
www.allitebooks.com

http://www.allitebooks.org

Puppet Reporting
and Monitoring

Create insightful reports for your server infrastructure
using Puppet

Michael Duffy

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Puppet Reporting and Monitoring

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2014

Production Reference: 1100614

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-142-7

www.packtpub.com

Cover Image by Gareth Howard Jones (garth123@hotmail.co.uk)

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Michael Duffy

Reviewers
Ugo Bellavance

Johan De Wit

James Fryman

Jason Slagle

Eric Stonfer

Commissioning Editor
Edward Gordon

Acquisition Editor
Llewellyn Rozario

Content Development Editor
Sankalp Pawar

Technical Editors
Taabish Khan

Aparna Kumar

Copy Editors
Insiya Morbiwala

Aditya Nair

Stuti Srivastava

Project Coordinator
Puja Shukla

Proofreaders
Maria Gould

Paul Hindle

Indexer
Mariammal Chettiyar

Production Coordinator
Sushma Redkar

Cover Work
Sushma Redkar

www.allitebooks.com

http://www.allitebooks.org

About the Author

Michael Duffy has been working in systems administration and automation for
more years than he cares to remember, and is the founder of Stunt Hamster Ltd.;
a small but perfectly formed consultancy that helps companies, both small and
large, deliver fully automated and scalable infrastructure. He has consulted for
companies such as O2 and BSkyB, delivering design, automation, and monitoring
of infrastructure for products that serve millions of users.

Michael is a keen advocate of DevOps methodologies and is especially interested
in using automation to not only deliver scalable and reliable systems, but also to
make sure that people can see what is actually going on under the hood when using
reporting tools. If given the chance, he will happily spend hours telling you how
fantastic it is that people from the development and operations fields can finally
talk and go to the pub together.

I would like to thank my absolutely incredible wife, Beth, and my
fantastic daughter, Megan, for enduring more than their fair share
of enthused lectures about Puppet reporting and for ensuring that
I was fed, watered, and occasionally moved out into sunlight
when I became a little too focused on writing. Without your
love and support, this book wouldn't have been possible.

I would also like to thank the editors and staff at Packt Publishing;
without them, this book would be several hundred pages of extreme
gibberish without a gerund verb in sight.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Ugo Bellavance has done most of his studies in e-commerce. He started using
Linux from RedHat 5.2, got Linux training from Savoir-faire Linux at age 20, and
got his RHCE on RHEL 6 in 2011. He's been a consultant in the past, but he's now
an employee for a provincial government agency for which he manages the IT
infrastructure (servers, workstations, network, security, virtualization, SAN/NAS,
and PBX). He's a big fan of open source software and its underlying philosophy.
He has worked with Debian, Ubuntu, and SUSE, but what he knows best is RHEL-
based distributions. He's known for his contributions to the MailScanner project
(he has been a technical reviewer for MailScanner User Guide and Training Manual,
Julian Field published by the University of Southampton, Department of Civil &
Environmental Engineering), but he has also given time to different open source
projects such as Mondo Rescue, OTRS, SpamAssassin, pfSense, and a few others.
He's been a technical reviewer for Centos 6 Linux Server Cookbook, Jonathan Hobson,
Packt Publishing and Puppet 3 Beginner's Guide, John Arundel, Packt Publishing.

I thank my lover, Lysanne, who accepted to allow me some free
time slots for this review even with two dynamic children to take
care of. The presence of these three human beings in my life is
simply invaluable.

I must also thank my friend, Sébastien, whose generosity is only
matched by his knowledge and kindness. I would never have
reached this high in my career if it wasn't for him.

www.allitebooks.com

http://www.allitebooks.org

Johan De Wit was an early Linux user, and he still remembers those days when he
built a 0.9x Linux kernel on his brand new 486 computer, which took a whole night.
His love for Unix operating systems already existed before Linux was announced.
It is not surprising that he started his career as a Unix system administrator.

Johan doesn't remember precisely when he started working with open source
software, but since 2009, he has been working as an open source consultant at
Open-Future, where he got the opportunity to work with Puppet. Puppet has
now become his biggest interest, and he loves to teach Puppet as one of the few
official Puppet trainers in Belgium.

Johan started the Belgian Puppet user group a year ago, where he tries to
bring some Puppet users together by hosting great and interesting meet-ups.
When he takes the time to write Puppet-related blogs, he does so mostly on
http://puppet-be.github.io/, the BPUG website. From time to time, he tries
to spread some hopefully wise Puppet words while presenting a talk at a Puppet
camp somewhere in Europe.

Besides having fun at work, he spends a lot of his free time with his two lovely kids
and his two Belgian draft horses, and if time and the weather permits, he likes to
rebuild and drive his old-school chopper.

James Fryman is a technologist who has been working on spreading the good
word of technology via the greatest mechanism known to man: the beer-fueled rant.
He has been working to automate software and infrastructure for the last 10 years
and has learned quite a bit about security, architecture, scaling, and development
as a result. He currently works for GitHub as an Operations Hacker.

www.allitebooks.com

http://puppet-be.github.io/
http://www.allitebooks.org

Jason Slagle is a 17-year veteran of systems and network administration. Having
worked on everything from Linux systems to Cisco networks and SAN Storage, he
is always looking for ways to make his work repeatable and automated. When he
is not hacking a computer for work or pleasure, he enjoys running, cycling,
and occasionally, geocaching.

Jason is currently employed by CNWR Inc., an IT and infrastructure consulting
company in his home town of Toledo, Ohio. There, he supports several large
customers in their quest to automate and improve their infrastructure and
development operations.

Jason has also served as a technical reviewer for Puppet 3 Beginner's Guide, John
Arundel, Packt Publishing.

I'd like to thank my wife, Heather, and my son, Jacob, for putting up
with me while I worked on this and other projects. They make even
days with critical systems outages better!

Eric Stonfer has spent the last 12 years working as a systems administrator with
an emphasis on systems automation and configuration management.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content

• On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com
http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Setting Up Puppet for Reporting 7

Learning the basics of Puppet reporting 7
Exploring the Puppet configuration file 9
Setting up the server 11
Setting up the Puppet agent 14
Summary 15

Chapter 2: Viewing Data in Dashboards 17
Why use a dashboard? 18
The Puppet Dashboard feature list 19
Understanding Puppet Dashboard 19
Exploring Puppet Enterprise Console 21

Event Inspector 22
Puppet Live Management 23

Using The Foreman 24
Reporting with The Foreman 26

Looking at trends in The Foreman 26
Discovering PuppetBoard 26
Summary 28

Chapter 3: Introducing Report Processors 29
Understanding a report processor 29
Utilizing the built-in report processors 32

Storing reports with the store report processor 32
Adding to logfiles with the log report processor 33
Graphing with the rrdgraph processor 34
The tagmail report processor 36
Sending reports with the HTTP report processor 39
The PuppetDB report processor 40

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Exploring the power of third-party plugins 40
Getting social with Twitter 41
Staying on top of alerts with PagerDuty 43
Summary 44

Chapter 4: Creating Your Own Report Processor 45
The anatomy of a report processor 45

Creating a basic report processor 46
Registering your report processor 47
Describing your report processor 47
Processing your report 47

Values of the self.status object 48
Alerting with e-mail and Puppet 49
Managing your report processor configuration with Puppet 56

Monitoring changes and alerting with Puppet 58
Logging with MySQL 60
Adding metrics and events to MySQL 67
Raising issues with JIRA 70
A final note on third-party applications 74
Summary 74

Chapter 5: Exploring PuppetDB 75
A brief history of PuppetDB 75
Setting up the PuppetDB server 78

Installing PuppetDB 78
Installing PuppetDB from packages 78
Increasing the JVM heap space 79

Installing PostgreSQL 80
Installing the packages 80
Creating your database user 81
Creating the PostgreSQL database 81

Summary 84
Chapter 6: Retrieving Data with the PuppetDB API 85

Exploring the PuppetDB query API 85
Understanding the command interface 86
Understanding the query API interface 87

A primer on the PuppetDB query language 89
Exploring endpoints 90

Using the facts endpoint 90
Using the resources endpoint 92
Retrieving details about nodes 93
Getting the run details with the catalogs endpoint 96
Understanding the fact-names endpoint 97
Knowing the status of PuppetDB with the metrics endpoint 98
Using the reports endpoint 99

Table of Contents

[iii]

Working with the events endpoint 100
Using the event-counts endpoint 102
Applying the aggregate-event-counts endpoint 103
Using the server-time endpoint 103
The version endpoint 104

Summary 104
Chapter 7: Writing Custom Reports with PuppetDB 105

Creating a basic query application 105
Setting up the basic application 106
Connecting to PuppetDB 107
Outputting results 108

Creating a menu-driven PuppetDB application 111
Setting up the UI 111
Querying PuppetDB's facts endpoint 115
Outputting the hardware report 116

Querying PuppetDB for report information 120
Creating the PuppetDB query method 122
Fetching the event counts 122
Presenting the events data 123
Testing our application 126

Summary 129
Chapter 8: Creating Your Own Custom Dashboard 131

Exploring Dashing 131
Setting up Dashing 134

Exploring the default puppetdash directory layout 134
Running Dashing 136

Creating our dashboard 136
Creating our dashboard layout 137

Feeding data into Dashing 140
Creating new jobs in Dashing 141

Adding trends 148
Adding meters 150
Summary 153

Chapter 9: Looking Back and Looking Forward 155
Looking back at what we've learned 155

Rediscovering dashboards 156
Producing alerts 156

Using Nagios 157
Discovering Icinga and Shinken 157

Compliance monitoring with Puppet 158
Analyzing metrics with StatsD, Graphite, and Etsy Skyline 159

Table of Contents

[iv]

Tracking changes with Puppet and Graphite 160
Using Etsy Skyline to find your normal 161
Using Puppet to drive orchestration 162

Summary 163
Index 165

Preface
Puppet is possibly the fastest growing configuration management tool on the planet,
and this is in no small part due to its combination of power and accessibility. From
small five-node installations through to hugely complex cloud infrastructures that
number thousands of nodes, Puppet has proven its ability to deliver on the promise
of infrastructure as code. There have been a number of titles that cover its ability
to create idempotent resources, manage services, and ensure that systems are
configured correctly and maintained with little or no effort. Yet, none of these
titles spend more than a chapter discussing its reporting features.

This is a shame; Puppet's reporting capability is one of its most overlooked yet
powerful features. If used correctly, its built-in reporting abilities can give you
stunning levels of detail about your infrastructure, from the amount of hardware
used and networking details to details about how and when resources were changed.
However, this is just the beginning. In this book, we are going to cover techniques
that are simple to learn and that will allow you to use Puppet as a key part of your
alerting systems, letting it bring your attention to important changes and even
forming a simple-to-implement tripwire system. We're going to explore PuppetDB
and learn why this is a fantastic source of information that you can use to not only
explore the changes being applied to your systems, but also create an end-to-end
repository of knowledge about your infrastructure. We're going to build custom
dashboards to make this data accessible, and finally, we will look at the ways
by which you can make Puppet not only report the changes, but also drive them.

What this book covers
Chapter 1, Setting Up Puppet for Reporting, will guide you through the simple steps
to take your existing Puppet installation and make it report.

Preface

[2]

Chapter 2, Viewing Data in Dashboards, takes a look at the existing dashboards
available for Puppet and how you can use them to report on your data.

Chapter 3, Introducing Report Processors, acquaints you with the engine that drives
much of the Puppet reporting process—the report processor.

Chapter 4, Creating Your Own Report Processor, deals with creating your own
report processor with custom e-mail alerts, MySQL storage, and integration
with third-party products.

Chapter 5, Exploring PuppetDB, introduces PuppetDB, a fantastic and powerful system
for report storage and analysis. In this chapter, we look at what PuppetDB is, how it's
configured, and finally, how you can set it up in your own infrastructure.

Chapter 6, Retrieving Data with the PuppetDB API, explores the fantastically powerful
API of PuppetDB; the API allows you to query your reports in a number of different
ways. We're going to explore this API for functions that range from basic queries
to advanced data integration.

Chapter 7, Writing Custom Reports with PuppetDB, deals with creating easy-to-use
custom report applications.

Chapter 8, Creating Your Own Custom Dashboard, deals with creating an attractive
and detailed custom dashboard using Dashing and PuppetDB.

Chapter 9, Looking Back and Looking Forward, takes a look at some of the more
advanced ways in which you can use Puppet reporting to do everything from
alerting to the orchestration of your infrastructure.

What you need for this book
The code and examples in this book have been designed for use with the
following software:

• Puppet 3.0 and higher versions
• Ruby 1.9 and higher versions

Preface

[3]

Who this book is for
This book is designed for anyone who wants to learn more about the fundamental
components of Puppet reporting. To get the most out of this book, you should
already be familiar with Puppet and be comfortable with its major components
such as the Puppet master and Puppet agent. You should also be comfortable
with reading code, and in particular, you should be at least passingly familiar
with Ruby. Finally, you should be happy working on the command line in the
Linux/Unix flavor of your choice.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

include puppet

Puppet::Reports::register_report(:myfirstreport) do
 desc "My very first report!"

 def process
 if self.status == 'failed'
 msg = "failed puppet run for #{self.host} #{self.status}
 File.open('./tmp/puppetpanic.txt', 'w') { | f |
 f.write(msg)}
 end
 end
end

Preface

[4]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

metric_vals = {}

 self.metrics.each { |metric, data|
 data.values.each { |val|
 name = "#{val[1]} #{metric}"
 value = val[2]
 metric_vals[name] = value
 }
 }

Any command-line input or output is written as follows:

puppet module generate <username>-<modulename>

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "The Facts view is
particularly useful as it not only lists each node with the associated fact value, but
also presents it neatly in the form of a graph."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

www.packtpub.com/authors

Preface

[5]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.PacktPub.com
http://www.PacktPub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
mailto:copyright@packtpub.com

Setting Up Puppet for
Reporting

Some tools can be enormously tedious to set up for reporting, normally making you
wade through many different configuration files, wrestle with obscure settings, and
make you lose the will to live, generally. Fortunately, Puppet is a sensible product
when it comes to its initial configuration; out of the box, it will take very little
tweaking to get it to report to the Puppet master. This is not to say that there
aren't plenty of options to keep power users happy, it's just that you generally
do not need to use them.

In this chapter, we're going to cover the following topics:

• An introduction to how Puppet reporting works
• A brief tour of the Puppet config files
• Configuring a Puppet client
• Configuring a Puppet master

Learning the basics of Puppet reporting
Before we get into the nitty-gritty of configuring our Puppet installation, it's worth
briefly going over the basics of how Puppet goes about its reporting. At its heart, a
Puppet master is a web server and the reporting mechanism reflects this; a Puppet
agent performs a simple HTTPS PUT operation to place the reporting information
onto a Puppet master. When configured properly, the Puppet master will receive
reports from Puppet agents, each and every time they perform a Puppet run, either
in the noop or apply mode. Once the reports have been received, we can go ahead
and do some fairly fantastic things with the data using a variety of methods
to transform, transport, and integrate it with other systems.

www.allitebooks.com

http://www.allitebooks.org

Setting Up Puppet for Reporting

[8]

The data that the Puppet agent reports back to the Puppet master is made up of two
crucial elements: logs and metrics. The Puppet agent creates a full audit log of the
events during each run, and when the reporting is enabled, this will be forwarded
to the Puppet master. This allows you to see whether there were any issues during
the run, and if so, what they were; or, it simply lets you examine what operations
the Puppet agent performed if things went smoothly.

The metrics that the Puppet agent passes to the Puppet master are very granular
and offer a fantastic insight into where Puppet is spending its time, be it fetching,
processing, or applying changes. This can be very important if you are managing
a large infrastructure with Puppet; a node that takes four minutes to complete isn't
too bad when there are only a handful of them, but it can be downright painful
when you are dealing with hundreds of them. It also allows you to start tracking
the performance of your Puppet infrastructure over time. Puppet modules have
a tendency to start as lean, but as they grow in complexity, they can become sluggish
and bloated. Identifying speed issues early can help you refactor your modules into
smaller and better performing pieces of code before they start to impact the overall
stability and speed of your Puppet infrastructure.

The data derived from the logs and metrics build up a complete picture of your hosts
and is enormously useful when it comes to diagnosing issues. For example, without
reporting, you may have a hard time diagnosing why every single Puppet agent is
suddenly throwing errors when applying the catalog; with reporting, it becomes
a relatively easy matter to spot that someone has checked in a common module
with a bug. Many sites use modules to manage DNS, NTP, and other common items,
and a typo in one of these modules can very quickly ensure that every single host
will report errors. Without reporting, you can make shrewd guesses as to the fault,
but to actually prove it, you're going to have to log onto multiple nodes to examine
the logs. You are going to end up spending a fair chunk of time going from node to
node running the agent in the noop mode and comparing logs manually to ensure
that it is indeed a common fault. This is based on the assumption that you notice the
fault, of course; without the reporting in place, you may find that the nodes can be
in poor shape for a substantial time before you realize that something is amiss or
that you probably have not been running Puppet at all. Running Puppet on a host
that has not been managed for some time may produce a list of changes that is
uncomfortably long and could potentially introduce a breaking change somewhere
along the line. There are many reasons why a Puppet agent may have stopped
running, and you can be in for a shock if it's been a month or two since Puppet
was last run on a host. A lot can change in that time, and it's entirely possible
that one of the many non-applied changes might create problems in a
running service.

Chapter 1

[9]

Where the Parser is the brains of Puppet, the Facter is its eyes and ears. Before Puppet
compiles a manifest, it first consults Facter to figure out a few key things. First and
foremost, it needs to know where it is and what it is. These are facts that the Puppet
agent can deduce by consulting Facter on elements such as the node's hostname, the
number of CPUs, amount of RAM, and so on. Facter knows a surprising amount
of information, out of the box, and its knowledge increases with each release. Before
Facter 1.7, it was possible to use Ruby code, shipped as a Puppet plugin, to extend
the facts you could gather. However, with Facter 1.7, you can also teach Facter some
new tricks with external facts. External facts allow you to add to Facter's already
prodigious knowledge by including anything from Ruby scripts to plain old YAML
files to insert data. These additional points of data can be utilized within Puppet
reports in the same way as any default Facter item, and they can also be used to
add additional context around the existing data.

Now that we know the basics of how Puppet reporting works, it's time to go ahead
and configure our Puppet master and agents to report. I'm going to make the
assumption that you already have a working copy of either Puppet Open Source
or Puppet Enterprise installed; if you haven't, there are some excellent guides
available either online at http://Puppetlabs.com/learn or available for purchase
elsewhere. If you're going to buy a book, I recommend Puppet 3 Beginner's Guide,
John Arundel, Packt Publishing. It is an excellent and complete resource on how
to install and use Puppet.

The example configurations I have used are from the latest version of Puppet Open
Source (Version 3.2.2 and higher), packaged for Ubuntu. Your configuration may
differ slightly if you're following this on another distribution, but it should broadly
contain the same settings.

Exploring the Puppet configuration file
Let's take a look at the default configuration that ships with Puppet Open Source.
By default, you can find the config file in the /etc/puppet/puppet.conf directory.
The configuration file is as follows:

[main]
logdir=/var/log/puppet
vardir=/var/lib/puppet
ssldir=/var/lib/puppet/ssl
rundir=/var/run/puppet
factpath=$vardir/lib/facter

http://Puppetlabs.com/learn

Setting Up Puppet for Reporting

[10]

templatedir=$confdir/templates

[master]
These are needed when the puppetmaster is run by passenger
and can safely be removed if webrick is used.
ssl_client_header = SSL_CLIENT_S_DN
ssl_client_verify_header = SSL_CLIENT_VERIFY

The first interesting thing to note about this configuration file is that it can be used
for the Puppet agent, Puppet master, and Puppet apply commands. Many items
of the configuration file tend to be common items such as log directories, run
directories, and so on, so there is no real need to keep a separate version of these
files for each role. Again, this is an example of the common way that Puppet has
been designed, when it comes to configuration.

The puppet.conf file is split up using the standard ini notation of using configuration
blocks to separate roles and the common configuration. The most common blocks
that you will encounter are [main], [agent], and [master], although sites that have
implemented either Puppet faces or Puppet environments may have more. Generally
speaking, as these additional configuration blocks are not used to set up reporting,
we shall ignore them for the purposes of this book.

The [main] configuration block is used for any configuration that is applied regardless
of the mode that Puppet is run in. As you can see from the preceding configuration file,
this includes locations of SSL certificates, logs, and other fundamental configuration
items. These are generally things that you should keep the same on every host,
regardless of it being a Puppet master or agent. However, it's worth noting that you
can override the settings in a configuration block by setting them in a more specific
block elsewhere in the file. Any setting in the [main] configuration block is available
to be overridden by any subsequent block further down the configuration file.

The [master] block is used for all configuration items that are specific to the role of
the Puppet master. As you can see in the default configuration file, this includes items
for Phusion Passenger configurations, but more importantly for us, this is also where
you would set items such as the report processor and its options. For our initial setup,
we're going to use the master configuration to set where our reports will be stored
and ensure that we are using the store report processor.

The [agent] configuration block is utilized when you run Puppet as an agent. It
is here that we can set the fairly simple configuration required to make the Puppet
agent communicate reports with the Puppet master. We won't be spending much
time in this configuration block; the majority of the configuration and processing of
the Puppet reports takes place on the Puppet master rather than on the client side.
There are some exceptions to this rule; for instance, you may have to amend a client-
side setting to make the Puppet agent report to a different Puppet master.

Chapter 1

[11]

Alternatively, if you are using the HTTP report process, you may wish to set a different
URL. So, it's worth having an understanding of the options that are available.

Why use a separate Puppet report server?
As with all good enterprise solutions, Puppet has been designed
to allow certain roles to be decomposed into separate components
to ease scaling. Reporting fits into this, and you may find that if
you are using report processors that are resource intensive, then
you may want to separate the reporting function onto a separate
server and leave as many resources as possible for the Puppet
master to deal with client requests.
You can find a complete list of all configuration options for
Puppet at http://docs.puppetlabs.com/references/
latest/configuration.html, including the options for
directing reports to a separate Puppet master.

Setting up the server
For the most part, the Puppet server is preconfigured for reporting and is simply
waiting for clients to start sending information to it. By default, the Puppet master
will use the store report processor, and this will simply store the data that is sent
to the Puppet master in the YAML format on the filesystem.

YAML is a data serialization format that is designed to be both
machine and human readable. It's widely used and seems to have
found considerable favor among open source projects. YAML has a
simple layout but still has the ability to hold complex configurations
that are easily accessible with relatively simple code. A nice side
effect of its popularity is that it has gained first-class support in
many languages and for those languages without such support,
there are many libraries that allow you to easily work with them.
It's worth taking some time to become familiar with YAML; you can
find the YAML specifications at http://yaml.org, and Wikipedia
has an excellent entry that can ease you into understanding how this
simple yet exceedingly powerful format is used.

http://docs.puppetlabs.com/references/latest/configuration.html
http://docs.puppetlabs.com/references/latest/configuration.html
http://yaml.org

Setting Up Puppet for Reporting

[12]

Although the store processor is simple, it gives us an excellent starting point to
ensure that our Puppet master and agent are configured correctly. The YAML files
it produces hold a complete record of the Puppet agent's interactions with the client.
This record includes a complete record of which resources were applied, how long
it took, what value they were earlier, and much more. In later chapters, we will fully
explore the wealth of data that both the Puppet reports and Puppet metrics offer us.

We're going to spend some time looking at various settings, both in
this chapter and others. While you can look in the raw configuration
files (and I highly encourage you to), you can also use the puppet
master –configprint command to find out what Puppet
believes a particular setting to be set at. This is extremely useful in
finding out how a default setting may be configured, as it may not
even be present in the configuration file but will still be applied!

Out of the box, the only real Puppet master setting that may require some care and
attention is the reportdir setting. This defines where the Puppet agent reports are
stored, and it is important that this points to a directory that has plenty of space. I've
routinely seen installations of Puppet where the disk is consumed within a matter
of days via a reportdir setting that points at a relatively diminutive partition. By
default, the reportdir setting is set to the /var/lib/puppet/reports directory. So
at the very least, make sure that your /var partition is fairly roomy. If your Puppet
agents are set to run every thirty minutes and you have a healthy number of hosts,
then whatever partition you have this directory in is going to become full very
quickly. It's worth bearing in mind that there is no inbuilt rotation or compression
of these log files, and you may want to consider adding one using your tool of
choice. Alternatively, there is a Puppet module to manage the log rotate on the
Puppet Forge at https://forge.puppetlabs.com/rodjek/logrotate.

If you do relocate the reports directory, then ensure that the
permissions are set correctly so that the user who runs the Puppet
master process has access to both read/write to the reporting
directory. If the permissions aren't set correctly, then it can lead
to some very weird and wonderful error messages on both the
Puppet master and agent.

Now that we understand some of the basics of Puppet reporting, it's time to take
a look at the configuration. Let's take another look at the basic configuration that
comes out of the box. The configuration file is as follows:

[main]
logdir=/var/log/puppet

https://forge.puppetlabs.com/rodjek/logrotate

Chapter 1

[13]

vardir=/var/lib/puppet
ssldir=/var/lib/puppet/ssl
rundir=/var/run/puppet
factpath=$vardir/lib/facter
templatedir=$confdir/templates

[master]
These are needed when the Puppetmaster is run by passenger
and can safely be removed if webrick is used.
ssl_client_header = SSL_CLIENT_S_DN
ssl_client_verify_header = SSL_CLIENT_VERIFY

At this point, no further changes are required on the Puppet master, and it will store
client reports by default. However, as mentioned, it will store reports in the /var/
lib/Puppet/reports directory by default . This isn't ideal in some cases; sometimes,
it's impossible to create a /var directory that would be big enough (for instance, on
hosts that use small primary storage such as SSD drives), or you may wish to place
your logs onto a centralized storage space such as an NFS share. This is very easy
to change, so let's take a look at changing our default configuration to point to a
new location. This is described in the following code:

[main]
logdir=/var/log/puppet
vardir=/var/lib/puppet
ssldir=/var/lib/puppet/ssl
rundir=/var/run/puppet
factpath=$vardir/lib/facter
templatedir=$confdir/templates

[master]
reportdir = /mnt/puppetreports
These are needed when the puppetmaster is run by passenger
and can safely be removed if webrick is used.
ssl_client_header = SSL_CLIENT_S_DN
ssl_client_verify_header = SSL_CLIENT_VERIFY

Make sure that once you have created your Puppet's reports directory, you change
the permissions to match your Puppet user (normally, puppet:puppet for Unix and
Linux systems) and restart the Puppet master. Go ahead and run the client again,
and you should see the report appear in your new reporting directory.

Setting Up Puppet for Reporting

[14]

If you're using Puppet Enterprise, then none of this applies; the installer has taken
care of this for you. If you take a look at the configuration directory (normally /etc/
Puppetlabs/master), you can see that the Puppet.conf file has the same changes.
Puppet Enterprise is configured out of the box to use the HTTP and PuppetDB
storage method. This is a far more scalable way of doing things than the standard
reportdir directory and store method, and it is a good example of where Puppet
Enterprise is designed with scale in mind. This doesn't mean that you can't do this
in the open source version, though; in the following chapters, we will go through
setting up Puppet Open Source to use these report processors and more.

Setting up the Puppet agent
Much like the Puppet master, the Puppet agent is configured with sensible default
settings out of the box. In fact, in most cases, you will not need to make any changes.
The only exception, generally, is if you are using a separate reporting server; in this
case, you will need to specify the host that you have assigned this role to.

You can adjust the Puppet agent's reporting behavior using the report setting within
the [agent] configuration block of the Puppet configuration file. This is a simple
Boolean switch that defines the behavior of the Puppet agent during a run, and
by default, it is set to true. Sometimes, you may find that you wish to explicitly
set this to true to aid anyone who is less familiar with Puppet. You can safely set
this explicitly by making the following code amendment to the puppet.conf file:

[main]
logdir=/var/log/puppet
vardir=/var/lib/puppet
ssldir=/var/lib/puppet/ssl
rundir=/var/run/puppet
factpath=$vardir/lib/facter
templatedir=$confdir/templates

[master]
These are needed when the Puppetmaster is run by passenger
and can safely be removed if webrick is used.
ssl_client_header = SSL_CLIENT_S_DN
ssl_client_verify_header = SSL_CLIENT_VERIFY

And now let's insert the option for the client to report:
[main]
logdir=/var/log/puppet
vardir=/var/lib/puppet
ssldir=/var/lib/puppet/ssl

Chapter 1

[15]

rundir=/var/run/puppet
factpath=$vardir/lib/facter
templatedir=$confdir/templates

[agent]
report = true

[master]
These are needed when the Puppetmaster is run by passenger
and can safely be removed if webrick is used.
ssl_client_header = SSL_CLIENT_S_DN
ssl_client_verify_header = SSL_CLIENT_VERIFY

These are the essentials to configure Puppet in order to report. There are other options
available in both the Puppet agent and the Puppet master configuration that are related
to reporting, but these are strictly optional; the default settings are generally okay. If
you're curious, you can find a complete list of the available options on the Puppet Labs
website at http://docs.puppetlabs.com/references/latest/configuration.
html. Be cautious, though; some of these settings can do some very weird things
to your setup and should only be used if you really need them.

Well done; you are now up and running with Puppet reporting, albeit in a very basic
form. We could end the book here, but the fun is only just starting. Now that we
understand how the Puppet agent interacts with the Puppet master to create reports,
we can start to examine some of the other powerful features that Puppet reporting
offers us.

Summary
After reading this chapter, you should now appreciate how Puppet goes about its
reporting. We explored the Puppet configuration file and observed how both Puppet
Enterprise and Puppet Open Source are configured for simple reporting by default.
We explored the interaction between the Puppet master and the Puppet agent and
looked at how Puppet and Facter work together to create detailed reports of both
the activity and state. We also observed that custom facts can be added to any report.
We briefly covered scalability by noting that you can use a separate Puppet master
to act as a dedicated report server, and we looked at some of the reasons as to why
you might want to do this.

In the next chapter, we're going to take a look at some of the dashboards that can
be used with Puppet and take a whistle-stop tour of some of the major features
that each of them has. You'll see how these dashboards can offer some quick
and easy reporting options but also have see of the limitations of using them.

http://docs.puppetlabs.com/references/latest/configuration.html
http://docs.puppetlabs.com/references/latest/configuration.html

Viewing Data in Dashboards
In the previous chapter, we found out how easy it is to make Puppet expose a rich
seam of information from the hosts; however, at this point in time, we have no easy
way of mining it. In the next few chapters, we are going to look at some of the ways
in which we can both extract and interact with the data that Puppet provides, but
in the meantime, we will spend a little time going over the tools that are already
available. These tools provide a quick and easy out-of-the-box experience, and
in the case of Puppet Enterprise and The Foreman, also form a central part of
the management tool chain.

In this chapter, we're going to cover the following:

• A brief introduction to dashboards
• A quick tour of Puppet Dashboard and Puppet Enterprise Console
• A brief look at The Foreman
• An introduction to PuppetBoard

www.allitebooks.com

http://www.allitebooks.org

Viewing Data in Dashboards

[18]

Why use a dashboard?
One of the advantages of using Puppet to manage your infrastructure is that it allows
you to simplify the management and organization of your nodes and impose order
on even the largest pool of resources. This is only one part of the picture, however,
and an important element to any kind of system, such as Puppet, is being able to
visualize what you manage. A dashboard is shown in the following screenshot:

Puppet now has several dashboards available for use, and most of these offer
capabilities above and beyond simply reporting data. Most dashboards can also
act as External Node Classifiers (ENCs), and in some cases, can drive actions by
integrating with MCollective and even form a key part of the server build process
if you use The Foreman. Even without utilizing these features, you will find that
a dashboard can offer both your users and you a valuable insight into what is
happening within your Puppet-managed infrastructure, and will allow you to
interrogate the facts and reports returned by the Puppet agents. It's worth noting
that in many cases, if you do not use these dashboards as ENCs, you may find that
some information will not be accessible. For instance, Puppet Dashboard cannot tell
which classes are assigned to a particular node unless it's being used as an ENC.

