Python Penetration
Testing Essentials

Employ the power of Python to get the best out of pentesting

w.allitebooks.co

http://www.allitebooks.org

Python Penetration Testing
Essentials

Employ the power of Python to get the best out
of pentesting

Mohit

PUBLISHING

BIRMINGHAM - MUMBAI

[vww allitebooks.cond

http://www.allitebooks.org

Python Penetration Testing Essentials

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2015
Production reference: 1220115

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78439-858-3

www.packtpub.com

[vww allitebooks.cond

http://www.allitebooks.org

Credits

Author
Mohit

Reviewers
Milinda Perera

Rejah Rehim
Ishbir Singh

Commissioning Editor
Sarah Crofton

Acquisition Editor
Sonali Vernekar

Content Development Editor
Merwyn D'souza

Technical Editors
Vivek Arora

Indrajit A. Das

Copy Editors
Karuna Narayanan

Alfida Paiva

Project Coordinator
Neha Bhatnagar

Proofreaders
Ameesha Green

Kevin McGowan

Indexers
Rekha Nair

Tejal Soni

Graphics
Sheetal Aute

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

[vww allitebooks.cond

http://www.allitebooks.org

About the Author

Mohit (also known as Mohit Raj) is an application developer and Python
programmer, with a keen interest in the field of information security. He has done
his bachelor of technology in computer science from Kurukshetra University,
Kurukshetra, and master of engineering (2012) in computer science from Thapar
University, Patiala. He has written a thesis as well as a research paper on session
hijacking, named COMPARATIVE ANALYSIS OF SESSION HIJACKING ON
DIFFERENT OPERATING SYSTEMS, under the guidance of Dr Maninder Singh.
He has also done the CCNA and Certified Ethical Hacking course from EC-Council
(CEH) and has procured a CEH certification. He has published his article, How to
disable or change web-server signature, in the eForensics magazine in December 2013. He
has published another article on wireless hacking, named Beware: Its Easy to Launch
a Wireless Deauthentication Attack! in Open Source For You in July 2014. He is also a
certified Certified Security Analyst (ECSA). He has been working in IBM India for
more than 2 years. He is also a freelance professional trainer for CEH and Python in
CODEC Networks. Apart from this, he is familiar with Red Hat and CentOS Linux
to a great extent, and also has a lot of practical experience of Red Hat. He can be
contacted at mohitraj.csegmail.com.

First of all, I am grateful to the Almighty for helping me to complete
this book. I would like to thank my mother for her love and
encouraging support, and my father for raising me in a house with
desktops and laptops. A big thanks to my teacher, thesis guide,
and hacking trainer, Dr. Maninder Singh, for his immense help. I
would like to thank my friend, Bhaskar Das, for providing me with
hardware support. I would also like to thank everyone who has
contributed to the publication of this book, including the publisher,
especially the technical reviewers and also the editors Merwyn
D'souza and Sonali Vernekar, for making me laugh at my own
mistakes. Last but not least, I'm grateful to my i7 laptop, without
which it would not have been possible to write this book.

[vww allitebooks.cond

http://www.allitebooks.org

About the Reviewers

Milinda Perera is a software engineer at Google. He has a passion for

designing and implementing solutions for interesting software-engineering
challenges. Previously, he also worked as a software engineering intern at Google.
He received his PhD, MPhil, MSc, and BSc degrees in computer science from the City
University of New York. As a PhD candidate, he has published papers on research
areas such as foundations of cryptography, broadcast encryption, steganography,
secure cloud storage, and wireless network security.

I would like to thank Alex Perry, my favorite Pythoneer, for being an
awesome mentor!

Rejah Rehim is currently a software engineer with Digital Brand Group (DBG),
India, and is a long-time advocator of open source. He is a steady contributor to the
Mozilla Foundation, and his name has been featured in the San Francisco Monument
made by Mozilla Foundation.

He is a part of the Mozilla Add-on Review Board and has contributed to the
development of several node modules. He has also been credited with the creation

of eight Mozilla Add-ons, including the highly successful Clear Console Add-on,
which was selected as one of the best Mozilla add-ons of 2013. With a user base of
more than 44,000, it has registered more than 450,000 downloads. He has successfully
created the world's first one-of-a-kind security-testing browser bundle, PenQ, which
is an open source Linux-based penetration testing browser bundle, preconfigured
with tools for spidering, advanced web searching, fingerprinting, and so on.

[vww allitebooks.cond

http://www.allitebooks.org

Rejah is also an active member of the OWASP and the chapter leader of OWASP,
Kerala. He is also one of the moderators of the OWASP Google+ group and an
active speaker at Coffee@DBG, one of the foremost monthly tech rendezvous

in Technopark, Kerala. Having been a part of QBurst in the past and a part of the
Cyber Security division of DBG now, Rejah is also a fan of process automation,
and has implemented it in DBG.

Ishbir Singh is a freshman studying electrical engineering and computer science
at the Georgia Institute of Technology. He's been programming since he was 9 and
has built a wide variety of software, from those meant to run on a calculator to those
intended for deployment in multiple data centers around the world. Trained as a
Microsoft Certified Systems Engineer at the age of 10, he has also dabbled in reverse
engineering, information security, hardware programming, and web development.
His current interests lie in developing cryptographic peer-to-peer trustless systems,
polishing his penetration testing skills, learning new languages (both human and
computer), and playing table tennis.

[vww allitebooks.cond

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more

For support files and downloads related to your book, please visit www. PacktPub. com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www. PacktPub. com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at servicee@packtpub. com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

a PACKT

https://www2.packtpub.com/books/subscription/packtlib

®

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?

* Fully searchable across every book published by Packt
* Copy and paste, print, and bookmark content
* On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www . PacktPub. com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials
for immediate access.

[vww allitebooks.cond

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

vww allitebooks.conl

http://www.allitebooks.org

Table of Contents

Preface 1
Chapter 1: Python with Penetration Testing and Networking 5
Introducing the scope of pentesting 6
The need for pentesting 6
Components to be tested 7
Qualities of a good pentester 7
Defining the scope of pentesting 8
Approaches to pentesting 8
Introducing Python scripting 9
Understanding the tests and tools you'll need 10
Learning the common testing platforms with Python 10
Network sockets 10
Server socket methods 11
Client socket methods 12
General socket methods 12
Moving on to the practical 13
Socket exceptions 20
Useful socket methods 22
Summary 27
Chapter 2: Scanning Pentesting 29
How to check live systems in a network and the concept
of a live system 30
Ping sweep 30
The TCP scan concept and its implementation using a Python script 34
How to create an efficient IP scanner 37

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

What are the services running on the target machine? 44
The concept of a port scanner 44
How to create an efficient port scanner 47

Summary 56

Chapter 3: Sniffing and Penetration Testing 57

Introducing a network sniffer 58
Passive sniffing 58
Active sniffing 58

Implementing a network sniffer using Python 58
Format characters 60

Learning about packet crafting 70

Introducing ARP spoofing and implementing it using Python 70
The ARP request 71
The ARP reply 71
The ARP cache 71

Testing the security system using custom packet crafting

and injection 75
Network disassociation 75
A half-open scan 76
The FIN scan 80
ACK flag scanning 82
Ping of death 83

Summary 84

Chapter 4: Wireless Pentesting 85

Wireless SSID finding and wireless traffic analysis by Python 88
Detecting clients of an AP 95

Wireless attacks 96
The deauthentication (deauth) attacks 96
The MAC flooding attack 98

How the switch uses the CAM tables 98
The MAC flood logic 100
Summary 101

Lii]

Table of Contents

Chapter 5: Foot Printing of a Web Server and a Web Application 103

The concept of foot printing of a web server 103
Introducing information gathering 104
Checking the HTTP header 107
Information gathering of a website from SmartWhois by
the parser BeautifulSoup 109
Banner grabbing of a website 114
Hardening of a web server 116
Summary 117
Chapter 6: Client-side and DDoS Attacks 119
Introducing client-side validation 119
Tampering with the client-side parameter with Python 120
Effects of parameter tampering on business 125
Introducing DoS and DDoS 127
Single IP single port 127
Single IP multiple port 129
Multiple IP multiple port 130
Detection of DDoS 132
Summary 134
Chapter 7: Pentesting of SQLI and XSS 135
Introducing the SQL injection attack 136
Types of SQL injections 136
Simple SQL injection 137
Blind SQL injection 137
Understanding the SQL injection attack by a Python script 137
Learning about Cross-Site scripting 148
Persistent or stored XSS 148
Nonpersistent or reflected XSS 148
Summary 157

Index 159

[iii]

Preface

This book is a practical guide that shows you the advantages of using Python for
pentesting, with the help of detailed code examples. This book starts by exploring
the basics of networking with Python and then proceeds to network and wireless
pentesting, including information gathering and attacking. Later on, we delve into
hacking the application layer, where we start by gathering information from a
website, and then eventually move on to concepts related to website hacking,
such as parameter tampering, DDOS, XSS, and SQL injection.

