 1; : : : ; f ng, and the set CF of confidentiality constraints relevant for F , tuples
ti ,tj 2 f z, z D 1; : : : ; n, are said to be alike with respect to a constraint c2CF ,
denoted ti 'ctj iff c\Fz ¤ ; and ti Œc\Fz� D tj Œc\Fz�. Two tuples are said to be
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Fig. 3.20 Graphical representation (a) and corresponding relations (b) of a 4-loose association
among three fragments Fl , Fm, and Fr of relation MEDICALDATA in Fig. 3.17a

alike with respect to a set CF of relevant constraints, denoted ti 'CF tj , if they are
alike with respect to at least one constraint c2CF .

According to this definition, given a fragmentation F , two tuples in a fragment
instance f i of fragment Fi 2 F are alike if they have the same values for the
attributes in at least one constraint relevant forF . For instance, with reference to the
fragments in Fig. 3.20, r4'c3 r8 since r4[Disease]=r8[Disease]=Asthma. Since
we are interested in evaluating the alike relationship with respect to the set CF of
relevant constraints, in the following we omit the subscript of the alike relationship
whenever clear from the context (i.e., we write ti 'tj instead of ti 'CF tj ).

We can now define k-looseness of a group association among arbitrary sets of
fragments, as follows.

Definition 3.15 (k-Looseness). Given a fragmentation F = fF1; : : : ; Fng with its
instance ff 1; : : : ; f ng, the set CF of confidentiality constraints relevant for F , and
a group association A over ff 1; : : : ; f ng, A is said to be k-loose with respect to
CF iff 8c2CF , let F c = {F2F W F\c¤ ;}, 8Fi2F c and 8gi 2GIDi let T DS

ta2A{G�1
j .taŒGj �/ 	 . . . 	 G �1

l .taŒGl �/ W taŒGi �=gi } with {Fj ,. . . ,Fl} DF cn{Fi }
H) jT j � k and 8tx ,ty2 T , x ¤ y, tx 6'cty .
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k-Looseness guarantees that none of the sensitive associations represented
by relevant constraints can be reconstructed with confidence higher than 1=k.
Figure 3.20 illustrates a fragmentation of the relation in Fig. 3.17a and a group
association Almr that guarantees 4-looseness for the sensitive associations expressed
by the confidentiality constraints in Fig. 3.17b.

Clearly, there is a correspondence between the size of the groupings and the
k-looseness of the association induced by them. Trivially, a .k1; : : : ; kn/-grouping
cannot provide k-looseness for a k > k1 � : : : � kn. Consider a constraint c,
which includes attributes in Fi and Fj only. The .k1; : : : ; kn/-grouping can provide
uncertainty over the associations existing among the attributes in c for a k � ki � kj .
Indeed, any tuple in f i is associated with at least ki � kj tuples in f j , which have
different values for the attributes in c if groups are properly defined. With reference
to the group association in Fig. 3.20, the sensitive association represented by
constraint c1={YoB, Edu} enjoys a k-looseness of four: each value of YoB can be
indistinguishably associated with at least four possible values of Edu, and viceversa.
A constraint c involving more than two fragments may enjoy higher protection
from the same .k1; : : : ; kn/-grouping. Considering the example in Fig. 3.20, the
sensitive association expressed by constraint c5={YoB, ZIP, MarStatus} enjoys
a k-looseness of eight: for each value of YoB there are at least eight possible different
pairs of (ZIP, MarStatus), and for each value of ZIP there are at least eight
possible different pairs of (YoB, MarStatus), for each value of MarStatus
there are at least eight possible different pairs of (YoB, ZIP). Since we consider
minimal fragmentations, for each pair of fragments Fi , Fj in F there exists at
least a confidentiality constraint c relevant for Fi and Fj only (i.e., 8{Fi ,Fj } 2F ,
i ¤ j , 9 c 2C s.t. c � Fi [ Fj , Theorem A.2 in [38]), which enjoys a k-looseness
of ki �kj . Hence, a .k1; : : : ; kn/-grouping can ensure k-looseness with k �min{ki �kj

W i; j D 1; : : : ; n, i ¤ j } for the constraints in CF . Whether the .k1; : : : ; kn/-
grouping provides k-looseness for lower values of k depends on how the groups are
defined. In the following, we introduce three heterogeneity properties of grouping
(revising and extending those provided in [38]) whose satisfaction ensures k-
looseness for k D min{ki � kj W i; j D 1; : : : ; n, i ¤ j }.

3.9.2 Heterogeneity Properties

The heterogeneity properties ensure diversity of the induced associations, which are
defined as sensitive by confidentiality constraints. They operate at three different
levels: groupings, group associations, and value associations.

The first property we introduce is group heterogeneity, which ensures diversity
within each group by imposing that groups in a fragment do not include tuples with
the same values for the attributes in relevant constraints. In this way, the minimum
size ki of the groups in fragment Fi , i D 1; : : : ; n, reflects the minimum number of
different values in the group for each subset of attributes that appear together in a
relevant constraint.
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Property 3.3 (Group Heterogeneity). Given a fragmentation F=fF1; : : : ; Fng with
its instance ff 1; : : : ; f ng, and the set CF of confidentiality constraints relevant for
F , grouping functions Gi over f i , i D 1; : : : ; n, satisfy group heterogeneity iff
8tz,tw2f i with tz'tw H) Gi .tz/ ¤Gi .tw/.

This property is a straightforward extension of the one operating on two
fragments, as its enforcement is local to each individual fragment to take into
account all constraints relevant for F (not only those relevant for a pair). For
instance, in Fig. 3.20 the grouping functions of the three fragments satisfy group
heterogeneity for CF=fc1; : : : ; c5g while the grouping function of fragment Fr

in Fig. 3.21a violates it with respect to confidentiality constraint c4={YoB, ZIP,
Disease}. In fact, fragment Fr includes a group with tuples with the same value
for attribute c4 \ Fr DDisease (i.e., Diabetes).

The second property we introduce is association heterogeneity, which imposes
diversity in the group association. For a group association A between two fragments,
this property requires that A does not include duplicate tuples, that is, at most
one association can exist between each pair of groups of the two fragments. By
considering the more general case of a group association among an arbitrary number
of fragments, this property requires that for each constraint c in CF , each group in
a fragment f i such that Fi \ c ¤ ; appears at least k tuples in A that differ at
least in the group of one of the fragments f j storing attributes in c (i.e., c\Fj ¤ ;).
In other words, the association heterogeneity property implies that A cannot have
two tuples with the same group identifier for all attributes Gij ; j D 1; : : : ; l

corresponding to fragments storing attributes that appear in a constraint. Since
we consider minimal fragmentations, there exists at least one relevant constraint
for each pair of fragments in F . Therefore, a group association A satisfies the
association heterogeneity property if it does not have two tuples with the same group
identifier for any pair of group attributes Gi;Gj; i; j D 1; : : : ; n, and i ¤ j .

Property 3.4 (Association Heterogeneity). A group association A satisfies associ-
ation heterogeneity iff 8.gi1 ; : : : ; gin/, .gj1 ; : : : ; gjn/ 2A such that giz D gjz H)
giw ¤ gjw , w D 1; : : : ; n and w ¤ z.

Figure 3.20 illustrates a group association that satisfies the association hetero-
geneity property, while the group association in Fig. 3.21b violates it since a group
of fragment f l is associated twice with a group in fragment f r .

The third property we introduce is deep heterogeneity, which captures the need of
guaranteeing diversity in the associations of values behind the groups. Considering
a pair of fragments f i and f j , deep heterogeneity requires that a group in f i be
associated with groups in f j that do not include duplicated values for the attributes
in a constraint c�Fi[Fj (i.e., tuples are not alike with respect to c). In fact, if
the groups in f j with which a group in f i is associated contain alike tuples with
respect to c, the ki � kj corresponding tuples do not contain ki � kj different values
for the attributes in c, meaning that the group association offers less protection
than expected. For instance, groups jmd1 and jmd3 in Fig. 3.20 have the same
values for attribute Disease (i.e., Flu and Asthma). Therefore, a group in f l
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Fig. 3.21 Examples of violations of heterogeneity properties with respect to constraint c4={YoB,
ZIP, Disease}

cannot be associated with both jmd1 and jmd3 because of constraint c3={Name,
Disease} (otherwise, the association between Fl and Fr would be 2-loose instead
of 4-loose). Considering the more general case of a group association among an
arbitrary number of fragments, and a constraint c composed of attributes stored in
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fragments fF1; : : : ; Fng, deep heterogeneity requires a group f i (i D 1; : : : ; n) be
associated with groups in ff 1; : : : ; f ng n ff i g that do not permit to reconstruct (via
the loose join F‰A) possible semi-tuples that have the same values for all the
attributes in c. Note that deep heterogeneity does not require diversity over all the
fragments storing the attributes composing a constraint, since this condition would
be more restrictive than necessary to guarantee k-looseness. In fact, it is sufficient,
for each tuple in a fragment f i , to break the association with one of the fragments f j

(j D 1; : : : ; n, i ¤ j ) storing the attributes in c. For instance, with reference to the
example in Fig. 3.20, it is sufficient that each group in f l be associated with groups
of non alike tuples either in f m or in f r to guarantee a 4-looseness for the sensitive
association modeled by c5. The deep heterogeneity property is formally defined as
follows.

Property 3.5 (Deep Heterogeneity). Given a fragmentation F = fF1; : : : ; Fng with
its instance ff 1; : : : ; f ng, and the set CF of constraints relevant for F , a group
association A over F satisfies deep heterogeneity iff 8c2CF ; 8Fz 2 F , Fz \
c ¤ ;; 8 .gi1 ,gi2 : : : gin/,.gj1 ,gj2 : : : gjn/ 2 A the following condition is satisfied:

giz D gjz H)
_

lD1;:::;n; l¤z

Àtx ,ty W tx 2G �1
l .gil /, ty 2G �1

l .gjl
/, tx 'c ty .

Given a constraint c whose attributes appear in fragments fFi1 ; : : : ; Fij g, deep
heterogeneity is satisfied with respect to c if no two tuples t, t0 in A that have
the same group gy in f iy are associated with groups that include alike tuples with
respect to c for all the fragments f ix , x D 1; : : : ; j and x ¤ y. This property
must be true for all the groups in each fragment. This guarantees that, for each
constraint, no sensitive association can be reconstructed with confidence higher
than 1=k. An example of group association that satisfies deep heterogeneity is
illustrated in Fig. 3.20. Note that deep heterogeneity is satisfied even though the
two tuples in group ny2 for f l are associated with groups jmd1 and jmd2 in f r ,
which include tuples r1'c5r3 and r4'c5r7. In fact, constraint c5 is not covered
by Fl and Fr but by the three fragments all together, and heterogeneity of the
associations in which r1 and r3 (r4 and r7, respectively) are involved is provided
by the tuples in f m. Figure 3.21c illustrates an example of violation of the deep
heterogeneity property with respect to confidentiality constraint c4={YoB, ZIP,
Disease}. In fact, the groups in Fm and Fr with which a group in Fl is associated
include tuples that are alike with respect to confidentiality constraint c4 (i.e., two
tuples in Fm have the same value for attribute ZIP and two tuples in Fr have
the same value for attribute Disease), clearly reducing the protection offered by
the association. In fact, the tuples that can be reconstructed by joining these two
groups in f m and f r include occurrences of the same values for the attributes in
c4 (i.e., ZIP=90025 and Disease=Asthma). Hence, the association YoB=1972,
ZIP=90025, and Disease=Asthma holds with probability higher than 1=k.

If the three properties above are satisfied by a .k1; : : : ; kn/-grouping and its
induced group association, then the group association is k-loose for any k�min{ki �
kj W i; j D 1; : : : ; n, i ¤ j }, as stated by the following theorem.
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Theorem 3.6. Given a fragmentation F = fF1; : : : ; Fng with its instance
ff 1; : : : ; f ng, the set CF of constraints relevant for F , and a .k1; : : : ; kn/-grouping
that satisfies Properties 3.3, 3.4, and 3.5, the group association A induced by the
.k1; : : : ; kn/-grouping is k-loose with respect to CF (Definition 3.15) for each
k�min{ki � kj W i; j D 1; : : : ; n, i ¤ j }.

Proof. To assess the protection offered by the release of a .k1; : : : ; kn/-grouping
that satisfies Properties 3.3, 3.4, and 3.5, we first analyze the protection provided to
the sensitive association represented by an arbitrary confidentiality constraint c in
CF .

By Definition 3.12, each group ga2GIDi contains at least ki tuples, 8Fi 2 F .
Each group ga2GIDi appears in at least ki tuples in A, each associating ga to a
different group gb in GIDj , for each fragment Fj in F by Property 3.4. Hence, each
ga2GIDi is associated with at least ki different groups in GIDj , 8Fj 2F : Fj \c¤
;, i ¤ j . Each tuple ta in A having ta[Gi ] D ga has at least

Q
j kj (with Fj 2F

: Fj \c¤ ;, i ¤ j ) occurrences in the join F‰A. Let us denote with groups_ai

the tuples in F‰A of the occurrences of a tuple tai in A. Tuples in groups_ai are
not alike w.r.t. c. In fact, by Properties 3.3, each group in GIDj is composed of at
least kj tuples that are not alike with respect to c, 8Fj 2F such that Fj \c¤ ;. By
Property 3.5, for each pair of tuples tax , tay in A with tax[Gi ]=tay[Gi ]=ga, the tuples
in groups_ax[groups_ay are not alike with respect to c. Hence, F‰A has at least
ki � Qkj tuples, all with ta[Gi ]=ga, that are note alike with respect to c.

Then, a .k1; : : : ; kn/-grouping satisfying Properties 3.3, 3.4, and 3.5 induces a
group association that is k-loose with respect to c for each k � Q

ki , 8 Fj 2F
such that Fj \c ¤ ;.

Since we consider minimal fragmentations only, for each pair of fragments Fi ,Fj

in F there exists at least a confidentiality constraint c that is relevant for Fi and
Fj only. Hence, the .k1; : : : ; kn/-grouping satisfying Properties 3.3, 3.4, and 3.5
induces a group association that is k-loose with k=ki �kj between Fi and Fj (i.e., it
guarantees a protection degree ki �kj to the constraints relevant for Fi and Fj ).

We can then conclude that the .k1; : : : ; kn/-grouping satisfying Proper-
ties 3.3, 3.4, and 3.5 induces a group association that is k-loose with respect to
CF for each k�min{ki � kj W i; j D 1; : : : ; n, i ¤ j }. �

We note that the protection degree that a .k1; : : : ; kn/-grouping that satisfies
Properties 3.3, 3.4, and 3.5 offer may be different (but not less than k) for each
confidentiality constraint c in CF . Indeed, the protection degree for a constraint c
is minfki � kj W Fi ; Fj 2 F^Fi \c ¤ ; ^ Fj \ c ¤ ;g.

3.9.3 Some Observations on k-Looseness

The consideration of all the constraints relevant for the fragments involved in a
group association guarantees that no sensitive association can be reconstructed with
a probability greater than 1=k. For instance, confidentiality constraint c3={Name,
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Disease} is properly protected, for a looseness of 4, by the group association in
Fig. 3.20 while, as already illustrated in Sect. 3.8.2, the two group associations in
Fig. 3.19 grant only a 2-looseness protection to it.

Given a k-loose association A among a set F of fragments, the release of
this loose association is equivalent to the release of 2n � n, with n D jF j, k-
loose associations (one for each subset of fragments in F ). Indeed, the projection
over a subset of attributes in A represents a k-loose association for the fragments
corresponding to the projected group attributes. This is formally captured by the
following observation.

Observation 4 Given a fragmentation F=fF1; : : : ; Fng, a subset fFi ; : : : ; Fj g
of F , and a k-loose association A.G1; : : : ;Gn/ over F , group association
A0.Gi ; : : : ;Gj / is a k-loose association over fFi ; : : : ; Fj g.

For instance, with respect to the 4-loose association in Fig. 3.20, the projection
of A over attributes Gl , Gm is a 4-loose association between Fl and Fm.

Since a k-loose association defined over a set F of fragments guarantees that
sensitive associations represented by constraints in CF be properly protected, the
release of multiple loose associations among arbitrary (and possibly overlapping)
subsets of fragments in F provides the data owner with the same protection guar-
antee. The data owner can therefore decide to release either one loose association
A encompassing all the associations among the fragments in F , or a subset of
loose associations defined among arbitrary subsets of fragments in F by projecting
the corresponding attributes from A. This is formally captured by the following
observation.

Observation 5 Given a fragmentation F=fF1; : : : ; Fng and a k-loose association
A.G1; : : : ;Gn/ over it, the release of an arbitrary set of k-loose associations
fA1.Gh; : : : ;Gi /; : : : ; Am.Gj ; : : : ;Gk/g, with fGh; : : : ;Gkg � fG1; : : : ;Gng, provides
at least the same protection guarantees as the release of A.

For instance, the data owner can decide to release the group associations obtained
projecting hGl ,Gmi and hGm,Gri from the group association in Fig. 3.20. This
solution does not suffer from the privacy breach illustrated in Sect. 3.8.2, while
providing associations between groups of the same size (i.e., the same utility for
data recipients).

According to the two observations above, the data owner can release more than
one group association among arbitrary subsets of fragments in F without causing
any privacy breaches. Note however that if the group associations of interest operate
on disjoint subsets of fragments (i.e., no fragment is involved in more than one
group association), they can be defined independently from each other without risks
of unintended disclosure of sensitive associations. This is formally captured by the
following observation.

Observation 6 Given a fragmentation F , and a set fF1; : : : ;Fng of subsets of
fragments in F , the release of n loose associations Ai , i D 1; : : : ; n does not
expose any sensitive association if Fi \Fj D ;; i; j D 1; : : : ; n; with i ¤ j .
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3.10 Queries and Data Utility with Loose Associations

The reason for publishing group associations among fragments, representing ver-
tical views over the original data, is to provide some (not precise) information on
the associations among the tuples in the fragments while ensuring not to expose
the sensitive associations defined among their attributes (for which the degree of
uncertainty k should be maintained). Group associations then increase the utility of
the data released for queries involving different fragments. However, given a set of
fragments, different group associations might be defined satisfying a given degree k

of looseness to be provided. There are two different issues that have to be properly
addressed in the construction of group associations: one is how to select the size ki

of the grouping of each fragment f i such that the product of any two ki is equal to or
greater than k; and one is how to group tuples within the fragments so to maximize
utility.

With respect to the first issue of sizing the groups, there are different possible
values of the different ki which can satisfy the degree k of protection. For instance,
for a group association between two fragments, we can use (k,1), .dp

ke; bp
kc/,

and (1,k). In the case of multiple fragments, the best utility can be achieved by
distributing as much evenly as possible the sizing of the groups, hence imposing
on each group a size close to

p
k. An uneven distribution would in fact result in

an over-protection of the group associations over some of the fragments (a value of
looseness much higher than the required k for constraints covered by a subset of the
fragments in F ). Experiments show that this would lead to a significant reduction
in the precision of the queries. For instance, a looseness of 12 over three fragments
could be achieved with a (3,4,4)-grouping; a solution creating a (1,12,12)-grouping
would indeed provide the required protection overall but would probably provide
little utility for the association between the second and third fragments (whose
association would in fact be 144-loose for the constraints that are relevant for the
second and third fragment only).

With respect to the issue of grouping within a fragment, we first note that
queries that involve a single fragment (i.e., all the attributes in the query belong
to the same fragment) are not affected by fragmentation as they can be answered
exactly by querying the fragment. For instance, with respect to the fragments in
Fig. 3.22, query q D“SELECT AVG(Salary) FROM MEDICALDATA GROUP BY

Job” involves attributes that belong to the fragment Fr only. Hence, the execution of
the query over fragment Fr returns exactly the same result as its execution over the
original relation MEDICALDATA in Fig. 3.17a. We therefore focus our discussion
on queries that involve two or more fragments, on which group associations are
to be defined, with the goal of determining how to group the tuples in fragments
so that the induced group associations maximize query utility. In particular, we
consider aggregate queries of the form “SELECT Att, AGGi (ai ); : : : ;AGGj (aj ) FROM

R GROUP BY Att”, where AGGi ; : : : ;AGGj are aggregation functions (e.g., COUNT,
AVG, MIN, MAX functions), and ai ; : : : ; aj as well as set Att (this latter optional
in the SELECT clause) are attributes that appear in fragments. For instance, with
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Fig. 3.22 An example of group association between two fragments Fm and Fr of Fig. 3.17a where
tuples are grouped taking into account the similarity of the values of attributes Race and Salary

reference to Fig. 3.22, query q=“SELECT AVG(Salary) FROM MEDICALDATA

GROUP BY Race” aims at computing the average salary grouped by the race of
patients. We measure utility of a group association as the average improvement
over the accuracy of the results (i.e., with less error) with respect to the results
obtained in absence of group association. Intuitively, utility is obtained as 1 minus
the ratio of the average difference with respect to the real values in presence of group
associations, and the average difference with respect to the real values in absence of
group associations.

The execution of queries over group associations brings in, together with the
real tuples on which the query should be executed, all the tuples together with
them in their groups and the uncertainty – by definition – of which sub-tuples in a
fragment are associated with which sub-tuples in other fragments. Our observation
is therefore that groups within fragments should be formed so to contain as much as
possible tuples that are similar for the attributes involved in the queries (have close
values for continuous attributes). The intuition behind this is that, although the query
is evaluated on a possibly larger number of tuples included in the returned groups,
such tuples – assuming similar values – maintain the query result within a reasonable
error, thus providing utility of the response. The more the attributes involved in the
query on which such an observation has been taken into account in the grouping, the
better the utility provided by the group associations for the query. In fact, similarity
of values within groups (even when ensuring diversity of the values) might provide
limited uncertainty of values within a group. We therefore expect that not all the
attributes involved in confidentiality constraints should be taken into account in this
process.

Let us see now an example of queries over our fragmentation involving attributes
such that none, some, or all of them have been subject to the observation above in the
grouping (i.e., groups include similar values for none of, some of, or all the attributes
in the query). Consider the fragments and group association in Fig. 3.22, computed
over relation MEDICALDATA in Fig. 3.17a, where the group association has been
produced grouping tuples with similar Race values for fragment f m and similar
Salary values for fragment f r . We can then see the following three different cases.

• A query qns involves none of the attributes whose similarity has been considered
in the grouping. An example of such a query on the group association in Fig. 3.22
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is qns D “SELECT Edu,AVG(InsAmount) FROM MEDICALDATA GROUP BY

Edu”, requiring the average insurance amount for the different education levels
recorded. In this case, the utility of the association typically remains limited. We
note however that the utility for this kind of queries has always been positive in
our experimental analysis, reaching values close to 40 % for some queries.

• A query qas involves also (but not only) attributes whose similarity has been
considered in the grouping. An example of such a query on the group association
in Fig. 3.22 is qas D “SELECT InsCompany,AVG(Salary) FROM MEDICAL-
DATA GROUP BY InsCompany,” requiring, for each insurance company, the
average salary of insurance holders. Enjoying the fact that the additional tuples
involved in the computation will typically have salary close to the values of real
tuples, this query provides quite appreciable utility with respect to the real result.
As we will discuss in Sect. 3.12, utility for queries of this type has typically
shown values close to 80 % in our experimental evaluation.

• A query qos involves only attributes whose similarity has been considered in the
grouping. An example of such a query on the group association in Fig. 3.22 is
qos D “SELECT Race, AVG(Salary) FROM MEDICALDATA GROUP BY Race”
requiring the average salary of patients grouped by race. This query can benefit
from the fact that similarity has been considered for both the attributes involved,
which ensures that the additional tuples, brought-in in the evaluation because of
the looseness of the association, have values of the involved attributes close to
the ones on which the computation would have been executed if the query was
performed on the original relation. As we will discuss in Sect. 3.12, the utility
for this kind of queries is very high, and has typically shown values near 100 %
in our experimental evaluation.

Figure 3.23 shows the results of the queries above when executed over the group
association in Fig. 3.22 or over the original relation in Fig. 3.17a.

3.11 Computing a k-Loose Association

The heuristic algorithm for computing a k-loose association that aims for greater
utility in query evaluation is illustrated in Fig. 3.24. The algorithm takes as input
a relation r defined over relation schema R.a1; : : : ; am/, a fragmentation F D
fF1; : : : ; Fng and its instance ff 1; : : : ; f ng, a set CF of confidentiality constraints
relevant for F , privacy parameters k1; : : : ; kn, and a set A of attributes often
involved in the expected queries. The algorithm returns a k-loose group association
(with k = min{ki � kj W i; j D 1; : : : ; n, i ¤ j }), and the corresponding grouping
functions G1; : : : ;Gn. Intuitively, the algorithm first assigns tuples to groups so
that each group in a fragment contains tuples with similar values for attributes in
A , without considering heterogeneity properties. Our solution to compute such an
optimal grouping is based on the observation that similarity can be conveniently
translated into an ordering of values within the attribute domains. Maximum



3.11 Computing a k-Loose Association 91

qns

Edu AVG(InsAmount )

B.Sc 110
Ed.D 97.5
MBA 97.5
M.Sc 104
Ph.D 110
Primary 97.5
Th.D 110

qas

InsCompany AVG(Salary)

BestCompany 2500
HerCompany 4500
MyCompany 1500
YourCompany 4500

qos

Race AVG(Salary)

Asian 4500
Black 1500
Indian 1500
White 4500

Execution over the group association in Figure 3.22

qns

Edu AVG(InsAmount )

B.Sc 150
Ed.D 60
MBA 70
M.Sc 110
Ph.D 100
Primary 110
Th.D 120

qas

InsCompany AVG(Salary)

BestCompany 2666
HerCompany 4000
MyCompany 1500
YourCompany 4500

qos

Race AVG(Salary)

Asian 4500
Black 1500
Indian 1500
White 4500

Execution over the original relation in Figure 3.17(a)

qns

Edu AVG(InsAmount )

B.Sc 104
Ed.D 104
MBA 104
M.Sc 104
Ph.D 104
Primary 104
Th.D 104

qas

InsCompany AVG(Salary)

BestCompany 3000
HerCompany 3000
MyCompany 3000
YourCompany 3000

qos

Race AVG(Salary)

Asian 3000
Black 3000
Indian 3000
White 3000

Execution over the fragments in Figure 3.22 without group association

a

b

c

Fig. 3.23 Results of sample queries on a group association (a), on the original relation (b), and on
fragments without group association (c) for queries involving attributes none (qns), some (qas ), or
all (qos ) of which have been considered for similarity in the grouping

similarity can in fact be guaranteed by keeping in the same groups elements that are
contiguous in the ordered sequence of attribute values. The algorithm first orders
tuples in fragments based on their values for attributes in A , and then partitions the
tuples in groups of size k. In this way, each group will contain k tuples that, thanks
to the ordering, have similar values for attributes in A . Clearly, different ordering
criteria can be applied to different attributes, to properly model the similarity
requirement. As an example, for numerical values, we adopt the traditional �
order relationship. The groupings obtained by ordering the tuples according to A
are optimal with respect to similarity (and hence utility of query responses), but
they do not provide any guarantee with respect to the confidentiality of sensitive
associations. For each fragment, the algorithm then tries to assign the tuples to
the group closest to the optimal group so that also the heterogeneity properties are



92 3 Enforcing Confidentiality and Visibility Constraints

Fig. 3.24 Heuristic algorithm that computes a k-loose association

satisfied. In the assignment of tuples to groups, the algorithm follows two main
criteria: (1) it favors groups close to the optimal group of each tuple; and (2) it
prefers groups of size ki over larger groups. Our heuristic algorithm implementing
this approach is presented in details in the remainder of this section.
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The algorithm starts by initializing variable To_Place, representing the set of
tuples that still need to be allocated to groups, to the tuples in r, and by creating an
empty group association A (lines 1–2). The algorithm then operates in four steps as
follows.