We are not going to go into a huge amount of detail regarding how to set up each
of these products as you can find installation instructions along with the respective
projects. If you are a Puppet Enterprise user, then you will find that Puppet
Enterprise Console is installed as part of the overall product.

Chapter 2

[19]

Before going into detail about the dashboards, it's worth looking at the features
that each of them can offer. I've summarized this into a table, which is shown
as a screenshot in the next section.

The Puppet Dashboard feature list
In the following screenshot, we will identify the feature list available and understand
the availability of these features in different dashboards:

• ENC: This denotes that this dashboard can be utilized as an external
node classifier

• Reporting: This dashboard can produce reports on a Puppet agent's activity
• Class Discovery: This dashboard can examine installed Puppet modules

and extract class names for allocation in the ENC
• PuppetDB Integration: This dashboard can use PuppetDB as a

data source
• MCollective Integration: This denotes that this dashboard can use

MCollective to orchestrate actions against nodes

Understanding Puppet Dashboard
Puppet Dashboard is the original dashboard that was shipped with Puppet and
was designed to provide a graphical ENC and reporting console. Since the advent
of Puppet Enterprise, Puppet Labs no longer directly supports the open source
version of the dashboard and it is now maintained by the open source community.

Viewing Data in Dashboards

[20]

Puppet Dashboard fulfills the role of both an ENC and an end point for Puppet
reporting. As an ENC, Puppet Dashboard is capable and will allow you to both
define classes and assign them to nodes. Note, though, that classes are defined
manually, so if you do use Puppet Dashboard as an ENC, you will need to add
some new classes to the dashboard if you want to add a new module.

Puppet Dashboard was designed to be simple enough to be read at a glance, and the
front page will immediately allow you to see both the number of Puppet agents and
which state they reported last in a time series graph along the top of the dashboard.
The panel to the left of the graph allows you to see in detail how many nodes have
failed to run, are pending changes, have changed, or are unchanged. It also shows
you unresponsive and unreported nodes; these are important metrics and well
worth keeping an eye on. An unresponsive node is any node that has not reported
back in an hour, and it is probably a signifier of issues if you see a large number in
this column. You can configure the cutoff period if you tend to run your Puppet
agents on a different schedule to the usual 30 minutes. Unreported nodes occur
if you commission a node in Puppet Dashboard and it never reports—these are
something that should be somewhat of a rarity.

At the bottom of the front page is a table that allows you to see more details of the
nodes, with each tab representing a state from the status summary on the left-hand
side of the page. In the table, you can see the hostname of the node, the date and time
of its last report, and some statistics around how many resources the Puppet agent
has either applied, failed to apply, or left unchanged. By clicking on the links in the
table, you can explore the report and node further.

The open source Puppet Dashboard is relatively simple to set up and can offer
you a reasonable level of reporting. It includes ENC functionality and can be used
to categorize and apply classes to your nodes. At the time of writing, however,
community participation has been low, and I would not recommend using the
open source Puppet Dashboard unless you have a compelling need to. If you
do want to install or, better yet, contribute towards Puppet Dashboard, then
you can find it at https://github.com/sodabrew/puppet-dashboard.

https://github.com/sodabrew/puppet-dashboard

Chapter 2

[21]

Exploring Puppet Enterprise Console
Puppet Labs have focused their time on improving Puppet Dashboard in the enterprise
release of Puppet, and to start to differentiate it from the previous dashboard, they
have renamed it Puppet Enterprise Console. Although superficially similar to each
other, the two projects have very different offerings. Puppet Enterprise Console offers
integration with MCollective, and PuppetDB offers out-of-the-box, enhanced features
such as Event Inspector and Live Management. Puppet Enterprise Console forms
the core of the enterprise product and offers a central place of management and a
solid reporting tool, and increasingly, is the place to orchestrate your infrastructure.
This dashboard is shown in the following screenshot:

In terms of layout and basic reporting capabilities, Puppet Enterprise Console is very
similar to the open source Puppet Dashboard, and if you are migrating from Puppet
Dashboard to Puppet Enterprise Console, you should find yourself at home.
We're going to take a look at the two major features Puppet Enterprise Console
has that sets it apart from its open source progenitor.

Viewing Data in Dashboards

[22]

Event Inspector
Event Inspector is a relatively new addition to Puppet Enterprise Console, and it
gives you a quick and easy way to correlate events between multiple nodes over
a certain period of time. This can be seen in the following screenshot:

The events console also has a feature called perspectives. This allows you to view
the data from one of three different ways, from the nodes, classes, or resources
perspectives. This ability to flip between views is very useful and quickly allows
you to contextualize an event.

For instance, take a failure on a group of nodes. Viewing them from the nodes
perspective allows you to see that a group of nodes failed during the previous
run. However, flipping over to the classes' perspective shows you that the failure
occurred within a particular class; this allows you to quickly zero in on changes
that have had an adverse affect on your Puppet-managed infrastructure.

Chapter 2

[23]

The events console is one of the major differences between the open source and
enterprise versions of Puppet, and it gives you an idea of the direction that Puppet
Labs is moving in with regards to reporting. You can expect that in future releases
of Puppet Enterprise, the reporting gap will only increase.

Puppet Live Management
Puppet Enterprise features integration with another Puppet-Labs-curated
product, MCollective (http://puppetlabs.com/mcollective). MCollective is
an orchestration product that allows you to execute commands in parallel on many
nodes, and by integrating MCollective into Puppet Enterprise Console, Puppet Labs
has created a new feature called Puppet Live Management. This can be seen in the
following screenshot:

http://puppetlabs.com/mcollective

Viewing Data in Dashboards

[24]

Puppet Live Management allows you to control Puppet on your nodes from the
comfort of your Puppet Enterprise Console application. For instance, if you've
pushed a change on a Puppet module and can't wait for the usual 30 minutes for
it to take effect, you can use Puppet Enterprise Console to do a one-off Puppet
run on a node or even a group of nodes. Likewise, you can enable and disable
the Puppet agent, plus find its status on all the managed nodes.

Puppet Live Management is not just limited to managing Puppet agents, though; it can
leverage MCollective plugins to further enhance its capabilities. A fresh installation
of Puppet Enterprise Console has preinstalled plugins that allow you to carry out
tasks such as package installation and restarting services, and these can be further
supplemented with any available MCollective plugin.

Puppet Enterprise Console is the evolution of the open source Puppet Dashboard and
is increasingly differentiating itself with new and exciting features. It is, however, only
available if you use Puppet Enterprise and cannot be split off as a separate product.
You can download Puppet Enterprise Console along with Puppet Enterprise from
http://puppetlabs.com/puppet/puppet-enterprise.

Using The Foreman
The Foreman is an open source project that is, in its own words, a life cycle
management tool. Rather than being limited to acting as an ENC for Puppet,
The Foreman can also provide unattended installation facilities for kickstart,
jumpstart, and preseed-based systems. This essentially means that The Foreman
is able to create our system from its initial boot, through first configuration, and
then manage its state for the rest of its life cycle. This dashboard is shown in the
following screenshot:

http://puppetlabs.com/puppet/puppet-enterprise

Chapter 2

[25]

From the point of view of reporting, The Foreman offers much the same as Puppet
Dashboard, including the ability to view individual host details and reports.
However, it also has some of its own interesting tricks. The Foreman has put
an awful lot of thought behind reporting and has two standout features: trends
and audits. These offer a unique view of our Puppet-managed infrastructure and
are exceptionally powerful reporting tools.

Viewing Data in Dashboards

[26]

Reporting with The Foreman
Reporting forms a very large part of The Foreman feature set, and The Foreman is
possibly the most capable out of each of the dashboards in this regard. Not only is
The Foreman able to report the usual details, such as facts and reports from nodes,
but it is also able to create full audit reports for them (who made what change to
which servers) that are well presented and make heavy use of charts to ensure that
the data is clear and easy to read. The Foreman also has an interesting feature to
look at historical data called trends.

Looking at trends in The Foreman
The Foreman is able to report on facts, much like other dashboards; however, it also
records changes in state into its own data store. This allows it to build up a view of
how facts are trending over time. A good example is to look at the RAM allocated
to a certain group of nodes. Using The Foreman trends feature, it is possible to
look at how this has grown over time and can be a fantastic aid when trying to
work out capacity management problems. Alternatively, any fact that is reported
to The Foreman can be viewed as a trend, and this is a fantastic feature that other
dashboards currently lack.

The Foreman is a very impressive dashboard for Puppet and well worth considering,
especially if you need a quick and powerful reporting solution. It works best when
it is acting as the Puppet ENC, however, so if you install and use it simply as a
reporting tool, you may find that some features do not work as expected.

Discovering PuppetBoard
PuppetBoard is a relatively young product, and as such, may have a few rough
edges; however, despite its youth, it already offers an excellent interface for
reporting. PuppetBoard uses PuppetDB as its data source, and aside from Puppet
Enterprise Console, it is the only product to do so. PuppetBoard eschews any
ambition of forming part of the management layer, and instead, it focuses on
providing a clear and easy-to-use reporting feature. This dashboard is shown
in the following screenshot:

Chapter 2

[27]

Since PuppetBoard is based around PuppetDB, it allows access to all data within
it, such as facts and Puppet agent reports and metrics. It allows you to explore this
data intuitively using an easy-to-use interface. PuppetBoard allows you to explore
the data held in PuppetDB from the point of view of nodes, facts, and reports, and it
also allows you to drill through each element to explore further details. For instance,
by drilling into a node, you are able to see its connected facts and reports, and by
drilling into facts, you are able to see the nodes connected to that particular fact
along with an appropriate graph. The FACTS view is particularly useful as it not
only lists each node with the associated fact value, but also presents it neatly in
the form of a graph. This can be invaluable for quickly gauging the rollout of
operating systems, for instance. This is described in the following screenshot:

www.allitebooks.com

http://www.allitebooks.org

Viewing Data in Dashboards

[28]

The other useful feature is the query panel. This allows you to run freeform
PuppetDB queries utilizing the PuppetDB query API. So, if a particular view
of data is not present in the predefined PuppetBoard reports, you can quickly
make up ad hoc ones. We will explore PuppetDB and its query API in Chapter 6,
Retrieving Data with the PuppetDB API.

PuppetBoard is a young project, but it is extremely promising even at this early
stage. If you use Hiera or some other way to classify nodes, then PuppetBoard is
an excellent addition to your Puppet infrastructure as it does not require that Puppet
agents use it as an ENC for any of its features. Combine this with easy-to-use reporting
and a relatively lightweight installation and you have the makings of an excellent
dashboard. You can find the code and installation instructions for PuppetBoard at
https://github.com/nedap/puppetboard.

Summary
You should now be aware of which dashboards are available for Puppet and what
features they can offer you. As you can see, they can add a fantastic insight into
the running of your Puppet infrastructure without needing to expend much effort.
Using these dashboards gives you quick and easy access to both your Puppet reports
and gathered data from your hosts via Facter, and they can be used to easily track
changes over time. There are problems, though. First of all, you need to use these
panels as an ENC to leverage their full power. Without this, you can use the majority
of the reporting features, but they will still be missing certain elements. They are
also inflexible, with almost no opportunity to customize the reports to suit your
purposes, and in some cases, their development is lagging.

In the next chapter, you will learn how to create your own report processors. Report
processors form a key part of Puppet reporting and will start you on the way to
producing your own reports and alerts.

https://github.com/nedap/puppetboard

Introducing Report Processors
In the previous chapters, we looked at some of the basic steps needed to enable
Puppet reporting and learned how to view some of the data that the Puppet agents
produce. In this chapter, we will learn how to enable the Puppet master to process
these reports and metrics using report processors. We will cover the following topics:

• Basics of report processors
• Default report processors that ship with Puppet
• How to send Puppet alerts with Twitter
• Using PagerDuty to log and escalate issues

Report processors form the heart of Puppet reporting; so, it's important that you
get a good grounding in what they are, what they can do, and how you can go
about adding new ones. Once you've got a good grasp of how they are installed
and configured, you will be amazed at some of the additional functionality that
a good report processor can add to Puppet, not just for producing reports, but
also for raising alerts and more.

Understanding a report processor
It's one thing to be able to gather data, but it's quite another thing to then be able to
do anything interesting with it. Having data without any means of access is simply
wasting disk space and bandwidth. It's been the bane of many systems that they
seem to gather lots of data and then make it tooth-grindingly frustrating to get any
kind of sensible access to it. Puppet has been designed from the outset to make it
easy for you to gather and access any data that it collects, both by using open source
data formats and by providing a plugin system in the form of report processors that
allow you to process that data.

Introducing Report Processors

[30]

Report processors are pieces of Ruby code that are placed within Puppet's lib
directory and are treated as plugins. When a report processor is enabled, the
Puppet master will pass the YAML data it receives from the Puppet agents into
the report processor every time a Puppet agent completes a transaction. It is then
up to that particular plugin to do something interesting with the data, and as it's
a straightforward piece of Ruby code, you can let your imagination run riot! If
you can do it in Ruby, you can do it with a report processor; and if you can't do
it in Ruby, you can easily write a report processor to forward the data to a data
processing weapon of your choice.

Puppet does not limit you to one report plugin; you can have as many as you like
installed at any given time. You need to keep in mind that these plugins are being
executed on your Puppet master, and you need to ensure that the report processor(s)
does not leave the Puppet master process starved of resources. There are various
techniques that can be used to move data into other systems, and in this chapter
and others, we will explore some of the ways of doing that. One of the simplest
ways to scale Puppet reporting is to add another Puppet master for reporting.
As we explored in Chapter 1, Setting Up Puppet for Reporting, it's easy to add a
Puppet master dedicated to reporting, and this is highly recommended as a
scaling technique. There is no reason that this server needs to be the actual
reporting Puppet master either; you could potentially use a load balancer to
enable several reporting Puppet master servers in the frontend.

It is exceptionally useful to have the ability to install multiple report processors. You
could potentially have one script that deals with errors and sends alerts to the correct
person, another plugin that creates some lovely graphs of your Puppet activity, and
finally (and I have seen this), a report processor that alerts an Arduino board to play
the James Bond theme if certain terms are seen. It can't be overstated how powerful
the reporting subsystem can potentially be; Puppet is probably one of the few systems
that has almost complete knowledge of your infrastructure, from how many CPU cores
a node has to how a piece of software is configured. Add in some suitable custom facts
and there's almost nothing you cannot find out with Puppet, and once Puppet knows
about it, a report processor can act on it.

Report processors are installed in the $vardir/Puppet/reports directory within
Puppet's install directory and only need to be present on the Puppet master.
The Puppet agent neither knows nor cares what happens to the data; it simply
sends it to the Puppet master for processing. That being said, it doesn't matter if
the report processors are present on the Puppet agents as they will never be called
on the agent side.

Chapter 3

[31]

It's worth noting that prior to Puppet Version 3.3.0, the report format
was a YAML document. From Version 3.3.0 onwards, it now uses a
PSON-formatted document (a variant of JSON). Generally speaking,
this shouldn't matter too much for our purposes, but it is worth
knowing in case you use firewalls that have blocks based on the
content type. You can use the report_serialization_format
option within the puppet.conf configuration if you need to set it
back to the legacy YAML format.

There are two ways in which you can install a report processor. The most traditional
and, in some ways, straightforward method is to copy the code and place it on your
Puppet master. This is completely supported by Puppet, simple to carry out, and has
the advantage of being quick; however, it lacks a certain elegance and is not really
in keeping with the Puppet spirit of automation.

A more refined way to install report processors is to package them inside a Puppet
module. The module itself simply needs a /lib/puppet/reports directory for your
shiny new plugin code to be placed. You'll also need a blank init.pp file in the
manifests directory to ensure that Puppet has something to run. Once the module
is installed on the Puppet master, you just need to perform a Puppet client run.
Thanks to the magic of Puppet's plugin sync mechanism (which is enabled by
default since Puppet Version 3), you will find that the new report processor is
installed in the correct location with the correct ownership and permissions.

This installation method may seem counterintuitive at first, but it makes complete
sense to do it this way. By following this convention, it becomes much easier to
distribute your code. It simplifies building new Puppet masters with Puppet and
ensures that if you release a new version, it will be automatically propagated and
updated. Another major benefit is that by producing a report processor as a module,
it makes it easier for you to submit it to Puppet Forge for other people to make use
of your work.

Puppet Forge is a fantastic repository of Puppet modules written by
both Puppet Labs themselves and the community at large. As long
as you follow the pattern of using a module to distribute your code,
you can add it to Puppet Forge. By adding your code to Puppet
Forge, you are not only sharing your expertise and code with other
Puppet users, but you are also allowing them to improve upon these
codes. After reading this book, you may have some fantastic ideas
for a report processor, and it would be fantastic for you to share it on
Puppet Forge. You can view the existing modules as well as sign up
to publish your own at https://forge.puppetlabs.com.

https://forge.puppetlabs.com

Introducing Report Processors

[32]

We'll come back to the organizational and developmental aspects of report
processors in Chapter 4, Creating Your Own Report Processor. For now, let's take
a look at some of the existing report processors available in Puppet.

Utilizing the built-in report processors
Puppet ships with several report processors that have already been included,
and they offer some fairly fantastic capabilities right away without needing to
write a single line of code. The included plugins cover a fairly wide spectrum
of requirements, from storing the raw reports to sending alerts via e-mail based
on certain criteria. The included report processors are the following:

• store
• report
• rrdgraph
• tagmail
• HTTP
• PuppetDB

Over the next few pages, we're going to take a look at these built-in report processors
and what they are capable of. You are going to find that the included report
processors offer a rather impressive range of abilities and can immediately offer
you not only better insight into your infrastructure, but also some new and
interesting alerting abilities.

Storing reports with the store report processor
The store report processor is the simplest report processor packaged with Puppet,
and it does exactly what it says on the tin; it takes incoming reports and stores them
to a location on a disk. It is also the default report processor to be used if you enable
reporting on the Puppet master.

Although it sounds simple, this processor is incredibly versatile, as the file it creates
is a complete dump of the report data from the Puppet agent. This ensures that every
part of the puppet::transaction::report object is stored, including the log, metrics,
and resources. This is something that other report processors may not necessarily do
as there is a very large difference between processing log data and processing metrics.
Possibly the biggest asset of the store report processor is that it allows for the option of
ingesting the files into a separate analytical tool such as Crystal Reports or any other
data analysis tool. The store report processor lends itself nicely to producing data for
batch processing, and it should be the first place to look if you are dealing with the
batch capture and transform tools for analysis.

Chapter 3

[33]

Configuring the store report processor is straightforward. To enable it, you simply
need to edit the puppet.conf file and add the following lines of code:

[master]
reports = store
reportstore = /var/log/Puppet

Once you've added these lines of code, you'll need to restart the Puppet master
process. Although Puppet will automatically reload its configuration when a change
is made, the report processor is not automatically started; so, to ensure that any
new reporting configuration changes are picked up, it's best to remain in the habit
of restarting the Puppet master when you make any changes.

The first line of the preceding code snippet tells the Puppet master to load the store
report processor, and the second line then tells the processor where to store the
processed files. As long as you've left the clients for reporting in their default
setting, you should find that your reports directory starts to fill up with reports.

Remember to keep an eye on your disk space usage on the partition the reports are
being stored on; although each report is quite small on its own, the reports soon start
adding up. If you're using an application of your own devise to crunch the data, you
may want to consider either removing the data post processing or, at the very least,
archiving it into some form of compressed file. The Puppet master has no further
interaction with the data, so either removing the stored reports or compressing
them will have no effect on the running of your Puppet master.

Adding to logfiles with the log report
processor
The log report processor is, in some ways, similar to the store report processor.
Rather than storing the report on a disk with the Puppet master, the log report
processor sends it to the local syslog server for logging. This can be enormous fun
when coupled with a remote syslog server and can make collecting reports from
multiple Puppet masters a complete breeze. This is especially useful if you are
running a large or complex Puppet installation as it allows you to have a single
place to look for issues rather than having to look at individual servers.

To enable the log report processor, you can add the following code snippet to the
puppet.conf file:

[master]
reports = log

Introducing Report Processors

[34]

That's it; no configuration is required as all this processor does is hand the data to
the underlying syslog system; it's up to you to configure your syslog to deal with
the data in an appropriate manner by adding syslog filters and log rotation rules.
This is out of the scope of this book, but it should be covered by your syslog tools'
documentation. At the least, you will probably want some kind of rule in place to
split the Puppet master data into a separate log file, as a busy infrastructure will
easily drown out any other messages that go to the default syslog; such a rule will
also make it easier to manage the data from a housekeeping point of view. Much
like the store report processor, the log report processor can log a surprisingly large
amount of data in a short time, so you'll almost certainly want a daily rotation and
compression housekeeping task.

Graphing with the rrdgraph processor
RRD stands for Round Robin Database, and it is an industry standard graphing
format used by everything from routers to monitoring services and everything
in between. The RRD format is widely used and recognized by many different
applications that will allow you to present the data in interesting and attractive
ways. An example graph is shown in the following screenshot:

The rrdgraph plugin is arguably one of the most useful report processors that
ships with Puppet, and even without additional components, it will allow you
to produce some wonderful graphs of the Puppet activity with minimal effort.
This can be especially useful if you are either unable or unwilling to run one of
the Puppet dashboards. Many of the graphs produced by the dashboards can be
replicated using the rrdgraph report processor, and although the output is not as
attractive or easy to use, it's still very usable and informative.

Chapter 3

[35]

Once installed, the rrdgraph report processor will produce a set of graphs that
outline the important metrics from the data passed to it by the Puppet agents.
The way it produces and stores the graphs is fantastically useful and very easy
to work with. Every time the rrdgraph report processor is run, it will produce a
directory for each host that reports to the Puppet master. Inside the directory, you
will find an .html file that, when opened, will present the graphs. Voila! A kind
of instant dashboard is created.

Along with producing graphs, the rrdgraph report processor will also give you the
raw RRD data used to create the graphs. This is great, as it means that you can plug it
into any other application that understands RRD data, and that's a lot of applications!
By using a networked filesystem or some other method of syncing the data, you can
make the RRD data available to these applications pretty much in real time. This can
be incredibly useful if you already have an application that makes use of the RRD
data to build up a business or infrastructure dashboard as it means that Puppet can
be plugged straight into it.

Although the rrdgraph plugin is distributed with Puppet, it relies on other software
and libraries that may not necessarily be preinstalled on your system. This is common
with more complex report processors, as they tend to rely on other components to
do some of the heavy lifting or communicate with other systems, either in the form
of additional packages offered by the OS, or more commonly, via the RubyGems
packaging system.

In the case of the rrdgraph report processor, the first additional package you'll want
to install are the RRD tools themselves; the exact installation method will vary from
distro to distro. To install it on Debian-based distributions, you can use the following
command at the command prompt:

apt-get install rrdtool

For RedHat-based distributions, you can use the following command:

yum install rrdtool

You will also need the Ruby RRD libraries. These should ship with your distribution
and can be installed in the usual manner. If you are using a Debian-based
distribution, you can install it using the following command:

$ apt-get install librrd-ruby

If you are using a RedHat-based distribution, you can install it using the
following command:

$ yum install rrdtool-ruby

Introducing Report Processors

[36]

Once the prerequisite components are installed, make the following addition to the
puppet.conf file:

[master]
reports = rrdgraph
rrddir = $vardir/rrd
rrdgraph = true

The extra configuration items are important. The rrddir object tells Puppet which
directory it should output the graphs to. If you want to quickly and easily see the
data, then make sure that this is a directory that a web server is able to read, and this
way, you can access it straightaway in your browser and admire the pretty graphs.

The other object in the preceding code is rrdgraph. This is a simple Boolean setting
that controls the production of the actual graphs. If you're going to feed the data
into another system, you may just want Puppet to produce the RRD data without
requiring the graphs, and this setting will allow you to turn this behavior on or off.
By default, this is set to true.

The tagmail report processor
The tagmail report processor is a quick and easy way to get Puppet to send e-mails,
and it is clever enough to do this based on certain criteria you give it. The tagmail
report processor works via the magic of Puppet tags, a particularly underappreciated
Puppet feature.

Puppet tagging is a way to mark out elements within Puppet, allowing you to
identify individual resources or classes. What's nice is that Puppet will automatically
do this for you to some extent. By default, Puppet will automatically tag every
resource that it successfully parses and will make available the following tags:

• The resource type
• The full name of the class in which the resource is declared
• Every segment of the namespace of the resource class

This is brilliant as it gives you a very rich set of tags to work with without lifting a
finger. You can also manually tag resources within your Puppet code if you wish to
add clarity or order, and this is something that I would encourage. So how does this
fit into the tagmail report processor?

Chapter 3

[37]

Let's say you have a very important set of nodes that utilize a certain class, and
you want to be informed every time that the Puppet agent applies or interacts
with resources in that class. Using the tagmail report processor, this becomes very
easy; simply identify the resources that you're interested in and the tagmail report
processor will inform you via an e-mail when something has happened to them.

To tell the report processor what tags you are interested in, you need to build a tag
map. A tag map is a very simple configuration file that contains all of the Puppet tags
that you want to match and the e-mail address that should receive the notification.
You can also use exclusionary rules to start building up some simple logic around
your Puppet tags. Take a look at the following code example:

all: ops@fictionalco.com
web,webops@fictionalco.com, ops@fictionalco.com
tomcat, !jboss: javadevs@fictionalco.com

It's as simple as that. The preceding example will do the following things:

• Send an e-mail every time the processors see any tag. This will send you
an e-mail every time a Puppet agent runs and is generally a bit verbose for
everyday use.

• Send the WebOps and Ops teams an e-mail when a Puppet agent applies
a resource that uses the web Puppet tag.

• Send the Javadevs team an e-mail if the Puppet agent applies a resource
that contains a tomcat tag but not if it also contains a jboss tag.

The following Puppet code snippet can demonstrate how these tags are set:

class role::public_web {
 nginx::vhost{'blog':
 hostname => 'myblog.com',
 tag => 'web',
}

 tomcat::connector {'appa':
 port => 8080,
 tag => 'tomcat',
 }

 jboss::connector {'appb':
 port => 8081,

www.allitebooks.com

http://www.allitebooks.org

Introducing Report Processors

[38]

 tag => 'jboss',
}

user: {'appserver':
 username =>'appserver',
 tag =>['jboss', 'tomcat'],
}

In this case, the ops@fictionalco.com address would have received an e-mail
simply because any resource has been applied. The webops@fictionalco.com
address would have received an e-mail about the nginx vhost being applied as it is
tagged as a web item. Finally, the javadevs@fictionalco.com address would have
received an e-mail regarding the jboss connector resource. Note our user would not
have received any e-mail about the user resource as it contains the tomcat tag.

Using resource tags is useful and will allow you to quickly and easily put together
some basic e-mail alerts for the resources that you are interested in. However, one
of the quickest and easiest things you can do with the tagmail report processor
is configure it to warn you of the potential problems with Puppet. The tagmail
report processor parses log-level data within the Puppet report as additional tags.
This enables it to react to events that are warnings, errors, or indeed any other log
levels available. Take a look at the following tag map code:

err: ops@fictonalco.com

Once this line is added, every time the processor encounters a tag of err, it will send
you an e-mail; or, to put it another way, every time one of your nodes has problems
applying a Puppet manifest, you will receive an e-mail that will warn you about
the issue.

It is a straightforward task to configure the tagmail plugin, and aside from the
tagmap file, it has no other external dependencies. To enable it, simply add the
following code to your puppet.conf file:

[master]
reports = tagmail
tagmap = $confdir/tagmap.conf

The preceding code is fairly self explanatory; the first line enables the tagmail report
processor and the second line tells it where it can find its tag map. Note the use of
the $conf variable in front of the tagmap.conf file; this will point Puppet to its own
config directory to find the tagmap file. It's generally sensible to keep the report
processor configuration alongside your main line Puppet configuration, but if
you want to put it elsewhere, you can. As with the other plugins, you'll need to
restart the Puppet master process for the plugin to take effect.

Chapter 3

[39]

You can find the documentation for tags at http://docs.puppetlabs.com/
puppet/latest/reference/lang_tags.html and the documentation for tagmail
report processor configuration at http://docs.puppetlabs.com/puppet/latest/
reference/config_file_tagmail.html. It's worth reading through both, and
they should give you some ideas on how you can add Puppet tags to best utilize
this feature.

Sending reports with the HTTP report
processor
The HTTP report processor is very much an enabler of other tools. It takes the
output of a Puppet transaction report and sends it via HTTP or HTTPS to a URL
as a raw YAML file. The application that receives this data is then free to process
it in a manner it chooses. This is astoundingly useful as it gives you a quick and
easy way to make Puppet communicate with other systems.

Puppet Dashboard, Puppet Enterprise Console, and The Foreman already rely on the
HTTP report processor to allow Puppet agents to communicate new data. The HTTP
report processor is generally the first place you should look if you need to integrate
Puppet with another system. Whatever system you use must be able to process
the data that the Puppet agent will pass to it. This data is a YAML file dump of
the puppet::transaction::report object, so it contains all the data generated
by the Puppet agent during a transaction, from reports to metrics.

A good example where you may want to export the data could be change
management. Using the HTTP report processor and a tailored application,
it would be possible to give the change managers a real-time view of what has
changed, when it changed, and where it changed. If they already have such a
system, it may be possible to use the HTTP report processor to interact with it.

It is a straightforward task to configure the HTTP report processor. Again, you
simply edit your puppet.conf file and add the following lines of code:

report = http
reporturl = http://Puppetendpoint.fictionalco.com

That's it. Now, every time a Puppet agent performs any transaction, the HTTP report
processor will forward a YAML document that contains the report to the end point
you've configured in the reporturl configuration item.

http://docs.puppetlabs.com/puppet/latest/reference/lang_tags.html
http://docs.puppetlabs.com/puppet/latest/reference/lang_tags.html
http://docs.puppetlabs.com/puppet/latest/reference/config_file_tagmail.html
http://docs.puppetlabs.com/puppet/latest/reference/config_file_tagmail.html

Introducing Report Processors

[40]

Generally, one of the quickest and easiest ways to integrate Puppet with other
systems is to use the HTTP report processor, and as mentioned, it is already in use
by Puppet Dashboard, Puppet Enterprise Console, and The Foreman. Any systems
that boast of Puppet integration will almost certainly make use of this either in part
or as a whole to deliver the integration.

The PuppetDB report processor
We're not going to spend too much time on the PuppetDB report processor as we'll
be covering this in much more detail in Chapter 5, Exploring PuppetDB. Suffice to say,
this report processor forwards the reporting information to PuppetDB for storage.
Like the other report processors, all it requires is the following simple addition to
the puppet.conf file to activate it:

[master]
report = puppetdb

Without a working PuppetDB installation, this won't be of much use, however. Don't
worry though; we'll cover how to set up and use PuppetDB in subsequent chapters.

Exploring the power of third-party plugins
As you can see, the built-in report processors are fantastically useful, but they can
only do so much; the tagmail report processor might not format the data in the way
you like, or you might have a cool idea for your data but don't want to have to create
a web service for the HTTP report processor to push it to. Fortunately, it is very
easy indeed to add additional report processors to Puppet. The Puppet reporting
system has been designed so that you can plug any number of report processors
into it simply and easily, and there are already a small number of additional report
processors available that you can install and utilize. A good place to find additional
report processors is Puppet Forge; you should find quite a few if you simply search
for report.

We're going to take a look at some examples of third-party report processors and
show you how easy it is to install them.

Chapter 3

[41]

Getting social with Twitter
Twitter has, for some considerable time, been the destination of choice for any up and
coming writer who enjoys the challenge of a word count; a really tiny word count. At
140 characters, it's unlikely that the next great novel will be written using Twitter, but
it has blossomed to be one of the number one sites for people to quickly update their
followers of their comings and goings. It has turned out to be a wonderfully easy way
to stay in touch with friends, family, and casual acquaintances in a way that the more
verbose Google+ or Facebook haven't quite managed.