What this book covers

Chapter 1, Python with Penetration Testing and Networking, aims to complete the
prerequisites of the following chapters. This chapter also discusses the socket
and its methods. The server socket's method defines how to create a simple server.

Chapter 2, Scanning Pentesting, covers how network scanning is done to gather
information on a network, host, and the service that are running on the hosts.

Chapter 3, Sniffing and Penetration Testing, teaches how to perform active sniffing,
how to create a layer 4 sniffer, and how to perform layer 3 and layer 4 attacks.

Chapter 4, Wireless Pentesting, teaches wireless frames and how to obtain information
such as SSID, BSSID, and the channel number from a wireless frame using a Python
script. In this type of attack, you will learn how to perform pentesting attacks on

the AP.

Chapter 5, Foot Printing of a Web Server and a Web Application, teaches the importance
of a web server signature, and why knowing the server signature is the first step
in hacking.

Chapter 6, Client-side and DDoS Attacks, teaches client-side validation as well as how
to bypass client-side validation. This chapter covers the implantation of four types of
DDoS attacks.

Preface

Chapter 7, Pentesting of SQLI and XSS, covers two major web attacks, SQL injection
and XSS. In SQL injection, you will learn how to find the admin login page using a
Python script.

What you need for this book

You will need to have Python 2.7, Apache 2.x, RHEL 5.0 or CentOS 5.0, and Kali Linux.

Who this book is for

If you are a Python programmer or a security researcher who has basic knowledge
of Python programming and want to learn about penetration testing with the help of
Python, this book is ideal for you. Even if you are new to the field of ethical hacking,
this book can help you find the vulnerabilities in your system so that you are ready
to tackle any kind of attack or intrusion.

Conventions

In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"The upper part makes a dictionary using the AF_, SOCK_, and IPPROTO_ prefixes
that map the protocol number to their names."

A block of code is set as follows:

import socket
rmip ='127.0.0.1"
portlist = [22,23,80,912,135,445,20]

for port in portlist:
sock= socket.socket (socket .AF INET, socket.SOCK STREAM)
result = sock.connect ex((rmip,port))
print port,":", result
sock.close ()

[2]

Preface

Any command-line input or output is written as follows:
>>> dict((getattr(socket,n),n) for n in dir(socket) if
n.startswith('AF_'))

{0: 'AF UNSPEC', 2: 'AF INET', 6: 'AF IPX', 1l1l: 'AF SNA', 12: 'AF
DECnet', 16: 'AF APPLETALK', 23: 'AF INET6', 26: 'AF IRDA' 3}

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "The
Destination and Source addresses are the Ethernet addresses usually quoted as
a sequence of 6 bytes."

% Warnings or important notes appear in a box like this.

a1

~Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedbackepacktpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub. com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files from your account at http: //www.
packtpub. com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http: //www.packtpub.com/support
and register to have the files e-mailed directly to you.

[31]

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support

Preface

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books —maybe a mistake in the text or the
code —we would be grateful if you could report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http: //www.packtpub. com/
submit-errata, selecting your book, clicking on the Errata Submission Form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website or added to any list of
existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet,
please provide us with the location address or website name immediately so that
we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[4]

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Python with Penetration
Testing and Networking

Penetration (pen) tester and hacker are similar terms. The difference is that
penetration testers work for an organization to prevent hacking attempts, while
hackers hack for any purpose such as fame, selling vulnerability for money,

or to exploit vulnerability for personal enmity.

Lots of well-trained hackers have got jobs in the information security field by
hacking into a system and then informing the victim of the security bug(s)
so that they might be fixed.

A hacker is called a penetration tester when they work for an organization or
company to secure its system. A pentester performs hacking attempts to break
the network after getting legal approval from the client and then presents a report
of their findings. To become an expert in pentesting, a person should have deep
knowledge of the concepts of their technology. In this chapter, we will cover the
following topics:

* The scope of pentesting

* The need for pentesting

* Components to be tested

* Qualities of a good pentester

* Approaches of pentesting

* Understanding the tests and tools you'll need

* Network sockets

* Server socket methods

¢ (lient socket methods

Python with Penetration Testing and Networking

* General socket methods
* Practical examples of sockets
* Socket exceptions

e Useful socket methods

Introducing the scope of pentesting

In simple words, penetration testing is to test the information security measures of
a company. Information security measures entail a company's network, database,
website, public-facing servers, security policies, and everything else specified by
the client. At the end of the day, a pentester must present a detailed report of their
findings such as weakness, vulnerability in the company's infrastructure, and the
risk level of particular vulnerability, and provide solutions if possible.

The need for pentesting

There are several points that describe the significance of pentesting:

* Pentesting identifies the threats that might expose the confidentiality
of an organization

* Expert pentesting provides assurance to the organization with a complete
and detailed assessment of organizational security

* Pentesting assesses the network's efficiency by producing huge amount
of traffic and scrutinizes the security of devices such as firewalls, routers,
and switches

* Changing or upgrading the existing infrastructure of software, hardware,
or network design might lead to vulnerabilities that can be detected
by pentesting

* Intoday's world, potential threats are increasing significantly; pentesting is
a proactive exercise to minimize the chance of being exploited

* Pentesting ensures whether suitable security policies are being followed
or not

Consider an example of a well-reputed e-commerce company that makes money
from online business. A hacker or group of black hat hackers find a vulnerability
in the company's website and hack it. The amount of loss the company will have
to bear will be tremendous.

[6]

Chapter 1

Components to be tested

An organization should conduct a risk assessment operation before pentesting;
this will help identify the main threats such as misconfiguration or vulnerability in:

* Routers, switches, or gateways
* Public-facing systems; websites, DMZ, e-mail servers, and remote systems

* DNS, firewalls, proxy servers, FTP, and web servers

Testing should be performed on all hardware and software components of a network
security system.

Qualities of a good pentester
The following points describe the qualities of good pentester. They should:

* Choose a suitable set of tests and tools that balance cost and benefits
* Follow suitable procedures with proper planning and documentation

* Establish the scope for each penetration test, such as objectives, limitations,
and the justification of procedures

* Beready to show how to exploit the vulnerabilities

* State the potential risks and findings clearly in the final report and provide
methods to mitigate the risk if possible

* Keep themselves updated at all times because technology is
advancing rapidly

A pentester tests the network using manual techniques or the relevant tools. There
are lots of tools available in the market. Some of them are open source and some

of them are highly expensive. With the help of programming, a programmer can
make his own tools. By creating your own tools, you can clear your concepts and
also perform more R&D. If you are interested in pentesting and want to make your
own tools, then the Python programming language is the best, as extensive and
freely available pentesting packages are available in Python, in addition to its ease
of programming. This simplicity, along with the third-party libraries such as scapy
and mechanize, reduces code size. In Python, to make a program, you don't need to
define big classes such as Java. It's more productive to write code in Python than in
C, and high-level libraries are easily available for virtually any imaginable task.