Step 1: Ordered Grouping For each fragment Fi , the algorithm identifies the
optimal grouping, meaning that tuples with similar values for the attributes in A \Fi

belong to the same group(s). To this purpose, the algorithm orders the tuples in r
according to the attributes in A \ Fi (line 5). It then partitions the ordered tuples
in sets of ki contiguous tuples each, and assigns to each partition a different group
identifier gi

current (lines 6–13). In this way, contiguous tuples in the ordered relation
are ideally assigned to the same group (or to contiguous groups). The result of this
step is a matrix OptimalGrouping with one row for each tuple t in r , one column for
each fragment F in F , and where each cell OptimalGrouping[t][Fi] contains the
identifier of the optimal group for tuple t in fragment Fi .

Step 2: Under-Quota Grouping The algorithm tries to assign each tuple to the
group closest to the optimal one that satisfies all the heterogeneity properties, but
without generating over-quota groups (i.e., groups in Fi with more than ki tuples)
to maximize utility. In fact, large groups limit the utility that can be obtained
in query evaluation. For each tuple t in To_Place, the algorithm calls function
Find_Assignment in Fig. 3.25 (lines 15–16), which allocates tuples to groups
according to the heterogeneity properties.

Function Find_Assignment receives as input a tuple t, the candidate tuple
assoc_tuple that represents t in the group association A (which is NULL when t
has not been assigned to any group), a fragment identifier i, a Boolean variable
over_quota (which is TRUE only if over-quota groups are permitted), and the optimal
grouping OptimalGrouping[t][F] computed in Step 1. This function then tries to
assign t to a group in Fi close to the optimal one. Function Find_Assignment first
checks whether t can be inserted into OptimalGrouping[t][Fi], that is, it checks
whether the heterogeneity properties are satisfied. If the heterogeneity properties
are not satisfied, the function checks the groups of fragment Fi , denoted gi

candidate,
in increasing order of distance from OptimalGrouping[t][Fi] (lines 3–13). In fact,
similar values are ideally assigned by Step 1 to groups close to the optimal one.
The satisfaction of the heterogeneity properties is verified by calling function
Try_Assignment in Fig. 3.25 (line 9 and line 13). Function Try_Assignment takes
as input tuple t, the candidate tuple assoc_tuple that represents t in the group
association A, the fragment identifier i, and a group identifier g, and returns TRUE

if t ŒFi � can be assigned to g; FALSE, otherwise. When a correct assignment of t to a
group in Fi is found, if Fi is the last fragment in F , function Find_Assignment
returns tuple assoc_tuple representing the computed assignment of t to groups
(lines 14–15). Otherwise, function Find_Assignment recursively calls itself to
assign t to a group in fragment FiC1 (line 16). If the recursive call succeeds (i.e., it
returns a group association for t), function Find_Assignment returns assoc_tuple;
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Fig. 3.25 Pseudocode of functions Find_Assignment, Try_Assignment, and Re_Assign

it tries to allocate t to a group at higher distance from OptimalGrouping[t][Fi],
otherwise (line 18–19). If t cannot be assigned to any group in Fi , the function
returns NULL (line 20).

If function Find_Assignment returns a tuple ta, the algorithm inserts ta into the
group association A and removes t from To_Place (lines 17–19).
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Step 3: Over-Quota Grouping If Step 2 could not allocate all the tuples in r,
the algorithm tries to allocate the remaining tuples in To_Place to the existing
groups, thus possibly creating over-quota groups. To this purpose, for each tuple t in
To_Place, the algorithm calls function Find_Assignment with variable over_quota
set to TRUE. The algorithm updates A and To_Place according to the result returned
by function Find_Assignment (lines 20–25).

Step 4: Re-assignment Once tuples in r (or a subset thereof) have been allocated to
groups, the algorithm determines the set To_Empty of groups generated by Steps 2–
3 that are under-quota, that is, the groups that do not include the minimum number
of tuples necessary to provide privacy guarantees (line 27). The algorithm then calls
function Re_Assign in Fig. 3.25 (line 28).

Function Re_Assign receives as input the set To_Empty of non-empty but under-
quota groups, and tries to reallocate their tuples to other groups (lines 30–38).
Tuples in under-quota groups that cannot be reallocated will be removed from the
fragmentation and are inserted into To_Remove (lines 39–40). When a tuple t is
inserted into To_Remove, the corresponding tuple ta in A is removed from the group
association and, for each fragment Fl , Gl (t) is set to NULL (lines 44–45). Due to the
removal of t, the group gl to which t belong in Fl loses a tuple and it might become
under-quota with the consequence that it should be removed. If this is the case, gl

is inserted into To_Empty (line 43). Function Re_Assign returns the set To_Remove
of tuples to be removed from the fragmentation (line 46).

The algorithm then deletes from each fragment both the tuples that have
never been assigned to groups and the tuples returned by function Re_Assign
(lines 29–30).

The utility of the k-loose association computed by this heuristic algorithm as well
as its efficiency are evaluated in Sect. 3.12.

3.12 Coverage, Performance, and Utility

We implemented a prototype, written in Python, of the algorithm described in
the previous section, and ran several sets of experiments to the aim of evaluating
the ability of our approach to compute a k-loose association, while limiting the
number of suppressed tuples (i.e., tuples that cannot be included in any group),
and of assessing its performance (Sect. 3.12.2). We then analyzed the utility
provided in query evaluation (Sect. 3.12.3). We now present the experimental setting
(Sect. 3.12.1) and then discuss the experimental results.

3.12.1 Experimental Setting

We considered both synthetic and real-world datasets. Synthetic data allow us
to fully control all the parameters used for data generation, such as the vari-
ability in the distribution of attributes values, leading to a robust analysis of the
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behavior of our technique. Real data allow us to assess the applicability of our
technique in a concrete setting. Synthetic datasets were generated starting from
a relation schema composed of 7 attributes PATIENTS(Name, YoB, Education,
ZIP, MarStatus, Disease, Salary), split over two fragments (Fl={Name,
MarStatus, Salary} and Fm={YoB, Education, ZIP, Disease}), to sat-
isfy confidentiality constraints c1={Name, ZIP, MarStatus, Disease} and c2 =
{Name, YoB, Education, MarStatus}. The datasets were randomly generated
adopting distinct characterizing parameters for each attribute. A statistical corre-
lation was introduced between Salary and Education; all the other attributes
were set using independent distributions. This allowed us to have knowledge of
information in the protected data that we were interested in retrieving through the
query computing the average Salary of patients with the same Education level.

In our experiments we considered, as a base configuration, a dataset including
10; 000 tuples. We analyzed the behavior of the system varying several parameters.
First, we considered the impact of variations of k, considering values ranging
between 4 and 20 (k was equal to 12 for experiments that did not change this
parameter). Then, we considered changes on a parameter � that drives the generation
of the synthetic dataset, guiding the distribution of the attribute values. Low values
of � produce compact ranges of values for all the attributes and a high probability of
similarity among tuples; high values of � produce values for the attributes covering
a wider range, with small similarity among tuples. The interval we considered in
the experiments is between 4 and 12 (value 8 was used in experiments that did
not consider variations of this parameter). Finally, we considered the impact of the
variations of parameters kl and km and, always choosing pairs of values such that
kl �kmDk, we considered several possible pairs (in experiments that did not consider
variations of these parameters, we chose the pair kl and kr that had kl� km and
minimum distance between kl and kr ; e.g., when kD 12, klD 4 and kmD 3). As a
real world dataset, we considered the IPUMS dataset [82], which has been widely
used in the literature to test anonymization approaches. Among the attributes in
the dataset, we considered the projection over attributes {Region, Statefip,
Age, Sex, MarSt, Ind, IncWage, IncTot, Educ, Occ, HrsWork, Health},
representing for each citizen: the region where she lives, the state where she lives,
her age, her sex, her marital status, the type of industry for which she works, her
salary, her annual total income, her education level, her occupation, the number of
hours she works per week, and her health status rated on a five point scale. The
relation includes 95; 000 tuples with a not null value for the IncWage attribute.
When considering the real dataset, we ran experiments over two fragmentations:
the first one is composed of two fragments Fl={Region, Statefip, Age, Sex,
MarSt, Ind, IncWage, IncTot} and Fm={Educ, Occ, HrsWork, Health}
satisfying constraints c1={Statefip, Ind, Educ, Occ, Health)} and c2={Age,
Sex, MarSt, Educ, Occ, Health}; the second fragmentation has three fragments
Fl={Region, Statefip, Ind, IncWage}, Fm={Age, Sex, MarSt, IncTot},
and Fr={Educ, Occ, HrsWork, Health} satisfying constraints c1={Statefip,
Ind, Educ, Occ, Health}, c2={Age, Sex, MarSt, Educ, Occ, Health}, and
c3={Statefip, Age, Sex, MarSt, Ind}. Experiments have been run on a server
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with two Intel(R) Xeon(R) E5504 2.00GHz, 12GB RAM, one 240GB SSD disk, and
Ubuntu 12.04 LTS 64bit operating system. The reported results have been computed
as the average of a minimum of 5 (for the largest configurations) and a maximum of
120 (for more manageable configurations) runs of the same experiment.

3.12.2 Coverage and Performance

We ran a first set of experiments on synthetic data aimed at assessing the coverage
of the solution computed by our algorithm, that is, the number of tuples of the
original relation that could not be published as they could not be allocated to any
group without violating k-looseness. The experiments focused on evaluating how
the number of tuples in the relation (Fig. 3.26a) and the variability in the distribution
of attribute values (Fig. 3.26b) have an impact on the number of tuples that cannot
be released, for different values of k.

Figure 3.26a shows that the algorithm is more likely to suppress tuples when
operating over small datasets, as the number of candidate groups in each fragment
is small. It is then harder to find an assignment for each tuple that satisfies all the
heterogeneity properties. As it can be expected, the percentage of suppressed tuples
grows with k, since it is harder to define larger groups of tuples (especially for small
datasets).

Figure 3.26b illustrates the impact of the variability in attribute value distribution
on the number of suppressed tuples. As visible from the figure, datasets character-
ized by low variability cause higher suppression. This is due to the fact that it is
hard to assign tuples to groups when there is a higher probability that some of them
have the same values for attributes in relevant confidentiality constraints. Indeed,
two tuples with the same values for attributes in constraints cannot be assigned to
the same group.

ba

Fig. 3.26 Percentage of tuples in the original relation that are not released, varying the number of
tuples in the relation (a) and the variability in the distribution of attribute values (b)
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ba

Fig. 3.27 Computational time necessary to determine a k-loose association, varying the number
of tuples in the relation (a) and the variability in the distribution of attribute values (b)

In the experiments performed on the IPUMS dataset, no tuple has been sup-
pressed.

A second set of experiments on synthetic data evaluated the impact of the size of
the original relation and of the variability in the distribution of attribute values on
the performance of our algorithm.

To prove the scalability of our approach, we ran our algorithm with large
instances of the original relation, with a number of tuples varying between 2; 000

and 100; 000. Figure 3.27a, illustrating the time necessary to compute a k-loose
association, confirms the scalability of our approach: our prototype is able to
find a k-loose association for relations with 100; 000 tuples in less than 1 min for
k=12 (and we speculate that, according to publicly available Python/C performance
ratios [104], an optimized C implementation would take less than 1 s).
Figure 3.27b illustrates the impact of the variability in the distribution of attribute
values on the time necessary to compute a k-loose association, considering configu-
rations with 10; 000 tuples. The figure confirms that, as already noted, the lower the
variability, the harder the task to find a k-loose association. Both Figs. 3.27a and b
also show that the computational time grows with the protection degree offered by
the k-loose association: higher values for k require a higher computational cost.
In the experiments on the IPUMS dataset, our algorithm always computed a solution
in less than 90 s.

3.12.3 Utility

We ran a set of experiments specifically focused on assessing the gain provided by
loose associations, in terms of the utility of query results. We used as a reference
the query that identifies the relationship between the Education level of each
patient and their Salary (i.e., SELECT AVG(Salary) FROM PATIENTS GROUP

BY Education). We then defined a k-loose association that aims at keeping in
the same group patients with the same Education level in fragment Fm and with
similar Salary in fragment Fl .
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a b

Fig. 3.28 Utility provided by a k-loose association, varying the number of tuples in the relation
(a) and the variability in the distribution of attribute values (b)

Figure 3.28a compares the utility provided by the release of a k-loose association
with different values for k, varying the number of tuples in the input dataset. The
figure clearly shows that the release of a k-loose association permits to obtain high
utility in query evaluation. In most of the considered configurations, utility is nearly
100 %, meaning that the result computed over fragmented data complemented with
loose associations is nearly the same obtained on the original relation. This figure
also confirms that the quality of the loose association computed by our algorithm
improves with the number of tuples in the dataset, as it becomes easier to have tuples
with similar values for Education and Salary in the same group.

Figure 3.28b illustrates the impact of the variability in the distribution of attribute
values on the obtained utility. Greater values of � increase the variability and lead
to a reduction in the probability for an attribute to present the same values in
different tuples. Conflicts arise in a group when tuples present the same values on the
attributes involved in a constraint. Then, the probability of conflicts decreases as �

increases. The utility provided by the release of a k-loose association is always high,
and increases as the variability in the attribute values increases. Our experiments
also clearly show that, in line with the observation that utility and privacy are two
contrasting requirements, utility decreases as k increases. It is then expected that
improvements in confidentiality guarantees of the solution correspond to worsening
in the utility of the released data. It is however worth noticing that, also for the worst
case in which k=20, if the size of the input dataset is not too limited (i.e., in the order
of hundreds of tuples) the measured utility was higher than 80 %, implying a high
utility in query evaluation also when adopting privacy parameters higher than the
values we expect to be used in real-world scenarios.

We ran a second set of experiments for evaluating the impact of keeping
in the same group similar values for an attribute (or a set thereof) of interest
for query evaluation (see Sect. 3.10). To this aim, we compared the utility of
queries qos (operating on both Education and Salary), qas (operating only
on Education or only on Salary), and qns (operating on neither Education
nor Salary). Figure 3.29 compares the utility obtained with 7 different queries
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Fig. 3.29 Utility provided by
a k-loose association with
ordering on Education and
Salary

(query q0 as representative for qos , queries q1, q2, q3 for qas , and queries q4, q5,
q6 for qns) with k=12, varying kl and km. Each query is represented by a group of
bars, where each bar presents the utility obtained with one of the configurations for
parameters kl and km. The results clearly show that the query with highest utility
(almost 100 %) is q0, which benefits on the ordering over both Education and
Salary (i.e., query qos). Queries q2,q3, and q4 take advantage only of the ordering
over one attribute, which however permits to obtain utility higher than 80 % in all
the considered configurations. Our experimental evaluation shows that the release
of a loose association provides limited, but not null, utility for queries qns . We can
then conclude that keeping in the same group tuples with similar values permits to
achieve better results in the utility of query evaluation.

In the experiments performed on the IPUMS dataset, we first defined a k-loose
association between fragments Fl and Fm, and identified two representative sets
of queries. The first set of queries operates on the attributes on which fragments
of the loose association have been ordered (i.e., qos , represented by query q0, and
qas , represented by queries q1, q2, q3). The second set of queries instead operates
only on attributes different from those on which the ordering was performed (i.e.,
qns , represented by queries q4; : : : ; q11). Figure 3.30a illustrates the utility obtained
in executing these two sets of queries over a k-loose association with k D 12 and
varying the values of kl and km. Each query is represented by a group of bars in
the figure. Queries involving at least one of the attributes on which the ordering
has been performed (i.e., queries q0; : : : ; q3) showed excellent utility in the result,
close to 100 % for all queries. As expected, the utility in executing queries operating
on unordered attributes only (i.e., queries q4; : : : ; q11) is lower. It is however worth
noticing that the results are still appreciable, with most of the queries showing utility
between 20 % and 35 %. Compared to the experiments on the synthetic dataset, the
queries of type qns exhibit better utility. In particular, Fig. 3.30a shows that queries
qas involving both ordered and unordered attributes exhibit utility values similar to
query q0 that involves ordered attributes only. Our explanation for the higher utility
obtained on IPUMS dataset is that real data are more structured and present greater
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Fig. 3.30 Utility provided by
a k-loose association over two
(a) and three (b) fragments

a

b

regularity and correlations among attribute values than the randomly generated data
in our synthetic dataset, which is characterized by one correlation only (the one
between attributes Education and Salary).

Figures 3.29 and 3.30a describe configurations that, keeping k constant, progres-
sively increase the value of parameter kl (and reduce km accordingly). The utility
remains relatively stable across all these configurations, even if we can see that, for
some queries, the utility decreases as kl increases, while for a few queries the utility
grows with kl . Overall, we consider as preferable the intermediate solutions, with kl

and km near to
p

k, because they are not associated with the lowest levels of utility
and because this criterion offers strong benefit when applied to fragmentations with
more than two fragments, as observed in the following.

To further evaluate our technique, we performed the same experimental analysis
on the fragmentation of IPUMS dataset composed of three (rather than two)
fragments. Figure 3.30b reports the utility of queries provided by the release of a
k-loose association with k D 12, comparing the results obtained with a (1,12,12)-
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a b

Fig. 3.31 Query results computed ordering on Educ and IncWage on a k-loose association
among two (a) and three (b) fragments

, (2,6,6)- and (3,4,4)-grouping. The crucial difference among these configurations
is that queries that combine the second and third fragment will operate on a k-
loose association between the two fragments with k equal to 144, 36, and 16 (for
the constraints that are relevant for the second and third fragment). As we already
noticed, an increase in k leads to a reduction in utility. The graph in Fig. 3.30b clearly
shows the increase in utility that occurs going from (1,12,12)- to (3,4,4)-grouping
for queries q0; : : : ; q3. This result proves that, for fragmentations with more than
two fragments, there is a significant utility benefit in building loose associations
with similar values for parameter ki on all the fragments.

Figure 3.31 demonstrates in a different way the utility that can be obtained by
the use of loose associations, analyzing query q0 of the previous experiments. The
graph has on the x-axis the different values of attribute Educ, which represents the
number of years of education reported in the census, and on the y-axis the average
salary (attribute IncWage) for the cohort of people with that level of education.
In essence, the graphs plot the result of query qo=“SELECT AVG(IncWage) FROM

IPUMS_CENSUS GROUP BY Educ”. The continuous green line (i.e., the line labeled
“real”) reports the results obtained on the real data. The dashed blue horizontal line
(i.e., the line labeled “without loose”) in the middle is the result that we can expect to
obtain without loose associations, because IncWage and Educ belong to different
fragments and the global average salary will be returned for every education level.
The continuous red line (i.e., the line labeled “with loose (ordered)”) describes the
result obtained with a k-loose associations with k D 12. Figure 3.31a shows the
results obtained in the configuration with two fragments and assuming a (4,3)-
grouping, while Fig. 3.31 illustrates the results obtained in the configuration with
three fragments and assuming a (3,4,4)-grouping. In both graphs, the green and red
line are overlapping over most of the range, clearly showing the utility that can be
obtained by loose associations.
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3.13 Chapter Summary

In this chapter, we addressed the problem of fulfilling the needs for protecting
sensitive information while guaranteeing visibility requirements in data release.
Our solution relies on a graph-based modeling of the fragmentation problem that
takes advantage of a novel OBDD-based approach. The fragmentation problem
is then reformulated as the computation of a maximum weighted clique over a
graph modeling fragments that satisfy confidentiality and visibility constraints.
The graph is efficiently computed through OBDDs representing the Boolean
formulas corresponding to confidentiality and visibility constraints. We presented
both an exact and a heuristic algorithm to solve the fragmentation problem, and
experimentally compared their efficiency and the quality of the fragmentations
computed by the heuristics. We then presented an approach for enriching the utility
of an arbitrary fragmentation through loose associations. We illustrated how the
publication of multiple loose associations between pairs of fragments can expose
sensitive associations, and presented an approach supporting the definition of a loose
association among an arbitrary number of fragments. We described a heuristics for
the computation of a loose association, and illustrated the results of an extensive
experimental evaluation aimed at analyzing both the efficiency and the effectiveness
of the proposed heuristics as well as the utility provided by loose associations in
query execution.



Chapter 4
Counteracting Inferences from Sensitive Value
Distributions

At a first sight, excluding sensitive data from the release (i.e., releasing only a
collection of non sensitive data), might seem a safe approach for protecting data
confidentiality. Unfortunately, the possible correlations and dependencies existing
among data can introduce inference channels in the data release process, causing
sensitive information to be leaked even if such information is not explicitly released.
In this chapter, we consider a scenario where data are incrementally released and we
address the privacy problem arising when sensitive and non released information
depend on (and can therefore be inferred from) non sensitive released data. We
propose a model capturing this inference problem, where sensitive information is
characterized by peculiar value distributions of non sensitive released data. We
then describe how to counteract possible inferences that an observer can draw
by applying different statistical metrics on released data. Finally, we perform an
experimental evaluation of our solution, showing its efficacy.

4.1 Introduction

The problem of releasing data ensuring privacy to sensitive information is compli-
cated by the fact that the release of a data collection might expose information that is
not explicitly included in the release. As a matter of fact, assuming absence of cor-
relations or dependencies among data (as assumed by traditional privacy-preserving
techniques) does not fit many real-world scenarios, where data dependencies can be

Part of this chapter is reprinted from Journal of Computer Security, vol. 20, no. 4: M. Bezzi, S. De
Capitani di Vimercati, S. Foresti, G. Livraga, P. Samarati, and R. Sassi, “Modeling and Preventing
Inferences from Sensitive Value Distributions in Data Release”, pp. 393–436 [14], c�2012, with
permission from IOS Press.
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quite common. Data dependencies can cause inference channels to arise, allowing
a recipient to either precisely determine, or reduce the uncertainty about, the values
of sensitive, not released, information that is somehow dependent on the released
one. This problem has been under the attention of researchers for decades and has
been analyzed from different perspectives, resulting in a large body of research that
includes: statistical databases and statistical data publications (e.g., [1]); multilevel
database systems with the problem of establishing proper classification of data,
capturing data relationships and corresponding inference channels (e.g., [35, 66]);
ensuring privacy of respondents’ identities or of their sensitive information when
publishing macro or micro data (e.g., [24, 25]); protection of sensitive data
associations due to data mining (e.g., [2]). Several approaches have been proposed
addressing all these aspects, and offering solutions to block or limit the exposure
of sensitive or private information. However, new scenarios of data release, coupled
with the richness of published data and the large number of available data sources,
raise novel problems that still need to be addressed.

In this chapter, we address a specific problem related to inferences arising from
the dependency of sensitive (not released) information referred to some entities on
other properties (released) regarding such entities. In particular, we are concerned
with the possible inferences that can be drawn by observing the distribution of
values of non sensitive information associated with these entities. As an illustrating
example, the age distribution of the soldiers in a military location may permit to
infer the nature of the location itself, such as a headquarter (hosting old officials) or
a training campus (hosting young privates), which might be considered sensitive.
Such a problem of sensitive information derivation becomes more serious as
the amount of released data increases, since external observations will tend to
be more representative of the real situations and the confidence in the external
observations will increase. Although this problem resembles in some aspects the
classical problem of controlling horizontal aggregation of data, it differs from it
in several assumptions. In particular, we assume a scenario where an external
observer could gather the data released to legitimate users and inference is due to
peculiar distributions of data values. Also, we are concerned not only with protecting
sensitive information associated with specific entities, but also with avoiding
possible false positives, where sensitive values may be improperly associated (by
the observers) with specific entities.

The contributions of this chapter are multi-fold. First, as mentioned above, we
identify and characterize a novel inference problem. We then introduce several
metrics to assess the inference exposure due to data release. Our metrics are based
on the concepts of mutual information, which has been widely used in several
security areas ranging from the definition of distinguishers for differential side-
channel analysis (e.g., [8, 17, 57, 105]) to data-hiding and watermarking security
(e.g., [20]), and of distance between the expected and the observed distribution of
values of non sensitive information. According to these metrics, we characterize and
define a safe release with respect to the considered inference channel. We describe
the controls to be enforced in a scenario where tuples are released one at a time, upon
request, and we also present an experimental evaluation proving the effectiveness of
our solution.
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4.1.1 Chapter Outline

The remainder of this chapter is organized as follows. Section 4.2 introduces our
reference scenario of inference in data release, raised from a real case study that
needed consideration. Section 4.3 formally defines the problem of releasing a
dataset without leaking (non released) sensitive information due to the dependency
existing between the frequency distribution of some properties of the released
dataset and the not released information. Section 4.4 describes two possible
strategies that use the mutual information and distance between distributions for
counteracting the considered inference problem. Section 4.5 illustrates how the two
strategies proposed can be concretely implemented by adopting different metrics
that determine when a data release is safe with respect to inference channels that
may leak sensitive information. Section 4.6 describes how to control the on-line
release of the tuples in a dataset. Section 4.7 discusses the experimental results
proving the effectiveness of our solution. Finally, Sect. 4.8 gives our conclusions.

4.2 Reference Scenario and Motivation

We consider a scenario (see Fig. 4.1) where a data holder maintains a collection of
records stored in a trusted environment. Each record contains different attributes
and pertains to a unique data respondent, who is the only authorized party that
can require its release. While the records individually taken are not sensitive,
their aggregation is considered sensitive since it might enable inferring sensitive
information not appearing in the records and not intended for release. We assume

Fig. 4.1 Reference scenario
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all requests for records to be genuine and communication to data respondents
of responses to their record release requests to be protected. As a consequence,
malicious observers are aware neither of the requests submitted by respondents nor
of the data holder answers. We also assume that the number of records stored at the
data holder site is kept secret. However, once records are released, the data holder
has no control on them and therefore external observers can potentially gather all
the records released. This may happen even with cooperation of respondents, in the
case of external servers where released data may be stored.

The data holder must ensure that the collection of records released to the external
world be safe with respect to potential inference of sensitive (not released) infor-
mation that could be possible by aggregating the released records. We consider a
specific case of horizontal aggregation and inference channel due to the distribution
of values of certain attributes with respect to other attributes. In particular, inference
is caused by a distribution of values that deviates from expected distributions, which
are considered as typical and are known to the observers. In other worlds, a record
is released only if, when combined with records already released, does not cause a
deviation of the distribution of the records released from the expected distribution.