Twitter is also a fantastic way to alert you of issues. It's small, terse, and these days,
clients are available for pretty much any device you care to mention. In many ways,
Twitter is an excellent replacement for the old-fashioned pager system and has the
advantage over SMSes of not needing a cellular connection to receive alerts. Many
times, I've been stuck in buildings with no mobile phone signal but an excellent
wireless connection to the Internet. The SMSes stopped, but the tweets kept on
coming, and there have been occasions where I would have been blissfully
unaware of alerts without this additional means of notification.

Because of the public nature of Twitter, there can be some concern that you may be
leaking potentially sensitive data. However, as long as you take the precaution of
making your Puppet Twitter account private, you can be fairly sure that only people
you have allowed to follow will see it. I'm going to go ahead and assume that you
have set up a Twitter account for Puppet; however, if you haven't, you can go
ahead and create an account at http://www.twitter.com.

Installing the Twitter plugin is simple as it has been made available on the Puppet
Forge site as a Puppet module, which means that the plugin sync mechanism will take
care of the tedious work of installing the report processor plugin for us. Because it's
published on Puppet Forge, it means we can also use the built-in Puppet module tool
to install the module itself. Simply use the following command on your Puppet master:

$ puppetmodule install jamtur01/twitter

Once the module is installed, you'll need to go ahead and run the Puppet agent on
the Puppet master; this will trigger the plugin sync to install the new plugin in the
correct location.

http://www.twitter.com

Introducing Report Processors

[42]

This is not all we need to do, though. Much like the rrdgraph plugin, the Twitter
report processor has some additional dependencies and setup that are required for
it to work. These are the OAuth and Twitter RubyGems dependencies, and they are
required for authentication and communication with the Twitter API. You can install
these via RubyGems using the following command:

$ sudo gem install oauth twitter

Once the dependencies are installed, you will then need to allow the API access from
your report processor to your Twitter user. This is relatively straightforward; go to
http://dev.twitter.com/apps/new and sign in with the user created for your
Puppet Twitter account. Once signed in, you'll be asked to fill in a small form that will
ask for some details about your application; these should be fairly self-explanatory,
but make sure that the access rights are set to read/write or the report processor will
be unable to tweet. Once you've completed the questions, you'll be taken to the page
for your new application and you'll be given your consumer key and secret. Make note
of these; you'll need them in the next step.

The author of the Twitter report processor has provided a small script to generate the
settings file. Navigate to the installed Twitter module and you will find a Ruby file
called poauth.rb. This is shown in the following screenshot:

You'll be prompted to enter the consumer key and the secret that you made note
of earlier. If you need to remind yourself, you can log in to your Twitter developer
account and retrieve it from there. Once you've entered your consumer key and
secret, you will be given a unique URL to visit, and the script will wait for you to
enter a pin number. Visit the provided URL to receive the pin, and once you've
entered it, the script will exit and write out a twitter.yaml config file. The Twitter
plugin follows convention and expects the configuration file in the Puppet config
directory, so make sure that you copy the twitter.yaml file there once you're
finished with the poauth.rb script.

http://dev.twitter.com/apps/new

Chapter 3

[43]

You should now have a shiny new API-enabled Twitter user, so the next step is to
configure Puppet to use the Twitter plugin. This is a simple configuration change
in the puppet.conf file to enable reporting in the usual manner, as shown in the
following code snippet:

[master]
reports = twitter

Once you've amended the configuration file and restarted the Puppet master, any
failed Puppet client will trigger an alert to Twitter. Now there's no escaping the alerts!

Staying on top of alerts with PagerDuty
PagerDuty is a fantastic tool to record, alert, and escalate issues, and is insanely
popular with DevOps folks due to its ease of use and surprising amount of power.
Like most modern software, as a service, it's clean and simple to use and has an
extremely approachable and powerful API.

PagerDuty is a great place to flag Puppet errors as it gives you the ability to track how
often you are having Puppet-related issues. More importantly, it ensures that an alert
is created when issues are found. These issues can automatically be escalated to the
appropriate person, and if they're out of hours, they can be routed to whoever is on
call. PagerDuty supports alerts via phone, SMS, e-mail, and push alerts, so it's unlikely
that they'll be able to sleep through a problem. If they do manage to sleep through the
sound of every communication device they own going nuts, then PagerDuty is able to
alert the issue to the next person on rotation, and it will continue to escalate the issue
until someone acknowledges it.

I'm going to assume that you already have a PagerDuty account; if you haven't got
one, you can sign up for a free trial at http://www.pagerduty.com.

As with the Twitter report processor, the PagerDuty report processor has been
published on the Puppet Forge as a module, so we're going to go ahead and use
the Puppet module tool to install it. This can be done using the following command:

$ puppetmodule install jamtur01/pagerduty

Once the module is installed, run the Puppet agent to move the plugin into
place. You'll also need to install the rest-client, JSON, and redphone RubyGems
dependencies for the processor to be able to communicate with PagerDuty.
This can be done using the following command:

$sudo gem install rest-client json redphone

http://www.pagerduty.com

Introducing Report Processors

[44]

Once the plugin is installed, we need to let it know what your PagerDuty API key is.
You set this by editing the pagerduty.yaml file within the PagerDuty module. Open
it up using your editor of choice, find the line that starts with pagerduty_api, and
add your API key to it (you can find this within your PagerDuty account details).
You will also need to create a generic service within PagerDuty to receive any alerts.

The final step is to enable the PagerDuty report processor on your Puppet master.
As usual, this is a simple change to the puppet.conf file on the Puppet master.
This is shown in the following code snippet:

[master]
reports = pagerduty

Restart the Puppet master and you will find that every time Puppet reports an error,
an issue will be raised within PagerDuty. This will now e-mail, SMS, and generally
bug the person who is responsible for resolving the error. I've found that nothing
makes someone fix a bug quicker than having a robot harass them constantly on
the phone at unwelcome hours in the morning.

Adding additional report processors to Puppet can make a huge difference to its
capabilities. You can find additional report processors listed at Puppet Forge; simply
search for the report processors and you should find some. At the time of writing this,
there aren't many, but the ones that are available can add some seriously interesting
abilities to your Puppet infrastructure. With the available third-party report processors,
it becomes relatively simple to make Puppet talk to products such as New Relic, Cube,
OpsGenie, and even MCollective, cover capabilities from straightforward reporting to
alerting, and even include remedial actions.

Summary
You should now have a good idea of what a report processor is, what it can be
used for, and how to install new ones from Puppet Forge. In this chapter, we have
examined some of the basic elements of a report processor and discovered that
a report processor is a piece of Ruby code that is called every time a Puppet agent
reports a transaction. We have found that report processors are easy to install,
especially if they are distributed as a Puppet module, but some of the more
complex report processors may need to have additional components installed
to support them. We also found that you can have multiple report processors
configured at once to allow you greater flexibility when processing your data.
Finally, we looked at some interesting third-party report processors and used
them to interact with products such as PagerDuty and Twitter.

In the next chapter, we are going to look at how to create our own report processors
and how we can use our own code to create custom alerts and reports.

Creating Your Own
Report Processor

In previous chapters, we've taken a look at some of the report processors that are
shipped with Puppet and also some of the fantastic third-party plugins that have
been developed to add new functionality. Now, it's time to show you how to go
about making your own report plugins.

In this chapter, we're going to take a look at the following topics:

• Creating our first report processor
• Creating our own custom e-mail alerts
• Logging events into MySQL
• Raising issues with Atlassian JIRA

As with any Puppet plugin, our language of choice will be Ruby. You should be
familiar with Ruby if you want to get the most out of this chapter; however, don't
worry if you're not a Ruby guru; the examples use extremely basic code. If you need
to brush up on your Ruby skills, then I highly recommend taking a look at Learn Ruby
the Hard Way, Zed A. Shaw. Don't be put off by the title; it's both highly approachable
and very effective in teaching you the basics of Ruby. It's available for free online
or for purchase in e-book form at http://ruby.learncodethehardway.org.

The anatomy of a report processor
At its most basic, a Puppet report processor is a piece of Ruby code that is triggered
every time a Puppet agent passes a report to the Puppet master. This piece of code is
passed as a Ruby object that contains both the client report and metrics. Although the
data is sent in a wire format, such as YAML or PSON, by the time a report processor
is triggered, this data is turned into an object by Puppet. This code can simply provide
reports, but we're not limited to that.

http://ruby.learncodethehardway.org

Creating Your Own Report Processor

[46]

With a little imagination, we can use Puppet report processors for everything from
alerts through to the orchestration of events. For instance, using a report processor
and a suitable SMS provider would make it easy for Puppet to send you an SMS alert
every time a run fails, or alternatively, using a report processor, you could analyze
the data to reveal trends in your changes and update a change management console.
The best way to think of a report processor is that it is a means to trigger actions on
the event of a change, rather than strictly a reporting tool.

Puppet reports are written in plain old Ruby, and so you have access to the
multitude of libraries available via the RubyGems repositories. This can make
developing your plugins relatively simple, as half the time you will find that the
heavy lifting has been done for you by some enterprising fellow who has already
solved your problem and published his code in a gem. Good examples of this can
be found if you need to interoperate with another product such as MySQL, Oracle,
Salesforce, and so on. A brief search on the Internet will bring up three or four
examples of libraries that will offer this functionality within a few lines of code.
Not having to produce the plumbing of a solution will both save time and generally
produce fewer bugs.

Creating a basic report processor
Let's take a look at an incredibly simple report processor example. In the event that
a Puppet agent fails to run, the following code will take the incoming data and create
a little text file with a short message detailing which host had the problem:

include puppet

Puppet::Reports::register_report(:myfirstreport) do
 desc "My very first report!"

 def process
 if self.status == 'failed'
 msg = "failed puppet run for #{self.host} #{self.status}
 File.open('./tmp/puppetpanic.txt', 'w') { | f |
 f.write(msg)}
 end
 end
end

Although this code is basic, it contains all of the components required for a report
processor. The first line includes the only mandatory library required: the Puppet
library. This gives us access to several important methods that allow us to register
and describe our report processor, and finally, a method to allow us to process
our data.

Chapter 4

[47]

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you.

Registering your report processor
The first method that every report processor must call is the
Puppet::Reports::register_report method. This method can only take one
argument, which is the name of the report processor. This name should be passed as
a symbol and an alphanumeric title that starts with a letter (:report3 would be fine,
but :3reports would not be). Try to avoid using any other characters—although
you can potentially use underscores, the documentation is rather discouragingly
vague on how valid this is and could well cause issues.

Describing your report processor
After we've called the Puppet::Reports::register_report method, we then
need to call the desc method. The desc method is used to provide some brief
documentation for what the report processor does and allows the use of
Markdown formatting in the string.

Processing your report
The last method that every report processor must include is the process method.
The process method is where we actually take our Puppet data and process it, and
to make working with the report data easier, you have access to the .self object
within the process method. The .self object is a Puppet::Transaction::Report
object and gives you access to the Puppet report data. For example, to extract the
hostname of the reporting host, we can use the self.host object.

You can find the full details of what is contained in the
Puppet::Transaction::Report object by visiting
http://docs.puppetlabs.com/puppet/latest/
reference/format_report.html.

www.allitebooks.com

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://docs.puppetlabs.com/puppet/latest/reference/format_report.html
http://docs.puppetlabs.com/puppet/latest/reference/format_report.html
http://www.allitebooks.org

Creating Your Own Report Processor

[48]

Let's go through our small example in detail and look at what it's doing. First of
all, we include the Puppet library to ensure that we have access to the required
methods. We then register our report by calling the Puppet::Reports::.register_
report(:myfirstreport) method and pass it the name of myfirstreport. Next,
we add our desc method to tell users what this report is for. For the moment,
we'll keep it simple and simply state its function. Finally, we have the process
method, which is where we are going to place our code to process the report. For
this example, we're going to keep it simple and simply check if the Puppet agent
reported a successful run or not, and we do this by checking the Puppet status. This
is described in the following code snippet:

if self.status == 'failed'
 msg = "failed puppet run for #{self.host}#{self.status}"

The transaction can produce one of three states: failed, changed, or unchanged.
This is straightforward; a failed client run is any run that contains a resource that
has a status of failed, a changed state is triggered when the client run contains a
resource that has been given a status of changed, and the unchanged state occurs
when a resource contains a value of out_of_sync; this generally happens if you run
the Puppet client in noop (simulation) mode.

Finally, we actually do something with the data. In the case of this very simple
application, we're going to place the warning into a plain text file in the /tmp
directory. This is described in the following code snippet:

msg = "failed puppet run for #{self.host}"
File.open('/tmp/puppetpanic.txt', 'w') { | f | f.write(msg)}

As you can see, we're using basic string interpolation to take some of our report
data and place it into the message. This is then written into a simple plain text file
in the /tmp directory.

Values of the self.status object
The self.status object is something that you are going to use again and again
when constructing your own report processors. The self.status object value
allows you to filter Puppet reports, based on the status that the Puppet agent
reported after attempting to apply the catalog. The following values are available:

• skipped: A skipped resource essentially means that Puppet evaluated the
resource and decided for one reason or another that it was not going to apply
the requested change. The most common reason for skipped resources is that
there is a failed resource somewhere else in the transaction that this change
depends on. Other reasons could include that a resource belongs to one tag
while you're applying a different tag, or it may be an entirely virtual resource.

Chapter 4

[49]

• failed: A resource is marked as failed when the Puppet client is unable
to apply a change to that resource. This can simply mean that it could not
change a file, instantiate a directory, or install a package.

• failed_to_restart: This particular status only applies to service resource
objects and is flagged anytime that Puppet tries to restart a service and fails.

• restarted: This is another service-oriented status and is the inverse to the
failed_to_restart status. Essentially, a resource is flagged as this when
it is a service that has been successfully restarted.

• changed: This is one of the most common status types that you will see in
Puppet, and it tells you that this particular resource has been changed during
the course of the Puppet catalog's application.

• out_of_sync: This should only occur when the Puppet run is triggered in
simulation mode (noop). This is a resource that would be changed if the
Puppet catalog was applied.

That's all that is required for a working Puppet report processor. This tiny chunk
of code will happily parse incoming reports, evaluate, and act on them. Of course,
this is a fairly useless report in its current form, but it gives us a good idea of what
we can do. Let's take a look at something a little more solid, shall we?

Alerting with e-mail and Puppet
The tagmail report processor is a useful plugin, but it has its limitations. As pointed
out in its name, it can only deal with tags and nothing else. Sometimes, that's not
quite what you want, so it's useful to see how simple it is to produce an e-mail
alert that you can tailor to your requirements. In our case, we're going to create
a simple e-mail alert that will be sent every time a Puppet agent makes a change.

This may seem a little odd; after all, what's Puppet for if not to enact changes? There
are some environments, however, where changes are a highly sensitive matter. Change
can, and should, be easy in certain environments, and this is particularly true of many
web applications. The reverse can also be true in cases where you are either dealing
with a heavily audited environment, such as a financial trading system, or a system
that deals with highly sensitive and business-critical systems, such as an API that
feeds phone handsets or set top boxes. In these cases, changes need to be very strictly
controlled, and any change that is made by accident needs to be both alerted and dealt
with swiftly.

Creating Your Own Report Processor

[50]

The first task we need to take care of is the creation of our project. We're going to
follow the best practice set out in the previous chapter and create this in the form
of a Puppet module. Rather than create the directory layouts by hand, I'm going to
use the Puppet module creation utility included with Puppet. This can be done using
the following command:

puppet module generate <username>-<modulename>

The username is your Puppet Forge username. If you haven't signed up for one,
don't worry; you can add any text you like here for the moment. Once we have
created our module, the next thing to do is to create the file that will contain our
code. Since it is a report plugin, it should be created in the following location:

{module}
 └── lib
 └── puppet
 └──reports
 └── {reportname}

You'll need to create some of the directory structure by hand as the Puppet module's
generate command doesn't include the lib directory or subdirectories by default.

Once you've created your file structure, you're ready to code. Go ahead and create a
new file called changealert.rb in the lib directory and add the following first part
of the code to it:

require 'puppet'
begin
require 'mail'
rescueLoadError
Puppet.info 'This report requires the mail gem to run'
end

Note the error handling around the mail gem. This is good practice if you're
planning on distributing your report as it ensures that if there is a missing gem, it is
handled gracefully and gives the user some sort of clue as to why it may not have
run correctly. Nothing is more irritating than having to wade through someone
else's code to find the obscure library they forgot to mention in the readme.txt
file. Good coding habits like this one can go a long way if you start releasing your
code on GitHub or Puppet Forge, and it will help people both use your module
and contribute towards it.

Chapter 4

[51]

As in the previous example, we need to go ahead and declare our new report. We're
also going to declare our process function and load our configuration.

If your report processor requires any kind of configuration, then make
sure that this is loaded from an external configuration file; and, as an
absolute best practice, store it in the Puppet configuration directory.
This means that your code is easily redistributable, and more
importantly, it is obviously configurable by anyone who installs it.

Consider the following code:

Puppet::Reports.register_report(:changealert) do
 configfile =
 File.join([File.dirname(Puppet.settings[:config]),
 'changealert.yaml'])
 raise(Puppet::ParseError, "auditlert configfile not readable")
 unless File.exist?(configfile)
 config = YAML.load_file(configfile)

As you can see, we're loading the configuration for this report processor from a
.yaml file, but before we can load it, there are a few tasks we need to carry out first.
To start with, we need to find out where the configuration file is held. This is not
as straightforward as you may think; for starters, Puppet Open Source and Puppet
Enterprise hold configuration files in different locations (/etc/puppet and /etc/
puppetmaster, respectively). To add to this, you can relocate the configuration
directory into an arbitrary location of your choice, and you quickly realize that it
would be a seriously bad idea to hardcode the path. Instead, we can ask Puppet
where the configuration directory is. To do this, we call the class method settings
from the Puppet class and feed it into the configfile variable. Using these kinds
of techniques guarantees that if you publish your work, it will be usable for the
widest array of users.

The next thing that we need to do is actually check if the configuration file is present,
and if not, raise an error. Using the Puppet::ParseError object, we are able to raise an
error to the Parser. This means that if there is an issue, it will be immediately visible in
the Puppet log, and especially visible if we are running the Puppet agent in interactive
mode. Once we have checked that the file is present, we then use the YAML class to load
the file and place its contents into a new object called config. Once loaded into this
object, the file can then be accessed as a Ruby hash. For instance, to find out the SMTP
address of the mail server, we could use the config['smtp_address'] command to
return a string that contains the configuration item.

Creating Your Own Report Processor

[52]

That's the basic framework taken care of. We're going to add some logic at this
point to ensure that we only receive reports for Puppet agent runs that result in
the changed state rather than in the unchanged and failed states. This is described
in the following code snippet:

If self.status == 'changed'
 subject = "Host #{self.host} Change alert"
 output = []

Once we've ascertained that this particular run is of interest to us, we set up a string
variable that will contain our e-mail header and create an empty array to hold
subsequent data.

This particular plugin is designed to simply let someone know if something has
changed, so we don't really need to send the user the entire output of the Puppet
report. If you have a critical system that's just received an update that you weren't
expecting, you are probably not interested in how long it took to apply, but rather
in what change has been applied and when it was applied. This kind of alert is
much better short and pithy. To accomplish this, we're going to list the following
details in the e-mail:

• The resources that have changed
• The type of resource
• The type of property that has changed
• The value it was changed to
• The time when it was changed

This gives our user plenty of information to go on, without overloading them with
lots of irrelevant nonsense. The following code describes our e-mail alert:

output << "The Following resources have changed:\n"
 begin
 self.resource_statuses.each do
 |theresource,resource_status|
 if resource_status.change_count > 0
 output << "Resource: #{resource_status.title}"
 output << "Type: #{resource_status.resource_type}"
 begin resource_status.events.each do |event|
 output << "Property: #{event.property}"
 output << "Value: #{event.desired_value}"
 output << "Status: #{event.status}"
 output << "Time: #{event.time}"

Chapter 4

[53]

 end
 end
 end
 end
 end

The first thing that this piece of code does is output a little header letting us know
what this report is about—it's always nice when it's 2 A.M. and you're wading
through e-mails because you've been woken up by the support phone. I'm using
the Ruby string concatenation syntax to build up our report in a variable called
output; notice the \n at the end of that line? It's to ensure that we have a clean line
break between the header and the rest of the report.

Next, we read the array that contains the reported resources, the resource_status
property, and use a Ruby block to iterate through each resource and check its
change_count property. If it's greater than zero, then we know that some form
of change has taken place and we have to examine it further.

Over time, several items in the Puppet::Resource::Status
object are marked as deprecated. The Puppet report format is now
in its 4th version as of the time of writing and is evolving as new
features are added and old ones removed. It's worth keeping an
eye on the release notes when a new version is released to ensure
that your report plugins continue to work as expected.

Once we find a changed resource, we then take the values from the resource_
status.title and resource_status.resource_type properties and concatenate
them into our output variable. This data will allow the report recipient to figure out
what resource has changed and what type of resource it is.

Now that we've found a resource of interest, we start a new loop and iterate inside the
event array to find the details of the change itself. The Puppet::Transaction::Event
object holds a wealth of information, and from it, you can derive information such as
when a change took place, the previous value of the resource, the desired value, and
so on. When you find yourself asking, "What's happened on this node?", then it's the
Puppet::Transaction::Event object that holds the answer to this question.

You can find a complete list of the fields available in the
Puppet::Transaction::Event object at http://
docs.puppetlabs.com/puppet/3/reference/
format_report.html#puppettransactionevent-1.

http://docs.puppetlabs.com/puppet/3/reference/format_report.html#puppettransactionevent-1
http://docs.puppetlabs.com/puppet/3/reference/format_report.html#puppettransactionevent-1
http://docs.puppetlabs.com/puppet/3/reference/format_report.html#puppettransactionevent-1

Creating Your Own Report Processor

[54]

For the moment, we're going to show the user the Property, Value, Status, and
Time properties; this should be plenty to tip off our sleepy on-call person as to what
has changed, when it has changed, and to what it has changed. This should be plenty
of information to start figuring out what caused this particular resource to change.

At this point, we have gathered our data, and it is time to send it on its way. To send
the data, this particular report processor is going to use an SMTP mail server. Pretty
much every company has access to an SMTP server, so it's a fairly safe route to take
when it comes to sending data. We've already started to construct the e-mail that
will be sent to our user; the code that we've already explored has constructed the
body of the message. Now, we simply need to add in some further details and then
use the mail library to send it. The values that we are going to use have already been
included in our configuration file, and we have already decanted these values into
a hash that is ready to be accessed. This is described in the following code snippet:

body = output.join("\n")

 Mail.defaults do
 delivery_method :smtp, {
 :address => config['smtp_server'],
 :port => config['port'],
 :domain => config['smtp_domain'],
 :user_name => config['smtp_username'],
 :password => config['smtp_password'],
 :authentication => 'login',
 :enable_starttls_auto => false
 }

 end

 Mail.deliver do
 toto_address
 fromfrom_address
 subject subject
 body body
 end
 end
 end
end

Chapter 4

[55]

In the preceding code, we instantiate a Mail object and use its defaults method to
supply it a list of settings to send to our mail. In this case, I've elected to use SMTP,
so we need to provide a username and password to authenticate our plugin. We also
need to give it the address of the SMTP server, which TCP port it needs to send
the data to, and finally, which login mechanism we're using. Although I'm using
an SMTP server, you could just as easily use Exim, Sendmail, or a local delivery:
the Mail gem supports all of them. Once configured, sending the e-mail is simple;
we just need to call the Mail.deliver function and let it know where to send it to,
who it's from, and then give it the header and body we've created.

That's all of the code we need to make this work; however, there is still one last
piece left, and that's the configuration file. The configuration file is a simple YAML
document named changealert.yaml that needs to be placed inside the root of the
Puppet master configuration file. Inside it are all of the details required to configure
our plugin, and it should look something like the following:

from_address: 'alerts@fictionalco.com'
to_address: 'devops@fictionalco.com'
smtp_server: 'mailserver@fictionalco.com'
smtp_domain: 'fictionalco.com'
smtp_username: 'alertuser'
smtp_password: 'b3ty0uc@ntgu355m3'

Now that we have the configuration file, we're ready to go; when we're ready,
we'll install the change alert module, add it to the reports configuration in the
Puppet master, and trigger a Puppet agent. If all has gone well, we should receive
a message via e-mail that looks a little like the following:

The Following resources have changed:

Resource: git
Type: Package
Property: ensure
Value: present
Status: success
Time: 2014-01-15 07:52:03 +0000

Voila! Our very own custom e-mail alert with very little code.

Creating Your Own Report Processor

[56]

The techniques used here are the core part of any report processor, and as you can
see, the bulk of the code actually deals with sending the e-mail rather than extracting
the data. Puppet has made accessing the data very easy indeed, leaving you free to
concentrate on what you want to do with it. In almost every report processor, you
will find that there is more code that deals with processing the data than extracting it.

If you find that your report plugin is turning into an especially complex piece of
code, then you may want to consider moving it to an external report handler and
either feed the data via the HTTP plugin or read the reports produced by the store
plugin. A report processor is fired each and every time a report configured client
runs Puppet, and if your plugin is taking a fair chunk of time and resources to
process the data, then you are soon going to feel the pain in the performance of
your Puppet infrastructure.

Managing your report processor configuration
with Puppet
The change alert report processor is pretty cool, and by packaging it inside a Puppet
module, we've made it easy to be distributed; however, we have left the user to
create a configuration file to make it work. This is not necessarily a bad thing, and
as long as we have a well-documented example of the configuration in the Readme.
txt file, then most users should be more or less OK. It is not really in keeping with
Puppet though; we can make end users' lives a little easier by giving them the
option to have Puppet manage the report processor configuration for them. We
already have a Puppet module with an init.pp file, and we can easily leverage
this and a Puppet template to create the configuration file. From the perspective
of the Puppet code, this is very simple and essentially comprises three components:
a parameterized Puppet class, file resource, and file template. Let's start with the
Puppet class and file resource. They are described in the following code snippet:

class changealert (
 $from_address,
 $to_address,
 $smtp_server,
 $smtp_domain,
 $smtp_username,
 $smtp_password
) {
 file {"${settings::confdir}/changealert.yaml":
 owner => 'puppet',
 group => 'puppet',
 mode => '0644',

Chapter 4

[57]

 content => template('changealert/changealert.erb'),
 }
}

If you are reasonably familiar with Puppet, then this code should be straightforward.
In the first line, we declare a new Puppet class named changealert; we then add
the six parameters that are required for our template. Note that I'm not giving
any default values to the parameters, and this is quite deliberate; none of the
parameters are optional, so we want this manifest to fail early and fail fast.

After we have set up our class, we then declare a file resource for the changealert.
yaml file. I'm using some built-in Puppet variables to find out where the configuration
directory is and ensuring that the file is created there. I'm also ensuring that the Puppet
user and group own the file and setting sensible file permissions. Finally, I'm declaring
that the content is derived from a template, which I'm sourcing from the module itself.
The template is a simple one and takes our parameters and places them into the file.
This is described in the following code snippet:

from_address: <%= @from_address %>
to_address: <%= @to_address %>
smtp_server: <%= @smtp_server %>
smtp_domain: <%= @smtp_domain %>
smtp_username: <%= @smtp_username %>
smtp_password: <%= @smtp_password %>

Our end user now has the choice to configure the change alert report by simply
declaring the class on any Puppet master they are managing using Puppet. An
example of doing this using a manifest would look something like the following:

node 'puppet.example.com' {
 class {'changealert':
 from_address => 'michael@stunthamster.com',
 to_address => 'puppet@exampleco.com,
 smtp_server => 'smtp.exampleco.com',
 smtp_domain => 'exampleco.com',
 smtp_username => 'smtpuser@exampleco.com,
 smtp_password => 'weakpassword'
 }
}

If we did it using Hiera, it would look something like the following:

classes: changealert
changealert::from_address: puppet@exampleco.com
changealert::to_address: puppet@exampleco.com

www.allitebooks.com

http://www.allitebooks.org

Creating Your Own Report Processor

[58]

changealert::smtp_server: smtp.exampleco.com
changealert::smtp_domain: exampleco.com
changealert::smtp_username: smtpuser@exampleco.com
changealert::smtp_password: weakpassword

Of course, we still leave the user with the option of configuring the report processor
in the way they choose; simply installing the module will ensure that the report
processor is installed, and if the user does not declare the Puppet class to manage
the configuration file, then Puppet will not attempt to manage it.

Monitoring changes and alerting with
Puppet
Our change alert report processor is pretty useful and will inform us when something
we've managed has been changed. That's excellent, but there are times when we want
to monitor resources that are not necessarily something we also want to manage.
A good example is the passwd file in the /etc directory. We will never manage this
file directly with Puppet; we have the user and group resource types to do that, but
we may still want to know when something has changed it. Luckily, we can do
this using the somewhat overlooked audit option within a resource.

Auditing was introduced in Puppet 2.6.0 and allows you to specify a nonmanaged
resource within a Puppet manifest. The audit metaparameter tells Puppet that
although you do not want to manage the resource, you'd still like it to make
note of its values and log when it changes. Take a look at the following example
Puppet code:

file { '/etc/passwd':
audit => [owner, group, mode],
}

From now on, whenever the /etc/passwd file's owner, group, or permissions are
changed, Puppet will make note of the previous value, the time at which it was
changed, and the value it was changed to. You don't need to be selective either;
you can ask Puppet to audit everything it possibly can about a resource. This is
described in the following code snippet:

file { '/etc/hosts':
audit => all,
}

Now, if anything changes on that file, from the owner to the content and anything in
between, the Puppet agent will note it down in its report.

Chapter 4

[59]

This is a fantastically powerful tool when combined with Puppet reporting and
alerting. You can use it for anything from a basic Intrusion Detection System (IDS)
to a software auditing tool for licensing and anything in between. If you're running
your Puppet clients on a regular basis, such as in daemonized mode, then you can
be sure of receiving the alert in good time (30 minutes if you're using the default
interval). Of course, for this we need a report processor; luckily, it won't take much
to wrangle the change alert plugin into a shiny new audit alert plugin.

An audited resource is a little different from a normal one from the reporting
perspective. When a Puppet run encounters a change in an audited resource, it is
noted down as an event in the Puppet::Transaction::Event object, the same as
a normal event, but with the value of the audited attribute set to true. This is great
news as it means that we have very little work to do to transform our change alert
processor into an audit alert processor.

As you can see, the bulk of the code remains the same, mostly made up of the
tedious business of constructing and sending the e-mail object. Instead of processing
the data as we did in the previous example, this time we are going to do it as follows:

begin
 self.resource_statuses.each do |theresource,
 resource_status|
 begin
 resource_status.events.each do |event|
 if event.audited then
 output << resource_status.title
 output << "Audited #{event.audited}"
 output << "Property: #{event.property}"
 self.logs.each do |log|
 if log.source.include? resource_status.title
 output << log.message
 end
 end
 output << "Status: #{event.status}"
 output << "Time: #{event.time}"
 send_report = true
 end
 end
 end
 end
end

Creating Your Own Report Processor

[60]

This is a fairly simple piece of code and should be recognizable from our previous
plugin. It's undertaking the same basic journey; enable the resources and then
traverse the events array. The difference this time is that we have a very simple
piece of logic that looks out for the audited flag within the resources, and if it's
set to true, iterates through the matching events to find the details of the change.
Once we have gathered the data, we then set a flag to ensure that an e-mail is sent.

Again, this is a simple report but is a really neat way to use the audit flag. Using this,
you can keep an eye on files, packages, users, and other resources without needing to
directly manage them. You are not limited to just the standard resources; any custom
resource you've developed should also be able to make use of this, and the type of
alert can be anything. If you don't like e-mail, then it would be relatively easy to have
this processor send you alerts via SMS, Twitter, or any other method you can trigger
via Ruby.