If you know some programming in Python and are interested in pentesting this book
is ideal for you.

[71

[vww allitebooks.cond

http://www.allitebooks.org

Python with Penetration Testing and Networking

Defining the scope of pentesting

Before we get into pentesting, the scope of pentesting should be defined.
The following points should be taken into account while defining the scope:

* You should develop the scope of the project in consultation with the client.
For example, if Bob (the client) wants to test the entire network infrastructure
of the organization, then pentester Alice would define the scope of pentesting
by taking this network into account. Alice will consult Bob on whether any
sensitive or restricted areas should be included or not.

* You should take into account time, people, and money.

* You should profile the test boundaries on the basis of an agreement signed
by the pentester and the client.

* Changes in business practice might affect the scope. For example, the addition
of a subnet, new system component installations, the addition or modification
of a web server, and so on, might change the scope of pentesting.

The scope of pentesting is defined in two types of tests:

* A non-destructive test: This test is limited to finding and carrying out the
tests without any potential risks. It performs the following actions:

° Scans and identifies the remote system for potential vulnerabilities

o

Investigates and verifies the findings

° Maps the vulnerabilities with proper exploits

o

Exploits the remote system with proper care to avoid disruption

° Provides a proof of concept

o

Does not attempt a Denial-of-Service (DoS) attack

* A destructive test: This test can produce risks. It performs the
following actions:

o

Attempts DoS and buffer overflow attacks, which have the
potential to bring down the system

Approaches to pentesting

There are three types of approaches to pentesting:

* Black-box pentesting follows non-deterministic approach of testing

° You will be given just a company name

o

It is like hacking with the knowledge of an outside attacker

[8]

Chapter 1

[e]

There is no need of any prior knowledge of the system
° Itis time consuming
* White-box pentesting follows deterministic approach of testing

o

You will be given complete knowledge of the infrastructure that
needs to be tested

This is like working as a malicious employee who has ample
knowledge of the company's infrastructure

You will be provided information on the company's infrastructure,
network type, company's policies, do's and don'ts, the IP address,
and the IPS/IDS firewall

* Gray-box pentesting follows hybrid approach of black and white box testing

o

The tester usually has limited information on the target network/
system that is provided by the client to lower costs and decrease
trial and error on the part of the pentester

It performs the security assessment and testing internally

Introducing Python scripting

Before you start reading this book, you should know the basics of Python
programming, such as the basic syntax, variable type, data type tuple, list dictionary,
functions, strings, methods, and so on. Two versions, 3.4 and 2.7.8, are available at
python.org/downloads/.

In this book, all experiments and demonstration have been done in Python 2.7.8
Version. If you use Linux OS such as Kali or BackTrack, then there will be no issue,
because many programs, such as wireless sniffing, do not work on the Windows
platform. Kali Linux also uses the 2.7 Version. If you love to work on Red Hat or
CentOS, then this version is suitable for you.

Most of the hackers choose this profession because they don't want to do
programming. They want to use tools. However, without programming, a
hacker cannot enhance his?2 skills. Every time, they have to search the tools over
the Internet. Believe me, after seeing its simplicity, you will love this language.

[o]

python.org/downloads/

Python with Penetration Testing and Networking

Understanding the tests and tools
you'll need

As you must have seen, this book is divided into seven chapters. To conduct
scanning and sniffing pentesting, you will need a small network of attached devices.
If you don't have a lab, you can make virtual machines in your computer. For
wireless traffic analysis, you should have a wireless network. To conduct a web
attack, you will need an Apache server running on the Linux platform. It will be

a good idea to use CentOS or Red Hat Version 5 or 6 for the web server because

this contains the RPM of Apache and PHP. For the Python script, we will use

the Wireshark tool, which is open source and can be run on Windows as well

as Linux platforms.

Learning the common testing platforms
with Python

You will now perform pentesting; I hope you are well acquainted with networking
fundamentals such as IP addresses, classful subnetting, classless subnetting, the
meaning of ports, network addresses, and broadcast addresses. A pentester must

be perfect in networking fundamentals as well as at least in one operating system; if
you are thinking of using Linux, then you are on the right track. In this book, we will
execute our programs on Windows as well as Linux. In this book, Windows, CentOS,
and Kali Linux will be used.

A hacker always loves to work on a Linux system. As it is free and open source,
Kali Linux marks the rebirth of BackTrack and is like an arsenal of hacking tools.
Kali Linux NetHunter is the first open source Android penetration testing platform
for Nexus devices. However, some tools work on both Linux and Windows, but on
Windows, you have to install those tools. I expect you to have knowledge of Linux.
Now, it's time to work with networking on Python.

Network sockets

A network socket address contains an IP address and port number. In a very simple
way, a socket is a way to talk to other computers. By means of a socket, a process can
communicate with another process over the network.

[10]

Chapter 1

In order to create a socket, use the socket . socket () function that is available in the
socket module. The general syntax of a socket function is as follows:

s = socket.socket (socket family, socket type, protocol=0)

Here is the description of the parameters:

socket family: socket.AF INET, PF PACKET

AF_INET is the address family for IPv4. PF_PACKET operates at the device driver
layer. The pcap library for Linux uses PF_PACKET. You will see more details on
PF_PACKET in Chapter 3, Sniffing and Penetration Testing. These arguments represent
the address families and the protocol of the transport layer:

Socket type : socket.SOCK DGRAM, socket.SOCK RAW, socket.SOCK STREAM

The socket .S0CK_DGRAM argument depicts that UDP is unreliable and
connectionless, and socket.sock_STREAM depicts that TCP is reliable and is
a two-way, connection-based service. We will discuss socket . SOCK_RAW in
Chapter 3, Sniffing and Penetration Testing.

protocol

Generally, we leave this argument; it takes 0 if not specified. We will see the use of
this argument in Chapter 3, Sniffing and Penetration Testing.

Server socket methods

In a client-server architecture, there is one centralized server that provides service,
and many clients request and receive service from the centralized server. Here are
some methods you need to know:

* socket.bind (address): This method is used to connect the address
(IP address, port number) to the socket. The socket must be open before
connecting to the address.

* socket.listen(q): This method starts the TCP listener. The g argument
defines the maximum number of lined-up connections.

* socket.accept (): The use of this method is to accept the connection
from the client. Before using this method, the socket .bind (address) and
socket .listen (q) methods must be used. The socket .accept () method
returns two values: client socket and address, where client_socket is a
new socket object used to send and receive data over the connection, and
address is the address of the client. You will see examples later.

[11]

Python with Penetration Testing and Networking

Client socket methods

The only method dedicated to the client is the following;:

socket . connect (address): This method connects the client to the server.
The address argument is the address of the server.

General socket methods

The general socket methods are as follows:

socket.recv (bufsize): This method receives a TCP message from the
socket. The bufsize argument defines the maximum data it can receive
at any one time.

socket .recvfrom (bufsize): This method receives data from the socket.
The method returns a pair of values: the first value gives the received data,
and the second value gives the address of the socket sending the data.

socket.recv_into (buffer): This method receives data less than or equal
to buffer. The buffer parameter is created by the bytearray () method.
We will discuss it in an example later.

socket.recvfrom_ into (buffer): This method obtains data from the socket
and writes it into the buffer. The return value is a pair (nbytes, address),
where nbytes is the number of bytes received, and the address is the address
of the socket sending the data.

Be careful while using the socket .recv from into (buffer)
method in older versions of Python. Buffer overflow vulnerability
. has been found in this method. The name of this vulnerability is
% CVE-2014-1912, and its vulnerability was published on February 27,

L 2014. Buffer overflow in the socket .recvfrom_into function in
Modules/socketmodule. c in Python 2.5 before 2.7.7, 3.x before
3.3.4, and 3.4.x before 3.4rc1 allows remote attackers to execute
arbitrary code via a crafted string.

socket .send (bytes): This method is used to send data to the socket.
Before sending the data, ensure that the socket is connected to a remote
machine. It returns the number of bytes sent.