In the reminder of this chapter, we refer our examples to a real case scenario
characterized as follows. The data holder is a military organization that maintains
records on its personnel. Each record refers to a soldier and reports attributes Name,
Age, and Location where the soldier is on duty. Some of the military locations
are headquarters of the army. The information that a location is a headquarter is
considered sensitive and neither appears in the soldiers’ records nor it is released
in other forms. Soldiers’ records can be released upon request of the soldiers. In
addition, the age distribution of soldiers is a distribution that can be considered
common and widely known to the external world and, in general, typically expected
at each location. However, locations where headquarters are based show a different
age distribution, characterized by an unusual peak of soldiers of middle age or older.
Such a distribution clearly differs from the expected age distribution, where the
majority of soldiers are in their twenties or thirties. The problem is therefore that,
while single records are considered non sensitive, an observer aggregating all the
released records could retrieve the age distribution of the soldiers in the different
locations and determine possible deviations from the expected age distribution for
certain locations, thus inferring that a given location hosts a headquarter. As an
example, consider an insurance company offering special rates to military personnel.
If all the soldiers subscribe to a policy with this company to take advantage of
the discount, the insurance company (as well as any user accessing its data) has
knowledge of the complete collection of released records and can therefore possibly
discover headquarter locations. Our problem consists in ensuring that the release of
records to the external world be safe with respect to such inferences. The solution we
describe in the following provides a response to this problem by adopting different
metrics to assess the inference exposure of a set of records and, based on that, to
decide whether a record (a set thereof) can be released.
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4.3 Data Model and Problem Definition

We provide the notation and formalization of our problem. Our approach is
applicable to a generic data model with which the data stored at the data holder
site could be organized. For concreteness, we assume data to be maintained as a
relational database. Consistently with other proposals (e.g., [94]), we consider the
data collection to be a single relation R characterized by a given set A of attributes;
each record in the data collection is a tuple t in the relation. Among the attributes
contained in the relation, we distinguish a set Y 
 A of attributes whose values
represent entities, called targets.

Example 4.1. In our running example, relation R is defined on the set A={Name,
Age, Location} of attributes, with Y ={Location}. We assume that the
domain of attribute Location includes values L1; L2; L3; L4; L5, representing
five different military locations.

While targets, that is, the entities identified by Y (locations in our example), are
non sensitive, they are characterized by sensitive properties, denoted s.Y /, which
are not released. In other words, for each y 2 Y the associated sensitive information
s.y/ does not appear in any released record. However, inference on it can be caused
by the distribution of the values of a subset of some other attributes X � A for the
specific y. We denote by P.X/ the set of relative frequencies p.x/ of the different
values x in the domain of X which appear in relation R. Also, we denote by P.X jy/

the relative frequency of each value in the domain of X appearing in relation R and
restricted to the tuples for which Y is equal to y. We call this latter the y-conditioned
distribution of X in R.

Example 4.2. In our running example, s.Y / is the type of location .e.g.,
headquarter/. The sensitive information s.y/ of whether a location y is a
headquarter .L2, in our example/ can be inferred from the distribution of the
age of soldiers given the location. Figure 4.2a shows how tuples stored in relation
R are distributed with respect to the values of attributes Age and Location.
For instance, of the 10000 tuples, 2029 refer to location L1, 72 refer to soldiers
with age lower than 18. Figure 4.2b reports the corresponding relative frequencies
of age distributions. In particular, each column Li , i D 1; : : : ; 5, reports the Li -
conditioned distribution P.AgejLi / .for convenience expressed in percentage/. For
instance, 3:55 % of the tuples of location L1 refer to soldiers with age lower than
18. The last column of the table reports the distribution of the age range regardless
of the specific location and then corresponds to P.Age/ .expressed in percentage/.
For instance, it states that 2:56 % of the tuples in the relation refer to soldiers with
age lower that 18. Figure 4.2c reports the distribution of soldiers in the different
locations regardless of their age .again expressed in percentage/. For instance,
20:29 % of the 10000 soldiers are based at L1.
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Number of tuples
Age L1 L2 L3 L4 L5 Total
<18 72 26 38 47 73 256
18-19 151 53 82 140 223 649
20-24 539 147 449 505 736 2376
25-29 452 114 370 418 613 1967
30-34 335 213 234 318 501 1601
35-39 321 238 277 332 538 1706
40-44 128 219 122 162 220 851
45-49 20 205 50 49 76 400
50-54 9 71 28 34 31 173
≥55 2 13 2 2 2 21
Total 2029 1299 1652 2007 3013 10000

P(Age|Li) 
Age L1 L2 L3 L4 L5 P(Age)
<18 3.55 2.00 2.31 2.34 2.42 2.56
18-19 7.44 4.08 4.96 6.98 7.40 6.49
20-24 26.56 11.32 27.18 25.16 24.44 23.76
25-29 22.28 8.78 22.40 20.83 20.35 19.67
30-34 16.51 16.40 14.16 15.84 16.63 16.01
35-39 15.82 18.32 16.77 16.54 17.86 17.06
40-44 6.31 16.86 7.38 8.07 7.30 8.51
45-49 0.99 15.78 3.03 2.44 2.52 4.00
50-54 0.44 5.46 1.69 1.69 1.03 1.73
≥55 0.10 1.00 0.12 0.11 0.05 0.21

Li P(Li)

L1 20.29
L2 12.99
L3 16.52
L4 20.07
L5 30.13

a

b c

Fig. 4.2 Number of tuples in relation R by Age and Location (a), Li -conditioned distributions
P(Agej Li ), i D 1; : : : ; 5, over relation R (b), and location frequencies (c)

The existence of a correlation between the distribution of values of attributes X

for a given target y and the sensitive information s.y/ is captured by the definition
of dependency as follows.

Definition 4.1 (Dependency). Let R be a relation over attributes A, let X and
Y be two disjoint subsets of A, and let s.Y / be a sensitive property of Y .
A dependency, denoted XÝY, represents a relationship existing between the
conditional distribution P.X jy/ and the value of the sensitive property s.y/, for
any y 2 Y .

The existence of a dependency between the y-conditioned distribution of X and
the sensitive property s.y/ introduces an inference channel, since the visibility
on P.X jy/ potentially enables an observer to infer the sensitive information
s.y/ even if not released. For instance, with respect to our running example,
AgeÝLocation.

Definition 4.1 simply states the existence of a dependency but does not address
the issue of possible leakages of sensitive information. In this chapter, we consider
the specific case of leakage caused by peculiar value distributions that differ
from what is considered typical and expected. We then start by characterizing the
expected distribution, formally defined as baseline distribution as follows.
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Definition 4.2 (Baseline Distribution). Let A be a set of attributes, and X be
a subset of A. The baseline distribution of X , denoted B.X/, is the expected
distribution of the different values .or range thereof/ of X .

The baseline distribution is the distribution publicly released by the data holder
and can correspond to the real distribution of the values of attributes X in relation R

(i.e., B.X/ D P.X/) at a given time or can be a “reference” distribution considered
typical. We assume the data holder to release truthful information and, therefore,
that the baseline distribution resembles the distribution of the values of X in R at a
given point in time (note that R may be subject to changes over time, for example,
due to the enrollment of new soldiers and the retirement of old soldiers). This being
said, in the following, for simplicity, we assume the baseline distribution B.X/ to
coincide with P.X/. When clear from the context, with a slight abuse of notation,
we will use P.X/ to denote the baseline distribution.

Example 4.3. The baseline distribution P.Age/ corresponds to the values
.expressed in percentage/ in the last column of Fig. 4.2b, which is also graphically
reported as a histogram in Fig. 4.3a. Figures 4.3b–f report the histogram
representation of the Li -conditioned distributions for the different locations in
R. As clearly visible from the histograms, while locations L1; L3; L4; and L5

enjoy a value distribution that resembles the expected baseline, location L2 .the
headquarter/ shows a considerably different distribution.

Our goal is to avoid the inference of the sensitive information caused by unusual
distributions of values of X , with respect to specific targets y, in Y that the
observer can learn from viewing released tuples (i.e., the y-conditioned distributions
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Fig. 4.3 Histogram representation of the baseline distribution (a) and of the Li -conditioned
distributions P (Agej Li ), i D 1; : : : ; 5, in Fig. 4.2b. (a) P.Age/, (b) P.AgejL1/, (c) P.AgejL2/,
(d) P.AgejL3/, (e) P.AgejL4/, (f) P.AgejL5/
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computed over released tuples present some peculiarities that distinguish it from
the baseline distribution). To this purpose, in the following sections we illustrate a
solution that the data holder can adopt for verifying whether the release of a tuple
referred to a target y, together with the previously released tuples, may cause the
inference of the sensitive property s.y/ and then whether the release of such a tuple
can be permitted or should be denied.

4.4 Characterization of the Inference Problem

In our characterization of the problem, X and Y can be intended as two dependent
random variables, meaning that there is a correlation between the values of X and
Y . Due to this dependency, a potential observer can exploit the distribution of values
of X for a given target y (i.e., the y-conditioned distribution) for inferring sensitive
property s.y/. To counteract this type of inference, we obfuscate the dependency
between X and Y in the released dataset, by adopting one of the following two
strategies: (1) make X and Y appear as two statistically independent random
variables; or (2) minimize the distance between the y-conditioned distribution
P.X jy/ and the baseline distribution P.X/.

Statistical Independence The first strategy ensures that the joint probability
P.X; Y / be “similar” to P.X/P.Y /. Since when X and Y are two independent
variables the joint probability P.X; Y / is equal to P.X/P.Y /, this strategy aims
at releasing tuples such that the correlation between X and Y is not visible. As a
consequence, the knowledge of the distribution of X does not give any information
about the sensitive property s.y/ for each target y in Y . A classical measure of
the dependency between two random variables is the mutual information, denoted
I.X; Y /. It expresses the amount of information that an observer can obtain on Y

by observing X , and viceversa. The mutual information I.X; Y / of two random
variables X and Y is defined as follows.

I.X; Y / D
X

x2X;y2Y
p.y/p.xjy/ log2

p.xjy/

p.x/

The lower the mutual information in the released dataset, the more random variables
X and Y resemble statistical independent variables.

Example 4.4. Consider the distributions of the Age values for the different loca-
tions and P.Age/ in Fig. 4.2b, and the values p.Li /, i D 1; : : : ; 5, reported in
Fig. 4.2c. We have: I.Age;Location/ D p.L1/Œp.< 18jL1/ log2

p.<18jL1/

p.<18/
C

: : : C p.� 55jL1/ log2
p.�55jL1/

p.�55/
� C : : : C p.L5/Œp.< 18jL5/ log2

p.<18jL5/

p.<18/
C : : : C

p.� 55jL5/ log2
p.�55jL5/

p.�55/
� D 0:063285

Distance Between Distributions The second strategy ensures that when tuples
are released, the y-conditioned distribution of all targets y in Y be “similar” to
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the baseline distribution. Intuitively, this strategy aims at hiding the peculiarities
of the distribution of variable X with respect to a specific y so that an observer
cannot infer anything about sensitive property s.y/. This strategy is then based on
the evaluation of the distance between the baseline distribution P.X/ and the y-
conditioned distribution P.X jy/. The distance between two distributions can be
computed in different ways. The metrics that will be considered in the following
section adopt either the classical notion of Kullback-Leibler distance between
distributions, denoted �, or the Pearson’s cumulative statistic, denoted F .

The Kullback-Leibler distance nicely fits our scenario since it has a straightfor-
ward interpretation in terms of Information Theory. In fact, it represents a possible
decomposition of the mutual information [54]. Given two distributions P.X/ and
P.X jy/ their Kullback-Leibler distance is defined as follows.

�.X; y/ D
X

x2X
p.xjy/ log2

p.xjy/

p.x/

It is easy to see that the mutual information represents the weighted average of
the Kullback-Leibler distance for the different targets, where the weight corresponds
to the frequency of value y.

Example 4.5. Consider the distributions of Age values for the different locations
and the baseline distribution P.Age/ in Fig. 4.2b. We have:
�.Age; L1/ D p.< 18jL1/ log2

p.<18jL1/

p.<18/
C : : : C p.� 55jL1/ log2

p.�55jL1/

p.�55/
D

0:047349:

Similarly, we obtain: �.Age; L2/ D 0:358836, �.Age; L3/ D 0:013967,
�.Age; L4/ D 0:007375, and �.Age; L5/ D 0:010879.

The Pearson’s cumulative statistic is a well known measure, traditionally used in
statistics for evaluating how much two probability distributions are similar. Given
two distributions P.X/ and P.X jy/, their Pearson’s cumulative statistic is defined
as follows.

F.X; y/ D
X

x2X

�
O

y
x � Ex

�2

Ex

where O
y
x is the frequency of value x for X with respect to y .i.e., the number of

tuples in R such that x D t ŒX� and y D t ŒY �/, and Ex is the expected frequency
distribution of the same value x for X according to the baseline distribution P.X/.

Example 4.6. Consider the distributions of the Age values for the different loca-
tions and the baseline distribution P.Age/ in Fig. 4.2b. We have:

F.Age; L1/ D
�
O

L1

<18 � E<18

�2

E<18

C : : : C
�
O

L1�55 � E�55

�2

E�55

D 104:532750
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Similarly, we obtain: F.Age; L2/ D 878:201780, F.Age; L3/ D 30:837391,
F.Age; L4/ D 17:340740, and F.Age; L5/ D 39:875054.

The lower the distance between P.X jy/ and P.X/ in the released dataset, the
more the correlation between variables X and Y has been obfuscated. To determine
when the distance between the y-conditioned distribution P.X jy/ and the baseline
distribution P.X/ can be considered significant (and then exploited to infer a
possible dependency between X and Y ), we can adopt either an absolute or a
relative approach. The absolute approach compares the distance between P.X jy/

and P.X/ for each value y of Y with a fixed threshold. The relative approach
compares instead the distance between P.X jy/ and P.X/ for a given value y, with
the distances obtained for the other values of Y .

Both the strategy based on statistical independence and the strategy based on
minimizing the distance between distributions described above for obfuscating the
correlation between X and Y can be concretely applied through specific metrics.
Before describing such metrics in the following section, it is important to note that
an external observer can only see and learn the distribution of values computed
on tuples that have been released. In the remainder of this chapter, we will then
use Rrel to denote the set of tuples released to the external world at a given point
in time, and Prel to denote the value distributions observable on Rrel (in contrast
to the P observable on R). The knowledge of an external observer includes the
different observations Prel .X jy/ she can learn by collecting all the released tuples
(i.e., Rrel ), and the baseline distribution P.X/ publicly available.

4.5 Statistical Tests for Assessing Inference Exposure

In this section, we describe four statistical tests that can be adopted for verifying
whether the release of a set of tuples is safe, that is, a potential observer can
neither identify the entities associated with a sensitive value (e.g., an observer
cannot identify that L2 is a headquarter), nor improperly associate sensitive values
with released entities in the dataset (i.e., false positives). Figure 4.4 summarizes
such tests, classifying them depending on the strategy they follow to obfuscate the
dependency between statistical variables X and Y , as illustrated in Sect. 4.4.

The statistical tests described in this section are based on the definition of a
metric to measure how much the release of a subset Rrel of tuples of R is exposed

Test Safe release control
Statistical Independence MIS (Section 4.5.1) Irel(X,Y)< Irc

Distance
Absolute

KLD (Section 4.5.2) ∀y∈ Y, Δrel (X,y) < Δrc(y)
CST (Section 4.5.3) ∀y∈ Y, Frel(X,y) < Frc

Relative DQT (Section 4.5.4) Qrel(X)<Qrc

Fig. 4.4 Statistical tests and safe release control
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to inferences (inference exposure), and on the computation of a threshold that this
measure should not exceed to guarantee that the data release is safe. In the following,
we define different properties that the released dataset should satisfy to guarantee
that a potential observer cannot infer the existence of a dependency between the
random variables X and Y .

4.5.1 Significance of the Mutual Information

This statistical test aims at ensuring that mutual information Irel .X; Y / character-
izing the released dataset Rrel is statistically not significant. The rationale is that
the mutual information between X and Y , as illustrated in Sect. 4.4, measures the
average amount of knowledge about Y that an observer acquires looking at X (and
vice-versa). In other words, the mutual information Irel .X; Y / between X and Y

quantifies the (linear or non linear) dependency between the considered statistical
variables. When Irel .X; Y / is close to zero an observer does not have enough
confidence on the existence of a dependency between X and Y in the released
dataset Rrel . Hence, the observer cannot infer anything about the sensitive property
s.y/ associated with a target y that belongs to the released dataset.

From a practical point of view, to verify when the release of a given subset Rrel

of R can be considered safe, it is sufficient to check whether the mutual information
Irel .X; Y / of Rrel is below a predefined threshold Irc close enough to zero. For
instance, the release of a set Rrel of tuples related to a subset of the soldiers in our
running example does not disclose information on the dependency between Age
and Location if Irel .Age;Location/ < Irc . A safe release is formally defined
as follows.

Definition 4.3 (Safe Release w.r.t. Mutual Information—MIS). Let R be a
relation over attributes A, X and Y be two subsets of A such that XÝY, Rrel be a
subset of tuples in R, and Irc be the critical value for the mutual information. The
release of Rrel is safe iff Irel .X; Y / < Irc .

The problem becomes now how to compute Irc . The solution we propose is based
on the following property [22].

Property 4.1. Let R be a relation over attributes A, X and Y be two subsets of
A such that XÝY, and Rrel be a subset of tuples in R. Under the independence
hypothesis between X and Y :

2Nrel log.2/Irel .X; Y / � �2..NXrel
� 1/NYrel

/

where Nrel =jRrel j is the number of released tuples, NXrel
is the number of values of

X in Rrel , and NYrel
is the number of values of Y in Rrel .
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Fig. 4.5 Comparison between the chi-square distribution with 45 degrees of freedom and the
distribution of 2Nrel log.2/Irel.Age;Location/

Property 4.1 states that under the hypothesis of independence between X and Y ,
2Nrel log.2/Irel .X; Y / is asymptotically chi-square distributed with .NXrel

�1/NYrel

degrees of freedom.1

Example 4.7. Figure 4.5 compares the distribution of the rescaled2 mutual infor-
mation Irel .Age;Location/ of our dataset, with the chi-square distribution with
.10 � 1/5 D 45 degrees of freedom, where 10 is the number of different values
for attribute Age and 5 is the number of different values for attribute Location.
The histogram in the figure has been obtained with 10000 Monte Carlo iterations,
considering the baseline distribution P.Age/ and the distribution P.Location/

of the sensitive information of our running example. From the figure, it is easy to
see that the approximation of our rescaled mutual information to the chi-square
distribution nicely holds.

Since, by Property 4.1, Irel .X; Y / is distributed as a chi-square distribution with
.NXrel

� 1/NYrel
degrees of freedom, we propose to compute the critical value

1In [22] the mutual information was computed by comparing each y-conditioned distribution
P.X jy/ with a sample distribution P.X/ estimated on the same dataset. Hence, the number of
degrees of freedom was .NXrel � 1/.NYrel � 1/. In this chapter, the baseline distribution P.X/ is
assumed to be known to the observer. Coherently, Property 4.1 is derived under the assumption that
the observer tests the mutual information at hand by comparing it to the case where samples (x,y)
are drawn from the distribution P.X; Y / D P.X/P.Y /. Then, the number of degrees of freedom
increases to .NXrel � 1/NYrel .
2Rescaled by factor 2Nrel log.2/, with Nrel D 5000.
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Irc for the mutual information by selecting a significance level ˛ (i.e., a residual
probability) and imposing P.Irel .X; Y / > Irc/ D ˛ (i.e., the probability that
Irel .X; Y / is greater than threshold Irc should be equal to ˛). As a consequence, Irc

can be obtained by constraining
R 2Nrel log.2/Irc

0
�2Œ.NXrel

� 1/NYrel
�.x/dx D 1 � ˛.

The significance level ˛ represents the confidence in the result of a statistical
analysis. Indeed, the higher the value of ˛, the more restrictive the condition that
a release must satisfy to be considered safe. In fact, a lower value for ˛ represents a
low probability of error in drawing conclusions starting from the mutual information
measured on the data. The value of the significance level ˛ must be chosen in
such a way to limit the confidence that an observer can have in the test results,
thus preventing the observer from exploiting this test for drawing inferences. For
instance, if an observer can evaluate the statistical test with significance level
˛ D 5 %, the inference she can draw from the result obtained has a high probability
of being right (i.e., a high mutual information is due to chance only in 5 % of the
cases). The value chosen for ˛ by the data holder should then be higher than the
risk that an observer is willing to take when trying to guess the sensitive property
s.y/ of a target y in Y . If the cost of the observer for her attack is low (e.g., the
observer is interested in detecting which location is a headquarter for curiosity), she
will be probably willing to take a high risk of making a wrong guess and she will
therefore choose a high significance level for her analysis. In this case, ˛ should be
high to guarantee a better protection of the sensitive property (e.g., 15–20 %). On
the other hand, if the cost of an observer for her attack is high (e.g., the observer
wants to destroy headquarters), she will be probably willing to take a low risk of
error, and ˛ could be lower, thus permitting the release of a larger subset of tuples
(e.g., 5 % represents the typical value adopted in statistical hypothesis testing). Since
it is unlikely for the data holder to know the significance level considered by a
possible observer in the analysis, the data holder should estimate it and choose a
value for ˛ trying to balance the need for data protection on one side and the need
for data release on the other side. In fact, the released dataset is protected against
those analyses that assume a risk of error lower than ˛.

Once the data holder has fixed the significance level and computed the critical
value Irc for the mutual information, she can decide whether to release a tuple when
its respondent requires it. Let Rrel be a safe set of released tuples and t be a tuple in
R that needs to be released. To decide whether to release t , it is necessary to check
if the mutual information Irel .X; Y / associated with Rrel [{t} is lower than critical
value Irc . If this is the case, tuple t can be safely released; otherwise tuple t cannot
be released since it may cause leakage of sensitive information.

Example 4.8. Consider the military dataset in Fig. 4.2a, the release of the subset
Rrel of tuples in Fig. 4.6a, and assume that the data holder chooses a significance
level ˛ D 20 %. The mutual information Irel .Age;Location/ of Rrel is
0:025522, while the critical value Irc is 0:025527. Since Irel .Age;Location/ <

Irc , the release of Rrel is safe.
Consider the release of the whole dataset R in Fig. 4.2a, and assume that the data

holder adopts a less restrictive significance level ˛ D 5 %. The mutual information
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Number of tuples
Age L1 L2 L3 L4 L5 Total
<18 9 5 7 8 11 40
18-19 23 11 12 19 29 94
20-24 80 30 68 70 109 357
25-29 71 18 55 58 88 290
30-34 51 30 43 47 74 245
35-39 55 28 46 50 76 255
40-44 25 24 23 25 38 135
45-49 2 10 11 11 13 47
50-54 2 8 4 5 6 25
≥55 1 1 0 0 0 2
Total 319 165 269 293 444 1490

Prel(Age|Li)
Age L1 L2 L3 L4 L5 Prel(Age)

<18 2.82 3.03 2.60 2.73 2.48 2.68
18-19 7.21 6.67 4.46 6.49 6.53 6.31
20-24 25.08 18.18 25.28 23.89 24.55 23.96
25-29 22.26 10.91 20.45 19.80 19.81 19.46
30-34 15.99 18.18 15.98 16.04 16.67 16.44
35-39 17.24 16.97 17.10 17.06 17.12 17.11
40-44 7.84 14.55 8.55 8.53 8.56 9.07
45-49 0.63 6.06 4.09 3.75 2.93 3.15
50-54 0.63 4.85 1.49 1.71 1.35 1.69
≥55 0.30 0.60 0.00 0.00 0.00 0.13

Li Prel (Li)

L1 21.41
L2 11.08
L3 18.05
L4 19.66
L5 29.80

a

b c

Fig. 4.6 Number of tuples by Age and Location in a safe dataset Rrel w.r.t. mutual information
significance with ˛ D 20 % (a), Li -conditioned distributions Prel(Agej Li ), i D 1; : : : ; 5, over
Rrel (b), and location frequencies (c)

I.Age;Location/ of the whole dataset is 0:063285 .see Example 4.4/ and its
critical value Irc is 0:004448. Therefore, as expected, the release of the whole
dataset is not safe.

4.5.2 Significance of the Distance Between Distributions

The evaluation of the significance of the distance between distributions aims at
verifying whether there are specific targets in the released dataset that can be
considered as outliers, that is, whose y-conditioned distribution is far from the
expected distribution represented by the baseline P.X/. The rationale is that
peculiarities of the y-conditioned distribution can be exploited for inferring the
sensitive property s.y/. This statistical test, operating on the single values y of
Y , works at a finer granularity level than the previous one, based on the mutual
information.

As already noted in Sect. 4.4, a possible way for the data holder to verify whether
the y-conditioned distribution presents some peculiarities consists in computing
the Kullback-Leibler distance �rel .X; y/ between the y-conditioned distribution
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Prel .X jy/ of the released dataset and the baseline distribution P.X/. Following an
approach similar to that illustrated in Sect. 4.5.1, the disclosure of the sensitive
property s.y/ can be prevented by ensuring that �rel .X; y/ is statistically not
significant, for all targets y in the released dataset.

From a practical point of view, we can verify if the release of a given subset
Rrel of R can be considered safe by checking whether the distance �rel .X; y/

is smaller than a predefined threshold �rc.y/ for all targets y. A safe release is
formally defined as follows.

Definition 4.4 (Safe Release w.r.t. KL Distance—KLD). Let R be a relation over
attributes A, X and Y be two subsets of A such that XÝY, Rrel be a subset of tuples
in R, and �rc.y/ be the critical value for �rel .X; y/, for all values y of Y in Rrel .
The release of Rrel is safe iff for all values y of Y in Rrel , �rel .X; y/ < �rc.y/.

According to Definition 4.4, if �rel .X; y/ < �rc.y/ for all released targets y, the
release of Rrel is safe. If there exists at least a target y0 such that �rel .X; y0/ �
�rc.y

0/, the release of Rrel is not safe and y0 is considered exposed.
The approach we propose to compute threshold �rc.y/ is based on the

observation that the mutual information Irel .X; Y / by definition equals toP
y2Y p.y/�rel .X; y/, and that Property 4.1 can be adapted for the Kullback-

Leibler distance �rel .X; y/ as follows.

Property 4.2. Let R be a relation over attributes A, X and Y be two subsets of A

such that XÝY, y be a value of Y , and Rrel be a subset of tuples in R. Under the
independence hypothesis between X and Y :

2Nrel .y/ log.2/�rel .X; y/ � �2.NXrel
� 1/

where Nrel .y/ is the number of released tuples with Y D y, and NXrel
is the number

of values of X in Rrel .

Property 4.2 states that under the hypothesis of independence between X and Y ,
2Nrel .y/ log.2/�rel .X; y/ is asymptotically chi-square distributed with .NXrel

� 1/

degrees of freedom.

Example 4.9. Figures 4.7a–e compare the distribution of the rescaled .by fac-
tor 2Nrel .y/ log.2/ with Nrel .L1/ D 1014, Nrel .L2/ D 649, Nrel .L3/ D
826, Nrel .L4/ D 1003, and Nrel .L5/ D 1506/ Kullback-Leibler distance
�rel .Age; Li /, i D 1; : : : ; 5, with the chi-square distribution with 10 � 1 D 9

degrees of freedom. The histograms in the figures have been obtained with 10000

Monte Carlo iterations, considering the baseline distribution P.Age/ and the
distribution P.Location/ of the sensitive information of our running example.
From the figures, it is easy to see that our rescaled �rel .Age; Li / fit the considered
chi-square distribution.

For each target y, Property 4.2 can be used to compute the critical value
�rc.y/ for �rel .X; y/ by selecting a significance level ˛ and requiring
P.�rel .X; y/ > �rc.y// D ˛. �rc.y/ can then be obtained by constraining
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Fig. 4.7 Comparison between the chi-square distribution with 9 degrees of freedom
and the distribution of 2Nrel.L1/ log.2/�rel.Age; L1/ (a), 2Nrel.L2/ log.2/�rel.Age; L2/

(b), 2Nrel.L3/ log.2/�rel.Age; L3/ (c), 2Nrel.L4/ log.2/�rel.Age; L4/ (d), and
2Nrel.L5/ log.2/�rel.Age; L5/ (e)

R 2Nrel .y/ log.2/�rel .X;y/

0
�2.NXrel

� 1/.x/dx D 1 � ˛. As already observed for the
mutual information, higher values of ˛ guarantee better protection against inference
exposure of the sensitive property.