Logging with MySQL
If there is one technology that you're almost guaranteed to find in most companies,
it is SQL. One of the enormous advantages of Puppet is that it can make change
activities hugely transparent, and this is an enormously rich piece of data that can
complement existing reports exceptionally well. For instance, your organization
may already have reports noting how many transactions have taken place over
a certain time period, and when looking at any sudden gains or losses to the average,
it's fantastic to be able to add in change activity. Suddenly, you will see that the drop
in user transactions coincides with the web server that is pushing out a new version
of nginx, or the jump in sales happened just after the new version of the sales
application was pushed by Puppet.

This is valuable data, but to get the most out of it, it needs to be available to the
people who construct these reports. For many organizations, this means that the
data will be held in a SQL database; not only is it common in terms of skill base
and technology, it's almost guaranteed that any reporting tool worth its salt will
be able to work with it.

Fortunately, it's simple to get Puppet to store its reports in SQL, and most of what we
have learned about creating our simple alerts is just as applicable to exporting data.
As with most report processors, we're going to use a library to do the heavy lifting,
which will leave us free to concentrate on the interesting bits.

Chapter 4

[61]

The first thing that we should do is go ahead and install the required library to allow
Ruby to work with MySQL. This gem makes use of native extensions and so will
need to have some development libraries installed. To install the packages, perform
the following steps:

1. Install the MySQL Ruby library.
On Debian-based distributions, it's installed using the following command:

sudo apt-get install libmysql-ruby libmysqlclient-dev

On RedHat-based distributions, it's installed using the following command:

sudo yum install mysql-devel

2. Install the sequel library using the following command:
sudo gem install sequel

Why not MySQL2?
The sequel gem is a little more powerful than the common MySQL2
gem and is a lightweight Object-relational Mapping (ORM) tool;
this offers the ability to abstract ourselves away from using SQL
and instead allows us to concentrate on code. When used as an
ORM, it also ensures that any strings are treated as SQL strings and,
therefore, makes us much less susceptible to SQL injection attacks.

Now that we've installed our prerequisites for the code, we need somewhere to put
the data, which means we need to get our hands dirty with MySQL. I'm going to go
ahead and assume that you have MySQL installed; if not, it's relatively easy using
the package manager of your distribution. Once it's installed, you can run the log
into MySQL and run the following SQL query:

CREATE DATABASE puppet_stats;

This straightforward query will create an empty database named puppet_stats,
but before we set up our tables, let's also go ahead and create a user. From a security
perspective, it's a bad idea to use the root user, so let's go ahead and create a user
specifically for this report processor inside MySQL. This can be done using the
following SQL query:

CREATE USER 'puppetreporting'@'localhost' IDENTIFIED BY
 'changeme';
GRANT ALL ON puppet_stats.* TO 'puppetreporting'@'localhost';

Creating Your Own Report Processor

[62]

We've now got somewhere to store the data and got a database as well, so the next
thing we need to do is create the first table. This can be done as follows:

USE puppet_stats;

CREATE TABLE reports (
transaction_uuid VARCHAR(50),
Host TEXT,
Date DATE,
Time TIME,
Kind TEXT,
Report_format INTEGER,
Puppet_version TEXT,
Environment TEXT,
Status TEXT,
PRIMARY KEY (transaction_uuid));

This will create a table to store our first piece of data: the contents of the
puppet::transaction::report object. We will add the following fields
into our table:

• UUID
• The date of the Puppet run
• The time of the Puppet run
• The kind of run (inspect run, agent run, and so on)
• The version of the report format
• The Puppet agent version
• The environment it was run in
• The status of the Puppet run

Finally, we're going to set the primary key of the table to the Universally Unique
Identifier (UUID). The UUID is a completely unique identifier that Puppet creates
with each and every run, so it's perfect to key the table with. In fact, when we need to
split the Puppet data into relational datasets, we can use the UUID to query the data.

If you're a little rusty on your database knowledge, then you can
brush up by visiting http://dev.mysql.com/doc/. This will
take you through the basics that you'll need to follow this code.

http://dev.mysql.com/doc/

Chapter 4

[63]

Now that we have our table set up, we can go ahead and create a report to fill it.
The first task is to include the libraries that we require for this report processor to
function. This is described in the following code snippet:

require 'puppet'
require 'logger'
require 'yaml'
require 'date'

begin
 require 'sequel'
rescue LoadError
 Puppet.info 'This report requires the sequel gem to run'
end

We are already familiar with the puppet library, but we have some new libraries
this time round. First of all, we have included the logger library, a library that is
shipped with Ruby. The logger library allows you to emit simple log messages
from your application to the file of your choosing. Like most log utilities, it will
allow us to set different reporting levels, from FATAL (which means, "Good Lord,
my program has just crashed!") through to DEBUG ("Good grief! My program has
just done something!"). Using these log levels, you are able to make your report
processor much more verbose if it encounters an error.

Notice how the Puppet date, yaml, and logger require statements are not wrapped
in our usual logic to check for their presence? That's because these are default
libraries shipped with Ruby so you can be pretty certain that the end user is
going to have them, whereas the sequel library may have been missed out.

That takes care of the setup of the report processor. Next up, we have our process
function. Consider the following code snippet:

 @log = Logger.new('/var/log/puppet/puppetreport.log')

 configfile =
 File.join([File.dirname(Puppet.settings[:config]),
 'mysqlreport.yaml'])
 raise(Puppet::ParseError, "mysqlreport configfile not
 readable") unless File.exist?(configfile)
 config = YAML.load_file(configfile)

 db = Sequel.connect(:adapter => 'mysql',
 :user => config['mysqlusername'],

Creating Your Own Report Processor

[64]

 :host => config['mysqlserver'],
 :database => 'puppet_stats',
 :password=>config['mysqlpassword'])
 reports = db.from(:reports)

 puppet_time_stamp = DateTime.parse("#{self.time}")

As you can see, we have the usual class declaration with the report name and process
function. The next line specifies the location of our logfile; if you're on a Linux
system, then the /var/log/puppet directory is always a good bet. Make sure
that whatever location you choose has both read and write access from your
Puppet user, as that is the user executing the code.

Next, we define our configuration file location and load it, again checking that it is
present and loading it into our config variable. Our configuration file contains the
server name of our MySQL server, the username we're going to use, and finally, the
password. It should look like the following:

mysqlserver: mysql@fictionalco.com
mysqlusername: puppetreporting
mysqlpassword: Dontuseweakpasswords

Again, we can use the same technique that we used in the change alert and audit
alert examples to define this configuration for us using Puppet. In this case, the
init.pp file would look like the following:

class mysqlreport (
 $mysql_server,
 $mysql_username,
 $mysql_password
) {

 file {"${settings::confdir}/mysqlreport.yaml":
 owner => 'puppet',
 group => 'puppet',
 mode => '0644',
 content => template('mysqlreport/mysqlreport.erb'),
 }
}

Chapter 4

[65]

Now that we have our configuration items, we can set up our connection to the
MySQL database using the sequel library. As you can see, we're using string
interpolation to insert the contents of our configuration file into the connection
string. The connection string is made up of the server name, username, password,
and the database that we wish to connect to. We've been supplied the first three
parts by the user, and we've hardcoded the database name so that it matches our
preceding SQL scripts. We pass this information into a new variable called db, which
we use in the next line to create a new object called reports. We then instantiate this
object by supplying our database connection and the table we want to map to.

Now that we have set up our database connection, we can start to make use of the
date library. The Puppet report expresses its timestamp in a date-time format, that
is, in a combined field made up of both the time and the date; this is perfectly fine
and is supported by the MySQL DATETIME field format. However, I've found that
almost every time I've had to place data into SQL, the requirements have been to
have a separate date and time field to ease reporting. Fortunately, with Ruby, this
is relatively easy with the date library. As you can see, we take the contents of the
self.time function and run it through the DateTime.parse function. The output
is then placed into a variable called puppet_time_stamp; this then allows us to split
the date and time into two subsequent fields using the strftime function.

To find out more about the strftime function, you can check
the Ruby documentation at http://www.ruby-doc.org/
core-2.1.0/Time.html.

Now that we've set up our database connection and arranged the date format to our
satisfaction, we're ready to start adding data. Consider the following code snippet:

 reports.insert(
 :transaction_uuid => self.transaction_uuid,
 :Host => self.host,
 :Date => puppet_time_stamp.strftime('%Y-%m-%d'),
 :Time => puppet_time_stamp.strftime('%H:%M:%S'),
 :Kind => self.kind,
 :Report_format => self.report_format,
 :Puppet_version => self.puppet_version,
 :Environment => self.environment,

http://www.ruby-doc.org/core-2.1.0/Time.html
http://www.ruby-doc.org/core-2.1.0/Time.html

Creating Your Own Report Processor

[66]

 :Status => self.status
)

 rescue => err
 @log.fatal('Caught exception; exiting')
 @log.fatal(err)
 end

 end

end

Using the sequel library as an ORM, we can easily insert data into our table without
needing to use SQL code. This has two advantages; firstly, it's much more readable,
and secondly, the sequel library converts any strings you insert into a properly
formatted SQL string. This ensures that you are not at risk of a SQL injection attack.

A SQL injection is essentially when someone uses an input into SQL
to add in their own code. This can happen anytime you process data
that has not originated from your code, such as a text input field. In
our case, it's derived from Puppet data, but a cunning attacker could
potentially use this if they sent a specially crafted Puppet report. A
humorous example of what a SQL injection is can be found in the
XKCD webcomic at http://xkcd.com/327/.

To insert the data, we call the insert function from our reports object. This function
takes a comma-separated list of key value pairs, with each pair made up of the column
and the value you want to insert. In our case, we simply insert the data straight from
Puppet's puppet::Transaction::Report object, with the exception of the time and
date values. In this case, we use the strftime method to split a singular date stamp
into a separate date and time object before inserting it.

The final two lines of the preceding code, once again, use the logger library to help
us diagnose issues. You'll find that if your SQL code fails for some reason—say, if
your MySQL server is down or you've ended up with some strange characters in
your query—then you're going to have a hard time diagnosing the issue. By default,
the Puppet master will log a very small piece of data, simply noting in the default
Puppet log that it encountered a fault while running the Puppet processor. This
could lead to quite a long bout of head scratching as you try to figure out why.
The rescue directive will tell Ruby to catch any error that is generated and allow
us to process the resulting data. In our case, we log a fatal error, log the error
message to our log, and exit the report processor. It's worth noting that this will
not affect the Puppet master; it will carry on serving Puppet requests even if a
report processor has exited with an error.

http://xkcd.com/327/

Chapter 4

[67]

Add your new report processor to the Puppet master in the usual way, then restart
and watch your data start to appear in MySQL. If everything went right, you
should be able to perform a simple select query to see your data as shown in
the following screenshot:

The trouble is that this isn't really of much use to us; we know that a Puppet run
has taken place, and what its status was, but we have very little detail otherwise.
Let's go ahead and add some detail in the form of Puppet metrics.

Adding metrics and events to MySQL
Metrics can give you a good feel of how your Puppet-managed infrastructure is
performing and how rapidly your configuration items are changing. Combined
with the Puppet report, the metrics and events can add a wealth of data to your
reports. This is where MySQL can shine, as it gives you several different ways to
represent this information and offers you the chance to use SQL to create your own
reports. As the data will be available in one place, there is no need to crawl through
multiple files to build up historical data or join data using the JOIN statement.

The Puppet metrics are carried inside the Puppet transaction report and are
encapsulated within the Puppet::Util::Metric object. The metric data is split
up between resources, events, and changes, and each category has its own timings
for its various elements. For instance, within the resources category, we are able to
see metrics for how many resources are in the failed, out of sync, or changed state.
Like almost all the Puppet report data, this is expressed in the form of arrays, with
each category containing an array of metrics.

Adding metrics to our existing MySQL report processor is fairly easy, and we
can easily link the data using the UUID that we are already inserting. We could
potentially place this data alongside our existing data, but this would lead to a fair
chunk of data duplication, huge rows of data, and, quite probably, an angry DBA
at your doorstep. It's far better to start splitting the data out, or in the lingo of DBAs,
"normalize the data".

Creating Your Own Report Processor

[68]

Normalizing the Puppet report is easy as it's pretty much already been done
for you. The data in the Puppet::Util::Metric object is easily mapped into a
table and column relationship. In this case, we're going to take the entirety of the
Puppet::Util::Metric object and place it into a row inside a new table within
our database. Let's start by creating the table within MySQL using the following
SQL query:

CREATE TABLE metrics (
transaction_uuid VARCHAR(50),
res_changed INT,
res_failed INT,
res_failed_restart INT,
res_out_sync INT,
res_restarted INT,
res_scheduled INT,
res_skipped INT,
res_total INT,
time_conf_ret FLOAT,
time_file FLOAT,
time_filebucket FLOAT,
time_package FLOAT,
time_schedule FLOAT,
time_total INT,
changes_total INT,
events_failure INT,
events_success INT,
events_total INT,
PRIMARY KEY (transaction_uuid))

Now that we have our metrics table, let's go ahead and insert the new code to iterate
and insert the metrics. This goes just underneath our first SQL statement and is made
up of two parts. Firstly, we need to iterate through the metrics data and place it into
an array of key pairs that we can then easily access. This is described in the following
code snippet:

 reports.insert(
 :transaction_uuid => self.transaction_uuid,
 :Host => self.host,
 :Date => puppet_time_stamp.strftime('%Y-%m-%d'),
 :Time => puppet_time_stamp.strftime('%H:%M:%S'),
 :Kind => self.kind,
 :Report_format => self.report_format,
 :Puppet_version => self.puppet_version,
 :Environment => self.environment,

Chapter 4

[69]

 :Status => self.status
)

metric_vals = {}

 self.metrics.each { |metric, data|
 data.values.each { |val|
 name = "#{val[1]} #{metric}"
 value = val[2]
 metric_vals[name] = value
 }
 }

Firstly, we create an empty array in which to hold our metrics, and then we iterate
through the self.metrics array and pull out each of the categories. For each
category, we then gather its statistics. Once we have the metric and its value,
we insert it into our metric_vals array and then start the loop again.

Once we have all our values, we then need to insert it into our metrics tables. Once
again, we use the sequel library to assign our table, this time to a variable called
metrics. Then, we call the insert method and pass it the comma-separated list
of key values that we gathered from the Puppet metrics. One thing to note is that
we once again insert the UUID, and this allows us to use a JOIN query within SQL
to tie our metrics and report table together. This is described in the following code:

metrics = db.from(:metrics)
 metrics.insert(
 :transaction_uuid => self.transaction_uuid,
 :res_changed => metric_vals['Changed resources'],
 :res_failed => metric_vals['Failed resources'],
 :res_failed_restart => metric_vals['Failed to restart
 resources'],
 :res_out_sync => metric_vals['Out of sync resources'],
 :res_restarted => metric_vals['Restarted resources'],
 :res_scheduled => metric_vals['Scheduled resources'],
 :res_skipped => metric_vals['Skipped resources'],
 :res_total => metric_vals['Total resources'],
 :time_conf_ret => metric_vals['Config retrieval time'],
 :time_file => metric_vals['File time'],
 :time_filebucket => metric_vals['Filebucket time'],
 :time_package => metric_vals['Package time'],
 :time_schedule => metric_vals['Schedule time'],
 :time_total => metric_vals['Total time'],
 :changes_total => metric_vals['Total changes'],

Creating Your Own Report Processor

[70]

 :events_failure => metric_vals['Failure events'],
 :events_success => metric_vals['Success events'],
 :events_total => metric_vals['Total events']
)

 rescue => err
 @log.fatal('Caught exception; exiting')
 @log.fatal(err)
 end

Now, if you run your Puppet agents, you should find that additional data has been
created in your metrics table. If you query it, you should find that your data looks
a little something like the following screenshot:

That about wraps it up for the MySQL report processor. You have seen how to take
the data that Puppet produces and feed it into a platform like MySQL. By exporting
your data, you're making it more accessible to other users and tools, and you'll be
surprised at what other people can come up with when they are handed this type
of data. I've seen some fantastic business dashboards that have mashed up Puppet
data with server statistics and throughput. The basic rule of thumb when it comes
to Puppet data is that if someone asks, "Can I get the data in the format I need?",
the answer, invariably, is yes.

Raising issues with JIRA
There's one final example we're going to look at before I leave you to experiment on
your own, and that's how to automatically raise issues with Atlassian JIRA. This is
worthwhile on two fronts: firstly, JIRA is a fantastic tool for bug and issue tracking,
and secondly, it will give you a sense of how to integrate Puppet with third-party tools.

Chapter 4

[71]

Atlassian JIRA has been around since 2002, and in this time, has become one of the
most popular forms of issue-tracking software on the market, in use by an estimated
25,000 organizations. Part of the appeal of JIRA is that it is a web-based product,
and it is very easy to install and maintain. Recently, Atlassian has offered JIRA to
its users in the form of a Software as a Service package, which has lowered the
barrier to entry for running JIRA even further. One of the things that set JIRA apart
fairly early on was its excellent API, as it allowed people to create products and
services that would easily be able to integrate with JIRA with minimal effort.

Issue tracking is a natural fit for a Puppet report plugin. There are times when you
don't want to receive an e-mail when there is a problem with a Puppet run, but by
the same token, you also want to make a record of the issue so that you can go back
and solve it later. Using JIRA and a suitable report processor, you will be able to
have Puppet quietly raise an issue if it encounters a problem so that developers
can track and fix the issue.

You might be surprised to find that this is the simplest example yet. Unlike SQL
servers and e-mails, we have no need to build up relatively complex data structures;
it can all be dealt by a single call to the JIRA API. A big part of the brevity of the
code is that we are using a Ruby library that bundles the JIRA API for us, saving
us the effort of writing code to do the basics of connecting, authenticating, and
creating REST-based calls.

As always, the first thing that we need to do is include the libraries that we require.
Consider the following code snippet:

require 'puppet'
require 'yaml'
require 'logger'

begin
 require 'jiralicious'
rescue LoadError
 Puppet.info 'This report requires the jiralicious gem to run'
end

Creating Your Own Report Processor

[72]

In this case, we include the usual suspects in the form of the puppet, yaml, and
logger libraries and also include the jiralicious library. The jiralicious library
deals with many of the common API calls used to interact with JIRA and saves us
from having to write our own interfaces. For our simple use, this gem is a perfect
fit. Now that we have our libraries, we need to register our report and load our
configuration file. This is described in the following code snippet:

Puppet::Reports.register_report(:jiraalert) do

 def process

 @log = Logger.new('/var/log/puppet/puppetreport.log')

 configfile =
 File.join([File.dirname(Puppet.settings[:config]),
 'jiraalert.yaml'])
 raise(Puppet::ParseError, "mysqlreport configfile not
 readable") unless File.exist?(configfile)
 config = YAML.load_file(configfile)

For this report processor, our configuration file will look like the following:

username: puppetjira
password: weakpassword
uri: http://jira.fictonalco.com
apiversion: latest
authtype: basic
project: PUP

As you can see, the configuration of the jiralicious library is fairly lightweight
and needs only the username, password, URI, and API version. The URI is the
address of your JIRA server; this can just as easily be an on-demand instance
as a locally hosted version.

Now that we have our settings, we need to connect to our JIRA instance. We call on the
jiralicious library to do this and feed it the values it needs via our configuration file
in the same way as the previous examples. Consider the following code:

 Jiralicious.configure do |jiraconfig|
 # Leave out username and password
 jiraconfig.username = config['username']
 jiraconfig.password = config['password']
 jiraconfig.uri = config['uri']
 jiraconfig.api_version = config['apiversion']

Chapter 4

[73]

 jiraconfig.auth_type = config['authtype']
 end
 project = config['project']

Now, all we need to do is decide which events we want to send to JIRA; in this
case, we're going to send any Puppet report that has a status of failed to JIRA
as a bug. We simply pull the details we require from the Puppet report using the
.self notation, starting with the self.status object. If its value is failed, then
we construct a JSON string (Java Script Object Notation, a common data type for
configuration and API calls) that contains the data we require from the transaction
report. Once we've built our document, we then call the Jiralicious::Issue.
create method and pass the document as a method argument. This is described
in the following code snippet:

 if self.status == 'failed'
 puppet_data = {
 "fields" => {
 "project" => {
 "key" => "#{project}"},
 "summary" => "#{self.host} Failed puppet run",
 "description" => "Host #{self.host} Failed puppet run at
#{self.time}",
 "issuetype" => {"name" => "Bug"}}}
 Jiralicious::Issue.create(puppet_data)
 end

 rescue => err
 @log.fatal("Caught exception; exiting")
 @log.fatal(err)
 end
end

Our document harvests several important pieces of data to post into JIRA. Firstly,
we hand it the project that this new issue should be logged to and then add a brief
summary that includes the Puppet agent host that has flagged the error. Finally,
we set the issue type to be a bug.

Install this report processor in the usual way, restart your Puppet master, and keep
an eye on your JIRA queue; you will find that your failed hosts are now registering
themselves within JIRA, ready for the attention of a free developer. Bug tracking
tools such as JIRA can be used to vastly improve your Puppet code. Tracking
common issues and having a documented solution imposes a certain amount
of discipline. After all, no one wants their code to be the reason that there are
several hundred bug tickets waiting to be dealt with!

Creating Your Own Report Processor

[74]

A final note on third-party applications
As you've seen, with the correct Ruby libraries and some creative Ruby code, you can
allow Puppet to communicate with pretty much any third-party product. These days,
it's almost a given that there is an API, and on the Puppet Forge, you can already see
some exciting examples of report processors ranging from alerts via instant message
through to logging deployment data into systems such as New Relic. When you
come to look at your own report processors, be creative and remember that Puppet
is rapidly becoming the first place where changes occur, which makes it the perfect
early warning system for impending issues. By thinking about report processors
both as a reporting mechanism and, perhaps more importantly, an alerting system,
you can create some fantastic ways to keep yourself apprised of change within
your Puppet-managed infrastructure.

Summary
By now, you have a good idea of what you can do with the Puppet report processor.
We've taken a look at the very basics of a report processor and explored the simple
steps required to create a new one. We've also investigated ways to parse the data
that Puppet sends in its transaction reports and noted how the majority of the code
in a report processor is generally business logic that deals with data rather than
low-level connectivity code. The example code in this chapter demonstrated
how there is generally a library available that can ease the development of report
processors by taking care of common tasks such as connecting to databases and
third-party applications.

In this chapter, we've covered how to send e-mails, export data to MySQL, and log
to JIRA using existing libraries to lighten the load. We've explored different ways in
which we can use the data and hopefully encouraged you to think about your own
report processors.

In the next chapter, we're going to take a look at the world of PuppetDB, what it's
used for, and how to go about setting it up on our Puppet servers.

Exploring PuppetDB
We have spent quite a bit of time looking at the basics of the Puppet reporting
system and learned a fair bit about its underlying mechanisms and data formats.
Now, it is time to turn our attention to PuppetDB. PuppetDB is an extremely
fast data storage service that Puppet is able to utilize in preference to storing
the reports elsewhere, and it offers a rich API for data discovery.

In this chapter, we're going to cover the following topics:

• A brief tour of PuppetDB and its uses
• Backend data storage options for PuppetDB
• Configuring your Puppet masters to use PuppetDB

By the end of this chapter, you should be comfortable both with what PuppetDB is
used for and how to install and configure it.

A brief history of PuppetDB
Over the past few years, an awful lot of effort has gone into making Puppet perform
well when scaled, and this has led to several interesting advances in the product.
Not only has the catalog compilation become faster (200 times faster from version
2 to version 3), but some serious gains have been made in terms of scaling massive
Puppet installations. As is often the case, this isn't just about making some things
faster but also about taking a good hard look at how some components function
and replacing them with something more suitable if they are found to be wanting.

Exploring PuppetDB

[76]

Increased performance was obviously at the forefront of Puppet Labs developers'
minds when they came to consider exported configurations. Exported configurations
are an excellent feature in Puppet that allow a node to pass its configuration onto
other nodes. This is especially handy when configuring backups, monitoring, or
any other item that might need to know how another node is configured. By their
very nature, exported configurations require a place to be stored; after all, a node
doesn't have any idea as to which other nodes may require configuration from it,
so it makes sense to store it with the Puppet master. This storage needs to be
accessible, but above all, it needs to be fast. A slow exporting configuration
store can seriously impact the performance of a catalog.

Originally, the Puppet master dealt with stored configuration. It would take the data
from the node, store it, and when asked, it would reply to a node with the details.
This worked and was simple, but was inherently slow as it introduced an expensive
lookup operation to the Puppet master. It also scaled poorly, with catalogs that have
large numbers of managed resources taking a lot of time to apply. Obviously, this
needed improvement, and that's exactly what the Puppet Labs developers did
with PuppetDB.

PuppetDB was built from the ground up to be a high-performance place to persist
stored configurations in. Rather than developing it in Ruby as with the rest of
Puppet, they decided to move it to an application written in Clojure. After several
iterations, it was found that Clojure performed well and, as a language, had the
libraries and structure to ease the development of PuppetDB.

The other technological feature worth noting with PuppetDB is its data store. By
default, PuppetDB ships with an in-memory database, but this is more for the proof
of concept than production use. It's a HyperSQL Database (HSQLDB) and will very
quickly fill up unless you have either very few Puppet nodes or unlimited RAM (and
extremely deep pockets to fund the everlasting RAM). For production use, it's highly
recommended that you back PuppetDB with a PostgreSQL database; the Puppet Labs'
recommendation is that this is required any time you go above a hundred nodes.
Personally, I recommend it even if you have five nodes. PostgreSQL is inherently
more stable, better performing, and easier to back up and maintain than HSQLDB.
You can find the scaling recommendations for PuppetDB at https://docs.
puppetlabs.com/puppetdb/latest/scaling_recommendations.html.

https://docs.puppetlabs.com/puppetdb/latest/scaling_recommendations.html
https://docs.puppetlabs.com/puppetdb/latest/scaling_recommendations.html

Chapter 5

[77]

What if you want to use a different database?
For those of you who are fans of either MySQL or Oracle, I'm afraid
you're out of luck, as PuppetDB will only run against PostgreSQL.
There is the possibility of its future support with Oracle, but due
to MySQL lacking support for certain key features that PuppetDB
requires, the most notable being recursive queries, there is almost no
chance of it being supported.

Clojure runs on top of Java Virtual Machine (JVM) and is a dialect of the Lisp
language. Don't worry, though; you are not going to need to learn Lisp or Clojure
to work with PuppetDB. This is due to a key design decision made early on in the
life of PuppetDB to make the data as easily accessible as possible via the REST API.

PuppetDB has many of the same tunable options as most common JVM apps,
so you can set the amount of the heap memory that it can consume; the official
recommendation from Puppet Labs is that you allocate 128 MB of RAM if you're
using PostgreSQL and at least 1 GB of heap memory if you're using an embedded
database. Once it is started, PuppetDB will open a port on 8080 by default, but
that's a fairly common port if you're running any other JVM-based application,
so make sure that you are not going to clash before installing PuppetDB. We'll take
a look at how you change the port slightly later in this chapter when we're looking
at the setup of PuppetDB.

So far, all of this is interesting, but as this is a slender tome about Puppet reporting
and alerting and so far PuppetDB has been all about exported configurations, this
would probably not be of great interest—a footnote or an information box at best.
However, there are two other things that PuppetDB stores that make it very relevant
indeed to this book, and they are reports and facts.

Node facts have always been available in PuppetDB, but as of the more recent version,
Version 1.4, you also have the option to use it as your reporting endpoint. This is
excellent news on many levels. Firstly, it means that you are able to leverage the
speed of PuppetDB when uploading reports, and secondly, it is very easy to enable
it. However, what's especially interesting is that you are then able to use the
PuppetDB query API to explore your data.

Exploring PuppetDB

[78]

The PuppetDB query API is in its third version and is evolving rapidly. In its
current form, it is a fantastic tool to explore any and all data about your Puppet
infrastructure using an easy-to-use and very accessible RESTful API. Each version
of the API has a different set of endpoints. An endpoint in PuppetDB speak is an
information store; this could be, for example, the events endpoint, which is a source
you can mine for details about Puppet events. Alternatively, you can look at the
reports endpoint, metrics, nodes, and many more. You can fully expect each new
version to expose even more data.

We're going to take a good look at the PuppetDB query API in Chapter 6, Retrieving
Data with the PuppetDB API. For the moment, let's take a look at the steps we need to
follow to get PuppetDB up and running.

Setting up the PuppetDB server
Setting up PuppetDB consists of two processes. The first process is to actually install
PuppetDB and its terminus, and the second step is to get Puppet to forward data to
it. None of this is especially complicated.

Installing PuppetDB
The first thing we need to do is go ahead and install PuppetDB. As always, it's best
to get this from the Puppet Labs' official repos, as the Linux distribution of your
choice may well be lagging behind in versions, sometimes extremely so, or may
not even have PuppetDB available as a package. If you've followed the instructions
from Chapter 1, Setting Up Puppet for Reporting, you should already be in fine form.
You will also want to make sure that you have JVM installed. This can either
be the OpenJDK shipped with your distribution, or something like the Sun
JDK. PuppetDB will run happily with any of these.

Installing PuppetDB from packages
Once you're ready to install PuppetDB, log on to your Puppet master and issue
one of the following commands:

• For Debian-based distributions, issue the following command:
sudo apt-get install puppetdb

• For RedHat-based distributions, issue the following command:
sudo yum install puppetdb

Chapter 5

[79]

This will then kick off your package manager to fetch the PuppetDB application plus
any prerequisites. Once it's installed, you should find that you have a new directory
in the /etc/ directory, called puppetdb; this is the configuration folder for PuppetDB
and contains all of the configuration files that you need to get PuppetDB up and
running. You will also find that you have a new service installed called PuppetDB.

Increasing the JVM heap space
At this point, you have everything you need to run PuppetDB on your server, and
you could go right ahead and start it now. The trouble is, PuppetDB is in a usable
but less scalable state out of the box. As mentioned earlier, PuppetDB ships with
an in-memory database by default, which is heavily constrained in terms of scale
by its very nature. There are two ways to approach this. Firstly, you can edit the
JVM options to give the in-memory database more headroom, or secondly, you
can use PostgreSQL as the backing store. Let's take a look at both techniques.

Increasing the amount of memory available to PuppetDB is a straightforward task.
All of the PuppetDB JVM configurations can be found in the following directories:

• For Debian-based distributions, the configuration can be found in the
following location:
/etc/default/puppetdb

• For RedHat-based distributions, the configuration can be found in the
following location:
/etc/sysconfig/puppetdb

This file contains the fundamental settings that PuppetDB requires to work, such as the
user to run it under, the aforementioned JVM options, the installation directory, and so
on. You don't need to fiddle with most of these unless you've installed PuppetDB into
another directory or need to run it under a different system account. The option we're
interested in is JAVA_ARGS. The JAVA_ARGS option allows you to feed any JVM option
to PuppetDB, but unless you have a very specific need, it's best to not tune the more
esoteric settings. Improperly tuned JVM settings probably account for 50 percent of
the problems that I see on Java applications.

Exploring PuppetDB

[80]

The only setting we should work with here is the –Xmx setting. The -Xmx setting
controls the maximum amount of heap memory that a Java application can use,
and in the case of PuppetDB, it has to account for both the application itself plus
the data if you are using the in-memory database. By default, this is set to 192m,
and depending on the size of your Puppet infrastructure, you may want to increase
this using the JAVA_ARGS="-Xmx2g" command. The official Puppet guidelines state
that once you get to around the 100 node mark, you should move to PostgreSQL.
This makes sense, as HSQLDB is pretty terrible at dealing with large transactions,
and at the point at which you are supporting 100 nodes, you are going to need
a comparatively huge amount of RAM to support it.