[12]

Chapter 1

* socket.sendto(data, address): This method is used to send data to
the socket. Generally, we use this method in UDP. UDP is a connectionless
protocol; therefore, the socket should not be connected to a remote machine,
and the address argument specifies the address of the remote machine.
The return value gives the number of bytes sent.

* socket.sendall (data): As the name implies, this method sends all data to
the socket. Before sending the data, ensure that the socket is connected to a
remote machine. This method ceaselessly transfers data until an error is seen.
If an error is seen, an exception would rise, and socket.close () would
close the socket.

Now it is time for the practical; no more mundane theory.

Moving on to the practical

First, we will make a server-side program that offers a connection to the client and
sends a message to the client. Run serverl.py:

import socket

host = "192.168.0.1" #Server address

port = 12345 #Port of Server

s = socket.socket (socket.AF INET, socket.SOCK STREAM)
s.bind((host,port)) #bind server

s.listen(2)

conn, addr = s.accept ()

print addr, "Now Connected"

conn.send ("Thank you for connecting")

conn.close ()

The preceding code is very simple; it is minimal code on the server side.

First, import the socket module and define the host and port number: 192.168.0.1
is the server's IP address. Socket .AF_INET defines the IPv4 protocol's family.
Socket .SOCK_STREAM defines the TCP connection. The s.bind ((host, port))
statement takes only one argument. It binds the socket to the host and port number.
The s.1listen (2) statement listens to the connection and waits for the client. The
conn, addr = s.accept () statement returns two values: conn and addr. The
conn socket is the client socket, as we discussed earlier. The conn. send () function
sends the message to the client. Finally, conn.close () closes the socket. From the
following examples and screenshot, you will understand conn better.

[13]

Python with Penetration Testing and Networking

This is the output of the serverl.py program:

G:\Python\Networking>python serverl.py
Now, the server is in the listening mode and is waiting for the client:

Let's see the client-side code. Run client1l.py:

import socket

s = socket.socket (socket.AF INET, socket.SOCK STREAM)
host = "192.168.0.1" # server address

port =12345 #server port

s.connect ((host, port))

print s.recv(1024)

s.send ("Hello Server")

s.close ()

In the preceding code, two methods are new: s.connect ((host, port)),
which connects the client to the server, and s.recv (1024), which receives
the strings sent by the server.

The output of client.py and the response of the server is shown in the

following screenshot:

G:sPythonsNetworking>python serverd.py
C'192.168.8.11"', 1789)> How Connected

G:wPython“Hetworking>

¢+ Command Prompt

C:wnetl>clientl_py
Thank you for connecting

Cownetl’

The preceding screenshot of the output shows that the server accepted the
connection from 192.168.0.11. Don't get confused by seeing the port 1789; it is
the random port of the client. When the server sends a message to the client, it uses
the conn socket, as mentioned earlier, and this conn socket contains the client IP
address and port number.

[14]

Chapter 1

The following diagram shows how the client accepts a connection from the server.
The server is in the listening mode, and the client connects to the server. When you
run the server and client program again, the random port gets changed. For the
client, the server port 12345 is the destination port, and for the server, the client
random port 1789 is the destination port.

192.168.0.1

192.168.0.1 < 192.168.0.11

192.168.01:12345||192.168.0.11:1789

12345

You can extend the functionality of the server using the while loop, as shown in the
following program. Run the server2.py program:

import socket

host "192.168.0.1"

port = 12345

s = socket.socket (socket .AF_INET, socket.SOCK_STREAM)
s.bind ((host,port))

s.listen(2)

while True:

conn, addr = s.accept ()

print addr, "Now Connected"
conn.send ("Thank you for connecting")
conn.close ()

The preceding code is the same as the previous one, just the infinite while loop
is added.

Run the server2.py program, and from the client, run client1.py.

[15]

Python with Penetration Testing and Networking

The output of server2.py is shown here:

G s PythonsNetworking>*python server.py
C*192.168.8.11", 17712 Now Connected
192 168 .8.111, 1792> How Connected
1921688111, 17732 Now Connected

e+ Command Prompt

C:wnetl>clientl.py
Thank vou for connecting

C:netl>clientl_py
Thank vou for connecting

C:wnetl>clientl.py
Thank vou for connecting

C:netl>clientl_py
Thank vou for connecting

Cosnetl>

One server can give service to many clients. The while loop keeps the server
program alive and does not allow the code to end. You can set a connection limit to
the while loop; for example, set while i>10 and increment i with each connection.

Before proceeding to the next example, the concept of bytearray should be
understood. The bytearray array is a mutable sequence of unsigned integers in the
range of 0 to 255. You can delete, insert, or replace arbitrary values or slices. The
bytearray array's objects can be created by calling the built-in bytearray array.

The general syntax of bytearray is as follows:

bytearray ([source[, encoding[, errors]ll])

Let's illustrate this2 with an example:

>>> m = bytearray("Mohit Mohit")
>>> m[1]

111

>>> m[0]

77

>>> m[:5]= "Hello"

>>> M

bytearray(b'Hello Mohit')

>>>

[16]

Chapter 1

This is an example of the slicing of bytearray.

Now, let's look at the splitting operation on bytearray ():

>>> m = bytearray("Hello Mohit")

>>> m

bytearray(b'Hello Mohit')

>>> m.split ()

[bytearray (b'Hello'), bytearray(b'Mohit')]

The following is the append operation on bytearray ():

>>> m.append (33)

>>> m

bytearray(b'Hello Mohit!")

>>> bytearray(b'Hello World!')

The next example is of s.recv_into (buff). In this example, we will use
bytearray () to create a buffer to store data.

First, run the server-side code. Run server3.py:

import socket

host = "192.168.0.1"

port = 12345

s = socket.socket (socket.AF_INET, socket.SOCK_STREAM)
s.bind((host, port))

s.listen (1)

conn, addr = s.accept ()

print "connected by", addr

conn.send ("Thanks")

conn.close ()

The preceding program is the same as the previous one. In this program, the server
sends Thanks, six characters.

Let's run the client-side program. Run client3.py:

import socket

host = "192.168.0.1"

port = 12345

s = socket.socket (socket.AF INET, socket.SOCK STREAM)
s.connect ((host, port))

buf = bytearray("-" * 30) # buffer created
print "Number of Bytes ",s.recv_into (buf)
print buf

s.close

[17]

vww allitebooks.conl

http://www.allitebooks.org

Python with Penetration Testing and Networking

In the preceding program, a buf parameter is created using bytearray ().
The s.recv_into (buf) statement gives us the number of bytes received.
The buf parameter gives us the string received.

The output of client3.py and server3.py is shown in the following screenshot:

e

BN Ci\Windows\system3Zioemd.exe

:s»Project SnakesChapter 1%First Chaptersprograms>python serverd.py
onnected by (*192 _168_0_.11", 1796>

»Project SnakesChapter 1%First Chapter:programs>

Our client program successfully received 6 bytes of string, Thanks. Now, you must
have got an idea of bytearray (). I hope you will remember it.

This time I will create a UDP socket.

Run udp1.py, and we will discuss the code line by line:

import socket

host "192.168.0.1"

port 12346

s = socket.socket (socket.AF INET, socket.SOCK DGRAM)
s.bind((host,port))

data, addr = s.recvfrom(1024)

print "received from ",addr
print "obtained ", data
s.close()

socket .SOCK DGRAM creates a UDP socket, and data, addr = s.recvfrom(1024)
returns two things: first is the data and second is the address of the source.

[18]

Chapter 1

Now, see the client-side preparations. Run udp2 . py:

import socket

host = "192.168.0.1"

port = 12346

s = socket.socket (socket.AF INET, socket.SOCK DGRAM)
print s.sendto("hello all", (host,port))

s.close ()

Here, I used the UDP socket and the s.sendto () method, as you can see in the
definition of socket .sendto (). You know very well that UDP is a connectionless
protocol, so there is no need to establish a connection here.