Once the data holder has fixed the significance level and computed the critical
values �rc.y/ for each target y, she can decide whether to release a tuple when its
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Number of tuples
Age L1 L2 L3 L4 L5 Total
<18 12 4 6 5 16 43
18-19 25 11 18 18 43 115
20-24 86 29 90 72 141 418
25-29 66 19 65 67 112 329
30-34 56 31 37 49 94 267
35-39 57 29 55 51 115 307
40-44 19 18 19 27 47 130
45-49 9 8 8 4 13 42
50-54 2 4 6 2 7 21
≥55 0 1 1 1 0 3
Total 332 154 305 296 588 1675

Prel(Age|Li)
Age L1 L2 L3 L4 L5 Prel(Age)

<18 3.61 2.60 1.97 1.69 2.72 2.57
18-19 7.53 7.14 5.90 6.08 7.31 6.87
20-24 25.90 18.83 29.51 24.32 23.98 24.96
25-29 19.89 12.34 21.31 22.64 19.05 19.64
30-34 16.87 20.13 12.13 16.55 15.99 15.94
35-39 17.17 18.83 18.03 17.23 19.56 18.33
40-44 5.72 11.69 6.23 9.12 7.99 7.75
45-49 2.71 5.19 2.62 1.35 2.21 2.51
50-54 0.60 2.60 1.97 0.68 1.19 1.25
≥55 0.00 0.65 0.33 0.34 0.00 0.18

Li Prel(Li)

L1 19.82
L2 9.20
L3 18.21
L4 17.67
L5 35.10

a

b c

Fig. 4.8 Number of tuples by Age and Location in a safe dataset Rrel w.r.t. Kullback-Leibler
distance with ˛ D 20 % (a), Li -conditioned distributions Prel(Agej Li ), with i D 1; : : : ; 5, over
Rrel (b), and location frequencies (c)

respondent requires it. Let Rrel be a safe set of released tuples and t be a tuple in
R whose release has been requested. To decide whether to release t , it is necessary
to check if the distance �rel .X; y/ for target y D t ŒY �, computed on Rrel[{t}, is
lower than the critical value �rc.y/. If such a control succeeds, the release of t , that
is, the disclosure of Trel [{t}, is considered safe. Otherwise, target y is considered
exposed (i.e., y is an outlier) and the release of t is blocked. Note that condition
�rel .X; y/ < �rc.y/ is certainly satisfied for all the targets different from t ŒY �

because Rrel is assumed to be safe.

Example 4.10. Consider the military dataset in Fig. 4.2a and the release of the
subset Rrel of tuples in Fig. 4.8a, and assume that the data holder adopts a
significance level ˛ D 20 %. The distances between each Li -conditioned distri-
bution Prel .AgejLi /, i D 1; : : : ; 5, and the baseline distribution P.Age/ are:
�rel .Age; L1/ D 0:026582, �rel .Age; L2/ D 0:056478, �rel .Age; L3/ D
0:028935, �rel .Age; L4/ D 0:029818, and �rel .Age; L5/ D 0:014996. The
critical values are: �rc.L1/ D 0:026599, �rc.L2/ D 0:057343, �rc.L3/ D
0:028954, �rc.L4/ D 0:029834, and �rc.L5/ D 0:015018. Since the distance
�rel .Age; Li / computed for each location Li , i D 1; : : : ; 5, is lower than the
corresponding critical value, the release of Rrel is safe.
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Consider the release of the whole dataset R in Fig. 4.2a and assume that the data
holder adopts a less restrictive significance level ˛ D 5 %. The distances between
each Li -conditioned distribution and the baseline distribution are: �.Age; L1/ D
0:047349, �.Age; L2/ D 0:358836, �.Age; L3/ D 0:013967, �.Age; L4/ D
0:007375, and �.Age; L5/ D 0:010879 .see Example 4.5/. Their critical values
are: �rc.L1/ D 0:006015, �rc.L2/ D 0:009395, �rc.L3/ D 0:007388, �rc.L4/ D
0:006081, �rc.L5/ D 0:004051. Since the distance �.Age; Li / of each location
Li , i D 1; : : : ; 5, exceeds the corresponding critical value, the release of R is, as
expected, not safe.

By comparing the two metrics discussed so far, it is easy to see that the metric
based on the mutual information does not distinguish the exposures of the different
targets. Hence, if for a given y, prel .y/ represents a small portion of the released
dataset, a high value for �rel .X; y/ has a limited influence on the decision of
whether the release of Rrel is safe or not, since the contribution of �rel .X; y/

in the computation of Irel .X; Y / is limited. On the contrary, the test based on
the Kullback-Leibler distance results more restrictive than the evaluation of the
significance of the mutual information since the safety control is performed at the
level of each single target y of Y .

4.5.3 Chi-Square Goodness-of-Fit Test

The chi-square goodness-of-fit test aims at verifying, like the statistical test
described in Sect. 4.5.2, whether the released dataset includes a target y that can
be considered an outlier. The chi-square goodness-of-fit test [90] is a well known
statistical test, traditionally used to determine whether a probability distribution
(Prel .X jy/) fits into another (theoretical) probability distribution (P.X/), that is, if
the two probability distributions are similar. The test is based on the computation of
Pearson’s cumulative statistic Frel .X; y/ that measures how “close” the observed
y-conditioned distribution Prel .X jy/ is to the expected (baseline) distribution
P.X/. When Frel .X; y/ is close to zero, Prel .X jy/ appears as a distribution
that fits P.X/ (i.e., the values of Prel .X jy/ appear as randomly extracted from
the baseline distribution P.X/) and therefore nothing can be inferred about the
sensitive property s.y/ associated with target y.

From a practical point of view, we verify if the release of a given subset Rrel

of R can be considered safe by checking whether the Pearson’s cumulative statistic
Frel .X; y/ is smaller than a predefined threshold Frc . Formally, a safe release is
defined as follows.

Definition 4.5 (Safe Release w.r.t. Chi-Square Goodness-of-Fit—CST). Let R

be a relation over attributes A, X and Y be two subsets of A such that XÝY, Rrel

be a subset of tuples in R, and Frc be the critical value for Frel .X; y/. The release
of Rrel is safe iff for all values y of Y in Rrel , Frel .X; y/ < Frc .



4.5 Statistical Tests for Assessing Inference Exposure 123

According to Definition 4.5, if all the released targets y satisfy condition
Frel .X; y/ < Frc , the release of Rrel is safe; if there exists at least a target y0
that violates the condition, the release of Rrel is not safe and y0 is considered
exposed.

The threshold Frc is computed by exploiting the following statistical property
enjoyed by the chi-square goodness-of-fit test [90].

Property 4.3. Let R be a relation over attributes A, X and Y be two subsets of A

such that XÝY, y be a value of Y , and Rrel be a subset of tuples in R. Under the
independence hypothesis between X and Y :

Frel .X; y/ D
X

x2X

�
O

y
x � Ex

�2

Ex

� �2.NXrel
.y/ � 1/

where NXrel
.y/ is the number of values of X for the tuples in Rrel with Y D y.

Property 4.3 states that, under the hypothesis of independence between X and Y ,
the Pearson’s cumulative statistic Frel .X; y/ is asymptotically chi-square distributed
with (NXrel

.y/ � 1) degrees of freedom. Like for the metrics already discussed,
we compute the critical value Frc.y/ for the Pearson’s cumulative statistic by
selecting a significance level ˛ and requiring P.Frel .X; y/ > Frc.y// D ˛. As a

consequence, Frc.y/ can be obtained by constraining
R P

x2X

.O
y
x �Ex/

2

Ex

0 �2.NXrel
.y/�

1/.x/dx D 1 � ˛. It is important to note that the number of degrees of freedom of
the chi-square distribution depends on the number NXrel

of values of variable X that
have been released for target y, which may be different from the number of values
in the domain of attribute X (for more details see Sect. 4.6).

Once the data holder has fixed the significance level and computed the critical
value Frc , she can decide whether to release a tuple when its respondent requires it.
Let Rrel be a safe set of tuples and t be a requested tuple in R. To evaluate whether
the release of tuple t is safe, it is necessary to check whether the Pearson’s cumulate
statistic Frel .X; y/ for target y D t ŒY �, computed on Rrel[{t} is lower than the
fixed threshold Frc . If this is the case, tuple t can be safely released; otherwise the
release of t is blocked since it reveals that y is an outlier. We note that it is not
necessary to check the Pearson’s cumulate statistics of the other targets in Rrel ,
since they are not affected by the release of t , and their associated Frel .X; y/ are
lower than Frc , as Rrel is supposed to be safe.

Example 4.11. Consider the military dataset in Fig. 4.2a and the release of the
subset Rrel of tuples in Fig. 4.9a and assume that the data holder adopts a sig-
nificance level ˛ D 20 %. The Pearson’s cumulative statistics for the five locations
are: Frel .Age; L1/ D 8:550683, Frel .Age; L2/ D 0:961415, Frel .Age; L3/ D
9:717669, Frel .Age; L4/ D 8:293681, and Frel .Age; L5/ D 8:554984. The critical
values are: Frc.L1/ D 8:558059, Frc.L2/ D 1:642374, Frc.L3/ D 9:803249,
Frc.L4/ D 11:030091, and Frc.L5/ D 8:558059. It is immediate to see that
Frel .Age; Li / < Frc.Li /, for all i D 1; : : : ; 5. As a consequence, the release of
Rrel is safe.
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Number of tuples
Age L1 L2 L3 L4 L5 Total
<18 13 0 8 6 4 31
18-19 25 1 13 35 35 109
20-24 92 0 80 100 135 407
25-29 74 0 76 94 117 361
30-34 65 3 55 63 98 284
35-39 64 38 48 71 94 315
40-44 32 7 21 29 41 130
45-49 3 3 11 13 18 48
50-54 0 0 3 8 4 15
≥55 0 0 0 0 0 0
Total 368 52 315 419 546 1700

Prel (Age|Li)
Age L1 L2 L3 L4 L5 Prel(Age)

<18 3.53 0.00 2.53 1.43 0.73 1.82
18-19 6.79 1.92 4.13 8.35 6.41 6.41
20-24 25.00 0.00 25.4 23.87 24.73 23.94
25-29 20.11 0.00 24.13 22.43 21.43 21.24
30-34 17.66 5.77 17.46 15.04 17.95 16.71
35-39 17.39 73.08 15.24 16.95 17.21 18.53
40-44 8.70 13.46 6.67 6.92 7.51 7.65
45-49 0.82 5.77 3.49 3.10 3.3 2.82
50-54 0.00 0.00 0.95 1.91 0.73 0.88
≥55 0.00 0.00 0.00 0.00 0.00 0.00

Li Prel(Li)

L1 21.65
L2 3.06
L3 18.52
L4 24.65
L5 32.12

a

b c

Fig. 4.9 Number of tuples by Age and Location in a safe dataset Rrel w.r.t. Chi-Square
Goodness-of-Fit with ˛ D 20 % (a), Li -conditioned distributions Prel(Agej Li ), i D 1; : : : ; 5,
over Rrel (b), and location frequencies (c)

Consider the release of the whole dataset R in Fig. 4.2a and assume that the
data holder adopts a less restrictive significance level ˛ D 5 %. The Pearson’s
cumulative statistics for the five locations are: F.Age; L1/ D 104:532750,
F.Age; L2/ D 878:201780, F.Age; L3/ D 30:837391, F.Age; L4/ D 17:340740,
and F.Age; L5/ D 39:875054 .see Example 4.6/. The critical values are:
Frc.L1/ D 15:507313, Frc.L2/ D 16:918978, Frc.L3/ D Frc.L4/ D Frc.L5/ D
15:507313. Therefore, P.AgejLi /, i D 1; : : : ; 5, is not close enough to P.Age/

and the release of the whole dataset is not safe. This result is not surprising since
none of the Li -conditioned distribution P.AgejLi /, i D 1; : : : ; 5, in our running
example exactly fits the baseline distribution P.Age/.

4.5.4 Dixon’s Q-Test

The Dixon’s Q-test, similarly to the statistical tests described in Sects. 4.5.2 and
4.5.3, aims at verifying whether there is one target in the released dataset that can
be considered an outlier. The Dixon’s Q-test is a well-known solution for outlier
detection in a given dataset that can be adopted whenever there is at most one outlier
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and at least three targets in the considered dataset [48]. This statistical test differs
from the ones illustrated in Sects. 4.5.2 and 4.5.3 since, instead of comparing each
distance between Prel .X jy/ and P.X/ against a fixed threshold, it evaluates if one
of the distances between Prel .X jy/ and P.X/ is significantly higher than the others.
The Dixon’s Q-test can be applied considering any definition of distance between
distributions (e.g., Kullback-Leibler distance, or Pearson’s cumulative statistic). In
line with the rest of the chapter, we apply the Dixon’s Q-test to the Kullback-Leibler
distance �rel .X; y/ between Prel .X jy/ and P.X/. We note that different versions
of this test have been proposed in the literature, and we adopt r10 [48]. This test
assumes the presence of at most one outlier at the upper hand of the dataset (i.e.,
one outlier characterized by a high value for the distance between distributions) and
no outlier at the lower hand of the dataset (i.e., no outlier is characterized by a low
distance between distributions).

The Dixon’s Q-test requires to first organize the values on which it needs to be
evaluated (i.e., �rel .X; y/ in our scenario) in ascending order. Starting from the
last two values in the ordered sequence (i.e., the two highest values), it computes
coefficient Qrel .X/ as their relative distance. More formally, Dixon’s coefficient is
computed as:

Qrel .X/ D �rel .X; yn/ � �rel .X; yn�1/

�rel .X; yn/ � �rel .X; y1/
;

where �rel .X; y1/,. . . ,�rel .X; yn/ is the sequence, in ascending order, of distance
values.

The Dixon’s Q-test is not able to identify any outlier in the dataset if Qrel .X/

is close enough to zero, since the distance between each pair of subsequent values
in the sequence is almost the same. In this case, there is no target y such that the
distance between its y-conditioned distribution Prel .X jy/ and the baseline P.X/

stands out from the other distances.
From a practical point of view, we verify if the release of a given subset Rrel

of R can be considered safe by checking whether the Dixon’s coefficient Qrel .X/

is smaller than a predefined threshold Qrc. The critical value Qrc is computed by
fixing a significance level ˛ and imposing P.Qrel .X/ > Qrc/ D ˛. Figure 4.10
summarizes the critical values Qrc when the number of distinct values in the domain
of Y ranges between 3 and 10 and the significance level is fixed to 20 %, 10 %, 5 %,

Number of elements
Significance 3 4 5 6 7 8 9 10

20% 0.781 0.560 0.451 0.386 0.344 0.314 0.290 0.273
10% 0.886 0.679 0.557 0.482 0.434 0.399 0.370 0.349
5% 0.941 0.765 0.642 0.560 0.507 0.468 0.437 0.412
1% 0.988 0.889 0.780 0.698 0.637 0.590 0.555 0.527

Fig. 4.10 Critical values Qc for the Dixon’s Q-test with significance levels 20 %, 10 %, 5 %, 1 %
and [3–10] distinct values in Y domain [49]
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and 1 %, respectively. If Qr.X/ < Qrc, the release of Rrel does not reveal the
presence of any outlier and the release of Rrel is safe. A safe release is formally
defined as follows.

Definition 4.6 (Safe Release w.r.t. Dixon’s Q-Test—DQT). Let R be a relation
over attributes A, X and Y be two subsets of A such that XÝY, Rrel be a subset of
tuples in R, and Qrc be a critical value for Qrel .X/. The release of Rrel is safe iff
Qr.X/ < Qrc.

If condition Qr.X/ < Qrc does not hold, an observer can infer that the target y

characterized by the maximum distance �rel .X; y/ between Prel .X jy/ and P.X/

is an outlier.
Once the data holder has fixed the significance level and computed the critical

value Qrc for the Dixon’s Q-test, she can decide whether to release a tuple when its
respondent requires it. Let Rrel be a safe set of released tuples and t be a requested
tuple in R. To decide whether to release t , it is necessary to check if Dixon’s
coefficient Qr.X/ associated with Rrel [{t} is lower than critical value Qrc . If this
is the case, tuple t can be safely released; otherwise tuple t is not released since it
may cause leakage of sensitive information.

Example 4.12. Consider the military dataset in Fig. 4.2a and the release of the
subset Rrel of tuples in Fig. 4.11a, and assume that the data holder adopts a
significance level ˛ D 20 %. The distance values between Prel .AgejLi /, i D
1; : : : ; 5, and the baseline P.Age/ are equal to: �rel .Age; L1/ D 0:209188,
�rel .Age; L2/ D 0:361504, �rel .Age; L3/ D 0:037932, �rel .Age; L4/ D
0:018421, and �rel .Age; L5/ D 0:021103. To apply the Dixon’s Q-test, these
distance values are considered in ascending order and the Dixon’s coefficient is
computed as Qrel .X/ D 0:361504�0:209188

0:361504�0:018421
D 0:443963. Since attribute Location

has 5 distinct values in its domain, we consider the third column in the table in
Fig. 4.10 for the definition of critical value Qrc . In particular, the critical value
is fixed to 0:451 for the considered significance level. Since Dixon’s coefficient is
lower than the critical value, the release of Rrel is safe.

Consider the release of the whole dataset R in Fig. 4.2a and assume that the data
holder adopts a less restrictive significance level ˛ D 5 %. The distance values in
Example 4.5 are considered in ascending order and Dixon’s coefficient is computed
as Qrel .X/ D 0:358836�0:047349

0:358836�0:07375
D 0:886263, which is greater than 0:642. Therefore,

the release of the whole dataset of our running example is not safe, since it discloses
that L2 is an outlier.

4.6 Controlling Exposure and Regulating Releases

We now illustrate how the incremental release of tuples is controlled and regulated
according to the metrics discussed in the previous section.
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Number of tuples
Age L1 L2 L3 L4 L5 Total
<18 14 3 5 8 15 45
18-19 36 10 10 34 43 133
20-24 104 30 77 84 176 471
25-29 96 18 73 76 134 397
30-34 69 50 48 77 109 353
35-39 64 32 49 64 120 329
40-44 0 36 18 30 42 126
45-49 0 34 17 10 18 79
50-54 3 14 5 6 4 32
≥55 1 3 0 1 0 5
Total 387 230 302 390 661 1970

Prel(Age|Li)
Age L1 L2 L3 L4 L5 Prel(Age)

<18 3.62 1.30 1.66 2.05 2.27 2.28
18-19 9.30 4.35 3.30 8.72 6.51 6.75
20-24 26.87 13.04 25.50 21.54 26.63 23.91
25-29 24.81 7.83 24.17 19.49 20.27 20.15
30-34 17.83 21.75 15.89 19.74 16.49 17.92
35-39 16.54 13.91 16.23 16.41 18.15 16.70
40-44 0.00 15.65 5.96 7.69 6.35 6.40
45-49 0.00 14.78 5.63 2.56 2.72 4.01
50-54 0.78 6.09 1.66 1.54 0.61 1.63
≥55 0.25 1.30 0.00 0.26 0 0.25

Li Prel(Li)

L1 19.64
L2 11.68
L3 15.33
L4 19.80
L5 33.55

a

b c

Fig. 4.11 Number of tuples by Age and Location in a safe dataset Rrel w.r.t. Dixon’s Q-test
with ˛ D 20 % (a), Li -conditioned distributions Prel(Agej Li ), i D 1; : : : ; 5, over Rrel (b), and
location frequencies (c)

The data holder first chooses the metric and the significance level ˛ she wants to
adopt. Every time a tuple t is requested, it is necessary to check if the release of t ,
combined with all the tuples already released and potentially known to an observer
Rrel , may cause the unintended disclosure of sensitive information. In particular,
if Rrel [{t} satisfies the definition of safe release for the considered metric (see
Sect. 4.5), t is released. If tuple t cannot be released when it is requested, its release
might simply be denied. However, this choice represents a restrictive solution, since
it does not take into consideration the fact that if a tuple cannot be released when it
is requested, it may be safely released at a later time (i.e., after the release of other
tuples in the dataset). Indeed, the grant or denial of the release of a tuple depends
on the set of tuples that has already been released. Exploiting this observation, we
propose to insert the tuples that cannot be released when requested into a queue.
Every time a tuple t is released, the tuples in the queue are analyzed to check
whether a subset of them can be safely released.

Particular attention has to be paid on the release of the first few tuples because
they will produce random value distributions that usually do not resemble the actual
distributions existing in the dataset. Such random distributions may characterize the
data release as not safe, thus blocking any further release and raising many false
alarms (since also targets that are not outliers will have a random initial distribution
that will differ from the baseline). However, no observer could put confidence on
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statistics computed over a few releases as they cannot be considered accurate and
their distribution can be completely random. With reference to the release of the
first few tuples, it is also important to note that the metrics illustrated in Sect. 4.5 are
based on approximation properties that hold only when a sufficient number of tuples
has been released. There is therefore a starting time at which the data holder should
define an alternative condition for determining if a release should be considered
safe. In the following we discuss, for each of the metrics in Sect. 4.5, how to check
whether the release of a tuple t is safe when only few tuples have been released.

Significance of the Mutual Information and Significance of the Kullback-
Leibler Distance Between Distributions The definition of the critical value for
the mutual information described in Sect. 4.5.1 is based on Property 4.1, which is
an asymptotic approximation of Irel .X; Y / to a chi-square distribution that holds
only if a sufficient number of tuples has been released. Using the traditional Monte
Carlo approach, we propose to compute the critical value of the mutual information
for the release of a small number n of tuples as the ˛-th percentile of the mutual
information obtained by extracting a sufficient number of samples (10000 in our
experimental evaluation) of n tuples each from a simulated dataset composed of
jRj tuples, where X is distributed following P.X/, and X and Y are statistically
independent. Indeed, if the mutual information of the released dataset is close to the
mutual information of a sample of the same size extracted from a dataset where
X and Y are statistically independent, the observer cannot exploit the released
tuples for drawing inferences. The remaining aspect to consider is when to start
adopting the critical value computed exploiting Property 4.1. A nice approximation
is represented by 2NXNY tuples (100 in our example), which is confirmed by our
experimental evaluation illustrated in Fig. 4.12. In this figure, the curve representing
the critical value for the mutual information, corresponding to the value computed
through the Monte Carlo method in the interval [0–100] and exploiting Property 4.1
in interval [100–10000], presents a smooth trend. This result also confirms that
Property 4.1 holds in our framing of the problem.

The same approach can be adopted for the metric based on the Kullback-Leibler
distance since Property 4.2 derives from Property 4.1, and the mutual information
is a weighted average of the Kullback-Leibler distances for the different targets y in
the dataset.

Chi-Square Goodness-of-Fit Test The approximation on which this statistical test
is based holds on a data collection only if, for each target y and for each x 2 X ,
a sufficient number of tuples (typically 5 [90]) has been released. In other words,
considering a target y, for each x 2 X , there must be at least 5 tuples in Rrel with
t ŒY � D y and t ŒX� D x. If, for a given target y, there are less than 5 tuples with
value x for attribute X , we can combine x with either its preceding or subsequent
value in the domain of X and sum their relative frequencies. With reference to our
example, if only 2 soldiers located at L2 in the age range [20–24] have been released,
range [20–24] for L2 can be combined either with [18–19] or with [25–29] for the
same location. Suppose now that the relative frequency for age range [25–29] is 4.
By merging [20–24] with [25–29] for location L2, we obtain a new value [20–29]
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of the domain of attribute Age for location L2, with relative frequency equal to 6.
This process is iteratively applied, possibly combining a set of contiguous values
for attribute X , until all the relative frequencies of the values in the domain of X

are greater than or equal to 5. If all the values in X are combined in a unique value,
the test cannot be applied and the release is considered safe. If at least 2 values
in the domain of X are maintained, the test can be evaluated. We note however that
when multiple original values of X are combined, the approximation in Property 4.3
should be revised to consider the correct number of degrees of freedom, which is
equal to the number of values in the domain of X in Rrel after the possible merge
operation. For instance, with reference to our example, suppose that the values for
attribute Age for location L2 have been combined obtaining the following domain
values: � 24, [25–39], [40–44], Œ45; 49�, � 50. The critical value of Pearson’s
cumulative statistic for L2 should be computed considering a chi-square distribution
with 4 (instead of 9) degrees of freedom.

Dixon’s Q-Test As already noted, this statistical test can be applied only on data
collections that include at least 3 elements [48]. In our scenario, it can then be used
only if 3 different distances between the y-conditioned distributions and the baseline
can be computed. Consequently, datasets with less than 3 different distance values
are considered safe since an observer could not gain any information.

4.7 Experimental Results

To evaluate the behavior of the metrics presented in Sect. 4.5, we implemented
the data release strategy described in Sect. 4.6 with a Matlab prototype and
executed a series of experiments. For the experiments, we considered the dataset
R introduced in Example 4.2, which has been obtained by randomly extracting
10000 tuples from the baseline distribution P.Age/ of the age of soldiers of the UK
Regular Forces as at 1 April 2006 [103] (Fig. 4.3a). The experiments evaluated the
inference exposure (computed as the mutual information, Kullback-Leibler distance
between distributions, Pearson’s cumulative statistic, or Dixon’s coefficient), and the
information loss (i.e., the number of tuples not released upon request) caused by our
privacy protection technique. We also compared the results obtained adopting the
different metrics.

4.7.1 Inference Exposure

We evaluated how the metrics discussed in Sect. 4.5 vary with the release of tuples
and compared them with the corresponding critical values. The experiments have
been conducted on 20 randomly extracted sequences of 10000 requests each. For
the sake of readability, in this section we illustrate the graphs showing the evolution
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Fig. 4.12 Evolution of the mutual information and its critical value

of the inference exposure and of its critical value for one of the 20 sequences; the
results obtained with the other sequences present a similar trend.

Mutual Information Figure 4.12 shows the evolution of both the mutual infor-
mation, and the corresponding critical value, varying the number of released tuples
(the scale of the axis in Fig. 4.12 is logarithmic). The two curves are close to each
other and their distance decreases as the number of released tuples increases. It is
easy to see that the mutual information of released data is always lower than the
critical value. The figure also shows a smooth trend for the curve representing the
critical value, confirming that the approximation in Property 4.1 nicely holds in our
scenario. In fact, the discontinuity in the critical value of the mutual information
when the 100th tuple is released, due to the fact that the critical value is computed
using the Monte Carlo based approach in the interval [1–100] and the approach
using Property 4.1 in the interval [100–10000], is small and cannot be noticed in the
figure.

Kullback-Leibler Distance Figures 4.13a–e show the evolution of both the
Kullback-Leibler distance between Prel .AgejLi / and P.Age/, i D 1; : : : ; 5,
and the corresponding critical values, varying the number of released tuples (the
scale of the axis in Figs. 4.13a–e is logarithmic). It is not surprising that the trends
shown in these figures are similar to that illustrated in Fig. 4.12. Indeed, the mutual
information is the weighted average of the Kullback-Leibler distance values of all
the locations in the dataset. It is interesting to note that all the locations present a
similar trend for the evolution of both the Kullback-Leibler distance and its critical
value. Also, like for the mutual information, Figs. 4.13a–e present a smooth trend in
the curves representing the critical values for the five locations, confirming that the
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Fig. 4.13 Evolution of the Kullback-Leibler distance between Prel.AgejLi / and P.Age/ and its
critical value for each location. (a) L1, (b) L2, (c) L3, (d) L4, (e) L5

approximation in Property 4.2 holds. In fact, the discontinuity in the critical value
of the Kullback-Leibler distance when the 100th tuple is released cannot be noticed
from the figure.