Installing PostgreSQL
Setting up PostgreSQL as the PuppetDB store is a reasonably straightforward task;
the packaging takes care of installing the actual database engine, leaving us to set
up a new database and user. For the purposes of this example, I'm going to install
PostgreSQL on my Puppet master. However, it's quite possible, if not preferable,
that you run the PostgreSQL server on a separate hardware on your PuppetDB
server for larger instances.

When working with large-scale Puppet infrastructure, it's best to
separate the roles, with a separate PuppetDB server, PostgreSQL
server, and Puppet master. This allows you to scale each element
in isolation and ensures that one component will find it hard to
slow down the other.

Installing the packages
Let's go ahead and install PostgreSQL using the available packages for the
following distributions:

• For Debian-based distributions, issue the following command:
sudo apt-get install postgresql

• For RedHat-based distributions, issue the following command:
sudo yum install postgresql

Chapter 5

[81]

Creating your database user
Once PostgreSQL is installed, we can turn our attention to the user. To create the
user, we can use the tools that have been installed along with PostgreSQL. To ensure
that we do not cause problems with clashing permissions, we are going to run this
as a PostgreSQL user. If we were to use another user, say the root user, we could
potentially create files that the PostgreSQL user cannot access; this would cause
problems, as it is the PostgreSQL user that runs the underlying service. Let's go
ahead and run this as a PostgreSQL user, using the following command:

sudo -u postgres ssh

Next, let's create our user using the createuser command installed along with
PostgreSQL, and set a secure password. This is described in the following screenshot:

Creating the PostgreSQL database
The final step for the initial setup is to create the database itself using the createdb
command. This is described in the following screenshot:

This command creates a new database with UTF8 encoding and ensures that our
Puppet user is its owner. The UTF8 encoding is important as PuppetDB uses JSON as
the format for its data, and if you don't ensure that the database is UTF8-encoded, you
may find that PuppetDB runs into trouble fairly quickly. By default, the PuppetDB
terminus converts strings into UTF8 encoding and expects its backend store to be
able to store this data in a UTF8-encoded form.

Exploring PuppetDB

[82]

Now that we have our database, we need to ensure that it will allow our PuppetDB to
access it. PostgreSQL uses a file called pg_hba.conf to determine the access control to
the database and the authentication method. Generally speaking, this is set to be quite
secure from the installation, so we need to make some adjustments. You can find the
pg_hba.conf file in the following places:

• For Debian-based distributions:
/etc/postgresql/9.1/main/pg_hba.conf

• For RedHat-based distributions:
/var/lib/pgsql/data/pg_hba.conf

Take a look inside the file with your favorite editor. The first thing that you're going
to be greeted with is a wall of text; these are the comments that the PostgreSQL
developers have helpfully added. These are worth a read as they set exactly how this
file works. However, the block of configuration we are looking for is the following one:

local all all md5
host all all 127.0.0.1/32 md5
host all all ::1/128 md5

If these lines do not appear in that file, then go ahead and add them, and then restart
PostgreSQL. These lines essentially set access permissions that allow access to any
user on any database from 127.0.0.1 (the server's local network), basically ensuring
that any process running on the same server as PostgreSQL will be able to access the
database. If you are running PostgreSQL on a remote server, then you will need to
add a suitable access line. If in doubt, consult the handy comments at the top of the
pg_hba.conf file.

This basically ties up all of the activity required to configure PostgreSQL, and now
we just need to get PuppetDB to use it as its data store. This is done using the /etc/
puppetdb/conf.d/database.ini configuration file. Go ahead and open it up in
your editor. You will see the following configuration:

[database]

classname = org.hsqldb.jdbcDriver
subprotocol = hsqldb
subname =
 file:/var/lib/puppetdb/db/db;hsqldb.tx=mvcc;sql.syntax_pgs=true
username = foobar
password = foobar
gc-interval = 60
log-slow-statements = 10

Chapter 5

[83]

As you can see from the preceding code file, PuppetDB is configured to use the
embedded database. This is easy to change, though. The following is what the
same configuration file looks like but configured for PostgreSQL:

[database]

classname = org.postgresql.Driver
subprotocol = postgresql
subname = localhost:5432/puppetdb
username = puppet
password = puppet

Amend your database configuration file to look like the preceding code and restart
PuppetDB. It will now use the PostgreSQL database. Again, if you are using a remote
PostgreSQL database, then you will need to amend your configuration to suit.

We have one final step and that is to install the PuppetDB terminus. The PuppetDB
terminus is simply an endpoint for Puppet to connect to and must be installed on
the Puppet master; this is especially important if you are running PuppetDB on a
separate host. Installing the PuppetDB terminus is simple and can be done using
the following commands:

• For Debian-based distributions, issue the following command:
apt-get install puppetdb-terminus

• For RedHat-based distributions, issue the following command:
yum install puppetdb-terminus

These commands will then fetch the puppetdb-terminus package and install it onto
your system. Once it's installed, we need to configure our Puppet master to connect
to it.

Firstly, let's create our puppetdb.conf file for Puppet. This is located in the same
directory as your main Puppet configuration, normally, /etc/puppet/. If it is not
already present, then go ahead and create a new file called puppetdb.conf in that
directory. The puppetdb.conf file is very simple and only needs to contain a pointer
to your PuppetDB instance. In my case, this will be the same server as Puppet so the
file could look like the following configuration:

[main]
server = puppet.stunthamster.com
port = 8081

Exploring PuppetDB

[84]

Next, we need to configure the Puppet master itself. This is done in the usual
file, that is, the /etc/puppet/puppet.conf file. The configuration will sit in the
[master] block and should look like the following configuration:

[master]
storeconfigs = true
storeconfigs_backend = puppetdb

This is enough for basic PuppetDB usage, but we also want the reports feature.
This is added like any other report processor in the reports option and should be
added as shown in the following code:

reports = puppetdb

Remember, you can have multiple report processors so PuppetDB doesn't have to
be the only one, and it's indeed beneficial to have several report processors. As you
will see in the next chapter, PuppetDB makes an excellent choice for reporting but
lacks the ability to issue alerts. By combining the PuppetDB report processor with
a suitable alerting report processor, you can have the best of both worlds.

Finally, we need to create the routes file. The routes file is required for the proper
behavior of PuppetDB and allows Puppet to override certain indirection values.
You probably don't have a routes file as yet, so go ahead and create one at /etc/
puppet/routes.yaml and add in the following content:

master:
facts:
 terminus: puppetdb
 cache: yaml

That's it! You're all set. Simply restart your Puppet master, and it should be set to
use PuppetDB.

Summary
In this chapter, we've taken a very quick look at the history and usages of PuppetDB.
We've taken a look at the underlying technology that powers it and learned that
although it ships with an in-memory database, the best practice when using it is to
install and utilize a PostgreSQL database for its data store. We went into detail about
how you can configure and install PuppetDB, from the initial package installation
of PuppetDB and PostgreSQL to the details on how to configure both the products
so that they can communicate.

In the next chapter, we're going to explore ways to use PuppetDB to view your data.
We're going to learn how the PuppetDB API works and go through some examples
of how simple and powerful it is to query this well-performing data store.

Retrieving Data with
the PuppetDB API

In the previous chapter, we learned how to set up PuppetDB. Now, it's time to put it to
work. PuppetDB is more than just a storage engine; it also contains a powerful query
API that allows you to interactively query data about your Puppet infrastructure. By
using a combination of REST calls with the provided query language, you will be able
to find enormous amounts of data related to your Puppet-managed infrastructure.

In this chapter, we're going to take a look at the following topics:

• The hows, whats, and whys; a brief introduction to the query API
• Exploring and using endpoints
• Getting acquainted with some basic queries

By the end of this chapter, you should be fully comfortable working with the
PuppetDB API and should be able to select the appropriate data sources and
construct queries to explore your own data.

Exploring the PuppetDB query API
Data is only useful if you have some means to access it, and yet this is a truism that
many systems seem to have forgotten, relying on developers to come along and fill
whatever egregious gaps in data exploration the original product left out, instead.
Fortunately, Puppet offers a rich data discovery tool in the form of the PuppetDB
API and its associated query language.

Retrieving Data with the PuppetDB API

[86]

As we discovered in the previous chapter, PuppetDB is more than just a place to
dump data about Puppet; it's a fully functioning and high-performance endpoint
that Puppet can utilize to speed up exported configuration data, catalog compilation,
and more. By adding PuppetDB to your Puppet infrastructure, you will find that you
will get some fantastic performance gains across almost all parts of the product as
well as gaining a powerful reporting endpoint.

One of the key decisions made by the PuppetDB developers was to make the data
that PuppetDB holds accessible by a well-documented and powerful API. This
makes it possible to create your own applications to leverage the data that your
Puppet-managed infrastructure has sent Puppet without needing to design your
own storage and query mechanism. Although it's powerful, the PuppetDB API
has a complex query language that can take some time to get accustomed to.

The PuppetDB query API and especially the query language
can be a complex topic, but the developers have provided some
excellent documentation. You can find the documentation at
https://docs.puppetlabs.com/puppetdb/latest/.

The PuppetDB API is, in fact, split into two distinct functions: the query interface and
the command interface. The majority of this chapter will deal with the query interface,
but it's worth exploring what the command interface is and what it is used for.

Understanding the command interface
The command interface is normally not used directly, so we're not going to go into
any great detail on how it is used. There is almost no circumstance under which
you would directly use the command interface as the only vaguely useful
command would be the deactivate node command, and even then, this is
best left for PuppetDB and Puppet to deal with.

The command interface offers the following functions:

• replace catalog: This command is used when a fresh set of data is received
from the Puppet client, and it replaces the previously held data for this node

• replace facts: This function takes incoming facts from a node and replaces
the stored facts with the latest version

• store report: This is a new feature with v3 of the API and allows
PuppetDB to act as a report processor for storing reports and events

• deactivate node: This will mark a node as inactive within PuppetDB
and make it eligible for housekeeping next time the database is compacted

https://docs.puppetlabs.com/puppetdb/latest/

Chapter 6

[87]

Node deactivation is an important part of PuppetDB's housekeeping.
While nodes are active, their configuration will be exported along
with all other exported resources. When you are dealing with
catalogs of thousands of nodes, it's important that the old ones be
marked as deactivated so that their data isn't considered. This is
especially important if you are using a dynamic environment that
treats nodes as ephemeral and creates and destroys them at will.
Periodically, PuppetDB will run a garbage-collection sweep; this is
essentially a housekeeping task that will remove unwanted data to
keep the database small and agile.

The command interface is an HTTP call to Puppet DB and contains data in the correct
PuppetDB wire format. This will change depending on what you are interacting with
(resource, node, and so on) but will essentially comprise of the command plus the
data wrapped in a JSON-formatted package.

There really is no reason to use the command interface directly;
however, it's important to know that it is there and how it works.
It's possible in later versions of PuppetDB that new features may
be introduced that add more reasons to work with the command
interface, so it's good to understand the basics.

Understanding the query API interface
Now that we understand how the PuppetDB API is used to insert data, it's time to
move on to a more useful topic, that is, how to retrieve data.

The PuppetDB query API is now into its third revision and has introduced some
powerful new features around the reporting elements of PuppetDB. A major new
feature is the ability to use PuppetDB as a report processor within the Puppet master;
this is an important addition to PuppetDB as previously it could only be used to
store configurations. Now, it is able to form the central hub of a powerful reporting
tool, and unlike other reporting methods, PuppetDB has the advantage of both
having a data store that is tuned for the task in hand and a query language that is
designed for the specific role of retrieving the Puppet data.

The query API organizes its data around the concept of an endpoint. Each endpoint
is essentially a data source that offers a set of RESTful routes that allow you to
interact with the data. As of v3, the following endpoints are available:

• facts

• resources

Retrieving Data with the PuppetDB API

[88]

• nodes

• fact-names

• metrics

• reports

• events

• event-counts

• aggregate-event-counts

• version

• catalogs

• server-time

Each endpoint is tuned to a specific task, and it's important that you select the correct
one when issuing your queries. There is some potential overlap in some of the data
that the endpoints offer. For example, some of the data inside the facts endpoint
can also be found in the nodes endpoint. The difference lies in how the data
is presented and described; for instance, if you are interested in a specific fact,
including which nodes have that fact present, then you would use the facts
endpoint. Alternatively, if you want to find out the value of a specific fact on
a certain node, then you would use the nodes endpoint.

Once you have selected an endpoint, you can make a call to one of its available
routes. A route is an HTTP path that will return a certain type of information
depending on the endpoint you are interrogating. These calls should take the
following form:

http://<server>:<puppetdbport>/<api_version>/<route>

When we come to look at the endpoints in detail, you will find that I've listed the
available routes and the URL for the documentation. It's worth reading through the
documentation for a complete list of available data from each endpoint.

Be careful with the API version. Each revision has brought a
new functionality; for instance, v2 lacked most of the reporting
functionality that v3 integrates. If you target the wrong
version, you may either fetch unexpected data or no data at all.

Chapter 6

[89]

When you make an API call, PuppetDB will fetch the requested data and return
it in the form of a JSON response. The actual structure of the JSON document
will vary depending on the endpoint used, and it's wise to consult the endpoint
documentation to find out the exact format to be expected.

We are going to take a more detailed look at the available endpoints further along
in this chapter, but first, we are going to spend some time looking at the PuppetDB
query language.

A primer on the PuppetDB query language
With most of the endpoints, you can use the supplied routes to retrieve information.
For example, the following query will return all nodes that run Linux:

curl http://puppetdbhost:8080/v3/facts/kernel/Linux

A great deal of data can be fetched using this technique, but it lacks the flexibility to
reflect more complex requirements. To allow users to specify more complex queries,
PuppetDB allows for some endpoints to make use of a query language within the
PuppetDB API. A PuppetDB query that uses the query language is similar to a call
to a route in that it is made up of an HTTP request but differs in that you supply an
additional query string that contains the PuppetDB query.

PuppetDB queries can be quite complex at first glance, as they are written in reverse
polish notation and are contained within a JSON array. This is somewhat different
to most languages you may be used to and can take some practice to become
accustomed to. Essentially, this means that each query you construct starts with the
operator with any subsequent element being made up of arguments. These are then
evaluated in the order they are written in. Let's see how this works in practice; take a
look at the following query:

curl -X GET http://puppetdbhost:8080/v3/facts/processorcount --
 data-urlencode 'query=["<", "value", 2]'

In this example, we start with a query to the facts endpoint and use the route to
bring back all the processorcount facts. We then apply a query to narrow down the
result set to only nodes that have less than two processors by applying the < operator
to the value field of the results from the returned data.

Let's take a look at another, more complex query. In this example, we are going to
issue a query to the resources endpoint and use a set of queries to narrow down
our data:

curl -X GET http://puppetdbhost:8080/v3/resources --data-urlencode
 'query=["and",["=", "type", "User"],["not",["and",["=", "type",
 "User"], ["=", "title", "mvd"]]]]'

Retrieving Data with the PuppetDB API

[90]

In this example, we are using the resources endpoint to query all managed
resources; we're then limiting the result set by applying a series of queries. We're
using an and operator to join two JSON arrays, with each array containing a sub
query. This query can also be represented by this: select all resources where type equals
user and exclude those where type equals user and title equals mvd. Or, to put it another
way, it can be represented by this: find me all users, but not if they have a title of mvd.

As you can see, the notation of the PuppetDB queries can become quite complex, but
it offers a great deal of power. The best approach when constructing new queries
is to build them one section at a time, check the output, and then add another.
You can find more details about the available operators for queries at http://
docs.puppetlabs.com/puppetdb/latest/api/query/v3/operators.html. It's
well worth both studying the documentation and practicing queries until you are
comfortable using the PuppetDB query language.

Exploring endpoints
The endpoints are the core of the PuppetDB query API, and in the next section, we
are going to look at the endpoints that are available in a little more detail, which
are the routes that they have made available, and how you might use them. Again,
taking time to acquaint yourself with each endpoint by running some test queries
is a valuable exercise, especially when examining the format of the returned data.

Using the facts endpoint
The facts endpoint allows you to find the fact data reported by Puppet-managed
nodes to PuppetDB, including any custom facts that you have defined. The facts
endpoint supports the following routes:

• GET /v3/facts

• GET /v3/facts/<NAME>

• GET /v3/facts/<NAME>/<VALUE>

As you can see, these routes offer you a simple mechanism to query your facts.
For example, the following query would retrieve all IP addresses that have been
assigned to any Puppet-managed node:

curl http://puppetdbhost:8080/v3/facts/ipaddress

http://docs.puppetlabs.com/puppetdb/latest/api/query/v3/operators.html
http://docs.puppetlabs.com/puppetdb/latest/api/query/v3/operators.html

Chapter 6

[91]

You can insert any fact name into the path and use it to retrieve data that may be of
interest. You can also add a further value after the desired fact to narrow it down
to specific data, and this can allow you to zero in on interesting aspects of your
infrastructure. For example, we can retrieve all hosts that run Linux by using the
following query:

curl http://puppetdbhost:8080/v3/facts/kernel/Linux

Try the preceding query again, but instead of Linux, use
linux. You'll notice that this time round, you've not had
any data returned; this is because facts are case sensitive
within PuppetDB queries, so it's very important that you
ensure you use the correct case when issuing queries.

Using the routes available in the facts endpoint can give you access to a wide range
of data, and the available routes can be further supplemented with the addition of a
PuppetDB query. For example, if we want to find all facts for a certain node, we can
do so using the following query:

curl -X GET http://puppetdbhost:8080/v3/facts --data-urlencode
 'query=["=", "certname", "puppetagent.localdomain"]'

This query will produce the output shown in the following screenshot:

Retrieving Data with the PuppetDB API

[92]

You can find the documentation for the facts endpoint at https://docs.
puppetlabs.com/puppetdb/latest/api/query/v3/facts.html.

Using the resources endpoint
The resources endpoint allows you to query all resources that Puppet is currently
managing on active nodes. PuppetDB will not respond with data for deactivated
nodes. The resources endpoint offers the following routes:

• GET /V3/resources/v3/resources

• GET /v3/resources/<TYPE>

• GET /v3/resources/<TYPE>/<TITLE>

The resources endpoint is similar to the facts endpoint in its usage. The first
route will return every single resource that Puppet has ever encountered, but this
is of limited use and by adding a type, we can start drilling in specific details. For
instance, by using the following query, you can retrieve a list of all files that Puppet
is currently managing on active nodes:

curl http://puppetdbhost:8080/v3/resources/File

This example gives you the output shown in the following screenshot:

https://docs.puppetlabs.com/puppetdb/latest/api/query/v3/facts.html
https://docs.puppetlabs.com/puppetdb/latest/api/query/v3/facts.html

Chapter 6

[93]

As with the facts endpoint, case matters here as well. All
resources should be capitalized, so you will find that File
will work, but file will return no results.

As you can see from the output shown in the preceding screenshot, the resources
endpoint will return the name of the Puppet manifest where the resources are
declared and the line on which the declaration is made. This makes it an absolute
cinch to find out where resources are being defined without having to search
through the code itself.

The resources endpoint also supports the PuppetDB query language, and you can
use this to drill down to interesting data. For instance, if you want to find all files
except /etc/hosts, you can use the following query:

curl -X GET http://puppetdbhost:8080/v3/resources/File --data-
 urlencode 'query=["and", ["not",["=", "title",
 "/etc/hosts"]],["=", "type", "File"]]'

You can find the documentation for the resources endpoint at https://docs.
puppetlabs.com/puppetdb/latest/api/query/v3/resources.html.

Retrieving details about nodes
The nodes endpoint completes the trinity of resources, facts, and nodes, and gives
you the ability to find specific information regarding nodes from PuppetDB quickly
and easily. There are many aspects that you can query nodes for, and to reflect
this, the nodes endpoint has a comparatively large set of routes compared to
other endpoints. The following routes are offered by the nodes endpoint:

• GET /v3/nodes

• GET /v3/nodes/<NODE>

• GET /v3/nodes/<NODE>/facts/<NAME>

• GET /v3/nodes/<NODE>/facts/<NAME>/<VALUE>

• GET /v3/nodes/<NODE>/resources

• GET /v3/nodes/<NODE>/resources/<TYPE>

• GET /v3/nodes/<NODE>/resources/<TYPE>/<TITLE>

https://docs.puppetlabs.com/puppetdb/latest/api/query/v3/resources.html
https://docs.puppetlabs.com/puppetdb/latest/api/query/v3/resources.html

Retrieving Data with the PuppetDB API

[94]

As you can see from the routes, you are able to retrieve both facts and resources from
the nodes endpoint, and the response format will vary depending on which of the
two you are retrieving. The ability to respond with both facts and resources makes
the nodes endpoint incredibly versatile, and as a result, you will probably find that
you use this endpoint more than the others.

Using the provided routes makes retrieving node information a straightforward task.
For example, to see the basic information that PuppetDB holds about a particular
node, we can call the nodes' route and supply the fully qualified domain name of
the node that we are interested in. This is described in the following query:

curl http://puppetdbhost:8080/v3/nodes/puppetagent

This query gives you the output shown in the following screenshot:

Likewise, using the nodes endpoint and querying for facts, we can also view the
versions of Facter available on a given node. This is described in the following query:

curl http://puppetdbhost:8080/v3/nodes/puppetagent.localdomain/
 facts/facterversion

This query gives you the output shown in the following screenshot:

As you can see, the nodes endpoint allows you to drill down into the details about
a specific node, but this is not limited to facts; we can retrieve details of resources
as well. This can be done using the following query:

curl http://puppetdbhost:8080/v3/nodes/puppetagent.localdomain
 /resources/File

Chapter 6

[95]

This code gives us the output shown in the following screenshot:

Using the provided routes within the nodes endpoint gives you a fantastically
powerful way to interrogate your infrastructure, but it can occasionally be limiting.
Using the routes, you're not able to find a range of data. For instance, you may want
to find all nodes that have more than 2 GB of RAM. Although you cannot do it using
one of the standard routes, the nodes endpoint also supports the PuppetDB query
language. Consider the following query:

curl -X GET http://puppetdbhost:8080/v3/nodes --data-urlencode
 'query=[">",["fact", "memorysize_mb"], "2048"]']

This query gives you the output shown in the following screenshot:

Retrieving Data with the PuppetDB API

[96]

Getting the run details with the catalogs endpoint
The catalogs endpoint will retrieve the details of the last catalog to be applied to a
node and currently has the following available route:

• GET /v3/catalogs/<NODE>

An example of a catalogs endpoint query would look like the following:

curl http://puppetdb:8080/v3/catalogs/puppetagent.localdomain

The output of this query is shown in the following screenshot:

Chapter 6

[97]

The catalogs endpoint allows you to retrieve the details of the Puppet catalog for a
given node from its last Puppet agent run. The catalogs endpoint returns the data
in the catalog wire format and contains both the Puppet-managed resources and
their relation to each other.

The catalog wire format can be a little complex at first glance; however,
it is well documented. You can find the documentation for the catalog
wire format at http://docs.puppetlabs.com/puppetdb/
latest/api/wire_format/catalog_format_v4.html.

Querying the catalogs endpoint gives you an immediate sense of what has been
configured on a node and allows you to easily see whether certain resources have
been applied or are available. Currently, the catalogs endpoint does not support
the query syntax; however, you can easily combine the query with the Unix grep
command to find the data that you're interested in.

The catalogs endpoint returns its data in the form of a JSON map and offers two
keys: the metadata key and the data key. At the moment, the metadata key contains
a single piece of information, which is the version of the API. The data key contains
the interesting data, and it is also made up of a JSON map that contains the catalog
data in the wire format.

The catalogs endpoint is an excellent way to explore the state of a given node at
any point of time, and it could potentially form part of a powerful auditing tool if the
information is persisted to another data store and then used to compare configuration
changes over time. For instance, using this technique, you could easily view when a
particular application was added to a node or when a configuration file was changed.

Understanding the fact-names endpoint
You can query the fact-names endpoint to find the name of any facts that Puppet
clients have reported in the course of their run; this includes deactivated nodes. Note
that this doesn't include the actual value of the facts but just the name of the facts
themselves. This can be very helpful if you want to find out whether certain custom
facts have been saved into PuppetDB, or simply to explore the facts that are available
to be queried. The fact-names endpoint currently only supports one route, which is
the following one:

• GET /fact-names

http://docs.puppetlabs.com/puppetdb/latest/api/wire_format/catalog_format_v4.html
http://docs.puppetlabs.com/puppetdb/latest/api/wire_format/catalog_format_v4.html

Retrieving Data with the PuppetDB API

[98]

The fact-names endpoint does not support any additional routes or support
queries, and it will return all fact names in alphabetical order, both for active
and inactive nodes. Consider the following query:

curl -X GET http://puppetdbhost:8080/v3/fact-names

This query gives you the output shown in the following screenshot:

Knowing the status of PuppetDB with the metrics
endpoint
The metrics endpoint is your window to the performance and status of PuppetDB
itself and should not be confused with the Puppet metrics, which are found in the
events endpoint. The metrics endpoint is interesting as it exposes its data in the form
of Java-managed beans (MBeans). These are part of the Java management extensions
and are commonly used by various applications to gather statistical information. These
are especially prevalent in the monitoring world. You're not limited to using MBeans,
though, as a standard API call will also return the information—be warned, though;
this may be a huge amount of information and you may end up running into issues
that require you to make use of the paging option.

The paging option allows you to sort the returned information and,
more importantly, limit the amount of results. Most PuppetDB
queries support paging and when faced with a huge amount of
results, it can be very useful. You can find the details for paging
at http://docs.puppetlabs.com/puppetdb/latest/api/
query/v3/paging.html.

The metrics endpoint can be useful to gauge how well your PuppetDB is
performing, how many resources it's currently managing, and how quickly it is
servicing requests. For example, you can query the metrics endpoint to find out the
number of nodes that are currently reporting to PuppetDB. This is described in the
following query:

http://docs.puppetlabs.com/puppetdb/latest/api/query/v3/paging.html
http://docs.puppetlabs.com/puppetdb/latest/api/query/v3/paging.html

Chapter 6

[99]

curl -G 'http://localhost:8080/v3/metrics/mbean/com.puppetlabs
 .puppetdb.query.population:type=default,name=num-nodes'

We can also examine how quickly PuppetDB is replying to our queries, and this can
serve as an early warning that you need to increase the resources available to the
server if it has started to run a little sluggishly.

There is a wealth of information available in the metrics endpoint, and it is an
excellent point to add monitoring. By monitoring the metrics, you are able to respond
proactively to any slowdowns in your Puppet infrastructure and scale accordingly.

You can find the documentation for the metrics endpoint at http://docs.
puppetlabs.com/puppetdb/latest/api/query/v3/metrics.html.

Using the reports endpoint
The reports endpoint offers a summary version of the Puppet report for each of
the active nodes within your Puppet-managed infrastructure. Note that this is a
summary of the report rather than the full report itself, and currently, it only has
the following single route:

• /v3/reports

The reports endpoint is very useful for seeing when a node last performed a Puppet
transaction, and, of course, it gives you the all important hash that allows you to tie
this report to the underlying events.

The report hash is something you will find yourself using
often, as it is your link from the Puppet report to the individual
events that make up the transaction. Using the hash provided
by the reports endpoint, you can query the events endpoint
to gather the events that occurred during a Puppet run.

Although it only has a single route, it requires the use of the PuppetDB query
language, albeit limited to an equality (=) operator; if you do not supply a query,
then it will return no data. A basic query looks like the following one:

curl -G 'http://localhost:8080/v3/reports' --data-urlencode
 'query=["=", "certname", "puppet.localdomain"]'

http://docs.puppetlabs.com/puppetdb/latest/api/query/v3/metrics.html
http://docs.puppetlabs.com/puppetdb/latest/api/query/v3/metrics.html

Retrieving Data with the PuppetDB API

[100]

This code gives you the output shown in the following screenshot:

The reports endpoint should be your starting point when you come to examine
events that affect your nodes. From here, you can then delve into the events
endpoint to gather any details you need. You can find the documentation for the
reports endpoint at http://docs.puppetlabs.com/puppetdb/latest/api/
query/v3/reports.html.

Working with the events endpoint
Much like the traditional reporting mechanism, the events endpoint gives us access
to events from a Puppet client run. Currently, the events endpoint only supports a
single route, which is the following one:

• GET /v3/events

The events endpoint is similar to the reports endpoint in that it requires the use
of a query to return any data. However, unlike the reports endpoint, it supports
the full range of operators within the query. This means that you can use the events
endpoint to find out details such as events during a certain time period or events that
failed to be applied. It also allows you to take the hash from the reports endpoint
and see all the events that took place, as shown in the following example query:

http://docs.puppetlabs.com/puppetdb/latest/api/query/v3/reports.html
http://docs.puppetlabs.com/puppetdb/latest/api/query/v3/reports.html

Chapter 6

[101]

curl -G 'http://puppetdbhost:8080/v3/events' --data-urlencode
 'query=["=", "report",
 "7eb94f7b8e89e1597672f190d864243543b3ac48"]'

This query gives you the output shown in the following screenshot:

The events endpoint is a versatile way of finding out which declared resources
are having difficulties. For example, we can find resources that have failed to get
themselves applied by using the following query:

curl -G 'http://puppetdbhost:8080/v3/events' --data-urlencode
 'query=["=", "status", "failure"]'

You will find yourself using the events endpoint quite often, and once you are
comfortable with some of the more common queries such as the preceding query,
you will find that it is a quick way to find extremely valuable information about
your Puppet-managed infrastructure. The documentation has many more examples
and can be found at http://docs.puppetlabs.com/puppetdb/latest/api/
query/v3/events.html.

http://docs.puppetlabs.com/puppetdb/latest/api/query/v3/events.html
http://docs.puppetlabs.com/puppetdb/latest/api/query/v3/events.html

Retrieving Data with the PuppetDB API

[102]

Using the event-counts endpoint
When you issue a query to the event-counts endpoint, you provide it with the
resource, class, or node that you're interested in. PuppetDB will then return you a list
of how many times that resource has been in the success, failure, noop, or skip status.

Currently, the event-counts endpoint supports a single route, which is the
following one:

• /v3/event-counts

The event-counts endpoint is built on top of the events endpoint, and therefore, all
the query operators you can use with the events endpoint are applicable here. The
following example queries the host puppetagent.localdomain for any resource that
has any failures, and then summarizes how many failures occurred by that resource:

curl -G 'http://puppetdbhost:8080/v3/event-counts'--data-
 urlencode'query=["=", "certname", "puppetagent.localdomain"]' --
 data-urlencode 'counts-filter=[">", "failures", 0]' --data-
 urlencode 'summarize-by=resource'

This query gives you the output shown in the following screenshot:

Chapter 6

[103]

You can find the documentation and more examples for the event-counts endpoint
at http://docs.puppetlabs.com/puppetdb/latest/api/query/v3/event-
counts.html.

Applying the aggregate-event-counts endpoint
This is an aggregated version of the event-counts endpoint; it supports the same
fields as the event-counts endpoint as it is essentially an extension of that endpoint.
This can be very handy if you are developing some custom reporting, as it saves you
having to aggregate the data yourself; nine times out of ten, it's faster and easier to
leave this to PuppetDB. Currently, the aggregate-event-counts endpoint supports
a single route, which is the following one:

• GET /v3/aggregate-event-counts

You can find the documentation for the aggregate-event-counts endpoint at
http://docs.puppetlabs.com/puppetdb/2.0/api/query/v3/aggregate-event-
counts.html.