The following screenshot shows the output of udp1.py (the UDP server) and udp2.
py (the UDP client):

G:=“Project Snake~Chapter 1“First Chapterprograms>python udpl.py
recevied from <C'1972.168.8.11°',. 1814)
ohtained helle all

:»Project SnakesChapter 1-First Chapter“programs>

C:wnetl>python wdp2.py
v

C:wnetl>

The server program successfully received data.

Let us assume that a server is running and there is no client start connection, and
that the server will have been listening. So, to avoid this situation, use socket.
settimeout (value).

Generally, we give a value as an integer; if I give 5 as the value, it would mean wait
for 5 seconds. If the operation doesn't complete within 5 seconds, then a timeout
exception would be raised. You can also provide a non-negative float value.

[19]

Python with Penetration Testing and Networking

For example, let's look at the following code:

import socket

host = "192.168.0.1"

port = 12346

s = socket.socket (socket.AF INET, socket.SOCK DGRAM)
s.bind((host, port))

s.settimeout (5)

data, addr = s.recvfrom(1024)

print "recevied from ",addr

print "obtained ", data

s.close ()

I added one line extra, that is, s. settimeout (5). The program waits for 5 seconds;
only after that it will give an error message. Run udptimel.py.

The output is shown in the following screenshot:

B ChiWindows'system32homd.exe

G:“Project Snake“Chapter 1-First Chapter*programs>python wdptimel.py
Traceback <most recent call last>:
File "wdptimel_puw", line 7. in <module
data, addr = s.recufrom(l1024>
zocket .timeout: timed out

»Project Snake“Chapter 1“First Chapter-programs>

The program shows an error; however, it does not look good if it gives an error
message. The program should handle the exceptions.

Socket exceptions

In order to handle exceptions, we'll use the try and except blocks. The next example
will tell you how to handle the exceptions. Run udptime2.py:

import socket

host = "192.168.0.1"

port = 12346

s = socket.socket (socket.AF INET, socket.SOCK DGRAM)
try:

[20]

Chapter 1

s.bind((host, port))
s.settimeout (5)

data, addr = s.recvfrom(1024)
print "recevied from ",addr
print "obtained ", data
s.close()

except socket.timeout

print "Client not connected"
s.close()

The output is shown in the following screenshot:

B Ch\Windows\system32icmd.exe

G:“Project Snake~Chapter 1“First Chapter programs>python udptime2.py
Client not connected

G:“Project Snake~Chapter 1“First Chapter‘programs>>

In the try block, I put my code, and from the except block, a customized message is
printed if any exception occurs.

Different types of exceptions are defined in Python's socket library for different
errors. These exceptions are described here:

exception socket.herror: This block catches the address-related error.

exception socket.timeout: This block catches the exception when a
timeout on a socket occurs, which has been enabled by settimeout ().
In the previous example you can see that we used socket . timeout.

exception socket.gaierror: This block catches any exception that is
raised due to getaddrinfo () and getnameinfo ().

exception socket.error: This block catches any socket-related errors.
If you are not sure about any exception, you could use this. In other words,
you can say that it is a generic block and can catch any type of exception.

Downloading the example code
\ You can download the example code files from your account at
~ http://www.packtpub.com for all the Packt Publishing books
Q you have purchased. If you purchased this book elsewhere, you
can visit http: //www.packtpub.com/support and register to
have the files e-mailed directly to you.

[21]

http://www.packtpub.com
http://www.packtpub.com/support

Python with Penetration Testing and Networking

Useful socket methods

So far, you have gained knowledge of socket and client-server architecture. At this
level, you can make a small program of networks. However, the aim of this book is
to test the network and gather information. Python offers very beautiful as well

as useful methods to gather information. First, import socket and then use

these methods:

socket .gethostbyname (hostname): This method converts a hostname to
the IPv4 address format. The IPv4 address is returned in the form of a string.
Here is an example:

>>> import socket

>>> socket.gethostbyname ('thapar.edu')

'220.227.15.55"

>>>

>>> socket.gethostbyname ('google.com')

'173.194.126.64"

>>>

I know you are thinking about the nslookup command. Later, you will see
more magic.

socket .gethostbyname ex (name): This method converts a hostname to

the IPv4 address pattern. However, the advantage over the previous method
is that it gives all the IP addresses of the domain name. It returns a tuple
(hostname, canonical name, and IP_addrlist) where the hostname is given by
us, the canonical name is a (possibly empty) list of canonical hostnames of
the server for the same address, and IP_addrlist is a list all the available IPs of
the same hostname. Often, one domain name is hosted on many IP addresses
to balance the load of the server. Unfortunately, this method does not work
for IPv6. I hope you are well acquainted with tuple, list, and dictionary.

Let's look at an example:

>>> socket.gethostbyname ex('thapar.edu')

('thapar.edu', [], ['14.139.242.100', '220.227.15.55'])

>>> socket.gethostbyname ex('google.com')

>>>

('google.com', []l, ['173.194.36.64', '173.194.36.71"',
'173.194.36.73"', '173.194.36.70', '173.194.36.78"',
'173.194.36.66', '173.194.36.65', '173.194.36.68"',
'173.194.36.69', '173.194.36.72', '173.194.36.67']1)

>>>

[22]

Chapter 1

It returns many IP addresses for a single domain name. It means one domain
such as thapar.edu or google.comruns on multiple IPs.

socket .gethostname () : This returns the hostname of the system where the
Python interpreter is currently running;:

>>> socket.gethostname ()

'eXtreme'

To glean the current machine's IP address by socket module, you can use the
following trick using gethostbyname (gethostname ()):

>>> socket.gethostbyname (socket.gethostname())
'192.168.10.1"

>>>

You know that our computer has many interfaces. If you want to know the IP
address of all the interfaces, use the extended interface:.

>>> socket.gethostbyname ex(socket.gethostname())
('eXtreme', [], ['10.0.0.10', '192.168.10.1', '192.168.0.1'])

>>>

It returns one tuple containing three elements: first is the machine name,
second is a list of aliases for the hostname (empty in this case,) and third is
the list of IP addresses of interfaces.

socket .getfqdn ([name]): This is used to find the fully qualified name, if
it's available. The fully qualified domain name consists of a host and domain
name; for example, beta might be the hostname, and example . com might be
the domain name. The fully qualified domain name (FQDN) becomes beta.
example.com:.

>>> socket.getfqgdn('facebook.com')

'edge-star-shv-12-frc3.facebook.com!

In the preceding example, edge-star-shv-12-frc3 is the hostname, and
facebook . com is the domain name. In the following example, FQDN is not
available for thapar.edu:

>>> socket.getfqgdn('thapar.edu')
'thapar.edu'

If the name argument is blank, it returns the current machine name:

>>> socket.getfqgdn()
'eXtreme'

>>>

[23]

Python with Penetration Testing and Networking

socket .gethostbyaddr (ip_address): This is like a "reverse" lookup for
the name. It returns a tuple (hostname, canonical name, and IP_addrlist)
where hostname is the hostname that responds to the given ip_address,
the canonical name is a (possibly empty) list of canonical names of the
same address, and IP_addrlist is a list of IP addresses for the same
network interface on the same host:

>>> socket.gethostbyaddr('173.194.36.71")
('del01s06-in-£f7.1el100.net', [1, ['173.194.36.71'])

>>> socket.gethostbyaddr('119.18.50.66")

Traceback (most recent call last):
File "<pyshell#9>", line 1, in <module>
socket.gethostbyaddr('119.18.50.66")
herror: [Errno 11004] host not found

It shows an error in the last query because reverse DNS lookup is
not present.

socket .getservbyname (servicename [, protocol namel): This converts
any protocol name to the corresponding port number. The Protocol name

is optional, either TCP or UDP. For example, the DNS service uses TCP as
well as UDP connections. If the protocol name is not given, any protocol
could match:

>>> import socket

>>> socket.getservbyname ('http')

80

>>> socket.getservbyname ('smtp', 'tcp')

25

>>>

socket .getservbyport (port [, protocol namel): This converts an
Internet port number to the corresponding service name. The protocol
name is optional, either TCP or UDP:

>>> socket.getservbyport (80)

'http!