Chi-Square Goodness-of-Fit Figures 4.14a–e show the evolution of both the
Pearson’s cumulative statistic of each location, and the corresponding critical values,
varying the number of released tuples. As discussed in Sect. 4.5.3, when a sufficient
number of tuples have been released the critical value Frc is the same for all the
locations. On the contrary, when a limited number of tuples have been released, the
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Fig. 4.14 Evolution of the Pearson’s cumulative statistic and its critical value for each location.
(a) L1, (b) L2, (c) L3 , (d) L4, (e) L5

critical value may be different for each location, depending on the number of distinct
values in the domain of attribute X for each location. As it is visible from Fig. 4.14,
the curve representing the critical value has different steps. Each step corresponds
to a change in the number of values in the domain of X and therefore a different
(higher) number of degrees of freedom of the chi-square distribution in Property 4.3.
When the number of released tuples does not permit to correctly evaluate if the
Chi-square goodness-of-fit test is passed or not, the release is considered safe since
an observer cannot gain knowledge by looking at the released data. This is the
reason why the Pearson’s cumulative statistic and its critical value are not computed
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Fig. 4.15 Evolution of the Dixon’s coefficient and its critical value

for the first few (about 10) released tuples in Figs. 4.14a–e. For all the locations,
the value of the Pearson’s cumulative statistic increases while tuples are released.
In particular, this growing trend is more visible when less than 100 tuples have
been released. Also in this case, as expected, the distance between the Pearson’s
cumulative statistic and its critical value decreases while data are released.

Dixon’s Q-Test Figure 4.15 shows the evolution of both the Dixon’s coefficient
and the corresponding critical value, varying the number of released tuples. The
distance between Dixon’s coefficient and the critical value decreases while tuples
are released. As it is visible from Fig. 4.15, the Dixon’s coefficient and its critical
value are not reported for the first 5 tuples released. This is due to the fact that, for
the first 5 tuples, it is not possible to compute 3 different distance values between y-
conditioned distributions and the baseline. The curve representing the critical value
presents three steps. Each step corresponds to the release of a tuple that permits to
compute an additional difference. In other words, it corresponds to the release of a
tuple t such that t ŒY � is a target that either was not represented in Rrel or that was
characterized by a distance from the baseline equal to the distance of another target.

We note that, for all the considered metrics, the distance between the exposure
and its critical value decreases as more data are released, since the fluctuations in
the value distribution characterize the release of the first few tuples. In fact, as the
number of tuples in the released dataset increases, the impact of the release of a
single tuple on the distribution of released values decreases.
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Original MIS KLD CST DQT
L1 2029 1156.00 (56.97%) 871.85 (42.97%) 994.55 (49.02%) 1935.85 (95.41%)
L2 1299 705.20 (54.29%) 697.65 (53.71%) 255.35 (19.66%) 1262.65 (97.20%)
L3 1652 1119.00 (67.74%) 1549.75 (93.81%) 1300.00 (78.69%) 1565.45 (94.76%)
L4 2007 1256.95 (62.63%) 1874.75 (93.41%) 1361.85 (67.86%) 1990.20 (99.16%)
L5 3013 1876.65 (62.29%) 2415.65 (80.17%) 1899.25 (63.04%) 3013.00 (100.00%)

Total 10000 6095.78 (60.96%) 7408.67 (74.09%) 5119.88 (51.20%) 9631.55 (96.32%)

Original MIS KLD CST DQT
L1 2029 1187.55 (58.53%) 918.35 (45.26%) 1021.85 (50.36%) 1996.90 (98.42%)
L2 1299 720.05 (55.43%) 713.30 (54.91%) 322.30 (24.81%) 1275.80 (98.21%)
L3 1652 1145.90 (69.36%) 1576.20 (95.41%) 1151.90 (69.73%) 1571.80 (95.15%)
L4 2007 1283.50 (63.95%) 1951.85 (97.25%) 1698.15 (84.61%) 1996.25 (99.46%)
L5 3013 1907.85 (63.32%) 2530.20 (83.98%) 2344.55 (77.81%) 2996.75 (99.46%)

Total 10000 6290.58 (62.91%) 7757.14 (77.57%) 6478.14 (64.78%) 9846.14 (98.46%)

a

b

Fig. 4.16 Average number of requested tuples released by each metric for the different locations
with ˛ D 20 % (a) and ˛ D 5 % (b)

4.7.2 Information Loss

To evaluate the quality of the results obtained adopting our metrics, we consider the
number of released and discarded tuples. Figures 4.16a,b summarize the average
number of tuples released by each of our metrics with significance level ˛ equal to
20 % and 5 %, respectively, for the 20 sequences of 10000 requests that we generated
for our experiments, distinguishing also how many requests for each location have
been fulfilled.

Comparing the results in Figs. 4.16a,b we note that, as expected, a lower
significance level permits to release a higher number of tuples for all the considered
metrics. Indeed, most of the cells in the table in Fig. 4.16b have higher values than
the corresponding cells in Fig. 4.16a. It is also easy to see that there is not a metric
that is always better than the others in terms of the number of tuples released. For
instance, Dixon’s Q-test is less restrictive that the other metrics, since it releases the
highest number of tuples as a whole and for each locations when ˛ D 20 %, and
as a whole and for each locations but L3 when ˛ D 5 %. From our analysis of the
results reported in the two tables, we can conclude that the considered metrics adopt
a different approach to protect the released data: CST and KLD block the release of
the tuples of the outlier, while MIS and DQT block the release of the tuples from all
the locations.

The location with the fewest released tuples is L2 for both MIS and CST metrics,
and for DQT in the case ˛ D 20 %. This is a non-surprising result, since L2 is the
headquarter (i.e., the outlier that needs to be protected). On the contrary, metric
KLD blocks more tuples from L1 than from L2, and DQT, for ˛ D 5 %, blocks
more tuples from location L3 than from L2. The location that enjoys the largest
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Fig. 4.17 Fitting the baseline distribution within the L2-conditioned distribution

number of tuples released with ˛ D 20 % is L3 for all the metrics but DQT, which
privileges location L5. With ˛ D 5 %, the location with the highest percentage of
released tuples is L4 for all the metrics but MIS, which privileges location L3.

It is interesting to note that all the metrics proposed in this chapter to evaluate if a
release is safe permit to release a considerable number of tuples, especially if com-
pared with the (more intuitive) approach of fitting the baseline distribution within
each Li -conditioned distribution. Fitting the baseline within an Li -conditioned
distribution forces a maximum number of tuples that could be released for each
age range in Li , since the relative frequency of the tuples in each age range must be
exactly that of the baseline for each location in the released dataset. For instance,
in the baseline distribution almost 19.67 % soldiers are in the range [25–29], while
in L2 only 8:78 % of tuples (140 tuples) fall in such range. Respecting the baseline
distribution requires, even in the case where all tuples in the range [25–29] of L2 are
released to not release tuples in other ranges (so that the 140 tuples above actually
correspond to 19:67 %). Figure 4.17 graphically depicts this reasoning of fitting the
baseline distribution (in black) within the L2-conditioned distribution (gray going
over the black). For each value range, no more than the number reached by the
baseline distribution should be released. Figure 4.18 summarizes the number of
tuples for each location that would be released adopting the approach of fitting the
baseline within each Li -conditioned distribution, i D 1; : : : ; 5. It is easy to see that
this approach is far more restrictive than our solution and blocks the release of a
larger number of tuples. Each of the proposed metrics permits to release a higher
number of tuples for most of the locations (but for CST in the case of location L4

with ˛ D 20 % and L3 with ˛ D 5 %). In particular, our approach permits to release
in most cases more than twice the number of tuples that would be released by fitting
the baseline distribution within each Li -conditioned distribution. This is mainly due
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Fig. 4.18 Number of
requested tuples released
fitting the baseline

Original Released

L1 2029 500 (24.6%)
L2 1299 580 (44.6%)
L3 1652 952 (57.7%)
L4 2007 952 (47.5%)
L5 3013 952 (31.6%)

Total 10000 3937 (39.37%)

Fig. 4.19 Number of
datasets obtained adopting a
metric that are safe also with
respect to the other metrics

MIS KLD CST DQT

MIS 100 0 0 54
KLD 1 100 1 61
CST 0 0 100 45
DQT 0 0 0 100

to the fact that, when fitting the baseline within each P.AgejLi /, the presence of a
low number of tuples in an age-range for a location (e.g., 2 soldiers with age greater
than 55 in L3, L4, and L5) hardly constraints the release of the tuples in all the
other age ranges. In our example, the two tuples representing soldiers older than 55
must represent the 0:21 % of all the tuples released for locations L3, L4, and L5. As
a consequence, the data holder can release at most 952 tuples of L3, L4, and L5.
Our metrics try to loosen this constraint, by evaluating the distance (or its average)
between the distributions, instead of the value that the distribution has at each age
value.

4.7.3 Comparison

To further compare the behavior of the metrics proposed, we have randomly
generated 100 request sequences of 5000 tuples each, out of the 10000 in our dataset
of the UK Regular Forces. For each of the metrics proposed in the chapter, and for
each of the 100 random request sequences, we run our algorithm. For this series
of experiments, we fixed the significance level ˛ to 20 %, which represents the
most restrictive release scenario. We then checked, for each of the metrics, how
many of the 100 safe releases obtained running our algorithm with the considered
metric represents a safe release also with respect to each of the other three metrics.
Figure 4.19 summarizes the number of datasets obtained adopting each metric (on
the row) that are safe also with respect to the other metrics (on the column). It
is immediate to see that DQT is the less restrictive metric, confirming the results
illustrated in the previous subsection. In fact, none of the 100 datasets obtained
adopting DQT metric is safe with respect to the other three metrics (fourth row in
Fig. 4.19). On the contrary, 54 (61 and 45, respectively) datasets obtained using
MIS metric (KLD and CST metrics, respectively) also satisfy the definition of
safe release of Dixon’s Q-test. The most restrictive metric is instead KLD, since
no dataset obtained adopting a different metric resulted safe with respect to KLD
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metric (second column in Fig. 4.19) while at least one dataset obtained adopting
KLD metric is safe with respect to each of the other three metrics (second row in
Fig. 4.19). It is interesting to note that this result is different from the conclusions
drawn in the previous subsection, where we noted that MIS and CST are the metrics
that minimize the release of tuples. It is however not surprising since the analysis
illustrated in Fig. 4.19 is different from the one summarized in Figs. 4.16a,b. In fact,
the results illustrated in Fig. 4.19 are obtained analyzing a dataset that is considered
safe by one metric with respect to the other metrics introduced in Sect. 4.5. On
the contrary, the results in Figs. 4.16a,b are obtained analyzing the safe datasets
produced by each of the metrics of interest, starting from the same original data
collection and considering the same order in the request of tuple. The results in
Fig. 4.19 confirm the fact that the considered metrics measure the exposure of the
released dataset in different ways and that the considered metrics obtain a different
result if applied to the same sequence of tuple requests. Each metric is therefore
suited for protecting a different statistical characteristic of the data that could be
exploited for inference purposes. For instance, MIS metric is the ideal solution to
protect the released data against attacks that exploit the mutual information between
X and Y (i.e., their statistical dependency) to gain information about the sensitive
property. To decide the metric and the value for ˛ to be adopted for protecting the
release of her dataset, the data holder needs to estimate the attacks that a possible
observer could exploit to gain sensitive information. If the data holder wants to
achieve a higher protection for her data, she can combine (a subset of) the metrics
introduced in Sect. 4.5. This approach, while better preserving privacy of sensitive
data, has the drawback of limiting the number of tuples released, since the released
dataset must satisfy all the conditions in Fig. 4.4 (or a subset thereof). Analogously,
to take a safe approach, the data holder can choose a high value for the significance
level.

4.8 Chapter Summary

In this chapter, we considered the problem of protecting sensitive information in an
incremental data release scenario, where the data holder releases non sensitive data
on demand. As more and more data are released, an external observer can aggregate
such data and infer the sensitive information by exploiting the dependency between
the distribution of the non sensitive released data and the sensitive information itself.
We presented an approach for characterizing when data can be released without
incurring to such inference. To this purpose, we defined different metrics that can
be considered to determine when the released data can be exploited for inference,
and introduced the concept of safe release according to such metrics. We also
discussed how to enforce the information release control at run-time, and provided
an experimental evaluation of the proposed solution, proving its efficacy.



Chapter 5
Enforcing Dynamic Read and Write Privileges

As illustrated in Chap. 1, users and companies are more and more resorting on
external providers for storing their data and making them available to others. When
the release is selective, meaning that different users are authorized by the data owner
to access different portions of the released data, there is the problem of ensuring that
accesses to resources be allowed to authorized users only. Recent approaches based
on selective encryption provide convenient enforcement of read privileges over
outsourced resources, but are not directly applicable for supporting write privileges.
In addition, they cannot easily support the enforcement of a subscription-based
authorization policy where, due to new subscriptions and the publication of new
resources, both the set of users who can access a resource and the set of resources
change frequently over time. In this chapter, we build upon the selective encryption
approach to propose an efficient solution for enforcing dynamic read and write
privileges over outsourced data. We also define an effective mechanism for checking
data integrity. Finally, we enhance our solution to effectively support the definition
of subscription-based authorizations.

Part of this chapter is reprinted from Computers & Security, vol. 39, issue A: S. De Capitani di
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copyright notice displayed with material.
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5.1 Introduction

The advances in the Information and Communication Technologies (ICTs) have
driven the users into the Globalization era, where the techniques for processing, stor-
ing, and accessing information have radically changed. New emerging computing
paradigms (e.g., data outsourcing and cloud computing) offer enormous advantages
to both users and organizations. Users can now subscribe to a variety of services,
and access them anywhere anytime: at home from their laptop, on the train from
their tablet, or while waiting in a queue from their smartphone. Organizations are
more and more resorting to external elastic storage and computational services for
creating and running business over the Internet in new ways. Organizations can then
provide large-scale cloud data services widely accessible to a variety of users. A
common requirement is that data should remain confidential to both unauthorized
users and the external server storing them, which is considered honest-but-curious
(i.e., trustworthy for managing resources but not for accessing their content). To
provide such confidentiality guarantee, existing proposals typically assume data
to be encrypted before being sent to the external server, and associate with the
encrypted data additional indexing information that can be used by the server to
perform queries on encrypted data. For efficiency reasons, encryption is based on
symmetric keys. Earlier proposals typically consider data to be encrypted with a
single key, assuming either all users to have complete visibility of the resources
in the data collection, or the data owner to mediate access requests to the data
to enforce read authorizations. More recent proposals, addressing the problem
of allowing users to have selective visibility over the data (so that different sets
of users be able to access different resources), have proposed the application of
a ‘selective encryption’ approach. Intuitively, different keys are used to encrypt
different resources, and users have visibility on subsets of resources depending
on the keys they know. Proper modeling and key derivation techniques have
been devised to ensure limited key management overhead in approaches based on
selective encryption.

While interesting and promising, traditional solutions remain limited for a variety
of reasons. First, they assume outsourced resources to be read-only. In other words,
they assume that only the owner be authorized to modify resources, while all other
users can only read them. Such an assumption can result restrictive in all those
scenarios where a data owner wants to authorize other users, again selectively, to
write and update the outsourced resources. Moreover, traditional techniques cannot
easily support a dynamic subscription-based scenario, where both the set of users
who can access a resource and the set of resources change frequently over time,
due to new subscriptions and the publication of new resources. In this regard, they
cannot be directly applied to emerging real-world scenarios in which, for example,
users pay for a service and can access the resources made available during their
subscriptions: to access resources after the expiration of their subscriptions, users
would be forced to download them to their local machine.
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In this chapter, we extend selective encryption approaches to overcome these
two limitations. By relying on selective encryption for enforcing both read and
write access restrictions, our solution has efficiency and manageability as primary
goals. Before being stored at the external server, resources are encrypted, and an ad-
hoc key derivation structure is built to avoid expensive re-keying and re-encryption
operations. Our contribution is therefore multifold. First, we propose an efficient
solution for enforcing both read and write authorizations on encrypted resources
undergoing selective release. Second, we complement our solution with the defini-
tion of a subscription-based authorization policy, allowing users to maintain the right
to access the resources made available during their subscriptions without the worry
that they will lose this right after the expiration of their subscriptions (for instance,
so that users who have purchased an annual subscription for 2012 for a magazine
be able to access all and only the issues of the magazine published in 2012, even
after December 31, 2012). More in details, our contributions can be summarized as
follows.

As for the enforcement of read and write authorizations, we build upon an
earlier proposal [39] to support grant and revoke of write authorizations, providing a
general solution applicable to scenarios where static write authorizations may result
limiting. A key feature of our solution is that it delegates the enforcement of updates
on the write access control policy to the external server, reducing the burden left at
the data owner side. We also propose a mechanism allowing both the data owner
and the authorized writers to verify the integrity of the resources externally stored
(i.e., to verify that resources have not been modified by unauthorized users or by the
server), applicable also in case of updates to the write access policy.

As for the enforcement of subscription-based authorizations, we take once more
advantage of selective encryption to guarantee that users who subscribe for a
service can access all and only the resources published during their subscriptions,
while allowing the resources to self-enforce the subscription-based restrictions. The
key derivation structure is updated whenever new resources are published, new
subscriptions are received, or users withdraw from their subscriptions.

By taking into consideration different data release scenarios (i.e., both traditional
and subscription-based scenarios), we provide a solution for enforcing access
restrictions on externally stored resources, easily applicable by a data owner
depending on her specific release needs.

5.1.1 Chapter Outline

The remainder of this chapter is organized as follows. Section 5.2 illustrates some
basic concepts on selective encryption, and motivates the need for enforcing write
privileges on selectively released resources. Section 5.3 illustrates our solution for
enforcing write authorizations exploiting selective encryption. Section 5.4 discusses
our approach for enforcing grant and revoke of write privileges. Section 5.5 presents
a mechanism for allowing the data owner and writers to check the write operations
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executed and detect possible misbehaviors by the server or by the users. Section 5.6
extends the integrity check mechanism to support updates to the write access
policy. Section 5.7 motivates our extended subscription-based scenario, illustrates
the specific protection requirements to be guaranteed, and formalizes the concept
of subscription-based policy. Section 5.8 presents our techniques for enforcing
a subscription-based policy. Section 5.9 illustrates how new resources can be
published and subscriptions managed. Finally, Sect. 5.10 gives our final remarks
and concludes the chapter.

5.2 Basic Concepts and Problem Statement

Our work builds upon traditional proposals (e.g., [37]) for confidential data out-
sourcing, according to which a data owner outsourcing data to a honest-but-curious
server and wishing to provide selective visibility over them to other users encrypts
resources before sending them to the external server for storage, and reflects the
authorization policy in the encryption itself. Therefore, each resource o is encrypted
with a key to be made known only to the users authorized to read o, that is, to
users who belong to the access control list of o. Symmetric encryption is used and
different keys are assumed: the adoption of a key derivation technique based on
public tokens allows users to access the resources of the system while having to
manage only one key. In further detail, each key ki is identified by a public label li
and, given keys ki and kj , token di;j is computed as kj ˚h(ki ,lj ), with ˚ the bitwise
xor operator, and h a deterministic cryptographic function. Token di;j permits to
derive key kj from the knowledge of key ki and public label lj [5]. All keys with
which resources are encrypted are then connected in a graph structure, that is, a
DAG whose nodes correspond to keys of the system and whose edges correspond to
tokens that ensure that each user can-via a sequence of public tokens-derive the keys
corresponding to the sets to which she belongs. Each user is then communicated
the key of the node representing herself in the graph. Each resource is encrypted
with a key that can be derived only by authorized users according to the access
control policy set by the data owner. Encrypted resources as well as the tokens
are outsourced to the server. In particular, for each resource o, the external server
stores the encrypted version of the resource together with the resource identifier
and the label of the key with which the resource is encrypted. A user authorized to
read a resource can, via the tokens available on the server, derive the key used for
encrypting the resource and decrypt it.

Example 5.1. Consider a system with four users U ={A,B ,C ,D} and four
resources O={o1,o2,o3,o4}, whose access control lists are reported in Fig. 5.1a.
Figure 5.1b illustrates the encrypted resources stored at the server, where: r_label
is the label of the key used to encrypt the resource (i.e., the key associated with
its access control list); o_id is the resource identifier; and encr_resource is the
encrypted resource. Figure 5.1c illustrates the key derivation graph enforcing the
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a b

c d

Fig. 5.1 An example of four resources with their acls (a), encrypted resources (b), key derivation
graph (c), and tokens (d)

authorizations. For the sake of readability, in the key derivation graph we denote
a key corresponding to a given acl U (i.e., a key with label lU and value kU ) with
U . Figure 5.1d illustrates the tokens corresponding to the key derivation graph in
Fig. 5.1c.

The encryption-based model described in this section nicely fits a scenario in
which the authorization policy regulates only read access privileges, selectively
restricting resource visibility to subsets of users. The support of read accesses
without consideration of write privileges may result however limiting in emerging
data sharing scenarios (e.g., document sharing), where the data owner may wish to
grant other users the privilege to modify some of her resources. Unfortunately, the
keys associated with resources for regulating the read accesses to them cannot be
used for restricting write accesses as well. As a matter of fact, we can imagine that
in many situations the set of users authorized to write a resource is different from
(typically being a subset of) the set of users authorized to read it. A straightforward
solution for enforcing write authorizations might consist in simply outsourcing to
the external server the authorization policy (for write privileges) as is. The server
would then perform traditional (authorization-based) access control, adopting user
authentication and policy enforcement. This solution would however present the
main drawback of requesting a considerable management overhead. Also, it would
not be in line with the goal pursued by outsourcing approaches, aimed at minimizing
the server’s involvement and responsibility in access control enforcement. Our goal
is to enforce write privileges following the same spirit of the proposal in [37]: for
this reason, we propose to exploit selective encryption for the enforcement also of
write authorizations. As a matter of fact, having resources tied to access restrictions
by means of cryptographic solutions can provide a more robust and flexible control,
whose enforcement is less exposed to server misbehaviors. However, while the
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encryption of a resource with a key known to all and only the users authorized
to read it suffices for enforcing read authorizations, enforcement of write privileges
requires cooperation from the external server. In the following sections, we will
describe an approach, based on selective encryption, for the effective outsourcing to
the external server of the enforcement of both read and write privileges, as well as
of grant and revoke operations.

5.3 Authorization Policy

The basic idea of our approach for the enforcement of both read and write privileges
consists in associating each resource with a write tag defined by the data owner,
and in adopting selective encryption techniques to regulate both access to resource
contents and to their write tags. Our intuition is to encrypt the tag of a given
resource with a key known only by the users authorized to write the resource and
by the external server. In this way, only the server and authorized writers will have
access to the plaintext write tag of each resource. The server will then accept a
write operation on a resource when the requesting user shows knowledge of the
corresponding write tag. Since the key used for encrypting the write tag has to
be shared by the server and the writers, we leverage on the underlying structure
already in place for regulating the necessary read operations. In this section, we
illustrate our key derivation structure for managing the encryption keys of the system
(Sect. 5.3.1), and we discuss how to use it for enforcing read and write access
restrictions (Sect. 5.3.2).

5.3.1 Key Derivation Structure

Elaborating on the approach in [37], and adapting it to our context, we introduce a
set-based key derivation graph as follows.

Definition 5.1 (Set-Based Key Derivation Graph). Let U be a set of users and
U� 2U be a family of subsets of users in U such that 8u2U , {u}2U. A set-based
key derivation graph over U and U is a triple hK ,L ,Di, with K a set of keys, L
the set of corresponding labels, and D a set of tokens, such that:

1. 8U 2U, there exist a derivation key kU 2K ;
2. 8u2U , 8U 2 U n fug s.t. u2 U , there exists either a token dfug;U or a sequence

hdfug;Ui
; : : : ; dUj ;U i of tokens in D , with dw;z following dx;y in the sequence if

y D w.

Definition 5.1 ensures that, for each set U2U of users, there exists a derivation
key, and that each user u in the system can derive (through either a single token or a
chain of tokens) all the derivation keys of all the groups U2U to which she belongs.
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Since our approach requires each resource to be associated with a write tag that
must be encrypted with a key shared by the server and the authorized writers of
the resource, we extend the set-based key derivation graph in Definition 5.1 with
the external server. However, since the server cannot access the plaintext of the
outsourced resources, it cannot be treated the same way as authorized users (i.e.,
considering it as an additional user). We then define a key derivation structure by
extending the set-based key derivation graph to include also the keys that will be
shared with the server, and will be used to encrypt the write tags for enforcing write
privileges (see Sect. 5.3.2). These additional keys are defined in such a way that
authorized users can compute them applying a secure hash function hs to a key they
already know (or can derive via a sequence of tokens), while the server can derive
them through a token specifically added to the key derivation structure. Compared
with the set-based key derivation graph in Definition 5.1, in the key derivation
structure we also distinguish between two kinds of keys (possibly associated with
each set of users): derivation keys and access keys. Access keys are actually used to
encrypt resources, while derivation keys are used to provide the derivation capability
via tokens, that is, tokens can be defined only with derivation keys as starting
points. Each set of users in U is therefore associated with a derivation key k and,
when needed, also with an access key ka obtained by applying a secure hash
function ha to k (i.e., ka=ha(k)). The rationale for this evolution is to distinguish
the two roles associated with keys, namely: enabling key derivation (by applying
the corresponding tokens) and enabling access to resources.

Formally, a key derivation structure is defined as follows.

Definition 5.2 (Key Derivation Structure). Let U be a set of users, S be an
external server, U � 2U be a family of subsets of users in U such that 8u2U ,
{u}2 U, Us and Ua be two subsets of U, and hK 0,L 0,D 0i be a set-based key
derivation graph over U and U. A key derivation structure implied by Us and
Ua over hK 0,L 0,D 0i is a triple hK ,L ,Di, with K a set of keys, L the set of
corresponding labels, and D a set of tokens, such that:

1. K D K 0 [ {kS } [ {kU [fS gDhs.kU / j U 2 Usg [ {ka
UDha.kU/ j U2 Ua},

with hs and ha two secure hash functions;
2. D D D 0 [ {dS ;U [fS g j U 2 Us}.

A key derivation structure therefore extends a set-based key derivation graph by
including: (1) a derivation key kS assigned to the server; (2) a key kU [fS g shared
by the users in U and the server, for each set U of users in Us; (3) an access key ka

U
shared by the users in U, for each set U of users in Ua; and (4) a token dS ;U [fS g
that allows the server to derive key kU [fS g starting from its key kS , for each set
U of users in Us . For each set U of users in Us , both a derivation key kU and a key
kU[fS g shared with the server belong to K . Analogously, for each set U of users
in Ua, both a derivation key kU and an access key ka

U belong to the set K of keys in
the key derivation structure.