Using the server-time endpoint
This endpoint may well make you wonder what it's for; however, it's a very useful
endpoint when you're trying to figure out what happened during a very specific time
period. At present, it supports a single route, which is the following one:

• GET /v3/server-time

The trouble with times on servers is that they can drift, and even with Network Time
Protocol (NTP), they can produce markedly different responses. The server-time
endpoint allows you to find the current time from the point of view of the Puppet
master; this can be quite important if you are querying for time-based information, as
it gives you an accurate starting point rather than a possibly skewed value based on
the current time on your desktop. You can retrieve the server time with the following
simple query:

curl http://puppetdbhost:8080/v3/server-time

You can also find the documentation for this endpoint at http://docs.puppetlabs.
com/puppetdb/latest/api/query/v3/server-time.html.

http://docs.puppetlabs.com/puppetdb/latest/api/query/v3/event-counts.html
http://docs.puppetlabs.com/puppetdb/latest/api/query/v3/event-counts.html
http://docs.puppetlabs.com/puppetdb/2.0/api/query/v3/aggregate-event-counts.html
http://docs.puppetlabs.com/puppetdb/2.0/api/query/v3/aggregate-event-counts.html
http://docs.puppetlabs.com/puppetdb/latest/api/query/v3/server-time.html
http://docs.puppetlabs.com/puppetdb/latest/api/query/v3/server-time.html

Retrieving Data with the PuppetDB API

[104]

The version endpoint
This is a straightforward endpoint and is useful if you want to know the version of
PuppetDB that you are running. This can be extremely useful if you want to ensure
that your application is using the correct version of the API. You can essentially
check whether the PuppetDB server is running the version you expect, and if not,
you can either bail out or handle the difference another way. Currently, the
version endpoint supports a single route, which is the following one:

• GET /v3/version

To find the version of your Puppet master, you can use the following query:

curl http://localhost:8080/v3/version

You can find the documentation for the version endpoint at http://docs.
puppetlabs.com/puppetdb/latest/api/query/v3/version.html.

Summary
In this chapter, we have fully explored the PuppetDB API. We've taken a look at the
role that the API endpoints play and how you can use simple command-line tools
to query it. We've examined the makeup of a typical query and how we can use
operators to be selective about our data. Finally, we've taken a look at some of the
more practical ways in which we can put the PuppetDB query API to use, and we
have examined how it can be used to increase the visibility of your infrastructure.

In the next chapter, we're going to use some simple Ruby code to create a simple
reporting system, utilizing the features of the PuppetDB API to power it.

http://docs.puppetlabs.com/puppetdb/latest/api/query/v3/version.html
http://docs.puppetlabs.com/puppetdb/latest/api/query/v3/version.html

Writing Custom Reports
with PuppetDB

In the previous chapter, we learned about the PuppetDB query API, what it can
be used for, and how to leverage the power of its built-in query language. In this
chapter, we're going to take that knowledge and use it to create a simple but effective
reporting application written in Ruby. We're going to explore the following topics:

• Creating a skeleton Ruby application
• Connecting to PuppetDB using JSON
• Retrieving facts
• Retrieving events and reports using multiple endpoints

At the end of this chapter, you should be comfortable making use of the PuppetDB
query API in your own applications and understand how to process the JSON output
of the API.

Creating a basic query application
We're going to start with a simple application to explore the PuppetDB API. This will
get us acquainted with the basic tools that we need to access the API and extract data
from it. Open your favorite editor and create a new file called basic_report.rb.

Writing Custom Reports with PuppetDB

[106]

The basic report application is going to be very straightforward and will simply pull
back some basic details about a host using the facts endpoint. This will demonstrate
the basic techniques we're going to use to write a more fully featured application
later on in this chapter.

The code in this chapter has been designed to run against Ruby v1.9 and
above, and it will throw errors if it's run on earlier versions. If you're
using a RedHat-based distribution prior to RedHat Enterprise Linux 7,
then you will almost certainly be running a version of Ruby 1.8. If you
are running one of these operating systems, then I recommend that you
use Ruby Version Manager (https://rvm.io) to install a more recent
version of Ruby to run this code against.

Setting up the basic application
The first thing that we will need to do is include some additional libraries to allow us
to easily parse the data that the PuppetDB API returns. As you will recall from the
previous chapter, the PuppetDB API is a simple JSON feed presented over HTTP;
luckily, Ruby already includes both a library to parse JSON (json) and a library to
connect to an HTTP server (net::HTTP). Finally, we're going to need a library that
will allow us to insert a custom parameter into our HTTP call; this is to allow us to
append a PuppetDB query and is supplied by the URI library (uri).

Let's go ahead and start off our code by adding these libraries:

require 'rubygems'
require 'json'
require 'net/http'
require 'uri'

That's great! We've got all the tools we need to work with PuppetDB right there.
The next thing we need to do is connect to the API and retrieve the response.
First of all, though, we need the user of the application to let us know the node
that they're interested in. We'll grab their response using the gets method and
then use the chomp string function to remove any character returns from the
response, as shown in the following code snippet:

puts 'Please input the FQDN of the node to examine:'
fqdn = gets.chomp

https://rvm.io

Chapter 7

[107]

Connecting to PuppetDB
We now have the tools to access our PuppetDB data and the details of what our user
wants to see. Let's connect to PuppetDB and fetch the data. The first thing we need to
do is construct our Universal Resource Identifier (URI). We're going to keep things
simple and hardcode the address of our Puppet master for the moment, as shown in
the following code snippet:

uri = URI.parse('http://puppetdbhost:8080/v3/facts/')

This creates a variable to hold our URI; note that the URI contains not only the
address of the Puppet master, but also the protocol, port, and path to the particular
endpoint we're interested in.

Now, we need to construct a query to ensure that the data we return is only for the
host that the user is interested in, rather than the default value of all hosts. We do
this by appending a query string to the HTTP request, and this is achieved using the
URI's query function. This essentially allows you to build a simple hash that contains
the name of the query string and the query itself. Let's go ahead and use this to
construct a query that returns just the node that our user has specified. Consider
the following code:

params = {:query => '["=","certname",'+'"'"#{fqdn}" + '"' ']'}
uri.query = URI.encode_www_form(params)

The preceding query is fairly straightforward. The first line creates a variable called
params, which contains our basic query syntax (in this case, an equality operator
on the certname data) and the value of the fqdn variable that the user created by
answering our prompt.

We now have all the data we need to create a connection to PuppetDB and query the
database. All we have to do now is construct the HTTP call itself. Let's go ahead and
do that now. This is shown in the following code snippet:

response = Net::HTTP.get_response(uri)
json = JSON.parse(response.body)

This code calls PuppetDB using the Net::HTTP library and then parses the resulting
JSON response into a Ruby hash ready for us to work with.

Writing Custom Reports with PuppetDB

[108]

Outputting results
Finally, we just need to output the results. We could simply output the results as
a list, but as we're designing this application for nontechnical users, let's go ahead
and make it a bit prettier. There are several Ruby gems that can be used to take the
output and make it a little easier on the eye. In this case, I'm going to use a gem
called command_line_reporter. You can install this gem in the usual manner
using the following command:

gem install command_line_reporter

The next thing we need to do is include it in our application. Edit your list of
included libraries as shown in the following code:

require 'rubygems'
require 'json'
require 'net/http'
require 'uri'
require 'command_line_reporter'
include CommandLineReporter

Once you've done this, you're all ready to create a good-looking report. Let's go
ahead and retrieve our details and then output them using the following code:

table(:border => true) do
 json.each do |fact|
 row do
 column(fact['name'], :width => 20)
 column(fact['value'], :width => 60,
 :align => 'right',
 :padding => 5)
 end
 end
end

In this code, the first thing that we do is use the table method in the command_line_
reporter library to create a table with a border; next, we create a Ruby block using
the contents of the JSON response as the array. As we iterate through the array, we
create a new table row for each piece of data in the array and populate it with the
name and value of the facts returned by PuppetDB.

Chapter 7

[109]

That's all we need for this program. You should have something that looks a little
like the following code:

require "rubygems"
require "json"
require 'net/http'
require 'uri'
require 'command_line_reporter'
include CommandLineReporter

puts 'Please input the FQDN of the node your interested in:'
fqdn = gets.chomp

uri = URI.parse('http://localhost:8080/v3/facts/')URI.parse('http://
localhost:8080/v3/facts/')
params = {:query => '["=", "certname",' + '"' "#{fqdn}" + '"' ']'}
uri.query = URI.encode_www_form(params)

 response = Net::HTTP.get_response(uri)
 json = JSON.parse(response.body)

table(:border => true) do
 json.each do |fact|
 row do
 column(fact['name'], :width => 20)
 column(fact['value'], :width => 60, :align => 'right',
 :padding => 5)
 end
 end
end

Writing Custom Reports with PuppetDB

[110]

Go ahead and run the program. After entering a fully qualified domain name
(FQDN) that matches one of your Puppet client certificates, you should have an
output that looks a little like what's shown in the following screenshot:

This is an excellent, albeit somewhat limited example of what we can do with
the PuppetDB API, and it should give you an idea of how to work with the
data it provides. Now that we are comfortable with the fundamentals of how
to communicate with PuppetDB, we can take a look at something a little more
sophisticated. Let's look at how we can create a relatively simple application that
can give users the ability to query both for hardware details and a summary of
the last Puppet client run.

Chapter 7

[111]

Creating a menu-driven PuppetDB
application
As we're designing this query application for nontechnical users, we want a way
for them to interact with our application without needing to deal with esoteric
command-line options. This is a command-line application; therefore, fancy GUIs
and shiny web applications are right out. Instead, we have to go back to the tried
and tested system of using a menu-driven application. However, first of all, let's
figure out what we want this application to do.

One of the more common scenarios where you might want to offer this type of
application is for anyone who is interested in, works with, or is auditing your
Puppet-managed infrastructure. You might not want them to have full and free
access to your Puppet installation, but at the same time, you want them to be able
to find the information they need to carry out the task at hand. So, the first decision
that we need to make is regarding the information that we give them access to.
For this application, we're going to offer the following information:

• Summary of the last Puppet run
• Hardware specifications of a particular node
• Details of what, if anything, Puppet changed in the last run

This should give our users enough access to the PuppetDB information to allow
them to answer any basic questions they may have.

Setting up the UI
We're going to create the code in discrete chunks, with separate functions for
presenting the menu, collecting the hardware details, and outputting the Puppet
report. This not only helps us keep our code nice and tidy and encourages reuse,
but it also makes it easy to extend our application by simply dropping in new
modules. This is a technique worth using for anything more than a simple
twenty-line application. Many a sensible developer or DevOps engineer has
been reduced to bitter tears of frustration when they are asked to support a five
thousand-line piece of spaghetti coding with no discernible entry points for a
given function.

Writing Custom Reports with PuppetDB

[112]

The first task that we're going to tackle is creating the menu for our user to interact
with. To make this easy, we're going to use a gem called HighLine. HighLine makes
it very simple to construct interactive command-line applications and includes
powerful features such as validation, masked input, and type conversion without
the tedious messing around with the gets() and puts() functions. Using HighLine,
we can quickly and easily create the basic UI our users are going to interact with.
Go ahead and create a new folder called puppetreport; this is where we're going
to place our code. Also, create a file called puppetreport.rb using your favorite
editor. Once you are done, insert the following code in that file:

require 'highline/import'
require 'json'
require 'net/http'
require 'uri'
require 'command_line_reporter'

require_relative 'hwdetails.rb'
require_relative 'rundetails.rb'

@puppetdb = 'http://localhost:8080'

loop do
 choose do |menu|

 menu.choice('Enter Host') do |command|
 @fqdn = ask('Please enter FQDN')
 end

 menu.choice('Hardware Details') do |command|
 if @fqdn then
 get_hw_details
 else
 @fqdn = ask('Please enter FQDN')
 end
 end

 menu.choice('Result of last Puppet Run') do |command|
 if @fqdn then
 get_run_details
 else
 @fqdn = ask('Please enter FQDN')
 end

Chapter 7

[113]

 end

 menu.choice('Exit program.') { exit }
 end
end

This small chunk of code creates the user menu. We're giving the user four actions
to choose from here: to enter the fully qualified domain name of a host to query,
a hardware listing for that host, details of the Puppet run, and finally, a way to
exit the program.

You will recognize the first five lines as code to include the libraries that we require
to interact with PuppetDB, parse its response, and create a nice-looking output using
the command_line_reporter library. We also have a newcomer in the shape of the
highline/import library requirement; this is used to include the HighLine library
into our application. You'll notice almost straightaway that the puppetreport.rb
file doesn't make use of any of the libraries, except for the highline/import library.
As you can see after the library require statements, we're also requesting two more
Ruby files, which are hwdetails.rb and rundetails.rb. These two files will be
created next and will contain the code that will make use of the other libraries.
We're going to cover these files in later sections, but for the moment, let's explore
the code that creates our user interface.

After the library require statements, we set our one and only option. This is
described in the following line of code:

@puppetdb = 'http://localhost:8080'

To keep the application simple, I've left this as a hardcoded variable, but it would
be easy enough to read this from a file. Note the @ symbol; in Ruby, this denotes an
instance variable. An instance variable is scope confined to the owning object; in this
case, this is our application. If this were defined as a local variable (a variable that
begins with a lowercase letter or the _ character), then it would be inaccessible from
our new functions.

Now to the menu! Firstly, we want to make sure that when users launch the
application, they don't just choose one option and have the application closed after
finishing the output. Even with the various command recall functions in the bash
shell, this is going to get old very quickly. Instead, we use a loop to ensure that the
user is returned to the menu after each interaction. We then create a Ruby block to
iterate through our menu choices. This is described in the following code snippet:

loop do
 choose do |menu|

 menu.choice('Enter Host') do |command|

Writing Custom Reports with PuppetDB

[114]

 @fqdn = ask('Please enter FQDN')
 end

As you can see, the choice function allows you to enter the text to be presented to
the user and then the command that you want to run. In the case of the first option,
this is a simple prompt for the user to enter the fully qualified domain name of the
host they are interested in, and the next three menu choices are much the same.
This is described in the following code snippet:

 menu.choice('Enter Host') do |command|
 @fqdn = ask('Please enter FQDN')
 end

 menu.choice('Hardware Details') do |command|
 if @fqdn then
 get_hw_details
 else
 @fqdn = ask('Please enter FQDN')
 end
 end

 menu.choice('Result of last Puppet Run') do |command|
 if @fqdn then
 get_run_details
 else
 @fqdn = ask('Please enter FQDN')
 end
 end

 menu.choice('Exit program.') { exit }
 end

Each of the choices resemble the first choice in terms of their overall structure;
however, in the case of the hardware details and details of the Puppet run, we're
also applying a little bit of logic to ensure that if users have skipped over entering
a host, we prompt them so that an FQDN is entered. Note the two function calls:
get_hw_details and get_run_details. These are the two methods that we're
about to create to allow us to pull data from PuppetDB. Let's start with the simpler
of the two, the facts lookup.

Chapter 7

[115]

Querying PuppetDB's facts endpoint
The first function that we're going to create is going to go to PuppetDB, which is
configured in the puppetreport.rb file, and interrogate the facts endpoint for
information about the user-specified host. We're then going to make use of the
command_line_reporter library to ensure that the output is easily readable to
our users. Go ahead and create a new file in the puppetreport directory called
hwdetails.rb, and open it with your favorite editor.

The first few lines of our application deal with creating our new method, setting
out what URLs to query, and then connecting to PuppetDB and fetching a response.
Take a look at the following code snippet:

def get_hw_details

 include CommandLineReporter

 uri = URI.parse("#{@puppetdb}/v3/facts/")
 params = {:query => '["=", "certname",' + '"' "#{@fqdn}" + '"' ']'}
 uri.query = URI.encode_www_form(params)

 begin
 response = Net::HTTP.get_response(uri)
 rescue StandardError
 puts 'PuppetDB is currently unavailable'
 exit
 end

 json = JSON.parse(response.body)

The first line creates our method in the usual manner using the def keyword. Next,
we include our CommandLineReporter library so that it's ready for use, and then
we go into the connectivity activities. Firstly, we create a variable called uri to hold
our PuppetDB connection details; this is constructed using the instance variable we
defined in the puppetreport.rb file and points at v3 of the facts endpoint. Next,
we construct our query and assign it to the params variable; note again the string
interpolation that inserts the FQDN of the client based on the input that the user
provided when entering the application. Finally, we call the uri.query method
to take the params variable and encode it as an HTTP query string.

Writing Custom Reports with PuppetDB

[116]

That's all the ground work for the PuppetDB connection out of the way; all that's
required now is to attempt the connection using the Net::HTTP library. As you can
see, I've wrapped this in a begin and rescue construct. This application is aimed at
nontechnical or semi-technical users, so we want to try and make the application fail
gracefully. In this case, we are rescuing anything that arrives via StandardError;
this should cover pretty much any issues that the Net::HTTP library will encounter
and will give the users an error message to inform them that PuppetDB is not
currently available. We then exit the application, as it's of extremely limited use
if there is no PuppetDB to supply it with data.

Outputting the hardware report
Assuming that all went well and we were able to connect to PuppetDB, our response
variable should now have the response from PuppetDB's facts endpoint in the JSON
format. As parsing JSON by hand is incredibly dull, we're going to make use of the
JSON library to do the heavy lifting for us. We're assigning the output of the JSON.
parse method to a variable called json, and this should give us a nicely formatted
array of JSON data to process in the next step.

Now that we have the data, we need to process it. By default, the facts endpoint
returns the data in a JSON object, and this contains a list of key values made up of
fact names. The outputted JSON file in v3 of the Puppet API looks like the following
code snippet:

{"name": "<node>",
 "facts": {
 "<fact name>": "<fact value>",
 "<fact name>": "<fact value>",
 ...
 }
}

There are several different techniques you could use to work with this data, but in
this case, we're going to create a new instance variable called @facts and then use
a simple Ruby block to iterate over our data and insert it into our newly created
hash. This is described in the following code snippet:

json = JSON.parse(response.body)
@facts = Hash.new

json.each do |fact|
 @facts[fact['name']] = fact['value']
end

Chapter 7

[117]

As you can see from the preceding example, you only need a little code to extract data
from the PuppetDB API. Let's go ahead and output the data for our user; remember,
we're going to use the CommandLineReporter library to make the output easy to read.
For this application, we're going to give the user three different sections of data about
the hardware, a section of summary facts (memory, CPU details, and so on), a section
on the BIOS details, and finally, some details about the main board. We'll present these
details as three separate tables to make them easier to read. Add the following code to
the hwdetails.rb file:

system "clear" or system "cls"
 header :title => "Hardware report for #{@fqdn}", :width => 80,
 :align => 'center', :rule => true, :color => 'green', :bold =>
 true, :timestamp => true

 table(:border => true) do
 row do
 column('manufacturer', :width => 30)
 column("#{@facts["manufacturer"]}", :width => 40)
 end
 row do
 column('productname', :width => 30)
 column("#{@facts["productname"]}", :width => 40)
 end
 row do
 column('Number of processors', :width => 30)
 column("#{@facts["physicalprocessorcount"]}", :width => 40)
 end
 row do
 column('Memory', :width => 30)
 column("#{@facts["memorysize"]}", :width => 40)
 end
 row do
 column('architecture', :width => 30)
 column("#{@facts["architecture"]}", :width => 40)
 end
 row do
 column('Virtualized?', :width => 30)
 column("#{@facts["is_virtual"]}", :width => 40)
 end

 end

Writing Custom Reports with PuppetDB

[118]

The first line of the code is used to call out the clear command on the system; this
is essentially the same as typing clear or cls on the command line and ensures
that our users will not have any clutter on their screen to distract them. Next, we
output a header to remind the users what the report is about. As you can see in this
code, the header method of the command_line_reporter library accepts a broad
range of options to allow you to style it, and in our case, we've asked for it to be 80
characters wide, aligned to the center of the screen with green underlined text, with a
timestamp of when the command was issued. It'll look something like what is shown
in the following screenshot:

Once we've shown the user the header, we go right ahead and create our first table.
This table is going to be used to contain the general hardware details, but rather than
simply spewing out all of the data that the facts endpoint produces, we're going
to be selective and give our users details that are relevant to the query. In this case,
we're going to show them the following details:

• The manufacturer
• The product name
• The number of processors
• The memory size
• The processor architecture
• The virtual machine flag

As you can see in the preceding code, we define the data by row, and within each
row, we specify a number of columns. Our first column is a simple text label with
a width of 30 characters. The next column contains the data to match that label
and is taken from the hash we created and populated with the data from the facts
endpoint. This is described in the following code snippet:

 row do
 column('manufacturer', :width => 30)
 column("#{@facts["manufacturer"]}", :width => 40)
 end

Let's go ahead and add the rest of our details. This is described in the following code:

 row do
 column('productname', :width => 30)

Chapter 7

[119]

 column("#{@facts["productname"]}", :width => 40)
 end

 row do
 column('Number of processors', :width => 30)
 column("#{@facts["physicalprocessorcount"]}", :width => 40)
 end
 row do
 column('Memory', :width => 30)
 column("#{@facts["memorysize"]}", :width => 40)
 end
 row do
 column('architecture', :width => 30)
 column("#{@facts["architecture"]}", :width => 40)
 end
 row do
 column('Virtualized?', :width => 30)
 column("#{@facts["is_virtual"]}", :width => 40)
 end

This is a good start for our hardware report, and if you were to run this code now,
you'd be able to retrieve some relevant data. We have got a few more pieces of
information that will be of interest to the user, though, such as the BIOS details
and motherboard details; this, in particular, is a good piece of data to output as it
has the serial number on it. We want to keep the output easy to read, though, so the
first thing we do is put a thin line underneath the previous output to denote that
we're moving onto a different set of data. This is described in the following code:

horizontal_rule :width => 70, :color => 'red'
vertical_spacing 1
header :title => 'Bios Details'

Again, we have several formatting options, but we're going to keep it simple
and understated, and simply put a red line across the screen and add a header
underneath. Now, we simply have to add the rest of our data. This is described
in the following code:

 table(:border => true) do
 row do
 column('Bios release date', :width => 30)
 column("#{@facts["bios_release_date"]}", :width => 40)
 end
 row do
 column('Bios Vendor', :width => 30)
 column("#{@facts["bios_vendor"]}", :width => 40)

Writing Custom Reports with PuppetDB

[120]

 end
 row do
 column('Bios Version', :width => 30)
 column("#{@facts["bios_version"]}", :width => 40)
 end
 end

horizontal_rule :width => 70, :color => 'red'
vertical_spacing 1
header :title => 'Motherboard Details'

 table(:border => true) do
 row do
 column('Motherboard Manufacturer', :width => 30)
 column("#{@facts["boardmanufacturer"]}", :width => 40)
 end
 row do
 column('Motherboard Name', :width => 30)
 column("#{@facts["boardproductname"]}", :width => 40)
 end
 row do
 column('Motherboard Serial number', :width => 30)
 column("#{@facts["boardserialnumber"]}", :width => 40)
 end
 end

end

Fantastic! We now have a simple but very effective tool to query hardware data held
in PuppetDB. We could leave it there, but one of the questions that I find is asked
quite often by clients with Puppet-managed nodes is, "What has Puppet done to
my server?" This is a fair question, so let's give our users a way to query it.

Querying PuppetDB for report information
Essentially, we're going to use the same techniques that we learned in the previous
examples, but the way we process the data is going to change. One thing you'll
almost immediately notice is that each endpoint has its own particular format;
although they all return JSON output, sometimes, it's a JSON array, other times, a
flat JSON document, and so on. When working with PuppetDB, it's worth reviewing
the documentation for the endpoints, as it contains an excellent rundown of what to
expect. Again, you can find the documentation at https://docs.puppetlabs.com/
puppetdb/latest/.

https://docs.puppetlabs.com/puppetdb/latest/
https://docs.puppetlabs.com/puppetdb/latest/

Chapter 7

[121]

One tool that can be enormously helpful when exploring data such
as the PuppetDB API is the pp library that ships with Ruby. The pp
library is the pretty printer for Ruby and will take data such as JSON
and output it in a reasonably clear way. This can be a real help if you
are not sure how or what data is going to be returned. If you get stuck,
remember that you can use the puts <variable> class to discover if
you've been passed an array, hash, or some other data type.

The get_run_details method is going to be slightly more complex than the
previous method we created. This is because we are going to blend the information
from three different endpoints to generate this report. These are the reports
endpoint, event-counts endpoint, and finally, the events endpoint. This allows
us to do several things. First and most importantly, it allows us to find the hash of
the last Puppet report; this is vital as it's the connection between the report and the
events. It also allows us to quickly count how many event types we had without
resorting to manually counting them ourselves, and finally, it gives us the details
of what happened to the node when Puppet was run on it last time. When we're
finished, it's going to look like the following screenshot:

Writing Custom Reports with PuppetDB

[122]

Creating the PuppetDB query method
Let's start by creating a file for our new method. Remember, it's generally tidier to
split large pieces of code into their own file, as this keeps the application tidy and
makes it more obvious where you can find the functionality. Create a new file in the
puppetreport directory, called rundetails.rb, and open it up in your editor. We're
going to start in the usual way and define the name of our method using the def
keyword and then connect to each of our endpoints and retrieve our details. First
up, we have the reports endpoint. Consider the following code:

def get_run_details

 include CommandLineReporter

 reporturi = URI.parse("#{@puppetdb}/v3/reports/")
 reportparams = {:query => '["=", "certname",' + '"' "#{@fqdn}" +
 '"' ']'}
 reporturi.query = URI.encode_www_form(reportparams)

 reportresponse = Net::HTTP.get_response(reporturi)
 reportjson = JSON.parse(reportresponse.body)
 report = reportjson.last

As you can see, this looks very similar to the way we connected to the facts endpoint,
and again, we are taking the instance variable that contains the PuppetDB location
and are using it to construct our URL. We're then constructing a PuppetDB query
based around the FQDN that the users have given as input when they launched
the application; the main thing to note in this code is the use of the .last method
when we assign the value of the retrieved JSON file. This report is specifically for
the last report that Puppet ran; we don't need any others. As the reports endpoint
is returning an array of reports, we can use the .last method to simply retrieve the
last one without needing to mess around iterating through the array ourselves.

Fetching the event counts
Now that we have the report summary, we need to go and get our event counts; this
is exactly what the event-counts endpoint was designed for, to save calculating the
count ourselves. We connect to this endpoint and retrieve the data in much the same
way as the other endpoints. This is described in the following code:

ecounturi = URI.parse("#{@puppetdb}/v3/event-counts")
ecountparams = {'query' => '["=", "report",' + '"'
 "#{report["hash"]}" + '"' ']', 'summarize-by' => "certname"}

Chapter 7

[123]

ecounturi.query = URI.encode_www_form(ecountparams)

ecountresponse = Net::HTTP.get_response(ecounturi)
ecountjson = JSON.parse(ecountresponse.body).first

There are two things to note in this chunk of code. Firstly, take a look at the query
we're constructing. This time, rather than using the FQDN that the user has given as
input, we're taking the value of the hash field from the Puppet report we assigned
to the report variable. The hash is our key to get to any event data generated by
Puppet and ensures that you're only looking at data for that particular Puppet
run. The second thing to note is the use of the .first method when accessing the
data. The event-counts endpoint returns an array of hashes; however, in our case,
because we are asking for a specific hash, we should only ever return an array with
a single member. Using the .first method is a nice and simple shorthand to return
that single piece of data without needing to work with the array ourselves.

The final piece of information we need to retrieve is the events themselves. Again,
we're going to construct our connection details, connect to PuppetDB, and use a
query that contains the report hash to retrieve the data we're interested in. This is
described in the following query:

eventsuri = URI.parse("#{@puppetdb}/v3/events")
eventsparams = {'query' => '["=", "report",' + '"' "#{report["hash"]}"
+ '"' ']'}
eventsuri.query = URI.encode_www_form(eventsparams)

eventsresponse = Net::HTTP.get_response(eventsuri)
eventsjson = JSON.parse(eventsresponse.body)

Presenting the events data
The events endpoint returns its data in the form of an array of events. We need
the whole of the array, so we'll process them at the output time rather than doing
anything here. Now that we have our data, we can go ahead and output it. Again,
we're going to use tables to output the data to make it easily readable. Let's start by
giving our user a summary of the report data. Consider the following code:

system 'clear'

header :title => "Puppet run report for #{@fqdn}", :width => 80,
 :align => 'center', :rule => true, :color => 'green', :bold =>
 true, :timestamp => true

 table(:border => true) do

Writing Custom Reports with PuppetDB

[124]

 row do
 column('Failures', :width => 10)
 column('Successes', :width => 10)
 column('Noops', :width => 10)
 column('Skips', :width => 10)
 end

 row do
 column("#{ecountjson["failures"]}", :width => 10)
 column("#{ecountjson["successes"]}", :width => 10)
 column("#{ecountjson["noops"]}", :width => 10)
 column("#{ecountjson["skips"]}", :width => 10)
 end

 end

We start by clearing the screen. When producing applications that report on the
command line, it's pretty essential that we do this; otherwise, the screen soon becomes
cluttered and unreadable. Next, we're outputting a header to let the user know which
host this report was generated from, and we're also applying some formatting to make
it stand out. We then take the data that we've created and output it into a table.

The table format is slightly different this time around, and that's because rather than
having the data alongside the heading, I've used the more traditional columnar data
format. It's a little more readable for this kind of data. We're using keys to access
the hash data that was retrieved from the event-counts endpoint. When you are
looking at a host, one of the first things that we should check is how many resources
were applied and likewise, how many failed.

If you're an experienced coder, then you might have noticed a way to
improve this application. As we already have the event data, we could
potentially gather our event counts while gathering the events rather
than going to the event-counts endpoint. This would work for
this application, but it's worth knowing how to use it for applications
where it would be more efficient to use the event-counts endpoint.
Certainly, if you are not gathering event data, you would have to go
back to the event-counts endpoint for this data.

Now that we've got the counts of the events, let's move on and let our user see what
actions those events performed. Again, we're going to add a subheader to mark out
the new section, and we're then going to use the data we gathered from the events
endpoint to add the data. This is described in the following code:

horizontal_rule :width => 70, :color => 'red'
vertical_spacing 1

Chapter 7

[125]

header :title => 'Event Details'

 table(:border => true) do
 eventsjson.each do |event|

 row do
 column('Resource Title', :width => 20)
 column(event['resource-title'], :width => 60)
 end

 row do
 column('Resource Type', :width => 20)
 column(event['resource-type'], :width => 60)
 end

 row do
 column('Property', :width => 20)
 column(event['property'], :width => 60)
 end

 row do
 column('Old Value', :width => 20)
 column(event['old-value'], :width => 60)
 end

 row do
 column('New Value', :width => 20)
 column(event['new-value'], :width => 60)
 end

 row do
 column('Status', :width => 20)
 column(event['status'], :width => 60)
 end

 row do
 column('Event Date and Time', :width => 20)
 column(event['timestamp'], :width => 60)
 end

 row do
 column('Message', :width => 20)
 column(event['message'], :width => 60)

Writing Custom Reports with PuppetDB

[126]

 end

 row do
 column('', :width => 80)
 end

 end
 end
end

This should be fairly familiar to you by now. Again, we've used the horizontal_rule
method to output a nicely formatted section break, and we're also creating a new table.
We are then using a Ruby block to iterate through the array of data contained in the
JSON response from the events endpoint. Each iteration takes the next piece of data
and feeds it into a hash called event, and this then allows us to output the data using
its hash key. Again, we're being selective; although there is more data available, we're
focusing on the data that is relevant to this report rather than outputting it all.

Testing our application
We now have a small yet very functional reporting application that uses PuppetDB
as its data source. Let's go ahead and run it by opening a shell in our puppetreport
directory and running the following command:

rubypuppetreport.rb

You should be presented with a menu, as shown in the following screenshot:

Chapter 7

[127]

Let's go ahead and add our host, either by selecting the first option or by selecting
another option and being prompted to enter a host. Next, let's take a look at its
hardware details; you should have a report that looks something like what is shown
in the following screenshot:

Writing Custom Reports with PuppetDB

[128]

That looks rather splendid! Finally, let's take a look at the changes that Puppet did to
this server during the last Puppet run by selecting the third option. This can be seen
in the following screenshot:

We can now hand this on to our users and let them merrily query PuppetDB without
needing to mess around with the curl statements or constructing complex queries.