>>> socket.getservbyport (23)

'telnet!'

>>> socket.getservbyport (445)

'microsoft-ds'

>>>

[24]

Chapter 1

* socket.connect ex(address): This method returns an error indicator. If
successful. it returns 0; otherwise, it returns the errno variable. You can take
advantage of this function to scan the ports. Run the connet_ex.py program:

import socket
rmip ='127.0.0.1"
portlist = [22,23,80,912,135,445,20]

for port in portlist:
sock= socket.socket (socket .AF INET, socket.SOCK STREAM)
result = sock.connect ex((rmip,port))
print port,":", result
sock.close ()

The output is shown in the following screenshot:

BN C\Windows\system32Zomd.exe

G:“Project Snake>Chapter 1-First Chapter~programs>python connect_ex.py
22 186861

23 18861

5]

712

135

445 a

28 - 1896861

G:“Project Snake~Chapter 1-First Chaptersprograms

The preceding program output shows that ports 80,912,135 and 445 are open. This
is a rudimentary port scanner. The program is using the IP address 127.0.0.1; this
is a loop back address, so it is impossible to have any connectivity issues. However,
when you have issues, perform this on another device with a large port list. This time
you will have to use socket.settimeout (value):

socket.getaddrinfo (host, port[, family[, socktypel, protol[, flagsl]lll)

This socket method converts the host and port arguments into a sequence
of five tuples.

Let's take a look at the following example:

>>> import socket
>>> socket.getaddrinfo ('www.thapar.edu', 'http')

[, 1, o, '+, ('220.227.15.47', 80)), (2, 1, o, '', ('14.139.242.100",
80))1

>>>

[25]

Python with Penetration Testing and Networking

output 2 represents the family, 1 represents the socket type, 0 represents the
protocol, ' ' represents canonical name, and ('220.227.15.47', 80) represents
the 2socket address. However, this number is difficult to comprehend. Open the
directory of the socket.

Use the following code to find the result in a readable form:

import socket
def get protnumber (prefix) :
return dict((getattr (socket, a), a)
for a in dir (socket)
if a.startswith (prefix))

proto_fam = get protnumber ('AF ')
types = get protnumber ('SOCK ')
protocols = get protnumber ('IPPROTO ')

for res in socket.getaddrinfo('www.thapar.edu', 'http'):

family, socktype, proto, canonname, sockaddr = res

print 'Family :', proto fam[family]
print 'Type :', types[socktypel
print 'Protocol :', protocols [proto]
print 'Canonical name:', canonname

print 'Socket address:', sockaddr

The output of the code is shown in the following screenshot:

B Ch\Windows\system32\omd.exe

G:“Project Snake“Chapter 1“~First Chapter“programs>python getaddl.py
: AF_IHET
SOCK_STREAM
IFPROTO_IF

C'14.13%9.242.188° ., 86>
AF_IHNET
SOCK_STREAM

Prutuqul IPPROTO_IP

Socket address: ¢*220.227.15_47' . 88>

G:“Project Snake“Chapter 1-~First Chapter“programs>

[26]

Chapter 1

The upper part makes a dictionary using the AF _, sock_, and IPPROTO_ prefixes
that map the protocol number to their names. This dictionary is formed by the list
comprehension technique.

The upper part of the code might sometimes be confusing, but we can execute the
code separately as follows:

>>> dict((getattr(socket,n),n) for n in dir(socket) if
n.startswith('AF_'))

{0: 'AF UNSPEC', 2: 'AF INET', 6: 'AF IPX', 1l1l: 'AF SNA', 12: 'AF
DECnet', 16: 'AF APPLETALK', 23: 'AF INET6', 26: 'AF_IRDA'}

Now, this is easy to understand. This code is usually used to get the
protocol number:

for res in socket.getaddrinfo('www.thapar.edu', 'http'):

The preceding line of code returns the five values, as discussed in the definition.
These values are then matched with their corresponding dictionary.

Summary

Now, you have got an idea of networking in Python. The aim of this chapter is

to complete the prerequisites of the upcoming chapters. From the start, you have
learned the need for pentesting. Pentesting is conducted to identify threats and
vulnerability in the organization. What should be tested? This is specified in the
agreement; don't try to test anything that is not mentioned in the agreement.
Agreement is your jail-free card. A pentester should have knowledge of the latest
technology. You should have some knowledge of Python before you start reading
this book. In order to run Python scripts, you should have a lab setup, a network of
computers to test a live system, and dummy websites running on the Apache server.
This chapter discussed the socket and its methods. The server socket method defines
how to make a simple server. The server binds its own address and port to listen to
the connections. A client that knows the server address and port number connects

to the server to get service. Some socket methods such as socket .recv (bufsize),
socket .recvfrom(bufsize), socket.recv_into (buffer), socket.send (bytes),
and so on are useful for the server as well as the client. You learned how to handle
different types of exceptions. In the Useful socket methods section, you got an idea of
how to get the IP and hostname of a machine, how to glean the IP address from the
domain name, and vice versa.

In the next chapter, you will see scanning pentesting, which includes IP address
scanning to detect the live hosts. To carry out IP scanning, ping sweep and TCP
scanning are used. You will learn how to detect services running on a remote host
using port scanner.

[27]

[vww allitebooks.cond

http://www.allitebooks.org

Scanning Pentesting

Network scanning refers to a set of procedures that investigate a live host, the type of
host, open ports, and the type of services running on the host. Network scanning is a
part of intelligence gathering by virtue of which an attack can create a profile of the
target organization.

In this chapter, we will cover the following topics:

How to check live systems

Ping sweep

TCP scanner

How to create an efficient IP scanner
Services running on the target machine
The Concept of a port scanner

How to create an efficient port scanner

You should have basic knowledge of the TCP/IP layer communication. Before
proceeding further, the concept of the Protocol Data Unit (PDU) should be clear.

PDU is a unit of data specified in the protocol. It is the generic term for data at
each layer.

For the application layer, PDU indicates data

For the transport layer, PDU indicates a segment

For the Internet or the network layer, PDU indicates a packet

For the data link layer or network access layer, PDU indicates a frame

For the physical layer, that is, physical transmission, PDU indicates bits

Scanning Pentesting

How to check live systems in a network
and the concept of a live system

Ping scan involves sending an ICMP ECHO Request to a host. If a host is live, it will
return an ICMP ECHO Reply, as shown in the following image:

ICMP ECHO Request

v

4

I . ICMP ECHO Reply

Source Destination

ICMP request and reply

The operating system's ping command provides the facility to check whether
the host is live or not. Consider a situation where you have to test a full list of IP
addresses. In this situation, if you test the IP one by one, it will take a lot of time
and effort. In order to handle this situation, we use ping sweep.

Ping sweep

Ping sweep is used to identify the live host from a range of IP addresses by
sending the ICMP ECHO request and the ICMP ECHO reply. From a subnet and
network address, an attacker or pentester can calculate the network range. In this
section, I am going to demonstrate how to take advantage of the ping facility of an
operating system.

First, I shall write a simple and small piece of code, as follows:

import os

response = os.popen('ping -n 1 10.0.0.1")
for line in response.readlines() :

print line,

[30]

Chapter 2

In the preceding code, import os imports the OS module so that we can run the

OS command. The next line os.popen ('ping -n 1 10.0.0.1") that takes a DOS
command is passed in as a string and returns a file-like object connected to the
command's standard input or output streams. The ping -n 1 10.0.0.1 command
is a Windows OS command that sends one ICMP ECHO request packet. By reading
the os.psopen () function, you can intercept the command's output. The output is
stored in the response variable. In the next line, the readlines () function is used to
read the output of a file-like object.