Figure 5.2 illustrates function Define_Key_Derivation_Structure that builds
a key derivation structure. The function receives as input a set U of users, an
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Fig. 5.2 Function that defines a key derivation structure

external server S , three families U, Us , and Ua of subsets of users in U , with Us�U
and Ua�U, and two secure hash functions hs and ha. It returns the key derivation
structure hK ,L ,Di implied by Us and Ua over hK 0;L 0;D 0i (Definition 5.2). The
function operates in two steps: the first step defines the set-based key derivation
graph over U and U; the second step extends the key derivation graph with the
server, for defining the key derivation structure of interest. In the first step, the
function leverages on the algorithms in [37] to define the set-based key derivation
graph hK 0,L 0,D 0i. To this aim, for each set U2U of users the function generates
a derivation key and the corresponding label, and inserts them into the sets K 0
of keys and L 0 of labels, respectively (lines 5–8). The function then defines a
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set D 0 of tokens such that, for each user u in the set U , there is a token (or a
sequence of tokens) in D 0 that permits to derive, starting from ku, all those keys
kU associated with a set U2U of users with u2U (lines 10–12). In the second step,
function Define_Key_Derivation_Structure extends the set-based key derivation
graph computed in the previous step to obtain the key derivation structure of interest.
To this aim, the function first generates a derivation key kS for the server and
the corresponding label lS , and inserts them into sets K and L , respectively
(lines 14–16). The set D of tokens is initialized to the set D 0 of tokens in the set-
based key derivation graph (line 17). For each set U of users in Us , the function
computes key kU [fS g (shared by the server and U) applying secure hash function
hs to kU, generates the corresponding label, and inserts them into the set K of
keys and into the set L of labels in the key derivation structure, respectively
(lines 18–22). The set D of tokens is then updated by inserting a token that
permits to derive kU [fS g from kS for each set U of users in Us (line 23). The
function generates an access key ka

U (and the corresponding label) for each set
U of users in Ua by applying secure hash function ha to the derivation key kU

associated with the same set of user, and inserts the key and the label into K
and L , respectively (lines 24–28). The function terminates returning the resulting
key derivation structure hK ,L ,Di (line 29). The following theorem formally
shows that function Define_Key_Derivation_Structure correctly computes a key
derivation structure.

Theorem 5.1 (Correctness of Procedure Define_Key_Derivation_Structure).
Let U be a set of users, S be an external server, U� 2U be a family of subsets
of users in U such that 8u2U , {u}2U, and Us and Ua be two subsets of U. Triple
hK ,L ,Di computed by function Define_Key_Derivation_Structure in Fig. 5.2 is
a key derivation structure (Definition 5.2).

Proof. We prove that the two conditions in Definition 5.2 are satisfied by a triple
hK ,L ,Di computed by function Define_Key_Derivation_Structure.

• Condition 1 is satisfied since in Step 1 the function generates a key for each set
of users in U and inserts it into K 0 (lines 6–7). The set K 0 of keys resulting
from Step 1 then corresponds to the set of keys of the set-based key derivation
graph. In Step 2, the function generates a key kS for the server (line 14) and
inserts both key kS and all the keys in K 0 into K (line 15). For each set U

of users in Us , the function computes the key for U [{S } as hs(kU ) (lines 18–
19), where hs is a secure hash function, and inserts kU[fS g into K (line 21).
Similarly, for each set U of users in Ua, the function computes the access key ka

U
as ha(kU ) (lines 24–25), where ha is a secure hash function, and inserts ka

U into
K (line 27).

• Condition 2 is satisfied since in Step 1 the function defines a set D 0 of tokens
that guarantees that each key kU in K can be directly derived from a set
{kU1 ,. . . ,kUn } of keys in K 0 such that U1 [ : : :[Un=U (lines 10–12). As proved
in [37], this property is equivalent to Condition 2 in Definition 5.1. Therefore the
set of tokens D 0 resulting from Step 1 corresponds to the set of tokens of the set-
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Fig. 5.3 An example of read and write acls (a), encrypted resources (b), key derivation structure
(c), and tokens (d)

based key derivation graph. In Step 2 the function inserts into D all the tokens in
D 0 (line 17) and, for each set U of users in Us , it defines and inserts into D token
dS ;U [fS g that permits to derive kU [fS g from kS (line 23). �

Example 5.2. Consider a system with four users U D{A,B ,C ,D}, a family
UD{A,B ,C ,D,AC ,BD,ABC ,ABCD} of subsets of users, and two subsets
UsD{B ,AC ,BD} and UaD{BD,ABC ,ABCD} of U. Figure 5.3c illustrates the
key derivation structure computed by function Define_Key_Derivation_Structure
in Fig. 5.2. In the figure, nodes drawn with a continuous line represent derivation
keys, and nodes drawn with a dotted line represent keys shared with the external
server (for the sake of readability, access keys are not reported in the figure).
Continuous edges represent tokens, and dotted edges correspond to hash-based
derivations computed via secure hash function hs .

5.3.2 Access Control Enforcement

We now illustrate our proposal for enforcing both read and write access restrictions.
Each resource o is associated with two (possibly different) access control lists: (1)
a read access list rŒo� reporting the set of users authorized to read o, and (2) a write
access list wŒo� reporting the set of users authorized to write o. Consistently with
most real-world scenarios, we assume the users authorized to write a resource to
also read it, that is, 8o 2O: wŒo��rŒo�.
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Read authorizations are enforced through selective encryption. Each resource o

in the set O of resources is then encrypted with the access key corresponding to the
set of users in its read access list rŒo�, which is known or can be derived by all and
only the users authorized to view the resource content.

Enforcement of write authorizations, as mentioned at the beginning of this
section, relies on the definition of a write tag for each resource and on the
cooperation with the external server. Each resource o2O is associated with a
write tag tagŒo�, defined by the data owner using a secure random function to
ensure independence of the tag from both the resource identifier and its content.
To guarantee that only the server S and the set wŒo� of authorized writers know the
plaintext value of the write tag of resource o, tagŒo� is encrypted with a key that is
known or can be derived only by the users in wŒo� and by the server.

Each resource o2O is stored at the external server in encrypted form, together
with the following metadata.

• r_label: label of the key with which the resource is encrypted, which is the
access key of the set rŒo� of users authorized to read o (i.e., la

rŒo�).
• w_label: label of the key shared by the set wŒo� of users authorized to write o

and the server S (i.e., lwŒo�[fS g).
• encw_tag: write tag tagŒo� of resource o, which is used by the server to enforce

restrictions on write privileges. The tag is encrypted with the key identified by the
label in w_label (i.e., E.tagŒo�; kwŒo�[fS g), where E is a symmetric encryption
function computed over tagŒo� with key kwŒo�[fS g).

• encr_resource: encrypted version of resource o, encrypted with the access
key identified by the label in r_label (i.e., E.o; ka

rŒo�/).

Given the set U of users and the set O of resources in the system,
where each resource is associated with read and write access control lists as
mentioned above, the data owner must compute keys and tokens composing
the key derivation structure before outsourcing resources in O . To this aim,
it calls procedure Initialize_System in Fig. 5.4, which in turn calls function
Define_Key_Derivation_Structure in Fig. 5.2 to properly define the key derivation
structure. The procedure receives as input the set U of users and the set O of
resources in the system, an external server S , and two secure hash functions hs

and ha. The procedure first needs to define three families U, Us , and Ua of subsets
of users in U . U corresponds to the set of groups of users whose keys must be
represented in the system for the correct enforcement of the authorizations. It then
includes the singleton sets {u} of users u in U , and the sets U of users representing
read and write access lists (rŒo� and wŒo�, respectively) of resources o in O . Us is the
subset of U representing those sets of users that have to share a key with the external
server. It then includes all the sets of users corresponding to the write access lists
wŒo� of resources o in O . Ua is the subset of U representing those sets of users for
which an access key needs to be defined. It then includes all the sets corresponding
to the read access lists rŒo� of resources o in O (lines 2–4). The procedure then
calls function Define_Key_Derivation_Structure, which returns a key derivation
structure (line 5). Finally, the procedure:
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Fig. 5.4 Procedure that enforces the access control policy defined by the data owner before
outsourcing resources

1. communicates to each user u derivation key ku, and to the external server
derivation key kS (lines 7–9);

2. computes and stores at the external server the encrypted resources and the
associated metadata (lines 11–21);

3. stores at the external server all the tokens in the key derivation structure (i.e.,
tokens in D) as a set of triples of the form hli ; lj ; di;j i indicating that the key
with label lj can be directly derived from the key with label li through token di;j

(lines 22–29).
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Example 5.3. Consider a system with four users U ={A,B ,C ,D} and four
resources O={o1,o2,o3,o4}, and assume read and write acls of resources to be
as in Fig. 5.3a (read acls are the same as in Example 5.1). Figure 5.3c illustrates
the key derivation structure computed as described in Example 5.2. Figures 5.3b
and d illustrate the encrypted resources and associated metadata, and the tokens
outsourced to the external server, respectively.

It is easy to see that our approach guarantees: (1) correct read authorization
enforcement; (2) correct write authorization enforcement; and (3) write control by
the server. Read authorization enforcement is guaranteed as each resource o2O is
encrypted with an access key (i.e., ka

rŒo�) that only authorized readers in rŒo� know
or can derive. In fact, each user u can compute any access key ka

U such that u2U
by applying hash function ha to derivation key kU , which u knows or can derive
as she belongs to U. Write authorization enforcement is guaranteed since the write
tag tagŒo� of each resource o2O is encrypted with a key (i.e., kwŒo�[fS g) that only
authorized writers in wŒo� (and the server) can derive. Also, the server is assumed to
be honest-but-curious and therefore not interested in tampering with resources (see
Sects. 5.5 and 5.6). Write control by the server is guaranteed since the server has
visibility over the write tag of all resources, which is encrypted with a key that the
server can directly derive.

The correct enforcement of the authorization policy is formally proved by the
following theorem.

Theorem 5.2 (Correct Enforcement of Authorizations). Let U be a set of users,
S be an external server, O be a set of resources such that 8o 2 O rŒo� and wŒo� are
the read and write access lists of o, respectively. Our access control system satisfies
the following conditions:

1. 8u 2 U and 8o 2 O , u can decrypt encr_resourceŒo� iff u 2 rŒo� .read
authorization enforcement/;

2. 8u 2 U and 8o 2 O , u can decrypt encw_tagŒo� iff u 2 wŒo� .write
authorization enforcement/;

3. 8o 2 O , S can decrypt encw_tagŒo� .write control/.

Proof. The proof is based on the fact that, by Theorem 5.1, triple hK ,L ,Di
computed by function Define_Key_Derivation_Structure is a key derivation
structure. We first note that, by procedure Initialize_System in Fig. 5.4,K includes
a derivation key ku for each user u2U , and a derivation key kU for each set U of
users representing a read or write access list of a resource o2O . In fact, function
Define_Key_Derivation_Structure is called over U , S , U, Us , Ua, hs , and ha,
with Us the set of write access lists, Ua the set of read access lists, and U the result
of Ua[Us together with all the singleton sets {u} of users in U (lines 2–5). We now
prove that each condition in Theorem 5.2 holds.

1. u can decrypt encr_resourceŒo� H) u 2 rŒo�.
Assume, by contradiction, that u 62rŒo� can decrypt encr_resourceŒo�.
Since encr_resourceŒo� is computed by encrypting o with access key ka

rŒo�
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(line 19), u can either compute or derive ka
rŒo�. D does not include any token that

permits to derive access keys, therefore u needs to know derivation key krŒo�2K
with which ka

rŒo�2K has been computed. However, D includes a token (or a
sequence thereof) from derivation key ku of user u (lines 7–8) to derivation key
kU iff u2 U (Condition 2 in Definition 5.1). This implies that {u}�rŒo�, which
contradicts our hypothesis.

u2rŒo� H) u can decrypt encr_resourceŒo�.
By Condition 2 in Definition 5.1, there exists a token (or a sequence thereof) in
D that permits to derive derivation key kU from ku iff u2 U . Therefore, if u2rŒo�,
there exists a token (or a sequence thereof) in D from ku to krŒo�2K . Since u
can derive krŒo� and ha is public, she can also compute access key ka

rŒo�=ha(krŒo�)
and decrypt encr_resourceŒo�.

2. u can decrypt encw_tagŒo� H) u 2 wŒo�.
Assume, by contradiction, that u 62wŒo� can decryptencw_tagŒo�. encw_tagŒo�

is computed by encrypting tagŒo� with key kwŒo�[fS g (line 18). Therefore, u can
compute or derive kwŒo�[fS g. Since all tokens in D that permit to derive key
kwŒo�[fS g shared with the server have kS as starting point (Condition 2 in
Definition 5.2), u must know (or be able to derive) derivation kwŒo�. However,
D includes a token (or a sequence thereof) from derivation key ku of user u
(lines 7–8) to derivation key kU 2K , iff u2 U (Condition 2 in Definition 5.1).
This implies that {u}�wŒo�, which contradicts our hypothesis.

u2wŒo� H) u can decrypt encw_tagŒo�.
By Condition 2 in Definition 5.1, there exists a token (or a sequence thereof)
in D that permits to derive derivation key kU from ku iff u2 U . Therefore, if
u2wŒo�, there exists a token (or a sequence thereof) in D from ku to kwŒo�. Since
u can derive kwŒo� and hs is public, she can also compute key kwŒo�[fS g=hs(kwŒo�)
and decrypt encw_tagŒo�.

3. S can decrypt encw_tagŒo�.
As noted above, encw_tagŒo� is computed by encrypting tagŒo� with key
kwŒo�[fS g. Since S knows key kS and, for each key kU [fS g in K , D includes
token dS ;U [fS g (Condition 2 in Definition 5.2), S can derive kwŒo�[fS g and
decrypt encw_tagŒo�. �

5.4 Policy Updates

Policy updates must be managed with special care in our scenario, since they might
require expensive re-encryption and/or key re-distribution operations by the data
owner, thus limiting the advantages of data outsourcing. The problem of granting
and revoking read authorizations with limited overhead for the data owner has been
already investigated, and we can therefore assume to solve it by using the proposal
in [37], which is based on over-encryption. In this section, we will focus on the
management of write privileges, with the goal of outsourcing the enforcement of
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grant and revoke operations to the external server. Since both grant and revoke
operations translate into the insertion of keys (and tokens) in the key derivation
structure, we first illustrate how to manage this operation (Sect. 5.4.1). We then
describe how grants and revokes of privileges can be enforced to correctly reflect
updates in the write authorizations (Sect. 5.4.2).

5.4.1 Updates to the Key Derivation Structure

The basic operations on the key derivation structure necessary to manage grant and
revoke operations consist in the retrieval/insertion of derivation and access keys.

Function Get_Key in Fig. 5.5 receives as input a set U�U of users and returns
the derivation key associated with it. The function first checks whether the set K of
keys in the key derivation structure already includes a derivation key for U (line 1).
If this is not the case, the function generates a new derivation key for the set of users
together with its label, and computes the corresponding access key together with its
label. It then inserts keys and labels in the sets K and L of keys and labels of the
key derivation structure (lines 2–7). The function then updates the set D of tokens in
the key derivation structure by inserting the tokens necessary to guarantee that each
user u in U can derive kU from her key ku (lines 8–12). The function then updates
relation TOKEN at the server side accordingly (lines 13–17). Finally, the function
returns derivation key kU (line 18).

Function Get_Shared_Key in Fig. 5.5 receives as input a set U�U of users
and returns the key shared by the server and U. The function first checks whether
the set K of keys already includes the key of interest (line 19). If this is not the
case, the function first retrieves the derivation key associated with the set U of users
by calling function Get_Key over U (lines 20–21). It then computes the hash of
kU through secure hash function hs , obtaining kU[fS g (line 22). The function then
generates the corresponding label and inserts the key into K and the label into L
(lines 23–25). The function inserts into D a token that permits the server to derive
kU[fS g from kS (line 26). The function then updates relation TOKEN at the server
side accordingly (lines 27–31). Finally, the function returns kU[fS g (line 32).

Example 5.4. Consider the key derivation structure of Fig. 5.3c, and assume that a
key has to be shared by the server S and the set ABD of users. Figure 5.6 illustrates
the key derivation structure, and the corresponding set of tokens, resulting from the
call to function Get_Shared_Key in Fig. 5.5 over ABD. Since K does not include
a key shared by S and ABD, function Get_Shared_Key calls function Get_Key
over ABD, which inserts derivation key kABD and access key ka

ABD into K , labels
lABD and la

ABD into L , and tokens dA;ABD and dBD;ABD into D . It returns the
derivation key of ABD. Function Get_Shared_Key then computes key kABDS by
applying secure hash function hs to kABD , inserts kABDS intoK , the corresponding
label lABDS into L , and token dS ;ABDS into D . In Fig. 5.6b and in the following
figures, we denote tokens inserted by functions Get_Key and Get_Shared_Key
with a bullet �.
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Fig. 5.5 Pseudocode of functions Get_Key and Get_Shared_Key

5.4.2 Grant and Revoke

Despite effective for enforcing changes to read authorizations, over-encryption falls
short when it is necessary to grant or revoke write privileges. In fact, in a worst
case scenario, users are not oblivious (i.e., they have the ability to store and keep
indefinitely all information they have been entitled to access), and the users in the
write access list of a resource have knowledge of the value of the corresponding
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a
b

Fig. 5.6 Key derivation structure (a) and tokens (b) after the insertion of key kABDS in the key
derivation structure in Fig. 5.3c

write tag. These users can therefore exploit such knowledge to modify the resource
even when they lost the write privilege. To illustrate, consider a resource o with write
access list wŒo� and assume that, at a given point in time, the data owner revokes
from user u2wŒo� the write privilege for o. To enforce the revoke operation, write
tag tagŒo� should be encrypted with a key known only to the users in wŒo�n{u}.
However, since u was previously included in wŒo� she might know the plaintext value
of the write tag tagŒo�. Even without being able to decrypt the encrypted write tag
sent by the server, user u would then still be able to correctly reply to the challenge
of the server, thus violating the write access policy defined by the data owner. For
instance, consider the key derivation structure in Fig. 5.3c, and suppose that the data
owner revokes the write privilege over resource o2 from user B . If B already knows
the plaintext value of tagŒo2�, she can still answer the challenge of the server, and
then improperly modify o2. Since this problem depends on previous knowledge of
the revoked user and not on her ability to decrypt the write tag received from the
server, it is necessary to associate a fresh write tag with the revoked resource to
effectively enforce the policy change.

We now illustrate in details how write authorizations can be granted and revoked
upon decision of the data owner.

Grant We consider the case of the data owner granting user u write privilege over
resource o. Note that, if u is not a reader of o, the access control policy is first
modified granting u read access to o. To ensure that write requests by u are accepted
by the server, the data owner must encrypt the write tag associated with o with
a key known to: the server, the authorized writers in wŒo�, and the user u who is
being granted the write privilege. In other words, tagŒo� must be encrypted with a
key shared by the server and the new set wŒo�[{u} of writers. Clearly, if the key
derivation structure does not include a key known by the server and by all and only
the users in wŒo�[{u}, then the data owner must first update the key derivation
structure to include it.
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Fig. 5.7 Pseudocode of the procedures operating at the data owner and at the server side to grant
and revoke write privileges

Procedure Grant in Fig. 5.7 receives as input a user u and a resource o and grants
u the privilege of modifying o. The procedure first updates the read access list (if
necessary) and the write access list of the resource (lines 1–2). It then retrieves the
derivation key (and the corresponding label) that will be used to encrypt the write
tag of the resource (i.e., the key shared by the authorized writers of o, including u,
and the server) by calling function Get_Shared_Key on the updated write access
list of the resource (lines 3–4). The procedure then calls procedure Encrypt_Tag,
which is executed by the server, to update the representation of the resource at the
server side (line 5). Procedure Encrypt_Tag in Fig. 5.7 receives as input a resource
identifier id and a label lnew and encrypts the write tag of the resource identified
by id with the key identified by lnew. To this purpose, it first determines the tuple
t in the outsourced table representing resource o with identifier id (line 1). It then
finds the token that permits to derive key kold with which t[encw_tag] is currently
encrypted (i.e., the token from lS to t[w_label]), and the token that permits to
derive key knew with which the write tag must be encrypted to reflect the policy
change (i.e., the token from lS to lnew) (lines 2–3). The procedure then uses these
tokens to derive both kold and knew (lines 4–5). It decrypts t[encw_tag] with kold ,
re-encrypts the write tag with knew, and updates t[w_label], setting it to lnew to
reflect the policy update (lines 6–8).
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d

b

Fig. 5.8 Read and write acls (a), encrypted resources (b), key derivation structure (c), and tokens
(d) of Fig. 5.3 after B is granted write permission over o2 and D is granted write permission
over o4

Example 5.5. Consider the key derivation structure, outsourced resources, and
tokens in Fig. 5.3 and assume that the data owner grants A write privilege over o2

(i.e., wŒo2�=wŒo2�[fAg=ABD). Since the key derivation structure includes neither
a key shared by ABD and S , nor a derivation key for ABD, the structure is first
updated to accommodate the new keys (see Example 5.4). Then, the write tag of o2

is re-encrypted by the server with kABDS .
Assume now that the data owner grants D write privilege over o4 (i.e., wŒo4�=

wŒo4�[fDg=BD). Since the key derivation structure already contains a key for the
updated write access list of o4, no update is necessary to the key derivation structure.
Hence, the only operation performed to enforce this authorization update consists
in encrypting the write tag of o4 with key kBDS . Figure 5.8 illustrates the read
and write access lists, the encrypted resources, the key derivation structure, and the
tokens after these two grant operations.

Revoke We consider the case of the data owner revoking from user u the write
privilege over resource o. To ensure that u cannot exploit her knowledge of the
plaintext write tag tagŒo� of the revoked resource to perform unauthorized write
operations on o, a new write tag must be defined for o, whose value must be
independent from the former value of tagŒo� (i.e., it has to be chosen adopting a
secure random function). Since the server is authorized to know the write tag of
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each and every resource in the system to correctly enforce write privileges, the data
owner can delegate to the external server both the generation and encryption with
the correct key of the write tag of resource o. In fact, the data owner does not need
to known or keep track of the write tag of her resources.

Procedure Revoke in Fig. 5.7 receives as input a user u and a resource o and
revokes u the privilege of modifying o. The procedure first updates the write access
list wŒo� of the resource by removing user u (line 6). It then retrieves the derivation
key (and the corresponding label) that will be used to encrypt the write tag of
the resource (i.e., the key shared by the authorized writers of o, except u, and the
server) by calling function Get_Shared_Key on the updated write access list of the
resource (lines 7–8). The procedure then calls procedure Create_New_Tag, which
is executed by the server, to generate a new write tag for the resource and update its
representation at the server (line 9). Procedure Create_New_Tag in Fig. 5.7 receives
as input the identifier id of resource o and a label lnew, and generates a new write
tag for o, which is then encrypted with the key identified by lnew. The procedure
first determines the tuple t in the outsourced table representing the resource with
identifier id (line 9). It then finds the token that permits to derive the key knew

with which the new write tag must be encrypted to reflect the policy change (i.e.,
the token from lS to lnew) (line 10). The procedure uses this token to derive knew

(line 11), randomly generates a value for the write tag (line 12), and encrypts this
value with key knew (line 13). Finally, the procedure updates t[w_label], setting
it to lnew to reflect the policy update (line 14).

Example 5.6. Consider the key derivation structure, outsourced resources, and
tokens in Fig. 5.8, and assume that the data owner revokes from A the write privilege
over resource o3 (i.e., wŒo3�=wŒo3�nfAg=C ). Since the key derivation structure does
not include a key shared by the server and C , such a key is first computed as the
hash of derivation key kC with secure hash function hs . Then, a new write tag is
generated for o3 and encrypted with kCS . Figure 5.9 illustrates the read an write
access lists, the encrypted resources, the key derivation structure, and the tokens
after this revocation.

The following theorem formally proves that procedures Grant and Revoke
correctly enforce updates to the write authorizations in the system.

Theorem 5.3 (Correct Enforcement of Policy Updates). Let U be a set of users,
S be an external server, O be a set of resources with rŒo� and wŒo� the read
and write access lists of o, respectively, and hK ,L ,Di a key derivation structure.
Procedures Grant and Revoke in Fig. 5.7 guarantee that the following conditions
are satisfied:

1. 8u 2 U and 8o 2 O , u can decrypt encr_resourceŒo� iff u 2 rŒo� .read
authorization enforcement/;

2. 8u 2 U and 8o 2 O , u can decrypt encw_tagŒo� iff u 2 wŒo� .write
authorization enforcement/;

3. 8o 2 O , S can decrypt encw_tagŒo� .write control/.
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Fig. 5.9 Read and write acls (a), encrypted resources (b), key derivation structure (c), and tokens
(d) of Fig. 5.8 after A is revoked write permission over o3

Proof. To prove Theorem 5.3, we must first show that both function Get_Key and
function Get_Shared_Key, which possibly update the key derivation structure, do
not compromise its correctness (Definition 5.2), as proved by the following two
lemmas.

Lemma 5.1 (Correctness of Function Get_Key). Let U be a set of users, U be a
subset of U , S be an external server, and hK ,L ,Di be a key derivation structure.
Triple hK 0,L 0,D 0i resulting from the execution of function Get_Key.U/ in Fig. 5.5
is a key derivation structure (Definition 5.2).

Proof. Since we assume that hK ,L ,Di is a key derivation structure when function
Get_Key is called, we need to consider only the keys and tokens inserted, updated,
or removed by the function.

If the key derivation structure already includes a key kU known to all and only
the users in U, the function does not modify hK ,L ,Di and therefore the lemma
holds (lines 1–2).

If, on the contrary, kU 62K , function Get_Key inserts it into the key derivation
structure. We then need to prove that such an insertion does not violate the
conditions in Definition 5.2.

• Condition 1 is satisfied since function Get_Key generates a derivation kU (and a
label lU) and computes the corresponding access key ka

U (and a label la
U). It then
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inserts kU,ka
U into K and lU ,la

U into L (lines 3–7). The function then inserts
access key ka

U into K only when the corresponding derivation key kU has been
inserted into K .

• Condition 2 is satisfied as the set of tokens inserted into D by function Get_Key
guarantees that kU can be directly derived from a set {kU1 ,. . . ,kUn } of keys in
K such that U1 [ : : : [ Un=U (lines 8–12). As proved in [37], this property is
equivalent to Condition 2 in Definition 5.1. �

Lemma 5.2 (Correctness of Function Get_Shared_Key). Let U be a set of
users, U be a subset of U , S be an external server, and hK ,L ,Di be a
key derivation structure. Triple hK 0,L 0,D 0i resulting from executing function
Get_Shared_Key.U/ in Fig. 5.5 is a key derivation structure (Definition 5.2).

Proof. Since we assume that hK ,L ,Di is a key derivation structure when function
Get_Shared_Key is called, we need to consider only the keys and tokens inserted,
updated, or removed by the function.

If the key derivation structure already includes a key kU[fS g shared by the users
in U and the external server, the function does not modify hK ,L ,Di and therefore
the lemma holds (lines 19–20).

If, on the contrary, kU[fS g 62K , function Get_Shared_Key inserts it into the key
derivation structure. We then need to prove that such an insertion does not violate
the conditions in Definition 5.2.

• Condition 1 is satisfied since function Get_Shared_Key computes key kU[fS g
as the result of hash function hs over kU (line 22) and it obtains kU by calling
function Get_Key (line 21), which does not compromise the correctness of the
key derivation structure (as proved by Lemma 5.1). Function Get_Shared_Key
then inserts kU[fS g and the corresponding label into K and L , respectively
(lines 24–25). The function then inserts key kU[fS g intoK only when derivation
key kU has been inserted into K .

• Condition 2 is satisfied since function Get_Shared_Key inserts a token
dS ;U [fS g, which permits the server to derive kU [fS g from kS (line 26).

�

Having proved that both function Get_Key and function Get_Shared_Key do
not compromise the correctness of a key derivation structure (Definition 5.2), we
can now proceed with proving Theorem 5.3, as follows.