As you can see, working with the PuppetDB data is relatively straightforward, and
although the application we created in this chapter is extremely simple, it exposes
a surprising amount of data, and this is just scratching the surface. By exploring
the data available within PuppetDB, you can easily use Ruby, Python, Java, or
any other programming language to create rich portals into this information. As
long as you can parse the JSON output, you have access to a wealth of detail about
your infrastructure. It's well worth playing around and extending this code, both
to increase the utility of the application and also as a way to explore the data. For
example, adding in another function that creates a summary of all your managed
files would be reasonably simple using the catalogs endpoint.

Chapter 7

[129]

Summary
We've covered a lot of ground in this chapter and worked on some exciting and very
useful techniques to work with PuppetDB. In this chapter, we've taken a look at how
we can create a simple Ruby application to extract details of the hardware, reports,
and events from PuppetDB and used some freely available libraries to ensure that
our output looks elegant and readable. By creating this application, we've learned
that although PuppetDB returns JSON as its format, the actual layout of the JSON
feed may vary, and we've looked at various ways in which we can work with some
of that data.

In the next chapter, we will look at ways to create our own custom dashboard to
present PuppetDB data in an easy-to-use and attractive form using freely available
open source software.

Creating Your Own
Custom Dashboard

Over the past few chapters, we've looked at the many ways in which you can both
gather and present data from Puppet. We have also created custom alerts and
applications for our users to gather their own information with. But we're still reliant
on the dashboards that we looked at in Chapter 2, Viewing Data in Dashboards. That's
not to say that they aren't any good, but the trouble with a pre-made solution is that
it might not do exactly what you'd like.

In this chapter, we're going to create our own dashboard using PuppetDB as the data
source and combine it with an open source framework for creating dashboards called
Dashing. We're going to learn the following topics:

• What Dashing is and what it can be used for
• How to create Dashing jobs
• How to integrate PuppetDB data into Dashing
• How to make Dashing react to data

At the end of this chapter, you should have a functional and good-looking dashboard
that quickly imparts some key facts to anyone who happens to be glancing at it.

Exploring Dashing
Dashing is a framework for creating reporting dashboards quickly, easily, and
with minimal understanding of frontend development. Under the hood, it uses the
Sinatra framework to deal with the servicing of incoming web requests and uses
Ruby for backend data processing, with a language called CoffeeScript dealing with
the frontend.

Creating Your Own Custom Dashboard

[132]

Sinatra is a framework for creating web applications in Ruby and is
similar to the well-known Ruby on Rails project. Unlike the more
fully-featured Ruby on Rails, Sinatra focuses on providing a very
lightweight framework that allows you to use mostly plain old Ruby to
develop your application; this is in contrast to Ruby on Rails, which also
provides a more rigid framework but a far more extensive set of features.

You can download Dashing from http://shopify.github.io/dashing/. At
present, it hasn't got an extensive set of documentation, but you can find some good
additional details on the project's wiki page at https://github.com/Shopify/
dashing/wiki. As you'll see later in this chapter, it ships with some example
dashboards that you can examine for more clues as to how it works.

Dashing has been released as an open source product by the developers behind
Shopify (http://www.shopify.com), and it is part of a growing trend of companies
allowing developers to create and release software that are not core products as open
source. Other companies such as Etsy and Netflix have also opened up some of their
internally-used software as open source products, and from the perspective of the
DevOps community at large, this is a fantastic addition to the community.

Dashing uses the idea of widgets to display data, with each widget potentially
showing a different dataset in a different way. Dashing ships with a number of pre-
made widgets that can deal with anything from text presentation to building graphs,
and a fair bit besides. Dashing has adopted a visual style similar to Microsoft's
Windows 8 tiles, and the simple and flat look allows data to be easily digested and
understood. Take a look at the following example dashboard:

http://shopify.github.io/dashing/
https://github.com/Shopify/dashing/wiki
https://github.com/Shopify/dashing/wiki
http://www.shopify.com

Chapter 8

[133]

You can check out this dashboard at http://dashingdemo.herokuapp.com/sample.
The first thing that you will notice if you open it in a browser is that it immediately
draws the eye with motion, as several of the widgets update and reflect changes by
either moving the swing meter around or pushing the graph along. This is more than
just a static display of data, and Dashing makes understated effects such as the dial
sweep and graph animation very simple to implement.

So how does Dashing fit with Puppet? As it turns out, very well. There is a huge
amount of data generated by Puppet, and although the dashboards that are freely
available are excellent, they are also focused on in-depth data exploration rather
than reading the status at a glance. Puppet Dashboard, Puppet Enterprise Console,
and The Foreman are all geared to be used as External Node Classifiers (ENC),
and so the GUI is set for not only interacting with data, but also for acting on it.
PuppetBoard is used for reporting, but is focused on exploration of data; you can
spend many happy hours drilling into nodes to find out the many details that
Puppet Dashboard contains, but you can't really glance at it and see the state of
your infrastructure.

Using Dashing, we are able to produce a dashboard that provides non-Puppet-
focused users, such as developers or support personnel, a window into what Puppet
is doing at any given time, and it gives them the ability to very quickly see the data
that's important to them. When we're done, our dashboard is going to look as shown
in the following screenshot:

http://dashingdemo.herokuapp.com/sample

Creating Your Own Custom Dashboard

[134]

As you can see, we're presenting some basic but important facts about what Puppet
has changed, and we're also adding in some fun statistics, such as the number of
managed resources and the last host that applied changes. That's a lot of information
in a single screen, and it's all formatted so you can take it all in at a glance.

Setting up Dashing
Dashing is very simple to install and keep updated using the RubyGems package
management system. To install Dashing, simply follow these steps:

1. Enter the following command in your command prompt:
gem install dashing

2. Once it's installed, we can go straight ahead and create our dashboard.
Dashing has a built-in function to create a skeleton application for us to work
with and will also give you some example code to look at. Navigate to your
projects folder and issue the following command:
dashing new puppetdash

3. After running the command, you should have a new directory called
puppetdash, which contains your new skeleton application. We now only have
to complete one more step, which is to instruct the Bundler package manager
to download and install the required libraries for Bundler. Ensure that you're
in the root of your new project and then issue the following command:
bundle install

This command looks inside the gem file that was created along with the rest of
the project and will then use the Bundler package manager to install any missing
libraries that Dashing requires. Be warned: Dashing has quite an extensive set of
requirements, so expect to see quite a few additional gems installed.

Exploring the default puppetdash directory
layout
Let's change directories and go to the puppetdash directory and look at what
files have been created for us. You should find a directory listing as shown in the
following screenshot:

Chapter 8

[135]

Each of the directories inside the Dashing application serve a particular purpose, so
let's quickly run through them and see what they are:

• widgets: This directory holds the Dashing widget code. Widgets are
made up of directories containing CoffeeScript, HTML, and Syntactically
Awesome Style Sheets (SASS) style sheets. This is where you would create
any new widgets or place any of the third-party widgets that are available.

• public: This folder is a standard Sinatra folder and is used to host any static
files. Within Dashing, this is used for the "404 page not found" HTML and
browser favicon.

• lib: This is another standard Sinatra folder. At the time of writing, Dashing
isn't using this, but this is generally where external libraries required for the
application will be stored. If you heavily customize Dashing, you might find
that you will need to use this in the future.

• jobs: This folder is where we are going to be spending most of our time in
this chapter. Jobs are the mechanism that Dashing uses to import data into
its various dashboards, and these are simple pieces of Ruby code that fetch
information and use the send_event function to send the data to a receiving
widget (or set of widgets).

• assets: This folder is used to contain the various images, JavaScript codes, and
fonts that Dashing uses. It's here that you will find the core JavaScript libraries
that Dashing uses to construct its grid layout, animation, and basic styling.

• dashboards: The dashboards folder is where the files that make up the
actual dashboards are stored. Dashboards are created using the embedded
Ruby templating language (ERB) to define the layout. We'll look at this in a
bit more detail when we create our own dashboard.

Creating Your Own Custom Dashboard

[136]

Running Dashing
Now that we know where everything is kept, let's go ahead and start Dashing and
see how it looks in its default shipping state. Open a new terminal session at the root
of the puppetdash folder and issue the following command:

dashing start

This will start the Dashing application and have it listen on the local host, port 3030.
Open your browser and go to http://localhost:3030. You should be greeted with
a page that looks like the following screenshot:

That's looking pretty good, and it proves that your installation is working fine. We're
now ready to start creating our own dashboards and populating them with data.

Creating our dashboard
The first step to creating our own dashboard is to create our own layout of widgets to
represent our data. We want to ensure that our prospective users have enough data
to tell them how Puppet is doing in general, but we also don't want to overload them
with data. We're going to introduce the following items onto our dashboard:

• Number of hosts that have changed in the past 30 minutes
• Number of hosts with pending changes in the past 30 minutes

Chapter 8

[137]

• Number of hosts that failed a resource in the past 30 minutes
• List of nodes that have failed their Puppet run
• Number of hosts Puppet is managing at this point in time
• The total number of managed resources
• The average number of managed resources per node

These details give our users a good amount of information without overloading
them with extraneous detail; they should be able to very quickly see if everything
is running fine. And if there are issues, such as a large amount of changed or failed
hosts, they should be immediately apparent at a glance.

Creating our dashboard layout
Let's go ahead and create our dashboard layout. Navigate to the dashboards
directory within the puppetdash project and create a new file called puppet.erb.
By default, Dashing will load the example dashboard as its default dashboard, and
unless you change the default dashboard, you are going to have to type the path to
your dashboard each time. Typing is tedious, and defaults are much more fun; let's
go ahead and change the setting to make our new layout the default dashboard.
Open the puppetdash/config.ru file in your favorite editor and locate the
following lines of code within it:

configure do
set :auth_token, 'YOUR_AUTH_TOKEN'

Now, edit this code so that it looks as follows:

configure do
set :auth_token, 'YOUR_AUTH_TOKEN'
set :default_dashboard, 'puppet'

Go ahead and start your dashboard using the dashing start command. Now, you
should find that it loads a blank dashboard on startup, as there is nothing in the
dashboards/puppet.erb file for it to display. Let's go ahead and amend that; open
the puppet.erb file in your editor and insert the following code:

<% content_for :title do %>Puppet Stats<% end %>
<div class="gridster">

 <li data-row="1" data-col="1" data-sizex="1" data-sizey="1">
 <div data-id="pupchanged" data-view="Number" data-
 title="Changed" style="background-color:#96bf48"></div>

Creating Your Own Custom Dashboard

[138]

 <li data-row="1" data-col="1" data-sizex="1" data-sizey="1">
 <div data-id="puppending" data-view="Number" data-
 title="Pending" ></div>

 <li data-row="1" data-col="1" data-sizex="1" data-sizey="1">
 <div data-id="pupfailed" data-view="Number" data-
 title="Failed" class="status-danger"></div>

 <li data-row="1" data-col="1" data-sizex="1" data-sizey="2">
 <div data-id="failedhosts" data-view="Text" data-
 title="Failed Hosts"></div>

 <li data-row="1" data-col="1" data-sizex="1" data-sizey="1">
 <div data-id="manhosts" data-view="Number" data-
 title="Managed hosts" style="background-
 color:#737373"></div>

 <li data-row="1" data-col="1" data-sizex="1" data-sizey="1">
 <div data-id="manresources" data-view="Number" data-
 title="Managed Resources" style="background-
 color:#737373"></div>

 <li data-row="1" data-col="1" data-sizex="1" data-sizey="1">
 <div data-id="avgresources" data-view="Number" data-
 title="Average Resources Per node" style="background-
 color:#737373"></div>

</div>

This is essentially a simple HTML code that lays out a series of list items within
an unordered list. Each of these items represents an individual widget. Let's look
in a little more detail at how one of our widgets is defined. Consider the following
code snippet:

<li data-row="1" data-col="1" data-sizex="1" data-sizey="1">
 <div data-id="pupchanged" data-view="Number" data-
 title="Changed" style="background-color:#96bf48"></div>

Chapter 8

[139]

Widget definitions are made up of several options. The universally supported
options are the following:

• data-row and data-col: These two tags are used to define the widget's
starting position on the grid, and are simply expressed as Cartesian
coordinates. Note that this is the starting position; Dashing supports drag
and drop rearrangement, so don't be surprised if you wander past the TV
you are displaying your dashboard on to find it looks different!

• data-id: This tag is used to subscribe a widget to a particular Dashing
job; in our case, we're subscribed to the pupchanged job. So, every time
that job sends updated information, it will be updated in any widget that
is subscribed to it via the data-id tag. You can have multiple widgets
subscribed to the same job, which is excellent for jobs (akin to the PuppetDB
scan that we have). You want to keep down the number of times you
perform heavy queries to data sources wherever possible.

• data-view: This tag defines the type of widget. It may be a number, text, list,
and so on. By default, Dashing ships with several different widgets, and you
can find these in the widgets directory of your Dashing application. The tag
needs to match the directory name of your chosen widget in that directory.

• data-title: This tag defines the heading that will be shown on the widget
and can be a free-form piece of text of your choice.

• Additional tags: As you can see, I've added several additional tags to some of
the widgets; this is to style the color of the tiles. Generally speaking, you can
use most of the common CSS tags to apply styling to the tiles, but be careful
with any tags that affect the positioning or layout, as these can have severely
weird effects on the grid.

Go ahead and save this file and then refresh your browser. You should have a
dashboard that looks like the following screenshot:

Creating Your Own Custom Dashboard

[140]

As you can see, the dashboard is using color to great effect to delineate the different
data types. Note that in the dashboard, the Failed tile is gently pulsating. This is due
to the class="status-danger" class that we set for this widget within the layout;
this causes the tile to gently pulsate and will focus user attention on it. There is also
an additional class called class="status-warning" that causes the tile to turn a
rather alarming shade of red as well as pulsate. This can be used to great effect if
you have something you really urgently need a user to notice.

At present, the dashboard looks nice, but it isn't especially useful. Let's go ahead and
start creating the jobs that are going to feed data into our dashboard.

Feeding data into Dashing
As we've already covered, Dashing uses a series of scheduled jobs written in Ruby
that will collect any data that we are interested in. A library called rufus-scheduler
controls the scheduling; the rufus-scheduler library allows for great flexibility as
to when and how jobs are run, meaning that you could have a lightweight job that
scrapes data from a public API and runs every five seconds, and another job that will
run every 30 minutes and perform a heavy query on a database.

We're going to create a single job called puppet.rb, and this Ruby code is going to
perform the following actions:

• Gather metrics using PuppetDB's metrics endpoint
• Gather a list of nodes using PuppetDB's nodes endpoint
• Use the nodes gathered to gather counts for events that have occurred in the

past 30 minutes using PuppetDB's event-counts endpoint
• Parse the events data to display the state of our hosts

As you can see, we're taking the knowledge that we've gained with PuppetDB over
the past two chapters and putting it to good use.

Firstly, let's clear out the jobs that ship with Dashing. These are used to populate
the demo dashboards and aren't going to be used by us. However, they will still
run. Any Ruby file within the jobs directory will be executed, and although it won't
affect our dashboard directly, it will output warnings about the Twitter job into the
console when you run the dashboard. Let's avoid confusion and save a tiny amount
of resources by getting rid of those now by simply deleting every .rb file within the
jobs directory. You can do this by executing the following command in the root of
your Dashing project:

rm jobs/*.rb

Chapter 8

[141]

Creating new jobs in Dashing
Now that we have a nice and clean jobs directory, let's create a new job. We can use
a utility built into Dashing to build a skeleton job for us. At the command prompt,
change your current directory to the puppetdash project root and issue the
following command:

dashing generate job puppet

This will create a new file called puppet.rb and place it in the jobs directory of our
dashboard. Open up the file and take a look. It has the following code:

:first_in sets how long it takes before the job is first run. In
this case, it is run immediately
SCHEDULER.every '1m', :first_in => 0 do |job|
send_event('widget_id', { })
end

As you can see, we have the beginnings of our job. The layout is very simple; the first
line after the comment sets how often this job will run using the every method of the
rufus-scheduler library. We also ensure that this job will run as soon as we start
the dashboard using the :first_in option; this is essentially a numerical value in
seconds that the scheduler will wait before running the first job. Setting it to zero will
ensure that the job runs straight away. This is a useful option if you need to ensure
that some of your jobs are staggered to avoid excess load on external systems.

Next, we create a Ruby block called job that will contain the actual code that will
gather and send data. Essentially, this is a loop with code being executed every n
units, where n could be seconds, minutes, hours, or days, depending on the call
to the SCHEDULER.every method. As you can see, the default value is every one
minute, but by setting the option to 1s, it would run every second, and setting it to
1h would ensure it runs every hour. You can find out more about which time formats
the rufus-scheduler library understands by visiting the project page at http://
rufus.rubyforge.org/rufus-scheduler/.

Let's go ahead and edit this code to suit our purposes. The first thing we're going
to do is include the libraries that we will need to work with our data; these are old
friends we've already worked with when using PuppetDB and should be familiar at
this point. We're also going to set our job to run every 30 seconds; we're going to be
hitting PuppetDB reasonably hard, so we don't want to be too heavy handed, and
this type of data doesn't need to be in real time. Have a look at the following code:

require 'json'
require 'net/http'
require 'uri'

http://rufus.rubyforge.org/rufus-scheduler/
http://rufus.rubyforge.org/rufus-scheduler/

Creating Your Own Custom Dashboard

[142]

:first_in sets how long it takes before the job is first run. In
 this case, it is run immediately
SCHEDULER.every '30s', :first_in => 0, allow_overlapping: false do

It's worth noting the additional option I've added to the scheduler; that is, the
allow_overlapping: false option. This ensures that this job won't run until all
previous iterations of this job have completed. This ensures that if PuppetDB takes
longer than 30 seconds to respond, we don't add to its woes by sending yet another
set of queries for it to deal with.

Now that we have our job schedule defined, it's time to move on and start gathering
data. Firstly, let's define some variables to hold our data. This is described in the
following code snippet:

SCHEDULER.every '30s', :first_in => 0, allow_overlapping: false do
|puppet|

time_past = (Time.now - 1800)
ftime_now = Time.now.strftime("%FT%T")
ftime_past = time_past.strftime("%FT%T")

 @failedhosts = []
 @failed = 0
 @changed = 0
 @unchanged = 0
 @pending = 0
 @eventtext = ''

What we're doing here is setting up three variables for holding time data. The first
variable (time_past) holds the current time minus 30 minutes; this gives us the time
period we want to report on. The other two time variables (ftime_now and ftime_
past) are formatted ready for submission to PuppetDB. The next six variables are
going to be used to hold the data we plan to return, an array of hosts, the number
of hosts that Puppet has affected in the past 30 minutes, and finally a place holder
to decant our array of hosts into when we come to display it.

Our next task is to fetch the data from PuppetDB using the same methods that we've
covered in the previous chapters. This time a round, we're going to be gathering data
from a variety of PuppetDB sources, and in particular, we will be using the metrics
endpoint for the first time. Have a look at the following code:

@eventtext = ''

nodes = JSON.parse(Net::HTTP.get_response(URI.parse
 ('http://localhost:8080/v3/nodes/')).body)

Chapter 8

[143]

numberofhosts = JSON.parse(Net::HTTP.get_response(URI.parse
 ('http://localhost:8080/v3/metrics/mbean/com.puppetlabs.puppetdb.
 query.population:type=default,name=num-nodes')).body)["Value"]

numberofresources = JSON.parse(Net::HTTP.get_response(URI.parse
 ('http://localhost:8080/v3/metrics/mbean/com.puppetlabs.puppetdb.
 query.population:type=default,name=num-resources')).body)["Value"]

avgresources = JSON.parse(Net::HTTP.get_response(URI.parse
 ('http://localhost:8080/v3/metrics/mbean/com.puppetlabs.puppetdb.
 query.population:type=default,name=avg-resources-per-node'
)).body)["Value"].round

You may be thinking that the call to the nodes endpoint looks a little different than
before; this is because this time a round, we're performing the JSON parse, the
NET::HTTP library call, and the URI parse all in one line. This is a more efficient
method, but is slightly less readable on first reading; by now, you should be familiar
with using this technique—this is just making it tidier.

The metrics endpoint is another PuppetDB endpoint that is simple to work with
as it is a single non-parameterized call that responds with a single JSON element.
As you can see, we're taking the value returned by that call (contained within the
["Value"] field) and assigning it straight to its respective variable; there's no more
processing required for the metrics.

So, we now have our list of nodes and our metrics, and we now need to calculate the
data we need to fill our required columns. Take another look at our dashboard:

Creating Your Own Custom Dashboard

[144]

We now need a way to calculate how many hosts are in a particular state. Normally,
we would turn to the aggregate-event-counts endpoint for this information. As
we've noted in earlier chapters, it's a highly efficient endpoint to gather this kind
of metric. However, in this case, it doesn't quite fit the bill. The problem with the
aggregate-event-counts endpoint is that hosts can be counted more than once
as it's counting events rather than hosts. Consider this example: a host tries to apply
both a user and file resource from its catalog, with the user resource applying OK,
but the file resource failing due to a missing prerequisite. In this scenario, the host
has created two events, one success and one failure, and this will be reflected in the
final events count.

As our dashboard is taking the point of view of a node, it makes more sense to ensure
that a host can only be in one of three states: changed, pending, or failed. This maps
nicely to the success, noop, and failure event types. We just need to ensure that if a
host correctly applies three resources and fails on the fourth, then that is reflected in
the Failed tile of the dashboard and doesn't appear in the Changed tile. Although
technically it is both, for our dashboard, we want to ensure that it's only reported as
failed. Let's go ahead and add the following code to enable this for the puppet.rb file:

nodes.each do |node|
 uri = URI.parse('http://localhost:8080/v3/event-counts/')
 uri.query = URI.encode_www_form(:query => %Q'["and", ["=",
"certname", "#{node['name']}"],["<", "timestamp", "#{ftime_
now}"],[">", "timestamp", "#{ftime_past}"],["=", "latest-report?",
"true"]]', :'summarize-by' => 'certname', :'count-by' => 'resource')

 events = JSON.parse(Net::HTTP.get_response(uri).body)
 events.each do |event|
 if event['failures'] > 0
 @failedhosts << event['subject']['title']
 @failed += 1
 elsif event['noops'] > 0
 @pending += 1
 elsif event['successes'] > 0
 @changed += 1
 end

 end
end

Chapter 8

[145]

The first thing that we are doing is constructing a Ruby block and passing it the
name of the node we gathered from the nodes list. We then connect to the event-
counts endpoint and query it for any events created by this node in the past 30
minutes. This is derived by asking for any events that fall between the ftime_past
(30 minutes ago) and ftime_now (current time) values.

Once we have our list of events, we need to decide if they constitute a success,
failure, or noop operation; we do this by examining the data contained within the
event hash, looking for failures, noops, and successes. These are numeric fields that
will simply list the number of resources that are in a given state, and we can use this
to build our node metrics. It's important that we parse this data in the correct order,
as a node may have several different states. To accomplish this, we first check to see
if the node has any failed resources, and if it does, we add its hostname to the array
we are going to use to build our list of failed nodes. Then, we increment the failed
nodes counter before exiting the loop. If it hasn't failed any resources, we then see
if it has any non-applied resources, and if it does, we increment the noop counter
and exit. Finally, we check if it has successfully applied resources, and if it has, we
increment the success counter. By ensuring that we exit the loop after each state is
discovered, we avoid a double or even triple counting of a host.

We've gathered all of the data that we need to send to our dashboard view. Now,
all we need to do is go ahead and make our widgets aware that there is new data to
display. We do this using the send_event method provided by Dashing. The send_
event method uses two arguments: the first is the ID of the widget to which you
want to send the data, and the second is the data that you wish the widget to process
in JSON format.

In our case, we have the following data IDs:

• pupfailed

• puppending

• pupchanged

• manhosts

• manresources

• avgresources

• failedhosts

Creating Your Own Custom Dashboard

[146]

Each of these IDs in turn map to a particular widget. This is shown in the
following screenshot:

When we trigger a send_event method with any of these widget IDs, the displayed
data will change to whatever we have sent, assuming that it's in the right format. In
our case, we're almost exclusively dealing with data views using the number format;
the odd one out is the Failed widget, which is using a simple text format.

So, now that we know where the data is going, let's send it. This is done using the
following code:

send_event('pupfailed', {current: @failed})
send_event('puppending', {current: @pending})
send_event('pupchanged', {current: @changed})
send_event('manhosts', {current: numberofhosts})
send_event('manresources', {current: numberofresources})
send_event('avgresources', {current: avgresources})

 @failedhosts.each do |host|
 @eventtext<< "#{host} \n"
end

send_event('failedhosts', { text: @eventtext })

end

Chapter 8

[147]

This code is fairly straightforward. The first six lines simply take the numeric values
we've gathered for our various host metrics and send them on to their respective
widgets. As you can see, we are only including one JSON field with each of these,
which is the current: field. This sets the value of the data that is displayed to the user.

The next set of lines deals with the failed hosts' data. We're sending that to a text
widget, so we need to take the data that is currently in an array and iterate through
it, adding each line into a variable that we're going to use to hold it as a string object.
Note that within each iteration, we're adding the control character \n at the end. This
is so that each host is followed by a carriage return to ensure our list is nice and tidy.

That's it! You should now be able to go into the root of your Dashing project and run
it using the command dashing start. You should then see your own version of the
dashboard that looks like the following screenshot:

That's a pretty good-looking dashboard, and it makes your most important Puppet
metrics both highly accessible and also very clear and easy to read. Dashing has
been designed to be displayed on big displays, so if you have a spare TV or a large
monitor sitting around the office, it's worth putting this dashboard somewhere nice
and visible. As I've mentioned elsewhere, Puppet reporting is a great place to spot
when things have radically changed on your network, so having this data at hand
can ensure that you see issues before they become big problems.

Creating Your Own Custom Dashboard

[148]

Adding trends
Our dashboard is already looking pretty good, but Dashing offers a few features that
are both easy to implement and quickly and easily add additional data and means of
discovery. One of the quickest and easiest additions is adding trends to our Puppet
metrics to allow people to see at a glance how data is changing over time. This is
achieved using the numbers widget that we've already used. The numbers widget is
not just limited to displaying the current dataset; it can also display a second field,
which is the percentage change from the last run, complete with an appropriate
arrow to denote how the data has changed.

As we've already mentioned, the numbers widget accepts fields in JSON format;
we've already given it one field, :current, and now we're going to give it a second
field, :last. This will give the numbers widget the data it needs to draw the trend
data, and this :last field represents the last reading that this widget displayed. Let's
go ahead and alter our code to add this new feature.

In essence, all we need to do is create three new variables, and these will be used
to contain the previous values of the metrics widgets. This is very easy. One of
the advantages of using the rufus-scheduler library is that the job is effectively
running in its own thread. This means that any variables that are initialized can be
treated as being persistent for the lifetime of the dashboard process.

Take a look at the following example code for a dashboard job:

foo = 0

SCHEDULER.every '5s,' do |example|

lastfoo = foo
foo += 1

send_event('foo', {current: foo, last: lastfoo })
end

In this case, in its first run, the widget will receive two values: the current: field value,
which will be 1, and the last: field value, which will be 0. In the next run, the values
will be 2 and 1, then 3 and 2, and so on. Essentially, the code between the SCHEDULER.
every method and the end statement is being continuously run, and thus the values are
being persisted. This is helpful as it saves you using something along the lines of a text
file, database, or key value store to store this data, and avoids the overhead of having
to retrieve it every time you want to refresh your dataset. Dashing also keeps a history
of the widget values, which means that when you restart the dashboard, it should load
the previous values and avoid you having to start from scratch. You can find this in the
root of your dashing folder in a file named history.yaml.

Chapter 8

[149]

Let's go ahead and edit our code to support the trends view. First of all, we need to
create some blank variables to hold our data. This is described in the following code:

require 'json'
require 'net/http'
require 'uri'

last_manhosts = 0
last_manresources = 0
last_avgresources = 0

Now, we need to assign them a value within the actual job loop itself. This is
described in the following code snippet:

time_past = (Time.now - 1800)
ftime_now = Time.now.strftime("%FT%T")
ftime_past = time_past.strftime("%FT%T")

last_manhosts = numberofhosts
last_manresources = numberofresources
last_avgresources = avgresources

This code is applied before any other calculation, and so should either contain 0
if this is the very first time the dashboard has run, or the previous value of the
manhosts, manresources, and avgresources IDs if it has been run before. Finally,
we need to send our data to the widget. This is done using the following code:

send_event('pupfailed', {current: @failed})
send_event('puppending', {current: @pending})
send_event('pupchanged', {current: @changed})
send_event('manhosts', {current: numberofhosts,
 last:last_manhosts})
send_event('manresources', {current: numberofresources,
 last:last_manresources})
send_event('avgresources', {current: avgresources,
 last:last_avgresources})

Creating Your Own Custom Dashboard

[150]

That's all we need to do. None of the layout information has changed, and the
number widget is already designed to deal with our new data. Go ahead and restart
your dashboard. It should now look like the following screenshot:

As you can see, we can now easily see the trends by simply glancing at the panel. In
this example, my managed resources have gone through the roof and my average
resources per node are way up. But my managed hosts have dropped alarmingly. If
this were a production system, I'd be reaching for the panic button around this point.
Without the dashboard, I might have been blissfully unaware of any problems until
it moved from being a curious problem to becoming a huge, stability threatening
monstrosity of an incident. Much like riding a bike on the road, when it comes to
infrastructure management, visibility is your friend.

Adding meters
We've made our trends easier to see, but the dashboard still lacks a certain flair. Sure
it's clear and very colorful, but it's still pretty static. Let's make it a bit swishier and
add some swing to our dashboard using the meter widget. The meter widget is a
fun way of not only adding some animation to a dashboard, but also giving users a
visual clue as to how dramatically things have changed.

Chapter 8

[151]

Firstly, let's amend our puppet.erb file. As we covered earlier, the .erb file deals
with the layout for the dashboard, and in particular, it is where you define the
types of widgets that will be presented. In our case, we want to take the existing
number widgets and turn them into meter widgets. You can do this by amending
the puppet.erb file to contain the following code snippet:

<% content_for :title do %>Puppet Stats<% end %>
<div class="gridster">

<li data-row="1" data-col="1" data-sizex="1" data-sizey="1">
 <div data-id="pupchanged" data-view="Meter" data-min=
 "0 data-max="100" style="background-color:#96bf48"></div>

<li data-row="1" data-col="1" data-sizex="1" data-sizey="1">
 <div data-id="puppending" data-view="Meter" data-min=
 "0" data-max="100" ></div>

<li data-row="1" data-col="1" data-sizex="1" data-sizey="1">
 <div data-id="pupfailed" data-view="Meter" data-min=
 "0" data-max="100" class="status-danger"></div>

As you can see, we've slightly amended the HTML code to include a new data-view
attribute, and we've added some additional attributes to control the minimum and
maximum numbers. Go ahead and change these attributes to reflect your environment.
Generally speaking, I'd make the data-max value match the number of hosts. This
controls the distance that the meter can swing, so you want the top end to be roughly
analogous to the number of hosts you have.

The next thing we need to do is edit our job code. Although the widget ID remains
the same, the widget type is different, and will therefore accept a slightly different
format of data. Go ahead and amend your code to look like the following:

send_event('pupfailed', {value: @failed})
send_event('puppending', {value: @pending})
send_event('pupchanged', {value: @changed})
send_event('manhosts', {current: numberofhosts,
 last:last_manhosts})

Creating Your Own Custom Dashboard

[152]

send_event('manresources', {current: numberofresources,
 last:last_manresources})
send_event('avgresources', {current: avgresources,
 last:last_avgresources})

As you can see, all we've done is changed the format of the data from the current:
type to the value: type. The rest remains the same as the meter widget deals in
numeric data in the same way as the number widget. OK, now that we've made our
changes, go ahead and restart our Dashing dashboard. You should end up with a
dashboard that looks like the following screenshot:

Now we have a dashboard that is gaudily colorful, nicely informative, and rather
impressively animated. This is now ready to be put up on the largest monitor or TV
you have to hand so that you can keep an eye on it.