The output of the program is as follows:

G:\Project Snake\Chapter 2\ip>ips.py

Pinging 10.0.0.1 with 32 bytes of data:
Reply from 10.0.0.1: bytes=32 time=3ms TTL=64

Ping statistics for 10.0.0.1:
Packets: Sent = 1, Received = 1, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 3ms, Maximum = 3ms, Average = 3ms

The output shows the reply, byte, time, and TTL values, which indicate that the
host is live. Consider another output of the program for IP 10.0.0.2.
G:\Project Snake\Chapter 2\ip>ips.py

Pinging 10.0.0.2 with 32 bytes of data:

Reply from 10.0.0.16: Destination host unreachable.

Ping statistics for 10.0.0.2:
Packets: Sent = 1, Received = 1, Lost = 0 (0% loss),

The preceding output shows that the host is not live.

The preceding code is very important for proper functioning, and is similar to the
engine of a car. In order to make it fully functional, we need to modify the code so
that it is platform independent and produce easily readable output.

[31]

Scanning Pentesting

I want my code to work for a range of IPs:

import os

net = raw_input ("Enter the Network Address ")
netl= net.split('.")

print netl

a = "."

net2 = netl[0]+a+netl[1l]+a+netl[2]+a

print net2

stl = int(raw_input ("Enter the Starting Number "))
enl = int (raw_input ("Enter the Last Number "))

The preceding code asks for the network address of the subnet, but you can give any
IP address of the subnet. The next line net1= net.split ('."') splits the IP address
in four parts. The net2 = net1[0] +a+netl[1]+a+netl [2]+a statement forms the
network address. The last two lines ask for a range of IP addresses.

To make it platform independent, use the following code:

import os

import platform

oper = platform.system()
if (oper=="Windows") :

pingl = "ping -n 1 "
elif (oper== "Linux"):

pingl = "ping -c¢ 1 "
else

pingl = "ping -c¢ 1 "

The preceding code determines whether the code is running on Windows OS or

the Linux platform. The oper = platform.system() statement informs this to

the running operating system as the ping command is different in Windows and
Linux. Windows OS uses ping -n 1 to send one packet of the ICMP ECHO request,
whereas Linux uses ping -c 1.

Now, let's see the following full code:

import os

import platform

from datetime import datetime

net = raw_input ("Enter the Network Address ")
netl= net.split('.")

a="."

net2 = netl[0]+a+netl[1l]+a+netl[2]+a

stl = int(raw_input ("Enter the Starting Number "))
enl = int(raw_input ("Enter the Last Number "))

[32]

Chapter 2

enl=enl+l
oper = platform.system()

if (oper=="Windows") :

pingl = "ping -n 1 "
elif (oper== "Linux"):

pingl = "ping -c 1 "
else

pingl = "ping -c 1 "

tl= datetime.now ()
print "Scanning in Progress"
for ip in xrange(stl,enl):
addr = net2+str (ip)
comm = pingl+addr
response = 0Os.popen (comm)
for line in response.readlines() :
if (line.count ("TTL")) :
break
if (line.count ("TTL")) :
print addr, "--> Live"

t2= datetime.now ()
total =t2-tl
print "scanning complete in " , total

Here, a couple of new things are in the preceding code. The for ip in

xrange (stl,enl) : statement supplies the numeric values, that is, the last octet
value of the IP address. Within the for loop, the addr = net2+str (ip) statement
makes it one complete IP’ address, and the comm = pingl+addr statement makes it a
full OS command which passes to os.popen (comm). The if (1ine.count ("TTL")) :
statement checks for the occurrence of TTL in the line. If any TTL value is found in the
line, then it breaks the further processing of the line by using the break statement.
The next two lines of code print the IP address as live where TTL is found. I used
datetime.now () to calculate the total time taken to scan.

The output of the ping_sweep.py program is as follows:

G:\Project Snake\Chapter 2\ip>python ping sweep.py
Enter the Network Address 10.0.0.1

Enter the Starting Number 1

Enter the Last Number 60

Scanning in Progress

10.0.0.1 --> Live

[33]

Scanning Pentesting

10.
10.
10.
10.
10.
10.
10.
10.

0.

O O O o o o o
.

O O O o o o o

0.

.2 --> Live
.5 --> Live
.6 --> Live
.7 --> Live
.8 --> Live
.9 --> Live
.10 --> Live
11 --> Live

scanning complete in 0:02:35.230000

To scan 60 IP addresses, the program has taken 2 minutes 35 seconds.

The TCP scan concept and its implementation

using a Python script

Ping sweep works on the ICMP ECHO request and the ICMP ECHO reply. Many
users turn off their ICMP ECHO reply feature or use a firewall to block ICMP
packets. In this situation, your ping sweep scanner might not work. In this case, you
need a TCP scan. I hope you are familiar with the three-way handshake, as shown in
the following image:

e\ e\
Send SYN
(SEQ=100 SYN) \ SYN, received
Send SYN, ACK <:>
SYN. ACK received M——— | (SEQ=300 ACK=101 SYN, ACK)
@ Established
\\\\\\\\\\\\\\\“‘b ACK received

Send (SEQ=101 ACK=301)

[34]

Chapter 2

To establish the connection, the hosts perform a three-way handshake. The three
steps in establishing a TCP connection are as follows:

1. The client sends a segment with the SYN flag; this means the client requests
the server to start a session.

2. In the form of a reply, the server sends the segment that contains the ACK
and SYN flags.

3. The client responds with an ACK flag.

Now, let's see the following code of a TCP scan:

import socket
from datetime import datetime
net= raw_input ("Enter the IP address ")
netl= net.split('."')
a = "'."
net2 = netl[0]+a+netl[1l]+a+netl[2]+a
stl = int(raw_input ("Enter the Starting Number "))
enl = int(raw_input ("Enter the Last Number "))
enl=enl+1
tl= datetime.now()
def scan(addr) :
sock= socket.socket (socket.AF_INET, socket.SOCK_STREAM)
socket.setdefaulttimeout (1)
result = sock.connect ex((addr,135))
if result==0:
return 1
else

return O

def runl():
for ip in xrange(stl,enl):
addr = net2+str (ip)
if (scan(addr)) :
print addr , "is live"

runl ()

t2= datetime.now /()

total =t2-tl

print "scanning complete in " , total

[35]

Scanning Pentesting

The upper part of the preceding code is the same as the previous code. Here, we
use two functions. Firstly, the scan (addr) function uses the socket as discussed

in Chapter 1, Python with Penetration Testing and Networking. The result = sock.
connect_ex ((addr,135)) statement returns an error indicator. The error indicator
is 0 if the operation succeeds, otherwise, it is the value of the errno variable. Here,
we used port 135; this scanner works for the Windows system. There are some
ports such as 137, 138, 139 (NetBIOS name service), and 445 (Microsoft-DSActive
Directory), which are usually open. So, for better results, you have to change the
port and scan repeatedly.

The output of the iptcpscan.py program is as follows:

G:\Project Snake\Chapter 2\ip>python iptcpscan.py
Enter the IP address 10.0.0.1

Enter the Starting Number 1

Enter the Last Number 60

10.0.0.8 is 1live
10.0.0.11 is live
10.0.0.12 is live

10.0.0.15 is live
scanning complete in 0:00:57.415000

G:\Project Snake\Chapter 2\ip>

Let's change the port number, use 137, and see the following output:

G:\Project Snake\Chapter 2\ip>python iptcpscan.py
Enter the IP address 10.0.0.1

Enter the Starting Number 1

Enter the Last Number 60

scanning complete in 0:01:00.027000

G:\Project Snake\Chapter 2\ip>

So there will be no outcome from that port number. Change the port number, use
445, and the output will be as follows:

G:\Project Snake\Chapter 2\ip>python iptcpscan.py
Enter the IP address 10.0.0.1

Enter the Starting Number 1
Enter the Last Number 60

[36]

Chapter 2

10.0.0.5 is 1live
10.0.0.13 is live
scanning complete in 0:00:58.369000

G:\Project Snake\Chapter 2\ip>

The preceding three outputs show that 10.0.0.5,10.0.0.8,10.0.0.11,10.0.0.12,
10.0.0.13,and 10.0.0.15 are live. These IP addresses are running on the Windows

OS. So this is an exercise for you to check the common open ports for Linux and
make IP a complete IP TCP scanner.