Since we assume that all the conditions are satisfied when procedure Grant
(Revoke, respectively) is called, we need to consider only users and resources for
which the policy changes. Also, Condition 1 is not affected by procedures Grant
and Revoke as they neither modify the read access list of resources nor re-encrypt
resources content.

• Grant(u,R). The procedure inserts u into wŒo� (line 2), therefore Condition 2
is satisfied iff u can decrypt encw_tagŒo�. The write tag tagŒo� of resource
o is encrypted by procedure Encrypt_Tag with the key knew associated with
label lnew. Since procedure Grant calls procedure Encrypt_Tag with lwŒo�[fS g



5.5 Write Integrity Control 161

as input, the server encrypts tagŒo� with key kwŒo�[fS g (line 5). This key
belongs to the key derivation structure, since procedure Grant calls function
Get_Shared_Key with wŒo� as input (line 3). By Lemma 5.2, key kwŒo�[fS g can
be derived by all and only users in wŒo� and by the server. Therefore, procedure
Grant satisfies both Condition 2 and Condition 3.

• Revoke(u,R). The procedure removes u from wŒo� (line 6), therefore Condition 2
is satisfied iff u cannot decrypt encw_tagŒo�. Procedure Create_New_Tag
generates a new tag for o and encrypts it with the key knew associated with label
lnew. Since procedure Revoke calls procedure Create_New_Tag with lwŒo�[fS g
as input, the server encrypts the new value of the tag with key kwŒo�[fS g (line 9).
This key belongs to the key derivation structure, since procedure Revoke calls
function Get_Shared_Key with wŒo� as input (line 7). By Lemma 5.2, key
kwŒo�[fS g can be derived by all and only users in wŒo� and by the server.
Therefore, procedure Revoke satisfies both Condition 2 and Condition 3. �

5.5 Write Integrity Control

Although the server can be assumed trustworthy to manage resources and delegated
actions, it is important to provide a means to the data owner to verify that the
server and users are behaving properly (e.g., [44]). Providing such a control has
a double advantage: (1) it allows detecting resource tampering, due to the server
not performing the required check on the write tags or directly tampering with
resources, and (2) it discourages improper behavior by the server and by the
users since they know that their improper behavior can be easily detected, and
their updates recognized as invalid and discarded. In this section, we illustrate our
approach for providing the data owner with a means to verify that modifications to
a resource have been produced only by users authorized to write the resource. In
the following section, we will extend our solution to the management of updates to
write privileges. As discussed in previous sections, if the server performs the correct
control on the write tags, data integrity is automatically guaranteed. We therefore
illustrate how to perform a write integrity control to detect misbehavior (or laziness)
by the server as well as misbehavior by users that can happen with the help of the
server (not enforcing the control on the write tags since it is either colluding with the
user or just behaving lazily) or without the help of the server (if the user improperly
acquires the write tag for a resource by others).

A straightforward approach to provide such a write integrity control would
be to apply a signature-based approach. This requires each user to have a pair
hprivate,publici of keys and, when updating a resource, to sign the new
resource content with her private key. The data owner can then check the write
integrity by verifying that the signature associated with a resource correctly reflects
the resource content and that it has been produced by a user authorized for
the operation. Such an approach, while intuitive and simple, has however the
main drawback of being computationally expensive (asymmetric encryption is
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Fig. 5.10 Structure of outsourced resources

considerably less efficient than symmetric encryption) and not well aligned with
our approach, which-as a matter of fact-exploits symmetric encryption, tokens, and
hash functions to provide efficiency in storage and processing. In the spirit of our
approach, we then build our solution for controlling write integrity on HMAC
functions [10]. In fact, for common platforms, the ratio between the execution
times of digital signatures and of HMAC is more than three orders of magnitude.
We then associate with each resource the following three integrity control fields
(namely, encw_ts, user_tag, and group_tag) and metadata field (namely,
int_label) to the fields introduced in Sect. 5.3 (see Fig. 5.10).

• encw_ts: timestamp of the write operation, encrypted with the key kwŒo�[fS g
corresponding to the group including the server and all the users in the write
access list of o (i.e., E.ts; kwŒo�[fS g/);

• user_tag: HMAC H computed with the key ku of the user who performed
the write operation over the resource, concatenated with the user_tag u_tag0
of the resource prior to the write operation,1 and the timestamp ts of the write
operation (i.e., H (ojju_tag0jjts,ku));

• group_tag: HMAC H computed with the access key ka
wŒo� corresponding to

the write access list of o over the resource, concatenated with the timestamp of
the write operation (i.e., H (ojjts,ka

wŒo�)).
• int_label: label of the key used to compute the group_tag (i.e., la

wŒo�).

At time zero, when the data owner outsources her resources to the server, the
values of the user_tag and of the group_tag are those computed by the owner
with her own key for the user_tag, and with the key of the write access list
of the resource (to which the owner clearly belongs) for the group_tag. Every
time a user updates a resource, it also updates its user_tag, group_tag, and
int_label.

A user_tag is considered valid if it matches the resource content and it
is produced by a user in the write access list of the resource. The user_tag
provides write integrity (meaning the resource has been written by an authorized
user) and accountability of user actions (i.e., the user cannot repudiate her write
actions). In fact, since the data owner knows the key ku of every user u (which she
generated and distributed), she can check the validity of the user_tag and detect

1The reason for including the user_tag of the resource prior to the write operation is to provide
the data owner with a hash chain connecting all the resource versions (we assume the server to
never overwrite resources but to maintain all their versions).
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possible mismatches, corresponding to unauthorized writes. In addition, every write
operation considered valid (according to the control on the user_tag) cannot be
repudiated by the user u whose key ku generated the HMAC. The consideration of
group_tag extends the ability of checking the validity of the write operations
(i.e., write integrity) also to all the users in the write access list of the resource. Note
that allowing writers to check resource integrity is not less important than allowing
the data owner to perform the check, as it guarantees that, even in cases of data
owner absence, all write operations are performed on resources that have not been
improperly modified. Indeed, before modifying a resource content, the writer will
check its integrity to be sure that she is operating on genuine data.

While we assume the server to be trustworthy and therefore not interested
in tampering with the resources, we note that the user_tag would allow also
to detect possible tampering of the server with the resource (since not being an
authorized writer, the server will not be able to produce a valid user_tag). The
server could also tamper with the write authorizations, by decrypting the write
tag and encrypting it with the key corresponding to a different write access list.
However, the improper inclusion of a user in the write access list does not have
any different effect than when the server does not perform the control, since the
user improperly included in the write access list will not be able to produce a valid
user_tag. Analogously, the improper removal of a user from the write access list
has the same effects as when the server refuses its services.

Unauthorized write operations, in the case of a well behaving server, can only
happen if a user has improperly acquired or received from other authorized users the
write tag of a resource. Whichever the case, the user will be able to provide neither
a valid user_tag nor a valid group_tag for the resource. Also, the data owner
and any user authorized to write the resource will be able to detect the invalidity of
the group_tag, since the key used to compute the HMAC will not correspond to
the access key of wŒo�.

5.6 Write Integrity Control with Policy Updates

A change in the write authorizations of a resource also requires a change in the
write integrity fields associated with the resource. In particular, when user u gains
the privilege of writing resource o as a consequence of a grant operation, the set
wŒo�[{u} of users should be able to generate and check the group_tag of o. If this
were not the case, u would not be able to verify the integrity of the resource before
modifying its content. Analogously, when u is revoked the write privilege over o,
the set wŒo�n{u} of users should be able to generate and check the group_tag of
o. If this were not the case, u could possibly collude with the server to modify the
content of resource o without being detected by the other writers of the resource. A
naive strategy to compute a group_tag that guarantees the correct enforcement
of integrity checks would require the data owner, when granting/revoking a write
privilege, to: (1) download the encrypted resource from the external server, (2)
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decrypt its content, (3) compute the HMAC of the resource with the access key
of the new set of writers, and (4) send the new value of the group_tag back to
the server. However, this approach causes a high computation and communication
overhead for the data owner, who should interact with the external server at every
update of the write authorizations. To reduce this overhead, we put forward the
idea of modifying the key derivation structure to prevent the re-computation of the
group_tag, and therefore the need for the data owner to download the resource at
every policy update. In the remainder of this section, we first describe our approach
for efficiently supporting integrity verification in case of policy updates (Sect. 5.6.1),
and we then discuss its exposure to integrity violations (Sect. 5.6.2).

5.6.1 Integrity Keys

Let us assume that the data owner grants user u the write privilege for resource o.
Since the group_tag of o is computed using key ka

wŒo� that u does neither know nor
can derive, a straightforward approach that would permit u to verify the integrity of
o consists in inserting into the key derivation structure a token from ku to ka

wŒo�. This
solution has however two drawbacks: (1) it does not handle revoke operations; and
(2) it permits u to derive access key ka

wŒo� used to encrypt resources o0 with rŒo0�=wŒo�

(and to generate the group_tag of resources o0 with wŒo0�=wŒo�). With respect to
the first drawback, we note that the data owner can always detect the misbehavior
of users who modify revoked resources since they are not able to generate correct
user tags for these resources. With respect to the second drawback, this solution has
the side effect of permitting used u to access the content of resources she is not
authorized to read. For instance, with reference to Example 5.5, granting A write
access to o2 causes the insertion of a token from kA to ka

BD , used to compute the
group_tag of o2. However, ka

BD is also used to encrypt o4 (rŒo4�=BD), which A

is not authorized to read. This confidentiality breach is due to the fact that the same
key is used for two different purposes: protect data confidentiality (when encrypting
the content of resources), and provide integrity guarantees to outsourced data (when
computing the group_tag of resources). A simple and effective solution to this
problem consists in using two different keys for protecting data confidentiality
and for providing integrity. We then associate an integrity key (and corresponding
label) with a derivation key whenever needed, and we use integrity keys to compute
group tags. We note that, like access keys, integrity keys do not provide derivation
capability via tokens (i.e., tokens cannot have integrity keys as starting point). Given
derivation key kU associated with a group U of users, the corresponding integrity
key ki

U is obtained by applying a secure hash function hi to kU (i.e., ki
U=hi (kU)).

The group_tag of a resource o is then the HMAC, computed with the integrity
key ki

wŒo� of the write access list of o, over the resource concatenated with the
timestamp of the write operation (see Fig. 5.11). When user u is granted the privilege
of modifying o, the data owner inserts into the key derivation structure a token that
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Fig. 5.11 Structure of outsourced resources adopting integrity keys

permits u to derive integrity key ki
wŒo�. With reference to the example above, when A

is granted write access to o2, the data owner inserts a token from kA to ki
BD , which

permits A to verify the integrity of o2 without compromising the confidentiality
of o4.

It is interesting to note that, when inserting a token from ku to ki
U , the set of

users who know or can derive ki
U becomes U[{u}, and is therefore different from

the set of users who know or can derive the corresponding derivation key kU. As a
consequence, when granting u write access to o, the integrity field int_label of
o remains unchanged and is equal to l i

U, where U corresponds to the write access list
of resource o before the grant operation (i.e., u…U). To limit this mismatch between
wŒo� and the label of the key used for the group_tag, at each write operation
the user who modifies the resource content generates a new group_tag using
the integrity key associated with the current write access list of the resource, which
reflects the grant/revoke operation. For instance, with reference to Example 5.5, after
granting A write privilege over o2 (but before any further update to o2), integrity
field int_label for resource o2 has value l i

BD since the group_tag had been
computed using the integrity key of wŒo2� before inserting A into the write access
list of the resource. Assume now that user B modifies resource o2. She will compute
the group_tag for the resource as H (o2jjts,ki

ABD) and, when uploading the new
resource content and the correspondinggroup_tag, she will also update the value
of int_label, setting it to l i

ABD .

5.6.2 Exposure Risk

We now discuss two cases of possible exposure of data integrity that might occur as
a consequence of a policy update.

Revoke According to the mechanism illustrated above, when the data owner
revokes u write access to o neither the group_tag of the resource nor the key
derivation structure are modified. As a consequence, u is able to verify and to
generate a valid group_tag for o till the first update of the resource content by
an authorized writer. In this time window, u is not able to decrypt encw_tag for
o but, colluding with the server, she could possibly modify the resource content
and compute a valid group_tag for o (i.e., a tag that authorized writers would
accept). In fact, u can derive the integrity key identified by int_label, and then



166 5 Enforcing Dynamic Read and Write Privileges

compute a group_tag that is compliant with the new resource content, using the
key identified by int_label. Note that this collusion has the effect that we have
when the server does not check write requests.

Policy Split A similar situation can happen when a user u is granted the write
privilege for a resource o that has the same write access list of other resources.
In fact, the integrity key ki used to compute the group_tag of o is also used
to compute the group_tag of all the resources o0 with wŒo0�=wŒo� before the
grant operation. Since u, as a consequence of the grant operation, can derive ki

to verify the integrity of o, she can (as a side-effect) also verify and compute a
valid group_tag for all those resources with the same int_label. Also in
this situation, u can collude with the server (or exploit the laziness of the server
not checking write requests) to modify the content of o without being detected by
authorized users.

The misbehaviors described above for the revoke and policy split cases do not go
undetected by the data owner. In fact, users cannot compute a valid user tag for a
resource that she is not authorized to write. Also, exposure to integrity violations is
limited and well identifiable. The data owner can then counteract them by explicitly
recomputing the group_tag of the resource subject to the revoke/grant operation
when she considers the communication and computation overhead worth to protect
the exposed resources. The risk of integrity violations caused by policy splits can
be mitigated by a proper organization of the resources, that is, adopting the same
integrity key only if the write access list of the resources is likely to evolve in the
same way.

5.7 Supporting User Subscriptions

The solution illustrated in the previous sections of this chapter nicely fits a general
scenario in which read authorizations are set by the data holder, and the set of
resources of the system does not undergo frequent updates. In the reminder of
this chapter, we complement the solution illustrated so far with the definition
of a subscription-based access control policy regulating access to resources in
a subscription-based scenario. In this section, we motivate our extension and
formalize the concept of subscription-based policy. We then present how to enforce
a subscription-based policy (Sect. 5.8), and we finally illustrate how resources and
subscriptions can be managed (Sect. 5.9).

5.7.1 Motivations

In a subscription-based scenario, accesses to resources should be regulated by a
subscription-based access control policy according to which users are authorized
to access all and only the resources that have been published by the resource
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provider during their subscribed periods. A peculiarity of those scenarios is that
user authorizations remain valid also after the expiration of their subscriptions.
The subscription-based access control policy takes then into consideration both the
subscriptions of the users and the time when resources have been published. Existing
solutions result limited for such a scenario. We can classify existing solutions in two
main categories.

• Account-based. Traditional access control solutions (e.g., [95]), including those
emerging in the data outsourcing scenario (e.g., [37]), are based on the assump-
tion that when users leave the system their authorizations terminate and they
cannot access the resources anymore. Furthermore, access control solutions for
data outsourcing cannot easily support a dynamic scenario where resources are
continuously created, and new users can join the system and old users can leave
the system at any time.

• Time-based. Temporal-based access control solutions (e.g., [11]) enforce time
restrictions in a way that is different from what we need. In fact, these solutions
consider a scenario where resources are stored and managed by the party who
creates them, and assume that authorizations apply only to specific time intervals
and/or that authorizations can be applied following a periodic pattern (e.g., a user
can access a file only during the working days from 8:00 a.m. to 5:00 p.m.).

We then put forward the idea of extending our solution for enforcing access
restrictions illustrated in the previous sections to enforce a subscription-based
access control policy without delegating it to the cloud storage server, combining
authorization-based access control and cryptographic protection. Our solution
should guarantee the correct enforcement of the subscription-based access control
policy (i.e., users should be able to access the resources made available during their
subscribed periods also after the expiration of their subscriptions) and the forward
and backward protection requirements. Forward protection means that users cannot
access resources published before the beginning of their subscriptions (e.g, users
who subscribe to a magazine for 2012 cannot access the issues of the magazine
published before January 1, 2012). Backward protection means that users cannot
access resources published after the expiration of their subscriptions (e.g., users who
subscribe to a magazine for 2012 cannot access the issues of the magazine published
during 2013). Like for traditional data outsourcing scenario, with our solution the
published resources are encrypted so that they self-enforce the subscription-based
access restrictions. In addition to the correct enforcement of the subscription-based
policy and the satisfaction of the forward and backward protection requirements
mentioned above, our solution should avoid re-encryption of resources and re-
distribution of keys whenever users subscribe to services or withdraw from their
subscriptions.
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5.7.2 Subscription-Based Policy

In our subscription-based scenario, a resource provider offers a service consisting
of a period of publication of resources, and each user subscribing to the service
can access all the resources published during her subscription. We denote with
U and O the set of users subscribed to the service and the set of published
resources, respectively. We note that, although in this chapter we consider time-
based subscriptions, our approach can be easily adapted to other scenarios where
subscriptions to a service can be defined on the basis of different criteria (e.g., topic
of interest, geographical region).

Given a time domain (TS,�), with TS a set of time instants and � a total order
relationship on TS [12], the resource provider assigns to each resource o2O a
timestamp o.t in TS that represents the time when the resource has been published.
The resource provider may combine contiguous time instants into time windows,
defined on arbitrary granularities, forming a time hierarchy. Intuitively, these time
windows represent the periods of time for which the resource provider allows
users to subscribe to the service offered. Formally, a time hierarchy HT is a pair
(T ,), where T is a set of time windows, and  is a partial order relationship
over T . A time window Ti in T is a pair [t s

i ,t e
i ] of time instants and represents

the set of time instants t2TS such that t s
i �t�t e

i . Given two time windows Ti

and Tj in T , Ti dominates Tj , denoted TiTj , if t s
i �t s

j and t e
j �t e

i (i.e., the
time instants in Tj represent a subset of the time instants in Ti ). The leaves of
the time hierarchy correspond to time instants in TS, which can be seen as time
windows with t s=t e . The time hierarchy can be graphically represented as a directed
acyclic graph with vertices representing time windows in T and edges representing
direct dominance relationships. For simplicity, but without loss of generality, in this
chapter we assume HT to be a tree. As an example, consider resource provider
Condé Nast, monthly publishing magazine Glamour and offering the possibility
to buy subscriptions for a month (single issue), a trimester, a semester, or a year.
Figure 5.12 illustrates the time hierarchy defined by the resource provider. For
the sake of readability, in the figure we denote leaves with the time instant they
represent. Each user u2U can subscribe to the service offered by the resource
provider for an arbitrary set, denoted u.S , of time windows in HT (i.e., u.S�T ).

The timestamps assigned to resources along with the user subscriptions establish
the set of resources that each user can access: user u2U can access resource o2O
if she subscribed for a time window including o.t . Formally, the subscription-based
policy regulating access to the resources is defined as follows.

Definition 5.3 (Subscription-Based Policy). Let HT .T ,/ be a time hierarchy
defined on time domain .TS,�/, U be a set of users with u.S�T for all u2U ,
and O be a set of resources with o.t2TS for all o2O . The subscription-based policy
A on U and O grants u2U access to o2O iff 9Œt s ,t e� 2u.S s.t. t s�o.t�t e.

Example 5.7. Suppose that three issues of magazine Glamour have been published
with timestamp Jan’12, Feb’12, and Mar’12, respectively (i.e., O={Glam-01,Glam-
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Fig. 5.12 An example of time hierarchy

02,Glam-03}). Assume now that two users U ={Alice, Barbara} subscribe to the
magazine for the first trimester of 2012 ([Jan’12,Mar’12]), and for the first issue of
the year ([Jan’12,Jan’12]), respectively. The subscription-based policy grants Alice
access to all the issues of the magazine in O , while it grants Barbara access only to
the first issue Glam-01.

5.8 Graph Modeling of the Subscription-Based Policy

Our idea to enforce the subscription-based policy consists in defining a key
derivation structure so that each resource is encrypted only once with a single key,
and each user receives only one key from which she can derive all and only the keys
used for encrypting the resources that she can access according to the subscription-
based policy. To fix ideas and make the discussion clear, we consider the system at
a specific point in time when some resources have been published and some users
have subscribed to the service offered by the resource provider. We first discuss how
resources are encrypted and then describe how to model users’ subscriptions.

Traditional techniques developed for enforcing an access control policy in the
data outsourcing scenario build a key derivation structure on the basis of the sets
of users that can access resources (like our solution illustrated in the previous
sections of this chapter, building the key derivation structure on the access control
lists of the resources of the system). In our extended scenario, such sets of users
vary frequently over time, and therefore it is not convenient to exploit them for
building the key derivation structure. We then use the time hierarchy HT defined
by the resource provider as a key derivation structure where each time window
is associated with a key, and each edge corresponds to a token. The timestamp
associated with a published resource, therefore, identifies the time window in the
time hierarchy representing the key used to encrypt the resource itself. The keys
associated with time windows including more than a time instant (i.e., internal
vertices) are not used for encrypting resources, but only for derivation purposes.
Clearly, not all the time windows in the time hierarchy are necessary for enforcing
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the subscription-based policy, but only those corresponding to the timestamps
of published resources along with all the time windows dominating them. For
instance, with respect to Example 5.7, the time windows that must be represented
in the key derivation structure are Jan’12, Feb’12, and Mar’12, which are the
timestamps of the three published resources, and all the time windows dominating
them in the time hierarchy in Fig. 5.12, that is, [Jan’12,Mar’12], [Jan’12,Jun’12],
and [Jan’12,Dec’12]. In this way, from the knowledge, for example, of the key
associated with [Jan’12,Mar’12] we can derive the keys used for encrypting all the
resources published during the first trimester of 2012.

For each user in the system, the resource provider generates a new key and
communicates it to the user. With this unique key, the user should be able to access
all and only the resources for which she is authorized according to her subscriptions.
The idea is to “hook the user” through a token on each time window T for which
she subscribed. In this way, the user can adopt her key to directly derive the key
associated with time window T . From this key she can directly or indirectly derive
the keys used to encrypt all and only the resources whose timestamp is included in
T . For instance, according to the subscriptions in Example 5.7, Alice can access
all the resources published in the first trimester of 2012. The resource provider
then creates a token from Alice’s key to the key associated with [Jan’12,Mar’12].
By construction, all resources published in Jan’12, Feb’12, and Mar’12 will be
encrypted with a key derivable from the key associated with [Jan’12,Mar’12], which
Alice can derive. Note that it may happen that a user subscribes for a time window
for which no resource has been published (e.g., a user subscribes to a magazine
for April’12 and the issue of April has not been published yet). The key derivation
structure must then include also the time windows representing users’ subscriptions,
along with their ancestors in HT . The resulting key derivation structure, which we
call user and resource graph, can be formally defined as follows.

Definition 5.4 (User and Resource Graph). Let HT .T ,/ be a time hierarchy
on time domain .TS,�/, U be a set of users with u.S�T for all u2U , and O be
a set of resources with o.t2TS for all o2O . A user and resource graph over U , O ,
and HT is a graph G.V ,E/, with:

• V = Tr [ Ts [ Tp [ U , with TrD S
o2O Œo:t; o:t �, TsD S

u2U u.S , and
TpD fT 2 T j 9T 0 2 Ts [ Tr such that T T 0}

• E = {.u,T / j u2U ^ T 2V nU ^ T 2u.S g [
{.Ti ,Tj / j Ti ,Tj 2V nU ^ Ti Tj ^ .ÀTz2V nU , Ti TzTj ^ Tz¤Ti ¤Tj /g

The vertices in the user and resource graph represent the keys of the system, while
the edges represent the tokens in the token catalog D stored at the external cloud
storage server together with the encrypted resources.

Example 5.8. Consider the time hierarchy in Fig. 5.12 and the subscription-based
policy in Example 5.7. Figure 5.13a shows the corresponding user and resource
graph, where dotted triangles represent subtrees of the time hierarchy that are
not associated with a vertex in the graph. For the sake of clarity, vertices in the
graph are associated with a label that is used to refer to the time windows of
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Fig. 5.13 An example of user and resource graph (a), published resources (b), and token
catalog (c)

interest. Hence, for instance, [Jan’12,Dec’12] is associated with label v1, its key
is indicated with v1.k, and its label with v1.l . The figure also reports the published
resources, represented as ovals connected with the vertices in the graph representing
their timestamp and whose keys are used to encrypt them. Figure 5.13b shows the
encrypted resources stored at the external cloud storage server, with id the resource
identifier and encr_resource the encrypted resource (E.r; k/ denotes the encryption
of o with k), and Fig. 5.13c illustrates the token catalog resulting from the user and
resource graph in Fig. 5.13a.

The user and resource graph in Definition 5.4 guarantees the correct enforcement
of the subscription-based policy since each user can decrypt all and only the
resources with a timestamp included in at least one of the time windows in the
user’s subscriptions. This is formalized by the following theorem.

Theorem 5.4 (Correct Enforcement of Subscription-Based Policy). Let
HT .T ,/ be a time hierarchy on time domain .TS,�/, U be a set of users
with u.S�T for all u2U , and O be a set of resources with o.t2TS for all o2O .
The user and resource graph G.V ,E/ correctly enforces a subscription-based
policy A on U and O when 8u2U , 8o2O:

9Œt s ,t e� 2u.S s.t. t s�o.t�t e ” hu,Œo.t ,o.t �i is a path in G.

Proof. We first prove that, if 9T =Œt s ,t e� 2 u.S s.t. t s�o.t�t e, then u can decrypt
o. User u knows the key of vertex vu representing herself in G, while o is encrypted
with the key of vertex vr representing [o.t ,o.t] in G. User u can derive the key with
which a resource o is encrypted (and then access its content) only if there exists a
path in G from vu to vr . The path connecting vu to vr is composed of two parts: an
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edge connecting vu to the vertex vT representing the time window in u.S such that
T [o.t ,o.t], and a path from vT to vr .

1. By Definition 5.4, vertex vu representing u belongs to the user and resource graph
since G has a vertex vu for each u2U .

2. By Definition 5.4, vertex vr representing [o.t ,o.t] belongs to the user and
resource graph since G has a vertex for each time window [o.t ,o.t] representing
the timestamp of a resource o2O .

3. By Definition 5.4, vertex vT representing T belongs to the user and resource
graph since G has a vertex vT for each time window in u.S for all the users in
u2U .

4. By Definition 5.4, the user and resource graph includes edge (vu,vT ), since G

includes an edge (u,T ) for each user u and each time window T 2u.S .
5. We now prove that there exists a path in G from vT to vr . To this purpose we

prove, by induction, that given two time windows Ti and Tj represented by
vertices vi and vj in G, there exists a path from vi to vj iff Ti Tj .
Base: TiTj and ÀTz2HT s.t. Ti TzTj and Ti ¤Tz¤Tj . By Definition 5.4
edge (vi ,vj ) belongs to G.
Induction: let us suppose that, given sequence of n time windows {Tz1 ,. . . ,Tzn }
such that Tz1. . . Tzn and ÀTk2HT s.t. Tzi TkTzj and Tzi ¤Tk¤Tzj , i; j D
1; : : : ; n, G includes a path from vz1 to vzn . Let us now consider a sequence
of n C 1 time windows {Tz1 ,. . . ,Tzn ,TznC1

} such that Tz1. . . TznTznC1
and

ÀTk2HT s.t. Tzi TkTzj and Tzi ¤Tk¤Tzj , i; j D 1; : : : ; nC1. By assumption,
there exists a path from vz1 to vzn . Also, there exists an edge (vzn ,vznC1

) for the
base of the induction. As a consequence, there exists a path from vz1 to vznC1

.