As you can see, Dashing is a versatile accompaniment to PuppetDB. Hopefully, this
simple dashboard has set your imagination to work wondering what else you could
display. Remember, PuppetDB has access not only to the Puppet catalog and reports,
but also the Facter information for each host. This can make for a fairly impressive
range of data. Want to easily graph how many CPUs you currently have allocated?
Ever wondered how much RAM your hosts in a certain domain have? All these facts
and more are relatively easy to retrieve using PuppetDB and very easy to display
using Dashing. I encourage you to play around and see what combinations you can
come up with. Also, remember that you're not just limited to one dashboard using
Dashing – you can create as many as you like within the dashboards folder.

Chapter 8

[153]

As long as there is a job that can feed your widgets with data, it doesn't matter how
many you have. If you are going to employ a large amount of dashboards, then it
might be sensible to use a generic Puppet job to retrieve the data. That way, you have
a singular job that runs every so often and gathers all of the stats from PuppetDB and
feeds many dashboards, rather than having many dashboards, each with their own
individual jobs to gather data. This is the kind of shenanigans that can leave your
PuppetDB a smoking ruin by subjecting it to a very large load every few seconds as
your many widgets go looking for their data.

Summary
In this chapter, we've taken a look at how we can utilize the data we store in
PuppetDB to create attractive dashboards in Dashing. We've explored the use of
ERB templates to lay out our widgets and the concept of using jobs to gather data
in the background. We've created our own dashboards to allow our users to see the
current state of the Puppet infrastructure, including which resources have changed,
succeeded, and failed. We've taken that basic dashboard and improved it by adding
in a quick and easy trends reference, and we also added some more graphical cues
by adding in meters to accentuate some of the data display. Finally, we took a look
at some general tips on how to get the best out of your dashboard data.

In the next chapter, we're going to take a look back at everything we've covered so
far and recap some of the highlights. We're also going to explore some of the other
ways you can use your Puppet data, and briefly touch on what other tools you can
use to drive reporting and alerting using Puppet.

Looking Back and
Looking Forward

We are nearing the end of our exploration of Puppet reporting and alerting, and so it
seems fitting that we spend this chapter going over what we've learned and exploring
some of the other ways in which you can utilize the reporting functions of Puppet.

In this chapter, we will cover:

• A recap of Puppet dashboards and integration with third-party dashboards
• Looking back at the alerting feature and integration with external

alerting systems
• Analyzing metrics and changes with Graphite
• Anomaly detection with Etsy Skyline
• Driving change and orchestration with the Puppet reporting feature

Looking back at what we've learned
By now, you should be familiar with Puppet reporting features and how they fit in
with the wider Puppet product. However, it's worth recapping what we've learned,
and while we recap, we will look at other ways of using these features. We've
covered the basics of configuration and data retrieval in this book, but this is just
the tip of the iceberg. With a little imagination and creative use of both the report
processors and PuppetDB features, you can start to use Puppet in ways you may not
have considered, not only to uncover details about your infrastructure you may not
have been aware of, but also to drive change within it.

Looking Back and Looking Forward

[156]

Rediscovering dashboards
We took a look at dashboards way back in Chapter 2, Viewing Data in Dashboards, and
you will remember from that chapter that there are several dashboards available for
Puppet, ranging from the venerable Puppet Dashboard through to the all singing
and all dancing Puppet Enterprise Console. With the addition of PuppetBoard, we
also have a stylish and easy to use way to observe the details that PuppetDB holds.

Dashboards are a fantastic addition to your Puppet infrastructure, allowing you
to see, at a glance, any element of your infrastructure that is either not configured
correctly or, perhaps more importantly, has recently been updated. The visibility
of changes is perhaps one of the most bewilderingly overlooked and yet impressive
features that Puppet offers, and the dashboard is your window into that process.

In Chapter 8, Creating Your Own Custom Dashboard, we looked at how we can use
Puppet to design our own custom reporting dashboard. This utilized the power of
PuppetDB and the simplicity of Dashing to create our very own view of Puppet data.
We can use the same techniques to add data to other dashboards and aggregation
systems. The recent explosion of tools for DevOps system administrators has
gifted us with several different cloud-based dashboard systems such as Boundary
(http://boundary.com) and New Relic (http://newrelic.com). These systems
are increasingly attempting to become the hub of a busy DevOps department and
offer some excellent integration, both for data visualization and alerting. Using
custom report processors, Puppet can easily be integrated into these systems and will
bring valuable insight into the rate of change alongside the other metrics that these
applications monitor. We have long become accustomed to the idea that we need
to track changes to our application code; however, for some time, we have lacked
the tools to do this with our infrastructure. Using Puppet reporting, we can start to
bridge that gap, and by integrating with existing dashboards used to visualize this
data, we can get a holistic view of our rate of change.

Producing alerts
In Chapter 4, Creating Your Own Report Processor, we looked at how you can create
your own alerts using custom report processors. We used a relatively small amount
of Ruby code to monitor change among specific elements, and triggered e-mails
when this occurred. This was the basis of our simple and effective alerting system,
and for small installations, it would be absolutely perfect. For larger infrastructures,
you will need something a little more industrial, with a solution that can both scale
and offer a more complete set of features about how you are alerted. Infrastructure
monitoring has been around for some considerable time, and there are a great deal of
tools to choose from, both open source and commercial.

http://boundary.com
http://newrelic.com

Chapter 9

[157]

The recent trend towards having a more ephemeral infrastructure has started
to create a shift in this space, with an increasing number of monitoring system
developers trying to make their respective systems suitable for use in an
environment where server lifetimes may only be measured in hours rather than the
more traditional years. Puppet is already being widely utilized to configure these
tools as the exported configuration feature makes it incredibly simple to roll out new
checks when systems change; in particular, this has made managing the complexities
of products based around Nagios much simpler.

Using Nagios
Nagios (http://www.nagios.org) is the old faithful of the monitoring world, and
it's hard to find a systems administrator who hasn't had to work with it at some
point in his or her career. This open source project has had the benefit of a huge
community of software engineers working on it for quite a number of years, and
at this point, could be considered the quintessential open source monitoring tool.

Nagios has been the basis for a great number of new projects, both commercial
and open source, with several of them being direct forks from the original Nagios
code base.

Discovering Icinga and Shinken
Products such as Icinga (https://www.icinga.org) and Shinken (http://www.
shinken-monitoring.org) are forked from the Nagios code base, and have taken
certain features of the original product and improved upon them for certain use
cases. The omnipresence of Nagios has also ensured that most monitoring systems
can make use of the incredible number of checks that have been written for it, and
will, at the very least, be able to react to output from them.

One very interesting relative newcomer in the monitoring space is the Sensu project
(http://sensuapp.org). Its dashboard is shown in the following screenshot:

http://www.nagios.org
https://www.icinga.org
http://www.shinken-monitoring.org
http://www.shinken-monitoring.org
http://sensuapp.org

Looking Back and Looking Forward

[158]

Sensu has been designed from the ground up to be used in large and volatile
environments (such as a cloud) and brings design patterns such as a publish and
subscribe model, both to enable it to scale to thousands of clients relatively easily
and to make the discovery and configuration of new hosts simple. Sensu has
been designed with a robust API and the Ruby library to allow the addition of
new checks, and although a great many of them are written in Ruby, you can also
implement them in pretty much any other language. I've seen checks that have been
written in Ruby, Python, and Java. If for some reason, you can't write a new check,
Sensu is able to understand and process checks that have been designed for Nagios,
so you can easily reuse existing checks.

As we've already discovered, Puppet isn't just limited to setting up these systems. It
can also be used to trigger alerts based on its unique view of your infrastructure. This
is where it integrates well with a dedicated monitoring system such as Nagios and
Sensu. Raising alerts using report processors is relatively easy; however, generating
the correct notification type is complex and better left to systems more suited for
that activity. Using the techniques we have already learned, it would be easy to add
checks like the following:

• Monitor and alert if a resource failed to apply or a catalog failed to compile
• Alert if Puppet has not been run on a host for a certain amount of time
• Alert if certain non-managed resources are changed using the

audit metaparameter
• Monitor and alert if certain facts have changed on a node using

the PuppetDB records

Compliance monitoring with Puppet
In combination with Facter, Puppet knows a huge amount about your infrastructure,
and informs your dedicated monitoring system when these facts have changed. By
using these facts alongside defined roles within your ENC or Hiera, it's possible to
raise alerts when nodes fall out of compliance. With judicious use of custom facts,
you can use Puppet to gather details of what software and configuration exists on
a given set of servers, store them in PuppetDB, and then use your alerting system
to compare those details and set off appropriate warnings if they don't match. By
using Puppet to alert you when a host is out of compliance, you gain the confidence
that your infrastructure is configured how it needs to be for your uses. Remember,
Puppet has the under-utilized audit metaparameter, and this is an excellent way to
identify and monitor resources that you might not want to manage using Puppet.
We looked at how to use the audit metaparameter in Chapter 4, Creating Your Own
Report Processor; it's worth learning this technique as it can add simple, powerful, and
real-time auditing to your Puppet-managed infrastructure.

Chapter 9

[159]

Auditing isn't limited to the elements that Puppet manages, as you can easily create
custom facts whose only role is to gather data for consumption by your reporting
and alerting systems. Creative use of custom facts can be hugely beneficial when
tying your alerting systems with Puppet; it's relatively easy to write a custom fact to
export all the installed software on a given server or to return details about custom
systems designed by your internal developers. Once these facts have been created,
they are available for use in report processors and are also stored in PuppetDB for
reporting uses. Be creative – the more monitoring you have, the more you can be
confident that your systems are correctly configured, ready for use, and suited for
the applications that are going to be hosted on them. There is nothing more irritating
than being woken up at some unnatural time of the morning by a customer who has
spotted a problem because your alerting system missed it.

Analyzing metrics with StatsD, Graphite, and
Etsy Skyline
As we have seen throughout this book, Puppet creates an awful lot of interesting
metrics, with items such as total number of managed resources, time taken to apply
catalog, and so on readily available to report against. On its own, this can be of
limited use – you can certainly raise alerts based around long-running clients, and
the stats for the number of managed hosts and resources can be a handy gauge of
activity, but in general, these stats are more suited to analysis rather than alerting.
Luckily, we now have some very powerful tools at our disposal to not only store this
type of data, but also to analyze and visualize it.

Graphite (https://github.com/graphite-project) is one such system, and is a
popular and highly powerful system for storing and graphing time series data.

A time series is essentially points of data plotted over a set time period.
For instance, the response time of an application measured at intervals
of a minute would be an excellent example.

This is a perfect fit for Puppet metrics, and getting Puppet metrics into Graphite is
very easy indeed. You can find a ready-made report processor at https://github.
com/krux/puppet-module-graphite-report, which once installed will send your
Puppet metrics to Graphite.

https://github.com/graphite-project
https://github.com/krux/puppet-module-graphite-report
https://github.com/krux/puppet-module-graphite-report

Looking Back and Looking Forward

[160]

Graphite allows you to start graphing your Puppet metrics in real time and easily
combine disparate data points into a single graph. For instance, in Puppet metrics
terms, this means that you could take the metrics for the catalog compilation time
and overlay them with the number of resources managed. This is pretty interesting
stuff, but it's when you combine this with other data sources that things can become
really interesting. By installing collectd (http://collectd.org) onto your Puppet
master, you can start to gather CPU and memory usage statistics as well as disk I/O
and other important system performance data points. collectd can send this data into
Graphite, and once in there, you can easily create real-time graphs that overlay your
detailed Puppet metrics against the amount of resources that are being consumed. This
allows you to very easily create scalability reports for your Puppet infrastructure and
determine when you might need to consider scaling up your systems.

Tracking changes with Puppet and Graphite
You can also start to use your Puppet data in a more holistic way. One of the metrics
that people overlook when they are looking at their infrastructure is the rate of
change. For instance, you may have huge amounts of reporting around requests per
second, response time, and resource usage. This is certainly interesting and valuable,
but a surprising amount of people miss the simple metrics that tie it all together:
deployments and changes. Using Graphite, it would be perfectly simple to create a
new index to track Puppet change events, and you could then use a simple Puppet
report processor to output a change event every time a host reports that a resource
has changed during the course of a Puppet run. This is incredibly useful as it means
that you can tie this information into other statistics that you track. For instance, if
you notice that your response time on an important application has started to drop,
you can easily see if there were Puppet changes applied around that time, and if
there were, you can then easily query your PuppetDB catalog to find out which
resources were changed in that time frame. Likewise, you can start to monitor the
overall health of your infrastructure, such as CPU and RAM usage, against the
amount of change going through. If you also use Puppet to deploy new versions of
applications, this too can be tracked as a specific changed event.

http://collectd.org

Chapter 9

[161]

Using Etsy Skyline to find your normal
Humans are fantastic at spotting patterns in data, and using a tool such as Graphite
in combination with Puppet allows you to easily output huge amounts of data for
analyses. However, you have to be looking at the appropriate sets of data to see
the pattern, and the double-edged sword of using Puppet to increase your level of
information is that there is now more information to try and spot patterns within.
Fortunately, there are an increasing number of tools that will sift through this data
for you and let you know when something is outside of what it has learned to be
normal. One excellent and open source example of these tools is Etsy Skyline. This
tool can be seen in the following screenshot:

Skyline is able to use Graphite as its data source, and so will start to analyze any and
all of the metrics within. Skyline starts to build up a picture of what is considered
normal for each of these metrics, and unlike an alerting system such as Nagios, it
does not rely on a fixed threshold to decide to alert. For instance, you may find that
the CPU of your database host runs at 100 percent every day from 04:00 to 05:00
hours, but is otherwise under 50 percent utilization; this is probably because you
are doing housekeeping around that time. Etsy Skyline will soon learn that this is
considered normal for your database node and will not do anything when it sees this
data; however, if it sees that CPU utilization is at 100 percent in the middle of the day
when it hasn't been previously, it will raise an alert and send a snapshot of the data
to its web console.

Looking Back and Looking Forward

[162]

This is incredibly powerful as it allows your tools to crawl through your vast
amounts of data and figure out what should be alerted on. It's not a replacement for
Nagios or Sensu, but is an incredibly powerful addition to them, and the data that
Puppet can provide is a natural fit for this kind of learning system. Over time, you
will find that your Puppet changes will start to fall into a natural pattern, especially
if you release at predictable times. By adding your Puppet metrics into Graphite
and then enabling Etsy Skyline, you will be automatically alerted if some of those
metrics start to look a little odd. For instance, you may not be immediately aware if
something has caused a huge amount of your Puppet nodes to apply a change, or if
your Puppet catalogs are suddenly taking an age to apply. Skyline can be configured
to immediately alert you if it sees that something is amiss.

Using Puppet to drive orchestration
Puppet is in the unique position of knowing both when and how something has
changed. This is a unique view that allows you to be very creative with orchestrating
activity in your network, using Puppet not only to change resources on a given node,
but also to then trigger an action that will affect other resources.

A good example would be if you had an application that provided data that other
nodes relied on. Now, let's assume that you were forced to push a change to this
application that would require the dependent applications to be restarted before
they can use the new version. This is something that a Puppet report processor could
trigger in conjunction with a suitable orchestration system. In this case, you could
use a report processor to monitor a tagged resource (our data providing application),
and in the event of that resource being changed, the report processor could send a
message to the orchestration system, asking it to perform restarts on the dependent
applications. What's neat about this is that you are using Puppet to allow individual
resources to communicate with their dependencies and vice versa without needing
to bake it into the orchestration layer itself. Another advantage of having Puppet
notify the orchestration system is that Puppet knows when a change has been
successfully applied; an orchestration system would need to be told what constitutes
success. This technique also ensures that it is much harder to miss dependent
systems when creating your orchestration steps, as you have started to build an
awareness of dependencies within Puppet. Puppet implements the change to an
individual resource and then notifies the orchestration system that it needs to carry
out an action on the dependencies.

This would be relatively straightforward to implement and would tie in nicely with
the Puppet-curated MCollective project (http://puppetlabs.com/mcollective).
By using Puppet report processors to trigger subsequent actions, you are starting
to overcome Puppet's nodal view of the world, and allowing changes to deal with
dependencies without manual interaction.

http://puppetlabs.com/mcollective

Chapter 9

[163]

Summary
In this final chapter, we've taken a look at some of the ways you can utilize Puppet
reporting and alerting to enhance your understanding of both what is going on within
your Puppet infrastructure and also how to leverage the data to create simple yet
effective additions to your existing monitoring systems. We've seen how Puppet data
can be visualized using either existing dashboards or by creating new ones, and how
report processors can be used to drive detailed alerts using existing alerting tools such
as Nagios or Sensu. We've also learned about the integration of Puppet with tools
such as Graphite, which allow you to utilize Puppet data to both analyze performance
and track changes to the infrastructure. We have explored how systems such as Etsy
Skyline can be used to learn what is normal within your Puppet infrastructure and
set to alert when anomalies occur. We realized how Puppet can be an integral part of
orchestration and can trigger actions based on changes to resources.

Now it's over to you; this book has shown you the basics of the Puppet reporting
systems and how easy it is to take the data that Puppet creates to drive other
activities, be it reporting, alerting, or even orchestration. Hopefully, by now you
are looking at the Puppet reporting tools as a gateway that allows Puppet to
communicate with the wealth of systems that you are already using to both monitor
and report with, and thinking of new ways to use these tools with the additional
data that Puppet provides. Puppet reporting brings a huge new set of capabilities,
as, traditionally, knowing how and when changes have occurred within your
infrastructure has been difficult. Puppet is now making it simple.

I hope that this book has inspired you to create new and interesting applications
based around Puppet reporting, and I look forward to seeing the fantastic and
novel ways that you put these techniques to use. I truly hope that you share your
contributions on GitHub and PuppetForge so that the whole Puppet community can
make use of your code. The Puppet reporting features are incredibly powerful, and
you're going to have a lot of fun playing with them.

Index
Symbols
[agent] configuration block 10
.erb file 151
.first method 123
.last method 122
[main] configuration block 10
[master] configuration block 10

A
aggregate-event-counts endpoint

about 144
URL, for documentation 103
using 103

alerts
creating, Nagios used 157
creating, report processor used 156, 157
Icinga, discovering 157, 158
Shinken, discovering 157, 158

assets directory 135
Atlassian JIRA 70
audit metaparameter 158

B
basic query application

connecting, to PuppetDB 107
creating 105, 106
results, extracting 108-110
setting up 106

Boundary
URL 156

built-in report processors
graphing, with rrdgraph report

processor 34-36

logfiles, adding with log report
processor 33, 34

PuppetDB report processor 40
reports, sending with HTTP report

processor 39
reports, storing with store report

processor 32, 33
tagmail report processor 36-38
third-party report processors, exploring 40
utilizing 32

C
catalogs endpoint

using 96, 97
catalog wire format

URL, for documentation 97
choice function 114
collectd

about 160
URL 160

command interface
about 86, 87
deactivate node function 86
replace catalog function 86
replace facts function 86
store report function 86

command_line_reporter gem 108
compliance monitoring

with Puppet 158
createdb command 81
createuser command 81

[166]

D
dashboard

advantages 18, 19
creating 136
layout, creating 137-140
meters, adding 150-152
rediscovering 156
trends, adding 148-150

dashboards directory 135
Dashing

about 131
data, feeding 140
executing 136
installing 134
jobs, creating 141-147
overview 131-134
puppetdash directory 134, 135
reference link 132
URL, for downloading 132

dashing start command 137
data

feeding, into Dashing 140
data-col tag 139
data-id tag 139
data-row tag 139
data-title tag 139
data-view tag 139
deactivate node function 86

E
e-mail alert

creating 49-56
endpoints

about 90
aggregate-event-counts endpoint,

using 103
catalogs endpoint, using 96, 97
event-counts endpoint, using 102, 103
events endpoint, using 100, 101
fact-names endpoint, using 97
facts endpoint, using 90, 91
metrics endpoint, using 98, 99
nodes endpoint 93-95
reports endpoint, using 99, 100

resources endpoint, using 92, 93
server-time endpoint, using 103
version endpoint, using 104

Etsy Skyline
about 155
used, for analysing metrics 159
using 161, 162

event counts
fetching 122, 123

event-counts endpoint
about 122
URL, for documentation 103
using 102, 103

Event Inspector 22, 23
events

adding, to MySQL 67-70
data, presenting 123-126

events endpoint
about 123
URL, for documentation 101
using 100, 101

External Node Classifiers (ENC) 133
External Node Classifiers (ENCs) 18

F
Facter 9
Facter 1.7 9
fact-names endpoint

using 97
facts endpoint

about 90
querying, in menu-driven PuppetDB

application 115
URL, for documentation 92
using 90, 91

fully qualified domain name (FQDN) 110

G
Graphite

about 155
and Puppet used, for tracking changes 160
URL 159
used, for analysing metrics 159, 160

[167]

H
hardware report

extracting, from menu-driven PuppetDB
application 116-120

header method 118
HighLine 112
HTTP report processor

reports, sending with 39
HyperSQL Database (HSQLDB) 76

I
Icinga

discovering 157, 158
URL 157

insert function 66
installation, Dashing 134
installation, PostgreSQL 80
installation, PuppetDB 78
installation, report processor 31
installation, Twitter 41, 43
Intrusion Detection System (IDS) 59
issues

raising, with JIRA 71-73

J
JAVA_ARGS="-Xmx2g" command 80
Java Virtual Machine (JVM) 77
JIRA

issues, raising with 71-73
jobs

about 135
creating, in Dashing 141-147

L
layout, dashboard

creating 137-140
lib directory 135
load balancer 30
logging

with MySQL 60-66

log report processor
log files, adding with 33, 34

M
MCollective

about 23
URL 162

menu-driven PuppetDB application
creating 111
facts endpoint, querying 115
hardware report, extracting 116- 120
testing 126-128
UI, setting up 111-114

meters
adding, to dashboard 150-152

metrics
adding, to MySQL 67-70
analysing, with Etsy Skyline 159, 160
analysing, with Graphite 159, 160
analysing, with StatsD 159, 160

metrics endpoint
about 143
URL, for documentation 99
using 98, 99

MySQL
events, adding to 67-70
metrics, adding to 67-70
using 60-66

N
Nagios

used, for creating alerts 157
New Relic

URL 156
NFS 13
nodes endpoint

about 143
using 93-95

O
Object-relational Mapping (ORM) 61
OpenJDK 78

[168]

P
PagerDuty

about 29, 43
URL 43
using 43, 44

Parser 9
perspectives 22
Phusion Passenger 10
PostgreSQL

database, creating 81-84
database user, creating 81
installing 80
installing, from packages 80

public directory 135
Puppet

about 7
and Graphite used, for tracking

changes 160
compliance, monitoring with 158
report processor, alerting with 58-60
report processor configuration,

managing with 56-58
report processor, monitoring with 58-60
using, to drive orchestration 162

Puppet agent
about 7
setting up 14, 15

PuppetBoard
about 26, 27
URL, for installing 28

Puppet configuration file
about 9-11
[agent] configuration block 10
[main] configuration block 10
[master] configuration block 10

Puppet Dashboard
feature list 19
overview 19
URL 20

Puppet Dashboard, feature list
Class Discovery 19
ENC 19
MCollective Integration 19
PuppetDB Integration 19
Reporting 19

puppetdash directory
about 134
assets 135
dashboards 135
jobs 135
lib 135
public 135
widgets 135

PuppetDB
about 75, 85
basic query application, connecting to 107
event counts, fetching 122, 123
events data, presenting 123-126
history 75-77
installing 78
installing, from packages 78
JVM heap space, increasing 79, 80
menu-driven PuppetDB application,

testing 126-128
PuppetDB query method, creating 122
querying, for report information 120, 121
URL, for scaling recommendations 76

PuppetDB API
about 85, 86
command interface 86, 87
query interface 86=89

PuppetDB query API (query interface)
about 86-89
endpoints 90
PuppetDB query language 89, 90

PuppetDB query language
about 89
using 89, 90

PuppetDB query method
creating 122

PuppetDB report processor 40
PuppetDB server

PostgreSQL, installing 80
PuppetDB, installing 78
setting up 78

Puppet Enterprise Console
about 21
Event Inspector 22, 23
Puppet Live Management 23, 24
URL, for downloading 24

[169]

Puppet Forge
about 31
URL 31

Puppet Labs
URL 9, 15

Puppet Live Management 23, 24
Puppet master 7
Puppet Open Source

using 9
Puppet reporting

about 7-9
features 155

Puppet server. See also Puppet master
setting up 11-13
using 11

R
replace catalog function 86
replace facts function 86
reporting

with The Foreman 26
report processor

about 29, 45, 46
alerting, with Puppet 58-60
built-in report processors, utilizing 32
configuration, managing with Puppet 56-58
creating 46
describing 47
e-mail alert, creating 49- 56
installing 31
monitoring, with Puppet 58-60
overview 29-31
processing 47, 48
registering 47
self.status object 48, 49
used, for creating alerts 156, 157

reports endpoint
URL, for documentation 100
using 99, 100

resources endpoint
about 92
URL, for documentation 93
using 92, 93

REST API 77

Round Robin Database (RRD) 34
rrdgraph report processor

used, for graphing 34-36
Ruby

URL, for documentation 65
Ruby Version Manager (RVM)

URL, for installation 106
rufus-scheduler

about 140
URL 141

S
self.status object

about 48, 49
changed value 49
failed_to_restart value 49
failed value 49
out_of_sync value 49
restarted value 49
skipped value 48

send_event method 145
Sensu

about 157, 158
URL 157

sequel library 63
server-time endpoint

URL, for documentation 103
using 103

Shinken
discovering 157, 158
URL 157

Shopify
URL 132

Sinatra 131, 132
StatsD

used, for analysing metrics 159, 160
store report function 86
store report processor

reports, storing with 32, 33
strftime function 65, 66
Sun JDK 78
Syntactically Awesome Style

Sheets (SASS) 135

[170]

T
table method 108
tagmail report processor

about 36-38, 49
URL, for documentation 39

The Foreman
about 24
reporting, with 26
trends, viewing in 26
using 24, 25

third-party applications 74
third-party report processors

exploring 40
trends

about 26
adding, to dashboard 148-150
viewing, in The Foreman 26

Twitter
about 41
installing 41-43
URL 41

U
UI

setting up, for menu-driven PuppetDB
application 111-114

Universally Unique Identifier (UUID) 62
Universal Resource Identifier (URI) 107

V
version endpoint

URL, for documentation 104
using 104

W
widget, options

additional tags 139
data-col tag 139
data-id tag 139
data-row tag 139
data-title tag 139
data-view tag 139

widgets directory 135

X
XKCD

URL 66

Y
YAML

URL 11

Thank you for buying
Puppet Reporting and Monitoring

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Puppet 3 Beginner's Guide
ISBN: 978-1-78216-124-0 Paperback: 204 pages

Start from scratch with the Puppet configuration
management system, and learn how to fully utilize
Puppet through simple, practical examples

1. Shows you step-by-step how to install
Puppet and start managing your systems
with simple examples.

2. Every aspect of Puppet is explained in detail so
that you really understand what you're doing.

3. Gets you up and running immediately, from
installation to using Puppet for practical tasks
in a matter of minutes.

Puppet 3 Cookbook
ISBN: 978-1-78216-976-5 Paperback: 274 pages

Build reliable, scalable, secure, and high-performance
systems to fully utilize the power of cloud computing

1. Use Puppet 3 to take control of your
servers and desktops, with detailed
step-by-step instructions.

2. Covers all the popular tools and frameworks
used with Puppet: Dashboard, Foreman,
and more.

3. Teaches you how to extend Puppet with
custom functions, types, and providers.

Please check www.PacktPub.com for information on our titles

Instant Puppet 3 Starter
ISBN: 978-1-78216-174-5 Paperback: 50 pages

Gain complete consistency from your systems with
minimal effort using Instant Puppet 3 Starter

1. Learn something new in an Instant! A short, fast,
focused guide delivering immediate results.

2. Learn how deterministic results can vastly
reduce your workload.

3. Deploy Puppet Server as a Ruby-on-Rails
application to handle thousands of clients.

4. Design your own module for complex
configurations.

Chef Infrastructure Automation
Cookbook
ISBN: 978-1-84951-922-9 Paperback: 276 pages

Over 80 delicious recipes to automate your cloud
and server infrastructure with Chef

1. Configure, deploy, and scale your applications.

2. Automate error prone and tedious
manual tasks.

3. Manage your servers on-site or in the cloud.

4. Solve real world automation challenges with
task-based recipes.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Setting Up Puppet for Reporting
	Learning the basics of Puppet reporting
	Exploring the Puppet configuration file
	Setting up the server
	Setting up the Puppet agent
	Summary

	Chapter 2: Viewing Data in Dashboards
	Why use a dashboard?
	The Puppet Dashboard feature list
	Understanding Puppet Dashboard
	Exploring Puppet Enterprise Console
	Event Inspector
	Puppet Live Management

	Using The Foreman
	Reporting with The Foreman
	Looking at trends in The Foreman

	Discovering PuppetBoard
	Summary

	Chapter 3: Introducing Report Processors
	Understanding a report processor
	Utilizing the built-in report processors
	Storing reports with the store report processor
	Adding to log files with the log report processor
	Graphing with the rrdgraph processor
	The tagmail report processor
	Sending reports with the HTTP report processor
	The PuppetDB report processor
	Exploring the power of third-party plugins

	Getting social with Twitter
	Staying on top of alerts with PagerDuty
	Summary

	Chapter 4: Creating Your Own Report Processor
	The anatomy of a report processor
	Creating a basic report processor
	Registering your report processor
	Describing your report processor
	Processing your report

	Values of the self.status object
	Alerting with e-mail and Puppet
	Managing your report processor configuration with Puppet

	Monitoring changes and alerting with Puppet
	Logging with MySQL
	Adding metrics and events to MySQL
	Raising issues with JIRA
	A final note on third-party applications
	Summary

	Chapter 5: Exploring PuppetDB
	A brief history of PuppetDB
	Setting up the PuppetDB server
	Installing PuppetDB
	Installing PuppetDB from packages
	Increasing JVM heap space

	Installing PostgreSQL
	Installing the packages
	Creating your database user
	Creating the PostgreSQL database

	Summary

	Chapter 6: Retrieving Data with the PuppetDB API
	Exploring the PuppetDB query API
	Understanding the command interface
	Understanding the query API interface
	A primer on the PuppetDB query language

	Exploring endpoints
	Using the facts endpoint
	Using the resources endpoint
	Retrieving details about nodes
	Getting the run details with the catalogs endpoint
	Understanding the fact-names endpoint
	Knowing the status of PuppetDB with the metrics endpoint
	Using the reports endpoint
	Working with the events endpoint
	Using the event-counts endpoint
	Applying the aggregate-event-counts endpoint
	Using the server-time endpoint
	The version endpoint

	Summary

	Chapter 7: Writing Custom Reports with PuppetDB
	Creating a basic query application
	Setting up the basic application
	Connecting to PuppetDB
	Outputting results

	Creating a menu-driven PuppetDB application
	Setting up the UI
	Querying PuppetDB's facts endpoint
	Outputting the hardware report

	Querying PuppetDB for report information
	Creating the PuppetDB query method
	Fetching the event counts
	Presenting the events data
	Testing our application

	Summary

	Chapter 8: Creating Your Own Custom Dashboard
	Exploring Dashing
	Setting up Dashing
	Exploring the default puppetdash directory layout
	Running Dashing

	Creating our dashboard
	Creating our dashboard layout

	Feeding data into Dashing
	Creating new jobs in Dashing

	Adding trends
	Adding meters
	Summary

	Chapter 9: Looking Back and Looking Forward
	Looking back at what we've learned
	Rediscovering dashboards
	Producing alerts
	Using Nagios
	Discovering Icinga and Shinken

	Compliance monitoring with Puppet
	Analyzing metrics with StatsD, Graphite, and Etsy Skyline
	Tracking changes with Puppet and Graphite
	Using Etsy Skyline to find your normal
	Using Puppet to drive orchestration

	Summary

	Index