How to create an efficient IP scanner

So far, you have seen the ping sweep scanner and the IP TCP scanner. Imagine that
you buy a car that has all the facilities, but the speed is very slow, then you feel that
it is a waste of time. The same thing happens when the execution of our program is
very slow. To scan 60 hosts, the ping_sweep.py program took 2 minutes 35 seconds

for the same range of IP addresses for which the TCP scanner took nearly one
minute. They take a lot of time to produce the results. But don't worry. Python
offers you multithreading, which will make your program faster.

I have written a full program of ping sweep with multithreading, and will explain
this to you section-wise:

import os

import collections

import platform

import socket, subprocess,sys
import threading

from datetime import datetime
""" gsection 1 ''!

net = raw_input ("Enter the Network Address ")
netl= net.split('.")

a = "."

net2 = netl[0]+a+netl[1l]+a+netl[2]+a

stl = int (raw_input ("Enter the Starting Number "))

enl = int(raw_input ("Enter the Last Number "))
enl =enl+1
dic = collections.OrderedDict ()

oper = platform.system()

if (oper=="Windows") :

[37]

[vww allitebooks.cond

http://www.allitebooks.org

Scanning Pentesting

pingl = "ping -n 1 "
elif (oper== "Linux"):

pingl = "ping -c 1 "
else

pingl = "ping -c 1 "

tl= datetime.now()
'''section 2'"!
class myThread (threading.Thread) :
def init (self,st,en):
threading.Thread. init (self)
self.st = st
self.en = en
def run(self):
runl (self.st,self.en)
'''section 3'"!
def runl(stl,enl):
#print "Scanning in Progess"
for ip in xrange(stl,enl):
#print ".",
addr = net2+str (ip)
comm = pingl+addr
response = 0Os.popen (comm)
for line in response.readlines() :
if (line.count ("TTL")) :

break
if (line.count ("TTL")) :
#print addr, "--> Live"

dic[ipl= addr
""" Section 4 '"!
total ip =enl-stl
tn =20 # number of ip handled by one thread
total thread = total ip/tn
total thread=total thread+1
threads= []
try:
for i in xrange(total thread) :
en = stl+tn
if (en >enl):
en =enl
thread = myThread(stl,en)
thread.start ()
threads.append (thread)
stl =en
except:

[38]

Chapter 2

print "Error: unable to start thread"
print "\t
Number of Threads active:", threading.activeCount ()

for t in threads:
t.join ()
print "Exiting Main Thread"
dict = collections.OrderedDict (sorted(dic.items()))
for key in dict:
print dict[key],"-->" "Live"
t2= datetime.now/()
total =t2-tl
print "scanning complete in " , total

The section 1 section is the same as that for the previous program. The one

thing that is additional here is that I have taken an ordered dictionary because it
remembers the order in which its contents are added. So if you want to know which
thread gives the output first, then the ordered dictionary fits here. The section

2 section contains the threading class, and the class myThread (threading.
Thread) : statement initializes the threading class. The self.st = st and self.

en = en statements take the start and end range of the IP address. The section 3
section contains the definition of the run1 function, which is the engine of the car,
and is called by every thread with a different IP address range. The dic [ip] = addr
statement stores the host ID as a key and the IP address as a value in the ordered
dictionary. The section 4 statement is totally new in this code; the total ip
variable is the total number of IPs to be scanned. The significance of the tn =20
variable is that it states that 20 IPs will be scanned by one thread. The total thread
variable contains the total number of threads that need to scan total ip, which
denotes the number of IPs. The threads= [] statement creates an empty list,

which will store the threads. The for loop for i in xrange (total thread) :
produces threads.

en = stl+tn
if (en >enl):
en =enl
thread = myThread(stl,en)
thread.start ()
stl =en

The preceding code produces the range of 20-20 IPs, such as st1-20, 20-40 -enl.
The thread = myThread(stl,en) statement is the thread object of the
threading class.

for t in threads:
t.join()

[39]

Scanning Pentesting

The preceding code terminates all the threads. The next line dict = collections.
OrderedDict (sorted(dic.items())) creates a new sorted dictionary dict,
which contains IP addresses in order. The next lines print the live IP in order. The
threading.activeCount () statement shows how many threads are produced.
One picture saves 1000 words. The following image does the same thing;:

< IP >

0O 20 40 60 80 100 120 140 160 180 200

20 (range)

th=

200

thread7 thread9

thread1 thread3 |/ threadb
thread2 thread4 thread6 thread8 thread10

total_ip

Creating and handling of threads

The output of the ping_sweep_th_.py program is as follows:

G:\Project Snake\Chapter 2\ip>python ping sweep th.py
Enter the Network Address 10.0.0.1
Enter the Starting Number 1
Enter the Last Number 60
Number of Threads active: 4
Exiting Main Thread
10.0.0.1 -->Live
10.0.0.2 -->Live

10.0.0.5 -->Live
10.0.0.6 -->Live
10.0.0.10 -->Live
10.0.0.13 -->Live

scanning complete in 0:01:11.817000

[40]

Chapter 2

Scanning has been completed in 1 minute 11 seconds. As an exercise, change the
value of the tn variable, set it from 2 to 30, and then study the result and find out
the most suitable and optimal value of tn.

So far, you have seen ping sweep by multithreading; now, I have written a
multithreading program with the TCP scan method:

import threading

import time

import socket, subprocess,sys
import thread

import collections

from datetime import datetime
''"'section 1'"!

net = raw_input ("Enter the Network Address ")
stl = int(raw_input ("Enter the starting Number "))
enl = int (raw_input ("Enter the last Number "))

enl=enl+1
dic = collections.OrderedDict ()
netl= net.split('.")
a = "."
net2 = netl[0]+a+netl[1l]+a+netl[2]+a
tl= datetime.now ()
''"'section 2''"'
class myThread (threading.Thread) :
def init (self,st,en):
threading.Thread. init (self)
self.st = st
self.en = en
def run(self):
runl (self.st,self.en)

''"'section 3''!
def scan (addr) :
sock= socket.socket (socket .AF INET, socket.SOCK STREAM)
socket .setdefaulttimeout (1)
result = sock.connect ex((addr,135))
if result==0:
sock.close ()
return 1
else
sock.close ()

[41]

Scanning Pentesting

def runl(stl,enl):
for ip in xrange(stl,enl):
addr = net2+str (ip)
if scan(addr) :
dic[ipl= addr
'''section 4'"!
total ip =enl-stl
tn =20 # number of ip handled by one thread
total thread = total ip/tn
total thread=total thread+1
threads= []
try:
for i in xrange(total thread) :
#print "i is ",1i
en = stl+tn
if (en >enl):
en =enl
thread = myThread(stl,en)
thread.start ()
threads.append (thread)

stl =en

except:

print "Error: unable to start thread"
print "\t Number of Threads active:", threading.activeCount ()
for t in threads:

t.join ()
print "Exiting Main Thread"
dict = collections.OrderedDict (sorted(dic.items()))

for key in dict:
print dict [key],"-->" "Live"
t2= datetime.now ()
total =t2-tl
print "scanning complete in " , total

There should be no difficulty in understanding the program. The following image
shows everything;:

[42]

Chapter 2

Take input 10.0.0.1

run10
Section 1 Output 10.0.0.
range
scan0
class threading call run10
Section 3

Section 2

range 1

range 1 ~ca