We now prove, by contradiction, that if ÀT =Œt s ,t e� 2 u.S s.t. t s�o.t�t e, then
u cannot decrypt o. Let us assume that u can decrypt o, that is, there exists a
path from vu to vr . Since ÀT =Œt s ,t e� 2 u.S s.t. t s�o.t�t e, then for all (vu,vT )
in G, time window T represented by vT does not include o.t by Definition 5.4.
As a consequence, u can access o only if there exists a path in G from vertex vi

representing Ti to vertex vj representing Tj such that Ti �Tj . Let us assume that
the path is composed of a sequence of edges (vi ,vz1),. . . ,(vzn ,vj ). By Definition 5.4,
TiTz1 , TznTj , and for each edge (vzi ,vziC1

) in the sequence, Tzi TziC1
. Therefore,

we obtain that Ti Tj , which contradicts the initial hypothesis. �

5.9 Management of Resources and Subscriptions

Whenever there is a change in the subscription-based policy (e.g., a new resource
is published, a user subscribes to a service for a specific time window, or a user
decides to withdraw from a subscription), the user and resource graph has to be
updated accordingly. In the following, we discuss how changes to the policy can be
managed in a transparent way for the users.
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Fig. 5.14 Pseudocodes of procedure Publish_Resource and function Get_Vertex

5.9.1 Resource Publishing

At initialization time, the user and resource graph is empty (no key is necessary
for resource encryption) and it is dynamically built as resources are published.
Figure 5.14 illustrates the pseudocode of procedure Publish_Resource that the
resource provider calls whenever it needs to publish a resource. The procedure
takes a resource o as input and publishes its encrypted representation. The procedure
first calls function Get_Vertex on time window T =[o.t ,o.t] (line 2). This function
checks whether the vertex representing [o.t ,o.t] is in the user and resource graph,
since its key has to be used for encrypting o. If such a vertex exists, the function
returns it (lines 5–7). Otherwise, the function first creates a vertex v representing
T , along with the corresponding encryption key v.k and public label v.l , and
inserts v into the set V of vertices of the user and resource graph (lines 8–11).
To guarantee that the time window Ti directly dominating T in the time hierarchy
is represented in the user and resource graph, function Get_Vertex recursively
calls itself on Ti , obtaining the vertex vi representing Ti in the graph (lines 12–
14). The function inserts into G edge (vi ,v) and publishes the corresponding token
(lines 15–16). We note that the recursive nature of function Get_Vertex guarantees
that all the ancestors of T in HT are represented by a vertex in the user and
resource graph, and that each vertex is connected to all its direct descendants
represented in the graph. The function then returns vertex v representing [o.t ,o.t]



174 5 Enforcing Dynamic Read and Write Privileges

a
b

c

Fig. 5.15 User and resource graph (a), published resources (b), and token catalog after Glam-04
and Glam-05 are published (c)

(line 17). Finally, procedure Publish_Resource encrypts o with v.k and publishes
the resulting encrypted resource (lines 3–4).

Example 5.9. Consider the user and resource graph, published resources, and token
catalog in Fig. 5.13 and assume that Condé Nast publishes the fourth issue of
Glamour in April’12. The resource provider calls procedure Publish_Resource on
resource Glam-04 that in turn calls function Get_Vertex on [Apr’12,Apr’12]. The
function inserts vertex v8 representing [Apr’12,Apr’12] and its direct ancestor v7

representing [Apr’12,Jun’12]. Procedure Publish_Resource then encrypts Glam-
04 with the key of vertex v8. Assume now that Condé Nast publishes the fifth
issue of Glamour in May’12, calling procedure Publish_Resource on resource
Glam-05. Function Get_Vertex inserts vertex v9 representing [May’12,May’12]
and directly connects it to [Apr’12,Jun’12], since it is already included in the graph.
Resource Glam-05 is encrypted with the key of vertex v9. Figure 5.15 illustrates the
resulting user and resource graph, published resources, and token catalog, where
new resources and tokens are denoted with a bullet �.

5.9.2 New Subscription

Both new and existing users can subscribe to a service for a time window at
any point in time (i.e., before the beginning, during, or even after the expiration
of the window). Figure 5.16 illustrates procedure Subscribe that manages new
subscriptions. The procedure takes a user u and a time window T as input and
works as follows. If u is a new user, the procedure creates a vertex vu representing u,
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Fig. 5.16 Pseudocode of procedure Subscribe

her encryption key vu.k, and public label vu.l (lines 1–6). Otherwise, the procedure
identifies the vertex vu representing the user in G (line 7). The procedure then inserts
T into u.S , calls function Get_Vertex on T so that the vertex vT representing T

and its ancestors are possibly added to the graph, and inserts edge (vu,vT ) in the
user and resource graph, publishing the corresponding token (lines 8–11). Through
this token, the user can directly derive from her key the key of the time window to
which she is subscribing.

To keep the number of tokens under control, the procedure verifies whether the
set u.S of subscriptions includes all the time windows directly dominated by Ti that
in turn directly dominates T in HT (e.g., a user may be subscribed for three issues
of a magazine that correspond to a trimester). In this case, instead of maintaining a
token from u to all the direct descendants of Ti , it is possible to replace them with a
single token from vertex u to Ti . To this purpose, procedure Subscribe identifies the
direct ancestor Ti of the time window T to which u is subscribing and checks if u.S
includes all the descendants Tj ; : : : ; Tl of Ti (lines 12–14). In this case, it removes
Tj ; : : : ; Tl from u.S , the edges connecting vu to the vertices representing them, and
the corresponding tokens (lines 15–17). The procedure then recursively calls itself
to subscribe u to Ti to possibly propagate up in the graph this factorization (line 18).

Example 5.10. Consider the user and resource graph, published resources, and
token catalog in Fig. 5.15, and assume that Alice renews her subscription to Glamour
for trimester [Apr’12,Jun’12]. Since both Alice and [Apr’12,Jun’12] are already in
the graph (vertices v10 and v7, respectively), procedure Subscribe only inserts
edge (v10,v7) and publishes the corresponding token. Renewing her subscription,
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a
b

c

Fig. 5.17 User and resource graph (a), published resources (b), and token catalog after Alice
subscribes for [Apr’12,Jun’12] (c)

Alice is now subscribed for the first semester of year 2012. Procedure Subscribe
factorizes the two subscriptions for [Jan’12,Mar’12] and [Apr’12,Jun’12] in a
unique subscription for [Jan’12,Jun’12]. Figure 5.17 illustrates the resulting user
and resource graph, published resources, and token catalog (removed tokens
are crossed out). Assume now that Carol joins the system and subscribes for
[Apr’12,Jun’12]. Procedure Subscribe first inserts vertex v12 representing Carol in
the graph, and communicates her the corresponding key. It then inserts edge (v12,v7)
in the graph. Figure 5.18 illustrates the resulting user and resource graph, published
resources, and token catalog.

5.9.3 Withdrawal from a Subscription

As our system provides high flexibility in defining the time windows available
for subscription, withdrawal from a subscription represents an exception in the
working of the system and must be managed as a special case. In fact, no action
is needed when a subscription naturally expires. When a user withdraws from a
subscription for time window [t s ,t e], starting from time instant t , the resource
provider must guarantee that: (1) she cannot access the resources with timestamp
in (t ,t e] (backward protection), and (2) she continues to access the resources with
timestamp in [t s ,t]. For instance, consider Example 5.10. In May’12 Alice could
decide to withdraw from her subscription for the first semester of year 2012. In this
case, she should not be able to decrypt the issue of June of the magazine, while
she will continue to access the issues of January, February, March, April, and May.
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a b

c

Fig. 5.18 User and resource graph (a), published resources (b), and token catalog after Carol
subscribes for [Apr’12,Jun’12] (c)

Clearly, a user can withdraw from her subscription at time t only if no resource with
timestamp in (t ,t e] has been published yet, since otherwise she could have accessed
it before withdrawal. To guarantee that withdrawals are transparent for all the users
and cause a limited overhead to the resource provider, our approach avoids re-keying
and re-encryption operations.

Figure 5.19 illustrates procedure Withdraw_Subscription, which takes a user
u and a time instant t as input, and updates the user and resource graph. The
procedure first identifies the vertex vu representing the user in G and the time
window [t s ,t e] in u.S that includes t (lines 1–2). If such a time window does
not exist or if at least a resource with timestamp in (t ,t e] has been published,
the procedure terminates notifying the problem to the resource provider (line 3).
Otherwise, procedure Withdraw_Subscription removes the subscription by first
substituting [t s ,t e] with [t s ,t] in u.S (line 4). Since user u already knows the keys
of the vertices along the path from vertex [t s ,t e] to t if they are represented in the
user and resource graph, the resource provider must guarantee that all the resources
with a timestamp following t will be encrypted with a key that is not derivable from
the keys along this path. To this purpose, the procedure updates the time window
[t s

i ,t e
i ] that each of these vertices represents by setting t e

i to t , creates a new set
of vertices representing the time windows that has been changed, and connects
them in a path of the user and resource graph. Also, the procedure inserts an edge
between each new vertex [t s

i ,t e
i ] to vertex [t s

i ,t] since [t s
i ,t e

i ] clearly dominates [t s
i ,t].

Finally, for each user u such that [t s
i ,t e

i ]2u.S , the procedure substitutes the token
(and corresponding edge) between u and [t s

i ,t] (i.e., the vertex that represented
[t s

i ,t e
i ] before the change performed by procedure Withdraw_Subscription) with
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Fig. 5.19 Pseudocode of procedure Withdraw_Subscription

the token (and corresponding edge) between u and the new vertex representing
[t s

i ,t e
i ], to preserve her ability to derive all the keys of the time windows dominated

by [t s
i ,t e

i ].
Note that the keys along the path from T to t , whose time windows have been

updated by procedure Withdraw_Subscription, are not affected. Therefore, users
who have already computed these keys can still use their local copy. The number of
additional vertices and edges in the user and resource graph is limited and is at most
h � 1 and 2(h � 1), respectively, where h is the height of the time hierarchy. The
number of updated edges is jU j � 1 in the worst case.

Example 5.11. Consider the user and resource graph, published resources, and
token catalog in Fig. 5.18, and assume that Alice withdraws from her subscrip-
tion in May’12. Procedure Withdraw_Subscription updates her subscription for
[Jan’12,Jun’12] to [Jan’12,May’12], and visits the path from vertex v2 (representing
[Jan’12,Jun’12]) to the vertex representing [May’12,May’12]. First, it visits vertex
v2, updates its time window to [Jan’12,May’12], creates a new vertex v0

2 for time
window [Jan’12,Jun’12], and inserts edge (v0

2,v2) in the user and resource graph. The
procedure executes the same operations when visiting v7. Since Carol should still be
able to access all the issues of Glamour published in [Apr’12,Jun’12], the procedure
substitutes edge (v12,v7) with edge (v12,v0

7). From her key Alice can derive, after this
update, the keys used to encrypt the issues published in [Jan’12,May’12], while
Carol can still derive keys used to encrypt issues published in [Apr’12,Jun’12].
Figure 5.20 illustrates the user and resource graph, published resources, and token
catalog after Alice’s withdrawal.
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a
b

c

Fig. 5.20 User and resource graph (a), published resources (b), and token catalog after Alice
withdraws from her subscription in May’12 (c)

5.9.4 Correctness

The procedures described in this section correctly enforce changes to the
subscription-based policy. This is formally stated by the following theorem.

Theorem 5.5 (Correct Enforcement of Policy Updates). Let HT .T ,/ be a
time hierarchy on time domain .TS,�/, U be a set of users with u.S�T for all
u2U , O be a set of resources with o.t2TS for all o2O , and G.V ,E/ be the user
and resource graph over U , O , and HT .

1. Procedure Publish_Resource.o/ generates a user and resource graph that
correctly enforces the subscription-based policy on U and O[{o}.

2. Procedure Subscribe.u,T / generates a user and resource graph that correctly
enforces the subscription-based policy on U [{u} and O , with u.S[{T }.

3. Procedure Withdraw_Subscription.u,t/ generates a user and resource graph
that correctly enforces the subscription-based policy on U and O , with u.S n
{Œt s ,t e�g [ fŒt s ,t �}.

Proof. To prove Theorem 5.5, we first need to prove that function Get_Vertex,
which possibly inserts vertices and edges in the user and resource graph, guarantees
that the resulting graph is still a user and resource graph (Definition 5.4) correctly
enforcing the subscription-based policy.
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Lemma 5.3 (Correctness of Function Get_Vertex). Let HT .T ,/ be a time
hierarchy defined on time domain .TS,�/, U be a set of users with u.S�T for
all u2U , O be a set of resources with o.t2TS for all o2O , and G.V ,E/ be the user
and resource graph over U , O , and HT . Given a time window T , the user and
resource graph generated by function Get_Vertex.T / satisfies Definition 5.4.

Proof. Function Get_Vertex is correct if: (1) it terminates; (2) when it returns,
graph G satisfies Definition 5.4; and (3) when it returns, graph G correctly enforces
the subscription-based policy.

1. Function Get_Vertex terminates since its recursive call operates on the direct
ancestor of time window T in the time hierarchy HT and HT is a finite
hierarchy. As a consequence,HT includes at least a root vertex T> (i.e., a vertex
with no ancestors).

2. If there exists a vertex in G representing T , the function does not modify G. As
a consequence, if G satisfies Definition 5.4 when the function is called, the graph
satisfies Definition 5.4 also when the function returns. If T is not represented by
a vertex in G, function Get_Vertex inserts into G a vertex v representing T . To
satisfy Definition 5.4, its direct ancestor Ti in HT should be represented by a
vertex vi in G, connected by an edge to v. Function Get_Vertex recursively calls
itself on Ti , obtaining vertex vi representing Ti , and inserts edge (vi ,v). Since
function Get_Vertex correctly connects v to its ancestor, also each ancestor of v

is correctly connected to its ancestor because they are all generated by function
Get_Vertex. We conclude that, when function Get_Vertex returns, the user and
resource graph satisfies Definition 5.4.

3. Since function Get_Vertex does not modify the subscription-based policy of the
system, users should not gain/lose their ability to decrypt resources. Function
Get_Vertex does not insert, remove, or modify edges incident to vertices repre-
senting users and timestamps of existing resources; it does not modify the time
windows represented by vertices; and the resulting graph satisfy Definition 5.4.
As a consequence, if G correctly enforces the subscription-based policy when
function Get_Vertex is called, it correctly enforces the policy also when the
function returns. �

We are now ready to prove Theorem 5.5, as follows. We prove each of the
statements in the theorem separately. For each procedure, we prove that: (1) it
terminates; (2) when it returns, G satisfies Definition 5.4; (3) when it returns, G

correctly enforces the subscription-based policy.

1. Let us first analyze procedure Publish_Resource, which inserts o into O .

a. Procedure Publish_Resource terminates since function Get_Vertex termi-
nates (Lemma 5.3).

b. When the procedure returns, the graph satisfies Definition 5.4, since the
procedure does not modify the graph and function Get_Vertex is correct
(Lemma 5.3).

c. Procedure Publish_Resource inserts o into O . Since the procedure calls
function Get_Vertex on [o.t ,o.t], vertex v representing the timestamp of
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the resource belongs to G. Also, o is encrypted with the key of v. As
a consequence, since G satisfies Definition 5.4, it correctly enforces the
subscription-based policy also after o is published.

2. Let us now consider procedure Subscribe, which grants user u access to the
resources in time window T .

a. Procedure Subscribe terminates since function Get_Vertex terminates (see
Lemma 5.3) and its recursive call operates on the direct ancestor of time
window T in the time hierarchy HT , which is a finite hierarchy.

b. The procedure possibly inserts a vertex representing u and calls func-
tion Get_Vertex over T , which preserves the correctness of the graph
(Lemma 5.3). The procedure inserts an edge from vertex vu, representing u,
to vertex vT , representing T , according to the fact that T is inserted into u.S
(Definition 5.4). The procedure modifies the graph by removing all the edges
connecting vertex vu to the vertices representing all the descendants of a time
window Ti , according to the fact that all these time windows are removed
from u.S . The resulting graph then satisfies Definition 5.4.

c. Procedure Subscribe inserts T into u.S . Since it possibly inserts the vertex
representing u into G, the user’s key is correctly defined. If all the direct
descendants of a time window Ti belong to u.S , the procedure removes
these time windows from u.S . However, it recursively calls itself on Ti and
therefore Ti is inserted into u.S . Since Ti covers the same time instants
as the union of its descendants, a subscription to Ti is equivalent to a set
of subscriptions to all its descendants. As a consequence, since G satisfies
Definition 5.4, it correctly enforces the subscription-based policy also after u
subscribed to T .

3. Finally, let us now consider procedure Withdraw_Subscription, which enforces
the leave of user u at time t .

a. Procedure Withdraw_Subscription includes a while loop, with a nested for
each loop. The for each loop terminates, since the number of time windows
in a user subscription is finite, as well as the set of users in the system. The
while loop includes, besides the for each loop, a call to function Get_Vertex
that, as already proved, terminates. The while loop stops when either t=t e ,
t s=t e or T 62V , reaching in the worst case a leaf in G. Since G is acyclic and
the while loop visits a path in the graph, the while loop, and therefore also
procedure Withdraw_Subscription, terminates.

b. The user and resource graph obtained when the procedure returns is based
on a different time hierarchy than the original one, HT

0(T 0,), defined
on a different set T 0 of time windows T 0=T [T new, with T new={[t s ,t]:
9[t s ,t e]2T ^ t s�t�t eg. To guarantee that G is defined on HT

0, procedure
Withdraw_Subscription changes the time window associated with vertices
representing a time window [t s ,t e]2T with t s�t�t e by substituting t e with
t . For each of these vertices, the procedure calls function Get_Vertex on
[t s ,t e]. As a consequence, G includes a proper subset of time windows



182 5 Enforcing Dynamic Read and Write Privileges

in T and all the time windows in T new. The while loop in procedure
Withdraw_Subscription changes the end time of all the time windows
along a path, reducing these time windows to a subset of the time instants
of the original ones. Hence, the edges along this path correctly reflect the
dominance relationship among the time windows represented by the vertices.
As already proved, function Get_Vertex guarantees the correct representation
of dominance relationships. Also, [t s ,t e] clearly dominates [t s ,t], therefore
the edge connecting the new vertex representing [t s ,t e] with the existing
one representing [t s ,t] correctly reflects a direct dominance relationship. The
procedure also substitutes edge (vuvT ) with (vu,vT 0), where vu represents
user u, vT represents time window [t s ,t e] and is updated to [t s ,t], and
vT 0 is inserted and represents [t s ,t e]. This update is not performed for
the user who is withdrawing from a subscription, since her subscription
is updated to u.S n{Œt s ,t e�}[{Œt s ,t �}. We can then conclude that, when
procedure Withdraw_Subscription returns, the user and resource graph
satisfies Definition 5.4.

c. Procedure Withdraw_Subscription updates u.S to u.S n{Œt s ,t e�}[{Œt s ,t �}.
Since no resource has been published with timestamp greater than t and the
user and resource graph satisfies Definition 5.4, when the procedure returns
G correctly enforces the subscription-based policy. �

5.10 Chapter Summary

In this chapter, we presented an approach for enforcing read and write authorizations
in data release scenarios. Our solution does not require intervention of the data
owner for filtering query results and/or access requests, and efficiently supports
updates in the access control policy, minimizing the overhead of the data owner
and resulting transparent to the final users. Data integrity can be easily verified
by the data owner and by the users authorized to write resources, thus providing
guarantees on the fact that resources externally stored have not been tampered
with by unauthorized parties without being detected. The proposed solution relies
on the use of symmetric encryption, hashing, and HMAC functions for enforcing
access control and integrity checks in an efficient and effective way. We have then
complemented our solution with a subscription-based policy, proposing a technique
for effectively restricting access to published resources based on the subscriptions
of the users to a service, to take into account scenarios in which user subscriptions
and released resources change dynamically over time. Changes in the subscription-
based policy due to the addition of new users and resources, and to the withdrawal
of users from their subscriptions are efficiently enforced updating the key derivation
structure, again in a transparent way to the final users. Our proposal then performs a
step toward the development of solutions actually applicable in real-world scenarios
where efficiency and scalability are mandatory.



Chapter 6
Conclusions

In this book, we have addressed the problem of protecting sensitive information
in scenarios of data release (e.g., in cloud/outsourcing contexts). After some
introductory remarks and a discussion of related works, we focused on three specific
aspects: the protection of data explicitly published, the protection of information
not explicitly included in a release but possibly exposed to privacy breaches by
the release itself, and the enforcement of access restrictions. In this chapter, we
summarize the contributions of this book and we outline possible directions for
future works.

6.1 Summary of the Contributions

The contribution of this book is threefold.

Protection of Data Explicitly Involved in a Release We proposed our solution
for protecting privacy of sensitive information included in a release. The technique
is based on the fragmentation approach, which vertically splits the original data
collection in disjoint fragments satisfying both confidentiality and visibility con-
straints, respectively modeling requirements for privacy protection and information
visibility. We provided a novel OBDD-based formulation of the fragmentation
problem, and proposed two efficient algorithms (exact and heuristic) for comput-
ing a minimal fragmentation. The efficiency of our OBDD-based approach has
been testified by our experimental results, showing also that the heuristic well
approximates the optimal solutions computed by the exact algorithm while requiring
limited computation time. To further increase the utility of the released data for
final recipients, we complemented fragments with loose associations, specifically
extended to operate on arbitrary fragmentations (thus removing the limiting original
assumption of operating on a pair of fragments).

© Springer International Publishing Switzerland 2015
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Protection of Data Not Explicitly Involved in a Release We provided a solution
for capturing and counteracting the risk that the release of a collection of non
sensitive data can expose sensitive information that, despite not appearing in the
released dataset, can be derived observing peculiar distribution of the values of the
released dataset. We identified and modeled a novel inference scenario, raised from
a real case study that needed consideration. We introduced several metrics to assess
the inference exposure due to a data release, we formally defined a safe release
with respect to the modeled inference channel, and we illustrated the controls to be
enforced in a scenario where data items are released one at a time, upon request.
Our solution has been experimentally evaluated to assess both inference exposure
and information loss.

Access Control Enforcement We defined an access control solution for enforcing
dynamic write authorizations in data release scenarios. Our proposal is based on
selective encryption, originally designed to enforce read privileges over outsourced
data, to fit the emerging cloud computing paradigm where the storage server is
not trusted to enforce access restrictions. Our technique supports grant and revoke
of write authorizations and results appealing for its efficiency and flexibility, as
it avoids expensive re-keying and re-encryption operations. We also proposed an
integrity check technique to verify that modifications to a resource have been
produced only by authorized users. We complemented our solution with the
definition and enforcement of a subscription-based authorization policy, to consider
emerging real-world scenarios where users pay for a service and need to access the
resources released during their subscriptions at any time. Our proposal avoids to
the users the burden of downloading resources, allowing them to maintain the right
to access such resources without the worry that they will lose this right after the
expiration of their subscriptions.

6.2 Future Work

The research illustrated in this book can be extended along several directions, as we
outline in the following.

6.2.1 Protection of Data Explicitly Involved in a Release

Dynamic Datasets In line with traditional protection techniques, our fragmen-
tation and (extended) loose associations presented in Chap. 3 make the implicit
assumption that the original dataset is static (i.e., it does not change over time). In
particular, it assumes that no tuple (attribute, respectively) be inserted into/removed
from the original relation (relation schema, respectively). In particular, updating the
schema adding or removing attributes might cause the violation of one or more
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constraints: removing attributes from fragments might violate visibility constraints,
while adding attributes to fragments might reveal sensitive associations among
attributes that have not been considered. On the other hand, adding or removing
tuples might compromise the protection degree offered by the published loose
associations: removing tuples from fragments decreases the size of the groups
in fragments, while adding a tuple might allow an adversary to recombine it by
concatenating its sub-tuples in each of the fragments (as the heterogeneity properties
might be violated). A future line of work will consist in the definition of protection
techniques able to handle updates at both the schema and instance levels.

Multiple Input Relations A common assumption of traditional protection tech-
niques, which we also adopted, is that data to be released are organized in
a single universal relation. However, real-world datasets can be composed of
several relations, possibly belonging to different domains, thus complicating the
definition of confidentiality constraints for computing a fragmentation. Intuitively,
defining constraints for a relation without consideration of the other ones might be
insufficient for capturing all sensitive associations. Besides, these relations might
be related though integrity constraints (e.g., since they include some common
attributes whose values are related by a dependency) that might be used for re-
joining the fragments in which the relations have been split, possibly enabling the
recomposition of sensitive associations. To address this issue, it is necessary to
define a technique for managing multiple input relations.

6.2.2 Protection of Data Not Explicitly Involved in a Release

Different Metrics The metrics adopted to counteract the risk of sensitive infor-
mation disclosure have been specifically devised to capture deviations between an
observed value distribution (in the released dataset), and an expected one. They
therefore well suit our inference scenario, where inferences on sensitive information
are drawn by observing differences between value distributions. However, in other
scenarios inferences might be enabled by other peculiarities of the observed distribu-
tions (e.g., by observing similarities, rather than differences, with peculiar/specific
value distributions, or by observing specific values in the released dataset). It is
important therefore to define other metrics, able to handle different peculiarities of
the released distributions, to address more variegate scenarios.

Different Inference Channels The inference channel modeled in this book is
based on the assumption that the background knowledge of a recipient is the
baseline value distribution, which is then considered typical and expected. This is
indeed reasonable in real-world scenarios, in which a given value distribution can
be considered publicly available as, for instance, being released by its owners for
statistical purposes. However, a recipient might possess different knowledge she can
exploit to derive sensitive information, such as the expected order in which tuples
are requested, or the typical time between two subsequent releases. For instance,
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knowing the order in which tuples are requested and comparing it with the order
in which tuples are actually released, a recipient might infer that delayed requests
refer to sensitive information. A future line of work will investigate other kinds of
knowledge a recipient might exploit to draw inferences of sensitive information.

6.2.3 Access Control Enforcement

Multiple Owners Our access control system based on selective encryption oper-
ates with the implicit assumption that all data to be stored at the external server
are of the same owner, who can therefore define a single authorization policy
to regulate read and write privileges on the entire dataset. However, in some
collaborative scenarios different owners might be responsible for different portions
of the resources to be made selectively available. A naive solution to enforce access
control in this scenario adopting our technique can require each data owner to define
her own key derivation structure modeling authorizations for her resources. This,
however, would require users to manage one key for each owner authorizing them.
Besides, different owners might control overlapping portions of the same dataset,
requiring their policies to be collectively enforced. A possible direction for future
works will explore how to solve these two issues, by defining techniques able to
handle the cases of multiple owners.

Exposure Evaluation The integrity control technique complementing our access
control system assumes the server, in case of resource updates, to never overwrite
resources but to maintain all their versions. This allows, whenever the owner or the
users identify an illegal update, to discard it and restore the previous genuine version
of the resource. To avoid the need of keeping all the different versions of every
resource in the system, it will be necessary to define a technique able to identify an
update as illegal before it is enforced, so that it can be discarded without the need of
resorting to previous versions of the resources.

Subscriptions Flexibility In our subscription-based authorization policy, sub-
scriptions are defined based on their beginning and ending time. It therefore
fits wells emerging scenarios in which users pay for a service, and are allowed
to access all and only those resources released during their subscriptions. Our
selective encryption strategy might however be adapted to different scenarios, where
subscriptions to a service can be defined on the basis of different criteria (e.g., topic
of interest, geographical region) as the hierarchy of subscriptions is not pre-defined,
but it is dynamically created depending on users’ requests. An interesting direction
for future research would extend our technique to allow for more flexibility in the
definition of user subscriptions.
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